Science.gov

Sample records for human pineal gland

  1. Characterization of human pineal gland proteome.

    PubMed

    Yelamanchi, Soujanya D; Kumar, Manish; Madugundu, Anil K; Gopalakrishnan, Lathika; Dey, Gourav; Chavan, Sandip; Sathe, Gajanan; Mathur, Premendu P; Gowda, Harsha; Mahadevan, Anita; Shankar, Susarla K; Prasad, T S Keshava

    2016-11-15

    The pineal gland is a neuroendocrine gland located at the center of the brain. It is known to regulate various physiological functions in the body through secretion of the neurohormone melatonin. Comprehensive characterization of the human pineal gland proteome has not been undertaken to date. We employed a high-resolution mass spectrometry-based approach to characterize the proteome of the human pineal gland. A total of 5874 proteins were identified from the human pineal gland in this study. Of these, 5820 proteins were identified from the human pineal gland for the first time. Interestingly, 1136 proteins from the human pineal gland were found to contain a signal peptide domain, which indicates the secretory nature of these proteins. An unbiased global proteomic profile of this biomedically important organ should benefit molecular research to unravel the role of the pineal gland in neuropsychiatric and neurodegenerative diseases.

  2. Neuropeptide Y in the adult and fetal human pineal gland.

    PubMed

    Møller, Morten; Phansuwan-Pujito, Pansiri; Badiu, Corin

    2014-01-01

    Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we show by use of immunohistochemistry that neuropeptide Y is present in nerve fibers of the adult human pineal gland. The fibers are classical neuropeptidergic fibers endowed with large boutons en passage and primarily located in a perifollicular position with some fibers entering the pineal parenchyma inside the follicle. The distance from the immunoreactive terminals to the pinealocytes indicates a modulatory function of neuropeptide Y for pineal physiology. Some of the immunoreactive fibers might originate from neurons located in the brain and be a part of the central innervation of the pineal gland. In a series of human fetuses, neuropeptide Y-containing nerve fibers was present and could be detected as early as in the pineal of four- to five-month-old fetuses. This early innervation of the human pineal is different from most rodents, where the innervation starts postnatally.

  3. The pineal gland - Its possible roles in human reproduction

    NASA Technical Reports Server (NTRS)

    Brzezinski, Amnon; Wurtman, Richard J.

    1988-01-01

    The paper discusses the role of the pineal gland in controlling mammalian reproduction, with particular attention given to the role of melatonin in polyestrus mammals, like humans and laboratory rodents. Evidence is cited indicating the influence of melatonin production and blood content on the age of puberty, the timing of the ovulatory cycle, gonadal steriodogenesis, and patterns of reproductive behavior. It is suggested that abnormal patterns of melatonin might be associated with amenorrhea, anovulation, unexplained infertility, premature menopause, and habitual abortions.

  4. The pineal gland - Its possible roles in human reproduction

    NASA Technical Reports Server (NTRS)

    Brzezinski, Amnon; Wurtman, Richard J.

    1988-01-01

    The paper discusses the role of the pineal gland in controlling mammalian reproduction, with particular attention given to the role of melatonin in polyestrus mammals, like humans and laboratory rodents. Evidence is cited indicating the influence of melatonin production and blood content on the age of puberty, the timing of the ovulatory cycle, gonadal steriodogenesis, and patterns of reproductive behavior. It is suggested that abnormal patterns of melatonin might be associated with amenorrhea, anovulation, unexplained infertility, premature menopause, and habitual abortions.

  5. [Age-dependent morphology of human pineal gland: supravital study].

    PubMed

    Ivanov, S V

    2007-01-01

    On the base of analysis of 5784 events of diagnostic magnetic-resonance tomography studies of the head of patients in radio diagnosis departments the database is formed. Only events (n=411) without cerebral, oncology, endocrine and other pathology are taken in database. The material was grouped to time and date of the study, sex and age in accordance with generally accepted categorization. Maximum linear sizes of pineal gland and hypophysis cerebri in sagittal, axial and coronar projection were measured in all events; volumes of the organs were calculated on the formula of a ball. It is defined that the volume of pineal gland increases from birth till 17-21 year age, gradually falls till the second mature age and is getting stable in old age. The normative factors of the volume of pineal gland and hypophysis cerebri for 8 age groups are determined. "Brain sand" and false cysts in pineal gland can be observed in all age groups. The petrification degree of pineal gland, as of computer tomography, varies from 30 to 277 ed. HV. For the factor of pineal gland volume and factor of cysts frequency in pineal gland a puberty "collapse" is typical, mainly in men.

