Sample records for human pineal gland

  1. Characterization of human pineal gland proteome.

    PubMed

    Yelamanchi, Soujanya D; Kumar, Manish; Madugundu, Anil K; Gopalakrishnan, Lathika; Dey, Gourav; Chavan, Sandip; Sathe, Gajanan; Mathur, Premendu P; Gowda, Harsha; Mahadevan, Anita; Shankar, Susarla K; Prasad, T S Keshava

    2016-11-15

    The pineal gland is a neuroendocrine gland located at the center of the brain. It is known to regulate various physiological functions in the body through secretion of the neurohormone melatonin. Comprehensive characterization of the human pineal gland proteome has not been undertaken to date. We employed a high-resolution mass spectrometry-based approach to characterize the proteome of the human pineal gland. A total of 5874 proteins were identified from the human pineal gland in this study. Of these, 5820 proteins were identified from the human pineal gland for the first time. Interestingly, 1136 proteins from the human pineal gland were found to contain a signal peptide domain, which indicates the secretory nature of these proteins. An unbiased global proteomic profile of this biomedically important organ should benefit molecular research to unravel the role of the pineal gland in neuropsychiatric and neurodegenerative diseases.

  2. Neuropeptide Y in the adult and fetal human pineal gland.

    PubMed

    Møller, Morten; Phansuwan-Pujito, Pansiri; Badiu, Corin

    2014-01-01

    Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we show by use of immunohistochemistry that neuropeptide Y is present in nerve fibers of the adult human pineal gland. The fibers are classical neuropeptidergic fibers endowed with large boutons en passage and primarily located in a perifollicular position with some fibers entering the pineal parenchyma inside the follicle. The distance from the immunoreactive terminals to the pinealocytes indicates a modulatory function of neuropeptide Y for pineal physiology. Some of the immunoreactive fibers might originate from neurons located in the brain and be a part of the central innervation of the pineal gland. In a series of human fetuses, neuropeptide Y-containing nerve fibers was present and could be detected as early as in the pineal of four- to five-month-old fetuses. This early innervation of the human pineal is different from most rodents, where the innervation starts postnatally.

  3. Neuropeptide Y in the Adult and Fetal Human Pineal Gland

    PubMed Central

    Møller, Morten; Phansuwan-Pujito, Pansiri

    2014-01-01

    Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we show by use of immunohistochemistry that neuropeptide Y is present in nerve fibers of the adult human pineal gland. The fibers are classical neuropeptidergic fibers endowed with large boutons en passage and primarily located in a perifollicular position with some fibers entering the pineal parenchyma inside the follicle. The distance from the immunoreactive terminals to the pinealocytes indicates a modulatory function of neuropeptide Y for pineal physiology. Some of the immunoreactive fibers might originate from neurons located in the brain and be a part of the central innervation of the pineal gland. In a series of human fetuses, neuropeptide Y-containing nerve fibers was present and could be detected as early as in the pineal of four- to five-month-old fetuses. This early innervation of the human pineal is different from most rodents, where the innervation starts postnatally. PMID:24757681

  4. Immunopathology of pineal glands from horses with uveitis.

    PubMed

    Kalsow, C M; Dubielzig, R R; Dwyer, A E

    1999-06-01

    Pinealitis accompanying uveitis is well established in laboratory models of experimental autoimmune uveoretinitis. In naturally occurring uveitis, pinealitis has been demonstrated in the pineal gland from a mare with active uveitis and is suspected in some human uveitides. We have evaluated pineal glands from horses with various stages of uveitis for signs of immunopathology accompanying spontaneous uveitis. Pineal glands from 10 horses with uveitis and from 13 horses without uveitis were evaluated for histochemical (H&E, collagen) and immunohistochemical (MHC class II antigen expression, infiltration of T and B lymphocytes, and glial fibrillary acidic protein (GFAP) and vimentin upregulation) evidence of inflammation. Septal areas of pineal glands from horses with uveitis had clusters of MHC class II antigen-expressing cells, T lymphocytes, and enhanced collagen deposition. These changes were not as readily observed in pineal glands from horses without uveitis. B lymphocytes were detected only in the pineal gland from the one mare with active uveitis in which T and B lymphocytes were organized into follicles. No differences in GFAP or vimentin immunoreactivity were noted in pineal glands from horses with or without uveitis. These pineal gland changes suggest that the pinealitis associated with equine uveitis is transient just as the uveitis of these horses is recurrent. Study of pineal glands from horses with clinically documented uveitis allows demonstration of subtle pineal changes associated with natural uveitis. Similar changes would be difficult to document in human patient populations.

  5. Pineal Calcification, Melatonin Production, Aging, Associated Health Consequences and Rejuvenation of the Pineal Gland.

    PubMed

    Tan, Dun Xian; Xu, Bing; Zhou, Xinjia; Reiter, Russel J

    2018-01-31

    The pineal gland is a unique organ that synthesizes melatonin as the signaling molecule of natural photoperiodic environment and as a potent neuronal protective antioxidant. An intact and functional pineal gland is necessary for preserving optimal human health. Unfortunately, this gland has the highest calcification rate among all organs and tissues of the human body. Pineal calcification jeopardizes melatonin's synthetic capacity and is associated with a variety of neuronal diseases. In the current review, we summarized the potential mechanisms of how this process may occur under pathological conditions or during aging. We hypothesized that pineal calcification is an active process and resembles in some respects of bone formation. The mesenchymal stem cells and melatonin participate in this process. Finally, we suggest that preservation of pineal health can be achieved by retarding its premature calcification or even rejuvenating the calcified gland.

  6. Pineal gland volume in schizophrenia and mood disorders.

    PubMed

    Fındıklı, Ebru; Inci, Mehmet Fatih; Gökçe, Mustafa; Fındıklı, Hüseyin Avni; Altun, Hatice; Karaaslan, Mehmet Fatih

    2015-06-01

    The majority of patients with schizophrenia and mood disorders have disruptions in sleep and circadian rhythm. Melatonin, which is secreted by the human pineal gland, plays an important role in sleep and circadian rhythm. The aim of the present study was to evaluate and compare pineal gland volumes in patients with schizophrenia and mood disorders. We retrospectively evaluated the pineal gland volumes of 80 cases, including 16 cases of unipolar depression, 17 cases of bipolar disorder, 17 cases of schizophrenia, and 30 controls. The total pineal gland volume of all cases was measured via magnetic resonance images, and the total mean pineal volume of each group was compared. The mean pineal volumes of patients with schizophrenia, bipolar disorder, unipolar depression, and the controls were 83.55±10.11 mm(3), 93.62±11.00 mm(3), 95.19±11.61 mm(3) and 99.73±12.03 mm(3), respectively. The mean pineal gland volume of the patients with schizophrenia was significantly smaller than those of the other groups. Our data show that patients with schizophrenia have smaller pineal gland volumes, and this deviation in pineal gland morphology is not seen in those with mood disorders. We hypothesize that volumetric changes in the pineal gland of patients with schizophrenia may be involved in the pathophysiology of this illness.

  7. The pineal gland from development to function.

    PubMed

    Sapède, Dora; Cau, Elise

    2013-01-01

    The pineal gland is a small neuroendocrine organ whose main and most conserved function is the nighttime secretion of melatonin. In lower vertebrates, the pineal gland is directly photosensitive. In contrast, in higher vertebrates, the direct photosensitivity of the pineal gland had been lost. Rather, the action of this gland as a relay between environmental light conditions and body functions involves reception of light information by the retina. In parallel to this sensory regression, the pineal gland (and its accessory organs) appears to have lost several functions in relation to light and temperature, which are important in lower vertebrate species. In humans, the functions of the pineal gland overlap with the functions of melatonin. They are extremely widespread and include general effects both on cell protection and on more precise functions, such as sleep and immunity. Recently, the role of melatonin has received a considerable amount of attention due to increased cancer risk in shift workers and the discovery that patients suffering from neurodegenerative diseases, autism, or depression exhibit abnormal melatonin rhythms. © 2013 Elsevier Inc. All rights reserved.

  8. Descartes and the pineal gland in animals: a frequent misinterpretation.

    PubMed

    Finger, S

    1995-01-01

    René Descartes presented a number of reasons for his choice of the pineal gland as a logical place for the soul to interact with the physical machinery of the body. It is often stated that one of his reasons was that he believed animals do not have pineal glands, whereas humans alone possess a soul and this small structure. This is a misinterpretation of Descartes. The philosopher knew that barnyard and other animals possess pineal glands, having seen this with his own eyes. His point was that the pineal is unique in humans only because of a special function - acting as the seat for the rational soul.

  9. [Morphofunctional and molecular bases of pineal gland aging].

    PubMed

    Khavinson, V Kh; Lin'kova, N S

    2012-01-01

    The review analyzed morphology, molecular and functional aspects of pineal gland aging and methods of it correction. The pineal gland is central organ, which regulates activity of neuroimmunoendocrine, antioxidant and other organisms systems. Functional activity of pineal gland is discreased at aging, which is the reason of melatonin level changing. The molecular and morphology research demonstrated, that pineal gland hadn't strongly pronounced atrophy at aging. Long-term experience showed, that peptides extract of pineal gland epithalamin and synthetic tetrapeptide on it base epithalon restored melatonin secretion in pineal gland and had strong regulatory activity at neuroimmunoendocrine and antioxidant organism systems.

  10. Lymphopoiesis in the chicken pineal gland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cogburn, L.A.; Glick, B.

    Pineal lymphoid development was studied in two breeds of chickens from hatching until sexual maturity. No lymphocytes were found in the pineal prior to 9 days of age (da). Lymphocytes migrate through the endothelium of venules into the pineal stroma. Lymphoid tissue reached its maximal accumulation in 32-da pineal glands of both breeds. At this age, the New Hampshire (NH) breed had a larger proportion of lymphoid volume to total pineal volume (32%) than did pineal glands from White Leghorn (WL) chickens (18%).

  11. [Aging of the pineal gland].

    PubMed

    Khavinson, V Kh; Golubev, A G

    2002-01-01

    The age-related changes in the pineal gland are functional rather than organic, which makes their correction or prevention more tenable. The amelioration or inhibition of some age-related impairments of the pineal gland were observed with dietary restriction and the use of S-adenosylmethionine or MAO-A inhibitors. A threefold increase in nocturnal melatonin peaks occurs in old rhesus monkeys treated with a synthetic peptide Ala-Glu-Asp-Gly (Epithalon) designed basing on the amino acid content of a pineal peptide extract Epithalamin. Other effects of Epithalon markedly overlap with melatonin effects. Besides life extension in mice and fruit flies, Epithalon effects include the postponing vision loss in Campbell rats with hereditary pigmental dystrophy. A uniting aspect of such a range of activities might be the participation of transcription factors, since they are often highly conservative in evolution and, on the other hand, may be strictly tissue-specific. The targets of Epithalon may include transfactors that in mammals are specific for the pineal gland and retina and exhibit impaired functions in the aged pineal gland.

  12. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases.

    PubMed

    Stehle, Jörg H; Saade, Anastasia; Rawashdeh, Oliver; Ackermann, Katrin; Jilg, Antje; Sebestény, Tamás; Maronde, Erik

    2011-08-01

    The human pineal gland is a neuroendocrine transducer that forms an integral part of the brain. Through the nocturnally elevated synthesis and release of the neurohormone melatonin, the pineal gland encodes and disseminates information on circadian time, thus coupling the outside world to the biochemical and physiological internal demands of the body. Approaches to better understand molecular details behind the rhythmic signalling in the human pineal gland are limited but implicitly warranted, as human chronobiological dysfunctions are often associated with alterations in melatonin synthesis. Current knowledge on melatonin synthesis in the human pineal gland is based on minimally invasive analyses, and by the comparison of signalling events between different vertebrate species, with emphasis put on data acquired in sheep and other primates. Together with investigations using autoptic pineal tissue, a remnant silhouette of premortem dynamics within the hormone's biosynthesis pathway can be constructed. The detected biochemical scenario behind the generation of dynamics in melatonin synthesis positions the human pineal gland surprisingly isolated. In this neuroendocrine brain structure, protein-protein interactions and nucleo-cytoplasmic protein shuttling indicate furthermore a novel twist in the molecular dynamics in the cells of this neuroendocrine brain structure. These findings have to be seen in the light that an impaired melatonin synthesis is observed in elderly and/or demented patients, in individuals affected by Alzheimer's disease, Smith-Magenis syndrome, autism spectrum disorder and sleep phase disorders. Already, recent advances in understanding signalling dynamics in the human pineal gland have significantly helped to counteract chronobiological dysfunctions through a proper restoration of the nocturnal melatonin surge. © 2011 John Wiley & Sons A/S.

  13. Classification of the venous architecture of the pineal gland by 7T MRI.

    PubMed

    Cho, Zang-Hee; Choi, Sang-Han; Chi, Je-Gun; Kim, Young-Bo

    2011-10-01

    Magnetic resonance imaging (MRI) at 7.0 Tesla (7T) can show many details of anatomical structures with unprecedented resolution and contrast. In this report, we describe for the first time the unexpected wide variation in pineal gland structure, as visualized by MR images obtained with 7T in a group of healthy young volunteers. A total of 34 volunteers (22 men and 12 women) were enrolled in the study. Their 7T MR images revealed such wide variations in pineal gland shape that it led us to attempt to classify the patterns seen in these pineal glands. Indeed, they were successfully correlated with a previous human cadaver study of venous structures by Tamaki et al., who classified the venous structures of the pineal gland into three categories. This is the first human in vivo pineal vein imaging study using 7T MRI. Pineal venous imaging may permit the early diagnosis of a pineal tumor. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  14. An historical view of the pineal gland and mental disorders.

    PubMed

    López-Muñoz, F; Molina, J D; Rubio, G; Alamo, C

    2011-08-01

    Since Classical Antiquity numerous authors have linked the origin of some mental disorders to physical and functional changes in the pineal gland because of its attributed role in humans as the connection between the material and the spiritual world. The pineal organ was seen as a valve-like structure that regulated the flow of animal spirits through the ventricular system, a hypothesis that took on more vigour during the Middle Ages and the Renaissance. The framework for this theory was "the three cells of the brain", in which the pineal gland was even called the "appendix of thought". The pineal gland could also be associated with the boom, during this period, of certain legends about the "stone of folly". But the most relevant psychopathological role of this organ arrived with Descartes, who proposed that it was the seat of the human soul and controlled communications between the physical body and its surroundings, including emotions. After a period of decline during which it was considered as a mere vestigial remnant of evolution, the link between the pineal gland and psychiatric disorders was definitively highlighted in the 20th century, first with the use of glandular extracts in patients with mental deficiency, and finally with the discovery of melatonin in 1958. The physiological properties of melatonin reawakened interest in the relationship between the pineal gland and mental disorders, fundamentally the affective and sleep disorders, which culminated in the development of new pharmacological agents acting through melatonergic receptors (ramelteon and agomelatine). Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. The pineal gland - Its possible roles in human reproduction

    NASA Technical Reports Server (NTRS)

    Brzezinski, Amnon; Wurtman, Richard J.

    1988-01-01

    The paper discusses the role of the pineal gland in controlling mammalian reproduction, with particular attention given to the role of melatonin in polyestrus mammals, like humans and laboratory rodents. Evidence is cited indicating the influence of melatonin production and blood content on the age of puberty, the timing of the ovulatory cycle, gonadal steriodogenesis, and patterns of reproductive behavior. It is suggested that abnormal patterns of melatonin might be associated with amenorrhea, anovulation, unexplained infertility, premature menopause, and habitual abortions.

  16. [Characteristics of the pineal gland and thymus relationship in aging].

    PubMed

    Lin'kova, N S; Poliakova, V O; Kvetnoĭ, I M; Trofimov, A V; Sevost'ianova, N N

    2011-01-01

    The review presents the interference between thymus and pineal gland during their involution. The research data of thymus peptides influence on pineal gland and pineal peptides on thymus are summarized. Analysis of these data showed that pineal peptides (Epithalamin, Epitalon) had more effective geroprotective effect on thymus involution in comparison with geroprotective effect of thymic peptides (Thymalin, Thymogen) on involution of pineal gland. The key mechanisms of pineal peptides effect on thymus dystrophy is immunoendocrine cooperation, which is realized as transcription's activation of various proteins.

  17. Dynamics in enzymatic protein complexes offer a novel principle for the regulation of melatonin synthesis in the human pineal gland.

    PubMed

    Maronde, Erik; Saade, Anastasia; Ackermann, Katrin; Goubran-Botros, Hany; Pagan, Cecile; Bux, Roman; Bourgeron, Thomas; Dehghani, Faramarz; Stehle, Jörg H

    2011-08-01

    Time of day is communicated to the body through rhythmic cues, including pineal gland melatonin synthesis, which is restricted to nighttime. Whereas in most rodents transcriptional regulation of the arylalkylamine N-acetyltransferase (Aanat) gene is essential for rhythmic melatonin synthesis, investigations into nonrodent mammalian species have shown post-transcriptional regulation to be of central importance, with molecular mechanisms still elusive. Therefore, human pineal tissues, taken from routine autopsies were allocated to four time-of-death groups (night/dawn/day/dusk) and analyzed for daytime-dependent changes in phosphorylated AANAT (p31T-AANAT) and in acetyl-serotonin-methyltransferase (ASMT) expression and activity. Protein content, intracellular localization, and colocalization of p31T-AANAT and ASMT were assessed, using immunoblotting, immunofluorescence, and immunoprecipitation techniques. Fresh sheep pineal gland preparations were used for comparative purposes. The amount of p31T-AANAT and ASMT proteins as well as their intracellular localization showed no diurnal variation in autoptic human and fresh sheep pineal glands. Moreover, in human and sheep pineal extracts, AANAT could not be dephosphorylated, which was at variance to data derived from rat pineal extracts. P31T-AANAT and ASMT were often found to colocalize in cellular rod-like structures that were also partly immunoreactive for the pinealocyte process-specific marker S-antigen (arrestin) in both, human and sheep pinealocytes. Protein-protein interaction studies with p31T-AANAT, ASMT, and S-antigen demonstrated a direct association and formation of robust complexes, involving also 14-3-3. This work provides evidence for a regulation principle for AANAT activity in the human pineal gland, which may not be based on a p31T-AANAT phosphorylation/dephosphorylation switch, as described for other mammalian species. © 2011 John Wiley & Sons A/S.

  18. Unique Case Report of Pineal Gland Metastasis From Bladder Carcinoma.

    PubMed

    Li, Jun; Wang, Ping; Wang, Bin

    2016-05-01

    Pineal metastasis is uncommon and most metastatic pineal lesions are asymptomatic. To our knowledge the herein reported case is the first in which the pineal gland was confirmed as the metastatic site of a bladder carcinoma.The patient reported in this case is a 59-year-old man who suffered from headache and delirium for 4 days after surgical treatment for removal of a bladder carcinoma 1 year ago. Magnetic resonance imaging (MRI) revealed a solid tumor involving the pineal gland with significant enhancement.The patient underwent surgical treatment for removal of the neoplastic lesion in the pineal gland. Histopathological examination confirmed invasion of the pineal gland by metastatic urothelial carcinoma.This case highlighted that the presence of pineal lesions in patient with known malignancy should raise suspicion of metastatic involvement.

  19. Cytologic features of the normal pineal gland of adults.

    PubMed

    Jiménez-Heffernan, José A; Bárcena, Carmen; Agra, Carolina; Asunción, Alfonso

    2015-08-01

    It is well known that the histology of normal pineal gland may resemble not only pineal tumors but also gliomas, owing to its cellularity which is much greater than that of normal white or gray matter. Our recent experience with a case in which part of a normal gland was submitted for intraoperative consultation, together with the scarcity of cytologic descriptions, led us to perform a cyto-histologic correlation study. In addition to the intraoperative case, we collected five pineal glands from consecutive adult autopsies. During the squash procedure, we often noted the presence of calcified grains. Smears were hypercellular, distributed in tissue fibrillary fragments and as numerous single cells, with crystalline structures. Pineal gland cells (pineocytes) were large, round, epithelioid with ill-defined cytoplasms and moderate nuclear pleomorphism. Spindle cells with greater fibrillary quality were less common. One of the most remarkable findings seen in all cases was the presence of cytoplasmic pigment. Histological evaluation and immunohistochemical staining confirmed that the tissue was normal pineal gland. The histology showed a characteristic lobular aspect and frequent corpora arenacea. The pigment seen cytologically was also encountered in histology and corresponded to lipofuscin. Cytologic features of the pineal gland are peculiar when compared to other normal structures of the central nervous system. These features correlate closely with what is seen on histology. In an adequate clinical context, and in combination with frozen sections, cytology allows a specific recognition of the pineal gland during intraoperative pathologic consultations. © 2015 Wiley Periodicals, Inc.

  20. Circadian Regulation of Pineal Gland Rhythmicity

    PubMed Central

    Borjigin, Jimo; Zhang, L. Samantha; Calinescu, Anda-Alexandra

    2011-01-01

    The pineal gland is a neuroendocrine organ of the brain. Its main task is to synthesize and secrete melatonin, a nocturnal hormone with diverse physiological functions. This review will focus on the central and pineal mechanisms in generation of mammalian pineal rhythmicity including melatonin production. In particular, this review covers the following topics: (1) local control of serotonin and melatonin rhythms; (2) neurotransmitters involved in central control of melatonin; (3) plasticity of the neural circuit controlling melatonin production; (4) role of clock genes in melatonin formation; (5) phase control of pineal rhythmicity; (6) impact of light at night on pineal rhythms; and (7) physiological function of the pineal rhythmicity. PMID:21782887

  1. The dielectric properties of human pineal gland tissue and RF absorption due to wireless communication devices in the frequency range 400-1850 MHz.

    PubMed

    Schmid, Gernot; Uberbacher, Richard; Samaras, Theodoros; Tschabitscher, Manfred; Mazal, Peter R

    2007-09-07

    In order to enable a detailed analysis of radio frequency (RF) absorption in the human pineal gland, the dielectric properties of a sample of 20 freshly removed pineal glands were measured less than 20 h after death. Furthermore, a corresponding high resolution numerical model of the brain region surrounding the pineal gland was developed, based on a real human tissue sample. After inserting this model into a commercially available numerical head model, FDTD-based computations for exposure scenarios with generic models of handheld devices operated close to the head in the frequency range 400-1850 MHz were carried out. For typical output power values of real handheld mobile communication devices, the obtained results showed only very small amounts of absorbed RF power in the pineal gland when compared to SAR limits according to international safety standards. The highest absorption was found for the 400 MHz irradiation. In this case the RF power absorbed inside the pineal gland (organ mass 96 mg) was as low as 11 microW, when considering a device of 500 mW output power operated close to the ear. For typical mobile phone frequencies (900 MHz and 1850 MHz) and output power values (250 mW and 125 mW) the corresponding values of absorbed RF power in the pineal gland were found to be lower by a factor of 4.2 and 36, respectively. These results indicate that temperature-related biologically relevant effects on the pineal gland induced by the RF emissions of typical handheld mobile communication devices are unlikely.

  2. Cytologic features of the normal pineal gland on squash preparations.

    PubMed

    Murro, Diana; Alsadi, Alaa; Nag, Sukriti; Arvanitis, Leonidas; Gattuso, Paolo

    2014-11-01

    As primary pineal lesions are extremely rare, many surgical pathologists are unfamiliar with normal pineal cytologic features. We describe cytologic features of the normal pineal gland in patients of varying ages and identify common diagnostic pitfalls. We performed a retrospective review of pineal gland biopsies performed at our institution, where approximately 30,000 surgical specimens are accessioned yearly, for the last 23 years. Only two pineal gland biopsies were found. Although both cases were initially diagnosed as low-grade gliomas on frozen section, the final diagnosis was benign pineal tissue based on light microscopy and immunohistochemistry results. Additionally, we performed squash preparations of five normal pineal gland autopsy specimens with Papanicolaou and Diff-Quik® (Dade Behring, Newark, DE) stains. Infant preparations were highly cellular smears composed of numerous, uniform, single cells with indistinct cytoplasm, small round-to-oval nuclei, fine chromatin, and absent nucleoli and calcifications. The vague microfollicular pattern mimicked a pineocytoma and the fine fibrillary background mimicked a glial neoplasm. Young adult smears were similar; however, microcalcifications were present with fewer background single cells. Older patients had much less cellular smears composed of small clusters of cells with fusiform-to-spindle nuclei, a fine chromatin pattern, and indistinct cytoplasmic borders. There were fewer background single cells and more microcalcifications. The cytologic features of the native pineal gland vary with age. Normal pineal tissue can be confused with a pineocytoma or low-grade glioma. Familiarity with normal pineal gland cytological features will help to avoid a potential misdiagnosis. © 2014 Wiley Periodicals, Inc.

  3. Peripheral Precocious Puberty Caused by Human Chorionic Gonadotropin Producing Pineal Gland Tumor.

    PubMed

    Hammadur Rahaman, S K; Khandelwal, Deepak; Khadgawat, Rajesh; Kandasamy, Devasenathipathy; Bakhshi, Sameer

    2018-03-15

    Pineal gland lesions usually present with central precocious puberty. A 3½-yr-old boy presented with precocious puberty. Clinically and biochemically, it was gonadotropin releasing hormone (GnRH) independent. Serum and CSF beta-hCG levels were increased. Thin section magnetic resonance imaging of brain revealed a pineal gland tumor. He received chemotherapy followed by radiotherapy and responded well. CSF beta-hCG should be measured in all cases of peripheral precocity, and if CSF beta-hCG is elevated, thin section magnetic resonance imaging of brain should be considered.

  4. Primary rhabdomyosarcoma of the pineal gland.

    PubMed

    Lau, Steven K M; Cykowski, Matthew D; Desai, Shiv; Cao, Ying; Fuller, Gregory N; Bruner, Janet; Okazaki, Ian

    2015-05-01

    To report a case of primary rhabdomyosarcoma (RMS) of the pineal gland in an adult, as well as review the literature on this rare entity. The case is compared with previous reports of similar entities, with emphasis on this patient's characteristics and clinical presentation, investigations, and management. Diagnosis of primary RMS of the pineal gland was based on the presence of strap cells and multinucleated myotube-like structures, as well as tumor cell expression of skeletal muscle markers consistent with myogenic differentiation. Multimodality treatment was initiated based on pediatric protocols. Unfortunately, the disease progressed on treatment, and the patient survived only 5 months from diagnosis. Pineal RMS is a rare disease with poor prognosis. Optimal management is unknown but likely to involve aggressive multimodality therapy. Copyright© by the American Society for Clinical Pathology.

  5. Occurrence of Pineal Gland Tumors in Combined Chronic Toxicity/Carcinogenicity Studies in Wistar Rats.

    PubMed

    Treumann, Silke; Buesen, Roland; Gröters, Sibylle; Eichler, Jens-Olaf; van Ravenzwaay, Bennard

    2015-08-01

    Pineal gland tumors are very rare brain lesions in rats as well as in other species including humans. A total of 8 (out of 1,360 examined) Wistar rats from 3 different combined chronic toxicity/carcinogenicity or mere carcinogenicity studies revealed pineal gland tumors. The tumors were regarded to be spontaneous and unrelated to treatment. The morphology and immunohistochemical evaluation led to the diagnosis malignant pinealoma. The main characteristics that were variably developed within the tumors were the following: cellular atypia, high mitotic index, giant cells, necrosis, Homer Wright rosettes, Flexner-Wintersteiner rosettes and pseudorosettes, positive immunohistochemical reaction for synaptophysin, and neuron-specific enolase. The pineal gland is not a protocol organ for histopathological examination in carcinogenicity studies. Nevertheless, the pineal gland can occasionally be encountered on the routine brain section or if it is the origin of a tumor protruding into the brain, the finding will be recorded. Therefore, although known to be a rare tumor in rats, pineal neoplasms should be included in the list of possible differential diagnoses for brain tumors, especially when the tumor is located in the region of the pineal body. © 2015 by The Author(s).

  6. MicroRNAs in the Pineal Gland

    PubMed Central

    Clokie, Samuel J. H.; Lau, Pierre; Kim, Hyun Hee; Coon, Steven L.; Klein, David C.

    2012-01-01

    MicroRNAs (miRNAs) play a broad range of roles in biological regulation. In this study, rat pineal miRNAs were profiled for the first time, and their importance was evaluated by focusing on the main function of the pineal gland, melatonin synthesis. Massively parallel sequencing and related methods revealed the miRNA population is dominated by a small group of miRNAs as follows: ∼75% is accounted for by 15 miRNAs; miR-182 represents 28%. In addition to miR-182, miR-183 and miR-96 are also highly enriched in the pineal gland, a distinctive pattern also found in the retina. This effort also identified previously unrecognized miRNAs and other small noncoding RNAs. Pineal miRNAs do not exhibit a marked night/day difference in abundance with few exceptions (e.g. 2-fold night/day differences in the abundance of miR-96 and miR-182); this contrasts sharply with the dynamic 24-h pattern that characterizes the pineal transcriptome. During development, the abundance of most pineal gland-enriched miRNAs increases; however, there is a marked decrease in at least one, miR-483. miR-483 is a likely regulator of melatonin synthesis, based on the following. It inhibits melatonin synthesis by pinealocytes in culture; it acts via predicted binding sites in the 3′-UTR of arylalkylamine N-acetyltransferase (Aanat) mRNA, the penultimate enzyme in melatonin synthesis, and it exhibits a developmental profile opposite to that of Aanat transcripts. Additionally, a miR-483 targeted antagonist increased melatonin synthesis in neonatal pinealocytes. These observations support the hypothesis that miR-483 suppresses Aanat mRNA levels during development and that the developmental decrease in miR-483 abundance promotes melatonin synthesis. PMID:22908386

  7. Morphofunctional and signaling molecules overlap of the pineal gland and thymus: role and significance in aging.

    PubMed

    Paltsev, Michael A; Polyakova, Victoria O; Kvetnoy, Igor M; Anderson, George; Kvetnaia, Tatiana V; Linkova, Natalia S; Paltseva, Ekaterina M; Rubino, Rosa; De Cosmo, Salvatore; De Cata, Angelo; Mazzoccoli, Gianluigi

    2016-03-15

    Deficits in neuroendocrine-immune system functioning, including alterations in pineal and thymic glands, contribute to aging-associated diseases. This study looks at ageing-associated alterations in pineal and thymic gland functioning evaluating common signaling molecules present in both human and animal pinealocytes and thymocytes: endocrine cell markers (melatonin, serotonin, pCREB, AANAT, CGRP, VIP, chromogranin А); cell renovation markers (p53, AIF, Ki67), matrix metalloproteinases (MMP2, MMP9) and lymphocytes markers (CD4, CD5, CD8, CD20). Pineal melatonin is decreased, as is one of the melatonin pathway synthesis enzymes in the thymic gland. A further similarity is the increased MMPs levels evident over age in both glands. Significant differences are evident in cell renovation processes, which deteriorate more quickly in the aged thymus versus the pineal gland. Decreases in the number of pineal B-cells and thymic T-cells were also observed over aging. Collected data indicate that cellular involution of the pineal gland and thymus show many commonalities, but also significant changes in aging-associated proteins. It is proposed that such ageing-associated alterations in these two glands provide novel pharmaceutical targets for the wide array of medical conditions that are more likely to emerge over the course of ageing.

  8. Morphofunctional and signaling molecules overlap of the pineal gland and thymus: role and significance in aging

    PubMed Central

    Paltsev, Michael A.; Polyakova, Victoria O.; Kvetnoy, Igor M.; Anderson, George; Kvetnaia, Tatiana V.; Linkova, Natalia S.; Paltseva, Ekaterina M.; Rubino, Rosa; De Cosmo, Salvatore; De Cata, Angelo; Mazzoccoli, Gianluigi

    2016-01-01

    Deficits in neuroendocrine-immune system functioning, including alterations in pineal and thymic glands, contribute to aging-associated diseases. This study looks at ageing-associated alterations in pineal and thymic gland functioning evaluating common signaling molecules present in both human and animal pinealocytes and thymocytes: endocrine cell markers (melatonin, serotonin, pCREB, AANAT, CGRP, VIP, chromogranin A); cell renovation markers (p53, AIF, Ki67), matrix metalloproteinases (MMP2, MMP9) and lymphocytes markers (CD4, CD5, CD8, CD20). Pineal melatonin is decreased, as is one of the melatonin pathway synthesis enzymes in the thymic gland. A further similarity is the increased MMPs levels evident over age in both glands. Significant differences are evident in cell renovation processes, which deteriorate more quickly in the aged thymus versus the pineal gland. Decreases in the number of pineal B-cells and thymic T-cells were also observed over aging. Collected data indicate that cellular involution of the pineal gland and thymus show many commonalities, but also significant changes in aging-associated proteins. It is proposed that such ageing-associated alterations in these two glands provide novel pharmaceutical targets for the wide array of medical conditions that are more likely to emerge over the course of ageing. PMID:26943046

  9. Pineal gland volume in primary insomnia and healthy controls: a magnetic resonance imaging study.

    PubMed

    Bumb, Jan M; Schilling, Claudia; Enning, Frank; Haddad, Leila; Paul, Franc; Lederbogen, Florian; Deuschle, Michael; Schredl, Michael; Nolte, Ingo

    2014-06-01

    Little is known about the relation between pineal volume and insomnia. Melatonin promotes sleep processes and, administered as a drug, it is suitable to improve primary and secondary sleep disorders in humans. Recent magnetic resonance imaging studies suggest that human plasma and saliva melatonin levels are partially determined by the pineal gland volume. This study compares the pineal volume in a group of patients with primary insomnia to a group of healthy people without sleep disturbance. Pineal gland volume (PGV) was measured on the basis of high-resolution 3 Tesla MRI (T1-magnetization prepared rapid gradient echo) in 23 patients and 27 controls, matched for age, gender and educational status. Volume measurements were performed conventionally by manual delineation of the pineal borders in multi-planar reconstructed images. Pineal gland volume was significantly smaller (P < 0.001) in patients (48.9 ± 26.6 mm(3) ) than in controls (79 ± 30.2 mm(3) ). In patients PGV correlated negatively with age (r = -0.532; P = 0.026). Adjusting for the effect of age, PGV and rapid eye movement (REM) latency showed a significant positive correlation (rS  = 0.711, P < 0.001) in patients. Pineal volume appears to be reduced in patients with primary insomnia compared to healthy controls. Further studies are needed to clarify whether low pineal volume is the basis or the consequence of functional sleep changes to elucidate the molecular pathology for the pineal volume loss in primary insomnia. © 2014 European Sleep Research Society.

  10. Post-natal growth in the rat pineal gland: a stereological study.

    PubMed

    Erbagci, H; Kizilkan, N; Ozbag, D; Erkilic, S; Kervancioglu, P; Canan, S; Gumusburun, E

    2012-10-01

    The purpose was to observe the changes in a rat pineal gland using stereological techniques during lactation and post-weaning periods. Thirty Wistar albino rats were studied during different post-natal periods using light microscopy. Pineal gland volume was estimated using the Cavalieri Method. Additionally, the total number of pinealocytes was estimated using the optical fractionator technique. Pineal gland volume displayed statistically significant changes between lactation and after weaning periods. A significant increase in pineal gland volume was observed from post-natal day 10 to post-natal day 90. The numerical density of pinealocytes became stabilized during lactation and decreased rapidly after weaning. However, the total number of pinealocytes continuously increased during post-natal life of all rats in the study. However, this increment was not statistically significant when comparing the lactation and after weaning periods. The increase in post-natal pineal gland volume may depend on increment of immunoreactive fibres, capsule thickness or new synaptic bodies. © 2012 Blackwell Verlag GmbH.

  11. Pineal Gland Tumor but not Pinealoma: A Case Report.

    PubMed

    Naqvi, Syeda; Rupareliya, Chintan; Shams, Abdullah; Hameed, Maria; Mahuwala, Zabeen; Giyanwani, Pirthvi Raj

    2017-08-18

    The pineal gland is a small pinecone-shaped and functionally endocrine structure located in the epithalamus region. Developmentally, the pineal gland is considered as a part of the epithalamus. It plays a role in the entrainment of the circadian rhythms of an organism by producing melatonin, a functionally important hormone. Lesions of the pineal region are rare compared to other parts of the brain. A lesion may be tumorous or non-tumorous in nature. The most common lesions are tumors that are pineal parenchymal tumors (PPT) in origin. Gliomas are the second most common tumors in the pineal region. We report a case of a high-grade oligodendroglioma, not commonly seen in the pineal region, in a 45-year-old male. The patient was suspected to have a mass in the pineal region on a computed tomography (CT) scan and histology confirmed the diagnosis of oligodendroglioma. This is a unique case because only five such cases have been reported so far.

  12. The photoreceptive cells of the pineal gland in adult zebrafish (Danio rerio).

    PubMed

    Laurà, Rosaria; Magnoli, Domenico; Zichichi, Rosalia; Guerrera, Maria Cristina; De Carlos, Felix; Suárez, Alberto Álvarez; Abbate, Francesco; Ciriaco, Emilia; Vega, Jose Antonio; Germanà, Antonino

    2012-03-01

    The zebrafish pineal gland plays a fundamental role in the regulation of the circadian rhythm through the melatonin secretion. The pinealocytes, also called photoreceptive cells, are considered the morphofunctional unit of pineal gland. In literature, the anatomical features, the cellular characteristics, and the pinealocytes morphology of zebrafish pineal gland have not been previously described in detail. Therefore, this study was undertaken to analyze the structure and ultrastructure, as well as the immunohistochemical profile of the zebrafish pineal gland with particular reference to the pinealocytes. Here, we demonstrated, using RT-PCR, immunohistochemistry and transmission electron microscopy, the expression of the mRNA for rhodopsin in the pineal gland of zebrafish, as well as its cellular localization exclusively in the pinealocytes of adult zebrafish. Moreover, the ultrastructural observations demonstrated that the pinealocytes were constituted by an outer segment with numerous lamellar membranes, an inner segment with many mitochondria, and a basal pole with the synapses. Our results taken together demonstrated a central role of zebrafish pinealocytes in the control of pineal gland functions. Copyright © 2011 Wiley Periodicals, Inc.

  13. [Participation of pineal gland in antistressor activity of adaptogenic drugs].

    PubMed

    Arushanian, É B; Beĭer, É V

    2015-01-01

    Chronic stress produces some morphological changes in rats, including thymus weight reduction, adrenal hypertrophy, and peptic ulcers in stomach. Repeated administration of phytoadaptogenic drugs (ginseng and bilobil) decreased these stress-induced disorders. The antistressor activity of drugs was attenuated upon by removal of the pineal gland. Histochemical and morphometric investigation of pineal tissues in stressed animals showed that that the pharmacological effect was accompanied by increasing functional activity of the pineal gland. It is suggested that pineal mobilization may participate in antistressor activity of phytoadaptogenic drugs.

  14. Rhythmic control of endocannabinoids in the rat pineal gland.

    PubMed

    Koch, Marco; Ferreirós, Nerea; Geisslinger, Gerd; Dehghani, Faramarz; Korf, Horst-Werner

    2015-01-01

    Endocannabinoids modulate neuroendocrine networks by directly targeting cannabinoid receptors. The time-hormone melatonin synchronizes these networks with external light condition and guarantees time-sensitive and ecologically well-adapted behaviors. Here, the endocannabinoid arachidonoyl ethanolamide (AEA) showed rhythmic changes in rat pineal glands with higher levels during the light-period and reduced amounts at the onset of darkness. Norepinephrine, the essential stimulus for nocturnal melatonin biosynthesis, acutely down-regulated AEA and other endocannabinoids in cultured pineal glands. These temporal dynamics suggest that AEA exerts time-dependent autocrine and/or paracrine functions within the pineal. Moreover, endocananbinoids may be released from the pineal into the CSF or blood stream.

  15. Neuroendocrine mediated effects of electromagnetic-field exposure: Possible role of the pineal gland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, W.B.; Stevens, R.G.; Anderson, L.E.

    Reports from recent epidemiological studies have suggested a possible association between extremely low frequently (ELF; including 50- or 60-Hz) electric- and magnetic-field exposure, and increased risk of certain cancers, depression, and miscarriage. ELF field-induced pineal gland dysfunction is a possible etiological factor in these effects. Work in our laboratory and elsewhere has shown that ELF electromagnetic-field exposure can alter the normal circadian rhythm of melatonin synthesis and release in the pineal gland. Consequences of reduced or inappropriately timed melatonin release on the endocrine, neuronal, and immune systems are discussed. Laboratory data linking ELF field exposure to changes in pineal circadianmore » rhythms in both animal and humans are reviewed. The authors suggest that the pineal gland, in addition to being a convenient locus for measuring dyschronogenic effects of ELF field exposure, may play a central role in biological response to these fields via alterations in the melatonin signal.« less

  16. Pinealitis accompanying equine recurrent uveitis.

    PubMed Central

    Kalsow, C M; Dwyer, A E; Smith, A W; Nifong, T P

    1993-01-01

    There is no direct verification of pineal gland involvement in human uveitis. Specimens of pineal tissue are not available during active uveitis in human patients. Naturally occurring uveitis in horses gives us an opportunity to examine tissues during active ocular inflammation. We examined the pineal gland of a horse that was killed because it had become blind during an episode of uveitis. The clinical history and histopathology of the eyes were consistent with post-leptospiral equine recurrent uveitis. The pineal gland of this horse had significant inflammatory infiltration consisting mainly of lymphocytes with some eosinophils. This observation of pinealitis accompanying equine uveitis supports the animal models of experimental autoimmune uveoretinitis with associated pinealitis and suggests that the pineal gland may be involved in some human uveitides. Images PMID:8435400

  17. Cellular Basis of Pineal Gland Development: Emerging Role of Microglia as Phenotype Regulator.

    PubMed

    Ibañez Rodriguez, María P; Noctor, Stephen C; Muñoz, Estela M

    2016-01-01

    The adult pineal gland is composed of pinealocytes, astrocytes, microglia, and other interstitial cells that have been described in detail. However, factors that contribute to pineal development have not been fully elucidated, nor have pineal cell lineages been well characterized. We applied systematic double, triple and quadruple labeling of cell-specific markers on prenatal, postnatal and mature rat pineal gland tissue combined with confocal microscopy to provide a comprehensive view of the cellular dynamics and cell lineages that contribute to pineal gland development. The pineal gland begins as an evagination of neuroepithelium in the roof of the third ventricle. The pineal primordium initially consists of radially aligned Pax6+ precursor cells that express vimentin and divide at the ventricular lumen. After the tubular neuroepithelium fuses, the distribution of Pax6+ cells transitions to include rosette-like structures and later, dispersed cells. In the developing gland all dividing cells express Pax6, indicating that Pax6+ precursor cells generate pinealocytes and some interstitial cells. The density of Pax6+ cells decreases across pineal development as a result of cellular differentiation and microglial phagocytosis, but Pax6+ cells remain in the adult gland as a distinct population. Microglial colonization begins after pineal recess formation. Microglial phagocytosis of Pax6+ cells is not common at early stages but increases as microglia colonize the gland. In the postnatal gland microglia affiliate with Tuj1+ nerve fibers, IB4+ blood vessels, and Pax6+ cells. We demonstrate that microglia engulf Pax6+ cells, nerve fibers, and blood vessel-related elements, but not pinealocytes. We conclude that microglia play a role in pineal gland formation and homeostasis by regulating the precursor cell population, remodeling blood vessels and pruning sympathetic nerve fibers.

  18. Cellular Basis of Pineal Gland Development: Emerging Role of Microglia as Phenotype Regulator

    PubMed Central

    Ibañez Rodriguez, María P.

    2016-01-01

    The adult pineal gland is composed of pinealocytes, astrocytes, microglia, and other interstitial cells that have been described in detail. However, factors that contribute to pineal development have not been fully elucidated, nor have pineal cell lineages been well characterized. We applied systematic double, triple and quadruple labeling of cell-specific markers on prenatal, postnatal and mature rat pineal gland tissue combined with confocal microscopy to provide a comprehensive view of the cellular dynamics and cell lineages that contribute to pineal gland development. The pineal gland begins as an evagination of neuroepithelium in the roof of the third ventricle. The pineal primordium initially consists of radially aligned Pax6+ precursor cells that express vimentin and divide at the ventricular lumen. After the tubular neuroepithelium fuses, the distribution of Pax6+ cells transitions to include rosette-like structures and later, dispersed cells. In the developing gland all dividing cells express Pax6, indicating that Pax6+ precursor cells generate pinealocytes and some interstitial cells. The density of Pax6+ cells decreases across pineal development as a result of cellular differentiation and microglial phagocytosis, but Pax6+ cells remain in the adult gland as a distinct population. Microglial colonization begins after pineal recess formation. Microglial phagocytosis of Pax6+ cells is not common at early stages but increases as microglia colonize the gland. In the postnatal gland microglia affiliate with Tuj1+ nerve fibers, IB4+ blood vessels, and Pax6+ cells. We demonstrate that microglia engulf Pax6+ cells, nerve fibers, and blood vessel-related elements, but not pinealocytes. We conclude that microglia play a role in pineal gland formation and homeostasis by regulating the precursor cell population, remodeling blood vessels and pruning sympathetic nerve fibers. PMID:27861587

  19. Sex Difference in the Morphology of Pineal Gland in Adults Based on Brain Magnetic Resonance Imaging.

    PubMed

    Han, Qing; Li, Youqiong; Wang, Jincheng; Zhao, Xue

    2018-03-30

    We aimed to figure out the anatomical features of pineal gland region on magnetic resonance imaging (MRI) and to explore the sex difference in pineal gland-related parameters with increasing age. We measured the pineal gland on MRI images from 198 healthy adults (96 males and 102 females). Included subjects were divided into 4 age groups. After 3-dimensional reconstruction, the anatomic features of pineal gland and its distances to superior colliculus and splenium of corpus callosum were analyzed in each group. The prevalence of cystic pineal gland was calculated. Moreover, we calculated the volume of pineal gland (PGV) and explored the differences of PGV in males and females across different age groups. Linear regression analysis was performed to detect the relationship between age and pineal gland-related parameters. In 198 subjects, the mean length, width, and height of pineal gland were 7.58 ± 0.45 mm, 4.92 ± 0.40 mm, and 2.90 ± 0.20 mm. The distances between pineal gland and superior colliculus as well as splenium of corpus callosum were 3.96 ± 0.92 mm and 4.3 ± 1.89 mm, respectively. The PGV was 54.1 ± 7.02 mm. Significant sex differences were found in pineal gland length (P < 0.001), cranial cavity diameter (P < 0.001), pineal gland index (P < 0.001) and PGV values (P = 0.02). The prevalence of cystic pineal gland was 36.4% in total subjects, 41.7% in males and 32.4% in females. No linear relationship was found between age and pineal gland parameters. We measured the pineal gland morphology based on MRI images. Significant influences on pineal gland parameters were found in subjects with different sex, whereas no effect was observed from age.

  20. Comparison of three methods for the estimation of pineal gland volume using magnetic resonance imaging.

    PubMed

    Acer, Niyazi; Ilıca, Ahmet Turan; Turgut, Ahmet Tuncay; Ozçelik, Ozlem; Yıldırım, Birdal; Turgut, Mehmet

    2012-01-01

    Pineal gland is a very important neuroendocrine organ with many physiological functions such as regulating circadian rhythm. Radiologically, the pineal gland volume is clinically important because it is usually difficult to distinguish small pineal tumors via magnetic resonance imaging (MRI). Although many studies have estimated the pineal gland volume using different techniques, to the best of our knowledge, there has so far been no stereological work done on this subject. The objective of the current paper was to determine the pineal gland volume using stereological methods and by the region of interest (ROI) on MRI. In this paper, the pineal gland volumes were calculated in a total of 62 subjects (36 females, 26 males) who were free of any pineal lesions or tumors. The mean ± SD pineal gland volumes of the point-counting, planimetry, and ROI groups were 99.55 ± 51.34, 102.69 ± 40.39, and 104.33 ± 40.45 mm(3), respectively. No significant difference was found among the methods of calculating pineal gland volume (P > 0.05). From these results, it can be concluded that each technique is an unbiased, efficient, and reliable method, ideally suitable for in vivo examination of MRI data for pineal gland volume estimation.

  1. Comparison of Three Methods for the Estimation of Pineal Gland Volume Using Magnetic Resonance Imaging

    PubMed Central

    Acer, Niyazi; Ilıca, Ahmet Turan; Turgut, Ahmet Tuncay; Özçelik, Özlem; Yıldırım, Birdal; Turgut, Mehmet

    2012-01-01

    Pineal gland is a very important neuroendocrine organ with many physiological functions such as regulating circadian rhythm. Radiologically, the pineal gland volume is clinically important because it is usually difficult to distinguish small pineal tumors via magnetic resonance imaging (MRI). Although many studies have estimated the pineal gland volume using different techniques, to the best of our knowledge, there has so far been no stereological work done on this subject. The objective of the current paper was to determine the pineal gland volume using stereological methods and by the region of interest (ROI) on MRI. In this paper, the pineal gland volumes were calculated in a total of 62 subjects (36 females, 26 males) who were free of any pineal lesions or tumors. The mean ± SD pineal gland volumes of the point-counting, planimetry, and ROI groups were 99.55 ± 51.34, 102.69 ± 40.39, and 104.33 ± 40.45 mm3, respectively. No significant difference was found among the methods of calculating pineal gland volume (P > 0.05). From these results, it can be concluded that each technique is an unbiased, efficient, and reliable method, ideally suitable for in vivo examination of MRI data for pineal gland volume estimation. PMID:22619577

  2. The Lhx9 homeobox gene controls pineal gland development and prevents postnatal hydrocephalus.

    PubMed

    Yamazaki, Fumiyoshi; Møller, Morten; Fu, Cong; Clokie, Samuel J; Zykovich, Artem; Coon, Steven L; Klein, David C; Rath, Martin F

    2015-01-01

    Lhx9 is a member of the LIM homeobox gene family. It is expressed during mammalian embryogenesis in the brain including the pineal gland. Deletion of Lhx9 results in sterility due to failure of gonadal development. The current study was initiated to investigate Lhx9 biology in the pineal gland. Lhx9 is highly expressed in the developing pineal gland of the rat with transcript abundance peaking early in development; transcript levels decrease postnatally to nearly undetectable levels in the adult, a temporal pattern that is generally similar to that reported for Lhx9 expression in other brain regions. Studies with C57BL/6J Lhx9(-/-) mutant mice revealed marked alterations in brain and pineal development. Specifically, the superficial pineal gland is hypoplastic, being reduced to a small cluster of pinealocytes surrounded by meningeal and vascular tissue. The deep pineal gland and the pineal stalk are also reduced in size. Although the brains of neonatal Lhx9(-/-) mutant mice appear normal, severe hydrocephalus develops in about 70% of the Lhx9(-/-) mice at 5-8 weeks of age; these observations are the first to document that deletion of Lhx9 results in hydrocephalus and as such indicate that Lhx9 contributes to the maintenance of normal brain structure. Whereas hydrocephalus is absent in neonatal Lhx9(-/-)mutant mice, the neonatal pineal gland in these animals is hypoplastic. Accordingly, it appears that Lhx9 is essential for early development of the mammalian pineal gland and that this effect is not secondary to hydrocephalus.

  3. [Monoamine oxidase activity in rat pineal gland: comparison with brain areas, alteration during aging].

    PubMed

    Razygraev, A V; Taborskaya, K I; Volovik, K Yu; Bunina, A A; Petrosyan, M A

    Using benzylamine as a substrate, the amine oxidase activity was determined in the pineal gland of adult rats and compared with the same activity in brain areas and pituitary. Two groups of rats aged 6-8 and 14-15 months were also compared on the basis of this activity. Benzylamine deaminating activity in the pineal gland was significantly higher than in the area preoptica medialis, the corpus mamillare, the tuberculum olfactorium, and the hypophysis, and lower than in the eminentia mediana. The significant increase of the activity in the pineal gland in animals of age from 6-8 to 14-15-months was revealed. Benzylamine deaminating activity in the pineal gland was totally inhibited by 0,002 mM R deprenyl, indicating the B type monoamine oxidase (MAO B) activity. Age-associated increase of MAO B activity in the pineal gland accompanied by decrease of glutathione peroxidase activity, reported earlier, can promote the oxidative damage in the pineal gland during aging.

  4. A median third eye: pineal gland retraces evolution of vertebrate photoreceptive organs.

    PubMed

    Mano, Hiroaki; Fukada, Yoshitaka

    2007-01-01

    In many vertebrates, the pineal gland serves as a photoreceptive neuroendocrine organ. Morphological and functional similarities between the pineal and retinal photoreceptor cells indicate their close evolutionary relationship, and hence the comparative studies on the pineal gland and the retina are the keys to deciphering the evolutionary traces of the vertebrate photoreceptive organs. Several studies have suggested common genetic and molecular mechanisms responsible for their similarities, but largely unknown are those underlying pineal-specific development and physiological functions. Recent studies have identified several cis-acting DNA elements that participate in transcriptional control of the pineal-specific genes. Genetic approaches in the zebrafish have also contributed to elucidating the genetic network regulating the pineal development and neurogenesis. These efforts toward elucidating the molecular instrumentation intrinsic to the pineal gland, back to back with those to the retina, should lead to a comprehensive understanding of the evolutionary history of the vertebrate photoreceptive structures. This article summarizes the current status of research on these topics.

  5. Homeobox genes in the rodent pineal gland: roles in development and phenotype maintenance.

    PubMed

    Rath, Martin F; Rohde, Kristian; Klein, David C; Møller, Morten

    2013-06-01

    The pineal gland is a neuroendocrine gland responsible for nocturnal synthesis of melatonin. During early development of the rodent pineal gland from the roof of the diencephalon, homeobox genes of the orthodenticle homeobox (Otx)- and paired box (Pax)-families are expressed and are essential for normal pineal development consistent with the well-established role that homeobox genes play in developmental processes. However, the pineal gland appears to be unusual because strong homeobox gene expression persists in the pineal gland of the adult brain. Accordingly, in addition to developmental functions, homeobox genes appear to be key regulators in postnatal phenotype maintenance in this tissue. In this paper, we review ontogenetic and phylogenetic aspects of pineal development and recent progress in understanding the involvement of homebox genes in rodent pineal development and adult function. A working model is proposed for understanding the sequential action of homeobox genes in controlling development and mature circadian function of the mammalian pinealocyte based on knowledge from detailed developmental and daily gene expression analyses in rats, the pineal phenotypes of homebox gene-deficient mice and studies on development of the retinal photoreceptor; the pinealocyte and retinal photoreceptor share features not seen in other tissues and are likely to have evolved from the same ancestral photodetector cell.

  6. Homeobox genes in the rodent pineal gland: roles in development and phenotype maintenance

    PubMed Central

    Rath, Martin F.; Rohde, Kristian; Klein, David C.; Møller, Morten

    2012-01-01

    The pineal gland is a neuroendocrine gland responsible for nocturnal synthesis of melatonin. During early development of the rodent pineal gland from the roof of the diencephalon, homeobox genes of the orthodenticle homeobox (Otx)- and paired box (Pax)-families are expressed and are essential for normal pineal development consistent with the well-established role that homeobox genes play in developmental processes. However, the pineal gland appears to be unusual because strong homeobox gene expression persists in the pineal gland of the adult brain. Accordingly, in addition to developmental functions, homeobox genes appear to be key regulators in postnatal phenotype maintenance in this tissue. In this paper, we review ontogenetic and phylogenetic aspects of pineal development and recent progress in understanding the involvement of homebox genes in rodent pineal development and adult function. A working model is proposed for understanding the sequential action of homeobox genes in controlling development and mature circadian function of the mammalian pinealocyte based on knowledge from detailed developmental and daily gene expression analyses in rats, the pineal phenotypes of homebox gene-deficient mice and studies on development of the retinal photoreceptor; the pinealocyte and retinal photoreceptor share features not seen in other tissues and are likely to have evolved from the same ancestral photodetector cell. PMID:23076630

  7. Pineal Gland Volume Assessed by MRI and Its Correlation with 6-Sulfatoxymelatonin Levels among Older Men.

    PubMed

    Sigurdardottir, Lara G; Markt, Sarah C; Sigurdsson, Sigurdur; Aspelund, Thor; Fall, Katja; Schernhammer, Eva; Rider, Jennifer R; Launer, Lenore; Harris, Tamara; Stampfer, Meir J; Gudnason, Vilmundur; Czeisler, Charles A; Lockley, Steven W; Valdimarsdottir, Unnur A; Mucci, Lorelei A

    2016-10-01

    The pineal gland produces the hormone melatonin, and its volume may influence melatonin levels. We describe an innovative method for estimating pineal volume in humans and present the association of pineal parenchyma volume with levels of the primary melatonin metabolite, 6-sulfatoxymelatonin. We selected a random sample of 122 older Icelandic men nested within the AGES-Reykjavik cohort and measured their total pineal volume, their parenchyma volume, and the extent of calcification and cysts. For volume estimations we used manual segmentation of magnetic resonance images in the axial plane with simultaneous side-by-side view of the sagittal and coronal plane. We used multivariable adjusted linear regression models to estimate the association of pineal parenchyma volume and baseline characteristics, including 6-sulfatoxymelatonin levels. We used logistic regression to test for differences in first morning urinary 6-sulfatoxymelatonin levels among men with or without cystic or calcified glands. The pineal glands varied in volume, shape, and composition. Cysts were present in 59% of the glands and calcifications in 21%. The mean total pineal volume measured 207 mm(3) (range 65-536 mm(3)) and parenchyma volume 178 mm(3) (range 65-503 mm(3)). In multivariable-adjusted models, pineal parenchyma volume was positively correlated with 6-sulfatoxymelatonin levels (β = 0.52, p < 0.001). Levels of 6-sulfatoxymelatonin did not differ significantly by presence of cysts or calcification. By using an innovative method for pineal assessment, we found pineal parenchyma volume to be positively correlated with 6-sulfatoxymelatonin levels, in line with other recent studies. © 2016 The Author(s).

  8. Pineal Gland Volume Assessed by MRI and its Correlation with 6-Sulfatoxymelatonin Levels among Older Men

    PubMed Central

    Sigurdardottir, Lara G.; Markt, Sarah C.; Sigurdsson, Sigurdur; Aspelund, Thor; Fall, Katja; Schernhammer, Eva; Rider, Jennifer R.; Launer, Lenore; Harris, Tamara; Stampfer, Meir J.; Gudnason, Vilmundur; Czeisler, Charles A.; Lockley, Steven W.; Valdimarsdottir, Unnur A.; Mucci, Lorelei A.

    2017-01-01

    The pineal gland produces the hormone melatonin and its volume may influence melatonin levels. We describe an innovative method for estimating pineal volume in humans and present the association of pineal parenchyma volume with levels of the primary melatonin metabolite, 6-sulfatoxymelatonin. We selected a random sample of 122 older Icelandic men nested within the AGES-Reykjavik cohort and measured their total pineal volume, parenchyma volume, and the extent of calcification and cysts. For volume estimations we used manual segmentation of MR images in the axial plane with simultaneous side-by-side view of the sagittal and coronal plane. We used multivariable adjusted linear regression models to estimate the association of pineal parenchyma volume and baseline characteristics, including 6-sulfatoxymelatonin levels. We used logistic regression to test for differences in first morning urinary 6-sulfatoxymelatonin levels among men with or without cystic or calcified glands. The pineal glands varied in volume, shape and composition. Cysts were present in 59% of the glands and calcifications in 21%. The mean total pineal volume measured 207 mm3 (range 65–536 mm3) and parenchyma volume 178 mm3 (range 65–503 mm3). In multivariable-adjusted models pineal parenchyma volume was positively correlated with 6-sulfatoxymelatonin levels (β=0.52, p<0.001). 6-sulfatoxymelatonin levels did not differ significantly by presence of cysts or calcification. By using an innovative method for pineal assessment we found pineal parenchyma volume to be positively correlated with 6-sulfatoxymelatonin levels, in line with other recent studies. PMID:27449477

  9. The Lhx9 homeobox gene controls pineal gland development and prevents postnatal hydrocephalus

    PubMed Central

    Yamazaki, Fumiyoshi; Møller, Morten; Fu, Cong; Clokie, Samuel J.; Zykovich, Artem; Coon, Steven L.; Klein, David C.; Rath, Martin F.

    2014-01-01

    Lhx9 is a member of the LIM homeobox gene family. It is expressed during mammalian embryogenesis in the brain including the pineal gland. Deletion of Lhx9 results in sterility due to failure of gonadal development. The current study was initiated to investigate Lhx9 biology in the pineal gland. Lhx9 is highly expressed in the developing pineal gland of the rat with transcript abundance peaking early in development; transcript levels decrease postnatally to nearly undetectable levels in the adult, a temporal pattern that is generally similar to that reported for Lhx9 expression in other brain regions. Studies with C57BL/6J Lhx9−/− mutant mice revealed marked alterations in brain and pineal development. Specifically, the superficial pineal gland is hypoplastic, being reduced to a small cluster of pinealocytes surrounded by meningeal and vascular tissue. The deep pineal gland and the pineal stalk are also reduced in size. Although the brains of neonatal Lhx9−/− mutant mice appear normal, severe hydrocephalus develops in about 70 % of the Lhx9−/− mice at 5–8 weeks of age; these observations are the first to document that deletion of Lhx9 results in hydrocephalus and as such indicate that Lhx9 contributes to the maintenance of normal brain structure. Whereas hydrocephalus is absent in neonatal Lhx9−/−mutant mice, the neonatal pineal gland in these animals is hypoplastic. Accordingly, it appears that Lhx9 is essential for early development of the mammalian pineal gland and that this effect is not secondary to hydrocephalus. PMID:24647753

  10. The originality of Descartes' theory about the pineal gland.

    PubMed

    Lokhorst, G J; Kaitaro, T T

    2001-03-01

    René Descartes thought that the pineal gland is the part of the body with which the soul is most immediately associated. Several prominent historians (such as Soury, Thorndike and Sherrington) have claimed that this idea was not very original. We re-examine the evidence and conclude that their assessment was wrong. We pay special attention to the thesis about the pineal gland which Jean Cousin defended in January, 1641.

  11. Ophthalmological outcome after resection of tumors based on the pineal gland.

    PubMed

    Hart, Michael G; Sarkies, Nicholas J; Santarius, Thomas; Kirollos, Ramez W

    2013-08-01

    Descriptions of visual dysfunction in pineal gland tumors tend to focus on upward gaze palsy alone. The authors aimed to characterize the nature, incidence, and functional significance of ophthalmological dysfunction after resection of tumors based on the pineal gland. Review of a retrospective case series was performed and included consecutive patients who underwent surgery performed by a consultant neurosurgeon between 2002 and 2011. Only tumors specifically based on the pineal gland were included; tumors encroaching on the pineal gland from other regions were excluded. All patients with visual signs and/or symptoms were reviewed by a specialist consultant neuroophthalmologist to accurately characterize the nature of their deficits. Visual disturbance was defined as visual symptoms caused by a disturbance of ocular motility. A total of 20 patients underwent resection of pineal gland tumors. Complete resection was obtained in 85%, and there were no perioperative deaths. Visual disturbance was present in 35% at presentation; of those who had normal ocular motility preoperatively 82% had normal motility postoperatively. In total, 55% of patients had residual visual disturbance postoperatively. Although upward gaze tended to improve, significant functional deficits remained, particularly with regard to complex convergence and accommodation dysfunction. Prisms were used in 25% but were only ever partially effective. Visual outcome was only related to preoperative visual status and tumor volume (multivariate analysis). Long-term visual morbidity after pineal gland tumor resection is common and leads to significant functional impairment. Improvement in deficits rarely occurs spontaneously, and prisms only have limited effectiveness, probably due to the dynamic nature of supranuclear ocular movement coordination.

  12. TLR4 and CD14 receptors expressed in rat pineal gland trigger NFKB pathway.

    PubMed

    da Silveira Cruz-Machado, Sanseray; Carvalho-Sousa, Claudia Emanuele; Tamura, Eduardo Koji; Pinato, Luciana; Cecon, Erika; Fernandes, Pedro Augusto Carlos Magno; de Avellar, Maria Christina Werneck; Ferreira, Zulma Silva; Markus, Regina Pekelmann

    2010-09-01

    Nuclear factor-kappa B (NFKB), a pivotal player in inflammatory responses, is constitutively expressed in the pineal gland. Corticosterone inhibits pineal NFKB leading to an enhancement of melatonin production, while tumor necrosis factor (TNF) leads to inhibition of Aa-nat transcription and the production of N-acetylserotonin in cultured glands. The reduction in nocturnal melatonin surge favors the mounting of the inflammatory response. Despite these data, there is no clear evidence of the ability of the pineal gland to recognize molecules that signal infection. This study investigated whether the rat pineal gland expresses receptors for lipopolysaccharide (LPS), the endotoxin from the membranes of Gram-negative bacteria, and to establish the mechanism of action of LPS. Here, we show that pineal glands possess both CD14 and toll-like receptor 4 (TLR4), membrane proteins that bind LPS and trigger the NFKB pathway. LPS induced the nuclear translocation of p50/p50 and p50/RELA dimers and the synthesis of TNF. The maximal expression of TNF in cultured glands coincides with an increase in the expression of TNF receptor 1 (TNFR1) in isolated pinealocytes. In addition, LPS inhibited the synthesis of N-acetylserotonin and melatonin. Therefore, the pineal gland transduces Gram-negative endotoxin stimulation by producing TNF and inhibiting melatonin synthesis. Here, we provide evidence to reinforce the idea of an immune-pineal axis, showing that the pineal gland is a constitutive player in the innate immune response.

  13. A new identified complication of intracystic hemorrhage in a large pineal gland cyst.

    PubMed

    Mehrzad, Raman; Mishra, Suprav; Feinstein, Alexander; Ho, Michael G

    2014-01-01

    Pineal gland cysts are typically asymptomatic, benign cysts most commonly found incidentally in adults. In rare cases, a large pineal gland cyst can be complicated by intracystic hemorrhage, which could then manifest with neurological symptoms. We report a new complication of intracystic hemorrhage in a large pineal gland cyst in a 40-year-old man with new onset seizures. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Midline and off-midline infratentorial supracerebellar approaches to the pineal gland.

    PubMed

    Matsuo, Satoshi; Baydin, Serhat; Güngör, Abuzer; Miki, Koichi; Komune, Noritaka; Kurogi, Ryota; Iihara, Koji; Rhoton, Albert L

    2017-06-01

    OBJECTIVE A common approach to lesions of the pineal region is along the midline below the torcula. However, reports of how shifting the approach off midline affects the surgical exposure and relationships between the tributaries of the vein of Galen are limited. The purpose of this study is to examine the microsurgical and endoscopic anatomy of the pineal region as seen through the supracerebellar infratentorial approaches, including midline, paramedian, lateral, and far-lateral routes. METHODS The quadrigeminal cisterns of 8 formalin-fixed adult cadaveric heads were dissected and examined with the aid of a surgical microscope and straight endoscope. Twenty CT angiograms were examined to measure the depth of the pineal gland, slope of the tentorial surface of the cerebellum, and angle of approach to the pineal gland in each approach. RESULTS The midline supracerebellar route is the shortest and provides direct exposure of the pineal gland, although the culmen and inferior and superior vermian tributaries of the vein of Galen frequently block this exposure. The off-midline routes provide a surgical exposure that, although slightly deeper, may reduce the need for venous sacrifice at both the level of the veins from the superior cerebellar surface entering the tentorial sinuses and at the level of the tributaries of the vein of Galen in the quadrigeminal cistern, and require less cerebellar retraction. Shifting from midline to off-midline exposure also provides a better view of the cerebellomesencephalic fissure, collicular plate, and trochlear nerve than the midline approaches. Endoscopic assistance may aid exposure of the pineal gland while preserving the bridging veins. CONCLUSIONS Understanding the characteristics of different infratentorial routes to the pineal gland will aid in gaining a better view of the pineal gland and cerebellomesencephalic fissure and may reduce the need for venous sacrifice at the level of the tentorial sinuses draining the upper

  15. Rax: Developmental and Daily Expression Patterns in the Rat Pineal Gland and Retina

    PubMed Central

    Rohde, Kristian; Klein, David C.; Møller, Morten; Rath, Martin F.

    2011-01-01

    Retina and anterior neural fold homeobox (Rax) gene encodes a transcription factor essential for vertebrate eye development. Recent microarray studies indicate that Rax is expressed in the adult rat pineal gland and retina. The present study reveals that Rax expression levels in the rat change significantly during retinal development with a peak occurring at embryonic day (E) 18, whereas Rax expression in the pineal is relatively delayed and not detectable until E20. In both tissues, Rax is expressed throughout postnatal development into adulthood. In the mature rat pineal gland, the abundance of Rax transcripts increases 2-fold during the light period with a peak occurring at dusk. These findings are consistent with the evidence that Rax is of functional importance in eye development and suggest a role of Rax in the developing pineal gland. In addition, it would appear possible that Rax contributes to phenotype maintenance in the mature retina and pineal gland and may facilitate 24-h changes in the pineal transcriptome. PMID:21749377

  16. GABAergic signaling in the rat pineal gland

    PubMed Central

    Yu, Haijie; Benitez, Sergio G.; Jung, Seung-Ryoung; Farias Altamirano, Luz E.; Kruse, Martin; Seo, Jong-Bae; Koh, Duk-Su; Muñoz, Estela M.; Hille, Bertil

    2017-01-01

    Pinealocytes secrete melatonin at night in response to norepinephrine released from sympathetic nerve terminals in the pineal gland. The gland also contains many other neurotransmitters whose cellular disposition, activity, and relevance to pineal function are not understood. Here we clarify sources and demonstrate cellular actions of the neurotransmitter γ-aminobutyric acid (GABA) using Western blotting and immunohistochemistry of the gland and electrical recording from pinealocytes. GABAergic cells and nerve fibers, defined as containing GABA and the synthetic enzyme GAD67, were identified. The cells represent a subset of interstitial cells while the nerve fibers were distinct from the sympathetic innervation. The GABAA receptor subunit α1 was visualized in close proximity of both GABAergic and sympathetic nerve fibers as well as fine extensions among pinealocytes and blood vessels. The GABAB1 receptor subunit was localized in the interstitial compartment but not in pinealocytes. Electrophysiology of isolated pinealocytes revealed that GABA and muscimol elicit strong inward chloride currents sensitive to bicuculline and picrotoxin, clear evidence for functional GABAA receptors on the surface membrane. Applications of elevated potassium solution or the neurotransmitter acetylcholine depolarized the pinealocyte membrane potential enough to open voltage-gated Ca2+ channels leading to intracellular calcium elevations. GABA repolarized the membrane and shut off such calcium rises. In 48–72-h cultured intact glands, GABA application neither triggered melatonin secretion by itself nor affected norepinephrine-induced secretion. Thus strong elements of GABA signaling are present in pineal glands that make large electrical responses in pinealocytes, but physiological roles need to be found. PMID:27019076

  17. Rax : developmental and daily expression patterns in the rat pineal gland and retina.

    PubMed

    Rohde, Kristian; Klein, David C; Møller, Morten; Rath, Martin F

    2011-09-01

    Retina and anterior neural fold homeobox (Rax) gene encodes a transcription factor essential for vertebrate eye development. Recent microarray studies indicate that Rax is expressed in the adult rat pineal gland and retina. The present study reveals that Rax expression levels in the rat change significantly during retinal development with a peak occurring at embryonic day 18, whereas Rax expression in the pineal is relatively delayed and not detectable until embryonic day 20. In both tissues, Rax is expressed throughout postnatal development into adulthood. In the mature rat pineal gland, the abundance of Rax transcripts increases 2-fold during the light period with a peak occurring at dusk. These findings are consistent with the evidence that Rax is of functional importance in eye development and suggest a role of Rax in the developing pineal gland. In addition, it would appear possible that Rax contributes to phenotype maintenance in the mature retina and pineal gland and may facilitate 24-h changes in the pineal transcriptome. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  18. The pineal gland: A model for adrenergic modulation of ubiquitin ligases.

    PubMed

    Vriend, Jerry; Liu, Wenjun; Reiter, Russel J

    2017-01-01

    A recent study of the pineal gland of the rat found that the expression of more than 3000 genes showed significant day/night variations (The Hartley dataset). The investigators of this report made available a supplemental table in which they tabulated the expression of many genes that they did not discuss, including those coding for components of the ubiquitin proteasome system. Herein we identify the genes of the ubiquitin proteasome system whose expression were significantly influenced by environmental lighting in the Hartley dataset, those that were stimulated by DBcAMP in pineal glands in culture, and those that were stimulated by norepinephrine. Using the Ubiquitin and Ubiquitin-like Conjugation Database (UUCA) we identified ubiquitin ligases and conjugases, and deubiquitinases in the Hartley dataset for the purpose of determining whether expression of genes of the ubiquitin proteasome pathway were significantly influenced by day/night variations and if these variations were regulated by autonomic innervation of the pineal gland from the superior cervical ganglia. In the Hartley experiments pineal glands groups of rats sacrificed during the day and groups sacrificed during the night were examined for gene expression. Additional groups of rats had their superior cervical ganglia removed surgically or surgically decentralized and the pineal glands likewise examined for gene expression. The genes with at least a 2-fold day/night significant difference in expression included genes for 5 ubiquitin conjugating enzymes, genes for 58 ubiquitin E3 ligases and genes for 6 deubiquitinases. A 35-fold day/night difference was noted in the expression of the gene Sik1, which codes for a protein containing both an ubiquitin binding domain (UBD) and an ubiquitin-associated (UBA) domain. Most of the significant differences in these genes were prevented by surgical removal, or disconnection, of the superior cervical ganglia, and most were responsive, in vitro, to treatment with

  19. The pineal gland: A model for adrenergic modulation of ubiquitin ligases

    PubMed Central

    Liu, Wenjun; Reiter, Russel J.

    2017-01-01

    Introduction A recent study of the pineal gland of the rat found that the expression of more than 3000 genes showed significant day/night variations (The Hartley dataset). The investigators of this report made available a supplemental table in which they tabulated the expression of many genes that they did not discuss, including those coding for components of the ubiquitin proteasome system. Herein we identify the genes of the ubiquitin proteasome system whose expression were significantly influenced by environmental lighting in the Hartley dataset, those that were stimulated by DBcAMP in pineal glands in culture, and those that were stimulated by norepinephrine. Purpose Using the Ubiquitin and Ubiquitin-like Conjugation Database (UUCA) we identified ubiquitin ligases and conjugases, and deubiquitinases in the Hartley dataset for the purpose of determining whether expression of genes of the ubiquitin proteasome pathway were significantly influenced by day/night variations and if these variations were regulated by autonomic innervation of the pineal gland from the superior cervical ganglia. Methods In the Hartley experiments pineal glands groups of rats sacrificed during the day and groups sacrificed during the night were examined for gene expression. Additional groups of rats had their superior cervical ganglia removed surgically or surgically decentralized and the pineal glands likewise examined for gene expression. Results The genes with at least a 2-fold day/night significant difference in expression included genes for 5 ubiquitin conjugating enzymes, genes for 58 ubiquitin E3 ligases and genes for 6 deubiquitinases. A 35-fold day/night difference was noted in the expression of the gene Sik1, which codes for a protein containing both an ubiquitin binding domain (UBD) and an ubiquitin-associated (UBA) domain. Most of the significant differences in these genes were prevented by surgical removal, or disconnection, of the superior cervical ganglia, and most were

  20. GABAergic signaling in the rat pineal gland.

    PubMed

    Yu, Haijie; Benitez, Sergio G; Jung, Seung-Ryoung; Farias Altamirano, Luz E; Kruse, Martin; Seo, Jong Bae; Koh, Duk-Su; Muñoz, Estela M; Hille, Bertil

    2016-08-01

    Pinealocytes secrete melatonin at night in response to norepinephrine released from sympathetic nerve terminals in the pineal gland. The gland also contains many other neurotransmitters whose cellular disposition, activity, and relevance to pineal function are not understood. Here, we clarify sources and demonstrate cellular actions of the neurotransmitter γ-aminobutyric acid (GABA) using Western blotting and immunohistochemistry of the gland and electrical recording from pinealocytes. GABAergic cells and nerve fibers, defined as containing GABA and the synthetic GAD67, were identified. The cells represent a subset of interstitial cells while the nerve fibers were distinct from the sympathetic innervation. The GABAA receptor subunit α1 was visualized in close proximity of both GABAergic and sympathetic nerve fibers as well as fine extensions among pinealocytes and blood vessels. The GABAB 1 receptor subunit was localized in the interstitial compartment but not in pinealocytes. Electrophysiology of isolated pinealocytes revealed that GABA and muscimol elicit strong inward chloride currents sensitive to bicuculline and picrotoxin, clear evidence for functional GABAA receptors on the surface membrane. Applications of elevated potassium solution or the neurotransmitter acetylcholine depolarized the pinealocyte membrane potential enough to open voltage-gated Ca(2+) channels leading to intracellular calcium elevations. GABA repolarized the membrane and shut off such calcium rises. In 48-72-h cultured intact glands, GABA application neither triggered melatonin secretion by itself nor affected norepinephrine-induced secretion. Thus, strong elements of GABA signaling are present in pineal glands that make large electrical responses in pinealocytes, but physiological roles need to be found. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Pineal gland function is required for colon antipreneoplastic effects of physical exercise in rats.

    PubMed

    Frajacomo, F T T; de Paula Garcia, W; Fernandes, C R; Garcia, S B; Kannen, V

    2015-10-01

    Light-at-night exposure enhances the risk of cancer. Colon cancer is among the most dangerous tumors affecting humankind. Physical exercise has shown positive effects against colon cancer. Here, we investigated whether pineal gland modulates antipreneoplastic effects of physical exercise in the colon. Surgical and non-surgical pineal impairments were performed to clarify the relationship between the pineal gland activity and manifestation of colonic preneoplastic lesions. Next, a progressive swimming training was applied in rats exposed or not to either non-surgical pineal impairment or carcinogen treatment for 10 weeks. Both surgical and non-surgical pineal impairments increased the development of colon preneoplasia. It was further found that impairing the pineal gland function, higher rates of DNA damage were induced in colonic epithelial and enteric glial cells. Physical exercise acted positively against preneoplasia, whereas impairing the pineal function with constant light exposure disrupts its positive effects on the development of preneoplastic lesions in the colon. This was yet related to increased DNA damage in glial cells and enteric neuronal activation aside from serum melatonin levels. Our findings suggest that protective effects of physical exercise against colon cancer are dependent on the pineal gland activity. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. 68Ga-DOTATATE uptake in pineal gland, a rare physiological variant: case series.

    PubMed

    Riaz, Saima; Syed, Rizwan; Skoura, Evangelia; Alshammari, Alshaima; Gaze, Mark; Sajjan, Rakesh; Halsey, Richard; Bomanji, Jamshed

    2015-11-01

    (68)Ga-DOTATATE PET-CT is widely used for the evaluation of neuroendocrine tumours. Knowledge of the physiological distribution of the radiotracer is of critical importance in characterizing focal areas of uptake. In this case series, we report three paediatric cases (average age 4.7 years ± 0.6 SD) with diagnosed advanced stage IV Neuroblastoma. Two had (68)Ga-DOTATATE PET-CT scans and one underwent (68)Ga-DOTATATE PET-MRI scan to assess for suitability of molecular therapy. Focal increased tracer uptake in the pineal gland was noted in all cases with no morphological abnormality on the corresponding CT and MRI scans. The uptake within the gland was thought to be a physiological variant rather than metastases owing to the heterogeneity of somatostatin receptors expression. The pineal gland has been reported to express somatostatin receptors. The physiological distribution of (68)Ga-DOTATATE uptake in the pineal gland is not routinely seen. Furthermore, the possibility of pineal meningioma is very unlikely as pineal meningiomas are very rare and there was no convincing morphological evidence of meningiomas on CT/MRI scan.

  3. [Normalizing effect of the pineal gland peptides on the daily melatonin rhythm in old monkeys and elderly people].

