Science.gov

Sample records for human pineal gland

  1. Characterization of human pineal gland proteome.

    PubMed

    Yelamanchi, Soujanya D; Kumar, Manish; Madugundu, Anil K; Gopalakrishnan, Lathika; Dey, Gourav; Chavan, Sandip; Sathe, Gajanan; Mathur, Premendu P; Gowda, Harsha; Mahadevan, Anita; Shankar, Susarla K; Prasad, T S Keshava

    2016-11-15

    The pineal gland is a neuroendocrine gland located at the center of the brain. It is known to regulate various physiological functions in the body through secretion of the neurohormone melatonin. Comprehensive characterization of the human pineal gland proteome has not been undertaken to date. We employed a high-resolution mass spectrometry-based approach to characterize the proteome of the human pineal gland. A total of 5874 proteins were identified from the human pineal gland in this study. Of these, 5820 proteins were identified from the human pineal gland for the first time. Interestingly, 1136 proteins from the human pineal gland were found to contain a signal peptide domain, which indicates the secretory nature of these proteins. An unbiased global proteomic profile of this biomedically important organ should benefit molecular research to unravel the role of the pineal gland in neuropsychiatric and neurodegenerative diseases.

  2. Neuropeptide Y in the adult and fetal human pineal gland.

    PubMed

    Møller, Morten; Phansuwan-Pujito, Pansiri; Badiu, Corin

    2014-01-01

    Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we show by use of immunohistochemistry that neuropeptide Y is present in nerve fibers of the adult human pineal gland. The fibers are classical neuropeptidergic fibers endowed with large boutons en passage and primarily located in a perifollicular position with some fibers entering the pineal parenchyma inside the follicle. The distance from the immunoreactive terminals to the pinealocytes indicates a modulatory function of neuropeptide Y for pineal physiology. Some of the immunoreactive fibers might originate from neurons located in the brain and be a part of the central innervation of the pineal gland. In a series of human fetuses, neuropeptide Y-containing nerve fibers was present and could be detected as early as in the pineal of four- to five-month-old fetuses. This early innervation of the human pineal is different from most rodents, where the innervation starts postnatally.

  3. The pineal gland - Its possible roles in human reproduction

    NASA Technical Reports Server (NTRS)

    Brzezinski, Amnon; Wurtman, Richard J.

    1988-01-01

    The paper discusses the role of the pineal gland in controlling mammalian reproduction, with particular attention given to the role of melatonin in polyestrus mammals, like humans and laboratory rodents. Evidence is cited indicating the influence of melatonin production and blood content on the age of puberty, the timing of the ovulatory cycle, gonadal steriodogenesis, and patterns of reproductive behavior. It is suggested that abnormal patterns of melatonin might be associated with amenorrhea, anovulation, unexplained infertility, premature menopause, and habitual abortions.

  4. [Age-dependent morphology of human pineal gland: supravital study].

    PubMed

    Ivanov, S V

    2007-01-01

    On the base of analysis of 5784 events of diagnostic magnetic-resonance tomography studies of the head of patients in radio diagnosis departments the database is formed. Only events (n=411) without cerebral, oncology, endocrine and other pathology are taken in database. The material was grouped to time and date of the study, sex and age in accordance with generally accepted categorization. Maximum linear sizes of pineal gland and hypophysis cerebri in sagittal, axial and coronar projection were measured in all events; volumes of the organs were calculated on the formula of a ball. It is defined that the volume of pineal gland increases from birth till 17-21 year age, gradually falls till the second mature age and is getting stable in old age. The normative factors of the volume of pineal gland and hypophysis cerebri for 8 age groups are determined. "Brain sand" and false cysts in pineal gland can be observed in all age groups. The petrification degree of pineal gland, as of computer tomography, varies from 30 to 277 ed. HV. For the factor of pineal gland volume and factor of cysts frequency in pineal gland a puberty "collapse" is typical, mainly in men.

  5. Association of mast cells with calcification in the human pineal gland.

    PubMed

    Maślińska, Danuta; Laure-Kamionowska, Milena; Deręgowski, Krzysztof; Maśliński, Sławomir

    2010-01-01

    Increased pineal calcifications and decreased pineal melatonin biosynthesis, both age related, support the notion of a pineal bio-organic timing mechanism. The role of calcification in the pathogenesis of pineal gland dysfunction remains unknown but the available data document that calcification is an organized, regulated process, rather than a passive aging phenomenon. The cellular biology and micro-environmental conditions required for calcification remain poorly understood but most studies have demonstrated evidence that mast cells are strongly implicated in this process. The aim of the present study was to examine the phenotype of mast cells associated with early stages and with the progressive development of calcification in the human pineal gland. The study was performed on pineal samples of 170 fetuses and children whose brains were autopsied and diagnosed during 1998-2002. The representative cerebral and pineal specimens were stained with haematoxylin and eosin or the von Kossa staining technique and for the distribution of mast cell tryptase, mast cell chymase, histamine H4 receptor and vascular network using biotinylated Ulex europaeus agglutinin. Tryptase mast cells were found in all stages of pineal gland development independently of the presence of local tissue lesions. All of them were always localized in the close vicinity of the blood vessels and expressed immunoreactivity to histamine H4 receptor antibody. Immunolocalization of mast cells by chymase antibody (and following dual immunostaining with both chymase and tryptase antibodies) demonstrated that these cells were few in number and were located in the subcapsular region of the gland. In our study, all functional mast cells that underwent activation and were co-localized with deposits of calcium did not contain chymase. All of them were stained with tryptase and represent the MC-T phenotype. Tryptase mast cells and extracellular tryptase were often associated with areas of early and more

  6. Morphology of pineal glands in human foetuses and infants with brain lesions.

    PubMed

    Laure-Kamionowska, Milena; Maślińska, Danuta; Deregowski, Krzysztof; Czichos, Elzbieta; Raczkowska, Barbara

    2003-01-01

    The pineal gland is an organ involved in regulation of homeostasis and body rhythms. It plays an important role in the growth foetuses and adaptation of newborns to new environmental conditions. The requirements of foetuses and newborns progressively change during development. The purpose of the study was to evaluate morphological changes of pineal glands in foetuses and infants with brain lesions. The results of our study showed that parenchyma of developing pineal glands was susceptible to injury in most autopsied foetal and infantile cases. Morphological changes in pineal glands were found in 90% of autopsied brains but 100% of the cases had infections. The lesions in the pineal included mainly haemorrhagic, necrotic and cystic changes. In our autopsied foetuses and children, morphological changes in pineal glands were concomitant with various lesions of brain parenchyma. All results of our study lead to the conclusion that the pineal gland during its development is very susceptible to injury. The failure of normal pineal gland development and subsequent impaired production of melatonin decrease resistance of newborns and children to various environmental harmful agents.

  7. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases.

    PubMed

    Stehle, Jörg H; Saade, Anastasia; Rawashdeh, Oliver; Ackermann, Katrin; Jilg, Antje; Sebestény, Tamás; Maronde, Erik

    2011-08-01

    The human pineal gland is a neuroendocrine transducer that forms an integral part of the brain. Through the nocturnally elevated synthesis and release of the neurohormone melatonin, the pineal gland encodes and disseminates information on circadian time, thus coupling the outside world to the biochemical and physiological internal demands of the body. Approaches to better understand molecular details behind the rhythmic signalling in the human pineal gland are limited but implicitly warranted, as human chronobiological dysfunctions are often associated with alterations in melatonin synthesis. Current knowledge on melatonin synthesis in the human pineal gland is based on minimally invasive analyses, and by the comparison of signalling events between different vertebrate species, with emphasis put on data acquired in sheep and other primates. Together with investigations using autoptic pineal tissue, a remnant silhouette of premortem dynamics within the hormone's biosynthesis pathway can be constructed. The detected biochemical scenario behind the generation of dynamics in melatonin synthesis positions the human pineal gland surprisingly isolated. In this neuroendocrine brain structure, protein-protein interactions and nucleo-cytoplasmic protein shuttling indicate furthermore a novel twist in the molecular dynamics in the cells of this neuroendocrine brain structure. These findings have to be seen in the light that an impaired melatonin synthesis is observed in elderly and/or demented patients, in individuals affected by Alzheimer's disease, Smith-Magenis syndrome, autism spectrum disorder and sleep phase disorders. Already, recent advances in understanding signalling dynamics in the human pineal gland have significantly helped to counteract chronobiological dysfunctions through a proper restoration of the nocturnal melatonin surge.

  8. The pineal gland from development to function.

    PubMed

    Sapède, Dora; Cau, Elise

    2013-01-01

    The pineal gland is a small neuroendocrine organ whose main and most conserved function is the nighttime secretion of melatonin. In lower vertebrates, the pineal gland is directly photosensitive. In contrast, in higher vertebrates, the direct photosensitivity of the pineal gland had been lost. Rather, the action of this gland as a relay between environmental light conditions and body functions involves reception of light information by the retina. In parallel to this sensory regression, the pineal gland (and its accessory organs) appears to have lost several functions in relation to light and temperature, which are important in lower vertebrate species. In humans, the functions of the pineal gland overlap with the functions of melatonin. They are extremely widespread and include general effects both on cell protection and on more precise functions, such as sleep and immunity. Recently, the role of melatonin has received a considerable amount of attention due to increased cancer risk in shift workers and the discovery that patients suffering from neurodegenerative diseases, autism, or depression exhibit abnormal melatonin rhythms.

  9. Dynamics in enzymatic protein complexes offer a novel principle for the regulation of melatonin synthesis in the human pineal gland.

    PubMed

    Maronde, Erik; Saade, Anastasia; Ackermann, Katrin; Goubran-Botros, Hany; Pagan, Cecile; Bux, Roman; Bourgeron, Thomas; Dehghani, Faramarz; Stehle, Jörg H

    2011-08-01

    Time of day is communicated to the body through rhythmic cues, including pineal gland melatonin synthesis, which is restricted to nighttime. Whereas in most rodents transcriptional regulation of the arylalkylamine N-acetyltransferase (Aanat) gene is essential for rhythmic melatonin synthesis, investigations into nonrodent mammalian species have shown post-transcriptional regulation to be of central importance, with molecular mechanisms still elusive. Therefore, human pineal tissues, taken from routine autopsies were allocated to four time-of-death groups (night/dawn/day/dusk) and analyzed for daytime-dependent changes in phosphorylated AANAT (p31T-AANAT) and in acetyl-serotonin-methyltransferase (ASMT) expression and activity. Protein content, intracellular localization, and colocalization of p31T-AANAT and ASMT were assessed, using immunoblotting, immunofluorescence, and immunoprecipitation techniques. Fresh sheep pineal gland preparations were used for comparative purposes. The amount of p31T-AANAT and ASMT proteins as well as their intracellular localization showed no diurnal variation in autoptic human and fresh sheep pineal glands. Moreover, in human and sheep pineal extracts, AANAT could not be dephosphorylated, which was at variance to data derived from rat pineal extracts. P31T-AANAT and ASMT were often found to colocalize in cellular rod-like structures that were also partly immunoreactive for the pinealocyte process-specific marker S-antigen (arrestin) in both, human and sheep pinealocytes. Protein-protein interaction studies with p31T-AANAT, ASMT, and S-antigen demonstrated a direct association and formation of robust complexes, involving also 14-3-3. This work provides evidence for a regulation principle for AANAT activity in the human pineal gland, which may not be based on a p31T-AANAT phosphorylation/dephosphorylation switch, as described for other mammalian species.

  10. Descartes and the pineal gland in animals: a frequent misinterpretation.

    PubMed

    Finger, S

    1995-01-01

    René Descartes presented a number of reasons for his choice of the pineal gland as a logical place for the soul to interact with the physical machinery of the body. It is often stated that one of his reasons was that he believed animals do not have pineal glands, whereas humans alone possess a soul and this small structure. This is a misinterpretation of Descartes. The philosopher knew that barnyard and other animals possess pineal glands, having seen this with his own eyes. His point was that the pineal is unique in humans only because of a special function - acting as the seat for the rational soul.

  11. Lymphopoiesis in the chicken pineal gland

    SciTech Connect

    Cogburn, L.A.; Glick, B.

    1981-10-01

    Pineal lymphoid development was studied in two breeds of chickens from hatching until sexual maturity. No lymphocytes were found in the pineal prior to 9 days of age (da). Lymphocytes migrate through the endothelium of venules into the pineal stroma. Lymphoid tissue reached its maximal accumulation in 32-da pineal glands of both breeds. At this age, the New Hampshire (NH) breed had a larger proportion of lymphoid volume to total pineal volume (32%) than did pineal glands from White Leghorn (WL) chickens (18%).

  12. Circadian regulation of pineal gland rhythmicity.

    PubMed

    Borjigin, Jimo; Zhang, L Samantha; Calinescu, Anda-Alexandra

    2012-02-05

    The pineal gland is a neuroendocrine organ of the brain. Its main task is to synthesize and secrete melatonin, a nocturnal hormone with diverse physiological functions. This review will focus on the central and pineal mechanisms in generation of mammalian pineal rhythmicity including melatonin production. In particular, this review covers the following topics: (1) local control of serotonin and melatonin rhythms; (2) neurotransmitters involved in central control of melatonin; (3) plasticity of the neural circuit controlling melatonin production; (4) role of clock genes in melatonin formation; (5) phase control of pineal rhythmicity; (6) impact of light at night on pineal rhythms; and (7) physiological function of the pineal rhythmicity.

  13. [MRI of the pineal gland].

    PubMed

    Langevad, Line; Madsen, Camilla Gøbel; Siebner, Hartwig; Garde, Ellen

    2014-11-10

    The pineal gland (CP) is located centrally in the brain and produces melatonin. Cysts and concrements are frequent findings on MRI but their significance is still unclear. The visualization of CP is difficult due to its location and surrounding structures and so far, no standardized method exists. New studies suggest a correlation between CP-morphology and melatonin secretion as well as a connection between melatonin, disturbed circadian rhythm, and the development of cancer and cardiovascular diseases, underlining the need for a standardized approach to CP on MRI.

  14. Nitric oxide synthase in the pineal gland.

    PubMed

    López-Figueroa, M O; Møller, M

    1996-10-01

    The recent discovery of nitric oxide (NO) as a biological messenger molecule with unique characteristics has opened a new field in pineal research. This free radical gas is synthesized by the enzyme nitric oxide synthase (NOS) from L-arginine. The activation of adrenoreceptors in the membrane of the pinealocytes mediates the increase in NO through a mechanism that involves G proteins. In the pinealocyte, NO stimulates guanylyl cyclase resulting in an increased intracellular content of cGMP. The role of cGMP in pineal metabolism, however, is still enigmatic. Using enzyme histochemistry and immunohistochemistry, the presence of NOS has been confirmed in the pineal gland of some species. In the rat and especially in the sheep, NOS is located in nerve fibres innervating the gland. These nerve fibres also contain the neuropeptides vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI), and are probably of parasympathetic origin. In cell cultures and tissue sections NOS immunoreactivity has been shown to be present in pinealocytes of the rat and bovine but not in the sheep. Finally, NOS is also present in the endothelial cells of the blood vessels of the pineal gland. Accordingly, in the mammalian pineal gland, NO is synthesized in both presynaptic nerve fibers and pinealocytes, as well as in blood vessels. However, the anatomical location of NO synthesis varies considerably among species. NO released in the pineal gland, might influence both the pineal metabolism and the blood flow of the gland.

  15. An historical view of the pineal gland and mental disorders.

    PubMed

    López-Muñoz, F; Molina, J D; Rubio, G; Alamo, C

    2011-08-01

    Since Classical Antiquity numerous authors have linked the origin of some mental disorders to physical and functional changes in the pineal gland because of its attributed role in humans as the connection between the material and the spiritual world. The pineal organ was seen as a valve-like structure that regulated the flow of animal spirits through the ventricular system, a hypothesis that took on more vigour during the Middle Ages and the Renaissance. The framework for this theory was "the three cells of the brain", in which the pineal gland was even called the "appendix of thought". The pineal gland could also be associated with the boom, during this period, of certain legends about the "stone of folly". But the most relevant psychopathological role of this organ arrived with Descartes, who proposed that it was the seat of the human soul and controlled communications between the physical body and its surroundings, including emotions. After a period of decline during which it was considered as a mere vestigial remnant of evolution, the link between the pineal gland and psychiatric disorders was definitively highlighted in the 20th century, first with the use of glandular extracts in patients with mental deficiency, and finally with the discovery of melatonin in 1958. The physiological properties of melatonin reawakened interest in the relationship between the pineal gland and mental disorders, fundamentally the affective and sleep disorders, which culminated in the development of new pharmacological agents acting through melatonergic receptors (ramelteon and agomelatine).

  16. [Morphofunctional and molecular bases of pineal gland aging].

    PubMed

    Khavinson, V Kh; Lin'kova, N S

    2012-01-01

    The review analyzed morphology, molecular and functional aspects of pineal gland aging and methods of it correction. The pineal gland is central organ, which regulates activity of neuroimmunoendocrine, antioxidant and other organisms systems. Functional activity of pineal gland is discreased at aging, which is the reason of melatonin level changing. The molecular and morphology research demonstrated, that pineal gland hadn't strongly pronounced atrophy at aging. Long-term experience showed, that peptides extract of pineal gland epithalamin and synthetic tetrapeptide on it base epithalon restored melatonin secretion in pineal gland and had strong regulatory activity at neuroimmunoendocrine and antioxidant organism systems.

  17. Pineal gland cysts--an overview.

    PubMed

    Bosnjak, Jelena; Budisić, Mislav; Azman, Drazen; Strineka, Maja; Crnjaković, Miljenko; Demarin, Vida

    2009-09-01

    Pineal cysts occur in all ages, predominantly in adults in the fourth decade of life. In series of magnetic resonance imaging (MRI) studies, the prevalence of pineal cysts ranged between 1.3% and 4.3% of patients examined for various neurologic reasons and up to 10.8% of asymptomatic healthy volunteers. The diagnosis of pineal cyst is usually established by MRI with defined radiological criteria to distinguish benign pineal cyst from tumors of this area. A recent study demonstrated the findings obtained by transcranial sonography to correspond to those obtained by MRI in the detection of both pineal gland cyst and pineal gland itself, and could be used in the future mainly as follow up examination. Pineal cysts usually have no clinical implications and remain asymptomatic for years. The most common symptoms include headache, vertigo, visual and oculomotor disturbances, and obstructive hydrocephalus. Less frequently, patients present with ataxia, motor and sensory impairment, mental and emotional disturbances, epilepsy, circadian rhythm disturbances, hypothalamic dysfunction of precocious puberty, and recently described occurrence of secondary parkinsonism. Symptomatic cysts vary in size from 7 mm to 45 mm, whereas asymptomatic cysts are usually less than 10 mm in diameter, although a relationship between the cyst size and the onset of symptoms has been proved to be irrelevant in many cases. There is agreement that surgical intervention should be undertaken in patients presenting with hydrocephalus, progression of neurologic symptoms, or cyst enlargement. Tissue sample of the pineal lesion can be obtained by open surgery, stereotaxy and neuroendoscopy.

  18. Classification of the venous architecture of the pineal gland by 7T MRI.

    PubMed

    Cho, Zang-Hee; Choi, Sang-Han; Chi, Je-Gun; Kim, Young-Bo

    2011-10-01

    Magnetic resonance imaging (MRI) at 7.0 Tesla (7T) can show many details of anatomical structures with unprecedented resolution and contrast. In this report, we describe for the first time the unexpected wide variation in pineal gland structure, as visualized by MR images obtained with 7T in a group of healthy young volunteers. A total of 34 volunteers (22 men and 12 women) were enrolled in the study. Their 7T MR images revealed such wide variations in pineal gland shape that it led us to attempt to classify the patterns seen in these pineal glands. Indeed, they were successfully correlated with a previous human cadaver study of venous structures by Tamaki et al., who classified the venous structures of the pineal gland into three categories. This is the first human in vivo pineal vein imaging study using 7T MRI. Pineal venous imaging may permit the early diagnosis of a pineal tumor.

  19. [Characteristics of the pineal gland and thymus relationship in aging].

    PubMed

    Lin'kova, N S; Poliakova, V O; Kvetnoĭ, I M; Trofimov, A V; Sevost'ianova, N N

    2011-01-01

    The review presents the interference between thymus and pineal gland during their involution. The research data of thymus peptides influence on pineal gland and pineal peptides on thymus are summarized. Analysis of these data showed that pineal peptides (Epithalamin, Epitalon) had more effective geroprotective effect on thymus involution in comparison with geroprotective effect of thymic peptides (Thymalin, Thymogen) on involution of pineal gland. The key mechanisms of pineal peptides effect on thymus dystrophy is immunoendocrine cooperation, which is realized as transcription's activation of various proteins.

  20. Pineal gland cyst evaluated by transcranial sonography.

    PubMed

    Budisic, M; Bosnjak, J; Lovrencic-Huzjan, A; Mikula, I; Bedek, D; Demarin, V

    2008-03-01

    Transcranial sonography (TCS) has never been used in the evaluation of morphology of pineal gland. The aim of the study was to assess the possibility of TCS to distinguish normal from cystic pineal gland and to correlate its size with magnetic resonance imaging (MRI) at the first examination and during follow-up. Sixty patients with previously made MRI of the brain were evaluated by two independent observers using TCS, blinded to the results of the MRI. Inappropriate bone window limited TCS examination in seven patients. All 14 pineal gland cysts (PGC) seen on MRI were detected by both observers using TCS. Control group consisted of 39 healthy examinees. No statistically significant difference has been found between: PGC size measured by first and second observer by TCS (P = 0.425), PGC size measured by TCS and MRI (first observer, P = 0.353; second observer, P = 0.425), size of the pineal gland measured by TCS and MRI in control group (first observer, P = 0.497; second observer, P = 0.370) or interobserver variability in control group (P = 0.373). The MRI and TCS follow-up of ten patients after six months did not show any difference in size of PGC. TCS can be used as a method in detection, measurement and follow-up of PGC.

  1. Unique Case Report of Pineal Gland Metastasis From Bladder Carcinoma.

    PubMed

    Li, Jun; Wang, Ping; Wang, Bin

    2016-05-01

    Pineal metastasis is uncommon and most metastatic pineal lesions are asymptomatic. To our knowledge the herein reported case is the first in which the pineal gland was confirmed as the metastatic site of a bladder carcinoma.The patient reported in this case is a 59-year-old man who suffered from headache and delirium for 4 days after surgical treatment for removal of a bladder carcinoma 1 year ago. Magnetic resonance imaging (MRI) revealed a solid tumor involving the pineal gland with significant enhancement.The patient underwent surgical treatment for removal of the neoplastic lesion in the pineal gland. Histopathological examination confirmed invasion of the pineal gland by metastatic urothelial carcinoma.This case highlighted that the presence of pineal lesions in patient with known malignancy should raise suspicion of metastatic involvement.

  2. Pineal Gland Lymphoma: Case Report and Literature Review.

    PubMed

    Gupta, Akshya; Johnson, Mahlon; Hussain, Ali

    2015-01-01

    A 65-year-old male presented to our institution with acute-onset headache. Imaging studies demonstrated a mass in the region of the pineal gland, with subsequent histopathology findings being consistent with large B cell lymphoma. The patient was treated with methotrexate, but ultimately did not survive. Primary central nervous system (CNS) lymphoma rarely involves the pineal gland, but should be considered in the differential diagnosis of pineal gland tumors in the appropriate clinical setting.

  3. GABAergic signaling in the rat pineal gland.

    PubMed

    Yu, Haijie; Benitez, Sergio G; Jung, Seung-Ryoung; Farias Altamirano, Luz E; Kruse, Martin; Seo, Jong Bae; Koh, Duk-Su; Muñoz, Estela M; Hille, Bertil

    2016-08-01

    Pinealocytes secrete melatonin at night in response to norepinephrine released from sympathetic nerve terminals in the pineal gland. The gland also contains many other neurotransmitters whose cellular disposition, activity, and relevance to pineal function are not understood. Here, we clarify sources and demonstrate cellular actions of the neurotransmitter γ-aminobutyric acid (GABA) using Western blotting and immunohistochemistry of the gland and electrical recording from pinealocytes. GABAergic cells and nerve fibers, defined as containing GABA and the synthetic GAD67, were identified. The cells represent a subset of interstitial cells while the nerve fibers were distinct from the sympathetic innervation. The GABAA receptor subunit α1 was visualized in close proximity of both GABAergic and sympathetic nerve fibers as well as fine extensions among pinealocytes and blood vessels. The GABAB 1 receptor subunit was localized in the interstitial compartment but not in pinealocytes. Electrophysiology of isolated pinealocytes revealed that GABA and muscimol elicit strong inward chloride currents sensitive to bicuculline and picrotoxin, clear evidence for functional GABAA receptors on the surface membrane. Applications of elevated potassium solution or the neurotransmitter acetylcholine depolarized the pinealocyte membrane potential enough to open voltage-gated Ca(2+) channels leading to intracellular calcium elevations. GABA repolarized the membrane and shut off such calcium rises. In 48-72-h cultured intact glands, GABA application neither triggered melatonin secretion by itself nor affected norepinephrine-induced secretion. Thus, strong elements of GABA signaling are present in pineal glands that make large electrical responses in pinealocytes, but physiological roles need to be found.

  4. Cytologic features of the normal pineal gland on squash preparations.

    PubMed

    Murro, Diana; Alsadi, Alaa; Nag, Sukriti; Arvanitis, Leonidas; Gattuso, Paolo

    2014-11-01

    As primary pineal lesions are extremely rare, many surgical pathologists are unfamiliar with normal pineal cytologic features. We describe cytologic features of the normal pineal gland in patients of varying ages and identify common diagnostic pitfalls. We performed a retrospective review of pineal gland biopsies performed at our institution, where approximately 30,000 surgical specimens are accessioned yearly, for the last 23 years. Only two pineal gland biopsies were found. Although both cases were initially diagnosed as low-grade gliomas on frozen section, the final diagnosis was benign pineal tissue based on light microscopy and immunohistochemistry results. Additionally, we performed squash preparations of five normal pineal gland autopsy specimens with Papanicolaou and Diff-Quik® (Dade Behring, Newark, DE) stains. Infant preparations were highly cellular smears composed of numerous, uniform, single cells with indistinct cytoplasm, small round-to-oval nuclei, fine chromatin, and absent nucleoli and calcifications. The vague microfollicular pattern mimicked a pineocytoma and the fine fibrillary background mimicked a glial neoplasm. Young adult smears were similar; however, microcalcifications were present with fewer background single cells. Older patients had much less cellular smears composed of small clusters of cells with fusiform-to-spindle nuclei, a fine chromatin pattern, and indistinct cytoplasmic borders. There were fewer background single cells and more microcalcifications. The cytologic features of the native pineal gland vary with age. Normal pineal tissue can be confused with a pineocytoma or low-grade glioma. Familiarity with normal pineal gland cytological features will help to avoid a potential misdiagnosis.

  5. The effect of the transplanted pineal gland on the sympathetic innervation of the rat sublingual gland.

    PubMed

    Chanthaphavong, R S; Murphy, S M; Anderson, C R

    2004-08-01

    We investigated the effect of the pineal on sympathetic neurons that normally innervate the sublingual gland of the rat. When the pineal gland was transplanted into the sublingual gland, it remained as a distinct mass that was innervated by sympathetic axons. Injection of the retrograde tracer, Fast Blue, into the sublingual gland labelled sympathetic neurons in the ipsilateral superior cervical ganglion (SCG). Thirty per cent of all neurons labelled retrogradely by Fast Blue injection into transplanted pineal glands were immunoreactive for both neuropeptide Y (NPY) and calbindin. This combination is characteristic of sympathetic neurons innervating the pineal gland in its normal location, but not the sympathetic vasoconstrictor neurons normally innervating the sublingual gland. This, and our previous study in which the pineal gland was shown to similarly influence the phenotype of salivary secretomotor neurons, suggests that a range of different functional classes of sympathetic neuron are able to change their phenotype in response to signals released by the pineal gland.

  6. Sympathetic neuroaxonal dystrophy in the aged rat pineal gland.

    PubMed

    Schmidt, Robert E; Dorsey, Denise A; Parvin, Curtis A; Beaudet, Lucie N

    2006-10-01

    Dysfunction of circadian melatonin production by the pineal gland in aged humans and rats is thought to reflect the functional loss of its sympathetic innervation. Our ultrastructural neuropathologic studies of the sympathetic innervation of the pineal gland of aged (24 months old) Fischer-344 and Sprague-Dawley rats showed loss of nerve terminals as well as the development of neuroaxonal dystrophy (NAD), an ultrastructurally distinctive distal axonopathy, far in excess of that in young control rats. Immunolocalization of tyrosine hydroxylase confirmed the age-related loss of normal noradrenergic innervation and development of NAD. NAD was more frequent in aged female rats compared to males and was particularly severe in aged female Sprague-Dawley rats compared to Fischer-344 rats. Pineal NGF content was significantly increased or unchanged in female and male aged Fischer-344 rats, respectively, compared to young controls. The rat pineal is a sensitive experimental model for the quantitative ultrastructural examination of age-related neuropathological changes in nerve terminals of postganglionic noradrenergic sympathetic axons, changes which may reflect similar changes in the diffusely distributed sympathetic innervation of other targeted endorgans.

  7. [Participation of pineal gland in antistressor activity of adaptogenic drugs].

    PubMed

    Arushanian, É B; Beĭer, É V

    2015-01-01

    Chronic stress produces some morphological changes in rats, including thymus weight reduction, adrenal hypertrophy, and peptic ulcers in stomach. Repeated administration of phytoadaptogenic drugs (ginseng and bilobil) decreased these stress-induced disorders. The antistressor activity of drugs was attenuated upon by removal of the pineal gland. Histochemical and morphometric investigation of pineal tissues in stressed animals showed that that the pharmacological effect was accompanied by increasing functional activity of the pineal gland. It is suggested that pineal mobilization may participate in antistressor activity of phytoadaptogenic drugs.

  8. Asymptomatic and symptomatic glial cysts of the pineal gland.

    PubMed

    Taraszewska, Anna; Matyja, Ewa; Koszewski, Waldemar; Zaczyński, Artur; Bardadin, Krzysztof; Czernicki, Zbigniew

    2008-01-01

    Glial cysts of the pineal gland are benign and mostly asymptomatic incidental lesions found in the brain MRI or at autopsy examinations. In rare cases pineal cysts become symptomatic and require surgical intervention. Symptomatic glial cysts may be clinically and radiologically indistinguishable from cystic neoplasms of the pineal region; therefore, histopathological diagnosis is critical for further prognosis and therapy in operated patients. In this paper we present detailed histopathological characteristics of symptomatic glial cysts in 2 surgical cases and of asymptomatic cysts of the pineal gland found at random in 3 autopsy cases. Both surgical patients, a 19-year-old girl and a 17-year-old boy, presented with severe headaches, associated with syncope in one case and insomnia in the second one. Preoperative MR imaging suggested tumour of the pineal gland in case no. 2. Histopathological and immunohistochemical examination of the specimens from both surgical and all autopsy cases revealed a characteristic pattern of cystic structures within the pineal gland, surrounded by layers of a dense fibrillar glial tissue and pineal parenchyma, consistent with non-neoplastic glial cysts. Although histopathological findings in asymptomatic and symptomatic cysts are essentially the same, the cyst in surgical case 1 was unilocular and partly lined with ependymal cells, whereas the cysts in other cases were multilocular, comprising cavities of various size, formed in the central part of gliotic tissue or directly within the pineal parenchyma, and lacked ependymal lining. Possible pathophysiological and clinicopathological significance of some morphological variants of pineal glial cysts is discussed.

  9. Morphofunctional and signaling molecules overlap of the pineal gland and thymus: role and significance in aging.

    PubMed

    Paltsev, Michael A; Polyakova, Victoria O; Kvetnoy, Igor M; Anderson, George; Kvetnaia, Tatiana V; Linkova, Natalia S; Paltseva, Ekaterina M; Rubino, Rosa; De Cosmo, Salvatore; De Cata, Angelo; Mazzoccoli, Gianluigi

    2016-03-15

    Deficits in neuroendocrine-immune system functioning, including alterations in pineal and thymic glands, contribute to aging-associated diseases. This study looks at ageing-associated alterations in pineal and thymic gland functioning evaluating common signaling molecules present in both human and animal pinealocytes and thymocytes: endocrine cell markers (melatonin, serotonin, pCREB, AANAT, CGRP, VIP, chromogranin А); cell renovation markers (p53, AIF, Ki67), matrix metalloproteinases (MMP2, MMP9) and lymphocytes markers (CD4, CD5, CD8, CD20). Pineal melatonin is decreased, as is one of the melatonin pathway synthesis enzymes in the thymic gland. A further similarity is the increased MMPs levels evident over age in both glands. Significant differences are evident in cell renovation processes, which deteriorate more quickly in the aged thymus versus the pineal gland. Decreases in the number of pineal B-cells and thymic T-cells were also observed over aging. Collected data indicate that cellular involution of the pineal gland and thymus show many commonalities, but also significant changes in aging-associated proteins. It is proposed that such ageing-associated alterations in these two glands provide novel pharmaceutical targets for the wide array of medical conditions that are more likely to emerge over the course of ageing.

  10. Morphofunctional and signaling molecules overlap of the pineal gland and thymus: role and significance in aging

    PubMed Central

    Paltsev, Michael A.; Polyakova, Victoria O.; Kvetnoy, Igor M.; Anderson, George; Kvetnaia, Tatiana V.; Linkova, Natalia S.; Paltseva, Ekaterina M.; Rubino, Rosa; De Cosmo, Salvatore; De Cata, Angelo; Mazzoccoli, Gianluigi

    2016-01-01

    Deficits in neuroendocrine-immune system functioning, including alterations in pineal and thymic glands, contribute to aging-associated diseases. This study looks at ageing-associated alterations in pineal and thymic gland functioning evaluating common signaling molecules present in both human and animal pinealocytes and thymocytes: endocrine cell markers (melatonin, serotonin, pCREB, AANAT, CGRP, VIP, chromogranin A); cell renovation markers (p53, AIF, Ki67), matrix metalloproteinases (MMP2, MMP9) and lymphocytes markers (CD4, CD5, CD8, CD20). Pineal melatonin is decreased, as is one of the melatonin pathway synthesis enzymes in the thymic gland. A further similarity is the increased MMPs levels evident over age in both glands. Significant differences are evident in cell renovation processes, which deteriorate more quickly in the aged thymus versus the pineal gland. Decreases in the number of pineal B-cells and thymic T-cells were also observed over aging. Collected data indicate that cellular involution of the pineal gland and thymus show many commonalities, but also significant changes in aging-associated proteins. It is proposed that such ageing-associated alterations in these two glands provide novel pharmaceutical targets for the wide array of medical conditions that are more likely to emerge over the course of ageing. PMID:26943046

  11. Cytologic features of the normal pineal gland of adults.

    PubMed

    Jiménez-Heffernan, José A; Bárcena, Carmen; Agra, Carolina; Asunción, Alfonso

    2015-08-01

    It is well known that the histology of normal pineal gland may resemble not only pineal tumors but also gliomas, owing to its cellularity which is much greater than that of normal white or gray matter. Our recent experience with a case in which part of a normal gland was submitted for intraoperative consultation, together with the scarcity of cytologic descriptions, led us to perform a cyto-histologic correlation study. In addition to the intraoperative case, we collected five pineal glands from consecutive adult autopsies. During the squash procedure, we often noted the presence of calcified grains. Smears were hypercellular, distributed in tissue fibrillary fragments and as numerous single cells, with crystalline structures. Pineal gland cells (pineocytes) were large, round, epithelioid with ill-defined cytoplasms and moderate nuclear pleomorphism. Spindle cells with greater fibrillary quality were less common. One of the most remarkable findings seen in all cases was the presence of cytoplasmic pigment. Histological evaluation and immunohistochemical staining confirmed that the tissue was normal pineal gland. The histology showed a characteristic lobular aspect and frequent corpora arenacea. The pigment seen cytologically was also encountered in histology and corresponded to lipofuscin. Cytologic features of the pineal gland are peculiar when compared to other normal structures of the central nervous system. These features correlate closely with what is seen on histology. In an adequate clinical context, and in combination with frozen sections, cytology allows a specific recognition of the pineal gland during intraoperative pathologic consultations.

  12. [Magnetic resonance study of the pineal region. Normal pineal gland and simple cysts].

    PubMed

    Caldas, J G; Doyon, D; Lederman, H; Carlier, R

    1998-06-01

    A magnetic resonance imaging (MRI) study of the normal pineal gland and pineal simple cysts was performed in 762 cases. A fine section technique (maximum 3 millimeters) enabled most of the times the identifying of a normal pineal in addition to demonstrating that a pineal without any cyst shows an isointense signal in T1 and T2 which, in turn, is enhanced following gadolinium. The measure of the normal pineal was of about 6.1 millimeters in its diameter length. Pineal simple cysts were observed in a 2.6% frequency in relation to the whole series (762 cases); however reaches 6.1% when only the visualized pineals were considered (329 cases). Also, it was found out that simple cysts were not correlated to age or gender. Simple cysts characteristics are: dimension less or equal to 20 millimeters; absence of expansive effect; similar signal to that of the cerebrospinal fluid; absence of cyst growth.

  13. Neuroendocrine mediated effects of electromagnetic-field exposure: Possible role of the pineal gland

    SciTech Connect

    Wilson, W.B.; Stevens, R.G.; Anderson, L.E. )

    1989-01-01

    Reports from recent epidemiological studies have suggested a possible association between extremely low frequently (ELF; including 50- or 60-Hz) electric- and magnetic-field exposure, and increased risk of certain cancers, depression, and miscarriage. ELF field-induced pineal gland dysfunction is a possible etiological factor in these effects. Work in our laboratory and elsewhere has shown that ELF electromagnetic-field exposure can alter the normal circadian rhythm of melatonin synthesis and release in the pineal gland. Consequences of reduced or inappropriately timed melatonin release on the endocrine, neuronal, and immune systems are discussed. Laboratory data linking ELF field exposure to changes in pineal circadian rhythms in both animal and humans are reviewed. The authors suggest that the pineal gland, in addition to being a convenient locus for measuring dyschronogenic effects of ELF field exposure, may play a central role in biological response to these fields via alterations in the melatonin signal.

  14. Pineal Gland Volume Assessed by MRI and Its Correlation with 6-Sulfatoxymelatonin Levels among Older Men.

    PubMed

    Sigurdardottir, Lara G; Markt, Sarah C; Sigurdsson, Sigurdur; Aspelund, Thor; Fall, Katja; Schernhammer, Eva; Rider, Jennifer R; Launer, Lenore; Harris, Tamara; Stampfer, Meir J; Gudnason, Vilmundur; Czeisler, Charles A; Lockley, Steven W; Valdimarsdottir, Unnur A; Mucci, Lorelei A

    2016-10-01

    The pineal gland produces the hormone melatonin, and its volume may influence melatonin levels. We describe an innovative method for estimating pineal volume in humans and present the association of pineal parenchyma volume with levels of the primary melatonin metabolite, 6-sulfatoxymelatonin. We selected a random sample of 122 older Icelandic men nested within the AGES-Reykjavik cohort and measured their total pineal volume, their parenchyma volume, and the extent of calcification and cysts. For volume estimations we used manual segmentation of magnetic resonance images in the axial plane with simultaneous side-by-side view of the sagittal and coronal plane. We used multivariable adjusted linear regression models to estimate the association of pineal parenchyma volume and baseline characteristics, including 6-sulfatoxymelatonin levels. We used logistic regression to test for differences in first morning urinary 6-sulfatoxymelatonin levels among men with or without cystic or calcified glands. The pineal glands varied in volume, shape, and composition. Cysts were present in 59% of the glands and calcifications in 21%. The mean total pineal volume measured 207 mm(3) (range 65-536 mm(3)) and parenchyma volume 178 mm(3) (range 65-503 mm(3)). In multivariable-adjusted models, pineal parenchyma volume was positively correlated with 6-sulfatoxymelatonin levels (β = 0.52, p < 0.001). Levels of 6-sulfatoxymelatonin did not differ significantly by presence of cysts or calcification. By using an innovative method for pineal assessment, we found pineal parenchyma volume to be positively correlated with 6-sulfatoxymelatonin levels, in line with other recent studies.

  15. The originality of Descartes' theory about the pineal gland.

    PubMed

    Lokhorst, G J; Kaitaro, T T

    2001-03-01

    René Descartes thought that the pineal gland is the part of the body with which the soul is most immediately associated. Several prominent historians (such as Soury, Thorndike and Sherrington) have claimed that this idea was not very original. We re-examine the evidence and conclude that their assessment was wrong. We pay special attention to the thesis about the pineal gland which Jean Cousin defended in January, 1641.

  16. Occurrence of Pineal Gland Tumors in Combined Chronic Toxicity/Carcinogenicity Studies in Wistar Rats.

    PubMed

    Treumann, Silke; Buesen, Roland; Gröters, Sibylle; Eichler, Jens-Olaf; van Ravenzwaay, Bennard

    2015-08-01

    Pineal gland tumors are very rare brain lesions in rats as well as in other species including humans. A total of 8 (out of 1,360 examined) Wistar rats from 3 different combined chronic toxicity/carcinogenicity or mere carcinogenicity studies revealed pineal gland tumors. The tumors were regarded to be spontaneous and unrelated to treatment. The morphology and immunohistochemical evaluation led to the diagnosis malignant pinealoma. The main characteristics that were variably developed within the tumors were the following: cellular atypia, high mitotic index, giant cells, necrosis, Homer Wright rosettes, Flexner-Wintersteiner rosettes and pseudorosettes, positive immunohistochemical reaction for synaptophysin, and neuron-specific enolase. The pineal gland is not a protocol organ for histopathological examination in carcinogenicity studies. Nevertheless, the pineal gland can occasionally be encountered on the routine brain section or if it is the origin of a tumor protruding into the brain, the finding will be recorded. Therefore, although known to be a rare tumor in rats, pineal neoplasms should be included in the list of possible differential diagnoses for brain tumors, especially when the tumor is located in the region of the pineal body.

  17. The rat pineal gland comprises an endocannabinoid system.

    PubMed

    Koch, Marco; Habazettl, Iris; Dehghani, Faramarz; Korf, Horst-Werner

    2008-11-01

    In the mammalian pineal gland, the rhythm in melatonin biosynthesis depends on the norepinephrine (NE)-driven regulation of arylalkylamine N-acetyltransferase (AANAT), the penultimate enzyme of melatonin biosynthesis. A recent study showed that phytocannabinoids like tetrahydrocannabinol reduce AANAT activity and attenuate NE-induced melatonin biosynthesis in rat pineal glands, raising the possibility that an endocannabinoid system is present in the pineal gland. To test this hypothesis, we analyzed cannabinoid (CB) receptors and specific enzymes for endocannabinoid biosynthesis or catabolism in rat pineal glands and cultured pinealocytes. Immunohistochemical and immunoblot analyses revealed the presence of CB1 and CB2 receptor proteins, of N-acyl phosphatidyl ethanolamine hydrolyzing phospholipase D (NAPE-PLD), an enzyme catalyzing endocannabinoid biosynthesis and of fatty acid amide hydrolase (FAAH), an endocannabinoid catabolizing enzyme, in pinealocytes, and in pineal sympathetic nerve fibers identified by double immunofluorescence with an antibody against tyrosine hydroxylase. The immunosignals for the CB2 receptor, NAPE-PLD, and FAAH found in pinealocytes did not vary under a 12 hr light:12 hr dark cycle. The CB1 receptor immunoreaction in pinealocytes was significantly reduced at the end of the light phase [zeitgeber time (ZT) 12]. The immunosignal for NAPE-PLD found in pineal sympathetic nerve fibers was reduced in the middle of the dark phase (ZT 18). Stimulation of cultured pinealocytes with NE affected neither the subcellular distribution nor the intensity of the immunosignals for the investigated CB receptors and enzymes. In summary, the pineal gland comprises indispensable compounds of the endocannabinoid system indicating that endocannabinoids may be involved in the control of pineal physiology.

  18. Pineal gland volume in primary insomnia and healthy controls: a magnetic resonance imaging study.

    PubMed

    Bumb, Jan M; Schilling, Claudia; Enning, Frank; Haddad, Leila; Paul, Franc; Lederbogen, Florian; Deuschle, Michael; Schredl, Michael; Nolte, Ingo

    2014-06-01

    Little is known about the relation between pineal volume and insomnia. Melatonin promotes sleep processes and, administered as a drug, it is suitable to improve primary and secondary sleep disorders in humans. Recent magnetic resonance imaging studies suggest that human plasma and saliva melatonin levels are partially determined by the pineal gland volume. This study compares the pineal volume in a group of patients with primary insomnia to a group of healthy people without sleep disturbance. Pineal gland volume (PGV) was measured on the basis of high-resolution 3 Tesla MRI (T1-magnetization prepared rapid gradient echo) in 23 patients and 27 controls, matched for age, gender and educational status. Volume measurements were performed conventionally by manual delineation of the pineal borders in multi-planar reconstructed images. Pineal gland volume was significantly smaller (P < 0.001) in patients (48.9 ± 26.6 mm(3) ) than in controls (79 ± 30.2 mm(3) ). In patients PGV correlated negatively with age (r = -0.532; P = 0.026). Adjusting for the effect of age, PGV and rapid eye movement (REM) latency showed a significant positive correlation (rS  = 0.711, P < 0.001) in patients. Pineal volume appears to be reduced in patients with primary insomnia compared to healthy controls. Further studies are needed to clarify whether low pineal volume is the basis or the consequence of functional sleep changes to elucidate the molecular pathology for the pineal volume loss in primary insomnia.

  19. [Single mechanism of remodelling extracellular matrix in thymus and pineal gland at aging].

    PubMed

    Lin'kova, N S; Poliakova, V O; Kvetnoĭ, I M

    2011-01-01

    The expression of matrix metalloproteinase 2 and 9 in thymus and pineal gland has been verified. These data demonstrate single mechanism of remodelling extracellular matrix in thymus and pineal gland at aging.

  20. Rhythmic control of endocannabinoids in the rat pineal gland.

    PubMed

    Koch, Marco; Ferreirós, Nerea; Geisslinger, Gerd; Dehghani, Faramarz; Korf, Horst-Werner

    2015-01-01

    Endocannabinoids modulate neuroendocrine networks by directly targeting cannabinoid receptors. The time-hormone melatonin synchronizes these networks with external light condition and guarantees time-sensitive and ecologically well-adapted behaviors. Here, the endocannabinoid arachidonoyl ethanolamide (AEA) showed rhythmic changes in rat pineal glands with higher levels during the light-period and reduced amounts at the onset of darkness. Norepinephrine, the essential stimulus for nocturnal melatonin biosynthesis, acutely down-regulated AEA and other endocannabinoids in cultured pineal glands. These temporal dynamics suggest that AEA exerts time-dependent autocrine and/or paracrine functions within the pineal. Moreover, endocananbinoids may be released from the pineal into the CSF or blood stream.

  1. A new identified complication of intracystic hemorrhage in a large pineal gland cyst.

    PubMed

    Mehrzad, Raman; Mishra, Suprav; Feinstein, Alexander; Ho, Michael G

    2014-01-01

    Pineal gland cysts are typically asymptomatic, benign cysts most commonly found incidentally in adults. In rare cases, a large pineal gland cyst can be complicated by intracystic hemorrhage, which could then manifest with neurological symptoms. We report a new complication of intracystic hemorrhage in a large pineal gland cyst in a 40-year-old man with new onset seizures.

  2. [Influence of peptides from pineal gland on thymus function at aging].

    PubMed

    Lin'kova, N S; Poliakova, V O; Trofimov, A V; Sevost'ianova, N N; Kvetnoĭ, I M

    2010-01-01

    The interference between thymus and pineal gland during their involution is considered in this review. The research data about influence of thymus peptides on pineal gland and pineal peptides on thymus is summarized. Analysis of these data showed that pineal peptides (epithalamin, epitalon) had more effective geroprotective effect on thymus involution in comparison with geroprotective effect of thymic peptides (thymalin, thymogen) on involution of pineal gland. The key mechanisms of pineal peptides effect on thymus dystrophy is immunoendocrine cooperation, which is realized as transcription's activation of various proteins.

  3. Structure of the ovine pineal gland during prenatal development.

    PubMed

    Regodón, S; Franco, A; Masot, J; Redondo, E

    1998-12-01

    The structure of the pineal gland of 32 clinically healthy ovine embryos at different stages of development was studied. Embryos were arranged in four age groups, each containing eight embryos (four males and four females), defined in terms of the most relevant histological features: group 1 (27 to 69 days of prenatal development), group 2 (70 to 97 days), group 3 (98 to 116 days), and group 4 (117 to 150 days). At around 30 days of prenatal life, according to topographic criteria, the pineal outline begins to differentiate into a dorsal evagination of the diencephalic medium line, close to the anterior and posterior commissures. The growth of the pineal is biphasic. The ontogenic-proliferative phase begins at 30 days and includes the invasion of ependymal cells and the proliferation of the pineal parenchyma cells. The hypertrophic-differentiation phase includes the volume increment of the pinealoblasts and their differentiation into pinealocytes; this occurs at around 118 days. At around 98 days, the gland acquires its definitive compact appearance due to 1) glandular growth in constant volume and 2) the obliteration of pineal recess. The glandular structure displays a parenchyma made up of pinealoblasts, interstitial cells, and cells containing pigment. The pineal stroma is structured in pseudolobes formed by reticular and collagen fiber septae, which constitute together the interstitial cell prolongation net, which is the support structure of the whole glandular cytology. Capillaries are detected all over the glandular surface, being more abundant in the medullary zone. At around 98 days of prenatal development, VIP (Vasoactive Intestinal Peptide) positive fibers, distributed around blood vessels and among pinealoblasts were detected.

  4. The nicotinic receptor in the rat pineal gland is an alpha3beta4 subtype.

    PubMed

    Hernandez, Susan C; Vicini, Stefano; Xiao, Yingxian; Dávila-García, Martha I; Yasuda, Robert P; Wolfe, Barry B; Kellar, Kenneth J

    2004-10-01

    The rat pineal gland contains a high density of neuronal nicotinic acetylcholine receptors (nAChRs). We characterized the pharmacology of the binding sites and function of these receptors, measured the nAChR subunit mRNA, and used subunit-specific antibodies to establish the receptor subtype as defined by subunit composition. In ligand binding studies, [3H]epibatidine ([3H]EB) binds with an affinity of approximately 100 pM to nAChRs in the pineal gland, and the density of these sites is approximately 5 times that in rat cerebral cortex. The affinities of nicotinic drugs for binding sites in the pineal gland are similar to those at alpha3beta4 nAChRs heterologously expressed in human embryonic kidney 293 cells. In functional studies, the potencies and efficacies of nicotinic drugs to activate or block whole-cell currents in dissociated pinealocytes match closely their potencies and efficacies to activate or block 86Rb+ efflux in the cells expressing heterologous alpha3beta4 nAChRs. Measurements of mRNA indicated the presence of transcripts for alpha3, beta2, and beta4 nAChR subunits but not those for alpha2, alpha4, alpha5, alpha6, alpha7, or beta3 subunits. Immunoprecipitation with subunit-specific antibodies showed that virtually all [3H]EB-labeled nAChRs contained alpha3 and beta4 subunits associated in one complex. The beta2 subunit was not associated with this complex. Taken together, these results indicate that virtually all of the nAChRs in the rat pineal gland are the alpha3beta4 nAChR subtype and that the pineal gland can therefore serve as an excellent and convenient model in which to study the pharmacology and function of these receptors in a native tissue.

  5. Comparison of three methods for the estimation of pineal gland volume using magnetic resonance imaging.

    PubMed

    Acer, Niyazi; Ilıca, Ahmet Turan; Turgut, Ahmet Tuncay; Ozçelik, Ozlem; Yıldırım, Birdal; Turgut, Mehmet

    2012-01-01

    Pineal gland is a very important neuroendocrine organ with many physiological functions such as regulating circadian rhythm. Radiologically, the pineal gland volume is clinically important because it is usually difficult to distinguish small pineal tumors via magnetic resonance imaging (MRI). Although many studies have estimated the pineal gland volume using different techniques, to the best of our knowledge, there has so far been no stereological work done on this subject. The objective of the current paper was to determine the pineal gland volume using stereological methods and by the region of interest (ROI) on MRI. In this paper, the pineal gland volumes were calculated in a total of 62 subjects (36 females, 26 males) who were free of any pineal lesions or tumors. The mean ± SD pineal gland volumes of the point-counting, planimetry, and ROI groups were 99.55 ± 51.34, 102.69 ± 40.39, and 104.33 ± 40.45 mm(3), respectively. No significant difference was found among the methods of calculating pineal gland volume (P > 0.05). From these results, it can be concluded that each technique is an unbiased, efficient, and reliable method, ideally suitable for in vivo examination of MRI data for pineal gland volume estimation.

  6. The function of very long chain polyunsaturated fatty acids in the pineal gland.

    PubMed

    Catalá, Angel

    2010-02-01

    The mammalian pineal gland is a prominent secretory organ with a high metabolic activity. Melatonin (N-acetyl-5-methoxytryptamine), the main secretory product of the pineal gland, efficiently scavenges both the hydroxyl and peroxyl radicals counteracting lipid peroxidation in biological membranes. Approximately 25% of the total fatty acids present in the rat pineal lipids are represented by arachidonic acid (20:4n-6) and docosahexaenoic acid (22:6n-3). These very long chain polyunsaturated fatty acids play important roles in the pineal gland. In addition to the production of melatonin, the mammalian pineal gland is able of convert these polyunsaturated fatty acids into bioactive lipid mediators. Lipoxygenation is the principal lipoxygenase (LOX) activity observed in the rat pineal gland. Lipoxygenation in the pineal gland is exceptional because no other brain regions express significant LOX activities under normal physiological conditions. The rat pineal gland expresses both 12- and 15-lipoxygenase (LOX) activities, producing 12- and 15-hydroperoxyeicosatetraenoic acid (12- and 15-HpETE) from arachidonic acid and 14- and 17-hydroxydocosahexaenoic acid (14- and 17-HdoHE) from docosahexaenoic acid, respectively. The rat pineal also produces hepoxilins via LOX pathways. The hepoxilins are bioactive epoxy-hydroxy products of the arachidonic acid metabolism via the 12S-lipoxygenase (12S-LOX) pathway. The two key pineal biochemical functions, lipoxygenation and melatonin synthesis, may be synergistically regulated by the status of n-3 essential fatty acids.

  7. Regulation of glycogen content in rat pineal gland by norepinephrine.

    PubMed

    Eugenín, E A; Sáez, C G; Garcés, G; Sáez, J C

    1997-06-20

    In the rat pineal gland the glycogen stores were cytochemically localized in astrocytes and pinealocytes. Moreover, it was found that norepinephrine (NE) induced a time- and concentration-dependent reduction in pineal glycogen content and yielded lactic acid. The NE effect was prevented by blocking alpha1- but not alpha2 or beta-adrenoceptors. Activation of alpha2-adrenoceptors induced a small decrease in glycogen levels that could have pre- and postsynaptic components. Activation of beta-adrenoceptors with 10(-12)-10(-3) M isoproterenol (ISO) induced a bell shape concentration-response curve, presumably due to desensitization, since the response induced by 10(-4) M ISO was greater with shorter period of stimulation. On the other hand, activation of alpha1-adrenoceptors with 10(-12)-10(-3) M phenylephrine (PHN) induced a hyperbolic concentration-response curve with a maximum at concentrations above 10(-8) M. Moreover, treatment with ISO drastically reduced the response induced by PHN concentrations lower but not higher than 10(-6) M, favoring a concentration-dependent response between 10(-6) and 10(-4) M PHN, similar to that induced by equimolar NE concentrations. Thus, the NE-induced reduction in glycogen content of the rat pineal gland is mainly mediated by alpha1-adrenoceptors and modulated by intracellular mechanisms activated by beta-adrenoceptors.

  8. Expression of luteinizing hormone/chorionic gonadotropin receptor in the rat pineal gland.

    PubMed

    Itoh, Masanori T; Hosaka, Takeshi; Takahashi, Noriyuki; Ishizuka, Bunpei

    2006-08-01

    Luteinizing hormone (LH) influences the secretion of melatonin (N-acetyl-5-methoxytryptamine) from the pineal gland. The present study examined the possible presence of LH/chorionic gonadotropin (CG) receptor in the pineal gland of adult female rats. Reverse transcriptase-polymerase chain reaction analyses demonstrated that LH/CG receptor mRNA is expressed in the pineal gland. Western blotting showed that the pineal gland, like the ovary, contains an 80 kDa receptor protein. Immunohistochemistry revealed that LH/CG receptor, arylalkylamine N-acetyltransferase (a regulatory enzyme in melatonin biosynthesis) and serotonin (a melatonin precursor) are localized primarily to the same cells of the pineal gland. We further found that the levels of pineal LH/CG receptor protein in normal cycling female rats change significantly during the estrous cycle, being lowest at early metestrus. These results demonstrate that LH/CG receptor is expressed in the pineal gland, primarily in melatonin-synthesizing cells, namely pinealocytes. Furthermore, it is suggested that LH influences pineal melatonin secretion through binding to this receptor. In addition, LH/CG receptor levels in the pineal gland are regulated during the estrous cycle under normal physiological conditions.

  9. The Lhx9 homeobox gene controls pineal gland development and prevents postnatal hydrocephalus.

    PubMed

    Yamazaki, Fumiyoshi; Møller, Morten; Fu, Cong; Clokie, Samuel J; Zykovich, Artem; Coon, Steven L; Klein, David C; Rath, Martin F

    2015-01-01

    Lhx9 is a member of the LIM homeobox gene family. It is expressed during mammalian embryogenesis in the brain including the pineal gland. Deletion of Lhx9 results in sterility due to failure of gonadal development. The current study was initiated to investigate Lhx9 biology in the pineal gland. Lhx9 is highly expressed in the developing pineal gland of the rat with transcript abundance peaking early in development; transcript levels decrease postnatally to nearly undetectable levels in the adult, a temporal pattern that is generally similar to that reported for Lhx9 expression in other brain regions. Studies with C57BL/6J Lhx9(-/-) mutant mice revealed marked alterations in brain and pineal development. Specifically, the superficial pineal gland is hypoplastic, being reduced to a small cluster of pinealocytes surrounded by meningeal and vascular tissue. The deep pineal gland and the pineal stalk are also reduced in size. Although the brains of neonatal Lhx9(-/-) mutant mice appear normal, severe hydrocephalus develops in about 70% of the Lhx9(-/-) mice at 5-8 weeks of age; these observations are the first to document that deletion of Lhx9 results in hydrocephalus and as such indicate that Lhx9 contributes to the maintenance of normal brain structure. Whereas hydrocephalus is absent in neonatal Lhx9(-/-)mutant mice, the neonatal pineal gland in these animals is hypoplastic. Accordingly, it appears that Lhx9 is essential for early development of the mammalian pineal gland and that this effect is not secondary to hydrocephalus.

  10. The Syrian Hamster Pineal Gland Responds to Isoproterenol in Vivo at Night

    DTIC Science & Technology

    1987-01-01

    pineal gland transmitter. Proc Nat Acad Sci USA protect against acute stress-induced 70:2411 increase in N-acetyltransferase (EC 2.3.1.5.) activity ...Society Printed in U.S.A. A THE SYRIAN HAMSTER PINEAL GLAND RESPONDS TO ISOPROTERENOL IN VIVO AT NIGHT George M. Vaughan 1 and Russel J. Reiter 2 1US...then kept in light for 2 h, pineal melatonin was equally low 0 • after ISO or vehicle injection. The Syrian hamster pineal gland can respond in vivo

  11. A method for extirpation of the pineal gland in albino rats.

    PubMed

    Arav, V I; Slesarev, S M; Slesareva, E V

    2008-09-01

    A method for extirpation of the pineal gland in albino rats and other rodents (e. g., ground squirrels) is proposed. Epiphysectomy is carried out by resection of a fragment of the bone with the underlying pineal gland. Using this method, many animals can be operated within a short period; the method is reliable and simple, which recommends it for chronobiological studies.

  12. TLR4 and CD14 receptors expressed in rat pineal gland trigger NFKB pathway.

    PubMed

    da Silveira Cruz-Machado, Sanseray; Carvalho-Sousa, Claudia Emanuele; Tamura, Eduardo Koji; Pinato, Luciana; Cecon, Erika; Fernandes, Pedro Augusto Carlos Magno; de Avellar, Maria Christina Werneck; Ferreira, Zulma Silva; Markus, Regina Pekelmann

    2010-09-01

    Nuclear factor-kappa B (NFKB), a pivotal player in inflammatory responses, is constitutively expressed in the pineal gland. Corticosterone inhibits pineal NFKB leading to an enhancement of melatonin production, while tumor necrosis factor (TNF) leads to inhibition of Aa-nat transcription and the production of N-acetylserotonin in cultured glands. The reduction in nocturnal melatonin surge favors the mounting of the inflammatory response. Despite these data, there is no clear evidence of the ability of the pineal gland to recognize molecules that signal infection. This study investigated whether the rat pineal gland expresses receptors for lipopolysaccharide (LPS), the endotoxin from the membranes of Gram-negative bacteria, and to establish the mechanism of action of LPS. Here, we show that pineal glands possess both CD14 and toll-like receptor 4 (TLR4), membrane proteins that bind LPS and trigger the NFKB pathway. LPS induced the nuclear translocation of p50/p50 and p50/RELA dimers and the synthesis of TNF. The maximal expression of TNF in cultured glands coincides with an increase in the expression of TNF receptor 1 (TNFR1) in isolated pinealocytes. In addition, LPS inhibited the synthesis of N-acetylserotonin and melatonin. Therefore, the pineal gland transduces Gram-negative endotoxin stimulation by producing TNF and inhibiting melatonin synthesis. Here, we provide evidence to reinforce the idea of an immune-pineal axis, showing that the pineal gland is a constitutive player in the innate immune response.

  13. The immune-pineal axis: stress as a modulator of pineal gland function.

    PubMed

    Couto-Moraes, Renato; Palermo-Neto, João; Markus, Regina Pekelmann

    2009-02-01

    The temporal organization of mammals presents a daily adjustment to the environmental light/dark cycle. The environmental light detected by the retina adjusts the central clock in the suprachiasmatic nuclei, which innervate the pineal gland through a polysynaptic pathway. During the night, this gland produces and releases the nocturnal hormone melatonin, which circulates throughout the whole body and adjusts several bodily functions according to the existence and duration of darkness. We have previously shown that during the time frame of an inflammatory response, pro-inflammatory cytokines, such as tumor necrosis factor-alpha, inhibit while anti-inflammatory mediators, such as glucocorticoids, enhance the synthesis of melatonin, interfering in the daily adjustment of the light/dark cycle. Therefore, injury disconnects the organism from environmental cycling, while recovery restores the light/dark information to the whole organism. Here, we extend these observations by evaluating the effect of a mild restraint stress, which did not induce macroscopic gastric lesions. After 2 h of restraint, there was an increase in circulating corticosterone, indicating activation of the hypothalamus-pituitary-adrenal (HPA) axis. In parallel, an increase in melatonin production was observed. Taking into account the data obtained with models of inflammation and stress, we reinforce the hypothesis that the activity of the pineal gland is modulated by the state of the immune system and the HPA axis, implicating the darkness hormone melatonin as a modulator of defense responses.

  14. Post-natal growth in the rat pineal gland: a stereological study.

    PubMed

    Erbagci, H; Kizilkan, N; Ozbag, D; Erkilic, S; Kervancioglu, P; Canan, S; Gumusburun, E

    2012-10-01

    The purpose was to observe the changes in a rat pineal gland using stereological techniques during lactation and post-weaning periods. Thirty Wistar albino rats were studied during different post-natal periods using light microscopy. Pineal gland volume was estimated using the Cavalieri Method. Additionally, the total number of pinealocytes was estimated using the optical fractionator technique. Pineal gland volume displayed statistically significant changes between lactation and after weaning periods. A significant increase in pineal gland volume was observed from post-natal day 10 to post-natal day 90. The numerical density of pinealocytes became stabilized during lactation and decreased rapidly after weaning. However, the total number of pinealocytes continuously increased during post-natal life of all rats in the study. However, this increment was not statistically significant when comparing the lactation and after weaning periods. The increase in post-natal pineal gland volume may depend on increment of immunoreactive fibres, capsule thickness or new synaptic bodies.

  15. Postnatal neurogenesis in the cow pineal gland: an immunohistochemical study.

    PubMed

    Gómez Esteban, M B; Muñoz Mosqueira, M I; Arroyo, A A; Muñoz Barragán, L

    2013-03-01

    In the pineal gland of cows and rats structures designated rosettes have been described both during embryonic development and in adult animals. In order to investigate the possible nature of the cells comprising such structures, in the present work we studied the pineal glands from 10 cows of one- or four-years-old using conventional immunocytochemical and confocal microscopy techniques. As markers of glial cells, we used anti-vimentin (Vim) and glial fibrillary acidic protein (GFAP) and anti-S-100 sera, and the pinealocytes were labelled with β-III tubulin. As a marker of stem cells, we used an antinestin serum, while an anti-PCNA serum was employed to label proliferating cells. To explore the neuronal nature of some cells of the rosettes, we used an anti-SRIF serum. The rosettes were seen to be present throughout the glandular parenchyma and displayed a central cavity surrounded by cells, most of which expressed all or just some of the above glial labels and nestin, although there were also some rosettes with cells that expressed β-III tubulin and other cells that expressed SRIF. Likewise, in the cells of the rosettes the cell nucleus showed strong expression of PCNA. Confocal microscopy revealed that the walls of the rosettes contained cells that coexpressed Vim/S-100, Vim/GFAP and Vim/nestin. The number of rosettes was significantly greater in the animals of one year of age with respect to the four-year-old cows. The present findings allow us to suggest that rosettes are evolving structures and that most of the cells present in their walls should be considered stem cells, and hence responsible for the postnatal neurogenesis occurring in the pineal gland of cows.

  16. Melatonin formation in pineal gland from rats with hexachlorobenzene experimental porphyria.

    PubMed

    Llambías, Elena B C; Mazzetti, Marta B; Lelli, Sandra M; Aldonatti, Carmen; San Martín de Viale, Leonor C

    2007-01-01

    Hexachlorobenzene produces an experimental hepatic porphyria in rats, which is similar to human porphyria cutanea tarda, with hyperpigmentation as one of its characteristic features. Alterations in tryptophan metabolism have been previously observed in this chronic porphyria. Melatonin formation from tryptophan via serotonin shows diurnal rhythmicity in the pineal gland, and higher values are observed during the dark phase of an imposed light-dark cycle. The purpose of this study was to determine the contents of tryptophan and its metabolites in pineal gland of normal and hexachlorobenzene-treated rats in order to find alterations potentially related to porphyria cutanea tarda. Results show that in animals with this experimental porphyria some tryptophan metabolite levels (serotonin and 5-hydroxyindoleacetic acid) increase only during the light period, whereas tryptophan content remained equal to the controls. Hydroxyindole-O-methyltransferase activity also increases by light in pineal gland from hexachlorobenzene-treated rats. On the other hand, tryptophan is converted to melatonin in the dark period, but this route is not exacerbated in hexachlorobenzene porphyria. The relevance of these alterations is discussed in relation to hyperpigmentation, neoplastic and oxidative stress processes associated with this porphyria.

  17. Leptin modulates norepinephrine-mediated melatonin synthesis in cultured rat pineal gland.

    PubMed

    Peliciari-Garcia, Rodrigo Antonio; Andrade-Silva, Jéssica; Cipolla-Neto, José; Carvalho, Carla Roberta de Oliveira

    2013-01-01

    Pineal melatonin synthesis can be modulated by many peptides, including insulin. Because melatonin appears to alter leptin synthesis, in this work we aimed to investigate whether leptin would have a role on norepinephrine- (NE-)mediated melatonin synthesis in cultured rat pineal glands. According to our data, cultured rat pineal glands express leptin receptor isoform b (Ob-Rb). Pineal expression of Ob-Rb mRNA was also observed in vivo. Administration of leptin (1 nM) associated with NE ( 1 µM) reduced melatonin content as well as arylalkylamine-N-acetyl transferase (AANAT) activity and expression in cultured pineal glands. Leptin treatment per se induced the expression of STAT3 in cultured pineal glands, but STAT3 does not participate in the leptin modulation of NE-mediated pineal melatonin synthesis. In addition, the expression of inducible cAMP early repressor (ICER) was further induced by leptin challenge when associated with NE. In conclusion, leptin inhibition of pineal melatonin synthesis appears to be mediated by a reduction in AANAT activity and expression as well as by increased expression of Icer mRNA. Peptidergic signaling within the pineal gland appears to be one of the most important signals which modulates melatonin synthesis; leptin, as a member of this system, is not an exception.

  18. Cellular Basis of Pineal Gland Development: Emerging Role of Microglia as Phenotype Regulator.

    PubMed

    Ibañez Rodriguez, María P; Noctor, Stephen C; Muñoz, Estela M

    2016-01-01

    The adult pineal gland is composed of pinealocytes, astrocytes, microglia, and other interstitial cells that have been described in detail. However, factors that contribute to pineal development have not been fully elucidated, nor have pineal cell lineages been well characterized. We applied systematic double, triple and quadruple labeling of cell-specific markers on prenatal, postnatal and mature rat pineal gland tissue combined with confocal microscopy to provide a comprehensive view of the cellular dynamics and cell lineages that contribute to pineal gland development. The pineal gland begins as an evagination of neuroepithelium in the roof of the third ventricle. The pineal primordium initially consists of radially aligned Pax6+ precursor cells that express vimentin and divide at the ventricular lumen. After the tubular neuroepithelium fuses, the distribution of Pax6+ cells transitions to include rosette-like structures and later, dispersed cells. In the developing gland all dividing cells express Pax6, indicating that Pax6+ precursor cells generate pinealocytes and some interstitial cells. The density of Pax6+ cells decreases across pineal development as a result of cellular differentiation and microglial phagocytosis, but Pax6+ cells remain in the adult gland as a distinct population. Microglial colonization begins after pineal recess formation. Microglial phagocytosis of Pax6+ cells is not common at early stages but increases as microglia colonize the gland. In the postnatal gland microglia affiliate with Tuj1+ nerve fibers, IB4+ blood vessels, and Pax6+ cells. We demonstrate that microglia engulf Pax6+ cells, nerve fibers, and blood vessel-related elements, but not pinealocytes. We conclude that microglia play a role in pineal gland formation and homeostasis by regulating the precursor cell population, remodeling blood vessels and pruning sympathetic nerve fibers.

  19. Cellular Basis of Pineal Gland Development: Emerging Role of Microglia as Phenotype Regulator

    PubMed Central

    Ibañez Rodriguez, María P.

    2016-01-01

    The adult pineal gland is composed of pinealocytes, astrocytes, microglia, and other interstitial cells that have been described in detail. However, factors that contribute to pineal development have not been fully elucidated, nor have pineal cell lineages been well characterized. We applied systematic double, triple and quadruple labeling of cell-specific markers on prenatal, postnatal and mature rat pineal gland tissue combined with confocal microscopy to provide a comprehensive view of the cellular dynamics and cell lineages that contribute to pineal gland development. The pineal gland begins as an evagination of neuroepithelium in the roof of the third ventricle. The pineal primordium initially consists of radially aligned Pax6+ precursor cells that express vimentin and divide at the ventricular lumen. After the tubular neuroepithelium fuses, the distribution of Pax6+ cells transitions to include rosette-like structures and later, dispersed cells. In the developing gland all dividing cells express Pax6, indicating that Pax6+ precursor cells generate pinealocytes and some interstitial cells. The density of Pax6+ cells decreases across pineal development as a result of cellular differentiation and microglial phagocytosis, but Pax6+ cells remain in the adult gland as a distinct population. Microglial colonization begins after pineal recess formation. Microglial phagocytosis of Pax6+ cells is not common at early stages but increases as microglia colonize the gland. In the postnatal gland microglia affiliate with Tuj1+ nerve fibers, IB4+ blood vessels, and Pax6+ cells. We demonstrate that microglia engulf Pax6+ cells, nerve fibers, and blood vessel-related elements, but not pinealocytes. We conclude that microglia play a role in pineal gland formation and homeostasis by regulating the precursor cell population, remodeling blood vessels and pruning sympathetic nerve fibers. PMID:27861587

  20. The phototransduction cascade in the isolated chick pineal gland revisited.

    PubMed

    Holthues, Heike; Vollrath, Lutz

    2004-03-05

    It is well established that the isolated chick pineal gland is directly light sensitive and that melatonin synthesis of the gland can be inhibited by exposing the gland to light during scotophase. Since not all the steps of the phototransduction cascade have been clarified to the same extent as in the retina, we have treated isolated chick pineal glands with 90 min of light during scotophase and with drugs that affect key-components of vertebrate phototransduction, i.e., cyclic guanosine monophosphate (cGMP) phosphodiesterase 6 (PDE6), cGMP levels and cGMP-gated calcium channels. The endpoint measured was the activity of the rate-limiting enzyme of melatonin synthesis, arylalkylamine N-acetyltransferase (AA-NAT), which is inhibited by light. The effects on AA-NAT activity of light were negated by addition of dipyridamol and zaprinast, either of which inhibits the light-induced activation of PDE6. The effect of light was also counteracted by the nitric oxide donor sodium nitroprusside and C-type natriuretic peptide, both of which increase cGMP levels, and by the calcium channel agonist Bay K 8644, which prevents the cGMP-decrease-induced closure of cGMP-gated calcium channels. Inhibition of nitric oxide synthase (NOS) by N(G)-nitro-l-arginine did not influence the inhibitory effect of light, suggesting that the NOS pathway does not play a role. Since the light effect on AA-NAT activity involves both cGMP and cyclic adenosine monophosphate (cAMP) hydrolysis, we have also studied whether the cGMP-inhibited cAMP phosphodiesterase 3 (PDE3) is involved. As the specific PDE3 inhibitor cilostamide is without effect, we assume that the light-induced decrease of cAMP levels does not involve PDE3. These results taken together strongly suggest that the investigated steps of the phototransduction cascade in the isolated chick pineal gland are basically similar to those in the retina.

  1. Modulation of Aanat gene transcription in the rat pineal gland.

    PubMed

    Ho, Anthony K; Chik, Constance L

    2010-01-01

    The main function of the rat pineal gland is to transform the circadian rhythm generated in the suprachiasmatic nucleus into a rhythmic signal of circulating melatonin characterized by a large nocturnal increase that closely reflects the duration of night period. This is achieved through the tight coupling between environmental lighting and the expression of arylalkylamine-N-acetyltransferase, the rhythm-controlling enzyme in melatonin synthesis. The initiation of Aanat transcription at night is controlled largely by the norepinephrine-stimulated phosphorylation of cAMP response element-binding protein by protein kinase A. However, to accurately reflect the duration of darkness, additional signaling mechanisms also participate to fine-tune the temporal profile of adrenergic-induced Aanat transcription. Here, we reviewed some of these signaling mechanisms, with emphasis on the more recent findings. These signaling mechanisms can be divided into two groups: those involving modification of constitutively expressed proteins and those requiring synthesis of new proteins. This review highlights the pineal gland as an excellent model system for studying neurotransmitter-regulated rhythmic gene expression.