  6. Pineal gland in old age; quantitative and qualitative morphological study of 168 human autopsy cases.

    PubMed

    Hasegawa, A; Ohtsubo, K; Mori, W

    1987-04-21

    Age-related changes of human pineal gland were studied morphologically on 168 autopsy cases. Pineal weight in the formalin-fixed condition was 99 +/- 56 mg in males (n = 88, mean age 78 years) and 91 +/- 41 mg in females (n = 80, mean age 79 years), which showed no sexual difference (P = 0.290). There was no correlation between pineal weight and age of the patient (r = 0.0678, P = 0.191, n = 168). The pineal volume calculated as a spheroid was directly proportional to the weight (r = 0.904, n = 167, P = 0.000). A significant correlation existed between pineal weight and the degree of calcification (r = 0.231, P = 0.002, n = 156). The density of the pineals decreased with age (r = -0.164, P = 0.017, n = 167). The degree of calcification and cyst formation did not increase with age, but the grade of cyst formation was related to the pineal volume (P = 0.0002). Some pineals of the patients over 90 years old showed no calcification and appeared indistinguishable from the ones of the younger subjects. The weight and volume of the pineals of the patients with hypertension was appreciably greater than those of the non-hypertensive patients. These results indicate that human pineals do not necessarily degenerate progressively after involution.

  7. Growth patterns for acervuli in human pineal gland

    PubMed Central

    Kim, Jinkyung; Kim, Hyun-Wook; Chang, Soeun; Kim, Jee Woong; Je, Jung Ho; Rhyu, Im Joo

    2012-01-01

    Acervuli are calcified concretions in the pineal gland (PG). Particularly interesting are their incidence and size, which are believed to affect neurological disorders and many physiological functions of PG such as regulating circadian rhythm. Despite long investigations for a century, detailed growth mechanism of acervuli has yet to be studied. Here we study the growth morphology of acervuli in human PGs by a direct visualization in 3-dimension (3-D) using a synchrotron X-ray imaging method. For an entire PG, non-aggregated acervuli show Gaussian distribution in size with 47±28 µm. The 3-D volume rendered images of acervuli reveal that the bumpy surfaces developed by lamination result in the mulberry-like structure. In addition, coalescence of multiple acervuli leads to large-scale lamination on the whole aggregate. We suggest a novel hypothesis on the growth patterns of acervuli by their nucleation density (Nd): i) mulberry-like structure at low Nd, and ii) large-scale lamination on an aggregate at high Nd. PMID:23248747

  8. Calcification in the human choroid plexus, meningiomas and pineal gland.

    PubMed

    Alcolado, J C; Moore, I E; Weller, R O

    1986-01-01

    Calcification in the stroma of adult telencephalic choroid plexus was studied of 20 postmortem brains and one biopsy by light microscopy, transmission and scanning electron microscopy and compared with calcification in psammoma bodies in normal arachnoid, five spinal meningiomas and in calcospherites of six pineal glands. Fifteen fetal and newborn choroid plexuses were also examined by light microscopy. Calcium deposition was observed in the subepithelial regions of the adult choroid plexus, in the walls of blood vessels but was mostly seen in spherical psammoma bodies. Collagen whorls 20-60 microns in diameter and surrounded by arachnoid cells, were observed in the stroma of the choroid plexus; calcium, phosphorous and iron were deposited in the collagen whorls to form psammoma bodies. Matrix vesicles and spicules resembling hydroxyapatite were associated with the arachnoid cells surrounding the collagen whorls and with the collagen fibres within the whorls. The dense amorphous calcified core of each psammoma body was surrounded by an outer coating of entwined collagen fibres readily visible by scanning electron microscopy. Similar psammoma bodies were occasionally observed in normal arachnoid. Psammoma bodies in meningiomas resembled those in the choroid plexus stroma. Calcospherites in the pineal differed from psammoma bodies; they were lobulated, more irregular in shape and did not have a collagen base. The results of this study suggest that psammoma bodies in the choroid plexus, as in meningiomas, form by a process of dystrophic calcification associated with arachnoid cells and collagen fibres. The presence of iron in the choroid plexus psammoma bodies may be a result of haemorrhage into the stroma. The mechanism of calcification in pineal remains unclear.