    PubMed

    Korkushko, O V; Lapin, B A; Goncharova, N D; Khavinson, V Kh; Shatilo, V B; Vengerin, A A; Antoniuk-Shcheglova, I A; Magdich, L V

    2007-01-01

    In the course of aging both monkeys and people reveal decreased night and average daily level of melatonin in the blood plasma and reduced hormone circadian rhythm amplitude, which evidence the disorder of the pineal gland melatonin releasing function. Peptide preparations of the pineal gland (Epithalamin--a complex of peptides isolated from the pineal gland and Epitalon--synthetic tetrapeptide) recover night release of endogenous melatonin and lead to the normalization of the hormone circadian rhythm in the blood plasma. In elderly people Epithalamin and Epitalon modulate pineal gland functional state: people with pineal gland functional insufficiency report an increase of night melatonin level. The preparations of the pineal gland, effectively increasing melatonin concentration and having no side effects, can be used in clinical geriatric practice.

  4. Rhodopsin Kinase Activity in the Mammalian Pineal Gland and Other Tissues

    NASA Astrophysics Data System (ADS)

    Somers, Robert L.; Klein, David C.

    1984-10-01

    Rhodopsin kinase, an enzyme involved in photochemical transduction in the retina, has been found in the mammalian pineal gland in amounts equal to those in the retina; other tissues had 7 percent of this amount, or less. This finding suggests that, in mammals, rhodopsin kinase functions in the pineal gland and other tissues to phosphorylate rhodopsin-like integral membrane receptors and is thereby involved in signal transduction.

  5. Dual Effect of Catecholamines and Corticosterone Crosstalk on Pineal Gland Melatonin Synthesis.

    PubMed

    Fernandes, Pedro A; Tamura, Eduardo K; D'Argenio-Garcia, Letícia; Muxel, Sandra M; da Silveira Cruz-Machado, Sanseray; Marçola, Marina; Carvalho-Sousa, Cláudia E; Cecon, Erika; Ferreira, Zulma S; Markus, Regina P

    2017-01-01

    The nocturnal production of melatonin by the pineal gland is triggered by sympathetic activation of adrenoceptors and may be modulated by immunological signals. The effect of glucocorticoids on nocturnal melatonin synthesis is controversial; both stimulatory and inhibitory effects have been reported. During pathophysiological processes, an increased sympathetic tonus could result in different patterns of adrenoceptor activation in the pineal gland. Therefore, in this investigation, we evaluated whether the pattern of adrenergic stimulation of the pineal gland drives the direction of the glucocorticoid effect on melatonin production. The corticosterone effect on the pineal hormonal production induced by β-adrenoceptor or β+α1-adrenoceptor activation was evaluated in cultured glands. We also investigated whether the in vivo lipopolysaccharide (LPS)-induced inhibition of melatonin is dependent on the interaction of glucocorticoids and the α1-adrenoceptor in adrenalectomized animals and on the in vivo blockade of glucocorticoid receptors (GRs) or the α1-adrenoceptor. Corticosterone potentiated β-adrenoceptor-induced pineal melatonin synthesis, whilst corticosterone-dependent inhibition was observed when melatonin production was induced by β+α1-adrenoceptors agonists. The inhibitory effect of corticosterone is mediated by GR, as it was abolished in the presence of a GR antagonist. Moreover, LPS-induced reduction in melatonin nocturnal plasma content was reversed by adrenalectomy and by antagonizing GR or α1-adrenoceptors. The dual effect of corticosterone on pineal melatonin synthesis is determined by the activation pattern of adrenoceptors (β or β+α1) in the gland during GR activation, suggesting that increased activation of the sympathetic system and the hypothalamic-pituitary-adrenal axis are necessary for the control of melatonin production during defense responses. © 2016 S. Karger AG, Basel.

  6. Vesicular Glutamate Transporter 2 Expression in the Rat Pineal Gland: Detailed Analysis of Expression Pattern and Regulatory Mechanism

    NASA Astrophysics Data System (ADS)

    Yoshida, Sachine; Hisano, Setsuji

    Melatonin, a hormone secreted by the pineal gland, is closely related physiologically to circadian rhythm, sleep and reproduction, and also psychiatrically to mood disorders in humans. Under circadian control, melatonin secretion is modulated via nocturnal autonomic (adrenergic) stimulation to the gland, which expresses vesicular glutamate transporter (VGLUT) 1, VGLUT2 and a VGLUT1 splice variant (VGLUT1v), glutamatergic markers. Expression of VGLUT2 gene and protein in the intact gland has been reported to exhibit a rhythmic change during a day. To study VGLUT2 expression is under adrenergic control, we here performed an in vitro experiment using dispersed pineal cells of rats. Stimulation of either β-adrenergic receptor or cAMP production to the pineal cells was shown to increase mRNA level of VGLUT2, but not VGLUT1 and VGLUT1v. Because an ability of glutamate to inhibit melatonin production was previously reported in the cultured gland, it is likely that pineal VGLUT2 transports glutamate engaged in the inhibition of melatonin production.

  7. Characterization of the Expression of Basigin Gene Products Within the Pineal Gland of Mice.

    PubMed

    Tokar, Derek; van Ekeris, Leslie; Linser, Paul J; Ochrietor, Judith D

    2017-08-01

    The expression of Basigin gene products and monocarboxylate transporter-1 (MCT1) has been investigated within the mammalian neural retina and suggests a role for these proteins in cellular metabolism within that tissue. The purpose of the present study was to investigate the expression of these same proteins in the pineal gland of the mouse brain. Mouse pineal gland and neural retina RNA and protein were subjected to quantitative reverse transcription-polymerase chain reaction and immunoblotting analyses. In addition, paraffin-embedded sections of each tissue were analyzed for expression of Basigin gene products and MCT1 via immunohistochemistry. The results indicate that MCT1 and Basigin variant-2, but not Basigin variant-1, are expressed within the mouse pineal gland. The expression of Basigin variant-2 and MCT1 was localized to the capsule surrounding the gland. The position and relative amounts of the gene products suggest that they play a much less prominent role within the pineal gland than in the neural retina.

  8. Developmental and diurnal expression of the synaptosomal-associated protein 25 (Snap25) in the rat pineal gland.

    PubMed

    Karlsen, Anna S; Rath, Martin F; Rohde, Kristian; Toft, Trine; Møller, Morten

    2013-06-01

    Snap25 (synaptosomal-associated protein) is a 25 kDa protein, belonging to the SNARE-family (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) of proteins, essential for synaptic and secretory vesicle exocytosis. Snap25 has by immunohistochemistry been demonstrated in the rat pineal gland but the biological importance of this is unknown. In this study, we demonstrate a high expression of mRNA encoding Snap25 in all parts of the rat pineal complex, the superficial-, and deep-pineal gland, as well as in the pineal stalk. Snap25 showed a low pineal expression during embryonic stages with a strong increase in expression levels just after birth. The expression showed no day/night variations. Neither removal of the sympathetic input to the pineal gland by superior cervical ganglionectomy nor bilateral decentralization of the superior cervical ganglia significantly affected the expression of Snap25 in the gland. The pineal expression levels of Snap25 were not changed following intraperitoneal injection of isoproterenol. The strong expression of Snap25 in the pineal gland suggests the presence of secretory granules and microvesicles in the rat pinealocyte supporting the concept of a vesicular release. At the transcriptional level, this Snap25-based release mechanism does not exhibit any diurnal rhythmicity and is regulated independently of the sympathetic nervous input to the gland.

  9. Atypical pleomorphic neoplasms of the pineal gland: Case report and review of the literature.

    PubMed

    Praver, M; D'Amico, R; Arraez, C; Zacharia, B E; Varma, H; Goldman, J E; Bruce, J N; Canoll, P

    2015-01-01

    Pineal region tumors are rare and diverse. Among them exist reports of pleomorphic xanthroastrocytoma (PXA) and pleomorphic granular cell astrocytoma (PGCA) of the pineal gland. These related tumors are remarkably similar sharing pleomorphic histologic features with only minor immunohistochemical and ultrastructural differences. We present a case of a 42-year old right-handed woman presented with a longstanding history of migraine headaches which had worsened over the two months leading up to her hospitalization. MRI revealed a 1.7 × 1.3 × 1.6 cm intensely enhancing lesion originating in the pineal gland. The tumor closely resembled PGCA but did not strictly fit the diagnostic requirements of either PGCA or PXA. The present case highlights the exotic nature of pineal region tumors with pleomorphic cell histology. Given the diverse range of tumors encountered in the pineal region, pathological confirmation is mandatory. Favorable clinical outcomes demonstrate that surgical resection alone can yield excellent long-term results for tumors falling within the spectrum of pleomorphic lesions of the pineal gland.

  10. Factors other than light affecting the pineal gland: hypophysectomy, testosterone, dihydrotestosterone, estradiol, cryptorchidism, and stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urry, R.L.; Dougherty, K.A.; Frehn, J.L.

    The article reviews those factors other than light that affect the activity of the pineal gland. Both testosterone and dihydroterosterone were shown to have tissue-specific inhibitory effects on pineal MAO activity concomitant with an increased activity of the gland. The effect also was tissue-specific. Bilateral and unilateral experimental cryptorchidism also decreased pineal MAO activity 3 to 4 weeks after surgery. Acute stresses appear to increase adrenal catecholamine output (epinephrine and norepinephrine) as well as to stimulate local adrenergic pathways, while chronic stress, such as starvation, appears to act through the adrenal corticosteroids by decreasing pineal MAO activity thereby indirectly increasingmore » melatonin synthesis. Thus, both components of the adrenal gland appear to act in concert to increase effectively melatonin synthesis by the pineal function----the latter specifically inhibits HIOMT activity. These observations indicate that many factors other than light affect pineal morphology and melatonin synthesis. The pineal appears to be a true neuroendocrine organ that is affected by hypophysectomy and is responsive to feedback and control from other organs within the mammalian organism. (auth)« less

  11. N,N-dimethyltryptamine and the pineal gland: Separating fact from myth.

    PubMed

    Nichols, David E

    2018-01-01

    The pineal gland has a romantic history, from pharaonic Egypt, where it was equated with the eye of Horus, through various religious traditions, where it was considered the seat of the soul, the third eye, etc. Recent incarnations of these notions have suggested that N,N-dimethyltryptamine is secreted by the pineal gland at birth, during dreaming, and at near death to produce out of body experiences. Scientific evidence, however, is not consistent with these ideas. The adult pineal gland weighs less than 0.2 g, and its principal function is to produce about 30 µg per day of melatonin, a hormone that regulates circadian rhythm through very high affinity interactions with melatonin receptors. It is clear that very minute concentrations of N,N-dimethyltryptamine have been detected in the brain, but they are not sufficient to produce psychoactive effects. Alternative explanations are presented to explain how stress and near death can produce altered states of consciousness without invoking the intermediacy of N,N-dimethyltryptamine.

  12. Antioxidant properties of geroprotective peptides of the pineal gland.

    PubMed

    Kozina, L S; Arutjunyan, A V; Khavinson, V Kh

    2007-01-01

    It was shown that peptide preparations from the pineal gland (epithalamin and epitalon) possess antioxidant properties exceeding in some cases the effects of the well-known scavenger of reactive oxygen species (ROS), the melatonin, which is also produced by the pineal gland. The methods used in our experiments in old rats included determination of total antioxidant and antiradical activities, as well as those of antioxidant enzymes (superoxide dismutase=SOD, glutathione peroxidase, glutathione-S-transferase, etc.) in blood serum, liver and brain. It has been revealed that epithalamin (polipeptide preparation from bovine brain) and its active fragment, epitalon (Ala-Glu-Asp-Gly) along with their ability to stimulate melatonin production, have an antioxidant mechanism that is quite different from the action of melatonin. Epithalamin can be more beneficial than melatonin because the former not only produces direct antioxidant effects, but also is able to stimulate the expression of SOD, ceruloplasmin and other antioxidant enzymes. The possibility of oxidation chains by their interaction with different ROS by means of binding of transition metals (Fe(2+)) cannot also be excluded. Thus, the results of our experiments testify that the pineal gland peptides enhance the antioxidant defense system, which can contribute to their geroprotective properties.

  13. Rhodopsin expression in the zebrafish pineal gland from larval to adult stage.

    PubMed

    Magnoli, Domenico; Zichichi, Rosalia; Laurà, Rosaria; Guerrera, Maria Cristina; Campo, Salvatore; de Carlos, Felix; Suárez, Alberto Álvarez; Abbate, Francesco; Ciriaco, Emilia; Vega, Jose Antonio; Germanà, Antonino

    2012-03-09

    The zebrafish pineal gland plays an important role in different physiological functions including the regulation of the circadian clock. In the fish pineal gland the pinealocytes are made up of different segments: outer segment, inner segment and basal pole. Particularly, in the outer segment the rhodopsin participates in the external environment light reception that represents the first biochemical step in the melatonin production. It is well known that the rhodopsin in the adult zebrafish is well expressed in the pineal gland but both the expression and the cellular localization of this protein during development remain still unclear. In this study using qRT-PCR, sequencing and immunohistochemistry the expression as well as the protein localization of the rhodopsin in the zebrafish from larval (10 dpf) to adult stage (90 dpf) were demonstrated. The rhodopsin mRNA expression presents a peak of expression at 10 dpf, a further reduction to 50 dpf before increasing again in the adult stage. Moreover, the cellular localization of the rhodopsin-like protein was always localized in the pinealocyte at all ages examined. Our results demonstrated the involvement of the rhodopsin in the zebrafish pineal gland physiology particularly in the light capture during the zebrafish lifespan. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Involvement of Lypge in the formation of eye and pineal gland in zebrafish.

    PubMed

    Ji, Dongrui; Wang, Su; Li, Mingyue; Zhang, Shicui; Li, Hongyan

    2018-02-05

    The proteins of Ly-6 (lymphocyte antigen-6) family are involved in the regulation of immunoreaction, cell migration and adhesion, and neuronal excitability. However, little is known about the function of Ly-6 proteins in embryogenesis. Herein, we identified a GPI anchored Ly-6 member named ly6 expressed in pineal gland and eye (lypge). Dynamic expression pattern of lypge was revealed by whole mount in situ hybridization. It was strikingly expressed in the pineal gland and cone photoreceptor, and its expression was regulated by orthodenticle homolog 5 (otx5) which has been shown to control the expression of many pineal genes. In addition, we demonstrated that lypge was rhythmically expressed in larvae from 4dpf on. Moreover, knockdown of lypge resulted in small head and small eye formed in zebrafish embryos. These suggest that Lypge is involved in the formation of the eye and pineal gland in early development of zebrafish. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Magnetic resonance imaging based morphologic evaluation of the pineal gland for suspected pineoblastoma in retinoblastoma patients and age-matched controls.

    PubMed

    Pham, Thi Thai Hien; Siebert, Eberhard; Asbach, Patrick; Willerding, Gregor; Erb-Eigner, Katharina

    2015-12-15

    The purpose of this study was to evaluate the morphologic magnetic resonance imaging (MRI) characteristics of the pineal gland in retinoblastoma (Rb) patients without and with pineoblastoma in comparison to age-matched controls to improve early identification of pineoblastomas (trilateral retinoblastoma, TRb). 80 patients with retinoblastoma and 80 age-matched controls who had undergone brain MRI were included in this retrospective institutional review board approved cohort study. Two readers analyzed the following MR characteristics of the pineal gland: signal intensity on T1- and T2-weighted images, enhancement pattern, delineation of the gland, presence of cystic component, size of pineal gland and size of pineal cysts, respectively. A third reader assessed all images for the presence or absence of pineoblastoma. 3 patients were positive (TRb cohort) and 77 negative for pineoblastoma (non-TRb cohort). The mean maximum diameter of the pineal gland was 6.4mm in Rb patients and 6.3mm in age-matched controls. The mean volume of the pineal gland in Rb patients was 93.1mm(3) and was 87.6mm(3) in age-matched controls. Considering all available MRI scans the mean maximum diameter of the pineal gland in TRb patients was 11.2mm and the mean volume in TRb patients was 453.3mm(3). The third reader identified pineoblastomas with a sensitivity of 100% (3 of 3) and a specificity of 94% (72 of 77). Our non-TRb patients did not show significant differences in the size of the pineal gland and pineal gland cysts compared to age-matched controls. The presented data can serve as a reference for the volume of normal pineal glands and pineal cysts in the diagnostic work-up of Rb patients with suspected pineoblastoma. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Habenular commissure formation in zebrafish is regulated by the pineal gland-specific gene unc119c.

    PubMed

    Toyama, Reiko; Kim, Mi Ha; Rebbert, Martha L; Gonzales, John; Burgess, Harold; Dawid, Igor B

    2013-09-01

    The zebrafish pineal gland (epiphysis) is a site of melatonin production, contains photoreceptor cells, and functions as a circadian clock pacemaker. Since it is located on the surface of the forebrain, it is accessible for manipulation and, therefore, is a useful model system to analyze pineal gland function and development. We previously analyzed the pineal transcriptome during development and showed that many genes exhibit a highly dynamic expression pattern in the pineal gland. Among genes preferentially expressed in the zebrafish pineal gland, we identified a tissue-specific form of the unc119 gene family, unc119c, which is highly preferentially expressed in the pineal gland during day and night at all stages examined from embryo to adult. When expression of unc119c was inhibited, the formation of the habenular commissure (HC) was specifically compromised. The Unc119c interacting factors Arl3l1 and Arl3l2 as well as Wnt4a also proved indispensible for HC formation. We suggest that Unc119c, together with Arl3l1/2, plays an important role in modulating Wnt4a production and secretion during HC formation in the forebrain of the zebrafish embryo. Copyright © 2013 Wiley Periodicals, Inc.

  17. Habenular commissure formation in zebrafish is regulated by the pineal gland specific gene unc119c

    PubMed Central

    Toyama, Reiko; Kim, Mi Ha; Rebbert, Martha L.; Gonzales, John; Burgess, Harold; Dawid, Igor B.

    2013-01-01

    Background The zebrafish pineal gland (epiphysis) is a site of melatonin production, contains photoreceptor cells, and functions as a circadian clock pacemaker. Since it is located on the surface of the forebrain, it is accessible for manipulation and therefore is a useful model system to analyze pineal gland function and development. We previously analyzed the pineal transcriptome during development and showed that many genes exhibit a highly dynamic expression pattern in the pineal gland. Results Among genes preferentially expressed in the zebrafish pineal gland, we identified a tissue-specific form of the unc119 gene family, unc119c, which is highly preferentially expressed in the pineal gland during day and night at all stages examined from embryo to adult. When expression of unc119c was inhibited, the formation of the habenular commissure (HC) was specifically compromised. The Unc119c interacting factors Arl3l1 and Arl3l2 as well as Wnt4a also proved indispensible for HC formation. Conclusions We suggest that Unc119c, together with Arl3l1/2, plays an important role in modulating Wnt4a production and secretion during HC formation in the forebrain of the zebrafish embryo. PMID:23749482

  18. Daytime Unresponsiveness of the Human and Syrian Hamster Pineal to Adrenergic Stimulation

    DTIC Science & Technology

    1989-01-01

    exposure) raises pineal melatonin content; injection outside this sensitive period does not. (CajP-" This dramatic change in response of the pineal gland ...1988, 264 (abstract976). Binkley, S. (1976): Comprative biochemistry of the pineal glands of birds and mammals. Am. Zool. 16, 57-65. Bowers, C.V., an...R.J. (1982): In vivo responses of the pineal gland of the Syrian hamster to isoproterenol or -or-epinephrine. In The Pineal and Its Hormones, pp 107

  19. Biochemical and hormonal evaluation of pineal glands exposed in vitro to magnetic fields. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, L.E.; Leung, F.C.; Miller, D.L.

    It has been reported that exposure to extremely low frequency (ELF) magnetic fields can significantly alter pineal melatonin metabolism in vivo. However, whether such changes are due to direct or indirect effects of field exposure has not been clearly demonstrated. The objective of this research project was to examine the effects of magnetic fields on melatonin metabolism in pineal glands in vitro. Chicken pineal glands were cultured in a modified incubator encircled by a magnetic field exposure system. The incubator, that was remote from but attached to a standard laboratory incubator, contained a regulated light source for modulation of themore » light/dark cycle (12:12 L/D). Pineal glands from 4--6 week old chickens were maintained under 95% O{sub 2}, 5% CO{sub 2} in a static culture system. Because of problems due to contamination and loss of viability of such a system, a perfusion system was developed for EMF studies. Both single and multiple chicken pineal glands were used in the perfusion studies and were kept viable in the perfusion chamber by a continuous flow of medium at 39 C for up to 8 days. Perfusate samples were collected into a fraction collector and were subsequently kept frozen at {minus} 20 C until assays were performed. Melatonin secreted by the cultured pineal glands and released into the medium was measured by a melatonin double antibody radioimmunoassay (RIA) using {sup 125}I-melatonin as the label.« less

  20. MRI-based assessment of the pineal gland in a large population of children aged 0-5 years and comparison with pineoblastoma: part I, the solid gland.

    PubMed

    Galluzzi, Paolo; de Jong, Marcus C; Sirin, Selma; Maeder, Philippe; Piu, Pietro; Cerase, Alfonso; Monti, Lucia; Brisse, Hervé J; Castelijns, Jonas A; de Graaf, Pim; Goericke, Sophia L

    2016-07-01

    Differentiation between normal solid (non-cystic) pineal glands and pineal pathologies on brain MRI is difficult. The aim of this study was to assess the size of the solid pineal gland in children (0-5 years) and compare the findings with published pineoblastoma cases. We retrospectively analyzed the size (width, height, planimetric area) of solid pineal glands in 184 non-retinoblastoma patients (73 female, 111 male) aged 0-5 years on MRI. The effect of age and gender on gland size was evaluated. Linear regression analysis was performed to analyze the relation between size and age. Ninety-nine percent prediction intervals around the mean were added to construct a normal size range per age, with the upper bound of the predictive interval as the parameter of interest as a cutoff for normalcy. There was no significant interaction of gender and age for all the three pineal gland parameters (width, height, and area). Linear regression analysis gave 99 % upper prediction bounds of 7.9, 4.8, and 25.4 mm(2), respectively, for width, height, and area. The slopes (size increase per month) of each parameter were 0.046, 0.023, and 0.202, respectively. Ninety-three percent (95 % CI 66-100 %) of asymptomatic solid pineoblastomas were larger in size than the 99 % upper bound. This study establishes norms for solid pineal gland size in non-retinoblastoma children aged 0-5 years. Knowledge of the size of the normal pineal gland is helpful for detection of pineal gland abnormalities, particularly pineoblastoma.

  1. [Effect of pineal gland peptides on morphofunctional structure of the pancreas in ageing].

    PubMed

    Ryzhak, A P; Kostiuchek, I N; Kvetnoĭ, I M

    2007-01-01

    A study of pineal gland peptides effect on morphology and functions of the pancreas in the model of premature ageing in rats was performed with respect to the need in methods for premature ageing prevention. Structural, morphological and functional alterations in pancreas tissue, suggesting premature ageing of the gland, were identified by methods of immunohistochemistry and electronic microscopy. There was registered a geroprotective effect of the pineal gland peptides on pancreas tissue, manifested in the resistance of the latter to the impact of stress factors entailing premature ageing.

  2. Incidence of pineal gland cyst and pineoblastoma in children with retinoblastoma during the chemoreduction era.

    PubMed

    Ramasubramanian, Aparna; Kytasty, Christina; Meadows, Anna T; Shields, Jerry A; Leahey, Ann; Shields, Carol L

    2013-10-01

    To report on the frequency of cysts and tumors of the pineal gland in patients with retinoblastoma. Observational retrospective case control study. Institutional. study population: Four hundred eight patients treated for retinoblastoma from January 2000 to January 2012 at Wills Eye Institute, Philadelphia, Pennsylvania, USA. Magnetic resonance imaging (MRI) features of the pineal gland were evaluated in all patients with retinoblastoma. Characteristics of patients with pineal cysts and pineoblastoma were reviewed. Comparison of frequency of pineal gland cyst and pineoblastoma in children managed with systemic chemoreduction vs other methods. Of 408 patients, treatment included systemic chemoreduction in 252 (62%) and nonchemoreduction methods in 156 (38%). Overall, 34 patients (8%) manifested pineal gland cyst and 4 (1%) showed pineoblastoma. Of all 408 patients, comparison (chemoreduction vs nonchemoreduction) revealed pineal cyst (20/252 vs 14/156, P = .7) and pineoblastoma (1/252 vs 3/156, P = .1). The pineal cyst (n = 34) (mean diameter 4 mm) was asymptomatic (n = 34), followed conservatively (n = 34), and with minimal enlargement (n = 2, 9%) but without progression to pineoblastoma. The cyst was found in 22 germline and 12 nongermline patients (P = .15). Among the 4 patients with pineoblastoma, all had germline mutation and 2 had family history of retinoblastoma. Among all patients with family history of retinoblastoma (n = 45), 2 (4%) developed pineoblastoma. The pineoblastoma was asymptomatic in 2 patients and symptomatic with vomiting and headache in 2 patients. The mean interval from date of retinoblastoma detection to pineal cyst was 2 months (median 2, range 0-8 months) and to pineoblastoma was 27 months (median 28, range 7-46 months). Management included aggressive chemotherapy and radiotherapy, with 2 survivors. Pineal gland cyst was incidentally detected in 8% of retinoblastoma patients, causing no symptoms, and without progression to pineoblastoma

  3. Homeobox genes and melatonin synthesis: regulatory roles of the cone-rod homeobox transcription factor in the rodent pineal gland.

    PubMed

    Rohde, Kristian; Møller, Morten; Rath, Martin Fredensborg

    2014-01-01

    Nocturnal synthesis of melatonin in the pineal gland is controlled by a circadian rhythm in arylalkylamine N-acetyltransferase (AANAT) enzyme activity. In the rodent, Aanat gene expression displays a marked circadian rhythm; release of norepinephrine in the gland at night causes a cAMP-based induction of Aanat transcription. However, additional transcriptional control mechanisms exist. Homeobox genes, which are generally known to encode transcription factors controlling developmental processes, are also expressed in the mature rodent pineal gland. Among these, the cone-rod homeobox (CRX) transcription factor is believed to control pineal-specific Aanat expression. Based on recent advances in our understanding of Crx in the rodent pineal gland, we here suggest that homeobox genes play a role in adult pineal physiology both by ensuring pineal-specific Aanat expression and by facilitating cAMP response element-based circadian melatonin production.

  4. Homeobox Genes and Melatonin Synthesis: Regulatory Roles of the Cone-Rod Homeobox Transcription Factor in the Rodent Pineal Gland

    PubMed Central

    Rath, Martin Fredensborg

    2014-01-01

    Nocturnal synthesis of melatonin in the pineal gland is controlled by a circadian rhythm in arylalkylamine N-acetyltransferase (AANAT) enzyme activity. In the rodent, Aanat gene expression displays a marked circadian rhythm; release of norepinephrine in the gland at night causes a cAMP-based induction of Aanat transcription. However, additional transcriptional control mechanisms exist. Homeobox genes, which are generally known to encode transcription factors controlling developmental processes, are also expressed in the mature rodent pineal gland. Among these, the cone-rod homeobox (CRX) transcription factor is believed to control pineal-specific Aanat expression. Based on recent advances in our understanding of Crx in the rodent pineal gland, we here suggest that homeobox genes play a role in adult pineal physiology both by ensuring pineal-specific Aanat expression and by facilitating cAMP response element-based circadian melatonin production. PMID:24877149

  5. [MRI of the pineal gland].

    PubMed

    Langevad, Line; Madsen, Camilla Gøbel; Siebner, Hartwig; Garde, Ellen

    2014-11-10

    The pineal gland (CP) is located centrally in the brain and produces melatonin. Cysts and concrements are frequent findings on MRI but their significance is still unclear. The visualization of CP is difficult due to its location and surrounding structures and so far, no standardized method exists. New studies suggest a correlation between CP-morphology and melatonin secretion as well as a connection between melatonin, disturbed circadian rhythm, and the development of cancer and cardiovascular diseases, underlining the need for a standardized approach to CP on MRI.

  6. An autopsy case of sudden unexpected death due to a glial cyst of the pineal gland.

    PubMed

    Na, Joo-Young; Lee, Kyung-Hwa; Kim, Hyung-Seok; Park, Jong-Tae

    2014-09-01

    Pineal cysts are usually asymptomatic; however, they may rarely cause symptoms such as chronic headache, paroxysmal headache with gaze paresis, postural syncope, loss of consciousness, and sudden death. A 30-year-old woman with no specific medical history except chronic headache was found collapsed in a public toilet per se. Postmortem examination revealed no external injuries or internal diseases except a cystic lesion of the pineal gland. Histologic examination showed an internal cyst surrounded by glial tissues and pineal parenchyma that was diagnosed as a glial cyst of the pineal gland. Although the pineal cyst cannot be confirmed as the cause of death, it was considered, as no other cause was evident. Herein, we report a pineal cyst considered as an assumed cause of death.

  7. Melatonin, The Pineal Gland and Circadian Rhythms

    DTIC Science & Technology

    1992-04-30

    physiological rhythms including locomotion, sleep/wake, thermoregulation , car- diovascular function and many endocrine processes. Among the rhythms under SCN...control of a wide array of behavioral and physiological rhythms including locomotion, sleep/wake, thermoregulation , cardiovascular function and many... reptiles and birds, overt rhythmicity results from the integration of multiple circadian oscillators within the pineal gland, eyes and the presumed

  8. The role of pineal gland in breast cancer development.

    PubMed

    Anisimov, Vladimir N

    2003-06-01

    The role of the modulation of the pineal gland function in development of breast cancer is discussed in this review. An inhibition of the pineal function with pinealectomy or with the exposure to the constant light regimen stimulates mammary carcinogenesis, whereas the light deprivation inhibits the carcinogenesis. Epidemiological observations on increased risk of breast cancer in night shift workers, flight attendants, radio and telegraph operators and on decreased risk in blind women are in accordance with the results of experiments in rodents. Treatment with pineal indole hormone melatonin inhibits mammary carcinogenesis in pinealectomized rats, in animals kept at the standard light/dark regimen (LD) or at the constant illumination (LL) regimen. Pineal peptide preparation Epithalamin and synthetic tetrapeptide Epitalon (Ala-Glu-Asp-Gly) are potent inhibitors of mammary carcinogenesis in rodents and might be useful in the prevention of breast cancer in women at risk.

  9. Prevalence of pineal gland calcification as an incidental finding in patients referred for implant dental therapy.

    PubMed

    Mutalik, Sunil; Tadinada, Aditya

    2017-09-01

    Pineal gland calcification has been proposed to play a role in the pathogenesis of Alzheimer disease. This study evaluated the prevalence and extent of pineal gland calcification in cone-beam computed tomography (CBCT) scans of patients referred for dental implant therapy who could possibly be a vulnerable group for this condition. A retrospective evaluation of 500 CBCT scans was conducted. Scans that showed the area where the pineal gland was located were included. The scans were initially screened by a single observer to record the prevalence and extent of calcification. Six weeks following the completion of the study, another investigator randomly reviewed and selected 50 scans to investigate inter-observer variation, which was evaluated using reliability analysis statistics. The prevalence and measurements of the calcifications were reported using descriptive statistics. The chi-square test was used to compare the prevalence between males and females. The prevalence of pineal gland calcification was 58.8%. There was no statistically significant correlation between age and the extent of the calcification. The prevalence of calcification was 58.6% in females and 59.0% in males. The average anteroposterior measurement was 3.73±1.63 mm, while the average mediolateral measurement was 3.47±1.31 mm. The average total calcified area was 9.79±7.59 mm 2 . The prevalence of pineal gland calcification was high in patients undergoing implant therapy. While not all pineal gland calcifications lead to neurodegenerative disorders, they should be strongly considered in the presence of any symptoms as a reason to initiate further investigations.

  10. Functional Development of the Circadian Clock in the Zebrafish Pineal Gland

    PubMed Central

    Ben-Moshe, Zohar; Foulkes, Nicholas S.

    2014-01-01

    The zebrafish constitutes a powerful model organism with unique advantages for investigating the vertebrate circadian timing system and its regulation by light. In particular, the remarkably early and rapid development of the zebrafish circadian system has facilitated exploring the factors that control the onset of circadian clock function during embryogenesis. Here, we review our understanding of the molecular basis underlying functional development of the central clock in the zebrafish pineal gland. Furthermore, we examine how the directly light-entrainable clocks in zebrafish cell lines have facilitated unravelling the general mechanisms underlying light-induced clock gene expression. Finally, we summarize how analysis of the light-induced transcriptome and miRNome of the zebrafish pineal gland has provided insight into the regulation of the circadian system by light, including the involvement of microRNAs in shaping the kinetics of light- and clock-regulated mRNA expression. The relative contributions of the pineal gland central clock and the distributed peripheral oscillators to the synchronization of circadian rhythms at the whole animal level are a crucial question that still remains to be elucidated in the zebrafish model. PMID:24839600

  11. Evidence of Pineal Gland Calcification on CBCT is Not Insignificant: What Else You Might Discover about Your Patient.

    PubMed

    Fore, Stacy

    2016-01-01

    The use of CBCT technology in the dental office is increasing rapidly. These scans provide information on anatomy not previously evaluated with traditional 2D films. One structure often mentioned in a CBCT radiology report is the pineal gland. The pineal gland will show evidence of calcification, but this calcification is often dismissed as a normal aging process. This review of the function and influence of the pineal gland may influence the doctor to complete further evaluation of the patient.

  12. MRI-based assessment of the pineal gland in a large population of children aged 0-5 years and comparison with pineoblastoma: part II, the cystic gland.

    PubMed

    Sirin, Selma; de Jong, Marcus C; Galluzzi, Paolo; Maeder, Philippe; Brisse, Hervé J; Castelijns, Jonas A; de Graaf, Pim; Goericke, Sophia L

    2016-07-01

    Pineal cysts are a common incidental finding on brain MRI with resulting difficulties in differentiation between normal glands and pineal pathologies. The aim of this study was to assess the size and morphology of the cystic pineal gland in children (0-5 years) and compare the findings with published pineoblastoma cases. In this retrospective multicenter study, 257 MR examinations (232 children, 0-5 years) were evaluated regarding pineal gland size (width, height, planimetric area, maximal cyst(s) size) and morphology. We performed linear regression analysis with 99 % prediction intervals of gland size versus age for the size parameters. Results were compared with a recent meta-analysis of pineoblastoma by de Jong et al. Follow-up was available in 25 children showing stable cystic findings in 48 %, cyst size increase in 36 %, and decrease in 16 %. Linear regression analysis gave 99 % upper prediction bounds of 10.8 mm, 10.9 mm, 7.7 mm and 66.9 mm(2), respectively, for cyst size, width, height, and area. The slopes (size increase per month) of each parameter were 0.030, 0.046, 0.021, and 0.25, respectively. Most of the pineoblastomas showed a size larger than the 99 % upper prediction margin, but with considerable overlap between the groups. We presented age-adapted normal values for size and morphology of the cystic pineal gland in children aged 0 to 5 years. Analysis of size is helpful in discriminating normal glands from cystic pineal pathologies such as pineoblastoma. We also presented guidelines for the approach of a solid or cystic pineal gland in hereditary retinoblastoma patients.

  13. Historical and cultural aspects of the pineal gland: comparison between the theories provided by Spiritism in the 1940s and the current scientific evidence.

    PubMed

    Lucchetti, Giancarlo; Daher, Jorge C; Iandoli, Decio; Gonçalves, Juliane P B; Lucchetti, Alessandra L G

    2013-01-01

    Significance has been attached to the pineal gland in numerous different cultures and beliefs. One religion that has advanced the role of the pineal gland is Spiritism. The objective of the present study was to compile information on the pineal gland drawing on the books of Francisco Cândido Xavier written through psychography and to carry out a critical analysis of their scientific bases by comparing against evidence in the current scientific literature. A systematic search using the terms "pineal gland" and "epiphysis" was conducted of 12 works allegedly dictated by the spirit "André Luiz". All information on the pineal having potential correlation with the field of medicine and current studies was included. Specialists in the area were recruited to compile the information and draw parallels with the scientific literature. The themes related to the pineal gland were: mental health, reproductive function, endocrinology, relationship with physical activity, spiritual connection, criticism of the theory that the organ exerts no function, and description of a hormone secreted by the gland (reference alluding to melatonin, isolated 13 years later). The historical background for each theme was outlined, together with the theories present in the Spiritist books and in the relevant scientific literature. The present article provides an analysis of the knowledge the scientific community can acquire from the history of humanity and from science itself. The process of formulating hypotheses and scientific theories can benefit by drawing on the cultural aspects of civilization, taking into account so-called non-traditional reports and theories.

  14. Alpha-2 adrenergic activity of bromocriptine and quinpirole in chicken pineal gland. Effects on melatonin synthesis and ( sup 3 H)rauwolscine binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zawilska, J.; Iuvone, P.M.

    In the pineal gland and retina of chickens, serotonin N-acetyl-transferase (NAT) activity and melatonin content are modulated by different receptors, alpha-2 adrenergic receptors in pineal gland and D2-dopamine receptors in retina. The effect of two D2-dopamine receptor agonists, bromocriptine and quinpirole (LY 171555), on melatonin synthesis in these tissues was investigated. Systemic administrations of bromocriptine and quinpirole decreased nocturnal NAT activity and melatonin content of both pineal gland and retina. Bromocriptine was equipotent in the two tissues, whereas quinpirole was approximately 100-fold more potent in retina than in pineal gland. In pineal gland, the suppressive effects of bromocriptine and quinpirolemore » on NAT activity were blocked by yohimbine, a selective alpha-2 adrenergic receptor antagonist, but not by spiperone, a D2-dopamine receptor antagonist. In contrast, bromocriptine- and quinpirole-induced decreases of the enzyme activity in retina were antagonized by spiperone, and not affected by yohimbine. The nocturnal increase of NAT activity of pineal glands in vitro was inhibited with an order of potency clonidine greater than bromocriptine greater than quinpirole. Additionally, bromocriptine and quinpirole displaced the specific binding of (3H)rauwolscine, an alpha-2 adrenergic receptor antagonist, to membranes from chicken pineal gland, with potencies comparable to those observed for inhibition of NAT activity in vitro. It is suggested that bromocriptine and quinpirole, in addition to their D2-dopaminergic activity, can stimulate alpha-2 adrenergic receptors in pineal gland of chicken.« less

  15. Is there a correlation between the pineal gland calcification and migraine?

    PubMed

    Ozlece, H K; Akyuz, O; Ilik, F; Huseyinoglu, N; Aydin, S; Can, S; Serim, V A

    2015-10-01

    The pineal gland calcifications have been associated with some diseases such as cerebral infarction, Alzheimer's disease and intracerebral hemorrhage while most cases are considered idiopathic and physiologic. However, there are limited data in the current literature about the association of pineal calcification and migraine. Our aim was to evaluate this association between migraine and pineal calcification by computed tomography of the brain. In our study, we assessed the computed tomography images of patients, who referred to the neurology outpatient clinic with the complaint of headache and were diagnosed with migraine without aura based according to 2004 criteria of the International Headache Society. 503 migraine patients and 500 control subjects without migraine diagnosis were included in this study. When migraine and control groups were compared by pineal calcification, the rates were determined as 80, 6% and 55% in migraine and control group, respectively. The difference was statistically significant (p < 0.001). In addition, it was seen that pineal calcifications, detected in migraine patients, did not show age-related increase. According to our data, we can point that pineal calcification may be associated with migraine.

  16. Photoperiodic inhibition of testicular development is mediated by the pineal gland in white-footed mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, P.G.; Boshes, M.; Zucker, I.

    White-footed mice were maintained in short or long photoperiods from birth to 60 days of age (10 h vs. 14 h of light per day). Testes weights and spermatogenesis were substantially reduced in short daylengths. Pinealectomy at 5-7 days of age eliminated the suppressive effect of photoperiod on the reproductive system. However, testicular development was not retarded in intact males kept from 25 to 60 days of age in short daylengths. Exposure to short daylengths prior to 25 days of age contributes to photoperiodic inhibition of testicular development. Removal of the pineal gland did not consistently affect gonadal maturation inmore » long photoperiods. The pineal gland transduces the effects of short daylengths on reproductive development. Some effects of long daylengths on the neuroendocrine axis of white-footed mice may also be mediated by the pineal gland.« less

  17. Melatonin Synthesis: Acetylserotonin O-Methyltransferase (ASMT) Is Strongly Expressed in a Subpopulation of Pinealocytes in the Male Rat Pineal Gland.

    PubMed

    Rath, Martin F; Coon, Steven L; Amaral, Fernanda G; Weller, Joan L; Møller, Morten; Klein, David C

    2016-05-01

    The rat pineal gland has been extensively used in studies of melatonin synthesis. However, the cellular localization of melatonin synthesis in this species has not been investigated. Here we focus on the localization of melatonin synthesis using immunohistochemical methods to detect the last enzyme in melatonin synthesis, acetylserotonin O-methyltransferase (ASMT), and in situ hybridization techniques to study transcripts encoding ASMT and two other enzymes in melatonin synthesis, tryptophan hydroxylase (TPH)-1 and aralkylamine N-acetyltransferase. In sections of the rat pineal gland, marked cell-to-cell differences were found in ASMT immunostaining intensity and in the abundance of Tph1, Aanat, and Asmt transcripts. ASMT immunoreactivity was localized to the cytoplasm in pinealocytes in the parenchyma of the superficial pineal gland, and immunopositive pinealocytes were also detected in the pineal stalk and in the deep pineal gland. ASMT was found to inconsistently colocalize with S-antigen, a widely used pinealocyte marker; this colocalization was seen in cells throughout the pineal complex and also in displaced pinealocyte-like cells of the medial habenular nucleus. Inconsistent colocalization between ASMT and TPH protein was also detected in the pineal gland. ASMT protein was not detected in extraepithalamic parts of the central nervous system or in peripheral tissues. The findings in this report are of special interest because they provide reason to suspect that melatonin synthesis varies significantly among individual pinealocytes.

  18. Melatonin Synthesis: Acetylserotonin O-Methyltransferase (ASMT) Is Strongly Expressed in a Subpopulation of Pinealocytes in the Male Rat Pineal Gland

    PubMed Central

    Coon, Steven L.; Amaral, Fernanda G.; Weller, Joan L.; Møller, Morten; Klein, David C.

    2016-01-01

    The rat pineal gland has been extensively used in studies of melatonin synthesis. However, the cellular localization of melatonin synthesis in this species has not been investigated. Here we focus on the localization of melatonin synthesis using immunohistochemical methods to detect the last enzyme in melatonin synthesis, acetylserotonin O-methyltransferase (ASMT), and in situ hybridization techniques to study transcripts encoding ASMT and two other enzymes in melatonin synthesis, tryptophan hydroxylase (TPH)-1 and aralkylamine N-acetyltransferase. In sections of the rat pineal gland, marked cell-to-cell differences were found in ASMT immunostaining intensity and in the abundance of Tph1, Aanat, and Asmt transcripts. ASMT immunoreactivity was localized to the cytoplasm in pinealocytes in the parenchyma of the superficial pineal gland, and immunopositive pinealocytes were also detected in the pineal stalk and in the deep pineal gland. ASMT was found to inconsistently colocalize with S-antigen, a widely used pinealocyte marker; this colocalization was seen in cells throughout the pineal complex and also in displaced pinealocyte-like cells of the medial habenular nucleus. Inconsistent colocalization between ASMT and TPH protein was also detected in the pineal gland. ASMT protein was not detected in extraepithalamic parts of the central nervous system or in peripheral tissues. The findings in this report are of special interest because they provide reason to suspect that melatonin synthesis varies significantly among individual pinealocytes. PMID:26950199

  19. Norepinephrine activates NF-κB transcription factor in cultured rat pineal gland.

    PubMed

    Villela, Darine; de Sá Lima, Larissa; Peres, Rafael; Peliciari-Garcia, Rodrigo Antonio; do Amaral, Fernanda Gaspar; Cipolla-Neto, José; Scavone, Cristóforo; Afeche, Solange Castro

    2014-01-17

    The circadian rhythm in mammalian pineal melatonin secretion is modulated by norepinephrine (NE) released at night. NE interaction with β1-adrenoceptors activates PKA that phosphorylates the transcription factor CREB, leading to the transcription and translation of the arylalkylamine-N-acetyltransferase (AANAT) enzyme. Several studies have reported the interplay between CREB and the nuclear factor-κB (NF-κB) and a circadian rhythm for this transcription factor was recently described in the rat pineal gland. In this work we studied a direct effect of NE on NF-κB activation and the role played by this factor on melatonin synthesis and Aanat transcription and activity. Cultured rat pineal glands were incubated in the presence of two different NF-κB inhibitors, pyrrolidine-dithiocarbamate or sodium salicylate, and stimulated with NE. Melatonin content was quantified by HPLC with electrochemical detection. AANAT activity was measured by a radiometric assay and the expression of Aanat mRNA was analyzed by real-time PCR. Gel shift assay was performed to study the NF-κB activation in cultured rat pineal glands stimulated by NE. Our results showed that the p50/p50 homodimer of NF-κB is activated by NE and that it has a role in melatonin synthesis, acting on Aanat transcription and activity. Here we present evidence that NF-κB is an important transcription factor that acts, directly or indirectly, on Aanat transcription and activity leading to a modulation of melatonin synthesis. NE plays a role in the translocation of NF-κB p50/p50 homodimer to the nucleus of pinealocytes, thus probably influencing the nocturnal pineal melatonin synthesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Cartesian theories on the passions, the pineal gland and the pathogenesis of affective disorders: an early forerunner.

    PubMed

    López-Muñoz, F; Alamo, C

    2011-03-01

    The relationship between physical and functional alterations in the pineal gland, the 'passions' (emotions or feelings) and psychopathology has been a constant throughout the history of medicine. One of the most influential authors on this subject was René Descartes, who discussed it in his work The Treatise on the Passions of the Soul (1649). Descartes believed that 'passions' were sensitive movements that the soul, located in the pineal gland, experienced due to its union with the body, by circulating animal spirits. Descartes described sadness as one of the six primitive passions of the soul, which leads to melancholy if not remedied. Cartesian theories had a great deal of influence on the way that mental pathologies were considered throughout the entire 17th century and during much of the 18th century, but the link between the pineal gland and psychiatric disorders it was definitively highlighted in the 20th century, with the discovery of melatonin in 1958. The recent development of a new pharmacological agent acting through melatonergic receptors (agomelatine) has confirmed the close link between the pineal gland and affective disorders.

  1. [The historical background of the pineal gland: I. From a spiritual valve to the seat of the soul].

    PubMed

    López-Muñoz, Francisco; Marín, Fernando; Alamo, Cecilio

    Throughout history, the special anatomical location of the pineal gland in the central nervous system has given rise to a number of physiological hypotheses regarding the functional role of this organ. In classical ancient times, the pineal body (conarium) was considered to be a sort of valve-like sphincter that regulated the flow of the spiritus animalis at the ventricular level. But it was not until the 17th century that the pineal gland finally reached its highest levels of physiological significance, when Rene Descartes considered it to be the anatomical structure that housed the seat of the soul. The Cartesian hypotheses regarding the pineal gland did not arouse much interest in the scientific community of the time, and attention to this organ dwindled from then until the 20th century, when its neuroendocrinological nature was finally confirmed.

  2. RGS2 is a feedback inhibitor of melatonin production in the pineal gland

    PubMed Central

    Matsuo, Masahiro; Coon, Steven L.; Klein, David C.

    2014-01-01

    The 24-h rhythmic production of melatonin by the pineal gland is essential for coordinating circadian physiology. Melatonin production increases at night in response to the release of norepinephrine from sympathetic nerve processes which innervate the pineal gland. This signal is transduced through G-protein-coupled adrenergic receptors. Here, we found that the abundance of regulator of G-protein signaling 2 (RGS2) increases at night, that expression is increased by norepinephrine and that this protein has a negative feedback effect on melatonin production. These data are consistent with the conclusion that RGS2 functions on a daily basis to negatively modulate melatonin production. PMID:23523917

  3. A modulatory role of the Rax homeobox gene in mature pineal gland function: Investigating the photoneuroendocrine circadian system of a Rax conditional knockout mouse.

    PubMed

    Rohde, Kristian; Bering, Tenna; Furukawa, Takahisa; Rath, Martin Fredensborg

    2017-10-01

    The retinal and anterior neural fold homeobox gene (Rax) controls development of the eye and the forebrain. Postnatal expression of Rax in the brain is restricted to the pineal gland, a forebrain structure devoted to melatonin synthesis. The role of Rax in pineal function is unknown. In order to investigate the role of Rax in pineal function while circumventing forebrain abnormalities of the global Rax knockout, we generated an eye and pineal-specific Rax conditional knockout mouse. Deletion of Rax in the pineal gland did not affect morphology of the gland, suggesting that Rax is not essential for pineal gland development. In contrast, deletion of Rax in the eye generated an anophthalmic phenotype. In addition to the loss of central visual pathways, the suprachiasmatic nucleus of the hypothalamus housing the circadian clock was absent, indicating that the retinohypothalamic tract is required for the nucleus to develop. Telemetric analyses confirmed the lack of a functional circadian clock. Arylalkylamine N-acetyltransferase (Aanat) transcripts, encoding the melatonin rhythm-generating enzyme, were undetectable in the pineal gland of the Rax conditional knockout under normal conditions, whereas the paired box 6 homeobox gene, known to regulate pineal development, was up-regulated. By injecting isoproterenol, which mimics a nocturnal situation in the pineal gland, we were able to induce pineal expression of Aanat in the Rax conditional knockout mouse, but Aanat transcript levels were significantly lower than those of Rax-proficient mice. Our data suggest that Rax controls pineal gene expression and via Aanat may modulate melatonin synthesis. © 2017 International Society for Neurochemistry.

  4. Descartes' pineal neuropsychology.

    PubMed

    Smith, C U

    1998-02-01

    The year 1996 marked the quattrocentenary of Descartes' birth. This paper reviews his pineal neuropsychology. It demonstrates that Descartes understood the true anatomical position of the pineal. His intraventricular pineal (or glande H) was a theoretical construct which allowed him to describe the operations of his man-like "earthen machine." In the Treatise of Man he shows how all the behaviors of such machines could then be accounted for without the presence of self-consciousness. Infrahuman animals are "conscious automata." In Passions of the Soul he adds, but only for humans, self-consciousness to the machine. In a modern formulation, only humans not only know but know that they know. Copyright 1998 Academic Press.

  5. The contribution of the pineal gland on daily rhythms and masking in diurnal grass rats, Arvicanthis niloticus.

    PubMed

    Shuboni, Dorela D; Agha, Amna A; Groves, Thomas K H; Gall, Andrew J

    2016-07-01

    Melatonin is a hormone rhythmically secreted at night by the pineal gland in vertebrates. In diurnal mammals, melatonin is present during the inactive phase of the rest/activity cycle, and in primates it directly facilitates sleep and decreases body temperature. However, the role of the pineal gland for the promotion of sleep at night has not yet been studied in non-primate diurnal mammalian species. Here, the authors directly examined the hypothesis that the pineal gland contributes to diurnality in Nile grass rats by decreasing activity and increasing sleep at night, and that this could occur via effects on circadian mechanisms or masking, or both. Removing the pineal gland had no effect on the hourly distribution of activity across a 12:12 light-dark (LD) cycle or on the patterns of sleep-like behavior at night. Masking effects of light at night on activity were also not significantly different in pinealectomized and control grass rats, as 1h pulses of light stimulated increases in activity of sham and pinealectomized animals to a similar extent. In addition, the circadian regulation of activity was unaffected by the surgical condition of the animals. Our results suggest that the pineal gland does not contribute to diurnality in the grass rat, thus highlighting the complexity of temporal niche transitions. The current data raise interesting questions about how and why genetic and neural mechanisms linking melatonin to sleep regulatory systems might vary among mammals that reached a diurnal niche via parallel and independent pathways. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The morphology of the pineal gland of the yellow-toothed cavy (Galea Spixii Wagler, 1831) and red-rumped agouti (Dasyprocta leporina linnaeus, 1758).

    PubMed

    Câmara, Felipe Venceslau; Lopes, Igor Renno Guimarães; de Oliveira, Gleidson Benevides; Bezerra, Ferdinando Vinicius Fernandes; de Oliveira, Radan Elvis Matias; Oliveira Júnior, Carlos Magno; Silva, Alexandre Rodrigues; de Oliveira, Moacir Franco

    2015-08-01

    The pineal gland is an endocrine gland found in all mammals. This article describes the morphology of this important gland in two species of Caviideae, namely the yellow-toothed cavy and the red-rumped agouti. Ten adult animals of the two species used in current analysis were retrieved from the Center for the Multiplication of Wild Animals (CEMAS/UFERSA) and euthanized. The glands were removed and photographed in situ and ex situ. They were fixed in a paraformaldehyde solution 4% or glutaraldehyde 2.5% solution and submitted to routine histological techniques respectively for light and scanning electron microscopy. Macroscopically, the pineal gland with its elongated structure may be found between the cerebral hemispheres facing the rostral colliculi. Microscopically, pinealocytes and some glia cells were predominant. Contrastingly, to the cavy's pineal gland, a capsule covered the organ in the agouti, with the emission of incomplete septa to the interior, which divided it into two lobules. Light and scanning electron microscopes failed to show calcareous concretions in the pineal gland. Based on the topography of the cavy's and agouti's pineal gland, it may be classified as supra-callosum and ABC type. © 2015 Wiley Periodicals, Inc.

  7. Endocrine rhythms in the brown bear (Ursus arctos): Evidence supporting selection for decreased pineal gland size

    PubMed Central

    Ware, Jasmine V; Nelson, O Lynne; Robbins, Charles T; Carter, Patrick A; Sarver, Brice A J; Jansen, Heiko T

    2013-01-01

    Many temperate zone animals adapt to seasonal changes by altering their physiology. This is mediated in large part by endocrine signals that encode day length and regulate energy balance and metabolism. The objectives of this study were to determine if the daily patterns of two important hormones, melatonin and cortisol, varied with day length in captive brown bears (Ursus arctos) under anesthetized and nonanesthetized conditions during the active (March–October) and hibernation periods. Melatonin concentrations varied with time of day and season in nonanesthetized female bears despite exceedingly low nocturnal concentrations (1–4 pg/mL) in the active season. In contrast, melatonin concentrations during hibernation were 7.5-fold greater than those during the summer in anesthetized male bears. Functional assessment of the pineal gland revealed a slight but significant reduction in melatonin following nocturnal light application during hibernation, but no response to beta-adrenergic stimulation was detected in either season. Examination of pineal size in two bear species bears combined with a phylogenetically corrected analysis of pineal glands in 47 other species revealed a strong relationship to brain size. However, pineal gland size of both bear species deviated significantly from the expected pattern. Robust daily plasma cortisol rhythms were observed during the active season but not during hibernation. Cortisol was potently suppressed following injection with a synthetic glucocorticoid. The results suggest that melatonin and cortisol both retain their ability to reflect seasonal changes in day length in brown bears. The exceptionally small pineal gland in bears may be the result of direct or indirect selection. PMID:24303132

  8. The in vitro maintenance of clock genes expression within the rat pineal gland under standard and norepinephrine-synchronized stimulation.

    PubMed

    Andrade-Silva, Jéssica; Cipolla-Neto, José; Peliciari-Garcia, Rodrigo A

    2014-01-01

    Although the norepinephrine (NE) synchronization protocol was proved to be an important procedure for further modulating in vitro pineal melatonin synthesis, the maintenance of clock genes under the same conditions remained to be investigated. The aim of this study was to investigate the maintenance of the clock genes expression in pineal gland cultures under standard and NE-synchronized stimulation. The glands were separated into three experimental groups: Control, Standard (acute NE-stimulation), and NE-synchronized. The expression of Bmal1, Per2, Cry2, Rev-erbα, the clock controlled gene Dbp and Arylalkylamine-N-acetyltransferase were investigated, as well as melatonin content. No oscillations were observed in the expression of the investigated genes from the control group. Under Standard NE stimulation, the clock genes did not exhibit a rhythmic pattern of expression. However, in the NE-synchronized condition, a rhythmic expression pattern was observed in all cases. An enhancement in pineal gland responsiveness to NE stimulation, reflected in an advanced synthesis of melatonin was also observed. Our results reinforce our previous hypothesis that NE synchronization of pineal gland culture mimics the natural rhythmic release of NE in the gland, increasing melatonin synthesis and keeping the pineal circadian clock synchronized, ensuring the fine adjustments that are relied in the clockwork machinery. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  9. In silico genome wide mining of conserved and novel miRNAs in the brain and pineal gland of Danio rerio using small RNA sequencing data.

    PubMed

    Agarwal, Suyash; Nagpure, Naresh Sahebrao; Srivastava, Prachi; Kushwaha, Basdeo; Kumar, Ravindra; Pandey, Manmohan; Srivastava, Shreya

    2016-03-01

    MicroRNAs (miRNAs) are small, non-coding RNA molecules that bind to the mRNA of the target genes and regulate the expression of the gene at the post-transcriptional level. Zebrafish is an economically important freshwater fish species globally considered as a good predictive model for studying human diseases and development. The present study focused on uncovering known as well as novel miRNAs, target prediction of the novel miRNAs and the differential expression of the known miRNA using the small RNA sequencing data of the brain and pineal gland (dark and light treatments) obtained from NCBI SRA. A total of 165, 151 and 145 known zebrafish miRNAs were found in the brain, pineal gland (dark treatment) and pineal gland (light treatment), respectively. Chromosomes 4 and 5 of zebrafish reference assembly GRCz10 were found to contain maximum number of miR genes. The miR-181a and miR-182 were found to be highly expressed in terms of number of reads in the brain and pineal gland, respectively. Other ncRNAs, such as tRNA, rRNA and snoRNA, were curated against Rfam. Using GRCz10 as reference, the subsequent bioinformatic analyses identified 25, 19 and 9 novel miRNAs from the brain, pineal gland (dark treatment) and pineal gland (light treatment), respectively. Targets of the novel miRNAs were identified, based on sequence complementarity between miRNAs and mRNA, by searching for antisense hits in the 3'-UTR of reference RNA sequences of the zebrafish. The discovery of novel miRNAs and their targets in the zebrafish genome can be a valuable scientific resource for further functional studies not only in zebrafish but also in other economically important fishes.

  10. Sudden and Unexpected Death During Sexual Activity, Due to a Glial Cyst of the Pineal Gland.

    PubMed

    Barranco, Rosario; Lo Pinto, Sara; Cuccì, Maria; Caputo, Fiorella; Fossati, Francesca; Fraternali Orcioni, Giulio; Ventura, Francesco

    2018-06-01

    Cysts of the pineal gland are benign lesions. Often asymptomatic, in the majority of cases they are discovered incidentally during brain magnetic resonance imaging or autopsy. Sporadically, however, they may cause such symptoms as chronic headache, loss of consciousness, corticospinal and sensory impairment, and, in some cases, even sudden death. A 45-year-old woman, in apparently good health, collapsed and died suddenly, after reaching orgasm while engaged in sexual intercourse. According to the circumstantial account of her relatives, the woman suffered from severe headaches, which were exacerbated by certain types of physical strain, such as sexual activity. Postmortem examination revealed no external injuries or internal diseases except for a cystic lesion of the pineal gland. Microscopically, the wall of the cyst consisted of a layer of glial tissue surrounded by an area of pineal elements. A complete forensic approach concluded that the cause of death was fatal cardiorespiratory failure resulting from midbrain compression due to a nonneoplastic pineal gland cyst, exacerbated by sexual activity. In this case, the intracranial pressure increase, secondary to Valsalva maneuver during climax, may further aggravate compression on the brainstem, thus concurring to determine the death.

  11. Beyond the pineal gland assumption: a neuroanatomical appraisal of dualism in Descartes' philosophy.

    PubMed

    Berhouma, Moncef

    2013-09-01

    The problem of the substantial union of the soul and the body and therefore the mechanisms of interaction between them represents the core of the Cartesian dualistic philosophy. This philosophy is based upon a neuroanatomical obvious misconception, consisting mainly on a wrong intraventricular position of the pineal gland and its capacity of movement to act as a valve regulating the flow of animal spirits. Should we consider the Cartesian neurophysiology as a purely anatomical descriptive work and therefore totally incorrect, or rather as a theoretical conception supporting his dualistic philosophy? From the various pre-Cartesian theories on the pineal organ, we try to explain how Descartes used his original conception of neuroanatomy to serve his dualistic philosophy. Moreover, we present an appraisal of the Cartesian neuroanatomical corpus from an anatomical but also metaphysical and theological perspectives. A new interpretation of Descartes' writings and an analysis of the secondary related literature shed the light on the voluntary anatomical approximations aiming to build an ad hoc neurophysiology that allows Descartes' soul-body theory. By its central position within the brain mass and its particular shape, the pineal gland raised diverse metaphysical theories regarding its function, but the most original theory remains certainly its role as the seat of soul in René Descartes' philosophy and more precisely the organ where soul and body interact. The author emphasizes on the critics raised by Descartes' theories on the soul-body interaction through the role of the pineal gland. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Pigmented Cells in the Pineal Gland of Female Viscacha (Lagostomus maximus maximus): A Histochemical and Ultrastructural Study

    PubMed Central

    Busolini, Fabricio Ivan; Rodríguez, Graciela Beatriz; Filippa, Verónica Palmira

    2017-01-01

    The presence of pigment has been demonstrated in different nervous structures such as those of retina, substantia nigra, and locus coeruleus. These pigments have also been described in the pineal gland of different mammal species. Histochemical and ultrastructural studies of the pineal gland of female viscacha (Lagostomus maximus maximus) were performed to analyze the presence of pigmented cells under natural conditions and to evaluate a probable relation between pigment content and glandular activity during pregnancy. The following techniques were applied: hematoxylin-eosin, phosphotungstic acid-hematoxylin, Masson-Fontana silver, DOPA histochemistry, Schmorl's reaction and toluidine blue. Estradiol and progesterone serum levels were determined by RIA. The ultrastructural features of the pineal pigment granules were also analyzed. Pigment granules were observed in a random distribution, but the pigmented cells were frequently found near blood vessels. The pineal pigment was histochemically identified as melanin. Differences in the amount of pigmented cells were found between pregnant and nonpregnant viscachas. The ultrastructural analysis revealed the presence of premelanosomes and melanosomes. Estradiol and progesterone levels vary during pregnancy. In conclusion, the changes in the amount of pigment content and hormone levels may indicate that the pineal gland of female viscacha is susceptible to endocrine variations during pregnancy. PMID:29391866

  13. History of the pineal region tumor.

    PubMed

    Mottolese, C; Szathmari, A

    2015-01-01

    The pineal gland has interested humans from millenniums. In this paper we review back in the history and the evolution of the pineal gland surgery. Originally, this surgery used to carry a high rate of morbidity and mortality. Nowadays the development of the anesthetic, radiological, surgical and intensive care techniques have been responsible of an improvement of the surgical results and better quality of life. It is always interesting to know from where we come. Copyright © 2014. Published by Elsevier Masson SAS.

  14. Insulin modulates norepinephrine-mediated melatonin synthesis in cultured rat pineal gland

    USDA-ARS?s Scientific Manuscript database

    The mammalian pineal gland synthesizes melatonin in a circadian manner, peaking during the dark phase. This synthesis is primarily regulated by sympathetic innervations via noradrenergic fibers, but is also modulated by many peptidergic and hormonal systems. A growing number of studies reveal a comp...

  15. Postnatal neurogenesis in the cow pineal gland: an immunohistochemical study.

    PubMed

    Gómez Esteban, M B; Muñoz Mosqueira, M I; Arroyo, A A; Muñoz Barragán, L

    2013-03-01

    In the pineal gland of cows and rats structures designated rosettes have been described both during embryonic development and in adult animals. In order to investigate the possible nature of the cells comprising such structures, in the present work we studied the pineal glands from 10 cows of one- or four-years-old using conventional immunocytochemical and confocal microscopy techniques. As markers of glial cells, we used anti-vimentin (Vim) and glial fibrillary acidic protein (GFAP) and anti-S-100 sera, and the pinealocytes were labelled with β-III tubulin. As a marker of stem cells, we used an antinestin serum, while an anti-PCNA serum was employed to label proliferating cells. To explore the neuronal nature of some cells of the rosettes, we used an anti-SRIF serum. The rosettes were seen to be present throughout the glandular parenchyma and displayed a central cavity surrounded by cells, most of which expressed all or just some of the above glial labels and nestin, although there were also some rosettes with cells that expressed β-III tubulin and other cells that expressed SRIF. Likewise, in the cells of the rosettes the cell nucleus showed strong expression of PCNA. Confocal microscopy revealed that the walls of the rosettes contained cells that coexpressed Vim/S-100, Vim/GFAP and Vim/nestin. The number of rosettes was significantly greater in the animals of one year of age with respect to the four-year-old cows. The present findings allow us to suggest that rosettes are evolving structures and that most of the cells present in their walls should be considered stem cells, and hence responsible for the postnatal neurogenesis occurring in the pineal gland of cows.

  16. Effects of 60-Hz electric fields on serotonin metabolism in the rat pineal gland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, L.E.; Hilton, D.I.; Phillips, R.D.

    Serotonin and two of its metabolites, melatonin and 5-methoxytryptophol, exhibit circadian rhythmicity in the pineal gland. We recently reported a marked reduction in the normal night-time increase in melatonin concentration in the pineal glands of rats exposed to 60-Hz electric fields. Concomitant with the apparent abolition of melatonin rhythmicity, serotonin-N-acetyl transferase (SNAT) activity was suppressed. We have now conducted studies to determine if abolition of the rhythm in melatonin production in electric-field-exposed rats arises solely from interference in SNAT activity, or if the availability of pineal serotonin is a factor that is affected by exposure. Pineal serotonin concentrations were comparedmore » in rats that were either exposed or sham exposed to 65 kV/m for 30 days. Sham-exposed animals exhibited normal diurnal rhythmicity for pineal concentrations of both melatonin and serotonin; melatonin levels increased markedly during the dark phase with a concurrent decrease in serotonin levels. In the exposed animals, however, normal serotonin rhythmicity was abolished; serotonin levels in these animals did not increase during the light period. The conclusion that electric field exposure results in a biochemical alteration in SNAT enzyme activity can be inferred from the loss of both serotonin and melatonin rhythmicity, as well as by direct measurement of SNAT activity itself. 35 references, 3 figures, 1 table.« less

  17. Morphologic variations in the pineal gland of the albino rat after a chronic alcoholisation process.

    PubMed

    Martínez-Salvador, J; Ruiz-Torner, A; Blasco-Serra, A; Martínez-Soriano, F; Valverde-Navarro, A A

    2018-04-01

    We studied the effect of alcohol on the pineal gland of 48 male Wistar rats. Animals were divided into control and experimental groups. The experimental group underwent a previous progressive alcoholisation period with ethanol diluted in water at a concentration of 40%. Animals were sacrificed at 3, 6, 9 and 12 months, and the ultrastructure, karyometric indices, and number of synaptic bodies in the pineal gland were analysed. The results showed progressive morphologic alterations in the ethanol-treated animals, which culminated in fatty degeneration of the pineal parenchyma after 6 months. The karyometric indices decreased in both the central and peripheral areas compared with the control group. Moreover, the seasonal rhythmicity observed in the controls disappeared in the experimental groups, whose number of different populations of synaptic bodies (synaptic ribbons and synaptic spherules) considerably lowered with inversion of their normal seasonal rhythm. These results support that chronic alcoholisation leads to fatty degeneration of the pineal parenchyma, and a considerable alteration in nuclear functional rhythms and synaptic bodies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Melatonin and pineal gland peptides are able to correct the impairment of reproductive cycles in rats.

    PubMed

    Arutjunyan, Alexander; Kozina, Ljudmila; Milyutina, Yulia; Korenevsky, Andrew; Stepanov, Michael; Arutyunov, Vladimir

    2012-12-01

    Catecholamines play an important role in the hypothalamic regulation of the synthesis and secretion of gonadotropin- releasing hormone, or gonadoliberin. We have shown that melatonin and the pineal gland peptides (epithalamine and epitalon) exert a correcting influence on the diurnal dynamics of norepinephrine (NE) in the medial preoptic area (MPA) and of dopamine (DA) in the median eminence with arcuate nuclei (ME-Arc) disturbed by single administration of the neurotoxic xenobiotic 1,2-dimethylhydrazine (DMH) in female rats. It has been found that experiments with DMH administration can be used as an animal model of female reproductive system premature aging. The investigation of epithalamine (a polypeptide preparation from the bovine pineal gland) effect on circadian rhythms disturbed by the neurotoxic compound DMH has shown a recovery of the diurnal dynamics of NE in MPA. In addition, NE was found to decrease from 9:30 till 11 o'clock, Circadian Time (CT), which was typical of control animals. Epitalon (Ala-Glu-Asp-Gly) proved to be more effective in ME-Arc. This peptide prevents the xenobiotic caused disturbance of DA diurnal rhythm, keeping this metabolite low at 5 o'clock (CT) with it having increased by 11 o'clock (CT). The data obtained suggest that the pineal gland is important for the circadian signal normalization needed for gonadoliberin surge on the day of proestrus. Melatonin and peptides of the pineal gland can be considered as effective protectors of female reproductive system from xenobiotics and premature aging.

  19. Crx broadly modulates the pineal transcriptome

    PubMed Central

    Rovsing, Louise; Clokie, Samuel; Bustos, Diego M.; Rohde, Kristian; Coon, Steven L.; Litman, Thomas; Rath, Martin F.; Møller, Morten; Klein, David C.

    2011-01-01

    Cone-rod homeobox (Crx) encodes Crx, a transcription factor expressed selectively in retinal photoreceptors and pinealocytes, the major cell type of the pineal gland. Here, the influence of Crx on the mammalian pineal gland was studied by light and electron microscopy and by use of microarray and qRTPCR technology, thereby extending previous studies on selected genes (Furukawa et al. 1999). Deletion of Crx was not found to alter pineal morphology, but was found to broadly modulate the mouse pineal transcriptome, characterized by a >2-fold downregulation of 543 genes and a >2-fold upregulation of 745 genes (p < 0.05). Of these, one of the most highly upregulated (18-fold) is Hoxc4, a member of the Hox gene family, members of which are known to control gene expression cascades. During a 24-hour period, a set of 51 genes exhibited differential day/night expression in pineal glands of wild-type animals; only eight of these were also day/night expressed in the Crx−/− pineal gland. However, in the Crx−/− pineal gland 41 genes exhibit differential night/day expression that is not seen in wild-type animals. These findings indicate that Crx broadly modulates the pineal transcriptome and also influences differential night/day gene expression in this tissue. Some effects of Crx deletion on the pineal transcriptome might be mediated by Hoxc4 upregulation. PMID:21797868

  20. Interleukin-1 β Modulates Melatonin Secretion in Ovine Pineal Gland: Ex Vivo Study.

    PubMed

    Herman, A P; Bochenek, J; Skipor, J; Król, K; Krawczyńska, A; Antushevich, H; Pawlina, B; Marciniak, E; Tomaszewska-Zaremba, D

    2015-01-01

    The study was designed to determine the effect of proinflammatory cytokine, interleukin- (IL-) 1β, on melatonin release and expression enzymes essential for this hormone synthesis: arylalkylamine-N-acetyltransferase (AA-NAT) and hydroxyindole-O-methyltransferase (HIOMT) in ovine pineal gland, taking into account the immune status of animals before sacrificing. Ewes were injected by lipopolysaccharide (LPS; 400 ng/kg) or saline, two hours after sunset during short day period (December). Animals were euthanized three hours after the injection. Next, the pineal glands were collected and divided into four explants. The explants were incubated with (1) medium 199 (control explants), (2) norepinephrine (NE; 10 µM), (3) IL-1β (75 pg/mL), or (4) NE + IL-1β. It was found that IL-1β abolished (P < 0.05) NE-induced increase in melatonin release. Treatment with IL-1β also reduced (P < 0.05) expression of AA-NAT enzyme compared to NE-treated explants. There was no effect of NE or IL-1β treatment on gene expression of HIOMT; however, the pineal fragments isolated from LPS-treated animals were characterized by elevated (P < 0.05) expression of HIOMT mRNA and protein compared to the explants from saline-treated ewes. Our study proves that IL-1β suppresses melatonin secretion and its action seems to be targeted on the reduction of pineal AA-NAT protein expression.

  1. The Pineal and Photoperiodism in Artic Species,

    DTIC Science & Technology

    1977-01-01

    University of Iowa, Iowa City, Iowa *1 A chapter in the book: The Pineal Gland and Reproduction / ::. . / .. ,, " /-. ., . / >( JUN19 1981 A and sale; . td...Three Kinds of Bird Pineal Glands Arctic Mammals and Photoperiod Outline of Arctic Reproductive Physiology Arctic Pineal Physiology: Size Arctic... pineal physiology. Because this gland is not only associated with photoperiodic responses with some species, but also with resistance to cold (14; 21

  2. Diurnal expression of clock genes in pineal gland and brain and plasma levels of melatonin and cortisol in Atlantic salmon parr and smolts.

    PubMed

    Huang, Tien-sheng; Ruoff, Peter; Fjelldal, Per G

    2010-10-01

    In Atlantic salmon, the preadaptation to a marine life, i.e., parr-smolt transformation, and melatonin production in the pineal gland are regulated by the photoperiod. However, the clock genes have never been studied in the pineal gland of this species. The aim of the present study was to describe the diurnal expression of clock genes (Per1-like, Cry2, and Clock) in the pineal gland and brain of Atlantic salmon parr and smolts in freshwater, as well as plasma levels of melatonin and cortisol. By employing an out-of-season smolt production model, the parr-smolt transformation was induced by subjecting triplicate groups of parr to 6 wks (wks 0 to 6) under a 12 h:12 h light-dark (LD) regime followed by 6 wks (wks 6 to 12) of continuous light (LL). The measured clock genes in both pineal gland and brain and the plasma levels of melatonin and cortisol showed significant daily variations in parr under LD in wk 6, whereas these rhythms were abolished in smolts under LL in wk 12. In parr, the pineal Per1-like and Cry2 expression peaked in the dark phase, whereas the pineal Clock expression was elevated during the light phase. Although this study presents novel findings on the clock gene system in the teleost pineal gland, the role of this system in the regulation of smoltification needs to be studied in more detail.

  3. Transcriptional regulation of arylalkylamine-N-acetyltransferase-2 gene in the pineal gland of the gilthead seabream.

    PubMed

    Zilberman-Peled, B; Appelbaum, L; Vallone, D; Foulkes, N S; Anava, S; Anzulovich, A; Coon, S L; Klein, D C; Falcón, J; Ron, B; Gothilf, Y

    2007-01-01

    Pineal serotonin-N-acetyltransferase (arylalkylamine-N-acetyltransferase; AANAT) is considered the key enzyme in the generation of circulating melatonin rhythms; the rate of melatonin production is determined by AANAT activity. In all the examined species, AANAT activity is regulated at the post-translational level and, to a variable degree, also at the transcriptional level. Here, the transcriptional regulation of pineal aanat (aanat2) of the gilthead seabream (Sparus aurata) was investigated. Real-time polymerase chain reaction quantification of aanat2 mRNA levels in the pineal gland collected throughout the 24-h cycle revealed a rhythmic expression pattern. In cultured pineal glands, the amplitude was reduced, but the daily rhythmic expression pattern was maintained under constant illumination, indicating a circadian clock-controlled regulation of seabream aanat2. DNA constructs were prepared in which green fluorescent protein was driven by the aanat2 promoters of seabream and Northern pike. In vivo transient expression analyses in zebrafish embryos indicated that these promoters contain the necessary elements to drive enhanced expression in the pineal gland. In the light-entrainable clock-containing PAC-2 zebrafish cell line, a stably transfected seabream aanat2 promoter-luciferase DNA construct exhibited a clock-controlled circadian rhythm of luciferase activity, characteristic for an E-box-driven expression. In NIH-3T3 cells, the seabream aanat2 promoter was activated by a synergistic action of BMAL/CLOCK and orthodenticle homeobox 5 (OTX5). Promoter sequence analyses revealed the presence of the photoreceptor conserved element and an extended E-box (i.e. the binding sites for BMAL/CLOCK and OTX5 that have been previously associated with pineal-specific and rhythmic gene expression). These results suggest that seabream aanat2 is a clock-controlled gene that is regulated by conserved mechanisms.

  4. 18F-FDG PET/CT Finding of Drop Metastases from Germ Cell Tumor of Pineal Gland.

    PubMed

    Jain, Tarun K; Basher, Rajender K; Sood, Ashwani; Mittal, Bhagwant R; Prakash, Gaurav; Bhatia, Anmol

    2017-06-01

    Tumors of the pineal region are rare, accounting for fewer than 1% of all intracranial neoplasms. Fifty percent of pineal region tumors are germ cell tumors (GCTs). However, spinal seeding and extracranial metastases from intracranial GCTs are uncommon. We present a case of pineal gland GCT in which 18 F-FDG PET/CT imaging demonstrated drop metastases to the spinal cord in addition to tracer uptake in the primary lesion. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  5. Pineal gland as an endocrine gravitational lunasensor: manifestation of moon-phase dependent morphological changes in mice.

    PubMed

    Gerasimov, A V; Kostyuchenko, V P; Solovieva, A S; Olovnikov, A M

    2014-10-01

    We found that some morphological properties of the pineal gland and submandibular salivary gland of mice are significantly distinct at the new and full moon. We suppose that the differences are initiated by the displacements of the electron-dense concretions in the secretory vesicles of pinealocytes. This presumably occurs under the influence of the gravitational field, which periodically changes during different phases of the moon. It seems that the pinealocyte is both an endocrine and gravisensory cell. A periodic secretion of the pineal gland probably stimulates, in a lunaphasic mode, the neuroendocrine system that, in turn, periodically exerts influence on different organs of the body. The observed effect probably serves, within the lifelong clock of a brain, to control development and aging in time.

  6. Seasonal postembryonic maturation of the diurnal rhythm of serotonin in the chicken pineal gland.

    PubMed

    Piesiewicz, Aneta; Kedzierska, Urszula; Turkowska, Elzbieta; Adamska, Iwona; Majewski, Pawel M

    2015-02-01

    Previously, we have demonstrated the postembryonic development of chicken (Gallus gallus domesticus L.) pineal gland functions expressed as changes in melatonin (MEL) biosynthesis. Pineal concentrations of MEL and its precursor serotonin (5-HT) were shown to increase between the 2nd and 16th day of life. We also found that levels of the mRNAs encoding the enzymes participating in the final two steps of MEL biosynthesis from 5-HT: arylalkylamine-N-acetyltransferase (AANAT) and hydroxyindole-O-methyltransferase (HIOMT), as well as their enzymatic activities, were raised during postembryonic development. Moreover, the manner of these changes was season-of-hatch dependent, even in animals kept under constant laboratory conditions (L:D 12:12). The most pronounced changes were seen in the concentrations of 5-HT and MEL, as well as in Aanat mRNA level and its enzymatic activity. The high daily variability in 5-HT content suggested that season- and age-dependent changes in the activity of the chicken pineal gland might rely on the availability of 5-HT, i.e. it may be limited by changes in pineal tryptophan (TRP) and/or 5-hydroxytryptophan (5-HTP) levels as well as by the activity of tryptophan hydroxylase (TPH) and aromatic l-amino acid decarboxylase (AADC): two enzymes participating in the conversion of TRP to 5-HT. The present study was undertaken with the following objectives: (1) to examine whether the pineal concentration of the 5-HT precursors TRP and 5-HTP exhibit age- and season-related changes; (2) to look for season-related differences in the transcription of the Tph1 and Ddc genes encoding enzymes TPH and AADC; (3) to identify the step(s) in postembryonic development in which these season-related variations in pineal gland function are most pronounced. Male Hy-line chickens hatched in the summer or winter, from eggs laid by hens held in L:D 16:8 conditions were kept from the day of hatch in L:D 12:12 conditions. At the age of 2 or 9 days, animals were sacrificed

  7. Biosynthesis and biological action of pineal allopregnanolone

    PubMed Central

    Tsutsui, Kazuyoshi; Haraguchi, Shogo

    2014-01-01

    The pineal gland transduces photoperiodic changes to the neuroendocrine system by rhythmic secretion of melatonin. We recently provided new evidence that the pineal gland is a major neurosteroidogenic organ and actively produces a variety of neurosteroids de novo from cholesterol in birds. Notably, allopregnanolone is a major pineal neurosteroid that is far more actively produced in the pineal gland than the brain and secreted by the pineal gland in juvenile birds. Subsequently, we have demonstrated the biological action of pineal allopregnanolone on Purkinje cells in the cerebellum during development in juvenile birds. Pinealectomy (Px) induces apoptosis of Purkinje cells, whereas allopregnanolone administration to Px chicks prevents cell death. Furthermore, Px increases the number of Purkinje cells that express active caspase-3, a crucial mediator of apoptosis, and allopregnanolone administration to Px chicks decreases the number of Purkinje cells expressing active caspase-3. It thus appears that pineal allopregnanolone prevents cell death of Purkinje cells by suppressing the activity of caspase-3 during development. This paper highlights new aspects of the biosynthesis and biological action of pineal allopregnanolone. PMID:24834027

  8. [Expression profiles of miRNA-182 and Clock mRNA in the pineal gland of neonatal rats with hypoxic-ischemic brain damage].