  2. Homeobox genes in the rodent pineal gland: roles in development and phenotype maintenance.

    PubMed

    Rath, Martin F; Rohde, Kristian; Klein, David C; Møller, Morten

    2013-06-01

    The pineal gland is a neuroendocrine gland responsible for nocturnal synthesis of melatonin. During early development of the rodent pineal gland from the roof of the diencephalon, homeobox genes of the orthodenticle homeobox (Otx)- and paired box (Pax)-families are expressed and are essential for normal pineal development consistent with the well-established role that homeobox genes play in developmental processes. However, the pineal gland appears to be unusual because strong homeobox gene expression persists in the pineal gland of the adult brain. Accordingly, in addition to developmental functions, homeobox genes appear to be key regulators in postnatal phenotype maintenance in this tissue. In this paper, we review ontogenetic and phylogenetic aspects of pineal development and recent progress in understanding the involvement of homebox genes in rodent pineal development and adult function. A working model is proposed for understanding the sequential action of homeobox genes in controlling development and mature circadian function of the mammalian pinealocyte based on knowledge from detailed developmental and daily gene expression analyses in rats, the pineal phenotypes of homebox gene-deficient mice and studies on development of the retinal photoreceptor; the pinealocyte and retinal photoreceptor share features not seen in other tissues and are likely to have evolved from the same ancestral photodetector cell.

  3. An autopsy case of sudden unexpected death due to a glial cyst of the pineal gland.

    PubMed

    Na, Joo-Young; Lee, Kyung-Hwa; Kim, Hyung-Seok; Park, Jong-Tae

    2014-09-01

    Pineal cysts are usually asymptomatic; however, they may rarely cause symptoms such as chronic headache, paroxysmal headache with gaze paresis, postural syncope, loss of consciousness, and sudden death. A 30-year-old woman with no specific medical history except chronic headache was found collapsed in a public toilet per se. Postmortem examination revealed no external injuries or internal diseases except a cystic lesion of the pineal gland. Histologic examination showed an internal cyst surrounded by glial tissues and pineal parenchyma that was diagnosed as a glial cyst of the pineal gland. Although the pineal cyst cannot be confirmed as the cause of death, it was considered, as no other cause was evident. Herein, we report a pineal cyst considered as an assumed cause of death.

  4. [Expression of AIF and CGRP markers in pineal gland and thymus during aging].

    PubMed

    Lin'kova, N S; Katanugina, A S; Khavinson, V Kh

    2011-01-01

    We investigated the expression of AIF (apoptotic inducing factor) and CGRP (calcitonin gene related peptide) at autopsy material of pineal gland and thymus of people after 60 years old. The expression of AIF and CGRP was identified in both organs, but it did not change with age, which demonstrates the probable safety of functional activity of neuroimmunoendocrine system at aging. We found correlation between expression AIF and CGRP at pineal gland, but the correlation at thymus wasn't found. It is possible that pineal gland can express unidentified signal molecule controlling the expression of AIF and CGRP.

  5. Historical and cultural aspects of the pineal gland: comparison between the theories provided by Spiritism in the 1940s and the current scientific evidence.

    PubMed

    Lucchetti, Giancarlo; Daher, Jorge C; Iandoli, Decio; Gonçalves, Juliane P B; Lucchetti, Alessandra L G

    2013-01-01

    Significance has been attached to the pineal gland in numerous different cultures and beliefs. One religion that has advanced the role of the pineal gland is Spiritism. The objective of the present study was to compile information on the pineal gland drawing on the books of Francisco Cândido Xavier written through psychography and to carry out a critical analysis of their scientific bases by comparing against evidence in the current scientific literature. A systematic search using the terms "pineal gland" and "epiphysis" was conducted of 12 works allegedly dictated by the spirit "André Luiz". All information on the pineal having potential correlation with the field of medicine and current studies was included. Specialists in the area were recruited to compile the information and draw parallels with the scientific literature. The themes related to the pineal gland were: mental health, reproductive function, endocrinology, relationship with physical activity, spiritual connection, criticism of the theory that the organ exerts no function, and description of a hormone secreted by the gland (reference alluding to melatonin, isolated 13 years later). The historical background for each theme was outlined, together with the theories present in the Spiritist books and in the relevant scientific literature. The present article provides an analysis of the knowledge the scientific community can acquire from the history of humanity and from science itself. The process of formulating hypotheses and scientific theories can benefit by drawing on the cultural aspects of civilization, taking into account so-called non-traditional reports and theories.

  6. Restricted feeding restores rhythmicity in the pineal gland of arrhythmic suprachiasmatic-lesioned rats.

    PubMed

    Feillet, Céline A; Mendoza, Jorge; Pévet, Paul; Challet, Etienne

    2008-12-01

    In mammals, the rhythmic synthesis of melatonin by the pineal gland is tightly controlled by the master clock located in the suprachiasmatic nuclei (SCN). In behaviourally arrhythmic SCN-lesioned rats, we investigated the effects of daily restricted feeding (RF) on pineal melatonin synthesis. RF restored not only a rhythmic transcription of the rate-limiting enzyme for melatonin biosynthesis [arylalkylamine-N-acetyltransferase (AANAT)] and a rhythmic expression of c-FOS but also a rhythmic synthesis of melatonin in the pineal gland. In control rats without functional SCN and fed ad libitum, a daily immobilization stress did not restore any rhythmicity in the pineal gland. Interestingly, a combination of RF and daily stress prior to the time of food access did not markedly impair AaNat mRNA and c-FOS rhythmicity but did abolish the restoration of rhythmic pineal melatonin. These data indicate that the synchronizing effects of RF on the pineal rhythmicity are not due to, and cannot be mimicked by, high levels of circulating glucocorticoids. In keeping with the multi-oscillatory nature of the circadian system, the rhythmicity of pineal melatonin in mammals, until now an exclusive output of the SCN, can also be controlled by daily feeding cues when the SCN clock is lacking. Thus, the present study demonstrates that daily RF in SCN-lesioned rats provides, probably via sympathetic fibres, synchronizing stimuli strong enough to drive rhythmicity in the pineal gland.

  7. Pineal gland function is required for colon antipreneoplastic effects of physical exercise in rats.

    PubMed

    Frajacomo, F T T; de Paula Garcia, W; Fernandes, C R; Garcia, S B; Kannen, V

    2015-10-01

    Light-at-night exposure enhances the risk of cancer. Colon cancer is among the most dangerous tumors affecting humankind. Physical exercise has shown positive effects against colon cancer. Here, we investigated whether pineal gland modulates antipreneoplastic effects of physical exercise in the colon. Surgical and non-surgical pineal impairments were performed to clarify the relationship between the pineal gland activity and manifestation of colonic preneoplastic lesions. Next, a progressive swimming training was applied in rats exposed or not to either non-surgical pineal impairment or carcinogen treatment for 10 weeks. Both surgical and non-surgical pineal impairments increased the development of colon preneoplasia. It was further found that impairing the pineal gland function, higher rates of DNA damage were induced in colonic epithelial and enteric glial cells. Physical exercise acted positively against preneoplasia, whereas impairing the pineal function with constant light exposure disrupts its positive effects on the development of preneoplastic lesions in the colon. This was yet related to increased DNA damage in glial cells and enteric neuronal activation aside from serum melatonin levels. Our findings suggest that protective effects of physical exercise against colon cancer are dependent on the pineal gland activity.

  8. Daily variation of constitutively activated nuclear factor kappa B (NFKB) in rat pineal gland.

    PubMed

    Cecon, Erika; Fernandes, Pedro A; Pinato, Luciana; Ferreira, Zulma S; Markus, Regina P

    2010-01-01

    In mammals, the production of melatonin by the pineal gland is mainly controlled by the suprachiasmatic nuclei (SCN), the master clock of the circadian system. We have previously shown that agents involved in inflammatory responses, such as cytokines and corticosterone, modulate pineal melatonin synthesis. The nuclear transcription factor NFKB, detected by our group in the rat pineal gland, modulates this effect. Here, we evaluated a putative constitutive role for the pineal gland NFKB pathway. Male rats were kept under 12 h:12 h light-dark (LD) cycle or under constant darkness (DD) condition. Nuclear NFKB was quantified by electrophoretic mobility shift assay on pineal glands obtained from animals killed throughout the day at different times. Nuclear content of NFKB presented a daily rhythm only in LD-entrained animals. During the light phase, the amount of NFKB increased continuously, and a sharp drop occurred when lights were turned off. Animals maintained in a constant light environment until ZT 18 showed diurnal levels of nuclear NFKB at ZT15 and ZT18. Propranolol (20 mg/kg, i.p., ZT 11) treatment, which inhibits nocturnal sympathetic input, impaired nocturnal decrease of NFKB only at ZT18. A similar effect was observed in free-running animals, which secreted less nocturnal melatonin. Because melatonin reduces constitutive NFKB activation in cultured pineal glands, we propose that this indolamine regulates this transcription factor pathway in the rat pineal gland, but not at the LD transition. The controversial results regarding the inhibition of pineal function by constant light or blocking sympathetic neurotransmission are discussed according to the hypothesis that the prompt effect of lights-off is not mediated by noradrenaline, which otherwise contributes to maintaining low levels of nuclear NFKB at night. In summary, we report here a novel transcription factor in the pineal gland, which exhibits a constitutive rhythm dependent on environmental photic

  9. Vesicular Glutamate Transporter 2 Expression in the Rat Pineal Gland: Detailed Analysis of Expression Pattern and Regulatory Mechanism

    NASA Astrophysics Data System (ADS)

    Yoshida, Sachine; Hisano, Setsuji

    Melatonin, a hormone secreted by the pineal gland, is closely related physiologically to circadian rhythm, sleep and reproduction, and also psychiatrically to mood disorders in humans. Under circadian control, melatonin secretion is modulated via nocturnal autonomic (adrenergic) stimulation to the gland, which expresses vesicular glutamate transporter (VGLUT) 1, VGLUT2 and a VGLUT1 splice variant (VGLUT1v), glutamatergic markers. Expression of VGLUT2 gene and protein in the intact gland has been reported to exhibit a rhythmic change during a day. To study VGLUT2 expression is under adrenergic control, we here performed an in vitro experiment using dispersed pineal cells of rats. Stimulation of either β-adrenergic receptor or cAMP production to the pineal cells was shown to increase mRNA level of VGLUT2, but not VGLUT1 and VGLUT1v. Because an ability of glutamate to inhibit melatonin production was previously reported in the cultured gland, it is likely that pineal VGLUT2 transports glutamate engaged in the inhibition of melatonin production.

  10. Functional unity of the thymus and pineal gland and study of the mechanisms of aging.

    PubMed

    Polyakova, V O; Linkova, N S; Kvetnoy, I M; Khavinson, V Kh

    2011-09-01

    The data on the morphology and functions of the thymus and pineal gland in individuals of different age are analyzed and common mechanisms of involution of these organs during aging and the consequencies of this process are discussed. Based on the data on the molecular changes in the thymus and pineal gland during aging, the authors hypothesize the functional unity of these organs and their mutual complementarity in the maintenance of normal immune and endocrine status during aging.

  11. Rhodopsin Kinase Activity in the Mammalian Pineal Gland and Other Tissues

    NASA Astrophysics Data System (ADS)

    Somers, Robert L.; Klein, David C.

    1984-10-01

    Rhodopsin kinase, an enzyme involved in photochemical transduction in the retina, has been found in the mammalian pineal gland in amounts equal to those in the retina; other tissues had 7 percent of this amount, or less. This finding suggests that, in mammals, rhodopsin kinase functions in the pineal gland and other tissues to phosphorylate rhodopsin-like integral membrane receptors and is thereby involved in signal transduction.

  12. The photoreceptive cells of the pineal gland in adult zebrafish (Danio rerio).

    PubMed

    Laurà, Rosaria; Magnoli, Domenico; Zichichi, Rosalia; Guerrera, Maria Cristina; De Carlos, Felix; Suárez, Alberto Álvarez; Abbate, Francesco; Ciriaco, Emilia; Vega, Jose Antonio; Germanà, Antonino

    2012-03-01

    The zebrafish pineal gland plays a fundamental role in the regulation of the circadian rhythm through the melatonin secretion. The pinealocytes, also called photoreceptive cells, are considered the morphofunctional unit of pineal gland. In literature, the anatomical features, the cellular characteristics, and the pinealocytes morphology of zebrafish pineal gland have not been previously described in detail. Therefore, this study was undertaken to analyze the structure and ultrastructure, as well as the immunohistochemical profile of the zebrafish pineal gland with particular reference to the pinealocytes. Here, we demonstrated, using RT-PCR, immunohistochemistry and transmission electron microscopy, the expression of the mRNA for rhodopsin in the pineal gland of zebrafish, as well as its cellular localization exclusively in the pinealocytes of adult zebrafish. Moreover, the ultrastructural observations demonstrated that the pinealocytes were constituted by an outer segment with numerous lamellar membranes, an inner segment with many mitochondria, and a basal pole with the synapses. Our results taken together demonstrated a central role of zebrafish pinealocytes in the control of pineal gland functions.

  13. Effect of calcium on melatonin secretion in chick pineal gland I.

    PubMed

    Pablos, M I; Agapito, M T; Gutierrez-Baraja, R; Reiter, R J; Recio, J M

    1996-10-18

    Melatonin is the neurohormone which is synthesized by the pineal gland and secreted rhythmically. The role of calcium in the activation of melatonin production remains unknown. In this study, we demonstrated that calcium input participates in the regulation of chick pineal gland. Pineal glands from Gallus domesticus were perifuse with Krebs medium (controls) or with Krebs medium plus drugs (ethylene glycol tetraacetic acid (EGTA) or calcium ionophore A23187). When EGTA was added to the perifusion medium, free extracellular calcium concentrations were dramatically decreased and melatonin synthesis was decreased. On the other hand, when the calcium ionophore A23187 was added to the perifusion medium, chick pineal glands exhibited a marked increase in secretion of melatonin. No effects were observed when chick pineal glands were treated with drugs during or after the time of the natural peak levels. We propose that calcium input from extracellular medium and output from intracellular calcium reserves are primary mechanisms in the activation of melatonin synthesis in the chick pineal gland.

  14. Cloning, localization and functional properties of a cGMP-gated channel in photoreceptor cells from fish pineal gland.

    PubMed

    Decressac, Sonia; Grechez-Cassiau, Aline; Lenfant, Jacques; Falcón, Jacky; Bois, Patrick

    2002-11-01

    The perception of photic information and its translation into a rhythmic melatonin signal differ considerably among vertebrates. In the fish pineal gland, melatonin biosynthesis is controlled directly by the natural light/dark cycle. There are indications that the mechanisms of phototransduction are similar in the retinal and pineal photoreceptor cells. Here we report the molecular cloning of a novel ionic cyclic guanosine monophosphate (cGMP)-gated channel from trout pineal photoreceptors. The deduced amino acid sequence exhibits a high sequence homology to cyclic nucleotide-gated-3 (CNG) channels from retinal cones. In situ hybridization with sections of trout pineal gland revealed the expression of CNG channel in photoreceptor cells of the pineal organ. Electrophysiological studies by means of patch-clamp technique indicated that the native channel in photoreceptor cells and the expressed channel in a human cell line (HEK 293 cells) have properties similar to those of cone-CNG (cCNG)-3 channels. They are activated by cGMP, insensitive to cyclic adenosine monophosphate (cAMP) and blocked by intracellular Mg2+ ions at positive voltage values. They have a single-channel conductance close to 42 pS in negative voltage range. In transfected HEK cells loaded with the calcium indicator dye Fura 2, direct activation of CNG channels by 8-Br-cGMP increased fluorescence. The signal was blocked by the addition of Mg2+ ions. From these results, it is suggested that the pineal cyclic nucleotide-gated channel is a good candidate for mediating calcium entry into the pineal photoreceptors. It is most probably a key element in the signalling pathways that control the rhythmic production of melatonin.

  15. Evidence of Pineal Gland Calcification on CBCT is Not Insignificant: What Else You Might Discover about Your Patient.

    PubMed

    Fore, Stacy

    2016-01-01

    The use of CBCT technology in the dental office is increasing rapidly. These scans provide information on anatomy not previously evaluated with traditional 2D films. One structure often mentioned in a CBCT radiology report is the pineal gland. The pineal gland will show evidence of calcification, but this calcification is often dismissed as a normal aging process. This review of the function and influence of the pineal gland may influence the doctor to complete further evaluation of the patient.

  16. Biochemical and hormonal evaluation of pineal glands exposed in vitro to magnetic fields. Final report

    SciTech Connect

    Anderson, L.E.; Leung, F.C.; Miller, D.L.

    1998-11-01

    It has been reported that exposure to extremely low frequency (ELF) magnetic fields can significantly alter pineal melatonin metabolism in vivo. However, whether such changes are due to direct or indirect effects of field exposure has not been clearly demonstrated. The objective of this research project was to examine the effects of magnetic fields on melatonin metabolism in pineal glands in vitro. Chicken pineal glands were cultured in a modified incubator encircled by a magnetic field exposure system. The incubator, that was remote from but attached to a standard laboratory incubator, contained a regulated light source for modulation of the light/dark cycle (12:12 L/D). Pineal glands from 4--6 week old chickens were maintained under 95% O{sub 2}, 5% CO{sub 2} in a static culture system. Because of problems due to contamination and loss of viability of such a system, a perfusion system was developed for EMF studies. Both single and multiple chicken pineal glands were used in the perfusion studies and were kept viable in the perfusion chamber by a continuous flow of medium at 39 C for up to 8 days. Perfusate samples were collected into a fraction collector and were subsequently kept frozen at {minus} 20 C until assays were performed. Melatonin secreted by the cultured pineal glands and released into the medium was measured by a melatonin double antibody radioimmunoassay (RIA) using {sup 125}I-melatonin as the label.

  17. Midline and off-midline infratentorial supracerebellar approaches to the pineal gland.

    PubMed

    Matsuo, Satoshi; Baydin, Serhat; Güngör, Abuzer; Miki, Koichi; Komune, Noritaka; Kurogi, Ryota; Iihara, Koji; Rhoton, Albert L

    2016-10-07

    OBJECTIVE A common approach to lesions of the pineal region is along the midline below the torcula. However, reports of how shifting the approach off midline affects the surgical exposure and relationships between the tributaries of the vein of Galen are limited. The purpose of this study is to examine the microsurgical and endoscopic anatomy of the pineal region as seen through the supracerebellar infratentorial approaches, including midline, paramedian, lateral, and far-lateral routes. METHODS The quadrigeminal cisterns of 8 formalin-fixed adult cadaveric heads were dissected and examined with the aid of a surgical microscope and straight endoscope. Twenty CT angiograms were examined to measure the depth of the pineal gland, slope of the tentorial surface of the cerebellum, and angle of approach to the pineal gland in each approach. RESULTS The midline supracerebellar route is the shortest and provides direct exposure of the pineal gland, although the culmen and inferior and superior vermian tributaries of the vein of Galen frequently block this exposure. The off-midline routes provide a surgical exposure that, although slightly deeper, may reduce the need for venous sacrifice at both the level of the veins from the superior cerebellar surface entering the tentorial sinuses and at the level of the tributaries of the vein of Galen in the quadrigeminal cistern, and require less cerebellar retraction. Shifting from midline to off-midline exposure also provides a better view of the cerebellomesencephalic fissure, collicular plate, and trochlear nerve than the midline approaches. Endoscopic assistance may aid exposure of the pineal gland while preserving the bridging veins. CONCLUSIONS Understanding the characteristics of different infratentorial routes to the pineal gland will aid in gaining a better view of the pineal gland and cerebellomesencephalic fissure and may reduce the need for venous sacrifice at the level of the tentorial sinuses draining the upper

  18. Histamine-stimulated cyclic AMP formation in the chick pineal gland: role of protein kinase C.

    PubMed

    Zawilska, J B; Woldan-Tambor, A; Nowak, J Z

    1997-08-15

    The role of protein kinase C (PKC) in histamine (HA)-stimulated cyclic AMP formation in intact chick pineal glands was investigated. In the pineal gland of chick HA, 2-methylHA, 4-methylHA, and N alpha, N alpha-dimethylHA potently increased cyclic AMP accumulation in a concentration-dependent manner. Treatment of intact glands with PKC inhibitors, i.e. chelerythrine and stautosporine, reduced the stimulatory effect of the HA-ergic compounds on cyclic AMP formation. HA, 2-methylHA, 4-methylHA, and N alpha, N alpha-dimethylHA significantly increased inositol-1,4,5-trisphosphate (IP3) levels in intact chick pineal glands, indicating their activities on phospholipase C and 1,2-diacylglycerol formation. The stimulatory effect of HA on IP3 levels was antagonized by aminopotentidine, a potent blocker of H2-like HA receptors in avian pineal gland. Preincubation of chick pineal glands with a PKC activator, 4 beta-phorbol 12, 13-dibutyrate (4 beta-PDB), enhanced the accumulation of cyclic AMP elicited by HA, 2-methylHA, 4-methylHA, and N alpha, N alpha-dimethylHA. On the other hand, 4 beta-phorbol, inactive on the PKC, was ineffective. Our results point to the possibility that PKC is involved in the regulation by HA of cyclic AMP synthesis in the pineal gland of chick. Furthermore, the cyclic AMP response to pineal HA receptor stimulation can be positively modulated by a concomitant activation of the PKC pathway.

  19. Rax : developmental and daily expression patterns in the rat pineal gland and retina.

    PubMed

    Rohde, Kristian; Klein, David C; Møller, Morten; Rath, Martin F

    2011-09-01

    Retina and anterior neural fold homeobox (Rax) gene encodes a transcription factor essential for vertebrate eye development. Recent microarray studies indicate that Rax is expressed in the adult rat pineal gland and retina. The present study reveals that Rax expression levels in the rat change significantly during retinal development with a peak occurring at embryonic day 18, whereas Rax expression in the pineal is relatively delayed and not detectable until embryonic day 20. In both tissues, Rax is expressed throughout postnatal development into adulthood. In the mature rat pineal gland, the abundance of Rax transcripts increases 2-fold during the light period with a peak occurring at dusk. These findings are consistent with the evidence that Rax is of functional importance in eye development and suggest a role of Rax in the developing pineal gland. In addition, it would appear possible that Rax contributes to phenotype maintenance in the mature retina and pineal gland and may facilitate 24-h changes in the pineal transcriptome.

  20. [Symptomatic glial cysts of the pineal gland: report of two cases and review of the literature].

    PubMed

    Vajtai, I; Bodosi, M; Varga, Z; Ormos, J; Vörös, E

    1995-08-27

    Referring to two individual cases, the authors review clinical, radiological and histological features of benign glial cysts of the pineal gland. Both patients were young females with aggravating headaches and with convulsions in one case. Symptoms were referable to a space-occupying cystic mass of the pineal gland. On histology, both lesions proved to be non neoplastic cysts without an epithelial lining. Their histogenesis and low growth potential were reinforced by immunohistochemical analysis of pineal antigens and proliferation markers. Glial cysts of the pineal gland are not infrequent, but symptomatic occurrences are exceptional. Most glial cysts are of dysontogenic or degenerative origin. Sometimes, however, the role of hormonal influences or paraneoplastic factors must be considered. Symptoms caused by glial cysts of the pineal gland are non-specific and radiologic imaging technics may contribute little to etiologic diagnosis. Pineal cysts are curable by surgical resection or stereotactic decompression. Whatever the diagnostic approach, emphasis must be laid on the histologic examination in order to avoid unnecessarily aggressive treatment.

  1. Circadian changes in long noncoding RNAs in the pineal gland.

    PubMed

    Coon, Steven L; Munson, Peter J; Cherukuri, Praveen F; Sugden, David; Rath, Martin F; Møller, Morten; Clokie, Samuel J H; Fu, Cong; Olanich, Mary E; Rangel, Zoila; Werner, Thomas; Mullikin, James C; Klein, David C

    2012-08-14

    Long noncoding RNAs (lncRNAs) play a broad range of biological roles, including regulation of expression of genes and chromosomes. Here, we present evidence that lncRNAs are involved in vertebrate circadian biology. Differential night/day expression of 112 lncRNAs (0.3 to >50 kb) occurs in the rat pineal gland, which is the source of melatonin, the hormone of the night. Approximately one-half of these changes reflect nocturnal increases. Studies of eight lncRNAs with 2- to >100-fold daily rhythms indicate that, in most cases, the change results from neural stimulation from the central circadian oscillator in the suprachiasmatic nucleus (doubling time = 0.5-1.3 h). Light exposure at night rapidly reverses (halving time = 9-32 min) levels of some of these lncRNAs. Organ culture studies indicate that expression of these lncRNAs is regulated by norepinephrine acting through cAMP. These findings point to a dynamic role of lncRNAs in the circadian system.

  2. Homeobox genes and melatonin synthesis: regulatory roles of the cone-rod homeobox transcription factor in the rodent pineal gland.

    PubMed

    Rohde, Kristian; Møller, Morten; Rath, Martin Fredensborg

    2014-01-01

    Nocturnal synthesis of melatonin in the pineal gland is controlled by a circadian rhythm in arylalkylamine N-acetyltransferase (AANAT) enzyme activity. In the rodent, Aanat gene expression displays a marked circadian rhythm; release of norepinephrine in the gland at night causes a cAMP-based induction of Aanat transcription. However, additional transcriptional control mechanisms exist. Homeobox genes, which are generally known to encode transcription factors controlling developmental processes, are also expressed in the mature rodent pineal gland. Among these, the cone-rod homeobox (CRX) transcription factor is believed to control pineal-specific Aanat expression. Based on recent advances in our understanding of Crx in the rodent pineal gland, we here suggest that homeobox genes play a role in adult pineal physiology both by ensuring pineal-specific Aanat expression and by facilitating cAMP response element-based circadian melatonin production.

  3. [Morphometric data on pineal gland of loir (Glis glis) and lerot (Elioyms quercinus) during the annual cycle].

    PubMed

    Legait, H; Roux, M; Dussart, G; Richoux, J P; Contet-Audonneau, J L

    1975-01-01

    The important involution of the pineal gland of Glis glis and Eliomys quercinus during the months of july and august belongs to a polyglandular involution (anterior lobe of the hypophysis, male and female genital glands) characteristic of estivation.

  4. Daytime pineal gland activation in rats with colon tumors induced by 1,2-dimethylhydrazine(3).

    PubMed

    Sibarov, Dmitrii A.; Kovalenko, Rimma I.; Anisimov, Vladimir N.; Nozdrachev, Alexander D.

    2000-01-01

    OBJECTIVES: Intact rats and rats with 1,2-dimethylhydrazine induced tumors of large intestine were used in experiments. Previously, blood melatonin concentration in these tumor-bearing rats was shown to increase at night, but not in the daytime. METHODS: The extracellular microelectrode registration of rat daytime pineal gland activity was performed. RESULTS: The existence of different types of pinealocytes in the pineal gland was confirmed. Tumor-bearing rats, in comparison to intact, demonstrated higher spike frequency due to cells switching from regular to pattern (4-6 times gain) activity and appearance of "fast" cells (>5Hz frequency). CONSLUSIONS: The literature about pinealocytes points to the correlation between electrical and secretory processes in pinealocytes; thus we suppose the groups of interacting cells, detected in tumor-bearing rats, to reflect cascade cells activation while pineal gland secretion increases. The results indicate, that in the daytime pinealocytes are secreting substances (not melatonin) in dependence with hormonal background.

  5. Stimulatory effect of bombesin on phosphoinositide metabolism in the rat pineal gland.

    PubMed

    Novotná, R; Novotný, I

    1997-10-03

    The pineal gland is under complex peptidergic nervous control originating from hypothalamic nuclei. The daily rhythm of bombesin-like peptide in the hypothalamus suggests that this neuropeptide, similarly as other neuropeptides, might be involved in modulation of the physiological activity of the pineal gland. In our experiments we studied the mechanism of signal transduction of bombesin in the isolated pineal glands of rats. The phosphoinositide signalling system was examined by measuring 32P-labelling of phosphatidylinositol (PI), phosphatidylinositol phosphate (PIP) and phosphatidylinositol bisphosphate (PIP2), which reflects phosphoinositide cycle activation. Bombesin induced a significant increase in 32P-labelling of PI, PIP and PIP2. The antagonist of this neuropeptide, (D-Phe12-Leu14)-bombesin, suppressed the increase in 32P-labelling of all phosphoinositides. Bombesin was without effect on cAMP dependent protein phosphorylation. The data indicate that bombesin activates the PI signalling system via specific receptors.

  6. Photoperiodic inhibition of testicular development is mediated by the pineal gland in white-footed mice

    SciTech Connect

    Johnston, P.G.; Boshes, M.; Zucker, I.

    1982-05-01

    White-footed mice were maintained in short or long photoperiods from birth to 60 days of age (10 h vs. 14 h of light per day). Testes weights and spermatogenesis were substantially reduced in short daylengths. Pinealectomy at 5-7 days of age eliminated the suppressive effect of photoperiod on the reproductive system. However, testicular development was not retarded in intact males kept from 25 to 60 days of age in short daylengths. Exposure to short daylengths prior to 25 days of age contributes to photoperiodic inhibition of testicular development. Removal of the pineal gland did not consistently affect gonadal maturation in long photoperiods. The pineal gland transduces the effects of short daylengths on reproductive development. Some effects of long daylengths on the neuroendocrine axis of white-footed mice may also be mediated by the pineal gland.

  7. Arterial vascularization of the pineal gland in the fetus of Zavot-bred cattle.

    PubMed

    Aslan, K; Ozcan, S; Aksoy, G; Kurtul, I; Dursun, N

    2003-04-01

    This study aimed at revealing arterial vascularization of the pineal gland of the Zavot-bred foetus. Twenty foetuses, regardless of their sex, at the age of 2-7 months were used. Coloured-latex was injected by way of both the right and left common carotid arteries. Then, dissection was performed and vessels nourishing the pineal gland were documented. The pineal gland is vascularized by a number of 2-5 central rami. A small vessel arising from each of the central rami in two foetuses (10%) was shown anastomosing with a branch of the cranial cerebral artery, which advances in cranio-caudal direction in the callosal groove. Hence, anastomoses were observed between several sub-branches of each caudal cerebral and cranial cerebellar arteries.

  8. 68Ga-DOTATATE uptake in pineal gland, a rare physiological variant: case series.

    PubMed

    Riaz, Saima; Syed, Rizwan; Skoura, Evangelia; Alshammari, Alshaima; Gaze, Mark; Sajjan, Rakesh; Halsey, Richard; Bomanji, Jamshed

    2015-11-01

    (68)Ga-DOTATATE PET-CT is widely used for the evaluation of neuroendocrine tumours. Knowledge of the physiological distribution of the radiotracer is of critical importance in characterizing focal areas of uptake. In this case series, we report three paediatric cases (average age 4.7 years ± 0.6 SD) with diagnosed advanced stage IV Neuroblastoma. Two had (68)Ga-DOTATATE PET-CT scans and one underwent (68)Ga-DOTATATE PET-MRI scan to assess for suitability of molecular therapy. Focal increased tracer uptake in the pineal gland was noted in all cases with no morphological abnormality on the corresponding CT and MRI scans. The uptake within the gland was thought to be a physiological variant rather than metastases owing to the heterogeneity of somatostatin receptors expression. The pineal gland has been reported to express somatostatin receptors. The physiological distribution of (68)Ga-DOTATATE uptake in the pineal gland is not routinely seen. Furthermore, the possibility of pineal meningioma is very unlikely as pineal meningiomas are very rare and there was no convincing morphological evidence of meningiomas on CT/MRI scan.

  9. [Pineal gland glutathione peroxidase activity in rats and its age-associated change].

    PubMed

    Razygraev, A V

    2010-01-01

    Glutathione peroxidase activity has been studied in the pineal gland (epiphysis) of young and aging female Wistar rats (2-4 and 17-19 month old). For comparison the same activity was studied in the pyramids of medulla oblongata and in the olfactory tubercle. These two brain structures represent white and gray matter respectively. The determination of the activity was performed with H2O2 as a substrate and with 5,5'-dithio-bis-(2-nitrobenzoic acid) for estimation of the decrease of restored form of glutathione concentration. The glutathione peroxidase activity was higher in the pineal gland than in the brain structures used. Pineal glutathione peroxidase activities (micromole of GSH per minute per milligram of protein, M +/- m) in young and old rats were 1,52 +/- 0,07 and 1,27 +/- 0,06 respectively (p<0,05). The potential reason for the declined enzymatic activity found in the aged rats is the age-associated decrease of the selenium content in the pineal gland. The decline found may be one of the reflections of the pineal gland functional involution.

  10. How important is stimulation of alpha-adrenoceptors for melatonin production in rat pineal glands?

    PubMed

    Tobin, V A; McCance, I; Coleman, H A; Parkington, H C

    2002-05-01

    The objective of this study was to determine the role of alpha-adrenoceptors in melatonin production by rat pineal gland. Pineal glands were isolated from adult male rats and maintained in organ baths. The perfusate was sampled every 5 min, stored, and later assayed for melatonin. Exposure to norepinephrine (10 microM) or the beta-adrenoceptor agonist orciprenaline (2-10 microM) increased the glands' production of melatonin. The time courses of melatonin production in response to these agonists were unaffected by the rats' pretreatment in vivo with the alpha-adrenoceptor antagonist prazosin (2 mg/kg i.p., three times). Rats that had had their superior cervical ganglia removed were primed with either orciprenaline (2 mg/kg i.p) or both orciprenaline and phenylephrine (1 mg/kg i.p) 1 hr before decapitation. Exposure of the pineal glands from these rats to orciprenaline evoked melatonin release that was similar in each group. These results lend weight to the suggestion that the marked potentiation by alpha-adrenoceptor agonists of the stimulation of cAMP and N-acetyltransferase (NAT) by beta-adrenoceptor agonists, demonstrated most readily in cultured glands or dispersed rat pinealocytes, does not carry over into significant augmentation of melatonin production in intact pineal glands.

  11. [Substrates and possible mechanisms of pineal gland moon-sensory function in context of redusome hypothesis of aging and control of biological time in ontogenesis].

    PubMed

    Ivanov, S V

    2008-01-01

    As a result of comparison of the normative factors on human pineal gland volume (8 age groups, n=411) with similar factors obtained in the days of the moon phase extremes (n=49) the following phenomena have been determined. As a rule all the moon phase extremes, in particular the new moon, are accompanied by an appreciable reduce of pineal gland volume, a sort of systole. These changes depend on the age factor. The results of the research advance indirect arguments for the redusome hypothesis of aging.

  12. RGS2 is a feedback inhibitor of melatonin production in the pineal gland.

    PubMed

    Matsuo, Masahiro; Coon, Steven L; Klein, David C

    2013-05-02

    The 24-h rhythmic production of melatonin by the pineal gland is essential for coordinating circadian physiology. Melatonin production increases at night in response to the release of norepinephrine from sympathetic nerve processes which innervate the pineal gland. This signal is transduced through G-protein-coupled adrenergic receptors. Here, we found that the abundance of regulator of G-protein signaling 2 (RGS2) increases at night, that expression is increased by norepinephrine and that this protein has a negative feedback effect on melatonin production. These data are consistent with the conclusion that RGS2 functions on a daily basis to negatively modulate melatonin production.

  13. Aicardi syndrome: an unusual case associated with pineal gland cyst and ventricular septal defect.

    PubMed

    Mutlu, Fatih Mehmet; Akin, Ridvan; Uysal, Yusuf; Unay, Bulent; Altinsoy, H Ibrahim; Bayraktar, M Zeki

    2006-12-01

    Aicardi syndrome is a cerebroretinal disorder consisting of a heterogeneous spectrum of clinical findings that includes the triad of infantile spasms, agenesis of the corpus callosum, and chorioretinal lacunae. This report describes a 6-month-old girl who has all of the essential features suggestive of Aicardi syndrome, as well as a pineal gland cyst and ventricular septal defect. Although the characteristic features of Aicardi syndrome have been described, its association with pineal gland cyst and ventricular septal defect has not been reported in the literature.

  14. Characterization of the Expression of Basigin Gene Products Within the Pineal Gland of Mice.

    PubMed

    Tokar, Derek; van Ekeris, Leslie; Linser, Paul J; Ochrietor, Judith D

    2016-11-04

    The expression of Basigin gene products and monocarboxylate transporter-1 (MCT1) has been investigated within the mammalian neural retina and suggests a role for these proteins in cellular metabolism within that tissue. The purpose of the present study was to investigate the expression of these same proteins in the pineal gland of the mouse brain. Mouse pineal gland and neural retina RNA and protein were subjected to quantitative reverse transcription-polymerase chain reaction and immunoblotting analyses. In addition, paraffin-embedded sections of each tissue were analyzed for expression of Basigin gene products and MCT1 via immunohistochemistry. The results indicate that MCT1 and Basigin variant-2, but not Basigin variant-1, are expressed within the mouse pineal gland. The expression of Basigin variant-2 and MCT1 was localized to the capsule surrounding the gland. The position and relative amounts of the gene products suggest that they play a much less prominent role within the pineal gland than in the neural retina.

  15. In silico genome wide mining of conserved and novel miRNAs in the brain and pineal gland of Danio rerio using small RNA sequencing data.

    PubMed

    Agarwal, Suyash; Nagpure, Naresh Sahebrao; Srivastava, Prachi; Kushwaha, Basdeo; Kumar, Ravindra; Pandey, Manmohan; Srivastava, Shreya

    2016-03-01

    MicroRNAs (miRNAs) are small, non-coding RNA molecules that bind to the mRNA of the target genes and regulate the expression of the gene at the post-transcriptional level. Zebrafish is an economically important freshwater fish species globally considered as a good predictive model for studying human diseases and development. The present study focused on uncovering known as well as novel miRNAs, target prediction of the novel miRNAs and the differential expression of the known miRNA using the small RNA sequencing data of the brain and pineal gland (dark and light treatments) obtained from NCBI SRA. A total of 165, 151 and 145 known zebrafish miRNAs were found in the brain, pineal gland (dark treatment) and pineal gland (light treatment), respectively. Chromosomes 4 and 5 of zebrafish reference assembly GRCz10 were found to contain maximum number of miR genes. The miR-181a and miR-182 were found to be highly expressed in terms of number of reads in the brain and pineal gland, respectively. Other ncRNAs, such as tRNA, rRNA and snoRNA, were curated against Rfam. Using GRCz10 as reference, the subsequent bioinformatic analyses identified 25, 19 and 9 novel miRNAs from the brain, pineal gland (dark treatment) and pineal gland (light treatment), respectively. Targets of the novel miRNAs were identified, based on sequence complementarity between miRNAs and mRNA, by searching for antisense hits in the 3'-UTR of reference RNA sequences of the zebrafish. The discovery of novel miRNAs and their targets in the zebrafish genome can be a valuable scientific resource for further functional studies not only in zebrafish but also in other economically important fishes.

  16. The pineal gland: A model for adrenergic modulation of ubiquitin ligases

    PubMed Central

    Liu, Wenjun; Reiter, Russel J.

    2017-01-01

    Introduction A recent study of the pineal gland of the rat found that the expression of more than 3000 genes showed significant day/night variations (The Hartley dataset). The investigators of this report made available a supplemental table in which they tabulated the expression of many genes that they did not discuss, including those coding for components of the ubiquitin proteasome system. Herein we identify the genes of the ubiquitin proteasome system whose expression were significantly influenced by environmental lighting in the Hartley dataset, those that were stimulated by DBcAMP in pineal glands in culture, and those that were stimulated by norepinephrine. Purpose Using the Ubiquitin and Ubiquitin-like Conjugation Database (UUCA) we identified ubiquitin ligases and conjugases, and deubiquitinases in the Hartley dataset for the purpose of determining whether expression of genes of the ubiquitin proteasome pathway were significantly influenced by day/night variations and if these variations were regulated by autonomic innervation of the pineal gland from the superior cervical ganglia. Methods In the Hartley experiments pineal glands groups of rats sacrificed during the day and groups sacrificed during the night were examined for gene expression. Additional groups of rats had their superior cervical ganglia removed surgically or surgically decentralized and the pineal glands likewise examined for gene expression. Results The genes with at least a 2-fold day/night significant difference in expression included genes for 5 ubiquitin conjugating enzymes, genes for 58 ubiquitin E3 ligases and genes for 6 deubiquitinases. A 35-fold day/night difference was noted in the expression of the gene Sik1, which codes for a protein containing both an ubiquitin binding domain (UBD) and an ubiquitin-associated (UBA) domain. Most of the significant differences in these genes were prevented by surgical removal, or disconnection, of the superior cervical ganglia, and most were

  17. Developmental and diurnal expression of the synaptosomal-associated protein 25 (Snap25) in the rat pineal gland.

    PubMed

    Karlsen, Anna S; Rath, Martin F; Rohde, Kristian; Toft, Trine; Møller, Morten

    2013-06-01

    Snap25 (synaptosomal-associated protein) is a 25 kDa protein, belonging to the SNARE-family (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) of proteins, essential for synaptic and secretory vesicle exocytosis. Snap25 has by immunohistochemistry been demonstrated in the rat pineal gland but the biological importance of this is unknown. In this study, we demonstrate a high expression of mRNA encoding Snap25 in all parts of the rat pineal complex, the superficial-, and deep-pineal gland, as well as in the pineal stalk. Snap25 showed a low pineal expression during embryonic stages with a strong increase in expression levels just after birth. The expression showed no day/night variations. Neither removal of the sympathetic input to the pineal gland by superior cervical ganglionectomy nor bilateral decentralization of the superior cervical ganglia significantly affected the expression of Snap25 in the gland. The pineal expression levels of Snap25 were not changed following intraperitoneal injection of isoproterenol. The strong expression of Snap25 in the pineal gland suggests the presence of secretory granules and microvesicles in the rat pinealocyte supporting the concept of a vesicular release. At the transcriptional level, this Snap25-based release mechanism does not exhibit any diurnal rhythmicity and is regulated independently of the sympathetic nervous input to the gland.

  18. NeuroD1: developmental expression and regulated genes in the rodent pineal gland.

    PubMed

    Muñoz, Estela M; Bailey, Michael J; Rath, Martin F; Shi, Qiong; Morin, Fabrice; Coon, Steven L; Møller, Morten; Klein, David C

    2007-08-01

    NeuroD1/BETA2, a member of the bHLH transcription factor family, is known to influence the fate of specific neuronal, endocrine and retinal cells. We report here that NeuroD1 mRNA is highly abundant in the developing and adult rat pineal gland. Pineal expression begins in the 17-day embryo at which time it is also detectable in other brain regions. Expression in the pineal gland increases during the embryonic period and is maintained thereafter at levels equivalent to those found in the cerebellum and retina. In contrast, NeuroD1 mRNA decreases markedly in non-cerebellar brain regions during development. Pineal NeuroD1 levels are similar during the day and night, and do not appear to be influenced by sympathetic neural input. Gene expression analysis of the pineal glands from neonatal NeuroD1 knockout mice identifies 127 transcripts that are down-regulated (>twofold, p < 0.05) and 16 that are up-regulated (>twofold, p < 0.05). According to quantitative RT-PCR, the most dramatically down-regulated gene is kinesin family member 5C ( approximately 100-fold) and the most dramatically up-regulated gene is glutamic acid decarboxylase 1 ( approximately fourfold). Other impacted transcripts encode proteins involved in differentiation, development, signal transduction and trafficking. These findings represent the first step toward elucidating the role of NeuroD1 in the rodent pinealocyte.

  19. A noradrenergic sensitive endogenous clock is present in the rat pineal gland.

    PubMed

    Wongchitrat, Prapimpun; Felder-Schmittbuhl, Marie-Paule; Govitrapong, Piyarat; Phansuwan-Pujito, Pansiri; Simonneaux, Valérie

    2011-01-01

    The aim of this study was to examine the occurrence of endogenous oscillations of Per1, Per2, Bmal1 and Rev-erbα genes in rat pineal explants and to investigate their regulation by adrenergic ligands. Our results show a significant and sustained rhythm of Per2,Bmal1 and Rev-erbα gene expression for up to 48 h in cultured pineal gland with a pattern similar to that observed in vivo. By contrast, the rhythms of Per1 and Aa-nat, the rate-limiting enzyme for melatonin synthesis, were strongly attenuated after 24 h in culture. Addition of the exogenous adrenergic agonist isoproterenol on cultured pineal glands induced a short-term increase in mRNA levels of Per1 and Aa-nat, but not those of Per2,Bmal1 and Rev-erbα. This study demonstrates that the rat pineal gland hosts a circadian oscillator as evidenced by the sustained, noradrenergic-independent, endogenous oscillations of Per2, Bmal1 and Rev-erbα mRNA levels in cultured tissues. Only expression of Per1 was stimulated by adrenergic ligands suggesting that, in vivo, the adrenergic input could synchronize the pineal clock by acting selectively on Per1.

  20. Daily rhythm and regulation of clock gene expression in the rat pineal gland.

    PubMed

    Simonneaux, V; Poirel, V-J; Garidou, M-L; Nguyen, D; Diaz-Rodriguez, E; Pévet, P

    2004-01-05

    Rhythms in pineal melatonin synthesis are controlled by the biological clock located in the suprachiasmatic nuclei. The endogenous clock oscillations rely upon genetic mechanisms involving clock genes coding for transcription factors working in negative and positive feedback loops. Most of these clock genes are expressed rhythmically in other tissues. Because of the peculiar role of the pineal gland in the photoneuroendocrine axis regulating biological rhythms, we studied whether clock genes are expressed in the rat pineal gland and how their expression is regulated.Per1, Per3, Cry2 and Cry1 clock genes are expressed in the pineal gland and their transcription is increased during the night. Analysis of the regulation of these pineal clock genes indicates that they may be categorized into two groups. Expression of Per1 and Cry2 genes shows the following features: (1) the 24 h rhythm persists, although damped, in constant darkness; (2) the nocturnal increase is abolished following light exposure or injection with a beta-adrenergic antagonist; and (3) the expression during daytime is stimulated by an injection with a beta-adrenergic agonist. In contrast, Per3 and Cry1 day and night mRNA levels are not responsive to adrenergic ligands (as previously reported for Per2) and daily expression of Per3 and Cry1 appears strongly damped or abolished in constant darkness. These data show that the expression of Per1 and Cry2 in the rat pineal gland is regulated by the clock-driven changes in norepinephrine, in a similar manner to the melatonin rhythm-generating enzyme arylalkylamine N-acetyltransferase. The expression of Per3 and Cry1 displays a daily rhythm not regulated by norepinephrine, suggesting the involvement of another day/night regulated transmitter(s).

  1. Insulin modulates norepinephrine-mediated melatonin synthesis in cultured rat pineal gland.

    PubMed

    Garcia, Rodrigo Antonio Peliciari; Afeche, Solange Castro; Scialfa, Julieta Helena; do Amaral, Fernanda Gaspar; dos Santos, Sabrina Heloísa José; Lima, Fabio Bessa; Young, Martin Elliot; Cipolla-Neto, José

    2008-01-02

    The mammalian pineal gland synthesizes melatonin in a circadian manner, peaking during the dark phase. This synthesis is primarily regulated by sympathetic innervations via noradrenergic fibers, but is also modulated by many peptidergic and hormonal systems. A growing number of studies reveal a complex role for melatonin in influencing various physiological processes, including modulation of insulin secretion and action. In contrast, a role for insulin as a modulator of melatonin synthesis has not been investigated previously. The aim of the current study was to determine whether insulin modulates norepinephrine (NE)-mediated melatonin synthesis. The results demonstrate that insulin (10(- 8)M) potentiated norepinephrine-mediated melatonin synthesis and tryptophan hydroxylase (TPOH) activity in ex vivo incubated pineal glands. When ex vivo incubated pineal glands were synchronized (12h NE-stimulation, followed by 12h incubation in the absence of NE), insulin potentiated NE-mediated melatonin synthesis and arylalkylamine-N-acetyltransferase (AANAT) activity. Insulin did not affect the activity of hydroxyindole-O-methyltranferase (HIOMT), nor the gene expression of tpoh, aanat, or hiomt, under any of the conditions investigated. We conclude that insulin potentiates NE-mediated melatonin synthesis in cultured rat pineal gland, potentially through post-transcriptional events.

  2. Proteomic analysis of day-night variations in protein levels in the rat pineal gland.

    PubMed

    Møller, Morten; Sparre, Thomas; Bache, Nicolai; Roepstorff, Peter; Vorum, Henrik

    2007-06-01

    The pineal gland secretes the hormone melatonin. This secretion exhibits a circadian rhythm with a zenith during night and a nadir during day. We have performed proteome analysis of the superficial pineal gland in rats during daytime and nighttime. The proteins were extracted and subjected to 2-DE. Of 1747 protein spots revealed by electrophoresis, densitometric analysis showed the up-regulation of 25 proteins during nighttime and of 35 proteins during daytime. Thirty-seven of the proteins were identified by MALDI-TOF MS. The proteins up-regulated during the night are involved in the Krebs cycle, energy transduction, calcium binding, and intracellular transport. During the daytime, enzymes involved in glycolysis, electron transport, and also the Krebs cycle were up-regulated as well as proteins taking part in RNA binding and RNA processing. Our data show a prominent day-night variation of the protein levels in the rat pineal gland. Some proteins are up-regulated during the night concomitant with the melatonin secretion of the gland. Other proteins are up-regulated during the day indicating a pineal metabolism not related to the melatonin synthesis.

  3. Rhodopsin expression in the zebrafish pineal gland from larval to adult stage.

    PubMed

    Magnoli, Domenico; Zichichi, Rosalia; Laurà, Rosaria; Guerrera, Maria Cristina; Campo, Salvatore; de Carlos, Felix; Suárez, Alberto Álvarez; Abbate, Francesco; Ciriaco, Emilia; Vega, Jose Antonio; Germanà, Antonino

    2012-03-09

    The zebrafish pineal gland plays an important role in different physiological functions including the regulation of the circadian clock. In the fish pineal gland the pinealocytes are made up of different segments: outer segment, inner segment and basal pole. Particularly, in the outer segment the rhodopsin participates in the external environment light reception that represents the first biochemical step in the melatonin production. It is well known that the rhodopsin in the adult zebrafish is well expressed in the pineal gland but both the expression and the cellular localization of this protein during development remain still unclear. In this study using qRT-PCR, sequencing and immunohistochemistry the expression as well as the protein localization of the rhodopsin in the zebrafish from larval (10 dpf) to adult stage (90 dpf) were demonstrated. The rhodopsin mRNA expression presents a peak of expression at 10 dpf, a further reduction to 50 dpf before increasing again in the adult stage. Moreover, the cellular localization of the rhodopsin-like protein was always localized in the pinealocyte at all ages examined. Our results demonstrated the involvement of the rhodopsin in the zebrafish pineal gland physiology particularly in the light capture during the zebrafish lifespan.

  4. Tryptophan hydroxylase is modulated by L-type calcium channels in the rat pineal gland.

    PubMed

    Barbosa, Roseli; Scialfa, Julieta Helena; Terra, Ilza Mingarini; Cipolla-Neto, José; Simonneaux, Valérie; Afeche, Solange Castro

    2008-02-27

    Calcium is an important second messenger in the rat pineal gland, as well as cAMP. They both contribute to melatonin synthesis mediated by the three main enzymes of the melatonin synthesis pathway: tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase. The cytosolic calcium is elevated in pinealocytes following alpha(1)-adrenergic stimulation, through IP(3)-and membrane calcium channels activation. Nifedipine, an L-type calcium channel blocker, reduces melatonin synthesis in rat pineal glands in vitro. With the purpose of investigating the mechanisms involved in melatonin synthesis regulation by the L-type calcium channel, we studied the effects of nifedipine on noradrenergic stimulated cultured rat pineal glands. Tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase activities were quantified by radiometric assays and 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin contents were quantified by HPLC with electrochemical detection. The data showed that calcium influx blockaded by nifedipine caused a decrease in tryptophan hydroxylase activity, but did not change either arylalkylamine N-acetyltransferase or hydroxyindole-O-methyltransferase activities. Moreover, there was a reduction of 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin intracellular content, as well as a reduction of serotonin and melatonin secretion. Thus, it seems that the calcium influx through L-type high voltage-activated calcium channels is essential for the full activation of tryptophan hydroxylase leading to melatonin synthesis in the pineal gland.

  5. Melatonin and pineal gland peptides are able to correct the impairment of reproductive cycles in rats.

    PubMed

    Arutjunyan, Alexander; Kozina, Ljudmila; Milyutina, Yulia; Korenevsky, Andrew; Stepanov, Michael; Arutyunov, Vladimir

    2012-12-01

    Catecholamines play an important role in the hypothalamic regulation of the synthesis and secretion of gonadotropin- releasing hormone, or gonadoliberin. We have shown that melatonin and the pineal gland peptides (epithalamine and epitalon) exert a correcting influence on the diurnal dynamics of norepinephrine (NE) in the medial preoptic area (MPA) and of dopamine (DA) in the median eminence with arcuate nuclei (ME-Arc) disturbed by single administration of the neurotoxic xenobiotic 1,2-dimethylhydrazine (DMH) in female rats. It has been found that experiments with DMH administration can be used as an animal model of female reproductive system premature aging. The investigation of epithalamine (a polypeptide preparation from the bovine pineal gland) effect on circadian rhythms disturbed by the neurotoxic compound DMH has shown a recovery of the diurnal dynamics of NE in MPA. In addition, NE was found to decrease from 9:30 till 11 o'clock, Circadian Time (CT), which was typical of control animals. Epitalon (Ala-Glu-Asp-Gly) proved to be more effective in ME-Arc. This peptide prevents the xenobiotic caused disturbance of DA diurnal rhythm, keeping this metabolite low at 5 o'clock (CT) with it having increased by 11 o'clock (CT). The data obtained suggest that the pineal gland is important for the circadian signal normalization needed for gonadoliberin surge on the day of proestrus. Melatonin and peptides of the pineal gland can be considered as effective protectors of female reproductive system from xenobiotics and premature aging.

  6. Insulin modulates norepinephrine-mediated melatonin synthesis in cultured rat pineal gland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mammalian pineal gland synthesizes melatonin in a circadian manner, peaking during the dark phase. This synthesis is primarily regulated by sympathetic innervations via noradrenergic fibers, but is also modulated by many peptidergic and hormonal systems. A growing number of studies reveal a comp...

  7. Control of the Rat Pineal Gland by Light Spectra

    PubMed Central

    Cardinali, Daniel P.; Larin, Frances; Wurtman, Richard J.

    1972-01-01

    Control of pineal hydroxyindole-O-methyl transferase (S-adenosylmethionine:N-acetylserotonin-O-methyl transferase; EC 2.1.1.4) by light spectra was determined by placing groups of rats previously housed in continuous darkness under one of seven light sources for 96 hr; rats were exposed to the same intensity of irradiation. Activity of the enzyme was lowest in rats maintained under green light (λ peak = 530 nm); blue and yellow light were somewhat less effective; red and ultraviolet light did not significantly lower the enzyme activity. The suppression of pineal hydroxyindole-O-methyl transferase by full-spectrum light sources could be correlated with the proportions of their spectral outputs in the blue-green-yellow range. These observations suggest that the retinal photopigment that mediates pineal responses to light in rats is rhodopsin or another compound with similar absorption properties. PMID:4506068

  8. Scanning electron microscopy of the superficial pineal gland of the 15-day-old rat (Rattus norvegicus).

    PubMed

    Ortiz, G G; García, J J; Feria-Velasco, A; Rosales-Corral, S A; Reiter, R J

    2004-06-01

    The presence of a cortex and medulla in the superficial pineal gland has been a controversial point in the morphology of this structure in mammals. The published reports indicate contradictory data especially in rodents. In this study the pineal gland of 15-day-old male rats (Rattus norvegicus) were studied, using scanning electron microscopy, in an attempt to determine whether or not a cortex and medulla are apparent in the pineal gland of young rats. The superficial pineal gland of the 15-day-old rat exhibited both a cortex and a medulla; these areas exhibited different structural organizations. The cortex had a thickness of 40-80 microm and the cells did not show a particular arrangement. The center of the gland was composed of a medulla, which had a width of 1000-1200 microm, and consisted of cells arranged in cords; its morphology was distinctly different from that of the cortex.

  9. Increased vascular permeability and nitric oxide production in response to hypoxia in the pineal gland.

    PubMed

    Kaur, C; Sivakumar, V; Lu, J; Ling, E A

    2007-04-01

    This study examined the factors that may be involved in altering the function of pineal gland in hypoxic conditions. Adult Wistar rats were subjected to hypoxia and the pineal gland was examined for the mRNA and protein expression of hypoxia-inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF), endothelial, neuronal and inducible nitric oxide synthase (eNOS, nNOS, iNOS) at 3 hr-14 days after hypoxic exposure by real time reverse transcription-polymerase chain reaction, Western blotting and immunohistochemistry. Upregulated mRNA and protein expression of HIF-1alpha, VEGF, eNOS, nNOS and iNOS was observed in response to hypoxia. VEGF concentrations as determined by enzyme immunoassay and nitric oxide (NO) production measured by colorimetric assay were significantly higher after hypoxic exposure when compared with the controls. Melatonin content of the pineal gland, as determined by ELISA, was significantly reduced after the hypoxic exposure. Dilated blood vessels expressing eNOS were observed in hypoxic rats. Cells immunoreactive for VEGF were identified as the astrocytes whereas those immunoreactive for iNOS were pinealocytes and macrophages. Our findings indicate that excess production of VEGF and NO in pineal gland in response to hypoxia may be involved in increased vascular permeability as evidenced by an enhanced leakage of rhodamine isothiocyanate (RhIC). The increased vascular permeability may allow free access of serum-derived substances in the pineal gland that may affect the secretory function of the pinealocytes. Administration of exogenous melatonin may be beneficial as it reduced VEGF concentration and NO production significantly in hypoxic rats, and leakage of RhIC was concomitantly reduced.

  10. Effects of 60-Hz electric fields on serotonin metabolism in the rat pineal gland

    SciTech Connect

    Anderson, L.E.; Hilton, D.I.; Phillips, R.D.; Wilson, B.W.; Chess, E.K.

    1982-06-01

    Serotonin and two of its metabolites, melatonin and 5-methoxytryptophol, exhibit circadian rhythmicity in the pineal gland. We recently reported a marked reduction in the normal night-time increase in melatonin concentration in the pineal glands of rats exposed to 60-Hz electric fields. Concomitant with the apparent abolition of melatonin rhythmicity, serotonin-N-acetyl transferase (SNAT) activity was suppressed. We have now conducted studies to determine if abolition of the rhythm in melatonin production in electric-field-exposed rats arises solely from interference in SNAT activity, or if the availability of pineal serotonin is a factor that is affected by exposure. Pineal serotonin concentrations were compared in rats that were either exposed or sham exposed to 65 kV/m for 30 days. Sham-exposed animals exhibited normal diurnal rhythmicity for pineal concentrations of both melatonin and serotonin; melatonin levels increased markedly during the dark phase with a concurrent decrease in serotonin levels. In the exposed animals, however, normal serotonin rhythmicity was abolished; serotonin levels in these animals did not increase during the light period. The conclusion that electric field exposure results in a biochemical alteration in SNAT enzyme activity can be inferred from the loss of both serotonin and melatonin rhythmicity, as well as by direct measurement of SNAT activity itself. 35 references, 3 figures, 1 table.

  11. Posttranslational regulation of TPH1 is responsible for the nightly surge of 5-HT output in the rat pineal gland.

    PubMed

    Huang, Zheping; Liu, Tiecheng; Chattoraj, Asamanja; Ahmed, Samreen; Wang, Michael M; Deng, Jie; Sun, Xing; Borjigin, Jimo

    2008-11-01

    Serotonin (5-hydroxytryptamine, 5-HT), a precursor for melatonin production, is produced abundantly in the pineal gland of all vertebrate animals. The synthesis of 5-HT in the pineal gland is rate limited by tryptophan hydroxylase 1 (TPH1) whose activity displays a twofold increase at night. Earlier studies from our laboratory demonstrate that pineal 5-HT secretion exhibits dynamic circadian rhythms with elevated levels during the early night, and that the increase is controlled by adrenergic signaling at night. In this study, we report that (a) 5-HT total output from the pineal gland and TPH1 protein levels both display diurnal rhythms with a twofold increase at night; (b) stimulation of cAMP signaling elevates 5-HT output in vivo; (c) 5-HT total output and TPH1 protein content in rat pineal gland are both acutely inhibited by light exposure at night. Consistent with these findings, molecular analysis of TPH1 protein revealed that (a) TPH1 is phosphorylated at the serine 58 in vitro and in the night pineal gland; and (b) phosphorylation of TPH1 at this residue is required for cAMP-enhanced TPH1 protein stability. These data support the model that increased nocturnal 5-HT synthesis in the pineal gland is mediated by the phosphorylation of TPH1 at the serine 58, which elevates the TPH1 protein content and activity at night.

  12. The effect of light on melatonin secretion in the cultured pineal glands of Anolis lizards.

    PubMed

    Moore, Ashli F; Menaker, Michael

    2011-10-01

    Melatonin, a hormone produced by the pineal gland, is important for regulating circadian rhythms in many animals. Light at night causes an acute suppression of melatonin in nearly all vertebrate species. A previous study found that light failed to suppress melatonin in the lizard Anolis carolinensis. This is a surprising result given that the Anolis pineal gland is intrinsically photosensitive, is a key pacemaker controlling locomotor activity, and can be directly entrained to a light-dark cycle. To find out if the lack of photic suppression is widespread in the Anolis genus, we investigated the acute effects of light on melatonin secretion in five different species of Anolis using flow-through tissue culture. We administered a two-hour pulse of bright light to isolated pineal glands during the night. The results show photic suppression of melatonin in all five Anolis species, but the suppression is weak relative to that seen in other vertebrates. Moreover, Anolis species differ in the magnitude of the effect. These findings are discussed in the context of vertebrate pineal evolution and the ecology of Anolis lizards. Given their extensive phylogenetic and ecological divergence, Anolis lizards provide a promising system for investigating the ecology and evolution of circadian organization.

  13. Influence of sleep deprivation coupled with administration of melatonin on the ultrastructure of rat pineal gland.

    PubMed

    Lan, C T; Hsu, J C; Ling, E A

    2001-08-10

    The effects of sleep deprivation with or without melatonin treatment on the pineal morphology in rats were studied. Five days after sleep deprivation and using electron microscopy, many of the pinealocytes exhibited structural alterations including dilation of the cisternae of the rough/smooth endoplasmic reticulum, Golgi saccules and mitochondria, and an increase in the numbers of lipid droplets, vacuoles and dense-core vesicles. These features were considered as morphological evidence of increased synthesis or secretion by the pineal gland. In addition, numerous membranous profiles, considered to be degraded cellular organelles, were observed in some pinealocytes and sympathetic nerve terminals. It is suggested that the occurrence of degenerating organelles had resulted from the deleterious effect of sleep deprivation. This may be attributed to an overload of secretory activity of the pineal gland during stress elicited by the long-term sleep deprivation, leading to functional exhaustion and irreversible damage of the oxidation-related organelles. In sleep-deprived rats receiving a single injection of melatonin (10 mg/kg) for 5 consecutive days, the above features indicative of pinealocytic activation were attenuated. In fact, all signs of degeneration of cellular organelles were rarely found. These results suggest that the pineal gland is itself a target for exogenously administered melatonin. Thus, melatonin when administered systemically may be used as a potential neuroprotective drug against neuronal damage induced by sleep deprivation.

  14. Prolonged treatment with glucocorticoid dexamethasone suppresses melatonin production by the chick pineal gland and retina.

    PubMed

    Zawilska, Jolanta B; Sadowska, Magdalena

    2002-01-01

    The chick pineal gland and retina synthesize melatonin in a circadian rhythm with high levels during the night. The rhythmic changes in the hormone production result predominantly from the fluctuation in the activity of serotonin N-acetyltransferase (AA-NAT), a penultimate and key regulatory enzyme in melatonin biosynthesis. The aim of this study was to analyze the effects of an acute and prolonged in vivo treatment with a glucocorticoid dexamethasone (4 mg/kg, ip) on the nocturnal increase in AA-NAT activity in chick pineal gland and retina. In acute experiments, dexamethasone (single dose)-injected chicks were killed after 2 h, while in prolonged experiments the glucocorticoid was given once daily for 7 days and the animals were killed 26-32 h after the last injection. Acute administration of dexamethasone did not affect AA-NAT activity in the chick pineal gland and retina. In the pineal glands and retinas of chicks that were treated with dexamethasone for one week and then killed at the end of the light phase of the 12:12 h light-dark cycle, AA-NAT activity was significantly higher than the enzyme activity found in tissues isolated from the vehicle-treated (control) animals. In addition to that, the nocturnal increase in pineal and, to a lower extent, retinal AA-NAT activity was significantly lower in dexamethasone-treated birds when compared with the respective control groups. It is suggested that prolonged treatment of animals with dexamethasone reduces the amplitude of the rhythmic melatonin production, a phenomenon which may affect chronobiological processes being under control of this hormone.

  15. Histone H3 phosphorylation in the rat pineal gland: adrenergic regulation and diurnal variation.

    PubMed

    Chik, C L; Arnason, T G; Dukewich, W G; Price, D M; Ranger, A; Ho, A K

    2007-04-01

    In this study, we investigated phosphorylation of Ser10 in histone H3 by norepinephrine (NE) in the rat pineal gland. In whole-animal studies, we demonstrated a marked increase in histone H3 phosphorylation in the rat pineal gland during the first half of the dark period. Exposure to light during this period caused a rapid decline in histone H3 phosphorylation with an estimated t1/2 of less than 15 min, indicating a high level of dephosphorylation activity. Corresponding studies in cultured pineal cells revealed that treatment with NE produced an increase in histone H3 phosphorylation that peaked between 2 and 3 h and declined rapidly by 4 h. The NE-induced histone H3 phosphorylation was blocked by cotreatment with propranolol or KT5720, a protein kinase A inhibitor, but not by prazosin or other kinase inhibitors. Moreover, only treatment with dibutyryl cAMP but not other kinase activators mimicked the effect of NE on histone H3 phosphorylation. The NE-stimulated H3 phosphorylation was markedly increased by cotreatment with a serine/threonine phosphatase inhibitor, tautomycin or okadaic acid, supporting a high level of ongoing histone H3 dephosphorylation activity. Together, our results indicate that histone H3 phosphorylation is a naturally occurring event at night in the rat pineal gland that is driven almost exclusively by a NE-->beta-adrenergic-->cAMP/protein kinase A signaling mechanism. This transient histone H3 phosphorylation probably reflects the nocturnal activation of multiple adrenergic-regulated genes in the rat pineal gland.

  16. Increased melatonin synthesis in pineal glands of rats in streptozotocin induced type 1 diabetes.

    PubMed

    Peschke, Elmar; Wolgast, Sabine; Bazwinsky, Ivonne; Pönicke, Klaus; Muhlbauer, Eckhard

    2008-11-01

    It is well-documented that melatonin influences insulin secretion. The effects are mediated by specific, high-affinity, pertussis-toxin-sensitive, G protein-coupled membrane receptors (MT(1) as well MT(2)), which are present in both the pancreatic tissue and islets of rats and humans, as well as in rat insulinoma cells (INS1). Via the Gi-protein-adenylatecyclase-3',5'-cyclic adenosine monophosphate (cAMP) and, possibly, the guanylatecyclase-cGMP pathways, melatonin decreases insulin secretion, whereas, by activating the Gq-protein-phospholipase C-IP(3) pathway, it has the opposite effect. For further analysis of the interactions between melatonin and insulin, diabetic rats were investigated with respect to melatonin synthesis in the pineal gland and plasma insulin levels. In this context, recent investigations have proven that type 2 diabetic rats and humans display decreased melatonin levels, whereas type 1 diabetic IDDM rats or those with diabetes induced by streptozotocin (STZ) of the present study show increased plasma melatonin levels and elevated AA-NAT-mRNA. Furthermore, the mRNA of pineal insulin receptors and beta1-adrenoceptors, including the clock genes Per1 and Bmal1 and the clock-controlled output gene Dbp, increases in both young and middle-aged STZ rats. The results therefore indicate that the decreased insulin levels in STZ-induced type 1 diabetes are associated with higher melatonin plasma levels. In good agreement with earlier investigations, it was shown that the elevated insulin levels observed in type 2 diabetes, are associated with decreased melatonin levels. The results thus prove that a melatonin-insulin antagonism exists. Astonishingly, notwithstanding the drastic metabolic disturbances in STZ-diabetic rats, the diurnal rhythms of the parameters investigated are maintained.

  17. Expression of Bcl-2 and Bax protein in normal pineal gland in children and young adult.

    PubMed

    Marcol, Wiesław; Kotulska, Katarzyna; Larysz-Brysz, Magdalena; Malinowska-Kołodziej, Izabela; Mandera, Marek; Lewin-Kowalik, Joanna

    2006-01-01

    The Bcl family contains both pro and antiapoptotic proteins participating in the regulation of neuronal cell death in several pathological conditions. However, very little is known about physiological profiles of Bcl-2/Bax expression in normal brain. In this study, we examined expression profile of Bcl-2 and Bax proteins in normal pineal gland in children. The material for analysis was obtained by biopsy of pineal parenchyma during surgery of pineal cysts. All specimens were labeled immunohistochemically and analyzed by means of confocal laser scanning microscope. We found only few Bcl-2 expressing (0.7%) and no Bax-immunopositive (0.0%) pinealocytes. Bcl-2-positive cells were mature neurons, neither young ones nor glia.

  18. Lack of effect of ghrelin treatment on melatonin production in rat pineal and Harderian glands.

    PubMed

    Djeridane, Yasmina; Touitou, Yvan

    2005-04-01

    The effects of ghrelin, a peptide hormone secreted from the stomach, on melatonin remain unknown. The aim of the study was to investigate possible ghrelin-melatonin interactions by studying the effect of ghrelin treatment on melatonin production in rat pineal and Harderian glands. Young (9 weeks) and old (20 months) male Wistar rats, maintained under a light:dark cycle regimen of 12:12, were assigned randomly to either a single subcutaneous (s.c.) injection of saline or ghrelin (1 microg/rat or 15 microg/rat) 1 h before sacrifice in the middle of the dark phase, or repeated s.c. saline or ghrelin injections (15 microg/rat), 3, 2 and 1 h before sacrificed in the middle of the dark phase. Neither ghrelin doses (1 microg/rat or 15 microg/rat) nor type of treatment (acute or repeated) influenced melatonin levels or the melatonin synthesizing enzymes N-acetyltransferase and hydroxyindole-O-methyltransferase activities, either in pineal gland or in Harderian glands. At the concentrations used, ghrelin does not influence melatonin production in rat pineal and Harderian glands, and therefore is not involved in the regulation of melatonin secretion, at least under our experimental conditions.

  19. Enantioselective micro-2D-HPLC determination of aspartic acid in the pineal glands of rodents with various melatonin contents.

    PubMed

    Han, Hai; Miyoshi, Yurika; Oyama, Tsubasa; Konishi, Ryoko; Mita, Masashi; Hamase, Kenji

    2011-10-01

    Enantioselective determination of aspartic acid (Asp) in the pineal gland of rodents with various melatonin contents was performed using a highly sensitive and selective two-dimensional HPLC system. After derivatization of the amino group with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), NBD-Asp was separated using a capillary monolithic ODS column in the first dimension. The fraction of NBD-Asp was automatically collected and transferred to the second dimension, and the D- and L-Asp were separated and determined using a narrowbore enantioselective column. Large amounts of D-Asp were observed in the pineal gland of the rats and specific strains of mice (C3H and CBA) possessing a high concentration of melatonin in their pineal gland. On the other hand, the amounts of D-Asp were small in the pineal gland of mice possessing a trace or no melatonin in their pineal gland (ddY, ICR, C57BL and BALB/c). In other tissues and physiological fluids, no significant strain-dependent changes of the D-Asp amounts were observed. These results indicate that large amounts of D-Asp are present only in the pineal gland containing large amounts of melatonin, and special care should be taken when selecting mouse strains for the investigation of D-Asp.

  20. Increased plasma ACTH in rats exposed to the elevated plus-maze is independent of the pineal gland.

    PubMed

    Appenrodt, E; Kröning, G; Schwarzberg, H

    1999-11-01

    The involvement of the pineal gland in activation of the hypothalamic-pituitary-adrenocortical (HPA) axis evoked by a stressful stimulus (exposure to the elevated plus-maze) was investigated. Plasma ACTH levels were measured in pinealectomized and pineal-intact rats (sham-operated and non-operated) immediately after a 5 min placement into a plus-maze. A statistically significant elevation in plasma ACTH was measured within all groups; however, no statistical differences between pinealectomized and pineal-intact rats were observed. Similarly, comparison of the plasma ACTH basal values obtained from animals only kept in their home cages did not reveal any statistical differences between pinealectomized and pineal-intact rats. From these results it can be concluded that the pineal gland is not involved in anxiety-related behavior and ACTH response.

  1. Interleukin-1 β Modulates Melatonin Secretion in Ovine Pineal Gland: Ex Vivo Study.

    PubMed

    Herman, A P; Bochenek, J; Skipor, J; Król, K; Krawczyńska, A; Antushevich, H; Pawlina, B; Marciniak, E; Tomaszewska-Zaremba, D

    2015-01-01

    The study was designed to determine the effect of proinflammatory cytokine, interleukin- (IL-) 1β, on melatonin release and expression enzymes essential for this hormone synthesis: arylalkylamine-N-acetyltransferase (AA-NAT) and hydroxyindole-O-methyltransferase (HIOMT) in ovine pineal gland, taking into account the immune status of animals before sacrificing. Ewes were injected by lipopolysaccharide (LPS; 400 ng/kg) or saline, two hours after sunset during short day period (December). Animals were euthanized three hours after the injection. Next, the pineal glands were collected and divided into four explants. The explants were incubated with (1) medium 199 (control explants), (2) norepinephrine (NE; 10 µM), (3) IL-1β (75 pg/mL), or (4) NE + IL-1β. It was found that IL-1β abolished (P < 0.05) NE-induced increase in melatonin release. Treatment with IL-1β also reduced (P < 0.05) expression of AA-NAT enzyme compared to NE-treated explants. There was no effect of NE or IL-1β treatment on gene expression of HIOMT; however, the pineal fragments isolated from LPS-treated animals were characterized by elevated (P < 0.05) expression of HIOMT mRNA and protein compared to the explants from saline-treated ewes. Our study proves that IL-1β suppresses melatonin secretion and its action seems to be targeted on the reduction of pineal AA-NAT protein expression.

  2. Adrenergic and cholinergic regulation of in vitro melatonin release during ontogeny in the pineal gland of Long Evans rats.

    PubMed

    Wagner, G; Brandstätter, R; Hermann, A

    2000-09-01

    Melatonin, produced by the pineal gland, plays an important role in a great variety of neuroendocrine functions. The rhythmic release of melatonin by the mammalian pineal gland is regulated by norepinephrine (NE) acting via alpha- and beta-adrenergic receptors utilizing distinct signal transduction pathways. Acetylcholine has been demonstrated to exert various effects in the mammalian pineal gland, including an inhibitory action on the NE-induced stimulation of melatonin production. However, data obtained by different laboratories on the interaction of adrenergic receptors are not consistent and whether muscarinic and/or nicotinic receptors participate in the various effects of acetylcholine is still contradictory. To investigate noradrenergic as well as cholinergic mechanisms during ontogeny, we have investigated in vitro melatonin release from isolated pineal glands of Long Evans rats of different ages. NE as well as the beta-adrenergic receptor agonist isoproterenol (ISO) significantly elevated the melatonin release in pineal glands from postnatal week 2 on. In pineal glands originating from 2- to 4-week-old rats, simultaneous activation of alpha- and beta-adrenergic receptors by ISO and the alpha-adrenergic receptor agonist methoxamine (MET) or NE resulted in significantly weaker stimulation of melatonin production than beta-receptor activation alone. Acetylcholine evoked a significant increase in melatonin release in pineal glands from 2- to 4-week-old rats. In pineal glands from 8- to 20-week-old animals, ISO, ISO + MET or NE stimulated pineal melatonin release to comparable maxima, whereas acetylcholine was without effect. Our data indicate (1) that the adrenergic stimulation of pineal melatonin production in Long Evans rats is dominated by a beta-adrenergic mechanism, (2) that additional alpha-adrenergic receptor activation is inhibitory and (3) dependent on the developmental status of the animal, and (4) that acetylcholine acting via muscarinic receptors

  3. Significant anti-tumor effect of bevacizumab in treatment of pineal gland glioblastoma multiforme.

    PubMed

    Mansour, Joshua; Fields, Braxton; Macomson, Samuel; Rixe, Olivier

    2014-12-01

    Glioblastoma multiforme (GBM) is the most aggressive subtype of malignant gliomas. Current standard treatment for GBM involves a combination of cytoreduction through surgical resection, followed by radiation with concomitant and adjuvant chemotherapy (temozolomide). The role of bevacizumab in the treatment of GBM continues to be a topic of ongoing research and debate. Despite aggressive treatment, these tumors remain undoubtedly fatal, especially in the elderly. Furthermore, tumors present in the pineal gland are extremely rare, accounting for only 0.1-0.4 % of all adult brain tumors, with this location adding to the complexity of treatment. We present a case of GBM, at the rare location of pineal gland, in an elderly patient who was refractory to initial standard of care treatment with radiation and concomitant and adjuvant temozolomide, but who developed a significant response to anti-angiogenic therapy using bevacizumab.