  9. Association of mast cells with calcification in the human pineal gland.

    PubMed

    Maślińska, Danuta; Laure-Kamionowska, Milena; Deręgowski, Krzysztof; Maśliński, Sławomir

    2010-01-01

    Increased pineal calcifications and decreased pineal melatonin biosynthesis, both age related, support the notion of a pineal bio-organic timing mechanism. The role of calcification in the pathogenesis of pineal gland dysfunction remains unknown but the available data document that calcification is an organized, regulated process, rather than a passive aging phenomenon. The cellular biology and micro-environmental conditions required for calcification remain poorly understood but most studies have demonstrated evidence that mast cells are strongly implicated in this process. The aim of the present study was to examine the phenotype of mast cells associated with early stages and with the progressive development of calcification in the human pineal gland. The study was performed on pineal samples of 170 fetuses and children whose brains were autopsied and diagnosed during 1998-2002. The representative cerebral and pineal specimens were stained with haematoxylin and eosin or the von Kossa staining technique and for the distribution of mast cell tryptase, mast cell chymase, histamine H4 receptor and vascular network using biotinylated Ulex europaeus agglutinin. Tryptase mast cells were found in all stages of pineal gland development independently of the presence of local tissue lesions. All of them were always localized in the close vicinity of the blood vessels and expressed immunoreactivity to histamine H4 receptor antibody. Immunolocalization of mast cells by chymase antibody (and following dual immunostaining with both chymase and tryptase antibodies) demonstrated that these cells were few in number and were located in the subcapsular region of the gland. In our study, all functional mast cells that underwent activation and were co-localized with deposits of calcium did not contain chymase. All of them were stained with tryptase and represent the MC-T phenotype. Tryptase mast cells and extracellular tryptase were often associated with areas of early and more

  10. [Histology of the pineal gland in the elderly human].

    PubMed

    Gusek, W

    1983-05-01

    2700 Non-selected pineal bodies from autopsied infants and subjects up to the 9th decade were weighted and studied histologically. The results show, that post-pubertal atrophy does not occur. Histologically, no sex-specific difference exists. Variations in weight are present only. In the first decade the mean weight is 80-100 mg, rising steadily to reach a maximum of 150-160 mg in the fifth decade. Later on the pineal, on an average, is larger and heavier in women. Pineal weight relationship to the hypophysis and the brain remains constant throughout adult life. In advanced age a general increase in the amount of supporting tissue is observed corresponding to structural fibrosis also occurring in other organs. This shows no age-dependent distribution pattern, does not occur at the expense of the parenchymal cells and is not related to calcification or weight. Calcifications, fibroses glioses and cysts are already found in neonates, statistically only being more frequently present in the higher age groups. A true, general, selective senile atrophy of the pineal does not occur, even in relation to the weight of the brain in the same decade. The quantitative and qualitative analysis of the elements, based on radiofluorescence and radiorefraction, will be discussed in detail. The causes of the recently reported depression of reagibility are still in discussion.

  11. Morphology of pineal glands in human foetuses and infants with brain lesions.

    PubMed

    Laure-Kamionowska, Milena; Maślińska, Danuta; Deregowski, Krzysztof; Czichos, Elzbieta; Raczkowska, Barbara

    2003-01-01

    The pineal gland is an organ involved in regulation of homeostasis and body rhythms. It plays an important role in the growth foetuses and adaptation of newborns to new environmental conditions. The requirements of foetuses and newborns progressively change during development. The purpose of the study was to evaluate morphological changes of pineal glands in foetuses and infants with brain lesions. The results of our study showed that parenchyma of developing pineal glands was susceptible to injury in most autopsied foetal and infantile cases. Morphological changes in pineal glands were found in 90% of autopsied brains but 100% of the cases had infections. The lesions in the pineal included mainly haemorrhagic, necrotic and cystic changes. In our autopsied foetuses and children, morphological changes in pineal glands were concomitant with various lesions of brain parenchyma. All results of our study lead to the conclusion that the pineal gland during its development is very susceptible to injury. The failure of normal pineal gland development and subsequent impaired production of melatonin decrease resistance of newborns and children to various environmental harmful agents.

  12. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases.

    PubMed

    Stehle, Jörg H; Saade, Anastasia; Rawashdeh, Oliver; Ackermann, Katrin; Jilg, Antje; Sebestény, Tamás; Maronde, Erik

    2011-08-01

    The human pineal gland is a neuroendocrine transducer that forms an integral part of the brain. Through the nocturnally elevated synthesis and release of the neurohormone melatonin, the pineal gland encodes and disseminates information on circadian time, thus coupling the outside world to the biochemical and physiological internal demands of the body. Approaches to better understand molecular details behind the rhythmic signalling in the human pineal gland are limited but implicitly warranted, as human chronobiological dysfunctions are often associated with alterations in melatonin synthesis. Current knowledge on melatonin synthesis in the human pineal gland is based on minimally invasive analyses, and by the comparison of signalling events between different vertebrate species, with emphasis put on data acquired in sheep and other primates. Together with investigations using autoptic pineal tissue, a remnant silhouette of premortem dynamics within the hormone's biosynthesis pathway can be constructed. The detected biochemical scenario behind the generation of dynamics in melatonin synthesis positions the human pineal gland surprisingly isolated. In this neuroendocrine brain structure, protein-protein interactions and nucleo-cytoplasmic protein shuttling indicate furthermore a novel twist in the molecular dynamics in the cells of this neuroendocrine brain structure. These findings have to be seen in the light that an impaired melatonin synthesis is observed in elderly and/or demented patients, in individuals affected by Alzheimer's disease, Smith-Magenis syndrome, autism spectrum disorder and sleep phase disorders. Already, recent advances in understanding signalling dynamics in the human pineal gland have significantly helped to counteract chronobiological dysfunctions through a proper restoration of the nocturnal melatonin surge.