    PubMed

    Han, Xing; Ding, Xin; Xu, Li-Xiao; Liu, Ming-Hua; Feng, Xing

    2016-03-01

    To study the changes of miRNA expression in the pineal gland of neonatal rats with hypoxic-ischemic brain damage (HIBD) and the possible roles of miRNA in the pathogenesis of circadian rhythm disturbance after HIBD. Seven-day-old Sprague-Dawley (SD) rats were randomly divided into 2 groups: HIBD and sham-operated. HIBD was induced according to the Rice-Vannucci method. The pineal glands were obtained 24 hours after the HIBD event. The expression profiles of miRNAs were determined using GeneChip technigue and quantitative real-time PCR (RT-PCR). Then the miRNA which was highly expressed was selected. The expression levels of the chosen miRNA were detected in different tissues (lungs, intestines, stomach, kidneys, cerebral cortex, pineal gland). RT-PCR analysis was performed to measure the expression profiles of the chosen miRNA and the targeted gene Clock mRNA in the pineal gland at 0, 24, 48 and 72 hours after HIBD. miRNA-182 that met the criteria was selected by GeneChip and RT-PCR. miRNA-182 was highly expressed in the pineal gland. Compared with the sham-operated group, the expression of miRNA-182 was significantly up-regulated in the pineal gland at 24 and 48 hours after HIBD (P<0.05). Compared with the sham-operated group, Clock mRNA expression in the HIBD group increased at 0 hour after HIBD, decreased at 48 hours after HIBD and increased at 72 hours after HIBD (P<0.05). miRNA-182 may be involved in the pathogenesis of circadian rhythm disturbance after HIBD.

  9. Significant anti-tumor effect of bevacizumab in treatment of pineal gland glioblastoma multiforme.

    PubMed

    Mansour, Joshua; Fields, Braxton; Macomson, Samuel; Rixe, Olivier

    2014-12-01

    Glioblastoma multiforme (GBM) is the most aggressive subtype of malignant gliomas. Current standard treatment for GBM involves a combination of cytoreduction through surgical resection, followed by radiation with concomitant and adjuvant chemotherapy (temozolomide). The role of bevacizumab in the treatment of GBM continues to be a topic of ongoing research and debate. Despite aggressive treatment, these tumors remain undoubtedly fatal, especially in the elderly. Furthermore, tumors present in the pineal gland are extremely rare, accounting for only 0.1-0.4 % of all adult brain tumors, with this location adding to the complexity of treatment. We present a case of GBM, at the rare location of pineal gland, in an elderly patient who was refractory to initial standard of care treatment with radiation and concomitant and adjuvant temozolomide, but who developed a significant response to anti-angiogenic therapy using bevacizumab.

  10. Interleukin-1β Modulates Melatonin Secretion in Ovine Pineal Gland: Ex Vivo Study

    PubMed Central

    Herman, A. P.; Bochenek, J.; Skipor, J.; Król, K.; Krawczyńska, A.; Antushevich, H.; Pawlina, B.; Marciniak, E.; Tomaszewska-Zaremba, D.

    2015-01-01

    The study was designed to determine the effect of proinflammatory cytokine, interleukin- (IL-) 1β, on melatonin release and expression enzymes essential for this hormone synthesis: arylalkylamine-N-acetyltransferase (AA-NAT) and hydroxyindole-O-methyltransferase (HIOMT) in ovine pineal gland, taking into account the immune status of animals before sacrificing. Ewes were injected by lipopolysaccharide (LPS; 400 ng/kg) or saline, two hours after sunset during short day period (December). Animals were euthanized three hours after the injection. Next, the pineal glands were collected and divided into four explants. The explants were incubated with (1) medium 199 (control explants), (2) norepinephrine (NE; 10 µM), (3) IL-1β (75 pg/mL), or (4) NE + IL-1β. It was found that IL-1β abolished (P < 0.05) NE-induced increase in melatonin release. Treatment with IL-1β also reduced (P < 0.05) expression of AA-NAT enzyme compared to NE-treated explants. There was no effect of NE or IL-1β treatment on gene expression of HIOMT; however, the pineal fragments isolated from LPS-treated animals were characterized by elevated (P < 0.05) expression of HIOMT mRNA and protein compared to the explants from saline-treated ewes. Our study proves that IL-1β suppresses melatonin secretion and its action seems to be targeted on the reduction of pineal AA-NAT protein expression. PMID:26339621

  11. Circadian dynamics of the cone-rod homeobox (CRX) transcription factor in the rat pineal gland and its role in regulation of arylalkylamine N-acetyltransferase (AANAT).

    PubMed

    Rohde, Kristian; Rovsing, Louise; Ho, Anthony K; Møller, Morten; Rath, Martin F

    2014-08-01

    The cone-rod homeobox (Crx) gene encodes a transcription factor in the retina and pineal gland. Crx deficiency influences the pineal transcriptome, including a reduced expression of arylalkylamine N-acetyltransferase (Aanat), a key enzyme in nocturnal pineal melatonin production. However, previous functional studies on pineal Crx have been performed in melatonin-deficient mice. In this study, we have investigated the role of Crx in the melatonin-proficient rat pineal gland. The current study shows that pineal Crx transcript levels exhibit a circadian rhythm with a peak in the middle of the night, which is transferred into daily changes in CRX protein. The study further shows that the sympathetic innervation of the pineal gland controls the Crx rhythm. By use of adenovirus-mediated short hairpin RNA gene knockdown targeting Crx mRNA in primary rat pinealocyte cell culture, we here show that intact levels of Crx mRNA are required to obtain high levels of Aanat expression, whereas overexpression of Crx induces Aanat transcription in vitro. This regulatory function of Crx is further supported by circadian analysis of Aanat in the pineal gland of the Crx-knockout mouse. Our data indicate that the rhythmic nature of pineal CRX protein may directly modulate the daily profile of Aanat expression by inducing nighttime expression of this enzyme, thus facilitating nocturnal melatonin synthesis in addition to its role in ensuring a correct tissue distribution of Aanat expression.

  12. Neuropeptide Y as a presynaptic modulator of norepinephrine release from the sympathetic nerve fibers in the pig pineal gland.

    PubMed

    Ziółkowska, N; Lewczuk, B; Przybylska-Gornowicz, B

    2015-01-01

    Norepinephrine (NE) released from the sympathetic nerve endings is the main neurotransmitter controlling melatonin synthesis in the mammalian pineal gland. Although neuropeptide Y (NPY) co-exists with NE in the pineal sympathetic nerve fibers it also occurs in a population of non-adrenergic nerve fibers located in this gland. The role of NPY in pineal physiology is still enigmatic. The present study characterizes the effect of NPY on the depolarization-evoked 3H-NE release from the pig pineal explants. The explants of the pig pineal gland were loaded with 3H-NE in the presence of pargyline and superfused with Tyrode medium. They were exposed twice to the modified Tyrode medium containing 60 mM of K+ to evoke the 3H-NE release via depolarization. NPY, specific agonists of Y1- and Y2- receptors and pharmacologically active ligands of α2-adrenoceptors were added to the medium before and during the second depolarization. The radioactivity was measured in medium fractions collected every 2 minutes during the superfusion. NPY (0.1-10 μM) significantly decreased the depolarization-induced 3H-NE release. Similar effect was observed after the treatment with Y2-agonist: NPY13-36, but not with Y1-agonist: [Leu31,Pro34]-NPY. The tritium overflow was lower in the explants exposed to the 5 μM NPY and 1 μM rauwolscine than to rauwolscine only. The effects of 5 μM NPY and 0.05 μM UK 14,304 on the depolarization-evoked 3H-NE release were additive. The results show that NPY is involved in the regulation of NE release from the sympathetic terminals in the pig pineal gland, inhibiting this process via Y2-receptors.

  13. 7α-Hydroxypregnenolone regulating locomotor behavior identified in the brain and pineal gland across vertebrates.

    PubMed

    Tsutsui, Kazuyoshi; Haraguchi, Shogo; Vaudry, Hubert

    2017-09-14

    The brain synthesizes steroids de novo from cholesterol, which are called neurosteroids. Based on extensive studies on neurosteroids over the past thirty years, it is now accepted that neurosteroidogenesis in the brain is a conserved property across vertebrates. However, the formation of bioactive neurosteroids in the brain is still incompletely elucidated in vertebrates. In fact, we recently identified 7α-hydroxypregnenolone (7α-OH PREG) as a novel bioactive neurosteroid stimulating locomotor behavior in the brain of several vertebrates. The follow-up studies have demonstrated that the stimulatory action of brain 7α-OH PREG on locomotor behavior is mediated by the dopaminergic system across vertebrates. More recently, we have further demonstrated that the pineal gland, an endocrine organ located close to the brain, is a major site of the formation of bioactive neurosteroids. In addition to the brain, the pineal gland actively produces 7α-OH PREG de novo from cholesterol as a major pineal neurosteroid that acts on the brain to control locomotor rhythms. This review summarizes the identification, biosynthesis and mode of action of brain and pineal 7α-OH PREG, a new bioactive neurosteroid regulating locomotor behavior, across vertebrates. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. MicroRNAs in the pineal gland: miR-483 regulates melatonin synthesis by targeting arylalkylamine N-acetyltransferase.

    PubMed

    Clokie, Samuel J H; Lau, Pierre; Kim, Hyun Hee; Coon, Steven L; Klein, David C

    2012-07-20

    MicroRNAs (miRNAs) play a broad range of roles in biological regulation. In this study, rat pineal miRNAs were profiled for the first time, and their importance was evaluated by focusing on the main function of the pineal gland, melatonin synthesis. Massively parallel sequencing and related methods revealed the miRNA population is dominated by a small group of miRNAs as follows: ~75% is accounted for by 15 miRNAs; miR-182 represents 28%. In addition to miR-182, miR-183 and miR-96 are also highly enriched in the pineal gland, a distinctive pattern also found in the retina. This effort also identified previously unrecognized miRNAs and other small noncoding RNAs. Pineal miRNAs do not exhibit a marked night/day difference in abundance with few exceptions (e.g. 2-fold night/day differences in the abundance of miR-96 and miR-182); this contrasts sharply with the dynamic 24-h pattern that characterizes the pineal transcriptome. During development, the abundance of most pineal gland-enriched miRNAs increases; however, there is a marked decrease in at least one, miR-483. miR-483 is a likely regulator of melatonin synthesis, based on the following. It inhibits melatonin synthesis by pinealocytes in culture; it acts via predicted binding sites in the 3"-UTR of arylalkylamine N-acetyltransferase (Aanat) mRNA, the penultimate enzyme in melatonin synthesis, and it exhibits a developmental profile opposite to that of Aanat transcripts. Additionally, a miR-483 targeted antagonist increased melatonin synthesis in neonatal pinealocytes. These observations support the hypothesis that miR-483 suppresses Aanat mRNA levels during development and that the developmental decrease in miR-483 abundance promotes melatonin synthesis.

  15. Connexin36 localization to pinealocytes in the pineal gland of mouse and rat.

    PubMed

    Wang, S G; Tsao, D D; Vanderpool, K G; Yasumura, T; Rash, J E; Nagy, J I

    2017-06-01

    Several cell types in the pineal gland are known to establish intercellular gap junctions, but the connexin constituents of those junctions have not been fully characterized. Specifically, the expression of connexin36 (Cx36) protein and mRNA has been examined in the pineal, but the identity of cells that produce Cx36 and that form Cx36-containing gap junctions has not been determined. We used immunofluorescence and freeze fracture replica immunogold labelling (FRIL) of Cx36 to investigate the cellular and subcellular localization of Cx36 in the pineal gland of adult mouse and rat. Immunofluorescence labelling of Cx36 was visualized exclusively as puncta or short immunopositive strands that were distributed throughout the pineal, and which were absent in pineal sections from Cx36 null mice. By double immunofluorescence labelling, Cx36 was localized to tryptophan hydroxylase-positive and 5-hydroxytryptamine-positive pinealocyte cell bodies and their large initial processes, including at intersections of those processes and at sites displaying a confluence of processes. Labelling for the cell junction marker zonula occludens-1 (ZO-1) either overlapped or was closely associated with labelling for Cx36. Pinealocytes thus form Cx36-containing gap junctions that also incorporate the scaffolding protein ZO-1. FRIL revealed labelling of Cx36 at ultrastructurally defined gap junctions between pinealocytes, most of which was at gap junctions having reticular, ribbon or string configurations. The results suggest that the endocrine functions of pinealocytes and their secretion of melatonin is supported by their intercellular communication via Cx36-containing gap junctions, which may now be tested by the use of Cx36 null mice. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. The expression of Per1 and Aa-nat genes in the pineal gland of postnatal rats.

    PubMed

    Wongchitrat, Prapimpun; Govitrapong, Piyarat; Phansuwan-Pujito, Pansiri

    2012-12-01

    The circadian rhythm of melatonin synthesis is controlled by the master clock, suprachiasmatic nucleus (SCN). The level of melatonin changes throughout the aging process. The SCN's rhythm is driven by autoregulatory feedback loop composed of a set of clock genes families and their corresponding proteins. The Period (Per1), one of clock gene develops gradually during postnatal ontogenesis in the rat SCN and is also expressed in the pineal gland. It is of interest to study the relationship between the postnatal development of Per1 and Aa-nat, genes that produce the rate-limiting enzyme in melatonin synthesis, in the pineal. Daily profiles of mRNA expression of Per1 and Aa-nat were analyzed in the pineal gland of pups at postnatal ages 4 (P4), P8, P16 and P32, at puberty age of 6 weeks; and in 8 week-old adult rats by real-time PCR. As early as P4, Per1 and Aa-nat mRNAs were expressed and existed at relatively high levels during the nighttime. They gradually increased until puberty and decreased at 8 weeks of age. Additionally, the nocturnal changes of Per1 and Aa-nat mRNA levels in the rat pineal gland from P4 to adults were strongly correlated at r = 0.97 (p < 0.01). The present data indicate that there is a close relationship between the expression pattern of Per1 and that of melatonin synthesis during the development of postnatal rats.

  17. CSF generation by pineal gland results in a robust melatonin circadian rhythm in the third ventricle as an unique light/dark signal.

    PubMed

    Tan, Dun-Xian; Manchester, Lucien C; Reiter, Russel J

    2016-01-01

    Pineal gland is an important organ for the regulation of the bio-clock in all vertebrate species. Its major secretory product is melatonin which is considered as the chemical expression of darkness due to its circadian peak exclusively at night. Pineal melatonin can be either released into the blood stream or directly enter into the CSF of the third ventricle via the pineal recess. We have hypothesized that rather than the peripheral circulatory melatonin circadian rhythm serving as the light/dark signal, it is the melatonin rhythm in CSF of the third ventricle that serves this purpose. This is due to the fact that melatonin circadian rhythm in the CSF is more robust in terms of its extremely high concentration and its precise on/off peaks. Thus, extrapineal-generated melatonin or diet-derived melatonin which enters blood would not interfere with the bio-clock function of vertebrates. In addition, based on the relationship of the pineal gland to the CSF and the vascular structure of this gland, we also hypothesize that pineal gland is an essential player for CSF production. We feel it participates in both the formation and reabsorption of CSF. The mechanisms associated with these processes are reviewed and discussed in this brief review. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Cellular lining of the sheep pineal recess studied by light-, transmission-, and scanning electron microscopy: morphologic indications for a direct secretion of melatonin from the pineal gland to the cerebrospinal fluid.

    PubMed

    Tricoire, Hélène; Malpaux, Benoit; Møller, Morten

    2003-01-27

    In the sheep, the pineal hormone melatonin displays nocturnal levels 20 times as high in the cerebrospinal fluid of the third ventricle as in the jugular blood. Moreover, in the pineal recess, the evagination of the third ventricle into the pineal stalk, the levels of melatonin in the cerebrospinal fluid are even higher than in the ventral part of the third ventricle. This finding suggests melatonin to be secreted directly from the pineal gland to the ventricular lumen of the pineal recess of this species. We have, therefore, studied the interface between the sheep pineal gland and the cerebrospinal fluid by light-, scanning-, and electron microscopy of the pineal recess, as well as the permeability of the interface by tracer injections into the third ventricle. First, we show that the classic ependymal lining of the third ventricle disappears in the superior part of the recess. In this area, bulging pinealocytes, displaying immunoreactivity for serotonin, directly appose the cerebrospinal fluid. This pineal-cerebrospinal fluid interface of the sheep is large compared with other species, especially rodent species. Intraventricular injections of horseradish peroxidase and fluorescein isothiocyanate showed that both these tracers could permeate from the pineal recess into the sheep pineal parenchyma. This permeation was due to the presence of gap and intermediate junctions connecting the pinealocytes apposing the ventricular lumen. Thus, our results show that endocrine cells in this specialized area of the ventricular system are in direct contact with the cerebrospinal fluid. This finding supports the physiological concept of a direct secretion of melatonin into the cerebrospinal fluid of the sheep pineal recess. Copyright 2002 Wiley-Liss, Inc.

  19. The association of pineal gland volume and body mass in obese and normal weight individuals: a pilot study.

    PubMed

    Grosshans, Martin; Vollmert, Christian; Vollstaedt-Klein, Sabine; Nolte, Ingo; Schwarz, Emanuel; Wagner, Xenija; Leweke, Markus; Mutschler, Jochen; Kiefer, Falk; Bumb, Jan Malte

    2016-09-01

    In obese individuals impaired sleep and neuroendocrine alterations such as melatonin deficits are associated with circadian rhythm disruption, altered circadian clock gene expression, and bright light at night. While the relation of pineal gland volume (PGV) and melatonin levels has recently been documented in humans, surprisingly little is known about the possible interference of the PGV and the pathophysiology of obesity in humans. We therefore compared the PGV of obese with non-obese individuals; both groups were matched by age and gender. Volumetric analyses were performed on the basis of 3 Tesla high resolution Magnetic Resonance Imaging (MRI). We found, that the PGV was significantly smaller in obese individuals than in lean controls (P=0.036). Moreover, PGV and waist-hip ratio showed a significant negative association in controls (P=0.018, r s =-0.602) whereas no association of both variables was found in obese individuals (P=0.856, r s =-0.051). Thus, the current pilot investigation suggests that pineal gland function, reflected by PGV might be involved in the energy homeostasis and pathophysiological mechanisms that contribute to the development and the maintenance of obesity in humans. Moreover, our data supports the notion that the replacement of melatonin deficits might be a novel strategy in the treatment of obesity.

  20. LIM homeobox transcription factor Isl1 is required for melatonin synthesis in the pig pineal gland.

    PubMed

    Zhang, Jinglin; Qiu, Jingtao; Zhou, Yewen; Wang, Yue; Li, Hongjiao; Zhang, Taojie; Jiang, Ying; Gou, Kemian; Cui, Sheng

    2018-02-26

    Melatonin is a key hormone that regulates circadian rhythms, metabolism, and reproduction. However, the mechanisms of melatonin synthesis and secretion have not been fully defined. The purpose of this study was to investigate the functions of the LIM homeobox transcription factor Isl1 in regulating melatonin synthesis and secretion in porcine pineal gland. We found that Isl1 is highly expressed in the melatonin-producing cells in the porcine pineal gland. Further functional studies demonstrate that Isl1 knockdown in cultured primary porcine pinealocytes results in the decline of melatonin and arylalkylamine N-acetyltransferase (AANAT) mRNA levels by 29.2% and 72.2%, respectively, whereas Isl1 overexpression raised by 1.3-fold and 2.7-fold. In addition, the enhancing effect of norepinephrine (NE) on melatonin synthesis was abolished by Isl1 knockdown. The in vivo intracerebroventricular NE injections upregulate Isl1 mRNA and protein levels by about threefold and 4.5-fold in the porcine pineal gland. We then examined the changes in Isl1 expression in the pineal gland and global melatonin levels throughout the day. The results show that Isl1 protein level at 24:00 is 2.5-fold higher than that at 12:00, which is parallel to melatonin levels. We further found that Isl1 increases the activity of AANAT promoter, and the effect of NE on Isl1 expression was blocked by an ERK inhibitor. Collectively, the results presented here demonstrate that Isl1 positively modulates melatonin synthesis by targeting AANAT, via the ERK signaling pathway of NE. These suggest that Isl1 plays important roles in maintaining the daily circadian rhythm. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Gliosarcomas arising from the pineal gland region: uncommon localization and rare tumors.

    PubMed

    Sugita, Yasuo; Terasaki, Mizuhiko; Tanigawa, Ken; Ohshima, Koichi; Morioka, Motohiro; Higaki, Koichi; Nakagawa, Setsuko; Shimokawa, Shoko; Nakashima, Susumu

    2016-02-01

    Gliosarcomas are a variant of glioblastomas and present a biphasic pattern, with coexisting glial and mesenchymal components. In this study, two unusual cases are presented. Case 1 is a 52-year-old woman with a headache and memory disturbance for a month. Case 2 is an 18-year-old man with a headache lasting two weeks. In both cases, an MRI revealed enhancing T1-low to iso, T2-iso to high intensity lesions in the pineal gland region. Histologically, in case 1, the tumor showed spindle cell proliferation with disorganized fascicles and cellular pleomorphism. Tumor cells variously exhibited oncocytic transformation. Immunohistochemically, most of the spindle tumor cells were positive for myoglobin and desmin. Some of the tumor cells were positive for GFAP and S-100 protein. On the other hand, all tumor cells were positive for CD133, Musashi1, and SOX-2 which are the markers of neural stem cells. In case 2, the tumor showed monotonous proliferation of short spindle cells with disorganized fascicles and cellular atypism. The morphological distinction between glial and mesenchymal components was not apparent. Immunohistochemically, most of the spindle tumor cells were positive for desmin. Glial tumor cells that were dispersed within the sarcoma as single cells were positive for GFAP. In addition, all tumor cells were positive for CD133, Musashi1 and SOX-2. Based on these microscopic appearances, and immunohistochemical findings, these cases were diagnosed as gliosarcomas arising from the pineal gland region. These results also indicated that pluripotential cancer stem cells differentiated into glial and muscle cell lines at the time of tumor growth. In a survey of previous publications on gliosarcoma arising from the pineal gland, these cases are the second and third reports found in English scientific writings. © 2015 Japanese Society of Neuropathology.

  2. The ontogenic expressions of multiple vesicular glutamate transporters during postnatal development of rat pineal gland.

    PubMed

    Yoshida, S; Ina, A; Konno, J; Wu, T; Shutoh, F; Nogami, H; Hisano, S

    2008-03-18

    The pineal gland expresses vesicular glutamate transporters 1 and 2 (VGLUT1 and VGLUT2), which are thought to transport glutamate into synaptic-like microvesicles in the pinealocytes. Recently, we reported that the rat pineal gland also expresses VGLUT1v which is a novel variant of VGLUT1 during the perinatal period. To explore the biological significance of these VGLUT expressions in pineal development, we studied the ontogeny of VGLUT in this gland by in situ hybridization, immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (RT-PCR) using rats. Histological analysis revealed that intensities of VGLUT1 hybridization signal and immunostaining drastically increase by postnatal day (P) 7, whereas VGLUT2 expression exhibits high levels of mRNA and protein at birth and decreases gradually from P7 onward. Quantitative RT-PCR analysis supported these histological observations, showing that expressions of VGLUT1 and VGLUT2 exhibit opposite patterns to each other. Coinciding with VGLUT1-upregulation, RT-PCR data showed that expressions of dynamin 1 and endophilin 1, which are factors predictably involved in the endocytotic recovery of VGLUT1-associated vesicle, are also increased by P7. Quantitative RT-PCR analysis of VGLUT1v demonstrated that its mRNA expression is upregulated by P7, kept at the same level until P14, and apparently decreased at P21, suggesting its functional property required for a certain developmental event. Moreover, a comparison of mRNA expressions at daytime and nighttime revealed that neither VGLUT1 nor VGLUT1v shows any difference in both P7 and P21 glands, whereas VGLUT2 is significantly lower at daytime than at nighttime at P21 but not P7, the time point at which the melatonin rhythm is not yet generated. The present study shows that expressions of these VGLUT types are differentially regulated during postnatal pineal development, each presumably participating in physiologically distinct glutamatergic functions.

  3. Expression and regulation of Icer mRNA in the Syrian hamster pineal gland.

    PubMed

    Diaz, Elena; Garidou, Marie-Laure; Dardente, Hugues; Salingre, Anthony; Pévet, Paul; Simonneaux, Valérie

    2003-04-10

    Inducible-cAMP early repressor (ICER) is a potent inhibitor of CRE (cAMP-related element)-driven gene transcription. In the rat pineal gland, it has been proposed to be part of the mechanisms involved in the shutting down of the transcription of the gene coding for arylalkylamine N-acetyltransferase (AA-NAT, the melatonin rhythm-generating enzyme). In this study, we report that ICER is expressed in the pineal gland of the photoperiodic rodent Syrian hamster although with some difference compared to the rat. In the Syrian hamster pineal, Icer mRNA levels, low at daytime, displayed a 20-fold increase during the night. Nighttime administration of a beta-adrenergic antagonist, propranolol, significantly reduced Icer mRNA levels although daytime administration of a beta-adrenergic agonist, isoproterenol, was unable to raise the low amount of Icer mRNA. These observations indicate that Icer mRNA expression is induced by the clock-driven norepinephrine release and further suggest that this stimulation is restricted to nighttime, as already observed for Aa-nat gene transcription. Furthermore, we found that the daily profile of Icer mRNA displayed photoperiodic variation with a lengthening of the nocturnal peak in short versus long photoperiod. These data indicate that ICER may be involved in both daily and seasonal regulation of melatonin synthesis in the Syrian hamster.

  4. Possible role of pineal allopregnanolone in Purkinje cell survival

    PubMed Central

    Haraguchi, Shogo; Hara, Sakurako; Ubuka, Takayoshi; Mita, Masatoshi; Tsutsui, Kazuyoshi

    2012-01-01

    It is believed that neurosteroids are produced in the brain and other nervous systems. Here, we show that allopregnanolone (ALLO), a neurosteroid, is exceedingly produced in the pineal gland compared with the brain and that pineal ALLO acts on the Purkinje cell, a principal cerebellar neuron, to prevent apoptosis in the juvenile quail. We first demonstrated that the pineal gland is a major organ of neurosteroidogenesis. A series of experiments using molecular and biochemical techniques has further demonstrated that the pineal gland produces a variety of neurosteroids de novo from cholesterol in the juvenile quail. Importantly, ALLO was far more actively produced in the pineal gland than in the brain. Pinealectomy (Px) decreased ALLO concentration in the cerebellum and induced apoptosis of Purkinje cells, whereas administration of ALLO to Px quail chicks prevented apoptosis of Purkinje cells. We further found that Px significantly increased the number of Purkinje cells that expressed active caspase-3, a key protease in apoptotic pathway, and daily injection of ALLO to Px quail chicks decreased the number of Purkinje cells expressing active caspase-3. These results indicate that the neuroprotective effect of pineal ALLO is associated with the decrease in caspase-3 activity during the early stage of neuronal development. We thus provide evidence that the pineal gland is an important neurosteroidogenic organ and that pineal ALLO may be involved in Purkinje cell survival during development. This is an important function of the pineal gland in the formation of neuronal circuits in the developing cerebellum. PMID:23213208

  5. All genes encoding enzymes participating in melatonin biosynthesis in the chicken pineal gland are transcribed rhythmically.

    PubMed

    Adamska, I; Marhelava, K; Walkiewicz, D; Kedzierska, U; Markowska, M; Majewski, P M

    2016-08-01

    Our recent research on the pineal gland of young chickens confirmed that three genes encoding enzymes involved in pineal melatonin biosynthesis, tryptophan hydroxylase 1 (Tph1), arylalkylamine-N-acetyltransferase (Aanat) and acetylserotonin O-methyltransferase (Asmt), are transcribed rhythmically under light:dark (L:D) 12:12 conditions in vivo. Additionally, in the pineal gland of maturing chickens, the dopa decarboxylase (Ddc) gene is transcribed rhythmically at a specific stage of the developmental process. Therefore, the aim of the present study was to verify whether all of these genes are transcribed rhythmically in vivo under constant darkness (D:D) and in pinealocyte cultures under both L:D and D:D. Experiments were performed on chickens maintained under L:D 12:12 conditions. Chickens at 15 days of age were divided into two groups; chickens from the first group remained under the same conditions, whereas those from the second group were kept in darkness. Subsequently, 16-day-old animals were sacrificed every 2 hours over a 24-h period. For the in vitro experiments, 16-day-old chickens were sacrificed at ZT 6, and their pineal glands were isolated. Pineal cultures were maintained for up to two days in L:D conditions. Then, the pinealocyte cultures were divided into two groups: the first remained under L:D conditions, whereas the second was transferred to D:D conditions. Pinealocytes were subsequently collected every 2 hours over a 24-h period. Transcription was evaluated using the RT-qPCR method, and the rhythm percentage was calculated through Cosinor analysis. The mRNA levels of all genes examined were rhythmic under all conditions. Moreover, in silico analysis of the promoters of all of the genes examined revealed the presence of enhancer box sequences in all of the promoters as well as DBP/E4BP4 binding elements in the promoters of Tph1 and Asmt. This suggests that these genes may all be regulated transcriptionally by the molecular clock mechanism and may

  6. Ultradian oscillation in expression of four melatonin receptor subtype genes in the pineal gland of the grass puffer, a semilunar-synchronized spawner, under constant darkness.

    PubMed

    Ikegami, Taro; Maruyama, Yusuke; Doi, Hiroyuki; Hattori, Atsuhiko; Ando, Hironori

    2015-01-01

    Melatonin receptor gene expression as well as melatonin synthesis and secretion activities were examined in the pineal gland of the grass puffer, which exhibits unique lunar/tidal cycle-synchronized mass spawing: spawning occurs before high tide on the day of spring tide during spawing season. Melatonin synthesizing activity was assessed by the abundance of arylalkylamine N-acetyltransferase 2 (AANAT2) mRNA. The amount of aanat2 mRNA was low during light phase and initiated to increase after the light was turned off. The secretion of melatonin from primary pineal organ culture was stimulated after the light was turned off and ceased immediately after the light was turned on. The expression levels of four melatonin receptor subtype genes (mel 1a 1.4, mel 1a 1.7, mel1b, and mel1c) showed synchronous variations, and the levels tended to be high during the dark phase under light/dark conditions. These results suggest that the action of melatonin on the pineal gland is highly dependent on light and photoperiod, possibly with stronger action during night time. Under constant darkness, the expression of four melatonin receptor subtype genes showed unique ultradian oscillations with the period of 14.0-15.4 h, suggesting the presence of a circatidal oscillator in the pineal gland. The present results indicate that melatonin may serve local chronobiological functions in the pineal gland. These cyclic expressions of melatonin receptor genes in the pineal gland may be important in the control of the lunar/tidal cycle-synchronized mass spawning in the grass puffer.

  7. Ultradian oscillation in expression of four melatonin receptor subtype genes in the pineal gland of the grass puffer, a semilunar-synchronized spawner, under constant darkness

    PubMed Central

    Ikegami, Taro; Maruyama, Yusuke; Doi, Hiroyuki; Hattori, Atsuhiko; Ando, Hironori

    2015-01-01

    Melatonin receptor gene expression as well as melatonin synthesis and secretion activities were examined in the pineal gland of the grass puffer, which exhibits unique lunar/tidal cycle-synchronized mass spawing: spawning occurs before high tide on the day of spring tide during spawing season. Melatonin synthesizing activity was assessed by the abundance of arylalkylamine N-acetyltransferase 2 (AANAT2) mRNA. The amount of aanat2 mRNA was low during light phase and initiated to increase after the light was turned off. The secretion of melatonin from primary pineal organ culture was stimulated after the light was turned off and ceased immediately after the light was turned on. The expression levels of four melatonin receptor subtype genes (mel1a1.4, mel1a1.7, mel1b, and mel1c) showed synchronous variations, and the levels tended to be high during the dark phase under light/dark conditions. These results suggest that the action of melatonin on the pineal gland is highly dependent on light and photoperiod, possibly with stronger action during night time. Under constant darkness, the expression of four melatonin receptor subtype genes showed unique ultradian oscillations with the period of 14.0–15.4 h, suggesting the presence of a circatidal oscillator in the pineal gland. The present results indicate that melatonin may serve local chronobiological functions in the pineal gland. These cyclic expressions of melatonin receptor genes in the pineal gland may be important in the control of the lunar/tidal cycle-synchronized mass spawning in the grass puffer. PMID:25688184

  8. Benign symptomatic glial cysts of the pineal gland: a report of seven cases and review of the literature.

    PubMed Central

    Klein, P; Rubinstein, L J

    1989-01-01

    Seven cases of clinically symptomatic benign glial cyst of the pineal gland are reported. The cysts' size ranged from 1.0-4.5 cm in diameter. They were characterised by a golden or, less frequently, brown-reddish proteinaceous or haemorrhagic fluid content. The cyst wall, up to 2 mm thick, consisted of clusters of normal pineal parenchymal cells, often compressed and distorted, surrounded by reactive gliotic tissue which sometimes contained Rosenthal fibres. The presenting clinical features included headache (6/7), signs of raised intracranial pressure, partial or complete Parinaud's syndrome (5/7), cerebellar deficits (2/7), corticospinal and corticopontine fibre (2/7) or sensory (1/7) deficits, and emotional disturbances (2/7). CT and MRI (in 2/7 cases) scans showed a hypodense or nonhomogeneous lesion in the region of the pineal gland, with or without contrast enhancement. Surgical excision resulted in complete clearance of the symptoms in 5/7 patients. The previous literature is reviewed and the clinicopathological correlations and the possible pathogenetic mechanisms are discussed. The need to distinguish this benign lesion from other mass lesions of the pineal region, in particular from pinealocytoma, is stressed. Images PMID:2677249

  9. Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior.

    PubMed

    Ben-Moshe Livne, Zohar; Alon, Shahar; Vallone, Daniela; Bayleyen, Yared; Tovin, Adi; Shainer, Inbal; Nisembaum, Laura G; Aviram, Idit; Smadja-Storz, Sima; Fuentes, Michael; Falcón, Jack; Eisenberg, Eli; Klein, David C; Burgess, Harold A; Foulkes, Nicholas S; Gothilf, Yoav

    2016-11-01

    The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior.

  10. Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior

    PubMed Central

    Alon, Shahar; Vallone, Daniela; Tovin, Adi; Shainer, Inbal; Nisembaum, Laura G.; Aviram, Idit; Smadja-Storz, Sima; Fuentes, Michael; Falcón, Jack; Eisenberg, Eli; Klein, David C.; Burgess, Harold A.; Foulkes, Nicholas S.; Gothilf, Yoav

    2016-01-01

    The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior. PMID:27870848

  11. Non-invasive evaluation of the effects of opening & closing of eyes, and of exposure to a minute light beam, as well as to electrical or magnetic field on the melatonin, serotonin, & other neuro-transmitters of human pineal gland representation areas & the heart.

    PubMed

    Omura, Y; Losco, B M; Takeshige, C

    1993-01-01

    Using the Bi-Digital O-Ring Test electromagnetic resonance phenomena between 2 identical substances, first the pineal gland representational (rep.) areas were localized on the 5 different locations on the surface of the head using microscope slides of the pineal gland or Melatonin (while the eyes are closed) as a reference control substance. The 3 pineal rep. areas along the mid-line of the head always showed two lobes connected as a "Dumbbell" shape, with one round or oval area at each side of the mid-line. From each side of the head, anterior and superior to the ear, it appeared in a shape resembling the side view of a pineal gland. When both eyes were open, Melatonin, Norepinephrine (NE), and Acetylcholine (ACh) markedly decreased, while Serotonin, Dopamine, and GABA increased significantly in the outer part of the pineal gland rep. areas. When both eyes were closed, Melatonin, NE and ACh increased markedly, with marked decrease in Serotonin, Dopamine and GABA in the outer part of the pineal gland rep. areas. However, in the inner core of the pineal gland rep. area, an opposite response was found. Thus, the pineal gland has 2 main lobes, and functionally each lobe seems to have two concentric areas with an inverse relationship, i.e., a "Functional Cortex" area and a "Functional Core" area. The biochemical changes between the cortex and the core are in an inverse relationship. Melatonin was also found in the S-A node & right side of normal heart when the eyes were closed. When the eyes were open, Melatonin was found in the left side of the heart, as well as the salivary glands, stomach, colon, etc. While both eyes were closed, when a weak light beam was exposed at different parts of the body, such as any part of the upper and lower extremities, Melatonin, NE, and ACh decreased, with an increase in Serotonin, GABA and Dopamine only in the functional cortices of the pineal gland lobes on the same side of the body. Even when both eyes were open, if a very weak

  12. The role of the pineal gland in the photoperiodic control of bird song frequency and repertoire in the house sparrow, Passer domesticus.

    PubMed

    Wang, Gang; Harpole, Clifford E; Paulose, Jiffin; Cassone, Vincent M

    2014-04-01

    Temperate zone birds are highly seasonal in many aspects of their physiology. In mammals, but not in birds, the pineal gland is an important component regulating seasonal patterns of primary gonadal functions. Pineal melatonin in birds instead affects seasonal changes in brain song control structures, suggesting the pineal gland regulates seasonal song behavior. The present study tests the hypothesis that the pineal gland transduces photoperiodic information to the control of seasonal song behavior to synchronize this important behavior to the appropriate phenology. House sparrows, Passer domesticus, expressed a rich array of vocalizations ranging from calls to multisyllabic songs and motifs of songs that varied under a regimen of different photoperiodic conditions that were simulated at different times of year. Control (SHAM) birds exhibited increases in song behavior when they were experimentally transferred from short days, simulating winter, to equinoctial and long days, simulating summer, and decreased vocalization when they were transferred back to short days. When maintained in long days for longer periods, the birds became reproductively photorefractory as measured by the yellowing of the birds' bills; however, song behavior persisted in the SHAM birds, suggesting a dissociation of reproduction from the song functions. Pinealectomized (PINX) birds expressed larger, more rapid increases in daily vocal rate and song repertoire size than did the SHAM birds during the long summer days. These increases gradually declined upon the extension of the long days and did not respond to the transfer to short days as was observed in the SHAM birds, suggesting that the pineal gland conveys photoperiodic information to the vocal control system, which in turn regulates song behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Amyloid β peptide directly impairs pineal gland melatonin synthesis and melatonin receptor signaling through the ERK pathway.

    PubMed

    Cecon, Erika; Chen, Min; Marçola, Marina; Fernandes, Pedro A C; Jockers, Ralf; Markus, Regina P

    2015-06-01

    Melatonin is the hormone produced by the pineal gland known to regulate physiologic rhythms and to display immunomodulatory and neuroprotective properties. It has been reported that Alzheimer disease patients show impaired melatonin production and altered expression of the 2 G protein-coupled melatonin receptors (MTRs), MT₁ and MT₂, but the underlying mechanisms are not known. Here we evaluated whether this dysfunction of the melatonergic system is directly caused by amyloid β peptides (Aβ(1-40) and Aβ(1-42)). Aβ treatment of rat pineal glands elicited an inflammatory response within the gland, evidenced by the up-regulation of 52 inflammatory genes, and decreased the production of melatonin up to 75% compared to vehicle-treated glands. Blocking NF-κB activity prevented this effect. Exposure of HEK293 cells stably expressing recombinant MT₁ or MT₂ receptors to Aβ lead to a 40% reduction in [(125)I]iodomelatonin binding to MT₁. ERK1/2 activation triggered by MTRs, but not by the β₂-adrenergic receptor, was markedly impaired by Aβ in HEK293 transfected cells, as well as in primary rat endothelial cells expressing endogenous MTRs. Our data reveal the melatonergic system as a new target of Aβ, opening new perspectives to Alzheimer disease diagnosis and therapeutic intervention. © FASEB.

  14. Expression of Clock genes in the pineal glands of newborn rats with hypoxic-ischemic encephalopathy☆

    PubMed Central

    Sun, Bin; Feng, Xing; Ding, Xin; Bao, Li; Li, Yongfu; He, Jun; Jin, Meifang

    2012-01-01

    Clock genes are involved in circadian rhythm regulation, and surviving newborns with hypoxic-ischemic encephalopathy may present with sleep-wake cycle reversal. This study aimed to determine the expression of the clock genes Clock and Bmal1, in the pineal gland of rats with hypoxic-ischemic brain damage. Results showed that levels of Clock mRNA were not significantly changed within 48 hours after cerebral hypoxia and ischemia. Expression levels of CLOCK and BMAL1 protein were significantly higher after 48 hours. The levels of Bmal1 mRNA reached a peak at 36 hours, but were significantly reduced at 48 hours. Experimental findings indicate that Clock and Bmal1 genes were indeed expressed in the pineal glands of neonatal rats. At the initial stage (within 36 hours) of hypoxic-ischemic brain damage, only slight changes in the expression levels of these two genes were detected, followed by significant changes at 36–48 hours. These changes may be associated with circadian rhythm disorder induced by hypoxic-ischemic brain damage. PMID:25538743

  15. Vitamin A is a necessary factor for sympathetic-independent rhythmic activation of mitogen-activated protein kinase in the rat pineal gland.

    PubMed

    Guillaumond, F; Giraudet, F; Becquet, D; Sage, D; Laforge-Anglade, G; Bosler, O; François-Bellan, A M

    2005-02-01

    The circadian clock in the suprachiasmatic nucleus (SCN) controls day-to-day physiology and behavior by sending timing messages to multiple peripheral oscillators. In the pineal gland, a major SCN target, circadian events are believed to be driven exclusively by the rhythmic release of norepinephrine from superior cervical ganglia (SCG) neurons relaying clock messages through a polysynaptic pathway. Here we show in rat an SCN-driven daily rhythm of pineal MAPK activation that is not dependent on the SCG and whose maintenance requires vitamin A as a blood-borne factor. This finding challenges the dogma that SCG-released norepinephrine is an exclusive mediator of SCN-pineal communication and allows the assumption that humoral mechanisms are involved in pineal integration of temporal messages.

  16. Pineal Gland Calcification in Kurdistan: A Cross-Sectional Study of 480 Roentgenograms.

    PubMed

    Mohammed, Kahee A; Adjei Boakye, Eric; Ismail, Honer A; Geneus, Christian J; Tobo, Betelihem B; Buchanan, Paula M; Zelicoff, Alan P

    2016-01-01

    The goal of this study was to compare the incidence of Pineal Gland Calcification (PGC) by age group and gender among the populations living in the Kurdistan Region-Iraq. This prospective study examined skull X-rays of 480 patients between the ages of 3 and 89 years who sought care at a large teaching public hospital in Duhok, Iraq from June 2014 to November 2014. Descriptive statistics and a binary logistic regression were used for analysis. The overall incidence rate of PGC among the study population was 26.9% with the 51-60 age group and males having the highest incidence. PGC incidence increased after the first decade and remained steady until the age of 60. Thereafter the incidence began to decrease. Logistic regression analysis revealed that both age and gender significantly affected the risk of PGC. After adjusting for age, males were 1.94 (95% CI, 1.26-2.99) times more likely to have PGC compared to females. In addition, a one year increase in age increases the odds of developing PGC by 1.02 (95% CI, 1.01-1.03) units after controlling for the effects of gender. Our analysis demonstrated a close relationship between PGC and age and gender, supporting a link between the development of PGC and these factors. This study provides a basis for future researchers to further investigate the nature and mechanisms underlying pineal gland calcification.

  17. EXTIRPATION OF THE PINEAL BODY

    PubMed Central

    Dandy, Walter E.

    1915-01-01

    1. Following the removal of the pineal I have observed no sexual precocity or indolence, no adiposity or emaciation, no somatic or mental precocity or retardation. 2. Our experiments seem to have yielded nothing to sustain the view that the pineal gland has an active endocrine function of importance either in the very young or adult dogs. 3. The pineal is apparently not essential to life and seems to have no influence upon the animal's well being. PMID:19867913

  18. A comparative study of annual changes in the pineal gland morphology with reference to the influence of melatonin on testicular activity in tropical birds, Psittacula cyanocephala and Ploceus philippinus.

    PubMed

    Chakraborty, S

    1993-10-01

    The aim of the present comparative investigation was to examine annual pineal cytological changes and the action of melatonin in relation to testicular activity in two wild tropical avian species. The findings revealed that in both blossomheaded parakeets (Psittacula cyanocephala) and Indian weaver birds (Ploceus philippinus) the pineal gland was inactive, with reduced karyometric values during the breeding season. A pinealoactive phase showing significantly increased pinealocyte nuclear diameter corresponded with the nonbreeding phase. Administration of melatonin (250 micrograms/100 g body wt) for 10 consecutive days caused significant involution of testes during the breeding phase, although it failed to alter reproductive activity during the nonbreeding phase. The results indicated that the pineal gland activity varied inversely with the seasonal testicular weight cycle and the antigonadal influence of melatonin appeared to be phase dependent, which corroborated the inverse temporal relationship of the pineal gland and male reproductive activity examined in the two tropical avian species.

  19. Moonlight affects nocturnal Period2 transcript levels in the pineal gland of the reef fish Siganus guttatus.

    PubMed

    Sugama, Nozomi; Park, Ji-Gweon; Park, Yong-Ju; Takeuchi, Yuki; Kim, Se-Jae; Takemura, Akihiro

    2008-09-01

    The golden rabbitfish Siganus guttatus is a reef fish with a restricted lunar-synchronized spawning cycle. It is not known how the fish recognizes cues from the moon and exerts moon-related activities. In order to evaluate the perception and utilization of moonlight by the fish, the present study aimed to clone and characterize Period2 (Per2), a light-inducible clock gene in lower vertebrates, and to examine daily variations in rabbitfish Per2 (rfPer2) expression as well as the effect of light and moonlight on its expression in the pineal gland. The partially-cloned rfPer2 cDNA (2933 bp) was highly homologous (72%) to zebrafish Per2. The rfPer2 levels increased at ZT6 and decreased at ZT18 in the whole brain and several peripheral organs. The rfPer2 expression in the pineal gland exhibited a daily variation with an increase during daytime. Exposing the fish to light during nighttime resulted in a rapid increase of its expression in the pineal gland, while the level was decreased by intercepting light during daytime. Two hours after exposing the fish to moonlight at the full moon period, the rfPer2 expression was upregulated. These results suggest that rfPer2 is a light-inducible clock gene and that its expression is affected not only by daylight but also by moonlight. Since the rfPer2 expression level during the full moon period was higher than that during the new moon period, the monthly variation in the rfPer2 expression is likely to occur with the change in amplitude between the full and new moon periods.

  20. Rhythmic Diurnal Synthesis and Signaling of Retinoic Acid in the Rat Pineal Gland and Its Action to Rapidly Downregulate ERK Phosphorylation.

    PubMed

    Ashton, Anna; Stoney, Patrick N; Ransom, Jemma; McCaffery, Peter

    2018-03-08

    Vitamin A is important for the circadian timing system; deficiency disrupts daily rhythms in activity and clock gene expression, and reduces the nocturnal peak in melatonin in the pineal gland. However, it is currently unknown how these effects are mediated. Vitamin A primarily acts via the active metabolite, retinoic acid (RA), a transcriptional regulator with emerging non-genomic activities. We investigated whether RA is subject to diurnal variation in synthesis and signaling in the rat pineal gland. Its involvement in two key molecular rhythms in this gland was also examined: kinase activation and induction of Aanat, which encodes the rhythm-generating melatonin synthetic enzyme. We found diurnal changes in expression of several genes required for RA signaling, including a RA receptor and synthetic enzymes. The RA-responsive gene Cyp26a1 was found to change between day and night, suggesting diurnal changes in RA activity. This corresponded to changes in RA synthesis, suggesting rhythmic production of RA. Long-term RA treatment in vitro upregulated Aanat transcription, while short-term treatment had no effect. RA was also found to rapidly downregulate extracellular signal-regulated kinase (ERK) 1/2 phosphorylation, suggesting a rapid non-genomic action which may be involved in driving the molecular rhythm in ERK1/2 activation in this gland. These results demonstrate that there are diurnal changes in RA synthesis and activity in the rat pineal gland which are partially under circadian control. These may be key to the effects of vitamin A on circadian rhythms, therefore providing insight into the molecular link between this nutrient and the circadian system.

  1. Peptidegic stimulation of differentiation of pineal immune cells.

    PubMed

    Linkova, N S; Khavinson, V Kh; Chalisova, N I; Katanugina, A S; Koncevaya, E A

    2011-11-01

    We studied cell composition of the pineal lymphoid tissue and the effect of peptides on its differentiation and proliferation capacity. It was shown that the lymphoid component of the pineal gland in organotypic culture is primarily presented by low-differentiated CD5(+)-lymphocytes, while mature T and B cells are less abundant. Dipeptide vilon stimulates differentiation of precursors into T-helpers, cytotoxic T lymphocytes, and B cells, while tetrapeptide epithalon stimulated their differentiation towards B cells. Tripeptide vesugen had no effect on differentiation capacity of immune cells of the pineal gland, but enhanced their proliferation potential. Thus, dipeptide vilon acts as an inductor of differentiation of pineal immune cells, which can play an important compensatory role in age-related atrophy of the thymus, the central organ of the immune system.

  2. Role of monochromatic light on daily variation of clock gene expression in the pineal gland of chick.

    PubMed

    Jiang, Nan; Wang, Zixu; Cao, Jing; Dong, Yulan; Chen, Yaoxing

    2016-11-01

    The avian pineal gland is a master clock that can receive external photic cues and translate them into output rhythms. To clarify whether a shift in light wavelength can influence the circadian expression in chick pineal gland, a total of 240 Arbor Acre male broilers were exposed to white light (WL), red light (RL), green light (GL) or blue light (BL). After 2weeks light illumination, circadian expressions of seven core clock genes in pineal gland and the level of melatonin in plasma were examined. The results showed after illumination with monochromatic light, 24h profiles of all clock gene mRNAs retained circadian oscillation, except that RL tended to disrupt the rhythm of cCry2. Compared to WL, BL advanced the acrophases of the negative elements (cCry1, cCry2, cPer2 and cPer3) by 0.1-1.5h and delayed those of positive elements (cClock, cBmal1 and cBmal2) by 0.2-0.8h. And, RL advanced all clock genes except cClock and cPer2 by 0.3-2.1h, while GL delayed all clock genes by 0.5-1.5h except cBmal2. Meanwhile, GL increased the amplitude and mesor of positive and reduced both parameters of negative clock genes, but RL showed the opposite pattern. Although the acrophase of plasma melatonin was advanced by both GL and RL, the melatonin level was significantly increased in GL and decreased in RL. This tendency was consistent with the variations in the positive clock gene mRNA levels under monochromatic light and contrasted with those of negative clock genes. Therefore, we speculate that GL may enhance positive clock genes expression, leading to melatonin synthesis, whereas RL may enhance negative genes expression, suppressing melatonin synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Circadian-Related Heteromerization of Adrenergic and Dopamine D4 Receptors Modulates Melatonin Synthesis and Release in the Pineal Gland

    PubMed Central

    González, Sergio; Moreno-Delgado, David; Moreno, Estefanía; Pérez-Capote, Kamil; Franco, Rafael; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ortiz, Jordi

    2012-01-01

    The role of the pineal gland is to translate the rhythmic cycles of night and day encoded by the retina into hormonal signals that are transmitted to the rest of the neuronal system in the form of serotonin and melatonin synthesis and release. Here we describe that the production of both melatonin and serotonin by the pineal gland is regulated by a circadian-related heteromerization of adrenergic and dopamine D4 receptors. Through α1 B-D4 and β1-D4 receptor heteromers dopamine inhibits adrenergic receptor signaling and blocks the synthesis of melatonin induced by adrenergic receptor ligands. This inhibition was not observed at hours of the day when D4 was not expressed. These data provide a new perspective on dopamine function and constitute the first example of a circadian-controlled receptor heteromer. The unanticipated heteromerization between adrenergic and dopamine D4 receptors provides a feedback mechanism for the neuronal hormone system in the form of dopamine to control circadian inputs. PMID:22723743

  4. Pineal peptides restore the age-related disturbances in hormonal functions of the pineal gland and the pancreas.

    PubMed

    Goncharova, N D; Vengerin, A A; Khavinson, V Kh; Lapin, B A

    2005-01-01

    The purpose of this research was to study age-related changes in functioning of pineal and pancreatic glands of non-human primates, rhesus monkeys, and to elucidate the possibility of their corrections with the help of epitalon, a synthetic analogue of the pharmacopoeia drug epithalamin. In old (20-27 years) animals, the basal plasma levels of glucose and insulin were found to be higher, while the night melatonin level was lower in comparison with (6-8 years) young animals. After the glucose administration to old monkeys, a larger area under the curve of the plasma glucose response, a reduced glucose 'disappearance' rate, and a reduced insulin peak (5 min after the glucose administration) were observed in comparison with young animals in similar experiments. The epitalon administration to old monkeys caused the decrease in the basal levels of glucose and insulin and the increase in the basal night melatonin level. Additionally, in the case of old monkeys, epitalon decreased the area under the plasma glucose response curve, markedly increased the glucose 'disappearance' rate and normalized the plasma insulin dynamics in response to glucose administration. Yet, it has not affected the hormonal and metabolic changes in young animals. Thus, epitalon is a promising factor for restoring the age-related endocrine dysfunctions of primates.

  5. This pineal gland does not mediate phase shifts in the disc shedding rhythm of the rat retina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, A.I.

    Albino rats were subjected to pinealectomy, superior cervical ganglionectomy, or the appropriate sham preparation and were placed in lighting conditions so that light onset was advanced by 10 hr. After 6 days of this regimen, all animals exhibited a complete shift in their outer segment disc shedding rhythm, indicating that the pineal gland is not a factor in mediating such a shift.

  6. 3D highly heterogeneous thermal model of pineal gland in-vitro study for electromagnetic exposure using finite volume method

    NASA Astrophysics Data System (ADS)

    Cen, Wei; Hoppe, Ralph; Lu, Rongbo; Cai, Zhaoquan; Gu, Ning

    2017-08-01

    In this paper, the relationship between electromagnetic power absorption and temperature distributions inside highly heterogeneous biological samples was accurately determinated using finite volume method. An in-vitro study on pineal gland that is responsible for physiological activities was for the first time simulated to illustrate effectiveness of the proposed method.

  7. Sympathetic neural control of indoleamine metabolism in the rat pineal gland

    NASA Technical Reports Server (NTRS)

    Lynch, H. J.; Hsuan, M.; Wurtman, R. J.

    1975-01-01

    The mechanisms responsible for the acceleration in rat pineal biosynthetic activity in response to prolonged exposure to darkness or to immobilization were investigated in animals whose pineals were surgically denervated. Some animals were adrenalectomized to remove one potential source of circulating catecholamines, and some were subjected to a partial chemical sympathectomy accomplished by a series of intravenous injections of 6-hydroxydopamine. Results suggest that N-acetyltransferase (NAT) activity can be enhanced either by release of norepinephrine from sympathetic terminals within the pineal or from sympathetic nerve terminals elsewhere. The stress of immobilization stimulates the pineal by increasing circulating catecholamines. Photic control of pineal function requires intact pineal sympathetic innervation, since the onset of darkness apparently does not cause a sufficient rise in circulating catecholamines to stimulate the pineal. The present studies suggest that nonspecific stress triggers increased biosynthesis and secretion of melatonin; it is possible that this hormone may participate in mechanisms of adaptation.

  8. [Neuroendocrine and psychopharmacologic aspects of the pineal function. Melatonin and psychiatric disorders].

    PubMed

    Morguenstern, E A

    1989-01-01

    The development of psychiatric thought has always been in close association with the pineal gland. The importance of a relationship between pineal, and mental functions was stressed by Descartes when he placed the seat of rational thought as well as the confluence of body and soul in this organ (Cf. Descartes, L'Homme, 1664). His writings exerted such a strong influence that, quite soon indeed, physicians started regarding this gland as being the source of many mental disorders. In an attempt to find and explain a possible link between mental abnormalities, and the discovery of calcified pineals in necroptic studies, many theories were put forward during the 18th, and the 19th century. Afterwards, the importance of the gland went almost unnoticed until 1920, when Becker treated psychotic patients with pineal extracts. An up-to-1950 review by Kitay and Altschule (1954) reported 17 cases where pineal extracts were successfully injected to psychotic patients. In the present review, the author tries and summarizes several reports dealing with the influence of the pineal function on affective disorders, schizophrenia, sleep cycle, Parkinson disease, etc., as a contribution to future research work in this field.

  9. Chronic exposure to 60-Hz electric fields: effects on pineal function in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, B.W.; Anderson, L.E.; Hilton, D.I.

    As a component of studies to search for effects of 60-Hz electric field exposure on mammalian endocrine function, concentrations of melatonin, 5-methoxytryptophol, and serotonin-N-acetyl transferase activity were measured in the pineal glands of rats exposed or sham-exposed at 65 kV/m for 30 days.In two replicate experiments there were statistically significant differences between exposed and control rats in that the normal nocturnal increase in pineal melatonin content was depressed in the exposed animals. Concentrations of 5-methoxytryptophol were increased in the pineal glands of the exposed groups when compared to sham-exposed controls. An alteration was also observed in serotonin-N-acetyl transferase activity, withmore » lower levels measured in pineal glands from exposed animals.« less

  10. Pineal region tumors: computed tomographic-pathologic spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futrell, N.N.; Osborn, A.G.; Cheson. B.D.

    While several computed tomographic (CT) studies of posterior third ventricular neoplasms have included descriptions of pineal tumors, few reports have concentrated on these uncommon lesions. Some authors have asserted that the CT appearance of many pineal tumors is virtually pathognomonic. A series of nine biopsy-proved pineal gland and eight other presumed tumors is presented that illustrates their remarkable heterogeneity in both histopathologic and CT appearance. These tumors included germinomas, teratocarcinomas, hamartomas, and other varieties. They had variable margination, attentuation, calcification, and suprasellar extension. Germinomas have the best response to radiation therapy. Biopsy of pineal region tumors is now feasible andmore » is recommended for treatment planning.« less

  11. Pineal melatonin synthesis in Syrian hamsters: A summary

    NASA Astrophysics Data System (ADS)

    Rollag, M. D.

    1982-12-01

    During the past decade there has been ample documentation of the proposition that the pineal gland mediates photoperiodic influences upon reproductive behavior of hamsters. It is commonly hypothesized that the pineal gland expresses its activity by transformation of photoperiodic information into an hormonal output, that hormone being melatonin. If this hypothesis is correct, there must be some essential diffrence in melatonin's output when hamsters are exposed to different photoperiodic environments. The experiments summarized in this communication analyze pineal melatonin contents in Syrian hamsters maintained in a variety of photoperiodic conditions during different physiological states. The results demonstrate that adult hamsters have a daily surge in pineal melatonin content throughout their lifetime when exposed to simulated annual photoperiodic cycles. There is some fluctuation in the amount of pineal melatonin produced during different physiological states and photoperiodic environments, but these fluctuations seem small when compared to those normally found for other regulatory hormones. When hamsters are exposed to different photoperiodic regimens, the daily melatonin surge maintains a relatively constant phase relationship with respect to the onset of daily activity. There is a concomitant change in its phase relationship with respect to light-dark transitions.

  12. The light-induced transcriptome of the zebrafish pineal gland reveals complex regulation of the circadian clockwork by light

    PubMed Central

    Ben-Moshe, Zohar; Alon, Shahar; Mracek, Philipp; Faigenbloom, Lior; Tovin, Adi; Vatine, Gad D.; Eisenberg, Eli; Foulkes, Nicholas S.; Gothilf, Yoav

    2014-01-01

    Light constitutes a primary signal whereby endogenous circadian clocks are synchronized (‘entrained’) with the day/night cycle. The molecular mechanisms underlying this vital process are known to require gene activation, yet are incompletely understood. Here, the light-induced transcriptome in the zebrafish central clock organ, the pineal gland, was characterized by messenger RNA (mRNA) sequencing (mRNA-seq) and microarray analyses, resulting in the identification of multiple light-induced mRNAs. Interestingly, a considerable portion of the molecular clock (14 genes) is light-induced in the pineal gland. Four of these genes, encoding the transcription factors dec1, reverbb1, e4bp4-5 and e4bp4-6, differentially affected clock- and light-regulated promoter activation, suggesting that light-input is conveyed to the core clock machinery via diverse mechanisms. Moreover, we show that dec1, as well as the core clock gene per2, is essential for light-entrainment of rhythmic locomotor activity in zebrafish larvae. Additionally, we used microRNA (miRNA) sequencing (miR-seq) and identified pineal-enhanced and light-induced miRNAs. One such miRNA, miR-183, is shown to downregulate e4bp4-6 mRNA through a 3′UTR target site, and importantly, to regulate the rhythmic mRNA levels of aanat2, the key enzyme in melatonin synthesis. Together, this genome-wide approach and functional characterization of light-induced factors indicate a multi-level regulation of the circadian clockwork by light. PMID:24423866

  13. Pineal Calcification Among Black Patients

    PubMed Central

    Fan, Kuang-Jaw

    1983-01-01

    A postmortem histopathological study was done in 233 pineal glands of black patients. Among them, 70 percent showed microscopic evidence of calcification in the pineal parenchyma. The frequency of calcification increased with age. However, the severity of calcification reached the peak in the 60 to 69 year old age group and then gradually declined. As compared to males, females had slightly higher frequency and reached the peak of severity in younger age groups. When pineal calcification was compared among patients with various malignancies, a higher frequency and more severe calcification were observed in patients with carcinoma of the prostate and the pancreas. A lower frequency and less severe calcification were observed in patients with carcinoma of the breast and the cervix. The results of this study emphasize the important role of sex hormone in genesis of pineal calcification. PMID:6631985

  14. Immunofluorescence reveals unusual patterns of labelling for connexin43 localized to calbindin-D28K-positive interstitial cells in the pineal gland.

    PubMed

    Tsao, D D; Wang, S G; Lynn, B D; Nagy, J I

    2017-06-01

    Gap junctions between cells in the pineal gland have been described ultrastructurally, but their connexin constituents have not been fully characterized. We used immunofluorescence in combination with markers of pineal cells to document the cellular localization of connexin43 (Cx43). Immunofluorescence labelling of Cx43 with several different antibodies was widely distributed throughout the pineal, whereas another connexin examined, connexin26, was not found in pineal but only in surrounding leptomeninges. Labelling apparently associated with plasma membranes was visualized either as fine Cx43-puncta (1-2 μm) or as unusually large pools of Cx43 ranging up to 4-7 μm in diameter or length. These puncta and pools were highly concentrated in perivascular spaces, where they were associated with numerous cells devoid of labelling for markers of pinealocytes (e.g. tryptophan hydroxylase and serotonin), and where they were minimally associated with blood vessels and lacked association with resident macrophages. Astrocytes labelled for glial fibrillary acidic protein were largely restricted to the anterior pole of the pineal gland, where they displayed only fine and sparse Cx43-puncta along their processes. Labelling for Cx43 was localized largely though not exclusively to the somata and long processes of a subpopulation of perivascular interstitial cells that were immunopositive for calbindin-D28K. These cells were often located among dense bundles or termination areas of sympathetic fibres labelled for tyrosine hydroxylase or serotonin. The results indicate that interstitial cells form abundant gap junctions composed of Cx43, and suggest that gap junction-mediated intracellular communication by these cells supports the activities of pinealocytes. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Age-related incidence of pineal calcification detected by computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, R.A.; Bilaniuk, L.T.

    The age-related incidence of detectable pineal calcification in 725 patients (age range, newborn-20 yrs) suggests that there is a relationship between calcification and the hormonal role played by the pineal gland in the regulation of sexual development. Pineal calcification (demonstrated by computed tomography (CT) on 8-mm-thick sections) in patients less than 6 years old should be looked upon with suspicion, and follow-up CT should be considered to exclude the possible development of a pineal neoplasm.

  16. Effects of Melatonin on Morphological and Functional Parameters of the Pineal Gland and Organs of Immune System in Rats During Natural Light Cycle and Constant Illumination.

    PubMed

    Litvinenko, G I; Shurlygina, A V; Gritsyk, O B; Mel'nikova, E V; Tenditnik, M V; Avrorov, P A; Trufakin, V A

    2015-10-01

    We studied the response of the pineal gland and organs of the immune system to melatonin treatment in Wistar rats kept under conditions of abnormal illumination regimen. The animals were kept under natural light regimen or continuous illumination for 14 days and then received daily injections of melatonin (once a day in the evening) for 7 days. Administration of melatonin to rats kept at natural light cycle was followed by a decrease in percent ratio of CD4+8+ splenocytes and CD4-8+ thymocytes. In 24-h light with the following melatonin injections were accompanied by an increase in percent rate and absolute amount of CD4+8+ cells in the spleen, and a decrease in percent rate of CD11b/c and CD4-8+ splenocytes. In the thymus amount of CD4-8+ cells increased, and absolute number of CD4+25+ cells reduced. Melatonin significantly decreased lipofuscin concentration in the pineal gland during continuous light. Direction and intensity of effects of melatonin on parameters of cell immunity and state of the pineal gland were different under normal and continuous light conditions. It should be taken into account during using of this hormone for correction of immune and endocrine impairments developing during change in light/dark rhythm.

  17. Effect of short peptides on expression of signaling molecules in organotypic pineal cell culture.

    PubMed

    Khavinson, V Kh; Linkova, N S; Chalisova, N I; Dudkov, A V; Koncevaya, E A

    2011-11-01

    We demonstrated the influence of short peptides on the expression of signaling molecules in organotypic culture of the pineal gland from 3-month-old rats. Peptides Ala-Glu-Asp-Gly and Lys-Glu-Asp stimulate the expression of proliferative protein Ki-67 in pineal gland culture. These peptides as well as Glu-Asp-Arg and Lys-Glu do not affect the expression of apoptosis marker AIF. The synthesis of transcription factor CGRP by pinealocytes was stimulated only by Ala-Glu-Asp-Gly. Thus, peptide Ala-Glu-Asp-Gly tissue-specifically stimulates proliferative and secretory activities of pinealocytes, which can be used for recovery of pineal gland functions at the molecular level.

  18. The foetal pig pineal gland is richly innervated by nerve fibres containing catecholamine-synthesizing enzymes, neuropeptide Y (NPY) and C-terminal flanking peptide of NPY, but it does not secrete melatonin.

    PubMed

    Bulc, Michał; Lewczuk, Bogdan; Prusik, Magdalena; Całka, Jarosław

    2013-05-01

    Innervation of the mammalian pineal gland during prenatal development is poorly recognized. Therefore, immunofluorescence studies of the pineals of 70- and 90-day-old foetuses of the domestic pig were performed using antibodies against tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DβH), neuropeptide Y (NPY) and C-terminal flanking peptide of NPY (CPON). The investigated glands were supplied by numerous nerve fibres containing TH and DβH. The density of these fibres was higher in the distal and middle parts of the gland than in the proximal one. NPY and CPON were identified in the majority of DβH-positive fibres as well as in a small population of DβH-negative fibres localized mainly in the proximal part of the pineal. The immunoreactive fibres were more numerous in 90-day-old foetuses than in 70-day-old ones. The effect of norepinephrine on melatonin secretion by the foetal pineals in the short-term organ culture was studied to determine the role of DβH-positive fibres during prenatal life. For the same purpose melatonin was measured in the blood in the umbilical cords and in the jugular vein of the mother. The pineals of both groups of foetuses did not secrete melatonin in the organ culture, independently of the presence or absence of norepinephrine in the medium. Melatonin concentrations in the blood in the umbilical cords of foetuses from the same litter and in the jugular vein of their mother were similar. The presence of adrenergic nerve fibres in the pig pineal during gestation does not seem to be associated with the control of melatonin secretion.

  19. [Regulating effect of pineal gland peptides on development of T-lymphocytes in CBA aging mice: role of microenvironment of immune system organs and neuroendocrine factors].

    PubMed

    Labunets, I F; Butenko, G M; Khavinson, V Kh; Magdich, L V; Dragunova, V A; Pishel', I N; Azarskova, M V

    2003-01-01

    Studies were undertaken on the development of T-lymphocytes in adult and old CBA mice and its changes at aging after injections of pineal gland peptides. It was shown that in old mice the disturbances of T-cells differentiation are registered in bone marrow, thymus, spleen and characterized by the changes of lymphocyte markers expression, migration and proliferation of cells. In old mice FTS titer, melatonin and testosterone levels decreased, the balance of noradrenalin and serotonin in hypothalamus and the cell composition of microenvironment immune systems organs impaired. After chronic (18 mo) administration of the pineal gland preparation epithalamin the amount of stromal cells-precursors, CD4+ and Mac-1(+)-cells in old bone marrow increased, improved the migration of T-cell precursors from bone marrow to thymus and their proliferative potential. The proportion of CD3+, CD4+CD8-, CD4-CD8+, Mac-1(+)-cells in old thymus increased, while that of CD44(+)-cells decreased. The proportion of CD4-CD8(+)-cells in spleen increased. The most number of indices and their balance showed a pattern of adult mice. In old mice after epithalamin the balance of amines in hypothalamus improved, concentration of melatonin in pineal gland, testosterone and FTS titer in blood increased. Epithalon has also the possibility to increase of thymic endocrine function.

  20. Circadian changes in long noncoding RNAs in the pineal gland

    PubMed Central

    Coon, Steven L.; Munson, Peter J.; Cherukuri, Praveen F.; Sugden, David; Rath, Martin F.; Møller, Morten; Clokie, Samuel J. H.; Fu, Cong; Olanich, Mary E.; Rangel, Zoila; Werner, Thomas; Mullikin, James C.; Klein, David C.; Benjamin, Betty; Blakesley, Robert; Bouffard, Gerry; Brooks, Shelise; Chu, Grace; Coleman, Holly; Dekhtyar, Mila; Gregory, Michael; Guan, Xiaobin; Gupta, Jyoti; Han, Joel; Hargrove, April; Ho, Shi-ling; Johnson, Taccara; Legaspi, Richelle; Lovett, Sean; Maduro, Quino; Masiello, Cathy; Maskeri, Baishali; McDowell, Jenny; Montemayor, Casandra; Novotny, Betsy; Park, Morgan; Riebow, Nancy; Schandler, Karen; Schmidt, Brian; Sison, Christina; Stantripop, Mal; Thomas, James; Vemulapalli, Meg; Young, Alice

    2012-01-01

    Long noncoding RNAs (lncRNAs) play a broad range of biological roles, including regulation of expression of genes and chromosomes. Here, we present evidence that lncRNAs are involved in vertebrate circadian biology. Differential night/day expression of 112 lncRNAs (0.3 to >50 kb) occurs in the rat pineal gland, which is the source of melatonin, the hormone of the night. Approximately one-half of these changes reflect nocturnal increases. Studies of eight lncRNAs with 2- to >100-fold daily rhythms indicate that, in most cases, the change results from neural stimulation from the central circadian oscillator in the suprachiasmatic nucleus (doubling time = 0.5–1.3 h). Light exposure at night rapidly reverses (halving time = 9–32 min) levels of some of these lncRNAs. Organ culture studies indicate that expression of these lncRNAs is regulated by norepinephrine acting through cAMP. These findings point to a dynamic role of lncRNAs in the circadian system. PMID:22864914

  1. LC/MS/MS analysis of the endogenous dimethyltryptamine hallucinogens, their precursors, and major metabolites in rat pineal gland microdialysate.

    PubMed

    Barker, Steven A; Borjigin, Jimo; Lomnicka, Izabela; Strassman, Rick

    2013-12-01

    We report a qualitative liquid chromatography-tandem mass spectrometry (LC/MS/MS) method for the simultaneous analysis of the three known N,N-dimethyltryptamine endogenous hallucinogens, their precursors and metabolites, as well as melatonin and its metabolic precursors. The method was characterized using artificial cerebrospinal fluid (aCSF) as the matrix and was subsequently applied to the analysis of rat brain pineal gland-aCSF microdialysate. The method describes the simultaneous analysis of 23 chemically diverse compounds plus a deuterated internal standard by direct injection, requiring no dilution or extraction of the samples. The results demonstrate that this is a simple, sensitive, specific and direct approach to the qualitative analysis of these compounds in this matrix. The protocol also employs stringent MS confirmatory criteria for the detection and confirmation of the compounds examined, including exact mass measurements. The excellent limits of detection and broad scope make it a valuable research tool for examining the endogenous hallucinogen pathways in the central nervous system. We report here, for the first time, the presence of N,N-dimethyltryptamine in pineal gland microdialysate obtained from the rat. Copyright © 2013 John Wiley & Sons, Ltd.

  2. [Effect of pineal peptides on neuroendocrine system after pinealectomy].

    PubMed

    Khavinson, V Kh; Kvetnoĭ, I M; Popuchiev, V V; Iuzhakov, V V; Kotlova, L N

    2001-01-01

    Removal of the pineal gland leads to structural and functional rearrangement of gastric endocrine cells and thyroid C-cells in albino rats, as was shown by immunohistological methods and morphometry. Injection of pineal peptides epithalone and epithalamine eliminated these changes. Biological activity of epithalone is believed to be higher than that of epithalamine.

  3. Annual reproductive synchronization in ovary and pineal gland function of female short-nosed fruit bat, Cynopterus sphinx.

    PubMed

    Haldar, Chandana; Yadav, Rajesh; Alipreeta

    2006-08-01

    We studied the annual correlation of ovarian activity and pineal gland in relation with seasonal variation and gestation of a tropical zone short-nosed fruit bat Cynopterus sphinx. Female bats showed bimodal polyestry (February/March and September/October) in their reproductive cycle. Plasma estradiol concentration ran parallel with ovarian activity and had an inverse relation with pineal mass and peripheral melatonin concentration. Due to the delayed embryonic development in the uterus (October-March) of female bats, interestingly, the uterine activity did not show a parallel relation with ovarian activity and estradiol level. Further, compared with normal non-pregnant females, melatonin level was high during gestation and delayed embryonic development phase. This suggests that the reproductive synchrony and annual variation in ovarian activity of this nocturnal flying mammal differ from other common tropical mammals. The delayed embryonic development in bats might be an adaptive strategy for the unfavorable conditions of the seasons and might be regulated by high peripheral estradiol and melatonin concentration.

  4. Expression and cellular localization of the transcription factor NeuroD1 in the developing and adult rat pineal gland.

    PubMed

    Castro, Analía E; Benitez, Sergio G; Farias Altamirano, Luz E; Savastano, Luis E; Patterson, Sean I; Muñoz, Estela M

    2015-05-01

    Circadian rhythms govern many aspects of mammalian physiology. The daily pattern of melatonin synthesis and secretion is one of the classic examples of circadian oscillations. It is mediated by a class of neuroendocrine cells known as pinealocytes which are not yet fully defined. An established method to evaluate functional and cytological characters is through the expression of lineage-specific transcriptional regulators. NeuroD1 is a basic helix-loop-helix transcription factor involved in the specification and maintenance of both endocrine and neuronal phenotypes. We have previously described developmental and adult regulation of NeuroD1 mRNA in the rodent pineal gland. However, the transcript levels were not influenced by the elimination of sympathetic input, suggesting that any rhythmicity of NeuroD1 might be found downstream of transcription. Here, we describe NeuroD1 protein expression and cellular localization in the rat pineal gland during development and the daily cycle. In embryonic and perinatal stages, protein expression follows the mRNA pattern and is predominantly nuclear. Thereafter, NeuroD1 is mostly found in pinealocyte nuclei in the early part of the night and in cytoplasm during the day, a rhythm maintained into adulthood. Additionally, nocturnal nuclear NeuroD1 levels are reduced after sympathetic disruption, an effect mimicked by the in vivo administration of α- and β-adrenoceptor blockers. NeuroD1 phosphorylation at two sites, Ser(274) and Ser(336) , associates with nuclear localization in pinealocytes. These data suggest that NeuroD1 influences pineal phenotype both during development and adulthood, in an autonomic and phosphorylation-dependent manner. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Radiometric assay for phenylethanolamine N-methyltransferase and catechol O-methyltransferase in a single tissue sample: application to rat hypothalamic nuclei, pineal gland, and heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culman, J.; Torda, T.; Weise, V.K.

    A simple and highly sensitive method for simultaneous assay of phenylethanolamine N-methyltransferase (PNMT) and catechol O-methyltransferase (COMT) is described. These enzymes are determined in a single tissue homogenate using S-(methyl-/sup 3/H) adenosyl-L-methionine as methyl donor and sequentially incubating with the substrates phenylethanolamine and epinephrine. The radioactive products of the enzymatic reactions, N-methylphenylethanolamine and metanephrine, are extracted and then separated by thin-layer chromatography. The identity of the reaction products has been established chromatographically and the conditions for both enzymatic reactions in the assay procedure have been defined. Measurement of PNMT activity in the rat pineal gland or in minute fragments ofmore » other tissues (e.g., brain nuclei) has not been possible using previously described methods. Activities of PNMT and COMT in the rat pineal gland, various hypothalamic nuclei, and the auricular and ventricular myocardia are herein reported.« less

  6. The pineal gland, but not melatonin, is associated with the termination of seasonal testicular activity in an annual reproductive cycle in roseringed parakeet Psittacula krameri.

    PubMed

    Sengupta, Anamika; Kumar Maitra, Saumen

    2006-01-01

    The role of the pineal gland and its hormone melatonin in the regulation of annual testicular events was investigated for the first time in a psittacine bird, the roseringed parakeet (Psittacula krameri). Accordingly, the testicular responsiveness of the birds was evaluated following surgical pinealectomy with or without the exogenous administration of melatonin and the experimental manipulations of the endogenous levels of melatonin through exposing the birds to continuous illumination. An identical schedule was followed during the four reproductive phases, each characterizing a distinct testicular status in the annual cycle, namely, the phases of gametogenic quiescence (preparatory phase), seasonal recovery of gametogenesis (progressive phase), seasonal initiation of sperm formation (pre-breeding phase), and peak gametogenic activity (breeding phase). In each reproductive phase, the birds were subjected to various experimental conditions, and the effects were studied comparing the testicular conditions in the respective control birds. The study included germ cell profiles of the seminiferous tubules, the activities of steroidogenic enzymes 17beta-hydroxysteroid dehydrogenase (17beta-HSD), and Delta(5)3beta-hydroxysteroid dehydrogenase (Delta(5)3beta- HSD) in the testis, and the serum levels of testosterone and melatonin. An analysis of the data reveals that the pineal gland and its hormone melatonin may play an inhibitory role in the development of the testis until the attainment of the seasonal peak in the annual reproductive cycle. However, in all probability, the termination of the seasonal activity of the testis or the initiation of testicular regression in the annual reproductive cycle appears to be the function of the pineal gland, but not of melatonin.

  7. Diagnosis and treatment of pineal region tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuwelt, E.A.

    The aim of this volume is to review the pertinent literature dealing with pineal tumors and thus aid in the handling of these rather uncommon lesions. After the first, introductory, chapter, three chapters treat the pathology and diagnosis of pineal tumors. There is also one chapter on intracranial germ cell tumors (natural history and pathogenesis) and one on the normal function of the pineal gland. With the exception of the chapter on diagnostic radiology of pineal tumors, which seems somewhat superficial, these five chapters summarize current knowledge about the nature of these complex lesions and their symptomatology very well. Themore » next nine chapters deal with biopsy and surgery of these tumors and how to manage the patient. The first of these gives a historical review of the development of surgical techniques - from the first attempt by Horsley in 1905 to the microsurgical techniques of today. It is followed by a very important and detailed description of the microsurgical anatomy of the pineal region.« less

  8. Expression of hydroxyindole-O-methyltransferase enzyme in the human central nervous system and in pineal parenchymal cell tumors.