  4. The ontogenic expressions of multiple vesicular glutamate transporters during postnatal development of rat pineal gland.

    PubMed

    Yoshida, S; Ina, A; Konno, J; Wu, T; Shutoh, F; Nogami, H; Hisano, S

    2008-03-18

    The pineal gland expresses vesicular glutamate transporters 1 and 2 (VGLUT1 and VGLUT2), which are thought to transport glutamate into synaptic-like microvesicles in the pinealocytes. Recently, we reported that the rat pineal gland also expresses VGLUT1v which is a novel variant of VGLUT1 during the perinatal period. To explore the biological significance of these VGLUT expressions in pineal development, we studied the ontogeny of VGLUT in this gland by in situ hybridization, immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (RT-PCR) using rats. Histological analysis revealed that intensities of VGLUT1 hybridization signal and immunostaining drastically increase by postnatal day (P) 7, whereas VGLUT2 expression exhibits high levels of mRNA and protein at birth and decreases gradually from P7 onward. Quantitative RT-PCR analysis supported these histological observations, showing that expressions of VGLUT1 and VGLUT2 exhibit opposite patterns to each other. Coinciding with VGLUT1-upregulation, RT-PCR data showed that expressions of dynamin 1 and endophilin 1, which are factors predictably involved in the endocytotic recovery of VGLUT1-associated vesicle, are also increased by P7. Quantitative RT-PCR analysis of VGLUT1v demonstrated that its mRNA expression is upregulated by P7, kept at the same level until P14, and apparently decreased at P21, suggesting its functional property required for a certain developmental event. Moreover, a comparison of mRNA expressions at daytime and nighttime revealed that neither VGLUT1 nor VGLUT1v shows any difference in both P7 and P21 glands, whereas VGLUT2 is significantly lower at daytime than at nighttime at P21 but not P7, the time point at which the melatonin rhythm is not yet generated. The present study shows that expressions of these VGLUT types are differentially regulated during postnatal pineal development, each presumably participating in physiologically distinct glutamatergic functions.

  5. A rhythmic change of vesicular glutamate transporter (VGLUT) 2 expression in the rat pineal gland.

    PubMed

    Yoshida, Sachine; Hira, Yoshiki; Ehara, Ayuka; Mimura-Yamamoto, Yuka; Kawano, Michihiro; Shutoh, Fumihiro; Nogami, Haruo; Hisano, Setsuji

    2012-01-01

    The pineal gland secretes melatonin under circadian control via nocturnal noradrenergic stimulation, and expresses vesicular glutamate transporter (VGLUT) 1, VGLUT2 and a VGLUT1 splice variant (VGLUT1v). Although we previously reported that VGLUT2 mRNA level of rat pineal gland at postnatal day 21 is higher in the nighttime than in daytime, questions remained as to the time of postnatal onset of this phenomenon and a 24-h change in the mRNA or protein level at postnatal days. The day-night difference in VGLUT2 mRNA level was evident 14 days after birth. In the adult, VGLUT2 mRNA and protein levels increased in the dark phase, with the protein level showing a 6-h delay. The nocturnal elevation in VGLUT2 mRNA level diminished under the constant light condition but persisted under the constant dark condition. The present data suggest that VGLUT2 in the rat pineal gland is involved in some nocturnal glutamatergic function.

  6. Nocturnal headache associated with melatonin deficiency due to a pineal gland cyst.

    PubMed

    Karadaş, Omer; Ipekdal, Ilker H; Ulaş, Umit H; Odabaşi, Zeki

    2012-02-01

    The cyclic nature of some of headache disorders is closely related to melatonin, which is secreted by the pineal gland. We report a 29-year-old male patient with a 2.5-year history of headaches that woke him in the middle of the night. These headaches were pulsatile and continued until sunrise. During these attacks he also suffered from allodynia over the scalp, bilateral conjunctival hyperemia, and nervousness. His brain MRI showed a 5mm by 4mm neuroepithelial cyst in the pineal gland. The peak plasma melatonin level that was measured at 2 am was 28 pg/mL. The patient underwent oral melatonin treatment (6 mg/day). After 1 month he experienced a 70% reduction in his symptoms. When the melatonin dosage was increased to 10mg/day he became headache-free, and 5 months after the treatment began, had no complaints. His 5-month follow-up plasma melatonin level at 2 am was 61 pg/mL. To our knowledge this is the first report of a patient with nocturnal headache associated with a low level of melatonin due to a neuroepithelial cyst in the pineal gland.

  7. Functional development of the circadian clock in the zebrafish pineal gland.

    PubMed

    Ben-Moshe, Zohar; Foulkes, Nicholas S; Gothilf, Yoav

    2014-01-01

    The zebrafish constitutes a powerful model organism with unique advantages for investigating the vertebrate circadian timing system and its regulation by light. In particular, the remarkably early and rapid development of the zebrafish circadian system has facilitated exploring the factors that control the onset of circadian clock function during embryogenesis. Here, we review our understanding of the molecular basis underlying functional development of the central clock in the zebrafish pineal gland. Furthermore, we examine how the directly light-entrainable clocks in zebrafish cell lines have facilitated unravelling the general mechanisms underlying light-induced clock gene expression. Finally, we summarize how analysis of the light-induced transcriptome and miRNome of the zebrafish pineal gland has provided insight into the regulation of the circadian system by light, including the involvement of microRNAs in shaping the kinetics of light- and clock-regulated mRNA expression. The relative contributions of the pineal gland central clock and the distributed peripheral oscillators to the synchronization of circadian rhythms at the whole animal level are a crucial question that still remains to be elucidated in the zebrafish model.

  8. [The morphological response of the pineal gland of old animals on course of melatonin injections].

    PubMed

    Gubina-Vakulik, G I; Bondarenko, L A; Gevorkian, A R

    2009-01-01

    On the old (18-20 months) male rats of Wistar population the influence of the 10 days evening melatonin injections in physiological rang doses on morphological state pineal gland, was studied. It has been shown, that the course of melatonin injections to old rats brings appearance of histological pattern of pineal gland activation: increasing of area of pinealocytes nuclear and density of nuclear and cytoplasm with stein by hallocyanine on total nucleic acid that means stimulation to material both indole, and peptide nature production. Using of melatonin in dose 0.05 mg/kg mass of the body is sparing for pinealocytes of the old rats and slows the apoptosis processes on background of polyploidization. Using of melatonin in dose 0,5 mg/kg mass of the body causes cell's overstrain and induces the forced apoptosis. It's possible to suppose that the geroprotective effect of the evening injections of melatonin is increased due to stimulation of the biosynthesis of neuropeptides in pineal gland.

  9. Adrenergic inducibility of AP-1 binding in the rat pineal gland depends on prior photoperiod.

    PubMed

    Guillaumond, F; Becquet, D; Bosler, O; François-Bellan, A M

    2002-10-01

    The main known function of the pineal gland in mammals is the temporal synchronization of physiological rhythms to seasonal changes of day length (photoperiod). In rat, the transcription factor activating protein-1 (AP-1) displays a circadian rhythm in its DNA binding in the pineal gland, which results from the rhythmic expression of Fra-2. We postulated that, if AP-1 is an important component of pineal gland functioning, then variations in photoperiodic conditions should lead to an adaptation of the AP-1 binding rhythm. Here we show that AP-1 binding patterns adapt to variations in lighting conditions, in the same way as the rhythm of arylalkylamine-N-acetyltransferase (AA-NAT) activity. This adaptation appeared to result from photoperiodic adaptation of the rhythmic fra-2 gene expression and was reflected by an adapted delay between the onset of night and the acrophase of the nocturnal peak. We further showed that photoperiodic adaptation of both the AP-1 binding and AA-NAT activity rhythms resulted from adapted changes in adrenergic inducibility of both variables at night onset. We finally provided evidence that AP-1 shared with the CREM gene encoding the transcriptional repressor protein inducible cAMP early repressor (ICER) the ability to be hypersensitive or subsensitive to adrenergic stimuli, depending on prior photoperiod.

  10. Immunocytochemical characterization of Delta-opioid and Mu-opioid receptor protein in the bovine pineal gland.

    PubMed

    Phansuwan-Pujito, Pansiri; Ebadi, Manuchair; Govitrapong, Piyarat

    2006-01-01

    Opioidergic innervation has been identified in the mammalian pineal gland. Recently, opioid receptors in bovine pineal glands have been characterized; the activation of these receptors leads to the stimulation of melatonin synthesis. In this study, the precise localization of opioid receptors in bovine pineal glands was determined by an immunohistochemical technique using antibodies raised against delta-opioid and mu-opioid receptors. Immunoreactivity of these two receptors was present at a moderate level in pinealocytes. A double-labeling study has shown that delta-opioid receptors are localized predominantly with mu-opioid receptors in the same pinealocytes. These immunopositive pinealocytes are often located in a group; however, some of them are dispersed individually. In addition, both types of receptors were found in glial cells and processes. A small number of delta-receptor-immunoreactive nerve fibers were observed in the perivascular space and intraparenchyma of the pineal gland. Mu-opioid receptor immunoreactivity was found in a number of nerve fibers throughout the gland, and in terminal-like dots on pinealocytes. There was immunocolocalization between delta-opioid receptors or mu-opioid receptors and leu-enkephalin in some nerve fibers. The results of this study indicate that the modulatory effect of the opioid system on melatonin secretion in pineal glands might act via opioid receptors on pinealocytes, whereas receptors located on nerve fibers might modulate the release of opioid peptides.

  11. Descartes' pineal neuropsychology.

    PubMed

    Smith, C U

    1998-02-01

    The year 1996 marked the quattrocentenary of Descartes' birth. This paper reviews his pineal neuropsychology. It demonstrates that Descartes understood the true anatomical position of the pineal. His intraventricular pineal (or glande H) was a theoretical construct which allowed him to describe the operations of his man-like "earthen machine." In the Treatise of Man he shows how all the behaviors of such machines could then be accounted for without the presence of self-consciousness. Infrahuman animals are "conscious automata." In Passions of the Soul he adds, but only for humans, self-consciousness to the machine. In a modern formulation, only humans not only know but know that they know.

  12. Melatonin synthesis in the bovine pineal gland is regulated by type II cyclic AMP-dependent protein kinase.

    PubMed

    Maronde, E; Middendorff, R; Telgmann, R; Müller, D; Hemmings, B; Taskén, K; Olcese, J

    1997-02-01

    We investigated the expression of regulatory (R) and catalytic (C) subunits of cyclic AMP-dependent protein kinase (cAK; ATP:protein phosphotransferase; EC 2.7.1.37) in the bovine pineal gland. In total RNA extracts of bovine pineal glands moderate levels of RI alpha/RII beta and high levels of C alpha and C beta mRNA were found. We were able to detect a strong signal for RII and C subunit at the protein level, whereas RI was apparently absent. Probing sections of the intact bovine pineal gland with RI and RII antibodies stained only RII in pinealocytes. Pairs of cyclic AMP analogues complementing each other in activation of type II cAK, but not cAKI-directed analogue pairs, showed synergistic stimulation of melatonin synthesis. Moreover, melatonin synthesis stimulated by the physiological activator norepinephrine in pineal cell cultures was inhibited by cAK antagonists. Taken together these results show the presence of RII regulatory and both C alpha and C beta catalytic subunits and thus cAKII holoenzyme in the bovine pineal gland. The almost complete inhibition of norepinephrine-mediated melatonin synthesis by the cAK antagonists emphasizes the dominant role of cyclic AMP as the second messenger and cAK as the transducer in bovine pineal signal transduction.

  13. Seasonal postembryonic maturation of the diurnal rhythm of serotonin in the chicken pineal gland.

    PubMed

    Piesiewicz, Aneta; Kedzierska, Urszula; Turkowska, Elzbieta; Adamska, Iwona; Majewski, Pawel M

    2015-02-01

    Previously, we have demonstrated the postembryonic development of chicken (Gallus gallus domesticus L.) pineal gland functions expressed as changes in melatonin (MEL) biosynthesis. Pineal concentrations of MEL and its precursor serotonin (5-HT) were shown to increase between the 2nd and 16th day of life. We also found that levels of the mRNAs encoding the enzymes participating in the final two steps of MEL biosynthesis from 5-HT: arylalkylamine-N-acetyltransferase (AANAT) and hydroxyindole-O-methyltransferase (HIOMT), as well as their enzymatic activities, were raised during postembryonic development. Moreover, the manner of these changes was season-of-hatch dependent, even in animals kept under constant laboratory conditions (L:D 12:12). The most pronounced changes were seen in the concentrations of 5-HT and MEL, as well as in Aanat mRNA level and its enzymatic activity. The high daily variability in 5-HT content suggested that season- and age-dependent changes in the activity of the chicken pineal gland might rely on the availability of 5-HT, i.e. it may be limited by changes in pineal tryptophan (TRP) and/or 5-hydroxytryptophan (5-HTP) levels as well as by the activity of tryptophan hydroxylase (TPH) and aromatic l-amino acid decarboxylase (AADC): two enzymes participating in the conversion of TRP to 5-HT. The present study was undertaken with the following objectives: (1) to examine whether the pineal concentration of the 5-HT precursors TRP and 5-HTP exhibit age- and season-related changes; (2) to look for season-related differences in the transcription of the Tph1 and Ddc genes encoding enzymes TPH and AADC; (3) to identify the step(s) in postembryonic development in which these season-related variations in pineal gland function are most pronounced. Male Hy-line chickens hatched in the summer or winter, from eggs laid by hens held in L:D 16:8 conditions were kept from the day of hatch in L:D 12:12 conditions. At the age of 2 or 9 days, animals were sacrificed

  14. Analysis of daily and circadian gene expression in the rat pineal gland.

    PubMed

    Fukuhara, Chiaki; Tosini, Gianluca

    2008-02-01

    The mammalian pineal gland is an important component of the circadian system. In the present study, we examined the expression of roughly 8000 genes in the rat pineal gland as a function of time of day under light-dark (LD) cycles and in constant dark (DD) using oligo DNA microarray technique. We identified 47 and 13 genes that showed higher levels at night and day, respectively, under LD. The same patterns of expression were also observed in DD. About half of the genes that peaked at night have a known biological function, i.e., transcription factors and proteins that are involved in signaling cascades, whereas 14 are expressed sequence tags and 8 have an unknown biological function. Twelve of the genes that were up-regulated at night were also up-regulated after 1h NE stimulation, thus suggesting that the expression of these genes is controlled by adrenergic mechanisms. Of the 13 genes that were up-regulated in the daytime, 6 coded for proteins that are involved in intracellular signaling pathways. The results obtained with microarray analysis were well correlated with data obtained using real time quantitative RT-PCR. The present results provide new materials to dissect and understand the pineal physiology.

  15. (+)-N-allylnormetazocine enhances N-acetyltransferase activity and melatonin synthesis: preliminary evidence for a functional role of sigma receptors in the rat pineal gland.

    PubMed

    Steardo, L; Monteleone, P; d'Istria, M; Serino, I; Maj, M; Cuomo, V

    1995-11-01

    In the present study, to evaluate the role that sigma receptors play in the physiology of the pineal gland, we assessed the effects of the sigma receptor ligand (+)-N-allylnormetazocine on the gland activity during either the day or the night. As compared to saline, (+)-N-allylnormetazocine enhanced the physiological increases in both pineal N-acetyltransferase (NAT) activity and melatonin content at night, but it did not affect the biosynthetic activity of the gland during the day. Moreover, (+)-N-allylnormetazocine potentiated the enhancement of NAT activity and pineal melatonin content induced by isoproterenol administration during the day. The nocturnal stimulation of pineal NAT activity and melatonin levels by (+)-N-allylnormetazocine was prevented by pretreatment with rimcazole, a specific sigma receptor antagonist. These results demonstrate that sigma receptor activation by (+)-N-allylnormetazocine is not able, by itself, to stimulate pineal melatonin production, whereas it potentiates the biosynthetic activity of the pineal gland when this is stimulated noradrenergically.

  16. The contribution of the pineal gland on daily rhythms and masking in diurnal grass rats, Arvicanthis niloticus.

    PubMed

    Shuboni, Dorela D; Agha, Amna A; Groves, Thomas K H; Gall, Andrew J

    2016-07-01

    Melatonin is a hormone rhythmically secreted at night by the pineal gland in vertebrates. In diurnal mammals, melatonin is present during the inactive phase of the rest/activity cycle, and in primates it directly facilitates sleep and decreases body temperature. However, the role of the pineal gland for the promotion of sleep at night has not yet been studied in non-primate diurnal mammalian species. Here, the authors directly examined the hypothesis that the pineal gland contributes to diurnality in Nile grass rats by decreasing activity and increasing sleep at night, and that this could occur via effects on circadian mechanisms or masking, or both. Removing the pineal gland had no effect on the hourly distribution of activity across a 12:12 light-dark (LD) cycle or on the patterns of sleep-like behavior at night. Masking effects of light at night on activity were also not significantly different in pinealectomized and control grass rats, as 1h pulses of light stimulated increases in activity of sham and pinealectomized animals to a similar extent. In addition, the circadian regulation of activity was unaffected by the surgical condition of the animals. Our results suggest that the pineal gland does not contribute to diurnality in the grass rat, thus highlighting the complexity of temporal niche transitions. The current data raise interesting questions about how and why genetic and neural mechanisms linking melatonin to sleep regulatory systems might vary among mammals that reached a diurnal niche via parallel and independent pathways.

  17. The in vitro maintenance of clock genes expression within the rat pineal gland under standard and norepinephrine-synchronized stimulation.

    PubMed

    Andrade-Silva, Jéssica; Cipolla-Neto, José; Peliciari-Garcia, Rodrigo A

    2014-01-01

    Although the norepinephrine (NE) synchronization protocol was proved to be an important procedure for further modulating in vitro pineal melatonin synthesis, the maintenance of clock genes under the same conditions remained to be investigated. The aim of this study was to investigate the maintenance of the clock genes expression in pineal gland cultures under standard and NE-synchronized stimulation. The glands were separated into three experimental groups: Control, Standard (acute NE-stimulation), and NE-synchronized. The expression of Bmal1, Per2, Cry2, Rev-erbα, the clock controlled gene Dbp and Arylalkylamine-N-acetyltransferase were investigated, as well as melatonin content. No oscillations were observed in the expression of the investigated genes from the control group. Under Standard NE stimulation, the clock genes did not exhibit a rhythmic pattern of expression. However, in the NE-synchronized condition, a rhythmic expression pattern was observed in all cases. An enhancement in pineal gland responsiveness to NE stimulation, reflected in an advanced synthesis of melatonin was also observed. Our results reinforce our previous hypothesis that NE synchronization of pineal gland culture mimics the natural rhythmic release of NE in the gland, increasing melatonin synthesis and keeping the pineal circadian clock synchronized, ensuring the fine adjustments that are relied in the clockwork machinery.

  18. Adrenoceptor expression and diurnal rhythms of melatonin and its precursors in the pineal gland of type 2 diabetic goto-kakizaki rats.

    PubMed

    Bach, Andreas Gunter; Mühlbauer, Eckhard; Peschke, Elmar

    2010-06-01

    A decrease in the nighttime release of the pineal hormone melatonin is associated with aging and chronic diseases in animals an humans. Melatonin has a protective role in type 2 diabetes; however, its synthesis itself is affected in the disease. The aim of this study was to detect crucially impaired steps in the pineal melatonin synthesis of type 2 diabetic Goto-Kakizaki (GK) rats. Therefore, plasma melatonin concentrations and the pineal content of melatonin and its precursors (tryptophan, 5-hydroxytryptophan, serotonin, and N-acetylserotonin) were quantified in GK rats compared with Wistar rats (each group 8 and 50 wk old) in a diurnal manner (four animals per group and per time point). Additionally, the expression of pineal adrenoceptor subtype mRNA was investigated. We found that in diabetic GK rats, 1) inhibitory alpha-2-adrenoceptors are significantly more strongly expressed than in Wistar rats, 2) the formation of 5-hydroxytryptophan is crucially impaired, and 3) the pineal gland protein content is significantly reduced compared with that in Wistar rats. This is the first time that melatonin synthesis is examined in a type 2 diabetic rat model in a diurnal manner. The present data unveil several reasons for a reduced melatonin secretion in diabetic animals and present an important link in the interaction between melatonin and insulin.

  19. Expression of the Otx2 homeobox gene in the developing mammalian brain: embryonic and adult expression in the pineal gland.

    PubMed

    Rath, Martin F; Muñoz, Estela; Ganguly, Surajit; Morin, Fabrice; Shi, Qiong; Klein, David C; Møller, Morten

    2006-04-01

    Otx2 is a vertebrate homeobox gene, which has been found to be essential for the development of rostral brain regions and appears to play a role in the development of retinal photoreceptor cells and pinealocytes. In this study, the temporal expression pattern of Otx2 was revealed in the rat brain, with special emphasis on the pineal gland throughout late embryonic and postnatal stages. Widespread high expression of Otx2 in the embryonic brain becomes progressively restricted in the adult to the pineal gland. Crx (cone-rod homeobox), a downstream target gene of Otx2, showed a pineal expression pattern similar to that of Otx2, although there was a distinct lag in time of onset. Otx2 protein was identified in pineal extracts and found to be localized in pinealocytes. Total pineal Otx2 mRNA did not show day-night variation, nor was it influenced by removal of the sympathetic input, indicating that the level of Otx2 mRNA appears to be independent of the photoneural input to the gland. Our results are consistent with the view that pineal expression of Otx2 is required for development and we hypothesize that it plays a role in the adult in controlling the expression of the cluster of genes associated with phototransduction and melatonin synthesis.

  20. Alpha-2 adrenergic activity of bromocriptine and quinpirole in chicken pineal gland. Effects on melatonin synthesis and ( sup 3 H)rauwolscine binding

    SciTech Connect

    Zawilska, J.; Iuvone, P.M. )

    1990-12-01

    In the pineal gland and retina of chickens, serotonin N-acetyl-transferase (NAT) activity and melatonin content are modulated by different receptors, alpha-2 adrenergic receptors in pineal gland and D2-dopamine receptors in retina. The effect of two D2-dopamine receptor agonists, bromocriptine and quinpirole (LY 171555), on melatonin synthesis in these tissues was investigated. Systemic administrations of bromocriptine and quinpirole decreased nocturnal NAT activity and melatonin content of both pineal gland and retina. Bromocriptine was equipotent in the two tissues, whereas quinpirole was approximately 100-fold more potent in retina than in pineal gland. In pineal gland, the suppressive effects of bromocriptine and quinpirole on NAT activity were blocked by yohimbine, a selective alpha-2 adrenergic receptor antagonist, but not by spiperone, a D2-dopamine receptor antagonist. In contrast, bromocriptine- and quinpirole-induced decreases of the enzyme activity in retina were antagonized by spiperone, and not affected by yohimbine. The nocturnal increase of NAT activity of pineal glands in vitro was inhibited with an order of potency clonidine greater than bromocriptine greater than quinpirole. Additionally, bromocriptine and quinpirole displaced the specific binding of (3H)rauwolscine, an alpha-2 adrenergic receptor antagonist, to membranes from chicken pineal gland, with potencies comparable to those observed for inhibition of NAT activity in vitro. It is suggested that bromocriptine and quinpirole, in addition to their D2-dopaminergic activity, can stimulate alpha-2 adrenergic receptors in pineal gland of chicken.

  1. Adenosine triphosphate inhibits melatonin synthesis in the rat pineal gland.

    PubMed

    Souza-Teodoro, Luis Henrique; Dargenio-Garcia, Letícia; Petrilli-Lapa, Camila Lopes; Souza, Ewerton da Silva; Fernandes, Pedro A C M; Markus, Regina P; Ferreira, Zulma S

    2016-03-01

    Adenosine triphosphate (ATP) is released onto the pinealocyte, along with noradrenaline, from sympathetic neurons and triggers P2Y1 receptors that enhance β-adrenergic-induced N-acetylserotonin (NAS) synthesis. Nevertheless, the biotransformation of NAS into melatonin, which occurs due to the subsequent methylation by acetylserotonin O-methyltransferase (ASMT; EC 2.1.1.4), has not yet been evaluated in the presence of purinergic stimulation. We therefore evaluated the effects of purinergic signaling on melatonin synthesis induced by β-adrenergic stimulation. ATP increased NAS levels, but, surprisingly, inhibited melatonin synthesis in an inverse, concentration-dependent manner. Our results demonstrate that enhanced NAS levels, which depend on phospholipase C (PLC) activity (but not the induction of gene transcription), are a post-translational effect. By contrast, melatonin reduction is related to an ASMT inhibition of expression at both the gene transcription and protein levels. These results were independent of nuclear factor-kappa B (NF-kB) translocation. Neither the P2Y1 receptor activation nor the PLC-mediated pathway was involved in the decrease in melatonin, indicating that ATP regulates pineal metabolism through different mechanisms. Taken together, our data demonstrate that purinergic signaling differentially modulates NAS and melatonin synthesis and point to a regulatory role for ATP as a cotransmitter in the control of ASMT, the rate-limiting enzyme in melatonin synthesis. The endogenous production of melatonin regulates defense responses; therefore, understanding the mechanisms involving ASMT regulation might provide novel insights into the development and progression of neurological disorders since melatonin presents anti-inflammatory, neuroprotective, and neurogenic effects.

  2. Cyclic AMP-inducible genes respond uniformly to seasonal lighting conditions in the rat pineal gland.

    PubMed

    Spessert, R; Gupta, B B P; Rohleder, N; Gerhold, S; Engel, L

    2006-12-01

    The encoding of photoperiodic information ensues in terms of the daily profile in the expression of cyclic AMP (cAMP)-inducible genes such as the arylalkylamine N-acetyltransferase (AA-NAT) gene that encodes the rate-limiting enzyme in melatonin formation. In the present study, we compared the influence of the photoperiodic history on the cAMP-inducible genes AA-NAT, inducible cyclic AMP early repressor (ICER), fos-related antigen-2 (FRA-2), mitogen-activated protein kinase phosphatase-1 (MKP-1), nerve growth factor inducible gene-A (NGFI-A) and nerve growth factor inducible gene-B (NGFI-B) in the pineal gland of rats. For this purpose, we monitored the daily profiles of each gene in the same pineal gland under a long (light/dark 16:8) and a short (light/dark 8:16) photoperiod by measuring the respective mRNA amounts by real-time polymerase chain reaction analysis. We found that, for all genes under investigation, the duration of increased nocturnal expression is lengthened and, in relation to light onset, the nocturnal rise is earlier under the long photoperiod (light/dark 16:8). Furthermore, with the exception of ICER, all other cAMP-inducible genes tend to display higher maximum expression under light/dark 8:16 than under light/dark 16:8. Photoperiod-dependent changes persist for all of the cAMP-inducible genes when the rats are kept for two cycles under constant darkness. Therefore, all cAMP-inducible genes are also influenced by the photoperiod of prior entrained cycles. Our study indicates that, despite differences regarding the expressional control and the temporal phasing of the daily profile, cAMP-inducible genes are uniformly influenced by photoperiodic history in the rat pineal gland.

  3. Gliosarcomas arising from the pineal gland region: uncommon localization and rare tumors.

    PubMed

    Sugita, Yasuo; Terasaki, Mizuhiko; Tanigawa, Ken; Ohshima, Koichi; Morioka, Motohiro; Higaki, Koichi; Nakagawa, Setsuko; Shimokawa, Shoko; Nakashima, Susumu

    2016-02-01

    Gliosarcomas are a variant of glioblastomas and present a biphasic pattern, with coexisting glial and mesenchymal components. In this study, two unusual cases are presented. Case 1 is a 52-year-old woman with a headache and memory disturbance for a month. Case 2 is an 18-year-old man with a headache lasting two weeks. In both cases, an MRI revealed enhancing T1-low to iso, T2-iso to high intensity lesions in the pineal gland region. Histologically, in case 1, the tumor showed spindle cell proliferation with disorganized fascicles and cellular pleomorphism. Tumor cells variously exhibited oncocytic transformation. Immunohistochemically, most of the spindle tumor cells were positive for myoglobin and desmin. Some of the tumor cells were positive for GFAP and S-100 protein. On the other hand, all tumor cells were positive for CD133, Musashi1, and SOX-2 which are the markers of neural stem cells. In case 2, the tumor showed monotonous proliferation of short spindle cells with disorganized fascicles and cellular atypism. The morphological distinction between glial and mesenchymal components was not apparent. Immunohistochemically, most of the spindle tumor cells were positive for desmin. Glial tumor cells that were dispersed within the sarcoma as single cells were positive for GFAP. In addition, all tumor cells were positive for CD133, Musashi1 and SOX-2. Based on these microscopic appearances, and immunohistochemical findings, these cases were diagnosed as gliosarcomas arising from the pineal gland region. These results also indicated that pluripotential cancer stem cells differentiated into glial and muscle cell lines at the time of tumor growth. In a survey of previous publications on gliosarcoma arising from the pineal gland, these cases are the second and third reports found in English scientific writings.

  4. Embryonic development of the bovine pineal gland (Bos taurus) during prenatal life (30 to 135 days of gestation).

    PubMed

    Regodón, S; Roncero, V

    2005-10-01

    The ontogenesis of the pineal gland of 30 bovine embryos (Bos taurus) has been analysed from 30 until 135 days of gestation by means of optical microscopy and immunohistochemical techniques. For this study, the specimens were grouped into three stages in accordance with the most relevant histological characteristics: Stage 1 (30 to 64 days of prenatal development); Stage 2 (70 to 90 days) and Stage 3 (106 to 135 days). In the cow, it is from 30 days of gestation that the first glandular outline becomes differentiated from the diencephalic ependyma of the third ventricle. This differentiation includes the phenomena of proliferation and multiplication of the ependymal cells that form the epithelium of the pineal outline in development. At 82 days of intrauterine life, in the interior of the pineal parenchyma, we witnessed some incipient pseudoglandular structures that at 135 days were well differentiated. The pineal parenchyma displays a cytology made up of two cellular types of structurally distinct characteristics: pinealoblasts and interstitial cells. Both cellular types begin differentiation at 70 days of embryonic development, the pinealoblasts being greater in number than the interstitial cells. The glandular stroma is formed from the capsular, trabecular and the perivascular connective tissue, filling the interparenchymal space. A dense network of capillaries, which drive across the trabecular connective tissue towards the central glandular zone where their density increases and their calibre is reduced, complete the glandular structure. GFAP positive cells were observed in the embryonic pineal parenchyma in stage 3. At 135 days of gestation, NPY positive fibers entered the pineal gland through the pineal capsule occupying a perivascular localization. Morphological studies of this nature are vital for future use as parameters, indicative of the functional activity of the bovine pineal gland during embryonic development.

  5. Hypocretin (orexin) in the rat pineal gland: a central transmitter with effects on noradrenaline-induced release of melatonin.

    PubMed

    Mikkelsen, J D; Hauser, F; deLecea, L; Sutcliffe, J G; Kilduff, T S; Calgari, C; Pévet, P; Simonneaux, V

    2001-08-01

    Hypocretin-1 (HCRT-1) and hypocretin 2 (HCRT-2), also known as orexin-A and orexin-B, are two neuropeptides derived from the same precursor. Hypocretinergic neurons have been found exclusively in the hypothalamic dorsolateral area. These neurons are implicated in sleep and feeding through activation of specific G-protein-coupled orexin-1 and orexin-2 receptor (OR-R1 and OR-R2). The purpose of this study was to determine the existence of the HCRT peptides in the central input of the rat pineal gland. Further, OR-R1 and OR-R2 expression was determined in the pineal gland and the effect of HCRT-2 on melatonin synthesis and secretion was analysed in dissociated rat pinealocytes. A large contingent of HCRT-positive nerve fibres and terminals were observed in the epithalamus, many of which entered into the pineal parenchyma. A significant number of nerve fibres endowed with positive boutons were identified in the pineal stalk, though the number of positive fibres decreased along the extension of the stalk. So far, no positive fibres have been found in the superficial pineal gland. RT-PCR analysis revealed the expression of OR-R2 mRNA, whereas OR-R1-receptor mRNA was not detected. When tested alone, HCRT-2 had no effect on secretion of melatonin from cultured rat pinealocytes. However, HCRT-2 partially inhibited (by a maximum of 30%) the beta-adrenergic-induced melatonin secretion. The same effect was seen on activation of N-acetyltransferase activity. The distribution and the large number of HCRT-positive fibres together with the effect on noradrenaline-mediated melatonin release through specific receptors suggests that these peptides may be significant central transmitters in pineal function, probably mediating homeostatic signals to the pineal gland.

  6. Daily Aa-nat gene expression in the camel (Camelus dromedarius) pineal gland.

    PubMed

    El Allali, Khalid; Sinitskaya, Natalia; Bothorel, Béatrice; Achaaban, Rachid; Pévet, Paul; Simonneaux, Valérie

    2008-09-01

    Arylalkylamine N-acetyltransferase (AA-NAT) is the rhythm-generating enzyme for the synthesis of pineal melatonin. Molecular investigations have revealed two biological models for the activation of AA-NAT. In rodent species, Aa-nat gene transcription is turned off during the daytime and markedly activated at night. In primates, sheep, and cows, the Aa-nat gene is constitutively transcripted with no visible daily variations. This inter-species difference in Aa-nat gene regulation leads to different daily profiles in melatonin synthesis and release. Thus, the nighttime onset of the rise in circulating melatonin is delayed and slow in rodents, whereas it is fast and sharp in sheep. In the camel (Camelus dromedarius), we have observed that circulating melatonin rises immediately after sunset, suggesting AA-NAT activity is regulated at the post-transcriptional level. In agreement with this hypothesis, we report herein the amount of Aa-nat mRNA in the camel pineal gland is high, during both the day and night with no daily variations, while melatonin concentration in the same pineal tissue is five times higher during the night than daytime.

  7. Photoperiodism as a modifier of effect of extremely low-frequency electromagnetic field on morphological properties of pineal gland.

    PubMed

    Lukac, Tamara; Matavulj, Amela; Matavulj, Milica; Rajković, Vesna; Lazetić, Bogosav

    2006-08-01

    The aim of our study was to determine, using histological and stereological methods, whether photoperiodism has any impact on the effects that chronic (three-month long) exposure to LF-EMF (50Hz) has on morphological characteristics on rat's pineal gland. The experiment was performed on 48 Mill Hill male rats (24 experimental and 24 control). Upon birth, 24 rats were exposed for 7h a day, 5 days a week for 3 months to LF-EMF (50 Hz, 50-500microT, 10V/m). In the winter (short days, long nights), the activity of the pineal gland and neuroendocrine sensitivity is increased. The study was performed both during summer and winter, following the identical protocol. After sacrifice of animals, samples of pineal gland were processed for HE staining and then were analyzed using the methods of stereology. The most significant changes in epiphysis in the first group of animals in wintertime are: altered glandular feature, hyperemia, reduced pinealocytes with pale pink, poor cytoplasm and irregular, stick-form nuclei. In the second group (II) pinealocytes are enlarged, with vacuolated cytoplasm and hyper chromatic, enlarged nucleus. Morphological changes of pineal gland at rats in the summertime were not as intense as in the winter and finding of the gland in the group II is compatible with those from the control group. Stereological results show both in winter and summer in the first group the decrease of volume density of pinealocytes, their cytoplasm and nuclei and in the second group in winter increase the volume density of pinealocytes, cytoplasm and nuclei, while in the second group the results in summertime are equal to those from the control group. Photoperiodism is modifier of effect of LF-EMF on morphological structure of pineal gland, because the gland recovery is incomplete in winter and reversible in summer.

  8. Arginine vasotocin activates phosphoinositide signal transduction system and potentiates N-acetyltransferase activity in the rat pineal gland.

    PubMed

    Novotná, R; Jác, M; Hájek, I; Novotný, I

    1999-03-05

    The pineal gland is innervated by pinealopetal peptidergic fibers originating in the hypothalamic nuclei which release arginine vasopressin (AVP) and arginine vasotocin (AVT) from their endings. Since the mechanism of AVT action on the pineal signal transduction and melatonin synthesis has not been determined so far, we examined the effect of AVT on the phosphoinositide signalling system and the N-acetyltransferase (NAT) activity in the rat pineal gland. The effect of AVP 4-9 fragment and AVP analogue desmopressin was also tested. The phosphoinositide signalling system was studied by measuring 32P labelling of phosphatidylinositol (PI), phosphatidylinositol phosphate (PIP) and phosphatidylinositol bisphosphate (PIP2) which reflects PI cycle activation. AVT (10(-5) and 10(-4) M) induced a significant increase in 32P labelling of PI, PIP and PIP2. The AVT mediated activation of the PI signal cascade was supressed by the vasopressin V1 receptor antagonist. The desmopressin and AVP 4-9 fragment were without the effect on PI signalling. To assess the AVT role in the melatonin synthesis we studied the daily pattern of the pineal NAT activity in rats treated by AVT (10 microg/100 g b.w). AVT application in the dark period of the day significantly increased nocturnal NAT activity. It can be summarized that AVT activates PI signalling system and potentiates NAT activity in the rat pineal gland.

  9. Pineal gland: influence on gonads of male rats treated with androgen 3 days after birth.

    PubMed

    Reiter, R J; Hoffman, J C; Rubin, P H

    1968-04-26

    Either blinding or the injection of 1 milligram of testosterone propionate into male Sprague-Dawley rats, 3 days old, results in testes and accessory organs (seminal vesicles and coagulating glands) that are smaller than normal when the rats are 72 days old. The response to blinding is prevented by removal of the pineal gland, whereas the response to treatment with testosterone is unaffected by pinealectomy. Combination of the two treatments in 3-day- old rats causes testes to be less than one-third their normal size at 72 days of age; pinealectomy in these rats permits the reproductive organs to grow to the same size as those in the androgen-treated animals.

  10. Seasonal variations of gonadotropins and prolactin in the laboratory rat. Role of maternal pineal gland.

    PubMed

    Vázquez, N; Díaz, E; Fernández, C; Jiménez, V; Esquifino, A; Díaz, B

    2007-01-01

    The laboratory rat, a non-photoperiodic rodent, exhibits seasonal fluctuations of melatonin. Melatonin has been found to be readily transferred from the maternal to the fetal circulation. No data exist on the possible influence of maternal pineal gland upon seasonal variations of the offspring. The aim of the present study was to asses the influence of the maternal melatonin rhythm on the offspring postnatal development of the reproductive hormones LH, FSH and prolactin. Male offspring from control, pinealectomized (PIN-X) and PIN-X + melatonin (PIN-X+MEL) mother Wistar rats were studied at 21, 31, and 60 days of age. Seasonal age-dependent variations were found for all hormones studied in control offspring but PIN-X offspring showed a tendency to have reduced duration or altered seasonal variations. Maternal melatonin treatment to PIN-X mothers partially restored the effect of pinealectomy. The chronological study of LH, FSH, and prolactin in PIN-X offspring also showed an altered pattern as compared to control-offspring. Melatonin treatment to the mothers partially restored the developmental pattern of reproductive hormones. Results of this study indicate that maternal pineal gland of the laboratory rat is involved in the seasonal postnatal development variations of reproductive hormones of the offspring.

  11. Circadian dynamics of the cone-rod homeobox (CRX) transcription factor in the rat pineal gland and its role in regulation of arylalkylamine N-acetyltransferase (AANAT).

    PubMed

    Rohde, Kristian; Rovsing, Louise; Ho, Anthony K; Møller, Morten; Rath, Martin F

    2014-08-01

    The cone-rod homeobox (Crx) gene encodes a transcription factor in the retina and pineal gland. Crx deficiency influences the pineal transcriptome, including a reduced expression of arylalkylamine N-acetyltransferase (Aanat), a key enzyme in nocturnal pineal melatonin production. However, previous functional studies on pineal Crx have been performed in melatonin-deficient mice. In this study, we have investigated the role of Crx in the melatonin-proficient rat pineal gland. The current study shows that pineal Crx transcript levels exhibit a circadian rhythm with a peak in the middle of the night, which is transferred into daily changes in CRX protein. The study further shows that the sympathetic innervation of the pineal gland controls the Crx rhythm. By use of adenovirus-mediated short hairpin RNA gene knockdown targeting Crx mRNA in primary rat pinealocyte cell culture, we here show that intact levels of Crx mRNA are required to obtain high levels of Aanat expression, whereas overexpression of Crx induces Aanat transcription in vitro. This regulatory function of Crx is further supported by circadian analysis of Aanat in the pineal gland of the Crx-knockout mouse. Our data indicate that the rhythmic nature of pineal CRX protein may directly modulate the daily profile of Aanat expression by inducing nighttime expression of this enzyme, thus facilitating nocturnal melatonin synthesis in addition to its role in ensuring a correct tissue distribution of Aanat expression.

  12. Neuropeptide Y as a presynaptic modulator of norepinephrine release from the sympathetic nerve fibers in the pig pineal gland.

    PubMed

    Ziółkowska, N; Lewczuk, B; Przybylska-Gornowicz, B

    2015-01-01

    Norepinephrine (NE) released from the sympathetic nerve endings is the main neurotransmitter controlling melatonin synthesis in the mammalian pineal gland. Although neuropeptide Y (NPY) co-exists with NE in the pineal sympathetic nerve fibers it also occurs in a population of non-adrenergic nerve fibers located in this gland. The role of NPY in pineal physiology is still enigmatic. The present study characterizes the effect of NPY on the depolarization-evoked 3H-NE release from the pig pineal explants. The explants of the pig pineal gland were loaded with 3H-NE in the presence of pargyline and superfused with Tyrode medium. They were exposed twice to the modified Tyrode medium containing 60 mM of K+ to evoke the 3H-NE release via depolarization. NPY, specific agonists of Y1- and Y2- receptors and pharmacologically active ligands of α2-adrenoceptors were added to the medium before and during the second depolarization. The radioactivity was measured in medium fractions collected every 2 minutes during the superfusion. NPY (0.1-10 μM) significantly decreased the depolarization-induced 3H-NE release. Similar effect was observed after the treatment with Y2-agonist: NPY13-36, but not with Y1-agonist: [Leu31,Pro34]-NPY. The tritium overflow was lower in the explants exposed to the 5 μM NPY and 1 μM rauwolscine than to rauwolscine only. The effects of 5 μM NPY and 0.05 μM UK 14,304 on the depolarization-evoked 3H-NE release were additive. The results show that NPY is involved in the regulation of NE release from the sympathetic terminals in the pig pineal gland, inhibiting this process via Y2-receptors.

  13. 'TRPing' synaptic ribbon function in the rat pineal gland: neuroendocrine regulation involves the capsaicin receptor TRPV1.

    PubMed

    Reuss, Stefan; Disque-Kaiser, Ursula; Binzen, Uta; Greffrath, Wolfgang; Peschke, Elmar

    2010-01-01

    Synaptic ribbons (SRs) are presynaptic structures thought to regulate and facilitate multivesicular release. In the pineal gland, they display a circadian rhythm with higher levels at night paralleling melatonin synthesis. To gain more insight into the processes involved and the possible functions of these structures, a series of experiments were conducted in rodents. We studied the regional distribution of a molecular marker of pineal SRs, the kinesin motor KIF3A in the gland. Respective immunoreactivity was abundant in central regions of the gland where sympathetic fibers were less dense, and vice versa, revealing that intercellular communication between adjacent pinealocytes is enhanced under low sympathetic influence. KIF3A was found to be colocalized to the transient receptor potential channel of the vanilloid receptor family, subtype 1 (TRPV1). The TRPV1 agonist capsaicin increased melatonin secretion from perifused pineals in a dose-dependent manner that was blocked by the competitive TRPV1 antagonist capsazepine. No change in free intracellular calcium was observed in response to TRPV1 ligands applied to pinealocytes responding to norepinephrine, bradykinin and/or depolarization. These data clearly indicate that TRPV1 actively regulates pineal gland function.

  14. This pineal gland does not mediate phase shifts in the disc shedding rhythm of the rat retina

    SciTech Connect

    Goldman, A.I.

    1982-01-01

    Albino rats were subjected to pinealectomy, superior cervical ganglionectomy, or the appropriate sham preparation and were placed in lighting conditions so that light onset was advanced by 10 hr. After 6 days of this regimen, all animals exhibited a complete shift in their outer segment disc shedding rhythm, indicating that the pineal gland is not a factor in mediating such a shift.

  15. Cartesian theories on the passions, the pineal gland and the pathogenesis of affective disorders: an early forerunner.

    PubMed

    López-Muñoz, F; Alamo, C

    2011-03-01

    The relationship between physical and functional alterations in the pineal gland, the 'passions' (emotions or feelings) and psychopathology has been a constant throughout the history of medicine. One of the most influential authors on this subject was René Descartes, who discussed it in his work The Treatise on the Passions of the Soul (1649). Descartes believed that 'passions' were sensitive movements that the soul, located in the pineal gland, experienced due to its union with the body, by circulating animal spirits. Descartes described sadness as one of the six primitive passions of the soul, which leads to melancholy if not remedied. Cartesian theories had a great deal of influence on the way that mental pathologies were considered throughout the entire 17th century and during much of the 18th century, but the link between the pineal gland and psychiatric disorders it was definitively highlighted in the 20th century, with the discovery of melatonin in 1958. The recent development of a new pharmacological agent acting through melatonergic receptors (agomelatine) has confirmed the close link between the pineal gland and affective disorders.

  16. Rhythmic Melatonin Response of the Syrian Hamster Pineal Gland to Norepinephrine In Vitro and In Vivo

    DTIC Science & Technology

    1986-01-01

    melatonin production . NE appears to be the neurotransmitter for stimulation of pineal melatonin production in the Syrian hamster. The sensitivity rhythm and...these findings indicate similarity of these three species with regard to sympathetic control of melatonin production as revealed by neural lesions and...of melatonin production in humans. Hamster Melatonin Response to Norepinephrine 237 One purpose of the present study was to re-examine whether the

  17. Daily oscillation of gene expression in the retina is phase-advanced with respect to the pineal gland.

    PubMed

    Bai, Lin; Zimmer, Sybille; Rickes, Oliver; Rohleder, Nils; Holthues, Heike; Engel, Lydia; Leube, Rudolf; Spessert, Rainer

    2008-04-08

    The photoreceptive retina and the non-photoreceptive pineal gland are components of the circadian and the melatonin forming system in mammals. To contribute to our understanding of the functional integrity of the circadian system and the melatonin forming system we have compared the daily oscillation of the two tissues under various seasonal lighting conditions. For this purpose, the 24-h profiles of the expression of the genes coding for arylalkylamine N-acetyltransferase (AA-NAT), nerve growth factor inducible gene-A (NGFI-A), nerve growth factor inducible gene-B (NGFI-B), retinoic acid related orphan receptor beta (RORbeta), dopamine D4 receptor, and period2 (Per2) have been simultaneously recorded in the retina and the pineal gland of rats under short day (light/dark 8:16) and long day (light/dark 16:8) conditions. We have found that the cyclical patterns of all genes are phase-advanced in the retina, often with a lengthened temporal interval under short day conditions. In both tissues, the AA-NAT gene expression represents an indication of the output of the relevant pacemakers. The temporal phasing in the AA-NAT transcript amount between the retina and the pineal gland is retained under constant darkness suggesting that the intrinsic self-cycling clock of the retina oscillates in a phase-advanced manner with respect to the self-cycling clock in the suprachiasmatic nucleus, which controls the pineal gland. We therefore conclude that daily rhythms in gene expression in the retina are phase-advanced with respect to the pineal gland, and that the same temporal relationship appears to be valid for the self-cycling clocks influencing the tissues.

  18. MicroRNAs in the pineal gland: miR-483 regulates melatonin synthesis by targeting arylalkylamine N-acetyltransferase.

    PubMed

    Clokie, Samuel J H; Lau, Pierre; Kim, Hyun Hee; Coon, Steven L; Klein, David C

    2012-07-20

    MicroRNAs (miRNAs) play a broad range of roles in biological regulation. In this study, rat pineal miRNAs were profiled for the first time, and their importance was evaluated by focusing on the main function of the pineal gland, melatonin synthesis. Massively parallel sequencing and related methods revealed the miRNA population is dominated by a small group of miRNAs as follows: ~75% is accounted for by 15 miRNAs; miR-182 represents 28%. In addition to miR-182, miR-183 and miR-96 are also highly enriched in the pineal gland, a distinctive pattern also found in the retina. This effort also identified previously unrecognized miRNAs and other small noncoding RNAs. Pineal miRNAs do not exhibit a marked night/day difference in abundance with few exceptions (e.g. 2-fold night/day differences in the abundance of miR-96 and miR-182); this contrasts sharply with the dynamic 24-h pattern that characterizes the pineal transcriptome. During development, the abundance of most pineal gland-enriched miRNAs increases; however, there is a marked decrease in at least one, miR-483. miR-483 is a likely regulator of melatonin synthesis, based on the following. It inhibits melatonin synthesis by pinealocytes in culture; it acts via predicted binding sites in the 3"-UTR of arylalkylamine N-acetyltransferase (Aanat) mRNA, the penultimate enzyme in melatonin synthesis, and it exhibits a developmental profile opposite to that of Aanat transcripts. Additionally, a miR-483 targeted antagonist increased melatonin synthesis in neonatal pinealocytes. These observations support the hypothesis that miR-483 suppresses Aanat mRNA levels during development and that the developmental decrease in miR-483 abundance promotes melatonin synthesis.

  19. Role of postsynaptic alpha-adrenergic receptors in the beta-adrenergic stimulation of melatonin production in the Syrian hamster pineal gland in organ culture.

    PubMed

    Santana, C; Guerrero, J M; Reiter, R J; Menendez-Pelaez, A

    1989-01-01

    The role played by postsynaptic alpha-adrenergic receptors in the stimulation of pineal melatonin production was investigated in the Syrian hamster. The studies were conducted using organ cultured pineal glands collected from both anatomically intact and superior cervical ganglionectomized hamsters. Results obtained indicate that phenylephrine, an alpha-adrenergic agonist, by itself has no effect in promoting melatonin production; however, it potentiates the stimulatory effects of isoproterenol, a beta-adrenergic agonist, on pineal melatonin production in nonoperated hamsters. Similar observations were obtained with pineal glands whose presynaptic terminals were removed by prior superior cervical ganglionectomy. However, a longer incubation time was required (4-6 hours vs. 2 hours) with pineal glands taken from ganglionectomized animals. Apparently, beta-adrenergic activation is an absolute requirement to stimulate pineal melatonin production, and an alpha-adrenergic receptor mechanism potentiates beta-adrenergic activation. In addition, the findings obtained with denervated pineal glands suggest that the regulation of pineal melatonin production by both alpha- and beta-adrenergic mechanisms is through receptors located on postsynaptic structures.

  20. Chronic stress decreases the expression of sympathetic markers in the pineal gland and increases plasma melatonin concentration in rats.

    PubMed

    Dagnino-Subiabre, Alexies; Orellana, Juan A; Carmona-Fontaine, Carlos; Montiel, Juan; Díaz-Velíz, Gabriela; Serón-Ferré, María; Wyneken, Ursula; Concha, Miguel L; Aboitiz, Francisco

    2006-06-01

    Chronic stress affects brain areas involved in learning and emotional responses. Although most studies have concentrated on the effect of stress on limbic-related brain structures, in this study we investigated whether chronic stress might induce impairments in diencephalic structures associated with limbic components of the stress response. Specifically, we analyzed the effect of chronic immobilization stress on the expression of sympathetic markers in the rat epithalamic pineal gland by immunohistochemistry and western blot, whereas the plasma melatonin concentration was determined by radioimmunoassay. We found that chronic stress decreased the expression of three sympathetic markers in the pineal gland, tyrosine hydroxylase, the p75 neurotrophin receptor and alpha-tubulin, while the same treatment did not affect the expression of the non-specific sympathetic markers Erk1 and Erk2, and glyceraldehyde-3-phosphate dehydrogenase. Furthermore, these results were correlated with a significant increase in plasma melatonin concentration in stressed rats when compared with control animals. Our findings indicate that stress may impair pineal sympathetic inputs, leading to an abnormal melatonin release that may contribute to environmental maladaptation. In addition, we propose that the pineal gland is a target of glucocorticoid damage during stress.

  1. Age-related Histological Findings in the Pineal Gland of Crl:CD(SD) Rats.

    PubMed

    Tomonari, Yuki; Sato, Junko; Wako, Yumi; Tsuchitani, Minoru

    2012-12-01

    To provide background data as the pathologic basis, the pineal glands of 190 male and 193 female Crl:CD(SD) rats at ages of 0-7, 51-58, 70-85 and 111 weeks were examined histologically in this study. Mineralization and fibrosis were common findings in the aged rats, whereas they were rarely found in the young ones; mineralization was present in 7, 44, 67 and 79% of males and in 0, 32, 67 and 79% in females, and fibrosis was present in 0, 29, 48 and 44% of males and 0, 18, 40 and 35% of females at ages of 0-7, 51-58, 70-85 and 111 weeks, respectively. Striated muscle fiber appeared regularly in the fibrosis region from 51-58 weeks of age when fibrosis increased, while the origin of this fiber remained unclear. Vacuolation of pineal cells also increased with age in both sexes, though the total incidence was low. There was a low incidence of lymphocytic infiltration in both sexes, but this was not related to age.

  2. Pharmacological characterization of beta2-adrenoceptor in PGT-beta mouse pineal gland tumour cells.

    PubMed

    Suh, B C; Chae, H D; Chung, J H; Kim, K T

    1999-01-01

    1. The adrenoceptor in a mouse pineal gland tumour cell line (PGT-beta) was identified and characterized using pharmacological and physiological approaches. 2. Adrenaline and noradrenaline, adrenoceptor agonists, stimulated cyclic AMP generation in a concentration-dependent manner, but had no effect on inositol 1,4,5-trisphosphate production. Adrenaline was a more potent activator of cyclic AMP generation than noradrenaline, with half maximal-effective concentrations (EC50) seen at 175+/-22 nM and 18+/-2 microM for adrenaline and noradrenaline, respectively. 3. The addition of forskolin synergistically stimulated the adrenaline-mediated cyclic AMP generation in a concentration-dependent manner. 4. The pA2 value for the specific beta2-adrenoceptor antagonist ICI-118,551 (8.7+/-0.4) as an antagonist of the adrenaline-stimulated cyclic AMP generation were 3 units higher than the value for the betaI-adrenoceptor antagonist atenolol (5.6+/-0.3). 5. Treatment of the cells with adrenaline and forskolin evoked a 3 fold increase in the activity of serotonin N-acetyltransferase with the peak occurring 6 h after stimulation. 6. These results suggest the presence of beta2-adrenoceptors in mouse pineal cells and a functional relationship between the adenylyl cyclase system and the regulation of N-acetyltransferase expression.

  3. Glutamate Transporter-Mediated Glutamate Secretion in the Mammalian Pineal Gland

    PubMed Central

    Kim, Mean-Hwan; Uehara, Shunsuke; Muroyama, Akiko; Hille, Bertil; Moriyama, Yoshinori; Koh, Duk-Su

    2008-01-01

    Glutamate transporters are expressed throughout the central nervous system where their major role is to clear released glutamate from presynaptic terminals. Here we report a novel function of the transporter in rat pinealocytes. This electrogenic transporter conducted inward current in response to L-glutamate and L- or D-aspartate and depolarized the membrane in patch clamp experiments. Ca2+ imaging demonstrated that the transporter-mediated depolarization induced a significant Ca2+ influx through voltage-gated Ca2+ channels. The Ca2+ rise finally evoked glutamate exocytosis as detected by carbon-fiber amperometry and by high-performance liquid chromatography. In pineal slices with densely packed pinealocytes, glutamate released from the cells effectively activated glutamate transporters in neighboring cells. The Ca2+ signal generated by KCl depolarization or acetylcholine propagated through several cell layers by virtue of the regenerative ‘glutamate-induced glutamate release’. Therefore we suggest that glutamate transporters mediate synchronized elevation of L-glutamate and thereby efficiently down-regulate melatonin secretion via previously identified inhibitory metabotropic glutamate receptors in the pineal gland. PMID:18945893

  4. Pineal gland as an endocrine gravitational lunasensor: manifestation of moon-phase dependent morphological changes in mice.

    PubMed

    Gerasimov, A V; Kostyuchenko, V P; Solovieva, A S; Olovnikov, A M

    2014-10-01

    We found that some morphological properties of the pineal gland and submandibular salivary gland of mice are significantly distinct at the new and full moon. We suppose that the differences are initiated by the displacements of the electron-dense concretions in the secretory vesicles of pinealocytes. This presumably occurs under the influence of the gravitational field, which periodically changes during different phases of the moon. It seems that the pinealocyte is both an endocrine and gravisensory cell. A periodic secretion of the pineal gland probably stimulates, in a lunaphasic mode, the neuroendocrine system that, in turn, periodically exerts influence on different organs of the body. The observed effect probably serves, within the lifelong clock of a brain, to control development and aging in time.

  5. L-aspartate-evoked inhibition of melatonin production in rat pineal glands.

    PubMed

    Yamada, H; Yamaguchi, A; Moriyama, Y

    1997-06-06

    Our previous studies in rat indicated that pinealocytes secrete L-glutamate through microvesicle-mediated exocytosis to regulate negatively melatonin production. Recently, we further found that pinealocytes secrete L-aspartate through microvesicle-mediated exocytosis. In the present study, we investigated the role of L-aspartate in the melatonin production in isolated rat pineal glands. It was found that L-aspartate inhibits norepinephrine-stimulated melatonin production as well as serotonin N-acetyltransferase activity reversibly and dose-dependently, the concentrations required for 50% inhibition being 150 and 175 microM, respectively. L-Asparagine and oxaloacetate, metabolites of L-aspartate, had no effect on the melatonin production. These results suggest that pinealocytes use L-aspartate, as well as L-glutamate, as a negative regulator for melatonin production.

  6. Pineal gland hormone and idiopathic scoliosis: possible effect of melatonin on sleep-related postural mechanisms.

    PubMed

    Pompeiano, O; Manzoni, D; Miele, F

    2002-04-01

    Experimental and clinical evidences indicate that endocrine mechanisms, particularly involving the pineal gland, exert a role in the development of postural deficits leading to the occurrence of idiopatic scoliosis (IS). In particular, experiments performed in bipedal animals have shown that removal of the pineal gland, which secretes melatonin (M), induced a scoliosis, and that in such preparations, administration of this hormone prevented the development of this deformity (cf. 131). It appears also that adolescents with IS showed a reduced level of serum M with respect to age-related control subjects. The possible mechanisms involved in the M regulation of the tonic contraction of the axial musculature have been discussed. It is known that the pineal gland is implicated in the control of circadian rhythms, including the sleep-waking cycle, and that during this cycle there are prominent changes in postural activity, which affect not only the limbs, but also the axial musculature. These changes are characterized by a decrease followed by a suppression of postural activity, which occur particularly during transition from wakefulness to synchronized sleep and, more prominently, to rapid eye movement (REM) sleep. Episodes of postural atonia may also occur during the cataplectic episodes, which are typical of narcolepsy. Cholinergic and/or cholinoceptive neurons located in the dorsal pontine reticular formation (pRF) and the related medullary inhibitory reticulospinal (RS) system, intervene in the suppression of posture during REM sleep, as well as during the cataplectic episodes which occur in narcolepsy. These structures are under the modulatory (inhibitory) influence of the dorsomedial and the dorsolateral pontine tegmentum, where serotoninergic raphe nuclei (RN) neurons and noradrenergic locus coeruleus (LC) neurons are located. We postulated that M may act not only on the circadian pacemaker, but also directly on the pontine tegmental structures involved in the

  7. The association between melatonin production and electrophysiology of the guinea pig pineal gland.

    PubMed

    McCance, I; Parkington, H C; Coleman, H A

    1996-09-01

    Melatonin production by isolated pineal glands from guinea pigs was examined under conditions that affect membrane potential or the firing of action potential-like spikes. In glands from superior cervical ganglionectomized animals, depolarization resulting from increasing extracellular potassium concentration to 100 mM did not initiate melatonin production, and it delayed the response to the beta-adrenoceptor agonist orciprenaline. In glands from intact animals melatonin production was initiated by exposure to 100 mM potassium with a time-course similar to the response to orciprenaline. A proportion of this response was propanol resistant, suggesting that the normal control of melatonin production may involve a neurotransmitter in addition to norepinephrine. Exposure to verapamil or nifedipine, or removal of extracellular calcium, previously shown to eliminate action potential-like spikes, did not substantially affect the increase in melatonin production induced by orciprenaline. Phenylephrine, which stimulates spiking, produced only a slight increase in melatonin production. It is concluded that the depolarization and the spiking are not closely related to the stimulation of melatonin production, but may relate principally to the secretion of a substance other than melatonin.

  8. Diurnal expression of clock genes in pineal gland and brain and plasma levels of melatonin and cortisol in Atlantic salmon parr and smolts.

    PubMed

    Huang, Tien-sheng; Ruoff, Peter; Fjelldal, Per G

    2010-10-01

    In Atlantic salmon, the preadaptation to a marine life, i.e., parr-smolt transformation, and melatonin production in the pineal gland are regulated by the photoperiod. However, the clock genes have never been studied in the pineal gland of this species. The aim of the present study was to describe the diurnal expression of clock genes (Per1-like, Cry2, and Clock) in the pineal gland and brain of Atlantic salmon parr and smolts in freshwater, as well as plasma levels of melatonin and cortisol. By employing an out-of-season smolt production model, the parr-smolt transformation was induced by subjecting triplicate groups of parr to 6 wks (wks 0 to 6) under a 12 h:12 h light-dark (LD) regime followed by 6 wks (wks 6 to 12) of continuous light (LL). The measured clock genes in both pineal gland and brain and the plasma levels of melatonin and cortisol showed significant daily variations in parr under LD in wk 6, whereas these rhythms were abolished in smolts under LL in wk 12. In parr, the pineal Per1-like and Cry2 expression peaked in the dark phase, whereas the pineal Clock expression was elevated during the light phase. Although this study presents novel findings on the clock gene system in the teleost pineal gland, the role of this system in the regulation of smoltification needs to be studied in more detail.

  9. Melatonin Synthesis: Acetylserotonin O-Methyltransferase (ASMT) Is Strongly Expressed in a Subpopulation of Pinealocytes in the Male Rat Pineal Gland.

    PubMed

    Rath, Martin F; Coon, Steven L; Amaral, Fernanda G; Weller, Joan L; Møller, Morten; Klein, David C

    2016-05-01

    The rat pineal gland has been extensively used in studies of melatonin synthesis. However, the cellular localization of melatonin synthesis in this species has not been investigated. Here we focus on the localization of melatonin synthesis using immunohistochemical methods to detect the last enzyme in melatonin synthesis, acetylserotonin O-methyltransferase (ASMT), and in situ hybridization techniques to study transcripts encoding ASMT and two other enzymes in melatonin synthesis, tryptophan hydroxylase (TPH)-1 and aralkylamine N-acetyltransferase. In sections of the rat pineal gland, marked cell-to-cell differences were found in ASMT immunostaining intensity and in the abundance of Tph1, Aanat, and Asmt transcripts. ASMT immunoreactivity was localized to the cytoplasm in pinealocytes in the parenchyma of the superficial pineal gland, and immunopositive pinealocytes were also detected in the pineal stalk and in the deep pineal gland. ASMT was found to inconsistently colocalize with S-antigen, a widely used pinealocyte marker; this colocalization was seen in cells throughout the pineal complex and also in displaced pinealocyte-like cells of the medial habenular nucleus. Inconsistent colocalization between ASMT and TPH protein was also detected in the pineal gland. ASMT protein was not detected in extraepithalamic parts of the central nervous system or in peripheral tissues. The findings in this report are of special interest because they provide reason to suspect that melatonin synthesis varies significantly among individual pinealocytes.

  10. History of the pineal region tumor.

    PubMed

    Mottolese, C; Szathmari, A

    2015-01-01

    The pineal gland has interested humans from millenniums. In this paper we review back in the history and the evolution of the pineal gland surgery. Originally, this surgery used to carry a high rate of morbidity and mortality. Nowadays the development of the anesthetic, radiological, surgical and intensive care techniques have been responsible of an improvement of the surgical results and better quality of life. It is always interesting to know from where we come.

  11. Season-dependent postembryonic maturation of the diurnal rhythm of melatonin biosynthesis in the chicken pineal gland.

    PubMed

    Piesiewicz, A; Kedzierska, U; Podobas, E; Adamska, I; Zuzewicz, K; Majewski, P M

    2012-11-01

    Previously, we have demonstrated that the timing of the nocturnal peak of activity of the pineal arylalkylamine-N-acetyltransferase - a key enzyme in the melatonin biosynthesis pathway - in 3-wk-old chickens kept from the day of hatch under controlled laboratory conditions (L:D 12:12) varies depending on the season of hatch (summer vs. winter). The present study was undertaken to answer the following questions: (1) are season-related differences seen in the level of transcription of genes encoding enzymes of the melatonin biosynthesis pathway? (2) Does the pineal content of the main precursor (serotonin) and the final product (melatonin) exhibit age- and season-related changes? (3) At which step in postembryonic development are these season-related variations in pineal gland function most pronounced? Male Hy-line chickens hatched in the summer or winter, from eggs laid by hens held on L:D 16:8, were kept from the day of hatch under L:D 12:12 conditions. At the age of 2, 9, or 16 d, chickens were sacrificed every 2 h over a 24-h period and their pineal glands, isolated under dim red light, were processed for the measurement of (i) the level of Aanat and Asmt (acetylserotonin O-methyltransferase) mRNAs encoding the two last enzymes involved in melatonin biosynthesis, (ii) the activity of these enzymes, and (iii) the pineal content of serotonin and melatonin. Circadian rhythmicity of all the measured parameters was evaluated by the cosinor method. The levels of Aanat mRNA, AANAT enzymatic activity, and the pineal melatonin content changed during postembryonic development in a manner that was dependent on the season of hatch. Furthermore, the diurnal profile of Asmt mRNA was elevated during the light phase. In "winter" birds, the pattern and amplitude of the diurnal rhythm of accumulation of this transcript did not change with age, while in "summer" birds it increased in an age-related way. In contrast, the enzymatic activity of hydroxyindole-O-methyltransferase (HIOMT

  12. Suppression of melatonin biosynthesis in the chicken pineal gland by retinally perceived light - involvement of D1-dopamine receptors.

    PubMed

    Zawilska, Jolanta B; Berezińska, Małgorzata; Rosiak, Jolanta; Skene, Debra J; Vivien-Roels, Berthe; Nowak, Jerzy Z

    2004-03-01

    In this study the role of retinal dopamine (DA) receptors in the light-induced suppression of melatonin biosynthesis in the chicken pineal gland was examined. Exposure of dark-adapted chickens to low intensity light (4 lux) at night significantly decreased the activity of serotonin N-acetyltransferase (AA-NAT; the penultimate and key regulatory enzyme in melatonin production) and melatonin content in the pineal gland. This suppressive action of light was blocked by intraocular (i.oc.) administration of SCH 23390 (a selective antagonist of D1-DA receptors), but was not affected by sulpiride (a selective antagonist of D2-DA receptors). Injection of DA (i.oc.) to dark-adapted chickens significantly decreased pineal AA-NAT activity and melatonin content in a dose- and time-dependent manner. The action of DA was mimicked by selective agonists of D1-DA receptors, SKF 38393 and SKF 81297, and non-hydrolyzable analogs of cyclic AMP (cAMP), dibutyryl-cAMP and 8-bromo-cAMP. However, i.oc. administration of quinpirole, a selective agonist of D2-DA receptors, did not modify pineal AA-NAT activity. In contrast, quinpirole potently decreased nocturnal AA-NAT activity in the retina. Systemic administration of SCH 23390 to chickens blocked the i.oc. DA-evoked decline in nighttime pineal AA-NAT activity, whereas sulpiride was ineffective. These findings indicate that light activation of retinal dopaminergic neurotransmission, with concomitant stimulation of D1-DA receptors positively coupled to the cAMP generating system, plays an important role in a cascade of events regulating pineal activity.

  13. A direct influence of moonlight intensity on changes in melatonin production by cultured pineal glands of the golden rabbitfish, Siganus guttatus.

    PubMed

    Takemura, Akihiro; Ueda, Satomi; Hiyakawa, Nanae; Nikaido, Yoshiaki

    2006-04-01

    Rabbitfish are a restricted lunar-synchronized spawner that spawns around a species-specific lunar phase. It is not known how the fish perceive changes in cues from the moon. One possible explanation is that rabbitfish utilize changes in moonlight intensity to establish synchrony. The purpose of the present study was to examine whether or not the pineal gland of the golden rabbitfish can directly perceive changes in moonlight intensity. Isolated pineal glands were statically cultured under natural or artificial light conditions and melatonin secreted into the culture medium was measured using a time-resolved fluoroimmunoassay. Under an artificial light/dark cycle, melatonin secretion significantly increased during the dark phase. Under continuous light conditions, melatonin secretion was suppressed, while culture under continuous dark conditions seemed to duplicate melatonin secretion corresponding to the light/dark cycle in which the fish were acclimated. When cultured pineal glands were kept under natural light conditions on the dates of the full and the new moon, small amounts of melatonin were secreted at night. Moreover, exposure of cultured pineal glands to artificial and natural light conditions resulted in a significant decrease of melatonin secretion within 2 hr. These results suggest that the isolated pineal gland of golden rabbitfish responds to environmental light cycles and that 'brightness' of the night moon has an influence on melatonin secretion from the isolated pineal gland.

  14. Chronic stress induces upregulation of brain-derived neurotrophic factor (BDNF) mRNA and integrin alpha5 expression in the rat pineal gland.

    PubMed

    Dagnino-Subiabre, Alexies; Zepeda-Carreño, Rodrigo; Díaz-Véliz, Gabriela; Mora, Sergio; Aboitiz, Francisco

    2006-05-01

    Chronic stress affects brain areas involved in learning and emotional responses. These alterations have been related with the development of cognitive deficits in major depression. Moreover, stress induces deleterious actions on the epithalamic pineal organ, a gland involved in a wide range of physiological functions. The aim of this study was to investigate whether the stress effects on the pineal gland are related with changes in the expression of neurotrophic factors and cell adhesion molecules. Using reverse transcription-polymerase chain reaction (RT-PCR) and Western blot, we analyzed the effect of chronic immobilization stress on the BDNF mRNA and integrin alpha5 expression in the rat pineal gland. We found that BDNF is produced in situ in the pineal gland. Chronic immobilization stress induced upregulation of BDNF mRNA and integrin alpha5 expression in the rat pineal gland but did not produce changes in beta-actin mRNA or in GAPDH expression. Stressed animals also evidenced an increase in anxiety-like behavior and acute gastric lesions. These results suggest that BDNF and integrin alpha5 may have a counteracting effect to the deleterious actions of immobilization stress on functionally stimulated pinealocytes. Furthermore, this study proposes that the pineal gland may be a target of glucocorticoid damage during stress.

  15. The morphology of the pineal gland of the yellow-toothed cavy (Galea Spixii Wagler, 1831) and red-rumped agouti (Dasyprocta leporina linnaeus, 1758).

    PubMed

    Câmara, Felipe Venceslau; Lopes, Igor Renno Guimarães; de Oliveira, Gleidson Benevides; Bezerra, Ferdinando Vinicius Fernandes; de Oliveira, Radan Elvis Matias; Oliveira Júnior, Carlos Magno; Silva, Alexandre Rodrigues; de Oliveira, Moacir Franco

    2015-08-01

    The pineal gland is an endocrine gland found in all mammals. This article describes the morphology of this important gland in two species of Caviideae, namely the yellow-toothed cavy and the red-rumped agouti. Ten adult animals of the two species used in current analysis were retrieved from the Center for the Multiplication of Wild Animals (CEMAS/UFERSA) and euthanized. The glands were removed and photographed in situ and ex situ. They were fixed in a paraformaldehyde solution 4% or glutaraldehyde 2.5% solution and submitted to routine histological techniques respectively for light and scanning electron microscopy. Macroscopically, the pineal gland with its elongated structure may be found between the cerebral hemispheres facing the rostral colliculi. Microscopically, pinealocytes and some glia cells were predominant. Contrastingly, to the cavy's pineal gland, a capsule covered the organ in the agouti, with the emission of incomplete septa to the interior, which divided it into two lobules. Light and scanning electron microscopes failed to show calcareous concretions in the pineal gland. Based on the topography of the cavy's and agouti's pineal gland, it may be classified as supra-callosum and ABC type.

  16. Plasma corticosterone elevation inhibits the activation of nuclear factor kappa B (NFKB) in the Syrian hamster pineal gland.

    PubMed

    Ferreira, Z S; Bothorel, B; Markus, R P; Simonneaux, V

    2012-05-01

    We evaluated how the mild stress-induced increase in endogenous corticosterone affected the pineal gland in Syrian hamsters (Mesocricetus auratus). The animals were maintained under constant light for 1 day, instead of a cycle of 14:10-h, to increase the circulating corticosterone levels during the daytime. The nuclear translocation of nuclear factor kappa B (NFKB), which is the pivotal transcription factor for stress and injury, presented a daily rhythm in normal animals. NFKB nuclear content increased linearly from the onset of light [Zeitgeber Time 0 (ZT0)] until ZT11 and decreased after ZT12 when the plasma corticosterone peak was detected in normal animals. However, the 24-h profiles of the two curves were different, and they did not clearly support an exclusive relationship between corticosterone levels and NFKB content. Therefore, we tested the effect of increased endogenous corticosterone through inducing mild stress by maintaining daytime illumination for one night. This stressful condition, which increased daytime corticosterone levels, resulted in a daytime decrease in NFKB nuclear content, and this was inhibited by mifepristone. Overall, this study shows that NFKB has a daily rhythm in Syrian hamster pineal glands and, by increasing endogenous corticosterone with a stressful condition, NFKB activity is regulated. Therefore, this study suggests that the pineal gland in the Syrian hamster is a sensor of stressful conditions.

  17. Sympathetic neural control of indoleamine metabolism in the rat pineal gland

    NASA Technical Reports Server (NTRS)

    Lynch, H. J.; Hsuan, M.; Wurtman, R. J.