  13. The pineal gland from development to function.

    PubMed

    Sapède, Dora; Cau, Elise

    2013-01-01

    The pineal gland is a small neuroendocrine organ whose main and most conserved function is the nighttime secretion of melatonin. In lower vertebrates, the pineal gland is directly photosensitive. In contrast, in higher vertebrates, the direct photosensitivity of the pineal gland had been lost. Rather, the action of this gland as a relay between environmental light conditions and body functions involves reception of light information by the retina. In parallel to this sensory regression, the pineal gland (and its accessory organs) appears to have lost several functions in relation to light and temperature, which are important in lower vertebrate species. In humans, the functions of the pineal gland overlap with the functions of melatonin. They are extremely widespread and include general effects both on cell protection and on more precise functions, such as sleep and immunity. Recently, the role of melatonin has received a considerable amount of attention due to increased cancer risk in shift workers and the discovery that patients suffering from neurodegenerative diseases, autism, or depression exhibit abnormal melatonin rhythms.

  14. Dynamics in enzymatic protein complexes offer a novel principle for the regulation of melatonin synthesis in the human pineal gland.

    PubMed

    Maronde, Erik; Saade, Anastasia; Ackermann, Katrin; Goubran-Botros, Hany; Pagan, Cecile; Bux, Roman; Bourgeron, Thomas; Dehghani, Faramarz; Stehle, Jörg H

    2011-08-01

    Time of day is communicated to the body through rhythmic cues, including pineal gland melatonin synthesis, which is restricted to nighttime. Whereas in most rodents transcriptional regulation of the arylalkylamine N-acetyltransferase (Aanat) gene is essential for rhythmic melatonin synthesis, investigations into nonrodent mammalian species have shown post-transcriptional regulation to be of central importance, with molecular mechanisms still elusive. Therefore, human pineal tissues, taken from routine autopsies were allocated to four time-of-death groups (night/dawn/day/dusk) and analyzed for daytime-dependent changes in phosphorylated AANAT (p31T-AANAT) and in acetyl-serotonin-methyltransferase (ASMT) expression and activity. Protein content, intracellular localization, and colocalization of p31T-AANAT and ASMT were assessed, using immunoblotting, immunofluorescence, and immunoprecipitation techniques. Fresh sheep pineal gland preparations were used for comparative purposes. The amount of p31T-AANAT and ASMT proteins as well as their intracellular localization showed no diurnal variation in autoptic human and fresh sheep pineal glands. Moreover, in human and sheep pineal extracts, AANAT could not be dephosphorylated, which was at variance to data derived from rat pineal extracts. P31T-AANAT and ASMT were often found to colocalize in cellular rod-like structures that were also partly immunoreactive for the pinealocyte process-specific marker S-antigen (arrestin) in both, human and sheep pinealocytes. Protein-protein interaction studies with p31T-AANAT, ASMT, and S-antigen demonstrated a direct association and formation of robust complexes, involving also 14-3-3. This work provides evidence for a regulation principle for AANAT activity in the human pineal gland, which may not be based on a p31T-AANAT phosphorylation/dephosphorylation switch, as described for other mammalian species.

  15. Descartes and the pineal gland in animals: a frequent misinterpretation.

    PubMed

    Finger, S

    1995-01-01

    René Descartes presented a number of reasons for his choice of the pineal gland as a logical place for the soul to interact with the physical machinery of the body. It is often stated that one of his reasons was that he believed animals do not have pineal glands, whereas humans alone possess a soul and this small structure. This is a misinterpretation of Descartes. The philosopher knew that barnyard and other animals possess pineal glands, having seen this with his own eyes. His point was that the pineal is unique in humans only because of a special function - acting as the seat for the rational soul.

  16. Lymphopoiesis in the chicken pineal gland

    SciTech Connect

    Cogburn, L.A.; Glick, B.