    PubMed

    Fukuda, Takahiro; Akiyama, Nobutake; Ikegami, Masahiro; Takahashi, Hitoshi; Sasaki, Atsushi; Oka, Hidehiro; Komori, Takashi; Tanaka, Yuko; Nakazato, Youichi; Akimoto, Jiro; Tanaka, Masahiko; Okada, Yoshikazu; Saito, Saburo

    2010-05-01

    Pineal parenchymal tumor (PPT) cells usually show immunoreactivity for synaptophysin, neuron-specific enolase, neurofilament protein, class III beta-tubulin, tau protein, PGP9.5, chromogranin, serotonin, retinal S-antigen, and rhodopsin, but these markers are not specific for PPTs. Melatonin is produced and secreted mainly bypineal parenchymal cells; hydroxyindole-O-methyltransferase (HIOMT) catalyzes the final reaction in melatonin biosynthesis. We hypothesized that HIOMT could serve as a tumor marker of PPTs, and we investigated HIOMT localization and HIOMT expression in samples of normal human tissue and in PPTs, primitive neuroectodermal tumors, and medulloblastomas. In normal tissue, HIOMT was expressed in retinal cells, pineal parenchymal cells, neurons of the Edinger-Westphal nucleus, microglia, macrophages, thyroid follicular epithelium, principal and oxyphil cells of parathyroid gland, adrenal cortical cells, hepatic parenchymal cells, renal tubule epithelium, and enteroendocrine cells of stomach and duodenum. The HIOMT was also expressed in all 46 PPTs studied. The proportions of HIOMT-immunoreactive cells successively decreased in the following tumors: pineocytoma, pineal parenchymal tumor of intermediate differentiation, and pineoblastoma. A few HIOMT-immunoreactive cells were observed in one of 6 primitive neuroectodermal tumors and 23 of 42 medulloblastomas. These results indicate that HIOMT immunohistochemistry may be useful for the diagnosis of PPTs and be a prognostic factor in PPTs.

  9. Reduced Pineal Volume in Alzheimer Disease: A Retrospective Cross-sectional MR Imaging Study.

    PubMed

    Matsuoka, Teruyuki; Imai, Ayu; Fujimoto, Hiroshi; Kato, Yuka; Shibata, Keisuke; Nakamura, Kaeko; Yokota, Hajime; Yamada, Kei; Narumoto, Jin

    2018-01-01

    Purpose To evaluate pineal volume in patients with Alzheimer disease (AD), patients with mild cognitive impairment (MCI), and healthy control subjects and to correlate the findings with results of cognitive testing and brain parenchymal volumes. Materials and Methods The ethics committee approved this retrospective study. The participants included 63 patients with AD, 33 patients with MCI, and 24 healthy control subjects. There were 36 men and 84 women, with a mean age (±standard deviation) of 76.7 years ± 7.6. The pineal gland volume and pineal parenchymal volume were measured by using three-dimensional volumetric magnetic resonance imaging (T1-weighted magnetization-prepared rapid gradient-echo sequence; spatial resolution, 0.9 × 0.98 × 0.98 mm). With age and total intracranial volume as covariates, analysis of covariance with the Bonferroni post hoc test was performed to compare the pineal volume among the AD, MCI, and control groups. Multiple regression analyses were used to identify predictor variables associated with pineal volume. Results The mean pineal gland volume in patients with AD (72.3 mm 3 ± 5.4; 95% confidence interval [CI]: 61.5 mm 3 , 83.1 mm 3 ) was significantly smaller than that in control subjects (102.1 mm 3 ± 9.0; 95% CI: 84.4 mm 3 , 119.9 mm 3 ) (P = .019). The mean pineal parenchymal volume in patients with AD (63.8 mm 3 ± 4.2; 95% CI: 55.4 mm 3 , 72.1 mm 3 ) was significantly smaller than that in patients with MCI (81.7 mm 3 ± 5.8; 95% CI: 70.3 mm 3 , 93.1 mm 3 ; P = .044) and control subjects (89.1 mm 3 ± 6.9; 95% CI: 75.4 mm 3 , 102.9 mm 3 ; P = .009). Multiple regression analyses demonstrated that the Mini-Mental State Examination score and total intracranial volume were significant independent predictors of both pineal gland volume and pineal parenchymal volume (P < .001). Conclusion Pineal volume reduction showed correlation with cognitive decline and thus might be useful to predict cognitive decline in patients with AD.

  10. Photoperiod: Its importance as an impeller of pineal and seasonal reproductive rhythms

    NASA Astrophysics Data System (ADS)

    Reiter, R. J.

    1980-03-01

    A number of long day breeding rodents depend on seasonal changes in photoperiodic length to synchronize their breeding seasons with the appropriate time of the year. These relationships are particularly conspicuous in the Syrian hamster where day length is vitally important in determining periods of sexual activity and inactivity. The organ in the body whose activity is most closely attuned to the photoperiodic environment is the pineal gland. During periods of darkness the biochemical and secretory activity of the pineal is enhanced with the resultant production of antigonadotrophic principles which are strongly suppressive to reproductive physiology. In this manner, decreasing day lengths of the fall are involved with suppressing sexual capability in male and female hamsters. Throughout the winter months darkness (because of the shorter day lengths and the fact that hamsters remain underground in lightless burrows) holds the gonads in an atrophic condition and thereby prevents hamsters from breeding. As spring approaches the neuroendocrine reproductive axis becomes refractory to the inhibitory effects of darkness and the pineal gland and, as a consequence, the gonads recrudesce allowing the animals to successfully reproduce. The long days of the spring and summer serve to interrupt the refractory period so that when winter approaches shortening day lengths will again, by way of the pineal gland, induce gonadalinvolution. In this scheme both light and darkness are critically important in synchronizing the phases of the annual reproductive cycle of the hamster with the appropriate season of the year. Melatonin may be the pineal hormone which mediates the effects of darkness on reproductive physiology.

  11. [Peptide correction of age-related pineal disturbances in monkeys].

    PubMed

    Goncharova, N D; Vengerin, A A; Shmaliĭ, A V; Khavinson, V Kh

    2003-01-01

    Investigation of the age-related changes of the pineal gland function and possible ways for their overcoming on nonhuman monkey model was the purpose of this study. Hormonal function of the pineal gland was studied in 38 Macaca mulatta females of two age groups: 6-8 years old, n = 18 and 20-26 years old, n = 20. Pineal function was studied in basal conditions and after administration of pineal peptide preparations--epithalamin and epitalon, both developed in the St. Petersburg Institute of Bioregulation and Gerontology (Russia). It has been revealed that plasma melatonin concentration in monkeys has well expressed high amplitude diurnal rhythm. Minimum is manifested at 4 p.m. and maximum--at 10 p.m.-3 a.m. In aging the mean diurnal melatonin concentration decreases by 1.5-2 times as well as in different points of the day: 9 p.m., 10 p.m., 3 a.m. and 4 a.m. Administration of pineal peptides--epithalamin (at the dose 5 mg/animal/day intramuscularly during 10 consecutive days) or epitalon (at the dose 10 micrograms/animal/day intramuscularly during 7-10 consecutive days) induced significant increase in the night plasma melatonin in old monkeys, but the treatment did not change the melatonin level in young monkeys. Taking into consideration that melatonin is very important for regulation of the diurnal rhythm of functioning of some organs and systems it should be suggested that applying epithalamin and epitalon are perspective in the correction of age-related hormonal imbalance and age pathology.

  12. Clinical management of pineal cysts: a worldwide online survey.

    PubMed

    Májovský, Martin; Netuka, David; Beneš, Vladimír

    2016-04-01

    A pineal cyst is a benign affection of a pineal gland on the borderline between a pathological lesion and a variant of normality. Clinical management of patients with a pineal cyst remains controversial, especially when patients present with non-specific symptoms. An online questionnaire consisting of 13 questions was completed by 110 neurosurgeons worldwide. Responses were entered into a database and subsequently analysed. Based on data from the questionnaire, the main indication criteria for pineal cyst resection are hydrocephalus (90 % of the respondents), Parinaud's syndrome (80 %) and growth of the cyst (68 %). Only 15 % of the respondents occasionally operate on patients with non-specific symptoms. If surgery is indicated, improvement is expected in 88 % of the patients. The vast majority of the respondents favour a supracerebellar infratentorial approach to the pineal region. Most (78 %) of the respondents regarded the patient registry as a potentially useful instrument. This survey sheds light on the current practice of pineal cyst management across the world. Most of the respondents perform surgery on pineal cysts only if patients are presenting with symptoms attributable to a mass effect. Surgery for patients with non-specific complaints (headache, vertigo) is not widely accepted, although it may prove effective. A prospective patient registry might be useful in the decision-making process in the clinical management of pineal cysts.

  13. Melatonin, the Pineal Gland, and Circadian Rhythms

    DTIC Science & Technology

    1993-05-31

    generating system . Brain Ra Bull. 10: 647-652, 1983. 29. Kostis, J. B., A. E. Moreyra, M. T. Amendo, J. Di Pietro, N. Cosgrove, and P. T. Kuo. The effect of...synthesis and secretion of the pineal hormone melatonin, which relies on a multisynaptic pathway via the sympathetic nervous system to maintain and...activity and other processes. However, the nature and system -level significance of this feedback are unknown. Recently published work indicates that

  14. Morphology and function: MR pineal volume and melatonin level in human saliva are correlated.

    PubMed

    Liebrich, Luisa-Sophie; Schredl, Michael; Findeisen, Peter; Groden, Christoph; Bumb, Jan Malte; Nölte, Ingo S

    2014-10-01

    To investigate the relation between circadian saliva melatonin levels and pineal volume as determined by MRI. Plasma melatonin levels follow a circadian rhythm with a high interindividual variability. In 103 healthy individuals saliva melatonin levels were determined at four time points within 24 h and MRI was performed once (3.0 Tesla, including three-dimensional T2 turbo spin echo [3D-T2-TSE], susceptibility-weighted imaging [SWI]). Pineal volume as well as cyst volume were assessed from multiplanar reconstructed 3D-T2-TSE images. Pineal calcification volume tissue was determined on SWI. To correct for hormonal inactive pineal tissue, cystic and calcified areas were excluded. Sleep quality was assessed with the Landeck Inventory for sleep quality disturbance. Solid and uncalcified pineal volume correlated to melatonin maximum (r = 0.28; P < 0.05) and area under the curve (r = 0.29; P < 0.05). Of interest, solid and uncalcified pineal volume correlated negatively with the sleep rhythm disturbances subscore (r = -0.17; P < 0.05) despite a very homogenous population. Uncalcified solid pineal tissue measured by 3D-T2-TSE and SWI is related to human saliva melatonin levels. The analysis of the sleep quality and pineal volume suggests a linkage between better sleep quality and hormonal active pineal tissue. © 2013 Wiley Periodicals, Inc.

  15. Supracerebellar Infratentorial Endoscopic and Endoscopic-Assisted Approaches to Pineal Lesions: Technical Report and Review of the Literature.

    PubMed

    Snyder, Rita; Felbaum, Daniel R; Jean, Walter C; Anaizi, Amjad

    2017-06-09

    The pineal gland has a deep central location, making it a surgeon's no man's land. Surgical pathology within this territory presents a unique challenge and an opportunity for employment of various surgical techniques. In modern times, the microsurgical technique has been competing with the endoscope for achieving superior surgical results. We describe two cases utilizing a purely endoscopic and an endoscopic-assisted supracerebellar infratentorial approach in accessing lesions of the pineal gland. We also discuss our early learning experience with these approaches.

  16. Pineal-specific expression of green fluorescent protein under the control of the serotonin-N-acetyltransferase gene regulatory regions in transgenic zebrafish.

    PubMed

    Gothilf, Yoav; Toyama, Reiko; Coon, Steven L; Du, Shao-Jun; Dawid, Igor B; Klein, David C

    2002-11-01

    Zebrafish serotonin-N-acetyltransferase-2 (zfAANAT-2) mRNA is exclusively expressed in the pineal gland (epiphysis) at the embryonic stage. Here, we have initiated an effort to study the mechanisms underlying tissue-specific expression of this gene. DNA constructs were prepared in which green fluorescent protein (GFP) is driven by regulatory regions of the zfAANAT-2 gene. In vivo transient expression analysis in zebrafish embryos indicated that in addition to the 5'-flanking region, a regulatory sequence in the 3'-flanking region is required for pineal-specific expression. This finding led to an effort to produce transgenic lines expressing GFP under the control of the 5' and 3' regulatory regions of the zfAANAT-2 gene. Embryos transiently expressing GFP were raised to maturity and tested for germ cell transmission of the transgene. Three transgenic lines were produced in which GFP fluorescence in the pineal was detected starting 1 to 2 days after fertilization. One line was crossed with mindbomb and floating head mutants that cause abnormal development of the pineal and an elevation or reduction of zfAANAT-2 mRNA levels, respectively. Homozygous mutant transgenic embryos exhibited similar effects on GFP expression in the pineal gland. These observations indicate that the transgenic lines described here will be useful in studying the development of the pineal gland and the mechanisms that determine pineal-specific gene expression in the zebrafish. Published 2002 Wiley-Liss, Inc.

  17. A Seasonal and Age-Related Study of Interstitial Cells in the Pineal Gland of Male Viscacha (Lagostomus maximus maximus).

    PubMed

    Busolini, Fabricio Ivan; Rosales, Gabriela Judith; Filippa, Verónica Palmira; Mohamed, Fabian Heber

    2017-10-01

    The pineal gland of viscacha exhibits histophysiological variations throughout the year, with periods of maximal activity in winter and minimal activity in summer. The aim of this work is to analyze the interstitial cells (IC) in the pineal gland of male viscachas in relation to season and age. The S-100 protein, glio-fibrillary acidic protein (GFAP), and vimentin were detected in adult and immature animals by immunohistochemistry (IHC). Double-IHC was also performed. The S-100 protein was localized within both, IC nucleus and cytoplasm. GFAP was present only in the cytoplasm. Vimentin was expressed in some IC, besides endothelial cells, and perivascular spaces. In the adult males, the morphometric parameters analyzed for the S-100 protein and GFAP exhibited seasonal variations with higher values of immunopositive area percentage in winter and lower values in summer, whereas the immature ones showed the lowest values for all the adult animals studied. Colocalization of S-100 protein and GFAP was observed. The IC exhibited differential expression for the proteins studied, supporting the hypothesis of the neuroectodermal origin. The IC generate an intraglandular communication network, suggesting its participation in the glandular activity regulation processes. The results of double-IHC might indicate the presence of IC in different functional stages, probably related to the needs of the cellular microenvironment. The morphometric variations in the proteins analyzed between immature and adult viscachas probed to be more salient in the latter, suggesting a direct relationship between the expression of the S-100 protein and GFAP, and animal age. Anat Rec, 2017. © 2017 Wiley Periodicals Inc. Anat Rec, 300:1847-1857, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Supracerebellar Infratentorial Endoscopic and Endoscopic-Assisted Approaches to Pineal Lesions: Technical Report and Review of the Literature

    PubMed Central

    Felbaum, Daniel R; Jean, Walter C; Anaizi, Amjad

    2017-01-01

    The pineal gland has a deep central location, making it a surgeon’s no man’s land. Surgical pathology within this territory presents a unique challenge and an opportunity for employment of various surgical techniques. In modern times, the microsurgical technique has been competing with the endoscope for achieving superior surgical results. We describe two cases utilizing a purely endoscopic and an endoscopic-assisted supracerebellar infratentorial approach in accessing lesions of the pineal gland. We also discuss our early learning experience with these approaches. PMID:28690962

  19. [Effect of moxibustion on quantity of pinealocytes and pineal HSP 70 expression in subacute aging rats].

    PubMed

    Liang, Xin; Zhong, Yu

    2011-08-01

    To study the mechanism of moxibustion in postponing the process of aging. Thirty Wistar rats were equally randomized into control, model and moxibustion groups. The subacute aging model was established by hypodermic injection of 25% D-galactose (125 mg/kg). Moxibustion was applied to bilateral "Shenshu" (GV 23) and "Pishu" (GV 20) once everyday for 6 weeks. After slicing, the pineal gland tissue was stained with HE and insitu hybridization methods respectively for detecting the quantity of pinealocytes and the expression of heat shock protein (HSP 70). Compared with the control group, both the quantity of pinealocytes and the expression of HSP 70 in the pineal gland in the model group were downregulated significantly (P < 0.001, P < 0.01). Compared with model group, the quantity of pinealocytes and of HSP 70 mRNA in the pineal gland of moxibustion group were upregulated significantly (P < 0.01, P < 0.05). Moxibustion can suppress aging induced decrease of pinealocyte number and HSP 70 expression in subacute aging rats, which may contribute to its effect in postponing aging.

  20. Light-Emitting Diodes and Cool White Fluorescent Light Similarly Suppress Pineal Gland Melatonin and Maintain Retinal Function and Morphology in the Rat. Part 1

    NASA Technical Reports Server (NTRS)

    Holley, Daniel C.; Heeke, D.; Mele, G.

    1999-01-01

    Currently, the light sources most commonly used in animal habitat lighting are cool white fluorescent or incandescent lamps. We evaluated a novel light-emitting diode (LED) light source for use in animal habitat lighting by comparing its effectiveness to cool white fluorescent light (CWF) in suppressing pineal gland melatonin and maintaining normal retinal physiology and morphology in the rat. Results of pineal melatonin suppression experiments showed equal suppression of pineal melatonin concentrations for LED light and CWF light at five different light illuminances (100, 40, 10, 1 and 0.1 lux). There were no significant differences in melatonin suppression between LED and CWF light when compared to unexposed controls. Retinal physiology was evaluated using electroretinography. Results show no differences in a-wave implicit times and amplitudes or b-wave implicit times and amplitudes between 100-lux LED-exposed rats and 100-lux CWF-exposed rats. Results of retinal histology assessment show no differences in retinal thickness rod outer segment length and number of rod nuclei between rats exposed to 100-lux LED and 100-lux CWF for days. Furthermore, the retinal pigmented epithelium and rod outer segments of all eyes observed were in good condition and of normal thickness. This study indicates that LED light does not cause retinal damage and can suppress pineal melatonin at similar intensities as a conventional CWF light source. These data suggest that LED light sources may be suitable replacements for conventional light sources used in the lighting of rodent vivariums while providing many mechanical and economical advantages.

  1. Axelrod, the pineal and the melatonin hypothesis: lessons of 50 years to shape chronodisruption research.

    PubMed

    Erren, Thomas C; Reiter, Russel J

    2010-01-01

    With key work in the 1950s and 1960s, the 1970 Nobel laureate Julius Axelrod made major contributions to the development of pineal science. Looking back at some of his accomplishments in and for the field, we feel that lessons can be derived for future work regarding impairments of the pineal gland's and melatonin's many functions for promoting health and preventing disease in man.

  2. Regulation of bone mass through pineal-derived melatonin-MT2 receptor pathway.

    PubMed

    Sharan, Kunal; Lewis, Kirsty; Furukawa, Takahisa; Yadav, Vijay K

    2017-09-01

    Tryptophan, an essential amino acid through a series of enzymatic reactions gives rise to various metabolites, viz. serotonin and melatonin, that regulate distinct biological functions. We show here that tryptophan metabolism in the pineal gland favors bone mass accrual through production of melatonin, a pineal-derived neurohormone. Pineal gland-specific deletion of Tph1, the enzyme that catalyzes the first step in the melatonin biosynthesis lead to a decrease in melatonin levels and a low bone mass due to an isolated decrease in bone formation while bone resorption parameters remained unaffected. Skeletal analysis of the mice deficient in MT1 or MT2 melatonin receptors showed a low bone mass in MT2-/- mice while MT1-/- mice had a normal bone mass compared to the WT mice. This low bone mass in the MT2-/- mice was due to an isolated decrease in osteoblast numbers and bone formation. In vitro assays of the osteoblast cultures derived from the MT1-/- and MT2-/- mice showed a cell intrinsic defect in the proliferation, differentiation and mineralization abilities of MT2-/- osteoblasts compared to WT counterparts, and the mutant cells did not respond to melatonin addition. Finally, we demonstrate that daily oral administration of melatonin can increase bone accrual during growth and can cure ovariectomy-induced structural and functional degeneration of bone by specifically increasing bone formation. By identifying pineal-derived melatonin as a regulator of bone mass through MT2 receptors, this study expands the role played by tryptophan derivatives in the regulation of bone mass and underscores its therapeutic relevance in postmenopausal osteoporosis. © 2017 The Authors. Journal of Pineal Research Published by John Wiley & Sons Ltd.

  3. Incidental pineal cysts in children who undergo 3-T MRI.

    PubMed

    Whitehead, Matthew T; Oh, Christopher C; Choudhri, Asim F

    2013-12-01

    Pineal cysts, both simple and complex, are commonly encountered in children. More cysts are being detected with MR technology; however, nearly all pineal cysts are benign and require no follow-up. To discover the prevalence of pineal cysts in children at our institution who have undergone high-resolution 3-T MRI. We retrospectively reviewed 100 consecutive 3-T brain MRIs in children ages 1 month to 17 years (mean 6.8 ± 5.1 years). We evaluated 3-D volumetric T1-W imaging, axial T2-W imaging, axial T2-W FLAIR (fluid attenuated inversion recovery) and coronal STIR (short tau inversion recovery) sequences. Pineal parenchymal and cyst volumes were measured in three planes. Cysts were analyzed for the presence and degree of complexity. Pineal cysts were present in 57% of children, with a mean maximum linear dimension of 4.2 mm (range 1.5-16 mm). Of these cysts, 24.6% showed thin septations or fluid levels reflecting complexity. None of the cysts demonstrated complete T2/FLAIR signal suppression. No cyst wall thickening or nodularity was present. There was no significant difference between the ages of children with and without cysts. Cysts were more commonly encountered in girls than boys (67% vs. 52%; P = 0.043). There was a slight trend toward increasing pineal gland volume with age. Pineal cysts are often present in children and can be incidentally detected by 3-T MRI. Characteristic-appearing pineal cysts in children are benign, incidental findings, for which follow-up is not required if there are no referable symptoms or excessive size.

  4. Pineal physiology in microgravity - Relation to rat gonadal function aboard Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Holley, Daniel C.; Markley, Carol L.; Soliman, Magdi R. I.; Kaddis, Farida; Krasnov, Igor'

    1991-01-01

    Results are reported from an analysis of pineal glands obtained for five male rats flown aboard an orbiting satellite for their melatonin, serotonin (5-HT), 5-hydroxyindole acetic acid (5-HIA), and calcium content. Plasma 5-HT and 5-HIAA were measured. These parameters were compared to indicators of gonadal function: plasma testosterone concentration and spermatogonia development. Plasma melotonin was found to be low at the time of euthanasia and was not different among the experimental groups. Pineal calcium of flight animals was not different from ground controls. Pineal 5-HT and 5-HIAA in the flight group were significantly higher than those in ground controls. These findings suggest a possible increase in pineal 5-HT turnover in flight animals which may result in increased melatonin secretion. It is argued that the alteration of pinal 5-HT turnover and its expected effects on melatonin secretion may partially explain the lower plasma testosterone levels and 4-11 percent fewer spermatogonia cells observed in flight animals.

  5. A model for the neural control of pineal periodicity

    NASA Astrophysics Data System (ADS)

    de Oliveira Cruz, Frederico Alan; Soares, Marilia Amavel Gomes; Cortez, Celia Martins

    2016-12-01

    The aim of this work was verify if a computational model associating the synchronization dynamics of coupling oscillators to a set of synaptic transmission equations would be able to simulate the control of pineal by a complex neural pathway that connects the retina to this gland. Results from the simulations showed that the frequency and temporal firing patterns were in the range of values found in literature.

  6. Cysteamine effects on somatostatin, catecholamines, pineal NAT and melatonin in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, S.M.; Champney, T.H.; Steger, R.W.

    The thiol reagent cysteamine was administered to adult male rats with the aim of investigating its effect on different neural and pineal components. As expected, immunoreactive somatostatin decreased in the median eminence (ME) (p less than 0.05) and gastric antrum (p less than 0.05) after cysteamine; however, no significant change was observed in the pineal IRS content after drug treatment. A decrease in norepinephrine was observed in the ME (p less than 0.001), hypothalamus (p less than 0.001) and pineal gland (p less than 0.05), together with a rise in ME (p less than 0.005) and hypothalamic dopamine (p lessmore » than 0.005) content; these results are consistent with a dopamine-beta-hydroxylase inhibiting effect of cysteamine. No effect was observed on hypothalamic serotonin and 5-hydroxyindole-acetic acid content. Pineal N-acetyltransferase (NAT) activity was significantly higher (p less than 0.05) after cysteamine than after saline, but no statistically significant effect was observed on pineal melatonin content. The mechanism involved in the NAT rise is presumably not related to the known stimulatory effect of norepinephrine, which fell after cysteamine. It is suggested that cysteamine may act at an intracellular level, inhibiting NAT degradation, an effect demonstrated in vitro and thought to be related to a thiol:disulfide exchange mechanism.« less

  7. Pineal Photoreceptor Cells Are Required for Maintaining the Circadian Rhythms of Behavioral Visual Sensitivity in Zebrafish

    PubMed Central

    Li, Xinle; Montgomery, Jake; Cheng, Wesley; Noh, Jung Hyun; Hyde, David R.; Li, Lei

    2012-01-01

    In non-mammalian vertebrates, the pineal gland functions as the central pacemaker that regulates the circadian rhythms of animal behavior and physiology. We generated a transgenic zebrafish line [Tg(Gnat2:gal4-VP16/UAS:nfsB-mCherry)] in which the E. coli nitroreductase is expressed in pineal photoreceptor cells. In developing embryos and young adults, the transgene is expressed in both retinal and pineal photoreceptor cells. During aging, the expression of the transgene in retinal photoreceptor cells gradually diminishes. By 8 months of age, the Gnat2 promoter-driven nitroreductase is no longer expressed in retinal photoreceptor cells, but its expression in pineal photoreceptor cells persists. This provides a tool for selective ablation of pineal photoreceptor cells, i.e., by treatments with metronidazole. In the absence of pineal photoreceptor cells, the behavioral visual sensitivity of the fish remains unchanged; however, the circadian rhythms of rod and cone sensitivity are diminished. Brief light exposures restore the circadian rhythms of behavioral visual sensitivity. Together, the data suggest that retinal photoreceptor cells respond to environmental cues and are capable of entraining the circadian rhythms of visual sensitivity; however, they are insufficient for maintaining the rhythms. Cellular signals from the pineal photoreceptor cells may be required for maintaining the circadian rhythms of visual sensitivity. PMID:22815753

  8. The concept of the immune-pineal axis tested in patients undergoing an abdominal hysterectomy.

    PubMed

    de Oliveira Tatsch-Dias, Mirella; Levandovski, Rosa Maria; Custódio de Souza, Izabel Cristina; Gregianin Rocha, Marcelo; Magno Fernandes, Pedro Augusto Carlos; Torres, Iraci L S; Hidalgo, Maria Paz L; Markus, Regina P; Caumo, Wolnei

    2013-01-01

    Activation of the immune-pineal axis induces a transient reduction in nocturnal melatonin in the plasma during the proinflammatory phase of an innate immune response to allow the proper migration of leukocytes to the lesion site. This transient reduction should be regulated by inflammatory mediators, which are responsible for the fine-tuning of the process. In the present study, we measured the pre- and postoperative serum concentrations of melatonin, tumor necrosis factor (TNF) and cortisol in women who underwent an elective hysterectomy and correlated the variation in melatonin with postoperative pain. We evaluated 12 women who had an abdominal hysterectomy. Blood was collected at 10.00 and 22.00 h 1 week and 1 day before the surgery, on the 1st and 2nd days after the surgery and at 22.00 h on the day of the surgery. On the night after the surgery, there was no melatonin detected at 22.00 h. High TNF levels were accompanied by a lower nocturnal melatonin output, higher postoperative pain according to a visual analog scale and the request of higher doses of analgesics. In addition, low cortisol levels were accompanied by a lower nocturnal melatonin output. Our results confirm that the same antagonistic pattern between TNF and glucocorticoids observed in cultured pineal glands also occurs in humans. This integrative pattern suggests that the cross talk between the immune and endocrine system orchestrates longitudinal changes in pineal activity, reinforcing the hypothesis of an immune-pineal axis. Copyright © 2013 S. Karger AG, Basel.

  9. 60-Hz electric-field effects on pineal melatonin rhythms: time course for onset and recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, B.W.; Chess, E.K.; Anderson, L.E.

    Rats exposed for 3 weeks to uniform 60-Hz electric fields of 39 kV/m (effective field strength) failed to show normal pineal gland circadian rhythms in serotonin N-acetyl transferase activity and melatonin concentrations. The time required for recovery of the melatonin rhythm after cessation of field exposure was determined to be less than 3 days. The rapid recovery suggests that the overall metabolic competence of the pineal is not permanently compromised by electric-field exposure, and that the circadian rhythm effect may be neuronally mediated.

  10. Regulation of period 1 expression in cultured rat pineal

    NASA Technical Reports Server (NTRS)

    Fukuhara, Chiaki; Dirden, James C.; Tosini, Gianluca

    2002-01-01

    The aim of the present study was to investigate the in vitro expression of Period 1 (Per1), Period 2 (Per2) and arylalkylamine N-acetyltransferase (AA-NAT) genes in the rat pineal gland to understand the mechanism(s) regulating the expression of these genes in this organ. Pineals, when maintained in vitro for 5 days, did not show circadian rhythmicity in the expression of any of the three genes monitored. Norepinephrine (NE) induced AA-NAT and Per1, whereas its effect on Per2 was negligible. Contrary to what was observed in other systems, NE stimulation did not induce circadian expression of Per1. The effect of NE on Per1 level was dose- and receptor subtype-dependent, and both cAMP and cGMP induced Per1. Per1 was not induced by repeated NE - or forskolin - stimulation. Protein synthesis was not necessary for NE-induced Per1, but it was for reduction of Per1 following NE stimulation. Per1 transcription in pinealocytes was activated by BMAL1/CLOCK. Our results indicate that important differences are present in the regulation of these genes in the mammalian pineal. Copyright 2002 S. Karger AG, Basel.

  11. Pregnancy outcome in heat-exposed hamsters; the involvement of the pineal.

    PubMed

    Kaplanski, J; Zohar, R; Sod-Moriah, U A; Magal, E; Hirschmann, N; Nir, I

    1988-01-01

    The effect of high ambient temperature (34 degrees C) on the function of the female reproductive system, on embryonic development and on outcome of pregnancy, was investigated in heat-exposed sham-operated (Sh) and pinealectomized (Px) golden hamsters maintained under short photoperiod. Plasma prolactin levels were reduced in both heat-exposed groups (ShH and PxH) but pituitary prolactin was increased in the pinealectomized groups irrespective of ambient temperature (21 or 34 degrees C). Pituitary weights and LH contents were not affected in any test group. Heat exposure brought about a reduction in the number of corpora lutea and of pups born, the latter being more drastically reduced in absence of the pineal; the depressant effect of heat on ovarian weight was evident only in the pinealectomized animals. Progesterone levels were not affected in any test group and pregnancy was not prolonged, thus, it would seem that pregnant hamsters adapt themselves well to heat. Moreover, high ambient temperature promoted a rise in pineal. HIOMT activity and boosted cortisol levels in presence of the pineal gland only, which, together with the above findings, shows that the pineal can provide protection for pregnant hamsters against adverse effects of high ambient temperature.

  12. Neurotranscriptomics: The Effects of Neonatal Stimulus Deprivation on the Rat Pineal Transcriptome

    PubMed Central

    Hartley, Stephen W.; Coon, Steven L.; Savastano, Luis E.; Mullikin, James C.; Fu, Cong; Klein, David C.

    2015-01-01

    The term neurotranscriptomics is used here to describe genome-wide analysis of neural control of transcriptomes. In this report, next-generation RNA sequencing was using to analyze the effects of neonatal (5-days-of-age) surgical stimulus deprivation on the adult rat pineal transcriptome. In intact animals, more than 3000 coding genes were found to exhibit differential expression (adjusted-p < 0.001) on a night/day basis in the pineal gland (70% of these increased at night, 376 genes changed more than 4-fold in either direction). Of these, more than two thousand genes were not previously known to be differentially expressed on a night/day basis. The night/day changes in expression were almost completely eliminated by neonatal removal (SCGX) or decentralization (DCN) of the superior cervical ganglia (SCG), which innervate the pineal gland. Other than the loss of rhythmic variation, surgical stimulus deprivation had little impact on the abundance of most genes; of particular interest, expression levels of the melatonin-synthesis-related genes Tph1, Gch1, and Asmt displayed little change (less than 35%) following DCN or SCGX. However, strong and consistent changes were observed in the expression of a small number of genes including the gene encoding Serpina1, a secreted protease inhibitor that might influence extracellular architecture. Many of the genes that exhibited night/day differential expression in intact animals also exhibited similar changes following in vitro treatment with norepinephrine, a superior cervical ganglia transmitter, or with an analog of cyclic AMP, a norepinephrine second messenger in this tissue. These findings are of significance in that they establish that the pineal-defining transcriptome is established prior to the neonatal period. Further, this work expands our knowledge of the biological process under neural control in this tissue and underlines the value of RNA sequencing in revealing how neurotransmission influences cell biology. PMID

  13. /sup 3/H-retinol derived photopigment in chick pineal membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallingford, J.; Zatz, M.

    Pineal glands display a day-night rhythm in the synthesis and secretion of melatonin. Dispersed chick pinealocytes retain their ability to respond to light in vitro for at least a week. Pinealocytes incubated overnight with /sup 3/H-retinol in the dark incorporate radioactivity predominantly into retinyl esters. To identify the chick pineal photopigment, SDS-PAGE was performed on radiolabelled preparations of pinealocytes and (intraocularly injected) rat retina. When intact cells or membrane preparations of cultured cells were incubated with NaCNBH/sub 3/, in the dark, a single radioactive peak with an apparent molecular weight of 32,000 daltons was observed. Rat retina preparations revealed amore » major peak at approximately 40,000 daltons. Protease inhibitors were present in the workup, and radioactivity corresponding to the smaller peak from pineal was not observed in retina. There was no radioactive peak when NaCNBH/sub 3/ was omitted. When samples were boiled in SDS the radioactivity shifted to the origin. These data suggest a protein in pinealocyte membranes which binds retinoid via a Schiff's base. Exposure to light of deoxycholate solubilized pineal membranes reduced the radioactivity associated with the protein. These findings raise the possibility that this protein is the pinealocyte's photopigment. Photopigments smaller than those observed in mammals have been reported in invertebrates.« less

  14. Regulation of melatonin secretion in the pineal organ of the domestic duck--an in vitro study.

    PubMed

    Prusik, M; Lewczuk, B; Ziółkowska, N; Przybylska-Gornowicz, B

    2015-01-01

    The aim of study was to determine the mechanisms regulating melatonin secretion in the pineal organs of 1-day-old and 9-month-old domestic ducks. The pineals were cultured in a superfusion system under different light conditions. Additionally, some explants were treated with norepinephrine. The pineal glands of 1-day-old ducks released melatonin in a well-entrained, regular rhythm during incubation under a 12 hrs light:12 hrs dark cycle and adjusted their secretory activity to a reversed 12 hrs dark:12 hrs light cycle within 2 days. In contrast, the diurnal changes in melatonin secretion from the pineals of 9-month-old ducks were largely irregular and the adaptation to a reversed cycle lasted 3 days. The pineal organs of nestling and adult ducks incubated in a continuous light or darkness secreted melatonin in a circadian rhythm. The treatment with norepinephrine during photophases of a light-dark cycle resulted in: 1) a precise adjustment of melatonin secretion rhythm to the presence of this catecholamine in the culture medium, 2) a very high amplitude of the rhythm, 3) a rapid adaptation of the pineal secretory activity to a reversed light-dark cycle. The effects of norepinephrine were similar in the pineal organs of nestlings and adults. In conclusion, melatonin secretion in the duck pineal organ is controlled by three main mechanisms: the direct photoreception, the endogenous generator and the noradrenergic transmission. The efficiency of intra-pineal, photosensitivity-based regulatory mechanism is markedly lower in adult than in nestling individuals.

  15. A promoter polymorphism in the monoamine oxidase A gene is associated with the pineal MAOA activity in Alzheimer's disease patients.

    PubMed

    Wu, Ying-Hui; Fischer, David F; Swaab, Dick F

    2007-09-05

    Monoamine oxidase A (MAOA) is involved in the pathogenesis of mood disorders and Alzheimer's disease (AD). MAOA activity and gene expression have been found to be up-regulated in different brain areas of AD patients, including the pineal gland. Increased pineal MAOA activity might contribute to the reduced pineal melatonin production in AD. A promoter polymorphism of a variable number tandem repeats (VNTR) in the MAOA gene shows to affect MAOA transcriptional activity in vitro. Here we examined in 63 aged controls and 44 AD patients the effects of the MAOA-VNTR on MAOA gene expression and activity in the pineal gland as endophenotypes, and on melatonin production. AD patients carrying long MAOA-VNTR genotype (consisting of 3.5- or 4-repeat alleles) showed higher MAOA gene expression and activity than the short-genotyped (i.e., 3-repeat allele) AD patients. Moreover, the AD-related up-regulation of MAOA showed up only among long-genotype bearing subjects. There was no significant effect of the MAOA-VNTR on MAOA activity or gene expression in controls, or on melatonin production in both controls and AD patients. Our data suggest that the MAOA-VNTR affects the activity and gene expression of MAOA in the brain of AD patients, and is involved in the changes of monoamine metabolism.

  16. Influence of the pineal gland and melatonin on blood flow and evaporative water loss during heat stress in rats.

    PubMed

    Harlow, H J

    1987-01-01

    Plasma melatonin levels of laboratory rats were elevated both during acute heat exposure (43 degrees C for 40 min) and chronic exposure (33 degrees C for 17 days) suggesting a possible correlation between melatonin and thermoregulatory mechanisms. Pinealectomy reduced the nighttime elevation in oxygen consumption and evaporative water loss. In addition, pinealectomized animals exhibited a significantly lower cutaneous evaporative water loss both at night and during the day when exposed to an acute heat exposure of 38 degrees C for 45 min. Pinealectomy elevated the blood pressure over the control group whereas melatonin infusion depressed the blood pressure without altering the cardiac output. This relationship implies an action by melatonin on the peripheral vasculature. In support of this conclusion, melatonin pretreatment tended to dampen the vasopressive effect of infused norepinephrine. These data, therefore, suggest a role of the pineal gland and melatonin in thermoregulation through an influence on the cardiovascular system and evaporative water loss.

  17. Contrasting effects of vortioxetine and paroxetine on pineal gland biochemistry in a tryptophan-depletion model of depression in female rats.

    PubMed

    Franklin, M; Hlavacova, N; Li, Y; Bermudez, I; Csanova, A; Sanchez, C; Jezova, D

    2017-10-03

    We studied the effects of the multi-modal antidepressant, vortioxetine and the SSRI, paroxetine on pineal melatonin and monoamine synthesis in a sub-chronic tryptophan (TRP) depletion model of depression based on a low TRP diet. Female Sprague-Dawley rats were randomised to groups a) control, b) low TRP diet, c) low TRP diet+paroxetine and d) low TRP diet+vortioxetine. Vortioxetine was administered via the diet (0.76mg/kg of food weight) and paroxetine via drinking water (10mg/kg/day) for 14days. Both drugs resulted in SERT occupancies >90%. Vortioxetine significantly reversed TRP depletion-induced reductions of pineal melatonin and serotonin (5-HT) and significantly increased pineal noradrenaline NA. Paroxetine did none of these things. Other studies suggest pineal melatonin synthesis may involve N-methyl-d-aspartate (NMDA) receptors and glutamatergic modulation. Here observed changes may be mediated via vortioxetine's strong 5-HT reuptake blocking action together with possible additional effects on glutamate neurotransmission in the pineal via NMDA receptor-modulation and possibly with added impetus from increased NA output. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The Bioelectromagnetics Society Annual Meeting (11th) Held at Tucson, Arizona on June 18-22, 1989: Abstracts

    DTIC Science & Technology

    1989-06-01

    SESSION A-i: SYMPOSIUM ON ELF FIELDS AND NEURO- ENDOCRINE FUNCTION Moderator: B. W. Wilson A-i-I NEUROENDOCRINE CONSEQUENCES OF PINEAL GLAND ...Antonio, TX 78284-7762. The pineal gland of animals and humans produces its chief hormonal product, melatonin, in a circadian manner with maximal...photoperiodic environment with the eyes perceiving the light which regulates the rhythm. The neural connections between the eyes and the pineal gland which

  19. Comparison of Light Emitting Diodes (LED) and Fluorescent Light on Suppression of Pineal Melatonin in the Rat

    NASA Technical Reports Server (NTRS)

    Winget, Charles M.; Heeke, D. S.; Holley, D. C.; Mele, G.; Brainard, G. C.; Hanifin, J. P.; Rollag, M. D.; Savage, Paul D. (Technical Monitor)

    1997-01-01

    To validate a novel LED array for use in animal habitat lighting by comparing its effectiveness to cool-white fluorescent (CWF) lighting in suppressing pineal gland melatonin. Male Sprague-Dawley rats, 175-200 g, were maintained under control conditions for 2 weeks (food and water ad lib, 12L: 12D CWF, 18 uW/square cm). Dark adapted animals (animals before lights on) were exposed to 5 min of LED or CWF light of similar spectral power distribution. Two groups of rats (LED vs. CWF) were compared at 5 light intensities (100, 40, 1, 1.0, and 0. 1 lux). A control group was placed into the exposure apparatus but not exposed to light. After exposure, pineal glands were rapidly removed and assayed for melatonin by RIA. Results. The dark-exposed control groups matched with the 5 intensity groups (100, 40, 10, 1.0, and 0.1 lux) showed mean + SEM pineal melatonin values of 1167 +/- 136, 1569 +/- 126, 353 +/- 34, 650 +/- 124, and 464 +/- 85, pg/ml respectively. The corresponding CWF exposure data were 393 1 41, 365 +34, 257 +/- 13, 218 +/- 42, and 239 +/- 71 pg/ml, respectively. Corresponding LED exposure data were 439 +/- 25, 462 +/- 50, 231 +/- 6, 164 +/- 12, and 158 +/- 12 pg/ml, respectively. Rats exposed to both experimental light conditions at all illuminances studied showed significant melatonin suppression (p less than 0.01, ANOVA). In no case was the melatonin suppression induced by LED illuminance significantly different from the melatonin suppression elicited by the same intensity of CWF light. The results show that a novel LED light source can suppress pineal melatonin equal to that of a conventional CWF light source.

  20. Stroke and pineal gland calcification: lack of association. Results from a population-based study (The Atahualpa Project).

    PubMed

    Del Brutto, Oscar H; Mera, Robertino M; Lama, Julio; Zambrano, Mauricio

    2015-03-01

    It has been suggested that pineal gland calcifications (PGC) represent a risk factor for stroke; however, information comes from a single retrospective hospital-based registry. We aimed to validate this association in a population-based study conducted in rural Ecuador. Atahualpa residents aged ≥60 years were identified during a door-to-door survey and invited to undergo neuroimaging studies (CT/MRI) for identification and rating PGC and lesions consistent with cerebral infarcts and hemorrhages. Cardiovascular health (CVH) status was assessed according to the American Heart Association criteria, and clinical strokes were identified by the use of a validated field instrument and confirmed by neurologists. Out of 248 participants (mean age 70±8 years, 59% women, 73% with poor CVH), 137 (55%) had PGC and 39 (16%) had strokes (silent in 28 cases). PGC were noted in 61% versus 54% persons with and without stroke, respectively. After adjusting for age, sex and cardiovascular health, logistic and ordinal logistic regression models showed no association between any evidence (p=0.916) or severity (p=0.740) of PGC and stroke. PGC is not associated with stroke in this population of community-dwelling elders, where prevalence of PGC and stroke are similar to those found in other regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Material translations in the Cartesian brain.

    PubMed

    Bassiri, Nima

    2012-03-01

    This article reexamines the controversial doctrine of the pineal gland in Cartesian psychophysiology. It argues initially that Descartes' combined metaphysics and natural philosophy yield a distinctly human subject who is rational, willful, but also a living and embodied being in the world, formed in the union and through the dynamics of the interaction between the soul and the body. However, Descartes only identified one site at which this union was staged: the brain, and more precisely, the pineal gland, the small bulb of nervous tissue at the brain's center. The pineal gland was charged with the incredible task of ensuring the interactive mutuality between the soul and body, while also maintaining the necessary ontological incommensurability between them. This article reconsiders the theoretical obligations placed on the pineal gland as the site of the soul-body union, and looks at how the gland was consequently forced to adopt a very precarious ontological status. The article ultimately questions how successfully the Cartesian human could be localized in the pineal gland, while briefly considering the broader historical consequences of the ensuing equivalence of the self and brain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Pineal control of the dopamine D2-receptor gene and dopamine release in the retina of the chicken and their possible relation to growth rhythms of the eye.

    PubMed

    Ohngemach, S; Feldkaemper, M; Schaeffel, F

    2001-09-01

    Retinal dopamine (DA) and the DA D2-receptor have been implicated in the development of "deprivation myopia", induced by frosted eye occluders. We have studied the changes in D2-mediated dopaminergic transmission in the retina, their possible relations to eye growth rhythms and myopia, and their control by the pineal gland. (1) We found that the sensitivity of eye growth to retinal image degradation varied over the day. Intermittent periods of normal vision inhibited deprivation myopia more if they occurred in the evening than in the morning. (2) Diurnal growth rhythms in both eyes interacted even though it was previously shown that both deprivation myopia and the accompanying changes in retinal DA release can be monocularly induced. (3) The D2-receptor mRNA concentration in the retina showed no systemic diurnal changes and was not affected by deprivation myopia, but was increased after 2 days in darkness. Since DA release varies over the day, the gain of dopaminergic transmission may also vary, which could explain the observation described in (1) above. (4) Depletion of retinal DA by intravitreal application of reserpine, which lowers DA content severely, had little effect on D2-receptor mRNA concentration. (5) Selective illumination of the pineal gland reduced the D2-receptor mRNA content in the retina to a similar level to full illumination, indicating that the pineal gland controls the D2-receptor mRNA content in the retina. The pineal also controlled DA release in the retina. These results show that the pineal has a surprisingly large influence on both the retinal DA receptor gene transcription and DA release. It can probably control the gain of dopaminergic transmission in the retina and deprivation myopia and mediate the interactions of the growth rhythms in both eyes.

  3. Human lacrimal gland mucins.

    PubMed

    Paulsen, Friedrich; Langer, Gesa; Hoffmann, Werner; Berry, Monica

    2004-05-01

    The objective of this study was to determine whether the lacrimal gland synthesizes mucins and whether they are changed with age or in cases of dry eye. Expression of mucins in human lacrimal glands was monitored by reverse transcription-polymerase chain reaction analysis. Furthermore, the presence and distribution of MUC1, -2, -4, -5AC, -5B, -6 and -7 in epithelia of the human lacrimal gland and its excretory duct system were assessed with antisera to mucin peptide cores. Thirty normal tissues from cadavers of different ages were tested, plus four with dry eye treated with artificial tears. Expression studies detected mRNAs for mucins MUC1, -4, -5AC, -5B, -6 and -7; whereas the MUC2 message was absent. The message for MUC4 was present in all four cases of dry eye, but only in six out of the 30 normal glands from individuals who did not receive artificial tears. MUC6 mRNA was detected only in about half of the investigated samples. Immunohistochemistry revealed membrane-bound MUC1 at the apical surface of acinar cells, absence of MUC2, MUC5AC associated with goblet cells of excretory ducts, MUC5B and -7 in the cytoplasm of acinar cells, and MUC7 also in epithelial cells of excretory ducts. MUC4 mucin was detected only in those individuals in which message was identified. In dry eyes, MUC5AC and -5B were localized in the same acinar cells; whereas MUC2 and MUC6 were not detectable. Dot-blot analysis clearly revealed increased amounts of MUC4, -5AC, and -5B in the glands of elderly women who received treatment for dry eyes. These results confirm that the human lacrimal gland synthesizes a spectrum of mucins; part of them might be correlated with age. Copyright 2004 Springer-Verlag

  4. Effects of bioactive factors of the pineal gland on thymus function and cell composition of the bone marrow and spleen in mice of different age.

    PubMed

    Labunets, I F; Butenko, G M; Khavinson, V Kh

    2004-05-01

    The effects of factors from the pineal gland on the titer of thymic serum factor in the supernatant of 3-h thymus stroma cultures, number of stromal precursor fibroblasts and CD4+ cells in the bone marrow, and CD8+ cells in the spleens of adult and old CBA mice were studied in vitro. Epithalamin, Epithalon, and melatonin appreciably increased the titer of thymic serum factor in the supernatant of thymus stroma cultures from mice of different age and increased the percentage of CD4+ cells in the bone marrow suspension from old animals in vitro. The percentage of CD8+ lymphocytes decreased after incubation of splenic cells from old mice with melatonin. The percentage of bone marrow fibroblast precursor cells from adult and old mice did not appreciably change after incubation with the preparations.

  5. The human serotonin N-acetyltransferase (EC 2.3.1.87) gene (AANAT): Structure, chromosomal localization, and tissue expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coon, S.L.; Bernard, M.; Roseboom, P.H.

    Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AA-NAT, HGMW-approved symbol AANAT;EC 2.3.1.87) is the penultimate enzyme in melatonin synthesis and controls the night/day rhythm in melatonin production in the vertebrate pineal gland. We have found that the human AA-NAT gene spans {approx}2.5 kb, contains four exons, and is located at chromosome 17q25. The open reading frame encodes a 23.2-kDa protein that is {approx}80% identical to sheep and rat AA-NAT. The AA-NAT transcript ({approx}1 kb) is highly abundant in the pineal gland and is expressed at lower levels in the retina and in the Y79 retinoblastoma cell line. AA-NAT mRNA is also detectable atmore » low levels in several brain regions and the pituitary gland, but not in several peripheral tissues examined. Brain and pituitary AA-NAT could modulate serotonin-dependent aspects of human behavior and pituitary function. 31 refs., 5 figs.« less

  6. Experiment K-6-19. Pineal physiology in microgravity: Relation to rat gonadal function

    NASA Technical Reports Server (NTRS)

    Holley, D.; Soliman, M. R. I.; Kaddis, F.; Markley, C.; Krasnov, I.

    1990-01-01

    One of the most interesting concomitants to spaceflight and exposure to microgravity has been the disturbing alteration in calcium metabolism and resulting skeletal effects. It was recognized as early as 1685 (cited in Kitay and Altschule, 1954) that the pineal of humans calcified with age. However, little can be found in the literature relating calcification and pineal function. Given the link between exposure to microgravity and perturbation of calcium metabolism and the fact that the pineal is apparently one of the only soft tissues to calcify, researchers examined pineal calcium content following the spaceflight. Researchers concluded that the spaceflight resulted in a stress response as indicated by adrenal hypertrophy, that gonadal function was compromised, and that the pineal may be linked as part of the mechanism of the responses noted.

  7. Early development of circadian rhythmicity in the suprachiamatic nuclei and pineal gland of teleost, flounder (Paralichthys olivaeus), embryos.

    PubMed

    Mogi, Makoto; Uji, Susumu; Yokoi, Hayato; Suzuki, Tohru

    2015-08-01

    Circadian rhythms enable organisms to coordinate multiple physiological processes and behaviors with the earth's rotation. In mammals, the suprachiasmatic nuclei (SCN), the sole master circadian pacemaker, has entrainment mechanisms that set the circadian rhythm to a 24-h cycle with photic signals from retina. In contrast, the zebrafish SCN is not a circadian pacemaker, instead the pineal gland (PG) houses the major circadian oscillator. The SCN of flounder larvae, unlike that of zebrafish, however, expresses per2 with a rhythmicity of daytime/ON and nighttime/OFF. Here, we examined whether the rhythm of per2 expression in the flounder SCN represents the molecular clock. We also examined early development of the circadian rhythmicity in the SCN and PG. Our three major findings were as follows. First, rhythmic per2 expression in the SCN was maintained under 24 h dark (DD) conditions, indicating that a molecular clock exists in the flounder SCN. Second, onset of circadian rhythmicity in the SCN preceded that in the PG. Third, both 24 h light (LL) and DD conditions deeply affected the development of circadian rhythmicity in the SCN and PG. This is the first report dealing with the early development of circadian rhythmicity in the SCN in fish. © 2015 Japanese Society of Developmental Biologists.

  8. Diagnostic accuracy of susceptibility-weighted magnetic resonance imaging for the evaluation of pineal gland calcification

    PubMed Central

    Böker, Sarah M.; Bender, Yvonne Y.; Diederichs, Gerd; Fallenberg, Eva M.; Wagner, Moritz; Hamm, Bernd; Makowski, Marcus R.

    2017-01-01

    Objectives To determine the diagnostic performance of susceptibility-weighted magnetic resonance imaging (SWMR) for the detection of pineal gland calcifications (PGC) compared to conventional magnetic resonance imaging (MRI) sequences, using computed tomography (CT) as a reference standard. Methods 384 patients who received a 1.5 Tesla MRI scan including SWMR sequences and a CT scan of the brain between January 2014 and October 2016 were retrospectively evaluated. 346 patients were included in the analysis, of which 214 showed PGC on CT scans. To assess correlation between imaging modalities, the maximum calcification diameter was used. Sensitivity and specificity and intra- and interobserver reliability were calculated for SWMR and conventional MRI sequences. Results SWMR reached a sensitivity of 95% (95% CI: 91%-97%) and a specificity of 96% (95% CI: 91%-99%) for the detection of PGC, whereas conventional MRI achieved a sensitivity of 43% (95% CI: 36%-50%) and a specificity of 96% (95% CI: 91%-99%). Detection rates for calcifications in SWMR and conventional MRI differed significantly (95% versus 43%, p<0.001). Diameter measurements between SWMR and CT showed a close correlation (R2 = 0.85, p<0.001) with a slight but not significant overestimation of size (SWMR: 6.5 mm ± 2.5; CT: 5.9 mm ± 2.4, p = 0.02). Interobserver-agreement for diameter measurements was excellent on SWMR (ICC = 0.984, p < 0.0001). Conclusions Combining SWMR magnitude and phase information enables the accurate detection of PGC and offers a better diagnostic performance than conventional MRI with CT as a reference standard. PMID:28278291

  9. PECULIAIRITIES OF MELATONIN EFFECT ON CHONORHYTMIC ORGANIZATION OF KIDNEY ACID-REGULATING FUNCTION INFLUENCED BY NITROGEN MONOXIDE SYNTHESIS BLOCKADE UNDER CONDITIONS OF PINEAL GLAND HYPOFUNCTION.

    PubMed

    Semenenko, S; Tymofiychuk, I; Boreyko, L; Karatieieva, S; Slobodian, K

    2017-10-01

    The objective of research is to study the peculiarities of melatonin effect on chronorhythmic organization of the kidney acid-regulating function influenced by nitrogen monoxide (NO) synthesis blockade under conditions of pineal gland (PG) hypofunction. The experiments were conducted on 72 mature non-linear albino male rats with their body mass 0,15-0,18 kg. The animals were kept under vivarium conditions at a stable temperature and air humidity fed on a standard dietary intake. The control group included animals (n=36) kept under conditions of usual light regimen (12.00С:12.00Т) during 7 days. The experimental group included animals (n=36) injected with N-nitro-L-arginine (L-NNA) in the dose of 20 mg/kg during 7 days under conditions of continuous light (12.00С:12.00С) and melatonin in the dose of 0,5 mg/kg during 7 days simultaneously. On the 8th day the animals were exposed to 5% water load with heated to room temperature water supplied and the parameters of the kidney acid-regulating function under conditions of forced diuresis were investigated. Kidney functions in the control animals are subordinated to accurate circadian organization. Daily rhythms of the parameters of kidney acid-regulating functions reflect similar changes of the renal processes. Chronorhythmic transformations of the kidney acid-regulating functions in animals with blocked NO synthesis against continuous light and parallel injection of melatonin enable to suggest that NO synthesis blockade under conditions of melatonin correction reduces daily mean pH level as compared to the control. Although, it was higher than that in the animals with blocked NO synthesis against the ground of physiological function of the pineal gland, and animals with PG hypofunction under conditions of NO synthesis blockadeю Therefore, under conditions of L-NNA blockade of NO synthesis and injection of melatonin influenced by PG hypofunction chronorhythmic transformations of architectonics and phase structure of

  10. Morphological Features of the Porcine Lacrimal Gland and Its Compatibility for Human Lacrimal Gland Xenografting

    PubMed Central

    Gaffling, Simone; Asano, Nagayoshi; Hampel, Ulrike; Garreis, Fabian; Hornegger, Joachim; Paulsen, Friedrich

    2013-01-01

    In this study, we present first data concerning the anatomical structure, blood supply and location of the lacrimal gland of the pig. Our data indicate that the porcine lacrimal gland may serve as a potential xenograft candidate in humans or as an animal model for engineering of a bioartificial lacrimal gland tissue construct for clinical application. For this purpose, we used different macroscopic preparation techniques and digital reconstruction of the histological gland morphology to gain new insights and important information concerning the feasibility of a lacrimal gland transplantation from pig to humans in general. Our results show that the lacrimal gland of the pig reveals a lot of morphological similarities to the analogous human lacrimal gland and thus might be regarded as a xenograft in the future. This is true for a similar anatomical location within the orbit as well as for the feeding artery supply to the organ. Functional differences concerning the composition of the tear fluid, due to a different secretory unit distribution within the gland tissue will, however, be a challenge in future investigations. PMID:24069265

  11. Morphological features of the porcine lacrimal gland and its compatibility for human lacrimal gland xenografting.

    PubMed

    Henker, Robert; Scholz, Michael; Gaffling, Simone; Asano, Nagayoshi; Hampel, Ulrike; Garreis, Fabian; Hornegger, Joachim; Paulsen, Friedrich

    2013-01-01

    In this study, we present first data concerning the anatomical structure, blood supply and location of the lacrimal gland of the pig. Our data indicate that the porcine lacrimal gland may serve as a potential xenograft candidate in humans or as an animal model for engineering of a bioartificial lacrimal gland tissue construct for clinical application. For this purpose, we used different macroscopic preparation techniques and digital reconstruction of the histological gland morphology to gain new insights and important information concerning the feasibility of a lacrimal gland transplantation from pig to humans in general. Our results show that the lacrimal gland of the pig reveals a lot of morphological similarities to the analogous human lacrimal gland and thus might be regarded as a xenograft in the future. This is true for a similar anatomical location within the orbit as well as for the feeding artery supply to the organ. Functional differences concerning the composition of the tear fluid, due to a different secretory unit distribution within the gland tissue will, however, be a challenge in future investigations.

  12. Leptin, neuropeptide Y (NPY), melatonin and zinc levels in experimental hypothyroidism and hyperthyroidism: relation with melatonin and the pineal gland.

    PubMed

    Baltaci, Abdulkerim Kasım; Mogulkoc, Rasim

    2018-03-02

    Background Melatonin, an important neurohormone released from the pineal gland, is generally accepted to exercise an inhibitor effect on the thyroid gland. Zinc mediates the effects of many hormones and is found in the structure of numerous hormone receptors. Aim The present study aims to examine the effect of melatonin supplementation and pinealectomy on leptin, neuropeptide Y (NPY), melatonin and zinc levels in rats with hypothyroidism and hyperthyroidism. Methods This study was performed on the 70 male rats. Experimental animals in the study were grouped as follows: control (C); hypothyroidism (PTU); hypothyroidism + melatonin (PTU + M); hypothyroidism + pinealectomy (PTU + Pnx); hyperthyroidism (H); hyperthyroidism + melatonin (H + M) and hyperthyroidism + pinealectomy (H + Pnx). Blood samples collected at the end of 4-week procedures were analyzed to determine melatonin, leptin, NPY and zinc levels. Results It was found that thyroid parameters thyroid stimulating hormone (TSH), free triiodthyronine (FT3), free thyroxine (FT4), total T3 (TT3) and total T4 (TT4) decreased in hypothyroidism groups and increased in the groups with hyperthyroidism. The changes in these hormones remained unaffected by melatonin supplementation and pinealectomy. Melatonin levels rose in hyperthyroidism and fell in hypothyroidism. Leptin and NPY levels increased in both hypothyroidism and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and pinealectomy, but increased in hyperthyroidism. Conclusion The results of the study demonstrate that hypothyroidism and hyperthyroidism affect leptin, NPY, melatonin and zinc values in different ways in rats. However, melatonin supplementation and pinealectomy do not have any significant influence on the changes occurring in leptin, NPY and zinc levels in thyroid dysfunction.

  13. Associations of pineal volume, chronotype and symptom severity in adults with attention deficit hyperactivity disorder and healthy controls.

    PubMed

    Bumb, Jan Malte; Mier, Daniela; Noelte, Ingo; Schredl, Michael; Kirsch, Peter; Hennig, Oliver; Liebrich, Luisa; Fenske, Sabrina; Alm, Barbara; Sauer, Carina; Leweke, Franz Markus; Sobanski, Esther

    2016-07-01

    The pineal gland, as part of the human epithalamus, is the main production site of peripheral melatonin, which promotes the modulation of sleep patterns, circadian rhythms and circadian preferences (morningness vs. eveningness). The present study analyses the pineal gland volume (PGV) and its association with circadian preferences and symptom severity in adult ADHD patients compared to healthy controls. PGV was determined manually using high-resolution 3T MRI (T1-magnetization prepared rapid gradient echo) in medication free adult ADHD patients (N=74) compared to healthy controls (N=86). Moreover, the Morningness-Eveningness Questionnaire (MEQ), the ADHD Diagnostic Checklist and the Wender-Utah Rating Scale were conducted. PGV differed between both groups (patients: 59.9±33.8mm(3); healthy controls: 71.4±27.2mm(3), P=0.04). In ADHD patients, more eveningness types were revealed (patients: 29%; healthy controls: 17%; P=0.05) and sum scores of the MEQ were lower (patients: 45.8±11.5; healthy controls 67.2±10.1; P<0.001). Multiple regression analyses indicated a positive correlation of PGV and MEQ scores in ADHD (β=0.856, P=0.003) but not in healthy controls (β=0.054, P=0.688). Patients' MEQ scores (β=-0.473, P=0.003) were negatively correlated to ADHD symptoms. The present results suggest a linkage between the PGV and circadian preference in adults with ADHD and an association of the circadian preference to symptom severity. This may facilitate the development of new chronobiological treatment approaches for the add-on treatment in ADHD. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  14. Role of the Pineal Body Hormone in Thyroid Function; L'HORMONE EPIPHSAIRE INTERVIENT DANS LA DYNAMIQUE DU METABOLISME DE L'IODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milcou, S.M.; Costiner, E. et al.

    To evaluate the action of the pineal body hormone on thyroid function, hyperactivity of the epiphysis was experimentally induced by administering pineal body hormone four hours before the experiment and then every four hours during the experiment. Iodine tagging was achieved by the intraperltoneal injection of carrierless'' I/sup 131/. The animals, which had been divided into batches of 10, were sacrificed every 2 hours until 48 hours had elapsed following the radioactive tagging. Measurements on the radioactivity of the thyroid and of the blood were carried out in vitro. The values obtained were used in order to draw up simultaneousmore » radioactivity curves applicable to the total radioactivity and to that attributable to inorganic and organic iodine, respectively. The curves showing the variation in the radioactivity reveal a delayed action of the pineal gland hormone which is different according to whether the functional thyroid units have a large or small time constant. (auth)« less

  15. Testicular dysfunction in experimental chronic renal insufficiency: a deficiency of nocturnal pineal N-acetyltransferase activity.

    PubMed Central

    Holmes, E. W.; Hojvat, S. A.; Kahn, S. E.; Bermes, E. W.

    1989-01-01

    Biochemical correlates of neuroendocrine/gonadal function and nocturnal levels of serotonin N-acetyltransferase (NAT) activity were determined in partially nephrectomized (PNx), male, Long Evans rats following a 5-week period of chronic renal insufficiency (CRI). PNx animals demonstrated two to four-fold elevations in urea nitrogen and three to four-fold reductions (P less than 0.02) in plasma total testosterone concentrations as compared to sham-operated controls. The pituitary LH contents of PNx rats were decreased to approximately 60% of the control value (P less than 0.05). There were no differences in plasma prolactin levels between the control and PNx groups either at mid-day or in the middle of the night. Nocturnal pineal NAT activity in PNx rats was markedly reduced to approximately 20% of the control value (P less than 0.001). Similar evidence of gonadal dysfunction (reduced plasma total testosterone and testes testosterone content) and a significant decrease in night-time levels of pineal NAT activity were also observed after 13 weeks of CRI in PNx rats of the Sprague-Dawley strain that were housed under a different photoperiod. These results suggest that pineal gland dysfunction is a feature of CRI in the PNx model. Such an abnormality might contribute to the pathogenesis of gonadal dysfunction in CRI. PMID:2765391

  16. Human lacrimal gland regeneration: Perspectives and review of literature

    PubMed Central

    Tiwari, Shubha; Ali, Mohammad Javed; Vemuganti, Geeta K.

    2013-01-01

    The human lacrimal gland is an essential component of the lacrimal functional unit (LFU). Any perturbation of this unit can lead to the debilitating morbid condition called the dry eye syndrome (DES). The current line of therapy available for dry eye remains supportive and palliative with the patient being dependent on life long and frequent administration of lubricating eye drops. Even advanced therapies like punctual plugs, cyclosporine B administration, and salivary gland auto-transplantation have led to a limited success. Under these scenarios, the option of cell based therapy needs to be explored to provide better and long term relief to these patients. This review gives an overview of the efforts in lacrimal gland regeneration and examines the past and ongoing research in cell based therapies in animals as well as human lacrimal gland cultures. The authors discuss their first of its kind functionally viable human lacrimal gland in vitro culture system from fresh exenteration specimens. A brief overview of research in near future and the potential implications of lacrimal gland regenerative therapies have been discussed. PMID:24526853

  17. Human lacrimal gland regeneration: Perspectives and review of literature.

    PubMed

    Tiwari, Shubha; Ali, Mohammad Javed; Vemuganti, Geeta K

    2014-01-01

    The human lacrimal gland is an essential component of the lacrimal functional unit (LFU). Any perturbation of this unit can lead to the debilitating morbid condition called the dry eye syndrome (DES). The current line of therapy available for dry eye remains supportive and palliative with the patient being dependent on life long and frequent administration of lubricating eye drops. Even advanced therapies like punctual plugs, cyclosporine B administration, and salivary gland auto-transplantation have led to a limited success. Under these scenarios, the option of cell based therapy needs to be explored to provide better and long term relief to these patients. This review gives an overview of the efforts in lacrimal gland regeneration and examines the past and ongoing research in cell based therapies in animals as well as human lacrimal gland cultures. The authors discuss their first of its kind functionally viable human lacrimal gland in vitro culture system from fresh exenteration specimens. A brief overview of research in near future and the potential implications of lacrimal gland regenerative therapies have been discussed.

  18. Vasoactive intestinal polypeptide (VIP) innervation of the human eyelid glands.

    PubMed

    Seifert, P; Spitznas, M

    1999-06-01

    This study was conducted to obtain morphological proof of innervating nerve fibres in the glands of the human eyelid (accessory lacrimal glands of Wolfring, meibomian glands, goblet cells, glands of Zeis, glands of Moll, sweat glands, glands of lanugo hair follicles) and identification of the secretomotorically active neuropeptide vasoactive intestinal polypeptide (VIP) as a common transmitter. Epoxy-embedded ultrathin sections of tissue samples from human eyelids were studied using electron microscopy. Paraffin sections fixed in Bouin-Hollande solution were immunostained with rabbit antiserum against VIP. With the electron microscope we were able to identify nerves in the glandular stroma of all the glands examined with the exception of goblet cells. Intraepithelial single axons were only seen in the parenchyma of Wolfring glands. The morphological findings corresponded with the immunological finding of VIP-positive, nerve-like structures in the same locations, with the exception of lanugo hair follicle glands, and goblet cells. Our findings indicate that the glands of the eyelids and main lacrimal gland represent a functional unit with VIP as a possible common stimulating factor. Copyright 1999 Academic Press.

  19. Anatomy and Histology of Rodent and Human Major Salivary Glands

    PubMed Central

    Amano, Osamu; Mizobe, Kenichi; Bando, Yasuhiko; Sakiyama, Koji

    2012-01-01

    Major salivary glands of both humans and rodents consist of three pairs of macroscopic glands: parotid, submandibular, and sublingual. These glands secrete serous, mucous or mixed saliva via the proper main excretory ducts connecting the glandular bodies with the oral cavity. A series of discoveries about the salivary ducts in the 17th century by Niels Stensen (1638–1686), Thomas Wharton (1614–1673), and Caspar Bartholin (1655–1738) established the concept of exocrine secretion as well as salivary glands. Recent investigations have revealed the endocrine functions of parotin and a variety of cell growth factors produced by salivary glands. The present review aims to describe macroscopic findings on the major salivary glands of rodents and the microscopic differences between those of humans and rodents, which review should be of interest to those researchers studying salivary glands. PMID:23209333

  20. LIMITED RECOVERY OF PINEAL FUNCTION AFTER REGENERATION OF PREGANGLIONIC SYMPATHETIC AXONS: EVIDENCE FOR LOSS OF GANGLIONIC SYNAPTIC SPECIFICITY

    PubMed Central

    Lingappa, Jaisri R.; Zigmond, Richard E.

    2013-01-01

    The cervical sympathetic trunks (CST) contain axons of preganglionic neurons that innervate the superior cervical ganglia (SCG). Since, regeneration of CST fibers can be extensive and can reestablish certain specific patterns of SCG connections, restoration of end organ function would be expected. This expectation was examined with respect to the pineal gland, an organ innervated by the two SCG. The activity of pineal serotonin N-acetyltransferase (NAT) exhibits a large circadian rhythm, with activity high at night, which is dependent on the gland’s sympathetic input. Thirty six hours after the CST were crushed bilaterally, nocturnal NAT was decreased by 99%. Three months later, enzyme activity had recovered only to 15% of control values, a recovery dependent on regeneration of CST fibers. Nevertheless, a small day-night rhythm was present in lesioned animals. Neither the density of the gland’s adrenergic innervation nor the ability of an adrenergic agonist to stimulate NAT activity was reduced in rats with regenerated CST. In addition, stimulation of the regenerated CST at a variety of frequencies was at least as effective in increasing NAT activity as seen with control nerves. These data suggest that the failure of pineal function to recover is not due to a quantitative deficit in the extent of reinnervation or in synaptic efficacy. Rather, we suggest that there is some loss of specificity in the synaptic connections made in the SCG during reinnervation, resulting in a loss of the central neuronal information necessary for directing a normal NAT rhythm and thus normal pineal function. PMID:23486957

  1. Anatomy and histology of rodent and human major salivary glands: -overview of the Japan salivary gland society-sponsored workshop-.

    PubMed

    Amano, Osamu; Mizobe, Kenichi; Bando, Yasuhiko; Sakiyama, Koji

    2012-10-31

    MAJOR SALIVARY GLANDS OF BOTH HUMANS AND RODENTS CONSIST OF THREE PAIRS OF MACROSCOPIC GLANDS: parotid, submandibular, and sublingual. These glands secrete serous, mucous or mixed saliva via the proper main excretory ducts connecting the glandular bodies with the oral cavity. A series of discoveries about the salivary ducts in the 17th century by Niels Stensen (1638-1686), Thomas Wharton (1614-1673), and Caspar Bartholin (1655-1738) established the concept of exocrine secretion as well as salivary glands. Recent investigations have revealed the endocrine functions of parotin and a variety of cell growth factors produced by salivary glands.The present review aims to describe macroscopic findings on the major salivary glands of rodents and the microscopic differences between those of humans and rodents, which review should be of interest to those researchers studying salivary glands.

  2. Pineal organs of deep-sea fish: photopigments and structure.

    PubMed

    Bowmaker, James K; Wagner, Hans-Joachim

    2004-06-01

    We have examined the morphology and photopigments of the pineal organs from a number of mesopelagic fish, including representatives of the hatchet fish (Sternoptychidae), scaly dragon-fish (Chauliodontidae) and bristlemouths (Gonostomidae). Although these fish were caught at depths of between 500 and 1000 m, the morphological organisation of their pineal organs is remarkably similar to that of surface-dwelling fish. Photoreceptor inner and outer segments protrude into the lumen of the pineal vesicle, and the outer segment is composed of a stack of up to 20 curved disks that form a cap-like cover over the inner segment. In all species, the pineal photopigment was spectrally distinct from the retinal rod pigment, with lambdamax displaced to longer wavelengths, between approximately 485 and 503 nm. We also investigated the pineal organ of the deep demersal eel, Synaphobranchus kaupi, caught at depths below 2000 m, which possesses a rod visual pigment with lambdamax at 478 nm, but the pineal pigment has lambdamax at approximately 515 nm. In one species of hatchet fish, Argyropelecus affinis, two spectral classes of pinealocyte were identified, both spectrally distinct from the retinal rod photopigment.

  3. Salivary histatins in human deep posterior lingual glands (of von Ebner).

    PubMed

    Piludu, Marco; Lantini, Maria Serenella; Cossu, Margherita; Piras, Monica; Oppenheim, Frank G; Helmerhorst, Eva J; Siqueira, Walter; Hand, Arthur R

    2006-11-01

    Human saliva contains a family of low molecular weight histidine-rich proteins, named histatins, characterised by bactericidal and fungicidal activities in vitro against several microbial pathogens, such as Streptococcus mutans and Candida albicans. They represent a major component of an innate host non-immune defense system. In an earlier study we described the distribution of histatins in the glandular parenchyma of human major salivary glands, confirming that all human major salivary glands are involved in the secretion of histatins into saliva. In the present study we determined the expression and localisation of histatins in human posterior deep lingual glands (von Ebner's glands) by means of immunoelectron microscopy. Thin sections of normal human salivary glands, embedded in Epon resin, were incubated with rabbit polyclonal antibodies specific for human histatins and successively with a gold conjugated goat anti-rabbit IgG used as secondary antibody. Sections incubated with medium devoid of primary antibody or containing non-immune serum were used as controls. The serous secreting cells represented the main source of histatins in the glandular parenchyma of von Ebner's glands. At the electron microscopic level, labeling was associated with rough endoplasmic reticulum, Golgi complex and secretory granules that represented the main cytoplasmic site of histatin localisation. However, variability in the intensity of labeling was observed among adjacent cells. The present results show for the first time that human von Ebner's glands produce and represent a significant source of histatins, supporting the hypothesis of their important role in preventing microbial assaults on the tissues in the posterior region of the tongue and in the circumvallate papillae.

  4. PAR-2 receptor-induced effects on human eccrine sweat gland cells.

    PubMed

    L Bovell, Douglas; Kofler, Barbara; Lang, Roland

    2009-01-01

    Serine proteases can induce cell signaling by stimulating G-protein-coupled receptors, called proteinase-activated receptors (PAR's) on a variety of epithelial cells. While PAR-2, one such receptor, activates cell signaling in a secretory cell line derived from human sweat glands, there was no information on their presence and effects on intact sweat glands. PAR-2 presence and activation of eccrine sweat glands isolated from human skin samples was investigated using Western blot analysis, immunohistochemistry, electron microscopy (EM) and Ca(2+) imaging. Anti-human PAR-2 antibody demonstrated the presence of these receptors in eccrine sweat glands. EM showed that PAR-2 activation resulted in degranulation of secretory cells. Ca(2+) imaging using PAR-2 activators demonstrated a two phase increase in [Ca(2+)](i) which was dependent on extracellular Ca(2+) for the second phase, and that the response could be blocked by prior incubation with xestospongin, the IP(3) receptor blocker. The results demonstrated that PAR-2 receptors are present in human sweat gland secretory cells and that these receptors are functionally active and can induce changes associated with secretory events in eccrine glands.

  5. Regulating effect of epithalone on gastric endocrine cells in pinealectomized rats.

    PubMed

    Khavinson, V K; Popuchiev, V V; Kvetnoii, I M; Yuzhakov, V V; Kotlova, L N

    2000-12-01

    Endocrine cells in the stomach of pinealectomized rats after injection of epithalone (pineal gland peptide) were studied by immunohistochemical tests, morphometry, and image analysis microscopic images. A functional relationship was found between the pineal gland and stomach, which is regulated by peptides produced by the pineal gland.

  6. Follow-up of pineal cysts in children: is it necessary?

    PubMed

    Jussila, Miro-Pekka; Olsén, Päivi; Salokorpi, Niina; Suo-Palosaari, Maria

    2017-12-01

    Pineal cysts are common incidental findings in children undergoing magnetic resonance imaging (MRI). Several studies have suggested MRI follow-up if the cyst is larger than 10 mm. However, cysts do not usually change during follow-up. Prevalence, growth, and structure of the pineal cysts were analyzed to decide if follow-up MRI is necessary. A retrospective review between 2010 and 2015 was performed using 3851 MRI examinations of children aged 0-16 years to detect pineal cysts having a maximum diameter ≥ 10 mm. Eighty-one children with pineal cysts were identified and 79 of them had been controlled by MRI. Cysts were analyzed for the size, growth, and structure. A total of 1.8% of the children had a pineal cyst with a diameter ≥ 10 mm. Cysts were present in 48 girls (59.3%) and 33 boys (40.7%). Most pineal cysts (70/79) did not significantly grow during the follow-up (median 10 months, range 3-145 months). A total of 11.4% (9/79) of the cysts grew with the biggest change measured from the outer cyst wall sagittal anteroposterior dimension (mean 3.4 mm ± 1.7 mm). Only one cyst grew more than 5 mm. We found no factors correlating with the cyst growth among 9 cysts that grew > 2 mm. A majority of pineal cysts remained unchanged during the MRI follow-up. Results of this study suggest that routine MRI follow-up of pineal cysts is not necessary in the absence of unusual radiological characteristics or related clinical symptoms.

  7. The harderian gland: a tercentennial review.

    PubMed Central

    Payne, A P

    1994-01-01

    The harderian gland was first described in 1694 by Johann Jacob Harder (1656-1711). It occurs in most terrestrial vertebrates and is located within the orbit where, in some species, it is the largest structure. It may be compound tubular or compound tubuloalveolar, and its secretory duct is usually morphologically distinct only after leaving the substance of the gland to open on the surface of the nictitating membrane. The tubules of the gland are formed of a single layer of columnar epithelial cells surrounded by myoepithelial cells. The chief product(s) of the gland varies between different groups of vertebrates, and epithelial cells possess granules or vacuoles whose contents may be mucous, serous or lipid. In rodents, the gland synthesises lipids, porphyrins and indoles. In the case of lipid vacuoles, the gland is unusual in releasing these by an exocytotic mechanism. It is unclear whether the gland can act both as an exocrine and endocrine organ. There is control of gland structure and synthesis through a variety of humoral agents, including gonadal, thyroid and pituitary hormones; in addition there is a rich autonomic innervation and many neuropeptides have been identified. The proposed functions of the gland are remarkably diverse and include the gland being (1) a source of 'saliva', (2) a site of immune response, (3) a photoprotective organ, (4) part of a retinal-pineal axis, (5) a source of pheromones, (6) a source of thermoregulatory lipids, (7) a site of osmoregulation, and (8) a source of growth factors. The gland is discussed in terms of its embryology and phylogeny, and in relation to ecological variables. Several goals of future research are identified. Images Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 16 Fig. 17 Fig. 18 Fig. 19 Fig. 20 Fig. 21 Fig. 22 Fig. 23 Fig. 24 Fig. 25 Fig. 26 Fig. 27 Fig. 28 Fig. 29 Fig. 30 Fig. 31 Fig. 32 Fig. 36 Fig. 37 Fig. 38 Fig. 40 PMID:7559104

  8. [Expression of calponin and P63 in human submandibular glands].