    1975-01-01

    The mechanisms responsible for the acceleration in rat pineal biosynthetic activity in response to prolonged exposure to darkness or to immobilization were investigated in animals whose pineals were surgically denervated. Some animals were adrenalectomized to remove one potential source of circulating catecholamines, and some were subjected to a partial chemical sympathectomy accomplished by a series of intravenous injections of 6-hydroxydopamine. Results suggest that N-acetyltransferase (NAT) activity can be enhanced either by release of norepinephrine from sympathetic terminals within the pineal or from sympathetic nerve terminals elsewhere. The stress of immobilization stimulates the pineal by increasing circulating catecholamines. Photic control of pineal function requires intact pineal sympathetic innervation, since the onset of darkness apparently does not cause a sufficient rise in circulating catecholamines to stimulate the pineal. The present studies suggest that nonspecific stress triggers increased biosynthesis and secretion of melatonin; it is possible that this hormone may participate in mechanisms of adaptation.

  18. Morphological changes in the pineal gland of rats under conditions of long-term exposure to bright light.

    PubMed

    Gerasimov, A V; Logvinov, S V; Kostyuchenko, V P

    2010-12-01

    Changes in the diurnal light cycle affect the morphofunctional state of the pineal gland. The volume of the nucleus, Golgi apparatus, and mitochondria in pinealocytes decreases after 45-day exposure to bright light. After 90 days, the degree of nuclear polymorphism increased, the specific volume of the Golgi apparatus returned to normal, the volume of the granular endoplasmic reticulum decreased, while the volume of lysosomes, free ribosomes, and polysomes increased. These changes reflect plasticity of pinealocytes and adaptation of the gland to long-term 24-h light exposure.

  19. Immunohistochemical localization of irisin in skin, eye, and thyroid and pineal glands of the crested porcupine (Hystrix cristata).

    PubMed

    Gençer Tarakçı, B; Girgin, A; Timurkaan, S; Yalçın, M H; Gür, F M; Karan, M

    2016-08-01

    Irisin was first identified in muscle cells. We detected irisin immunoreactivity in various organs of the crested porcupine (Hystrix cristata). In the epidermis, irisin immunoreactivity was localized mainly in stratum basale, stratum spinosum and stratum granulosum layers; immunoreactivity was not observed in the stratum corneum. In the dermis, irisin was found in the external and internal root sheath, cortex and medulla of hair follicles, and in sebaceous glands. Irisin immunoreactivity was found in the neural retina and skeletal muscle fibers associated with the eye. The pineal and thyroid glands also exhibited irisin immunoreactivity.

  20. Endogenous rhythmicity of Bmal1 and Rev-erb alpha in the hamster pineal gland is not driven by norepinephrine.

    PubMed

    Wongchitrat, Prapimpun; Felder-Schmittbuhl, Marie-Paule; Phansuwan-Pujito, Pansiri; Pévet, Paul; Simonneaux, Valérie

    2009-05-01

    Pineal melatonin is synthesized with daily and seasonal rhythms following the hypothalamic clock-driven release of norepinephrine (NE). The pineal gland of rats and mice, like the biological clock, expresses a number of clock genes. However, the role of pineal clock elements in pineal physiology is still unknown. We examined the expression and regulation of several clock genes (Per1, Cry2, Bmal1 and Rev-erb alpha) under different lighting conditions or following adrenergic treatments in the Syrian hamster, a seasonal rodent. We found that Per1 and Cry2 genes were similarly regulated by the nocturnal release of NE: levels of Per1 and Cry2 mRNA displayed a nocturnal increase that was maintained after 2 days in constant darkness (DD) but abolished after 2 days under constant light (LL), a condition that suppresses endogenous NE release, or after an early night administration of the adrenergic antagonist propranolol. In contrast, Bmal1 and Rev-erb alpha exhibited a different pattern of expression and regulation. mRNA levels of both clock genes displayed a marked daily variation, maintained in DD, with higher values at midday for Bmal1 and at day/night transition for Rev-erb alpha. Remarkably, the daily variation of both Bmal1 and Rev-erb alpha mRNA was maintained in LL conditions and was not affected by propranolol. This study confirms the daily regulation of Per1 and Cry2 gene expression by NE in the pineal gland of rodents and shows for the first time that a second set of clock genes, Bmal1 and Rev-erb alpha are expressed with a circadian rhythm independent of the hypothalamic clock-driven noradrenergic signal.

  1. Distribution of components of basal lamina and dystrophin-dystroglycan complex in the rat pineal gland: differences from the brain tissue and between the subdivisions of the gland.

    PubMed

    Bagyura, Zsolt; Pócsai, Károly; Kálmán, Mihály

    2010-01-01

    The pineal gland is an evagination of the brain tissue, a circumventricular neuroendocrine organ. Our immunohistochemical study investigates basal lamina components (laminin, agrin, perlecan, fibronectin), their receptor, the dystrophin-dystroglycan complex (beta-dystroglycan, dystrophin utrophin), aquaporins (-4,-9) and cellular markers (S100, neurofilament, GFAP, glutamine synthetase) in the adult rat corpus pineale. The aim was to compare the immunohistochemical features of the cerebral and pineal vessels and their environment, and to compare their features in the distal and proximal subdivisions of the so-called 'superficial pineal gland'. In contrast to the cerebral vessels, pineal vessels proved to be immunonegative to alpha1-dystrobrevin, but immunoreactive to laminin. An inner, dense, and an outer, loose layer of laminin as two basal laminae were present. The gap between them contained agrin and perlecan. Basal lamina components enmeshed the pinealocytes, too. Components of dystrophin-dystroglycan complex were also distributed along the vessels. Dystrophin, utrophin and agrin gave a 'patchy' distribution rather than a continuous one. The vessels were interconnected by wing-like structures, composed of basal lamina-components: a delicate network forming nests for cells. Cells immunostained with glutamine synthetase, S100-protein or neurofilament protein contacted the vessels, as well as GFAP- or aquaporin-immunostained astrocytes. Within the body a smaller, proximal, GFAP-and aquaporin-containing subdivision, and a larger, distal, GFAP-and aquaporin-free subdivision could be distinguished. The vascular localization of agrin and utrophin, as well as dystrophin, delineated vessels unequally, preferring the proximal or distal end of the body, respectively.

  2. Human Lacrimal Gland Gene Expression

    PubMed Central

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian

    2017-01-01

    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  3. Timing of mitogen-activated protein kinase (MAPK) activation in the rat pineal gland.

    PubMed

    Ho, A K; Price, D M; Terriff, D; Chik, C L

    2006-06-27

    Activation of members of the mitogen-activated protein kinase (MAPK) family of signaling cascades is a tightly controlled event in rat pinealocytes. Cell culture studies indicate that whereas the NE-->cGMP activation of p42/44MAPK is rapid and transient, the NE-->cAMP activation of p38MAPK is slower and more sustained. The decline in the p42/44MAPK response is in part due to the induction of MAPK phosphatase-1 by NE. In comparison, p38MAPK activation is tightly coupled to the synthesis and degradation of an upstream element in its activation cascade. Whole animal studies confirm activation of p42/44MAPK occurring during the early part of night and precedes p38MAPK activation. Studies with selective MAPK inhibitors reveal a modulating effect of MAPKs on arylalkylamine-N-acetyltransferse (AA-NAT) activity, with involvement of p42/44MAPK in the induction of AA-NAT and p38MAPK participating in the amplitude and duration of the AA-NAT response. These effects of p42/44MAPK and p38MAPK on AA-NAT activity match their timing of activation. Taken together, our studies on the timing of MAPK activation and regulation of AA-NAT by MAPKs add to the importance of MAPKs in regulating the circadian biology of the pineal gland.

  4. Regulation of 90-kilodalton ribosomal S6 kinase phosphorylation in the rat pineal gland.

    PubMed

    Ho, A K; Mackova, M; Cho, C; Chik, C L

    2003-08-01

    In this study we investigated diurnal changes in the activation state of the 90-kDa ribosomal S6 kinase (p90RSK) in the rat pineal gland. In animals housed under a lighting regimen with 12 h of light, we found an increase in phosphorylated p90RSK during the dark phase, and this increase was abolished by treatment with propranolol or continuous exposure to light. To determine the intracellular mechanism involved, rat pinealocytes were treated with norepinephrine. Norepinephrine caused a parallel increase in phosphorylated p42/44 MAPK (p42/44(MAPK)) and p90RSK that was reduced by prazosin or propranolol, indicating involvement of both alpha(1)- and beta-adrenergic receptors. Treatment with dibutyryl cGMP, 4beta-phorbol 12-myristate 13-acetate, or ionomycin mimicked norepinephrine-stimulated p90RSK phosphorylation, whereas dibutyryl cAMP caused a decrease in p90RSK phosphorylation. Inhibition of p42/44(MAPK) activation by UO126 was effective in reducing norepinephrine-stimulated p90RSK phosphorylation. Moreover, UO126 had an inhibitory effect on norepinephrine-stimulated arylalkyl-N-acetyltransferase activity. These results indicate that the adrenergically regulated nocturnal increase in p90RSK phosphorylation is mainly mediated through a cGMP-->p42/44(MAPK)-dependent mechanism.

  5. BMP signaling orchestrates photoreceptor specification in the zebrafish pineal gland in collaboration with Notch.

    PubMed

    Quillien, Aurélie; Blanco-Sanchez, Bernardo; Halluin, Caroline; Moore, John C; Lawson, Nathan D; Blader, Patrick; Cau, Elise

    2011-06-01

    A variety of signaling pathways have been shown to regulate specification of neuronal subtype identity. However, the mechanisms by which future neurons simultaneously process information from multiple pathways to establish their identity remain poorly understood. The zebrafish pineal gland offers a simple system with which to address questions concerning the integration of signaling pathways during neural specification as it contains only two types of neurons - photoreceptors and projection neurons. We have previously shown that Notch signaling inhibits the projection neuron fate. Here, we show that BMP signaling is both necessary and sufficient to promote the photoreceptor fate. We also demonstrate that crosstalk between BMP and Notch signaling is required for the inhibition of a projection neuron fate in future photoreceptors. In this case, BMP signaling is required as a competence factor for the efficient activation of Notch targets. Our results indicate that both the induction of a photoreceptor fate and the interaction with Notch relies on a canonical BMP/Smad5 pathway. However, the activation of Notch-dependent transcription does not require a canonical Smad5-DNA interaction. Our results provide new insights into how multiple signaling influences are integrated during cell fate specification in the vertebrate CNS.

  6. The pineal gland of nocturnal mammals. I. The pinealocytes of the bat (Nyctalus noctula, Schreber).

    PubMed

    Pevet, P; Kappers, J A; Voûte, A M

    1977-01-01

    The ultrastructure of the pinealocytes of noctule bats, mammals which live most of the time in darkness or very low light intensities, was examined and compared with the pinealocytes of other mammals. Two different populations of pinealocytes (I and II) were observed. They differ in general aspect, in location and especially in their content of cell organelles involved in synthetic processes. Mitochondria, ribosomes, lysosomes and lipid inclusions were present in the perikaryon of pinealocytes of both populations. In the pinealocytes of population I some granular vesicles, of presumed Golgi origin, and some other structures were observed. Pinealocytes of population II are characterized by many glycogen granules, more or less associated with a large vacuolar system. Moreover, some small vacuoles originating from cisterns of the granular endoplasmic reticulum and containing flocculent material of a moderate electron density are described. The possibility is discussed that these small vacuoles are involved in one of the secretory processes of the pineal gland while the granular vesicles of the pinealocyte of the population I are the products of another.

  7. A novel isoform of the orphan nuclear receptor RORbeta is specifically expressed in pineal gland and retina.

    PubMed

    André, E; Gawlas, K; Becker-André, M

    1998-08-31

    RORbeta is a member of the nuclear hormone receptor superfamily whose ligand is unknown. Expression of RORbeta is confined to the central nervous system and its pattern suggests that this orphan nuclear receptor is implicated in the processing of sensory information and in circadian timing. In rats, RORbeta mRNA levels oscillate robustly in pineal gland and retina, displaying a 24h rhythm. Here we report the cloning of the cDNA of a novel isoform of RORbeta from rat pineal tissue. Expression of this isoform, called RORbeta2, is confined to pineal gland and retina and strongly increases at night. RORbeta2 shares common DNA- and putative ligand-binding domains with the canonical RORbeta (referred to as RORbeta1), but is characterized by a different amino-terminal domain. This structural difference renders RORbeta2 much more selectively binding to DNA than RORbeta1. Moreover, in contrast to RORbeta1, the novel isoform efficiently activates transcription also in non-neuronal cell lines. Thus, the two RORbeta isoforms are likely to regulate different sets of genes in different physiological contexts. 1998 Elsevier Science B.V.

  8. Amyloid β peptide directly impairs pineal gland melatonin synthesis and melatonin receptor signaling through the ERK pathway.

    PubMed

    Cecon, Erika; Chen, Min; Marçola, Marina; Fernandes, Pedro A C; Jockers, Ralf; Markus, Regina P

    2015-06-01

    Melatonin is the hormone produced by the pineal gland known to regulate physiologic rhythms and to display immunomodulatory and neuroprotective properties. It has been reported that Alzheimer disease patients show impaired melatonin production and altered expression of the 2 G protein-coupled melatonin receptors (MTRs), MT₁ and MT₂, but the underlying mechanisms are not known. Here we evaluated whether this dysfunction of the melatonergic system is directly caused by amyloid β peptides (Aβ(1-40) and Aβ(1-42)). Aβ treatment of rat pineal glands elicited an inflammatory response within the gland, evidenced by the up-regulation of 52 inflammatory genes, and decreased the production of melatonin up to 75% compared to vehicle-treated glands. Blocking NF-κB activity prevented this effect. Exposure of HEK293 cells stably expressing recombinant MT₁ or MT₂ receptors to Aβ lead to a 40% reduction in [(125)I]iodomelatonin binding to MT₁. ERK1/2 activation triggered by MTRs, but not by the β₂-adrenergic receptor, was markedly impaired by Aβ in HEK293 transfected cells, as well as in primary rat endothelial cells expressing endogenous MTRs. Our data reveal the melatonergic system as a new target of Aβ, opening new perspectives to Alzheimer disease diagnosis and therapeutic intervention.

  9. Developmental and diurnal dynamics of Pax4 expression in the mammalian pineal gland: nocturnal down-regulation is mediated by adrenergic-cyclic adenosine 3',5'-monophosphate signaling.

    PubMed

    Rath, Martin F; Bailey, Michael J; Kim, Jong-So; Ho, Anthony K; Gaildrat, Pascaline; Coon, Steven L; Møller, Morten; Klein, David C

    2009-02-01

    Pax4 is a homeobox gene that is known to be involved in embryonic development of the endocrine pancreas. In this tissue, Pax4 counters the effects of the related protein, Pax6. Pax6 is essential for development of the pineal gland. In this study we report that Pax4 is strongly expressed in the pineal gland and retina of the rat. Pineal Pax4 transcripts are low in the fetus and increase postnatally; Pax6 exhibits an inverse pattern of expression, being more strongly expressed in the fetus. In the adult the abundance of Pax4 mRNA exhibits a diurnal rhythm in the pineal gland with maximal levels occurring late during the light period. Sympathetic denervation of the pineal gland by superior cervical ganglionectomy prevents the nocturnal decrease in pineal Pax4 mRNA. At night the pineal gland is adrenergically stimulated by release of norepinephrine from the sympathetic innervation; here, we found that treatment with adrenergic agonists suppresses pineal Pax4 expression in vivo and in vitro. This suppression appears to be mediated by cAMP, a second messenger of norepinephrine in the pineal gland, based on the observation that treatment with a cAMP mimic reduces pineal Pax4 mRNA levels. These findings suggest that the nocturnal decrease in pineal Pax4 mRNA is controlled by the sympathetic neural pathway that controls pineal function acting via an adrenergic-cAMP mechanism. The daily changes in Pax4 expression may influence gene expression in the pineal gland.

  10. Circadian and photic regulation of MAP kinase by Ras- and protein phosphatase-dependent pathways in the chick pineal gland.

    PubMed

    Hayashi, Y; Sanada, K; Fukada, Y

    2001-02-23

    Chick pineal mitogen-activated protein kinase (MAPK) exhibits circadian activation and light-dependent deactivation at nighttime. Here we report that, in the chick pineal gland, levels of active forms of MAPK, MEK, Raf-1 and Ras exhibited synchronous circadian rhythms with peaks during the subjective night, suggesting a sequential activation of components in the classical Ras-MAPK pathway in a circadian manner. In contrast, the light-dependent deactivation of MAPK was not accompanied by any change of MEK activity, but it was attributed to the light-dependent activation of protein phosphatase dephosphorylating MAPK. These results indicate that the photic and clock signals regulate MAPK activity via independent pathways, and suggest a pivotal role of MAPK in photic entrainment and maintenance of the circadian oscillation.

  11. Phosphodiesterase 10A in the rat pineal gland: localization, daily and seasonal regulation of expression and influence on signal transduction.

    PubMed

    Spiwoks-Becker, Isabella; Wolloscheck, Tanja; Rickes, Oliver; Kelleher, Debra K; Rohleder, Nils; Weyer, Veronika; Spessert, Rainer

    2011-01-01

    The cyclic nucleotide phosphodiesterase 10A (PDE10A) is highly expressed in striatal spiny projection neurons and represents a therapeutic target for the treatment of psychotic symptoms. As reported previously [J Biol Chem 2009; 284:7606-7622], in this study PDE10A was seen to be additionally expressed in the pineal gland where the levels of PDE10A transcript display daily changes. As with the transcript, the amount of PDE10A protein was found to be under daily and seasonal regulation. The observed cyclicity in the amount of PDE10A mRNA persists under constant darkness, is blocked by constant light and is modulated by the lighting regime. It therefore appears to be driven by the master clock in the suprachiasmatic nucleus (SCN). Since adrenergic agonists and dibutyryl-cAMP induce PDE10A mRNA, the in vitro clock-dependent control of Pde10a appears to be mediated via a norepinephrine → β-adrenoceptor → cAMP/protein kinase A signaling pathway. With regard to the physiological role of PDE10A in the pineal gland, the specific PDE10A inhibitor papaverine was seen to enhance the adrenergic stimulation of the second messenger cAMP and cGMP. This indicates that PDE10A downregulates adrenergic cAMP and cGMP signaling by decreasing the half-life of both nucleotides. Consistent with its effect on cAMP, PDE10A inhibition also amplifies adrenergic induction of the cAMP-inducible gene arylalkylamine N-acetyltransferase (Aanat) which codes the rate-limiting enzyme in pineal melatonin formation. The findings of this study suggest that Pde10a expression is under circadian and seasonal regulation and plays a modulatory role in pineal signal transduction and gene expression.

  12. Transcription factor dynamics in pineal gland and liver of the Syrian hamster (Mesocricetus auratus) adapts to prevailing photoperiod.

    PubMed

    Maronde, Erik; Pfeffer, Martina; Glass, Yuri; Stehle, Jörg H

    2007-08-01

    The anticipation of day length and duration of darkness is necessary and advantageous for animals to survive and requires a photoperiodic memory. In the Syrian hamster this adaptation to photoperiod is mirrored by seasonal changes in the animal's reproductive state and its liver metabolism. Both events are linked to season-dependent alterations of the nocturnally elevated synthesis of the pineal hormone melatonin. To decipher molecules that are involved in this temporal gating, hamsters were exposed to long photoperiod (16 hr light:8 hr darkness; LP), or short photoperiod (8 hr light:16 hr darkness; SP). Dynamics in gene expression was investigated in the pineal gland [inducible cAMP early repressor (ICER)], and in the liver (ICER; C/EBPdelta; clock genes) using immunochemistry and reverse transcriptase PCR. While in the pineal, ICER rhythms tightly follow the prior duration of light and dark with decreasing levels at the beginning of the dark period in both LP and SP, ICER is not rhythmic in liver. In the liver, clock genes and their protein products reflect differences in photoperiodic history, with enhanced rhythm amplitudes of PER, CRY, CLOCK, and BMAL1 under SP conditions. Thus, in the Syrian hamster transcription factor expression patterns lock onto the prevailing photoperiod in two peripheral oscillators, the pineal gland and the liver, to function as mediators of suprachiasmatic nucleus-derived information on environmental light and dark. This tissue-specific gating in gene transcription represents a strategy to ameliorate consequences of altering environmental lighting conditions on endocrine and metabolic parameters that endow a strong circadian bias.

  13. Scientific research on the pineal gland and melatonin: a bibliometric study for the period 1966-1994.

    PubMed

    López-Muñoz, F; Boya, J; Marín, F; Calvo, J L

    1996-04-01

    By means of teledischarge techniques from the database MEDLINE we selected those documents that contained in their title one or several of the following descriptors: pineal*, epiphys*, or melatonin*, in addition to the descriptor pineal-body in the MESH (Medical Subject Headings) section. A total of 7,617 original documents published between 1966 and 1994 were extracted that dealt with any aspect related with the pineal gland or its main secretary product, melatonin. The main bibliometric laws were applied: Price's Law on the increase in scientific literature, Bradford's Law on the dispersion of the scientific literature, and Lotka's Law on the author's productivity. Furthermore, we have analyzed the participation index (PaI) of the main countries within the global production, the productivity index of the authors (PI), and the number of authors/paper index. Our results demonstrate an exponential increase of the scientific literature on the pineal gland ("r" value = 0.983, in contrast with a "r" value = 0.966 after the linear adjustment). The number of publications on melatonin was less than those on other aspects of pineal research until 1991, when this situation was reversed. The journal with the largest number of original papers is Journal of Pineal Research (1st Bradford's zone) with 533 articles, followed by Journal of Neural Transmission (258) and Neuroendocrinology (221), which constituted the 2nd Bradford's zone. The total number of authors is 9,140, responsible for 23,524 authorships. 3.8% of the authors present a PI > or = 1 (large producers), and 64.9% a PI = 0 (occasional authors). Lotka's Law was widely fulfilled in this material since 10.3% of the authors are responsible of 50.2% of all the papers. The average number of authors per paper has changed from 2.29 in 1966 to 3.85 in 1994. The most productive country (during the interval between 1988-1994) was USA (PaI = 30.6), followed by Japan (7.15), United Kingdom (6.45), Germany (6.37), France (6

  14. Effect of L-NAME-induced hypertension on melatonin receptors and melatonin levels in the pineal gland and the peripheral organs of rats.

    PubMed

    Benova, Miroslava; Herichova, Iveta; Stebelova, Katarina; Paulis, Ludovit; Krajcirovicova, Kristina; Simko, Fedor; Zeman, Michal

    2009-04-01

    Melatonin plays a role in blood pressure (BP) control. The aim of this study was to determine whether melatonin concentrations and melatonin receptor levels are altered in L-NAME-treated, NO-deficient hypertensive rats. Two groups of male adult Wistar rats were investigated: rats (n=36) treated with NO-synthase inhibitor L-NAME (40 mg kg(-1)) and age-matched controls (n=36). BP was measured weekly by tail-cuff plethysmography. After 4 weeks, L-NAME administration increased BP (178+/-1 vs. control 118+/-1 mm Hg). At the end of treatment, rats were killed in regular 4 h intervals over a 24-h period. Melatonin concentrations in the plasma, pineal gland, heart and kidney and melatonin receptor (MT(1)) density in the aorta were determined. A significant daily rhythm of melatonin concentrations was found in the blood, pineal gland, kidney and heart of both control and hypertensive rats. Peak nighttime pineal melatonin concentrations were higher in L-NAME-treated rats than in controls (3.38+/-0.48 vs. 1.75+/-0.33 ng per pineal gland). No differences between both groups were found in melatonin concentrations in blood, kidney and heart or in the MT(1) receptor density in the aorta. Our results suggest that L-NAME treatment enhances melatonin production in the pineal gland, potentially by decreasing an inhibitory effect of NO on melatonin production in the pineal gland. However, the enhanced pineal melatonin formation was insufficient to increase melatonin concentrations in circulation, heart and kidney of L-NAME-treated rats, indicating an increased use of melatonin in hypertensive animals.

  15. [The sexual peculiarities of aging changes in circannual rhythms of pineal gland, hypophysis, adrenal cortex and thymus functions in healthy subjects].

    PubMed

    Labunets, I F

    2013-01-01

    The interrelations of circannual rhythms of the functional state of pineal gland, hypophysis, adrenal cortex, thymus in healthy women and men from 20 to 79 years were studied. Fluctuations of melatonin, ACTH, cortisol and thymic serum factor, which were exchanged in aging (the season peaks of hormones and its acrophase) were found in blood of healthy 20-29 years old people. The changes of rhythmicity of indices were in male earlier (pineal gland and hypophysis over 30 years, thymus and adrenal cortex over 40 years) and more impressive than in women. The aging changes of pineal gland function's rhythm in healthy subjects have important role for changes of interrelations of circannual rhythms hypophysis, adrenal cortex and thymus.

  16. Fluoride concentrations in the pineal gland, brain and bone of goosander (Mergus merganser) and its prey in Odra River estuary in Poland.

    PubMed

    Kalisinska, Elzbieta; Bosiacka-Baranowska, Irena; Lanocha, Natalia; Kosik-Bogacka, Danuta; Krolaczyk, Katarzyna; Wilk, Aleksandra; Kavetska, Katarzyna; Budis, Halina; Gutowska, Izabela; Chlubek, Dariusz

    2014-12-01

    The aim of the study was to investigate fluoride concentrations in bone, brain and pineal gland of goosander Mergus merganser wintering in the Odra estuary (Poland) as well as in fish originating from its digestive tract. The fluoride concentrations were determined with potentiometric method. Medians of concentrations in goosander had the highest and the lowest values in pineal gland and brain (>760 and <190 mg/kg, respectively). Fluoride concentration in the pineal gland was significantly greater than in the bone and the brain of the duck. In fish, the fluoride concentration ranged from 37 to 640 mg/kg and significant correlation was revealed between the fluoride concentration and fish weight and length. Based on own results and data of other authors, a daily fluoride intake by the goosander in the Odra estuary was estimated at 15 mg. So high fluoride concentrations like in the duck have not been found in mammal brains.

  17. CSF generation by pineal gland results in a robust melatonin circadian rhythm in the third ventricle as an unique light/dark signal.

    PubMed

    Tan, Dun-Xian; Manchester, Lucien C; Reiter, Russel J

    2016-01-01

    Pineal gland is an important organ for the regulation of the bio-clock in all vertebrate species. Its major secretory product is melatonin which is considered as the chemical expression of darkness due to its circadian peak exclusively at night. Pineal melatonin can be either released into the blood stream or directly enter into the CSF of the third ventricle via the pineal recess. We have hypothesized that rather than the peripheral circulatory melatonin circadian rhythm serving as the light/dark signal, it is the melatonin rhythm in CSF of the third ventricle that serves this purpose. This is due to the fact that melatonin circadian rhythm in the CSF is more robust in terms of its extremely high concentration and its precise on/off peaks. Thus, extrapineal-generated melatonin or diet-derived melatonin which enters blood would not interfere with the bio-clock function of vertebrates. In addition, based on the relationship of the pineal gland to the CSF and the vascular structure of this gland, we also hypothesize that pineal gland is an essential player for CSF production. We feel it participates in both the formation and reabsorption of CSF. The mechanisms associated with these processes are reviewed and discussed in this brief review.

  18. Adrenergic regulation and diurnal rhythm of p38 mitogen-activated protein kinase phosphorylation in the rat pineal gland.

    PubMed

    Chik, C L; Mackova, M; Price, D; Ho, A K

    2004-11-01

    In this study, we investigated adrenergic and photoneural regulation of p38MAPK phosphorylation in the rat pineal gland. Norepinephrine (NE), the endogenous neurotransmitter, dose-dependently increased the levels of phosphorylated MAPK kinase 3/6 (MKK3/6) and p38MAPK in rat pinealocytes. Time-course studies showed a gradual increase in MKK3/6 and p38MAPK phosphorylation that peaked between 1 and 2 h and persisted for 4 h post NE stimulation. In cells treated with NE for 2 and 4 h, the inclusion of prazosin or propranolol reduced NE-induced MKK3/6 and p38MAPK phosphorylation, indicating involvement of both alpha- and beta-adrenergic receptors for the sustained response. Whereas treatment with dibutyryl cAMP or ionomycin mimicked the NE-induced MKK3/6 and p38MAPK phosphorylation, neither dibutyryl cGMP nor 4beta-phorbol 12-myristate 13-acetate had an effect. The NE-induced increase in MKK3/6 and p38MAPK phosphorylation was blocked by KT5720 (a protein kinase A inhibitor) and KN93 (a Ca(2+)/calmodulin-dependent kinase inhibitor), but not by KT5823 (a protein kinase G inhibitor) or calphostin C (a protein kinase C inhibitor). In animals housed under a lighting regimen with 12 h of light, MKK3/6 and p38MAPK phosphorylation increased in the rat pineal gland at zeitgeber time 18. The nocturnal increase in p38MAPK phosphorylation was blocked by exposing the animal to constant light and reduced by treatment with propranolol, a beta-adrenergic blocker. Together, our results indicate that activation of p38MAPK is under photoneural control in the rat pineal gland and that protein kinase A and intracellular Ca(2+) signaling pathways are involved in NE regulation of p38MAPK.

  19. Role of monochromatic light on daily variation of clock gene expression in the pineal gland of chick.

    PubMed

    Jiang, Nan; Wang, Zixu; Cao, Jing; Dong, Yulan; Chen, Yaoxing

    2016-11-01

    The avian pineal gland is a master clock that can receive external photic cues and translate them into output rhythms. To clarify whether a shift in light wavelength can influence the circadian expression in chick pineal gland, a total of 240 Arbor Acre male broilers were exposed to white light (WL), red light (RL), green light (GL) or blue light (BL). After 2weeks light illumination, circadian expressions of seven core clock genes in pineal gland and the level of melatonin in plasma were examined. The results showed after illumination with monochromatic light, 24h profiles of all clock gene mRNAs retained circadian oscillation, except that RL tended to disrupt the rhythm of cCry2. Compared to WL, BL advanced the acrophases of the negative elements (cCry1, cCry2, cPer2 and cPer3) by 0.1-1.5h and delayed those of positive elements (cClock, cBmal1 and cBmal2) by 0.2-0.8h. And, RL advanced all clock genes except cClock and cPer2 by 0.3-2.1h, while GL delayed all clock genes by 0.5-1.5h except cBmal2. Meanwhile, GL increased the amplitude and mesor of positive and reduced both parameters of negative clock genes, but RL showed the opposite pattern. Although the acrophase of plasma melatonin was advanced by both GL and RL, the melatonin level was significantly increased in GL and decreased in RL. This tendency was consistent with the variations in the positive clock gene mRNA levels under monochromatic light and contrasted with those of negative clock genes. Therefore, we speculate that GL may enhance positive clock genes expression, leading to melatonin synthesis, whereas RL may enhance negative genes expression, suppressing melatonin synthesis.

  20. [Circadian rhythms and light responses of clock gene and arylalkylamine N-acetyltransferase gene expressions in the pineal gland of rats].

    PubMed

    Wang, Guo-Qing; Du, Yu-Zhen; Tong, Jian

    2005-02-25

    This study was to investigate the circadian rhythms and light responses of Clock gene and arylalkylamine N-acetyltransferase (NAT) gene expressions in the rat pineal gland under the 12 h-light : 12 h-dark cycle condition (LD) and constant darkness (DD). Sprague-Dawley rats housed under the light regime of LD (n=36) for 4 weeks and of DD (n=36) for 8 weeks were sampled for the pineal gland once a group (n=6) every 4 h in a circadian day. The total RNA was extracted from each sample and the semiquantitative reverse transcription polymerase chain reaction (RT-PCR) was used to determine the temporal changes in mRNA levels of Clock and NAT genes during different circadian times or zeitgeber times. The data were analysed by the cosine function software, Clock Lab software and the amplitude F test was used to reveal the circadian rhythm. The main results obtained are as follows. (1) In DD or LD condition, both of Clock and NAT genes mRNA levels in the pineal gland showed robust circadian oscillation (P< 0.05) with the peak at the subjective night or at night-time. (2) In comparison with DD regime, the amplitudes and the mRNA levels at peaks of Clock and NAT genes expressions in LD in the pineal gland were significantly reduced (P< 0.05). (3) In DD or LD condition, the circadian expressions of NAT gene were similar in pattern to those of Clock gene in the pineal gland (P> 0.05). These findings suggest that the expressions of Clock and NAT genes in the pineal gland not only show remarkably synchronous endogenous circadian rhythmic changes, but also response to the ambient light signal in a reduced manner.

  1. Daily oscillation and photoresponses of clock gene, Clock, and clock-associated gene, arylalkylamine N-acetyltransferase gene transcriptions in the rat pineal gland.

    PubMed

    Wang, Guo-Qing; Du, Yu-Zhen; Tong, Jian

    2007-01-01

    This study was conducted to investigate the circadian rhythms and light responses of Clock and arylalkylamine N-acetyltransferase (NAT) gene expressions in the rat pineal gland under the environmental conditions of a 12 h light (05:00-17:00 h): 12 h-dark (17:00-05:00 h) cycle (LD) and constant darkness (DD). The pineal gland of Sprague-Dawley rats housed under a LD regime (n=42) for four weeks and of a regime (n=42) for eight weeks were sampled at six different times, every 4 h (n=7 animals per time point), during a 24 h period. Total RNA was extracted from each sample, and the semiquantitative reverse transcription polymerase chain reaction (RT-PCR) was used to determine temporal changes in mRNA levels of Clock and NAT genes during different circadian or zeitgeber times. The data and parameters were analyzed by the cosine function software, Clock Lab software, and the amplitude F test was used to reveal the circadian rhythm. In the DD or LD condition, both the Clock and NAT mRNA levels in the pineal gland showed robust circadian oscillation (p<0.05) with the peak at the subjective night or at nighttime. In comparison with the DD regime, the amplitudes and mRNA levels at the peaks of Clock and NAT expressions in LD in the pineal gland were significantly reduced (p<0.05). In the DD or LD condition, the circadian expressions of NAT were similar in pattern to those of Clock in the pineal gland (p>0.05). These findings indicate that the transcriptions of Clock and NAT genes in the pineal gland not only show remarkably synchronous endogenous circadian rhythmic changes, but also respond to the ambient light signal in a reduced manner.

  2. Diagnostic accuracy of susceptibility-weighted magnetic resonance imaging for the evaluation of pineal gland calcification

    PubMed Central

    Böker, Sarah M.; Bender, Yvonne Y.; Diederichs, Gerd; Fallenberg, Eva M.; Wagner, Moritz; Hamm, Bernd; Makowski, Marcus R.

    2017-01-01

    Objectives To determine the diagnostic performance of susceptibility-weighted magnetic resonance imaging (SWMR) for the detection of pineal gland calcifications (PGC) compared to conventional magnetic resonance imaging (MRI) sequences, using computed tomography (CT) as a reference standard. Methods 384 patients who received a 1.5 Tesla MRI scan including SWMR sequences and a CT scan of the brain between January 2014 and October 2016 were retrospectively evaluated. 346 patients were included in the analysis, of which 214 showed PGC on CT scans. To assess correlation between imaging modalities, the maximum calcification diameter was used. Sensitivity and specificity and intra- and interobserver reliability were calculated for SWMR and conventional MRI sequences. Results SWMR reached a sensitivity of 95% (95% CI: 91%-97%) and a specificity of 96% (95% CI: 91%-99%) for the detection of PGC, whereas conventional MRI achieved a sensitivity of 43% (95% CI: 36%-50%) and a specificity of 96% (95% CI: 91%-99%). Detection rates for calcifications in SWMR and conventional MRI differed significantly (95% versus 43%, p<0.001). Diameter measurements between SWMR and CT showed a close correlation (R2 = 0.85, p<0.001) with a slight but not significant overestimation of size (SWMR: 6.5 mm ± 2.5; CT: 5.9 mm ± 2.4, p = 0.02). Interobserver-agreement for diameter measurements was excellent on SWMR (ICC = 0.984, p < 0.0001). Conclusions Combining SWMR magnitude and phase information enables the accurate detection of PGC and offers a better diagnostic performance than conventional MRI with CT as a reference standard. PMID:28278291

  3. The pineal gland of the Indian palm squirrel, Funambulus pennanti (Wroughton).

    PubMed

    Bhaskar, K S; Katti, S R; Sathyanesan, A G

    In the adult palm squirrel, F. pennanti the pineal is a club shaped, elongated structure with a connective tissue capsule. It consists of various types of pinealocytes, glial cells, neurons, nerve fibres, blood vessels and connective tissue. Two types of pinealocytes could be identified by light microscopy. They are large rounded with centrally placed nucleus, and small rounded pinealocytes. They have medium sized processes stainable with Alcian blue, periodic acid Schiff and Nissl methods. The pinealocytes are not stainable with bromophenol blue. However, they are moderately stainable with PAS, Sudan black and Baker's acid hematin. Neurons are seen either singly or in groups with axonal processes. Cystic cavities often lined by cells are a normal feature of adult squirrel pineal, and the lining cells are both pinealocytes and glial cells. Often neuronal endings are seen terminating on these lining cells. PAS positive globules were also seen inside the cysts. In some squirrel pineals, fibrous cysts with an inner core of cells are also seen. Occasionally groups of lymphocytes were also encountered in the pineal. In the fetal pineal, the cells are both larger and smaller ones and arranged in a cortex and medulla pattern and no cystic cavities are seen. The third ventricle enters the base of the pineal as pineal recess.

  4. Expression of protein gene product 9.5, tyrosine hydroxylase and serotonin in the pineal gland of rats with streptozotocin-induced diabetes.

    PubMed

    Tsai, Mang-Hung; Wei, I-Hua; Jiang-Shieh, Ya-Fen; Jou, Ming-Jia; Ko, Miau-Hwa; Chen, Hui-Min; Wu, Ching-Hsiang

    2008-03-01

    Hyperglycemia is a well-known factor in reducing nocturnal pineal melatonin production. However, the mechanism underlying diabetes-induced insufficiency of pineal melatonin has remained uncertain. This study was undertaken to examine the structure, innervation and functional activity of the pineal gland in streptozotocin (STZ)-induced diabetes in rats by immunohistochemistry, Western blotting and image analysis. The number of the pinealocytes and the volume of pineal were also estimated using stereologic quantification including the optical fractionator and Cavalieri's method. It has also shown a progressive reduction of the total area of the pineal gland and the nuclear size of pinealocytes beginning at 4 weeks of induced diabetes. Surprisingly, the immunoreactive intensities and protein amounts of serotonin (5-HT) and protein gene product (PGP) 9.5 in the pineal gland were progressively increased from 4 weeks of diabetes. Meanwhile, nerve fibers immunoreactive for PGP 9.5 had disappeared. Diabetes-induced neuropathy was observed in nerve fibers containing tyrosine hydroxylase (TH). The affected nerve fibers appeared swollen and smooth in outline but they showed a distribution pattern, packing density and protein levels comparable to those of the age-matched control animals. Ultrastructural observations have revealed diabetes-induced deformity of Schwann cells and basal lamina, accumulation of synaptic vesicles and deprivation of the dense-core vesicles in the axon terminals and varicosities. The increase in immunoreactivities in 5-HT and PGP 9.5 and shrinkage of pineal gland in the diabetic rats suggest an inefficient enzyme activity of the pinealocytes. This coupled with the occurrence of anomalous TH nerve fibers, may lead to an ineffective sympathetic innervation of the pinealocytes resulting in reduced melatonin production in STZ-induced diabetes.

  5. Redox capacity of the pineal gland in rats. Effect of castration.

    PubMed

    Ianăs, O; Olinescu, R; Bădescu, I

    1993-01-01

    The day/night cycle-induced effects, and the effect of castration on pineal oxidative potential in rats, were studied herein. Experiments were made in adult and castrated Wistar rats kept under normal light conditions during winter (on December and January). Castration was performed 72 hrs before sacrification. Groups of 6 intact or castrated animals were sacrificed at 4 hr-intervals during 24 hrs (the day/night cycle). Blood and pineal were then taken. Peroxides and total pineal antioxidants in plasma and pineal homogenate were assessed by chemiluminescence. The results obtained prove that photoperiod is involved in the organism oxidative potential, and that pineal is involved in the diurnal rhythm of this potential. Pineal peroxide and antioxidative concentrations show circadian variations with minimum and maximal values during the day or the night, which are also reflected at the plasma level. In the first half of the morning are registered increased peroxide and decreased antioxidative levels while at night the diagrams are reversed. As compared to the intact group, in the castrated one antioxidants and peroxides maintain their biorhythms but their concentrations are significantly changed. The diagram of pineal peroxides in the castrated group is situated above that of the intact one, with statistically significant differences only at midday (12:00). Taking into account the antioxidative characteristics of melatonin, one can suppose that maximum pineal antioxidative levels during the night might be due to maximum concentrations of nocturnal melatonin. The significant increase in peroxide concentration and the decrease in antioxidants after castration would partly explain the physiologic status of the elderly with decreased melatonin production and increased oxidative processes.

  6. Ultradian oscillation in expression of four melatonin receptor subtype genes in the pineal gland of the grass puffer, a semilunar-synchronized spawner, under constant darkness

    PubMed Central

    Ikegami, Taro; Maruyama, Yusuke; Doi, Hiroyuki; Hattori, Atsuhiko; Ando, Hironori

    2015-01-01

    Melatonin receptor gene expression as well as melatonin synthesis and secretion activities were examined in the pineal gland of the grass puffer, which exhibits unique lunar/tidal cycle-synchronized mass spawing: spawning occurs before high tide on the day of spring tide during spawing season. Melatonin synthesizing activity was assessed by the abundance of arylalkylamine N-acetyltransferase 2 (AANAT2) mRNA. The amount of aanat2 mRNA was low during light phase and initiated to increase after the light was turned off. The secretion of melatonin from primary pineal organ culture was stimulated after the light was turned off and ceased immediately after the light was turned on. The expression levels of four melatonin receptor subtype genes (mel1a1.4, mel1a1.7, mel1b, and mel1c) showed synchronous variations, and the levels tended to be high during the dark phase under light/dark conditions. These results suggest that the action of melatonin on the pineal gland is highly dependent on light and photoperiod, possibly with stronger action during night time. Under constant darkness, the expression of four melatonin receptor subtype genes showed unique ultradian oscillations with the period of 14.0–15.4 h, suggesting the presence of a circatidal oscillator in the pineal gland. The present results indicate that melatonin may serve local chronobiological functions in the pineal gland. These cyclic expressions of melatonin receptor genes in the pineal gland may be important in the control of the lunar/tidal cycle-synchronized mass spawning in the grass puffer. PMID:25688184

  7. Ultradian oscillation in expression of four melatonin receptor subtype genes in the pineal gland of the grass puffer, a semilunar-synchronized spawner, under constant darkness.

    PubMed

    Ikegami, Taro; Maruyama, Yusuke; Doi, Hiroyuki; Hattori, Atsuhiko; Ando, Hironori

    2015-01-01

    Melatonin receptor gene expression as well as melatonin synthesis and secretion activities were examined in the pineal gland of the grass puffer, which exhibits unique lunar/tidal cycle-synchronized mass spawing: spawning occurs before high tide on the day of spring tide during spawing season. Melatonin synthesizing activity was assessed by the abundance of arylalkylamine N-acetyltransferase 2 (AANAT2) mRNA. The amount of aanat2 mRNA was low during light phase and initiated to increase after the light was turned off. The secretion of melatonin from primary pineal organ culture was stimulated after the light was turned off and ceased immediately after the light was turned on. The expression levels of four melatonin receptor subtype genes (mel 1a 1.4, mel 1a 1.7, mel1b, and mel1c) showed synchronous variations, and the levels tended to be high during the dark phase under light/dark conditions. These results suggest that the action of melatonin on the pineal gland is highly dependent on light and photoperiod, possibly with stronger action during night time. Under constant darkness, the expression of four melatonin receptor subtype genes showed unique ultradian oscillations with the period of 14.0-15.4 h, suggesting the presence of a circatidal oscillator in the pineal gland. The present results indicate that melatonin may serve local chronobiological functions in the pineal gland. These cyclic expressions of melatonin receptor genes in the pineal gland may be important in the control of the lunar/tidal cycle-synchronized mass spawning in the grass puffer.

  8. Vitamin A is a necessary factor for sympathetic-independent rhythmic activation of mitogen-activated protein kinase in the rat pineal gland.

    PubMed

    Guillaumond, F; Giraudet, F; Becquet, D; Sage, D; Laforge-Anglade, G; Bosler, O; François-Bellan, A M

    2005-02-01

    The circadian clock in the suprachiasmatic nucleus (SCN) controls day-to-day physiology and behavior by sending timing messages to multiple peripheral oscillators. In the pineal gland, a major SCN target, circadian events are believed to be driven exclusively by the rhythmic release of norepinephrine from superior cervical ganglia (SCG) neurons relaying clock messages through a polysynaptic pathway. Here we show in rat an SCN-driven daily rhythm of pineal MAPK activation that is not dependent on the SCG and whose maintenance requires vitamin A as a blood-borne factor. This finding challenges the dogma that SCG-released norepinephrine is an exclusive mediator of SCN-pineal communication and allows the assumption that humoral mechanisms are involved in pineal integration of temporal messages.

  9. Headaches and pineal cyst: a (more than) coincidental relationship?

    PubMed

    Peres, Mario F P; Zukerman, Eliova; Porto, Pedro P; Brandt, Reynaldo A

    2004-10-01

    Pineal cysts are common findings in neuroimaging studies. The cysts are more frequent in women in their third decade of life. Pineal cysts can be symptomatic, headache is the most common symptom. The pineal gland has important physiological implications in humans, but little is known about the impact of pineal cysts in human physiology. We report 5 headache patients with pineal cyst, 4 women, 1 man, mean age 37.6, mean cyst diameter 10.1 mm. Two patients had migraine without aura, 1 migraine with aura, 1 chronic migraine, and 1 hemicrania continua. Three patients had strictly unilateral headaches. We hypothesize pineal cysts may be not incidental in headache patients, inducing an abnormal melatonin secretion.

  10. The light-induced transcriptome of the zebrafish pineal gland reveals complex regulation of the circadian clockwork by light

    PubMed Central

    Ben-Moshe, Zohar; Alon, Shahar; Mracek, Philipp; Faigenbloom, Lior; Tovin, Adi; Vatine, Gad D.; Eisenberg, Eli; Foulkes, Nicholas S.; Gothilf, Yoav

    2014-01-01

    Light constitutes a primary signal whereby endogenous circadian clocks are synchronized (‘entrained’) with the day/night cycle. The molecular mechanisms underlying this vital process are known to require gene activation, yet are incompletely understood. Here, the light-induced transcriptome in the zebrafish central clock organ, the pineal gland, was characterized by messenger RNA (mRNA) sequencing (mRNA-seq) and microarray analyses, resulting in the identification of multiple light-induced mRNAs. Interestingly, a considerable portion of the molecular clock (14 genes) is light-induced in the pineal gland. Four of these genes, encoding the transcription factors dec1, reverbb1, e4bp4-5 and e4bp4-6, differentially affected clock- and light-regulated promoter activation, suggesting that light-input is conveyed to the core clock machinery via diverse mechanisms. Moreover, we show that dec1, as well as the core clock gene per2, is essential for light-entrainment of rhythmic locomotor activity in zebrafish larvae. Additionally, we used microRNA (miRNA) sequencing (miR-seq) and identified pineal-enhanced and light-induced miRNAs. One such miRNA, miR-183, is shown to downregulate e4bp4-6 mRNA through a 3′UTR target site, and importantly, to regulate the rhythmic mRNA levels of aanat2, the key enzyme in melatonin synthesis. Together, this genome-wide approach and functional characterization of light-induced factors indicate a multi-level regulation of the circadian clockwork by light. PMID:24423866

  11. Expression and cellular localization of the transcription factor NeuroD1 in the developing and adult rat pineal gland.

    PubMed

    Castro, Analía E; Benitez, Sergio G; Farias Altamirano, Luz E; Savastano, Luis E; Patterson, Sean I; Muñoz, Estela M

    2015-05-01

    Circadian rhythms govern many aspects of mammalian physiology. The daily pattern of melatonin synthesis and secretion is one of the classic examples of circadian oscillations. It is mediated by a class of neuroendocrine cells known as pinealocytes which are not yet fully defined. An established method to evaluate functional and cytological characters is through the expression of lineage-specific transcriptional regulators. NeuroD1 is a basic helix-loop-helix transcription factor involved in the specification and maintenance of both endocrine and neuronal phenotypes. We have previously described developmental and adult regulation of NeuroD1 mRNA in the rodent pineal gland. However, the transcript levels were not influenced by the elimination of sympathetic input, suggesting that any rhythmicity of NeuroD1 might be found downstream of transcription. Here, we describe NeuroD1 protein expression and cellular localization in the rat pineal gland during development and the daily cycle. In embryonic and perinatal stages, protein expression follows the mRNA pattern and is predominantly nuclear. Thereafter, NeuroD1 is mostly found in pinealocyte nuclei in the early part of the night and in cytoplasm during the day, a rhythm maintained into adulthood. Additionally, nocturnal nuclear NeuroD1 levels are reduced after sympathetic disruption, an effect mimicked by the in vivo administration of α- and β-adrenoceptor blockers. NeuroD1 phosphorylation at two sites, Ser(274) and Ser(336) , associates with nuclear localization in pinealocytes. These data suggest that NeuroD1 influences pineal phenotype both during development and adulthood, in an autonomic and phosphorylation-dependent manner.

  12. The light-induced transcriptome of the zebrafish pineal gland reveals complex regulation of the circadian clockwork by light.

    PubMed

    Ben-Moshe, Zohar; Alon, Shahar; Mracek, Philipp; Faigenbloom, Lior; Tovin, Adi; Vatine, Gad D; Eisenberg, Eli; Foulkes, Nicholas S; Gothilf, Yoav

    2014-04-01

    Light constitutes a primary signal whereby endogenous circadian clocks are synchronized ('entrained') with the day/night cycle. The molecular mechanisms underlying this vital process are known to require gene activation, yet are incompletely understood. Here, the light-induced transcriptome in the zebrafish central clock organ, the pineal gland, was characterized by messenger RNA (mRNA) sequencing (mRNA-seq) and microarray analyses, resulting in the identification of multiple light-induced mRNAs. Interestingly, a considerable portion of the molecular clock (14 genes) is light-induced in the pineal gland. Four of these genes, encoding the transcription factors dec1, reverbb1, e4bp4-5 and e4bp4-6, differentially affected clock- and light-regulated promoter activation, suggesting that light-input is conveyed to the core clock machinery via diverse mechanisms. Moreover, we show that dec1, as well as the core clock gene per2, is essential for light-entrainment of rhythmic locomotor activity in zebrafish larvae. Additionally, we used microRNA (miRNA) sequencing (miR-seq) and identified pineal-enhanced and light-induced miRNAs. One such miRNA, miR-183, is shown to downregulate e4bp4-6 mRNA through a 3'UTR target site, and importantly, to regulate the rhythmic mRNA levels of aanat2, the key enzyme in melatonin synthesis. Together, this genome-wide approach and functional characterization of light-induced factors indicate a multi-level regulation of the circadian clockwork by light.

  13. Macrophages/microglia as 'sensors' of injury in the pineal gland of rats following a non-penetrative blast.

    PubMed

    Kaur, C; Singh, J; Lim, M K; Ng, B L; Ling, E A

    1997-04-01

    The pineal gland of adult rats was examined immunohistochemically and electron microscopically following exposure of the animals to a single blast equivalent to 110 kg TNT explosive. The most dramatic feature in rats killed at 7, 14 and 21 days after the blast was the upsurge of a large number of macrophages/microglia intensely immunostained with OX-42, OX-18, OX-6 and ED1 antibodies. These antibodies recognise the complement type three (CR3) receptors, major histocompatibility complex class I and class II (MHC I and MHC II) antigens and monocyte/macrophage antigens. Cell counts in OX-42 immunostained sections showed a two-fold increase at these intervals but returned to normal values at 28 days. The immunolabelled cells appeared extremely hypertrophic after the blast when compared with those in normal rats. In the latter and in rats killed at 28 days after the blast, immunoreactive cells were sparsely distributed. Ultrastructural study confirmed a wider occurrence of perivascular macrophages/microglia after the blast and the cells were laden with massive amounts of phagosomes resembling degenerating pinealocyte processes. It is concluded that the seemingly quiescent macrophages/microglia present normally in pineal gland were activated by the external blast force. The induced changes including the increase in cell numbers and endocytosis, however, were reversible in longer surviving animals.

  14. Circadian-related heteromerization of adrenergic and dopamine D₄ receptors modulates melatonin synthesis and release in the pineal gland.

    PubMed

    González, Sergio; Moreno-Delgado, David; Moreno, Estefanía; Pérez-Capote, Kamil; Franco, Rafael; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ortiz, Jordi; Ferré, Sergi; Canela, Enric; McCormick, Peter J

    2012-01-01

    The role of the pineal gland is to translate the rhythmic cycles of night and day encoded by the retina into hormonal signals that are transmitted to the rest of the neuronal system in the form of serotonin and melatonin synthesis and release. Here we describe that the production of both melatonin and serotonin by the pineal gland is regulated by a circadian-related heteromerization of adrenergic and dopamine D₄ receptors. Through α(₁B)-D₄ and β₁-D₄ receptor heteromers dopamine inhibits adrenergic receptor signaling and blocks the synthesis of melatonin induced by adrenergic receptor ligands. This inhibition was not observed at hours of the day when D₄ was not expressed. These data provide a new perspective on dopamine function and constitute the first example of a circadian-controlled receptor heteromer. The unanticipated heteromerization between adrenergic and dopamine D₄ receptors provides a feedback mechanism for the neuronal hormone system in the form of dopamine to control circadian inputs.

  15. LC/MS/MS analysis of the endogenous dimethyltryptamine hallucinogens, their precursors, and major metabolites in rat pineal gland microdialysate.

    PubMed

    Barker, Steven A; Borjigin, Jimo; Lomnicka, Izabela; Strassman, Rick

    2013-12-01

    We report a qualitative liquid chromatography-tandem mass spectrometry (LC/MS/MS) method for the simultaneous analysis of the three known N,N-dimethyltryptamine endogenous hallucinogens, their precursors and metabolites, as well as melatonin and its metabolic precursors. The method was characterized using artificial cerebrospinal fluid (aCSF) as the matrix and was subsequently applied to the analysis of rat brain pineal gland-aCSF microdialysate. The method describes the simultaneous analysis of 23 chemically diverse compounds plus a deuterated internal standard by direct injection, requiring no dilution or extraction of the samples. The results demonstrate that this is a simple, sensitive, specific and direct approach to the qualitative analysis of these compounds in this matrix. The protocol also employs stringent MS confirmatory criteria for the detection and confirmation of the compounds examined, including exact mass measurements. The excellent limits of detection and broad scope make it a valuable research tool for examining the endogenous hallucinogen pathways in the central nervous system. We report here, for the first time, the presence of N,N-dimethyltryptamine in pineal gland microdialysate obtained from the rat.

  16. Effects of ethylene glycol tetraacetic acid, A23187 and calmodulin, calcium activated neutral proteinase antagonists on melatonin secretion in perifused chick pineal gland.

    PubMed

    Agapito, M T; Pablos, M; Reiter, R J; Recio, J M; Gutierrez-Baraja, R

    1998-04-10

    We have recently described, using perifused pineal glands, that calcium influx participates in the activation of chick pineal gland. This study shows that the loss of perifused chick pineal gland activity is a complex process which seems to involve the release of calcium from intracellular stores, calmodulin and calcium-activated neutral protease (CANP). Pineal glands were perifused with Krebs medium (controls) or with Krebs medium plus the drugs ethylene glycol tetraacetic acid (EGTA; calcium chelator), A23187 (calcium ionophore), EGTA plus A23187 (extra-intra cellular calcium chelation), trifluoperazine and CGS9343B (calmodulin inhibitors), and E-64 (CANP inhibitor) at the time of the natural peak of melatonin release. When EGTA or A23187 were added to the perifusion medium, no effects were observed. On the other hand, when the calcium chelator EGTA plus A23187 (free extra and intracellular calcium levels were dramatically decreased), trifluoperazine, CGS 9343B or E-64 were added to the perifusion medium melatonin synthesis increased significantly and was sustained for 8 h. We propose a prominent role for calcium output from intracellular stores in regulating melatonin production primarily by acting on Ca-calmodulin and calcium-activated neutral protease.

  17. Pineal gland expression of the transcription factor Egr-1 is restricted to a population of glia that are distinct from nestin-immunoreactive cells.

    PubMed

    Man, Pui-Sin; Carter, David A

    2008-02-01

    Egr-1 is a plasticity-related transcription factor that has been implicated in circadian regulation of the pineal gland. In the present study we have investigated the cellular expression pattern of Egr-1 in the adult rat pineal. Egr-1 protein is restricted to the nucleus of a sub-population of cells. These cells were characterised using a new transgenic rat model (egr-1-d2EGFP) in which green fluorescent protein is driven by the egr-1 promoter. Cellular filling by GFP revealed that Egr-1-positive cells exhibited processes, indicating a glial cell-type morphology. This was confirmed by co-localizing the GFP-filled processes with vimentin and S-100beta. However, GFP/Egr-1 is expressed in only a tiny minority of the previously identified Id-1/vimentin-positive glial cells and therefore represents a novel sub-set of this (GFAP-negative) glial population. We have also demonstrated for the first time an extensive network of nestin-positive cells throughout the adult pineal gland, however these cells do not co-express Egr-1. Our studies have therefore broadened our understanding of the cell populations that constitute the adult pineal. Cellular localization of Egr-1 has revealed that this factor does not appear to be directly involved in pinealocyte production of melatonin but is required in a sub-set of pineal glia.

  18. The alpha(2D/A)-adrenergic receptor-linked membrane guanylate cyclase: a new signal transduction system in the pineal gland.

    PubMed

    Venkataraman, V; Duda, T; Sharma, R K

    1998-05-01

    In the pineal gland, the membrane guanylate cyclase activity was specifically stimulated by alpha(2D/A)-adrenergic receptor (alpha(2D/A)-AR) agonists. The agonists, however, did not stimulate the cyclase activity in the cell-free membranes. It was possible to stimulate the cyclase in cell-free membranes by the addition of the pineal soluble fraction, but this stimulation was Ca2+-dependent and alpha(2D/A)-agonist-independent. It was also possible to achieve Ca2+-dependent stimulation of the cyclase by the direct addition of CD-GCAP to the isolated pineal membranes. CD-GCAP is a Ca2+-binding protein and is a specific activator of one of the two members of the ROS-GC subfamily of membrane guanylate cyclases, ROS-GC1. The soluble fraction of the pineal gland stimulated recombinant ROS-GC1 in a Ca2+-dependent fashion. The direct presence of both ROS-GC1 and CD-GCAP in the pineal was established by molecular cloning/PCR studies. The findings demonstrate the existence of a novel signal transduction mechanism--the linkage of the alpha(2D/A)-AR signaling system with ROS-GC1 transduction system, occurring through intracellular Ca2+ via CD-GCAP.

  19. CREB phosphorylation and melatonin biosynthesis in the rat pineal gland: involvement of cyclic AMP dependent protein kinase type II.

    PubMed

    Maronde, E; Wicht, H; Taskén, K; Genieser, H G; Dehghani, F; Olcese, J; Korf, H W

    1999-10-01

    Phosphorylation of cyclic AMP response element binding protein (CREB) at amino acid serine 133 appears as an important link between the norepinephrine (NE)-induced activation of second messenger systems and the stimulation of melatonin biosynthesis. Here we investigated in the rat pineal gland: 1) the type of protein kinase that mediates CREB phosphorylation: and 2) its impact on melatonin biosynthesis. Immunochemical or immunocytochemical demonstration of serine133-phosphorylated cyclic AMP regulated element binding protein (pCREB) and radioimmunological detection of melatonin revealed that only cyclic AMP-dependent protein kinase (PKA) inhibitors suppressed NE-induced CREB phosphorylation and stimulation of melatonin biosynthesis, whereas inhibitors of cyclic GMP-dependent protein kinase (PKG), mitogen-activated protein kinase kinase, protein kinase C, or calcium-calmodulin-dependent protein kinase (CaMK) were ineffective. Investigations with cyclic AMP-agonist pairs that selectively activate either PKA type I or II link NE-induced CREB phosphorylation and stimulation of melatonin biosynthesis to the activation of PKA type II. Our data suggest that PKA type II plays an important role in the transcriptional control of melatonin biosynthesis in the rat pineal organ.

  20. Melatonin and cortisol secretion profile in patients with pineal cyst before and after pineal cyst resection.

    PubMed

    Májovský, Martin; Řezáčová, Lenka; Sumová, Alena; Pospíšilová, Lenka; Netuka, David; Bradáč, Ondřej; Beneš, Vladimír

    2017-02-10

    A pineal cyst is a benign affection of the human pineal gland on the borderline between pathology and normality. Only a small percentage of patients present with symptoms and a surgical treatment is indicated in highly selected cases. A melatonin secretion in patients with a pineal cyst before and after a pineal cyst resection has not been studied yet and the effect of surgery on human metabolism is unknown. The present study examined melatonin, cortisol and blood glucose secretion profiles perioperatively in a surgical group of 4 patients. The control group was represented by 3 asymptomatic patients with a pineal cyst. For each patient, 24-h circadian secretion curves of melatonin, cortisol and glycemia were acquired. An analysis of melatonin profiles showed an expected diurnal pattern with the night peak in patients before the surgery and in the control group. In contrast, melatonin levels in patients after the surgery were at their minimum throughout the whole 24-h period. The cortisol secretion was substantially increased in patients after the surgery. Blood glucose sampling showed no statistically significant differences. Clinical results demonstrated statistically significant headache relief measured by Visual Analogue Scale in patients after the surgery. Despite the small number of examined patients, we can conclude that patients with a pineal cyst preserved the physiological secretion of the hormone melatonin while patients who underwent the pineal cyst resection experienced a loss of endogenous pineal melatonin production, which equated with pinealectomy. Surprisingly, cortisol secretion substantially increased in patients after the surgery.

  1. The role of the pineal gland in the photoperiodic control of bird song frequency and repertoire in the house sparrow, Passer domesticus.

    PubMed

    Wang, Gang; Harpole, Clifford E; Paulose, Jiffin; Cassone, Vincent M

    2014-04-01

    Temperate zone birds are highly seasonal in many aspects of their physiology. In mammals, but not in birds, the pineal gland is an important component regulating seasonal patterns of primary gonadal functions. Pineal melatonin in birds instead affects seasonal changes in brain song control structures, suggesting the pineal gland regulates seasonal song behavior. The present study tests the hypothesis that the pineal gland transduces photoperiodic information to the control of seasonal song behavior to synchronize this important behavior to the appropriate phenology. House sparrows, Passer domesticus, expressed a rich array of vocalizations ranging from calls to multisyllabic songs and motifs of songs that varied under a regimen of different photoperiodic conditions that were simulated at different times of year. Control (SHAM) birds exhibited increases in song behavior when they were experimentally transferred from short days, simulating winter, to equinoctial and long days, simulating summer, and decreased vocalization when they were transferred back to short days. When maintained in long days for longer periods, the birds became reproductively photorefractory as measured by the yellowing of the birds' bills; however, song behavior persisted in the SHAM birds, suggesting a dissociation of reproduction from the song functions. Pinealectomized (PINX) birds expressed larger, more rapid increases in daily vocal rate and song repertoire size than did the SHAM birds during the long summer days. These increases gradually declined upon the extension of the long days and did not respond to the transfer to short days as was observed in the SHAM birds, suggesting that the pineal gland conveys photoperiodic information to the vocal control system, which in turn regulates song behavior.

  2. p19 detected in the rat retina and pineal gland is a guanylyl cyclase-activating protein (GCAP).

    PubMed

    Dejda, Agnieszka; Matczak, Izabela; Gorczyca, Wojciech A

    2002-01-01

    The Ca(2+)-dependent activation of retina-specific guanylyl cyclase (retGC) is mediated by guanylyl cyclase-activating proteins (GCAPs). Here we report for the first time detection of a 19 kDa protein (p19) with GCAP properties in extracts of rat retina and pineal gland. Both extracts stimulate synthesis of cGMP in rod outer segment (ROS) membranes at low (30 nM) but not at high (1 microM) concentrations of Ca(2+). At low Ca(2+), immunoaffinity purified p19 activates guanylyl cyclase(s) in bovine ROS and rat retinal membranes. Moreover, p19 is recognized by antibodies against bovine GCAP1 and, similarly to other GCAPs, exhibits a Ca(2+)-dependent electrophoretic mobility shift.

  3. Injury switches melatonin production source from endocrine (pineal) to paracrine (phagocytes) - melatonin in human colostrum and colostrum phagocytes.

    PubMed

    Pontes, Gerlândia N; Cardoso, Elaine C; Carneiro-Sampaio, Magda M S; Markus, Regina P

    2006-09-01

    A large number of data show that melatonin has immunomodulatory properties and is produced by immunocompetent cells; also, some evidence suggests a 'feedback' of the activated immune system on the pineal gland. In this paper, we studied immune-pineal interactions in colostrum obtained from healthy puerperae and mothers with mastitis taking into account that, (a) melatonin levels in milk reflects pineal activity and (b) colostrum quiescent mononuclear and polymorphonuclear phagocytes from healthy mothers in culture are adequate for evaluating the ability of immunocompetent cells to produce melatonin. Here we compared the diurnal and nocturnal melatonin levels in colostrum from healthy puerperae and mothers with mastitis; this is a unique noninvasive model for determining pineal activity in the proinflammatory phase of a defense response. In addition, we determined the 'in vitro' production of melatonin by colostrum immunocompetent cells stimulated by enteropathogenic Escherichia coli or zymosan. Suppression of nocturnal melatonin rise in mothers with mastitis was highly correlated with increased tumor necrosis factor-alpha (TNF-alpha) secretion. This result, interpreted taking into account the presence of the transcription factor nuclear factor kappa B in pineal gland, suggest that the proinflammatory cytokine can inhibit nocturnal pineal melatonin production. On the other hand, stimulated, but not quiescent, immunocompetent cells secreted in the colostrum produced melatonin in vitro. In addition, this production ceases after bacteria killing. These results suggest that during the response to an injury the production of melatonin can be transiently shifted from an endocrine (pineal) to a paracrine (immunocompetent cells) source.

  4. [Cascade of biochemical events triggered by stimulation of adrenergic receptors in the rat pineal gland--from cell membrane to nucleus].

    PubMed

    Zawilska, J B; Rosiak, J; Nowak, J Z

    1999-01-01

    Pineal glands of various vertebrate species synthesize melatonin in a circadian rhythm generated by an endogenous pacemaker. The levels of melatonin and activity of serotonin N-acetyltransferase (AA-NAT: a penultimate and key regulatory enzyme in melatonin biosynthesis) are low during the light phase and high during the dark phase of any natural or imposed light-dark illumination cycle. The expression of AA-NAT gene in rat pineal gland is regulated by a photoneural system that acts through the adrenergic-cAMP-related mechanisms in pinealocytes. Concomitant stimulation by noradrenaline of beta 1- and alpha 1-adrenergic receptors, in a mechanism of "AND gate" activation, results in a large, 60-100-fold increase in intrapinealocyte cAMP level. The role of cAMP-dependent transcription factors CREB, ICER and Fra-2 in turning on and off the AA-NAT gene expression is discussed.

  5. Radiometric assay for phenylethanolamine N-methyltransferase and catechol O-methyltransferase in a single tissue sample: application to rat hypothalamic nuclei, pineal gland, and heart

    SciTech Connect

    Culman, J.; Torda, T.; Weise, V.K.

    1987-08-01

    A simple and highly sensitive method for simultaneous assay of phenylethanolamine N-methyltransferase (PNMT) and catechol O-methyltransferase (COMT) is described. These enzymes are determined in a single tissue homogenate using S-(methyl-/sup 3/H) adenosyl-L-methionine as methyl donor and sequentially incubating with the substrates phenylethanolamine and epinephrine. The radioactive products of the enzymatic reactions, N-methylphenylethanolamine and metanephrine, are extracted and then separated by thin-layer chromatography. The identity of the reaction products has been established chromatographically and the conditions for both enzymatic reactions in the assay procedure have been defined. Measurement of PNMT activity in the rat pineal gland or in minute fragments of other tissues (e.g., brain nuclei) has not been possible using previously described methods. Activities of PNMT and COMT in the rat pineal gland, various hypothalamic nuclei, and the auricular and ventricular myocardia are herein reported.

  6. [Cellular aspects of aging in the pineal gland of the shrew, Crocidura russula].

    PubMed

    Dekar-Madoui, Aicha; Besseau, Laurence; Magnanou, Elodie; Fons, Roger; Ouali, Saliha; Bendjelloul, Mounira; Falcon, Jack

    2012-01-01

    The Greater White-toothed shrew Crocidura russula is short-lived species and the phase of senescence is greatly elongated in captivity. The loss of rhythmicity of biological functions that accompanies its aging is also well documented. C. russula is thus an excellent model to test the effects of aging on biological clocks. Melatonin is a key hormone in the synchronization of behaviors, metabolisms and physiological regulations with environmental factors. In the present work we want to know if the loss of rhythmicity and the reduced melatonin levels registered by the second year of life in this species could be associated to modified ultrastructural features of the pineal parenchyma, site of melatonin synthesis. Transmission electron microscopy (TEM) analysis of young (1-4 months) and old (25-28 months) shrew's pineals show that in older individuals, the parenchyma undergoes alterations affecting mainly nucleus, mitochondria and endoplasmic reticulum cisternae, with increased numbers of dense bodies and the formation of many concretions as well as a depletion of secretory products. These changes suggest a process of slowing pinealocytes metabolism which could explain the gradual reduction of melatonin levels registered during aging in C. russula.

  7. PLURIVESICULAR SECRETORY PROCESSES AND NERVE ENDINGS IN THE PINEAL GLAND OF THE RAT

    PubMed Central

    De Robertis, Eduardo; de Iraldi, Amanda Pellegrino

    1961-01-01

    The pineal body of white normal rats, 1.5 to 3 months old, was studied under the electron microscope. A single type of parenchymal cell—the pinealocyte—is recognized as the main component of the tissue, and some of the structural characteristics of the nucleus and cytoplasm are described. The main morphological characteristic of the pinealocytes is represented by club-shaped perivascular expansions connected to the cell by thin pedicles. They are found lying in a large, clear space surrounding the blood capillaries. The name plurivesicular secretory processes is proposed, to emphasize the main structural feature and the probable function of these cellular expansions. A tubulofibrillar component is mainly found in the pedicle, and within the expansion there are numerous small mitochondria and densily packed vesicles of about 425 A. Two types of vesicles, one with a homogeneous content and another with a very dense osmium deposit, are described. Between the two types there are intermediary forms. In these processes, mitochondria show profound changes which may lead to complete vacuolization. The significance of this plurivesicular secretory component is discussed in the light of recent work on the biogenic amines of the pineal body and preliminary experiments showing the release of the vesicles containing dense granules after treatment with reserpine. These vesicles are interpreted as the site of storage of some of the biogenic amines. Bundles of unmyelinated nerve fibers and endings on large blood vessels which also contain a plurivesicular content are described and tentatively interpreted as adrenergic nerve terminals. PMID:13720811

  8. The effect of chronic morphine or methadone exposure and withdrawal on clock gene expression in the rat suprachiasmatic nucleus and AA-NAT activity in the pineal gland.

    PubMed

    Pačesová, D; Novotný, J; Bendová, Z

    2016-07-18

    The circadian rhythms of many behavioral and physiological functions are regulated by the major circadian pacemaker in the suprachiasmatic nucleus. Long-term opiate addiction and drug withdrawal may affect circadian rhythmicity of various hormones or the sleep/activity pattern of many experimental subjects; however, limited research has been done on the long-term effects of sustained opiate administration on the intrinsic rhythmicity in the suprachiasmatic nucleus and pineal gland. Here we compared the effects of repeated daily treatment of rats with morphine or methadone and subsequent naloxone-precipitated withdrawal on the expression of the Per1, Per2, and Avp mRNAs in the suprachiasmatic nucleus and on arylalkylamine N-acetyltransferase activity in the pineal gland. We revealed that 10-day administration and withdrawal of both these drugs failed to affect clock genes and Avp expression in the SCN. Our results indicate that opioid-induced changes in behavioral and physiological rhythms originate in brain structures downstream of the suprachiasmatic nucleus regulatory output pathway. Furthermore, we observed that acute withdrawal from methadone markedly extended the period of high night AA-NAT activity in the pineal gland. This suggests that withdrawal from methadone, a widely used drug for the treatment of opioid dependence, may have stronger impact on melatonin synthesis than withdrawal from morphine.

  9. Effects of Melatonin on Morphological and Functional Parameters of the Pineal Gland and Organs of Immune System in Rats During Natural Light Cycle and Constant Illumination.

    PubMed

    Litvinenko, G I; Shurlygina, A V; Gritsyk, O B; Mel'nikova, E V; Tenditnik, M V; Avrorov, P A; Trufakin, V A

    2015-10-01

    We studied the response of the pineal gland and organs of the immune system to melatonin treatment in Wistar rats kept under conditions of abnormal illumination regimen. The animals were kept under natural light regimen or continuous illumination for 14 days and then received daily injections of melatonin (once a day in the evening) for 7 days. Administration of melatonin to rats kept at natural light cycle was followed by a decrease in percent ratio of CD4+8+ splenocytes and CD4-8+ thymocytes. In 24-h light with the following melatonin injections were accompanied by an increase in percent rate and absolute amount of CD4+8+ cells in the spleen, and a decrease in percent rate of CD11b/c and CD4-8+ splenocytes. In the thymus amount of CD4-8+ cells increased, and absolute number of CD4+25+ cells reduced. Melatonin significantly decreased lipofuscin concentration in the pineal gland during continuous light. Direction and intensity of effects of melatonin on parameters of cell immunity and state of the pineal gland were different under normal and continuous light conditions. It should be taken into account during using of this hormone for correction of immune and endocrine impairments developing during change in light/dark rhythm.

  10. Dephosphorylation of pCREB by protein serine/threonine phosphatases is involved in inactivation of Aanat gene transcription in rat pineal gland.

    PubMed

    Koch, Marco; Mauhin, Viviane; Stehle, Jörg H; Schomerus, Christof; Korf, Horst-Werner

    2003-04-01

    The rat pineal gland is a suitable model to investigate neurotransmitter-controlled gene expression, because it is well established that the stimulation of melatonin biosynthesis by norepinephrine (NE) depends on the activation of the gene that encodes arylalkylamine N-acetyltransferase (AANAT), the melatonin rhythm enzyme. The mechanisms responsible for downregulation of Aanat transcription are less clear. In this in vitro study we investigated the role of pCREB dephosphorylation for termination of Aanat gene transcription. Immunosignals for pCREB, strongly induced after NE stimulation, rapidly decreased after withdrawal of NE. The immunoreactivity of the inhibitory transcription factor ICER increased twofold after NE treatment for 6 h, but did not change within 30 min after removal of the stimulus. Application of protein serine/threonine phosphatase (PSP) inhibitors prevented pCREB dephosphorylation and blocked the decreases in Aanat mRNA levels, AANAT protein amount and melatonin biosynthesis all of which occurred rapidly after NE withdrawal. PSPs in the rat pineal gland were characterized by immunocytochemistry and immunoblotting. NE-stimulation for 8 h induced accumulation of PSP1-catalytic subunit (CSU) in pinealocyte nuclei, but did not affect the distribution of PSP2A-CSU. The results identify dephosphorylation of pCREB by PSPs as an essential mechanism for downregulation of Aanat transcription in the rat pineal gland.

  11. Effect of TNF-alpha on the melatonin synthetic pathway in the rat pineal gland: basis for a 'feedback' of the immune response on circadian timing.