    1981-10-01

    Pineal lymphoid development was studied in two breeds of chickens from hatching until sexual maturity. No lymphocytes were found in the pineal prior to 9 days of age (da). Lymphocytes migrate through the endothelium of venules into the pineal stroma. Lymphoid tissue reached its maximal accumulation in 32-da pineal glands of both breeds. At this age, the New Hampshire (NH) breed had a larger proportion of lymphoid volume to total pineal volume (32%) than did pineal glands from White Leghorn (WL) chickens (18%).

  17. Circadian regulation of pineal gland rhythmicity.

    PubMed

    Borjigin, Jimo; Zhang, L Samantha; Calinescu, Anda-Alexandra

    2012-02-05

    The pineal gland is a neuroendocrine organ of the brain. Its main task is to synthesize and secrete melatonin, a nocturnal hormone with diverse physiological functions. This review will focus on the central and pineal mechanisms in generation of mammalian pineal rhythmicity including melatonin production. In particular, this review covers the following topics: (1) local control of serotonin and melatonin rhythms; (2) neurotransmitters involved in central control of melatonin; (3) plasticity of the neural circuit controlling melatonin production; (4) role of clock genes in melatonin formation; (5) phase control of pineal rhythmicity; (6) impact of light at night on pineal rhythms; and (7) physiological function of the pineal rhythmicity.

  18. Pineal Gland Agenesis: Review and Case Illustration

    PubMed Central

    Cox, Marcus A; Voin, Vlad; Shoja, Mohammadali; Oskouian, Rod J; Loukas, Marios; Tubbs, R. Shane

    2017-01-01

    Agenesis of the pineal gland has rarely been reported in the medical literature. Herein, we report a cadaveric specimen found to have agenesis of the pineal gland. The remaining gross examination of the brain was normal. A review of the literature was performed on this unusual finding. PMID:28690948

  19. A preliminary study of human pineal gland concretions: structural and chemical analysis.

    PubMed

    Galliani, I; Falcieri, E; Giangaspero, F; Valdrè, G; Mongiorgi, R

    1990-07-01

    Acervuli and fragments of pineal gland obtained from 33 subjects of both sexes and age ranging from 1 to 87 years, (30 autopsy and 3 biopsy specimens) were analyzed by light microscopy, transmission and scanning electron microscopy, X-ray diffraction and X-ray energy dispersive microanalysis. It was found that primary mineralization occurs in an organic matrix formed by pinealocytes and that hydroxyapatite also takes place in mineral deposition. From our analysis, the formation of acervuli appears to be age and sex independent and can be possibly related to the secretory activity of the gland.

  20. [MRI of the pineal gland].

    PubMed

    Langevad, Line; Madsen, Camilla Gøbel; Siebner, Hartwig; Garde, Ellen

    2014-11-10

    The pineal gland (CP) is located centrally in the brain and produces melatonin. Cysts and concrements are frequent findings on MRI but their significance is still unclear. The visualization of CP is difficult due to its location and surrounding structures and so far, no standardized method exists. New studies suggest a correlation between CP-morphology and melatonin secretion as well as a connection between melatonin, disturbed circadian rhythm, and the development of cancer and cardiovascular diseases, underlining the need for a standardized approach to CP on MRI.

  1. Pineal gland calcification (PGC) in Ugandans. A radiological study of 200 isolated pineal glands.

    PubMed

    Mugondi, S G; Poltera, A A

    1976-07-01

    Two hundred formalin-fixed pineal glands from consecutive unselected post-mortems on Ugandan Africans have been X-rayed. The degree of pineal gland calcification has been divided into four stages and it is shown that 43 per cent of all pineal glands after the age of ten years are likely to be detected in an ordinary skull X ray. This high percentage of calcification contrasts with the previously reported low figure from races other than whites. The pineal glands from females were more often calcified and heavier than those from males; however, the stalks of pineal glands from males were calcified more frequently than those of females. The average weight per decade was almost constant. In Ugandan Africans the pineal glands were significantly lighter than in Caucasians, and a possible reason for this is briefly discussed.