    PubMed

    Lu, Yu-he; Gao, Yan

    2007-02-01

    To observe the expression of new myoepithelial cell markers calponin and P63 in human submandibular glands. Calponin and P63 antigen in routinely processed human submandibular gland tissues were immunohistochemically demonstrated by monoclonal antibodies to calponin and P63. Calponin expressed around all acinus and intercalated ducts as linear or punctuate pattern. Positive staining was also noted in peripheral area of some thin striated ducts that connect to intercalated ducts. Subulate or trigonal calponin expression was sometimes seen between the duct dells of striated ducts. P63 expressed mainly in the nucleus of the basal cells of excretory duct. Calponin is an ideal gland. P63 labels mainly the basal cells of excretory duct. marker for myoepithelial cells of human submandibular

  9. Neuroendocrine effects of light

    NASA Astrophysics Data System (ADS)

    Reiter, Russel J.

    1991-09-01

    The light/dark cycle to which animals, and possibly humans, are exposed has a major impact on their physiology. The mechanisms whereby specific tissues respond to the light/dark cycle involve the pineal hormone melatonin. The pineal gland, an end organ of the visual system in mammals, produces the hormone melatonin only at night, at which time it is released into the blood. The duration of elevated nightly melatonin provides every tissue with information about the time of day and time of year (in animals that are kept under naturally changing photoperiods). Besides its release in a circadian mode, melatonin is also discharged in a pulsatile manner; the physiological significance, if any, of pulsatile melatonin release remains unknown. The exposure of animals including man to light at night rapidly depresses pineal melatonin synthesis and, therefore, blood melatonin levels drop precipitously. The brightness of light at night required to depress melatonin production is highly species specific. In general, the pineal gland of nocturnally active mammals, which possess rod-dominated retinas, is more sensitive to inhibition by light than is the pineal gland of diurnally active animals (with cone-dominated retinas). Because of the ability of the light/dark cycle to determine melatonin production, the photoperiod is capable of influencing the function of a variety of endocrine and non-endocrine organs. Indeed, melatonin is a ubiquitously acting pineal hormone with its effects on the neuroendocrine system having been most thoroughly investigated. Thus, in nonhuman photoperiodic mammals melatonin regulates seasonal reproduction; in humans also, the indole has been implicated in the control of reproductive physiology.

  10. Acute and Delayed Effects of Melatonin: Operational Significance

    DTIC Science & Technology

    2000-03-01

    In mammals its primary sites circadian zeitgeber in humans have been much of production are the pineal gland and the retina, discussed (e.g. 5...proposed as an methoxytryptamine (melatonin). The rhythm of endogenous sleep substance, as an opener of the pineal synthesis is generated in the...melatonin in the blind. J Biol Rhythms 1996; 12:16-25. References 1. Arendt J. Melatonin and the manmmalian pineal 14. Sack R L, Lewy AJ, Blood ML

  11. Establishment of Functional Acinar-like Cultures from Human Salivary Glands

    PubMed Central

    Jang, S.I.; Ong, H.L.; Gallo, A.; Liu, X.; Illei, G.

    2015-01-01

    Disorders of human salivary glands resulting from therapeutic radiation treatment for head and neck cancers or from the autoimmune disease Sjögren syndrome (SS) frequently result in the reduction or complete loss of saliva secretion. Such irreversible dysfunction of the salivary glands is due to the impairment of acinar cells, the major glandular cells of protein, salt secretion, and fluid movement. Availability of primary epithelial cells from human salivary gland tissue is critical for studying the underlying mechanisms of these irreversible disorders. We applied 2 culture system techniques on human minor salivary gland epithelial cells (phmSG) and optimized the growth conditions to achieve the maintenance of phmSG in an acinar-like phenotype. These phmSG cells exhibited progenitor cell markers (keratin 5 and nanog) as well as acinar-specific markers—namely, α-amylase, cystatin C, TMEM16A, and NKCC1. Importantly, with an increase of the calcium concentration in the growth medium, these phmSG cells were further promoted to acinar-like cells in vitro, as indicated by an increase in AQP5 expression. In addition, these phmSG cells also demonstrated functional calcium mobilization, formation of epithelial monolayer with high transepithelial electrical resistance (TER), and polarized secretion of α-amylase secretion after β-adrenergic receptor stimulation. Taken together, suitable growth conditions have been established to isolate and support culture of acinar-like cells from the human salivary gland. These primary epithelial cells can be useful for study of molecular mechanisms involved in regulating the function of acinar cells and in the loss of salivary gland function in patients. PMID:25416669

  12. Establishment of functional acinar-like cultures from human salivary glands.

    PubMed

    Jang, S I; Ong, H L; Gallo, A; Liu, X; Illei, G; Alevizos, I

    2015-02-01

    Disorders of human salivary glands resulting from therapeutic radiation treatment for head and neck cancers or from the autoimmune disease Sjögren syndrome (SS) frequently result in the reduction or complete loss of saliva secretion. Such irreversible dysfunction of the salivary glands is due to the impairment of acinar cells, the major glandular cells of protein, salt secretion, and fluid movement. Availability of primary epithelial cells from human salivary gland tissue is critical for studying the underlying mechanisms of these irreversible disorders. We applied 2 culture system techniques on human minor salivary gland epithelial cells (phmSG) and optimized the growth conditions to achieve the maintenance of phmSG in an acinar-like phenotype. These phmSG cells exhibited progenitor cell markers (keratin 5 and nanog) as well as acinar-specific markers-namely, α-amylase, cystatin C, TMEM16A, and NKCC1. Importantly, with an increase of the calcium concentration in the growth medium, these phmSG cells were further promoted to acinar-like cells in vitro, as indicated by an increase in AQP5 expression. In addition, these phmSG cells also demonstrated functional calcium mobilization, formation of epithelial monolayer with high transepithelial electrical resistance (TER), and polarized secretion of α-amylase secretion after β-adrenergic receptor stimulation. Taken together, suitable growth conditions have been established to isolate and support culture of acinar-like cells from the human salivary gland. These primary epithelial cells can be useful for study of molecular mechanisms involved in regulating the function of acinar cells and in the loss of salivary gland function in patients. © International & American Associations for Dental Research 2014.

  13. Immunohistochemical evidence suggests intrinsic regulatory activity of human eccrine sweat glands

    PubMed Central

    ZANCANARO, CARLO; MERIGO, FLAVIA; CRESCIMANNO, CATERINA; ORLANDINI, SIMONETTA; OSCULATI, ANTONIO

    1999-01-01

    Immunohistochemistry of normal eccrine sweat glands was performed on paraffin sections of human skin. Immunoreactivity (ir) for neuron specific enolase, S100 protein (S100), regulatory peptides, nitric oxide synthase type I (NOS-I) and choline-acetyltransferase (ChAT) was found in small nerve bundles close to sweat glands. In the glands, secretory cells were labelled with anticytokeratin antibody. Using antibodies to S100, calcitonin gene-related peptide (CGRP) and substance P (SP) a specific distribution pattern was found in secretory cells. Granulated (dark) and parietal (clear) cells were immunopositive for CGRP, and S100 and SP, respectively. Immunoreactivity was diffuse in the cytoplasm for CGRP and S100, and peripheral for SP. Myoepithelial cells were not labelled. Electron microscopy revealed electron dense granules, probably containing peptide, in granulated cells. Using antibodies to NOS-I and ChAT, ir was exclusively found in myoepithelial cells. Immunoreactivity for the atrial natriuretic peptide was absent in sweat glands. These results provide evidence for the presence of both regulatory peptides involved in vasodilation and key enzymes for the synthesis of nitric oxide and acetylcholine in the secretory coil of human sweat glands. It is suggested that human sweat glands are capable of some intrinsic regulation in addition to that carried out by their nerve supply. PMID:10386780

  14. [THE CHANGES OF THE INTERRELATIONS OF THE PINEAL GLAND AND THE ORGANS OF THE IMMUNE SYSTEM IN RATS IN RESPONSE TO MELATONIN ADMINISTRATION IN LIGHT REGIME DISTURBANCES].

    PubMed

    Litvinenko, G I; Gritzyk, O B; Mel'nikova, Ye V; Avrorov, P A; Tenditnik, M V; Shurlygina, A V; Trufakin, V A

    2015-01-01

    In this work the correlation analysis was applied to detect the integrated response of the pineal gland (PG) and immunocompetent organs of male Wistar rats in response to administration of melatonin (MT) in light regime disturbances. Animals were kept for 14 days under natural or continuous light (CL). Then for 7 days they received the injections of either 0.9% solution of sodium chloride or MT, after which the rats were decapitated and the mass of their body, PG, thymus and spleen was determined. The lymphocyte subpopulations of the thymus and spleen were studied by flow cytometry. The amount of lipofuscin in PG was assessed by the intensity of autofluorescence in organ frozen sections in 560-600 nm wavelength range. It was found that under the influence of MT, the number of intraorgan correlations in the immune system increased, regardless of the light regime. In animals on CL treated with MT, the number of interorgan connections was reduced, while negative correlations appeared between PG lipofuscin content and cellular composition of the spleen. The synchronizing and adaptogenic effects of MT were most pronounced under conditions of CL.

  15. Adenosine triphosphate inhibits melatonin synthesis in the rat pineal gland.

    PubMed

    Souza-Teodoro, Luis Henrique; Dargenio-Garcia, Letícia; Petrilli-Lapa, Camila Lopes; Souza, Ewerton da Silva; Fernandes, Pedro A C M; Markus, Regina P; Ferreira, Zulma S

    2016-03-01

    Adenosine triphosphate (ATP) is released onto the pinealocyte, along with noradrenaline, from sympathetic neurons and triggers P2Y1 receptors that enhance β-adrenergic-induced N-acetylserotonin (NAS) synthesis. Nevertheless, the biotransformation of NAS into melatonin, which occurs due to the subsequent methylation by acetylserotonin O-methyltransferase (ASMT; EC 2.1.1.4), has not yet been evaluated in the presence of purinergic stimulation. We therefore evaluated the effects of purinergic signaling on melatonin synthesis induced by β-adrenergic stimulation. ATP increased NAS levels, but, surprisingly, inhibited melatonin synthesis in an inverse, concentration-dependent manner. Our results demonstrate that enhanced NAS levels, which depend on phospholipase C (PLC) activity (but not the induction of gene transcription), are a post-translational effect. By contrast, melatonin reduction is related to an ASMT inhibition of expression at both the gene transcription and protein levels. These results were independent of nuclear factor-kappa B (NF-kB) translocation. Neither the P2Y1 receptor activation nor the PLC-mediated pathway was involved in the decrease in melatonin, indicating that ATP regulates pineal metabolism through different mechanisms. Taken together, our data demonstrate that purinergic signaling differentially modulates NAS and melatonin synthesis and point to a regulatory role for ATP as a cotransmitter in the control of ASMT, the rate-limiting enzyme in melatonin synthesis. The endogenous production of melatonin regulates defense responses; therefore, understanding the mechanisms involving ASMT regulation might provide novel insights into the development and progression of neurological disorders since melatonin presents anti-inflammatory, neuroprotective, and neurogenic effects. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Effects of acute ethanol administration on nocturnal pineal serotonin N-acetyltransferase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creighton, J.A.; Rudeen, P.K.

    The effect of acute ethanol administration on pineal serotonin N-acetyltransferase (NAT) activity, norepinephrine and indoleamine content was examined in male rats. When ethanol was administered in two equal doses (2 g/kg body weight) over a 4 hour period during the light phase, the nocturnal rise in NAT activity was delayed by seven hours. The nocturnal pineal norepinephrine content was not altered by ethanol except for a delay in the reduction of NE with the onset of the following light phase. Although ethanol treatment led to a significant reduction in nocturnal levels of pineal serotonin content, there was no significant effectmore » upon pineal content of 5-hydroxyindoleacetic acid (5-HIAA). The data indicate that ethanol delays the onset of the rise of nocturnal pineal NAT activity.« less

  17. Gene Expression in Human Accessory Lacrimal Glands of Wolfring

    PubMed Central

    Ubels, John L.; Gipson, Ilene K.; Spurr-Michaud, Sandra J.; Tisdale, Ann S.; Van Dyken, Rachel E.; Hatton, Mark P.

    2012-01-01

    Purpose. The accessory lacrimal glands are assumed to contribute to the production of tear fluid, but little is known about their function. The goal of this study was to conduct an analysis of gene expression by glands of Wolfring that would provide a more complete picture of the function of these glands. Methods. Glands of Wolfring were isolated from frozen sections of human eyelids by laser microdissection. RNA was extracted from the cells and hybridized to gene expression arrays. The expression of several of the major genes was confirmed by immunohistochemistry. Results. Of the 24 most highly expressed genes, 9 were of direct relevance to lacrimal function. These included lysozyme, lactoferrin, tear lipocalin, and lacritin. The glands of Wolfring are enriched in genes related to protein synthesis, targeting, and secretion, and a large number of genes for proteins with antimicrobial activity were detected. Ion channels and transporters, carbonic anhydrase, and aquaporins were abundantly expressed. Genes for control of lacrimal function, including cholinergic, adrenergic, vasoactive intestinal polypeptide, purinergic, androgen, and prolactin receptors were also expressed in gland of Wolfring. Conclusions. The data suggest that the function of glands of Wolfring is similar to that of main lacrimal glands and are consistent with secretion electrolytes, fluid, and protein under nervous and hormonal control. Since these glands secrete directly onto the ocular surface, their location may allow rapid response to exogenous stimuli and makes them readily accessible to topical drugs. PMID:22956620

  18. Le Sommeil et l’Age: de la Physiopathologie a la Therapeutique (Sleep and Age: From Physiopathology to Therapeutics)

    DTIC Science & Technology

    2000-08-01

    the pineal gland , presents a - Sleep hygiene circadian rhythm with a maximal production at 02:00. It Sleep being sensible to each behavioral...widely used in sports and military - a calcification of the pineal gland , scopes to allow a better tolerance to sleep deprivation. It - a more intensive...the genetic expression level in the performance (Dinges & Broughton, 1989). However, suprachiasmatic nucleus and/or the pineal gland , this method can

  19. Pertussis toxin-sensitive G-protein mediates the alpha 2-adrenergic receptor inhibition of melatonin release in photoreceptive chick pineal cell cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, B.L.; Takahashi, J.S.

    The avian pineal gland is a photoreceptive organ that has been shown to contain postjunctional alpha 2-adrenoceptors that inhibit melatonin synthesis and/or release upon receptor activation. Physiological response and (32P)ADP ribosylation experiments were performed to investigate whether pertussis toxin-sensitive guanine nucleotide-binding proteins (G-proteins) were involved in the transduction of the alpha 2-adrenergic signal. For physiological response studies, the effects of pertussis toxin on melatonin release in dissociated cell cultures exposed to norepinephrine were assessed. Pertussis toxin blocked alpha 2-adrenergic receptor-mediated inhibition in a dose-dependent manner. Pertussis toxin-induced blockade appeared to be noncompetitive. One and 10 ng/ml doses of pertussis toxinmore » partially blocked and a 100 ng/ml dose completely blocked norepinephrine-induced inhibition. Pertussis toxin-catalyzed (32P)ADP ribosylation of G-proteins in chick pineal cell membranes was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Membranes were prepared from cells that had been pretreated with 0, 1, 10, or 100 ng/ml pertussis toxin. In the absence of pertussis toxin pretreatment, two major proteins of 40K and 41K mol wt (Mr) were labeled by (32P)NAD. Pertussis toxin pretreatment of pineal cells abolished (32P) radiolabeling of the 40K Mr G-protein in a dose-dependent manner. The norepinephrine-induced inhibition of both cAMP efflux and melatonin release, as assessed by RIA of medium samples collected before membrane preparation, was also blocked in a dose-dependent manner by pertussis toxin. Collectively, these results suggest that a pertussis toxin-sensitive 40K Mr G-protein labeled by (32P)NAD may be functionally associated with alpha 2-adrenergic signal transduction in chick pineal cells.« less

  20. Immune-Pineal Axis: Nuclear Factor κB (NF-κB) Mediates the Shift in the Melatonin Source from Pinealocytes to Immune Competent Cells

    PubMed Central

    Markus, Regina P; Cecon, Erika; Pires-Lapa, Marco Antonio

    2013-01-01

    Pineal gland melatonin is the darkness hormone, while extra-pineal melatonin produced by the gonads, gut, retina, and immune competent cells acts as a paracrine or autocrine mediator. The well-known immunomodulatory effect of melatonin is observed either as an endocrine, a paracrine or an autocrine response. In mammals, nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) blocks noradrenaline-induced melatonin synthesis in pinealocytes, which induces melatonin synthesis in macrophages. In addition, melatonin reduces NF-κB activation in pinealocytes and immune competent cells. Therefore, pathogen- or danger-associated molecular patterns transiently switch the synthesis of melatonin from pinealocytes to immune competent cells, and as the response progresses melatonin inhibition of NF-κB activity leads these cells to a more quiescent state. The opposite effect of NF-κB in pinealocytes and immune competent cells is due to different NF-κB dimers recruited in each phase of the defense response. This coordinated shift of the source of melatonin driven by NF-κB is called the immune-pineal axis. Finally, we discuss how this concept might be relevant to a better understanding of pathological conditions with impaired melatonin rhythms and hope it opens new horizons for the research of side effects of melatonin-based therapies. PMID:23708099

  1. Anterior interhemispheric transsplenial approach to pineal region tumors: anatomical study and illustrative case.

    PubMed

    Yağmurlu, Kaan; Zaidi, Hasan A; Kalani, M Yashar S; Rhoton, Albert L; Preul, Mark C; Spetzler, Robert F

    2018-01-01

    Pineal region tumors are challenging to access because they are centrally located within the calvaria and surrounded by critical neurovascular structures. The goal of this work is to describe a new surgical trajectory, the anterior interhemispheric transsplenial approach, to the pineal region and falcotentorial junction area. To demonstrate this approach, the authors examined 7 adult formalin-fixed silicone-injected cadaveric heads and 2 fresh human brain specimens. One representative case of falcotentorial meningioma treated through an anterior interhemispheric transsplenial approach is also described. Among the interhemispheric approaches to the pineal region, the anterior interhemispheric transsplenial approach has several advantages. 1) There are few or no bridging veins at the level of the pericoronal suture. 2) The parietal and occipital lobes are not retracted, which reduces the chances of approach-related morbidity, especially in the dominant hemisphere. 3) The risk of damage to the deep venous structures is low because the tumor surface reached first is relatively vein free. 4) The internal cerebral veins can be manipulated and dissected away laterally through the anterior interhemispheric route but not via the posterior interhemispheric route. 5) Early control of medial posterior choroidal arteries is obtained. The anterior interhemispheric transsplenial approach provides a safe and effective surgical corridor for patients with supratentorial pineal region tumors that 1) extend superiorly, involve the splenium of the corpus callosum, and push the deep venous system in a posterosuperior or an anteroinferior direction; 2) are tentorial and displace the deep venous system inferiorly; or 3) originate from the splenium of the corpus callosum.

  2. Endogenous 6-Hydroxymelatonin Excretion and Subsequent Risk of Breast Cancer: A Prospective Study

    DTIC Science & Technology

    2008-03-01

    pineal gland in response to darkness. Thus, melatonin displays a strong variation during a 24- hour period: its serum levels are low during daylight...in the United States. Journal of the National Cancer Institute. 87(3):227-8, 1995. Cohen M. Lippman M. Chabner B. Role of pineal gland in aetiology...hormone that is produced primarily by the pineal gland , also follows a circadian rhythm of approximately 24 hours; melatonin is secreted exclusively

  3. Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum

    PubMed Central

    Choi, Eunyoung; Roland, Joseph T.; Barlow, Brittney J.; O’Neal, Ryan; Rich, Amy E.; Nam, Ki Taek; Shi, Chanjuan; Goldenring, James R.

    2014-01-01

    Objective The glands of the stomach body and antral mucosa contain a complex compendium of cell lineages. In lower mammals, the distribution of oxyntic glands and antral glands define the anatomical regions within the stomach. We examined in detail the distribution of the full range of cell lineages within the human stomach. Design We determined the distribution of gastric gland cell lineages with specific immunocytochemical markers in entire stomach specimens from three non-obese organ donors. Results The anatomical body and antrum of the human stomach were defined by the presence of ghrelin and gastrin cells, respectively. Concentrations of somatostatin cells were observed in the proximal stomach. Parietal cells were seen in all glands of the body of stomach as well as in over 50% of antral glands. MIST1-expressing chief cells were predominantly observed in the body, although individual glands of the antrum also showed MIST1-expressing chief cells. While classically-described antral glands were observed with gastrin cells and deep antral mucous cells without any parietal cells, we also observed a substantial population of mixed-type glands containing both parietal cells and G cells throughout the antrum. Conclusions Enteroendocrine cells show distinct patterns of localization in the human stomach. The existence of antral glands with mixed cell lineages indicates that human antral glands may be functionally chimeric with glands assembled from multiple distinct stem cell populations. PMID:24488499

  4. Animal Models of Jet Lag

    DTIC Science & Technology

    2012-01-20

    surgically inserted into the pineal gland and connected to a peristaltic pump that delivers saline solution at low rate and to a outlet tubing that delivers...Journal of Pineal Research. 48(3):290- 6,2010. 2. "Orcadian Regulation of Pineal Gland Rhythmicity", Jimo Borjigin, L. Samantha Zhang, Anda-Alexandra...specializes in the longitudinal monitoring of pineal melatonin secretion for weeks at a time to decipher mechanisms of circadian pacemaker entrainment

  5. Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum.

    PubMed

    Choi, Eunyoung; Roland, Joseph T; Barlow, Brittney J; O'Neal, Ryan; Rich, Amy E; Nam, Ki Taek; Shi, Chanjuan; Goldenring, James R

    2014-11-01

    The glands of the stomach body and antral mucosa contain a complex compendium of cell lineages. In lower mammals, the distribution of oxyntic glands and antral glands define the anatomical regions within the stomach. We examined in detail the distribution of the full range of cell lineages within the human stomach. We determined the distribution of gastric gland cell lineages with specific immunocytochemical markers in entire stomach specimens from three non-obese organ donors. The anatomical body and antrum of the human stomach were defined by the presence of ghrelin and gastrin cells, respectively. Concentrations of somatostatin cells were observed in the proximal stomach. Parietal cells were seen in all glands of the body of the stomach as well as in over 50% of antral glands. MIST1 expressing chief cells were predominantly observed in the body although individual glands of the antrum also showed MIST1 expressing chief cells. While classically described antral glands were observed with gastrin cells and deep antral mucous cells without any parietal cells, we also observed a substantial population of mixed type glands containing both parietal cells and G cells throughout the antrum. Enteroendocrine cells show distinct patterns of localisation in the human stomach. The existence of antral glands with mixed cell lineages indicates that human antral glands may be functionally chimeric with glands assembled from multiple distinct stem cell populations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Human Parotid Gland Alpha-Amylase Secretion as a Function of Chronic Hyperbaric Exposure

    DTIC Science & Technology

    1979-01-01

    parotid ...Pullman, WA 99163 Gilman, S. C, G. J. Fischer, R. J. Biersner, R. D. Thornton, and D. A. Miller. 1979. Human parotid gland alpha-amylase secretion...as a function of chronic hyperbaric exposure. Undersea Biomed. Res. 6(3):303-307.—Secretion of a-amylase by the human parotid gland increased

  7. The Only Known Jawed Vertebrate with Four Eyes and the Bauplan of the Pineal Complex.

    PubMed

    Smith, Krister T; Bhullar, Bhart-Anjan S; Köhler, Gunther; Habersetzer, Jörg

    2018-04-02

    The pineal and parapineal organs are dorsal outpocketings of the vertebrate diencephalon that play key roles in orientation and in circadian and annual cycles. Lampreys are four eyed in that both the pineal and parapineal form eyelike photosensory structures, but the pineal is the dominant or sole median photosensory structure in most lower vertebrate clades. The pineal complex has been thought to evolve in a single direction by losing photosensory and augmenting secretory function in the transitions from three-eyed lower vertebrates to two-eyed mammals and archosaurs [1-3]. Yet the widely accepted elaboration of the parapineal instead of the pineal as the primary median photosensory organ [4] in Lepidosauria (lizards, snakes, and tuataras) hints at a more complex evolutionary history. Here we present evidence that a fourth eye re-evolved from the pineal organ at least once within vertebrates, specifically in an extinct monitor lizard, Saniwa ensidens, in which pineal and parapineal eyes were present simultaneously. The tandem midline location of these structures confirms in a striking fashion the proposed homology of the parietal eye with the parapineal organ and refutes the classical model of pineal bilaterality. It furthermore raises questions about the evolution and functional interpretation of the median photosensory organ in other tetrapod clades. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Effect of pineal tetrapeptide on antioxidant defense in Drosophila melanogaster.

    PubMed

    Khavinson, V K; Myl'nikov, S V

    2000-04-01

    Effects of synthetic pineal tetrapeptide L-Ala-L-Glu-L-Asp-L-Glu (Epithalon) on specific catalase activity and the content of conjugated hydroperoxides in highly inbred Drosophila melanogaster lines differing in reproductive functions were studied. It was shown that Epithalon is a potent modulator of the antioxidant defense, whose biological activity 1000-fold surpasses that of the complex pineal peptide preparation Epithalamin.

  9. Precursors of hexoneogenesis within the human mammary gland

    USDA-ARS?s Scientific Manuscript database

    The human mammary gland is capable of de novo synthesis of glucose and galactose (hexoneogenesis); however, the carbon source is incompletely understood. In this study, we investigated the role of acetate, glutamine, lactate and glycerol as potential carbon sources for hexoneogenesis. Healthy breast...

  10. Pineal-Induced Depression of Free Thyroxine in Syrian Hamsters

    DTIC Science & Technology

    1985-01-01

    activation by blind- ness in Syrian hamsters, can influence free 14 concentration. MATERIALS AND METHODS Male golden hamsters, Mesocricetus auratus...considered that the changes in T4 passively result from pineal- induced hypogonadism and the possible resultant effects on T4 serum bind- ing proteins...the presence of pineal-induced hypogonadism and that, like T4 and FT41, -• ’. 328 Vaughan and Pruitt TESrE S PROSTATE 0.6 80- 20 gn Mgm ,... =_ 9 Mg_

  11. Jet Lag Disorder

    MedlinePlus

    ... light signal is low, the hypothalamus tells the pineal gland, a small organ situated in the brain, to ... During daylight hours, the opposite occurs, and the pineal gland produces very little melatonin. You may be able ...

  12. Endoscopic Histologic Mapping of a Mixed Germ Pineal Tumor.

    PubMed

    Velásquez, Carlos; Rivero-Garvía, Mónica; Rivas, Eloy; Cañizares, María de Los Angeles; Mayorga-Buiza, María José; Márquez-Rivas, Javier

    2016-11-01

    The accurate histologic diagnosis of germ cell tumors in the pineal region is a keystone for determining the best treatment strategy and prognosis. This situation poses a challenge for the neuropathologist, considering the lack of a standarized procedure to obtain biopsy samples, which results in few and small specimens, which are not suitable for diagnosis. We report a case in which a pineal region mixed germ cell tumor was accurately diagnosed by performing histologic mapping through a dual burr-hole endoscopic approach. The technical pitfalls and other considerations necessary for obtaining an accurate diagnosis in this tumor subgroup are specified. In addition, the histologic analysis regarding the sampling technique used is described. The supraorbital frontal endoscopic approach enables the surgeon to perform histologic mapping of pineal region tumors, allowing standarization of the procedure used to obtain the specimens. This approach could result in a more accurate diagnosis, especially in mixed germ cell neoplasms. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Endogenous 6-Hydroxymelatonin Excretion and Subsequent Risk of Breast Cancer: A Prospective Study

    DTIC Science & Technology

    2007-03-01

    4 INTRODUCTION Melatonin (N-acetyl-5methoxtryptamine) is synthesized and released by the pineal gland ...Cohen M. Lippman M. Chabner B. Role of pineal gland in aetiology and treatment of breast cancer. Lancet. 2(8094):814-6, 1978. Coogan PF. Clapp...49, 1986. Blask DE. Pelletier DB. Hill SM. Lemus-Wilson A. Grosso DS. Wilson ST. Wise ME. Pineal melatonin inhibition of tumor promotion in the N

  14. The Highly conserved gonadotropin-releasing hormone-2 form acts as a melatonin-releasing factor in the pineal of a teleost fish, the european sea bass Dicentrarchus labrax.

    PubMed

    Servili, Arianna; Lethimonier, Christèle; Lareyre, Jean-Jacques; López-Olmeda, José Fernando; Sánchez-Vázquez, Francisco Javier; Kah, Olivier; Muñoz-Cueto, José Antonio

    2010-05-01

    With the exception of modern mammals, most vertebrate species possess two GnRH genes, GnRH-1 and GnRH-2. In addition, in many teleost fish, there is a third gene called GnRH-3. If the main function of GnRH-1 is unambiguously to stimulate gonadotropin release, the other two GnRH forms still lack clear functions. This is particularly true for the highly conserved GnRH-2 that encodes chicken GnRH-II. This GnRH variant is consistently expressed in neurons of the dorsal synencephalon in most vertebrate groups but still has no clear functions supported by anatomical, pharmacological, and physiological data. In this study performed on a perciform fish, the European sea bass, we show for the first time that the pineal organ receives GnRH-2-immunoreactive fibers originating from the synencephalic GnRH-2 neurons. This was shown through a combination of retrograde tracing and immunohistochemistry, using highly specific antibodies. Supporting the presence of GnRH-2 functional targets, RT-PCR data together with the in situ hybridization studies showed that the sea bass pineal gland strongly expressed a GnRH receptor (dlGnRHR-II-2b) with clear selectivity for GnRH-2 and, to a lesser extent, the dlGnRHR-II-1a subtype. Finally, in vitro and in vivo experiments demonstrate stimulatory effects of GnRH-2 on nocturnal melatonin secretion by the sea bass pineal organ. Altogether, these data provide, for the first time in a vertebrate species, converging evidence supporting a role of GnRH-2 in the modulation of fish pineal functions.

  15. Lubiprostone stimulates secretion from tracheal submucosal glands of sheep, pigs, and humans

    PubMed Central

    Joo, N. S.; Wine, J. J.; Cuthbert, A. W.

    2009-01-01

    Lubiprostone, a putative ClC-2 chloride channel opener, has been investigated for its effects on airway epithelia (tracheas). Lubiprostone is shown to increase submucosal gland secretion in pigs, sheep, and humans and to increase short-circuit current (SCC) in the surface epithelium of pigs and sheep. Use of appropriate blocking agents and ion-substitution experiments shows anion secretion is the driving force for fluid formation in both glands and surface epithelium. From SCC concentration-response relations, it is shown that for apical lubiprostone Kd = 10.5 nM with a Hill slope of 1.08, suggesting a single type of binding site and, from the speed of the response, close to the apical surface, confirmed the rapid blockade by Cd ions. Responses to lubiprostone were reversible and repeatable, responses being significantly larger with ventral compared with dorsal epithelium. Submucosal gland secretion rates following basolateral lubiprostone were, respectively, 0.2, 0.5, and 0.8 nl gl−1 min−1 in humans, sheep, and pigs. These rates dwarf any contribution surface secretion adds to the accumulation of surface liquid under the influence of lubiprostone. Lubiprostone stimulated gland secretion in two out of four human cystic fibrosis (CF) tissues and in two of three disease controls, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis (COPD/IPF), but in neither type of tissue was the increase significant. Lubiprostone was able to increase gland secretion rates in normal human tissue in the continuing presence of a high forskolin concentration. Lubiprostone had no spasmogenic activity on trachealis muscle, making it a potential agent for increasing airway secretion that may have therapeutic utility. PMID:19233902

  16. Lubiprostone stimulates secretion from tracheal submucosal glands of sheep, pigs, and humans.

    PubMed

    Joo, N S; Wine, J J; Cuthbert, A W

    2009-05-01

    Lubiprostone, a putative ClC-2 chloride channel opener, has been investigated for its effects on airway epithelia (tracheas). Lubiprostone is shown to increase submucosal gland secretion in pigs, sheep, and humans and to increase short-circuit current (SCC) in the surface epithelium of pigs and sheep. Use of appropriate blocking agents and ion-substitution experiments shows anion secretion is the driving force for fluid formation in both glands and surface epithelium. From SCC concentration-response relations, it is shown that for apical lubiprostone K(d) = 10.5 nM with a Hill slope of 1.08, suggesting a single type of binding site and, from the speed of the response, close to the apical surface, confirmed the rapid blockade by Cd ions. Responses to lubiprostone were reversible and repeatable, responses being significantly larger with ventral compared with dorsal epithelium. Submucosal gland secretion rates following basolateral lubiprostone were, respectively, 0.2, 0.5, and 0.8 nl gl(-1) min(-1) in humans, sheep, and pigs. These rates dwarf any contribution surface secretion adds to the accumulation of surface liquid under the influence of lubiprostone. Lubiprostone stimulated gland secretion in two out of four human cystic fibrosis (CF) tissues and in two of three disease controls, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis (COPD/IPF), but in neither type of tissue was the increase significant. Lubiprostone was able to increase gland secretion rates in normal human tissue in the continuing presence of a high forskolin concentration. Lubiprostone had no spasmogenic activity on trachealis muscle, making it a potential agent for increasing airway secretion that may have therapeutic utility.

  17. Electric and magnetic fields and tumor progression. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keng, P.C.; Grota, L.J.; Michaelson, S.

    This laboratory study has rigorously investigated two previously reported biological effects of 60-Hz electric and magnetic fields. The first effect involves nighttime suppression of melatonin synthesis in the pineal glands of rats exposed to high electric fields. The second concerns the increase in colony forming ability of human colon cancer cells exposed to 1.4-G magnetic fields. Neither effect was detected in the present study. A series of published laboratory studies on rats reported that 60-Hz electric fields at various field levels up to 130 kV/m suppress the nighttime synthesis of melatonin, a hormone produced by the pineal gland. Since melatoninmore » is known to modulate the immune system and may inhibit cancer cell activity, changes in physiological levels of melatonin may have significant health consequences. In the repeat experiments, field exposure did not alter nighttime levels of melatonin or enzyme activities in the pineal gland. A small but statistically significant reduction of about 20% in serum melatonin was seen in exposed animals. Pineal melatonin was also unaffected by the presence of red light as a cofactor with field exposure or by time-shifting the daily field exposure period. Another study reported that 60-Hz magnetic fields can affect the colony forming ability of human cancer cells after exposure in a culture medium. In the repeat experiments, field exposure did not alter the colony forming ability of human Colo 205 cells in two different cell concentrations at plating or in two different incubation conditions. Field exposure also did not affect cell cycling in any of the four cell lines tested.« less

  18. Human eccrine sweat gland cells turn into melanin-uptaking keratinocytes in dermo-epidermal skin substitutes.

    PubMed

    Böttcher-Haberzeth, Sophie; Biedermann, Thomas; Pontiggia, Luca; Braziulis, Erik; Schiestl, Clemens; Hendriks, Bart; Eichhoff, Ossia M; Widmer, Daniel S; Meuli-Simmen, Claudia; Meuli, Martin; Reichmann, Ernst

    2013-02-01

    Recently, Biedermann et al. (2010) have demonstrated that human eccrine sweat gland cells can develop a multilayered epidermis. The question still remains whether these cells can fulfill exclusive and very specific functional properties of epidermal keratinocytes, such as the incorporation of melanin, a feature absent in sweat gland cells. We added human melanocytes to eccrine sweat gland cells to let them develop into an epidermal analog in vivo. The interaction between melanocytes and sweat gland-derived keratinocytes was investigated. The following results were gained: (1) macroscopically, a pigmentation of the substitutes was seen 2-3 weeks after transplantation; (2) we confirmed the development of a multilayered, stratified epidermis with melanocytes distributed evenly throughout the basal layer; (3) melanocytic dendrites projected to suprabasal layers; and (4) melanin was observed to be integrated into former eccrine sweat gland cells. These skin substitutes were similar or equal to skin substitutes cultured from human epidermal keratinocytes. The only differences observed were a delay in pigmentation and less melanin uptake. These data suggest that eccrine sweat gland cells can form a functional epidermal melanin unit, thereby providing striking evidence that they can assume one of the most characteristic keratinocyte properties.

  19. Mixed pineal mature teratoma and germinoma in two brothers of the fraternal triplets.

    PubMed

    Grahovac, Gordan; Alden, Tord; Nitin, Wadhwani

    2017-05-01

    Intracranial teratomas are rare germ cell neoplasms that contain tissues derived from all three germ cell layers and most commonly occurring during childhood. This is the first report of pineal region mixed mature teratoma and germinoma in two fraternal brothers of fraternal triplets. We report the case of a mixed mature teratoma and germinoma of the pineal region in two brothers of fraternal triplets. Older brother was initially diagnosed at the age of 11 years with the pure teratoma of the pineal region but the review of the pathology 3 years after initial surgery revealed the mixed mature teratoma with 5% germinomatous component. The younger brother was diagnosed at the age of 13 years with the mixed mature teratoma with 10% germinomatous component tumor of the pineal region. Younger brother has been treated with adjuvant chemo-radiotherapy and older brother was treated without adjuvant therapy. Both brothers had no recurrence. Pineal mature teratomas have a good prognosis, in contrast to their immature or mixed counterparts. A rigorous histological examination of the tumor samples is mandatory, in order to not omit a mixed contingent within the tumor.

  20. Uptake and metabolism of indole compounds by the goldfish pineal organ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNulty, J.A.

    Indole metabolism was studied in the pineal organ of the goldfish by radioautography and high-performance liquid chromatography. The rate of uptake of tritiated serotonin was rapid in vitro with dense labeling over the photoreceptor cells. Tritiated tryptophan was taken up at a slower rate and the label was distributed evenly over the epithelium. Continual light caused a reduction in the concentration of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) compared to groups exposed to constant darkness both in vivo and in explants, suggesting that these effects are not derived from photoreceptors outside the pineal organ. These data are consistent with themore » hypothesis that indole metabolism is functionally linked to phototransduction events in the pineal organ of lower vertebrates.« less

  1. Effect of the synthetic pineal peptide epitalon on spontaneous carcinogenesis in female C3H/He mice.

    PubMed

    Kossoy, George; Anisimov, Vladimir N; Ben-Hur, Herzel; Kossoy, Nadja; Zusman, Itshak

    2006-01-01

    The potential preventive effect of the synthetic pineal peptide Epitalon (Ala-Glu-Asp-Gly) on spontaneous tumorigenesis in mice was studied. One-year-old female C3H/He mice were kept for 6.5 months under standard conditions. Epitalon was injected at a dose of 0.1 microg, 5 times a week. Long-term exposure to Epitalon in small doses did not show any toxic effect. Treatment with Epitalon decreased the number of tumor-bearing mice with malignant tumors and prevented the development of metastases. Spontaneous tumors of the reproductive organs (mammary glands and ovaries) were predominant in both groups of mice (control and experimental). The mammary gland tumors were different variants of invasive ductal carcinomas. In the ovaries, granulosa-cell tumors were found. Tumors were in the minority in other organs and had benign characteristics. In control mice, metastases were found in 3 out of 9 tumor-bearing mice, all of them being from tumors of the reproductive organs. Treatment with Epitalon slowed down the development of metastases from spontaneous tumors, and no metastases were found in the experimental mice. These data highlight the antimetastatic effect of Epitalon as part of its oncostatic properties.

  2. Neuroendoscopy and pineal tumors: A review of the literature and our considerations regarding its utility.

    PubMed

    Mottolese, C; Szathamari, A; Beuriat, P A; Grassiot, B; Simon, E

    2015-01-01

    Endoscopy has entered into the armamentarium of pineal and pineal region tumor treatment. The technique permits not only to control hydrocephalus but also to obtain tissue samples for histological diagnosis. In this paper, we explain the utility of endoscopy for the treatment of pineal tumors and as well as report some personal considerations regarding this topic. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Endocrine cells in human Bartholin's glands. An immunohistochemical and ultrastructural analysis.

    PubMed

    Fetissof, F; Arbeille, B; Bellet, D; Barre, I; Lansac, J

    1989-01-01

    Endocrine cells were investigated in human Bartholin's glands by use of histochemical, immunohistochemical and ultrastructural methods. Endocrine cells represent normal constituents of these glands, being mainly distributed throughout the transitional epithelium of the major excretory duct; however, single elements are dispersed among the acinar lobules. Serotonin-, calcitonin-, katacalcin-, bombesin- and alpha-hCG-immunoreactive cells were recognized, with serotonin-immunoreactive cells predominating. Co-expression of calcitonin, katacalcin or alpha-hCG with serotonin was observed in single endocrine cells. At the ultrastructural level, these cells are richly granulated and show typical neuroendocrine features. Bartholin's glands display an endocrine profile quite similar to that of other cloacal-derived tissues.

  4. Relationship between pineal cyst size and aqueductal CSF flow measured by phase contrast MRI.

    PubMed

    Bezuidenhout, Abraham F; Kasper, Ekkehard M; Baledent, Olivier; Rojas, Rafael; Bhadelia, Rafeeque A

    2018-02-23

    Most patients with pineal cysts referred for neurosurgical consultation have no specific symptoms or objective findings except for pineal cyst size to help in management decisions. Our purpose was to assess the relationship between pineal cyst size and aqueductal CSF flow using PC-MRI. Eleven adult patients with pineal cysts (> 1-cm in size) referred for neurosurgical consultations were included. Cyst volume was calculated using 3D T1 images. PC-MRI in axial plane with velocity encoding of 5 cm/sec was used to quantitatively assess CSF flow through the cerebral aqueduct to determine the aqueductal stroke volume, which was then correlated to cyst size using Pearson's correlation. Pineal cysts were grouped by size into small (6/11) and large (5/11) using the median value to compare aqueductal stroke volume using Mann-Whitney test. Patients were 39 ± 13 years (mean ± SD) of age, and 10/11 (91%) were female. There was significant negative correlation between cyst volume and aqueductal stroke volume (r=0.74; p=0.009). Volume of small cysts (4954±2157 mm3) was significantly different compared to large cysts (13752±3738 mm3; p= 0.008). The aqueductal stroke volume of patients harboring large cysts 33±8 μL/cardiac cycle was significantly lower than that of patients with small cysts 96±29 μL/cardiac cycle (p=0.008). Aqueductal CSF flow appears to decrease with increasing pineal cyst size. Our preliminary results provide first evidence that even in the absence of objective neurological findings or hydrocephalus; larger pineal cysts already display decreased CSF flow through the cerebral aqueduct.

  5. THE ROLE OF THE PINEAL GLAND AND OF ENVIRONMENTAL LIGHTING IN THE REGULATION OF THE ENDOCRINE AND REPRODUCTIVE SYSTEMS OF RODENTS.

    DTIC Science & Technology

    PHOTOPERIODISM, REPRODUCTION(PHYSIOLOGY)), (*ENDOCRINE GLANDS , REPRODUCTION(PHYSIOLOGY)), RODENTS, REPRODUCTIVE SYSTEM, EYE, EXCISION, TESTES, OVARIES, ADRENAL GLANDS , THYROID GLAND , IODINE, THIOUREA, RATS, HAMSTERS

  6. In vivo imaging of human labial glands using advanced optical coherence tomography.

    PubMed

    Ozawa, Nobuyoshi; Sumi, Yasunori; Shimozato, Kazuo; Chong, Changho; Kurabayashi, Tohru

    2009-09-01

    Optical coherence tomography (OCT) has emerged as a high-resolution noninvasive clinical imaging application. The purpose of this study was to show OCT images of human labial glands obtained using a swept-source (SS) OCT system. Labial gland OCT imaging was carried out using our new SS-OCT system for 5 healthy volunteers using a hand-held in vivo OCT scanning probe. The labial tissue was scanned in a superior to inferior direction in 2 and 3 dimensions. The resulting 2- and 3-dimensional ultrahigh-resolution images of in vivo OCT human labial minor salivary glands revealed the epithelium, connective tissue, lobes, and duct. OCT was capable of providing simultaneous and noninvasive structural information with high resolution. This clinical imaging modality promises to have clinical impact in the diagnosis of such conditions as Sjögren syndrome and xerostomia.

  7. Experiment K-7-19: Pineal Physiology After Spaceflight: Relation to Rat Gonadal Function

    NASA Technical Reports Server (NTRS)

    Holley, D. C.; Soliman, M. R. I.; Krasnov, I.; Asadi, H.

    1994-01-01

    The function of pineal exposed to microgravity and spaceflight is studied. It is found that the spaceflight resulted in a stress response as indicated by adrenal hypertrophy, that gonadal function was compromised, and that the pineal may be linked as part of the mechanisms of the response noted.

  8. "Sebocytes' makeup": novel mechanisms and concepts in the physiology of the human sebaceous glands.

    PubMed

    Tóth, Balázs I; Oláh, Attila; Szöllosi, Attila G; Czifra, Gabriella; Bíró, Tamás

    2011-06-01

    The pilosebaceous unit of the human skin consists of the hair follicle and the sebaceous gland. Within this "mini-organ", the sebaceous gland has been neglected by the researchers of the field for several decades. Actually, it was labeled as a reminiscence of human development ("a living fossil with a past but no future"), and was thought to solely act as a producer of sebum, a lipid-enriched oily substance which protects our skin (and hence the body) against various insults. However, due to emerging research activities of the past two decades, it has now become evident that the sebaceous gland is not only a "passive" cutaneous "relic" to establish the physico-chemical barrier function of the skin against constant environmental challenges, but it rather functions as an "active" neuro-immuno-endocrine cutaneous organ. This review summarizes recent findings of sebaceous gland research by mainly focusing on newly discovered physiological functions, novel regulatory mechanisms, key events in the pathology of the gland, and future directions in both experimental and clinical dermatology.

  9. Electrical stimulation of the hypothalamic nucleus paraventricularis mimics the effects of light on pineal melatonin synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olcese, J.; Reuss, S.; Steinlechner, S.

    In an attempt to clarify further the role of the hypothalamic paraventricular nuclei (PVN) in the control of pineal function, the effects of 2 min electrical stimulation of these nuclei were investigated in acutely blinded, adult, male Sprague-Dawley rats. Pineal serotonin-N-acetyltransferase (NAT) activity, melatonin content and catecholamine levels were measured by means of radio-enzymatic, radioimmunoassay and high-performance liquid-chromatography methods, respectively. All three pineal parameters underwent significant declines following brief PVN stimulation during the night time. These observations lend credence to the view that the neural pathways transmitting light information to the sympathetic innervation controlling pineal melatonin synthesis. 22 references, 1more » figure.« less

  10. The Pineal Gland

    ERIC Educational Resources Information Center

    Kimbrough, T. Daniel; Llewellyn, Gerald C.

    1973-01-01

    Describes a surgical technique for performing pinealectomics, applicable to classroom and laboratory studies, by using a head-holding device for small animals and a flat dissecting tray outfitted with holding straps for larger animals. (CC)

  11. Electron microprobe analysis of human labial gland secretory granules in cystic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izutsu, K.; Johnson, D.; Schubert, M.

    1985-06-01

    X-ray microanalysis of freeze-dried labial gland cryosections revealed that Na concentration was doubled and the Ca/S concentration ratio was decreased in secretory granules of labial glands from patients with cystic fibrosis (CF) when compared with glands from normal subjects. Other results suggested that the decrease in the Ca/S concentration ratio resulted from an increase in S concentration. These findings imply that mucous granules in labial saliva showed a CF-related increase in Na and S content, and such changes would be expected to affect the rheology of the mucus after exocytosis. In contrast with a previous study in human parotid glands,more » no evidence was found for CF-related changes in cytoplasmic or nuclear Na, K, and Ca concentrations. Significant elemental differences were found between secretory granules and nuclei and cytoplasm of control cells.« less

  12. Pineal melatonin and the innate immune response: the TNF-alpha increase after cesarean section suppresses nocturnal melatonin production.

    PubMed

    Pontes, Gerlândia N; Cardoso, Elaine C; Carneiro-Sampaio, Magda M S; Markus, Regina P

    2007-11-01

    The nocturnal surge of melatonin is the endocrine expression of the circadian system and is essential for organizing the timing of various endogenous processes. Previous works suggest that, in the beginning of a defense response, the increase in circulating tumor necrosis factor-alpha (TNF-alpha) leads to a transient block of nocturnal melatonin production and promotes a disruption of internal time organization. In the present paper, the concentration of melatonin and cytokines [TNF-alpha, interferon-gamma (IFN-gamma), interleukin (IL)-2, IL-4, IL-5, IL-10, IL-12] in the colostrum (postdelivery day 3) and in the milk (postdelivery days 10, 15, 20 and 30) obtained at midday and midnight from mothers who gave birth by vaginal or cesarean section were compared. The nocturnal melatonin surge observed 3 days after vaginal delivery was absent after cesarean section. IL-12 presented no daily variation in either case, while daily variations in IFN-gamma, IL-10, IL-4 and IL-5 were observed after vaginal delivery and cesarean section. On the other hand, the increase in TNF-alpha after cesarean section resulted in suppression of the nocturnal melatonin surge. Daily variation of IL-2 was only observed after recovery of the nocturnal melatonin surge, 30 days after cesarean section. The present paper supports the hypothesis of a cross-talk between the pineal gland and the immune system, which could represent a putative immune-pineal axis.

  13. Fine structure of the free-living parakeet pineal in relation to the breeding cycle.

    PubMed

    Prasadan, T N; Kotak, V C

    1993-10-01

    Seasonal changes in the ultrastructure of the free-living Rose-Ringed Parakeet Psittacula krameri pineal were examined in relation to the sub-tropical environment and seasonal reproduction. Dark and light pinealocytes of the presumptive neuroendocrine cell line predominated, while supporting cells, ependymal cells, myelinated and non-myelinated nerve fibers with nerve endings, and regressed photoreceptor elements were also observed. Unlike in pineals of many animals, particularly mammals, the presence of dense-core vesicles (DCVs) with varying core density, and absence of clear vesicles and vacuoles with flocullent material, indicate the involvement of DCVs in the synthesis and secretion of pineals principle/s. In November (pre-breeding) when the day length registered a drop to LD 10:14, pinealocytes showed significantly decreased and smaller DCVs and mitochondria, nuclei with heterochromatin, and greater distribution of glycogen and lipid droplets, all indicating low pineal metabolic activity. During the shortest day regime from December to March, when the birds peaked breeding, the number and size of DCVs and mitochondria increased, and Golgi body-endoplasmic reticulum-lysosome complex (GERL) was very well defined. Images of DCVs suggested possible secretion of pineal principle/s by dissolution, and exocytosis. Coincidence of these features with peak gonadotrophic (circulating LH) and spermatogenic and testicular endocrine activity described previously suggested an active turnover of pineal products during this short day length regime when parakeets breed. In contrast, during the post-breeding season (April onwards), when the day-length increased to LD 13:11 and hypophyseal-gonadal function was down, nuclei and RER continued to show active profile, the Golgi body and associated complex were moderately seen, and the DCVs and mitochondria were significantly smaller and lesser. It is therefore probable that the pineal is an important relay to translate cues related

  14. Substance P stimulates human airway submucosal gland secretion mainly via a CFTR-dependent process

    PubMed Central

    Choi, Jae Young; Khansaheb, Monal; Joo, Nam Soo; Krouse, Mauri E.; Robbins, Robert C.; Weill, David; Wine, Jeffrey J.

    2009-01-01

    Chronic bacterial airway infections are the major cause of mortality in cystic fibrosis (CF). Normal airway defenses include reflex stimulation of submucosal gland mucus secretion by sensory neurons that release substance P (SubP). CFTR is an anion channel involved in fluid secretion and mutated in CF; the role of CFTR in secretions stimulated by SubP is unknown. We used optical methods to measure SubP-mediated secretion from human submucosal glands in lung transplant tissue. Glands from control but not CF subjects responded to mucosal chili oil. Similarly, serosal SubP stimulated secretion in more than 60% of control glands but only 4% of CF glands. Secretion triggered by SubP was synergistic with vasoactive intestinal peptide and/or forskolin but not with carbachol; synergy was absent in CF glands. Pig glands demonstrated a nearly 10-fold greater response to SubP. In 10 of 11 control glands isolated by fine dissection, SubP caused cell volume loss, lumen expansion, and mucus flow, but in 3 of 4 CF glands, it induced lumen narrowing. Thus, in CF, the reduced ability of mucosal irritants to stimulate airway gland secretion via SubP may be another factor that predisposes the airways to infections. PMID:19381016

  15. Dopamine D2 receptor expression in the corticotroph cells of the human normal pituitary gland.

    PubMed

    Pivonello, Rosario; Waaijers, Marlijn; Kros, Johan M; Pivonello, Claudia; de Angelis, Cristina; Cozzolino, Alessia; Colao, Annamaria; Lamberts, Steven W J; Hofland, Leo J

    2017-08-01

    The dopamine D 2 receptor is the main dopamine receptor expressed in the human normal pituitary gland. The aim of the current study was to evaluate dopamine D 2 receptor expression in the corticotroph cell populations of the anterior lobe and pars intermedia, as well as posterior lobe of the human normal pituitary gland by immunohistochemistry. Human normal pituitary gland samples obtained from routine autopsies were used for the study. In all cases, histology together with immunostaining for adrenocorticotropic hormone, melanocyte-stimulating hormone, prolactin, and neurofilaments were performed and compared to the immunostaining for D 2 receptor. D 2 receptor was heterogeneously expressed in the majority of the cell populations of the anterior and posterior lobe as well as in the area localized between the anterior and posterior lobe, and arbitrary defined as "intermediate zone". This zone, characterized by the presence of nerve fibers included the residual pars intermedia represented by the colloid-filled cysts lined by the remnant melanotroph cells strongly expressing D 2 receptors, and clusters of corticotroph cells, belonging to the anterior lobe but localized within the cysts and adjacent to the posterior lobe, variably expressing D 2 receptors. D 2 dopamine receptor is expressed in the majority of the cell populations of the human normal pituitary gland, and particularly, in the different corticotroph cell populations localized in the anterior lobe and the intermediate zone of the pituitary gland.

  16. Melatonin: a "Higgs boson" in human reproduction.

    PubMed

    Dragojevic Dikic, Svetlana; Jovanovic, Ana Mitrovic; Dikic, Srdjan; Jovanovic, Tomislav; Jurisic, Aleksandar; Dobrosavljevic, Aleksandar

    2015-02-01

    As the Higgs boson could be a key to unlocking mysteries regarding our Universe, melatonin, a somewhat mysterious substance secreted by the pineal gland primarily at night, might be a crucial factor in regulating numerous processes in human reproduction. Melatonin is a powerful antioxidant which has an essential role in controlling several physiological reactions, as well as biological rhythms throughout human reproductive life. Melatonin, which is referred to as a hormone, but also as an autocoid, a chronobiotic, a hypnotic, an immunomodulator and a biological modifier, plays a crucial part in establishing homeostatic, neurohumoral balance and circadian rhythm in the body through synergic actions with other hormones and neuropeptides. This paper aims to analyze the effects of melatonin on the reproductive function, as well as to shed light on immunological and oncostatic properties of one of the most powerful hormones.

  17. FMRFamide-like immunoreactive neurons of the nervus terminalis of teleosts innervate both retina and pineal organ.

    PubMed

    Ekström, P; Honkanen, T; Ebbesson, S O

    1988-09-13

    The tetrapeptide FMRFamide (Phe-Met-Arg-Phe-NH2) was first isolated from molluscan ganglia. Subsequently, it has become clear that vertebrate brains also contain endogenous FMRFamide-like substances. In teleosts, the neurons of the nervus terminalis contain an FMRFamide-like substance, and provide a direct innervation to the retina (Proc. Natl. Acad. Sci. U.S.A., 81 [1984] 940-944). Here we report the presence of FMRFamide-immunoreactive axonal bundles in the pineal organ of Coho salmon and three-spined sticklebacks. The largest numbers of axons were observed proximal to the brain, in the pineal stalk, while the distal part of the pineal organ contained only few axons. No FMRFamide-like-immunoreactive (IR) cell bodies were observed in the pineal organ. In adult fish it was not possible to determine the origin of these axons, due to the large numbers of FMRFamide-like IR axons in the teleost brain. However, by following the development of FMRFamide-like IR neurons in the embryonic and larval stickleback brain, it was possible to conclude that, at least in newly hatched fish, FMRFamide-like IR axons that originate in the nucleus nervus terminalis reach the pineal organ. Thus, it seems there is a direct connection between a specialized part of the chemosensory system and both the retina and the pineal organ in teleost fish.

  18. Melatonin in human preovulatory follicular fluid

    NASA Technical Reports Server (NTRS)

    Brzezinski, Amnon; Seibel, Machelle M.; Lynch, Harry J.; Deng, Mei-Hua; Wurtman, Richard J.

    1987-01-01

    Melatonin, the major hormone of the pineal gland, has antigonadotrophic activity in many mammals and may also be involved in human reproduction. Melatonin suppresses steroidogenesis by ovarian granulosa and luteal cells in vitro. To determine if melatonin is present in the human ovary, preovulatory follicular fluids (n = 32) from 15 women were assayed for melatonin by RIA after solvent extraction. The fluids were obtained by laparoscopy or sonographically controlled follicular puncture from infertile women undergoing in vitro fertilization and embryo transfer. All patients had received clomiphene citrate, human menopausal gonadotropin, and hCG to stimulate follicle formation. Blood samples were obtained by venipuncture 30 rain or less after follicular aspiration. All of the follicular fluids contained melatonim, in concentrations substantially higher than those in the corresponding serum. A positive correlation was found between follicular fluid and serum melatonin levels in each woman; these observations indicate that preovulatory follicles contain substantial amounts of melatonin that may affect ovarian steroidogenesis.

  19. COSMOS 2044. Experiment K-7-19. Pineal physiology in microgravity: Relation to rat gonadal function

    NASA Technical Reports Server (NTRS)

    Holley, D.; Soliman, M. R. I.; Krasnov, I.; Asadi, H.

    1989-01-01

    It is now known that the pineal organ can interact with many endocrine and nonendocrine tissues in a regulatory fashion. Given its key role in the regulation of melatonin synthesis, its high concentration, and that its levels may persist longer than the more rapidly changing melatonin, it was felt that serotonin might give a more accurate assessment of the effects of microgravity on pineal function following recovery of animals from flight. Five-hydroxyindole acetic acid (5-HIAA), a major metabolite of serotonin metabolism, was also measured. One of the most interesting concomitants to spaceflight and exposure to microgravity has been the disturbing alteration in calcium metabolism and resulting skeletal effects. Given the link between exposure to microgravity and perturbation of calcium metabolism and the fact that the pineal is apparently one of the only soft tissues to calcify, pineal calcium content was examined following spaceflight.

  20. Malignant pineal germ-cell tumors: an analysis of cases from three tumor registries.

    PubMed

    Villano, J Lee; Propp, Jennifer M; Porter, Kimberly R; Stewart, Andrew K; Valyi-Nagy, Tibor; Li, Xinyu; Engelhard, Herbert H; McCarthy, Bridget J

    2008-04-01

    The exact incidence of pineal germ-cell tumors is largely unknown. The tumors are rare, and the number of patients with these tumors, as reported in clinical series, has been limited. The goal of this study was to describe pineal germ-cell tumors in a large number of patients, using data from available brain tumor databases. Three different databases were used: Surveillance, Epidemiology, and End Results (SEER) database (1973-2001); Central Brain Tumor Registry of the United States (CBTRUS; 1997-2001); and National Cancer Data Base (NCDB; 1985-2003). Tumors were identified using the International Classification of Diseases for Oncology, third edition (ICD-O-3), site code C75.3, and categorized according to histology codes 9060-9085. Data were analyzed using SAS/STAT release 8.2, SEER*Stat version 5.2, and SPSS version 13.0 software. A total of 1,467 cases of malignant pineal germ-cell tumors were identified: 1,159 from NCDB, 196 from SEER, and 112 from CBTRUS. All three databases showed a male predominance for pineal germ-cell tumors (>90%), and >72% of patients were Caucasian. The peak number of cases occurred in the 10- to 14-year age group in the CBTRUS data and in the 15- to 19-year age group in the SEER and NCDB data, and declined significantly thereafter. The majority of tumors (73%-86%) were germinomas, and patients with germinomas had the highest survival rate (>79% at 5 years). Most patients were treated with surgical resection and radiation therapy or with radiation therapy alone. The number of patients included in this study exceeds that of any study published to date. The proportions of malignant pineal germ-cell tumors and intracranial germ-cell tumors are in range with previous studies. Survival rates for malignant pineal germ-cell tumors are lower than results from recent treatment trials for intracranial germ-cell tumors, and patients that received radiation therapy in the treatment plan either with surgery or alone survived the longest.

  1. Immunohistochemical sweat gland profiles.

    PubMed

    Noël, Fanchon; Piérard, Gérald E; Delvenne, Philippe; Quatresooz, Pascale; Humbert, Philippe; Piérard-Franchimont, Claudine

    2013-09-01

    Human sweat glands are heterogeneous in their structures and functions. Accordingly, eccrine, apocrine, and apoeccrine glands are distinguished. Some immunohistochemical markers are expected to distinguish the sweat gland types in their secretory and excretory parts. This study used two sets of antibodies. The first panel was composed of antibodies directed to well-defined sweat gland structures. The molecular targets included the low-molecular-weight cytokeratins CAM 5.2, the S100-B protein, the epithelial membrane antigen (EMA), the carcinoembryonic antigen (CEA), and the lectin Ulex europaeus agglutinin-1 (UEA-1). A second exploratory panel of antibodies targeted syndecan-1 (CD138), NKI-C3 (CD63), and CD68. They were used to disclose some undescribed antigen expressions in human sweat glands. The first set of antibodies confirmed previous findings. The immunoreactivities of the three sweat gland types were similar in the excretory ducts. By contrast, they were distinguished in the deeper coiled secretory portions of the glands. Clues supporting their distinction and probably their functional activity were obtained by immunohistochemistry using the S100-B protein, CEA and CD63 antibodies. The immunoreactivity to the S100-B protein, CEA and CD63 possibly help identifying apoeccrine sweat glands or a peculiar functional activity of eccrine sweat glands. © 2013 Wiley Periodicals, Inc.

  2. Marked rapid alterations in nocturnal pineal serotonin metabolism in mice and rats exposed to weak intermittent magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerchl, A.; Nonaka, K.O.; Stokkan, K.A.

    Adult AMES mice and male Sprague Dawley rats were exposed to an artificial magnetic field, generated by Helmholtz coils. 3.5 hours after the onset of darkness the coils were activated for one hour resulting in an inversion of the horizontal component of the earth's magnetic field. The coils were activated and deactivated at 5 min intervals during the 1 hour exposure period. In both mice and rats, the levels of serotonin in the pineal were markedly increased by the exposure. In rats, an increase of pineal 5-hydroxyindole acetic acid and a decrease of the activity of the pineal enzyme serotonin-N-acetyltransferasemore » also was observed. However, pineal and serum melatonin levels were not altered. The results indicate that the metabolism of serotonin in the pineal is quickly affected by the exposure of animals to a magnetic field.« less

  3. Melatonin increases reactive aggression in humans.

    PubMed

    Liu, Jinting; Zhong, Ru; Xiong, Wei; Liu, Haibo; Eisenegger, Christoph; Zhou, Xiaolin

    2017-10-01

    Melatonin, a hormone released preferentially by the pineal gland during the night, affects circadian rhythms and aging processes. As animal studies have shown that melatonin increases resident-intruder aggression, this study aimed to investigate the impact of melatonin treatment on human aggression. In a double-blind, randomized, placebo-controlled between-participant design, 63 healthy male volunteers completed the Taylor Aggression Paradigm (TAP) after oral administration of melatonin or placebo. We found that when given the opportunity to administer high or low punishments to an opponent, participants who ingested melatonin selected the high punishment more often than those who ingested placebo. The increased reactive aggression under melatonin administration remained after controlling for inhibitory ability, trait aggression, trait impulsiveness, circadian preference, perceptual sensibility to noise, and changes in subjective sleepiness and emotional states. This study provides novel and direct evidence for the involvement of melatonin in human social processes.

  4. Update on the management of pineal cysts: Case series and a review of the literature.

    PubMed

    Berhouma, M; Ni, H; Delabar, V; Tahhan, N; Memou Salem, S; Mottolese, C; Vallee, B

    2015-01-01

    The natural history of pineal cysts still remains unclear. Incidental pineal cysts have become more common which raises the question of their management. Symptomatic pineal cysts may require a surgical solution but therapeutic indications have not yet been clearly established. From 1986 to 2012, 26 patients with pineal cysts were identified. Their medical records were retrospectively assessed focusing on the initial symptoms, imaging characteristics of the cyst, management strategy, operative technique and their complications, as well as the latest follow-up. A systematic review of the literature is also presented. Twenty-six patients with pineal cysts were identified. The mean age was 23.5 years ranging from 7 to 49 years. Symptoms included intracranial hypertension with obstructive hydrocephalus in 18 cases and oculomotor anomalies in 12 cases. Two adult cases presented with non-specific headaches and did not require surgery. Twenty patients were operated via a suboccipital transtentorial approach with total removal of the cyst in 70% of the cases, while the remaining 4 cases were treated with an intraventricular endoscopic marsupialization associating a third ventriculostomy. Four patients required a preoperative ventriculo-peritoneal shunt due to life-threatening obstructive hydrocephalus. Overall, peri-operative mortality was nil. In the two non-operated patients, the cyst remained stable and no recurrences were observed in all operated patients with a mean follow-up of 144 months. In the majority of incidental pineal cysts, a clinical and imaging follow-up is sufficient but occasionally not required especially in adults as very rare cases of increase in size have been reported. Copyright © 2014. Published by Elsevier Masson SAS.

  5. Pineal tumors: analysis of treatment results in 20 patients.

    PubMed

    Amendola, Beatriz E; Wolf, Aizik; Coy, Sammie R; Amendola, Marco A; Eber, Daryl

    2005-01-01

    The authors evaluate their results when using gamma knife surgery (GKS) in the management of patients with tumors in the pineal region. This is a retrospective clinical evaluation of 20 patients with primary tumors of the pineal region treated with GKS from November 1994 through August 2003. There were 13 germ cell tumors, two pineoblastomas, two low-grade gliomas, one primitive neuroectodermal tumor, one teratoma, and one pineocytoma. There were 10 male and 10 female patients. Their median age was 15.5 years (range 5-71 years). The median margin dose was 11 Gy (range 8-20 Gy). The median target volume was 3.1 cm3 (range 0.1-49.9 cm3). Five patients received sequential systemic chemotherapy and four underwent adjuvant conventional radiation therapy. Seventeen (85%) of 20 patients are alive with a median survival of 30.4 months (range 0-85.7 months). Two patients required retreatment. Three patients died: one of unrelated causes, one who presented with extensive local disease, and the other of meningeal carcinomatosis with local control of the primary tumor. No complications from GKS were noted. This initial experience suggests that GKS is a valuable treatment modality for the management of pineal region tumors. This technique offers excellent local tumor control and minimal patient morbidity, allowing for immediate use of systemic chemotherapy and/or conventional radiation if indicated.

  6. Transcortical approach to a huge pineal mature teratoma.

    PubMed

    Berhouma, Moncef; Jemel, Hafedh; Ksira, Iadh; Khaldi, Moncef

    2008-01-01

    Intracranial teratomas are rare germ cell neoplasms occurring more often during childhood. We report the case of a huge mature teratoma of the pineal region in a 10-year-old patient that was not correctly diagnosed preoperatively by stereotactic biopsy. The tumor was revealed by intracranial hypertension and a Parinaud syndrome. The tumor markers were within normal levels in the serum. A left transcortical parietal approach was used to completely resect the tumor. No adjuvant treatment was given. A complete neurological recovery was observed after the surgical procedure. Follow-up at 2 years did not show any recurrence. Pineal mature teratomas have a good prognosis, in contrast to their immature or mixed counterparts. A rigorous histological examination of the tumor samples is mandatory, in order to not omit a mixed contingent within the tumor. The treatment is exclusively surgical. (c) 2008 S. Karger AG, Basel.

  7. Evidence of a role for melatonin in fetal sheep physiology: direct actions of melatonin on fetal cerebral artery, brown adipose tissue and adrenal gland

    PubMed Central

    Torres-Farfan, Claudia; Valenzuela, Francisco J; Mondaca, Mauricio; Valenzuela, Guillermo J; Krause, Bernardo; Herrera, Emilio A; Riquelme, Raquel; Llanos, Anibal J; Seron-Ferre, Maria

    2008-01-01

    Although the fetal pineal gland does not secrete melatonin, the fetus is exposed to melatonin of maternal origin. In the non-human primate fetus, melatonin acts as a trophic hormone for the adrenal gland, stimulating growth while restraining cortisol production. This latter physiological activity led us to hypothesize that melatonin may influence some fetal functions critical for neonatal adaptation to extrauterine life. To test this hypothesis we explored (i) the presence of G-protein-coupled melatonin binding sites and (ii) the direct modulatory effects of melatonin on noradrenaline (norepinephrine)-induced middle cerebral artery (MCA) contraction, brown adipose tissue (BAT) lypolysis and ACTH-induced adrenal cortisol production in fetal sheep. We found that melatonin directly inhibits the response to noradrenaline in the MCA and BAT, and also inhibits the response to ACTH in the adrenal gland. Melatonin inhibition was reversed by the melatonin antagonist luzindole only in the fetal adrenal. MCA, BAT and adrenal tissue displayed specific high-affinity melatonin binding sites coupled to G-protein (Kd values: MCA 64 ± 1 pm, BAT 98.44 ± 2.12 pm and adrenal 4.123 ± 3.22 pm). Melatonin binding was displaced by luzindole only in the adrenal gland, supporting the idea that action in the MCA and BAT is mediated by different melatonin receptors. These direct inhibitory responses to melatonin support a role for melatonin in fetal physiology, which we propose prevents major contraction of cerebral vessels, restrains cortisol release and restricts BAT lypolysis during fetal life. PMID:18599539

  8. Androgen dynamics in vitro in the human prostate gland. Effect of oestradiol-17β

    PubMed Central

    Giorgi, Eleonora P.; Stewart, Joan C.; Grant, J. K.; Shirley, I. M.

    1972-01-01

    Normal, hyperplastic and adenocarcinomatous human prostatic tissue was perfused in vitro with radioactively labelled androstenedione, testosterone and 5α-dihydrotestosterone with and without added oestradiol-17β. Various parameters of tissue–steroid relationship were measured at the steady state. When oestradiol (0.11 or 0.22μmol/l) was added to the perfusing medium, the entry of the steroids into the tissue and their metabolism was increased in the majority of the glands studied. The `uptake' of all the steroids varied, in response to the addition of oestradiol, in both normal and adenocarcinomatous glands in a way differing from the response of hyperplastic glands. As a consequence, the tissue clearance of the steroids, particularly of androstenedione and testosterone, increased in normal and adenocarcinomatous glands in the presence of oestradiol, and decreased in the hyperplastic tissues. At a concentration 0.33μmol/l, oestradiol decreased the entry of the steroids in all the tissues studied, while the clearance of steroids tended to decrease. The significance of these findings in terms of the regulation of androgen dynamics in vivo in the normal and diseased human prostate, with particular regard to the response to oestrogen treatment, is discussed. PMID:5075225

  9. Cancer Secretome May Influence BSP and DSP Expression in Human Salivary Gland Cells

    PubMed Central

    Hamilton, Samantha Lynn; Ferando, Blake; Eapen, Asha Sarah; Yu, Jennifer Chian; Joy, Anita Rose

    2016-01-01

    One of the biggest challenges in managing head and neck cancers, especially salivary gland cancers, is the identification of secreted biomarkers of the disease that can be evaluated noninvasively. A relevant source of enriched tumor markers could potentially be found in the tumor secretome. Although numerous studies have evaluated secretomes from various cancers, the influence of the cancer secretome derived from salivary gland cancers on the behavior of normal cells has not yet been elucidated. Our data indicate that secretome derived from salivary gland cancer cells can influence the expression of two potential biomarkers of oral cancer—namely, bone sialoprotein (BSP) and dentin sialoprotein (DSP)—in normal salivary gland cells. Using routine immunohistochemistry, immunofluorescence, and immunoblotting techniques, we demonstrate an enrichment of BSP and DSP in human salivary gland (HSG) cancer tissue, unique localizations of BSP and DSP in HSG cancer cells, and enriched expression of BSP and DSP in normal salivary gland cells exposed to a cancer secretome. The secretome domain of the cancer microenvironment could alter signaling cascades responsible for normal cell proliferation, migration, and invasion, thus enhancing cancer cell survival and the potential for cancer progression. The cancer secretome may be critical in maintaining and stimulating “cancer-ness,” thus potentially promoting specific hallmarks of metastasis. PMID:27881474

  10. Cancer Secretome May Influence BSP and DSP Expression in Human Salivary Gland Cells.

    PubMed

    Hamilton, Samantha Lynn; Ferando, Blake; Eapen, Asha Sarah; Yu, Jennifer Chian; Joy, Anita Rose

    2017-03-01

    One of the biggest challenges in managing head and neck cancers, especially salivary gland cancers, is the identification of secreted biomarkers of the disease that can be evaluated noninvasively. A relevant source of enriched tumor markers could potentially be found in the tumor secretome. Although numerous studies have evaluated secretomes from various cancers, the influence of the cancer secretome derived from salivary gland cancers on the behavior of normal cells has not yet been elucidated. Our data indicate that secretome derived from salivary gland cancer cells can influence the expression of two potential biomarkers of oral cancer-namely, bone sialoprotein (BSP) and dentin sialoprotein (DSP)-in normal salivary gland cells. Using routine immunohistochemistry, immunofluorescence, and immunoblotting techniques, we demonstrate an enrichment of BSP and DSP in human salivary gland (HSG) cancer tissue, unique localizations of BSP and DSP in HSG cancer cells, and enriched expression of BSP and DSP in normal salivary gland cells exposed to a cancer secretome. The secretome domain of the cancer microenvironment could alter signaling cascades responsible for normal cell proliferation, migration, and invasion, thus enhancing cancer cell survival and the potential for cancer progression. The cancer secretome may be critical in maintaining and stimulating "cancer-ness," thus potentially promoting specific hallmarks of metastasis.

  11. Prevalence of human papillomavirus and Epstein-Barr virus in salivary gland diseases.

    PubMed

    Lin, Frank Cheau-Feng; Chen, Pei-Liang; Tsao, Tang-Yi; Li, Chia-Ru; Jeng, Kee-Ching; Tsai, Stella Chin-Shaw

    2014-10-01

    The roles of human papillomavirus (HPV) and Epstein-Barr virus (EBV) in head and neck neoplasms have been well reported, but little is known about their relationship with salivary gland tumours. This study investigated the presence of HPV and EBV in salivary gland diseases. The presence of HPV 16/18 and EBV was analysed in archival pathological specimens collected from patients who had undergone surgery for salivary gland diseases. HPV 16/18 DNA was detected using nested polymerase chain reaction (PCR) and further confirmed with immunohistochemistry. EBV DNA was detected using real-time PCR. A total of 61 pathological specimens were examined: 39.5% (15/38) of pleomorphic adenomas, 33.3% (3/9) of Warthin's tumours, 33.3% (one of 3) of mucoepidermoid carcinomas, and 25.0% (one of 4) of benign lymphoepithelial lesions were positive for high-risk HPV 16/18. Only two Warthin's tumours were positive for EBV. The infectious nature of salivary gland neoplasms was revealed by the high prevalence of HPV infection, and the specific presence of EBV in Warthin's tumours, suggesting a potential role for HPV and EBV in salivary gland diseases. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Sleep–wake regulation and hypocretin–melatonin interaction in zebrafish

    PubMed Central

    Appelbaum, Lior; Wang, Gordon X.; Maro, Geraldine S.; Mori, Rotem; Tovin, Adi; Marin, Wilfredo; Yokogawa, Tohei; Kawakami, Koichi; Smith, Stephen J.; Gothilf, Yoav; Mignot, Emmanuel; Mourrain, Philippe

    2009-01-01

    In mammals, hypocretin/orexin (HCRT) neuropeptides are important sleep–wake regulators and HCRT deficiency causes narcolepsy. In addition to fragmented wakefulness, narcoleptic mammals also display sleep fragmentation, a less understood phenotype recapitulated in the zebrafish HCRT receptor mutant (hcrtr−/−). We therefore used zebrafish to study the potential mediators of HCRT-mediated sleep consolidation. Similar to mammals, zebrafish HCRT neurons express vesicular glutamate transporters indicating conservation of the excitatory phenotype. Visualization of the entire HCRT circuit in zebrafish stably expressing hcrt:EGFP revealed parallels with established mammalian HCRT neuroanatomy, including projections to the pineal gland, where hcrtr mRNA is expressed. As pineal-produced melatonin is a major sleep-inducing hormone in zebrafish, we further studied how the HCRT and melatonin systems interact functionally. mRNA level of arylalkylamine-N-acetyltransferase (AANAT2), a key enzyme of melatonin synthesis, is reduced in hcrtr−/− pineal gland during the night. Moreover, HCRT perfusion of cultured zebrafish pineal glands induces melatonin release. Together these data indicate that HCRT can modulate melatonin production at night. Furthermore, hcrtr−/− fish are hypersensitive to melatonin, but not other hypnotic compounds. Subthreshold doses of melatonin increased the amount of sleep and consolidated sleep in hcrtr−/− fish, but not in the wild-type siblings. These results demonstrate the existence of a functional HCRT neurons-pineal gland circuit able to modulate melatonin production and sleep consolidation. PMID:19966231

  13. Expression analysis of human salivary glands by laser microdissection: differences between submandibular and labial glands.

    PubMed

    Kouznetsova, Irina; Gerlach, Klaus L; Zahl, Christian; Hoffmann, Werner

    2010-01-01

    Both the major and minor salivary glands are the sources of saliva, a fluid vital for the maintenance of a healthy oral cavity. Here, the expression profiles of human submandibular (SMG) and labial glands (LG) were compared by RT-PCR analysis of laser microdissected mucous and serous cells, respectively. The focus was on trefoil factor family (TFF) genes, but also other genes encoding secretory proteins (mucins, lysozyme, amylase, statherin, and histatins) or aquaporin 5 were included. Immunofluorescence studies concerning TFF1-3, FCGBP, amylase, and lysozyme are also presented. It was shown that LGs clearly contain serous cells and that these cells differ in their expression profiles from serous SMG cells. Furthermore, all three TFF peptides, together with MUC5B, MUC7, MUC19, and FCGBP, were clearly detectable in mucous acini of both LGs and SMGs. In contrast, lysozyme was differentially expressed in LGs and SMGs. It can be expected that labial saliva may play a particularly important role for protecting the teeth. Copyright 2010 S. Karger AG, Basel.

  14. De novo epidermal regeneration using human eccrine sweat gland cells: higher competence of secretory over absorptive cells.

    PubMed

    Pontiggia, Luca; Biedermann, Thomas; Böttcher-Haberzeth, Sophie; Oliveira, Carol; Braziulis, Erik; Klar, Agnieszka S; Meuli-Simmen, Claudia; Meuli, Martin; Reichmann, Ernst

    2014-06-01

    In our previous work, we showed that human sweat gland-derived epithelial cells represent an alternative source of keratinocytes to grow a near normal autologous epidermis. The role of subtypes of sweat gland cells in epidermal regeneration and maintenance remained unclear. In this study, we compare the regenerative potential of both secretory and absorptive sweat gland cell subpopulations. We demonstrate the superiority of secretory over absorptive cells in forming a new epidermis on two levels: first, the proliferative and colony-forming efficiencies in vitro are significantly higher for secretory cells (SCs), and second, SCs show a higher frequency of successful epidermis formation as well as an increase in the thickness of the formed epidermis in the in vitro and in vivo functional analyses using a 3D dermo-epidermal skin model. However, the ability of forming functional skin substitutes is not limited to SCs, which supports the hypothesis that multiple subtypes of sweat gland epithelial cells hold regenerative properties, while the existence and exact localization of a keratinocyte stem cell population in the human eccrine sweat gland remain elusive.

  15. Eight hours of nocturnal 915 MHz radiofrequency identification (RFID) exposure reduces urinary levels of melatonin and its metabolite via pineal arylalkylamine N-acetyltransferase activity in male rats.