    PubMed

    Fernandes, Pedro A C M; Cecon, Erika; Markus, Regina P; Ferreira, Zulma S

    2006-11-01

    A retino-hypothalamic-sympathetic pathway drives the nocturnal surge of pineal melatonin production that determines the synchronization of pineal function with the environmental light/dark cycle. In many studies, melatonin has been implicated in the modulation of the inflammatory response. However, scant information on the feedback action of molecules present in the blood on the pineal gland during the time course of an inflammatory response is available. Here we analyzed the effect of tumor necrosis factor-alpha (TNF-alpha) and corticosterone on the transcription of the Aa-nat, hiomt and 14-3-3 protein genes in denervated pineal glands of rats stimulated for 5 hr with norepinephrine, using real-time reverse transcription-polymerase chain reaction. The transcription of Aa-nat, a gene encoding the key enzyme in melatonin biosynthesis, together with the synthesis of the melatonin precursor N-acetylserotonin, was inhibited by TNF-alpha. This inhibition was transient, and a preincubation of TNF-alpha for more than 24 hr had no detectable effect. In fact, a protein(s) transcribed, later on, as shown by cycloheximide, was responsible for the reversal of the inhibition of Aa-nat transcription. In addition, corticosterone induced a potentiation of norepinephrine-induced Aa-nat transcription even after 48 hr of incubation. These data support the hypothesis that the nocturnal surge in melatonin is impaired at the beginning of an inflammatory response and restored either during the shutdown of an acute response or in a chronic inflammatory pathology. Here, we introduce a new molecular pathway involved in the feedback of an inflammatory response on pineal activity, and provide a molecular basis for understanding the expression of circadian timing in injured organisms.

  12. Pharmacological, molecular and functional characterization of vasoactive intestinal polypeptide/pituitary adenylate cyclase-activating polypeptide receptors in the rat pineal gland.

    PubMed

    Simonneaux, V; Kienlen-Campard, P; Loeffler, J P; Basille, M; Gonzalez, B J; Vaudry, H; Robberecht, P; Pévet, P

    1998-08-01

    Melatonin secretion from the mammalian pineal gland is strongly stimulated by noradrenaline and also by vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP). Three types of receptors for VIP and PACAP have been characterized so far: VIP1/PACAP receptors and VIP2/PACAP receptors, which possess similar high affinities for VIP and PACAP, and PACAP1 receptors which exhibit a 100-1000-fold higher affinity for PACAP. The aim of the present study was to characterize the receptor subtype(s) mediating the stimulatory effects of VIP and PACAP on melatonin synthesis in the rat pineal gland. Autoradiographic studies showed that PACAP and VIP were equally potent in displacing binding of radioiodinated PACAP27 from pineal sections. Amplification of pineal complementary DNAs by polymerase chain reaction using specific primers for the different receptor subtypes revealed that all three receptor messenger RNAs are expressed and that VIP1/PACAP receptor messenger RNA was predominant over VIP2/PACAP receptor messenger RNA. In vitro, VIP and PACAP stimulated melatonin synthesis with similar high potency and the effect of the two peptides were not additive. The selective VIP1/PACAP receptor agonists [R16]chicken secretin (1-25) and [K15, R16, L27]VIP(1-7)/growth hormone releasing factor(8-27) were significantly more potent than the selective VIP2/PACAP receptor agonist RO 25-1553 in stimulating melatonin secretion. The stimulatory effects of VIP and PACAP were similarly inhibited by the VIP1/PACAP antagonist [acetyl-His1, D-Phe2, K15, R16, L27]VIP(3-7)/growth hormone releasing factor(8-27). These data strongly suggest that VIP and PACAP exert a stimulatory effect on melatonin synthesis mainly through activation of a pineal VIP1/PACAP receptor subtype.

  13. Mechanisms regulating the marked seasonal variation in melatonin synthesis in the European hamster pineal gland.

    PubMed

    Garidou, Marie-Laure; Vivien-Roels, Berthe; Pevet, Paul; Miguez, Jesus; Simonneaux, Valerie

    2003-04-01

    Like many wild species, the European hamster (Cricetus cricetus) adapts to the marked seasonal changes in its environment, namely by hibernation and inhibition of sexual activity in winter. These annual functions are driven by the variation in the environmental factors (light, temperature) that are transmitted to the body through large variations in the duration and amplitude of the nocturnal melatonin rhythm. Here we report that the seasonal variation in melatonin synthesis is mainly driven by arylalkylamine N-acetyltransferase gene transcription and enzyme activation. This, however, does not exclude participation of hydroxyindole-O-methyltransferase, which may relay environmental temperature information. The in vivo experiments show that norepinephrine stimulates melatonin synthesis, this effect being gated at night. The possibility that the variation in pineal metabolism depends on a seasonal change in the suprachiasmatic nuclei clock circadian activity that is transmitted by norepinephrine is discussed.

  14. Cannabinoids attenuate norepinephrine-induced melatonin biosynthesis in the rat pineal gland by reducing arylalkylamine N-acetyltransferase activity without involvement of cannabinoid receptors.

    PubMed

    Koch, Marco; Dehghani, Faramarz; Habazettl, Iris; Schomerus, Christof; Korf, Horst-Werner

    2006-07-01

    Cannabinoids modulate neuronal and neuroendocrine circuits by binding to cannabinoid receptors acting upon cAMP/Ca(2+)-mediated intracellular signaling cascades. The rat pineal represents an established model to investigate intracellular signaling processes because a well defined input, the neurotransmitter norepinephrine, is transformed via cAMP/Ca(2+)-dependent mechanisms into an easily detectable output signal, the biosynthesis of melatonin. Here we investigated the impact of cannabinoids on norepinephrine-regulated melatonin biosynthesis in the rat pineal. We demonstrated that treatment of cultured rat pineals with 9-carboxy-11-nor-delta-9-tetrahydrocannabinol (THC), cannabidiol or cannabinol significantly reduced norepinephrine-induced arylalkylamine N-acetyltransferase (AANAT) activity and melatonin biosynthesis. These effects were not mimicked by the cannabinoid receptor agonist WIN55,212-2 and were not blocked by cannabinoid 1 and 2 receptor antagonists. The cannabinoids used did not affect norepinephrine-induced increases in cAMP/Ca(2+) levels. Notably, cannabinoids were found to directly inhibit AANAT activity in lysates of the pineal gland. This effect was specific in so far as cannabinoids did not influence the activity of hydroxyindole-O-methyltransferase (HIOMT), the last enzyme in melatonin biosynthesis. Taken together, our data strongly suggest that cannabinoids inhibit AANAT activity and attenuate melatonin biosynthesis through intracellular actions without involvement of classical cannabinoid receptor-dependent signaling cascades.

  15. Involvement of NF-Y and Sp1 in basal and cAMP-stimulated transcriptional activation of the tryptophan hydroxylase (TPH ) gene in the pineal gland.

    PubMed

    Côté, F; Schussler, N; Boularand, S; Peirotes, A; Thévenot, E; Mallet, J; Vodjdani, G

    2002-05-01

    The expression of the tryptophan hydroxylase (TPH) gene, encoding the rate-limiting enzyme of serotonin biosynthesis, is tightly regulated both at the transcriptional and at the post-transcriptional levels. In the pineal gland, transcription of the gene is activated in response to an intracellular circadian increase of the cAMP concentration. We have previously shown that transcription of a 2.1-kb fragment of the human TPH promoter is induced by cAMP, although it lacks the canonical cAMP responsive element, CRE. The minimal promoter (-73/+29) has only weak transcriptional activity but is responsive to cAMP. It contains an inverted CCAAT box, which was demonstrated to be involved in this response. Here, we have extended our investigation to the functional features of the inverted CCAAT box in the -252/+29 TPH promoter, which has a higher basal activity. We show that an additional cis -acting sequence, the adjacent GC-rich region, cooperates with the inverted CCAAT box for the full activation of basal transcription, and that both elements are essential for the full cAMP response. We also show that in pinealocytes, NF-Y and Sp1 transactivators bind the inverted CCAAT box and GC-rich-region, respectively. These factors participate in a novel pathway for the cAMP-mediated response of the TPH promoter, which is independent of the canonical CRE-mediated response.

  16. Early development of circadian rhythmicity in the suprachiamatic nuclei and pineal gland of teleost, flounder (Paralichthys olivaeus), embryos.

    PubMed

    Mogi, Makoto; Uji, Susumu; Yokoi, Hayato; Suzuki, Tohru

    2015-08-01

    Circadian rhythms enable organisms to coordinate multiple physiological processes and behaviors with the earth's rotation. In mammals, the suprachiasmatic nuclei (SCN), the sole master circadian pacemaker, has entrainment mechanisms that set the circadian rhythm to a 24-h cycle with photic signals from retina. In contrast, the zebrafish SCN is not a circadian pacemaker, instead the pineal gland (PG) houses the major circadian oscillator. The SCN of flounder larvae, unlike that of zebrafish, however, expresses per2 with a rhythmicity of daytime/ON and nighttime/OFF. Here, we examined whether the rhythm of per2 expression in the flounder SCN represents the molecular clock. We also examined early development of the circadian rhythmicity in the SCN and PG. Our three major findings were as follows. First, rhythmic per2 expression in the SCN was maintained under 24 h dark (DD) conditions, indicating that a molecular clock exists in the flounder SCN. Second, onset of circadian rhythmicity in the SCN preceded that in the PG. Third, both 24 h light (LL) and DD conditions deeply affected the development of circadian rhythmicity in the SCN and PG. This is the first report dealing with the early development of circadian rhythmicity in the SCN in fish.

  17. Reactive changes of interstitial glia and pinealocytes in the rat pineal gland challenged with cell wall components from gram-positive and -negative bacteria.

    PubMed

    Jiang-Shieh, Ya Fen; Wu, Ching Hsiang; Chien, Hsiung Fei; Wei, I Hua; Chang, Min Lin; Shieh, Jeng Yung; Wen, Chen Yuan

    2005-01-01

    Lipopolysaccharide (LPS), the major proinflammatory component of gram-negative bacteria, is well known to induce sepsis and microglial activation in the CNS. On the contrary, the effect of products from gram-positive bacteria especially in areas devoid of blood-brain barrier remains to be explored. In the present study, a panel of antibodies, namely, OX-6, OX-42 and ED-1 was used to study the response of microglia/macrophages in the pineal gland of rats given an intravenous LPS or lipoteichoic acid (LTA). These antibodies recognize MHC class II antigens, complement type 3 receptors and unknown lysosomal proteins in macrophages, respectively. In rats given LPS (50 microg/kg) injection and killed 48 h later, the cell density and immunoexpression of OX-6, OX-42 and ED-1 in pineal microglia/macrophages were markedly increased. In rats receiving a high dose (20 mg/kg) of LTA, OX-42 and OX-6, immunoreactivities in pineal microglia/macrophages were also enhanced, but that of ED-1 was not. In addition, both bacterial toxins induced an increase in astrocytic profiles labelled by glial fibrillary acid protein. An interesting feature following LPS or LTA treatment was the lowering effect on serum melatonin, enhanced serotonin immunolabelling and cellular vacuolation as studied by electron microscopy in pinealocytes. The LPS- or LTA-induced vacuoles appeared to originate from the granular endoplasmic reticulum as well as the Golgi saccules. The present results suggest that LPS and LTA could induce immune responses of microglia/macrophages and astroglial activation in the pineal gland. Furthermore, the metabolic and secretory activity of pinealocytes was modified by products from both gram-positive and -negative bacteria.

  18. Effect of dark exposure in the middle of the day on Period1, Period2, and arylalkylamine N-acetyltransferase mRNA levels in the rat suprachiasmatic nucleus and pineal gland.

    PubMed

    Fukuhara, Chiaki

    2004-11-04

    The suprachiasmatic nucleus (SCN) of the mammalian hypothalamus contains a central circadian pacemaker, which adjusts circadian rhythms within the body to environmental light-dark cycles. It has been shown that dark exposure in the day causes phase shifts in circadian rhythms, but it does not induce changes in the melatonin levels in the pineal gland. In this study, we examined the effect of dark exposure on two "circadian clock" genes Period1 and Period2 mRNA levels in the rat SCN, and on Period1, Period2, and arylalkylamine N-acetyltransferase (Aa-Nat, the rate-limiting enzyme in melatonin synthesis) gene expression in the pineal gland. Period1 and Period2 mRNA levels were significantly decreased in the SCN after 0.5 and 2 h, respectively, therefore suggesting that changes in those mRNA levels may be the part of the mechanisms of dark-induced phase shifts. Period1 and Aa-Nat mRNA levels in the pineal gland were not affected by darkness, but Period2 was moderately affected. Since Period1 and Aa-Nat mRNA levels in the pineal gland did not respond to dark stimulation, we further examined whether the pineal gland itself is capable of responding to adrenergic stimulation at this time of the day. Isoproterenol significantly induced Period1 and Aa-Nat mRNA levels; however, it did not affect Period2. Although previous studies have reported that during the day the SCN "gates" the dark information reaching the pineal, our data demonstrate that dark information may reach the pineal during the daytime.

  19. Humanization of the mouse mammary gland.

    PubMed

    Wronski, A; Arendt, L M; Kuperwasser, Charlotte

    2015-01-01

    Although mouse models have provided invaluable information on the mechanisms of mammary gland development, anatomical and developmental differences between human and mice limit full understanding of this fundamental process. Humanization of the mouse mammary gland by injecting immortalized human breast stromal cells into the cleared murine mammary fat pad enables the growth and development of human mammary epithelial cells or tissue. This facilitates the characterization of human mammary gland development or tumorigenesis by utilizing the mouse mammary fat pad. Here we describe the process of isolating human mammary stromal and epithelial cells as well as their introduction into the mammary fat pads of immunocompromised mice.

  20. Selective inhibition of beta(2)-adrenergic receptor-mediated cAMP generation by activation of the P2Y(2) receptor in mouse pineal gland tumor cells.

    PubMed

    Suh, B C; Kim, J S; Namgung, U; Han, S; Kim, K T

    2001-06-01

    Rhythmic noradrenergic signaling from the hypothalamic clock in the suprachiasmatic nucleus to the pineal gland causes an increase in intracellular cAMP which regulates the circadian fluctuation of melatonin synthesis. The activation of phospholipase C (PLC)-coupled P2Y(2) receptors upon treatment with ATP and UTP exclusively inhibited the isoproterenol-stimulated cAMP production in mouse pineal gland tumor cells. However, the activation of other PLC-coupled receptors including P2Y(1) and bombesin receptors had little or no effect on the isoproterenol-stimulated cAMP production. Also, ATP did not inhibit cAMP production caused by forskolin, prostaglandin E(2), or the adenosine analog NECA. These results suggest a selective coupling between signalings of P2Y(2) and beta(2)-adrenergic receptors. The binding of [(3)H]CGP12177 to beta(2)-adrenergic receptors was not effected by the presence of ATP or UTP. Ionomycin decreased the isoproterenol-stimulated cAMP production, whereas phorbol 12-myristate 13-acetate slightly potentiated the isoproterenol response. Chelation of intracellular Ca(2+), however, had little effect on the ATP-induced inhibition of cAMP production, while it completely reversed the ionomycin-induced inhibition. Treatment of cells with pertussis toxin almost completely blocked the inhibitory effect of nucleotides. Pertussis toxin also inhibited the nucleotide-induced increase in intracellular Ca(2+) and inositol 1,4,5-trisphosphate production by 30-40%, suggesting that the ATP-mediated inhibition of the cAMP generation and the partial activation of PLC are mediated by pertussis toxin-sensitive G(i)-protein. We conclude that one of the functions of P2Y(2) receptors on the pineal gland is the selective inhibition of beta-adrenergic receptor-mediated signaling pathways via the inhibitory G-proteins.

  1. Rod outer segment membrane guanylate cyclase type 1-linked stimulatory and inhibitory calcium signaling systems in the pineal gland: biochemical, molecular, and immunohistochemical evidence.

    PubMed

    Venkataraman, V; Nagele, R; Duda, T; Sharma, R K

    2000-05-23

    Recent evidence indicates the presence of a novel alpha(2D/A)-adrenergic receptor (alpha(2D/A)-AR) linked membrane guanylate cyclase signal transduction system in the pineal gland. This system operates via a Ca(2+)-driven rod outer segment membrane guanylate cyclase (ROS-GC). In the present study, this transduction system has been characterized via molecular, immunohistochemical, and biochemical approaches. The two main components of the system are ROS-GC1 and its Ca(2+) regulator, S100B. Both components coexist in pinealocytes where the signaling component alpha(2D/A)-AR also resides. The presence of ROS-GC2 was not detected in the pineal gland. Thus, transduction components involved in processing alpha(2D/A)-AR-mediated signals are Ca(2+), S100B, and ROS-GC1. During this investigation, an intriguing observation was made. In certain pinealocytes, ROS-GC1 coexisted with its other Ca(2+) modulator, guanylate cyclase activating protein type 1 (GCAP1). In these pinealocytes, S100B was not present. The other GCAP protein, GCAP2, which is also a known modulator of ROS-GC in photoreceptors, was not present in the pineal gland. The results establish the identity of an alpha(2D/A)-AR-linked ROS-GC1 transduction system in pinealocytes. Furthermore, the findings show that ROS-GC1, in a separate subpopulation of pinealocytes, is associated with an opposite Ca(2+) signaling pathway, which is similar to phototransduction in retina. Thus, like photoreceptors, pinealocytes sense both positive and negative Ca(2+) signals, where ROS-GC1 plays a pivotal role; however, unlike photoreceptors, the pinealocyte is devoid of the ROS-GC2/GCAP2 signal transduction system.

  2. Effect of melatonin and 5-methoxytryptamine administration on the testis and pineal gland activity of the fresh-water snake, Natrix piscator.

    PubMed

    Haldar, C; Pandey, R

    1988-01-01

    Effects of melatonin (aMT) and 5-methoxytryptamine (MT) were studied on the testicular activity cycle of the fresh-water snake, Natrix piscator. The subcutaneous implantation and the injections (morning as well as evening) of these two methoxyindoles prevented testicular recrudescence, retarded the testicular active phase, and accelerated the rate of regression of testes, while having no effect on the inactive testes. Contrary to this, these two compounds increased the pineal gland weight during different reproductive phases. These results revealed that both aMT and MT, whether they were continuously released through silastic capsule implants or administered through daily periodic injections, produced inhibitory effects on the testicular function.

  3. Pineal gland involvement in Erdheim-Chester disease detected on (18)F-FDG PET-CT imaging: a case report and review of literature.

    PubMed

    Mukherjee, Anirban; Dhull, Varun Singh; Karunanithi, Sellam; Sharma, Punit; Durgapal, Prashant; Kumar, Rakesh

    2014-01-01

    Erdheim-Chester disease (ECD) is a rare non-Langerhan's cell histiocytosis affecting multiple organ systems. The most common systemic manifestations are bone lesions, infiltration of the pituitary stalk sometimes leading to diabetes insipidus, pulmonary fibrosis, cardiac failure and exophthalmus. Neurological symptoms as the first clinical manifestations of ECD have been reported in less than one third of cases. We report a rare presentation of a patient of ECD on 18F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography-computed tomography which revealed abnormal (18)F-FDG accumulation in the region of pineal gland, pericardium and bilateral distal tibiae.

  4. Light and electron microscopic immunocytochemical study on the innervation of the pineal gland of the tree shrew (Tupaia glis), with special reference to peptidergic synaptic junctions with pinealocytes.

    PubMed

    Kado, M; Yoshida, A; Hira, Y; Sakai, Y; Matsushima, S

    1999-09-25

    Conventional and immunocytochemical, light- and electron-microscopic studies on the innervation of the pineal gland of the tree shrew (Tupaia glis) were made. Neuropeptide Y (NPY)-immunoreactive fibers, which were abundantly distributed in the gland, disappeared almost completely after superior cervical ganglionectomy, suggesting that these fibers are mostly postganglionic sympathetic fibers. By contrast, tyrosine hydroxylase (TH)-immunoreactive fibers, which were less numerous than NPY-fibers, remained in considerable numbers in ganglionectomized animals, indicating the innervation of TH-positive fibers from extrasympathetic sources. Bundles of substance P (SP)- or calcitonin gene-related peptide (CGRP)-immunoreactive fibers, entering the gland at its distal end, were left intact after ganglionectomy. SP-fibers were numerous, but CGRP-fibers were scarce in the gland. SP-immunoreactive fibers were myelinated and nonmyelinated, and were regarded as peripheral fibers because of the presence of a Schwann cell sheath. NPY- and SP-immunoreactive fibers and endings were mainly localized in the pineal parenchyma. NPY-immunoreactive endings synapsed frequently, and SP-positive ones did less frequently, with the cell bodies of pinealocytes. The results suggest that NPY and SP directly control the activity of pinealocytes. Sections stained for myelin showed that thick and less thick bundles of myelinated fibers entered the gland by way of the habenular and posterior commissures, respectively. Under the electron microscope, the bundles were found to contain also unmyelinated fibers. A considerable number of nerve endings synapsing with the cell bodies of pinealocytes remained in ganglionectomized animals; these endings were not immunoreactive for TH or SP. Such synaptic endings may be the terminals of commissural fibers.

  5. Light-Emitting Diodes and Cool White Fluorescent Light Similarly Suppress Pineal Gland Melatonin and Maintain Retinal Function and Morphology in the Rat. Part 1

    NASA Technical Reports Server (NTRS)

    Holley, Daniel C.; Heeke, D.; Mele, G.

    1999-01-01

    Currently, the light sources most commonly used in animal habitat lighting are cool white fluorescent or incandescent lamps. We evaluated a novel light-emitting diode (LED) light source for use in animal habitat lighting by comparing its effectiveness to cool white fluorescent light (CWF) in suppressing pineal gland melatonin and maintaining normal retinal physiology and morphology in the rat. Results of pineal melatonin suppression experiments showed equal suppression of pineal melatonin concentrations for LED light and CWF light at five different light illuminances (100, 40, 10, 1 and 0.1 lux). There were no significant differences in melatonin suppression between LED and CWF light when compared to unexposed controls. Retinal physiology was evaluated using electroretinography. Results show no differences in a-wave implicit times and amplitudes or b-wave implicit times and amplitudes between 100-lux LED-exposed rats and 100-lux CWF-exposed rats. Results of retinal histology assessment show no differences in retinal thickness rod outer segment length and number of rod nuclei between rats exposed to 100-lux LED and 100-lux CWF for days. Furthermore, the retinal pigmented epithelium and rod outer segments of all eyes observed were in good condition and of normal thickness. This study indicates that LED light does not cause retinal damage and can suppress pineal melatonin at similar intensities as a conventional CWF light source. These data suggest that LED light sources may be suitable replacements for conventional light sources used in the lighting of rodent vivariums while providing many mechanical and economical advantages.

  6. Nocturnal activation of aurora C in rat pineal gland: its role in the norepinephrine-induced phosphorylation of histone H3 and gene expression.

    PubMed

    Price, D M; Kanyo, R; Steinberg, N; Chik, C L; Ho, A K

    2009-05-01

    We have shown previously that Ser10 phosphorylation of histone H3 occurs in rat pinealocytes after stimulation with norepinephrine (NE) and that histone modifications such as acetylation appear to play an important role in pineal gene transcription. Here we report the nocturnal phosphorylation of a Ser10 histone H3 kinase, Aurora C, in the rat pineal gland. The time profile of this phosphorylation parallels the increase in the level of phospho-Ser10 histone H3. Studies with cultured pinealocytes indicate that Aurora C phosphorylation is induced by NE and this induction can be blocked by cotreatment with propranolol or KT5720, a protein kinase A inhibitor. Moreover, only treatment with dibutyryl cAMP, but not other kinase activators, mimics the effect of NE on Aurora C phosphorylation. These results indicate that Aurora C is phosphorylated primarily by a beta-adrenergic/protein kinase A-mediated mechanism. Treatment with an Aurora C inhibitor reduces the NE-induced histone H3 phosphorylation and suppresses the NE-stimulated induction of arylalkylamine N-acetyltransferase (AA-NAT), the rhythm-controlling enzyme of melatonin synthesis, and melatonin production. The effects of Aurora C inhibitors on adrenergic-induced genes in rat pinealocytes are gene specific: inhibitory for Aa-nat and inducible cAMP repressor but stimulatory for c-fos. Together our results support a role for the NE-stimulated phosphorylation of Aurora C and the subsequent remodeling of chromatin in NE-stimulated Aa-nat transcription. This phenomenon suggests that activation of this mitotic kinase can be induced by extracellular signals to participate in the transcriptional induction of a subset of genes in the rat pineal gland.

  7. In vitro seasonal variations of LH, FSH and prolactin secretion of the male rat are dependent on the maternal pineal gland.

    PubMed

    Díaz, E; Vázquez, N; Fernández, C; Jiménez, V; Esquifino, A; Díaz, B

    2012-01-17

    The maternal pineal gland is involved in the seasonal rhythms entrainment. We evaluate the effect of maternal pinealectomy (PIN-X), also melatonin replacement (PIN-X+MEL) during pregnancy on "in vitro" gonadotropins and prolactin seasonal variations. Male offspring from control, PIN-X and PIN-X+MEL mother Wistar rats were studied at 31 and 60 days of age. In vitro LH release from controls was season-dependent during prepubertal and pubertal periods showing reduced values in winter. The mother pineal gland seems to be important in the entrainment of seasonal variations of in vitro pituitary LH release, since altered secretion showing very high values was observed in summer. Melatonin treatment to PIN-X mothers partially restored the LH response. The effect of pinealectomy upon LH secretion disappears at the pubertal phase. A different pattern was observed for FSH release, without seasonal variations at 31 or at 60 days of age in control offspring, but pinealectomy to mothers or melatonin treatment resulted in seasonal variations. Seasonal influence was also observed in the prolactin pituitary release of controls. PIN-X mother offspring showed delayed seasonal variations at 31 and 60 days of age. The effect of maternal melatonin treatment during pregnancy was observed up to 60 days of age.

  8. [Circadian changes of the density of melatonin receptors 1A in the neurons of the suprachiasmatic nuclei of the rat hypothalamus under conditions of diverse functional activiity of the pineal gland].

    PubMed

    Pishak, V P; Bulyk, R Ie

    2008-01-01

    An immunohistochemical study of the density of melatonin receptors 1A in the neurons of the rat suprachiasmatic nuclei with diverse functional activity of the pineal gland has been carried out. The density of melatonin receptors 1A under conditions of the physiological function of the pineal gland was characterized by clear-cut diurnal variations. Simultaneously, a dysfunction of the gland results in their marked disturbance. In case of a hypofunction of the pineal body the density of the structures was reliably lower than in case of hyperfunction. It has been demonstrated that in case of a suppressed activity of the pineal body the maximum number of melatonin receptors 1A in the neurons of the hypothalamic suprachiasmatic nuclei shifts from 02.00 a.m. to 02.00 p.m. and constitutes 0.35+/-0.012 conventional units (c.u.) of density, whereas a larger index is noticed at 20 hours making up 0.43+/-0.015 c.u. of density when the gland is activated.

  9. Expression of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) GluR2/3 receptors in the developing rat pineal gland.

    PubMed

    Kaur, C; Sivakumar, V; Ling, E A

    2005-10-01

    The expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type glutamate (GluR2/3) receptors and N-methyl-D-aspartate receptor subtype 1 (NMDAR1) was carried out by immunohistochemistry, double immunofluorescence and real-time RT-PCR analysis in the pineal glands of 1-day to 6-wk-old rats in the present study. GluR2/3 immunopositive cells were distributed throughout the pineal gland and showed branching processes in all age groups. The NMDAR1 immunoreactivity, however, was observed in fewer branched cells. A constitutive mRNA expression of NMDAR1, GluR2 and GluR3 was detected in the pineal glands of various ages and showed no significant difference between the age groups studied. Immunohistochemical and double immunofluorescence results showed that the GluR2/3 were mainly expressed and co-localized with OX-42-positive microglia/macrophages and the glial fibrillary acidic protein (GFAP)-positive astrocytes. Co-localization of NMDAR1 with OX-42- and GFAP-positive cells was much less. The expression of these receptors on the glial cells suggests that they may be involved in the development and growth of the pineal gland in the early postnatal period (1 day to 3 wk) and subsequently in the regulation of melatonin synthesis.

  10. Does histamine stimulate cyclic AMP formation in the avian pineal gland via a novel (non-H1, non-H2, non-H3) histamine receptor subtype.

    PubMed

    Nowak, J Z; Sek, B; D'Souza, T; Dryer, S E

    1995-12-01

    The effects of histamine (HA) and selective HA H1-, H2 and H3-receptor agonists on cyclic AMP formation were investigated in intact chick and duck pineal glands HA potently stimulated the pineal cycle AMP formation. The effect of HA was mimicked fully by N alpha-methylated histamines, and partially by several histaminergic drugs: 2-thiazolylethylamine (H1) amthamine (H2) and R alpha-methyl-histamine (H3). Dimaprit, another selective H2-agonist showed marginal activity. Forskolin highly potentiated the action of HA, and only weakly affected the effects of 2-thiazolylethylamine and amthamine. In the chick pineal, the stimulatory effects of HA and the tested histaminergic drugs were not blocked by mepyramine and thioperamide (H1- and H3-blockers, respectively), but they were antagonized by H2-receptor selective compounds ranitidine and aminopotentidine, which, however, acted in a noncompetitive manner. Another H2-selective blocker zolantidine antagonized the HA effect only when used at very high (30-100 microM) concentrations. In the duck pineal, the stimulatory effect of HA on cyclic AMP production was unaffected by mepyramine (H1), thioperamide (H3), and ranitidine (H2), and only partially inhibited by the H2-blocker aminopotentidine. Electrophysiological experiments revealed that HA is capable of evoking inward currents in most of the tested cells acutely isolated from chick pineal gland. The present findings further indicate that the pharmacological profile of the avian pineal HA receptor, whose stimulation leads to activation of cyclic AMP production, is different from any known HA receptor type (H1, H2, H3), and suggest the existence of either an avian-specific HA receptor, or a novel HA receptor subtype. Electrophysiological data suggest that the pineal HA receptor may be somehow linked to activation of an ionic channel.

  11. The foetal pig pineal gland is richly innervated by nerve fibres containing catecholamine-synthesizing enzymes, neuropeptide Y (NPY) and C-terminal flanking peptide of NPY, but it does not secrete melatonin.

    PubMed

    Bulc, Michał; Lewczuk, Bogdan; Prusik, Magdalena; Całka, Jarosław

    2013-05-01

    Innervation of the mammalian pineal gland during prenatal development is poorly recognized. Therefore, immunofluorescence studies of the pineals of 70- and 90-day-old foetuses of the domestic pig were performed using antibodies against tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DβH), neuropeptide Y (NPY) and C-terminal flanking peptide of NPY (CPON). The investigated glands were supplied by numerous nerve fibres containing TH and DβH. The density of these fibres was higher in the distal and middle parts of the gland than in the proximal one. NPY and CPON were identified in the majority of DβH-positive fibres as well as in a small population of DβH-negative fibres localized mainly in the proximal part of the pineal. The immunoreactive fibres were more numerous in 90-day-old foetuses than in 70-day-old ones. The effect of norepinephrine on melatonin secretion by the foetal pineals in the short-term organ culture was studied to determine the role of DβH-positive fibres during prenatal life. For the same purpose melatonin was measured in the blood in the umbilical cords and in the jugular vein of the mother. The pineals of both groups of foetuses did not secrete melatonin in the organ culture, independently of the presence or absence of norepinephrine in the medium. Melatonin concentrations in the blood in the umbilical cords of foetuses from the same litter and in the jugular vein of their mother were similar. The presence of adrenergic nerve fibres in the pig pineal during gestation does not seem to be associated with the control of melatonin secretion.

  12. The Pineal Gland

    ERIC Educational Resources Information Center

    Kimbrough, T. Daniel; Llewellyn, Gerald C.

    1973-01-01

    Describes a surgical technique for performing pinealectomics, applicable to classroom and laboratory studies, by using a head-holding device for small animals and a flat dissecting tray outfitted with holding straps for larger animals. (CC)

  13. Proteome of human minor salivary gland secretion.

    PubMed

    Siqueira, W L; Salih, E; Wan, D L; Helmerhorst, E J; Oppenheim, F G

    2008-05-01

    Recent research efforts in oral biology have resulted in elucidation of the proteomes of major human salivary secretions and whole saliva. One might hypothesize that the proteome of minor gland secretions may show significantly different characteristics when compared with the proteomes of parotid or submandibular/sublingual secretions. To test this hypothesis, we conducted the first exploration into the proteome of minor salivary gland secretion. Minor gland secretion was obtained from healthy volunteers, and its components were subjected to liquid-chromatography-electrospray-ionization-tandem-mass-spectrometry. This led to the identification of 56 proteins, 12 of which had never been identified in any salivary secretion. The unique characteristics of the minor salivary gland secretion proteome are related to the types as well as the numbers of components present. The differences between salivary proteomes may be important with respect to specific oral functions.

  14. Expression of tranferrin receptors in the pineal gland of postnatal and adult rats and its alteration in hypoxia and melatonin treatment.

    PubMed

    Kaur, C; Sivakumar, V; Ling, E A

    2007-02-01

    Transferrin receptors (Tfrc) are membrane bound glycoproteins which function to mediate cellular uptake of iron from transferrin. We examined expression of Tfrc in the pineal gland of rats of different ages from 1 day to 12 weeks. The mRNA and protein expression of Tfrc increased up to 6 weeks of age and decreased in 12 week rats. Tfrc immunoreactivity was observed on pinealocytes and macrophages/microglia. By immunoelectron microscopy, the immunoreaction in pinealocytes was observed in the cytosol, on mitochondria and plasma membrane whereas in macrophages/microglia it was localized on the plasma membrane in 1-day to 2-week old rats. In older rats, the immunoreaction product in pinealocytes was associated with the plasma membrane and mitochondria only. Iron localization was observed in pinealocytes as well as macrophages/microglia. It is suggested that Tfrc are required for uptake of iron for cell proliferation and maturation in the pineal gland upto 6 weeks of age. The significance of Tfrc expression on mitochondria is speculative. They may be involved in iron transport to the mitochondria or for regulation of the secretory activity of pinealocytes. The TfrcmRNA and protein expression increased significantly in response to hypoxia in 12-week rats and this coincided with intense iron staining of the pinealocytes and macrophages/microglia. It is concluded that increased expression of Tfrc in response to hypoxia leads to excess cellular uptake of iron which may be damaging to the cells. Melatonin administration in hypoxic rats may prove to be beneficial as it reduced the Tfrc expression.

  15. Tectal pineal cyst in a 1-year-old girl.

    PubMed

    Plowey, Edward D; Vogel, Hannes; Yeom, Kristen W; Jung, Henry; Chao, Kevin; Edwards, Michael S B

    2014-03-01

    Glial cysts of the pineal gland can frequently be found in adults and children, but only rarely do they enlarge to become clinically relevant. We report a unique presentation of a pineal cyst in the midbrain tectum of a 16-month-old girl who initially presented with ptosis and strabismus. Preoperative imaging studies and intraoperative findings revealed no continuity between the tectal cyst and the pineal gland proper. We surmise that this tectal pineal cyst may have arisen from duplicated pineal gland tissue.

  16. Regulation of cAMP-induced arylalkylamine N-acetyltransferase, Period1, and MKP-1 gene expression by mitogen-activated protein kinases in the rat pineal gland.

    PubMed

    Chansard, Mathieu; Iwahana, Eiko; Liang, Jian; Fukuhara, Chiaki

    2005-10-03

    In rodent pineal glands, sympathetic innervation, which leads to norepinephrine release, is a key process in the circadian regulation of physiology and certain gene expressions. It has been shown that gene expression of the rate-limiting enzyme in the melatonin synthesis arylalkylamine N-acetyltransferase (Aa-Nat), circadian clock gene Period1, and mitogen-activated protein kinase (MAPK) phosphtase-1 (MKP-1), is controlled mainly by a norepinephrine-beta-adrenergic receptor-cAMP signaling cascade in the rat pineal gland. To further dissect the signaling cascades that regulate those gene expressions, we examined whether MAPKs are involved in cAMP-induced gene expression. Western blot and immunohistochemical analyses showed that one of the three MAPKs, c-Jun N-terminal kinase (JNK), was expressed in the pineal, and was phosphorylated by cAMP analogue stimulation with a peak 20 min after start of the stimulation, in vitro. A specific JNK inhibitor SP600125 (Anthra[1,9-cd]pyrazol-6(2H)-one1,9-pyrazoloanthrone), but not its negative control (N1-Methyl-1,9-pyrazoloanthrone), significantly reduced cAMP-stimulated Aa-Nat, Period1, and MKP-1 mRNA levels. Although another MAPK, p38(MAPK), has also been shown to be activated by cAMP stimulation, a p38(MAPK) inhibitor, SB203580 (4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole, HCl), showed no effect on cAMP-induced Aa-Nat and Period1 mRNA levels; whereas SB203580, but not its negative analogue SB202474 (4-Ethyl-2(p-methoxyphenyl)-5-(4'-pyridyl)-IH-imidazole, DiHCl), significantly reduced cAMP-induced MKP-1 mRNA levels. Taken together, our data suggest that cAMP-induced Aa-Nat and Period1 are likely to be mediated by activation of JNK, whereas MKP-1 may be mediated by both p38(MAPK) and JNK activations.

  17. Circadian rhythms of pineal function in rats.

    PubMed

    Binkley, S A

    1983-01-01

    In pineal glands melatonin is synthesized daily. Melatonin synthesis in rats kept in most light-dark cycles occurs during the subjective night. This rhythm, which persists in constant dark, is a circadian rhythm which may be a consequence of another circadian rhythm in the pineal gland, of N-acetyltransferase activity (NAT). The NAT rhythm has been studied extensively in rats as a possible component of the system timing circadian rhythms. The NAT rhythm is driven by neural signals transmitted to the pineal gland by the sympathetic nervous system. Environmental lighting exerts precise control over the timing of the NAT rhythm. In rats, there is enough data to describe a daily time course of events in the pineal gland and to describe a pineal "life history." Hypothetical schemes for generation of the NAT rhythm and for its control by light are presented.

  18. Influence of light/dark, seasonal and lunar cycles on serum melatonin levels and synaptic bodies number of the pineal gland of the rat.

    PubMed

    Martínez-Soriano, F; Ruiz-Torner, A; Armañanzas, E; Valverde-Navarro, A A

    2002-01-01

    Synaptic bodies (SB) are ultrastructural organelles observed in the pinealocytes of mammals. According to its shape, they have been classified into synaptic ribbons (SR), synaptic spherules (SS), and intermediate synaptic bodies (ISB). They have been related to the melatonin regulation and production mechanisms of the pineal gland. Circadian and circannual fluctuations of both melatonin and SB have been reported. The possibility that other external factors, apart from light-dark or seasonal cycles, might influence pineal function has been suggested. We studied the evolution of the number of SB and serum melatonin levels not only during light-dark and seasonal phases but also during lunar cycles. Forty male wistar rats were used. Experiment was first carried out in winter and repeated identically in spring. Each season, one group of animals was killed during the new-moon days and a second group during the full-moon days: half of both groups in the photophase and the other half in the scotophase. The number of SB was measured at electron microscopic level whereas serum melatonin levels were determined by radioimmunoassay techniques. Main results showed that SR number and serum melatonin levels were higher during scotophases, winter and full-moon days. The SS only showed a light predominance during winter, whereas predominance of the ISB was found only during the scotophases. These results support the influence of the photophasic factors on the SR and ISB variations. In the case of the SS the influence of the lunar cycles is always dependent on the other factors. Finally, the serum level of melatonin is clearly influenced by the photophasic rhythms and the seasonal periods but not by the lunar cycles.

  19. Biosynthesis and biological action of pineal allopregnanolone

    PubMed Central

    Tsutsui, Kazuyoshi; Haraguchi, Shogo

    2014-01-01

    The pineal gland transduces photoperiodic changes to the neuroendocrine system by rhythmic secretion of melatonin. We recently provided new evidence that the pineal gland is a major neurosteroidogenic organ and actively produces a variety of neurosteroids de novo from cholesterol in birds. Notably, allopregnanolone is a major pineal neurosteroid that is far more actively produced in the pineal gland than the brain and secreted by the pineal gland in juvenile birds. Subsequently, we have demonstrated the biological action of pineal allopregnanolone on Purkinje cells in the cerebellum during development in juvenile birds. Pinealectomy (Px) induces apoptosis of Purkinje cells, whereas allopregnanolone administration to Px chicks prevents cell death. Furthermore, Px increases the number of Purkinje cells that express active caspase-3, a crucial mediator of apoptosis, and allopregnanolone administration to Px chicks decreases the number of Purkinje cells expressing active caspase-3. It thus appears that pineal allopregnanolone prevents cell death of Purkinje cells by suppressing the activity of caspase-3 during development. This paper highlights new aspects of the biosynthesis and biological action of pineal allopregnanolone. PMID:24834027

  20. Pineal cyst: a review of clinical and radiological features.

    PubMed

    Choy, Winward; Kim, Won; Spasic, Marko; Voth, Brittany; Yew, Andrew; Yang, Isaac

    2011-07-01

    Pineal cysts (PCs) are benign and often asymptomatic lesions of the pineal region that are typically small and do not change in size over time. PCs appear as small, well circumscribed, unilocular masses that either reside within or completely replace the pineal gland. This article reviews and discusses the characteristic features of PCs-clinical, histological, and identifiable by various imaging modalities-which assist clinicians in narrowing the differential diagnosis for pineal lesions.

  1. Morphogenesis of the human lacrimal gland

    PubMed Central

    de la Cuadra-Blanco, C; Peces-Peña, M D; Mérida-Velasco, J R

    2003-01-01

    The aim of this study was to determine the main stages of the lacrimal gland's developmental process in humans and to establish its precise morphogenetic timetable. Its onset is generally assumed to take place at O'Rahilly's stage 21, arising from an epithelial thickening of the superior extreme of the temporary conjunctival fornix. However, the present study points to a prior stage in the process: the presence of epithelial–mesenchymal changes in embryos at O'Rahilly's stage 19. The study was performed using light microscopy on serial sections of 37 human specimens: 23 embryos and 14 fetuses ranging from 15 to 137 mm crown–rump length (7–116 weeks of development). Three stages in lacrimal gland morphogenesis were identified: (1) the presumptive glandular stage, O'Rahilly's stages 19–20, characterized by a thickening of the superior fornix epithelium together with surrounding mesenchymal condensation; (2) the bud stage, generally assumed to be the first manifestation of glandular origin, characterized initially by the appearance of nodular formations in the region of the superior conjunctival fornix and concluding with the appearance of lumina within the epithelial buds; and (3) the glandular maturity stage, weeks 9–16, the period in which the gland begins to take on the morphology of adulthood. PMID:14635806

  2. [THE CHANGES OF THE INTERRELATIONS OF THE PINEAL GLAND AND THE ORGANS OF THE IMMUNE SYSTEM IN RATS IN RESPONSE TO MELATONIN ADMINISTRATION IN LIGHT REGIME DISTURBANCES].

    PubMed

    Litvinenko, G I; Gritzyk, O B; Mel'nikova, Ye V; Avrorov, P A; Tenditnik, M V; Shurlygina, A V; Trufakin, V A

    2015-01-01

    In this work the correlation analysis was applied to detect the integrated response of the pineal gland (PG) and immunocompetent organs of male Wistar rats in response to administration of melatonin (MT) in light regime disturbances. Animals were kept for 14 days under natural or continuous light (CL). Then for 7 days they received the injections of either 0.9% solution of sodium chloride or MT, after which the rats were decapitated and the mass of their body, PG, thymus and spleen was determined. The lymphocyte subpopulations of the thymus and spleen were studied by flow cytometry. The amount of lipofuscin in PG was assessed by the intensity of autofluorescence in organ frozen sections in 560-600 nm wavelength range. It was found that under the influence of MT, the number of intraorgan correlations in the immune system increased, regardless of the light regime. In animals on CL treated with MT, the number of interorgan connections was reduced, while negative correlations appeared between PG lipofuscin content and cellular composition of the spleen. The synchronizing and adaptogenic effects of MT were most pronounced under conditions of CL.

  3. Tryptophan hydroxylase mRNA levels are elevated by repeated immobilization stress in rat raphe nuclei but not in pineal gland.

    PubMed

    Chamas, F; Serova, L; Sabban, E L

    1999-06-04

    Repeated stress triggers a wide range of adaptive changes in the central nervous system including the elevation of serotonin (5-HT) metabolism and an increased susceptibility to affective disorders. To begin to examine whether these changes are mediated by alterations in gene expression for tryptophan hydroxylase (TPH), the rate-limiting enzyme in 5-HT biosynthesis, we quantitated its mRNA levels by competitive reverse transcription-polymerase chain reaction (RT-PCR). Repeated immobilization stress (2 h, 7 days) elicited a six- or ten-fold rise in TPH mRNA in median raphe nucleus (MRN) and dorsal raphe nucleus (DRN), respectively, without significantly altering TPH mRNA levels in the pineal gland. In contrast, there was little change in mRNA levels for GTP cyclohydrolase I (GTPCH), the rate limiting enzyme in synthesis of the tetrahydrobiopterin (BH4), the obligate cofactor for TPH. This is the first study to reveal stress-elicited activation of TPH gene expression.

  4. [Interrelations of pineal gland morpho-functional indices and immune system organs in rats exposed to natural illumination regime and continuous illumination].

    PubMed

    Litvinenko, G I; Shurlygina, A V; Gritsyk, O B; Mel'nikova, E V; Avrorov, P A; Tendinitnik, M V; Trufakin, V A

    2014-01-01

    The objective of this investigation was to determine the complex response of the pineal gland (PG) and of the organs of the immune system in Wistar rats in response to a violation of the illumination regime in the experiment. Animals were kept under natural light regime and continuous illumination for 14 days. After that rats were sacrificed and the mass of the body, PG, gonads, thymus and spleen was measured. Thymus and spleen cell subpopulations were determined by flow cytometry. The lipofuscin content in PG was determined by measuring an autofluorescence intensity in frozen tissue sections in the wavelength range of 505-545 nm using a confocal laser scanning microscope LSM 510 META (Carl Zeiss). The correlation analysis showed an increase in the amount and the change of sign and direction of relations between the indices of the state of PG and the immune system. This indicates the up-regulation of the intensity of inter-system relationships and the change of migration and differentiation vector of immunocompetent cells.

  5. Differential resetting process of circadian gene expression in rat pineal glands after the reversal of the light/dark cycle via a 24 h light or dark period transition.

    PubMed

    Wu, Tao; Dong, Yue; Yang, Zhiqiu; Kato, Hisanori; Ni, Yinhua; Fu, Zhengwei

    2009-07-01

    Although studies involving the circadian response to time-zone transitions indicate that the circadian clock usually takes much longer to phase advance than delay, the discrepancy between the circadian resetting induced by photoperiod alteration via a dark or light period transition has yet to be investigated. In mammals, the pineal gland is an important component in the photoneuroendocrine axis, regulating biological rhythms. However, few studies have systematically examined the resetting process of pineal clock-gene expression to date. We investigated the resetting processes of four clock genes (Bmal1, Cry1, Per1, Dec1) and AANAT in the rat pineal gland after the light-dark (LD) reversal via a 24 h light or dark period transition. The resynchronization of the SCN-driven gene AANAT was nearly complete in three days in both situations, displaying similar resetting rates and processes after the differential LD reversals. The resetting processes of the clock genes were characterized by gene-specific, phase-shift modes and differential phase-shift rates between the two different LD reversal modes. The resetting processes of these clock genes were noticeably lengthened after the LD reversal via the light period transition in comparison to via the dark period transition. In addition, among the four examined clock genes, Per1 adjusted most rapidly after the differential LD reversals, while the rhythmic Cry1 expression adjusted most slowly.

  6. Transcription factors may frame Aa-nat gene expression and melatonin synthesis at night in the Syrian hamster pineal gland.

    PubMed

    Garidou, Marie-Laure; Diaz, Elena; Calgari, Christiane; Pévet, Paul; Simonneaux, Valérie

    2003-06-01

    Pineal melatonin synthesis is stimulated at night following an increase in arylalkylamine-N-acetyltransferase (AA-NAT) activity. Depending on the species, two mechanisms of enzyme activation have been described: a cAMP/phospho-cAMP response element-binding protein-dependent stimulation of Aa-nat gene transcription in the rat, presumed to occur in all rodents, or a posttranslational regulation of AA-NAT protein in ongulates. The present data obtained in the Syrian hamster indicate another route of AA-NAT regulation. Elevated nocturnal levels of Aa-nat mRNA were strongly suppressed following light exposure or adrenergic antagonist administration, demonstrating the involvement of norepinephrine in the stimulation of melatonin synthesis. However, administration of adrenergic agonists during the day did not increase Aa-nat mRNA unless a protein synthesis inhibitor was given during the previous night. This indicates that an inhibitory protein, synthesized at night, prevents melatonin synthesis during the day. By contrast, a protein synthesis inhibitor given at the beginning of the night markedly reduced Aa-nat mRNA, suggesting that a stimulatory protein (transcription factor?) is necessary for Aa-nat gene transcription at night. Noteworthy, hamsters raised in long photoperiod were responsive to adrenergic agonist injection only in the first hour after light onset, a response that may be important in this photoperiodic species in which the melatonin peak extends into the morning hours in a short photoperiod.

  7. Chicktacking pineal clock.

    PubMed

    Okano, Toshiyuki; Fukada, Yoshitaka

    2003-12-01

    Many tissues in non-mammalian vertebrates contain both photoreceptors and circadian clock systems. Among these photosensitive clock structures, the chick pineal gland has been characterized in detail from cellular and molecular aspects of the clock oscillation and entrainment. Analyses of the pineal photic-input pathway revealed a phase-shifting mechanism mediated by activation of G11, one of the Gq-type G-proteins. A major photoreceptive molecule, pinopsin, likely triggers this pathway by transmitting the light signal to the circadian oscillator. In the chick pineal oscillator, the transcription/translation-based autoregulatory feedback loop is composed of positive and negative elements (clock gene products) that are homologous to those identified in mammals. In the molecular cycling, a CACGTG E-box located in the promoter region of the negative element genes plays a central role in the transcriptional regulation. The phase of the molecular cycling is modulated by many regulatory components, among which E4BP4 and extracellular signal-regulated kinase (ERK) are closely associated with the photic entrainment. A light-responsive element was found in the promoter region of the Pinopsin gene, and the element included a CACGTG E-box, suggesting a novel role of the E-box as a point of convergence of light and circadian signals. These observations together point to general and unique features of the chick pineal circadian system among animal clocks.

  8. Some questions provoked by a chronic headache (with mixed migraine and cluster headache features) in a woman with a pineal cyst. Answers from a literature review.

    PubMed

    Molina-Martínez, F J; Jiménez-Martínez, M C; Vives-Pastor, B

    2010-09-01

    The main known function of the pineal gland in humans is the production of melatonin. Benign cysts of the gland have been related to headache, although the mechanism of production of this assumed clinical manifestation has not been clearly determined, due to the lack of large prospective studies. The question is complicated by the fact that pineal cysts are frequently found on brain magnetic resonance imaging. Much has been published about the possible role of benign pineal cysts in the pathophisiology of headaches and the potential of melatonin in headache therapy, as well as in other disorders. The aim of this article is to review the current state of the subject. We have tried to place accurately the relation between headache and pineal cysts based on the available evidence, as well as the actual role of melatonin in physiology and pharmacology, more specifically in headache therapy. We include a clinical case to illustrate the subject.

  9. Primary pineal malignant melanoma

    PubMed Central

    Cedeño Diaz, Oderay Mabel; Leal, Roberto García; La Cruz Pelea, Cesar

    2011-01-01

    Primary pineal malignant melanoma is a rare entity, with only thirteen cases reported in the world literature to date. We report a case of a 70-year-old man, who consulted with gait disturbance of six months duration, associated in the last month with dizziness, visual abnormalities and diplopia. No other additional melanocytic lesions were found elsewhere. The magnetic resonance showed a 25 mm expansive mass in the pineal gland that was associated with hydrocephaly, ventricular and transependimary oedema. The lesion was partially excised by a supracerebellar infratentorial approach. The histological examination revealed a melanoma. The patient received radiation therapy, but died of disease 16 weeks later. We herein review the literature on this rare tumour and comment on its clinical, radiological and histopathological features and differential diagnosis. PMID:24765293

  10. Alternative Isoform Analysis of Ttc8 Expression in the Rat Pineal Gland Using a Multi-Platform Sequencing Approach Reveals Neural Regulation.

    PubMed

    Hartley, Stephen W; Mullikin, James C; Klein, David C; Park, Morgan; Coon, Steven L

    Alternative isoform regulation (AIR) vastly increases transcriptome diversity and plays an important role in numerous biological processes and pathologies. However, the detection and analysis of isoform-level differential regulation is difficult, particularly in the face of complex and incompletely-annotated transcriptomes. Here we have used Illumina short-read/high-throughput RNA-Seq to identify 55 genes that exhibit neurally-regulated AIR in the pineal gland, and then used two other complementary experimental platforms to further study and characterize the Ttc8 gene, which is involved in Bardet-Biedl syndrome and non-syndromic retinitis pigmentosa. Use of the JunctionSeq analysis tool led to the detection of several novel exons and splice junctions in this gene, including two novel alternative transcription start sites which were found to display disproportionately strong neurally-regulated differential expression in several independent experiments. These high-throughput sequencing results were validated and augmented via targeted qPCR and long-read Pacific Biosciences SMRT sequencing. We confirmed the existence of numerous novel splice junctions and the selective upregulation of the two novel start sites. In addition, we identified more than 20 novel isoforms of the Ttc8 gene that are co-expressed in this tissue. By using information from multiple independent platforms we not only greatly reduce the risk of errors, biases, and artifacts influencing our results, we also are able to characterize the regulation and splicing of the Ttc8 gene more deeply and more precisely than would be possible via any single platform. The hybrid method outlined here represents a powerful strategy in the study of the transcriptome.

  11. Alternative Isoform Analysis of Ttc8 Expression in the Rat Pineal Gland Using a Multi-Platform Sequencing Approach Reveals Neural Regulation

    PubMed Central

    Mullikin, James C.; Klein, David C.; Park, Morgan; Coon, Steven L.

    2016-01-01

    Alternative isoform regulation (AIR) vastly increases transcriptome diversity and plays an important role in numerous biological processes and pathologies. However, the detection and analysis of isoform-level differential regulation is difficult, particularly in the face of complex and incompletely-annotated transcriptomes. Here we have used Illumina short-read/high-throughput RNA-Seq to identify 55 genes that exhibit neurally-regulated AIR in the pineal gland, and then used two other complementary experimental platforms to further study and characterize the Ttc8 gene, which is involved in Bardet-Biedl syndrome and non-syndromic retinitis pigmentosa. Use of the JunctionSeq analysis tool led to the detection of several novel exons and splice junctions in this gene, including two novel alternative transcription start sites which were found to display disproportionately strong neurally-regulated differential expression in several independent experiments. These high-throughput sequencing results were validated and augmented via targeted qPCR and long-read Pacific Biosciences SMRT sequencing. We confirmed the existence of numerous novel splice junctions and the selective upregulation of the two novel start sites. In addition, we identified more than 20 novel isoforms of the Ttc8 gene that are co-expressed in this tissue. By using information from multiple independent platforms we not only greatly reduce the risk of errors, biases, and artifacts influencing our results, we also are able to characterize the regulation and splicing of the Ttc8 gene more deeply and more precisely than would be possible via any single platform. The hybrid method outlined here represents a powerful strategy in the study of the transcriptome. PMID:27684375

  12. [Development of the human adrenal glands].

    PubMed

    Folligan, K; Bouvier, R; Targe, F; Morel, Y; Trouillas, J

    2005-09-01

    The human adrenal is an endocrine gland located at the superior part of the kidney. Composed of the adrenal cortex of mesoblastic origin and the adrenal medulla of neuroectoblastic origin, the human fetal adrenal grows considerably during the first three months of development. From 12 to 18 weeks of development (WD), the weight of the adrenals increases seven-fold. The gland's weight doubles from 18 to 28 WD and from 28 to 36 WD. At birth, the two adrenals weigh on average 10 g. At the 8th week, two zones are individualized in the adrenal cortex: the definitive zone and the fetal inner zone. At the second trimester, according to ultrastructural and biochemical studies, a third zone, called the transition zone, is individualized between the definitive zone and the fetal inner zone. The definitive zone persists, but the origin of the three zones (glomerular, fascicular and reticular) of adult adrenal cortex is not known. The fetal inner zone regresses from the 5th month of gestation and disappears totally one year after birth. At the 8th week, the immature neuroblasts migrate to the definitive zone, then to the fetal inner zone to compose the adrenal medulla, which develops essentially after birth and during the first year. Before the 10th week, the human fetal adrenal is able to produce steroid hormones, in particular dehydroepiandrosterone sulfate (DHEA-S); the secretion of cortisol remains discussed. The development of the human fetal adrenal is complex and is under the control of hormones (ACTH, LH and betaHCG), growth factors (ACTH essentially) and transcription factors (essentially SF1 and DAX-1). Knowledge of morphological and molecular phenomena of this development permits to understand the pathophisiology of congenital adrenal deficiencies.

  13. Pineal lesions: a multidisciplinary challenge.

    PubMed

    Westphal, Manfred; Emami, Pedram

    2015-01-01

    The pineal region is a complex anatomical compartment, harbouring the pineal gland surrounded by the quadrigeminal plate and the confluents of the internal cerebral veins to form the vein of Galen. The complexity of lesions in that region, however, goes far beyond the pineal parenchyma proper. Originating in the pineal gland, there are not only benign cysts but also numerous different tumour types. In addition, lesions such as tectal gliomas, tentorial meningiomas and choroid plexus papillomas arise from the surrounding structures, occupying that regions. Furthermore, the area has an affinity for metastatic lesions. Vascular lesions complete the spectrum mainly as small tectal arteriovenous malformations or cavernous haemangiomas.Taken together, there is a wide spectrum of lesions, many unique to that region, which call for a multidisciplinary approach. The limited access and anatomical complexity have generated a spectrum of anatomical approaches and raised the interest for neuroendoscopic approaches. Equally complex is the spectrum of treatment modalities such as microsurgery as the main option but stereotactic radiosurgery as an alternative or adjuvant to surgery for selected cases, radiation as for germinoma (see below) and or combinatorial chemotherapy, which may need to precede any other ablative technique as constituents.In this context, we review the current literature and our own series to obtain a snapshot sentiment of how to approach pineal lesions, how to interrelate alternative/competing concepts and review the recent technological advances.

  14. Importance of the pineal gland, endogenous prostaglandins and sensory nerves in the gastroprotective actions of central and peripheral melatonin against stress-induced damage.

    PubMed

    Brzozowski, Tomasz; Konturek, Peter C; Zwirska-Korczala, Krystyna; Konturek, Stanislaw J; Brzozowska, Iwona; Drozdowicz, Danuta; Sliwowski, Zbigniew; Pawlik, Michal; Pawlik, Wieslaw W; Hahn, Eckhart G

    2005-11-01

    Melatonin attenuates acute gastric lesions induced by topical strong irritants because of scavenging of free radicals, but its role in the pathogenesis of stress-induced gastric lesions has been sparingly investigated. In this study we compared the effects of intragastric (i.g.) or intracerebroventricular (i.c.v.) administration of melatonin and its precursor, L-tryptophan, with or without concurrent treatment with luzindole, a selective antagonist of melatonin MT2 receptors, on gastric lesions induced by water immersion and restraint stress (WRS). The involvement of pineal gland, endogenous prostaglandins (PG) and sensory nerves in gastroprotective action of melatonin and L-tryptophan against WRS was studied in intact or pinealectomized rats or those treated with indomethacin or rofecoxib to suppress cyclooxygenase (COX)-1 and COX-2, respectively, and with capsaicin to induce functional ablation of the sensory nerves. In addition, the influence of i.c.v. and i.g. melatonin on gastric secretion was tested in a separate group of rats equipped with gastric fistulas. At 3.5 hr after the end of WRS, the number of gastric lesions was counted, the gastric blood flow (GBF) was determined by H2-gas clearance technique and plasma melatonin and gastrin levels were measured by specific radioimmunoassay (RIA). Biopsy mucosal samples were taken for determination of expression of mRNA for COX-1 and COX-2 by reverse transcriptase-polymerase chain reaction (RT-PCR) and of the mucosal generation of prostaglandin E2 (PGE2) by RIA. Melatonin applied i.g. (1.25-10 mg/kg) or i.c.v. (1.25-10 microg/kg) dose-dependently inhibited gastric acid secretion and significantly attenuated the WRS-induced gastric damage. This protective effect of melatonin was accompanied by a significant rise in the GBF and plasma melatonin and gastrin levels and in mucosal generation of PGE2. Pinealectomy, which suppressed plasma melatonin levels, aggravated the gastric lesions induced by WRS and these effects

  15. Critical time delay of the pineal melatonin rhythm in humans due to weak electromagnetic exposure.

    PubMed

    Halgamuge, Malka N

    2013-08-01

    Electromagnetic fields (EMFs) can increase free radicals, activate the stress response and alter enzyme reactions. Intracellular signalling is mediated by free radicals and enzyme kinetics is affected by radical pair recombination rates. The magnetic field component of an external EMF can delay the "recombination rate" of free radical pairs. Magnetic fields thus increase radical life-times in biological systems. Although measured in nanoseconds, this extra time increases the potential to do more damage. Melatonin regulates the body's sleep-wake cycle or circadian rhythm. The World Health Organization (WHO) has confirmed that prolonged alterations in sleep patterns suppress the body's ability to make melatonin. Considerable cancer rates have been attributed to the reduction of melatonin production as a result of jet lag and night shift work. In this study, changes in circadian rhythm and melatonin concentration are observed due to the external perturbation of chemical reaction rates. We further analyze the pineal melatonin rhythm and investigate the critical time delay or maturation time of radical pair recombination rates, exploring the impact of the mRNA degradation rate on the critical time delay. The results show that significant melatonin interruption and changes to the circadian rhythm occur due to the perturbation of chemical reaction rates, as also reported in previous studies. The results also show the influence of the mRNA degradation rate on the circadian rhythm's critical time delay or maturation time. The results support the hypothesis that exposure to weak EMFs via melatonin disruption can adversely affect human health.

  16. Diagnosis and treatment of pineal region tumors

    SciTech Connect

    Neuwelt, E.A.

    1984-01-01

    The aim of this volume is to review the pertinent literature dealing with pineal tumors and thus aid in the handling of these rather uncommon lesions. After the first, introductory, chapter, three chapters treat the pathology and diagnosis of pineal tumors. There is also one chapter on intracranial germ cell tumors (natural history and pathogenesis) and one on the normal function of the pineal gland. With the exception of the chapter on diagnostic radiology of pineal tumors, which seems somewhat superficial, these five chapters summarize current knowledge about the nature of these complex lesions and their symptomatology very well. The next nine chapters deal with biopsy and surgery of these tumors and how to manage the patient. The first of these gives a historical review of the development of surgical techniques - from the first attempt by Horsley in 1905 to the microsurgical techniques of today. It is followed by a very important and detailed description of the microsurgical anatomy of the pineal region.

  17. Human eccrine sweat gland cells can reconstitute a stratified epidermis.

    PubMed

    Biedermann, Thomas; Pontiggia, Luca; Böttcher-Haberzeth, Sophie; Tharakan, Sasha; Braziulis, Erik; Schiestl, Clemens; Meuli, Martin; Reichmann, Ernst

    2010-08-01

    Eccrine sweat glands are generally considered to be a possible epidermal stem cell source. Here we compared the multilayered epithelia formed by epidermal keratinocytes and those formed by eccrine sweat gland cells. We demonstrated both in vitro and in vivo the capability of human eccrine sweat gland cells to form a stratified interfollicular epidermis substitute on collagen hydrogels. This is substantiated by the following findings: (1) a stratified epidermis consisting of 10-12 cell layers is formed by sweat gland cells; (2) a distinct stratum corneum develops and is maintained after transplantation onto immuno-incompetent rats; (3) proteins such as filaggrin, loricrin, involucrin, envoplakin, periplakin, and transglutaminases I and III match with the pattern of the normal human skin; (4) junctional complexes and hemidesmosomes are readily and regularly established; (5) cell proliferation in the basal layer reaches homeostatic levels; (6) the sweat gland-derived epidermis is anchored by hemidesmosomes within a well-developed basal lamina; and (7) palmo-plantar or mucosal markers are not expressed in the sweat gland-derived epidermis. These data suggest that human eccrine sweat glands are an additional source of keratinocytes that can generate a stratified epidermis. Our findings raise the question of the extent to which the human skin is repaired and/or permanently renewed by eccrine sweat gland cells.

  18. Dynamic OCT of sweat glands of human finger tip

    NASA Astrophysics Data System (ADS)

    Haruna, Masamitsu; Ueda, Yoshihiro; Ohmi, Masato; Fuji, Toshie

    2006-02-01

    Dynamic optical coherence tomography (OCT) is demonstrated for dynamic study of sweat glands of human finger tip using the all-optical-fiber imaging system. Stress-induced and physical activation of sweat glands can be observed clearly in time-sequential OCT images. The method for image data acquisition is presented as well as the experimental results.

  19. Can disturbances in the atmospheric electric field created by powerline corona ions disrupt melatonin production in the pineal gland?

    PubMed

    Henshaw, Denis L; Ward, Jonathan P; Matthews, James C

    2008-11-01

    Recent epidemiological studies have reported an increased risk of leukemia in adults and children near overhead high voltage powerlines at distances beyond the measured range of the direct electric and magnetic fields. Corona ions are emitted by powerlines, forming a plume that is carried away from the line by the wind. The plume generates highly variable disturbances in the atmospheric electric field of tens to a few hundred V/m on time scales from seconds to minutes. Such disturbances can be seen up to several hundred meters from powerlines. It is hypothesized that these random disturbances result in the disruption of nocturnal melatonin synthesis and related circadian rhythms, in turn leading to increased risk of a number of adverse health effects including leukemia. In support of the hypothesis, it is noted that melatonin is highly protective of oxidative damage to the human hemopoietic system. A review of electric field studies provides evidence that (i) diurnal variation in the natural atmospheric electric field may itself act as a weak Zeitgeber; (ii) melatonin disruption by electric fields occurs in rats; (iii) in humans, disturbances in circadian rhythms have been observed with artificial fields as low at 2.5 V/m. Specific suggestions are made to test the aspects of the hypothesis.

  20. Distribution of Tight Junction Proteins in Adult Human Salivary Glands

    PubMed Central

    Maria, Ola M.; Kim, Jung-Wan Martin; Gerstenhaber, Jonathan A.; Baum, Bruce J.; Tran, Simon D.

    2008-01-01

    Tight junctions (TJs) are an essential structure of fluid-secreting cells, such as those in salivary glands. Three major families of integral membrane proteins have been identified as components of the TJ: claudins, occludin, and junctional adhesion molecules (JAMs), plus the cytosolic protein zonula occludens (ZO). We have been working to develop an orally implantable artificial salivary gland that would be suitable for treating patients lacking salivary parenchymal tissue. To date, little is known about the distribution of TJ proteins in adult human salivary cells and thus what key molecular components might be desirable for the cellular component of an artificial salivary gland device. Therefore, the aim of this study was to determine the distribution of TJ proteins in human salivary glands. Salivary gland samples were obtained from 10 patients. Frozen and formalin-fixed paraffin-embedded sections were stained using IHC methods. Claudin-1 was expressed in ductal, endothelial, and ∼25% of serous cells. Claudins-2, -3, and -4 and JAM-A were expressed in both ductal and acinar cells, whereas claudin-5 was expressed only in endothelial cells. Occludin and ZO-1 were expressed in acinar, ductal, and endothelial cells. These results provide new information on TJ proteins in two major human salivary glands and should serve as a reference for future studies to assess the presence of appropriate TJ proteins in a tissue-engineered human salivary gland. (J Histochem Cytochem 56:1093–1098, 2008) PMID:18765838

  1. Masses of the pineal region: clinical presentation and radiographic features.

    PubMed

    Gaillard, Frank; Jones, Jeremy

    2010-10-01

    The pineal gland is important in structure, function and in the pathology that can affect it. The significance of the pathology of the gland and its adjacent structures is twofold: anatomical location, and biological behaviour of many of the lesions. The gland is in a critical anatomic location, and as the dorsal portions of the midbrain are compressed, patients may present with obstructive hydrocephalus, and/or with focal neurology. Masses and tumours of the pineal region range widely in behaviour, from the completely benign (eg, pineal cyst) to highly malignant (eg, pineoblastoma). Masses in the pineal region may be benign cysts (most common mass), tumours of various sources as well as rare vascular malformations that result in mass effect. Tumours of the pineal region represent a variety of histologies. Germ cell tumours are the most common: germinomas (50%), teratoma (15%), and choricocarcinoma (5%). Primary tumours of the pineal region make up 15% of all pineal tumours and represent a spectrum of aggressiveness. Other less common tumours also occur in the pineal region including metastatic spread and direct invasion from tumours arising in adjacent structures. Accurate diagnosis is essential to plan appropriate management, and early referral for medical imaging is a necessary first step. Although there is significant overlap in the imaging characteristics of some pineal masses, a distinction between aggressive and benign lesions is usually possible, and invaluable preoperative information is obtained in patients who require histological diagnosis.

  2. The pineal volume: a three-dimensional volumetric study in healthy young adults using 3.0 T MR data.

    PubMed

    Sun, Bo; Wang, Dan; Tang, Yuchun; Fan, Lingzhong; Lin, Xiangtao; Yu, Taifei; Qi, Hengtao; Li, Zhenping; Liu, Shuwei

    2009-11-01

    It is usually difficult to distinguish small pineal tumors via routine or enhanced magnetic resonance (MR) scan. The knowledge of normal pineal size is helpful to detect small pineal lesions, while very few true volumetric data of pineal glands have been reported. Therefore, we obtained the accurate reference range of normal pineal volumes in 112 individuals aged 20-30 years recruited randomly from a healthy community sample. Transverse and sagittal 3.0T magnetic resonance data were obtained using three-dimensional (3D) T1-weighted FSPGR and T2-weighted SE sequences. True pineal volumes were measured from T1-weighted images, while estimated volumes were calculated using pineal length, width and height. All the glands were divided into three types according to the maximum inner diameter of pineal cysts. The prevalence of asymptomatic pineal cyst is 25.00%, with a slight female predominance. In the whole sample, we found no gender differences of pineal volume, but a significant gender difference of pineal volume index. A significant correlation between pineal volume and asymptomatic cyst was found. After excluding cases with big pineal cysts, there were significant correlations between pineal volume and head circumference, body height and body weight, respectively. This study suggests that asymptomatic pineal cysts may exert an important influence on pineal volume.

  3. Age-related incidence of pineal calcification detected by computed tomography

    SciTech Connect

    Zimmerman, R.A.; Bilaniuk, L.T.

    1982-03-01

    The age-related incidence of detectable pineal calcification in 725 patients (age range, newborn-20 yrs) suggests that there is a relationship between calcification and the hormonal role played by the pineal gland in the regulation of sexual development. Pineal calcification (demonstrated by computed tomography (CT) on 8-mm-thick sections) in patients less than 6 years old should be looked upon with suspicion, and follow-up CT should be considered to exclude the possible development of a pineal neoplasm.

  4. Frequency of varicella zoster virus DNA in human adrenal glands.

    PubMed

    Badani, Hussain; White, Teresa; Schulick, Nicole; Raeburn, Christopher D; Topkaya, Ibrahim; Gilden, Don; Nagel, Maria A

    2016-06-01

    Varicella zoster virus (VZV) becomes latent in ganglionic neurons derived from neural crest cells. Because the adrenal gland also contains medullary chromaffin cells of neural crest origin, we examined human adrenal glands and medullary chromaffin cell tumors (pheochromocytomas) for VZV and herpes simplex virus type 1 (HSV-1). We found VZV, but not HSV-1, DNA in 4/63 (6 %) normal adrenal glands. No VZV transcripts or antigens were detected in the 4 VZV DNA-positive samples. No VZV or HSV-1 DNA was found in 21 pheochromocytomas.

  5. Pineal region tumors: computed tomographic-pathologic spectrum

    SciTech Connect

    Futrell, N.N.; Osborn, A.G.; Cheson. B.D.

    1981-11-01

    While several computed tomographic (CT) studies of posterior third ventricular neoplasms have included descriptions of pineal tumors, few reports have concentrated on these uncommon lesions. Some authors have asserted that the CT appearance of many pineal tumors is virtually pathognomonic. A series of nine biopsy-proved pineal gland and eight other presumed tumors is presented that illustrates their remarkable heterogeneity in both histopathologic and CT appearance. These tumors included germinomas, teratocarcinomas, hamartomas, and other varieties. They had variable margination, attentuation, calcification, and suprasellar extension. Germinomas have the best response to radiation therapy. Biopsy of pineal region tumors is now feasible and is recommended for treatment planning.

  6. Anatomy and histology of rodent and human major salivary glands: -overview of the Japan salivary gland society-sponsored workshop-.

    PubMed

    Amano, Osamu; Mizobe, Kenichi; Bando, Yasuhiko; Sakiyama, Koji

    2012-10-31

    MAJOR SALIVARY GLANDS OF BOTH HUMANS AND RODENTS CONSIST OF THREE PAIRS OF MACROSCOPIC GLANDS: parotid, submandibular, and sublingual. These glands secrete serous, mucous or mixed saliva via the proper main excretory ducts connecting the glandular bodies with the oral cavity. A series of discoveries about the salivary ducts in the 17th century by Niels Stensen (1638-1686), Thomas Wharton (1614-1673), and Caspar Bartholin (1655-1738) established the concept of exocrine secretion as well as salivary glands. Recent investigations have revealed the endocrine functions of parotin and a variety of cell growth factors produced by salivary glands.The present review aims to describe macroscopic findings on the major salivary glands of rodents and the microscopic differences between those of humans and rodents, which review should be of interest to those researchers studying salivary glands.

  7. Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior.

    PubMed

    Ben-Moshe Livne, Zohar; Alon, Shahar; Vallone, Daniela; Bayleyen, Yared; Tovin, Adi; Shainer, Inbal; Nisembaum, Laura G; Aviram, Idit; Smadja-Storz, Sima; Fuentes, Michael; Falcón, Jack; Eisenberg, Eli; Klein, David C; Burgess, Harold A; Foulkes, Nicholas S; Gothilf, Yoav

    2016-11-01

    The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior.

  8. Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior

    PubMed Central

    Alon, Shahar; Vallone, Daniela; Tovin, Adi; Shainer, Inbal; Nisembaum, Laura G.; Aviram, Idit; Smadja-Storz, Sima; Fuentes, Michael; Falcón, Jack; Eisenberg, Eli; Klein, David C.; Burgess, Harold A.; Foulkes, Nicholas S.; Gothilf, Yoav

    2016-01-01

    The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior. PMID:27870848

  9. Local corticosterone infusion enhances nocturnal pineal melatonin production in vivo.

    PubMed

    Fernandes, P A C M; Bothorel, B; Clesse, D; Monteiro, A W A; Calgari, C; Raison, S; Simonneaux, V; Markus, R P

    2009-02-01

    Melatonin, an important marker of the endogenous rhythmicity in mammals, also plays a role in the body defence against pathogens and injuries. In vitro experiments have shown that either pro- or anti-inflammatory agents, acting directly in the organ, are able to change noradrenaline-induced pineal indoleamine production. Whereas corticosterone potentiates melatonin production, incubation of the gland with tumour necrosis factor-alpha decreases pineal hormonal production. In the present study, we show that nocturnal melatonin production measured by intra-pineal microdialysis is enhanced in pineals perfused with corticosterone at concentrations similar to those measured in inflamed animals. In vitro experiments suggest that this enhancement may be due to an increase in the activity of the two enzymes that convert serotonin to N-acetylserotonin (NAS) and NAS to melatonin. The present results support the hypothesis that the pineal gland is a sensor of inflammation mediators and that it plays a central role in the control of the inflammatory response.