  2. Pineal gland abnormalities in Langerhans cell histiocytosis.

    PubMed

    Grois, N; Prosch, H; Waldhauser, F; Minkov, M; Strasser, G; Steiner, M; Unger, E; Prayer, D

    2004-09-01

    The most common types of central nervous system (CNS) disease in Langerhans cell histiocytosis (LCH) comprise involvement of the hypothalamic-pituitary region (HPR) and neurodegenerative changes in the cerebellum, basal ganglia or pons. In the review process of magnetic resonance images (MRI) from 129 LCH patients a high frequency of cysts within or large pineal glands was noted by chance. To prove whether this observation was specific for LCH or not, we compared MRI findings of the HPR in LCH patients with a control group of 55 non-LCH patients with the same age and sex distribution. In LCH patients, the pineal gland was significantly larger and also the number of pineal cysts was significantly higher as compared to the control group. No difference was found regarding the size or frequency of cystic changes between patients who had received chemotherapy prior to the MRI and untreated patients. In the LCH patients, we further found a significant correlation of pineal gland enlargement with involvement of the HPR, but not with neurodegenerative changes. Analysis of melatonin (the principal hormone of the pineal gland) levels in 24 hr urine in 14 LCH patients did not reveal a melatonin deficiency or overproduction in the LCH group as compared to 6 normal controls. The pineal gland is another site of possible CNS involvement in LCH. LCH CNS patients did not show an overt disturbance in melatonin levels. The role of the pineal gland in CNS LCH remains to be defined. Copyright 2004 Wiley-Liss, Inc.

  3. Nitric oxide synthase in the pineal gland.

    PubMed

    López-Figueroa, M O; Møller, M

    1996-10-01

    The recent discovery of nitric oxide (NO) as a biological messenger molecule with unique characteristics has opened a new field in pineal research. This free radical gas is synthesized by the enzyme nitric oxide synthase (NOS) from L-arginine. The activation of adrenoreceptors in the membrane of the pinealocytes mediates the increase in NO through a mechanism that involves G proteins. In the pinealocyte, NO stimulates guanylyl cyclase resulting in an increased intracellular content of cGMP. The role of cGMP in pineal metabolism, however, is still enigmatic. Using enzyme histochemistry and immunohistochemistry, the presence of NOS has been confirmed in the pineal gland of some species. In the rat and especially in the sheep, NOS is located in nerve fibres innervating the gland. These nerve fibres also contain the neuropeptides vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI), and are probably of parasympathetic origin. In cell cultures and tissue sections NOS immunoreactivity has been shown to be present in pinealocytes of the rat and bovine but not in the sheep. Finally, NOS is also present in the endothelial cells of the blood vessels of the pineal gland. Accordingly, in the mammalian pineal gland, NO is synthesized in both presynaptic nerve fibers and pinealocytes, as well as in blood vessels. However, the anatomical location of NO synthesis varies considerably among species. NO released in the pineal gland, might influence both the pineal metabolism and the blood flow of the gland.

  4. An historical view of the pineal gland and mental disorders.

    PubMed

    López-Muñoz, F; Molina, J D; Rubio, G; Alamo, C

    2011-08-01

    Since Classical Antiquity numerous authors have linked the origin of some mental disorders to physical and functional changes in the pineal gland because of its attributed role in humans as the connection between the material and the spiritual world. The pineal organ was seen as a valve-like structure that regulated the flow of animal spirits through the ventricular system, a hypothesis that took on more vigour during the Middle Ages and the Renaissance. The framework for this theory was "the three cells of the brain", in which the pineal gland was even called the "appendix of thought". The pineal gland could also be associated with the boom, during this period, of certain legends about the "stone of folly". But the most relevant psychopathological role of this organ arrived with Descartes, who proposed that it was the seat of the human soul and controlled communications between the physical body and its surroundings, including emotions. After a period of decline during which it was considered as a mere vestigial remnant of evolution, the link between the pineal gland and psychiatric disorders was definitively highlighted in the 20th century, first with the use of glandular extracts in patients with mental deficiency, and finally with the discovery of melatonin in 1958. The physiological properties of melatonin reawakened interest in the relationship between the pineal gland and mental disorders, fundamentally the affective and sleep disorders, which culminated in the development of new pharmacological agents acting through melatonergic receptors (ramelteon and agomelatine).

  5. Distribution of calcification within the pineal gland.

    PubMed

    Pilling, J R; Hawkins, T D

    1977-11-01

    The distribution of calcification in the normal pineal gland was investigated by a macroradiographic in vitro technique. The centre of calcification in 72 out of 73 glands studied was within 2 mm of the mid-line of the gland. In one gland it lay 2.6 mm from the mid-line. These findings explain the accepted normal limits for pineal calcification on the standard semi-axial projection of the skull of up to 2 mm to either side of the mid-line and the occasional measurement in excess of this in normal subjects.

  6. [Morphofunctional and molecular bases of pineal gland aging].

    PubMed

    Khavinson, V Kh; Lin'kova, N S

    2012-01-01

    The review analyzed morphology, molecular and functional aspects of pineal gland aging and methods of it correction. The pineal gland is central organ, which regulates activity of neuroimmunoendocrine, antioxidant and other organisms systems. Functional activity of pineal gland is discreased at aging, which is the reason of melatonin level changing. The molecular and morphology research demonstrated, that pineal gland hadn't strongly pronounced atrophy at aging. Long-term experience showed, that peptides extract of pineal gland epithalamin and synthetic tetrapeptide on it base epithalon restored melatonin secretion in pineal gland and had strong regulatory activity at neuroimmunoendocrine and antioxidant organism systems.