    PubMed

    Kim, Hye Sun; Paik, Man-Jeong; Lee, Yu Hee; Lee, Yun-Sil; Choi, Hyung Do; Pack, Jeong-Ki; Kim, Nam; Ahn, Young Hwan

    2015-01-01

    We investigated the effects of whole-body exposure to the 915 MHz radiofrequency identification (RFID) on melatonin biosynthesis and the activity of rat pineal arylalkylamine N-acetyltransferase (AANAT). Rats were exposed to RFID (whole-body specific absorption rate, 4 W/kg) for 8 h/day, 5 days/week, for weeks during the nighttime. Total volume of urine excreted during a 24-h period was collected after RFID exposure. Urinary melatonin and 6-hydroxymelatonin sulfate (6-OHMS) was measured by gas chromatography-mass spectrometry (GC-MS) and enzyme-linked immunosorbent assay (ELISA), respectively. AANAT enzyme activity was measured using liquid biphasic dif-13 fusion assay. Protein levels and mRNA expression of AANAT was 14 measured by Western blot and reverse transcription polymerase 15 chain reaction (RT-PCR) analysis, respectively. Eight hours of nocturnal RFID exposure caused a significant reduction in both urinary melatonin (p = 0. 003) and 6-OHMS (p = 0. 026). Activity, protein levels, and mRNA expression of AANAT were suppressed by exposure to RFID (p < 0. 05). Our results suggest that nocturnal RFID exposure can cause reductions in the levels of both urinary melatonin and 6-OHMS, possibly due to decreased melatonin biosynthesis via suppression of Aanat gene transcription in the rat pineal gland.

  16. Human Breast Cancer Cells Are Redirected to Mammary Epithelial Cells upon Interaction with the Regenerating Mammary Gland Microenvironment In-Vivo

    PubMed Central

    Bussard, Karen M.; Smith, Gilbert H.

    2012-01-01

    Breast cancer is the second leading cause of cancer deaths in the United States. At present, the etiology of breast cancer is unknown; however the possibility of a distinct cell of origin, i.e. a cancer stem cell, is a heavily investigated area of research. Influencing signals from the tissue niche are known to affect stem cells. Literature has shown that cancer cells lose their tumorigenic potential and display ‘normal’ behavior when placed into ‘normal’ ontogenic environments. Therefore, it may be the case that the tissue microenvironment is able to generate signals to redirect cancer cell fate. Previously, we showed that pluripotent human embryonal carcinoma cells could be redirected by the regenerating mammary gland microenvironment to contribute epithelial progeny for ‘normal’ gland development in-vivo. Here, we show that that human metastatic, non-metastatic, and metastasis-suppressed breast cancer cells proliferate and contribute to normal mammary gland development in-vivo without tumor formation. Immunochemistry for human-specific mitochondria, keratin 8 and 14, as well as human-specific milk proteins (alpha-lactalbumin, impregnated transplant hosts) confirmed the presence of human cell progeny. Features consistent with normal mammary gland development as seen in intact hosts (duct, lumen formation, development of secretory acini) were recapitulated in both primary and secondary outgrowths from chimeric implants. These results suggest the dominance of the tissue microenvironment over cancer cell fate. This work demonstrates that cultured human breast cancer cells (metastatic and non-metastatic) respond developmentally to signals generated by the mouse mammary gland microenvironment during gland regeneration in-vivo. PMID:23155468

  17. Intralobular ducts of human major salivary glands contain leptin and its receptor.

    PubMed

    De Matteis, R; Puxeddu, R; Riva, A; Cinti, S

    2002-11-01

    Leptin, a 16-kDa hormone, plays an important role in the control of food intake and in energy homeostasis both in rodents and in man. Leptin is mainly produced and secreted by adipocytes, but other tissues and gastric glands have also recently been shown to produce it in a dual (endocrine and exocrine) mode. In addition, a leptin receptor has been detected in taste cells of mouse circumvallate papillae and in rat intestinal epithelium. These data prompted us to carry out a detailed study of human salivary glands as potential leptin-producing organs. Biopsies of salivary glands (submandibular and parotid) obtained from male and female patients during surgery for different clinical indications were subjected to immunohistochemical study for the presence of leptin, its functional receptor, insulin and glucagon. The presence and cellular distribution of glucocorticoid receptor in leptin-secreting cells were also investigated. Double immunohistochemical staining (silver-gold intensification and avidin-biotin-peroxidase) was used for the visualization of glucocorticoid receptor and leptin labelling, respectively. The results show that intralobular duct cells of submandibular and parotid glands are immunoreactive for leptin, leptin receptor and glucagon but not for insulin. Leptin was also detected in some microglobules in whole saliva obtained from four healthy volunteers. Co-localization for leptin, leptin receptor and glucocorticoid receptor in the same cell type suggested a functional relationship between glucocorticoid hormone and leptin secretion also at the level of the salivary glands.

  18. Chronic exposure to ELF fields may induce depression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, B.W.

    Exposure to extremely-low-frequency (ELF) electric or magnetic fields has been postulated as a potentially contributing factor in depression. Epidemiologic studies have yielded positive correlations between magnetic- and/or electric-field strengths in local environments and the incidence of depression-related suicide. Chronic exposure to ELF electric or magnetic fields can disrupt normal circadian rhythms in rat pineal serotonin-N-acetyltransferase activity as well as in serotonin and melatonin concentrations. Such disruptions in the circadian rhythmicity of pineal melatonin secretion have been associated with certain depressive disorders in human beings. In the rat, ELF fields may interfere with tonic aspects of neuronal input to the pinealmore » gland, giving rise to what may be termed functional pinealectomy. If long-term exposure to ELF fields causes pineal dysfunction in human beings as it does in the rat, such dysfunction may contribute to the onset of depression or may exacerbate existing depressive disorders. 85 references.« less

  19. Papillary tumor of the pineal region: Case report and review of the literature.

    PubMed

    Cañizares Méndez, María de Los Ángeles; Amosa Delgado, Manuel; Álvarez Salgado, Juan Antonio; Villaseñor Ledezma, Jorge Javier; Capilla Cabezuelo, Elena; Díaz Crespo, Francisco

    2018-04-22

    Papillary tumor of the pineal region is a rare neuroepithelial tumor characterized by papillary architecture and epithelial cytology, immunopositivity for cytokeratin and ependymal differentiation. It is considered grade II-III by the World Health Organization and was first described by Jouvet in 2003. We present a 34-year-old male with headaches, blurred vision and normal examination. Radiological study showed a nodulocystic lesion in the pineal region compatible with pineocytoma. Surgery was performed using an infratentorial supracerebellar approach, finding a cystic tumor in the quadrigeminal cistern which was completely resected. Histopathology reported a papillary tumor of the pineal region. The patient made good progress without adjuvant therapy, and after 57 months of follow-up he remained asymptomatic and free of recurrence. A review of the literature was performed to collect all the cases published with gross total resection and no complementary treatment. In conclusion, there is still much to be learned about the pathogenesis, prognosis and management of this tumor. Copyright © 2018 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. TransRapid TR-07 maglev-spectrum magnetic field effects on daily pineal indoleamine metabolic rhythms in rodents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groh, K.R.

    This study examined the effects on pineal function of magnetic field (MF) exposures (ac and dc components) similar to those produced by the TransRapid TR-07 and other electromagnetic maglev systems (EMS). Rats were entrained to a light-dark cycle and then exposed to a continuous, or to an inverted, intermittent (on = 45 s, off = 15 s, induced current = 267 G/s) simulated multifrequency ac and dc magnetic field (MF) at 1 or 7 times the TR-07 maglev vehicle MF intensity for 2 hr. Other groups of rats were exposed to only the ac or the dc-component of the maglevmore » MF. For comparison, one group was exposed to an inverted, intermittent 60-Hz MF. Each group was compared to an unexposed group of rats for changes in pineal melatonin and serotonin-N-acetyltransferase (NAT). MF exposures at an intensity equivalent to that produced by the TR-07 vehicle had no effect on melatonin or NAT compared with sham-exposed animals under any of the conditions examined. However, 7X TR-07-level continuous 2-h MF exposures significantly depressed pineal NAT by 45%. Pineal melatonin was also depressed 33--43% by a continuous 7X TR-07 MF exposure and 28% by an intermittent 60-Hz 850-mG MF, but the results were not statically significant. This study demonstrates that intermittent, combined ac and dc MFs similar to those produced by the TR-07 EMS maglev vehicle alter the normal circadian rhythm of pineal indoleamine metabolism. The pineal regulatory enzyme NAT was more sensitive to MF exposure than melatonin and may be a more desirable measure of the biological effects of MF exposure.« less

  1. Control of pineal indole biosynthesis by changes in sympathetic tone caused by factors other than environmental lighting.

    NASA Technical Reports Server (NTRS)

    Lynch, H. J.; Eng, J. P.; Wurtman, R. J.

    1973-01-01

    Description of experimental investigations showing that, in addition to environmental lighting, other manipulations known to modify sympathetic tone can also modify pineal indole biosynthesis. Comparable alterations in sympathetic tone that occur in response to activity or feeding cycles may be instrumental in generating the pineal rhythms that persist in the absence of light-dark cycle.

  2. Selective expression of neuropeptides in the rat mammary gland: somatostatin gene is expressed during lactation.

    PubMed

    Chen, A; Laskar-Levy, O; Koch, Y

    1999-12-01

    The existence of numerous neuropeptides in milk, in concentrations that exceed those in maternal plasma, is well established. It is still unclear whether these neuropeptides are produced by the mammary gland or that the gland concentrates them from the general circulation. In this study, we have examined the possibility that the genes of these neuropeptides are expressed in the rat mammary gland. RNA was extracted from the mammary glands of female rats during different stages of reproduction as well as from other tissues such as hypothalami, pancreas, pineal glands, small intestine, and ovaries. Following RT reaction, the resulting cDNA were amplified by radioactive PCR using specific oligonucleotide primers. We have used specific primers for the following neuropeptides: galanin, somatostatin, vasoactive intestinal peptide, TRH, GH-releasing hormone, cholecystokinin, neurotensin, oxytocin, and relaxin. We have also used primers for serotonin N-acetyl-transferase, the enzyme that is involved in melatonin biosynthesis. The ribosomal protein S-16 served as an internal control. Among all the neuropeptides that have been examined, somatostatin was the only one that was found to be expressed in the mammary gland. Somatostatin was expressed in the mammary gland of lactating rats, but not of virgin rats. Expression of the somatostatin gene was confirmed by Southern blot analysis and by sequencing of the PCR products. Immunohistochemical studies demonstrated somatostatin immunoreactivity in the epithelial cells that compose the secretory alveoli and in the secretory material. In addition, we have found that the mammary glands of the lactating rat express the PC-1 proteinase gene that process prosomatostatin to generate somatostatin-14, but do not express furin, the enzyme that is responsible for somatostatin-28 production. This finding substantiates previous studies that demonstrated that only somatostatin-14 is present in milk. The finding that most of the neuropeptides

  3. Changes in plasma melatonin levels and pineal organ melatonin synthesis following acclimation of rainbow trout (Oncorhynchus mykiss) to different water salinities.

    PubMed

    López-Patiño, Marcos A; Rodríguez-Illamola, Arnau; Gesto, Manuel; Soengas, José L; Míguez, Jesús M

    2011-03-15

    Melatonin has been suggested to play a role in fish osmoregulation, and in salmonids has been related to the timing of adaptive mechanisms during smolting. It has been described that acclimation to different environmental salinities alters levels of circulating melatonin in a number of fish species, including rainbow trout. However, nothing is known regarding salinity effects on melatonin synthesis in the pineal organ, which is the main source of rhythmically produced and secreted melatonin in blood. In the present study we have evaluated, in rainbow trout, the effects of acclimation to different salinities on day and night plasma melatonin values and pineal organ melatonin synthesis. Groups of freshwater (FW)-adapted rainbow trout were placed in tanks with four different levels of water salinity (FW, 6, 12, 18 p.p.t.; parts per thousand) and maintained for 6 h or 5 days. Melatonin content in plasma and pineal organs, as well as the pineal content of serotonin (5-HT) and its main oxidative metabolite (5-hydroxyindole-3-acetic acid; 5-HIAA) were measured by high performance liquid chromatography. In addition, day-night changes in pineal organ arylalkylamine N-acetyltransferase (AANAT2) activity and aanat2 gene expression were studied. Plasma osmolalities were found to be higher in rainbow trout exposed to all salinity levels compared with the control FW groups. A salinity-dependent increase in melatonin content was found in both plasma and pineal organs. This effect was observed during the night, and was related to an increase in aanat2 mRNA abundance and AANAT2 enzyme activity, both of which also occurred during the day. Also, the levels of indoles (5-HT, 5-HIAA) in the pineal organ were negatively affected by increasing water salinity, which seems to be related to the higher recruitment of 5-HT as a substrate for the increased melatonin synthesis. A stimulatory effect of salinity on pineal aanat2 mRNA expression was also identified. These results indicate that

  4. Expression of Anti-apoptotic Protein BAG3 in Human Sebaceous Gland Carcinoma of the Eyelid.

    PubMed

    Yunoki, Tatsuya; Tabuchi, Yoshiaki; Hayashi, Atsushi

    2017-04-01

    Bcl-2-associated athanogene 3 (BAG3), a co-chaperone of heat shock protein 70 (HSP70), has been shown to play a role in anti-apoptosis of various malignant tumors. In this study, the expression of BAG3 was examined in human sebaceous gland carcinoma of the eyelid. The expression of BAG3 was evaluated by immunohistochemistry of surgical samples from 5 patients with sebaceous gland carcinoma in the eyelid. BAG3 was positive diffusely in the cytoplasm in all patients. The average positive rate of BAG3 was 73.0±26.0% in tumor cells of all patients. BAG3 was highly expressed in sebaceous gland carcinoma of the eyelid. BAG3 may play an important role in the pathogenesis and progression of sebaceous gland carcinoma of the eyelid. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. A Case of Nongerminomatous Germ Cell Tumor of the Pineal Region: Risks and Advantages of Biopsy by Endoscopic Approach

    PubMed Central

    Mancini, Fabrizio; Gladi, Maurizio; Scerrati, Massimo

    2018-01-01

    A 21-year-old male was admitted to our department with headache and drowsiness. CT scan and MRI revealed acute obstructive hydrocephalus caused by a pineal region mass. The serum and CSF levels of beta-human chorionic gonadotropin (beta-hCG) were 215 IU/L and 447 IU/L, respectively, while levels of alpha-fetoprotein (AFP) were normal. A germ cell tumor (GCT) was suspected, and the patient underwent endoscopic third ventriculostomy (ETV) with biopsy. After four days from surgery, the tumor bled with mass expansion and ETV stoma occlusion; thus, a ventriculoperitoneal shunt was positioned. After ten months, the tumor metastasized to the thorax and abdomen with progression of intracerebral tumor mass. Despite the aggressive nature of this tumor, ETV remains a valid approach for a pineal region mass, but in case of GCT, the risk of bleeding should be taken into account, during and after the surgical procedure. PMID:29713348

  6. A Case of Nongerminomatous Germ Cell Tumor of the Pineal Region: Risks and Advantages of Biopsy by Endoscopic Approach.

    PubMed

    Dobran, Mauro; Nasi, Davide; Mancini, Fabrizio; Gladi, Maurizio; Scerrati, Massimo

    2018-01-01

    A 21-year-old male was admitted to our department with headache and drowsiness. CT scan and MRI revealed acute obstructive hydrocephalus caused by a pineal region mass. The serum and CSF levels of beta-human chorionic gonadotropin (beta-hCG) were 215 IU/L and 447 IU/L, respectively, while levels of alpha-fetoprotein (AFP) were normal. A germ cell tumor (GCT) was suspected, and the patient underwent endoscopic third ventriculostomy (ETV) with biopsy. After four days from surgery, the tumor bled with mass expansion and ETV stoma occlusion; thus, a ventriculoperitoneal shunt was positioned. After ten months, the tumor metastasized to the thorax and abdomen with progression of intracerebral tumor mass. Despite the aggressive nature of this tumor, ETV remains a valid approach for a pineal region mass, but in case of GCT, the risk of bleeding should be taken into account, during and after the surgical procedure.

  7. [Pineal anlage tumor in a 8-month-old boy. The first case reported in Spanish language].

    PubMed

    Rodríguez-Velasco, Alicia; Ramírez-Reyes, Alma Griselda

    2014-01-01

    The pineal anlage tumor is a very infrequent malign neoplasm. Even though it has been documented in literature, it is not listed yet in the World Health Organization's last nervous system classification (2007). It is a primitive pineal tumor with neuroepithelial and ectomesenchyme differentiation. Due to its low frequency, the understanding of its biological behavior and a suitable treatment are incomplete. In a search performed in PubMed with the term pineal anlage tumor, only seven informed cases were identified between 1989 and 2011. An 8-month-old infant was brought to medical attention because he had a progressive enlargement of the cephalic perimeter, and convergent strabismus of two months of evolution. A pineal tumor was identified. The histology showed glial tissue, ganglia cells, pigmented neuroepithelium and striate muscle cells. A ventriculoperitoneal derivation was done to diminish hydrocephalic pressure and also to led the complete surgical resection. The patient was treated with two courses of chemotherapy with carboplatine, ifosfamide and mesna. One year after the treatment, the patient is asymptomatic. This is the first case reported in Spanish language. Given that it is a really infrequent tumor, it could be misdiagnosed as teratome, melanotic or mesoblastic medulloblastoma, or a melanotic neuroectodermal tumor of childhood (melanotic prognoma).

  8. 9 CFR 318.1 - Products and other articles entering official establishments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... substance shall be brought into or kept in an official establishment. (f) [Reserved] (g) Glands and organs, such as cotyledons, ovaries, prostate glands, tonsils, spinal cords, and detached lymphatic, pineal, pituitary, parathyroid, suprarenal, pancreatic and thyroid glands, used in preparing pharmaceutical...

  9. 9 CFR 318.1 - Products and other articles entering official establishments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... substance shall be brought into or kept in an official establishment. (f) [Reserved] (g) Glands and organs, such as cotyledons, ovaries, prostate glands, tonsils, spinal cords, and detached lymphatic, pineal, pituitary, parathyroid, suprarenal, pancreatic and thyroid glands, used in preparing pharmaceutical...

  10. 9 CFR 318.1 - Products and other articles entering official establishments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... substance shall be brought into or kept in an official establishment. (f) [Reserved] (g) Glands and organs, such as cotyledons, ovaries, prostate glands, tonsils, spinal cords, and detached lymphatic, pineal, pituitary, parathyroid, suprarenal, pancreatic and thyroid glands, used in preparing pharmaceutical...

  11. 9 CFR 318.1 - Products and other articles entering official establishments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... substance shall be brought into or kept in an official establishment. (f) [Reserved] (g) Glands and organs, such as cotyledons, ovaries, prostate glands, tonsils, spinal cords, and detached lymphatic, pineal, pituitary, parathyroid, suprarenal, pancreatic and thyroid glands, used in preparing pharmaceutical...

  12. 9 CFR 318.1 - Products and other articles entering official establishments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... substance shall be brought into or kept in an official establishment. (f) [Reserved] (g) Glands and organs, such as cotyledons, ovaries, prostate glands, tonsils, spinal cords, and detached lymphatic, pineal, pituitary, parathyroid, suprarenal, pancreatic and thyroid glands, used in preparing pharmaceutical...

  13. Reduced statherin reactivity of human submandibular gland in diabetes.

    PubMed

    Isola, M; Solinas, P; Proto, E; Cossu, M; Lantini, M S

    2011-03-01

     Statherin is a salivary protein involved in the formation of enamel pellicle and in regulation of calcium homeostasis. Diabetes and other pathologies affect both salivary flow and protein secretion by salivary glands, causing increased susceptibility to mucosal infections, tooth demineralization, and caries. The purpose of this study was to compare the statherin expression in submandibular glands of healthy and diabetic subjects.  Fragments of submandibular glands obtained from diabetic and non diabetic patients were fixed, dehydrated, embedded in Epon Resin and processed for the immunogold histochemistry. The results were statistically evaluated.  Specific statherin labeling was demonstrated in secretory granules of acinar cells in both diabetic and normal samples. The staining was much more intense in the latter compared to those of diabetics. The labeling density was quantified by evaluating the number and spatial distribution of gold particles within the granules. The number of gold particles was significantly lower in glands from diabetics than in control glands.  The results obtained suggest that a reduced statherin secretion by salivary glands might be partly responsible for a less effective protection of the oral tissues, resulting in an higher incidence of caries and oral infections associated with diabetes. © 2010 John Wiley & Sons A/S.

  14. In vivo single human sweat gland activity monitoring using coherent anti-Stokes Raman scattering and two-photon excited autofluorescence microscopy.

    PubMed

    Chen, X; Gasecka, P; Formanek, F; Galey, J-B; Rigneault, H

    2016-04-01

    Eccrine sweat secretion is of central importance for control of body temperature. Although the incidence of sweat gland dysfunction might appear of minor importance, it can be a real concern for people with either hypohidrosis or hyperhidrosis. However, sweat gland function remains relatively poorly explored. To investigate the function of single human sweat glands. We describe a new approach for noninvasive imaging of single sweat gland activity in human palms in vivo up to a depth of 100 μm, based on nonlinear two-photon excited autofluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS). These techniques appear to be useful compared with approaches already described for imaging single sweat gland activity, as they allow better three-dimensional spatial resolution of sweat pore inner morphology and real-time monitoring of individual sweat events. By filling the sweat pore with oil and tuning the CARS contrast at 2845 cm(-1) , we imaged the ejection of sweat droplets from a single sweat gland when oil is pushed out by sweat flow. On average, sweat events lasted for about 30 s every 3 min under the conditions studied. On the other hand, about 20% of sweat glands were found inactive. TPEF and CARS were also used to study, at the single pore level, the antiperspirant action of aluminium chlorohydrate (ACH) and to reveal, for the first time in vivo, the formation of a plug at the pore entrance, in agreement with reported ACH antiperspirant mechanisms. Although data were acquired on human palms, these techniques show great promise for a better understanding of sweat secretion physiology and should be helpful to improve the efficacy of antiperspirant formulations. © 2015 British Association of Dermatologists.

  15. [Circannual rhythms of bone marrow cell composition in animals during aging: the role of pineal factors].

    PubMed

    Labunets', I F

    2007-01-01

    It was investigated the influence of pineal gland's peptides (epithalamin, epithalon) and indols (melatonin) on the aging changes of circannual rhythms of stromal cells-precurcors (CFC-F), granulocyte-macrophage cells-precurcors (CFC-GM), CD4+, Mac-1+ and CD19+-cells amount in bone marrow of mice CBA. In old animals the rhythmical disturbances of the indices were characterized by loss of fluctuations (Mac 1+-cells), increase of CD4+-cells amplitude, displacement of seasonal acrophase (CFC-F), inversion of rhythm (CFC-GM), desynchronization. In old mice after epithalamin injections the season differences between the amount of Mac-1+-cells restored, CD4+-cells amplitude diminished, the amount of CFC-GM increased in spring and CFC-F diminished in autumn. The influence of epithalon on CFC-F and CFG-GM rhythm was in a smaller dose. The rhythms of some indices in old animals showed a pattern observed in adults. After melatonin injections to adult mice in winter the amount of CD4+-cells increased; the ratio CFC-GM and CFC-F changed because of increase of stromal fibroblasts. In old mice the indices were without changes.

  16. Melatonin in human preovulatory follicular fluid

    NASA Technical Reports Server (NTRS)

    Brzezinski, Amnon; Seibel, Machelle M.; Lynch, Harry J.; Deng, Mei-Hua; Wurtman, Richard J.

    1987-01-01

    Melatonin, the major hormone of the pineal gland, has antigonadotrophic activity in many mammals and may also be involved in human reproduction. Melatonin suppresses steroidogenesis by ovarian granulosa and luteal cells in vitro. To determine if melatonin is present in the human ovary, preovulatory follicular fluids (n = 32) from 15 women were assayed for melatonin by RIA after solvent extraction. The fluids were obtained by laparoscopy or sonographically controlled follicular puncture from infertile women undergoing in vitro fertilization and embryo transfer. All patients had received clomiphene citrate, human menopausal gonadotropin, and hCG to stimulate follicle formation. Blood samples were obtained by venipuncture 30 min or less after follicular aspiration. All of the follicular fluids contained melatonin, in concentrations (35.6 plus or minus 4.8 (plus or minus SEM) pg/mL) substantially higher than those in the corresponding serum (10.0 plus or minus 1.4 pg/mL). A positive correlation was found between follicular fluid and serum melatonin levels in each woman (r = 0.770; P less than 0.001). These observations indicate that preovulatory follicles contain substantial amounts of melatonin that may affect ovarian steroidogenesis.

  17. Histology-Stratified Tumor Control and Patient Survival After Stereotactic Radiosurgery for Pineal Region Tumors: A Report From the International Gamma Knife Research Foundation.

    PubMed

    Iorio-Morin, Christian; Kano, Hideyuki; Huang, Marshall; Lunsford, L Dade; Simonová, Gabriela; Liscak, Roman; Cohen-Inbar, Or; Sheehan, Jason; Lee, Cheng-Chia; Wu, Hsiu-Mei; Mathieu, David

    2017-11-01

    Pineal region tumors represent a rare and histologically diverse group of lesions. Few studies are available to guide management and the outcomes after stereotactic radiosurgery (SRS). Patients who underwent SRS for a pineal region tumor and for whom at least 6 months of imaging follow-up was available were retrospectively assessed in 5 centers. Data were collected from the medical record and histology level analyses were performed, including actuarial tumor control and survival analyses. A total of 70 patients were treated between 1989 and 2014 with a median follow-up of 47 months. Diagnoses were pineocytoma (37%), pineoblastoma (19%), pineal parenchymal tumor of intermediate differentiation (10%), papillary tumor of the pineal region (9%), germinoma (7%), teratoma (3%), embryonal carcinoma (1%), and unknown (14%). Median prescription dose was 15 Gy at the 50% isodose line. Actuarial local control and survival rates were 81% and 76% at 20 years for pineocytoma, 50% and 56% at 5 years for pineal parenchymal tumor of intermediate differentiation, 27% and 48% at 5 years for pineoblastoma, 33% and 100% at 5 years for papillary tumor of the pineal region, 80% and 80% at 20 years for germinoma, and 61% and 67% at 5 years for tumors of unknown histology. New focal neurological deficit, Parinaud syndrome, and hydrocephalus occurred in 9%, 7%, and 3% of cases, respectively. SRS is a safe modality for the management of pineal region tumors. Its specific role is highly dependent on tumor histology. As such, all efforts should be made to obtain a reliable histologic diagnosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Non-24-Hour Sleep-Wake Rhythm Disorder and Melatonin Secretion Impairment in a Patient With Pineal Cyst

    PubMed Central

    Ferri, Lorenzo; Filardi, Marco; Moresco, Monica; Pizza, Fabio; Vandi, Stefano; Antelmi, Elena; Toni, Francesco; Zucchelli, Mino; Pierangeli, Giulia; Plazzi, Giuseppe

    2017-01-01

    We report the case of a 14-year-old girl with a wide non-compressive pineal cyst, associated with the inability to control her sleep-wake schedule. Actigraphic monitoring showed a 24-hour free-running disorder (tau 26.96 hours). A 24-hour serum melatonin curve assay, with concomitant video-polysomnographic and body-core temperature monitoring, was performed. Melatonin curve showed a blunted nocturnal peak, lower total quantity of melatonin, and prolonged melatonin secretion in the morning, with normal temperature profile and sleep parameters. Treatment with melatonin up to 14 mg at bedtime was initiated with complete realignment of the sleep-wake rhythm (tau 23.93 hours). The role of the pineal cyst in the aforementioned alteration of melatonin secretion and free-running disorder remains controversial, but our case supports the utility of monitoring sleep/wake, temperature, and melatonin rhythms in the diagnostic work-up of pineal cysts associated with free-running disorder. Citation: Ferri L, Filardi M, Moresco M, Pizza F, Vandi S, Antelmi E, Toni F, Zucchelli M, Pierangeli G, Plazzi G. Non-24-hour sleep-wake rhythm disorder and melatonin secretion impairment in a patient with pineal cyst. J Clin Sleep Med. 2017;13(11):1355–1357. PMID:28992833

  19. Hyaluronic Acid Decreases Lipid Synthesis in Sebaceous Glands.

    PubMed

    Jung, Yu Ra; Hwang, Chul; Ha, Jeong-Min; Choi, Dae-Kyoung; Sohn, Kyung-Cheol; Lee, Young; Seo, Young-Joon; Lee, Young-Ho; Kim, Chang-Deok; Lee, Jeung-Hoon; Im, Myung

    2017-06-01

    Hyaluronic acid (HA) is the major glycosaminoglycan in the extracellular matrix and has been implicated in several functions in skin cells. However, evidence is lacking regarding the HA signaling in sebaceous glands, and its potential role needs to be clarified. We investigated the role of HA in lipid production in sebaceous glands in an experimental study of human sebocytes followed by a clinical study. We first examined the effects of HA on sebaceous glands in hamsters and intradermal injection of HA into hamster auricles decreased both the size of sebaceous glands and the level of lipid production. We demonstrated that human skin sebaceous glands in vivo and sebocytes in vitro express CD44 (HA binding receptor) and that HA downregulates lipid synthesis in a dose-dependent manner. To evaluate the clinical relevance of HA in human skin, 20 oily participants were included in a double-blind, placebo-controlled, split-face study, and the HA-treated side showed a significant decrease in sebum production. The results of this study indicate that HA plays a functional role in human sebaceous gland biology and HA signaling is an effective candidate in the management of disorders in which sebum production is increased. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Expression and secretion of cathelicidin antimicrobial peptides in murine mammary glands and human milk.

    PubMed

    Murakami, Masamoto; Dorschner, Robert A; Stern, Lauren J; Lin, Kenneth H; Gallo, Richard L

    2005-01-01

    Mammalian milk possesses inherent antimicrobial properties that have been attributed to several diverse molecules. Recently, antimicrobial peptides that belong to the cathelicidin gene family have been found to be important to the mammalian immune response. This antimicrobial is expressed in several tissues and increased in neonatal skin, possibly to compensate for an immature adaptive immune response. We hypothesized that the mammary gland could produce and secrete cathelicidin onto the epithelial surface and into milk. Human cathelicidin hCAP18/LL-37 mRNA was detected in human milk cells by PCR. Quantitative real-time PCR demonstrated an increase in relative expression levels at 30 and 60 d after parturition. Immunohistochemistry of mouse breast tissue identified the murine cathelicidin-related antimicrobial peptide in lobuloacinar and ductules. Western blot analysis of human milk showed that LL-37 was secreted and present in the mature peptide form. The antimicrobial activity of LL-37 against Staphylococcus aureus, group A Streptococcus, and enteroinvasive Escherichia coli O29 in the human milk ionic environment was confirmed by solution colony-forming assay using synthetic peptide. These results indicate that cathelicidin is secreted in mammary gland and human milk, has antimicrobial activity against both Gram-positive and Gram-negative bacteria, and can contribute to the anti-infectious properties of milk.

  1. Diversification of non-visual photopigment parapinopsin in spectral sensitivity for diverse pineal functions.

    PubMed

    Koyanagi, Mitsumasa; Wada, Seiji; Kawano-Yamashita, Emi; Hara, Yuichiro; Kuraku, Shigehiro; Kosaka, Shigeaki; Kawakami, Koichi; Tamotsu, Satoshi; Tsukamoto, Hisao; Shichida, Yoshinori; Terakita, Akihisa

    2015-09-15

    Recent genome projects of various animals have uncovered an unexpectedly large number of opsin genes, which encode protein moieties of photoreceptor molecules, in most animals. In visual systems, the biological meanings of this diversification are clear; multiple types of visual opsins with different spectral sensitivities are responsible for color vision. However, the significance of the diversification of non-visual opsins remains uncertain, in spite of the importance of understanding the molecular mechanism and evolution of varied non-visual photoreceptions. Here, we investigated the diversification of the pineal photopigment parapinopsin, which serves as the UV-sensitive photopigment for the pineal wavelength discrimination in the lamprey, linking it with other pineal photoreception. Spectroscopic analyses of the recombinant pigments of the two teleost parapinopsins PP1 and PP2 revealed that PP1 is a UV-sensitive pigment, similar to lamprey parapinopsin, but PP2 is a blue-sensitive pigment, with an absorption maximum at 460-480 nm, showing the diversification of non-visual pigment with respect to spectral sensitivity. We also found that PP1 and PP2 exhibit mutually exclusive expressions in the pineal organs of three teleost species. By using transgenic zebrafish in which these parapinopsin-expressing cells are labeled, we found that PP1-expressing cells basically possess neuronal processes, which is consistent with their involvement in wavelength discrimination. Interestingly, however, PP2-expressing cells rarely possess neuronal processes, raising the possibility that PP2 could be involved in non-neural responses rather than neural responses. Furthermore, we found that PP2-expressing cells contain serotonin and aanat2, the key enzyme involved in melatonin synthesis from serotonin, whereas PP1-expressing cells do not contain either, suggesting that blue-sensitive PP2 is instead involved in light-regulation of melatonin secretion. In this paper, we have clearly

  2. Expression of PACAP and PAC1 Receptor in Normal Human Thyroid Gland and in Thyroid Papillary Carcinoma.

    PubMed

    Bardosi, Sebastian; Bardosi, Attila; Nagy, Zsuzsanna; Reglodi, Dora

    2016-10-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) belongs to the vasoactive intestinal peptide-secretin-glucagon peptide family, isolated first from ovine hypothalamus. The diverse physiological effects of PACAP are known mainly from animal experiments, including several actions in endocrine glands. Alteration of PACAP expression has been shown in several tumors, but changes in expression of PACAP and its specific PAC1 receptor in human thyroid gland pathologies have not yet been investigated. Therefore, the aim of the present study was to investigate expression of PACAP and its PAC1 receptor in human thyroid papillary carcinoma, the most common endocrine malignant tumor. PACAP and PAC1 receptor expressions were investigated from thyroid gland samples of patients with papillary carcinomas. The staining intensity of follicular epithelial cells and thyroid colloid of tumor tissue was compared to that of tumor-free tissue in the same thyroid glands in a semi-quantitative way. Our results reveal that both PACAP(-like) and PAC1 receptor(-like) immunoreactivities are altered in papillary carcinoma. Stronger PACAP immunoreactivity was observed in active follicles. Colloidal PACAP immunostaining was either lacking or very weak, and more tumorous cells displayed strong apical immunoreactivity. Regarding PAC1 receptor, cells of the normal thyroid tissue showed strong granular expression, which was lacking in the tumor cells. The cytoplasm of tumor cells displayed weak, minimal staining, while in a few tumor cells we observed strong PAC1 receptor expression. This pattern was similar to that observed in the PACAP expression, but fewer in number. In summary, we showed alteration of PACAP and PAC1 receptor expression in human thyroid papillary carcinoma, indicating that PACAP regulation is disturbed in tumorous tissue of the thyroid gland. The exact role of PACAP in thyroid tumor growth should be further explored.

  3. Development of peptide-containing nerves in the human fetal prostate gland.

    PubMed

    Jen, P Y; Dixon, J S

    1995-08-01

    Immunohistochemical methods were used to study the developing peptidergic innervation of the human fetal prostate gland in a series of specimens ranging in gestational age from 13 to 30 wk. The overall innervation of each specimen was visualised using protein gene product 9.5 (PGP), a general nerve marker. The onset and development of specific neuropeptide-containing subpopulations were investigated using antisera to neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), substance P (SP), calcitonin gene-related peptide (CGRP), bombesin (BOM), somatostatin (SOM), leu-enkephalin (l-ENK) and met-enkephalin (m-ENK). In addition the occurrence and distribution of presumptive noradrenergic nerves was studied using antisera to dopamine-beta-hydroxylase (D beta H) and tyrosine hydroxylase (TH). At 13 wk numerous branching PGP-immunoreactive (-IR) nerves were observed in the capsule of the developing prostate gland and surrounding the preprostatic urethra but the remainder of the gland was devoid of nerves. The majority of nerves in the capsule contained D beta H and TH and were presumed to be noradrenergic in type while other nerves (in decreasing numbers) contained NPY, l-ENK, SP and CGRP. Nerves associated with the preprostatic urethra did not contain any of the neuropeptides under investigation. At 17 wk the density of nerves in the capsule had increased and occasional m-ENK-, VIP- and BOM-IR nerve fibres were also observed. In addition PGP, D beta H-, TH-, NPY- and l-ENK-IR nerves occurred in association with smooth muscle bundles which at 17 wk were present in the outer part of the gland. Occasional PGP-IR nerves were also present at the base of the epithelium forming some of the prostatic glands. At 23 wk some of the subepithelial nerves showed immunoreactivity for NPY, VIP or l-ENK. At 26 wk smooth muscle bundles occurred throughout the gland and were richly innervated by PGP, D beta H and TH-IR nerves while a less dense plexus was formed by NPY- and l

  4. Persistence of hAQP1 expression in human salivary gland cells following AdhAQP1 transduction is associated with a lack of methylation of hCMV promoter

    PubMed Central

    Zheng, C; Baum, BJ; Liu, X; Goldsmith, CM; Perez, P; Jang, S-I; Cotrim, AP; McCullagh, L; Ambudkar, IS; Alevizos, I

    2017-01-01

    In 2012, we reported that 5 out of 11 subjects in a clinical trial (NCT00372320) administering AdhAQP1 to radiation-damaged parotid glands showed increased saliva flow rates and decreased symptoms over the initial 42 days. AdhAQP1 is a first-generation, E1-deleted, replication-defective, serotype 5 adenoviral vector encoding human aquaporin-1 (hAQP1). This vector uses the human cytomegalovirus enhancer/promoter (hCMVp). As subject peak responses were at times much longer (7–42 days) than expected, we hypothesized that the hCMVp may not be methylated in human salivary gland cells to the extent previously observed in rodent salivary gland cells. This hypothesis was supported in human salivary gland primary cultures and human salivary gland cell lines after transduction with AdhAQP1. Importantly, hAQP1 maintained its function in those cells. Conversely, when we transduced mouse and rat cell lines in vitro and submandibular glands in vivo with AdhAQP1, the hCMVp was gradually methylated over time and associated with decreased hAQP1 expression and function in vitro and decreased hAQP1 expression in vivo. These data suggest that the hCMVp in AdhAQP1was probably not methylated in transduced human salivary gland cells of responding subjects, resulting in an unexpectedly longer functional expression of hAQP1. PMID:26177970

  5. Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells

    NASA Astrophysics Data System (ADS)

    Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc

    1985-04-01

    The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.

  6. Hormones

    MedlinePlus

    Hormones are your body's chemical messengers. They travel in your bloodstream to tissues or organs. They work ... glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, ...

  7. Meibomian gland studies: histologic and ultrastructural investigations.

    PubMed

    Jester, J V; Nicolaides, N; Smith, R E

    1981-04-01

    Heightened interest in meibomian gland dysfunction has prompted us to evaluate the normal morphological and ultrastructural characteristics of the meibomian gland. Histologic analysis of human, primate, steer, and rabbit glands revealed evidence of keratinized epithelium extending throughout the meibomian gland duct. Characteristic ultrastructural features of keratinized epithelium identified in primate and rabbit glands included tonofilaments, keratohyaline granules, lamellar bodies, and keratinized squamous cells. Comparison of the meibomian gland duct to the pilosebaceous canal and the sebaceous duct brought out certain dissimilarities such as (1) the lack of a well-developed stratum granulosum and (2) the absence of lipid inclusions within transitional cells from duct to acini. We postulate that abnormalities of the keratinizing process may be responsible for meibomian gland dysfunction states.

  8. Expression of adiponectin and adiponectin receptors in human pituitary gland and brain.

    PubMed

    Psilopanagioti, Aristea; Papadaki, Helen; Kranioti, Elena F; Alexandrides, Theodore K; Varakis, John N

    2009-01-01

    Adiponectin and its receptors, AdipoR1 and AdipoR2, constitute integral components of energy homeostatic mechanism in peripheral tissues. Recent studies have implicated adiponectin in central neural networks regulating food intake and energy expenditure. The present study aimed at investigating the possible expression and distribution of adiponectin and its receptors in human pituitary gland, hypothalamus and different brain areas. Sections of the pituitary gland, hypothalamus and adjacent basal forebrain area, cerebrum and cerebellum from 35 autopsy cases, were examined using HE, PAS-Orange G, luxol fast blue/cresyl violet stains and single and double immunohistochemistry using adiponectin, AdipoR1, AdipoR2, choline acetyltransferase, FSH, LH, TSH, GH, ACTH and prolactin-specific antibodies. Age and BMI mean values +/- SD of the autopsy cases were 56 +/- 18 years and 27 +/- 5 kg/m(2), respectively. Strong adiponectin expression was observed in pituitary gland. In pars distalis (PD), adiponectin localized in GH, FSH, LH and TSH-producing cells and in pars tuberalis (PT) in FSH, LH and TSH-producing cells. Strong to moderate expression of AdipoR1 and AdipoR2 was observed in PD by the same cell types as adiponectin. No immunoreactivity for adiponectin receptors was noted in cells of PT. Intense AdipoR1 immunostaining was observed in neurons of lateral hypothalamic area and of nucleus basalis of Meynert (NBM). Adiponectin and its receptors expression in human pituitary might indicate the existence of a local system, modulating endocrine axes. Furthermore, the presence of AdipoR1 in hypothalamus and NBM suggests that adiponectin may participate in central neural signaling pathways controlling energy homeostasis and higher brain functions.

  9. Thermogenic and psychogenic recruitment of human eccrine sweat glands: Variations between glabrous and non-glabrous skin surfaces.

    PubMed

    Machado-Moreira, Christiano A; Taylor, Nigel A S

    2017-04-01

    Human eccrine sweat-gland recruitment and secretion rates were investigated from the glabrous (volar) and non-glabrous hand surfaces during psychogenic (mental arithmetic) and thermogenic stimuli (mild hyperthermia). It was hypothesised that these treatments would activate glands from both skin surfaces, with the non-thermal stimulus increasing secretion rates primarily by recruiting more sweat glands. Ten healthy men participated in two seated, resting trials in temperate conditions (25-26°C). Trials commenced under normothermic conditions during which the first psychogenic stress was applied. That was followed by passive heating (0.5°C mean body temperature elevation) and thermal clamping, with a second cognitive challenge then applied. Sudomotor activity was evaluated from both hands, with colourimetry used to identify activated sweat glands, skin conductance to determine the onset of precursor sweating and ventilated sweat capsules to measure rates of discharged sweating. From glandular activation and sweat rate data, sweat-gland outputs were derived. These psychogenic and thermogenic stimuli activated sweat glands from both the glabrous and non-glabrous skin surfaces, with the former dominating at the glabrous skin and the latter at the non-glabrous surface. Indeed, those stimuli individually accounted for ~90% of the site-specific maximal number of activated sweat glands observed when both stimuli were simultaneously applied. During the normothermic psychological stimulation, sweating from the glabrous surface was elevated via a 185% increase in the number of activated glands within the first 60s. The hypothetical mechanism for this response may involve the serial activation of additional eccrine sweat glands during the progressive evolution of psychogenic sweating. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Fatigue Assessment in Camp Mirage CC130 Aircrew: Recommendations for Pharmacologic Intervention

    DTIC Science & Technology

    2004-02-20

    naturally occurring hormone synthesized by the pineal gland from the precursor amino acid tryptophan (4). In pharmacologic doses, melatonin has a large...the intake of melatonin or placebo. Adv Pineal Res 1991; 5: 303-09. 10. Pang SF, Pang CS, Poon AM, Lee PP, Liu ZM, Shiu SY. Melatonin: a chemical

  11. A Comparative Immunohistochemical Study of Anal Canal Epithelium in Humans and Swine, Focusing on the Anal Transitional Zone Epithelium and the Anal Glands.

    PubMed

    Muranaka, Futoshi; Nakajima, Tomoyuki; Iwaya, Mai; Ishii, Keiko; Higuchi, Kayoko; Ogiwara, Naoko; Miyagawa, Shinichi; Ota, Hiroyoshi

    2018-05-01

    To better understand the cellular origins and differentiation of anal canal epithelial neoplasms, the immunohistochemical profiles of the anal canal epithelium in humans and swine were evaluated. Formalin-fixed tissue sections were immunostained for mucin (MUC: MUC2, MUC5AC, MUC5B), desmoglein 3 (DGS3), p63, CDX2, SOX2, and α-smooth muscle actin (α-SMA). The anal transitional zone (ATZ) epithelium covered the anal sinus and consisted of a stratified epithelium with mucous cells interspersed within the surface lining. Anal glands opened into the anal sinus. Ducts and acini of intraepithelial or periepithelial mucous type were the main structures of human anal glands, whereas those of swine were compound tubuloacinar mixed glands. Distal to the ATZ epithelium, non-keratinized stratified squamous epithelium merged with the keratinized stratified squamous epithelium of the perianal skin. MUC5AC expression predominated over MUC5B expression in the ATZ epithelium, while MUC5B expression was higher in the anal glands. SOX2 was positive in the ATZ epithelium, anal glands, and squamous epithelium except in the perianal skin. In humans, DGS3 was expressed in the ATZ epithelium, anal gland ducts, and squamous epithelium. p63 was detected in the ATZ epithelium, anal glands, and squamous epithelium. Myoepithelial cells positive for α-SMA and p63 were present in the anal glands of swine. Colorectal columnar cells were MUC5B + /MUC2 + /CDX2 + /MUC5AC - /SOX2 - . The ATZ epithelium seems to be a distinctive epithelium, with morphological and functional features allowing smooth defecation. The MUC5AC + /SOX2 + /MUC2 - /CDX2 - profile of the ATZ epithelium and anal glands is a useful feature for diagnosing adenocarcinoma arising from these regions. Anat Rec, 301:796-805, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Critical time delay of the pineal melatonin rhythm in humans due to weak electromagnetic exposure.

    PubMed

    Halgamuge, Malka N

    2013-08-01

    Electromagnetic fields (EMFs) can increase free radicals, activate the stress response and alter enzyme reactions. Intracellular signalling is mediated by free radicals and enzyme kinetics is affected by radical pair recombination rates. The magnetic field component of an external EMF can delay the "recombination rate" of free radical pairs. Magnetic fields thus increase radical life-times in biological systems. Although measured in nanoseconds, this extra time increases the potential to do more damage. Melatonin regulates the body's sleep-wake cycle or circadian rhythm. The World Health Organization (WHO) has confirmed that prolonged alterations in sleep patterns suppress the body's ability to make melatonin. Considerable cancer rates have been attributed to the reduction of melatonin production as a result of jet lag and night shift work. In this study, changes in circadian rhythm and melatonin concentration are observed due to the external perturbation of chemical reaction rates. We further analyze the pineal melatonin rhythm and investigate the critical time delay or maturation time of radical pair recombination rates, exploring the impact of the mRNA degradation rate on the critical time delay. The results show that significant melatonin interruption and changes to the circadian rhythm occur due to the perturbation of chemical reaction rates, as also reported in previous studies. The results also show the influence of the mRNA degradation rate on the circadian rhythm's critical time delay or maturation time. The results support the hypothesis that exposure to weak EMFs via melatonin disruption can adversely affect human health.

  13. Distribution and size of mucous glands in the ferret tracheobronchial tree.

    PubMed

    Hajighasemi-Ossareh, Mohammad; Borthwell, Rachel M; Lachowicz-Scroggins, Marrah; Stevens, Jeremy E; Finkbeiner, Walter E; Widdicombe, Jonathan H

    2013-11-01

    A transgenic ferret model of cystic fibrosis has recently been generated. It is probable that malfunction of airway mucous glands contributes significantly to the airway pathology of this disease. The usefulness of the ferret model may therefore depend in part on how closely the airway glands of ferrets resemble those of humans. Here, we show that in the ferret trachea glands are commonest in its most ventral aspect and disappear about half way up the lateral walls; they are virtually absent from the dorsal membranous portion. Further, the aggregate volume of glands per unit mucosal surface declines progressively by about 60% between the larynx and the carina. The average frequency of glands openings for the ferret trachea as a whole is only about one-fifth that in humans (where gland openings are found at approximately the same frequency throughout the trachea). Glands in the ferret trachea are on average about one-third the size of those in the human. Therefore, the aggregate volume of tracheal glands (per unit mucosal surface area) in the ferret is only about 6% that in humans. As in other mammalian species, airway glands in the ferret disappear at an airway internal diameter of ∼1 mm, corresponding approximately in this species to airway generation 6. Copyright © 2013 Wiley Periodicals, Inc.

  14. Development of peptide-containing nerves in the human fetal prostate gland.

    PubMed Central

    Jen, P Y; Dixon, J S

    1995-01-01

    Immunohistochemical methods were used to study the developing peptidergic innervation of the human fetal prostate gland in a series of specimens ranging in gestational age from 13 to 30 wk. The overall innervation of each specimen was visualised using protein gene product 9.5 (PGP), a general nerve marker. The onset and development of specific neuropeptide-containing subpopulations were investigated using antisera to neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), substance P (SP), calcitonin gene-related peptide (CGRP), bombesin (BOM), somatostatin (SOM), leu-enkephalin (l-ENK) and met-enkephalin (m-ENK). In addition the occurrence and distribution of presumptive noradrenergic nerves was studied using antisera to dopamine-beta-hydroxylase (D beta H) and tyrosine hydroxylase (TH). At 13 wk numerous branching PGP-immunoreactive (-IR) nerves were observed in the capsule of the developing prostate gland and surrounding the preprostatic urethra but the remainder of the gland was devoid of nerves. The majority of nerves in the capsule contained D beta H and TH and were presumed to be noradrenergic in type while other nerves (in decreasing numbers) contained NPY, l-ENK, SP and CGRP. Nerves associated with the preprostatic urethra did not contain any of the neuropeptides under investigation. At 17 wk the density of nerves in the capsule had increased and occasional m-ENK-, VIP- and BOM-IR nerve fibres were also observed. In addition PGP, D beta H-, TH-, NPY- and l-ENK-IR nerves occurred in association with smooth muscle bundles which at 17 wk were present in the outer part of the gland. Occasional PGP-IR nerves were also present at the base of the epithelium forming some of the prostatic glands. At 23 wk some of the subepithelial nerves showed immunoreactivity for NPY, VIP or l-ENK. At 26 wk smooth muscle bundles occurred throughout the gland and were richly innervated by PGP, D beta H and TH-IR nerves while a less dense plexus was formed by NPY- and l

  15. Interferon-gamma increased epithelial barrier function via upregulating claudin-7 expression in human submandibular gland duct epithelium.

    PubMed

    Abe, Ayumi; Takano, Kenichi; Kojima, Takashi; Nomura, Kazuaki; Kakuki, Takuya; Kaneko, Yakuto; Yamamoto, Motohisa; Takahashi, Hiroki; Himi, Tetsuo

    2016-06-01

    Tight junctions (TJs) are necessary for salivary gland function and may serve as indicators of salivary gland epithelial dysfunction. IgG4-related disease (IgG4-RD) is a newly recognized fibro-inflammatory condition which disrupts the TJ associated epithelial barrier. The salivary glands are one of the most frequently involved organs in IgG4-RD, however, changes of the TJ associated epithelial barrier in salivary gland duct epithelium is poorly understood. Here, we investigated the regulation and function of TJs in human submandibular gland ductal epithelial cells (HSDECs) in normal and IgG4-RD. We examined submandibular gland (SMG) tissue from eight control individuals and 22 patients with IgG4-RD and established an HSDEC culture system. Immunohistochemistry, immunocytochemistry, western blotting, and measurement of transepithelial electrical resistance (TER) were performed. Claudin-4, claudin-7, occludin, and JAM-A were expressed at the apical side of the duct epithelium in submandibular gland (SMG) tissue and at the cell borders in HSDECs of normal and IgG4-RD. The expression and distribution of TJs in SMG tissue were not different in control individuals and patients with IgG4-RD in vivo and in vitro. Although interferon-gamma (IFNγ) generally disrupts the integrity and function of TJs, as manifested by decreased epithelial barrier function, IFNγ markedly increased the epithelial barrier function of HSDECs via upregulation of claudin-7 expression in HSDECs from patients with IgG4-RD. This is the first report showing an IFNγ-dependent increase in epithelial barrier function in the salivary gland duct epithelium. Our results provide insights into the functional significance of TJs in salivary gland duct epithelium in physiological and pathological conditions, including IgG4-RD.

  16. Peptides and Ageing.

    PubMed

    Khavinson, Vladimir Kh

    2002-01-01

    A technology has been developed for manufacturing of biologically active complex peptide preparations from extracts of different tissues. In particular, the pineal preparation (Epithalamin) augments the in vitro outgrowth of explants from the pineal gland but not from other tissues, the latter being stimulated by peptide preparations from respective tissues. Epithalamin increases melatonin production by the pineal gland of rats, improves immunological parameters in rats and mice, produces anticarcinogenic effects in different experimental models, stimulates antioxidant defenses, and restores the reproductive function in old rats. These effects are combined in the ability of Epithalamin to increase the lifespan in rats, mice, and fruit flies. Many of these effects are reproduced in clinical trials, which have demonstrated the geroprotector activity of Epithalamin in humans. Among the effects of the thymic preparation Thymalin, those related to its ability to stimulate immunity are the most prominent. This ability is associated with anticarcinogenic and geroprotector activities. Clinical trials of the peptide preparations obtained from other organs including the prostate, the cerebral cortex, and the eye retina, have demonstrated beneficial effects reflected by the improvement of the conditions of respective organs. Based on the data about the amino acid compositions of the peptide preparations, novel principles of the design of biologically active short peptides possessing tissue-specific activities has been developed. Dipeptides specific for the thymus and tetrapeptides specific for the heart, liver, brain cortex, and pineal glands stimulate the in vitro outgrowth of explants of respective organs. Interestingly, for eye retina and the pineal gland, a common tetrapeptide Ala-Glu-Asp-Gly (Epitalon) has been designed, probably reflecting the common embryonal origin of these two organs. Epitalon reproduces the effects of Epithalamin including those related to its

  17. Pineal region tumors: analysis of treatment results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amendola, B.E.; McClatchey, K.; Amendola, M.A.

    This article represents a review of 32 patients with pineal region tumors seen and treated at the University of Michigan Medical Center from January 1950 to December 1980. All patients presented with manifestations of increased intracranial pressure: limitation of the upward gaze (Parinaud's syndrome), hydrocephalus and a mass in the posterior aspect of the third ventricle. The tumor was demonstrated by pneumoencephalography, ventriculography, angiography or CT scans. Ventricular decompression was performed in all patients. Twenty-seven patients received post-operative irradiation. The overall 10 year survival for evaluable patients was 16/24 (67%). Few complications were seen.

  18. Light pollution, reproductive function and cancer risk.

    PubMed

    Anisimov, Vladimir N

    2006-01-01

    At present, light pollution (exposure to light-at-night) both in the form of occupational exposure during night work and as a personal choice and life style, is experienced by numerous night-active members of our society. Disruption of the circadian rhythms induced by light pollution has been associated with cancer in humans. There are epidemiological evidences of increased breast and colon cancer risk in shift workers. An inhibition of the pineal gland function with exposure to the constant light (LL) regimen promoted carcinogenesis whereas the light deprivation inhibits the carcinogenesis. Treatment with pineal indole hormone melatonin inhibits carcinogenesis in pinealectomized rats or animals kept at the standard light/dark regimen (LD) or at the LL regimen. These observations might lead to use melatonin for cancer prevention in groups of humans at risk of light pollution.

  19. Effect of K+ and Na+ on calcium-dependent electron-dense particles in the monoaminergic synaptic vesicles of rat pineal nerves fixed in Ca2+-containing solutions.

    PubMed

    Pellegrino de Iraldi, A; Corazza, J P

    1983-01-01

    The effect of K+ and Na+ on the Ca2+ binding site in the dense core of monoaminergic vesicles of pineal nerves was investigated in the rat. Rat pineal glands, bisected immediately after decapitation, were incubated at room temperature in solutions containing high K+ or high Na+ in the presence or absence of Ca2+. Fixation was performed in glutaraldehyde-osmium tetroxide in collidine buffer, with and without CaCl2. It was confirmed that, after fixation in Ca2+-containing solutions, an electron-dense particle, located in the vesicle core, which can be considered a calcium deposit, appears within the synaptic vesicles. It was observed that this Ca2+ deposit may be modified by incubation in a high K+ or high Na+ milieu before fixation in Ca2+ containing solutions. When the incubation was carried out with high K+ and high Ca2+ simultaneously, Ca2+ deposits were considerably increased. With K+ alone, no Ca2+ deposits were apparent, as when electrical stimulation is applied before fixation. This effect was not observed when the incubation was done in high Na+. Consecutive incubations in high K+ and high Na+, respectively, restored the capability of the vesicle cores to bind Ca2+. Prolonged incubation in high Na+ before fixation increased Ca2+ deposits within the vesicles. These findings are in line with data on the effect of these ions upon the storage and release of biogenic amines and suggest that these ions modify the capability of synaptic vesicles to bind Ca2+.

  20. Season-dependent effects of photoperiod and temperature on circadian rhythm of arylalkylamine N-acetyltransferase2 gene expression in pineal organ of an air-breathing catfish, Clarias gariepinus.

    PubMed

    Singh, Kshetrimayum Manisana; Saha, Saurav; Gupta, Braj Bansh Prasad

    2017-08-01

    Arylalkylamine N-acetyltransferase (AANAT) activity, aanat gene expression and melatonin production have been reported to exhibit prominent circadian rhythm in the pineal organ of most species of fish. Three types of aanat genes are expressed in fish, but the fish pineal organ predominantly expresses aanat2 gene. Increase and decrease in daylength is invariably associated with increase and decrease in temperature, respectively. But so far no attempt has been made to delineate the role of photoperiod and temperature in regulation of the circadian rhythm of aanat2 gene expression in the pineal organ of any fish with special reference to seasons. Therefore, we studied effects of various lighting regimes (12L-12D, 16L-8D, 8L-16D, LL and DD) at a constant temperature (25°C) and effects of different temperatures (15°, 25° and 35°C) under a common photoperiod 12L-12D on circadian rhythm of aanat2 gene expression in the pineal organ of Clarias gariepinus during summer and winter seasons. Aanat2 gene expression in fish pineal organ was studied by measuring aanat2 mRNA levels using Real-Time PCR. Our findings indicate that the pineal organ of C. gariepinus exhibits a prominent circadian rhythm of aanat2 gene expression irrespective of photoperiods, temperatures and seasons, and the circadian rhythm of aanat2 gene expression responds differently to different photoperiods and temperatures in a season-dependent manner. Existence of circadian rhythm of aanat2 gene expression in pineal organs maintained in vitro under 12L-12D and DD conditions as well as a free running rhythm of the gene expression in pineal organ of the fish maintained under LL and DD conditions suggest that the fish pineal organ possesses an endogenous circadian oscillator, which is entrained by light-dark cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Biological functions of melatonin in relation to pathogenesis of oral lichen planus.

    PubMed

    Chaiyarit, Ponlatham; Luengtrakoon, Kirawut; Wannakasemsuk, Worraned; Vichitrananda, Vilasinee; Klanrit, Poramaporn; Hormdee, Doosadee; Noisombut, Rajda

    2017-07-01

    Oral lichen planus (OLP) is considered as a chronic inflammatory immune-mediated disease causing oral mucosal damage and ulcerations. Accumulated data support the involvement of cell-mediated immune dysfunction in the development of OLP. However, the connection between neuroendocrine system and oral immune response in OLP patients has never been clarified. Melatonin is considered as a major chronobiotic hormone produced mainly by the pineal gland. This gland is recognized as a regulator of circadian rhythm and a sensor in the immune response through the NF-kB transduction pathway. It was suggested that pineal-derived melatonin and extra-pineal melatonin synthesized at the site of inflamed lesion might play a role in inflammatory response. According to our immunohistochemical study, expression of melatonin could be detected in human oral mucosa. In addition, increased levels of melatonin were observed in inflamed oral mucosa of OLP patients. We hypothesize that chronic inflammation possibly induces the local biosynthesis of melatonin in inflamed oral mucosa. We also speculate that melatonin in oral mucosa may play a cytoprotective role through its anti-oxidative and anti-inflammatory properties. Moreover, melatonin may play an immunomodulatory role in relation to pathogenesis of OLP. Our hypothesis provides a new implication for upcoming research on the connection between circadian neuroendocrine network and immune response in oral mucosal compartments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Transducin Duplicates in the Zebrafish Retina and Pineal Complex: Differential Specialisation after the Teleost Tetraploidisation

    PubMed Central

    Lagman, David; Callado-Pérez, Amalia; Franzén, Ilkin E.

    2015-01-01

    Gene duplications provide raw materials that can be selected for functional adaptations by evolutionary mechanisms. We describe here the results of 350 million years of evolution of three functionally related gene families: the alpha, beta and gamma subunits of transducins, the G protein involved in vision. Early vertebrate tetraploidisations resulted in separate transducin heterotrimers: gnat1/gnb1/gngt1 for rods, and gnat2/gnb3/gngt2 for cones. The teleost-specific tetraploidisation generated additional duplicates for gnb1, gnb3 and gngt2. We report here that the duplicates have undergone several types of subfunctionalisation or neofunctionalisation in the zebrafish. We have found that gnb1a and gnb1b are co-expressed at different levels in rods; gnb3a and gnb3b have undergone compartmentalisation restricting gnb3b to the dorsal and medial retina, however, gnb3a expression was detected only at very low levels in both larvae and adult retina; gngt2b expression is restricted to the dorsal and medial retina, whereas gngt2a is expressed ventrally. This dorsoventral distinction could be an adaptation to protect the lower part of the retina from intense light damage. The ontogenetic analysis shows earlier onset of expression in the pineal complex than in the retina, in accordance with its earlier maturation. Additionally, gnb1a but not gnb1b is expressed in the pineal complex, and gnb3b and gngt2b are transiently expressed in the pineal during ontogeny, thus showing partial temporal subfunctionalisation. These retina-pineal distinctions presumably reflect their distinct functional roles in vision and circadian rhythmicity. In summary, this study describes several functional differences between transducin gene duplicates resulting from the teleost-specific tetraploidisation. PMID:25806532

  3. Expression of membrane-associated mucins MUC1 and MUC4 in major human salivary glands.

    PubMed

    Liu, Bing; Lague, Jessica R; Nunes, David P; Toselli, Paul; Oppenheim, Frank G; Soares, Rodrigo V; Troxler, Robert F; Offner, Gwynneth D

    2002-06-01

    Mucins are high molecular weight glycoproteins secreted by salivary glands and epithelial cells lining the digestive, respiratory, and reproductive tracts. These glycoproteins, encoded in at least 13 distinct human genes, can be subdivided into gel-forming and membrane-associated forms. The gel-forming mucin MUC5B is secreted by mucous acinar cells in major and minor salivary glands, but little is known about the expression pattern of membrane-associated mucins. In this study, RT-PCR and Northern blotting demonstrated the presence of transcripts for MUC1 and MUC4 in both parotid and submandibular glands, and in situ hybridization localized these transcripts to epithelial cells lining striated and excretory ducts and in some serous acinar cells. The same cellular distribution was observed by immunohistochemistry. Soluble forms of both mucins were detected in parotid secretion after immunoprecipitation with mucin-specific antibodies. These studies have shown that membrane-associated mucins are produced in both parotid and submandibular glands and that they are expressed in different cell types than gel-forming mucins. Although the function of these mucins in the oral cavity remains to be elucidated, it is possible that they both contribute to the epithelial protective mucin layer and act as receptors initiating one or more intracellular signal transduction pathways.

  4. Immunohistological Localization of Peroxisome Proliferator-Activated Receptor α and γ in Human Sebaceous Glands.

    PubMed

    Furue, Masutake; Takemura, Masaki; Nishio, Kiichiroet; Sato, Yuki; Nagata, Shoko; Kan, Nagisa; Suenaga, Asako; Furue, Kazuhisa; Yoshida, Maiko; Konishi, Sawako; Tsuji, Gaku

    2016-11-01

    The immunohistological localization of peroxisome proliferator-activated receptor a (PPARa) and PPAR g was examined in 28 pilosebaceous units in 10 paraffin-embedded normal human skin specimens. Rabbit polyclonal antibody against human PPARa and monoclonal antibody against human PPARg were used as specific primary antibodies. The nuclear and cytoplasmic expression of PPARa was detected in basal to differentiated sebocytes. In contrast, the expression of PPARg was confined to nuclei of suprabasal to early-differentiated sebocytes. The nuclear PPARg expression was present only occasionally in the basal sebocytes. These results suggest that PPARa and PPARg are integral parts of sebocyte differentiation in human sebaceous glands.

  5. Dynamic analysis for mental sweating of a group of eccrin sweat glands on a human fingertip by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ohmi, Masato; Tanigawa, Motomu; Wada, Yuki; Haruna, Masamitsu

    2011-05-01

    OCT is highly potential for in vivo observation of human sweating dynamics which affects activity of the sympathetic nerve. In this paper, we demonstrate dynamic OCT analysis of mental sweating of a group of eccrin sweat glands. The sweating dynamics is tracked simultaneously for nineteen sweat glands by time-sequential piled-up en-face OCT images with the frame spacing of 3.3 sec. Strong non-uniformity is observed in mental sweating where the amount of excess sweat is different for each sweat gland although the sweat glands are adjacent to each other. The non-uniformity should be necessary to adjust as precisely the total amount of excess sweat as possible through the sympathetic nerve in response to strength of the stress.

  6. Pineal germinoma in a child with interferon-γ receptor 1 deficiency. case report and literature review.

    PubMed

    Taramasso, L; Boisson-Dupuis, S; Garrè, M L; Bondi, E; Cama, A; Nozza, P; Morana, G; Casanova, J L; Marazzi, M G

    2014-11-01

    Interferon-γ receptor 1 (IFN-γR1) deficiency is one of the primary immunodeficiencies conferring Mendelian Susceptibility to Mycobacterial Disease (MSMD). Some cases of neoplasms have been recently reported in patients with MSMD, underlying the already known link between immunodeficiency and carcinogenesis. We report the first case of intracranial tumour, i.e. pineal germinoma, in a 11-year-old patient with complete IFN-γR1 deficiency. The first clinical presentation of the genetic immunodeficiency dates back to when the child was aged 2 y and 10 mo, when he presented a multi-focal osteomyelitis caused by Mycobacterium scrofulaceum. The diagnosis of IFN-γR1 deficiency (523delT/523delT in IFNGR1 gene) was subsequently made. The child responded to antibiotic therapy and remained in stable clinical condition until the age of 11 years, when he started complaining of frontal, chronic headache. MRI revealed a solid pineal region mass lesion measuring 20 × 29 × 36 mm. Histological findings revealed a diagnosis of pineal germinoma. The patient received chemotherapy followed by local whole ventricular irradiation with boost on pineal site, experiencing complete remission, and to date he is tumor-free at four years follow-up. Four other cases of tumors have been reported in patients affected by MSMD in our knowledge: a case of Kaposi sarcoma, a case of B-cell lymphoma, a case of cutaneous squamous cell carcinoma and a case of oesophageal squamous cell carcinoma. In conclusion, in patients with MSMD, not only the surveillance of infectious diseases, but also that of tumors is important.

  7. Transventricular Transvelar Approach to Trochlear Nerve Schwannoma: Novel Technique to Lesions of Inferior Pineal Region.

    PubMed

    Farrokhi, Majid Reza; Ghaffarpasand, Fariborz; Taghipour, Mousa; Derakhshan, Nima

    2018-06-01

    The schwannoma of the trochlear nerve is rare and originates mostly from the distal parts in the interpeduncular cistern. A lesion on the proximal segment in the inferior pineal region is extremely rare. Because of the rarity of the disease, the surgical approach to this region for the resection of trochlear nerve schwannoma has not been well documented in the literature. We herein describe a novel approach to successfully resect the trochlear nerve schwannoma. A 12-year-old boy presented with occipital headache, abnormal gait, and disturbed conjoined eye movement. He was diagnosed with a lesion in the inferior pineal region compressing the superior medullary velum into the roof of the fourth ventricle. A bilateral midline suboccipital craniotomy was performed, and the fourth ventricle was exposed. The lesion was approached through the fourth ventricle superior medullary velum (transventricular transvelar approach). The lesion was totally resected, and his histopathology examination revealed trochlear schwannoma. The patient's symptoms resolved, and he had no recurrence at 12-year follow-up with normal eye movement and vision. The transventricular transvelar approach is feasible and safe to treat a lesion of the lower part of the pineal region being pushed through the superior medullary velum. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. [Comparative ultrastructural study of parotid gland, lacrimal gland and pituitary gland between miniature pig and mouse].

    PubMed

    Yan, Xing; Hai, Bo; Sun, Yi-lin; Zhang, Chun-mei; Wang, Song-ling

    2009-02-01

    To study the ultrastructure of parotid glands, lacrimal glands and pituitary glands between miniature pig and mouse. Five adult miniature pigs and 5 mice were studied. Ultrastructure of their parotid glands, lacrimal glands, and pituitary glands was observed. The secretary granules in acinar cell of miniature pig parotid glands showed higher density and more aequalis than those of mice. The cell apparatus in acinar cell of mouse parotid glands were more plentiful than those of miniature pigs. The secretary granules on blood vessel wall were richer in parotid gland of miniature pigs compared with mouse parotid gland. Lacrimal gland had the similar ultrastructure to parotid gland in these two animals. Many blood vessel antrum were found in pituitary glands of these two animals. Compared with mouse parotid glands, there are more secretary granules in acinar cells and vascular endothelial cells in miniature pig parotid glands, which might enter blood stream and have function of endocrine secretion.

  9. Novel hypophysiotropic AgRP2 neurons and pineal cells revealed by BAC transgenesis in zebrafish.

    PubMed

    Shainer, Inbal; Buchshtab, Adi; Hawkins, Thomas A; Wilson, Stephen W; Cone, Roger D; Gothilf, Yoav

    2017-03-20

    The neuropeptide agouti-related protein (AgRP) is expressed in the arcuate nucleus of the mammalian hypothalamus and plays a key role in regulating food consumption and energy homeostasis. Fish express two agrp genes in the brain: agrp1, considered functionally homologous with the mammalian AgRP, and agrp2. The role of agrp2 and its relationship to agrp1 are not fully understood. Utilizing BAC transgenesis, we generated transgenic zebrafish in which agrp1- and agrp2-expressing cells can be visualized and manipulated. By characterizing these transgenic lines, we showed that agrp1-expressing neurons are located in the ventral periventricular hypothalamus (the equivalent of the mammalian arcuate nucleus), projecting throughout the hypothalamus and towards the preoptic area. The agrp2 gene was expressed in the pineal gland in a previously uncharacterized subgroup of cells. Additionally, agrp2 was expressed in a small group of neurons in the preoptic area that project directly towards the pituitary and form an interface with the pituitary vasculature, suggesting that preoptic AgRP2 neurons are hypophysiotropic. We showed that direct synaptic connection can exist between AgRP1 and AgRP2 neurons in the hypothalamus, suggesting communication and coordination between AgRP1 and AgRP2 neurons and, therefore, probably also between the processes they regulate.

  10. Human melatonin in magnetic fields: Second study. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, C.; Cook, M.R.; Cohen, H.D.

    1995-11-01

    Melatonin (MLT) is a hormone secreted primarily at night by the pineal gland in the brain. A number of studies suggest it is part of the body`s natural defenses against cancer. This hormone is reported to stimulate immune function and has been implicated in the control of cell proliferation, the growth of transplanted tumors, and the promotion and/or co-promotion of mammary tumors. MLT also plays a key role in the regulation of reproductive hormones implicated in a number of carcinogenic processes. Studies with rodents, although not always consistent, suggest that nocturnal MLT levels may be suppressed by electric or magneticmore » field (EMF) exposure. This relationship has been proposed as a possible biological mechanism to account for epidemiological reports linking chronic EMF exposure and increased cancer risk. Research was needed to determine if a similar suppression of MLT occurs when humans are exposed to magnetic fields at night.« less

  11. A novel organotypic 3D sweat gland model with physiological functionality

    PubMed Central

    Grüdl, Sabine; Banowski, Bernhard; Giesen, Melanie; Sättler, Andrea; Proksch, Peter; Welss, Thomas; Förster, Thomas

    2017-01-01

    Dysregulated human eccrine sweat glands can negatively impact the quality-of-life of people suffering from disorders like hyperhidrosis. Inability of sweating can even result in serious health effects in humans affected by anhidrosis. The underlying mechanisms must be elucidated and a reliable in vitro test system for drug screening must be developed. Here we describe a novel organotypic three-dimensional (3D) sweat gland model made of primary human eccrine sweat gland cells. Initial experiments revealed that eccrine sweat gland cells in a two-dimensional (2D) culture lose typical physiological markers. To resemble the in vivo situation as close as possible, we applied the hanging drop cultivation technology regaining most of the markers when cultured in its natural spherical environment. To compare the organotypic 3D sweat gland model versus human sweat glands in vivo, we compared markers relevant for the eccrine sweat gland using transcriptomic and proteomic analysis. Comparing the marker profile, a high in vitro-in vivo correlation was shown. Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), muscarinic acetylcholine receptor M3 (CHRM3), Na+-K+-Cl- cotransporter 1 (NKCC1), calcium-activated chloride channel anoctamin-1 (ANO1/TMEM16A), and aquaporin-5 (AQP5) are found at significant expression levels in the 3D model. Moreover, cholinergic stimulation with acetylcholine or pilocarpine leads to calcium influx monitored in a calcium flux assay. Cholinergic stimulation cannot be achieved with the sweat gland cell line NCL-SG3 used as a sweat gland model system. Our results show clear benefits of the organotypic 3D sweat gland model versus 2D cultures in terms of the expression of essential eccrine sweat gland key regulators and in the physiological response to stimulation. Taken together, this novel organotypic 3D sweat gland model shows a good in vitro-in vivo correlation and is an appropriate alternative for screening of potential bioactives

  12. Changes in concentrations of cortisol and melatonin in plasma, expression of synaptophysin, and ultrastructural properties of pinealocytes in goat kids in situations of stress due to early weaning: the effect of melatonin.

    PubMed

    Redondo, E; Franco, A; Garcia, A; Masot, A J

    2010-06-01

    To analyse the changes in some histo-physiological parameters of the pineal gland of goat kids in situations of stress due to early weaning, and the effect of exogenous treatment with melatonin. Twenty-four 6-day-old Verata goat kids were used; 12 suckled their dams throughout the study (non-weaned groups), and the other 12 were removed from their dams and fed a milk replacer (weaned groups). Six goat kids in each group were treated with melatonin, and the other six with double-distilled pyrogen-free water (Day 0). On Days 28-29, blood samples were collected at 0600, 1000, 1400, 1800, 2200, 0200 and 0600 hours, to determine concentrations of cortisol and melatonin in plasma. On Days 29 and 30, six animals per group (three at 1400 and three at 0200 hours, respectively) were subject to euthanasia and the weight of their pineal glands determined. The structural immunocytochemistry, morphometric analysis, ultrastructural analysis and immunotransmission electron microscopy of the pineal glands were established. Concentrations of cortisol in plasma were significantly higher in weaned than in non-weaned goat kids (p<0.05), and treatment with melatonin reduced the concentrations in weaned kids (p<0.05). Concentrations of melatonin in plasma showed a similar pattern in the four groups, with peak values at 0200 and troughs at 1400 hours. Mean concentrations of melatonin in plasma in weaned goat kids were significantly lower than those in the other groups (p<0.05). In weaned goat kids not treated with melatonin, the weight and volume of the pineal gland, and number of pinealocytes, were significantly lower when compared with those from non-weaned kids (p<0.05). Quantitative ultrastructural analysis of pinealocytes showed the relative volume of mitochondria, rough endoplasmic reticulum and Golgi complex was significantly lower in weaned than non-weaned goat kids (p<0.05); treatment with melatonin significantly increased these parameters in weaned kids. Taken together, these

  13. Health Related Aspects of Artificial Light

    NASA Astrophysics Data System (ADS)

    Hansler, Richard; Kubulins, Vilnis; Carome, Edward

    2011-04-01

    It was long thought that the "sleep hormone," melatonin, is produced by the pineal gland only when the eyes are in darkness. Thus, in developed countries, due to the use of electric lighting after dark, melatonin production usually occurs only when one is asleep. For most people, this is substantially less than the 9 to 10 hour production time capability of the pineal gland. However, in 2001 it was discovered that not all light, but mainly a band of wavelengths in the blue portion of the spectrum, below 530nm, suppresses melatonin production. On learning this, and that melatonin is a very active cancer fighting antioxidant and has many other health promoting properties, it was decided to make available lighting products that can enhance melatonin production. Included are lamps that do not emit the offending blue wavelengths and eyeglasses that filter out the blue portion of the spectrum. These and other related products are meant to be used for several hours in the evening, before retiring, thus maximizing the pineal gland's production time. The effects of their use on sleep and several other health related conditions are discussed.

  14. A Technical Approach to Expedited Processing of NTPR Radiation Dose Assessments

    DTIC Science & Technology

    2011-10-01

    Pharynx ET Region+ Surrogate Oral Cavity and Pharynx (140-149) None PNLGL Pineal Gland Brain Surrogate Other Endocrine Glands (194) PITTGL PITTGL...including brain); endocrine glands other than thyroid; other and ill-defined sites; lymphoma and multiple myeloma Risk depends on age at exposure...endocrine glands 14 45 Cancers of other and ill-defined sites 16 50 Lymphoma and multiple myeloma 22 61 Leukemia, excluding CLL 1.9 (5 years) 41

  15. Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans.

    PubMed

    Palego, Lionella; Betti, Laura; Rossi, Alessandra; Giannaccini, Gino

    2016-01-01

    L-Tryptophan is the unique protein amino acid (AA) bearing an indole ring: its biotransformation in living organisms contributes either to keeping this chemical group in cells and tissues or to breaking it, by generating in both cases a variety of bioactive molecules. Investigations on the biology of Trp highlight the pleiotropic effects of its small derivatives on homeostasis processes. In addition to protein turn-over, in humans the pathways of Trp indole derivatives cover the synthesis of the neurotransmitter/hormone serotonin (5-HT), the pineal gland melatonin (MLT), and the trace amine tryptamine. The breakdown of the Trp indole ring defines instead the "kynurenine shunt" which produces cell-response adapters as L-kynurenine, kynurenic and quinolinic acids, or the coenzyme nicotinamide adenine dinucleotide (NAD(+)). This review aims therefore at tracing a "map" of the main molecular effectors in human tryptophan (Trp) research, starting from the chemistry of this AA, dealing then with its biosphere distribution and nutritional value for humans, also focusing on some proteins responsible for its tissue-dependent uptake and biotransformation. We will thus underscore the role of Trp biochemistry in the pathogenesis of human complex diseases/syndromes primarily involving the gut, neuroimmunoendocrine/stress responses, and the CNS, supporting the use of -Omics approaches in this field.

  16. Effect of electric field exposure on melatonin and enzyme circadian rhythms in the rat pineal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, B.; Anderson, L.E.; Hilton, D.I.

    The effects of chronic 30-day electric field exposure on pineal serotonin N-acetyl transferase (EC 2.1.15) activity as well as melatonin and 5-methoxy tryptophol (5-MTOL) concentrations in rats, were assessed.