  10. Rabies viral antigen in human tongues and salivary glands.

    PubMed

    Li, Z; Feng, Z; Ye, H

    1995-10-01

    Lingual and major salivary tissue samples from three cases of rabies were stained with the immunoperoxidase (ABC) technique. All tissue blocks had been embedded in paraffin 4-10 years before. The first antibody used was monoclonal antirabies nucleocapsin (N) mouse antibody (HAM). Four out of five pieces of tongue from two cases showed a large amount of granular staining indicating rabies antigen (RVAg) inside serous glandular cells, terminal nerves, muscle cells and covering epithelial cells including taste cells. In the tissue probes from the third case only minimal granular staining was found, probably due to complete absence of the serous gland. In contrast to the tongue, only a little weakly reacting material was found in 4 out of 9 probes of salivary gland, either in acini or in nerve fibres. The amount of RVAg is evidently much greater in the human tongue than in major salivary glands, whereas major salivary glands from infected dogs, foxes and skunks reportedly contain much RVAg. As the human tongue's serous gland appears to be a preferred location for RVAg, it may be a source of oral infection.

  11. Early-life sleep deprivation persistently depresses melatonin production and bio-energetics of the pineal gland: potential implications for the development of metabolic deficiency.

    PubMed

    Chen, Li-You; Tiong, Cheng; Tsai, Chung-Hung; Liao, Wen-Chieh; Yang, Shun-Fa; Youn, Su-Chung; Mai, Fu-Der; Chang, Hung-Ming

    2015-03-01

    Early-life sleep deprivation (ESD) is a serious condition with severe metabolic sequelae. The pineal hormone melatonin plays an important role in homeostatic regulation of metabolic function. Considering norepinephrine-mediated Ca(2+) influx and subsequent protein kinase A (PKA) activation is responsible for downstream cAMP-response element-binding protein (CREB) phosphorylation and melatonin biosynthesis, the present study determined whether Ca(2+) expression, together with the molecular machinery participated in melatonin production would significantly alter after ESD. Weaning rats subjected to chronic ESD and maintained naturally (light:dark cycle = 12:12) to adulthood were processed for time-of-flight secondary ion mass spectrometry, immunoblotting, immunohistochemistry together with spectrometric assay to detect the Ca(2+) signaling, adrenoreceptors, PKA, phosphorylated CREB (pCREB) as well as the serum level of melatonin, respectively. Pineal bio-energetics and metabolic function were determined by measuring the cytochrome oxidase activity and serum level of glucose, triglyceride, insulin, high- and low-density lipoproteins, respectively. Results indicated that in normal rats, strong Ca(2+) signaling along with intense adrenoreceptors, PKA, and pCREB activities were all detected in pinealocytes. Enhanced Ca(2+) imaging and signaling pathway corresponded well with intact bio-energetics, normal melatonin production and metabolic activity. However, following ESD, not only Ca(2+) but also pineal signaling activities were all significantly decreased. Blood analysis showed reduced melatonin level and impaired metabolic function after ESD. As depressed Ca(2+)-mediated signaling pathway and melatonin biosynthesis are positively correlated with the development of metabolic dysfunction, supplementary use of melatonin in childhood may thus serve as a practical way to prevent or counteract the ESD-induced metabolic deficiency.

  12. Changes in Gene Expression in Human Meibomian Gland Dysfunction

    PubMed Central

    Liu, Shaohui; Richards, Stephen M.; Lo, Kristine; Hatton, Mark; Fay, Aaron

    2011-01-01

    Purpose. Meibomian gland dysfunction (MGD) may be the leading cause of dry eye syndrome throughout the world. However, the precise mechanism(s) underlying the pathogenesis of this disease is unclear. This study was conducted to identify meibomian gland genes that may promote the development and/or progression of human MGD. Methods. Lid tissues were obtained from male and female MGD patients and age-matched controls after eyelid surgeries (e.g., to correct entropion or ectropion). Meibomian glands were isolated and processed for RNA extraction and the analysis of gene expression. Results. The results show that MGD is associated with significant alterations in the expression of almost 400 genes in the human meibomian gland. The levels of 197 transcripts, including those encoding various small proline-rich proteins and S100 calcium-binding proteins, are significantly increased, whereas the expression of 194 genes, such as claudin 3 and cell adhesion molecule 1, is significantly decreased. These changes, which cannot be accounted for by sex differences, are accompanied by alterations in many gene ontologies (e.g., keratinization, cell cycle, and DNA repair). The findings also show that the human meibomian gland contains several highly expressed genes that are distinct from those in an adjacent tissue (i.e., conjunctival epithelium). Conclusions. The results demonstrate that MGD is accompanied by multiple changes in gene expression in the meibomian gland. The nature of these alterations, including the upregulation of genes encoding small proline-rich proteins and S100 calcium-binding proteins, suggest that keratinization plays an important role in the pathogenesis of MGD. PMID:21372006

  13. Precursors of hexoneogenesis within the human mammary gland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The human mammary gland is capable of de novo synthesis of glucose and galactose (hexoneogenesis); however, the carbon source is incompletely understood. In this study, we investigated the role of acetate, glutamine, lactate and glycerol as potential carbon sources for hexoneogenesis. Healthy breast...

  14. Anatomy of the human mammary gland: Current status of knowledge.

    PubMed

    Hassiotou, Foteini; Geddes, Donna

    2013-01-01

    Mammary glands are unique to mammals, with the specific function of synthesizing, secreting, and delivering milk to the newborn. Given this function, it is only during a pregnancy/lactation cycle that the gland reaches a mature developmental state via hormonal influences at the cellular level that effect drastic modifications in the micro- and macro-anatomy of the gland, resulting in remodeling of the gland into a milk-secretory organ. Pubertal and post-pubertal development of the breast in females aids in preparing it to assume a functional state during pregnancy and lactation. Remarkably, this organ has the capacity to regress to a resting state upon cessation of lactation, and then undergo the same cycle of expansion and regression again in subsequent pregnancies during reproductive life. This plasticity suggests tight hormonal regulation, which is paramount for the normal function of the gland. This review presents the current status of knowledge of the normal macro- and micro-anatomy of the human mammary gland and the distinct changes it undergoes during the key developmental stages that characterize it, from embryonic life through to post-menopausal age. In addition, it discusses recent advances in our understanding of the normal function of the breast during lactation, with special reference to breastmilk, its composition, and how it can be utilized as a tool to advance knowledge on normal and aberrant breast development and function. Finally, anatomical and molecular traits associated with aberrant expansion of the breast are discussed to set the basis for future comparisons that may illuminate the origin of breast cancer.

  15. Replication of Oral BK Virus in Human Salivary Gland Cells

    PubMed Central

    Burger-Calderon, Raquel; Madden, Victoria; Hallett, Ryan A.; Gingerich, Aaron D.; Nickeleit, Volker

    2014-01-01

    BK polyomavirus (BKPyV) is the most common viral pathogen among allograft patients. Increasing evidence links BKPyV to the human oral compartment and to HIV-associated salivary gland disease (HIVSGD). To date, few studies have analyzed orally derived BKPyV. This study aimed to characterize BKPyV isolated from throat wash (TW) samples from HIVSGD patients. The replication potential of HIVSGD-derived clinical isolates HIVSGD-1 and HIVSGD-2, both containing the noncoding control region (NCCR) architecture OPQPQQS, were assessed and compared to urine-derived virus. The BKPyV isolates displayed significant variation in replication potential. Whole-genome alignment of the two isolates revealed three nucleotide differences that were analyzed for a potential effect on the viral life cycle. Analysis revealed a negligible difference in NCCR promoter activity despite sequence variation and emphasized the importance of functional T antigen (Tag) for efficient replication. HIVSGD-1 encoded full-length Tag, underwent productive infection in both human salivary gland cells and kidney cells, and expressed viral DNA and Tag protein. Additionally, HIVSGD-1 generated DNase-resistant particles and by far surpassed the replication potential of the kidney-derived isolate in HSG cells. HIVSGD-2 encoded a truncated form of Tag and replicated much less efficiently. Quantitation of infectious virus, via the fluorescent forming unit assay, suggested that HIVSGD BKPyV had preferential tropism for salivary gland cells over kidney cells. Similarly, the results suggested that kidney-derived virus had preferential tropism for kidney cells over salivary gland cells. Evidence of HIVSGD-derived BKPyV oral tropism and adept viral replication in human salivary gland cells corroborated the potential link between HIVSGD pathogenesis and BKPyV. PMID:24173219

  16. Imagery of pineal tumors.

    PubMed

    Deiana, G; Mottolese, C; Hermier, M; Louis-Tisserand, G; Berthezene, Y

    2015-01-01

    Pineal tumors are rare and include a large variety of entities. Germ cell tumors are relatively frequent and often secreting lesions. Pineal parenchymal tumors include pineocytomas, pineal parenchymal tumor of intermediate differentiation, pineoblastomas and papillary tumors of the pineal region. Other lesions including astrocytomas and meningiomas as well as congenital malformations i.e. benign cysts, lipomas, epidermoid and dermoid cysts, which can also arise from the pineal region. Imagery is often non-specific but detailed analysis of the images compared with the hormone profile can narrow the spectrum of possible diagnosis.

  17. Microstructural analysis of pineal volume using trueFISP imaging

    PubMed Central

    Bumb, Jan M; Brockmann, Marc A; Groden, Christoph; Nolte, Ingo

    2013-01-01

    AIM: To determine the spectrum of pineal microstructures (solid/cystic parts) in a large clinical population using a high-resolution 3D-T2-weighted sequence. METHODS: A total of 347 patients enrolled for cranial magnetic resonance imaging were randomly included in this study. Written informed consent was obtained from all patients. The exclusion criteria were artifacts or mass lesions prohibiting evaluation of the pineal gland in any of the sequences. True-FISP-3D-imaging (1.5-T, isotropic voxel 0.9 mm) was performed in 347 adults (55.4 ± 18.1 years). Pineal gland volume (PGV), cystic volume, and parenchyma volume (cysts excluded) were measured manually. RESULTS: Overall, 40.3% of pineal glands were cystic. The median PGV was 54.6 mm3 (78.33 ± 89.0 mm3), the median cystic volume was 5.4 mm3 (15.8 ± 37.2 mm3), and the median parenchyma volume was 53.6 mm3 (71.9 ± 66.7 mm3). In cystic glands, the standard deviation of the PGV was substantially higher than in solid glands (98% vs 58% of the mean). PGV declined with age (r = -0.130, P = 0.016). CONCLUSION: The high interindividual volume variation is mainly related to cysts. Pineal parenchyma volume decreased slightly with age, whereas gender-related effects appear to be negligible. PMID:23671752

  18. TGFβ signaling regulates lipogenesis in human sebaceous glands cells

    PubMed Central

    2013-01-01

    Background Sebaceous glands are components of the skin essential for its normal lubrication by the production of sebum. This contributes to skin health and more importantly is crucial for the skin barrier function. A mechanistic understanding of sebaceous gland cells growth and differentiation has lagged behind that for keratinocytes, partly because of a lack of an in vitro model that can be used for experimental manipulation. Methods We have developed an in vitro culture model to isolate and grow primary human sebocytes without transformation that display functional characteristics of sebocytes. We used this novel method to probe the effect of Transforming Growth Factor β (TGFβ) signaling on sebocyte differentiation, by examining the expression of genes involved in lipogenesis upon treatment with TGFβ1. We also repressed TGFβ signaling through knockdown of the TGFβ Receptor II to address if the effect of TGFβ activation is mediated via canonical Smad signal transduction. Results We find that activation of the TGFβ signaling pathway is necessary and sufficient for maintaining sebocytes in an undifferentiated state. The presence of TGFβ ligand triggered decreased expression in genes required for the production of characteristics sebaceous lipids and for sebocyte differentiation such as FADS2 and PPARγ, thereby decreasing lipid accumulation through the TGFβ RII-Smad2 dependent pathway. Conclusion TGFβ signaling plays an essential role in sebaceous gland regulation by maintaining sebocytes in an undifferentiated state. This data was generated using a novel method for human sebocyte culture, which is likely to prove generally useful in investigations of sebaceous gland growth and differentiation. These findings open a new paradigm in human skin biology with important implications for skin therapies. PMID:23343495

  19. Long-term in vivo pineal microdialysis.

    PubMed

    Sun, Xing; Liu, Tiecheng; Deng, Jie; Borjigin, Jimo

    2003-09-01

    This study describes the development of a new technique for long-term measurement of daily 5-hydroxytryptamine (5-HT) and melatonin contents in the pineal gland of freely moving rats. The technique features a number of novel improvements over previous protocols. It allows visualization of the pineal gland for accurate targeting of the guide cannula, which minimizes bleeding; incurs no direct injury to the surrounding brain tissues; and causes no interference with the sympathetic innervation from the superior cervical ganglia. Robust releases of melatonin and indole precursors were continuously monitored quantitatively and reproducibly for more than 2 wk in the same animal. In addition, effects of pharmacological agents on in vivo pineal circadian rhythms can be studied reproducibly over time, and gene expression profiles can be correlated with physiological consequences in single animals. Using these approaches, it is found that beta-adrenergic activation leads to decreased release of 5-HT, and that increased cAMP signaling in vivo results in activation of N-acetyltransferase gene induction and melatonin production. These studies will enhance the understanding of signaling pathways that regulate pineal 5-HT and melatonin synthesis and secretion.

  20. Isolation and characterization of sweat gland myoepithelial cells from human skin.

    PubMed

    Kurata, Ryuichiro; Futaki, Sugiko; Nakano, Itsuko; Tanemura, Atsushi; Murota, Hiroyuki; Katayama, Ichiro; Sekiguchi, Kiyotoshi

    2014-01-01

    Stem cells routinely maintain the main epidermal components, i.e. the interfollicular epidermis, hair follicles, and sweat glands. Human sweat glands present throughout the body are glandular exocrine organs that mainly play a role in thermoregulation by sweating. Emerging evidence points to the presence of stem cells in sweat glands, but it remains unclear whether such stem cells exist in human sweat glands. Here, we attempted to gather evidence for stem cells in human sweat glands, which would be characterized by self-renewal ability and multipotency. First, we explored human sweat gland cells for expression of stem cell markers. CD29 and Notch, epidermal stem cell markers, were found to reside among α-smooth muscle actin-positive myoepithelial cells in human sweat glands. Next, sweat gland myoepithelial cells were isolated from human skin as a CD29(hi)CD49f (hi) subpopulation. The myoepithelial cell-enriched CD29(hi)CD49f (hi) subpopulation possessed the ability to differentiate into sweat gland luminal cells in sphere-forming assays. Furthermore, CD29(hi)CD49f (hi) subpopulation-derived sphere-forming cells exhibited long-term proliferative potential upon multiple passaging, indicating that the CD29(hi)CD49f (hi) myoepithelial subpopulation includes stem cells with self-renewal ability. These findings provide evidence that human sweat gland myoepithelial cells contain stem cells that possess both self-renewal ability and multipotency to differentiate into sweat glands.

  1. Human Salivary Gland Stem Cells Functionally Restore Radiation Damaged Salivary Glands.

    PubMed

    Pringle, Sarah; Maimets, Martti; van der Zwaag, Marianne; Stokman, Monique A; van Gosliga, Djoke; Zwart, Erik; Witjes, Max J H; de Haan, Gerald; van Os, Ronald; Coppes, Rob P

    2016-03-01

    Adult stem cells are often touted as therapeutic agents in the regenerative medicine field, however data detailing both the engraftment and functional capabilities of solid tissue derived human adult epithelial stem cells is scarce. Here we show the isolation of adult human salivary gland (SG) stem/progenitor cells and demonstrate at the single cell level in vitro self-renewal and differentiation into multilineage organoids. We also show in vivo functionality, long-term engraftment, and functional restoration in a xenotransplantation model. Indeed, transplanted human salisphere-derived cells restored saliva production and greatly improved the regenerative potential of irradiated SGs. Further selection for c-Kit expression enriched for cells with enhanced regenerative potencies. Interestingly, interaction of transplanted cells with the recipient SG may also be involved in functional recovery. Thus, we show for the first time that salispheres cultured from human SGs contain stem/progenitor cells capable of self-renewal and differentiation and rescue of saliva production. Our study underpins the therapeutic promise of salisphere cell therapy for the treatment of xerostomia.

  2. Human eccrine sweat gland epithelial cultures express ductal characteristics.

    PubMed Central

    Brayden, D J; Cuthbert, A W; Lee, C M

    1988-01-01

    1. Isolated human eccrine sweat glands were cultured in vitro. Cells were harvested and plated onto permeable supports to form confluent cell sheets, area 0.2 cm2. These were used to study the electrogenic transepithelial transport of ions by measurement of short-circuit current (SCC). Epithelial sheets had a basal SCC of 5.89 +/- 0.62 microA cm-2 (n = 33) and a transepithelial resistance of 74.1 +/- 5.6 omega cm2 (n = 33). The transepithelial potential difference varied between -0.2 and -1.8 mV with a mean value of -0.71 +/- 0.09 mV (n = 33). 2. The basal current was abolished by addition of 10 microM-amiloride to the apical bathing solution. The concentration of amiloride which inhibited basal SCC by 50% (EC50) was 0.4 microM. Cultures prepared from the secretory coil of sweat glands, rather than from whole glands, were similarly sensitive to amiloride (EC50 = 0.8 microM). 3. Lysylbradykinin (LBK), carbachol, isoprenaline, prostaglandin E2 (PGE2) and A23187 all increased SCC in cultures from whole glands. LBK responses were obtained with basolateral and not with apical application. Furthermore LBK actions were not substantially altered by cyclo-oxygenase inhibition but showed marked desensitization upon repeated application. Sheet cultures prepared from sweat gland coils also showed SCC responses to both carbachol and LBK. Forskolin, an activator of adenylate cyclase, did not alter SCC in either type of preparation. 4. Replacement of chloride and of chloride and bicarbonate in the bathing solution did not cause attenuation of the responses to LBK or carbachol in whole-gland sheet cultures. Furthermore responses were unaffected by piretanide or acetazolamide. These results were taken to indicate that anion secretion was not the basis for the SCC responses. 5. Responses to LBK and carbachol were significantly reduced by amiloride (10 microM), this effect being reversible. No responses to LBK or carbachol were seen when N-methyl-D-glucamine (NMDG) was used to

  3. Pineal cysts-A benign association with familial retinoblastoma.

    PubMed

    Gupta, Aditya Kumar; Jones, Michael; Prelog, Kristina; Bui, John; Zhu, Jacqui; Ng, Anthea; Dalla-Pozza, Luciano

    2016-09-01

    Patients with familial/heritable retinoblastoma (RB) are at increased risk of developing second malignancies throughout life, including a pineoblastoma (trilateral RB [TRB]) in early childhood. Current guidelines recommend regular surveillance brain imaging for those with heritable RB until 5 years of age. The presence of pineal cysts has been reported in patients with RB. Pineal cysts are thought to arise due to focal degeneration of the pineal gland and can be found incidentally. The finding of pineal abnormalities including cysts in children with RB on imaging is disconcerting, as it raises the possibility of an underlying malignancy, specifically a pinealoblastoma. The authors reviewed the imaging findings and clinical significance of pineal cysts in 69 patients diagnosed with RB at our center between December 1999 and November 2015. Twenty-six patients had pineal cysts found on brain magnetic resonance imaging (MRI) scans performed either at diagnosis or follow-up. Thirty-eight of 69 patients had underlying heritable RB. Nineteen of 38 familial RB patients had a pineal cyst compared with 3 out of 26 with sporadic RB (P = .004). In the majority, the imaging characteristics and size of the cysts remained stable or resolved. In this cohort, pineal cysts were detected at significantly increased frequency in heritable RB. This may be a benign association or may reflect abnormal underlying biology of pineal tissue in individuals highly susceptible to malignancy. Imaging characteristics can be helpful in distinguishing between benign and malignant lesions. The presence of a pineal cyst in patients with unilateral disease may be a useful indicator of underlying heritable RB.

  4. Evidence for differential photic regulation of pineal melatonin synthesis in teleosts.

    PubMed

    Migaud, H; Davie, A; Martinez Chavez, C C; Al-Khamees, S

    2007-11-01

    The aim of this study was to compare the circadian control of melatonin production in teleosts. To do so, the effects of ophthalmectomy on circulating melatonin rhythms were studied along with ex vivo pineal culture in six different teleosts. Results strongly suggested that the circadian control of melatonin production could have dramatically changed with at least three different systems being present in teleosts when one considers the photic regulation of pineal melatonin production. First, salmonids presented a decentralized system in which the pineal gland responds directly to light independently of the eyes. Then, in seabass and cod both the eyes and the pineal gland are required to sustain full night-time melatonin production. Finally, a third type of circadian control of melatonin production is proposed in tilapia and catfish in which the pineal gland would not be light sensitive (or only slightly) and required the eyes to perceive light and inhibit melatonin synthesis. Further studies (anatomical, ultrastructural, retinal projections) are needed to confirm these results. Ex vivo experiments indirectly confirmed these results, as while the pineal gland responded normally to day-night rhythms in salmonids, seabass and cod, only very low levels were obtained at night in tilapia and no melatonin could be measured from isolated pineal glands in catfish. Together, these findings suggest that mechanisms involved in the perception of light and the transduction of this signal through the circadian axis has changed in teleosts possibly as a reflection of the photic environment in which they have evolved in.

  5. Papillary tumor of pineal region: A rare entity

    PubMed Central

    Patil, Meena; Karandikar, Manjiri

    2016-01-01

    Pineal tumors comprise 0.4 – 1.0% of intracranial space-occupying lesions in adults. Papillary tumor of pineal region (PTPR) is a very rare entity. It has been newly described in WHO 2007 classification of brain tumors. Only a few case reports are available in the literature. We report a case of a 60 year-old female presenting with headache, giddiness and reduced vision. Imaging studies showed a pineal mass with areas of hemorrhage. All ventricles were normal. There was a past history of a pineal gland tumor excised 2 years ago. This case is being reported for its rarity and aggressiveness in the form of recurrence. Limited/available immunohistochemistry workup has been done. PMID:27695568

  6. Transcranial sonography in the evaluation of pineal lesions: two-year follow up study.

    PubMed

    Budisić, Mislav; Bosnjak, Jelena; Lovrencić-Huzjan, Arijana; Strineka, Maja; Bene, Raphael; Azman, Drazen; Bedek, Darko; Trkanjec, Zlatko; Demarin, Vida

    2008-12-01

    We have recently reported that transcranial sonography (TCS) is a method competitive to magnetic resonance neuroimaging (MRI) in the evaluation of pineal gland lesions. The aim of the present is study was to assess the usefulness of TCS in a larger patient sample during a two-year follow up. Twenty patients with incidental pineal gland cyst (PGC) detected by MRI scan of the brain and 40 healthy controls without any previous documented data on a disease related to pineal gland were evaluated by TCS and compared with MRI scans. There were no statistically significant differences in PGC size measured by TCS by two observers (p = 0.475), PGC size measured by TCS and MRI (first observer, p = 0.453; and second observer, p = 0.425), size of the pineal gland measured by TCS and MRI in control group (first observer, p = 0.497; and second observer, p = 0.370), and pineal gland size measured by TCS by two observers in control group (p = 0.473). Study results suggested TCS to be a suitable method in the evaluation of pineal gland lesions. Although its resolution cannot match the MRI resolution, its repeatability and accuracy might add to its practical value. We suggest that the repeat MRI scan of such lesions might be replaced by clinical and TCS follow up.

  7. Clarification of the terminology of the major human salivary glands: acinus and alveolus are not synonymous.

    PubMed

    Gilloteaux, Jacques; Afolayan, Adebowale

    2014-08-01

    Discrepancies in the terminology of the major human salivary glands often appear in anatomical textbooks and tend to adversely affect student's learning experience in Microscopic Anatomy. The main culprit is the inconsistent description of the morphology of these glands secretory end pieces where "acinus" and "alveolus" are used interchangeably. The correct terminology originated from Malpighi (1687), repeated by Kölliker (1854), but over the years has been misinterpreted by prominent authors as a result of the nature of specimen preparation. This commentary is based on etymology, current standard light microscopy, research studies and consultation with experts. The overall objective of this publication is to recommend that textbooks should endeavour to modify the relevant descriptions about this terminology in their future editions. The most appropriate terminology for the major human salivary glands would be: (1) the parotid gland, entirely serous, should be called compound acinar glands; (2) the submandibular glands are mixed glands; their serous components are compound acinar while some of the mucinous areas are tubular with serous, crescents or demilunes, as acinar end pieces hence they should be named compound tubuloacinar glands; (3) the sublingual glands, mainly mucous glands with tubular shape, with small acinar end pieces that are serous crescents thence they should be called compound tubuloacinar glands.

  8. Distinct effects of the serotonin-noradrenaline reuptake inhibitors milnacipran and venlafaxine on rat pineal monoamines.

    PubMed

    Muneoka, Katsumasa; Kuwagata, Makiko; Ogawa, Tetsuo; Shioda, Seiji

    2015-06-17

    Monoamine systems are involved in the pathology and therapeutic mechanism of depression. The pineal gland contains large amounts of serotonin as a precursor for melatonin, and its activity is controlled by noradrenergic sympathetic nerves. Pineal diurnal activity and its release of melatonin are relevant to aberrant states observed in depression. We investigated the effects on pineal monoamines of serotonin-noradrenaline reuptake inhibitors, which are widely used antidepressants. Four days of milnacipran treatment led to an increase in noradrenaline and serotonin levels, whereas 4 days of venlafaxine treatment reduced 5-hydroxyindoleacetic acid levels; both agents induced an increase in dopamine levels. Our data suggest that milnacipran increases levels of the precursor for melatonin synthesis by facilitating the noradrenergic regulation of pineal activity and that venlafaxine inhibits serotonin reuptake into noradrenergic terminals on the pineal gland.

  9. Eccrine sweat glands are major contributors to reepithelialization of human wounds.

    PubMed

    Rittié, Laure; Sachs, Dana L; Orringer, Jeffrey S; Voorhees, John J; Fisher, Gary J

    2013-01-01

    Eccrine sweat glands are skin-associated epithelial structures (appendages) that are unique to some primates including humans and are absent in the skin of most laboratory animals including rodents, rabbits, and pigs. On the basis of the known importance of other skin appendages (hair follicles, apocrine glands, and sebaceous glands) for wound repair in model animals, the present study was designed to assess the role of eccrine glands in the repair of wounded human skin. Partial-thickness wounds were generated on healthy human forearms, and epidermal repair was studied in skin biopsy samples obtained at precise times during the first week after wounding. Wound reepithelialization was assessed using immunohistochemistry and computer-assisted 3-dimensional reconstruction of in vivo wounded skin samples. Our data demonstrate a key role for eccrine sweat glands in reconstituting the epidermis after wounding in humans. More specifically, (i) eccrine sweat glands generate keratinocyte outgrowths that ultimately form new epidermis; (ii) eccrine sweat glands are the most abundant appendages in human skin, outnumbering hair follicles by a factor close to 3; and (iii) the rate of expansion of keratinocyte outgrowths from eccrine sweat glands parallels the rate of reepithelialization. This novel appreciation of the unique importance of eccrine sweat glands for epidermal repair may be exploited to improve our approaches to understanding and treating human wounds.

  10. Human Parotid Gland Alpha-Amylase Secretion as a Function of Chronic Hyperbaric Exposure

    DTIC Science & Technology

    1979-01-01

    parotid ...Pullman, WA 99163 Gilman, S. C, G. J. Fischer, R. J. Biersner, R. D. Thornton, and D. A. Miller. 1979. Human parotid gland alpha-amylase secretion...as a function of chronic hyperbaric exposure. Undersea Biomed. Res. 6(3):303-307.—Secretion of a-amylase by the human parotid gland increased

  11. Dynamic OCT of mentally stress-induced sweating in sweat glands of the human finger tip

    NASA Astrophysics Data System (ADS)

    Ohmi, Masato; Ueda, Yoshihiro; Haruna, Masamitsu

    2007-02-01

    We demonstrate in-vivo imaging of sweat glands of human finger tip using the dynamic optical coherence tomography (OCT). Mentally-stress-induced sweating in sweat glands of human finger tip can be observed clearly in time-sequential OCT images. In the experiment, a sweat pore opened clearly on the skin surface according to a stimulus of sound.

  12. Comparison of proliferating cells between human adult and fetal eccrine sweat glands.

    PubMed

    Li, Hai-Hong; Fu, Xiao-Bing; Zhang, Lei; Zhou, Gang

    2008-04-01

    Studies of sweat glands had demonstrated that there were degenerating cells and proliferating cells in the eccrine sweat glands. To compare the differences in the proliferating cells between human adult and fetal eccrine sweat glands, immunostaining of proliferating-associated proliferating cell nuclear antigen (PCNA) and Ki67 nuclear antigen (Ki67) was performed, and the location and the percentage of the positive staining cells were analyzed. The results showed that a few cells of the secretory and ductal portion in both the adult and fetal eccrine sweat glands stained positive with Ki67 and PCNA. The labeling index of PCNA in adult eccrine sweat glands was 34.71 +/- 8.37%, while that in the fetal was 62.72 +/- 6.54%. The labeling index of PCNA in fetal eccrine sweat glands was higher than that in adult. Myoepithelial cells were negative staining with anti-PCNA antibody in adult eccrine sweat glands, while in the fetal a few myoepithelial cells were positive staining. Labeling index of Ki67 in adult eccrine sweat glands was similar to that in the fetal, ranging from 0.5 to 4.3%. Myoepithelial cells of the adult and fetal eccrine sweat glands both were negative staining with anti-Ki67 antibody. We concluded that the myoepithelial cells had proliferating ability only in fetal eccrine sweat glands, and that the proliferating ability of fetal eccrine sweat glands was stronger than that of the adult.

  13. Weight gain increases human aromatase expression in mammary gland.

    PubMed

    Chen, Dong; Zhao, Hong; Coon, John S; Ono, Masanori; Pearson, Elizabeth K; Bulun, Serdar E

    2012-05-15

    Adulthood weight gain predicts estrogen receptor-positive breast cancer. Because local estrogen excess in the breast likely contributes to cancer development, and aromatase is the key enzyme in estrogen biosynthesis, we investigated the role of local aromatase expression in weight gain-associated breast cancer risk in a humanized aromatase (Arom(hum)) mouse model containing the coding region and the 5'-regulatory region of the human aromatase gene. Compared with littermates on normal chow, female Arom(hum) mice on a high fat diet gained more weight, and had a larger mammary gland mass with elevated total human aromatase mRNA levels via promoters I.4 and II associated with increased levels of their regulators TNFα and C/EBPβ. There was no difference in total human aromatase mRNA levels in gonadal white adipose tissue. Our data suggest that diet-induced weight gain preferentially stimulates local aromatase expression in the breast, which may lead to local estrogen excess and breast cancer risk.

  14. Chronic exposure to 60-Hz electric fields: effects on pineal function in the rat

    SciTech Connect

    Wilson, B.W.; Anderson, L.E.; Hilton, D.I.; Philips, R.D.

    1980-01-01

    As a component of studies to search for effects of 60-Hz electric field exposure on mammalian endocrine function, concentrations of melatonin, 5-methoxytryptophol, and serotonin-N-acetyl transferase activity were measured in the pineal glands of rats exposed or sham-exposed at 65 kV/m for 30 days.In two replicate experiments there were statistically significant differences between exposed and control rats in that the normal nocturnal increase in pineal melatonin content was depressed in the exposed animals. Concentrations of 5-methoxytryptophol were increased in the pineal glands of the exposed groups when compared to sham-exposed controls. An alteration was also observed in serotonin-N-acetyl transferase activity, with lower levels measured in pineal glands from exposed animals.

  15. Overview of Human Salivary Glands: Highlights of Morphology and Developing Processes.

    PubMed

    de Paula, Fernanda; Teshima, Tathyane Harumi Nakajima; Hsieh, Ricardo; Souza, Milena Monteiro; Nico, Marcello Menta Simonsen; Lourenco, Silvia Vanessa

    2017-02-13

    Salivary glands are essential organs that produce and secrete saliva to the oral cavity. During gland morphogenesis, many developmental processes involve a series of coordinated movements and reciprocal interactions between the epithelium and mesenchyme that generate the ductal system and the secretory units. Recent studies have shown new findings about salivary gland development, particularly regarding lumen formation and expansion, with the involvement of apoptosis and cell polarization, respectively. Moreover, it has been observed that human minor salivary glands start forming earlier than previously published and that distinct apoptotic mediators can trigger duct lumen opening in humans. This review summarizes updated morphological and cellular features of human salivary glands and also explores new aspects of the human developmental process. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc.

  16. Daytime Unresponsiveness of the Human and Syrian Hamster Pineal to Adrenergic Stimulation

    DTIC Science & Technology

    1989-01-01

    et al., 1981; Li et al., 1988). Experimental animals have also been variably resistent to induction of changes in the melatonin rhythm if the light... melatonin content in burned rats and hamsters is essentially normal (Vaughan et al., 1985). Acute adverse stimuli, such as insulin -induced hyoglycemia...or excreted melatonin in humans during the day by a variety of influences (including naps, psychological stress, exercise, insulin hypoglycemia, and

  17. Pineal melatonin synthesis in Syrian hamsters: A summary

    NASA Astrophysics Data System (ADS)

    Rollag, M. D.

    1982-12-01

    During the past decade there has been ample documentation of the proposition that the pineal gland mediates photoperiodic influences upon reproductive behavior of hamsters. It is commonly hypothesized that the pineal gland expresses its activity by transformation of photoperiodic information into an hormonal output, that hormone being melatonin. If this hypothesis is correct, there must be some essential diffrence in melatonin's output when hamsters are exposed to different photoperiodic environments. The experiments summarized in this communication analyze pineal melatonin contents in Syrian hamsters maintained in a variety of photoperiodic conditions during different physiological states. The results demonstrate that adult hamsters have a daily surge in pineal melatonin content throughout their lifetime when exposed to simulated annual photoperiodic cycles. There is some fluctuation in the amount of pineal melatonin produced during different physiological states and photoperiodic environments, but these fluctuations seem small when compared to those normally found for other regulatory hormones. When hamsters are exposed to different photoperiodic regimens, the daily melatonin surge maintains a relatively constant phase relationship with respect to the onset of daily activity. There is a concomitant change in its phase relationship with respect to light-dark transitions.

  18. Expression of the gene encoding growth hormone in the human mammary gland

    SciTech Connect

    Mol, J.A.; Misdorp, W.; Rijnberk, A.

    1995-10-01

    Progestins cause a syndrome of growth hormone (GH) excess and enhanced mammary tumorigenesis in the dog. This has been regarded as being specific for the dog. Recently we reported that progestin-induced GH excess originates from foci of hyperplastic ductular epithelium of the mammary gland in the dog. In the present report we demonstrate by reverse-transcriptase PCR and immunohistochemistry that a main factor involved in tissue growth, i.e. GH, is also expressed in normal and neoplastic human mammary glands. The gene expressed in the human mammary gland proved to be identical to the gene encoding GH in the pituitary gland. The role of progesterone in the GH expression of the human mammary gland needs, however, to be proven. It is hypothesized that this locally produced hGH may play a pathogenetic role in breast cancer. 21 refs., 2 figs., 1 tab.

  19. The human adrenal gland proteome defined by transcriptomics and antibody-based profiling.

    PubMed

    Bergman, Julia; Botling, Johan; Fagerberg, Linn; Hallström, Björn M; Djureinovic, Dijana; Uhlén, Mathias; Pontén, Fredrik

    2016-11-30

    The adrenal gland is a composite endocrine organ with vital functions that include the synthesis and release of glucocorticoids and catecholamines. To define the molecular landscape that underlies the specific functions of the adrenal gland, we combined a genome-wide transcriptomics approach based on mRNA sequencing of human tissues with immunohistochemistry-based protein profiling on tissue microarrays. Approximately two-thirds of all putative protein coding genes were expressed in the adrenal gland and the analysis identified 253 genes with an elevated pattern of expression in the adrenal gland, with only 37 genes showing a markedly higher expression level (>5-fold) in the adrenal gland compared to 31 other normal human tissue types analyzed. The analyses allowed for an assessment of the relative expression levels for well-known proteins involved in adrenal gland function, but also identified previously poorly characterized proteins in the adrenal cortex, such as FERM domain containing 5 (FRMD5) and protein NOV homolog (NOV). In summary, we provide a global analysis of the adrenal gland transcriptome and proteome, with a comprehensive list of genes with elevated expression in the adrenal gland and spatial information with examples of protein expression patterns for corresponding proteins. These genes and proteins constitute important starting points for an improved understanding of the normal function and pathophysiology of the adrenal glands.

  20. Oncostatic activity of pineal neuroendocrine treatment with the pineal indoles melatonin and 5-methoxytryptamine in untreatable metastatic cancer patients progressing on melatonin alone.

    PubMed

    Lissoni, Paolo; Rovelli, Franco; Frassineti, Andrea; Fumagalli, Luca; Malysheva, Ola; Conti, Ario; Maestroni, Georges

    2000-01-01

    OBJECTIVE: The recent advances in psycho-neuro-endocrino-immunology have demonstrated the existence of several endogenous neuroendocrine substances, capable of affecting both tumor growth and host anticancer immune defenses. The pineal gland would represent one of the most important organs releasing antiproliferative and immunostimulating substances, the most known of them is melatonin (MLT). However, MLT would not be the only pineal indole provided by antitumor activity. Other pineal indoles, namely 5-methoxytryptamine (5-MTT), would play antitumor effects, by either inhibiting cancer cell proliferation or stimulating the anticancer immunity. Preliminary data have shown that MLT may deserve antitumor activity in the treatment of human neoplasms, whereas at present there are no clear data about 5-MTT. In an attempt to obtain some preliminary data about the anticancer properties of 5-MTT in humans, we have evaluated the efficacy of MLT plus 5-MTT in untreatable advanced cancer patients progressing on MLT alone. METHODS: The study included 73 untreatable advanced solid tumor patients, who had progressed after two months of MLT therapy alone. According to tumor histotype, patients were randomized to receive MLT alone (20 mg/day orally in the evening) or MLT plus 5-MTT (1 mg at noon orally), every day for at least two months. The clinical response was evaluated according to WHO criteria. RESULTS: A partial response (PR) occurred in two patients treated with MLT + 5-MTT and in none of the patients receiving MLT alone. A stable disease (SD) was achieved in only 2/37 patients on MLT therapy alone, and in 8/36 patients receiving MLT plus 5-MTT. Therefore, the percent of non-progressing patients (SD + PR) obtained with MLT plus 5-MTT was significantly higher than that obtained with MLT alone. Moreover, the relief of asthenia and depressant symptoms was significantly higher in patients concomitantly treated with 5-MTT. DISCUSSION: This preliminary study would suggest that

  1. Precursors of hexoneogenesis within the human mammary gland.

    PubMed

    Mohammad, Mahmoud A; Maningat, Patricia; Sunehag, Agneta L; Haymond, Morey W

    2015-04-15

    The human mammary gland is capable of de novo synthesis of glucose and galactose (hexoneogenesis); however, the carbon source is incompletely understood. In this study, we investigated the role of acetate, glutamine, lactate and glycerol as potential carbon sources for hexoneogenesis. Healthy breastfeeding women were studied following a 24-h fast on two occasions separated by 1-3 wk. Five women were infused with [U-¹³C]lactate or [1,2-¹³C₂]glutamine and five women with [U-¹³C]glycerol or [1,2-¹³C₂]acetate. Enrichments of ¹³C in plasma and milk substrates were analyzed using GC-MS. Infusion of labeled lactate, glycerol, glutamine, and acetate resulted in plasma glucose being 22.0±3.7, 11.2±1.0, 2.5±0.5, and 1.3±0.2% labeled, respectively. Lactate, glutamine, or acetate did not contribute to milk glucose or galactose (0-2%). In milk, ¹³C-free glycerol enrichment was one-fourth that in plasma but free glycerol concentration in milk was fourfold higher than in plasma. Using [U-¹³C]glycerol and by accounting for tracer dilution, glycerol alone contributed to 10±2 and 69±11% of the hexoneogenesis of milk glucose and galactose, respectively. During [U-¹³C]glycerol infusion, the ratio of M₃ enrichment on 4-6 carbons/M₃ on 1-3 carbons of galactose was higher (P<0.05, 1.22±0.05) than those of glucose in plasma (1.05±0.03) and milk (1.07±0.02). Reanalysis of samples from a previous study involving [U-¹³C]glucose infusion alone suggested labeling a portion of galactose consistent with pentose phosphate pathway (PPP) activity. We conclude that, although lactate contributed significantly to gluconeogenesis, glycerol alone provides the vast majority of substrate for hexoneogenesis. The relative contribution of the PPP vs. the reversal Embden-Meyerhof pathway to hexoneogenesis within the human mammary gland remains to be determined.

  2. Structure and function of human sweat glands studied with histochemistry and cytochemistry.

    PubMed

    Saga, Kenji

    2002-01-01

    The basic structure and the physiological function of human sweat glands were reviewed. Histochemical and cytochemical techniques greatly contributed the elucidation of the ionic mechanism of sweat secretion. X-ray microanalysis using freeze-dried cryosections clarified the level of Na, K, and Cl in each secretory cell of the human sweat gland. Enzyme cytochemistry, immunohistochemistry and autoradiography elucidated the localization of Na,K-ATPase. These data supported the idea that human eccrine sweat is produced by the model of N-K-2Cl cotransport. Cationic colloidal gold localizes anionic sites on histological sections. Human eccrine and apocrine sweat glands showed completely different localization and enzyme sensitivity of anionic sites studied with cationic gold. Human sweat glands have many immunohistochemical markers. Some of them are specific to apocrine sweat glands, although many of them stain both eccrine and apocrine sweat glands. Histochemical techniques, especially immunohistochemistry using a confocal laser scanning microscope and in situ hybridization, will further clarify the relationship of the structure and function in human sweat glands.

  3. Three-dimensional culture and identification of human eccrine sweat glands in matrigel basement membrane matrix.

    PubMed

    Li, Haihong; Chen, Lu; Zhang, Mingjun; Tang, Shijie; Fu, Xiaobing

    2013-12-01

    Interactions between the extracellular matrix (ECM) and epithelial cells are necessary for the proper organization and function of the epithelium. In the present study, we show that human eccrine sweat gland epithelial cells cultured in matrigel, a representation of ECM components, constitute a good model for studying three-dimensional reconstruction, wound repair and regeneration and differentiation of the human eccrine sweat gland. In matrigel, epithelial cells from the human eccrine sweat gland form tubular-like structures and then the tubular-like structures coil into sphere-like shapes that structurally resemble human eccrine sweat glands in vivo. One sphere-like shape can be linked to another sphere-like shape or to a cell monolayer via tubular-like structures. Hematoxylin and eosin staining has revealed that the tubular-like structures have a single layer or stratified epithelial cells located peripherally and a lumen at the center, similar to the secretory part or duct part, respectively, of the eccrine sweat gland in sections of skin tissue. Immunohistochemical analysis of the cultures has demonstrated that the cells express CK7, CK19, epithelial membrane antigen and actin. Thus, matrigel promotes the organization and differentiation of epithelial cells from the human eccrine sweat gland into eccrine sweat gland tissues.

  4. Matrigel-induced tubular morphogenesis of human eccrine sweat gland epithelial cells.

    PubMed

    Lei, Xia; Liu, Bo; Wu, Jinjin; Lu, Yuangang; Yang, Yadong

    2011-09-01

    Human eccrine sweat glands are tubule-structured glands of the skin that are vital in thermoregulation, secretion, and excretion of water and electrolytes. A study of tubular morphogenesis in vitro would facilitate the development of a tissue engineering model for eccrine sweat glands and other tubule-structured glands. Matrigel, a basement membrane matrix, has been shown to promote differentiation and morphogenesis of many different cell types, including tubular cells. This study investigated the growth, differentiation, and tubular morphogenesis of human eccrine sweat gland epithelial cells cultured in Matrigel. Human eccrine gland epithelial cells were isolated and cultured in vitro. The cell growth in Matrigel was evidenced by the formation of cell clusters, which were observed under an inverted microscope. The internal structure of the cell clusters was further investigated by hematoxylin-eosin (HE) staining and confocal laser scanning microscopy (CLSM) of propidium iodide-stained nuclei. The results demonstrated that although on a plastic surface or in a collagen gel the cells could not form tubular structures, they formed tubular structures when cultured in Matrigel. Consequently, we conclude that Matrigel can promote tubular morphogenesis of human eccrine sweat gland epithelial cells.

  5. Pineal melatonin synthesis is altered in Period1 deficient mice.

    PubMed

    Christ, E; Pfeffer, M; Korf, H W; von Gall, C

    2010-12-01

    Melatonin is an important endocrine signal for darkness in mammals. Transcriptional activation of the arylalkylamine-N-acetyltransferase gene encoding for the penultimate enzyme in melatonin synthesis drives the daily rhythm of the hormone in the pineal gland of rodents. Rhythmic arylalkylamine-N-acetyltransferase expression is controlled by the cAMP-signal transduction pathway and involves the activation of β-adrenergic receptors and the inducible cAMP early repressor. In addition, the rat arylalkylamine-N-acetyltransferase promoter contains an E-box element which can interact with clock proteins. Moreover, the pineal gland of mice shows a circadian rhythm in clock proteins such as the transcriptional repressor Period1, which has been shown to control rhythmic gene expression in a variety of tissues. However, the role of Period1 in the regulation of pineal melatonin synthesis is still unknown. Therefore, circadian rhythms in arylalkylamine-N-acetyltransferase, β-adrenergic receptor, and inducible cAMP early repressor mRNA levels (real time PCR), arylalkylamine-N-acetyltransferase enzyme activity (radiometric assay) and melatonin concentration radio immuno assay (RIA) were analyzed in the pineal gland of mice with a targeted deletion of the Period1 gene (Per1-/-) and the corresponding wildtype. In Per1-/- the amplitude in arylalkylamine-N-acetyltransferase expression was significantly elevated as compared to wildtype. In contrast, β-adrenergic receptor and inducible cAMP early repressor mRNA levels were not affected by the Period1-deficiency. This indicates that the molecular clockwork alters the amplitude of arylalkylamine-N-acetyltransferase expression. In vitro, pineal glands of Per1-/- mice showed a day night difference in arylalkylamine-N-acetyltransferase expression with high levels at night. This suggests that a deficient in Period1 elicits similar effects as the activation of the cAMP-signal transduction pathway in wildtype mice.

  6. Melatonin, the Pineal Gland, and Circadian Rhythms

    DTIC Science & Technology

    1994-02-28

    astrocytes in the chick visual suprachiasmatic nucleus . Trans, Soc. Res. Biol. Rhythms 4:118 4) Brooks, D.S., AJ. Mitchell and...W.S., T.H. Champney and V.M. Cassone ( in press) The suprachiasmatic nucleus controls circadian rhythms of heart-rate via the sympathetic nervous...sparrows. N•,u•.si.LAbs. 19: 1487 2) Warren, W.S., V.M. Cassone (1993) The regulation of multiple circadian outputs by the suprachiasmatic

  7. Melatonin, The Pineal Gland and Circadian Rhythms.

    DTIC Science & Technology

    1992-04-30

    glutamate, GABA , taurine and other common amino acids from extracellular fluids of SCN and surrounding areas. We are also awaiting our body...there was no ligand-receptor down-regulation. To test this idea directly, we hava asked whether in vitr binding of the melatonin agonist , 2

  8. Melatonin, the Pineal Gland, and Circadian Rhythms

    DTIC Science & Technology

    1993-05-31

    temperature and sleep rhyhms in the rat. Physlol. Behav. 32: 357-368, 1984. 19. Edgar , D. M., and C. A. Fuller. Effect of SCN lesions on sleep in...Reuss, S., R. F. Johnson, L. P. Morin , and R. Y. Moore. Localization of sympathetic preganglionic neurons in the spinal cord of the goldm hamste. hrin

  9. Thyroid hormone and adrenergic signaling interact to control pineal expression of the dopamine receptor D4 gene (Drd4).

    PubMed

    Kim, Jong-So; Bailey, Michael J; Weller, Joan L; Sugden, David; Rath, Martin F; Møller, Morten; Klein, David C

    2010-01-15

    Dopamine plays diverse and important roles in vertebrate biology, impacting behavior and physiology through actions mediated by specific G-protein-coupled receptors, one of which is the dopamine receptor D4 (Drd4). Here we present studies on the >100-fold daily rhythm in rat pineal Drd4 expression. Our studies indicate that Drd4 is the dominant dopamine receptor gene expressed in the pineal gland. The gene is expressed in pinealocytes at levels which are approximately 100-fold greater than in other tissues, except the retina, in which transcript levels are similar. Pineal Drd4 expression is circadian in nature and under photoneural control. Whereas most rhythmically expressed genes in the pineal are controlled by adrenergic/cAMP signaling, Drd4 expression also requires thyroid hormone. This advance raises the questions of whether Drd4 expression is regulated by this mechanism in other systems and whether thyroid hormone controls expression of other genes in the pineal gland.

  10. Pineal perfusion with calcium channel blockers inhibits differently daytime and nighttime melatonin production in rat.

    PubMed

    Zhao, Z Y; Touitou, Y

    1994-05-01

    In a previous study we have shown that the response of perifused pineal glands to calcium was different according to the circadian stage at which the glands were removed. This difference may be explained by circadian changes in calcium channel function. Therefore in the present study we documented the effects of calcium channel blockers in perifused rat pineal glands removed in the middle of the light and dark spans (7 and 19 HALO (hours after light onset), in a L/D 12:12 regimen). Moreover, we have studied the effect of calcium channel blockers on adrenergically stimulated pineal glands removed 7 HALO. Inorganic (Co2+ and Cd2+) and organic (nifedipine and diltiazem) calcium channel blockers at 10(-4) mol/l all significantly reduced melatonin production and this inhibition was more effective with the glands removed 7 HALO. In a concentration of 10(-)5 mol/l, only Cd2+ and diltiazem reduced melatonin production significantly in pineal glands removed 7 HALO. Verapamil at 10(-4) and 10(-5) mol/l showed no significant effect on melatonin production in glands removed both during the light and dark spans. Mn2+ at 10(-4) mol/l (but not at 10[-5] mol/l) appeared to stimulate melatonin production in glands removed both during the light and the dark (significant increase only with glands removed during the dark). Cobalt showed an immediate short inhibitory effect on both isoproterenol and norepinephrine-stimulated melatonin release, whereas nifedipine showed a significant inhibition only on isoproterenol-stimulated melatonin release. These results strongly suggest a circadian stage dependence of the pineal gland response to some calcium channel blockers and the involvement of calcium in the release of melatonin from pinealocytes.

  11. Similarity of GATA-3 Expression between Rat and Human Mammary Glands.

    PubMed

    Kinoshita, Yuichi; Yoshizawa, Katsuhiko; Emoto, Yuko; Yuki, Michiko; Yuri, Takashi; Shikata, Nobuaki; Tsubura, Airo

    2014-07-01

    The GATA family members are zinc finger transcription factors involved in cell differentiation and proliferation. In particular, GATA-3 is necessary for mammary gland maturation and is a useful marker in the characterization of mammary carcinoma in humans. The expression of GATA-3 protein in normal mammary glands, fibroadenomas and carcinomas was immunohistochemically compared in female rats and humans. In normal mammary glands of rats and humans, scattered luminal cells in the acini and whole ductal epithelial cells were positive for GATA-3 in the nuclei. No positive cells were detected in rat or human fibroadenomas. In rat and human mammary carcinomas, the nuclei of proliferating luminal-derived cancer cells expressed GATA-3. Therefore, GATA-3 protein is a candidate marker for mammary carcinoma in rats as well as humans.

  12. PAR-2 receptor-induced effects on human eccrine sweat gland cells.

    PubMed

    L Bovell, Douglas; Kofler, Barbara; Lang, Roland

    2009-01-01

    Serine proteases can induce cell signaling by stimulating G-protein-coupled receptors, called proteinase-activated receptors (PAR's) on a variety of epithelial cells. While PAR-2, one such receptor, activates cell signaling in a secretory cell line derived from human sweat glands, there was no information on their presence and effects on intact sweat glands. PAR-2 presence and activation of eccrine sweat glands isolated from human skin samples was investigated using Western blot analysis, immunohistochemistry, electron microscopy (EM) and Ca(2+) imaging. Anti-human PAR-2 antibody demonstrated the presence of these receptors in eccrine sweat glands. EM showed that PAR-2 activation resulted in degranulation of secretory cells. Ca(2+) imaging using PAR-2 activators demonstrated a two phase increase in [Ca(2+)](i) which was dependent on extracellular Ca(2+) for the second phase, and that the response could be blocked by prior incubation with xestospongin, the IP(3) receptor blocker. The results demonstrated that PAR-2 receptors are present in human sweat gland secretory cells and that these receptors are functionally active and can induce changes associated with secretory events in eccrine glands.

  13. Immunohistochemical evidence suggests intrinsic regulatory activity of human eccrine sweat glands

    PubMed Central

    ZANCANARO, CARLO; MERIGO, FLAVIA; CRESCIMANNO, CATERINA; ORLANDINI, SIMONETTA; OSCULATI, ANTONIO

    1999-01-01

    Immunohistochemistry of normal eccrine sweat glands was performed on paraffin sections of human skin. Immunoreactivity (ir) for neuron specific enolase, S100 protein (S100), regulatory peptides, nitric oxide synthase type I (NOS-I) and choline-acetyltransferase (ChAT) was found in small nerve bundles close to sweat glands. In the glands, secretory cells were labelled with anticytokeratin antibody. Using antibodies to S100, calcitonin gene-related peptide (CGRP) and substance P (SP) a specific distribution pattern was found in secretory cells. Granulated (dark) and parietal (clear) cells were immunopositive for CGRP, and S100 and SP, respectively. Immunoreactivity was diffuse in the cytoplasm for CGRP and S100, and peripheral for SP. Myoepithelial cells were not labelled. Electron microscopy revealed electron dense granules, probably containing peptide, in granulated cells. Using antibodies to NOS-I and ChAT, ir was exclusively found in myoepithelial cells. Immunoreactivity for the atrial natriuretic peptide was absent in sweat glands. These results provide evidence for the presence of both regulatory peptides involved in vasodilation and key enzymes for the synthesis of nitric oxide and acetylcholine in the secretory coil of human sweat glands. It is suggested that human sweat glands are capable of some intrinsic regulation in addition to that carried out by their nerve supply. PMID:10386780

  14. Development of a nude mouse model to study human sebaceous gland physiology and pathophysiology.

    PubMed

    Petersen, M J; Zone, J J; Krueger, G G

    1984-10-01

    Study of human sebaceous gland physiology and pathophysiology is limited by lack of an adequate animal model. This study was designed to develop an animal model using human face skin grafted onto the nude mouse to study human sebaceous glands. Full-thickness human face skin was grafted onto 60 adult male nude mice. 4 wk after grafting, androgens, which are known to stimulate sebaceous glands, were administered to test the system. Androgens were administered to 21 animals by implanted catheters that were filled with testosterone (T) or dihydrotestosterone (DHT). Empty catheters were implanted in 15 control animals. Graft biopsies and blood for androgen levels were obtained at time 1 (pre-catheter) and time 2 (26 d after catheter implantation). Three assessments were made on each biopsy: sebaceous gland volume, using an image analyzing computer; sebaceous cell size; and sebaceous gland labeling index. 29 mice completed the study through time 2. In the androgen-treated group, T levels (nanogram per milliliter) five times increased to 4.92 +/- 0.35, and DHT levels (nanogram per milliliter) increased 50 times to 16.70. In the androgen-treated group, sebaceous gland volume (micron 3 X 10(-3) increased from 896 +/- 194 to 3,233 +/- 754 (P less than 0.001), sebaceous cell area (micron 2) increased from 167 +/- 12 to 243 +/- 19 (P less than 0.001), and labeling index (percentage) increased from 2.7 +/- 0.7 to 6.4 +/- 0.9 (P less than 0.01). In the control group, sebaceous gland volume fell from 1,070 +/- 393 to 417 +/- 99 (NS), sebaceous cell size remained the same, and the labeling index fell from 5.1 +/- 1.9 to 3.2 +/- 1.1. After androgen administration, Halowax N-34, a known comedogen, or its vehicle, was applied to 15 grafts for 2-6 wk. Twice as many microcomedones were seen in the Halowax-treated grafts, compared with vehicle-treated grafts at the end of this time period. No visible comedones were produced. This study demonstrated that: (a) human sebaceous glands can

  15. Development of a nude mouse model to study human sebaceous gland physiology and pathophysiology.

    PubMed Central

    Petersen, M J; Zone, J J; Krueger, G G

    1984-01-01

    Study of human sebaceous gland physiology and pathophysiology is limited by lack of an adequate animal model. This study was designed to develop an animal model using human face skin grafted onto the nude mouse to study human sebaceous glands. Full-thickness human face skin was grafted onto 60 adult male nude mice. 4 wk after grafting, androgens, which are known to stimulate sebaceous glands, were administered to test the system. Androgens were administered to 21 animals by implanted catheters that were filled with testosterone (T) or dihydrotestosterone (DHT). Empty catheters were implanted in 15 control animals. Graft biopsies and blood for androgen levels were obtained at time 1 (pre-catheter) and time 2 (26 d after catheter implantation). Three assessments were made on each biopsy: sebaceous gland volume, using an image analyzing computer; sebaceous cell size; and sebaceous gland labeling index. 29 mice completed the study through time 2. In the androgen-treated group, T levels (nanogram per milliliter) five times increased to 4.92 +/- 0.35, and DHT levels (nanogram per milliliter) increased 50 times to 16.70. In the androgen-treated group, sebaceous gland volume (micron 3 X 10(-3) increased from 896 +/- 194 to 3,233 +/- 754 (P less than 0.001), sebaceous cell area (micron 2) increased from 167 +/- 12 to 243 +/- 19 (P less than 0.001), and labeling index (percentage) increased from 2.7 +/- 0.7 to 6.4 +/- 0.9 (P less than 0.01). In the control group, sebaceous gland volume fell from 1,070 +/- 393 to 417 +/- 99 (NS), sebaceous cell size remained the same, and the labeling index fell from 5.1 +/- 1.9 to 3.2 +/- 1.1. After androgen administration, Halowax N-34, a known comedogen, or its vehicle, was applied to 15 grafts for 2-6 wk. Twice as many microcomedones were seen in the Halowax-treated grafts, compared with vehicle-treated grafts at the end of this time period. No visible comedones were produced. This study demonstrated that: (a) human sebaceous glands can

  16. Cidea control of lipid storage and secretion in mouse and human sebaceous glands.

    PubMed

    Zhang, Shasha; Shui, Guanghou; Wang, Guanqun; Wang, Chao; Sun, Shuhong; Zouboulis, Christos C; Xiao, Ran; Ye, Jing; Li, Wei; Li, Peng

    2014-05-01

    Sebaceous glands are skin appendages that secrete sebum onto hair follicles to lubricate the hair and maintain skin homeostasis. In this study, we demonstrated that Cidea is expressed at high levels in lipid-laden mature sebocytes and that Cidea deficiency led to dry hair and hair loss in aged mice. In addition, Cidea-deficient mice had markedly reduced levels of skin surface lipids, including triacylglycerides (TAGs) and wax diesters (WDEs), and these mice were defective in water repulsion and thermoregulation. Furthermore, we observed that Cidea-deficient sebocytes accumulated a large number of smaller-sized lipid droplets (LDs), whereas overexpression of Cidea in human SZ95 sebocytes resulted in increased lipid storage and the accumulation of large LDs. Importantly, Cidea was highly expressed in human sebaceous glands, and its expression levels were positively correlated with human sebum secretion. Our data revealed that Cidea is a crucial regulator of sebaceous gland lipid storage and sebum lipid secretion in mammals and humans.

  17. Isolation, culture and phenotypic characterization of human sweat gland epithelial cells.

    PubMed

    Gao, Yunhe; Li, Meiying; Zhang, Xueyan; Bai, Tingting; Chi, Guanfan; Liu, Jin Yu; Li, Yulin

    2014-10-01

    Sweat gland epithelial cells (SGECs) have been identified as essential for the regeneration of sweat glands and for the construction of skin substitutes containing skin appendages. Consequently, the isolation, culture and phenotypic characterization of SGECs are of paramount importance. In the present study study, human sweat glands were isolated by pipetting under a phase contrast microscope following digestion with collagenase type I. Subsequently, a microscopic organ culture technique was used for the primary culture of human SGECs, and the culture conditions were modified in order to achieve optimal cell growth status. Primary SGECs were identified based on their expression of markers specific for sweat glands, including carcinoembryonic antigen (CEA), CK7, CK8, CK14, CK15, CK18 and CK19. We explored the possible presence of stem cells in human sweat glands by detecting their expression of leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5). Primary SGECs achieved a good growth state when cultured under serum-free conditions. After one passage, the cells cultured in keratinocyte serum-free medium with 1% fetal bovine serum (FBS) still showed a prominent proliferative activity. Phenotypic analysis by immunofluorescence microscopy, reverse transcription-polymerase chain reaction (RT-PCR), and western blot analysis demonstrated the expression of sweat gland-specific markers, including CEA, CK7, CK8, CK14, CK15, CK18 and CK19. In addition, RT-PCR and immunochemistry detected the expression of LGR5. In comparison with traditional serum-containing conditions, serum-free culture provides the preferred culture conditions for human SGECs. LGR5 is a novel marker that identifies human sweat gland-derived stem cells.

  18. The pineal complex in Roman high avoidance and Roman low avoidance rats.

    PubMed

    Seidel, A; Sousa Neto, J A; Huesgen, A; Vollrath, L; Manz, B; Gentsch, C; Lichtsteiner, M

    1990-01-01

    Previous studies have shown that the pineal gland of Roman high avoidance (RHA/Verh) rats is larger than that of Roman low avoidance rats (RLA/Verh). In the present study measurement of enzyme activities (serotonin-N-acetyl-transferase, hydroxyindole-O-methyltransferase) revealed that pineals of RHA/Verh rats are twice as active in melatonin production than pineals of RLA/Verh rats. Indoleamine content was also higher in RHA/Verh rats, whereas noradrenaline content was the same in both lines. When values were expressed per mg protein, these differences disappeared except for N-acetyl-serotonin and noradrenaline which were higher or lower in RHA/Verh rats, respectively. Both lines had higher serum levels of melatonin during the dark phase than during the light phase. However, RHA/Verh rats had increased serum levels as compared to RLA/Verh rats during both day and night. Morphometric analysis of the deep and superficial part of the pineal complex revealed, that the volumes of both parts are enlarged in RHA/Verh rats. Electron microscopic studies of pineals collected during day- and nighttime showed higher numbers of synaptic ribbons per unit area in pineals of RHA/Verh rats. In pineals collected during June synaptic ribbons displayed a day/night rhythm in RHA/Verh rats only, whereas in glands of both lines collected during November no daily changes were found. These results show that closely related but divergently selected rat lines may differ in pineal ultrastructure and pineal function.

  19. Electron microprobe analysis of human labial gland secretory granules in cystic fibrosis

    SciTech Connect

    Izutsu, K.; Johnson, D.; Schubert, M.; Wang, E.; Ramsey, B.; Tamarin, A.; Truelove, E.; Ensign, W.; Young, M.

    1985-06-01

    X-ray microanalysis of freeze-dried labial gland cryosections revealed that Na concentration was doubled and the Ca/S concentration ratio was decreased in secretory granules of labial glands from patients with cystic fibrosis (CF) when compared with glands from normal subjects. Other results suggested that the decrease in the Ca/S concentration ratio resulted from an increase in S concentration. These findings imply that mucous granules in labial saliva showed a CF-related increase in Na and S content, and such changes would be expected to affect the rheology of the mucus after exocytosis. In contrast with a previous study in human parotid glands, no evidence was found for CF-related changes in cytoplasmic or nuclear Na, K, and Ca concentrations. Significant elemental differences were found between secretory granules and nuclei and cytoplasm of control cells.

  20. A model for the neural control of pineal periodicity

    NASA Astrophysics Data System (ADS)

    de Oliveira Cruz, Frederico Alan; Soares, Marilia Amavel Gomes; Cortez, Celia Martins

    2016-12-01

    The aim of this work was verify if a computational model associating the synchronization dynamics of coupling oscillators to a set of synaptic transmission equations would be able to simulate the control of pineal by a complex neural pathway that connects the retina to this gland. Results from the simulations showed that the frequency and temporal firing patterns were in the range of values found in literature.

  1. Dopamine D2 receptor expression in the corticotroph cells of the human normal pituitary gland.

    PubMed

    Pivonello, Rosario; Waaijers, Marlijn; Kros, Johan M; Pivonello, Claudia; de Angelis, Cristina; Cozzolino, Alessia; Colao, Annamaria; Lamberts, Steven W J; Hofland, Leo J

    2016-10-13

    The dopamine D2 receptor is the main dopamine receptor expressed in the human normal pituitary gland. The aim of the current study was to evaluate dopamine D2 receptor expression in the corticotroph cell populations of the anterior lobe and pars intermedia, as well as posterior lobe of the human normal pituitary gland by immunohistochemistry. Human normal pituitary gland samples obtained from routine autopsies were used for the study. In all cases, histology together with immunostaining for adrenocorticotropic hormone, melanocyte-stimulating hormone, prolactin, and neurofilaments were performed and compared to the immunostaining for D2 receptor. D2 receptor was heterogeneously expressed in the majority of the cell populations of the anterior and posterior lobe as well as in the area localized between the anterior and posterior lobe, and arbitrary defined as "intermediate zone". This zone, characterized by the presence of nerve fibers included the residual pars intermedia represented by the colloid-filled cysts lined by the remnant melanotroph cells strongly expressing D2 receptors, and clusters of corticotroph cells, belonging to the anterior lobe but localized within the cysts and adjacent to the posterior lobe, variably expressing D2 receptors. D2 dopamine receptor is expressed in the majority of the cell populations of the human normal pituitary gland, and particularly, in the different corticotroph cell populations localized in the anterior lobe and the intermediate zone of the pituitary gland.

  2. Differentiation of primary human submandibular gland cells cultured on basement membrane extract.

    PubMed

    Szlávik, Vanda; Szabó, Bálint; Vicsek, Tamás; Barabás, József; Bogdán, Sándor; Gresz, Veronika; Varga, Gábor; O'Connell, Brian; Vág, János

    2008-11-01

    There is no effective treatment for the loss of functional salivary tissue after irradiation for head and neck cancer or the autoimmune disease Sjögren's syndrome. One possible approach is the regeneration of salivary glands from stem cells. The present study aimed to investigate whether small pieces of human submandiblar gland tissue contain elements necessary for the reconstruction of salivary rudiments in vitro via acinar and ductal cell differentiation. Primary submandibular gland (primary total human salivary gland; PTHSG) cells were isolated from human tissue and cultured in vitro using a new method in which single cells form an expanding epithelial monolayer on plastic substrates. Differentiation, morphology, number, and organization of these cells were then followed on basement membrane extract (BME) using RNA quantitation (amylase, claudin-1 (CLN1), CLN3, kallikrein, vimentin), immunohistochemistry (amylase and occludin), viability assay, and videomicroscopy. On the surface of BME, PTHSG cells formed acinotubular structures within 24 h, did not proliferate, and stained for amylase. In cultures derived from half of the donors, the acinar markers amylase and CLN3 were upregulated. The PTHSG culture model suggests that human salivary gland may be capable of regeneration via reorganization and differentiation and that basement membrane components play a crucial role in the morphological and functional differentiation of salivary cells.

  3. Methionine adenosyltransferase:adrenergic-cAMP mechanism regulates a daily rhythm in pineal expression.

    PubMed

    Kim, Jong-So; Coon, Steven L; Blackshaw, Seth; Cepko, Constance L; Møller, Morten; Mukda, Sujira; Zhao, Wan-Qian; Charlton, Clivel G; Klein, David C

    2005-01-07

    (S)-adenosylmethionine (SAM) is a critical element of melatonin synthesis as the methyl donor in the last step of the pathway, the O-methylation of N-acetyl 5-hydroxytryptamine by hydroxyindole-O-methyltransferase. The activity of the enzyme that synthesizes SAM, methionine adenosyltransferase (MAT), increases 2.5-fold at night in the pineal gland. In this study, we found that pineal MAT2A mRNA and the protein it encodes, MAT II, also increase at night, suggesting that the increase in MAT activity is caused by an increase in MAT II gene products. The night levels of MAT2A mRNA in the pineal gland were severalfold higher than in other neural and non-neural tissues examined, consistent with the requirement for SAM in melatonin synthesis. Related studies indicate that the nocturnal increase in MAT2A mRNA is caused by activation of a well described neural pathway that mediates photoneural-circadian regulation of the pineal gland. MAT2A mRNA and MAT II protein were increased in organ culture by treatment with norepinephrine (NE), the sympathetic neurotransmitter that stimulates the pineal gland at night. NE is known to markedly elevate pineal cAMP, and here it was found that cAMP agonists elevate MAT2A mRNA levels by increasing MAT2A mRNA synthesis and that drugs that block cAMP activation of cAMP dependent protein kinase block effects of NE. Therefore, the NE-cAMP dependent increase in pineal MAT activity seems to reflect an increase in MAT II protein, which occurs in response to cAMP-->protein kinase-dependent increased MAT2A expression. The existence of this MAT regulatory system underscores the importance that MAT plays in melatonin biogenesis. These studies also point to the possibility that SAM production in other tissues might be regulated through cAMP.

  4. Differential sorting of human parathyroid hormone after transduction of mouse and rat salivary glands.

    PubMed

    Adriaansen, J; Perez, P; Goldsmith, C M; Zheng, C; Baum, B J

    2008-10-01

    Gene transfer to salivary glands leads to abundant secretion of transgenic protein into either saliva or the bloodstream. This indicates significant clinical potential, depending on the route of sorting. The aim of this study was to probe the sorting characteristics of human parathyroid hormone (hPTH) in two animal models for salivary gland gene transfer. PTH is a key hormone regulating calcium levels in the blood. A recombinant serotype 5 adenoviral vector carrying the hPTH cDNA was administered to the submandibular glands of mice and rats. Two days after delivery, high levels of hPTH were found in the serum of mice, leading to elevated serum calcium levels. Only low amounts of hPTH were found in the saliva. Two days after vector infusion into rats, a massive secretion of hPTH was measured in saliva, with little secretion into serum. Confocal microscopy showed hPTH in the glands, localized basolaterally in mice and apically in rats. Submandibular gland transduction was effective and the produced hPTH was biologically active in vivo. Whereas hPTH sorted toward the basolateral side in mice, in rats hPTH was secreted mainly at the apical side. These results indicate that the interaction between hPTH and the cell sorting machinery is different between mouse and rat salivary glands. Detailed studies in these two species should result in a better understanding of cellular control of transgenic secretory protein sorting in this tissue.

  5. Individual variations in structure and function of human eccrine sweat gland.

    PubMed

    Sato, K; Sato, F

    1983-08-01

    The mechanisms underlying variations in perspiration rate at the glandular level are still poorly understood. Human eccrine sweat glands were dissected from the back of 12 adults, cannulated, and stimulated in vitro with methacholine (Mch). The maximal sweat rate and pKA for Mch determined from the dose-response curve for each individual were compared with the anatomic dimensions of the isolated secretory tubules. There was significant correlation between Mch sensitivity (pKA) and the size of the sweat gland, sweat rate per gland, sweat rate per unit length of the secretory tubule, and sweat rate per unit glandular volume. The sweat glands from individuals judged to be poor sweaters exhibited smaller size, lower secretory activity both in vivo and in vitro, and decreased Mch sensitivity compared with glands from physically fit individuals. We conclude that the increased Mch sensitivity and glandular hypertrophy are the two important features of functionally active sweat glands and infer that these parameters could improve as a result of acclimatization to physical exercise and/or heat.

  6. Cancer Secretome May Influence BSP and DSP Expression in Human Salivary Gland Cells.

    PubMed

    Hamilton, Samantha Lynn; Ferando, Blake; Eapen, Asha Sarah; Yu, Jennifer Chian; Joy, Anita Rose

    2017-03-01

    One of the biggest challenges in managing head and neck cancers, especially salivary gland cancers, is the identification of secreted biomarkers of the disease that can be evaluated noninvasively. A relevant source of enriched tumor markers could potentially be found in the tumor secretome. Although numerous studies have evaluated secretomes from various cancers, the influence of the cancer secretome derived from salivary gland cancers on the behavior of normal cells has not yet been elucidated. Our data indicate that secretome derived from salivary gland cancer cells can influence the expression of two potential biomarkers of oral cancer-namely, bone sialoprotein (BSP) and dentin sialoprotein (DSP)-in normal salivary gland cells. Using routine immunohistochemistry, immunofluorescence, and immunoblotting techniques, we demonstrate an enrichment of BSP and DSP in human salivary gland (HSG) cancer tissue, unique localizations of BSP and DSP in HSG cancer cells, and enriched expression of BSP and DSP in normal salivary gland cells exposed to a cancer secretome. The secretome domain of the cancer microenvironment could alter signaling cascades responsible for normal cell proliferation, migration, and invasion, thus enhancing cancer cell survival and the potential for cancer progression. The cancer secretome may be critical in maintaining and stimulating "cancer-ness," thus potentially promoting specific hallmarks of metastasis.

  7. The Influence of 13-cis Retinoic Acid on Human Meibomian Gland Epithelial Cells

    PubMed Central

    Ding, Juan; Kam, Wendy R.; Dieckow, Julia; Sullivan, David A.