  7. Pineal gland cysts--an overview.

    PubMed

    Bosnjak, Jelena; Budisić, Mislav; Azman, Drazen; Strineka, Maja; Crnjaković, Miljenko; Demarin, Vida

    2009-09-01

    Pineal cysts occur in all ages, predominantly in adults in the fourth decade of life. In series of magnetic resonance imaging (MRI) studies, the prevalence of pineal cysts ranged between 1.3% and 4.3% of patients examined for various neurologic reasons and up to 10.8% of asymptomatic healthy volunteers. The diagnosis of pineal cyst is usually established by MRI with defined radiological criteria to distinguish benign pineal cyst from tumors of this area. A recent study demonstrated the findings obtained by transcranial sonography to correspond to those obtained by MRI in the detection of both pineal gland cyst and pineal gland itself, and could be used in the future mainly as follow up examination. Pineal cysts usually have no clinical implications and remain asymptomatic for years. The most common symptoms include headache, vertigo, visual and oculomotor disturbances, and obstructive hydrocephalus. Less frequently, patients present with ataxia, motor and sensory impairment, mental and emotional disturbances, epilepsy, circadian rhythm disturbances, hypothalamic dysfunction of precocious puberty, and recently described occurrence of secondary parkinsonism. Symptomatic cysts vary in size from 7 mm to 45 mm, whereas asymptomatic cysts are usually less than 10 mm in diameter, although a relationship between the cyst size and the onset of symptoms has been proved to be irrelevant in many cases. There is agreement that surgical intervention should be undertaken in patients presenting with hydrocephalus, progression of neurologic symptoms, or cyst enlargement. Tissue sample of the pineal lesion can be obtained by open surgery, stereotaxy and neuroendoscopy.

  8. Classification of the venous architecture of the pineal gland by 7T MRI.

    PubMed

    Cho, Zang-Hee; Choi, Sang-Han; Chi, Je-Gun; Kim, Young-Bo

    2011-10-01

    Magnetic resonance imaging (MRI) at 7.0 Tesla (7T) can show many details of anatomical structures with unprecedented resolution and contrast. In this report, we describe for the first time the unexpected wide variation in pineal gland structure, as visualized by MR images obtained with 7T in a group of healthy young volunteers. A total of 34 volunteers (22 men and 12 women) were enrolled in the study. Their 7T MR images revealed such wide variations in pineal gland shape that it led us to attempt to classify the patterns seen in these pineal glands. Indeed, they were successfully correlated with a previous human cadaver study of venous structures by Tamaki et al., who classified the venous structures of the pineal gland into three categories. This is the first human in vivo pineal vein imaging study using 7T MRI. Pineal venous imaging may permit the early diagnosis of a pineal tumor.

  9. The pineal gland in multiple sclerosis.

    PubMed

    Sandyk, R; Awerbuch, G I

    1991-11-01

    Multiple sclerosis (MS) is a chronic demyelinating disease of unknown etiology. Clinical, neurochemical, and neuroradiological data implicate the pineal gland in the pathophysiology of MS. To investigate the relationship of MS to the pineal gland further, we surveyed the prevalence of pineal calcification (PC) on CT scan in a cohort of 29 MS patients (7 men, 22 women, mean age: 40.1 years, SD = 8.9) who were admitted consecutively to a neurological service for acute exacerbation of symptoms. For the purpose of comparison, we also surveyed the prevalence of choroid plexus calcification (CPC) in the sample. Twenty-one age and sex-matched neurological patients served as controls (5 men, 16 women, mean age: 37.0, SD = 9.2). PC was seen in 100% of MS patients, while 72.4% patients (N = 21) had CPC. In the control sample, PC was found in 42.8% (N = 9) and CPC in 28.5% (N = 6). Thus, the strikingly high prevalence of PC in MS provides indirect support for an association between MS and abnormalities of the pineal gland. Moreover, since pineal melatonin is involved in neuroimmunomodulation, we propose, for the first time, that abnormalities of pineal melatonin functions are implicated in the pathophysiology of the disease.

  10. [Characteristics of the pineal gland and thymus relationship in aging].