  17. Sunitinib in Treating Patients With Recurrent Malignant Gliomas

    ClinicalTrials.gov

    2016-01-29

    Adult Anaplastic Astrocytoma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pineal Gland Astrocytoma

  18. Quantitative Analysis of Human Salivary Gland-Derived Intact Proteome Using Top-Down Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Si; Brown, Joseph N.; Tolic, Nikola

    There are several notable challenges inherent to fully characterizing the entirety of the human saliva proteome using bottom-up approaches, including polymorphic isoforms, post-translational modifications, unique splice variants, deletions, and truncations. To address these challenges, we have developed a top-down based liquid chromatography-mass spectrometry (LC-MS) approach, which cataloged 20 major human salivary proteins with a total of 83 proteoforms, containing a broad range of post-translational modifications. Among these proteins, several previously reported disease biomarker proteins were identified at the intact protein level, such as beta-2 microglobulin (B2M). In addition, intact glycosylated proteoforms of several saliva proteins were also characterized, including intactmore » N-glycosylated protein prolactin inducible protein (PIP) and O-glycosylated acidic protein rich protein (aPRP). These characterized proteoforms constitute an intact saliva proteoform database, which was used for quantitative comparison of intact salivary proteoforms among six healthy individuals. Human parotid (PS) and submandibular/sublingual gland (SMSL) secretion samples (2 μg of protein each) from six healthy individuals were compared using RPLC coupled with the 12T FTICR mass spectrometer. Significantly different protein and PTM patterns were resolved with high reproducibility between PS and SMSL glands. The results from this study provide further insight into the potential mechanisms of PTM pathways in oral glandular secretion, expanding our knowledge of this complex yet easily accessible fluid. Intact protein LC-MS approach presented herein can potentially be applied for rapid and accurate identification of biomarkers from only a few microliters of human glandular saliva.« less

  19. Melatonin: the dark force.

    PubMed

    Bergstrom, W H; Hakanson, D O

    1998-01-01

    Although the pineal gland was described 2,300 years ago, its functions remained obscure and productive research was limited until 1958, when Lerner and associates defined melatonin. In 1965 Wurtman and Axelrod advanced the "melatonin hypothesis," according to which the pineal gland acts as a transducer responding to changes in circumambient light by changing its rates of melatonin output. Sites and mechanisms of melatonin action are still poorly understood. Two consistent effects are the induction of sleep and an antigonadotropic influence on reproductive structure and behavior. The former is demonstrable and clinically useful in human subjects; the latter has been shown in birds, rodents, and sheep. Alteration of skin color by the contraction of melanophores was effected by pineal extracts before the discovery of melatonin. This phenomenon, seen in reptiles, amphibians, and fish, has received little recent attention. Areas of greater interest and potential importance include the antimitotic effects of melatonin on some types of tumor cells in culture and the apparent in vivo protection of immunocompetent lymphocytes during chronic stress, which reduces the functional capacity of lymphocytes in control rodents. Clinical application of the antimitotic and immunosupportive properties of melatonin seems likely in the near future. Unfortunately, this innocent molecule has been touted in two recent books and many advertisements as an aphrodisiac, rejuvenator, protector against disease, and general wonder-worker. Because interest in melatonin is high, all physicians can expect questions and may have use for the information provided in this review.

  20. Immunohistochemical localisation of keratin and luminal epithelial antigen in myoepithelial and luminal epithelial cells of human mammary and salivary gland tumours.

    PubMed

    Nathrath, W B; Wilson, P D; Trejdosiewicz, L K

    1982-01-01

    Rabbit antisera to human 40-63 000 MW epidermal keratin, one batch with restricted distribution of reactivity from an initial (aK1) and one with "broad spectrum" distribution of reactivity from a late bleeding (aK), and to "luminal epithelial antigen" (aLEA) were applied to formalin fixed paraffin embedded sections of human normal and neoplastic mammary and salivary glands using an indirect immunoperoxidase method. aK1 reacted with myoepithelial cells, aLEA with luminal epithelial cells and aK with both cell types in normal mammary and salivary gland. In breast carcinomas the majority of intraluminal and infiltrating carcinoma cells reacted with aLEA but not with aK1 which reacted only with surrounding myoepithelial cells. aK reacted with both myoepithelial cells and with intraluminal and infiltrating tumour cells. In the salivary gland adenomas the majority of cells reacted with aK, and those cells arranged in a tubular fashion reacted with aLEA.

  1. Medial posterior choroidal artery territory infarction associated with tumor removal in the pineal/tectum/thalamus region through the occipital transtentorial approach.

    PubMed

    Saito, Ryuta; Kumabe, Toshihiro; Kanamori, Masayuki; Sonoda, Yukihiko; Mugikura, Shunji; Takahashi, Shoki; Tominaga, Teiji

    2013-08-01

    Damage to the deep venous system, occipital lobe, and/or corpus callosum is well known to cause complications associated with the occipital transtentorial approach (OTA), but ischemic complications are not well documented. The authors investigated the high incidences of ischemic complications associated with removal of pineal/tectal/thalamic tumors through the OTA. Clinical records of 29 patients who underwent 31 surgeries using the OTA from December 2001 to May 2011 were retrospectively studied. Tumor locations were the pineal/tectal/thalamic region for 19, cerebellum for 7, and medial temporal lobe for 3. Postoperative diffusion-weighted magnetic resonance images obtained within 72 h after surgery detected infarction in the tectal/splenial/thalamic region, presumably representing the medial posterior choroidal artery (MPChA) territory, in 10 patients. All these patients had tumor in the pineal/tectal/thalamic region. Deteriorated or newly developed eye symptoms including vertical gaze palsy tended to persist in these patients compared to those without ischemic complications. A relatively high incidence of MPChA territory infarction was associated with removal of tumors in the pineal/tectal/thalamic region through the OTA. Eye symptoms often occurred post-surgery and tended to persist in these patients. Neurosurgeons must be aware of the possibility of MPChA territory infarction to further increase the safety of the OTA. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Lateral supracerebellar infratentorial approach for microsurgical resection of large midline pineal region tumors: techniques to expand the operative corridor.

    PubMed

    Kulwin, Charles; Matsushima, Ken; Malekpour, Mahdi; Cohen-Gadol, Aaron A

    2016-01-01

    Pineal region tumors pose certain challenges in regard to their resection: a deep surgical field, associated critical surrounding neurovascular structures, and narrow operative working corridor due to obstruction by the apex of the culmen. The authors describe a lateral supracerebellar infratentorial approach that was successfully used in the treatment of 10 large (> 3 cm) midline pineal region tumors. The patients were placed in a modified lateral decubitus position. A small lateral suboccipital craniotomy exposed the transverse sinus. Tentorial retraction sutures were used to gently rotate and elevate the transverse sinus to expand the lateral supracerebellar operative corridor. This approach placed only unilateral normal structures at risk and minimized vermian venous sacrifice. The surgeon achieved generous exposure of the caudal midline mesencephalon through a "cross-court" oblique trajectory, while avoiding excessive retraction on the culmen. All patients underwent the lateral approach with no approach-related complication. The final pathological diagnoses were consistent with meningioma in 3 cases, pilocytic astrocytoma in 3 cases, intermediate grade pineal region tumor in 2 cases, and pineoblastoma in 2 cases. The entire extent of these tumors was readily reachable through the lateral supracerebellar route. Gross-total resection was achieved in 8 (80%) of the 10 cases; in 2 cases (20%) near-total resection was performed due to adherence of these tumors to deep diencephalic veins. Large midline pineal region tumors can be removed through a unilateral paramedian suboccipital craniotomy. This approach is simple, may spare some of the midline vermian bridging veins, and may be potentially less invasive and more efficient.

  3. Aquaporins in Salivary Glands: From Basic Research to Clinical Applications

    PubMed Central

    Delporte, Christine; Bryla, Angélic; Perret, Jason

    2016-01-01

    Salivary glands are involved in saliva secretion that ensures proper oral health. Aquaporins are expressed in salivary glands and play a major role in saliva secretion. This review will provide an overview of the salivary gland morphology and physiology of saliva secretion, and focus on the expression, subcellular localization and role of aquaporins under physiological and pathophysiological conditions, as well as clinical applications involving aquaporins. This review is highlighting expression and localization of aquaporins in human, rat and mouse, the most studied species and is pointing out possible difference between major salivary glands, i.e., parotid, submandibular and sublingual glands. PMID:26828482

  4. Pseudomonas aeruginosa lipopolysaccharide induces CF-like alteration of protein secretion by human tracheal gland cells.

    PubMed

    Kammouni, W; Figarella, C; Baeza, N; Marchand, S; Merten, M D

    1997-12-18

    Human tracheal gland (HTG) serous cells are now believed to play a major role in the physiopathology of cystic fibrosis. Because of the persistent inflammation and the specific infection by Pseudomonas aeruginosa in the lung, we looked for the action of the lipopolysaccharide (LPS) of this bacteria on human tracheal gland cells in culture by studying the secretion of the secretory leukocyte proteinase inhibitor (SLPI) which is a specific serous secretory marker of these cells. Treatment with Pseudomonas aeruginosa LPS resulted in a significant dose-dependent increase in the basal production of SLPI (+ 250 +/- 25%) whilst the SLPI transcript mRNA levels remained unchanged. This LPS-induced increase in secretion was inhibited by glucocorticoides. Furthermore, LPS treatment of HTG cells induces a loss of responsiveness to carbachol and isoproterenol but not to adenosine triphosphate. These findings indicate that HTG cells treated by Pseudomonas aeruginosa LPS have the same behavior as those previously observed with CF-HTG cells. Exploration by using reverse transcriptase polymerase chain reaction amplification showed that LPS downregulated cystic fibrosis transmembrane conductance regulator (CFTR) mRNA expression in HTG cells indicative of a link between CFTR function and consequent CF-like alteration in protein secretory process.

  5. Estrogen alters the diurnal rhythm of alpha 1-adrenergic receptor densities in selected brain regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, N.G.; Wise, P.M.

    Norepinephrine regulates the proestrous and estradiol-induced LH surge by binding to alpha 1-adrenergic receptors. The density of alpha 1-receptors may be regulated by estradiol, photoperiod, and noradrenergic neuronal activity. We wished to determine whether alpha 1-receptors exhibit a diurnal rhythm in ovariectomized and/or estradiol-treated female rats, whether estradiol regulates alpha 1-receptors in those areas of brain involved with LH secretion and/or sexual behavior, and whether the concentrations of alpha-receptors vary inversely relative to previously reported norepinephrine turnover patterns. Young female rats, maintained on a 14:10 light-dark cycle were ovariectomized. One week later, half of them were outfitted sc with Silasticmore » capsules containing estradiol. Groups of animals were decapitated 2 days later at 0300, 1000, 1300, 1500, 1800, and 2300 h. Brains were removed, frozen, and sectioned at 20 micron. Sections were incubated with (/sup 3/H)prazosin in Tris-HCl buffer, washed, dried, and exposed to LKB Ultrofilm. The densities of alpha 1-receptors were quantitated using a computerized image analysis system. In ovariectomized rats, the density of alpha 1-receptors exhibited a diurnal rhythm in the suprachiasmatic nucleus (SCN), medial preoptic nucleus (MPN), and pineal gland. In SCN and MPN, receptor concentrations were lowest during the middle of the day and rose to peak levels at 1800 h. In the pineal gland, the density of alpha 1-receptors was lowest at middark phase, rose to peak levels before lights on, and remained elevated during the day. Estradiol suppressed the density of alpha 1 binding sites in the SCN, MPN, median eminence, ventromedial nucleus, and the pineal gland but had no effect on the lateral septum. Estrogen treatment altered the rhythm of receptor densities in MPN, median eminence, and the pineal gland.« less

  6. Uptake of indocyanine green by hamster sebaceous glands

    NASA Astrophysics Data System (ADS)

    McMillan, Kathleen; Lo, Kai-Ming; Wang, Zhi

    2001-05-01

    Photothermal injury to the sebaceous glands is a potential curative treatment for the common skin disease acne vulgaris. Accumulation of the exogenous chromophore indocyanine green in the sebaceous glands may be accomplished using an emulsion or liposomal formulation applied to the skin surface. An emulsion containing 0.09% by weight indocyanine green (ICG) was applied to the epidermis of hamster ears ex vivo and the flank organ in vivo. Fluorescence microscopy demonstrated selective accumulation of ICG in the underlying sebaceous glands. The concentration of ICG that may be expected to accumulate in sebaceous glands of humans was then estimated on the basis of the gland size and orifice area, for the case of topical application of a more concentrated 1% ICG liposomal formulation. Monte Carlo modeling and heat transfer calculations showed that the sebaceous glands containing the exogenous chromophore may be selectively damaged by pulsed 810 nm laser radiation in conjunction with cryogen spray cooling.

  7. Sweat Gland Progenitors in Development, Homeostasis, and Wound Repair

    PubMed Central

    Lu, Catherine; Fuchs, Elaine

    2014-01-01

    The human body is covered with several million sweat glands. These tiny coiled tubular skin appendages produce the sweat that is our primary source of cooling and hydration of the skin. Numerous studies have been published on their morphology and physiology. Until recently, however, little was known about how glandular skin maintains homeostasis and repairs itself after tissue injury. Here, we provide a brief overview of sweat gland biology, including newly identified reservoirs of stem cells in glandular skin and their activation in response to different types of injuries. Finally, we discuss how the genetics and biology of glandular skin has advanced our knowledge of human disorders associated with altered sweat gland activity. PMID:24492848

  8. [The pineal gland's peptides factors and the rhythms of functions of the thymus and bone marrow in animals during aging].

    PubMed

    Labunets, I F; Butenko, G M; Dragunova, V A; Magdich, L V; Kopylova, G V; Rodnichenko, A E; Mikhal'skiĭ, S A; Khavinson, V Kh; Azarskova, M V; Maksiuk, T V

    2004-01-01

    It was investigated the influence of pineal peptides on the aging changes both circadian rhythm of thymic serum factor (FTS) titer in male rats Wistar and circannual rhythms of FTS, the amount of stromal cells-precurcors (CFC-F), granulocyte-macrophage cells-precurcors (CFC-GM), CD4+, Mac-1+ and CD19+-cells in bone marrow of male mice CBA. Epithalamin was injected chronically beginning from 6 month in rats and 4 month in mice. In old animals the rhythmical disturbancers of the indices characterized by loss of fluctuations, displacement of seasonal acrophase, increased or diminished amplitude, inversion of rhythm and desynchronization. After epithalamin injections in rats of 11, 17, 27 months the FTS titer at night increased and in old mice of 23-24 months appeared the peak of hormone level in summer-autumn, restored the difference between the amount of CD4+, Mac-1+-cells in bone marrow in spring and autumn, increased CFC-GM amount in spring, diminished CFC-F in autumn and increased this indice in winter. Epithalon also diminished of CFC-GM and CFC-F amount in old mice in autumn. The retarding age-related disturbances of suprachiasmaticus nucleus of hypothalamus structure, the diminishing corticosterone and testosterone levels at night, the increasing hormones level in summer and the falling in winter plays role in the improvement of thymus and bone marrow rhythmical function in old animals, reseaved epithalamin. The rhythms of most indices rhythms in old animals showed a pattern of adult.

  9. Relation between residential magnetic fields, light-at-night, and nocturnal urine melatonin levels in women: Volume 1 -- Background and purpose, methods, results, discussion. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaune, W.; Davis, S.; Stevens, R.

    Scientists have postulated a link between exposure to magnetic fields and reduced blood melatonin levels. This EPRI study was designed to supplement a National Cancer Institute study (NCI-BC) of magnetic fields, light-at-night, and the risk of breast cancer. By expanding the exposure assessment of the NCI-BC and collecting data on urine melatonin levels, this project provides new insight into a possible magnetic field-melatonin link. It has been proposed that exposure to 60-Hz (power frequency) magnetic fields may increase the risk of breast cancer by suppressing the normal nocturnal rise in melatonin production in the pineal gland. It remains unknown whethermore » the human pineal gland is reproducibly responsive or sensitive to magnetic field exposure, and whether such exposures could alter elements of the endogenous hormonal environment in women that might be important in the etiology of breast cancer. The objective of this research was to investigate whether exposure to power-frequency magnetic fields and/or light-at-night is associated with levels of the primary urinary melatonin metabolite in women without a history of breast cancer.« less

  10. Relation between residential magnetic fields, light-at-night, and nocturnal urine melatonin levels in women: Volume 2 -- Magnetic field exposure analysis. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaune, W.; Davis, S.; Stevens, R.

    Scientists have postulated a link between exposure to magnetic fields and reduced blood melatonin levels. This EPRI study was designed to supplement a National Cancer Institute study (NCI-BC) of magnetic fields, light-at-night, and the risk of breast cancer. By expanding the exposure assessment of the NCI-BC and collecting data on urine melatonin levels, this project provides new insight into a possible magnetic field-melatonin link. It has been proposed that exposure to 60-Hz (power frequency) magnetic fields may increase the risk of breast cancer by suppressing the normal nocturnal rise in melatonin production in the pineal gland. It remains unknown whethermore » the human pineal gland is reproducibly responsive or sensitive to magnetic field exposure, and whether such exposures could alter elements of the endogenous hormonal environment in women that might be important in the etiology of breast cancer. The objective of this research was to investigate whether exposure to power-frequency magnetic fields and/or light-at-night is associated with levels of the primary urinary melatonin metabolite in women without a history of breast cancer.« less

  11. Glucagon Like Peptide-1 Receptor Expression in the Human Thyroid Gland

    PubMed Central

    Gier, Belinda; Butler, Peter C.; Lai, Chi K.; Kirakossian, David; DeNicola, Matthew M.

    2012-01-01

    Background: Glucagon like peptide-1 (GLP-1) mimetic therapy induces medullary thyroid neoplasia in rodents. We sought to establish whether C cells in human medullary thyroid carcinoma, C cell hyperplasia, and normal human thyroid express the GLP-1 receptor. Methods: Thyroid tissue samples with medullary thyroid carcinoma (n = 12), C cell hyperplasia (n = 9), papillary thyroid carcinoma (n = 17), and normal human thyroid (n = 15) were evaluated by immunofluorescence for expression of calcitonin and GLP-1 receptors. Results: Coincident immunoreactivity for calcitonin and GLP-1 receptor was consistently observed in both medullary thyroid carcinoma and C cell hyperplasia. GLP-1 receptor immunoreactivity was also detected in 18% of papillary thyroid carcinoma (three of 17 cases). Within normal human thyroid tissue, GLP-1 receptor immunoreactivity was found in five of 15 of the examined cases in about 35% of the total C cells assessed. Conclusions: In humans, neoplastic and hyperplastic lesions of thyroid C cells express the GLP-1 receptor. GLP-1 receptor expression is detected in 18% papillary thyroid carcinomas and in C cells in 33% of control thyroid lobes. The consequence of long-term pharmacologically increased GLP-1 signaling on these GLP-1 receptor-expressing cells in the thyroid gland in humans remains unknown, but appropriately powered prospective studies to exclude an increase in medullary or papillary carcinomas of the thyroid are warranted. PMID:22031513

  12. Descartes and His Peculiar Sleep Pattern.

    PubMed

    Damjanovic, Aleksandar; Milovanovic, Srdjan D; Trajanovic, Nikola N

    2015-01-01

    Rene Descartes (1596-1650) was a mathematician, philosopher, and scholar, whose work set a foundation for modern science. Among other interests, he focused on locating the "core and the seat of the soul" and concluded that the pineal gland was such a structure. Recent scientific findings validate Descartes' deep interest in pineal gland, appreciating its role as part of the circadian rhythm system. On the other hand, the biographical information suggests that Descartes had an aberration of the circadian rhythm (delayed sleep phase). Coincidentally, this meant that one of the most important things in his private life and one of the most significant areas of his research intersected in an overlooked way.

  13. State of some peripheral organs during laser puncture correction of ovarian functional deficiency

    NASA Astrophysics Data System (ADS)

    Vylegzhanina, T. A.; Kuznetsova, Tatiana I.; Maneeva, O.; Ryzhkovskaya, E. L.; Yemelianova, A.

    2001-01-01

    The findings from studies on structural and functional parameters of the adrenal, thyroid, and pineal glands in conditions of ovarian hypofunction and after its correction by laser puncture are presented. An experimentally induced hypofunction of the ovaries was shown to be accompanied by a decreased hormonal synthesis in the cortical fascicular zone. The epiphysis showed ultra structural signs of increased functional activity. Application of a helium-neon laser to biologically active points of the ovarian reflexogenic zone induced normalization of the ovarian cycle, potentiating of the adrenal functional state, and a decreased thyroid hormone production and abolished the activatory effect of the dark regime on the functional state of the pineal gland.

  14. MUC19 expression in human ocular surface and lacrimal gland and its alteration in Sjögren syndrome patients.

    PubMed

    Yu, D F; Chen, Y; Han, J M; Zhang, H; Chen, X P; Zou, W J; Liang, L Y; Xu, C C; Liu, Z G

    2008-02-01

    This study investigated the expression of MUC19, a newly discovered gel-forming mucin gene, in normal human lacrimal functional unit components and its alteration in Sjögren syndrome patients. Real-time PCR and immunohistochemistry were performed to determine the expression of MUC19 and MUC5AC in human cornea, conjunctiva, and lacrimal gland tissues. Conjunctival impression cytology specimens were collected from normal control subjects and Sjögren syndrome patients for Real-time PCR, PAS staining, and immunohistochemistry assays. In addition, conjunctiva biopsy specimens from both groups were examined for the expression differences of MUC19 and MUC5AC at both mRNA and protein level. The MUC19 mRNA was found to be present in cornea, conjunctiva and lacrimal gland tissues. The immunohistochemical staining of mucins showed that MUC19 was expressed in epithelial cells from corneal, conjunctival, and lacrimal gland tissues. In contrast, MUC5AC mRNA was only present in conjunctiva and lacrimal gland tissues, but not in cornea. Immunostaining demonstrates the co-staining of MUC19 and MUC5AC in conjunctival goblet cells. Consistent with the significant decrease of mucous secretion, both MUC19 and MUC5AC were decreased in conjunctiva of Sjögren syndrome patients compared to normal subjects. Considering the contribution of gel-forming mucins to the homeostasis of the ocular surface, the decreased expression of MUC19 and MUC5AC in Sjögren syndrome patients suggested that these mucins may be involved in the disruption of the ocular surface homeostasis in this disease.

  15. Praying Sitting Position for Pineal Region Surgery: An Efficient Variant of a Classic Position in Neurosurgery.

    PubMed

    Choque-Velasquez, Joham; Colasanti, Roberto; Resendiz-Nieves, Julio C; Gonzáles-Echevarría, Kléber E; Raj, Rahul; Jahromi, Behnam Rezai; Goehre, Felix; Lindroos, Ann-Christine; Hernesniemi, Juha

    2018-05-01

    The sitting position has lost favor among neurosurgeons partly owing to assumptions of increased complications, such as venous air embolisms and hemodynamic disturbances. Moreover, the surgeon must assume a tiring posture. We describe our protocol for the "praying position" for pineal region surgery; this variant may reduce some of the risks of the sitting position, while providing a more ergonomic surgical position. A retrospective review of 56 pineal lesions operated on using the praying position between January 2008 and October 2015 was performed. The praying position is a steeper sitting position with the upper torso and the head bent forward and downward. The patient's head is tilted about 30° making the tentorium almost horizontal, thus providing a good viewing angle. G-suit trousers or elastic bandages around the lower extremities are always used. Complete lesion removal was achieved in 52 cases; subtotal removal was achieved in 4. Venous air embolism associated with persistent hemodynamic changes was nonexistent in this series. When venous air embolism was suspected, an immediate reaction based on good teamwork was imperative. No cervical spine cord injury or peripheral nerve damage was reported. The microsurgical time was <45 minutes in most of the cases. Postoperative pneumocephalus was detected in all patients, but no case required surgical treatment. A protocolized praying position that includes proper teamwork management may provide a simple, fast, and safe approach for proper placement of the patient for pineal region surgery. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Pineal and ectopic pineal tumors: the role of radiation therapy. [X ray; /sup 60/Co

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Y.T.R.; Medini, E.; Haselow, R.E.

    Seventeen patients with pineal tumors and one ectopic (suprasellar) germinoma were treated with radiation therapy. Surgery was restricted to decompression in 16 patients, and only two patients had resection of the tumor. Thirteen of 18 patients are alive without evidence for disease with a ten-year surrvival rate of 88%. The tumor dose ranged from 4000 rads to 6000 rads. No age or dose dependence in survival was noted, but patients with whole brain irradiation or generous volume to include ventricular system had better survival. No case of spinal metastasis was noted. The possibility of increased incidence of meningeal seeding followingmore » surgical intervention is considered. From their data, the authors feel that radiation therapy with or without surgical decompression should be the primary treatment for pinealoma. Surgery can be used for diagnosis and/or treatment of patients who show delayed response to radiation. Recommendation is made for the use of whole brain irradiation to 4000 rads followed by a boost to the tumor area to 5000 rads.« less

  17. Salivary Glands

    MedlinePlus

    ... salivary gland tumors usually show up as painless enlargements of these glands. Tumors rarely involve more than ... otolaryngologist-head and neck surgeon should check these enlargements. Malignant tumors of the major salivary glands can ...

  18. Salivary gland disease.

    PubMed

    Thomas, Bethan L; Brown, Jackie E; McGurk, Mark

    2010-01-01

    Salivary gland disease covers a wide range of pathological entities, including salivary gland-specific disease, as well as manifestations of systemic diseases. This chapter discusses the recent advances in managing obstructive salivary gland disease, the move from gland excision to gland preservation, the dilemmas in diagnosing and managing tumours of the salivary glands, and the international data collection to understand the aetiology and progression of Sjögren's disease. Copyright 2010 S. Karger AG, Basel.

  19. Phase I Study of Cellular Immunotherapy for Recurrent/Refractory Malignant Glioma Using Intratumoral Infusions of GRm13Z40-2, An Allogeneic CD8+ Cytolitic T-Cell Line Genetically Modified to Express the IL 13-Zetakine and HyTK and to be Resistant to Glucocorticoids, in Combination With Interleukin-2

    ClinicalTrials.gov

    2015-06-03

    Anaplastic Astrocytoma; Anaplastic Ependymoma; Anaplastic Meningioma; Anaplastic Oligodendroglioma; Brain Stem Glioma; Ependymoblastoma; Giant Cell Glioblastoma; Glioblastoma; Gliosarcoma; Grade III Meningioma; Meningeal Hemangiopericytoma; Mixed Glioma; Pineal Gland Astrocytoma; Brain Tumor

  20. Identification of fatty acids and fatty acid amides in human meibomian gland secretions.

    PubMed

    Nichols, Kelly K; Ham, Bryan M; Nichols, Jason J; Ziegler, Corrie; Green-Church, Kari B

    2007-01-01

    The complex superficial lipid layer of the tear film functions to prevent evaporation and maintain tear stability. Although classes of lipids found in the tear film have been reported, individual lipid species are currently being studied with more sophisticated. The purpose of this work was to show the identification of fatty acids and the fatty acid amides in human meibomian gland secretions by using electrospray mass spectrometry. methods. Human meibomian gland secretions (meibum) were analyzed by electrospray quadrupole time-of-flight mass spectrometry (positive- and negative-ion mode). Accurate mass determination and collision-induced dissociation of meibum, and lipid standards were used to identify lipid species. Mass analysis of meibum in an acidic chloroform-methanol solution in positive-ion mode revealed a mass peak of m/z 282.3, which was identified as the protonated molecule of oleamide [C(18)H(35)NO+H](+). The high-resolution mass analysis of the m/z 282.2788 peak (oleamide) demonstrated a mass accuracy of 3.2 parts per million (ppm). Collision-induced dissociation of this species from meibum, compared with an oleamide standard, confirmed its identification. Myristic, palmitic, stearic, and oleic free fatty acids were identified in a similar manner, as were the other fatty acid amides (myristamide, palmitamide, stearamide, and erucamide). The findings indicate that oleamide (cis-9-octadecenamide), an endogenous fatty acid primary amide, is a predominant component of meibum when examined by electrospray mass spectrometry. The novel finding of oleamide and other members of the fatty acid amide family in the tear film could lead to additional insights into the role of fatty acid amide activity in human biological systems and may indicate a new function for this lipid class of molecules in ocular surface signaling and/or in the maintenance of the complex tear film.

  1. Reduction of the nocturnal rise in pineal melatonin levels in rats exposed to 60-Hz electric fields in utero and for 23 days after birth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, R.J.; Anderson, L.E.; Buschbom, R.L.

    Rats exposed to 60-Hz electric fields of either 10, 65, or 130 kV/m from conception to 23 days of age exhibited reduced peak nighttime pineal melatonin contents compared to unexposed controls. As a group, the exposed rats also exhibited a phase delay, estimated at approximately 1.4 hours, in the occurrence of the nocturnal melatonin peak. No clear dose-response relationship was noticed over the range of electric field strengths used as treatments in these experiments. These are the first studies concerned with the effects of electric field exposure on the pineal melatonin rhythm in immature rats. The findings are generally consistentmore » with those obtained using adult rats, where electric field exposure has been shown to abolish the nighttime rhythm in pineal melatonin concentrations.« less

  2. [The pathology of salivary glands. Tumors of the salivary glands].

    PubMed

    Mahy, P; Reychler, H

    2006-01-01

    The management of benign and malignant neoplasms of the salivary glands requires precise knowledge of tumor histogenesis and classification as well as surgical skills. Pleomorphic adenoma and Whartin's tumor are the most frequent tumors in parotid glands while the probability for malignant tumors is higher in other glands, especially in sublingual and minor salivary glands. Those malignant salivary glands tumors are rare and necessitate multidisciplinar staging and management in close collaboration with the pathologist and the radiation oncologist.

  3. Is Migraine A Lateralisation Defect?

    PubMed Central

    Kaaro, Jani; Partonen, Timo; Naik, Paulami; Hadjikhani, Nouchine

    2008-01-01

    Migraine often co-occurs with patent foramen ovale (PFO) and some have suggested surgical closure as an efficient treatment for migraine. However, prospective studies do not report radical effect of PFO surgery on migraine. Here we examined the hypothesis that PFO and migraine may co-occur as two independent manifestations of lateralization defect during embryonic development. We measured the absolute displacement of a midline structure, the pineal gland, on brain scans of 39 migraineurs and 26 controls. We found a significant asymmetry of the pineal gland in migraineurs compared with controls. Our data suggest that migraine's circadian component and its association with PFO may be linked to a lateralization defect during embryogenesis, which could be a result from abnormal serotonin regulation. PMID:18695522

  4. Influence of Meibomian Gland Expression Methods on Human Lipid Analysis Results.

    PubMed

    Kunnen, Carolina M E; Brown, Simon H J; Lazon de la Jara, Percy; Holden, Brien A; Blanksby, Stephen J; Mitchell, Todd W; Papas, Eric B

    2016-01-01

    To compare the lipid composition of human meibum across three different meibum expression techniques. Meibum was collected from five healthy non-contact lens wearers (aged 20-35 years) after cleaning the eyelid margin using three meibum expression methods: cotton buds (CB), meibomian gland evaluator (MGE) and meibomian gland forceps (MGF). Meibum was also collected using cotton buds without cleaning the eyelid margin (CBn). Lipids were analyzed by chip-based, nano-electrospray mass spectrometry (ESI-MS). Comparisons were made using linear mixed models. Tandem MS enabled identification and quantification of over 200 lipid species across ten lipid classes. There were significant differences between collection techniques in the relative quantities of polar lipids obtained (P<.05). The MGE method returned smaller polar lipid quantities than the CB approaches. No significant differences were found between techniques for nonpolar lipids. No significant differences were found between cleaned and non-cleaned eyelids for polar or nonpolar lipids. Meibum expression technique influences the relative amount of phospholipids in the resulting sample. The highest amounts of phospholipids were detected with the CB approaches and the lowest with the MGE technique. Cleaning the eyelid margin prior to expression was not found to affect the lipid composition of the sample. This may be a consequence of the more forceful expression resulting in cell membrane contamination or higher risk of tear lipid contamination as a result of reflex tearing. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Three-dimensional cell shapes and arrangements in human sweat glands as revealed by whole-mount immunostaining

    PubMed Central

    Kurata, Ryuichiro; Futaki, Sugiko; Nakano, Itsuko; Fujita, Fumitaka; Tanemura, Atsushi; Murota, Hiroyuki; Katayama, Ichiro; Okada, Fumihiro

    2017-01-01

    Because sweat secretion is facilitated by mechanical contraction of sweat gland structures, understanding their structure-function relationship could lead to more effective treatments for patients with sweat gland disorders such as heat stroke. Conventional histological studies have shown that sweat glands are three-dimensionally coiled tubular structures consisting of ducts and secretory portions, although their detailed structural anatomy remains unclear. To better understand the details of the three-dimensional (3D) coiled structures of sweat glands, a whole-mount staining method was employed to visualize 3D coiled gland structures with sweat gland markers for ductal luminal, ductal basal, secretory luminal, and myoepithelial cells. Imaging the 3D coiled gland structures demonstrated that the ducts and secretory portions were comprised of distinct tubular structures. Ductal tubules were occasionally bent, while secretory tubules were frequently bent and formed a self-entangled coiled structure. Whole-mount staining of complex coiled gland structures also revealed the detailed 3D cellular arrangements in the individual sweat gland compartments. Ducts were composed of regularly arranged cuboidal shaped cells, while secretory portions were surrounded by myoepithelial cells longitudinally elongated along entangled secretory tubules. Whole-mount staining was also used to visualize the spatial arrangement of blood vessels and nerve fibers, both of which facilitate sweat secretion. The blood vessels ran longitudinally parallel to the sweat gland tubules, while nerve fibers wrapped around secretory tubules, but not ductal tubules. Taken together, whole-mount staining of sweat glands revealed the 3D cell shapes and arrangements of complex coiled gland structures and provides insights into the mechanical contraction of coiled gland structures during sweat secretion. PMID:28636607

  6. Re-engineering primary epithelial cells from rhesus monkey parotid glands for use in developing an artificial salivary gland.

    PubMed

    Tran, Simon D; Sugito, Takayuki; Dipasquale, Giovanni; Cotrim, Ana P; Bandyopadhyay, Bidhan C; Riddle, Kathryn; Mooney, David; Kok, Marc R; Chiorini, John A; Baum, Bruce J

    2006-10-01

    There is no satisfactory conventional treatment for patients who experience irreversible salivary gland damage after therapeutic radiation for head and neck cancer or because of Sjögren's syndrome. Additionally, if most parenchyma is lost, these patients also are not candidates for evolving gene transfer strategies. To help such patients, several years ago we began to develop an artificial salivary gland. In the present study, we used a non-human primate tissue source, parotid glands from rhesus monkeys, to obtain potential autologous graft cells for development of a prototype device for in situ testing. Herein, we present 3 major findings. First, we show that primary cultures of rhesus parotid gland (RPG) cells are capable of attaining a polarized orientation, with Na(+)/K(+)-adenosine triphosphatase, zonula occludens-1, and claudin-1 distributed in specific domains appropriate for epithelial cells. Second, we show that RPG cells exhibit 2 essential epithelial functions required for graft cells in an artificial salivary gland device (i.e., an effective barrier to paracellular water flow and the generation of a moderate transepithelial electrical resistance). Third, we show that RPG cells can express functional water channels, capable of mediating directional fluid movement, after transduction by adenoviral and adeno-associated virus type 2 vectors. Together these results demonstrate that it is feasible to individually prepare RPG cells for eventual use in a prototype artificial salivary gland.

  7. Age and seasonal differences in the synthesis and metabolism of testosterone by testicular tissue and pineal HIOMT activity of Uinta ground squirrels (Spermophilus armatus)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, L.C.; Balph, D.F.

    Male Uinta ground squirrels (Spermophilus armatus) were sacrificed from a free-living population during the breeding season, which immediately followed emergence from hibernation; after the reproductive season; and just prior to aestivation/hibernation. HIOMT activity of the pineal gland was assayed and related to the ability of the gonads to synthesize and metabolize testosterone. Older squirrels had higher HIOMT activity than did the younger animals. The activity of this enzyme was lowest in squirrels during the breeding season. HIOMT activity increased after the breeding season to its highest level just before the squirrels enter aestivation/hibernation. At this time, testicular weight increased concomitantmore » with an apparent increase in HIOMT activity. Testicular size and weight were largest at the time of emergence of the animals from hibernation. Androgen synthesis was also greatest during the breeding season. As would be expected, both decreased rapidly thereafter. The testes formed little 17..cap alpha..,20..cap alpha..-dihydroxyprogesterone during or after the breeding season, contrary to what has been reported for rats and house sparrows. The older squirrels demonstrated a greater capacity for testosterone metabolism during the breeding season than did the younger animals.« less

  8. Reduction of the nocturnal rise in pineal melatonin levels in rats exposed to 60-Hz electric fields in utero and for 23 days after birth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, R.J.; Anderson, L.E.; Buschbom, R.I.

    Rats exposed to 60-Hz electric fields of either 10, 65, or 130 kV/m from conception to 23 days of age exhibited reduced peak nighttime pineal melatonin contents compared to unexposed controls. As a group, the exposed rats also exhibited a phase delay, estimated at approximately 1.4 hours, in the occurrence of the nocturnal melatonin peak. No clear dose-response relationship was noticed over the range of electric field strengths used as treatments in these experiments. These are the first studies concerned with the effects of electric field exposure on the pineal melatonin rhythm in immature rats and the findings are generallymore » consistent with those obtained using adult rats, where electric field exposure has been shown to abolish the nighttime rhythm in pineal melatonin concentrations. 15 refs., 1 fig., 1 tab.« less

  9. Characterization of a diadenosine tetraphosphate-receptor distinct from the ATP-purinoceptor in human tracheal gland cells.

    PubMed

    Saleh, A; Picher, M; Kammouni, W; Figarella, C; Merten, M D

    1999-11-12

    Human submucosal tracheal glands are now believed to play a major role in the physiopathology of cystic fibrosis, a genetic disease in which ATP is used as a therapeutic agent. However, actions of ATP on tracheal gland cells are not well known. ATP binds to P2 receptors and induced secretory leucocyte protease inhibitor (SLPI) secretion through formation of cyclic adenosine monophosphate and mobilization of intracellular [Ca(2+)]. Since diadenosine polyphosphates (ApnA) are also endogenous effectors of P2 receptors, we investigated their effects in a cell line (MM39) of human tracheal gland cells. Diadenosine tetraphosphates (Ap4A) induced significant stimulation (+50+/-12%) of SLPI secretion and to a similar extent to that of ATP (+65+/-10%). No significant effects were observed with diadenosine triphosphate (Ap3A), diadenosine pentaphosphate (Ap5A), ADP and 2-methylthio-adenosine triphosphate (2-MeS-ATP). Since Ap4A was weakly hydrolyzed (<2% of total), and the hydrolysis product was only inosine which is ineffective on cells, this Ap4A effect was not due to Ap4A hydrolysis in ATP and adenosine monophosphate (AMP). A mixture of Ap4A and ATP elicited only partial additive effects on SLPI secretion. ADP was shown to be a potent antagonist of ATP and Ap4A receptors, with IC(50)s of 0.8 and 2 microM, respectively. 2-MeS-ATP also showed antagonistic properties with IC(50)s of 20 and 30 microM for ATP- and Ap4A-receptors, respectively. Single cell intracellular calcium ([Ca(2+)](i)) measurements showed similar transient increases of [Ca(2+)](i) after ATP or Ap4A challenges. ATP desensitized the cell [Ca(2+)](i) responses to ATP and Ap4A, and Ap4A also desensitized the cell response to Ap4A. Nevertheless, Ap4A did not desensitize the cell [Ca(2+)](i) responses to ATP. In conclusion, both P2Y2-ATP-receptors and Ap4A-P2D-receptors seem to be present in tracheal gland cells. Ap4A may only bind to P2D-receptors whilst ATP may bind to both Ap4A- and ATP-receptors.

  10. In vitro effects of 5-hydroxytryptophan, indoleamines and leptin on arylalkylamine N-acetyltransferase (AA-NAT) activity in pineal organ of the fish, Clarias gariepinus (Burchell, 1822) during different phases of the breeding cycle.

    PubMed

    Gupta, B B P; Yanthan, L; Singh, Ksh Manisana

    2010-08-01

    Arylalkylamine N-acetyltransferase (AA-NAT) is the rate-limiting enzyme of melatonin biosynthetic pathway. In vitro effects of 5-hydroxytryptophan (5-HTP) and indoleamines (serotonin, N-acetylserotonin and melatonin) were studied on AA-NAT activity in the pineal organ of the fish, C. gariepinus during different phases of its annual breeding cycle. Further, in vitro effects of leptin on AA-NAT activity in the pineal organ were studied in fed and fasted fishes during summer and winter seasons. Treatments with 5-HTP and indoleamines invariably stimulated pineal AA-NAT activity in a dose-dependent manner during all the phases. However, leptin increased AA-NAT activity in a dose-dependent manner only in the pineal organ of the fed fishes, but not of the fasted fishes irrespective of the seasons.

  11. Evolution of immune functions of the mammary gland and protection of the infant.

    PubMed

    Goldman, Armond S

    2012-06-01

    Abstract The evolution of immunological agents in milk is intertwined with the general aspects of the evolution of the mammary gland. In that respect, mammalian precursors emerged from basal amniotes some 300 million years ago. In contrast to the predominant dinosaurs, proto-mammals possessed a glandular skin. A secondary palate in the roof of the mouth that directed airflow from the nostrils to the oropharynx and thus allowed mammals to ingest and breathe simultaneously first appeared in cynodonts 230 million years ago. This set the stage for mammalian newborns to nurse from the future mammary gland. Interplays between environmental and genetic changes shaped mammalian evolution including the mammary gland from dermal glands some 160 millions of years ago. It is likely that secretions from early mammary glands provided nutrients and immunological agents for the infant. Natural selection culminated in milks uniquely suited to nourish and protect infants of each species. In human milk, antimicrobial, anti-inflammatory, and immunoregulatory agents and living leukocytes are qualitatively or quantitatively different from those in other mammalian milks. Those in human milk compensate for developmental delays in the immunological system of the recipient infant. Consequently, the immune system in human milk provided by evolution is much of the basis for encouraging breastfeeding for human infants.

  12. [Protective effect of melatonin and epithalon on hypothalamic regulation of reproduction in female rats in its premature aging model and on estrous cycles in senescent animals in various lighting regimes].

    PubMed

    Korenevsky, A V; Milyutina, Yu P; Bukalyov, A V; Baranova, Yu P; Vinogradova, I A; Arutjunyan, A V

    2013-01-01

    Potential neuroprotective effects of the pineal gland hormone melatonin and peptide preparation epitalon on estrous cycles and the central regulation of reproduction in female rats exposed to unfavourable environmental factors have been studied. Estrous cycles of young, mature and aging rats exposed to light pollution were described. The diurnal dynamics and daily mean content of biogenic amines in the hypothalamic areas responsible for gonadotropin-releasing hormone synthesis and secretion in animals of different age groups were investigated. An effect of a chemical factor on the noradrenergic system of the medial preoptic area and on the dopaminergic system of the median eminence with arcuate nuclei of the hypothalamus was studied in premature aging of reproduction model. Administration of the pineal gland peptide melatonin and peptide preparation epitalon was shown to be able to correct a number of impairments of the hypothalamic-pituitary-gonadal axis that can be observed, when the experimental animals were exposed to permanent artificial lighting and a neurotoxic xenobiotic 1,2-dimethylhydrazine. The data obtained testify to an important role of the pineal gland in the circadian signal formation needed for gonadotropin-releasing hormone in order to exert its preovulatory peak secretion and to the protective effect of melatonin and epitalon, which are able to reduce unfavourable environmental influences on reproduction of young and aging female rats.

  13. [Morphological structure of rat epiphysis exposed to electromagnetic radiation from communication devices].

    PubMed

    Yashchenko, S G; Rybalko, S Yu

    Pineal gland is one of the most important components of homeostasis - the supporting system of the body. It participates in the launch of stress responses, restriction of their development, prevention of adverse effects on the body. There was proved an impact of electromagnetic radiation on the epiphysis. However, morphological changes in the epiphysis under exposure to electromagnetic radiation of modern communication devices are studied not sufficiently. For the time present the population is daily exposed to electromagnetic radiation, including local irradiation on the brain. These date determined the task of this research - the study of the structure of rat pineal gland under the exposure to electromagnetic radiation from personal computers and mobile phones. These date determined the task of this research - the study of the structure of rat pineal gland under the exposure to electromagnetic radiation from personal computers and mobile phones. Performed transmission electron microscopy revealed signs of degeneration of dark and light pinealocytes. These signs were manifested in the development of a complex of general and specific morphological changes. There was revealed the appearance of signs of aging and depletion transmission electron microscopy both in light and dark pinealocytes. These signs were manifested in the accumulation of lipofuscin granules and electron-dense "brain sand", the disappearance of nucleoli, cytoplasm vacuolization and mitochondrial cristae enlightenment.

  14. Co-expression of vesicular glutamate transporters (VGLUT1 and VGLUT2) and their association with synaptic-like microvesicles in rat pinealocytes.

    PubMed

    Morimoto, Riyo; Hayashi, Mitsuko; Yatsushiro, Shouki; Otsuka, Masato; Yamamoto, Akitsugu; Moriyama, Yoshinori

    2003-01-01

    A vesicular glutamate transporter (VGLUT) is responsible for the accumulation of l-glutamate in synaptic vesicles in glutamatergic neurons. Two isoforms, VGLUT1 and VGLUT2, have been identified, which are complementarily expressed in these neurons. Mammalian pinealocytes, endocrine cells for melatonin, are also glutamatergic in nature, accumulate l-glutamate in synaptic-like microvesicles (SLMVs), and secrete it through exocytosis. Although the storage of l-glutamate in SLMVs is mediated through a VGLUT, the molecular nature of the transporter is less understood. We recently observed that VGLUT2 is expressed in pinealocytes. In the present study, we show that pinealocytes also express VGLUT1. RT-PCR and northern blot analyses indicated expression of the VGLUT1 gene in pineal gland. Western blotting with specific antibodies against VGLUT1 indicated the presence of VGLUT1 in pineal gland. Indirect immunofluorescence microscopy with a section of pineal gland and cultured cells indicated that VGLUT1 and VGLUT2 are co-localized with process terminal regions of pinealocytes. Furthermore, immunoelectronmicroscopy as well as subcellular fractionation studies revealed that both VGLUT1 and VGLUT2 are specifically associated with SLMVs. These results indicate that both VGLUTs are responsible for storage of l-glutamate in SLMVs in pinealocytes. Pinealocytes are the first exception as to complementary expression of VGLUT1 and VGLUT2.

  15. Autocrine-paracrine regulation of the mammary gland.

    PubMed

    Weaver, S R; Hernandez, L L

    2016-01-01

    The mammary gland has a remarkable capacity for regulation at a local level, particularly with respect to its main function: milk secretion. Regulation of milk synthesis has significant effects on animal and human health, at the level of both the mother and the neonate. Control by the mammary gland of its essential function, milk synthesis, is an evolutionary necessity and is therefore tightly regulated at a local level. For at least the last 60 yr, researchers have been interested in elucidating the mechanisms underpinning the mammary gland's ability to self-regulate, largely without the influence from systemic hormones or signals. By the 1960s, scientists realized the importance of milk removal in the capacity of the gland to produce milk and that the dynamics of this removal, including emptying of the alveolar spaces and frequency of milking, were controlled locally as opposed to traditional systemic hormonal regulation. Using both in vitro systems and various mammalian species, including goats, marsupials, humans, and dairy cows, it has been demonstrated that the mammary gland is largely self-regulating in its capacity to support the young, which is the evolutionary basis for milk production. Local control occurs at the level of the mammary epithelial cell through pressure and stretching negative-feedback mechanisms, and also in an autocrine fashion through bioactive factors within the milk which act as inhibitors, regulating milk secretion within the alveoli themselves. It is only within the last 20 to 30 yr that potential candidates for these bioactive factors have been examined at a molecular level. Several, including parathyroid hormone-related protein, growth factors (transforming growth factor, insulin-like growth factor, epidermal growth factor), and serotonin, are synthesized within and act upon the gland and possess dynamic receptor activity resulting in diverse effects on growth, calcium homeostasis, and milk composition. This review will focus on the

  16. Endotoxin-induced inflammation disturbs melatonin secretion in ewe

    PubMed Central

    Herman, Andrzej Przemysław; Wojtulewicz, Karolina; Bochenek, Joanna; Krawczyńska, Agata; Antushevich, Hanna; Pawlina, Bartosz; Zielińska-Górska, Marlena; Herman, Anna; Romanowicz, Katarzyna; Tomaszewska-Zaremba, Dorota

    2017-01-01

    Objective The study examined the effect of intravenous administration of bacterial endotoxin—lipopolysaccharide (LPS) —on the nocturnal secretion of melatonin and on the expression of enzymes of the melatonin biosynthetic pathway in the pineal gland of ewes, taking into account two different photoperiodic conditions: short-night (SN; n = 12) and long-night (LN; n = 12). Methods In both experiments, animals (n = 12) were randomly divided into two groups: control (n = 6) and LPS-treated (n = 6) one. Two hours after sunset, animals received an injection of LPS or saline. Blood samples were collected starting one hour after sunset and continuing for 3 hours after the treatment. The ewes were euthanized 3 hours after LPS/saline treatment. The concentration of hormones in plasma was assayed by radioimmunoassay. In the pineal gland, the content of serotonin and its metabolite was determined by HPLC; whereas the expression of examined genes and protein was assayed using real-time polymerase chain reaction and Western Blot, respectively. Results Endotoxin administration lowered (p<0.05) levels of circulating melatonin in animals from LN photoperiod only during the first hour after treatment, while in ewes from SN photoperiod only in the third hour after the injection. Inflammation more substantially suppressed biosynthesis of melatonin in ewes from SN photoperiod, which were also characterised by lower (p<0.05) cortisol concentrations after LPS treatment compared with animals from LN photoperiod. In the pineal gland of ewes subjected to SN photoperiod, LPS reduced (p<0.05) serotonin content and the expression of melatonin biosynthetic pathway enzymes, such as tryptophan hydroxylase and arylalkylamine-N-acetyltransferase. Pineal activity may be disturbed by circulating LPS and proinflammatory cytokines because the expression of mRNAs encoding their corresponding receptors was determined in this gland. Conclusion The present study showed that peripheral inflammation

  17. Pineal region tumors: results of radiation therapy and indications for elective spinal irradiation. [/sup 60/Co; x ray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, B.R.; Griffin, T.W.; Tong, D.Y.K.

    Eighteen patients with pineal region tumors seen from November 1960 to November 1978 were reviewed. Thirteen patients treated with radiation therapy received tumor doses in the 4000 to 5500 rad range. The five year survival and five year disease-free survival were 73 and 63% respectively. Spinal cord metastasis occurred in 2 of 13 (15%) patients. Attempts at salvage radiotherapy for these patients were unsuccessful. Computerized tomography (CT) scan provides an excellent method of evaluating the response of pineal region tumors to radiation. Rapid regression of the tumor mass on CT scan reflects the highly radioresponsive nature of germinomas, the tumormore » type most likely to disseminate throughout the neuraxis. This principle can be exploited to select unbiopsied patients with a high risk of spinal cord metastasis for prophylactic spinal radiation at an early stage of treatment.« less

  18. BPI-fold (BPIF) containing/plunc protein expression in human fetal major and minor salivary glands.

    PubMed

    Alves, Daniel Berretta Moreira; Bingle, Lynne; Bingle, Colin David; Lourenço, Silvia Vanessa; Silva, Andréia Aparecida; Pereira, Débora Lima; Vargas, Pablo Agustin

    2017-01-16

    The aim of this study was to determine expression, not previously described, of PLUNC (palate, lung, and nasal epithelium clone) (BPI-fold containing) proteins in major and minor salivary glands from very early fetal tissue to the end of the second trimester and thus gain further insight into the function of these proteins. Early fetal heads, and major and minor salivary glands were collected retrospectively and glands were classified according to morphodifferentiation stage. Expression of BPI-fold containing proteins was localized through immunohistochemistry. BPIFA2, the major BPI-fold containing protein in adult salivary glands, was detected only in the laryngeal pharynx; the lack of staining in salivary glands suggested salivary expression is either very late in development or is only in adult tissues. Early expression of BPIFA1 was seen in the trachea and nasal cavity with salivary gland expression only seen in late morphodifferentiation stages. BPIFB1 was seen in early neural tissue and at later stages in submandibular and sublingual glands. BPIFA1 is significantly expressed in early fetal oral tissue but BPIFB1 has extremely limited expression and the major salivary BPIF protein (BPIFA2) is not produced in fetal development. Further studies, with more sensitive techniques, will confirm the expression pattern and enable a better understanding of embryonic BPIF protein function.

  19. Erlotinib and Temsirolimus in Treating Patients With Recurrent Malignant Glioma

    ClinicalTrials.gov

    2015-05-29

    Adult Anaplastic Astrocytoma; Adult Anaplastic Oligodendroglioma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymal Giant Cell Astrocytoma; Recurrent Adult Brain Tumor

  20. Store-operated Ca2+ entry regulates Ca2+-activated chloride channels and eccrine sweat gland function.

    PubMed

    Concepcion, Axel R; Vaeth, Martin; Wagner, Larry E; Eckstein, Miriam; Hecht, Lee; Yang, Jun; Crottes, David; Seidl, Maximilian; Shin, Hyosup P; Weidinger, Carl; Cameron, Scott; Turvey, Stuart E; Issekutz, Thomas; Meyts, Isabelle; Lacruz, Rodrigo S; Cuk, Mario; Yule, David I; Feske, Stefan

    2016-11-01

    Eccrine sweat glands are essential for sweating and thermoregulation in humans. Loss-of-function mutations in the Ca2+ release-activated Ca2+ (CRAC) channel genes ORAI1 and STIM1 abolish store-operated Ca2+ entry (SOCE), and patients with these CRAC channel mutations suffer from anhidrosis and hyperthermia at high ambient temperatures. Here we have shown that CRAC channel-deficient patients and mice with ectodermal tissue-specific deletion of Orai1 (Orai1K14Cre) or Stim1 and Stim2 (Stim1/2K14Cre) failed to sweat despite normal sweat gland development. SOCE was absent in agonist-stimulated sweat glands from Orai1K14Cre and Stim1/2K14Cre mice and human sweat gland cells lacking ORAI1 or STIM1 expression. In Orai1K14Cre mice, abolishment of SOCE was associated with impaired chloride secretion by primary murine sweat glands. In human sweat gland cells, SOCE mediated by ORAI1 was necessary for agonist-induced chloride secretion and activation of the Ca2+-activated chloride channel (CaCC) anoctamin 1 (ANO1, also known as TMEM16A). By contrast, expression of TMEM16A, the water channel aquaporin 5 (AQP5), and other regulators of sweat gland function was normal in the absence of SOCE. Our findings demonstrate that Ca2+ influx via store-operated CRAC channels is essential for CaCC activation, chloride secretion, and sweat production in humans and mice.

  1. Pituitary adenylate cyclase-activating polypeptide promotes eccrine gland sweat secretion.

    PubMed

    Sasaki, S; Watanabe, J; Ohtaki, H; Matsumoto, M; Murai, N; Nakamachi, T; Hannibal, J; Fahrenkrug, J; Hashimoto, H; Watanabe, H; Sueki, H; Honda, K; Miyazaki, A; Shioda, S

    2017-02-01

    Sweat secretion is the major function of eccrine sweat glands; when this process is disturbed (paridrosis), serious skin problems can arise. To elucidate the causes of paridrosis, an improved understanding of the regulation, mechanisms and factors underlying sweat production is required. Pituitary adenylate cyclase-activating polypeptide (PACAP) exhibits pleiotropic functions that are mediated via its receptors [PACAP-specific receptor (PAC1R), vasoactive intestinal peptide (VIP) receptor type 1 (VPAC1R) and VPAC2R]. Although some studies have suggested a role for PACAP in the skin and several exocrine glands, the effects of PACAP on the process of eccrine sweat secretion have not been examined. To investigate the effect of PACAP on eccrine sweat secretion. Reverse transcriptase-polymerase chain reaction and immunostaining were used to determine the expression and localization of PACAP and its receptors in mouse and human eccrine sweat glands. We injected PACAP subcutaneously into the footpads of mice and used the starch-iodine test to visualize sweat-secreting glands. Immunostaining showed PACAP and PAC1R expression by secretory cells from mouse and human sweat glands. PACAP immunoreactivity was also localized in nerve fibres around eccrine sweat glands. PACAP significantly promoted sweat secretion at the injection site, and this could be blocked by the PAC1R-antagonist PACAP6-38. VIP, an agonist of VPAC1R and VPAC2R, failed to induce sweat secretion. This is the first report demonstrating that PACAP may play a crucial role in sweat secretion via its action on PAC1R located in eccrine sweat glands. The mechanisms underlying the role of PACAP in sweat secretion may provide new therapeutic options to combat sweating disorders. © 2016 British Association of Dermatologists.

  2. Proton Beam Radiation Therapy in Treating Patients With Low Grade Gliomas

    ClinicalTrials.gov

    2015-12-14

    Adult Brain Tumor; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Ependymoma; Adult Grade II Meningioma; Adult Melanocytic Lesion; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pineal Gland Astrocytoma; Adult Pineocytoma; Recurrent Adult Brain Tumor

  3. A Novel Method to Measure the Tentorial Angle and the Implications on Surgeries of the Pineal Region.

    PubMed

    Syed, Hasan R; Jean, Walter C

    2018-03-01

    There is no standard way to define the angle of the tentorium. The current trend to use the Twining line to define this angle has significant pitfalls. The goal of the current study was to provide a new and accurate way to measure the tentorial angle and demonstrate its impact on surgeries of the pineal region. A new technique (n-angle) to measure the tentorial angle was introduced using the floor of the fourth ventricle and the torcula. Comparisons with older techniques were made to illustrate reliability. Midline sagittal MR images were used to measure the tentorial angle in 240 individuals to obtain population-based data. A cohort of 8 patients who underwent either the infratentorial or the transtentorial approach to the pineal or upper vermian region were examined in search of correlations between tentorial angle and surgical approach. The data in this study showed that the Twining line technique understates the tentorial angle in people with low-lying torcula. The n-angle is more reliable in reflecting the true steepness of the tentorium regardless of torcula position. On average, men have slightly steeper tentoriums. In the clinical cohort, all patients who underwent infratentorial surgery had tentorial angles <55°, whereas the majority of patients who underwent transtentorial surgeries had angles >67°. The n-angle provides a reliable and accurate way to describe the slope of the tentorium. The population-based average of 60° may be a useful measurement to influence the choice of surgical approach, either under or through the tentorium, to the pineal region. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Characterization of the myoepithelial cells in the major salivary glands of the fruit bat Artibeus jamaicensis.

    PubMed

    Guerrero-Hernández, Julio; Moreno-Mendoza, Norma

    2016-08-01

    Bats constitute one of the most numerous mammalian species. Bats have a wide range of dietary habits and include carnivorous, haematophagous, insectivorous, frugivorous and nectivorous species. The salivary glands of these species have been of particular research interest due to their structural variability among chiropterans with different types of diets. Myoepithelial cells (MECs), which support and facilitate the expulsion of saliva from the secretory portions of salivary glands, are very important for their function; however, this cell type has not been extensively studied in the salivary glands of bats. In this study, we characterized the MECs in the major salivary glands of the fruit bat Artibeus jamaicensis. Herein, we describe the morphology of the parotid, submandibular and sublingual glands of A. jamaicensis at the light- and electro-microscopic level and the distribution of MECs in these glands, as defined by their expression of smooth-muscle markers such as α-smooth muscle actin (SMAα) and desmin, and of epithelial cell markers, such as KRT14. We found that the anatomical locations of the major salivary glands in this bat species are similar to those of humans, except that the bat sublingual gland appears to be unique, extending to join the contralateral homologous gland. Morphologically, the parotid gland has the characteristics of a mixed-secretory gland, whereas the submandibular and sublingual glands were identified as mucous-secretory glands. MECs positive for SMAα, KRT14 and desmin were found in all of the structural components of the three glands, except in their excretory ducts. Desmin is expressed at a lower level in the parotid gland than in the other glands. Our results suggest that the major salivary glands of A. jamaicensis, although anatomically and structurally similar to those of humans, play different physiological roles that can be attributed to the dietary habits of this species. © 2016 Anatomical Society.

  5. ADVANCES IN SALIVARY GLAND GENE THERAPY – ORAL AND SYSTEMIC IMPLICATIONS

    PubMed Central

    Baum, Bruce J.; Alevizos, Ilias; Chiorini, John A.; Cotrim, Ana P.; Zheng, Changyu

    2016-01-01

    Introduction Much research demonstrates the feasibility and efficacy of gene transfer to salivary glands. Recently, the first clinical trial targeting a salivary gland was completed, yielding positive safety and efficacy results. Areas covered There are two major disorders affecting salivary glands; radiation damage following treatment for head and neck cancers and Sjögren’s syndrome. Salivary gland gene transfer has also been employed in preclinical studies using transgenic secretory proteins for exocrine (upper gastrointestinal tract) and endocrine (systemic) applications. Expert opinion Salivary gland gene transfer is safe and can be beneficial in humans. Applications to treat and prevent radiation damage show considerable promise. A first-in-human clinical trial for the former was recently successfully completed. Studies on Sjögren’s syndrome suffer from an inadequate understanding of its etiology. Proof of concept in animal models has been shown for exocrine and endocrine disorders. Currently, the most promising exocrine application is for the management of obesity. Endocrine applications are limited, as it is currently impossible to predict if systemically required transgenic proteins will be efficiently secreted into the bloodstream. This results from not understanding of how secretory proteins are sorted. Future studies will likely employ ultrasound assisted and pseudotyped adenoassociated viral vector-mediated gene. PMID:26149284

  6. Profiling of adrenocorticotropic hormone and arginine vasopressin in human pituitary gland and tumor thin tissue sections using droplet-based liquid-microjunction surface-sampling-HPLC-ESI-MS-MS.

    PubMed

    Kertesz, Vilmos; Calligaris, David; Feldman, Daniel R; Changelian, Armen; Laws, Edward R; Santagata, Sandro; Agar, Nathalie Y R; Van Berkel, Gary J

    2015-08-01

    Described here are the results from the profiling of the proteins arginine vasopressin (AVP) and adrenocorticotropic hormone (ACTH) from normal human pituitary gland and pituitary adenoma tissue sections, using a fully automated droplet-based liquid-microjunction surface-sampling-HPLC-ESI-MS-MS system for spatially resolved sampling, HPLC separation, and mass spectrometric detection. Excellent correlation was found between the protein distribution data obtained with this method and data obtained with matrix-assisted laser desorption/ionization (MALDI) chemical imaging analyses of serial sections of the same tissue. The protein distributions correlated with the visible anatomic pattern of the pituitary gland. AVP was most abundant in the posterior pituitary gland region (neurohypophysis), and ATCH was dominant in the anterior pituitary gland region (adenohypophysis). The relative amounts of AVP and ACTH sampled from a series of ACTH-secreting and non-secreting pituitary adenomas correlated with histopathological evaluation. ACTH was readily detected at significantly higher levels in regions of ACTH-secreting adenomas and in normal anterior adenohypophysis compared with non-secreting adenoma and neurohypophysis. AVP was mostly detected in normal neurohypophysis, as expected. This work reveals that a fully automated droplet-based liquid-microjunction surface-sampling system coupled to HPLC-ESI-MS-MS can be readily used for spatially resolved sampling, separation, detection, and semi-quantitation of physiologically-relevant peptide and protein hormones, including AVP and ACTH, directly from human tissue. In addition, the relative simplicity, rapidity, and specificity of this method support the potential of this basic technology, with further advancement, for assisting surgical decision-making. Graphical Abstract Mass spectrometry based profiling of hormones in human pituitary gland and tumor thin tissue sections.

  7. Methylphenidate-induced motor activity in rats: modulation by melatonin and vasopressin.

    PubMed

    Appenrodt, Edgar; Schwarzberg, Helmut

    2003-04-01

    Methylphenidate (MPH), a dopamine (DA) reuptake inhibitor, is well known to enhance motor activity, in part depending on the time of its application during the light-dark cycle. Moreover, after MPH administration, the hypothalamo-neurohypophysial axis including the neuropeptide vasopressin (AVP) was found influenced. Both the latter and behavioural effects of central AVP can also be modulated by the pineal gland with its light-dark-dependent activity. The present study was performed to investigate whether the pineal gland, its hormone melatonin (Mel), and AVP are involved in the MPH-evoked stimulation of activity. After application of 10 mg/kg MPH, the motor activity in pinealectomised (PE) rats was significantly higher than in sham-operated (SO) animals. After application of 250 microg Mel before MPH treatment, the stimulation of motor activity was diminished in PE rats and augmented in SO animals; however, when SO and PE rats were compared after Mel pretreatment, the reaction to MPH was nearly identical. Blocking the endogenous AVP by 25 or 1 microg of the V1a receptor antagonist d(CH(2))(5)[Tyr(Me)(2)]AVP (AAVP) before MPH treatment significantly augmented the motor activity in SO rats only and abolished the differences seen between SO and PE animals after MPH application. The present results indicate that the behavioural stimulation of MPH was modulated by both the pineal gland with its hormone Mel as well as the neuropeptide AVP.

  8. A Long Term Follow Up After Radiosurgery Of Papillary Tumour Of The Pineal Region (Ptpr): Two Cases Report And Review Of The Literature.

    PubMed

    Fernández-Mateos, Cecilia; Martinez, Roberto; Vaquero, Jesús

    2018-05-19

    Tumours of the pineal region are rare in adulthood, accounting for approximately 1% of intracranial neoplasms in this age range. Because of their rarity, it has proven to be difficult to establish the optimal therapy. Furthermore, microsurgical total resection in this eloquent location is associated with not low rates of morbidity. We described two patients diagnosed of papillary tumours of the pineal region (PTPR) by stereotactic biopsy and referred for gamma knife radiosurgery after shunting for hydrocephalus. We are reporting a long-term follow up of 15 and 20 years respectively, showing a good response to the treatment. Copyright © 2018. Published by Elsevier Inc.

  9. Development of the thyroid gland.

    PubMed

    Nilsson, Mikael; Fagman, Henrik

    2017-06-15

    Thyroid hormones are crucial for organismal development and homeostasis. In humans, untreated congenital hypothyroidism due to thyroid agenesis inevitably leads to cretinism, which comprises irreversible brain dysfunction and dwarfism. Elucidating how the thyroid gland - the only source of thyroid hormones in the body - develops is thus key for understanding and treating thyroid dysgenesis, and for generating thyroid cells in vitro that might be used for cell-based therapies. Here, we review the principal mechanisms involved in thyroid organogenesis and functional differentiation, highlighting how the thyroid forerunner evolved from the endostyle in protochordates to the endocrine gland found in vertebrates. New findings on the specification and fate decisions of thyroid progenitors, and the morphogenesis of precursor cells into hormone-producing follicular units, are also discussed. © 2017. Published by The Company of Biologists Ltd.

  10. Store-operated Ca2+ entry regulates Ca2+-activated chloride channels and eccrine sweat gland function

    PubMed Central

    Concepcion, Axel R.; Vaeth, Martin; Wagner, Larry E.; Eckstein, Miriam; Hecht, Lee; Yang, Jun; Crottes, David; Seidl, Maximilian; Shin, Hyosup P.; Weidinger, Carl; Cameron, Scott; Turvey, Stuart E.; Issekutz, Thomas; Meyts, Isabelle; Lacruz, Rodrigo S.; Cuk, Mario; Yule, David I.

    2016-01-01

    Eccrine sweat glands are essential for sweating and thermoregulation in humans. Loss-of-function mutations in the Ca2+ release–activated Ca2+ (CRAC) channel genes ORAI1 and STIM1 abolish store-operated Ca2+ entry (SOCE), and patients with these CRAC channel mutations suffer from anhidrosis and hyperthermia at high ambient temperatures. Here we have shown that CRAC channel–deficient patients and mice with ectodermal tissue–specific deletion of Orai1 (Orai1K14Cre) or Stim1 and Stim2 (Stim1/2K14Cre) failed to sweat despite normal sweat gland development. SOCE was absent in agonist-stimulated sweat glands from Orai1K14Cre and Stim1/2K14Cre mice and human sweat gland cells lacking ORAI1 or STIM1 expression. In Orai1K14Cre mice, abolishment of SOCE was associated with impaired chloride secretion by primary murine sweat glands. In human sweat gland cells, SOCE mediated by ORAI1 was necessary for agonist-induced chloride secretion and activation of the Ca2+-activated chloride channel (CaCC) anoctamin 1 (ANO1, also known as TMEM16A). By contrast, expression of TMEM16A, the water channel aquaporin 5 (AQP5), and other regulators of sweat gland function was normal in the absence of SOCE. Our findings demonstrate that Ca2+ influx via store-operated CRAC channels is essential for CaCC activation, chloride secretion, and sweat production in humans and mice. PMID:27721237

  11. Use of EF5 to Measure the Oxygen Level in Tumor Cells of Patients Undergoing Surgery or Biopsy for Newly Diagnosed Supratentorial Malignant Glioma

    ClinicalTrials.gov

    2013-01-15

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Diffuse Astrocytoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymoma

  12. The male mammary gland: a target for the xenoestrogen bisphenol A

    PubMed Central

    Vandenberg, Laura N; Schaeberle, Cheryl M.; Rubin, Beverly S.; Sonnenschein, Carlos; Soto, Ana M.

    2014-01-01

    Males of some strains of mice retain their mammary epithelium even in the absence of nipples. Here, we have characterized the mammary gland in male CD-1 mice both in whole mounts and histological sections. We also examined the effects of bisphenol A (BPA), an estrogen mimic that alters development of the female mouse mammary gland. BPA was administered at a range of environmentally relevant doses (0.25 – 250 μg/kg/day) to pregnant and lactating mice and then the mammary glands of male offspring were examined at several periods in adulthood. We observed age- and dose-specific effects on mammary gland morphology, indicating that perinatal BPA exposures alter the male mammary gland in adulthood. These results may provide insight into gynecomastia, the most common male breast disease in humans, where proliferation of the mammary epithelium leads to breast enlargement. PMID:23348055

  13. Results of surgery in symptomatic non-hydrocephalic pineal cysts: role of magnetic resonance imaging biomarkers indicative of central venous hypertension.

    PubMed

    Eide, Per Kristian; Ringstad, Geir

    2017-02-01

    We have previously proposed that pineal cysts (PCs) may result in crowding of the pineal recess, causing symptoms due to compression of the internal cerebral veins and central venous hypertension. In the present study, we compared clinical outcome of different treatment modalities in symptomatic individuals with non-hydrocephalic PCs. The study included all patients managed surgically for non-hydrocephalic PCs in our Department of Neurosurgery over a 10-year period. We applied a questionnaire to determine occurrence of symptoms before and after surgery, which allowed the use of a grading scale for symptom severity. Magnetic resonance imaging (MRI) biomarkers indicative of central venous hypertension were assessed before and after surgery. Relief of symptoms after surgery was most efficiently obtained by complete microsurgical cyst removal [n = 15; no (0/15), some (1/15) or marked (14/15) improvement], and to a lesser extent by microsurgical cyst fenestration [n = 6; no (2/6), some (4/6) or marked (0/6) improvement]. Shunt surgery was not successful [n = 6; no (5/6), some (1/6) or marked (0/6) improvement]. In all patients, the proposed MRI biomarkers gave evidence of central venous hypertension (PC grades 2-4). Microsurgical cyst removal provided marked symptom relief in symptomatic individuals with non-hydrocephalic PCs and MRI biomarkers of central venous hypertension. The hypothesis that PC-induced crowding of the pineal recess may compromise venous run-off and induce a central venous hypertension syndrome deserves further study.

  14. Characterization of the mucocutaneous junction of the human eyelid margin and meibomian glands with different biomarkers.

    PubMed

    Tektaş, Ozan Yüksel; Yadav, Ajay; Garreis, Fabian; Schlötzer-Schrehardt, Ursula; Schicht, Martin; Hampel, Ulrike; Bräuer, Lars; Paulsen, Friedrich

    2012-09-01

    To investigate the morphology of the human eyelid margin and the presence of different cytokeratins, mucins and stem cell markers within the skin epithelium, mucocutaneous junction (MCJ) and palpebral conjunctiva. Eyelids of body donors were investigated histologically and ultrastructurally as well as by immunohistochemical methods using antibodies to cytokeratins 1, 4, 7, 8, 10, 13, 14, 15, and 19; mucins MUC1, MUC4, and MUC5AC and potential stem cell markers K15, BCRP/ABCG2, integrin β1, and N-cadherin. The expression pattern of cytokeratins, mucins and stem cell markers varied across the different epithelia of the human eyelid. Within the MCJ, CK7, 15 and 19 were absent, whereas the epithelium reacted positive to antibodies to CK1, 4, 8, 10, 13 and 14. Reactivity was also observed for MUC1 and MUC4, but not for MUC5AC. No reactivity was determined for K15, BCRP/ABCG2 and integrin β1 in the area of the MCJ epithelium but a strong reactivity was present for N-cadherin. The present immunohistochemical findings lead to a better characterization of the MCJ. Additionally, the knowledge of distribution of biomarkers like cytokeratins, mucins and stem cells can be useful in the investigation of MCJ disturbances which occur in several disorders of the meibomian glands and the lid epithelium in the course of dry eye syndrome and especially meibomian gland dysfunction. Copyright © 2012 Elsevier GmbH. All rights reserved.

  15. Relationship between histology, development and tumorigenesis of mammary gland in female rat

    PubMed Central

    LÍŠKA, Ján; BRTKO, Július; DUBOVICKÝ, Michal; MACEJOVÁ, Dana; KISSOVÁ, Viktória; POLÁK, Štefan; UJHÁZY, Eduard

    2015-01-01

    The mammary gland is a dynamic organ that undergoes structural and functional changes associated with growth, reproduction, and post-menopausal regression. The postnatal transformations of the epithelium and stromal cells of the mammary gland may contribute to its susceptibility to carcinogenesis. The increased cancer incidence in mammary glands of humans and similarly of rodents in association with their development is believed to be partly explained by proliferative activity together with lesser degree of differentiation, but it is not completely understood how the virgin gland retains its higher susceptibility to carcinogenesis. During its developmental cycle, the mammary gland displays many of the properties associated with breast cancer. An early first full-term pregnancy may have a protective effect. Rodent models are useful for investigating potential breast carcinogens. The purpose of this review is to help recognizing histological appearance of the epithelium and the stroma of the normal mammary gland in rats, and throughout its development in relation to tumorigenic potential. PMID:26424555

  16. Eccrine sweat gland development and sweat secretion

    PubMed Central

    Cui, Chang-Yi; Schlessinger, David

    2017-01-01

    Eccrine sweat glands help to maintain homoeostasis, primarily by stabilizing body temperature. Derived from embryonic ectoderm, millions of eccrine glands are distributed across human skin and secrete litres of sweat per day. Their easy accessibility has facilitated the start of analyses of their development and function. Mouse genetic models find sweat gland development regulated sequentially by Wnt, Eda and Shh pathways, although precise subpathways and additional regulators require further elucidation. Mature glands have two secretory cell types, clear and dark cells, whose comparative development and functional interactions remain largely unknown. Clear cells have long been known as the major secretory cells, but recent studies suggest that dark cells are also indispensable for sweat secretion. Dark cell-specific Foxa1 expression was shown to regulate a Ca2+-dependent Best2 anion channel that is the candidate driver for the required ion currents. Overall, it was shown that cholinergic impulses trigger sweat secretion in mature glands through second messengers – for example InsP3 and Ca2+ – and downstream ion channels/transporters in the framework of a Na+-K+-Cl− cotransporter model. Notably, the microenvironment surrounding secretory cells, including acid–base balance, was implicated to be important for proper sweat secretion, which requires further clarification. Furthermore, multiple ion channels have been shown to be expressed in clear and dark cells, but the degree to which various ion channels function redundantly or indispensably also remains to be determined. PMID:26014472

  17. Technical note: Method for isolation of the bovine sweat gland and conditions for in vitro culture.

    PubMed

    Hamzaoui, S; Burger, C A; Collier, J L; Collier, R J

    2018-05-01

    Apocrine sweat glands in bovine skin are involved in thermoregulation. Human, horse, and sheep sweat gland epithelial cells have been isolated and grown in vitro. The present study was conducted to identify a method to isolate bovine sweat glands and culture apocrine bovine sweat gland epithelial cells in vitro. Mechanical shearing, collagenase digestion, centrifugation, and neutral red staining were used to identify and isolate the apocrine glands from skin. Bovine sweat glands in situ and after isolation comprised 2 major cell types consisting of a single layer of cuboidal epithelial cells resting on a layer of myoepithelial cells. In situ, the glands were embedded in a collagen matrix primarily comprising fibroblasts, and some of these cells were also present in the isolated material. The isolated material was transferred to complete medium (keratinocyte serum-free medium, bovine pituitary extract, and human recombinant epidermal growth factor + 2.5% fetal bovine serum) in a T 25 flask (Falcon, Franklin Lakes, NJ) with media film and then incubated at 37°C for 24 h. After sweat glands adhered to the bottom of the flask, an additional 2 mL of complete medium was added and the medium was changed every 3 d. Isolated apocrine sweat glands and bovine sweat gland epithelial cells were immunostained for cytokeratin and fibroblast specific protein, indicating fibroblast-free cultures. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Adrenal Gland Tumors: Statistics

    MedlinePlus

    ... Gland Tumor: Statistics Request Permissions Adrenal Gland Tumor: Statistics Approved by the Cancer.Net Editorial Board , 03/ ... primary adrenal gland tumor is very uncommon. Exact statistics are not available for this type of tumor ...

  19. Alx4 relays sequential FGF signaling to induce lacrimal gland morphogenesis

    PubMed Central

    Garg, Ankur; Gotoh, Noriko; Feng, Gen-Sheng; Zhong, Jian; Wang, Fen; Kariminejad, Ariana; Brooks, Steven

    2017-01-01

    The sequential use of signaling pathways is essential for the guidance of pluripotent progenitors into diverse cell fates. Here, we show that Shp2 exclusively mediates FGF but not PDGF signaling in the neural crest to control lacrimal gland development. In addition to preventing p53-independent apoptosis and promoting the migration of Sox10-expressing neural crests, Shp2 is also required for expression of the homeodomain transcription factor Alx4, which directly controls Fgf10 expression in the periocular mesenchyme that is necessary for lacrimal gland induction. We show that Alx4 binds an Fgf10 intronic element conserved in terrestrial but not aquatic animals, underlying the evolutionary emergence of the lacrimal gland system in response to an airy environment. Inactivation of ALX4/Alx4 causes lacrimal gland aplasia in both human and mouse. These results reveal a key role of Alx4 in mediating FGF-Shp2-FGF signaling in the neural crest for lacrimal gland development. PMID:29028795

  20. Alx4 relays sequential FGF signaling to induce lacrimal gland morphogenesis.

    PubMed

    Garg, Ankur; Bansal, Mukesh; Gotoh, Noriko; Feng, Gen-Sheng; Zhong, Jian; Wang, Fen; Kariminejad, Ariana; Brooks, Steven; Zhang, Xin

    2017-10-01

    The sequential use of signaling pathways is essential for the guidance of pluripotent progenitors into diverse cell fates. Here, we show that Shp2 exclusively mediates FGF but not PDGF signaling in the neural crest to control lacrimal gland development. In addition to preventing p53-independent apoptosis and promoting the migration of Sox10-expressing neural crests, Shp2 is also required for expression of the homeodomain transcription factor Alx4, which directly controls Fgf10 expression in the periocular mesenchyme that is necessary for lacrimal gland induction. We show that Alx4 binds an Fgf10 intronic element conserved in terrestrial but not aquatic animals, underlying the evolutionary emergence of the lacrimal gland system in response to an airy environment. Inactivation of ALX4/Alx4 causes lacrimal gland aplasia in both human and mouse. These results reveal a key role of Alx4 in mediating FGF-Shp2-FGF signaling in the neural crest for lacrimal gland development.