    2013-01-01

    Purpose. Meibomian gland dysfunction (MGD) is a primary cause of dry eye disease. One of the risk factors for MGD is exposure to 13-cis retinoic acid (13-cis RA), a metabolite of vitamin A. However, the mechanism is not well understood. We hypothesize that 13-cis RA inhibits cell proliferation, promotes cell death, alters gene and protein expressions, and attenuates cell survival pathways in human meibomian gland epithelial cells. Methods. To test our hypotheses, immortalized human meibomian gland epithelial cells were cultured with or without 13-cis RA for varying doses and time. Cell proliferation, cell death, gene expression, and proteins involved in proliferation/survival and inflammation were evaluated. Results. We found that 13-cis RA inhibited cell proliferation, induced cell death, and significantly altered the expression of 6726 genes, including those involved in cell proliferation, cell death, differentiation, keratinization, and inflammation, in human meibomian gland epithelial cells. Further, 13-cis RA also reduced the phosphorylation of Akt and increased the generation of interleukin-1β and matrix metallopeptidase 9. Conclusions. Exposure to 13-cis RA inhibits cell proliferation, increases cell death, alters gene expression, changes signaling pathways, and promotes inflammatory mediator and protease expression in meibomian gland epithelial cells. These effects may be responsible, at least in part, for the 13-cis RA–related induction of MGD. PMID:23722388

  8. Single Cell Clones Purified from Human Parotid Glands Display Features of Multipotent Epitheliomesenchymal Stem Cells

    PubMed Central

    Yi, TacGhee; Lee, Songyi; Choi, Nahyun; Shin, Hyun-Soo; Kim, Junghee; Lim, Jae-Yol

    2016-01-01

    A better understanding of the biology of tissue-resident stem cell populations is essential to development of therapeutic strategies for regeneration of damaged tissue. Here, we describe the isolation of glandular stem cells (GSCs) from a small biopsy specimen from human parotid glands. Single colony-forming unit-derived clonal cells were isolated through a modified subfractionation culture method, and their stem cell properties were examined. The isolated clonal cells exhibited both epithelial and mesenchymal stem cell (MSC)-like features, including differentiation potential and marker expression. The cells transiently displayed salivary progenitor phenotypes during salivary epithelial differentiation, suggesting that they may be putative multipotent GSCs rather than progenitor cells. Both epithelial and mesenchymal-expressing putative GSCs, LGR5+CD90+ cells, were found in vivo, mostly in inter-secretory units of human salivary glands. Following in vivo transplantation into irradiated salivary glands of mice, these cells were found to be engrafted around the secretory complexes, where they contributed to restoration of radiation-induced salivary hypofunction. These results showed that multipotent epitheliomesenchymal GSCs are present in glandular mesenchyme, and that isolation of homogenous GSC clones from human salivary glands may promote the precise understanding of biological function of bona fide GSCs, enabling their therapeutic application for salivary gland regeneration. PMID:27824146

  9. Pineal cysts and other pineal region malignancies: determining factors predictive of hydrocephalus and malignancy.

    PubMed

    Starke, Robert M; Cappuzzo, Justin M; Erickson, Nicholas J; Sherman, Jonathan H

    2016-10-21

    OBJECTIVE Cystic lesions of the pineal gland are most often uncomplicated benign lesions with typical MRI characteristics. The authors aimed to study pineal lesion characteristics on MRI to better distinguish benign pineal cysts from other pineal region malignancies as well as to determine which characteristics were predictive of the latter malignancies. They also aimed to study risk factors predictive of hydrocephalus or malignancy in patients harboring these lesions. METHODS The authors performed a retrospective review of a prospectively compiled database documenting the outcomes of patients with suspected pineal cysts on MRI who had presented in the period from 1998 to 2004. Inherent patient and lesion characteristics were assessed in a univariate logistic regression analysis to predict the following dependent variables: development of hydrocephalus, biopsy-confirmed malignancy, and intervention. Possible inherent patient and lesion characteristics included age, sex, T1 and T2 MRI signal pattern, contrast enhancement pattern, presence of cyst, presence of blood, complexity of lesion, presence of calcification, and duration of follow-up. Inherent patient and lesion characteristics that were predictive in the univariate analysis (p < 0.15) were included in the multivariable logistic regression analysis. RESULTS Of the 79 patients with benign-appearing pineal cysts, 26 (33%) were male and 53 (67%) were female, with a median age of 38 years (range 9-86 years). The median cyst radius was 5 mm (range 1-20 mm). Two patients (2.5%) had evidence of calcifications, 7 (9%) had multicystic lesions, and 25 (32%) had some evidence of contrast enhancement. The median follow-up interval was 3 years (range 0.5-13 years). Seven patients (9%) had an increase in the size of their lesion over time. Eight patients (10%) had a hemorrhage, and 11 patients (14%) developed hydrocephalus. Nine (11%) received ventriculoperitoneal shunts for the development of hydrocephalus, and 12 patients

  10. Differential expression of dipeptidyl peptidase IV in human versus cynomolgus monkey skin eccrine sweat glands.

    PubMed

    Pantano, Serafino; Dubost, Valérie; Darribat, Katy; Couttet, Philippe; Grenet, Olivier; Busch, Steven; Moulin, Pierre

    2013-12-01

    Dipeptidyl peptidase IV (DPP4) is a peptidase whose inhibition is beneficial in Type II diabetes treatment. Several evidences suggest potential implication of DPP4 in skin disorders such as psoriasis, keloids and fibrotic skin diseases where its inhibition could also be beneficial. DPP4 expression in human skin was described mainly in dermal fibroblasts and a subset of keratinocytes in the basal layer. Of importance in the perspective of preclinical experimentation, DPP4 distribution in skin of non-human primate species has not been documented. This report evidences unexpected differences between a set of human and cynomolgus monkey skin samples revealing a major expression of DPP4 in eccrine sweat glands of cynomolgus monkeys but not in humans. This represents a unique distinctive feature compared to the conserved expression of dipeptidyl peptidases 8 and 9 and potential relevant DPP4 substrates such as neuropeptide Y (NPY) and receptors (NPY-receptor 1 and Neurokinin receptor). Finally the observation that cathepsin D, an unrelated protease, shows the opposite expression compared to DPP4 (present in human but not in cynomolgus monkey eccrine sweat glands) could indicate that human eccrine sweat glands evolved a divergent protease repertoire compared to non-human primates. These unexpected differences in the eccrine sweat glands protease repertoire will need to be confirmed extending the analysis to a major number of donors but could imply possible biochemical divergences, reflecting the functional evolution of the glands and the control of their activity. Our findings also demonstrate that non-human primates studies aiming at understanding DPP4 function in skin biology are not readily translatable to human.

  11. Morphology and morphometry of the human sublingual glands in mouth floor enlargements of edentulous patients

    PubMed Central

    de SÁ, Josiane Costa Rodrigues; TOLENTINO, Elen de Souza; AZEVEDO-ALANIS, Luciana Reis; IWAKI FILHO, Liogi; LARA, Vanessa Soares; DAMANTE, José Humberto

    2013-01-01

    Asymptomatic mouth floor enlargements may be observed in edentulous patients. These masses, which protrude from the mouth floor, may complicate the fitting of dentures and require surgery. Whether this "entity" may be considered an anatomical variation of the mouth floor or represent specific alterations in the sublingual gland is not known. Objective The aim of this work is to investigate the morphological and morphometric aspects of the sublingual glands of edentulous patients with mouth floor enlargements and compare the glands of these patients with the sublingual glands of human cadavers. Material and Methods Microscopic evaluation was performed on human sublingual glands from edentulous patients with mouth floor enlargements (n=20) and edentulous cadavers (n=20). The patients and cadavers were of similar ages. The data were compared using Mann-Whitney U, Fisher's exact and Student's t tests (p<0.05). Results Acinar atrophy, duct-like structures, mononuclear infiltrates, replacement of parenchyma with fibrous/adipose tissue, mucous extravasation and oncocytosis were similar between the groups (p>0.05). Only the variables "autolysis" and "congested blood vessels" presented statistical difference between groups (p=0.014; p=0.043). The morphometric study revealed that the volume densities of acini, ducts, stroma and adipose tissue were similar between the groups (p>0.05). Conclusion The microscopic characteristics of the sublingual glands in mouth floor enlargements in edentulous patients correspond to characteristics associated with the normal aging process. The glands are not pathological and represent an age-related alteration that occurs with or without the presence of the mouth floor enlargements. PMID:24473720

  12. Pineal Photoreceptor Cells Are Required for Maintaining the Circadian Rhythms of Behavioral Visual Sensitivity in Zebrafish

    PubMed Central

    Li, Xinle; Montgomery, Jake; Cheng, Wesley; Noh, Jung Hyun; Hyde, David R.; Li, Lei

    2012-01-01

    In non-mammalian vertebrates, the pineal gland functions as the central pacemaker that regulates the circadian rhythms of animal behavior and physiology. We generated a transgenic zebrafish line [Tg(Gnat2:gal4-VP16/UAS:nfsB-mCherry)] in which the E. coli nitroreductase is expressed in pineal photoreceptor cells. In developing embryos and young adults, the transgene is expressed in both retinal and pineal photoreceptor cells. During aging, the expression of the transgene in retinal photoreceptor cells gradually diminishes. By 8 months of age, the Gnat2 promoter-driven nitroreductase is no longer expressed in retinal photoreceptor cells, but its expression in pineal photoreceptor cells persists. This provides a tool for selective ablation of pineal photoreceptor cells, i.e., by treatments with metronidazole. In the absence of pineal photoreceptor cells, the behavioral visual sensitivity of the fish remains unchanged; however, the circadian rhythms of rod and cone sensitivity are diminished. Brief light exposures restore the circadian rhythms of behavioral visual sensitivity. Together, the data suggest that retinal photoreceptor cells respond to environmental cues and are capable of entraining the circadian rhythms of visual sensitivity; however, they are insufficient for maintaining the rhythms. Cellular signals from the pineal photoreceptor cells may be required for maintaining the circadian rhythms of visual sensitivity. PMID:22815753

  13. "Sebocytes' makeup": novel mechanisms and concepts in the physiology of the human sebaceous glands.

    PubMed

    Tóth, Balázs I; Oláh, Attila; Szöllosi, Attila G; Czifra, Gabriella; Bíró, Tamás

    2011-06-01

    The pilosebaceous unit of the human skin consists of the hair follicle and the sebaceous gland. Within this "mini-organ", the sebaceous gland has been neglected by the researchers of the field for several decades. Actually, it was labeled as a reminiscence of human development ("a living fossil with a past but no future"), and was thought to solely act as a producer of sebum, a lipid-enriched oily substance which protects our skin (and hence the body) against various insults. However, due to emerging research activities of the past two decades, it has now become evident that the sebaceous gland is not only a "passive" cutaneous "relic" to establish the physico-chemical barrier function of the skin against constant environmental challenges, but it rather functions as an "active" neuro-immuno-endocrine cutaneous organ. This review summarizes recent findings of sebaceous gland research by mainly focusing on newly discovered physiological functions, novel regulatory mechanisms, key events in the pathology of the gland, and future directions in both experimental and clinical dermatology.

  14. Light-dependent changes in the chick pineal temperature and the expression of cHsp90 alpha gene: a potential contribution of in vivo temperature change to the photic-entrainment of the chick pineal circadian clock.

    PubMed

    Doi, Masao; Nakajima, Yoshito; Okano, Toshiyuki; Fukada, Yoshitaka

    2002-06-01

    The circadian clock is entrained to the diurnal alteration of environmental conditions such as light and temperature, but the molecular mechanism underlying the entrainment is not fully understood. In the present study, we employed a differential display-based screening for a set of genes that are induced by light in the chick pineal gland, a structure of the central clock entrainable to both light and temperature changes. We found that the level of the mRNA encoding chicken heat shock protein 90 alpha (cHSP90 alpha) was rapidly elevated in the pineal gland within a 5-min exposure of chicks to light. Furthermore, the pineal cHsp90 alpha mRNA was expressed rhythmically under both 12-hr light/12-hr dark (LD) cycles and constant dark (DD) conditions. The total amount of the pineal cHSP90 alpha protein was, however, kept at nearly constant levels under LD cycles, and immunohistochemical analyses of the pineal cHSP90 alpha showed invariable localization at the cytoplasm throughout the day. In vivo measurement of the chick pineal temperature demonstrated its light-dependent and time-of-day-dependent change, and the profile was very similar to that of the pineal cHSP90 alpha mRNA level. These observations suggest that the in vivo temperature change regulates the expression of temperature-responsive genes including cHSP 90 alpha in the pineal gland. The temperature change may induce a phase-shift of the pineal clock, thereby facilitating its efficient entrainment to environmental LD cycles.

  15. Clinical and neurophysiological changes in patients with pineal region expansions.

    PubMed

    Hajnsek, Sanja; Paladino, Josip; Gadze, Zeljka Petelin; Nanković, Sibila; Mrak, Goran; Lupret, Velimir

    2013-03-01

    In the last 20 years neurological and neurosurgical follow up of our patients with pineal region expansions (118 patients) pointed to certain clinical and neurophysiological regularities. We performed retrospective study which included 84 patients with pineal region expansions in the period from 1992 to 2009. The study included 55 women and 29 men, mean age 30.08 +/- 13.93 years, with positive brain magnetic resonance imaging (MRI)--70 patients (83.4%) had simple pineal gland cysts, and 14 patients (16.67%) had expansive process in pineal region with compressive effect. All patients had headache, while 32 patients (38%) had epileptic phenomena--primary generalized seizures. Patients had common electroencephalography (EEG) pattern with paroxysmal discharges of 3Hz (or more than 3 Hz) spike-and-wave complexes. Operation with supracerebellar infratentorial approach was performed in 70 patients. In most of our patients indication for the operation was established based on the size of the cyst (15 mm or more), with the signs of compression on the quadrigeminal plate and compression of the surrounding veins, which could result in seizures and EEG changes verified in our group of patients. Pathohistological analysis revealed pineocytomas in 11 cases (15.71%), pinealoblastomas in 2 cases (2.86%), one case of teratoma (1.43%), while 56 patients had pineal gland cysts (80%). Following surgery clinical condition improved in all patients--patients became seizure-free and headaches significantly decreased. Other symptoms including diplopiae, nausea, vomiting, vertigo as well as blurred vision also disappeared. There were no complications after surgical procedures. This study points to often appearance of seizures that clinically and neurophysiologically present as primary generalized epilepsy in patients with pineal region expansions. Our hypotheses are that mass effect on the surrounding veins that affects normal perfusion, compressive effect on the quadrigeminal plate and the

  16. Stimulatory effect of morphine on rat pineal melatonin synthesis via a cyclic AMP-dependent transcription pathway.

    PubMed

    Chetsawang, Banthit; Govitrapong, Piyarat

    2005-11-25

    The expression of mRNA of opioid receptors and the existence of opioid binding site in the rat pineal gland have been demonstrated previously. A major finding was that morphine enhanced the activity of the rate-limiting enzyme, N-acetyltransferase (NAT) and increased the level of melatonin in rat pineal gland. An attempt has been made in order to clarify the mechanism of this induction. In the present study, the stimulatory effect of morphine on the expression of NAT mRNA in the rat pineal gland has been demonstrated using semi-quantitative RT-PCR technique. The results showed that both acute and chronic morphine treatments significantly increased NAT mRNA expression in rat pineal gland. In addition, the effect of morphine on the phosphorylation of the transcription factors, cyclic AMP responsive element-binding protein (CREB) was investigated. Western blot analysis showed that morphine significantly increased phosphorylation of CREB. These results indicate that at least one downstream messenger pathway for the activation of opioidergic system on the induction of melatonin synthesis in the rat pineal gland acts via cyclic AMP-dependent cascade and transcription mechanism.

  17. Sonographic detection and follow up of an atypical pineal cyst: a comparison with magnetic resonance imaging. Case report.

    PubMed

    Harrer, Judith U; Klötzsch, Christof; Oertel, Markus F; Möller-Hartmann, Walter

    2005-09-01

    The incidental ultrasonographic detection of an asymptomatic cystic pineal lesion in a young woman is described and compared with findings on magnetic resonance (MR) images. Follow-up studies obtained using both imaging modalities are presented. The results indicate that transcranial ultrasonography may represent an easy and cost-effective imaging technique for follow up of cystic lesions of the pineal gland, especially in patients unable to undergo MR imaging.

  18. Lubiprostone stimulates secretion from tracheal submucosal glands of sheep, pigs, and humans.

    PubMed

    Joo, N S; Wine, J J; Cuthbert, A W

    2009-05-01

    Lubiprostone, a putative ClC-2 chloride channel opener, has been investigated for its effects on airway epithelia (tracheas). Lubiprostone is shown to increase submucosal gland secretion in pigs, sheep, and humans and to increase short-circuit current (SCC) in the surface epithelium of pigs and sheep. Use of appropriate blocking agents and ion-substitution experiments shows anion secretion is the driving force for fluid formation in both glands and surface epithelium. From SCC concentration-response relations, it is shown that for apical lubiprostone K(d) = 10.5 nM with a Hill slope of 1.08, suggesting a single type of binding site and, from the speed of the response, close to the apical surface, confirmed the rapid blockade by Cd ions. Responses to lubiprostone were reversible and repeatable, responses being significantly larger with ventral compared with dorsal epithelium. Submucosal gland secretion rates following basolateral lubiprostone were, respectively, 0.2, 0.5, and 0.8 nl gl(-1) min(-1) in humans, sheep, and pigs. These rates dwarf any contribution surface secretion adds to the accumulation of surface liquid under the influence of lubiprostone. Lubiprostone stimulated gland secretion in two out of four human cystic fibrosis (CF) tissues and in two of three disease controls, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis (COPD/IPF), but in neither type of tissue was the increase significant. Lubiprostone was able to increase gland secretion rates in normal human tissue in the continuing presence of a high forskolin concentration. Lubiprostone had no spasmogenic activity on trachealis muscle, making it a potential agent for increasing airway secretion that may have therapeutic utility.

  19. Histopathology of pineal germ cell tumors.

    PubMed

    Vasiljevic, A; Szathmari, A; Champier, J; Fèvre-Montange, M; Jouvet, A

    2015-01-01

    Germ cell tumors (GCTs) classically occur in gonads. However, they are the most frequent neoplasms in the pineal region. The pineal location of GCTs may be caused by the neoplastic transformation of a primordial germ cell that has mismigrated. The World Health Organization (WHO) recognizes 5 histological types of intracranial GCTs: germinoma and non-germinomatous tumors including embryonal carcinoma, yolk sac tumor, choriocarcinoma and mature or immature teratoma. Germinomas and teratomas are frequently encountered as pure tumors whereas the other types are mostly part of mixed GCTs. In this situation, the neuropathologist has to be able to identify each component of a GCT. When diagnosis is difficult, use of recent immunohistochemical markers such as OCT(octamer-binding transcription factor)3/4, Glypican 3, SALL(sal-like protein)4 may be required. OCT3/4 is helpful in the diagnosis of germinomas, Glypican 3 in the diagnosis of yolk sac tumors and SALL4 in the diagnosis of the germ cell nature of an intracranial tumor. When the germ cell nature of a pineal tumor is doubtful, the finding of an isochromosome 12p suggests the diagnosis of GCT. The final pathological report should always be confronted with the clinical data, especially the serum or cerebrospinal fluid levels of β-human chorionic gonadotropin (HCG) and alpha-fetoprotein.

  20. Experiment K-6-19. Pineal physiology in microgravity: Relation to rat gonadal function

    NASA Technical Reports Server (NTRS)

    Holley, D.; Soliman, M. R. I.; Kaddis, F.; Markley, C.; Krasnov, I.

    1990-01-01

    One of the most interesting concomitants to spaceflight and exposure to microgravity has been the disturbing alteration in calcium metabolism and resulting skeletal effects. It was recognized as early as 1685 (cited in Kitay and Altschule, 1954) that the pineal of humans calcified with age. However, little can be found in the literature relating calcification and pineal function. Given the link between exposure to microgravity and perturbation of calcium metabolism and the fact that the pineal is apparently one of the only soft tissues to calcify, researchers examined pineal calcium content following the spaceflight. Researchers concluded that the spaceflight resulted in a stress response as indicated by adrenal hypertrophy, that gonadal function was compromised, and that the pineal may be linked as part of the mechanism of the responses noted.

  1. Presence of kisspeptin-like immunoreactivity in human adrenal glands and adrenal tumors.

    PubMed

    Takahashi, Kazuhiro; Shoji, Itaru; Shibasaki, Akiko; Kato, Ichiro; Hiraishi, Keisuke; Yamamoto, Hajime; Kaneko, Kiriko; Murakami, Osamu; Morimoto, Ryo; Satoh, Fumitoshi; Ito, Sadayoshi; Totsune, Kazuhito

    2010-05-01

    Kisspeptins are neuropeptides which activate the hypothalamo-pituitary gonadal axis and are considered to play important physiological roles in the reproduction. Kisspeptins have also been reported to stimulate the aldosterone secretion from the adrenal cortex. However, the expression of kisspeptins in human adrenal glands and adrenal tumors has not been clarified yet. We, therefore, studied the presence of kisspeptin-like immunoreactivity (LI) in human adrenal glands and adrenal tumors (adrenocortical adenomas, adrenocortical carcinomas, and pheochromocytomas) by radioimmunoassay and immunocytochemistry. Kisspeptin-LI was detected in all the tissues examined; normal portions of adrenal glands (3.0 +/- 2.3 pmol/g wet weight, n = 21, mean +/- SD), aldosterone-producing adenomas (4.6 +/- 3.3 pmol/g wet weight, n = 10), cortisol-producing adenomas (2.7 +/- 1.4 pmol/g wet weight, n = 14), adrenocortical carcinomas (1.7 +/- 0.2 pmol/g wet weight, n = 4), and pheochromocytomas (1.8 +/- 0.8 pmol/g wet weight, n = 6). There was no significant difference in kisspeptin-LI levels among them. Immunocytochemistry showed positive kisspeptin-immunostaining in normal adrenal glands, with stronger immunostaining found in the medulla. Furthermore, positive kisspeptin-immunostaining was found in all types of adrenal tumors examined; adrenocortical adenomas, adrenocortical carcinomas, and pheochromocytomas. The intensity of kisspeptin-immunostaining in these adrenal tumors was, however, not so strong as that in normal adrenal medulla. The present study has shown for the first time the presence of kisspeptin-LI in adrenal glands and adrenal tumors.

  2. Stem cells in the development and differentiation of the human adrenal glands.

    PubMed

    Terada, Tadashi

    2015-01-01

    There are no studies on stem cells (SCs) and development and differentiation (DD) of the human adrenal glands. The SCs in DD of the adrenal glands were herein investigated histochemically and immunohistochemically in 18 human embryonic adrenal glands at gestational week (GW) 7-40. At 7 GW, the adrenal glands were present, and at 7 GW, numerous embryonic SCs (ESCs) are seen to create the adrenal cortex. The ESCs were composed exclusively of small cells with hyperchromatic nuclei without nucleoli. The ESCs were positive for neural cell adhesion molecule, KIT, neuron-specific enolase, platelet-derived growth factor receptor-α, synaptophysin, and MET. They were negative for other SC antigens, including chromogranin, ErbB2, and bcl-2. They were also negative for lineage antigens, including cytokeratin (CK)7, CK8, CK18, and CK19, carcinoembryonic antigen, carbohydrate antigen 19-9, epithelial membrane antigen, HepPar1, mucin core apoprotein (MUC)1, MUC2, MUC5AC, and MUC6, and cluster differentiation (CD)3, CD45, CD20, CD34, and CD31. The Ki-67 labeling index (LI) was high (Ki-67 LI = around 20%). α-Fetoprotein was positive in the ESCs and adrenal cells. The ESC was first seen in the periphery of the adrenal cortex at 7-10 GW. The ESC migrates into the inner part of the adrenal cortex. Huge islands of ESC were present near the adrenal, and they appeared to provide the ESC of the adrenal. At 16 GW, adrenal medulla appeared, and the adrenal ESCs were present in the periphery or the cortex, in the cortical parenchyma, corticomedullary junctions, and in the medulla. The adrenal essential architecture was established around 20 GW; however, there were still ESCs. At term, there are a few ESCs. These data suggest that the adrenal glands were created by ESCs.

  3. Circadian regulation of bird song, call, and locomotor behavior by pineal melatonin in the zebra finch.

    PubMed

    Wang, Gang; Harpole, Clifford E; Trivedi, Amit K; Cassone, Vincent M

    2012-04-01

    As both a photoreceptor and pacemaker in the avian circadian clock system, the pineal gland is crucial for maintaining and synchronizing overt circadian rhythms in processes such as locomotor activity and body temperature through its circadian secretion of the pineal hormone melatonin. In addition to receptor presence in circadian and visual system structures, high-affinity melatonin binding and receptor mRNA are present in the song control system of male oscine passeriform birds. The present study explores the role of pineal melatonin in circadian organization of singing and calling behavior in comparison to locomotor activity under different lighting conditions. Similar to locomotor activity, both singing and calling behavior were regulated on a circadian basis by the central clock system through pineal melatonin, since these behaviors free-ran with a circadian period and since pinealectomy abolished them in constant environmental conditions. Further, rhythmic melatonin administration restored their rhythmicity. However, the rates by which these behaviors became arrhythmic and the rates of their entrainment to rhythmic melatonin administration differed among locomotor activity, singing and calling under constant dim light and constant bright light. Overall, the study demonstrates a role for pineal melatonin in regulating circadian oscillations of avian vocalizations in addition to locomotor activity. It is suggested that these behaviors might be controlled by separable circadian clockworks and that pineal melatonin entrains them all through a circadian clock.

  4. Effectiveness of skin absorption of tincture of I in blocking radioiodine from the human thyroid gland

    SciTech Connect

    Miller, K.L.; Coen, P.E.; White, W.J.; Hurst, W.J.; Achey, B.E.; Lang, C.M.

    1989-06-01

    Topical application of tincture of iodine (I) was found to be effective in blocking the thyroid uptake of orally administered /sup 131/I in humans. Abdominal skin application of tincture of I resulted in an approximately 82% reduction in the uptake of /sup 131/I by the thyroid gland. The effectiveness varied among individuals and may have depended on the quantity applied and on the application site. In each study group, elevated levels of serum I were observed.

  5. PG25, a pineal-specific cDNA, cloned by differential display PCR (DDPCR) and rapid amplification of cDNA ends (RACE).

    PubMed

    Wang, X; Brownstein, M J; Young, W S

    1997-05-16

    Synthesis of melatonin in the mammalian pineal gland is regulated by the rhythmic expression of acetyl-CoA: serotonin N-acetyltransferase (SNAT) and other unknown factors. To screen for pineal-specific mRNAs potentially involved in melatonin synthesis and/or regulation, differential display PCR (DDPCR) was employed. We used 80 primer pairs and examined 40 bands of interest. One of the pineal specific clones (relative to brain and eye), PG25, was studied further. Hybridization histochemical and Northern analyses confirmed its tissue specificity. The size of the corresponding mRNA is 2.4 kb. A cDNA (2 kb) containing the coding region was obtained using a long-template PCR-based RACE technique. A data base search indicates that PG25 is highly homologous to a recently identified human lung endothelial cell-specific gene, ESM-1. Interestingly, not only the amino acid sequences but also the cDNA sequences, including the long 3' untranslated regions, are highly similar. This suggests that the conserved 3' untranslated region may carry information to regulate its own expression. Northern analysis revealed that PG25 is also expressed in the rat lung, but at a much lower (10%) level compared to the pineal. Finally, our work shows the feasibility of a fast, integrated PCR-based cloning method for obtaining long, potentially full-length cDNAs with restricted expression in anatomically complex regions of the brain. This protocol combining several existing methodologies is suitable for use with limited tissue sources and uses minimal amounts of isotopes.

  6. Endocrine glands

    MedlinePlus

    ... Hypothalamus Islets of Langerhans in the pancreas Ovaries Parathyroid Pineal Pituitary Testes Thyroid ... adrenocortical hyperplasia Cushing syndrome Pheochromocytoma Pancreas: ... Tetany Renal calculi Excessive loss of minerals from ...

  7. 60-Hz electric-field effects on pineal melatonin rhythms: time course for onset and recovery

    SciTech Connect

    Wilson, B.W.; Chess, E.K.; Anderson, L.E.

    1986-01-01

    Rats exposed for 3 weeks to uniform 60-Hz electric fields of 39 kV/m (effective field strength) failed to show normal pineal gland circadian rhythms in serotonin N-acetyl transferase activity and melatonin concentrations. The time required for recovery of the melatonin rhythm after cessation of field exposure was determined to be less than 3 days. The rapid recovery suggests that the overall metabolic competence of the pineal is not permanently compromised by electric-field exposure, and that the circadian rhythm effect may be neuronally mediated.

  8. Acinar autolysis and mucous extravasation in human sublingual glands: a microscopic postmortem study

    PubMed Central

    AZEVEDO-ALANIS, Luciana Reis; TOLENTINO, Elen de Souza; de ASSIS, Gerson Francisco; CESTARI, Tânia Mary; LARA, Vanessa Soares; DAMANTE, José Humberto

    2015-01-01

    Although some morphological investigations on aged human sublingual glands (HSG) found eventual phenomena identified as autolysis and mucous extravasation, the exact meaning of these findings has not been elucidated. Objective The aim of this work is to investigate whether acinar autolysis and mucous extravasation are related to the aging process in human sublingual glands. We also speculate if autolytic changes may assist forensic pathologists in determining time of death. Material and Methods 186 cadavers’ glands were allocated to age groups: I (0–30 years); II (31–60), and III (61–90). Time and mode of death were also recorded. Acinar autolysis and mucous extravasation were classified as present or absent. Ultrastructural analysis was performed using transmission electron microscopy (TEM). Data were compared using Mann-Whitney U, Spearman’s correlation coefficient, Kruskal-Wallis, and Dunn tests (p<0.05). Results There was correlation between age and acinar autolysis (r=0.38; p=0.0001). However, there was no correlation between autolysis and time of death. No differences were observed between genders. TEM showed mucous and serous cells presenting nuclear and membrane alterations and mucous cells were more susceptible to autolysis. Conclusion Acinar autolysis occurred in all age groups and increased with age while mucous extravasation was rarely found. Both findings are independent. Autolysis degrees in HSG could not be used to determine time of death. PMID:26537715

  9. Lectin binding pattern and proteoglycan distribution in human eccrine sweat glands.

    PubMed

    Sames, K; Moll, I; van Damme, E J; Peumans, W J; Schumacher, U

    1999-11-01

    The distribution pattern of glycoconjugates in human eccrine sweat glands has been studied by the binding of newly discovered lectins and by antibodies against a chondroitin sulphate proteoglycan and chondroitin sulphate glycosaminoglycans. Mannose-specific lectins labelled large intracellular granules, part of which could be extended cisternae of the endoplasmic reticulum or Golgi apparatus. In contrast, lectins specific for terminal mannose/glucose residues predominantly labelled basement membranes and the glycocalyx. Lectins recognizing terminal N-acetylgalactosamine groups left most parts of the glands unstained, but stained some dark cells intensely. These last cells were also intensively labelled by N-acetylglucosamine-specific and by fucose-specific lectins. Sialic acid residues were preferentially located in luminal borders of secretory coils. No terminal galactose residues were detected. All antibodies against chondroitin glycoconjugates stained large granules similar to those revealed by the mannose-specific lectins in the secretory cells. The basement membrane is only stained by the proteoglycan antibody and the chondroitin-6-sulphate antibody. Thus, a complex composition of glycoconjugates exists not only in matrix elements but also in the cells of eccrine glands of the human skin. A possible secretion of glycoconjugates is discussed.

  10. Effect of skin temperature on the ion reabsorption capacity of sweat glands during exercise in humans.

    PubMed

    Shamsuddin, A K M; Kuwahara, T; Oue, A; Nomura, C; Koga, S; Inoue, Y; Kondo, N

    2005-07-01

    The effect of skin temperature on the ion reabsorption capacity of sweat glands during exercise in humans is unknown. In this study, eight healthy subjects performed a 60-min cycling exercise at a constant intensity (60% VO(2max)) under moderate (25 degrees C) and cool (15 degrees C) ambient temperatures at a constant relative humidity of 40%. The sweating rate (SR), index of sweat ion concentration (ISIC) by using sweat conductivity, esophageal temperature (Tes), mean skin temperature, and heart rate (HR) were measured continuously under both ambient temperatures. The SR and ISIC were significantly lower at the cool ambient temperature versus the moderate temperature. There were no significant differences in the changes in HR and esophageal temperature between these ambient temperature conditions, while the mean skin temperature was significantly lower at the cool ambient temperature by almost 3 degrees C (P < 0.05). The slopes of the relationships between Tes and the SR and ISIC were significantly lower and the thresholds of these relationships were significantly higher at the cool ambient temperature (P < 0.05). The ion reabsorption capacity of the sweat glands was significantly lower (P < 0.05) in a cool environment (0.21 +/- 0.04 vs. 0.52 +/- 0.06 mg/cm(2)/min at 15 and 25 degrees C, respectively) as evaluated using the relationships for SR and ISIC. The results suggest that the ion reabsorption capacity of the sweat glands is influenced by skin temperature during exercise in humans.

  11. Examination of Duct Physiology in the Human Mammary Gland

    PubMed Central

    Mills, Dixie; Gomberawalla, Ameer; Gordon, Eva J.; Tondre, Julie; Nejad, Mitra; Nguyen, Tinh; Pogoda, Janice M.; Rao, Jianyu; Chatterton, Robert; Henning, Susanne; Love, Susan M.

    2016-01-01

    Background The human breast comprise several ductal systems, or lobes, which contain a small amount of fluid containing cells, hormones, proteins and metabolites. The complex physiology of these ducts is likely a contributing factor to the development of breast cancer, especially given that the vast majority of breast cancers begin in a single lobular unit. Methods We examined the levels of total protein, progesterone, estradiol, estrone sulfate, dehydroepiandrosterone sulfate, and macrophages in ductal fluid samples obtained from 3 ducts each in 78 women, sampled twice over a 6 month period. Samples were processed for both cytological and molecular analysis. Intraclass correlation coefficients and mixed models were utilized to identify significant data. Results We found that the levels of these ductal fluid components were generally uncorrelated among ducts within a single breast and over time, suggesting that each lobe within the breast has a distinct physiology. However, we also found that estradiol was more correlated in women who were nulliparous or produced nipple aspirate fluid. Conclusions Our results provide evidence that the microenvironment of any given lobular unit is unique to that individual unit, findings that may provide clues about the initiation and development of ductal carcinomas. PMID:27073976

  12. Pallister-Killian syndrome: case report with pineal tumor.

    PubMed

    Mauceri, L; Sorge, G; Incorpora, G; Pavone, L

    2000-11-06

    Pallister-Killian syndrome, an aneuploidy syndrome, comprises a characteristic facial appearance, mental retardation, and multiple other anomalies. It is caused by mosaicism with a supernumerary isochromosome 12p. This chromosomal abnormality has been reported also in human germ cell tumors. We report on a 15-year-old girl with Pallister-Killian syndrome and pineal tumor.

  13. Development of peptide-containing nerves in the human fetal prostate gland.

    PubMed Central

    Jen, P Y; Dixon, J S

    1995-01-01

    Immunohistochemical methods were used to study the developing peptidergic innervation of the human fetal prostate gland in a series of specimens ranging in gestational age from 13 to 30 wk. The overall innervation of each specimen was visualised using protein gene product 9.5 (PGP), a general nerve marker. The onset and development of specific neuropeptide-containing subpopulations were investigated using antisera to neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), substance P (SP), calcitonin gene-related peptide (CGRP), bombesin (BOM), somatostatin (SOM), leu-enkephalin (l-ENK) and met-enkephalin (m-ENK). In addition the occurrence and distribution of presumptive noradrenergic nerves was studied using antisera to dopamine-beta-hydroxylase (D beta H) and tyrosine hydroxylase (TH). At 13 wk numerous branching PGP-immunoreactive (-IR) nerves were observed in the capsule of the developing prostate gland and surrounding the preprostatic urethra but the remainder of the gland was devoid of nerves. The majority of nerves in the capsule contained D beta H and TH and were presumed to be noradrenergic in type while other nerves (in decreasing numbers) contained NPY, l-ENK, SP and CGRP. Nerves associated with the preprostatic urethra did not contain any of the neuropeptides under investigation. At 17 wk the density of nerves in the capsule had increased and occasional m-ENK-, VIP- and BOM-IR nerve fibres were also observed. In addition PGP, D beta H-, TH-, NPY- and l-ENK-IR nerves occurred in association with smooth muscle bundles which at 17 wk were present in the outer part of the gland. Occasional PGP-IR nerves were also present at the base of the epithelium forming some of the prostatic glands. At 23 wk some of the subepithelial nerves showed immunoreactivity for NPY, VIP or l-ENK. At 26 wk smooth muscle bundles occurred throughout the gland and were richly innervated by PGP, D beta H and TH-IR nerves while a less dense plexus was formed by NPY- and l

  14. Increased delta aminolevulinic acid and decreased pineal melatonin production. A common event in acute porphyria studies in the rat.

    PubMed

    Puy, H; Deybach, J C; Bogdan, A; Callebert, J; Baumgartner, M; Voisin, P; Nordmann, Y; Touitou, Y

    1996-01-01

    Tryptophan (TRP) is the precursor of melatonin, the primary secretory product of the pineal gland. Hepatic heme deficiency decreases the activity of liver tryptophan pyrrolase, leading to increased plasma TRP and serotonin. As a paradox, patients with attacks of acute intermittent porphyria (AIP), exhibit low nocturnal plasma melatonin levels. This study using a rat experimental model was designed to produce a pattern of TRP and melatonin production similar to that in AIP patients. Pineal melatonin production was measured in response to: (a) a heme synthesis inhibitor, succinylacetone, (b) a heme precursor, delta-aminolevulinic acid (Ala), (c) a structural analogue of Ala, gamma-aminobutyric acid. Studies were performed in intact rats, perifused pineal glands, and pinealocyte cultures. Ala, succinylacetone, and gamma-aminobutyric acid significantly decreased plasma melatonin levels independently of blood TRP concentration. In the pineal gland, the key enzyme activities of melatonin synthesis were unchanged for hydroxyindole-O-methyltransferase and decreased for N-acetyltransferase. Our results strongly suggest that Ala overproduced by the liver acts by mimicking the effect of gamma-aminobutyric acid on pineal melatonin in AIP. They also support the view that Ala acts as a toxic element in the pathophysiology of AIP.

  15. Regulation of period 1 expression in cultured rat pineal

    NASA Technical Reports Server (NTRS)

    Fukuhara, Chiaki; Dirden, James C.; Tosini, Gianluca

    2002-01-01

    The aim of the present study was to investigate the in vitro expression of Period 1 (Per1), Period 2 (Per2) and arylalkylamine N-acetyltransferase (AA-NAT) genes in the rat pineal gland to understand the mechanism(s) regulating the expression of these genes in this organ. Pineals, when maintained in vitro for 5 days, did not show circadian rhythmicity in the expression of any of the three genes monitored. Norepinephrine (NE) induced AA-NAT and Per1, whereas its effect on Per2 was negligible. Contrary to what was observed in other systems, NE stimulation did not induce circadian expression of Per1. The effect of NE on Per1 level was dose- and receptor subtype-dependent, and both cAMP and cGMP induced Per1. Per1 was not induced by repeated NE - or forskolin - stimulation. Protein synthesis was not necessary for NE-induced Per1, but it was for reduction of Per1 following NE stimulation. Per1 transcription in pinealocytes was activated by BMAL1/CLOCK. Our results indicate that important differences are present in the regulation of these genes in the mammalian pineal. Copyright 2002 S. Karger AG, Basel.

  16. Serum-Induced Keratinization Processes in an Immortalized Human Meibomian Gland Epithelial Cell Line

    PubMed Central

    Hampel, Ulrike; Schröder, Antje; Mitchell, Todd; Brown, Simon; Snikeris, Peta; Garreis, Fabian; Kunnen, Carolina; Willcox, Mark; Paulsen, Friedrich

    2015-01-01

    Purpose The aim of this study was to evaluate a human meibomian gland epithelial cell line (HMGEC) as a model for meibomian gland (patho)physiology in vitro. Methods HMGEC were cultured in the absence or presence of serum. Sudan III lipid staining, ultrastructural analysis and lipidomic analyses were performed. Impedance sensing, desmoplakin 1/2 mRNA and cytokeratin (CK) 1, 5, 6, 14 levels were evaluated. Serum containing medium supplemented with higher serum, glucose, an omega-3 lipid cocktail, eicosapentaenoic acid or sebomed medium were investigated for lipid accumulation and ultrastructural morphology. Results Lipid droplet accumulation in HMGEC was induced by serum containing media after 1 day, but decreased over time. Cultivation in serum induced desmosome and cytokeratin filament formation. Desmoplakin 1/2 gene levels were significantly upregulated after 1d of serum treatment. Furthermore, the normalized impedance increased significantly. Lipidome analysis revealed high levels of phospholipids (over 50%), but very low levels of wax ester and cholesteryl esters (under 1%). Stimulation with eicosapentaenoic acid increased lipid accumulation after one day. Conclusion Serum treatment of HMGEC caused lipid droplet formation to some extent but also induced keratinization. The cells did not produce typical meibum lipids under these growth conditions. HMGEC are well suited to study (hyper)keratinization processes of meibomian gland epithelial cells in vitro. PMID:26042605

  17. Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells

    NASA Astrophysics Data System (ADS)

    Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc

    1985-04-01

    The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.

  18. Quantitative analysis of human salivary gland-derived intact proteome using top-down mass spectrometry.

    PubMed

    Wu, Si; Brown, Joseph N; Tolić, Nikola; Meng, Da; Liu, Xiaowen; Zhang, Haizhen; Zhao, Rui; Moore, Ronald J; Pevzner, Pavel; Smith, Richard D; Paša-Tolić, Ljiljana

    2014-05-01

    There are several notable challenges inherent for fully characterizing the entirety of the human saliva proteome using bottom-up approaches, including polymorphic isoforms, PTMs, unique splice variants, deletions, and truncations. To address these challenges, we have developed a top-down based LC-MS/MS approach, which cataloged 20 major human salivary proteins with a total of 83 proteoforms, containing a broad range of PTMs. Among these proteins, several previously reported disease biomarker proteins were identified at the intact protein level, such as beta-2 microglobulin. In addition, intact glycosylated proteoforms of several saliva proteins were also characterized, including intact N-glycosylated protein prolactin inducible protein and O-glycosylated acidic protein rich protein. These characterized proteoforms constitute an intact saliva proteoform database, which was used for quantitative comparison of intact salivary proteoforms among six healthy individuals. Human parotid and submandibular/sublingual gland secretion samples (2 μg of protein each) from six healthy individuals were compared using RPLC coupled with the 12T FT-ICR mass spectrometer. Significantly different proteoform profiles were resolved with high reproducibility between parotid secretion and submandibular/sublingual glands. The results from this study provide further insight into the potential mechanisms of PTM pathways in oral glandular secretion, expanding our knowledge of this complex yet easily accessible fluid. Intact protein LC-MS approach presented herein can potentially be applied for rapid and accurate identification of biomarkers from only a few microliters of human glandular saliva.

  19. Human eccrine sweat gland cells turn into melanin-uptaking keratinocytes in dermo-epidermal skin substitutes.

    PubMed

    Böttcher-Haberzeth, Sophie; Biedermann, Thomas; Pontiggia, Luca; Braziulis, Erik; Schiestl, Clemens; Hendriks, Bart; Eichhoff, Ossia M; Widmer, Daniel S; Meuli-Simmen, Claudia; Meuli, Martin; Reichmann, Ernst

    2013-02-01

    Recently, Biedermann et al. (2010) have demonstrated that human eccrine sweat gland cells can develop a multilayered epidermis. The question still remains whether these cells can fulfill exclusive and very specific functional properties of epidermal keratinocytes, such as the incorporation of melanin, a feature absent in sweat gland cells. We added human melanocytes to eccrine sweat gland cells to let them develop into an epidermal analog in vivo. The interaction between melanocytes and sweat gland-derived keratinocytes was investigated. The following results were gained: (1) macroscopically, a pigmentation of the substitutes was seen 2-3 weeks after transplantation; (2) we confirmed the development of a multilayered, stratified epidermis with melanocytes distributed evenly throughout the basal layer; (3) melanocytic dendrites projected to suprabasal layers; and (4) melanin was observed to be integrated into former eccrine sweat gland cells. These skin substitutes were similar or equal to skin substitutes cultured from human epidermal keratinocytes. The only differences observed were a delay in pigmentation and less melanin uptake. These data suggest that eccrine sweat gland cells can form a functional epidermal melanin unit, thereby providing striking evidence that they can assume one of the most characteristic keratinocyte properties.

  20. Autonomic regulation of anti-inflammatory activities from salivary glands.

    PubMed

    Mathison, Ronald D; Davison, Joseph S; St Laurent, Chris D; Befus, A Dean

    2012-01-01

    The cervical sympathetic nerves which innervate the medial basal hypothalamus-hypophyseal complex, primary and secondary lymph organs, and numerous glands, such as the pineal, thyroid, parathyroid and salivary glands form a relevant neuroimmunoendocrine structure that is involved in the regulation of systemic homeostasis. The superior cervical ganglia and the submandibular glands form a 'neuroendocrine axis' called the cervical sympathetic trunk submandibular gland (CST-SMG) axis. The identification of this axis usurps the traditional view of salivary glands as accessory digestive structures and reinforces the view that they are important sources of systemically active immunoregulatory and anti-inflammatory factors whose release is intimately controlled by the autonomic nervous system, and in particular the sympathetic branch. An end component of the CST-SMG axis is the synthesis, processing and release of submandibular rat-1 protein (SMR1), a prohormone, that generates several different peptides, one from near its N-terminus called sialorphin and another from its C-terminus called - submandibular gland peptide-T (SGP-T). SGP-T formed the template for tripeptide fragment (FEG) and its metabolically stable D-isomeric peptide feG, which are potent inhibitors of allergy and asthma (IgE-mediated allergic reactions) and several non-IgE-mediated inflammations. The translation from rat genetics and proteomics to humans has yielded structural and functional correlates that hopefully will lead to the development of new medications and therapeutic approaches for difficult to treat disorders. Although the CST-SMG axis has barely been explored in humans recognition of the importance of this axis could facilitate an understanding and improved management of periodontal disease, and other diseases with a more systemic and nervous system basis such as asthma, autoimmunity, graft-versus-host disease and even Parkinson's disease.

  1. Multielemental analysis of human thyroid glands using particle induced X-ray emission (PIXE)

    NASA Astrophysics Data System (ADS)

    Maeda, K.; Yokode, Y.; Sasa, Y.; Kusuyama, H.; Uda, M.

    1987-03-01

    PIXE spectroscopy has been applied to the analysis of human thyroid glands. Nontumor thyroid tissues taken from different patients showed almost the same composition which fell into the range of the data for normal thyroids given in the literature. On the other hand, a deficiency of iodine and iron was observed in all of the malignant and benign tumor tissues examined here. In some injured tissues considerable deviations of K and Ca from normal concentration levels were also recognized. This work demonstrates an important advantage of PIXE to analyze fugacious elements together with other elements simultaneously.

  2. The morpho-anatomy and histology of the pineal complex in a major Indian carp, Catla catla: identification of the pineal photoreceptor cells and their responsiveness to constant light and constant darkness during different phases of the annual reproductive cycle.

    PubMed

    Dey, R; Bhattacharya, S; Maitra, S K; Banerji, T K

    2003-11-01

    In contrast to mammals in which the pineal gland is a discrete structure situated dorsally in the brain, the "pineal gland" in teleost fishes is composed of a number of separate but connected constituent parts, collectively described as the "pineal complex." In this paper, we have described the pineal complex in a common Indian carp, Catla catla, which exhibits an annual reproductive cycle. Attempts have been made to (a) provide an in-depth description of the structure of the pineal complex; and (b) identify the photoreceptor cells of the pineal, by exposing the animals to constant light (LL) and constant darkness (DD). Furthermore, we examined any possible influence of the reproductive status of the fish on the responsiveness of the pineal photoreceptor cells in C. catla following exposure to LL and DD. To this end, a total of four experiments were carried out during the four different phases of the annual reproductive cycle that is characteristic of this species. Each of these four experiments was carried out for a period of 30 days after which the fishes were sacrificed, different parts of the pineal complex were dissected out, and processed for histological and karyometric studies. Our results showed that the pineal complex in this species is composed of three separate but connected parts, (a) an end vesicle (EV); (b) a dorsal sac (DS); and (c) a long and thin pineal stalk (PS) that attaches the EV to the DS. Detailed karyometric and histo-morphologic studies following exposure of the animals to DD and LL showed that constant darkness led to a stimulatory effect on the pineal photoreceptor cells of the EV as evident from a significant increase in the nuclear diameter. In contrast, the nuclear diameter of the photoreceptor cells in animals subjected to constant light showed a significant reduction. Furthermore, the observed cellular changes in the EV of fish exposed either to LL or DD were independent of the stage of the gonadal cycle. The apparent lack of any

  3. Thermogenic and psychogenic recruitment of human eccrine sweat glands: Variations between glabrous and non-glabrous skin surfaces.

    PubMed

    Machado-Moreira, Christiano A; Taylor, Nigel A S

    2017-04-01

    Human eccrine sweat-gland recruitment and secretion rates were investigated from the glabrous (volar) and non-glabrous hand surfaces during psychogenic (mental arithmetic) and thermogenic stimuli (mild hyperthermia). It was hypothesised that these treatments would activate glands from both skin surfaces, with the non-thermal stimulus increasing secretion rates primarily by recruiting more sweat glands. Ten healthy men participated in two seated, resting trials in temperate conditions (25-26°C). Trials commenced under normothermic conditions during which the first psychogenic stress was applied. That was followed by passive heating (0.5°C mean body temperature elevation) and thermal clamping, with a second cognitive challenge then applied. Sudomotor activity was evaluated from both hands, with colourimetry used to identify activated sweat glands, skin conductance to determine the onset of precursor sweating and ventilated sweat capsules to measure rates of discharged sweating. From glandular activation and sweat rate data, sweat-gland outputs were derived. These psychogenic and thermogenic stimuli activated sweat glands from both the glabrous and non-glabrous skin surfaces, with the former dominating at the glabrous skin and the latter at the non-glabrous surface. Indeed, those stimuli individually accounted for ~90% of the site-specific maximal number of activated sweat glands observed when both stimuli were simultaneously applied. During the normothermic psychological stimulation, sweating from the glabrous surface was elevated via a 185% increase in the number of activated glands within the first 60s. The hypothetical mechanism for this response may involve the serial activation of additional eccrine sweat glands during the progressive evolution of psychogenic sweating.

  4. Interferon-gamma increased epithelial barrier function via upregulating claudin-7 expression in human submandibular gland duct epithelium.

    PubMed

    Abe, Ayumi; Takano, Kenichi; Kojima, Takashi; Nomura, Kazuaki; Kakuki, Takuya; Kaneko, Yakuto; Yamamoto, Motohisa; Takahashi, Hiroki; Himi, Tetsuo

    2016-06-01

    Tight junctions (TJs) are necessary for salivary gland function and may serve as indicators of salivary gland epithelial dysfunction. IgG4-related disease (IgG4-RD) is a newly recognized fibro-inflammatory condition which disrupts the TJ associated epithelial barrier. The salivary glands are one of the most frequently involved organs in IgG4-RD, however, changes of the TJ associated epithelial barrier in salivary gland duct epithelium is poorly understood. Here, we investigated the regulation and function of TJs in human submandibular gland ductal epithelial cells (HSDECs) in normal and IgG4-RD. We examined submandibular gland (SMG) tissue from eight control individuals and 22 patients with IgG4-RD and established an HSDEC culture system. Immunohistochemistry, immunocytochemistry, western blotting, and measurement of transepithelial electrical resistance (TER) were performed. Claudin-4, claudin-7, occludin, and JAM-A were expressed at the apical side of the duct epithelium in submandibular gland (SMG) tissue and at the cell borders in HSDECs of normal and IgG4-RD. The expression and distribution of TJs in SMG tissue were not different in control individuals and patients with IgG4-RD in vivo and in vitro. Although interferon-gamma (IFNγ) generally disrupts the integrity and function of TJs, as manifested by decreased epithelial barrier function, IFNγ markedly increased the epithelial barrier function of HSDECs via upregulation of claudin-7 expression in HSDECs from patients with IgG4-RD. This is the first report showing an IFNγ-dependent increase in epithelial barrier function in the salivary gland duct epithelium. Our results provide insights into the functional significance of TJs in salivary gland duct epithelium in physiological and pathological conditions, including IgG4-RD.

  5. Cysteamine effects on somatostatin, catecholamines, pineal NAT and melatonin in rats

    SciTech Connect

    Webb, S.M.; Champney, T.H.; Steger, R.W.; Vaughan, M.K.; Reiter, R.J.

    1986-03-01

    The thiol reagent cysteamine was administered to adult male rats with the aim of investigating its effect on different neural and pineal components. As expected, immunoreactive somatostatin decreased in the median eminence (ME) (p less than 0.05) and gastric antrum (p less than 0.05) after cysteamine; however, no significant change was observed in the pineal IRS content after drug treatment. A decrease in norepinephrine was observed in the ME (p less than 0.001), hypothalamus (p less than 0.001) and pineal gland (p less than 0.05), together with a rise in ME (p less than 0.005) and hypothalamic dopamine (p less than 0.005) content; these results are consistent with a dopamine-beta-hydroxylase inhibiting effect of cysteamine. No effect was observed on hypothalamic serotonin and 5-hydroxyindole-acetic acid content. Pineal N-acetyltransferase (NAT) activity was significantly higher (p less than 0.05) after cysteamine than after saline, but no statistically significant effect was observed on pineal melatonin content. The mechanism involved in the NAT rise is presumably not related to the known stimulatory effect of norepinephrine, which fell after cysteamine. It is suggested that cysteamine may act at an intracellular level, inhibiting NAT degradation, an effect demonstrated in vitro and thought to be related to a thiol:disulfide exchange mechanism.

  6. Dynamic analysis for mental sweating of a group of eccrin sweat glands on a human fingertip by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ohmi, Masato; Tanigawa, Motomu; Wada, Yuki; Haruna, Masamitsu

    2011-05-01

    OCT is highly potential for in vivo observation of human sweating dynamics which affects activity of the sympathetic nerve. In this paper, we demonstrate dynamic OCT analysis of mental sweating of a group of eccrin sweat glands. The sweating dynamics is tracked simultaneously for nineteen sweat glands by time-sequential piled-up en-face OCT images with the frame spacing of 3.3 sec. Strong non-uniformity is observed in mental sweating where the amount of excess sweat is different for each sweat gland although the sweat glands are adjacent to each other. The non-uniformity should be necessary to adjust as precisely the total amount of excess sweat as possible through the sympathetic nerve in response to strength of the stress.

  7. Photoperiod: Its importance as an impeller of pineal and seasonal reproductive rhythms

    NASA Astrophysics Data System (ADS)

    Reiter, R. J.

    1980-03-01

    A number of long day breeding rodents depend on seasonal changes in photoperiodic length to synchronize their breeding seasons with the appropriate time of the year. These relationships are particularly conspicuous in the Syrian hamster where day length is vitally important in determining periods of sexual activity and inactivity. The organ in the body whose activity is most closely attuned to the photoperiodic environment is the pineal gland. During periods of darkness the biochemical and secretory activity of the pineal is enhanced with the resultant production of antigonadotrophic principles which are strongly suppressive to reproductive physiology. In this manner, decreasing day lengths of the fall are involved with suppressing sexual capability in male and female hamsters. Throughout the winter months darkness (because of the shorter day lengths and the fact that hamsters remain underground in lightless burrows) holds the gonads in an atrophic condition and thereby prevents hamsters from breeding. As spring approaches the neuroendocrine reproductive axis becomes refractory to the inhibitory effects of darkness and the pineal gland and, as a consequence, the gonads recrudesce allowing the animals to successfully reproduce. The long days of the spring and summer serve to interrupt the refractory period so that when winter approaches shortening day lengths will again, by way of the pineal gland, induce gonadalinvolution. In this scheme both light and darkness are critically important in synchronizing the phases of the annual reproductive cycle of the hamster with the appropriate season of the year. Melatonin may be the pineal hormone which mediates the effects of darkness on reproductive physiology.

  8. Endocannabinoids regulate growth and survival of human eccrine sweat gland-derived epithelial cells.

    PubMed

    Czifra, Gabriella; Szöllősi, Attila G; Tóth, Balázs I; Demaude, Julien; Bouez, Charbel; Breton, Lionel; Bíró, Tamás

    2012-08-01

    The functional existence of the emerging endocannabinoid system (ECS), one of the new neuroendocrine players in cutaneous biology, is recently described in the human skin. In this study, using human eccrine sweat gland-derived immortalized NCL-SG3 model cells and a wide array of cellular and molecular assays, we investigated the effects of prototypic endocannabinoids (anandamide, 2-arachidonoylglycerol) on cellular functions. We show here that both endocannabinoids dose-dependently suppressed proliferation, induced apoptosis, altered expressions of various cytoskeleton proteins (e.g., cytokeratins), and upregulated lipid synthesis. Interestingly, as revealed by specific agonists and antagonists as well as by RNA interference, neither the metabotropic cannabinoid receptors (CB) nor the "ionotropic" CB transient receptor potential ion channels, expressed by these cells, mediated the cellular actions of the endocannabinoids. However, the endocannabinoids selectively activated the mitogen-activated protein kinase signaling pathway. Finally, other elements of the ECS (i.e., enzymes involved in the synthesis and degradation of endocannabinoids) were also identified on NCL-SG3 cells. These results collectively suggest that cannabinoids exert a profound regulatory role in the biology of the appendage. Therefore, from a therapeutic point of view, upregulation of endocannabinoid levels might help to manage certain sweat gland-derived disorders (e.g., tumors) characterized by unwanted growth.

  9. Immunological characterization of deglycosylated human and swine trachea and Cowper's gland mucin glycoproteins.

    PubMed

    Sangadala, S; Brewer, J M; Mendicino, J

    1991-04-01

    Antibodies were raised in rabbits against purified swine and human trachea and Cowper's gland mucin glycoproteins and their deglycosylated polypeptide chains. Three monospecific antibody fractions that recognize the carbohydrate, the deglycosylated or unglycosylated regions of the polypeptide chains in these glycoproteins, were isolated by immunoaffinity chromatography. The human and swine trachea mucin glycoproteins showed extensive immunological homology in both their carbohydrate and polypeptide chains. The carbohydrate chains and unglycosylated region of the polypeptide chain in Cowper's gland mucin glycoprotein showed little or no cross-reaction with comparable regions in respiratory mucin glycoproteins. However, the polypeptide chains in the deglycosylated regions of all three mucin glycoproteins showed extensive homology. Five bands with molecular masses ranging from 40 to 46 kDa that differed by a constant molecular mass of approximately 1.5 kDa were detected in hydrolysates of all of the polypeptide chains after treatment with S. aureus V8 protease. Monospecific antibodies to the deglycosylated region of these chains reacted with the peptides, whereas those directed against the unglycosylated region did not. The results suggest that these chains contain tandem repeating sequences of amino acids.

  10. Localization of carboxyl ester lipase in human pituitary gland and pituitary adenomas.

    PubMed

    La Rosa, Stefano; Vigetti, Davide; Placidi, Claudia; Finzi, Giovanna; Uccella, Silvia; Clerici, Moira; Bartolini, Barbara; Carnevali, Ileana; Losa, Marco; Capella, Carlo

    2010-10-01

    Carboxyl ester lipase (CEL) is an enzyme that hydrolyzes a wide variety of lipid substrates, including ceramides, which are known to show inhibitory regulation of pituitary hormone secretion in experimental models. Because no studies on CEL expression in human pituitary and pituitary adenomas have been reported in the literature, we investigated CEL expression in 10 normal pituitary glands and 86 well-characterized pituitary adenomas [12 FSH/LH cell, 17 α-subunit/null cell, 6 TSH cell, 21 ACTH cell, 11 prolactin (PRL) cell, and 19 GH cell adenomas] using IHC, immunoelectron microscopy, Western blotting, and quantitative RT-PCR. In normal adenohypophysis, CEL was localized in GH, ACTH, and TSH cells. In adenomas, it was mainly found in functioning GH, ACTH, and TSH tumors, whereas its expression was poor in the corresponding silent adenomas and was lacking in FSH/LH cell, null cell, and PRL cell adenomas. Ultrastructurally, CEL was localized in secretory granules close to their membranes. This is the first study demonstrating CEL expression in normal human pituitary glands and in functioning GH, ACTH, and TSH adenomas. Considering that CEL hydrolyzes ceramides, inactivating their inhibitory function on pituitary hormone secretion, our findings suggest a possible role of CEL in the regulation of hormone secretion in both normal and adenomatous pituitary cells.

  11. Immunocytochemical Localization of Sex Steroid Hormone Receptors in Normal Human Mammary Gland

    PubMed Central

    Li, Sijie; Han, Bing; Liu, Guojin; Li, Songyun; Ouellet, Johanne; Labrie, Fernand; Pelletier, Georges

    2010-01-01

    The sex steroids, estrogens, progesterone, and androgens, all play a role in mammary development and function. To precisely identify the sites of action of these steroids, we studied the localization of the estrogen receptor α (ERα) and ERβ, the progesterone receptor A (PRA) and PRB, and androgen receptors (AR) in the normal human mammary gland. Immunocytochemical localization of ERα, ERβ, PRA, PRB, and AR was performed with reduction mammoplasty specimens from premenopausal women. ERα, PRA, PRB, and AR were localized mostly to the inner layer of epithelial cells lining acini and intralobular ducts, as well as to myoepithelial cells scattered in the external layer of interlobular ducts. AR was also found in some stromal cells. ERβ staining was more widespread, resulting in epithelial and myoepithelial cells being labeled in acini and ducts as well as stromal cells. These results suggest that all sex steroids can directly act on epithelial cells to modulate development and function of the human mammary gland. Estrogens and androgens can also indirectly influence epithelial cell activity by an action on stromal cells. (J Histochem Cytochem 58:509–515, 2010) PMID:20026671

  12. Associations of pineal volume, chronotype and symptom severity in adults with attention deficit hyperactivity disorder and healthy controls.

    PubMed

    Bumb, Jan Malte; Mier, Daniela; Noelte, Ingo; Schredl, Michael; Kirsch, Peter; Hennig, Oliver; Liebrich, Luisa; Fenske, Sabrina; Alm, Barbara; Sauer, Carina; Leweke, Franz Markus; Sobanski, Esther

    2016-07-01

    The pineal gland, as part of the human epithalamus, is the main production site of peripheral melatonin, which promotes the modulation of sleep patterns, circadian rhythms and circadian preferences (morningness vs. eveningness). The present study analyses the pineal gland volume (PGV) and its association with circadian preferences and symptom severity in adult ADHD patients compared to healthy controls. PGV was determined manually using high-resolution 3T MRI (T1-magnetization prepared rapid gradient echo) in medication free adult ADHD patients (N=74) compared to healthy controls (N=86). Moreover, the Morningness-Eveningness Questionnaire (MEQ), the ADHD Diagnostic Checklist and the Wender-Utah Rating Scale were conducted. PGV differed between both groups (patients: 59.9±33.8mm(3); healthy controls: 71.4±27.2mm(3), P=0.04). In ADHD patients, more eveningness types were revealed (patients: 29%; healthy controls: 17%; P=0.05) and sum scores of the MEQ were lower (patients: 45.8±11.5; healthy controls 67.2±10.1; P<0.001). Multiple regression analyses indicated a positive correlation of PGV and MEQ scores in ADHD (β=0.856, P=0.003) but not in healthy controls (β=0.054, P=0.688). Patients' MEQ scores (β=-0.473, P=0.003) were negatively correlated to ADHD symptoms. The present results suggest a linkage between the PGV and circadian preference in adults with ADHD and an association of the circadian preference to symptom severity. This may facilitate the development of new chronobiological treatment approaches for the add-on treatment in ADHD.

  13. Adrenal glands

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002219.htm Adrenal glands To use the sharing features on this page, please enable JavaScript. The adrenal glands are two triangle-shaped glands. One gland is ...

  14. Basal epithelial cells of human prostate gland are not myoepithelial cells. A comparative immunohistochemical and ultrastructural study with the human salivary gland.

    PubMed Central

    Srigley, J. R.; Dardick, I.; Hartwick, R. W.; Klotz, L.

    1990-01-01

    The hypothesis that basal epithelial cells of the human prostate are of myoepithelial origin was investigated using immunohistochemical and ultrastructural methodologies. The immunohistologic analyses show significant phenotypic differences between prostatic basal cells and myoepithelial cells of the salivary gland. Although both cell types stain intensely with the 312C8-1 monoclonal antibody, only true myoepithelial cells demonstrated significant amounts of muscle-specific actin as decorated by the HHF35 monoclonal antibody. Furthermore, using double-labeling experiments, the prostatic basal cells were strongly decorated with a fluorescein-tagged basal cell-specific keratin but were negative with the rhodamine-tagged phalloidin, a chemical that binds specifically to actin microfilaments. Ultrastructural studies also showed an absence of thin microfilament bundles, dense bodies, and micropinocytotic vesicles in the prostatic basal cells. The current investigations show that the prostatic acini do not have a basal myoepithelium. Although some authors have suggested a stem cell role for prostatic basal cells, the weight of experimental work argues against this hypothesis. The exact role of the basal epithelial cells of the prostate is not known, although they may serve endocrine, paracrine, or other regulatory functions and may be involved in modulating signals between prostatic stroma and epithelium. Images Figure 3 Figure 1 Figure 2 Figure 4 PMID:1691595

  15. Quantitative Analysis of Human Salivary Gland-Derived Intact Proteome Using Top-Down Mass Spectrometry

    SciTech Connect

    Wu, Si; Brown, Joseph N.; Tolic, Nikola; Meng, Da; Liu, Xiaowen; Zhang, Haizhen; Zhao, Rui; Moore, Ronald J.; Pevzner, Pavel A.; Smith, Richard D.; Pasa-Tolic, Ljiljana

    2014-05-31

    There are several notable challenges inherent to fully characterizing the entirety of the human saliva proteome using bottom-up approaches, including polymorphic isoforms, post-translational modifications, unique splice variants, deletions, and truncations. To address these challenges, we have developed a top-down based liquid chromatography-mass spectrometry (LC-MS) approach, which cataloged 20 major human salivary proteins with a total of 83 proteoforms, containing a broad range of post-translational modifications. Among these proteins, several previously reported disease biomarker proteins were identified at the intact protein level, such as beta-2 microglobulin (B2M). In addition, intact glycosylated proteoforms of several saliva proteins were also characterized, including intact N-glycosylated protein prolactin inducible protein (PIP) and O-glycosylated acidic protein rich protein (aPRP). These characterized proteoforms constitute an intact saliva proteoform database, which was used for quantitative comparison of intact salivary proteoforms among six healthy individuals. Human parotid (PS) and submandibular/sublingual gland (SMSL) secretion samples (2 μg of protein each) from six healthy individuals were compared using RPLC coupled with the 12T FTICR mass spectrometer. Significantly different protein and PTM patterns were resolved with high reproducibility between PS and SMSL glands. The results from this study provide further insight into the potential mechanisms of PTM pathways in oral glandular secretion, expanding our knowledge of this complex yet easily accessible fluid. Intact protein LC-MS approach presented herein can potentially be applied for rapid and accurate identification of biomarkers from only a few microliters of human glandular saliva.

  16. Differential distribution and expression of leptin and the functional leptin receptor in major salivary glands of humans.

    PubMed

    Bohlender, J; Rauh, M; Zenk, J; Gröschl, M

    2003-08-01

    Leptin plays a central role in the regulation of food intake and energy expenditure in rodents. However, it has become clear that this hormone has more than only a satiety-inducing function, and that there are other sources of leptin, such as the central nervous system, placenta and the gastrointestinal tract in addition to adipose tIssue. Knowing about the important role of the salivary glands in food intake and digestion, it was the objective of the present study to investigate how leptin and its receptor are expressed and distributed in the major salivary glands of humans. We found leptin distributed throughout the major salivary glands with obvious intracellular concentrations in granula. In contrast, immunostaining for the leptin receptor was found exclusively in the membranes of the glandular cells. A high density of the leptin receptor was localised in the epithelia of the duct lumen. PCR analysis proved the autonomous expression of leptin by the salivary glands independently from adipocytes. Accordingly the long receptor isoform was expressed by any examined tIssue. In the light of recent findings of leptin influencing the growth of rodent salivary glands, the presence and distribution of leptin and its receptor suggests an autocrine role of salivary leptin within the glands.

  17. GLP-1 receptor is expressed in human stomach mucosa: analysis of its cellular association and distribution within gastric glands.

    PubMed

    Broide, Efrat; Bloch, Olga; Ben-Yehudah, Gilad; Cantrell, Dror; Shirin, Haim; Rapoport, Micha J

    2013-09-01

    The stomach is a target organ of the incretin hormone glucagon-like peptide-1 (GLP-1). However, the cellular expression and glandular distribution of its receptor (GLP-1R) in human gastric mucosa are not known. We determined the expression of GLP-1R in different regions of human stomach mucosa and its specific cellular association and distribution within gastric glands. Tissue samples from stomach body and antrum were obtained from 20 patients during routine esophagogastroduodenoscopy. mRNA encoding GLP-1R protein expression was evaluated by RT-PCR. Determination of cell types bearing GLP-1R, their localization, and their frequency in gastric glands in different gastric regions were estimated by immunohistochemical morphological analysis. Levels of GLP-1R mRNA were similar in body and antrum. GLP-1R immunoreactivity was found throughout the gastric mucosa in various types of glandular cells. The highest frequency of GLP-1R immunoreactive cells was found in the neck area of the principal glands in cells morphologically identified as parietal cells. GLP-1R immunostaining was also found on enteroendocrine-like cells in the pyloric glands. This study provides the first description of GLP-1R expression in human gastric glands and its specific cellular association. Our data suggest that GLP-1 may act directly on the gastric mucosa to modulate its complex functions.

  18. Pineal Diffuse Large B-Cell Lymphoma Concomitant With Pituitary Prolactinoma: Possible Correlation Between 2 Distinguished Pathologies

    PubMed Central

    Kim, Yeong-Jin; Kim, Hee Kyung; Yang, Deok-Hwan; Jung, Shin; Noh, Myung-Giun; Lee, Jae-Hyuk; Lee, Kyung-Hwa; Moon, Kyung-Sub

    2016-01-01

    Abstract This is the first reported case of pineal lymphoma with concomitant prolactin-producing pituitary adenoma. A 51-year-old male experienced worsening headaches accompanied by nausea, diplopia, and memory loss for 1 month. Cranial nerve examination revealed bilateral upward gaze limitation with convergence impairment, which is known as Parinaud syndrome. Magnetic resonance images revealed a mass in the pineal gland with a coexisting mass within the enlarged sella fossa. Hormone analysis revealed hyperprolactinemia. The pineal mass was removed without injuring the hypothalamus, brain stem, or any neighboring vessels. Pathology examination confirmed the diagnosis of diffuse large B-cell lymphoma (DLBCL) involving the pineal gland. After further studies, the pineal lymphoma was determined to be a secondary tumor from a gastric primary tumor. The patient died 6 months after diagnosis due to systemic progression of DLBCL. Although the mechanistic link between hyperprolactinemia and lymphoma progression has not been clarified on a clinical basis, high prolactin levels may contribute to the rapid progression and therapeutic resistance of the lymphoma. PMID:26937937

  19. Pineal Diffuse Large B-Cell Lymphoma Concomitant With Pituitary Prolactinoma: Possible Correlation Between 2 Distinguished Pathologies: A Case Report.

    PubMed

    Kim, Yeong-Jin; Kim, Hee Kyung; Yang, Deok-Hwan; Jung, Shin; Noh, Myung-Giun; Lee, Jae-Hyuk; Lee, Kyung-Hwa; Moon, Kyung-Sub

    2016-02-01

    This is the first reported case of pineal lymphoma with concomitant prolactin-producing pituitary adenoma.A 51-year-old male experienced worsening headaches accompanied by nausea, diplopia, and memory loss for 1 month. Cranial nerve examination revealed bilateral upward gaze limitation with convergence impairment, which is known as Parinaud syndrome. Magnetic resonance images revealed a mass in the pineal gland with a coexisting mass within the enlarged sella fossa. Hormone analysis revealed hyperprolactinemia. The pineal mass was removed without injuring the hypothalamus, brain stem, or any neighboring vessels. Pathology examination confirmed the diagnosis of diffuse large B-cell lymphoma (DLBCL) involving the pineal gland. After further studies, the pineal lymphoma was determined to be a secondary tumor from a gastric primary tumor. The patient died 6 months after diagnosis due to systemic progression of DLBCL.Although the mechanistic link between hyperprolactinemia and lymphoma progression has not been clarified on a clinical basis, high prolactin levels may contribute to the rapid progression and therapeutic resistance of the lymphoma.

  20. Structure of the tight junctions of the human eccrine sweat gland.

    PubMed

    Briggman, J V; Bank, H L; Bigelow, J B; Graves, J S; Spicer, S S

    1981-12-01

    The human eccrine sweat gland contains two anatomically and functionally discrete segments: the secretory coil, which produces an isotonic or slightly hypertonic precursor fluid, and the coiled duct, which reabsorbs Na+ and Cl- to yield a hypotonic sweat. We examined the freeze-fracture morphology of tight junctions from isolated secretory coil and coiled duct segments to assess indirectly the contribution of paracellular ion transport in secretion and resorption in the sweat gland. In the secretory coil, tight junctions of the intercellular canaliculus and main lumen consisted of approximately 9 and 6, closely spaced, parallel or anastomosing elements, respectively. Tight junctions of the coiled duct were similar in appearance to those at the main lumen of the secretory coil. In both the secretory coil and coiled duct, and average of 2 to 3, widely spaced junctional elements were usually observed basolateral to the closely spaced junctional elements in the region corresponding to the location of the zonula adherens in Epon sections. The complexity of the tight junctions of the secretory coil exceeded what we expected for an epithelium secreting an isosmotic fluid. The elaborate tight junctions of the coiled duct support other evidence for an intermediate to high transepithelial resistance.

  1. Imaging of sebaceous glands of human skin by three-dimensional ultrasound microscopy and its relation to elasticity.

    PubMed

    Kumagai, Kazutoshi; Koike, Hideyuki; Kudo, Yukina; Nagaoka, Ryo; Kubo, Kiyono; Kobayashi, Kazuto; Saijo, Yoshifumi

    2011-01-01

    High frequency ultrasound imaging has realized high resolution in vivo imaging of the biological tissues at a microscopic level. Human skin structure, especially sebaceous glands at the deep part of the dermis, was observed by three-dimensional ultrasound microscopy with the central frequency of 120 MHz. The visco-elasticity and surface sebum level of the observed region were measured by established testing devices. Both sebaceous glands density and surface sebum level were higher in cheek than those in forearm. The viscosity of forearm was lower than that of cheek. These results suggest that sebaceous glands may act as cushions of the skin besides their classical role of secreting sebum and some hormones. High frequency ultrasound imaging contributes to the evaluation of human skin aging.

  2. Subunit structure of deglycosylated human and swine trachea and Cowper's gland mucin glycoproteins.

    PubMed

    Sangadala, S; Kim, D; Brewer, J M; Mendicino, J

    1991-03-27

    The oligosaccharide chains in human and swine trachea and Cowper's gland mucin glycoproteins were completely removed in order to examine the subunit structure and properties of the polypeptide chains of these glycoproteins. The carbohydrate, which constitutes more than 70% of these glycoproteins, was removed by two treatments with trifluoromethanesulfonic acid for 3 h at 3 degrees and periodate oxidation by a modified Smith degradation. All of the sialic acid, fucose, galactose, N-acetylglucosamine and N-acetylgalactosamine present in these glycoproteins was removed by these procedures. The deglycosylated polypeptide chains were purified and characterized. The size of the monomeric forms of all three polypeptide chains were very similar. Data obtained by gel filtration, release of amino acids during hydrolysis with carboxypeptidase B and gel electrophoresis in the presence of 0.1% dodecyl sulfate showed that a major fraction from each of the three mucin glycoproteins had a molecular size of about 67 kDa. All of the deglycosylated chains had a tendency to aggregate. Digestion with carboxypeptidases showed that human and swine trachea mucin glycoproteins had identical carboxyl terminal sequences, -Val-Ala-Phe-Tyr-Leu-Lys-Arg-COOH. Cowper's gland mucin glycoprotein had a similar carboxyl terminal sequence, -Val-Ala-Tyr-Leu-Phe-Arg-Arg-COOH. The yield of amino acids after long periods of hydrolysis with carboxypeptidases showed that at least 85% of the polypeptide chains in each of the deglycosylated preparations have these sequences. These results suggested that the polypeptide chains in these deglycosylated mucin glycoprotein preparations were relatively homogeneous. The deglycosylated polypeptide chains as well as the intact mucin glycoproteins had blocked amino terminii. The purified polypeptide chains were digested with trypsin-TCPK, and S. aureus V8 protease and the resulting peptides were isolated by gel electrophoresis in the presence of 0.1% dodecyl sulfate

  3. Changes in PACAP immunoreactivity in human milk and presence of PAC1 receptor in mammary gland during lactation.

    PubMed

    Csanaky, Katalin; Banki, Eszter; Szabadfi, Krisztina; Reglodi, Dora; Tarcai, Ibolya; Czegledi, Levente; Helyes, Zsuzsanna; Ertl, Tibor; Gyarmati, Judit; Szanto, Zalan; Zapf, Istvan; Sipos, Erika; Shioda, Seiji; Tamas, Andrea

    2012-11-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with widespread occurrence in the nervous system and peripheral organs, including the mammary gland. Previously, we have shown that PACAP38 is present in the human milk at higher levels than in respective blood samples. However, it is not known how PACAP levels and the expression of PAC1 receptor change during lactation. Therefore, the aim of our study was to investigate PACAP38-like immunoreactivity (PACAP38-LI) in human colostrums and transitional and mature milk during lactation and to compare the expression of PAC1 receptors in lactating and non-lactating mammary glands. We found that PACAP38-LI was significantly higher in human colostrum samples than in the transitional and mature milk. PACAP38-LI did not show any significant changes within the first 10-month period of lactation, but a significant increase was observed thereafter, up to the examined 17th month. Weak expression of PAC1 receptors was detected in non-lactating sheep and human mammary glands, but a significant increase was observed in the lactating sheep samples. In summary, the present study is the first to show changes of PACAP levels in human milk during lactation. The presence of PACAP in the milk suggests a potential role in the development of newborn, while the increased expressions of PAC1 receptors on lactating breast may indicate a PACAP38/PAC1 interaction in the mammary gland during lactation.