  1. TU-C-12A-05: Repeatability Study of Reduced Field-Of-View Diffusion-Weighted MRI On Human Thyroid Gland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla-Dave, A; Lu, Y; Hatzoglou, V

    2014-06-15

    Purpose: To investigate the repeatability of reduced field-of-view diffusion-weighted imaging (rFOV DWI) in quantifying apparent diffusion coefficients (ADCs) for human thyroid glands in a clinical setting. Methods: Nine healthy human volunteers were enrolled and underwent 3T MRI exams. For each volunteer, 3 longitudinal exams (2 weeks apart) with 2 repetitive sessions within each exam, including rFOV and conventional full field-of-view (fFOV) DWI scans, were performed. In the acquired DWI images, a fixed-size region of interest (ROI; diameter=8mm) was placed on thyroid glands to calculate ADC. ADC was calculated using a monoexponential function with a noise correction scheme. The repeatability ofmore » ADC was assessed by using coefficient variation (CV) across sessions or exams, which was defined to be: r = 1-CV, 0 < r < 1, where CV=STD/m, STD is the standard deviation of ADC, and m is the average of ADC across sessions or exams. An experienced radiologist assessed and scored rFOV and fFOV DW images based on image characteristics (1, nondiagnostic; 2, poor; 3, satisfactory; 4, good; and 5, excellent).Analysis of variance (ANOVA) was performed to compare ADC values, CV of ADC, repeatability of ADC across sessions and exams, and radiologic scores between rFOV and fFOV DWI techniques. Results: There was no significant difference in ADC values across sessions and exams either in rFOV or fFOV DWI. The average CVs of both rFOV and fFOV DWI were less than 13%. The repeatability of ADC measurement between rFOV and fFOV DWI was not significantly different. The overall image quality was significantly higher with rFOV DWI than with fFOV DWI. Conclusion: This study suggested that ADCs from both rFOV and fFOV DWI were repeatable, but rFOV DWI had superior imaging quality for human thyroid glands in a clinical setting.« less

  2. Gut Melatonin in Vertebrates: Chronobiology and Physiology.

    PubMed

    Mukherjee, Sourav; Maitra, Saumen Kumar

    2015-01-01

    Melatonin, following discovery in the bovine pineal gland, has been detected in several extra-pineal sources including gastrointestinal tract or gut. Arylalkylamine N-acetyltransferase (AANAT) is the key regulator of its biosynthesis. Melatonin in pineal is rhythmically produced with a nocturnal peak in synchronization with environmental light-dark cycle. A recent study on carp reported first that melatonin levels and intensity of a ~23 kDa AANAT protein in each gut segment also exhibit significant daily variations but, unlike pineal, show a peak at midday in all seasons. Extensive experimental studies ruled out direct role of light-dark conditions in determining temporal pattern of gut melatoninergic system in carp, and opened up possible role of environmental non-photic cue(s) as its synchronizer. Based on mammalian findings, physiological significance of gut-derived melatonin also appears unique because its actions at local levels sharing paracrine and/or autocrine functions have been emphasized. The purpose of this mini review is to summarize the existing data on the chronobiology and physiology of gut melatonin and to emphasize their relation with the same hormone derived in the pineal in vertebrates including fish.

  3. Dengue virus replicates and accumulates in Aedes aegypti salivary glands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raquin, Vincent, E-mail: vincent.raquin@univ-lyon1

    Dengue virus (DENV) is an RNA virus transmitted among humans by mosquito vectors, mainly Aedes aegypti. DENV transmission requires viral dissemination from the mosquito midgut to the salivary glands. During this process the virus undergoes several population bottlenecks, which are stochastic reductions in population size that restrict intra-host viral genetic diversity and limit the efficiency of natural selection. Despite the implications for virus transmission and evolution, DENV replication in salivary glands has not been directly demonstrated. Here, we used a strand-specific quantitative RT-PCR assay to demonstrate that negative-strand DENV RNA is produced in Ae. aegypti salivary glands, providing conclusive evidencemore » that viral replication occurs in this tissue. Furthermore, we showed that the concentration of DENV genomic RNA in salivary glands increases significantly over time, indicating that active replication likely replenishes DENV genetic diversity prior to transmission. These findings improve our understanding of the biological determinants of DENV fitness and evolution. - Highlights: •Strand-specific RT-qPCR allows accurate quantification of DENV (-) RNA in mosquito tissues. •Detection of DENV (-) RNA in salivary glands provides evidence of viral replication in this tissue. •Viral replication in salivary glands likely replenishes DENV genetic diversity prior to transmission.« less

  4. Reduced sympathetic innervation after alteration of target cell neurotransmitter phenotype in transgenic mice.

    PubMed Central

    Cho, S; Son, J H; Park, D H; Aoki, C; Song, X; Smith, G P; Joh, T H

    1996-01-01

    Neurotransmitters play a variety of important roles during nervous system development. In the present study, we hypothesized that neurotransmitter phenotype of both projecting and target cells is an important factor for the final synaptic linkage and its specificity. To test this hypothesis, we used transgenic techniques to convert serotonin/melatonin-producing cells of the pineal gland into cells that also produce dopamine and investigated the innervation of the phenotypically altered target cells. This phenotypic alteration markedly reduced the noradrenergic innervation originating from the superior cervical ganglia. Although the mechanism by which the reduction occurs is presently unknown, quantitative enzyme-linked immunoassay showed the presence of the equivalent amounts of nerve growth factor (NGF) in the control and transgenic pineal glands, suggesting that it occurred in a NGF-independent manner. The results suggest that target neurotransmitter phenotype influences the formation of afferent connections during development. Images Fig. 3 Fig. 4 PMID:8610132

  5. Mammary Gland Development

    PubMed Central

    Macias, Hector

    2012-01-01

    The mammary gland develops through several distinct stages. The first transpires in the embryo as the ectoderm forms a mammary line that resolves into placodes. Regulated by epithelial/mesenchymal interactions, the placodes descend into the underlying mesenchyme and produce the rudimentary ductal structure of the gland present at birth. Subsequent stages of development – pubertal growth, pregnancy, lactation and involution – occur postnatally under the regulation of hormones. Puberty initiates branching morphogenesis, which requires growth hormone and estrogen, as well as IGF1, to create a ductal tree that fills the fat pad. Upon pregnancy the combined actions of progesterone and prolactin generate alveoli, which secrete milk during lactation. Lack of demand for milk at weaning initiates the process of involution whereby the gland is remodeled back to its pre-pregnancy state. These processes require numerous signaling pathways that have distinct regulatory functions at different stages of gland development. Signaling pathways also regulate a specialized subpopulation of mammary stem cells that fuel the dramatic changes in the gland occurring with each pregnancy. Our knowledge of mammary gland development and mammary stem cell biology has significantly contributed to our understanding of breast cancer and has advanced the discovery of therapies to treat this disease. PMID:22844349

  6. Transgenic expression of human amphiregulin in mouse skin: inflammatory epidermal hyperplasia and enlarged sebaceous glands.

    PubMed

    Li, Yong; Stoll, Stefan W; Sekhon, Sahil; Talsma, Caroline; Camhi, Maya I; Jones, Jennifer L; Lambert, Sylviane; Marley, Hue; Rittié, Laure; Grachtchouk, Marina; Fritz, Yi; Ward, Nicole L; Elder, James T

    2016-03-01

    To explore the role of amphiregulin in inflammatory epidermal hyperplasia, we overexpressed human AREG (hAREG) in FVB/N mice using a bovine K5 promoter. A construct containing AREG coding sequences flanked by 5' and 3' untranslated region sequences (AREG-UTR) led to a >10-fold increase in hAREG expression compared to an otherwise-identical construct containing only the coding region (AREG-CDR). AREG-UTR mice developed tousled, greasy fur as well as elongated nails and thickened, erythematous tail skin. No such phenotype was evident in AREG-CDR mice. Histologically, AREG-UTR mice presented with marked epidermal hyperplasia of tail skin (2.1-fold increase in epidermal thickness with a 9.5-fold increase in Ki-67(+) cells) accompanied by significantly increased CD4+ T-cell infiltration. Dorsal skin of AREG-UTR mice manifested lesser but still significant increases in epidermal thickness and keratinocyte hyperplasia. AREG-UTR mice also developed marked and significant sebaceous gland enlargement, with corresponding increases in Ki-67(+) cells. To determine the response of AREG-UTR animals to a pro-inflammatory skin challenge, topical imiquimod (IMQ) or vehicle cream was applied to dorsal and tail skin. IMQ increased dorsal skin thickness similarly in both AREG-UTR and wild type mice (1.7- and 2.2-fold vs vehicle, P < 0.001 each), but had no such effect on tail skin. These results confirm that keratinocyte expression of hAREG elicits inflammatory epidermal hyperplasia, and are consistent with prior reports of tail epidermal hyperplasia and increased sebaceous gland size in mice expressing human epigen. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. The clypeal gland: a new exocrine gland in termite imagoes (Isoptera: Serritermitidae, Rhinotermitidae, Termitidae).

    PubMed

    Křížková, Barbora; Bourguignon, Thomas; Vytisková, Blahoslava; Sobotník, Jan

    2014-11-01

    Social insects possess a rich set of exocrine organs producing diverse pheromones and defensive compounds. This is especially true for termite imagoes, which are equipped with several glands producing, among others, sex pheromones and defensive compounds protecting imagoes during the dispersal flight and colony foundation. Here, we describe the clypeal gland, a new termite exocrine organ occurring in the labro-clypeal region of imagoes of most Rhinotermitidae, Serritermitidae and Termitidae species. The clypeal gland of Coptotermes testaceus consists of class 1 (modified epidermal cell) and class 3 (bicellular gland unit) secretory cells. Ultrastructural features suggest that the gland secretes volatile compounds and proteins, probably after starting the reproduction. One peculiar feature of the gland is the presence of multiple secretory canals in a single canal cell, a feature never observed before in other insect glands. Although the function of the gland remains unknown, we hypothesize that it could produce secretion signalling the presence of functional reproductives or their need to be fed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Investigation of antioxidant systems in human meibomian gland and conjunctival tissues.

    PubMed

    Nezzar, Hachemi; Mbekeani, Joyce N; Noblanc, Anais; Chiambaretta, Frédéric; Drevet, Joël R; Kocer, Ayhan

    2017-12-01

    Oxidative stress (OS) associated with direct contact with the environment and light exposure is a very potent and continuous stressor of the ocular surface and internal structures of the eye that are required to manage its effects. Constant replenishment of tears together with the superficial lipid layer produced by the meibomian glands (MG) is one protective mechanism. The lipid-rich fraction of the tears coats the deeper aqueous fraction, preventing its evaporation. However, lipids are particularly sensitive to oxidative damage that could alter tear film quality. To counteract oxidative damage, MG along with other structures of the ocular surface use primary antioxidant (AO) systems to limit OS damage such as lipid peroxidation. Limited information concerning the primary enzymatic AO system of the human MG prompted this investigation. Using different approaches (RT-PCR, enzymatic activity assays and immuno-fluorescent microscopy), we determined the presence, distribution and subcellular locations of the major AO enzymes belonging to the classical catalytic triad (superoxide dismutase, catalase and glutathione peroxidases) in adult human MG and conjunctiva (Conj). We showed that both tissues exhibit glutathione peroxidase expression. In addition to the ubiquitous cytosolic GPx1 protein, there was significant expression of GPx2, GPx4 and GPx7. These isoforms are known to preferentially scavenge phospholipid-hydroperoxide compounds. This characterization of the primary AO system of human MG and Conj may help pave the way for the development of diagnostic procedures and have implications for treatment of common MG dysfunction (MGD) and dry eye syndrome (DES). Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Modulation of Sodium/Iodide Symporter Expression in the Salivary Gland

    PubMed Central

    La Perle, Krista M.D.; Kim, Dong Chul; Hall, Nathan C.; Bobbey, Adam; Shen, Daniel H.; Nagy, Rebecca S.; Wakely, Paul E.; Lehman, Amy; Jarjoura, David

    2013-01-01

    Background Physiologic iodide-uptake, mediated by the sodium/iodide symporter (NIS), in the salivary gland confers its susceptibility to radioactive iodine–induced damage following 131I treatment of thyroid cancer. Subsequent quality of life for thyroid cancer survivors can be decreased due to recurrent sialoadenitis and persistent xerostomia. NIS expression at the three principal salivary duct components in various pathological conditions was examined to better our understanding of NIS modulation in the salivary gland. Methods NIS expression was evaluated by immunohistochemistry in human salivary gland tissue microarrays constructed of normal, inflamed, and neoplastic salivary tissue cores. Cumulative 123I radioactivity reflecting the combination of NIS activity with clearance of saliva secretion in submandibular and parotid salivary glands was evaluated by single-photon emission computed tomography/computed tomography imaging 24 hours after 123I administration in 50 thyroid cancer patients. Results NIS is highly expressed in the basolateral membranes of the majority of striated ducts, yet weakly expressed in few intercalated and excretory duct cells. The ratio of 123I accumulation between parotid and submandibular glands is 2.38±0.19. However, the corresponding ratio of 123I accumulation normalized by volume of interest is 1.19±0.06. The percentage of NIS-positive striated duct cells in submandibular salivary glands was statistically greater than in parotid salivary glands, suggesting a higher clearance rate of saliva secretion in submandibular salivary glands. NIS expression in striated ducts was heterogeneously decreased or absent in sialoadenitis. Most ductal salivary gland tumors did not express NIS. However, Warthin's tumors of striated duct origin exhibited consistent and intense NIS staining, corresponding with radioactive iodine uptake. Conclusions NIS expression is tightly modulated during the transition of intercalated to striated ducts and striated

  10. Surgical approach to pineal tumours.

    PubMed

    Pluchino, F; Broggi, G; Fornari, M; Franzini, A; Solero, C L; Allegranza, A

    1989-01-01

    During a period of 10 years (1977-1986) 40 cases of tumour of the pineal region have been treated at the Istituto Neurologico "C. Besta"-of Milan. Out of these 40 cases, 27 (67.5%) were in the paediatric (10-15 years) or juvenile (15-20 years) age at the time of operation. Since 1983 a specific diagnostic and therapeutic protocol has been adopted and thereafter direct surgical removal of the tumour was performed only when the neuroradiological investigations were highly suggestive of a benign extrinsic lesion. Sixteen cases in this series underwent direct surgical removal; in the remaining 24 cases stereotactic biopsy of the tumour was performed in the first instance. On the basis of the histological diagnosis obtained by this procedure surgical excision of the tumour (9 cases) or radiotherapy (15 cases) was then performed. 25 cases underwent surgical removal of the lesion. In all the cases the infratentorial supracerebellar approach as introduced by Krause and then modified by Stein was adopted. On analysis of the data of this series it was observed that in 25% of the cases completely benign resectable tumours were found; in 25% of the cases astrocytoma (grade I-II) which could be treated at least by partial removal were present; in 30% of the cases radiosensitive lesions were encountered. In the remaining 20% of the cases highly malignant tumours were found which should be treated only by radiotherapy and/or chemotherapy.

  11. Eccrine sweat gland development and sweat secretion.

    PubMed

    Cui, Chang-Yi; Schlessinger, David

    2015-09-01

    Eccrine sweat glands help to maintain homoeostasis, primarily by stabilizing body temperature. Derived from embryonic ectoderm, millions of eccrine glands are distributed across human skin and secrete litres of sweat per day. Their easy accessibility has facilitated the start of analyses of their development and function. Mouse genetic models find sweat gland development regulated sequentially by Wnt, Eda and Shh pathways, although precise subpathways and additional regulators require further elucidation. Mature glands have two secretory cell types, clear and dark cells, whose comparative development and functional interactions remain largely unknown. Clear cells have long been known as the major secretory cells, but recent studies suggest that dark cells are also indispensable for sweat secretion. Dark cell-specific Foxa1 expression was shown to regulate a Ca(2+) -dependent Best2 anion channel that is the candidate driver for the required ion currents. Overall, it was shown that cholinergic impulses trigger sweat secretion in mature glands through second messengers - for example InsP3 and Ca(2+) - and downstream ion channels/transporters in the framework of a Na(+) -K(+) -Cl(-) cotransporter model. Notably, the microenvironment surrounding secretory cells, including acid-base balance, was implicated to be important for proper sweat secretion, which requires further clarification. Furthermore, multiple ion channels have been shown to be expressed in clear and dark cells, but the degree to which various ion channels function redundantly or indispensably also remains to be determined. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  12. A novel function for the pineal organ in the control of swim depth in the Atlantic halibut larva

    NASA Astrophysics Data System (ADS)

    Novales Flamarique, Iñigo

    2002-02-01

    The pineal organ of vertebrates is a photo-sensitive structure that conveys photoperiod information to the brain. This information influences circadian rhythm and related metabolic processes such as thermoregulation, hatching time, body growth, and the timing of reproduction. This study demonstrates extra-ocular light responses that control swim depth in the larva of the Atlantic halibut, Hyppoglosus hyppoglosus. Young larvae without a functional eye (<29 days) swim upwards after an average delay of 5 s following the onset of a downwelling light stimulus, but sink downwards a few seconds later. Older larvae (>=29 days), which possess a functional eye, swim immediately downwards (microsecond delay) following the onset of the light stimulus, but proceed to swim upwards several seconds later. These two response patterns are thus opposite in polarity and have different time kinetics. Because the pineal organ of the Atlantic halibut develops during the embryonic stage, and because it is the only centre in the brain that expresses functional visual pigments (opsins) at early larval stages, it is the only photosensory organ capable of generating the extra-ocular responses observed.

  13. Benign Pediatric Salivary Gland Lesions.

    PubMed

    Carlson, Eric R; Ord, Robert A

    2016-02-01

    Salivary gland lesions are rare in pediatric patients. In addition, the types of salivary gland tumors are different in their distribution in specific sites in the major and minor salivary glands in children compared with adults. This article reviews benign neoplastic and nonneoplastic salivary gland disorders in pediatric patients to help clinicians to develop an orderly differential diagnosis that will lead to expedient treatment of pediatric patients with salivary gland lesions. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. New Prophylactic and Therapeutic Strategies for Spinal Cord Injury.

    PubMed

    Park, Sookyoung; Park, Kanghui; Lee, Youngjeon; Chang, Kyu-Tae; Hong, Yonggeun

    2013-03-01

    Melatonin production by the pineal gland in the vertebrate brain has attracted much scientific attention. Pineal melatonin is regulated by photoperiodicity, whereas circadian secretion of melatonin produced in the gastrointestinal tract is regulated by food intake. Thus, the circadian rhythm of pineal melatonin depends upon whether a species is diurnal or nocturnal. Spinal cord injury (SCI) involves damage to the spinal cord caused by trauma or disease that results in compromise or loss of body function. Melatonin is the most efficient and commonly used pharmacological antioxidant treatment for SCI. Melatonin is an indolamine secreted by the pineal gland during the dark phase of the circadian cycle. Neurorehabilitation is a complex medical process that focuses on improving function and repairing damaged connections in the brain and nervous system following injury. Physical activity associated with an active lifestyle reduces the risk of obesity, cardiovascular disease, type 2 diabetes, osteoporosis, and depression and protects against neurological conditions, including Parkinson's disease, Alzheimer's disease, and ischemic stroke. Physical activity has been shown to increase the gene expression of several brain neurotrophins (brain-derived neurotrophic factor [BDNF], nerve growth factor, and galanin) and the production of mitochondrial uncoupling protein 2, which promotes neuronal survival, differentiation, and growth. In summary, melatonin is a neural protectant, and when combined with therapeutic exercise, the hormone prevents the progression of secondary neuronal degeneration in SCI. The present review briefly describes the pathophysiological mechanisms underlying SCI, focusing on therapeutic targets and combined melatonin and exercise therapy, which can attenuate secondary injury mechanisms with minimal side effects.

  15. Alisertib and Fractionated Stereotactic Radiosurgery in Treating Patients With Recurrent High Grade Gliomas

    ClinicalTrials.gov

    2017-10-25

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymal Giant Cell Astrocytoma; Recurrent Adult Brain Tumor

  16. Mucus secretion by single tracheal submucosal glands from normal and cystic fibrosis transmembrane conductance regulator knockout mice

    PubMed Central

    Ianowski, Juan P; Choi, Jae Young; Wine, Jeffrey J; Hanrahan, John W

    2007-01-01

    Submucosal glands line the cartilaginous airways and produce most of the antimicrobial mucus that keeps the airways sterile. The glands are defective in cystic fibrosis (CF), but how this impacts airway health remains uncertain. Although most CF mouse strains exhibit mild airway defects, those with the C57Bl/6 genetic background have increased airway pathology and susceptibility to Pseudomonas. Thus, they offer the possibility of studying whether, and if so how, abnormal submucosal gland function contributes to CF airway disease. We used optical methods to study fluid secretion by individual glands in tracheas from normal, wild-type (WT) mice and from cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice (Cftrm1UNC/Cftrm1UNC; CF mice). Glands from WT mice qualitatively resembled those in humans by responding to carbachol and vasoactive intestinal peptide (VIP), although the relative rates of VIP- and forskolin-stimulated secretion were much lower in mice than in large mammals. The pharmacology of mouse gland secretion was also similar to that in humans; adding bumetanide or replacement of HCO3− by Hepes reduced the carbachol response by ∼50%, and this inhibition increased to 80% when both manoeuvres were performed simultaneously. It is important to note that glands from CFTR knockout mice responded to carbachol but did not secrete when exposed to VIP or forskolin, as has been shown previously for glands from CF patients. Tracheal glands from WT and CF mice both had robust secretory responses to electrical field stimulation that were blocked by tetrodotoxin. It is interesting that local irritation of the mucosa using chili pepper oil elicited secretion from WT glands but did not stimulate glands from CF mice. These results clarify the mechanisms of murine submucosal gland secretion and reveal a novel defect in local regulation of glands lacking CFTR which may also compromise airway defence in CF patients. PMID:17204498

  17. Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission

    PubMed Central

    Manuel, Menchie; Shan, Chao; Manokaran, Gayathri; Bradrick, Shelton S.; Missé, Dorothée; Shi, Pei-Yong

    2017-01-01

    Globally re-emerging dengue viruses are transmitted from human-to-human by Aedes mosquitoes. While viral determinants of human pathogenicity have been defined, there is a lack of knowledge of how dengue viruses influence mosquito transmission. Identification of viral determinants of transmission can help identify isolates with high epidemiological potential. Additionally, mechanistic understanding of transmission will lead to better understanding of how dengue viruses harness evolution to cycle between the two hosts. Here, we identified viral determinants of transmission and characterized mechanisms that enhance production of infectious saliva by inhibiting immunity specifically in salivary glands. Combining oral infection of Aedes aegypti mosquitoes and reverse genetics, we identified two 3’ UTR substitutions in epidemic isolates that increased subgenomic flaviviral RNA (sfRNA) quantity, infectious particles in salivary glands and infection rate of saliva, which represents a measure of transmission. We also demonstrated that various 3’UTR modifications similarly affect sfRNA quantity in both whole mosquitoes and human cells, suggesting a shared determinism of sfRNA quantity. Furthermore, higher relative quantity of sfRNA in salivary glands compared to midgut and carcass pointed to sfRNA function in salivary glands. We showed that the Toll innate immune response was preferentially inhibited in salivary glands by viruses with the 3’UTR substitutions associated to high epidemiological fitness and high sfRNA quantity, pointing to a mechanism for higher saliva infection rate. By determining that sfRNA is an immune suppressor in a tissue relevant to mosquito transmission, we propose that 3’UTR/sfRNA sequence evolution shapes dengue epidemiology not only by influencing human pathogenicity but also by increasing mosquito transmission, thereby revealing a viral determinant of epidemiological fitness that is shared between the two hosts. PMID:28753642

  18. Influence of ribosomal protein L39-L in the drug resistance mechanisms of lacrimal gland adenoid cystic carcinoma cells.

    PubMed

    Ye, Qing; Ding, Shao-Feng; Wang, Zhi-An; Feng, Jie; Tan, Wen-Bin

    2014-01-01

    Cancer constitutes a key pressure on public health regardless of the economy state in different countries. As a kind of highly malignant epithelial tumor, lacrimal gland adenoid cystic carcinoma can occur in any part of the body, such as salivary gland, submandibular gland, trachea, lung, breast, skin and lacrimal gland. Chemotherapy is one of the key treatment techniques, but drug resistance, especially MDR, seriously blunts its effects. As an element of the 60S large ribosomal subunit, the ribosomal protein L39-L gene appears to be documented specifically in the human testis and many human cancer samples of different origins. Total RNA of cultured drug-resistant and susceptible lacrimal gland adenoid cystic carcinoma cells was seperated, and real time quantitative RT-PCR were used to reveal transcription differences between amycin resistant and susceptible strains of lacrimal gland adenoid cystic carcinoma cells. Viability assays were used to present the amycin resistance difference in a RPL39-L transfected lacrimal gland adenoid cystic carcinoma cell line as compared to control vector and null-transfected lacrimal gland adenoid cystic carcinoma cell lines. The ribosomal protein L39-L transcription level was 6.5-fold higher in the drug-resistant human lacrimal gland adenoid cystic carcinoma cell line than in the susceptible cell line by quantitative RT-PCR analysis. The ribosomal protein L39-L transfected cells revealed enhanced drug resistance compared to plasmid vector-transfected or null-transfected cells as determined by methyl tritiated thymidine (3H-TdR) incorporation. The ribosomal protein L39-L gene could possibly have influence on the drug resistance mechanism of lacrimal gland adenoid cystic carcinoma cells.

  19. Interstitial Fluid Sphingosine-1-Phosphate in Murine Mammary Gland and Cancer and Human Breast Tissue and Cancer Determined by Novel Methods.

    PubMed

    Nagahashi, Masayuki; Yamada, Akimitsu; Miyazaki, Hiroshi; Allegood, Jeremy C; Tsuchida, Junko; Aoyagi, Tomoyoshi; Huang, Wei-Ching; Terracina, Krista P; Adams, Barbara J; Rashid, Omar M; Milstien, Sheldon; Wakai, Toshifumi; Spiegel, Sarah; Takabe, Kazuaki

    2016-06-01

    The tumor microenvironment is a determining factor for cancer biology and progression. Sphingosine-1-phosphate (S1P), produced by sphingosine kinases (SphKs), is a bioactive lipid mediator that regulates processes important for cancer progression. Despite its critical roles, the levels of S1P in interstitial fluid (IF), an important component of the tumor microenvironment, have never previously been measured due to a lack of efficient methods for collecting and quantifying IF. The purpose of this study is to clarify the levels of S1P in the IF from murine mammary glands and its tumors utilizing our novel methods. We developed an improved centrifugation method to collect IF. Sphingolipids in IF, blood, and tissue samples were measured by mass spectrometry. In mice with a deletion of SphK1, but not SphK2, levels of S1P in IF from the mammary glands were greatly attenuated. Levels of S1P in IF from mammary tumors were reduced when tumor growth was suppressed by oral administration of FTY720/fingolimod. Importantly, sphingosine, dihydro-sphingosine, and S1P levels, but not dihydro-S1P, were significantly higher in human breast tumor tissue IF than in the normal breast tissue IF. To our knowledge, this is the first reported S1P IF measurement in murine normal mammary glands and mammary tumors, as well as in human patients with breast cancer. S1P tumor IF measurement illuminates new aspects of the role of S1P in the tumor microenvironment.

  20. Characteristics of the norepinephrine-stimulated phosphatidylinositol turnover in rat pineal cell dispersions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauser, G.; Smith, T.L.

    Dispersed rat pineal cells can be used for the study of the phosphatidylinositol effect. The response to ( - )-norepinephrine of the incorporation of 32Pi into phospholipids is linear with time and cell concentration, stereospecific, and mediated through alpha-1-adrenergic receptors. Na+ in the incubation medium is obligatory for labeling of phosphatidylinositol and phosphatidylcholine by 32P. In the absence of K+, incorporation of 32P is drastically lowered and no stimulation by norepinephrine occurs. Rb+ can replace K+. Omission of Ca2+ or substitution with Sr2+ preferentially lowers incorporation of radioactivity into phosphatidylcholine. Mg2+ is not required for basal or stimulated labeling.

  1. Adrenal Gland Cancer

    MedlinePlus

    ... either benign or malignant. Benign tumors aren't cancer. Malignant ones are. Most adrenal gland tumors are ... and may not require treatment. Malignant adrenal gland cancers are uncommon. Types of tumors include Adrenocortical carcinoma - ...

  2. Essential role of carbonic anhydrase XII in secretory gland fluid and HCO3 (-) secretion revealed by disease causing human mutation.

    PubMed

    Hong, Jeong Hee; Muhammad, Emad; Zheng, Changyu; Hershkovitz, Eli; Alkrinawi, Soliman; Loewenthal, Neta; Parvari, Ruti; Muallem, Shmuel

    2015-12-15

    Fluid and HCO3 (-) secretion is essential for all epithelia; aberrant secretion is associated with several diseases. Carbonic anhydrase XII (CA12) is the key carbonic anhydrase in epithelial fluid and HCO3 (-) secretion and works by activating the ductal Cl(-) -HCO3 (-) exchanger AE2. Delivery of CA12 to salivary glands increases salivation in mice and of the human mutation CA12(E143K) markedly inhibits it. The human mutation CA12(E143K) causes disease due to aberrant CA12 glycosylation, and misfolding resulting in loss of AE2 activity. Aberrant epithelial fluid and HCO3 (-) secretion is associated with many diseases. The activity of HCO3 (-) transporters depends of HCO3 (-) availability that is determined by carbonic anhydrases (CAs). Which CAs are essential for epithelial function is unknown. CA12 stands out since the CA12(E143K) mutation causes salt wasting in sweat and dehydration in humans. Here, we report that expression of CA12 and of CA12(E143K) in mice salivary glands respectively increased and prominently inhibited ductal fluid secretion and salivation in vivo. CA12 markedly increases the activity and is the major HCO3 (-) supplier of ductal Cl(-) -HCO3 (-) exchanger AE2, but not of NBCe1-B. The E143K mutation alters CA12 glycosylation at N28 and N80, resulting in retention of the basolateral CA12 in the ER. Knockdown of AE2 and of CA12 inhibited pancreatic and salivary gland ductal AE2 activity and fluid secretion. Accordingly, patients homozygous for the CA12(E143K) mutation have a dry mouth, dry tongue phenotype. These findings reveal an unsuspected prominent role of CA12 in epithelial function, explain the disease and call for caution in the use of CA12 inhibitors in cancer treatment. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  3. Orbital adenocarcinoma of lacrimal gland origin in a dog.

    PubMed

    Wang, F I; Ting, C T; Liu, Y S

    2001-03-01

    A 13-year-old intact female mixed-breed dog was presented for a progressive enlargement of the right eye, which had been treated previously for conjunctivitis. A round, firm mass, approximately 4 cm in diameter, was protruding from the superotemporal aspect of the right orbit, displacing the eyeball anteriorly and ventromedially. The mass was encapsulated, distinct from the eyeball, and not associated with the eyelids. On cut surface, there was a pale multilobulated periphery, with a dark red, soft, and depressed core. Histologically, tumor cells formed cords and tubules, which were stained with mouse anti-human cytokeratin antibody AE1/AE3. Residual glands were serous, and the majority of tumor cells were negative for mucin. The supraorbital location, encapsulation, and residual serous glands suggest that this mass was a low-grade adenocarcinoma of the lacrimal gland.

  4. MAMMARY GLAND ADENOCARCINOMA IN A MALE BORNEAN ORANGUTAN (PONGO PYGMAEUS).

    PubMed

    Carpenter, Nancy A; Crook, Erika K

    2017-03-01

    An adult male Bornean orangutan ( Pongo pygmaeus ) was diagnosed with invasive, poorly differentiated grade 9/9 mammary gland adenocarcinoma from a subcutaneous mass that was surgically removed during a routine preventative health examination. The tumor was tested for estrogen and progesterone receptors, human epidermal growth factor receptor 2 (HER2), and HER2 fluorescence in situ hybridization (HER2 FISH). Whole blood was tested for breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) genes. The orangutan was treated orally with two common human breast cancer drugs; tamoxifen and anastrozole. The orangutan lived for 4.5 yr postdetection, dying from an unrelated cause. This is the first reported case of mammary gland adenocarcinoma in a male great ape.

  5. Effects of LED-backlit computer screen and emotional selfregulation on human melatonin production.

    PubMed

    Sroykham, Watchara; Wongsawat, Yodchanan

    2013-01-01

    Melatonin is a circadian hormone transmitted via suprachiasmatic nucleus (SCN) in the hypothalamus and sympathetic nervous system to the pineal gland. It is a hormone necessary to many human functions such as immune, cardiovascular, neuron and sleep/awake functions. Since melatonin enhancement or suppression is reported to be closely related to the photic information from retina, in this paper, we aim further to study both the lighting condition and the emotional self-regulation in different lighting conditions together with their effects on the production of human melatonin. In this experiment, five participants are in three light exposure conditions by LED backlit computer screen (No light, Red light (∼650nm) and Blue light (∼470nm)) for 30 minute (8-8:30pm), then they are collected saliva both before and after the experiments. After the experiment, the participants are also asked to answer the emotional self-regulation questionnaire of PANAS and BRUMS regarding each light exposure condition. These results show that positive mood mean difference of PANAS between no light and red light is significant with p=0.001. Tension, depression, fatigue, confusion and vigor from BRUMS are not significantly changed while we can observe the significant change in anger mood. Finally, we can also report that the blue light of LED-backlit computer screen significantly suppress melatonin production (91%) more than red light (78%) and no light (44%).

  6. The accessory parotid gland and facial process of the parotid gland on computed tomography

    PubMed Central

    Ahn, Dongbin; Yeo, Chang Ki; Han, Soon Yong

    2017-01-01

    The purpose of this study was to determine the incidence of an anterior extension of the parotid gland, such as an accessory parotid gland (APG) or facial process (FP) and to evaluate its characteristics on computed tomography (CT) scans. We reviewed CT scans of 1,600 parotid glands from 800 patients. An APG on CT was defined as a soft-tissue mass of the same density as the main parotid gland, located at the anterior part of the main parotid gland, and completely separate from the main parotid gland. An FP was defined as a lobe of the parotid gland protruding anteriorly over the anterior edge of the ramus of the mandible on CT and showing continuity with the main gland. The overall incidence rates and characteristics of APGs and FPs were evaluated according to age, sex, and side. The incidence rates of APGs and FPs were 10.2% (163/1,600) and 28.3% (452/1,600), respectively. The mean size of an APG was 15.8 mm × 5.0 mm and the mean distance from the main parotid gland was 10.5 mm. The FP reached anteriorly between the anterior edge of the mandibular ramus and the anterior border of the masseter muscle in 405 (89.6%) cases, while it extended over the anterior border of the masseter muscle in 47 (10.4%) cases. The incidence rates of APGs and FPs decreased and increased, respectively, with increasing age, showing significant linear correlations. However, the incidence of an anterior extension of the parotid gland (either an APG or an FP) was similar across all age groups. The present study showed that CT might be helpful in identifying anterior extensions of the parotid gland including APGs and FPs. The anatomical information gained from this study contributes to a better understanding of APGs and FPs and how their incidence changes with age. PMID:28915265

  7. The circumventricular organs: an atlas of comparative anatomy and vascularization.

    PubMed

    Duvernoy, Henri M; Risold, Pierre-Yves

    2007-11-01

    The circumventricular organs are small sized structures lining the cavity of the third ventricle (neurohypophysis, vascular organ of the lamina terminalis, subfornical organ, pineal gland and subcommissural organ) and of the fourth ventricle (area postrema). Their particular location in relation to the ventricular cavities is to be noted: the subfornical organ, the subcommissural organ and the area postrema are situated at the confluence between ventricles while the neurohypophysis, the vascular organ of the lamina terminalis and the pineal gland line ventricular recesses. The main object of this work is to study the specific characteristics of the vascular architecture of these organs: their capillaries have a wall devoid of blood-brain barrier, as opposed to central capillaries. This particular arrangement allows direct exchange between the blood and the nervous tissue of these organs. This work is based on a unique set of histological preparations from 12 species of mammals and 5 species of birds, and is taking the form of an atlas.

  8. Disruption of retinoid-related orphan receptor beta changes circadian behavior, causes retinal degeneration and leads to vacillans phenotype in mice.

    PubMed Central

    André, E; Conquet, F; Steinmayr, M; Stratton, S C; Porciatti, V; Becker-André, M

    1998-01-01

    The orphan nuclear receptor RORbeta is expressed in areas of the central nervous system which are involved in the processing of sensory information, including spinal cord, thalamus and sensory cerebellar cortices. Additionally, RORbeta localizes to the three principal anatomical components of the mammalian timing system, the suprachiasmatic nuclei, the retina and the pineal gland. RORbeta mRNA levels oscillate in retina and pineal gland with a circadian rhythm that persists in constant darkness. RORbeta-/- mice display a duck-like gait, transient male incapability to sexually reproduce, and a severely disorganized retina that suffers from postnatal degeneration. Consequently, adult RORbeta-/- mice are blind, yet their circadian activity rhythm is still entrained by light-dark cycles. Interestingly, under conditions of constant darkness, RORbeta-/- mice display an extended period of free-running rhythmicity. The overall behavioral phenotype of RORbeta-/- mice, together with the chromosomal localization of the RORbeta gene, suggests a close relationship to the spontaneous mouse mutation vacillans described >40 years ago. PMID:9670004

  9. Plant-environment interactions: Accumulation of hypericin in dark glands of Hypericum perforatum.

    PubMed

    Zobayed, S M A; Afreen, F; Goto, E; Kozai, T

    2006-10-01

    Hypericum perforatum is a perennial herbaceous plant and an extract from this plant has a significant antidepressant effect when administered to humans. The plant is characterized by its secretory glands, also known as dark glands, which are mainly visible on leaves and flowers. The current study evaluates the influence of several environmental factors and developmental stages of the plant on the accumulation and synthesis of hypericin and pseudohypericin (Hy-G), the major bioactive constituents, in H. perforatum plants. The appearance of dark glands on different parts of the plant, under several environmental conditions, was monitored by microscopy. Hy-G concentrations were quantified by high-performance liquid chromatography. A significant presence of dark glands accompanying the highest concentrations of Hy-G was observed in the stamen tissues more than in any other organ of H. perforatum. A linear relationship between the number of dark glands and net photosynthetic rate of the leaf and Hy-G concentration in the leaf tissue was also established. A very high concentration of Hy-G was measured in the dark-gland tissues, but in the tissues without any dark glands it was almost absent. The presence of emodin, a precursor of Hy-G, at a high concentration in the dark-gland tissues, and its absence in the surrounding tissues was also observed, suggesting that the site of biosynthesis of Hy-G is in the dark-gland cells. A significantly low concentration of Hy-G (occasionally non-detectable) was measured in the xylem sap of the stem tissues. The dark-gland tissues collected from leaves, stems or flowers contained similar concentrations of Hy-G. The concentration of Hy-G in various organs of H. perforatum plants is dependent on the number of dark glands, their size or area, not on the location of the dark glands on the plant. The study provides the first experimental evidence that Hy-G is synthesized and accumulates in dark glands.

  10. Salivary Gland Cancer

    MedlinePlus

    ... contains antibodies that can kill germs. Salivary gland cancer is a type of head and neck cancer. It is rare. It may not cause any ... pain in your face Doctors diagnose salivary gland cancer using a physical exam, imaging tests, and a ...

  11. Updating the salivary gland transcriptome of Phlebotomus papatasi (Tunisian strain): the search for sand fly-secreted immunogenic proteins for humans.

    PubMed

    Abdeladhim, Maha; Jochim, Ryan C; Ben Ahmed, Melika; Zhioua, Elyes; Chelbi, Ifhem; Cherni, Saifedine; Louzir, Hechmi; Ribeiro, José M C; Valenzuela, Jesus G

    2012-01-01

    Sand fly saliva plays an important role in both blood feeding and outcome of Leishmania infection. A cellular immune response against a Phlebotomus papatasi salivary protein was shown to protect rodents against Leishmania major infection. In humans, P. papatasi salivary proteins induce a systemic cellular immune response as well as a specific antisaliva humoral immune response, making these salivary proteins attractive targets as markers of exposure for this Leishmania vector. Surprisingly, the repertoire of salivary proteins reported for P. papatasi-a model sand fly for Leishmania-vector-host molecular interactions-is very limited compared with other sand fly species. We hypothesize that a more comprehensive study of the transcripts present in the salivary glands of P. papatasi will provide better knowledge of the repertoire of proteins of this important vector and will aid in selection of potential immunogenic proteins for humans and of those proteins that are highly conserved between different sand fly strains. A cDNA library from P. papatasi (Tunisian strain) salivary glands was constructed, and randomly selected transcripts were sequenced and analyzed. The most abundant transcripts encoding secreted proteins were identified and compared with previously reported sequences. Importantly, we identified salivary proteins not described before in this sand fly species. Comparative analysis between the salivary proteins of P. papatasi from Tunisia and Israel strains shows a high level of identity, suggesting these proteins as potential common targets for markers of vector exposure or inducers of cellular immune responses in humans for different geographic areas.

  12. Two-stage autotransplantation of human submandibular gland: a novel approach to treat postradiogenic xerostomia.

    PubMed

    Hagen, Rudolf; Scheich, Matthias; Kleinsasser, Norbert; Burghartz, Marc

    2016-08-01

    Xerostomia is a persistent side effect of radiotherapy (RT), which severely reduces the quality of life of the patients affected. Besides drug treatment and new irradiation strategies, surgical procedures aim for tissue protection of the submandibular gland. Using a new surgical approach, the submandibular gland was autotransplanted in 6 patients to the patient's forearm for the period of RT and reimplanted into the floor of the mouth 2-3 months after completion of RT. Saxon's test was performed during different time points to evaluate patient's saliva production. Furthermore patients had to answer EORTC QLQ-HN35 questionnaire and visual analog scale. Following this two-stage autotransplantation, xerostomia in the patients was markedly reduced due to improved saliva production of the reimplanted gland. Whether this promising novel approach is a reliable treatment option for RT patients in general should be evaluated in further studies.

  13. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor

    NASA Technical Reports Server (NTRS)

    Brainard, G. C.; Hanifin, J. P.; Greeson, J. M.; Byrne, B.; Glickman, G.; Gerner, E.; Rollag, M. D.

    2001-01-01

    The photopigment in the human eye that transduces light for circadian and neuroendocrine regulation, is unknown. The aim of this study was to establish an action spectrum for light-induced melatonin suppression that could help elucidate the ocular photoreceptor system for regulating the human pineal gland. Subjects (37 females, 35 males, mean age of 24.5 +/- 0.3 years) were healthy and had normal color vision. Full-field, monochromatic light exposures took place between 2:00 and 3:30 A.M. while subjects' pupils were dilated. Blood samples collected before and after light exposures were quantified for melatonin. Each subject was tested with at least seven different irradiances of one wavelength with a minimum of 1 week between each nighttime exposure. Nighttime melatonin suppression tests (n = 627) were completed with wavelengths from 420 to 600 nm. The data were fit to eight univariant, sigmoidal fluence-response curves (R(2) = 0.81-0.95). The action spectrum constructed from these data fit an opsin template (R(2) = 0.91), which identifies 446-477 nm as the most potent wavelength region providing circadian input for regulating melatonin secretion. The results suggest that, in humans, a single photopigment may be primarily responsible for melatonin suppression, and its peak absorbance appears to be distinct from that of rod and cone cell photopigments for vision. The data also suggest that this new photopigment is retinaldehyde based. These findings suggest that there is a novel opsin photopigment in the human eye that mediates circadian photoreception.

  14. Expression profiles of aquaporins in rat conjunctiva, cornea, lacrimal gland and Meibomian gland.

    PubMed

    Yu, Dongfang; Thelin, William R; Randell, Scott H; Boucher, Richard C

    2012-10-01

    The aim of the study was to elucidate aquaporin (AQP) family member mRNA expression and protein expression/localization in the rat lacrimal functional unit. The mRNA expression of all rat AQPs (AQP0-9, 11-12) in palpebral, fornical, and bulbar conjunctiva, cornea, lacrimal gland, and Meibomian gland was measured by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) and real time RT-PCR. Antibodies against AQP1, 3, 4, 5, 9, and 11 were used in Western blotting and immunohistochemistry to determine protein expression and distribution. Our study demonstrated characteristic AQP expression profiles in rat ocular tissues. AQP1, 3, 4, 5, 8, 9, 11, and 12 mRNA were detected in conjunctiva. AQP0, 1, 2, 3, 4, 5, 6, 11, and 12 mRNA were expressed in cornea. AQP0, 1, 2, 3, 4, 5, 7, 8, and 11 mRNA were detected in lacrimal gland. AQP1, 3, 4, 5, 7, 8, 9, 11, and 12 mRNA were identified in Meibomian gland. By Western blot, AQP1, 3, 5, and 11 were detected in conjunctiva; AQP1, 3, 5, and 11 were identified in cornea; AQP1, 3, 4, 5, and 11 were detected in lacrimal gland; and AQP1, 3, 4, 5, 9, and 11 were present in Meibomian gland. Immunohistochemistry localized AQPs to distinct sites in the various tissues. This study rigorously analyzed AQPs expression and localization in rat conjunctiva, cornea, lacrimal gland, and Meibomian gland tissues. Our findings provide a comprehensive platform for further investigation into the physiological or pathophysiological relevance of AQPs in ocular surface. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Caveolin-1 overexpression in benign and malignant salivary gland tumors.

    PubMed

    Jaafari-Ashkavandi, Zohreh; Ashraf, Mohammad Javad; Nazhvani, Ali Dehghani; Azizi, Zahra

    2016-02-01

    Caveolin-1, a tyrosine-phosphorylated protein, is supposed to have different regulatory roles as promoter or suppressor in many human cancers. However, no published study concerned its expression in benign and malignant salivary gland tumors. The aim of this study was to evaluate and compare the expression of Cav-1 in the most common benign and malignant salivary gland tumors and evaluate its correlation with proliferation activity. In this cross-sectional retrospective study, immunohistochemical expression of caveolin-1 and Ki67 were evaluated in 49 samples, including 11 normal salivary glands, 15 cases of pleomorphic adenoma (PA), 13 adenoid cystic carcinomas (AdCC), and 10 mucoepidermoid carcinomas (MEC). The expression of Cav-1 was seen in 18 % of normal salivary glands and 85 % of tumors. The immunoreaction in the tumors was significantly higher than normal tissues (P = 0.001), but the difference between benign and malignant tumors was not significant (P = 0.07). Expression of Cav-1 was correlated with Ki67 labeling index in PAs, but not in malignant tumors. Cav-1 expression was not in association with tumor size and stage. Overexpression of Cav-1 was found in salivary gland tumors in comparison with normal tissues, but no significant difference was observed between benign and malignant tumors. Cav-1 was inversely correlated with proliferation in PA. Therefore, this marker may participate in tumorigenesis of salivary gland tumors and may be a potential biomarker for cancer treatments.

  16. Fluorine F 18 Fluorodopa-Labeled PET Scan in Planning Surgery and Radiation Therapy in Treating Patients With Newly Diagnosed High- or Low-Grade Malignant Glioma

    ClinicalTrials.gov

    2018-04-30

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymal Giant Cell Astrocytoma; Adult Subependymoma

  17. Pink spot, white spot: the pineal skylight of the leatherback turtle (Dermochelys coriacea Vandelli 1761) skull and its possible role in the phenology of feeding migrations

    USGS Publications Warehouse

    Davenport, John; Jones, T. Todd; Work, Thierry M.; Balazs, George H.

    2014-01-01

    Leatherback turtles, Dermochelys coriacea, which have an irregular pink area on the crown of the head known as the pineal or ‘pink spot’, forage upon jellyfish in cool temperate waters along the western and eastern margins of the North Atlantic during the summer. Our study showed that the skeletal structures underlying the pink spot in juvenile and adult turtles are compatible with the idea of a pineal dosimeter function that would support recognition of environmental light stimuli. We interrogated an extensive turtle sightings database to elucidate the phenology of leatherback foraging during summer months around Great Britain and Ireland and compared the sightings with historical data for sea surface temperatures and day lengths to assess whether sea surface temperature or light periodicity/levels were likely abiotic triggers prompting foraging turtles to turn south and leave their feeding grounds at the end of the summer. We found that sea temperature was too variable and slow changing in the study area to be useful as a trigger and suggest that shortening of day lengths as the late summer equilux is approached provides a credible phenological cue, acting via the pineal, for leatherbacks to leave their foraging areas whether they are feeding close to Nova Scotia or Great Britain and Ireland.

  18. BK virus has tropism for human salivary gland cells in vitro: Implications for transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffers, Liesl K.; Madden, Vicki; Webster-Cyriaque, Jennifer, E-mail: jennifer@med.unc.ed

    Background: In this study, it was determined that BKV is shed in saliva and an in vitro model system was developed whereby BKV can productively infect both submandibular (HSG) and parotid (HSY) salivary gland cell lines. Results: BKV was detected in oral fluids using quantitative real-time PCR (QRTPCR). BKV infection was determined using quantitative RT-PCR, immunofluorescence and immunoblotting assays. The infectivity of BKV was inhibited by pre-incubation of the virus with gangliosides that saturated the major capsid protein, VP1, halting receptor mediated BKV entry into salivary gland cells. Examination of infected cultures by transmission electron microscopy revealed 45-50 nm BKmore » virions clearly visible within the cells. Subsequent to infection, encapsidated BK virus was detected in the supernatant. Conclusion: We thus demonstrated that BKV was detected in oral fluids and that BK infection and replication occur in vitro in salivary gland cells. These data collectively suggest the potential for BKV oral route of transmission and oral pathogenesis.« less

  19. [Structuro-functional units of the salivary and lacrimal glands].

    PubMed

    Kostilenko, Iu P; Mysliuk, I V; Deviatkin, E A

    1986-09-01

    By means of the multilayer graphic and plastic reconstruction methods using series of semithin sections, spatial tridimensional organization of the epithelial complexes and blood microcirculatory bed in the rat palatal salivary glands and the lacrimal gland of the human newborn have been studied. Since their ducts serve not only for discharging their secrete into the external medium, but also for accumulation (as collectors), the sublobular unit--adenomere should be referred to as a part of elementary level of organization of the epithelial complexes. The adenomere has in its composition a collecting centrally situating duct. However, while studying structure of the blood microcirculatory bed, it is found out that there is not any strict territorial correspondence between its functional units and structural units of the glandular epithelium. Nevertheless, giving a great importance to a tight syntopic connection of the collecting ducts of the adenomeres with the postcapillary venules (that belong to filtrating microvessels), these are sublobular units--adenomeres that are distinguished as structural-functional units in the glands.

  20. Salivary Gland Secretion.

    ERIC Educational Resources Information Center

    Dorman, H. L.; And Others

    1981-01-01

    Describes materials and procedures for an experiment utilizing a live dog to demonstrate: (1) physiology of the salivary gland; (2) parasympathetic control of the salivary gland; (3) influence of varying salivary flow rates on sodium and potassium ions, osmolarity and pH; and (4) salivary secretion as an active process. (DS)

  1. The study of the wonderful: the first topographical mapping of vision in the brain.

    PubMed

    Fishman, Ronald S

    2008-12-01

    The conception by René Descartes of the human brain, notorious as it is for placing the soul or mind in the pineal gland, had yet within it the basic idea of the brain as a highly organized mechanism with topographical sensory mapping and different functions localized in specific areas. Descartes was directly led to this idea by his appreciation of what the retinal image conceived by Johannes Kepler implied, not only for the nature of vision, but for the operation of the brain in general. The linkage between Kepler and Descartes is not widely appreciated but is one of the best examples of synergism in the history of science.

  2. Comparison of the effect of fatty alcohols on the permeation of melatonin between porcine and human skin.

    PubMed

    Andega, S; Kanikkannan, N; Singh, M

    2001-11-09

    Melatonin (MT) is a hormone secreted by the pineal gland that plays an important role in the regulation of the circadian sleep-wake cycle. It would be advantageous to administer MT using a transdermal delivery system for the treatment of sleep disorders such as delayed sleep syndrome, jet lag in travelers, cosmonauts and shift workers. The porcine skin has been found to have similar morphological and functional characteristics as human skin. The elastic fibres in the dermis, enzyme pattern of the epidermis, epidermal tissue turnover time, keratinous proteins and thickness of epidermis of porcine skin are similar to human skin. However, the fat deposition and vascularisation of the cutaneous glands of porcine skin are different from human skin. In addition, porcine skin has been found to have a close permeability character to human skin. However, the comparative effect of chemical penetration enhancers on the permeation of drugs between porcine and human skin has not been reported. The purpose of this study was to compare the effect of fatty alcohols on the permeability of porcine and human skin using MT as a model compound. The effect of saturated fatty alcohols (octanol, nonanol, decanol, undecanol, lauryl alcohol, tridecanol, myristyl alcohol) and unsaturated fatty alcohols (oleyl alcohol, linoleyl alcohol, linolenyl alcohol) at 5% concentration was tested across dermatomed porcine and human skin. Our studies showed a parabolic relationship between the carbon chain length of saturated fatty alcohols and permeation enhancement of MT with both porcine and human skin. Maximum permeation of MT was observed when fatty alcohol carbon chain length was 10. In general, as the level of unsaturation increased from one to two double bonds, there was an increase in the permeation of MT both in porcine and human skin. However, a decrease in the permeation was observed with three double bonds. Regression analysis using the steady state flux data showed a significant positive

  3. Salivary gland diseases in children

    PubMed Central

    Iro, Heinrich; Zenk, Johannes

    2014-01-01

    Salivary gland diseases in children are rare, apart from viral-induced diseases. Nevertheless, it is essential for the otolaryngologist to recognize these uncommon findings in children and adolescents and to diagnose and initiate the proper treatment. The present work provides an overview of the entire spectrum of congenital and acquired diseases of the salivary glands in childhood and adolescence. The current literature was reviewed and the results discussed and summarized. Besides congenital diseases of the salivary glands in children, the main etiologies of viral and bacterial infections, autoimmune diseases and tumors of the salivary glands were considered. In addition to the known facts, new developments in diagnostics, imaging and therapy, including sialendoscopy in obstructive diseases and chronic recurrent juvenile sialadenitis were taken into account. In addition, systemic causes of salivary gland swelling and the treatment of sialorrhoea were discussed. Although salivary gland diseases in children are usually included in the pathology of the adult, they differ in their incidence and some­times in their symptoms. Clinical diagnostics and especially the surgical treatment are influenced by a stringent indications and a less invasive strategy. Due to the rarity of tumors of the salivary glands in children, it is recommended to treat them in a specialized center with greater surgical experience. Altogether the knowledge of the differential diagnoses in salivary gland diseases in children is important for otolaryngologists, to indicate the proper therapeutic approach. PMID:25587366

  4. In vitro effects of sex hormones in human meibomian gland epithelial cells.

    PubMed

    Schröder, Antje; Abrar, Daniel B; Hampel, Ulrike; Schicht, Martin; Paulsen, Friedrich; Garreis, Fabian

    2016-10-01

    Meibomian gland dysfunction (MGD) is considered the most common cause of dry eye disease (DED). Sex hormones seem to play a role in the pathogenesis of MGD although their involvement is not completely understood. Therefore, in the present study we evaluated the effect of dihydrotestosteron (DHT) and estradiol (β-Est) on an immortalized human meibomian gland epithelial cell line (HMGEC). Protein expression of sex hormone receptors in HMGEC was investigated by western blot. Ultrastructural morphology, Sudan III lipid staining, cell proliferation as well as vitality assays were performed. Furthermore, expression of MGD-associated markers for keratinization (hornerin, involucrin and CK6), proliferation (CK5 and CK14) and lipid synthesis (fatty acid synthase and stearoyl-CoA desaturase) were analyzed by real time RT-PCR. Western blot revealed presence of androgen receptor (AR), estrogen receptors α and -β (ERα, ERβ) and progesterone receptor (PR) in HMGEC. PR, ERα and ERβ expression was significantly induced under cultivation with serum, whereas sex hormones stimulation showed no further effect on protein expression of PR, ERα and ERβ. Our results showed no impact of MGD-associated sex hormones to cellular morphology and lipid accumulation in HMGEC. Cell proliferation was slightly induced through application of sex hormones and supplementation of calcium. However, both sex hormones and calcium altered gene expression of MGD-associated markers. Especially keratinization genes hornerin (HRNR) and cornulin (COR) were induced after application of sex hormones and calcium in serum-free cultivated HMGEC. This may promote keratinization processes that are associated with MGD. Further investigations are necessary to analyze the (hyper)keratinization processes that occur during MGD and using HMGEC as an in vitro model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Pit-1/growth hormone factor 1 splice variant expression in the rhesus monkey pituitary gland and the rhesus and human placenta.

    PubMed

    Schanke, J T; Conwell, C M; Durning, M; Fisher, J M; Golos, T G

    1997-03-01

    We have examined the expression of Pit-1 messenger RNA (mRNA) splice variants in the nonhuman primate pituitary and in rhesus and human placenta. Full-length complementary DNAs (cDNAs) representing Pit-1 and the Pit-1 beta splice variants were cloned from a rhesus monkey pituitary cDNA library and were readily detectable by RT-PCR with rhesus pituitary gland RNA. The Pit-1T variant previously reported in mouse pituitary tumor cell lines was not detectable in normal rhesus pituitary tissue, although two novel splice variants were detected. A cDNA approximating the rat Pit-1 delta 4 variant was cloned but coded for a truncated and presumably nonfunctional protein. Only by using a nested RT-PCR approach were Pit-1 and Pit-1 beta variants consistently detectable in both human and rhesus placental tissue. The Pit-1 beta variant mRNA was not detectable in JEG-3 choriocarcinoma cells unless the cells were stimulated with 8-Br-cAMP. Immunoblot studies with nuclear extracts from primary rhesus syncytiotrophoblast cultures or JEG-3 choriocarcinoma cells indicated that although mRNA levels were very low, Pit-1 protein was detectable in differentiated cytotrophoblasts, and levels increased after treatment with 8-Br-cAMP. Two major species of Pit-1 protein were detected that corresponded to the two major bands in rat pituitary GH3 cell nuclear extracts. Low levels of slightly larger bands also were seen, which may represent Pit-1 beta protein or phosphorylated species. We conclude that Pit-1 splice variants expressed in the primate pituitary gland differ from those in the rodent gland and that the Pit-1 and Pit-1 beta mRNAs expressed in the placenta give rise to a pattern of protein expression similar to that seen in pituitary cells, which is inducible by treatment with 8-Br-cAMP.

  6. The mystery of the thymus gland.

    PubMed

    Liu, Daniel; Ellis, Harold

    2016-09-01

    The thymus is the last organ in the human body to have its mechanisms fully understood, having had its function fully delineated more than 50 years ago (Miller , Tissue Antigens 63:509-517). Prior to this, the thymus gland has had an interesting history with theories having included a role in fetal growth and development before becoming more sinisterly, a cause of sudden infant death in the late 19th century known as status lymphaticus (Paltauf , Wien Klin Wochenschr 2:877-881). Until Miller (, Lancet 278:748-749) eventually proved its primarily immunological role, the history of this mysterious gland has closely mirrored the history of medicine itself, troubling the minds of pathologists such as Virchow (, Ueber die Chlorose und die damit zusammenhängenden Anomalien im Gefässapparate, insbesondere über "Endocarditis puerperalis," vorgetragen in der Sitzung der Berliner Geburtshülflichen Gesellschaft vom 12) and Grawitz (, Deut Med Wochenschr 22:429-431), surgeons such as Astley Cooper (, The Anatomy of the Thymus Gland) and Keynes (1953, Ann R Coll Surg 12:88), and eminent medical epidemiologists such as Greenwood and Woods [, J Hyg (Lond) 26:305-326]. This article will hopefully be of interest therefore to both clinician and historian alike. Clin. Anat. 29:679-684, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Updating the Salivary Gland Transcriptome of Phlebotomus papatasi (Tunisian Strain): The Search for Sand Fly-Secreted Immunogenic Proteins for Humans

    PubMed Central

    Ben Ahmed, Melika; Zhioua, Elyes; Chelbi, Ifhem; Cherni, Saifedine; Louzir, Hechmi; Ribeiro, José M. C.; Valenzuela, Jesus G.

    2012-01-01

    Introduction Sand fly saliva plays an important role in both blood feeding and outcome of Leishmania infection. A cellular immune response against a Phlebotomus papatasi salivary protein was shown to protect rodents against Leishmania major infection. In humans, P. papatasi salivary proteins induce a systemic cellular immune response as well as a specific antisaliva humoral immune response, making these salivary proteins attractive targets as markers of exposure for this Leishmania vector. Surprisingly, the repertoire of salivary proteins reported for P. papatasi–a model sand fly for Leishmania-vector-host molecular interactions–is very limited compared with other sand fly species. We hypothesize that a more comprehensive study of the transcripts present in the salivary glands of P. papatasi will provide better knowledge of the repertoire of proteins of this important vector and will aid in selection of potential immunogenic proteins for humans and of those proteins that are highly conserved between different sand fly strains. Methods and Findings A cDNA library from P. papatasi (Tunisian strain) salivary glands was constructed, and randomly selected transcripts were sequenced and analyzed. The most abundant transcripts encoding secreted proteins were identified and compared with previously reported sequences. Importantly, we identified salivary proteins not described before in this sand fly species. Conclusions Comparative analysis between the salivary proteins of P. papatasi from Tunisia and Israel strains shows a high level of identity, suggesting these proteins as potential common targets for markers of vector exposure or inducers of cellular immune responses in humans for different geographic areas. PMID:23139741

  8. Hedgehog signaling: endocrine gland development and function.

    PubMed

    Cohen, M Michael

    2010-01-01

    The role of hedgehog signaling is analyzed in relation to the developing endocrine glands: pituitary, ovary, testis, adrenal cortex, pancreas, prostate, and epiphyseal growth. Experimental and pathological correlates of these organs are also discussed. The second section addresses a number of topics. First, the pituitary gland, no matter how hypoplastic, is present in most cases of human holoprosencephaly, unlike animals in which it is always said to be absent. The difference appears to be that animal mutations and teratogenic models involve both copies of the gene in question, whereas in humans the condition is most commonly heterozygous. Second, tests of endocrine function are not reported with great frequency, and an early demise in severe cases of holoprosencephaly accounts for this trend. Reported tests of endocrine function are reviewed. Third, diabetes insipidus has been recorded in a number of cases of holoprosencephaly. Its frequency is unknown because it could be masked by adrenal insufficiency in some cases and may not be recognized in others. Because of the abnormal hypothalamic-infundibular region in holoprosencephaly, diabetes insipidus could be caused by a defect in the supra-optic or paraventricular hypothalamic nuclei or in release of ADH via the infundibulum and posterior pituitary.

  9. Regulated traffic of anion transporters in mammalian Brunner's glands: a role for water and fluid transport.

    PubMed

    Collaco, Anne M; Jakab, Robert L; Hoekstra, Nadia E; Mitchell, Kisha A; Brooks, Amos; Ameen, Nadia A

    2013-08-01

    The Brunner's glands of the proximal duodenum exert barrier functions through secretion of glycoproteins and antimicrobial peptides. However, ion transporter localization, function, and regulation in the glands are less clear. Mapping the subcellular distribution of transporters is an important step toward elucidating trafficking mechanisms of fluid transport in the gland. The present study examined 1) changes in the distribution of intestinal anion transporters and the aquaporin 5 (AQP5) water channel in rat Brunner's glands following second messenger activation and 2) anion transporter distribution in Brunner's glands from healthy and disease-affected human tissues. Cystic fibrosis transmembrane conductance regulator (CFTR), AQP5, sodium-potassium-coupled chloride cotransporter 1 (NKCC1), sodium-bicarbonate cotransporter (NBCe1), and the proton pump vacuolar ATPase (V-ATPase) were localized to distinct membrane domains and in endosomes at steady state. Carbachol and cAMP redistributed CFTR to the apical membrane. cAMP-dependent recruitment of CFTR to the apical membrane was accompanied by recruitment of AQP5 that was reversed by a PKA inhibitor. cAMP also induced apical trafficking of V-ATPase and redistribution of NKCC1 and NBCe1 to the basolateral membranes. The steady-state distribution of AQP5, CFTR, NBCe1, NKCC1, and V-ATPase in human Brunner's glands from healthy controls, cystic fibrosis, and celiac disease resembled that of rat; however, the distribution profiles were markedly attenuated in the disease-affected duodenum. These data support functional transport of chloride, bicarbonate, water, and protons by second messenger-regulated traffic in mammalian Brunner's glands under physiological and pathophysiological conditions.

  10. Planimetric correlation between the submandibular glands and the pancreas: a postmortem ductographic study.

    PubMed

    Stimec, Bojan V; Rakocevic, Zoran; Ignjatovic, Dejan; Fasel, Jean H D

    2018-01-01

    The salivary glands and pancreas have comparable anatomic and antigenic properties and can share common pathogenetic mechanisms involving toxic or autoimmune processes. The aim of this study is to assess the correlation in size between the normal submandibular glands and the pancreas. The study was based on human autopsy specimens of the pancreas, neck and oral base from 22 adults, both sexes (mean age, 57.9 years). The pancreatic and submandibular ducts were injected with a contrast medium, and the area of the salivary and pancreatic glandular ductograms was measured with the aid of software for quantification of visual information. Samples of tissue from the salivary glands and the pancreas were studied by means of light microscopy. A high correlation was found between the planimetric size of the pancreas and the submandibular glands (correlation coefficient 0.497 and 0.699 for the right and the left gland, respectively). This ratio was close to 5:1. There were no significant differences in size for the left vs. right submandibular gland (p = 0.39). The ductograms were significantly larger in size in males than in females (p < 0.001). This study has proven a positive correlation in planimetric size between the normal submandibular glands and pancreas, a result that is expected to have possible clinical implications in the long-term follow-up of patients with chronic pancreatitis.

  11. MO-F-CAMPUS-I-01: EIT Imaging to Monitor Human Salivary Gland Functionality: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohli, K; Karvat, A; Liu, J

    Purpose: Clinically, there exists a need to develop a non-invasive technique for monitoring salivary activity. In this study, we investigate the feasibility of a using the electrical conductivity information from Electrical Impedance Tomography (EIT) to monitor salivary flow activity. Methods: To acquire EIT data, eight Ag/AgCl ECG electrodes were placed around the mandible of the subject. An EIT scan was obtained by injecting current at 50 KHz, 0.4 mA through each pair of electrodes and recording voltage across other electrode pairs. The functional conductivity image was obtained through reconstruction of the voltage data, using Electrical Impedance Tomography and Diffuse Opticalmore » Tomography Reconstruction Software (EIDORS) in Matlab. In using EIDORS, forward solution was obtained using a user-defined finite element model shape and inverse solution was obtained using one-step Gaussian solver. EIT scans of volunteer research team members were acquired for three different physiological states: pre-stimulation, stimulation and post-stimulation. For pre-stimulation phase, data were collected in intervals of 5 minutes for 15 minutes. The salivary glands were then stimulated in the subject using lemon and the data were collected immediately. Post-stimulation data were collected at 4 different timings after stimulation. Results: Variations were observed in the electrical conductivity patterns near parotid regions between the pre- and post-stimulation stages. The three images acquired during the 15 minute pre-stimulation phase showed no major changes in the conductivity. Immediately after stimulation, electrical conductivity increased near parotid regions and 15 minutes later slowly returned to pre-stimulation level. Conclusion: In the present study involving human subjects, the change in electrical conductivity pattern shown in the EIT images, acquired at different times with and without stimulation of salivary glands, appeared to be consistent with the change in

  12. Validation of a recombinant human bactericidal/permeability-increasing protein (hBPI) expression vector using murine mammary gland tumor cells and the early development of hBPI transgenic goat embryos.

    PubMed

    Gui, Tao; Liu, Xing; Tao, Jia; Chen, Jianwen; Li, Yunsheng; Zhang, Meiling; Wu, Ronghua; Zhang, Yuanliang; Peng, Kaisong; Liu, Ya; Zhang, Xiaorong; Zhang, Yunhai

    2013-12-01

    Human bactericidal/permeability-increasing protein (hBPI) is the only antibacterial peptide which acts against both gram-negative bacteria and neutralizes endotoxins in human polymorphonuclear neutrophils; therefore, hBPI is of great value in clinical applications. In the study, we constructed a hBPI expression vector (pBC1-Loxp-Neo-Loxp-hBPI) containing the full-length hBPI coding sequence which could be specifically expressed in the mammary gland. To validate the function of the vector, in vitro cultured C127 (mouse mammary Carcinoma Cells) were transfected with the vector, and the transgenic cell clones were selected to express hBPI by hormone induction. The mRNA and protein expression of hBPI showed that the constructed vector was effective and suitable for future application in producing mammary gland bioreactor. Then, female and male goat fibroblasts were transfected with the vector, and two male and two female transgenic clonal cell lines were obtained. Using the transgenic cell lines as nuclear donors for somatic cell nuclear transfer, the reconstructed goat embryos produced from all four clones could develop to blastocysts in vitro. In conclusion, we constructed and validated an efficient mammary gland-specific hBPI expression vector, pBC1-Loxp-Neo-Loxp-hBPI, and transgenic hBPI goat embryos were successfully produced, laying foundations for future production of recombinant hBPI in goat mammary gland. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. mRNAs for PRPs, statherin, and histatins in von Ebner's gland tissues.

    PubMed

    Azen, E A; Hellekant, G; Sabatini, L M; Warner, T F

    1990-11-01

    A search was made for expression of genes for proline-rich proteins (PRPs) and other salivary-type proteins, including statherin and histatins, in taste-bud tissues of mice and primates because of previous genetic findings in mice (Azen et al., 1986) that Prp and taste genes for certain bitter substances are either the same or closely linked. Taste-bud tissues and other tissues were tested for specific mRNAs with labeled DNA probes by Northern blotting and in situ hybridization. It was found that PRP mRNAs were present in von Ebner's glands of mice and macaques, and that there was a much greater degree of PRP mRNA induction in mouse parotid (16-fold) than in von Ebner's gland (two-fold) after in vivo isoproterenol stimulation. This difference may be due, in part, to differences in autonomic nerve innervation. Statherin and histatin mRNAs were found in macaque taste-bud tissues containing von Ebner's gland, and statherin protein was found in human von Ebner's gland by immunohistochemistry. The finding of PRP gene expression in von Ebner's gland, whose secretions have been suggested to play a role in taste stimulation, adds further support to a possible function of PRPs in bitter tasting. The possible functions of statherin and histatins in von Ebner's gland secretions may be related to statherin's regulation of salivary calcium and histatins' antibacterial and antifungal properties.

  14. Protease-Activated Receptor-2 Is Associated with Terminal Differentiation of Epidermis and Eccrine Sweat Glands

    PubMed Central

    Shin, Yong-Sup; Kim, Hyung Won; Kim, Chang Deok; Kim, Hyun-Woo; Park, Jin Woon; Jung, Sunggyun; Lee, Jeung-Hoon; Ko, Young-Kwon

    2015-01-01

    Background Protease-activated receptor 2 (PAR-2) participates in various biological activities, including the regulation of epidermal barrier homeostasis, inflammation, pain perception, and melanosome transfer in the skin. Objective To evaluate the basic physiological role of PAR-2 in skin. Methods We investigated PAR-2 expression in human epidermis, skin tumors, and cultured epidermal cells using western blot and immunohistochemical analysis. Additionally, we examined the effect of the PAR-2 agonist, SLIGRL-NH2, on cultured keratinocytes. Results Strong PAR-2 immunoreactivity was observed in the granular layer of normal human skin and the acrosyringium of the eccrine sweat glands. In contrast, weak PAR-2 immunoreactivity was seen in the granular layer of callused skin and in the duct and gland cells of the eccrine sweat glands. Interestingly, PAR-2 immunoreactivity was very weak or absent in the tumor cells of squamous cell carcinoma (SCC) and syringoma. PAR-2 was detected in primary keratinocytes and SV-40T-transformed human epidermal keratinocytes (SV-HEKs), an immortalized keratinocyte cell line, but not in SCC12 cells. SV-HEKs that were fully differentiated following calcium treatment displayed higher PAR-2 expression than undifferentiated SV-HEKs. Treatment of cultured SV-HEKs with PAR-2 agonist increased loricrin and filaggrin expression, a terminal differentiation marker. Conclusion Our data suggest that PAR-2 is associated with terminal differentiation of epidermis and eccrine sweat glands. PMID:26273149

  15. Protease-Activated Receptor-2 Is Associated with Terminal Differentiation of Epidermis and Eccrine Sweat Glands.

    PubMed

    Shin, Yong-Sup; Kim, Hyung Won; Kim, Chang Deok; Kim, Hyun-Woo; Park, Jin Woon; Jung, Sunggyun; Lee, Jeung-Hoon; Ko, Young-Kwon; Lee, Young Ho

    2015-08-01

    Protease-activated receptor 2 (PAR-2) participates in various biological activities, including the regulation of epidermal barrier homeostasis, inflammation, pain perception, and melanosome transfer in the skin. To evaluate the basic physiological role of PAR-2 in skin. We investigated PAR-2 expression in human epidermis, skin tumors, and cultured epidermal cells using western blot and immunohistochemical analysis. Additionally, we examined the effect of the PAR-2 agonist, SLIGRL-NH2, on cultured keratinocytes. Strong PAR-2 immunoreactivity was observed in the granular layer of normal human skin and the acrosyringium of the eccrine sweat glands. In contrast, weak PAR-2 immunoreactivity was seen in the granular layer of callused skin and in the duct and gland cells of the eccrine sweat glands. Interestingly, PAR-2 immunoreactivity was very weak or absent in the tumor cells of squamous cell carcinoma (SCC) and syringoma. PAR-2 was detected in primary keratinocytes and SV-40T-transformed human epidermal keratinocytes (SV-HEKs), an immortalized keratinocyte cell line, but not in SCC12 cells. SV-HEKs that were fully differentiated following calcium treatment displayed higher PAR-2 expression than undifferentiated SV-HEKs. Treatment of cultured SV-HEKs with PAR-2 agonist increased loricrin and filaggrin expression, a terminal differentiation marker. Our data suggest that PAR-2 is associated with terminal differentiation of epidermis and eccrine sweat glands.

  16. Human eccrine sweat gland cells reconstitute polarized spheroids when subcutaneously implanted with Matrigel in nude mice.

    PubMed

    Li, Haihong; Zhang, Mingjun; Chen, Liyun; Li, Xuexue; Zhang, Bingna

    2016-10-01

    Increasing evidence indicates that maintenance of cell polarity plays a pivotal role in the regulation of glandular homeostasis and function. We examine the markers for polarity at different time points to investigate the formation of cell polarity during 3D reconstitution of eccrine sweat glands. Mixtures of eccrine sweat gland cells and Matrigel were injected subcutaneously into the inguinal regions of nude mice. At 2, 3, 4, 5 and 6 weeks post-implantation, Matrigel plugs were removed and immunostained for basal collagen IV, lateral β-catenin, lateroapical ZO-1 and apical F-actin. The results showed that the cell polarity of the spheroids appeared in sequence. Formation of basal polarity was prior to lateral, apical and lateroapical polarity. Collagen IV was detected basally at 2 weeks, β-catenin laterally and ZO-1 lateroapically at 3 weeks, and F-actin apically at 4 weeks post-implantation. At week 5 and week 6, the localization and the positive percentage of collagen IV, β-catenin, ZO-1 or F-actin in spheroids was similar to that in native eccrine sweat glands. We conclude that the reconstituted 3D eccrine sweat glands are functional or potentially functional.

  17. Cytokeratin expression in mouse lacrimal gland germ epithelium.

    PubMed

    Hirayama, Masatoshi; Liu, Ying; Kawakita, Tetsuya; Shimmura, Shigeto; Tsubota, Kazuo

    2016-05-01

    The lacrimal gland secretes tear fluids that protect the ocular surface epithelium, and its dysfunction leads to dry eye disease (DED). The functional restoration of the lacrimal gland by engraftment of a bioengineered lacrimal gland using lacrimal gland germ epithelial cells has been proposed to cure DED in mice. Here, we investigate the expression profile of cytokeratins in the lacrimal gland germ epithelium to clarify their unique characteristics. We performed quantitative polymerase chain reaction (Q-PCR) and immunohistochemistry (IHC) analysis to clarify the expression profile of cytokeratin in the lacrimal gland germ epithelium. The mRNA expression of keratin (KRT) 5, KRT8, KRT14, KRT15, and KRT18 in the lacrimal gland germ epithelium was increased compared with that in mouse embryonic stem cells and the lacrimal gland germ mesenchyme, as analyzed by Q-PCR. The expression level of KRT15 increased in the transition from stem cells to lacrimal gland germ epithelium, then decreased as the lacrimal gland matured. IHC revealed that the expression set of these cytokeratins in the lacrimal gland germ epithelium was different from that in the adult lacrimal gland. The expression of KRT15 was observed in the lacrimal gland germ epithelium, and it segmentalized into some of the basal cells in the intercanulated duct in mature gland. We determined the expression profile of cytokeratins in the lacrimal gland epithelium, and identified KRT15 as a candidate unique cellular marker for the lacrimal gland germ epithelium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Sensitivity of Salivary Glands to Radiation

    PubMed Central

    Grundmann, O.; Mitchell, G.C.; Limesand, K.H.

    2009-01-01

    Radiation therapy for head and neck cancer causes significant secondary side-effects in normal salivary glands, resulting in diminished quality of life for these individuals. Salivary glands are exquisitely sensitive to radiation and display acute and chronic responses to radiotherapy. This review will discuss clinical implications of radiosensitivity in normal salivary glands, compare animal models used to investigate radiation-induced salivary gland damage, address therapeutic advances, and project future directions in the field. PMID:19783796

  19. Profiling of adrenocorticotropic hormone and arginine vasopressin in human pituitary gland and tumor thin tissue sections using droplet-based liquid-microjunction surface-sampling-HPLC–ESI-MS–MS

    DOE PAGES

    Kertesz, Vilmos; Calligaris, David; Feldman, Daniel R.; ...

    2015-06-18

    Described here are the results from the profiling of the proteins arginine vasopressin (AVP) and adrenocorticotropic hormone (ACTH) from normal human pituitary gland and pituitary adenoma tissue sections using a fully automated droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system for spatially resolved sampling, HPLC separation, and mass spectral detection. Excellent correlation was found between the protein distribution data obtained with this droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system and those data obtained with matrix assisted laser desorption ionization (MALDI) chemical imaging analyses of serial sections of the same tissue. The protein distributions correlated with the visible anatomic pattern of the pituitary gland.more » AVP was most abundant in the posterior pituitary gland region (neurohypophysis) and ATCH was dominant in the anterior pituitary gland region (adenohypophysis). The relative amounts of AVP and ACTH sampled from a series of ACTH secreting and non-secreting pituitary adenomas correlated with histopathological evaluation. ACTH was readily detected at significantly higher levels in regions of ACTH secreting adenomas and in normal anterior adenohypophysis compared to non-secreting adenoma and neurohypophysis. AVP was mostly detected in normal neurohypophysis as anticipated. This work demonstrates that a fully automated droplet-based liquid microjunction surface sampling system coupled to HPLC-ESI-MS/MS can be readily used for spatially resolved sampling, separation, detection, and semi-quantitation of physiologically-relevant peptide and protein hormones, such as AVP and ACTH, directly from human tissue. In addition, the relative simplicity, rapidity and specificity of the current methodology support the potential of this basic technology with further advancement for assisting surgical decision-making.« less

  20. Profiling of adrenocorticotropic hormone and arginine vasopressin in human pituitary gland and tumor thin tissue sections using droplet-based liquid-microjunction surface-sampling-HPLC–ESI-MS–MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kertesz, Vilmos; Calligaris, David; Feldman, Daniel R.

    Described here are the results from the profiling of the proteins arginine vasopressin (AVP) and adrenocorticotropic hormone (ACTH) from normal human pituitary gland and pituitary adenoma tissue sections using a fully automated droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system for spatially resolved sampling, HPLC separation, and mass spectral detection. Excellent correlation was found between the protein distribution data obtained with this droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system and those data obtained with matrix assisted laser desorption ionization (MALDI) chemical imaging analyses of serial sections of the same tissue. The protein distributions correlated with the visible anatomic pattern of the pituitary gland.more » AVP was most abundant in the posterior pituitary gland region (neurohypophysis) and ATCH was dominant in the anterior pituitary gland region (adenohypophysis). The relative amounts of AVP and ACTH sampled from a series of ACTH secreting and non-secreting pituitary adenomas correlated with histopathological evaluation. ACTH was readily detected at significantly higher levels in regions of ACTH secreting adenomas and in normal anterior adenohypophysis compared to non-secreting adenoma and neurohypophysis. AVP was mostly detected in normal neurohypophysis as anticipated. This work demonstrates that a fully automated droplet-based liquid microjunction surface sampling system coupled to HPLC-ESI-MS/MS can be readily used for spatially resolved sampling, separation, detection, and semi-quantitation of physiologically-relevant peptide and protein hormones, such as AVP and ACTH, directly from human tissue. In addition, the relative simplicity, rapidity and specificity of the current methodology support the potential of this basic technology with further advancement for assisting surgical decision-making.« less