  4. First evidence of TRPV5 and TRPV6 channels in human parathyroid glands: possible involvement in neoplastic transformation.

    PubMed

    Giusti, Laura; Cetani, Filomena; Da Valle, Ylenia; Pardi, Elena; Ciregia, Federica; Donadio, Elena; Gargini, Claudia; Piano, Ilaria; Borsari, Simona; Jaber, Ali; Caputo, Antonella; Basolo, Fulvio; Giannaccini, Gino; Marcocci, Claudio; Lucacchini, Antonio

    2014-10-01

    The parathyroid glands play an overall regulatory role in the systemic calcium (Ca(2+)) homeostasis. The purpose of the present study was to demonstrate the presence of the Ca(2+) channels transient receptor potential vanilloid (TRPV) 5 and TRPV6 in human parathyroid glands. Semi-quantitative and quantitative PCR was carried out to evaluate the presence of TRPV5 and TRPV6 mRNAs in sporadic parathyroid adenomas and normal parathyroid glands. Western blot and immunocytochemical assays were used to assess protein expression, cellular localization and time expression in primary cultures from human parathyroid adenoma. TRPV5 and TRPV6 transcripts were then identified both in normal and pathological tissues. Predominant immunoreactive bands were detected at 75-80 kD for both vanilloid channels. These channels co-localized with the calcium-sensing receptor (CASR) on the membrane surface, but immunoreactivity was also detected in the cytosol and around the nuclei. Our data showed that western blotting recorded an increase of protein expression of both channels in adenoma samples compared with normal glands suggesting a potential relation with the cell calcium signalling pathway and the pathological processes of these glands.

  5. De novo epidermal regeneration using human eccrine sweat gland cells: higher competence of secretory over absorptive cells.

    PubMed

    Pontiggia, Luca; Biedermann, Thomas; Böttcher-Haberzeth, Sophie; Oliveira, Carol; Braziulis, Erik; Klar, Agnieszka S; Meuli-Simmen, Claudia; Meuli, Martin; Reichmann, Ernst

    2014-06-01

    In our previous work, we showed that human sweat gland-derived epithelial cells represent an alternative source of keratinocytes to grow a near normal autologous epidermis. The role of subtypes of sweat gland cells in epidermal regeneration and maintenance remained unclear. In this study, we compare the regenerative potential of both secretory and absorptive sweat gland cell subpopulations. We demonstrate the superiority of secretory over absorptive cells in forming a new epidermis on two levels: first, the proliferative and colony-forming efficiencies in vitro are significantly higher for secretory cells (SCs), and second, SCs show a higher frequency of successful epidermis formation as well as an increase in the thickness of the formed epidermis in the in vitro and in vivo functional analyses using a 3D dermo-epidermal skin model. However, the ability of forming functional skin substitutes is not limited to SCs, which supports the hypothesis that multiple subtypes of sweat gland epithelial cells hold regenerative properties, while the existence and exact localization of a keratinocyte stem cell population in the human eccrine sweat gland remain elusive.

  6. Chloride transport in a human submandibular gland cell line studied by X-ray microanalysis.

    PubMed

    Roomans, G M

    1998-08-01

    Ion transport properties of the human submandibular gland cell line A253 were investigated by X-ray microanalysis. The cells were grown on ultrathin plastic films on titanium grids. After the experiment, where the cells were exposed to various agonists and inhibitors, the specimens were briefly rinsed in distilled water, frozen, and freeze-dried. The elemental composition of the cultured cells most closely resembled that of striated duct cells. Beta-adrenergic stimulation caused a small decrease in the cellular Cl- and K+ concentration, but cholinergic stimulation had no effect. Also stimulation with cAMP caused a decrease in Cl- and K+; this decrease could be inhibited by the chloride channel blocker NPPB. Loss of Cl- and K+ could also be elicited by exposure to a hypotonic solution. The results suggest that there may be several types of chloride channel present in A253 cells.

  7. Transgenic expression of human amphiregulin in mouse skin: inflammatory epidermal hyperplasia and enlarged sebaceous glands.

    PubMed

    Li, Yong; Stoll, Stefan W; Sekhon, Sahil; Talsma, Caroline; Camhi, Maya I; Jones, Jennifer L; Lambert, Sylviane; Marley, Hue; Rittié, Laure; Grachtchouk, Marina; Fritz, Yi; Ward, Nicole L; Elder, James T

    2016-03-01

    To explore the role of amphiregulin in inflammatory epidermal hyperplasia, we overexpressed human AREG (hAREG) in FVB/N mice using a bovine K5 promoter. A construct containing AREG coding sequences flanked by 5' and 3' untranslated region sequences (AREG-UTR) led to a >10-fold increase in hAREG expression compared to an otherwise-identical construct containing only the coding region (AREG-CDR). AREG-UTR mice developed tousled, greasy fur as well as elongated nails and thickened, erythematous tail skin. No such phenotype was evident in AREG-CDR mice. Histologically, AREG-UTR mice presented with marked epidermal hyperplasia of tail skin (2.1-fold increase in epidermal thickness with a 9.5-fold increase in Ki-67(+) cells) accompanied by significantly increased CD4+ T-cell infiltration. Dorsal skin of AREG-UTR mice manifested lesser but still significant increases in epidermal thickness and keratinocyte hyperplasia. AREG-UTR mice also developed marked and significant sebaceous gland enlargement, with corresponding increases in Ki-67(+) cells. To determine the response of AREG-UTR animals to a pro-inflammatory skin challenge, topical imiquimod (IMQ) or vehicle cream was applied to dorsal and tail skin. IMQ increased dorsal skin thickness similarly in both AREG-UTR and wild type mice (1.7- and 2.2-fold vs vehicle, P < 0.001 each), but had no such effect on tail skin. These results confirm that keratinocyte expression of hAREG elicits inflammatory epidermal hyperplasia, and are consistent with prior reports of tail epidermal hyperplasia and increased sebaceous gland size in mice expressing human epigen.

  8. Transgenic expression of human amphiregulin in mouse skin: inflammatory epidermal hyperplasia and enlarged sebaceous glands

    PubMed Central

    Li, Yong; Stoll, Stefan W.; Sekhon, Sahil; Talsma, Caroline; Camhi, Maya I.; Jones, Jennifer L.; Lambert, Sylviane; Marley, Hue; Rittié, Laure; Grachtchouk, Marina; Fritz, Yi; Ward, Nicole L.; Elder, James T.

    2016-01-01

    To explore the role of amphiregulin in inflammatory epidermal hyperplasia, we overexpressed human AREG (hAREG) in FVB/N mice using a bovine K5 promoter. A construct containing AREG coding sequences flanked by 5′ and 3′ untranslated region sequences (AREG-UTR) led to a >10-fold increase in hAREG expression compared to an otherwise-identical construct containing only the coding region (AREG-CDR). AREG-UTR mice developed tousled, greasy fur as well as elongated nails and thickened, erythematous tail skin. No such phenotype was evident in AREG-CDR mice. Histologically, AREG-UTR mice presented with marked epidermal hyperplasia of tail skin (2.1-fold increase in epidermal thickness with a 9.5-fold increase in Ki-67+ cells) accompanied by significantly increased CD4+ T-cell infiltration. Dorsal skin of AREG-UTR mice manifested lesser but still significant increases in epidermal thickness and keratinocyte hyperplasia. AREG-UTR mice also developed marked and significant sebaceous gland enlargement, with corresponding increases in Ki-67+ cells. To determine the response of AREG-UTR animals to a pro-inflammatory skin challenge, topical imiquimod (IMQ) or vehicle cream was applied to dorsal and tail skin. IMQ increased dorsal skin thickness similarly in both AREG-UTR and wild type mice (1.7- and 2.2-fold vs vehicle, P < 0.001 each), but had no such effect on tail skin. These results confirm that keratinocyte expression of hAREG elicits inflammatory epidermal hyperplasia, and are consistent with prior reports of tail epidermal hyperplasia and increased sebaceous gland size in mice expressing human epigen. PMID:26519132

  9. WISP-1 overexpression upregulates cell proliferation in human salivary gland carcinomas via regulating MMP-2 expression

    PubMed Central

    Li, Fu-Jun; Wang, Xin-Juan; Zhou, Xiao-Li

    2016-01-01

    Background WISP-1 is a member of the CCN family of growth factors and has been reported to play an important role in tumorigenesis by triggering downstream events via integrin signaling. However, little is known about the role of WISP-1 in proliferation of salivary gland carcinoma (SGC) cells. Methods In this study, we investigated the WISP-1 expression in SGC tissues via immunohistochemical staining, Western blotting assay, and real-time quantitative polymerase chain reaction method, and then evaluated the regulatory role of WISP-1 in the growth of SGC A-253 cells. In addition, the role of MMP-2 in the WISP-1-mediated growth regulation was also investigated. Results It was demonstrated that the WISP-1 expression was upregulated at both mRNA and protein levels in 15 of 21 SGC tumor tissues, compared to the non-tumor tissues (five of 21), associated with the lymph node dissection and bone invasion. The in vitro CCK-8 assay and colony-forming assay demonstrated that the exogenous WISP-1 treatment or the WISP-1 overexpression promoted the growth of A-253 cells. In addition, we confirmed that the WISP-1 overexpression upregulated the MMP-2 expression in A-253 cells with the gain-of-function and loss-of-function strategies, and that the MMP-2 knockdown attenuated the WISP-1-mediated growth promotion of A-253 cells. Conclusion We found that WISP-1 was overexpressed in the human SGCs, and the WISP-1 overexpression promoted the salivary gland cell proliferation via upregulating MMP-2 expression. Our study recognized the oncogenic role of WISP-1 in human SGCs, which could serve as a potential target for anticancer therapy. PMID:27799801

  10. Differences in Human Meibum Lipid Composition with Meibomian Gland Dysfunction Using NMR and Principal Component Analysis

    PubMed Central

    Foulks, Gary N.; Yappert, Marta C.; Milliner, Sarah E.

    2012-01-01

    Purpose. Nuclear magnetic resonance (NMR) spectroscopy has been used to quantify lipid wax, cholesterol ester terpenoid and glyceride composition, saturation, oxidation, and CH2 and CH3 moiety distribution. This tool was used to measure changes in human meibum composition with meibomian gland dysfunction (MGD). Methods. 1H-NMR spectra of meibum from 39 donors with meibomian gland dysfunction (Md) were compared to meibum from 33 normal donors (Mn). Results. Principal component analysis (PCA) was applied to the CH2/CH3 regions of a set of training NMR spectra of human meibum. PCA discriminated between Mn and Md with an accuracy of 86%. There was a bias toward more accurately predicting normal samples (92%) compared with predicting MGD samples (78%). When the NMR spectra of Md were compared with those of Mn, three statistically significant decreases were observed in the relative amounts of CH3 moieties at 1.26 ppm, the products of lipid oxidation above 7 ppm, and the ═CH moieties at 5.2 ppm associated with terpenoids. Conclusions. Loss of the terpenoids could be deleterious to meibum since they exhibit a plethora of mostly positive biological functions and could account for the lower level of cholesterol esters observed in Md compared with Mn. All three changes could account for the higher degree of lipid order of Md compared with age-matched Mn. In addition to the power of NMR spectroscopy to detect differences in the composition of meibum, it is promising that NMR can be used as a diagnostic tool. PMID:22131391

  11. Dynamic Observation of Sweat Glands of Human Finger Tip Using All-Optical-Fiber High-Speed Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Ohmi, Masato; Nohara, Kenji; Ueda, Yoshihiro; Fuji, Toshie; Haruna, Masamitsu

    2005-06-01

    High-speed optical coherence tomography (OCT) makes it possible to perform a time-sequential imaging of biological tissue and small organs. In this paper, we demonstrate in vivo observation of dynamics of sweat glands of human finger tip using high-speed OCT with push-pull driven fiber-optic PZT phase modulators. Movement of a sweat droplet through a micro spiral duct can be tracked clearly. An interesting function of sweat glands is found out in time-sequential OCT imaging.

  12. A circannual rhythm in bovine pineal serotonin.

    PubMed

    Philo, R; Reiter, R J

    1980-06-15

    Bovine pineal serotonin (5-HT) was analyzed at the time of the solstices and equinoxes from December, 1975 until June, 1978. The highest values of 5-HT were detected at the winter solstices and lowest values at the summer solstices of each year examined. The peaks in bovine pineal 5-HT correspond with a lessened fertility in cattle reported during the winter months.

  13. Human postmortem lacrimal and submandibular glands stored in RNAlater are suitable for molecular, biochemical, and cell biological studies

    PubMed Central

    Hawley, Dillon; Aluri, Hema; Armaos, Helene; Kim, Gina; Kublin, Claire

    2016-01-01

    Purpose Gene expression and protein analysis studies require high-quality human tissue which is a challenge and difficult to obtain through live human biopsies. Human postmortem lacrimal gland (LG) and submandibular gland (SMG) tissues have the potential to provide an invaluable source for studying the mechanisms involved in LG and SMG dysfunction. Therefore, we aimed to test the suitability of post-mortem LG and SMG for molecular, biochemical, and cell biological studies. Methods LG and SMG tissue from healthy donors was collected and immediately placed in RNAlater solution and then shipped overnight at 4 °C. After receipt, each gland was divided into three pieces for RNA, protein, and histological analysis, respectively. Total RNA isolated from each LG and SMG was analyzed for RNA integrity using an Agilent Bioanalyzer and reverse transcription–PCR (RT–PCR). For histology, tissues were embedded in paraffin and stained with hematoxylin and eosin. For protein analysis, lysates were prepared and processed for sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) and western blotting. Results When the LG and SMG samples were preserved in RNAlater, the RNA integrity number (RIN) values from the LG and SMG were >7.0 from all three donors, while the RNAs from tissue not preserved in RNAlater were of poorer quality. The gene and/or protein expression of E-cadherin, aquaporin 5, alpha-smooth muscle actin (α-SMA), β-actin, and GAPDH was preserved in all samples. In addition, histological analyses showed normal tubuloacinar structures of all glands with serous and mucous producing acini within lobules interspersed with adipose fat. Conclusions In this study, we determined that RNA, protein, and histological sections obtained from postmortem human LG and SMG tissue preserved in RNAlater were of high quality. This would provide a viable source of human LG and SMG tissue suitable for studies of diseases that affect these glands, such as Sj

  14. Minor salivary glands as a major source of secretory immunoglobin A in the human oral cavity.

    PubMed

    Crawford, J M; Taubman, M A; Smith, D J

    1975-12-19

    Secretory immunoglobulin A is the predominant immunoglobulin in labial minor salivary gland secretions. Its mean concentration is four times higher in these secretions than in parotid gland secretion. The minor salivary glands can produce 30 to 35 percent of the immunoglobulin A that enters the oral cavity. This, together with the potential accessibility of these glands to antigenic stimulation, suggest that they may be an important source of the immune factors that are involved in the regulation of the microorganisms in the oral environment.

  15. Adrenergic activation of melatonin secretion in ovine pineal explants in short-term superfusion culture occurs via protein synthesis independent and dependent phenomena.

    PubMed

    Lewczuk, Bogdan; Ziółkowska, Natalia; Prusik, Magdalena; Przybylska-Gornowicz, Barbara

    2014-01-01

    The ovine pineal is generally considered as an interesting model for the study on adrenergic regulation of melatonin secretion due to some functional similarities with this gland in the human. The present investigations, performed in the superfusion culture of pineal explants, demonstrated that the norepinephrine-induced elevation of melatonin secretion in ovine pinealocytes comprised of two subsequent periods: a rapid increase phase and a slow increase phase. The first one included the quick rise in release of N-acetylserotonin and melatonin, occurring parallel to elevation of NE concentration in the medium surrounding explants. This rapid increase phase was not affected by inhibition of translation. The second, slow increase phase began after NE level had reached the maximum concentration in the culture medium and lasted about two hours. It was completely abolished by the treatment with translation inhibitors. The obtained results showed for the first time that the regulation of N-acetylserotonin synthesis in pinealocytes of some species like the sheep involves the on/off mechanism, which is completely independent of protein synthesis and works very fast. They provided strong evidence pointing to the need of revision of the current opinion that arylalkylamines N-acetyltransferase activity in pinealocytes is controlled exclusively by changes in enzyme abundance.

  16. Tetrodotoxin administration in the suprachiasmatic nucleus prevents NMDA-induced reductions in pineal melatonin without influencing Per1 and Per2 mRNA levels.

    PubMed

    Paul, Ketema N; Gamble, Karen L; Fukuhara, Chiaki; Novak, Colleen M; Tosini, Gianluca; Albers, H Elliott

    2004-05-01

    The suprachiasmatic nucleus (SCN) of the anterior hypothalamus contains a light-entrainable circadian pacemaker. Neurons in the SCN are part of a circuit that conveys light information from retinal efferents to the pineal gland. Light presented during the night acutely increases mRNA levels of the circadian clock genes Per1 and Per2 in the SCN, and acutely suppresses melatonin levels in the pineal gland. The present study investigated whether the ability of light to increase Per1 and Per2 mRNA levels and suppress pineal melatonin levels requires sodium-dependent action potentials in the SCN. Per1 and Per2 mRNA levels in the SCN and pineal melatonin levels were measured in Syrian hamsters injected with tetrodotoxin (TTX) prior to light exposure or injection of N-methyl-D-aspartate (NMDA). TTX inhibited the ability of light to increase Per1 and Per2 mRNA levels and suppress pineal melatonin levels. TTX did not, however, influence the ability of NMDA to increase Per1 and Per2 mRNA levels, though it did inhibit the ability of NMDA to suppress pineal melatonin levels. These results demonstrate that action potentials in the SCN are not necessary for NMDA receptor activation to increase Per1 and Per2 mRNA levels, but are necessary for NMDA receptor activation to decrease pineal melatonin levels. Taken together, these data support the hypothesis that the mechanism through which light information is conveyed to the pacemaker in the SCN is separate from and independent of the mechanism through which light information is conveyed to the SCN cells whose efferents suppress pineal melatonin levels.

  17. Pineal physiology in microgravity - Relation to rat gonadal function aboard Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Holley, Daniel C.; Markley, Carol L.; Soliman, Magdi R. I.; Kaddis, Farida; Krasnov, Igor'

    1991-01-01

    Results are reported from an analysis of pineal glands obtained for five male rats flown aboard an orbiting satellite for their melatonin, serotonin (5-HT), 5-hydroxyindole acetic acid (5-HIA), and calcium content. Plasma 5-HT and 5-HIAA were measured. These parameters were compared to indicators of gonadal function: plasma testosterone concentration and spermatogonia development. Plasma melotonin was found to be low at the time of euthanasia and was not different among the experimental groups. Pineal calcium of flight animals was not different from ground controls. Pineal 5-HT and 5-HIAA in the flight group were significantly higher than those in ground controls. These findings suggest a possible increase in pineal 5-HT turnover in flight animals which may result in increased melatonin secretion. It is argued that the alteration of pinal 5-HT turnover and its expected effects on melatonin secretion may partially explain the lower plasma testosterone levels and 4-11 percent fewer spermatogonia cells observed in flight animals.

  18. Precocious puberty associated with a pineal cyst: is it disinhibition of the hypothalamic-pituitary axis?

    PubMed

    Dickerman, Rob D; Stevens, Qualls E; Steide, Jean-Alex; Schneider, Steven J

    2004-06-01

    Accelerated development of secondary sexual characteristics or sexual precocity is a well-known entity. Most authors recognize two groups of patients, those described as having central precocious puberty (CPP) and those with precocious pseudopuberty. CPP results from premature activation of the hypothalamic-pituitary-gonadal axis and pseudopuberty is caused by lesions that secrete gonadotropin-like substances or hormones. The onset of CPP is usually before age 8 in females and age 9 in males; however, there is contention that the age of onset is much earlier and also differs depending on the patients' race. Previously reported causes of CPP include intracranial neoplasm, infection, trauma, hydrocephalus and Angelman's syndrome. Pineal cysts are usually asymptomatic incidental findings, but have been associated with CPP. We present an interesting case of a patient with CPP and an associated pineal cyst. We review the literature on the pathogenesis of CPP and associated pineal cyst, the neuroendocrine relationship between the pineal gland and puberty and the neurosurgical role in these cases.

  19. /sup 3/H-retinol derived photopigment in chick pineal membranes

    SciTech Connect

    Wallingford, J.; Zatz, M.

    1986-05-01

    Pineal glands display a day-night rhythm in the synthesis and secretion of melatonin. Dispersed chick pinealocytes retain their ability to respond to light in vitro for at least a week. Pinealocytes incubated overnight with /sup 3/H-retinol in the dark incorporate radioactivity predominantly into retinyl esters. To identify the chick pineal photopigment, SDS-PAGE was performed on radiolabelled preparations of pinealocytes and (intraocularly injected) rat retina. When intact cells or membrane preparations of cultured cells were incubated with NaCNBH/sub 3/, in the dark, a single radioactive peak with an apparent molecular weight of 32,000 daltons was observed. Rat retina preparations revealed a major peak at approximately 40,000 daltons. Protease inhibitors were present in the workup, and radioactivity corresponding to the smaller peak from pineal was not observed in retina. There was no radioactive peak when NaCNBH/sub 3/ was omitted. When samples were boiled in SDS the radioactivity shifted to the origin. These data suggest a protein in pinealocyte membranes which binds retinoid via a Schiff's base. Exposure to light of deoxycholate solubilized pineal membranes reduced the radioactivity associated with the protein. These findings raise the possibility that this protein is the pinealocyte's photopigment. Photopigments smaller than those observed in mammals have been reported in invertebrates.

  20. A novel TMEM16A splice variant lacking the dimerization domain contributes to calcium-activated chloride secretion in human sweat gland epithelial cells.

    PubMed

    Ertongur-Fauth, Torsten; Hochheimer, Andreas; Buescher, Joerg Martin; Rapprich, Stefan; Krohn, Michael

    2014-11-01

    Sweating is an important physiological process to regulate body temperature in humans, and various disorders are associated with dysregulated sweat formation. Primary sweat secretion in human eccrine sweat glands involves Ca(2+) -activated Cl(-) channels (CaCC). Recently, members of the TMEM16 family were identified as CaCCs in various secretory epithelia; however, their molecular identity in sweat glands remained elusive. Here, we investigated the function of TMEM16A in sweat glands. Gene expression analysis revealed that TMEM16A is expressed in human NCL-SG3 sweat gland cells as well as in isolated human eccrine sweat gland biopsy samples. Sweat gland cells express several previously described TMEM16A splice variants, as well as one novel splice variant, TMEM16A(acΔe3) lacking the TMEM16A-dimerization domain. Chloride flux assays using halide-sensitive YFP revealed that TMEM16A is functionally involved in Ca(2+) -dependent Cl(-) secretion in NCL-SG3 cells. Recombinant expression in NCL-SG3 cells showed that TMEM16A(acΔe3) is forming a functional CaCC, with basal and Ca(2+) -activated Cl(-) permeability distinct from canonical TMEM16A(ac). Our results suggest that various TMEM16A isoforms contribute to sweat gland-specific Cl(-) secretion providing opportunities to develop sweat gland-specific therapeutics for treatment of sweating disorders.

  1. Dynamic analysis of eccrin sweat glands on human fingertips by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Haruna, Masamitsu; Ohmi, Masato; Ueda, Yoshihiro; Yamada, Akihiro; Saigusa, Hiroyuki

    2008-02-01

    OCT is highly potential for dynamic analysis of eccrin sweat glands. It is found in our experiment that the spiral lumen of an active sweat gland expands drastically in response to mental stress. Mental-stress-induced sweating is analyzed quantitatively based on time-sequential OCT images.

  2. Ultrasonic delivery of silica-gold nanoshells for photothermolysis of sebaceous glands in humans: Nanotechnology from the bench to clinic.

    PubMed

    Paithankar, Dilip; Hwang, Byeong Hee; Munavalli, Girish; Kauvar, Arielle; Lloyd, Jenifer; Blomgren, Richard; Faupel, Linda; Meyer, Todd; Mitragotri, Samir

    2015-05-28

    Recent advances in nanotechnology have provided numerous opportunities to transform medical therapies for the treatment of diseases including cancer, atherosclerosis, and thrombosis. Here, we report, through in vitro studies and in vivo human pilot clinical studies, the use of inert, inorganic silica-gold nanoshells for the treatment of a widely prevalent and researched, yet poorly treated disease of acne. We use ~150nm silica-gold nanoshells, tuned to absorb near-IR light and near-IR laser irradiation to thermally disrupt overactive sebaceous glands in the skin which define the etiology of acne-related problems. Low-frequency ultrasound was used to facilitate deep glandular penetration of the nanoshells. Upon delivery of the nanoshells into the follicles and glands, followed by wiping of superficial nanoshells from skin surface and exposure of skin to near-infrared laser, nanoshells localized in the follicles absorb light, get heated, and induce focal thermolysis of sebaceous glands. Pilot human clinical studies confirmed the efficacy of ultrasonically-delivered silica-gold nanoshells in inducing photothermal disruption of sebaceous glands without damaging collateral skin.

  3. The spectrophotometric sulfo-phospho-vanillin assessment of total lipids in human meibomian gland secretions.

    PubMed

    McMahon, Anne; Lu, Hua; Butovich, Igor A

    2013-05-01

    Human meibomian gland secretions (meibum) are the major lipid component of the human preocular tear film. The predominant lipid classes found in meibum include waxes (WE), cholesteryl esters (CE), and varying amounts of cholesterol (Chl). The classical sulfo-phospho-vanillin assay (SPVA), adapted for a microplate reader, was used to quantitate lipids in meibum. To account for varying reactivities of different lipids in SPVA, a model meibomian lipid mixture (MMx) that approximated the WE/CE/Chl composition of meibum was developed and used to quantitate meibomian lipids. The overall SPV responses of MMx and meibum were found to be close, with similar intermediate and final reaction products for both. Saturated WE that had not been expected to be reactive were found to be SPV-positive. A reaction mechanism for these compounds in SPVA which involves the formation of alkenyl ethers is proposed and discussed. Tested proteins were non-reactive in SPVA. Thus, by comparing the results of gravimetric analyses of meibum samples with the results of a properly calibrated SPVA, it was estimated that the SPV-reactive lipid content of dry meibum in tested samples was about 78 % (w/w). The SPV method can also be adopted for analyzing other types of complex lipids secretions, such as sebum, as well as whole lipid extracts from other lipid-enriched organs and tissues, if proper standards are chosen.

  4. Involvement of pro-apoptotic and anti-apoptotic factors in the early development of the human pituitary gland.

    PubMed

    Saraga-Babic, M; Bazina, M; Vukojevic, K; Bocina, I; Stefanovic, V

    2008-10-01

    The spatial and temporal pattern of appearance of pro-apoptotic caspase-3 and p53 proteins, and anti-apoptotic bcl-2 protein was investigated in the developing pituitary gland of 6 human embryos 5-8-weeks old, using morphological and immunohistochemical techniques. Their dynamic appearance was analyzed in the Rathke's pouch (future adenohypophysis), mesenchyme, and in the developing neurohypophysis. In the 5th and 6th week, caspase-3 positive cells appeared in the Rathke's pouch (5%) and stalk (11%), in the mesenchyme, but not in the neurohypophysis. In the 6th and 7th week, apoptotic cells were more numerous in the caudal part of the Rathke's pouch due to its separation from the oral epithelium. Pro-apoptotic p53 protein was detected in all parts of the pituitary gland throughout the investigated period. Nuclear condensations characterized cells positive to caspase-3 and p53 proteins. Apoptotic cells displayed condensations of nuclear chromatin on an ultrastructural level as well. While caspase-3 dependent pathway of cell death participated in morphogenesis of the adenohypophysis and associated connective tissue, p53-mediated apoptosis most likely participates in morphogenesis of all parts of the gland, including neurohypophysis. The anti-apoptotic bcl-2 protein was also detected in all parts of the developing gland. With advancing development, the positivity to bcl-2 protein increased in the cells of the adenohypophysis, while it decreased in the neurohypophysis. Bcl-2 protein probably prevented cell death in all parts of the gland and enhanced cell differentiation. The described pattern of appearance of the investigated pro-apoptotic and anti-apoptotic factors might be important for normal morphogenesis and function of the pituitary gland.

  5. Expression of PACAP and PAC1 Receptor in Normal Human Thyroid Gland and in Thyroid Papillary Carcinoma.

    PubMed

    Bardosi, Sebastian; Bardosi, Attila; Nagy, Zsuzsanna; Reglodi, Dora

    2016-10-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) belongs to the vasoactive intestinal peptide-secretin-glucagon peptide family, isolated first from ovine hypothalamus. The diverse physiological effects of PACAP are known mainly from animal experiments, including several actions in endocrine glands. Alteration of PACAP expression has been shown in several tumors, but changes in expression of PACAP and its specific PAC1 receptor in human thyroid gland pathologies have not yet been investigated. Therefore, the aim of the present study was to investigate expression of PACAP and its PAC1 receptor in human thyroid papillary carcinoma, the most common endocrine malignant tumor. PACAP and PAC1 receptor expressions were investigated from thyroid gland samples of patients with papillary carcinomas. The staining intensity of follicular epithelial cells and thyroid colloid of tumor tissue was compared to that of tumor-free tissue in the same thyroid glands in a semi-quantitative way. Our results reveal that both PACAP(-like) and PAC1 receptor(-like) immunoreactivities are altered in papillary carcinoma. Stronger PACAP immunoreactivity was observed in active follicles. Colloidal PACAP immunostaining was either lacking or very weak, and more tumorous cells displayed strong apical immunoreactivity. Regarding PAC1 receptor, cells of the normal thyroid tissue showed strong granular expression, which was lacking in the tumor cells. The cytoplasm of tumor cells displayed weak, minimal staining, while in a few tumor cells we observed strong PAC1 receptor expression. This pattern was similar to that observed in the PACAP expression, but fewer in number. In summary, we showed alteration of PACAP and PAC1 receptor expression in human thyroid papillary carcinoma, indicating that PACAP regulation is disturbed in tumorous tissue of the thyroid gland. The exact role of PACAP in thyroid tumor growth should be further explored.

  6. Step-by-step protocol to perfuse and dissect the mouse parotid gland and isolation of high-quality RNA from murine and human parotid tissue.

    PubMed

    Watermann, Christoph; Valerius, Klaus Peter; Wagner, Steffen; Wittekindt, Claus; Klussmann, Jens Peter; Baumgart-Vogt, Eveline; Karnati, Srikanth

    2016-04-01

    Macroscopic identification and surgical removal of the mouse parotid gland is demanding because of its anatomic location and size. Moreover, the mouse parotid gland contains high concentrations of RNases, making it difficult to isolate high-quality RNA. So far, appropriate methods for optimal perfusion-fixation and dissection of mouse parotid glands, as well as the isolation of high quality RNA from this tissue, are not available. Here we present a simple, optimized, step-by-step surgical method to perfuse and isolate murine parotid glands. We also compared two common RNA extraction methods (RNeasy Mini Kit versus TRIzol) for their yields of high-quality, intact RNA from human and murine parotid gland tissues that were either snap-frozen or immersed in RNAlater stabilization solution. Mouse parotid tissue that was perfused and immersed in RNAlater and human samples immersed in RNAlater exhibited the best RNA quality, independent of the isolation method.

  7. Salivary gland proteome of the human malaria vector, Anopheles campestris-like (Diptera: Culicidae).

    PubMed

    Sor-Suwan, Sriwatapron; Jariyapan, Narissara; Roytrakul, Sittiruk; Paemanee, Atchara; Saeung, Atiporn; Thongsahuan, Sorawat; Phattanawiboon, Benjarat; Bates, Paul A; Poovorawan, Yong; Choochote, Wej

    2013-03-01

    Anopheles campestris-like is proven to be a high-potential vector of Plasmodium vivax in Thailand. In this study, A. campestris-like salivary gland proteins were determined and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis, and nano-liquid chromatography-mass spectrometry. The total amount of salivary gland proteins in the mosquitoes aged 3-5 days was approximately 0.1 ± 0.05 μg/male and 1.38 ± 0.01 μg/female. SDS-PAGE analysis revealed at least 12 major proteins found in the female salivary glands and each morphological region of the female glands contained different major proteins. Two-dimensional gel electrophoresis showed approximately 20 major and several minor protein spots displaying relative molecular masses from 10 to 72 kDa with electric points ranging from 3.9 to 10. At least 15 glycoproteins were detected in the female glands. Similar electrophoretic protein profiles were detected comparing the male and proximal-lateral lobes of the female glands, suggesting that these lobes are responsible for sugar feeding. Blood-feeding proteins, i.e., putative 5'-nucleotidase/apyrase, anti-platelet protein, long-form D7 salivary protein, D7-related 1 protein, and gSG6, were detected in the distal-lateral lobes (DL) and/or medial lobes (ML) of the female glands. The major spots related to housekeeping proteins from other arthropod species including Culex quinquefasciatus serine/threonine-protein kinase rio3 expressed in both male and female glands, Ixodes scapularis putative sil1 expressed in DL and ML, and I. scapularis putative cyclophilin A expressed in DL. These results provide information for further study on the salivary gland proteins of A. campestris-like that are involved in hematophagy and disease transmission.

  8. Stereology of the thyroid gland in Indo-Pacific bottlenose dolphin (Tursiops aduncus) in comparison with human (Homo sapiens): quantitative and functional implications.

    PubMed

    Kot, Brian Chin Wing; Lau, Thomas Yue Huen; Cheng, Sammy Chi Him

    2013-01-01

    The mammalian thyroid gland maintains basal metabolism in tissues for optimal function. Determining thyroid volume is important in assessing growth and involution. Volume estimation is also important in stereological studies. Direct measurements of colloid volume and nuclear-to-cytoplasmic ratio of the follicular cells may provide important information about thyroid gland function such as hormone storage and secretion, which helps understand the changes at morphological and functional levels. The present study determined the colloid volume using simple stereological principle and the nuclear-to-cytoplasmic ratio of 4 Indo-Pacific bottlenose dolphins and 2 human thyroid glands. In both dolphin and human thyroid glands, the size of the follicles tended to be quite variable. The distribution of large and small follicles within the thyroid gland was also found to be random in both the dolphin and human thyroid gland; however, the size of follicles appeared to decrease as a function of increasing age in the dolphin thyroid gland. The mean colloid volume of the dolphin thyroid gland and human thyroid gland was 1.22×10(5) µm(3) and 7.02×10(5) µm(3) respectively. The dolphin and human subjects had a significant difference in the mean colloid volume. The mean N/C ratio of the dolphin thyroid follicular epithelia and human follicular epithelia was 0.50 and 0.64 respectively. The dolphin and human subjects had a significant difference in the mean N/C ratio. This information contributes to understanding dolphin thyroid physiology and its structural adaptations to meet the physical demands of the aquatic environment, and aids with ultrasonography and corrective therapy in live subjects.

  9. Expression of lipogenic factors galectin-12, resistin, SREBP-1, and SCD in human sebaceous glands and cultured sebocytes.

    PubMed

    Harrison, Wesley J; Bull, Jonathan J; Seltmann, Holger; Zouboulis, Christos C; Philpott, Michael P

    2007-06-01

    The transcription factors CCAAT enhancer-binding protein alpha, beta, and delta, and peroxisome proliferator-activated receptor gamma are known to be crucial to the differentiation of adipocytes and are expressed in sebaceous gland cells. As lipogenesis is key to both adipocyte and sebocyte differentiation we hypothesize that sebocytes follow a similar program of differentiation to adipocytes. We have investigated the expression of known adipogenic factors resistin, galectin-12, sterol response-element-binding protein-1 (SREBP-1) and stearoyl-CoA desaturase in the immortalized sebaceous gland cell line SZ95 and whole skin. Reverse transcriptase-PCR analysis showed the expression of galectin-12, resistin, SREBP-1, and stearoyl-CoA desaturase mRNAs in SZ95 sebocytes. Immunoreactivity was observed for galectin-12 and SREBP-1 in the nuclei and resistin in the cytoplasm of basal sebocytes, and stearoyl CoA desaturase in the cytoplasm of basal and luminal sebocytes of human scalp skin. Expression of galectin-12, resistin, and SREBP-1 in SZ95 sebocytes was confirmed by Western blot analysis. These data provide further evidence that pathways of differentiation in adipocytes and sebocytes could be similar and therefore further understanding of sebaceous gland differentiation and lipogenesis and potential therapies for sebaceous gland disorders may be obtained from our knowledge of adipocyte differentiation.

  10. Tyrosine polysulfation of human salivary histatin 1. A post-translational modification specific of the submandibular gland.

    PubMed

    Cabras, Tiziana; Fanali, Chiara; Monteiro, Joana A; Amado, Francisco; Inzitari, Rosanna; Desiderio, Claudia; Scarano, Emanuele; Giardina, Bruno; Castagnola, Massimo; Messana, Irene

    2007-07-01

    Histatin 1 (His-1) derivatives showing serial mass increases of 80.0 +/- 0.1 Da were detected in human saliva by HPLC-ESI-MS. The same derivatives were also found in granules of submandibular glands and secretions of submandibular/sublingual glands, but not in granules and secretions of parotid glands. Only one phosphate group was present in His-1 and its derivatives, since treatment with alkaline phosphatase provided an 80.0 Da mass decrease. His-1 derivatives were almost completely transformed into His-1 by treatment with 1 M HCl at 100 degrees C, suggesting the presence of O-sulfotyrosine, which is more labile than phospho-Tyr to acidic hydrolysis. CE-MS analysis of pronase extensive digestion of derivatives confirmed the presence of sulfotyrosine. Derivatives were digested by trypsin, proteinase K, and protease V-8 and analyzed by different MS strategies. The results allowed locating sulfation on the last four tyrosines (Tyr 27, 30, 34, and 36). This study is the first report of the gland-specific sulfation of a salivary phosphopeptide in vivo.

  11. MRI-based three-dimensional thermal physiological characterization of thyroid gland of human body.

    PubMed

    Jin, Chao; He, Zhi Zhu; Yang, Yang; Liu, Jing

    2014-01-01

    This article is dedicated to present a MRI (magnetic resonance imaging) based three-dimensional finite element modeling on the thermal manifestations relating to the pathophysiology of thyroid gland. An efficient approach for identifying the metabolic dysfunctions of thyroid has also been demonstrated through tracking the localized non-uniform thermal distribution or enhanced dynamic imaging. The temperature features over the skin surface and thyroid domain have been characterized using the numerical simulation and experimental measurement which will help better interpret the thermal physiological mechanisms of the thyroid under steady-state or water-cooling condition. Further, parametric simulations on the hypermetabolism symptoms of hyperthyroidism and thermal effects within thyroid domain caused by varying breathing airflow in the trachea and blood-flow in artery and vein were performed. It was disclosed that among all the parameters, the airflow volume has the largest effect on the total heat flux of thyroid surface. However, thermal contributions caused by varying the breathing frequency and blood-flow velocity are negligibly small. The present study suggests a generalized way for simulating the close to reality physiological behavior or process of human thyroid, which is of significance for disease diagnosis and treatment planning.

  12. Different bindings to lectin in human submandibular gland after enzymatic digestion.

    PubMed

    Takai, Y; Noda, Y; Sumitomo, S; Sagara, S; Mori, M

    1986-01-01

    Lectin binding affinities were described in human submandibular gland (SMG) in the paraffin sections following alpha-amylase, sialidase, and trypsin digestions. Lectins in the present study were used Con A (Glc, Man binding lectins), PNA, and SBA(Gal, GalNAc), RCA-1(Gal), DBA(GalNAc), WGA(GlcNAc), and UEA-1(Fuc). Lectin stainings in serous and mucous acinar cells and ductal epithelia were reported to compare enzyme treated and nontreated sections. Amylase treatment showed increasing Con A staining in connective tissue fibers and no marked changes in SMG to lectin bindings. Sialidase digestion was characteristically intense in PNA and SBA bindings in SMG cells, and also enhanced staining to UEA-1 in serous and duct cells and to WGA in mucous and duct cells were noted. Trypsin digestion indicated a slight increase to Con A binding, and was relatively strong to UEA-1 in serous and duct cells and a little strong to WGA. The results suggested that SMG serous cells contain higher amounts of Gal, GalNAc, and Fuc residues; and mucous cells were also abundant in Gal, GalNAc, and GlcNAc residues.

  13. A practical guide for the study of human and murine sebaceous glands in situ.

    PubMed

    Hinde, Eleanor; Haslam, Iain S; Schneider, Marlon R; Langan, Ewan A; Kloepper, Jennifer E; Schramm, Carolin; Zouboulis, Christos C; Paus, Ralf

    2013-10-01

    The skin of most mammals is characterised by the presence of sebaceous glands (SGs), whose predominant constituent cell population is sebocytes, that is, lipid-producing epithelial cells, which develop from the hair follicle. Besides holocrine sebum production (which contributes 90% of skin surface lipids), multiple additional SG functions have emerged. These range from antimicrobial peptide production and immunomodulation, via lipid and hormone synthesis/metabolism, to the provision of an epithelial progenitor cell reservoir. Therefore, in addition to its involvement in common skin diseases (e.g. acne vulgaris), the unfolding diversity of SG functions, both in skin health and disease, has raised interest in this integral component of the pilosebaceous unit. This practical guide provides an introduction to SG biology and to relevant SG histochemical and immunohistochemical techniques, with emphasis placed on in situ evaluation methods that can be easily employed. We propose a range of simple, established markers, which are particularly instructive when addressing specific SG research questions in the two most commonly investigated species in SG research, humans and mice. To facilitate the development of reproducible analysis techniques for the in situ evaluation of SGs, this methods review concludes by suggesting quantitative (immuno-)histomorphometric methods for standardised SG evaluation.

  14. Estimation of parenchymal cell content of human parathyroid glands using the image analyzing computer technique.

    PubMed Central

    Grimelius, L.; Akerström, G.; Johansson, H.; Lundqvist, H.

    1978-01-01

    By means of the image analyzing computer technique, a complete determination of the parenchymal tissue distribution in serially sectioned parathyroid glands were accomplished. The technique had good reproducibility. Taking into account the shrinkage of the different tissue components during histotechnical procedures and the tissue densities, it was possible to calculate the parenchymal cell mass of unfixed glands. The cell distribution varied considerably, and in most glands as many as 10 sections at different levels had to be examined to get a reliable ratio between the parenchymal and fat cell tissue. The results seriously question the validity of histopathologic examination of one or a few sections of parathyroid glands in evaluation of the parenchymal cell mass, as well as diagnoses based on examination of partial glandular biopsy specimens. PMID:717545

  15. Pineal region masses--imaging findings and surgical approaches.

    PubMed

    Lensing, Forrester D; Abele, Travis A; Sivakumar, Walavan; Taussky, Philipp; Shah, Lubdha M; Salzman, Karen L

    2015-01-01

    The anatomy of the pineal region is complex. Despite advances in surgical techniques since the first reported successful pineal region surgery in the early 20th century, pineal region surgery remains challenging owing to the proximity of deep cerebral veins and dorsal midbrain structures critical for vision. In this article, we review the relevant surgical anatomy of the pineal region and discuss historically important and current surgical approaches. We describe specific imaging features of pineal region masses that may affect surgical planning and review neoplastic and nonneoplastic masses that occur in the pineal region.

  16. Production of functional human nerve growth factor from the saliva of transgenic mice by using salivary glands as bioreactors

    PubMed Central

    Zeng, Fang; Li, Zicong; Zhu, Qingchun; Dong, Rui; Zhao, Chengcheng; Li, Guoling; Li, Guo; Gao, Wenchao; Jiang, Gelong; Zheng, Enqin; Cai, Gengyuan; Moisyadi, Stefan; Urschitz, Johann; Yang, Huaqiang; Liu, Dewu; Wu, Zhenfang

    2017-01-01

    The salivary glands of animals have great potential to act as powerful bioreactors to produce human therapeutic proteins. Human nerve growth factor (hNGF) is an important pharmaceutical protein that is clinically effective in the treatment of many human neuronal and non-neuronal diseases. In this study, we generated 18 transgenic (TG) founder mice each carrying a salivary gland specific promoter-driven hNGF transgene. A TG mouse line secreting high levels of hNGF protein in its saliva (1.36 μg/mL) was selected. hNGF protein was successfully purified from the saliva of these TG mice and its identity was verified. The purified hNGF was highly functional as it displayed the ability to induce neuronal differentiation of PC12 cells. Furthermore, it strongly promoted proliferation of TF1 cells, above the levels observed with mouse NGF. Additionally, saliva collected from TG mice and containing unpurified hNGF was able to significantly enhance the growth of TF1 cells. This study not only provides a new and efficient approach for the synthesis of therapeutic hNGF but also supports the concept that salivary gland from TG animals is an efficient system for production of valuable foreign proteins. PMID:28117418

  17. [Double suprasellar and pineal germinoma with potomania].

    PubMed

    Schnegg, J F; Burckhardt, P; de Tribolet, N

    1980-06-14

    A case is reported of suprasellar and pineal germinoma in a 16-year-old male initially presenting with potomania without diabetes insipidus. The role of stimulation of the hypothalamus in producing pathological thirst is discussed.

  18. Endothelin in human brain and pituitary gland: Presence of immunoreactive endothelin, endothelin messenger ribonucleic acid, and endothelin receptors

    SciTech Connect

    Takahashi, K.; Ghatei, M.A.; Jones, P.M.; Murphy, J.K.; Lam, H.C.; O'Halloran, D.J.; Bloom, S.R. )

    1991-03-01

    The presence of immunoreactive (IR) endothelin, endothelin mRNA, and endothelin receptors in human brain and pituitary gland has been studied by RIA, Northern blot hybridization, and receptor assay. IR endothelin was detected in all five brain regions examined (cerebral cortex, cerebellum, brain stem, basal ganglia, and hypothalamus) (6-10 fmol/g wet wt) and spinal cord (22 +/- 6 fmol/g wet wt, n = 7, mean +/- SEM). Higher concentrations of IR endothelin were found in the pituitary gland (147 +/- 30 fmol/g wet wt). Fast protein liquid chromatographic analysis of the IR endothelin in pituitary gland showed a large IR peak in the position of endothelin-3 and a smaller peak in the position of endothelin-1, whereas IR endothelin in the hypothalamus and brain stem was mainly endothelin-1. Endothelin messenger RNA was detected by Northern blot hybridization in the pituitary but not in hypothalamus. The receptor assay showed that 125I-endothelin-1 binding sites were present in large numbers in all five brain regions but were much less abundant in the pituitary gland. Binding capacity and dissociation constant were 5052 +/- 740 fmol/mg protein and 0.045 +/- 0.007 nM in brain stem and 963 +/- 181 fmol/mg protein and 0.034 +/- 0.009 nM in hypothalamus. In the pituitary gland, there were two classes of binding sites for endothelin with dissociation constants of 0.059 +/- 0.002 nM (binding capacity = 418 +/- 63 fmol/mg protein) and 0.652 +/- 0.103 nM (binding capacity = 1717 +/- 200 fmol/mg protein). Endothelin-1, -2 and -3 were almost equipotent in displacing the binding (IC50 approximately 0.04 nM). These findings are in accord with the possibility that endothelin acts as a neurotransmitter, neuromodulator or neurohormone in man.

  19. The evolution of sweat glands

    NASA Astrophysics Data System (ADS)

    Folk, G. Edgar; Semken, A.

    1991-09-01

    Mammals have two kinds of sweat glands, apocrine and eccrine, which provide for thermal cooling. In this paper we describe the distribution and characteristics of these glands in selected mammals, especially primates, and reject the suggested development of the eccrine gland from the apocrine gland during the Tertiary geological period. The evidence strongly suggests that the two glands, depending on the presence or absence of fur, have equal and similar functions among mammals; apocrine glands are not primitive. However, there is a unique and remarkable thermal eccrine system in humans; we suggest that this system evolved in concert with bipedalism and a smooth hairless skin.

  20. Human Meibum Lipid Conformation and Thermodynamic Changes with Meibomian-Gland Dysfunction

    PubMed Central

    Borchman, Douglas; Yappert, Marta C.; Bell, James; Wells, Emily; Neravetla, Shantanu; Greenstone, Victoria

    2011-01-01

    Purpose. Instability of the tear film with rapid tear break-up time is a common feature of aqueous-deficient and evaporative dry eye diseases, suggesting that there may be a shared structural abnormality of the tear film that is responsible for the instability. It may be that a change in the normal meibum lipid composition and conformation causes this abnormality. Principle component analyses of infrared spectra of human meibum indicate that human meibum collected from normal donors (Mn) is less ordered than meibum from donors with meibomian gland dysfunction (Md). In this study the conformation of Md was quantified to test this finding. Methods. Changes in lipid conformation with temperature were measured by infrared spectroscopy. There were two phases to our study. In phase 1, the phase transitions of human samples, Mn and Md, were measured. In phase 2, the phase transitions of model lipid standards composed of different waxes and cholesterol esters were measured. Results. The phase-transition temperature was significantly higher (4°C) for the Md compared with the Mn of age-matched donors with no history of dry-eye symptoms. Most (82%) of the phase-transition temperatures measured for Md were above the values for Mn. The small change in the transition temperature was amplified in the average lipid order (stiffness) at 33.4°C. The average lipid order at 33.4°C for Md was significantly higher (30%, P = 0.004) than for Mn. The strength of lipid–lipid interactions was 72% higher for Md than for Mn. The ability of one lipid to influence the melting of adjacent lipids is termed cooperativity. There were no significant differences between Mn and Md in phase-transition cooperativity, nor was there a difference between Mn and Md in the minimum order or maximum order that Mn and Md achieved at very low and very high temperatures, respectively. The model wax studies showed that the phase transition of complex mixtures of natural lipids was set by the level of

  1. [The role of the pineal-thymus system in the regulation of autoimmunity, aging and lifespan].

    PubMed

    Csaba, György

    2016-07-03

    Thymus is an immunoendocrine organ, the hormones of which mainly influence its own lymphatic elements. It has a central role in the immune system, the neonatal removal causes the collapse of immune system and the whole organism. The thymic nurse cells select the bone marrow originated lymphocytes and destroy the autoreactive ones, while thymus originated Treg cells suppress the autoreactive cells in the periphery. The involution of the organ starts after birth, however, this truly happens in the end of puberty only, as before this it is overcompensated by developmental processes. From the end of adolescence the involution allows the life, proliferation and enhanced functioning of some autoreactive cells, which gradually wear down the cells and intercellular materials, causing the aging. The enhanced and mass function of autoreactive cells lead to the autoimmune diseases and natural death. This means that the involution of thymus is not a part of the organismic involution, but an originator of it, which is manifested in the lifespan-pacemaker function. Thus, aging can be conceptualized as a thymus-commanded slow autoimmune process. The neonatal removal of pineal gland leads to the complete destruction of the thymus and the crashing down of the immune system, as well as to wasting disease. The involution of the pineal and thymus runs parallel, because the two organs form a functional unit. It is probable that the pineal gland is responsible for the involution of thymus and also regulates its lifespan determining role. However, the data reviewed here do not prove the exclusive role of the pineal-thymus system in the regulation of aging and lifespan, but only call attention to such possibility.

  2. Neurotranscriptomics: The Effects of Neonatal Stimulus Deprivation on the Rat Pineal Transcriptome

    PubMed Central

    Hartley, Stephen W.; Coon, Steven L.; Savastano, Luis E.; Mullikin, James C.; Fu, Cong; Klein, David C.

    2015-01-01

    The term neurotranscriptomics is used here to describe genome-wide analysis of neural control of transcriptomes. In this report, next-generation RNA sequencing was using to analyze the effects of neonatal (5-days-of-age) surgical stimulus deprivation on the adult rat pineal transcriptome. In intact animals, more than 3000 coding genes were found to exhibit differential expression (adjusted-p < 0.001) on a night/day basis in the pineal gland (70% of these increased at night, 376 genes changed more than 4-fold in either direction). Of these, more than two thousand genes were not previously known to be differentially expressed on a night/day basis. The night/day changes in expression were almost completely eliminated by neonatal removal (SCGX) or decentralization (DCN) of the superior cervical ganglia (SCG), which innervate the pineal gland. Other than the loss of rhythmic variation, surgical stimulus deprivation had little impact on the abundance of most genes; of particular interest, expression levels of the melatonin-synthesis-related genes Tph1, Gch1, and Asmt displayed little change (less than 35%) following DCN or SCGX. However, strong and consistent changes were observed in the expression of a small number of genes including the gene encoding Serpina1, a secreted protease inhibitor that might influence extracellular architecture. Many of the genes that exhibited night/day differential expression in intact animals also exhibited similar changes following in vitro treatment with norepinephrine, a superior cervical ganglia transmitter, or with an analog of cyclic AMP, a norepinephrine second messenger in this tissue. These findings are of significance in that they establish that the pineal-defining transcriptome is established prior to the neonatal period. Further, this work expands our knowledge of the biological process under neural control in this tissue and underlines the value of RNA sequencing in revealing how neurotransmission influences cell biology. PMID

  3. Neurotranscriptomics: The Effects of Neonatal Stimulus Deprivation on the Rat Pineal Transcriptome.

    PubMed

    Hartley, Stephen W; Coon, Steven L; Savastano, Luis E; Mullikin, James C; Fu, Cong; Klein, David C

    2015-01-01

    The term neurotranscriptomics is used here to describe genome-wide analysis of neural control of transcriptomes. In this report, next-generation RNA sequencing was using to analyze the effects of neonatal (5-days-of-age) surgical stimulus deprivation on the adult rat pineal transcriptome. In intact animals, more than 3000 coding genes were found to exhibit differential expression (adjusted-p < 0.001) on a night/day basis in the pineal gland (70% of these increased at night, 376 genes changed more than 4-fold in either direction). Of these, more than two thousand genes were not previously known to be differentially expressed on a night/day basis. The night/day changes in expression were almost completely eliminated by neonatal removal (SCGX) or decentralization (DCN) of the superior cervical ganglia (SCG), which innervate the pineal gland. Other than the loss of rhythmic variation, surgical stimulus deprivation had little impact on the abundance of most genes; of particular interest, expression levels of the melatonin-synthesis-related genes Tph1, Gch1, and Asmt displayed little change (less than 35%) following DCN or SCGX. However, strong and consistent changes were observed in the expression of a small number of genes including the gene encoding Serpina1, a secreted protease inhibitor that might influence extracellular architecture. Many of the genes that exhibited night/day differential expression in intact animals also exhibited similar changes following in vitro treatment with norepinephrine, a superior cervical ganglia transmitter, or with an analog of cyclic AMP, a norepinephrine second messenger in this tissue. These findings are of significance in that they establish that the pineal-defining transcriptome is established prior to the neonatal period. Further, this work expands our knowledge of the biological process under neural control in this tissue and underlines the value of RNA sequencing in revealing how neurotransmission influences cell biology.

  4. Direct reprogramming of human fibroblasts into sweat gland-like cells.

    PubMed

    Zhao, Zhiliang; Xu, Mengyao; Wu, Meng; Ma, Kui; Sun, Mengli; Tian, Xiaocheng; Zhang, Cuiping; Fu, Xiaobing

    2015-01-01

    The skin of patients with an extensive deep burn injury is repaired by a process that leaves a hypertrophic scar without sweat glands and therefore loses the function of perspiration. The aim of this study was to identify whether the key factors related to sweat gland development could directly reprogram fibroblasts into sweat gland-like cells. After introducing the NF-κB and Lef-1 genes into fibroblasts, we found that stably transfected fibroblasts expressed specific markers of sweat glands, including CEA, CK7, CK14 and CK19, both at the protein and mRNA levels. The immunofluorescence staining also showed positive expression of CEA, CK7, CK14 and CK19 in induced fibroblasts, but there were no positive cells in the control groups. The expression of Shh and Cyclin D1, downstream genes of NF-κB and Lef-1, were also significantly increased during regeneration. The induced fibroblasts were implanted into an animal model. Twenty days later, iodine-starch perspiration tests showed that 7 out of the 10 cell-treated paws were positive for perspiration, with a distinctive black point-like area appearing in the center of the paw. Contralateral paws tested negative. Histological examination of skin biopsies from experimental and control paws revealed that sweat glands were fully reconstructed in the test paws, with integral, secretory and ductal portions, but were not present in the control paws. This is the first report of successful reprogramming of fibroblasts into sweat gland-like cells, which will provide a new cell source for sweat gland regeneration in patients with extensive deep burns.

  5. Associated expressions of FGFR-2 and FGFR-3: from mouse mammary gland physiology to human breast cancer.

    PubMed

    Cerliani, Juan P; Vanzulli, Silvia I; Piñero, Cecilia Pérez; Bottino, María C; Sahores, Ana; Nuñez, Myriam; Varchetta, Romina; Martins, Rubén; Zeitlin, Eduardo; Hewitt, Stephen M; Molinolo, Alfredo A; Lanari, Claudia; Lamb, Caroline A

    2012-06-01

    Fibroblast growth factor receptors (FGFRs) are tyrosine kinase receptors which have been implicated in breast cancer. The aim of this study was to evaluate FGFR-1, -2, -3, and -4 protein expressions in normal murine mammary gland development, and in murine and human breast carcinomas. Using immunohistochemistry and Western blot, we report a hormonal regulation of FGFR during postnatal mammary gland development. Progestin treatment of adult virgin mammary glands resulted in changes in localization of FGFR-3 from the cytoplasm to the nucleus, while treatment with 17-β-estradiol induced changes in the expressions and/or localizations of FGFR-2 and -3. In murine mammary carcinomas showing different degrees of hormone dependence, we found progestin-induced increased expressions, mainly of FGFR-2 and -3. These receptors were constitutively activated in hormone-independent variants. We studied three luminal human breast cancer cell lines growing as xenografts, which particularly expressed FGFR-2 and -3, suggesting a correlation between hormonal status and FGFR expression. Most importantly, in breast cancer samples from 58 patients, we found a strong association (P < 0.01; Spearman correlation) between FGFR-2 and -3 expressions and a weaker correlation of each receptor with estrogen receptor expression. FGFR-4 correlated with c-erbB2 over expression. We conclude that FGFR-2 and -3 may be mechanistically linked and can be potential targets for treatment of estrogen receptor-positive breast cancer patients.

  6. Transduction of light in the suprachiasmatic nucleus: evidence for two different neurochemical cascades regulating the levels of Per1 mRNA and pineal melatonin.

    PubMed

    Paul, K N; Fukuhara, C; Tosini, G; Albers, H E

    2003-01-01

    The suprachiasmatic nucleus (SCN) contains a circadian clock and regulates melatonin synthesis in the pineal gland. Light exposure during the subjective night acutely increases the mRNA levels of the Period (Per)1 gene in the SCN and acutely suppresses melatonin levels in the pineal gland. Activation of N-methyl-D-aspartate (NMDA) receptors in the SCN has been demonstrated to phase-shift the circadian clock in a manner similar to light. We tested the hypothesis that activation of excitatory amino acid (EAA) receptors in the SCN mediates the acute effects of light on Per1 mRNA levels and pineal melatonin. NMDA, injected into the SCN of Syrian hamsters during the night, acutely suppressed melatonin levels in the pineal gland. Both the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5) and the alpha-amino-3-hydroxy-5-methylisoxazoleproprionic acid (AMPA)/kainate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) inhibited the light-induced increase of Per1 mRNA levels in the SCN. In the same animals, however, these antagonists had no effect on the ability of light to suppress pineal melatonin. These results support the hypothesis that EAA receptor activation in the SCN is necessary for the acute effects of light on Per1 mRNA levels. They also indicate that NMDA receptor activation in the SCN is sufficient but may not be necessary for the acute effects of light on pineal melatonin. These data suggest that there may be at least two different neurochemical cascades that transduce the effects of light in the SCN

  7. Diffusion characteristics of pediatric pineal tumors

    PubMed Central

    Whitehead, Matthew T; Siddiqui, Adeel; Klimo, Paul; Boop, Frederick A

    2015-01-01

    Background Diffusion weighted imaging (DWI) has been shown to be helpful in characterizing tumor cellularity, and predicting histology. Several works have evaluated this technique for pineal tumors; however studies to date have not focused on pediatric pineal tumors. Objective We evaluated the diffusion characteristics of pediatric pineal tumors to confirm if patterns seen in studies using mixed pediatric and adult populations remain valid. Materials and methods This retrospective study was performed after Institutional Review Board approval. We retrospectively evaluated all patients 18 years of age and younger with pineal tumors from a single institution where preoperative diffusion weighted imaging as well as histologic characterization was available. Results Twenty patients (13 male, 7 female) with pineal tumors were identified: seven with pineoblastoma, four with Primitive Neuroectodermal Tumor (PNET), two with other pineal tumors, and seven with germ cell tumors including two germinomas, three teratomas, and one mixed germinoma-teratoma. The mean apparent diffusion coefficient (ADC) values in pineoblastoma (544 ± 65 × 10–6 mm2/s) and pineoblastoma/PNET (595 ± 144 × 10–6 mm2/s) was lower than that of the germ cell tumors (1284 ± 334 × 10–6 mm2/s; p < 0.0001 vs pineoblastoma). One highly cellular germinoma had an ADC value of 694 × 10–6 mm2/s. Conclusion ADC values can aid in differentiation of pineoblastoma/PNET from germ cell tumors in a population of children with pineal masses. PMID:25963154

  8. Confocal microscopy with double immunofluorescence staining reveals the functional transient receptor potential vanilloid subtype 1 expressed in myoepithelial cells of human submandibular glands.

    PubMed

    Ding, Qianwen; Zhang, Yan; Cong, Xin; Cai, Zhigang; Han, Jingyan; Su, Yunchao; Wu, Li-Ling; Yu, Guan-Gyan

    2012-05-01

    Myoepithelial cells (MECs) mainly surround acini and intercalated ducts in the human salivary glands. The contraction of MECs provides the expulsive force to promote salivation. We previously found functional transient receptor potential vanilloid subtype 1 (TRPV1) was expressed in rabbit and human submandibular glands and increased saliva secretion. However, it was unknown whether TRPV1 was expressed in MECs of submandibular glands. In this study, we observed the immunoflourescence of TRPV1 was not only located in serous acini and ducts but also surround the basal layer of the acinus and intercalated ducts of human submandibular glands. Double immunofluorescence staining revealed colocalization of TRPV1 with calponin, vimentin, and α-smooth muscle actin, which indicated the myoepithelial expression of TRPV1. Treating submandibular gland tissues with capsaicin, an agonist of TRPV1, substantially increased the phosphorylation of the 20-kDa regulatory light-chain subunit of myosin (MLC(20) ), a crucial molecule for contraction of smooth muscle cells, in MECs. Pretreatment with capsazepine, a specific TRPV1 inhibitor, blocked capsaicin-induced MLC(20) phosphorylation. These results suggest that TRPV1 is expressed in MECs of the human submandibular gland and mediates myoepithelial contraction via a mechanism involving MLC(20) phosphorylation.

  9. Prostaglandin protection of human isolated gastric glands against indomethacin and ethanol injury. Evidence for direct cellular action of prostaglandin.

    PubMed Central

    Tarnawski, A; Brzozowski, T; Sarfeh, I J; Krause, W J; Ulich, T R; Gergely, H; Hollander, D

    1988-01-01

    Isolated human gastric glands from surgical specimens were preincubated in an oxygenated medium with placebo or 16,16 dimethyl prostaglandin E2 (dmPGE2) and incubated at 37 degrees C in either medium alone, medium containing 4.43 mM indomethacin or medium containing 8% ethanol. We assessed the viability of gland cells with fast green exclusion, release of lactate dehydrogenase (LDH) into the medium, and ultrastructural damage by scanning and transmission electron microscopy. Both indomethacin and ethanol significantly reduced the viability of placebo-pretreated glands, increased LDH release into the medium, and produced prominent ultrastructural damage. DmPGE2 significantly reduced both indomethacin and ethanol-induced injury, increased the number of viable cells, reduced LDH release, and diminished the extent of ultrastructural damage. These studies indicate that PG protection of gastric mucosal cells has a direct cellular action that is not limited to replacement of depleted endogenous PGs. PG protection in our experiments did not depend on PG's previously described systemic actions, such as protection of the microvessels, preservation of the mucosal blood flow, or stimulation of bicarbonate and mucus secretion. Images PMID:3350966

  10. Aging and Oxidative Stress Decrease Pineal Elongation Factor 2: In Vivo Protective Effect of Melatonin in Young Rats Treated With Cumene Hydroperoxide.

    PubMed

    Muñoz, Mario F; Argüelles, Sandro; Cano, Mercedes; Marotta, Francesco; Ayala, Antonio

    2017-01-01

    We studied the alterations of Elongation Factor 2 (eEF2) in the pineal gland of aged rats as well as the possible protective role of exogenous melatonin on these changes in young rats treated with cumene hydroperoxide (CH), a compound that promotes lipid peroxidation and inhibits protein synthesis. The study was performed using male Wistar rats of 3 (control), 12, and 24 months and 3-month-old rats treated with CH, melatonin, and CH plus melatonin. We found that pineal eEF-2 is affected by aging and CH, these changes being prevented by exogenous melatonin in the case of CH-treated rats. The proteomic studies show that many other proteins are affected by aging and oxidative stress in the pineal gland. The results suggest that one of the possible mechanisms underlying pineal gland dysfunction during aging is the effect of lipid peroxidation on eEF-2, which is a key component of protein synthesis machinery. J. Cell. Biochem. 118: 182-190, 2017. © 2016 Wiley Periodicals, Inc.

  11. Multipotent nestin-positive stem cells reside in the stroma of human eccrine and apocrine sweat glands and can be propagated robustly in vitro.

    PubMed

    Nagel, Sabine; Rohr, Franziska; Weber, Caroline; Kier, Janina; Siemers, Frank; Kruse, Charli; Danner, Sandra; Brandenburger, Matthias; Matthiessen, Anna Emilia

    2013-01-01

    Human skin harbours multiple different stem cell populations. In contrast to the relatively well-characterized niches of epidermal and hair follicle stem cells, the localization and niches of stem cells in other human skin compartments are as yet insufficiently investigated. Previously, we had shown in a pilot study that human sweat gland stroma contains Nestin-positive stem cells. Isolated sweat gland stroma-derived stem cells (SGSCs) proliferated in vitro and expressed Nestin in 80% of the cells. In this study, we were able to determine the precise localization of Nestin-positive cells in both eccrine and apocrine sweat glands of human axillary skin. We established a reproducible isolation procedure and characterized the spontaneous, long-lasting multipotent differentiation capacity of SGSCs. Thereby, a pronounced ectodermal differentiation was observed. Moreover, the secretion of prominent cytokines demonstrated the immunological potential of SGSCs. The comparison to human adult epidermal stem cells (EpiSCs) and bone marrow stem cells (BMSCs) revealed differences in protein expression and differentiation capacity. Furthermore, we found a coexpression of the stem cell markers Nestin and Iα6 within SGSCs and human sweat gland stroma. In conclusion the initial results of the pilot study were confirmed, indicating that human sweat glands are a new source of unique stem cells with multilineage differentiation potential, high proliferation capacity and remarkable self renewal. With regard to the easy accessibility of skin tissue biopsies, an autologous application of SGSCs in clinical therapies appears promising.

  12. Evidence of immune system melatonin production by two pineal melatonin deficient mice, C57BL/6 and Swiss strains.

    PubMed

    Gómez-Corvera, Araceli; Cerrillo, Isabel; Molinero, Patrocinio; Naranjo, Maria Carmen; Lardone, Patricia Judith; Sanchez-Hidalgo, Marina; Carrascosa-Salmoral, Maria Pilar; Medrano-Campillo, Pablo; Guerrero, Juan Miguel; Rubio, Amalia

    2009-08-01

    We evaluated two pineal melatonin deficient mice described in the literature, i.e., C57BL/6 and Swiss mice, as animal models for studying the immunomodulatory action of melatonin. Plasma melatonin levels in C57BL/6 and Swiss strains were detectable, but lower than levels in control C3H/HENHSD mice. Since these strains are suppose to be pineal melatonin deficient an extrapineal melatonin synthesis may contribute to plasma levels. Regarding cells and tissues from the immune system, all of them were found to synthesize melatonin although at low levels. N-acetyltransferase (AANAT) mRNA was also amplified in order to analyze the alternative splicing between exons 3-4 described for pineal C57BL/6 mice which generates an inclusion of a pseudoexon of 102 bp. For the pineal gland, both the wild type and the mutant isoforms were present in all mice strains although in different proportions. We observed a predominant wild type AANAT mature RNA in thymus, spleen and bone marrow cells. Peripheral blood mononuclear cells (PBMC) culture shown an evident AANAT amplification in all strains studied. Although the bands detected were less intense in melatonin deficient mice, the amplification almost reached the control cell intensity after stimulation with phytohemaglutinin (PHA). In summary, melatonin detection and AANAT mRNA expression in inbred and outbred mice clearly indicate that different cells and tissues from the immune system are able to synthesize melatonin. Thus, the pineal defect seems not to be generalized to all tissues, suggesting that other cells may compensate the low pineal melatonin production contributing to the measurable plasma melatonin level.

  13. Split gland

    DOEpatents

    Petranto, Joseph J.

    1989-01-01

    A split gland having only three parts is described. The gland has substantially the same stability to the relative motion of the constituent half-gland members during the attachment process to a female fitting as have more complicated designs. Ease of manufacture and use result from the reduction in complexity of the present invention.

  14. Split gland

    DOEpatents

    Petranto, J.J.

    1989-09-05

    A split gland having only three parts is described. The gland has substantially the same stability to the relative motion of the constituent half-gland members during the attachment process to a female fitting as have more complicated designs. Ease of manufacture and use result from the reduction in complexity of the present invention. 15 figs.

  15. Human eccrine sweat gland cells reconstitute polarized spheroids when subcutaneously implanted with Matrigel in nude mice.

    PubMed

    Li, Haihong; Zhang, Mingjun; Chen, Liyun; Li, Xuexue; Zhang, Bingna

    2016-10-01

    Increasing evidence indicates that maintenance of cell polarity plays a pivotal role in the regulation of glandular homeostasis and function. We examine the markers for polarity at different time points to investigate the formation of cell polarity during 3D reconstitution of eccrine sweat glands. Mixtures of eccrine sweat gland cells and Matrigel were injected subcutaneously into the inguinal regions of nude mice. At 2, 3, 4, 5 and 6 weeks post-implantation, Matrigel plugs were removed and immunostained for basal collagen IV, lateral β-catenin, lateroapical ZO-1 and apical F-actin. The results showed that the cell polarity of the spheroids appeared in sequence. Formation of basal polarity was prior to lateral, apical and lateroapical polarity. Collagen IV was detected basally at 2 weeks, β-catenin laterally and ZO-1 lateroapically at 3 weeks, and F-actin apically at 4 weeks post-implantation. At week 5 and week 6, the localization and the positive percentage of collagen IV, β-catenin, ZO-1 or F-actin in spheroids was similar to that in native eccrine sweat glands. We conclude that the reconstituted 3D eccrine sweat glands are functional or potentially functional.

  16. Pineal organs in deep demersal fish.

    PubMed

    Wagner, H J; Mattheus, U

    2002-01-01

    We studied ten species of demersal fish from depths of 1500-4800 m, i.e. regions of the abyss outside the reach of sunlight. A pineal window in the skin and/or the skull, often found in mesopelagic fish, was never observed in demersal specimens. Nine species had a well-developed pineal organ, with light- and electron-microscopic features, well known in other teleosts living in surface waters, including photoreceptor cells with inner and outer segments, synaptic ribbons, neuronal perikarya, and (radial) glial cells. One species ( Bathypterois dubius) showed signs of regression; it also had reduced eyes. We observed considerable morphological variation in location, size, microscopic structure and ultrastructural organisation, including the frequency of photoreceptor cells, size of outer segments and the number of myelinated and unmyelinated axons. No systematic trend in the sense of an increase of sensitivity with greater depths was observed. Melatonin contents varied between 4 pg and 92 pg per pineal in the grenadier Coryphaenoides ( Nematonurus) armatus and between 2 pg and 70 pg per pineal in the eel Synaphobranchus kaupi. Differences between day and night values and between autumn and spring suggest that pineal melatonin acts as neurochemical signal mediating rhythmic processes and behaviour. The role of an alternative non-solar zeitgeber in the demersal environment is discussed.

  17. Calcium-sensing receptor expression and parathyroid hormone secretion in hyperplastic parathyroid glands from humans.

    PubMed

    Cañadillas, Sagrario; Canalejo, Antonio; Santamaría, Rafael; Rodríguez, Maria E; Estepa, Jose C; Martín-Malo, Alejandro; Bravo, Juan; Ramos, Blanca; Aguilera-Tejero, Escolastico; Rodríguez, Mariano; Almadén, Yolanda

    2005-07-01

    In uremic patients, severe parathyroid hyperplasia is associated with reduced parathyroid calcium-sensing receptor (CaR) expression. Thus, in these patients, a high serum Ca concentration may be required to inhibit parathyroid hormone (PTH) secretion. This study compares the magnitude of reduction in CaR expression and the degree of the abnormality in Ca-regulated PTH release in vitro. A total of 50 glands from 23 hemodialysis patients with refractory hyperparathyroidism were studied. Tissue slices were incubated in vitro to evaluate (1) the PTH secretory output in a normal Ca concentration (1.25 mM) and (2) the PTH secretory response to high (1.5 mM) and low (0.6 mM) Ca concentration. Tissue aliquots were processed for determination of CaRmRNA expression. The results showed that, corrected for DNA, parathyroid tissue with lowest CaR expression secreted more PTH than that with relatively high CaR expression (146 +/- 23 versus 60 +/- 2 pg/microg DNA; P < 0.01). Furthermore, glands with low CaR expression demonstrated a blunted PTH secretory response to both the inhibitory effect of high Ca and the stimulatory effect of low Ca. The study also showed that the larger the gland, the lower the CaRmRNA expression. Thus, large parathyroid glands produce a large amount of PTH not only as a result of the increased gland size but also because the parathyroid tissue secretory output is increased. These abnormalities in PTH regulation are related to low CaR expression.

  18. Constitution and behavior of follicular structures in the human anterior pituitary gland.

    PubMed Central

    Ciocca, D. R.; Puy, L. A.; Stati, A. O.

    1984-01-01

    The follicular structures present in the human pituitary gland were studied, at the light-microscopic level, using histochemical and immunocytochemical techniques. The antisera applied in the peroxidase-antiperoxidase procedure were anti-hFSH beta, anti-hLH beta, anti-hPRL, anti-hGH, anti-hTSH beta, anti-hLPH beta, anti-pACTH, and anti-hACTH. In the 10 normal pituitaries examined, follicles were always found in the three areas of the adenohypophysis. The wall of the pars distalis follicles sho