    PubMed

    Lin'kova, N S; Poliakova, V O; Kvetnoĭ, I M; Trofimov, A V; Sevost'ianova, N N

    2011-01-01

    The review presents the interference between thymus and pineal gland during their involution. The research data of thymus peptides influence on pineal gland and pineal peptides on thymus are summarized. Analysis of these data showed that pineal peptides (Epithalamin, Epitalon) had more effective geroprotective effect on thymus involution in comparison with geroprotective effect of thymic peptides (Thymalin, Thymogen) on involution of pineal gland. The key mechanisms of pineal peptides effect on thymus dystrophy is immunoendocrine cooperation, which is realized as transcription's activation of various proteins.

  11. Pineal gland cyst evaluated by transcranial sonography.

    PubMed

    Budisic, M; Bosnjak, J; Lovrencic-Huzjan, A; Mikula, I; Bedek, D; Demarin, V

    2008-03-01

    Transcranial sonography (TCS) has never been used in the evaluation of morphology of pineal gland. The aim of the study was to assess the possibility of TCS to distinguish normal from cystic pineal gland and to correlate its size with magnetic resonance imaging (MRI) at the first examination and during follow-up. Sixty patients with previously made MRI of the brain were evaluated by two independent observers using TCS, blinded to the results of the MRI. Inappropriate bone window limited TCS examination in seven patients. All 14 pineal gland cysts (PGC) seen on MRI were detected by both observers using TCS. Control group consisted of 39 healthy examinees. No statistically significant difference has been found between: PGC size measured by first and second observer by TCS (P = 0.425), PGC size measured by TCS and MRI (first observer, P = 0.353; second observer, P = 0.425), size of the pineal gland measured by TCS and MRI in control group (first observer, P = 0.497; second observer, P = 0.370) or interobserver variability in control group (P = 0.373). The MRI and TCS follow-up of ten patients after six months did not show any difference in size of PGC. TCS can be used as a method in detection, measurement and follow-up of PGC.

  12. Unique Case Report of Pineal Gland Metastasis From Bladder Carcinoma.

    PubMed

    Li, Jun; Wang, Ping; Wang, Bin

    2016-05-01

    Pineal metastasis is uncommon and most metastatic pineal lesions are asymptomatic. To our knowledge the herein reported case is the first in which the pineal gland was confirmed as the metastatic site of a bladder carcinoma.The patient reported in this case is a 59-year-old man who suffered from headache and delirium for 4 days after surgical treatment for removal of a bladder carcinoma 1 year ago. Magnetic resonance imaging (MRI) revealed a solid tumor involving the pineal gland with significant enhancement.The patient underwent surgical treatment for removal of the neoplastic lesion in the pineal gland. Histopathological examination confirmed invasion of the pineal gland by metastatic urothelial carcinoma.This case highlighted that the presence of pineal lesions in patient with known malignancy should raise suspicion of metastatic involvement.

  13. Unique Case Report of Pineal Gland Metastasis From Bladder Carcinoma

    PubMed Central

    Li, Jun; Wang, Ping; Wang, Bin

    2016-01-01

    Abstract Pineal metastasis is uncommon and most metastatic pineal lesions are asymptomatic. To our knowledge the herein reported case is the first in which the pineal gland was confirmed as the metastatic site of a bladder carcinoma. The patient reported in this case is a 59-year-old man who suffered from headache and delirium for 4 days after surgical treatment for removal of a bladder carcinoma 1 year ago. Magnetic resonance imaging (MRI) revealed a solid tumor involving the pineal gland with significant enhancement. The patient underwent surgical treatment for removal of the neoplastic lesion in the pineal gland. Histopathological examination confirmed invasion of the pineal gland by metastatic urothelial carcinoma. This case highlighted that the presence of pineal lesions in patient with known malignancy should raise suspicion of metastatic involvement. PMID:27149501

  14. Pineal Gland Lymphoma: Case Report and Literature Review.

    PubMed

    Gupta, Akshya; Johnson, Mahlon; Hussain, Ali

    2015-01-01

    A 65-year-old male presented to our institution with acute-onset headache. Imaging studies demonstrated a mass in the region of the pineal gland, with subsequent histopathology findings being consistent with large B cell lymphoma. The patient was treated with methotrexate, but ultimately did not survive. Primary central nervous system (CNS) lymphoma rarely involves the pineal gland, but should be considered in the differential diagnosis of pineal gland tumors in the appropriate clinical setting.

  15. Pineal Gland Lymphoma: Case Report and Literature Review

    PubMed Central

    Gupta, Akshya; Johnson, Mahlon; Hussain, Ali

    2015-01-01

    A 65-year-old male presented to our institution with acute-onset headache. Imaging studies demonstrated a mass in the region of the pineal gland, with subsequent histopathology findings being consistent with large B cell lymphoma. The patient was treated with methotrexate, but ultimately did not survive. Primary central nervous system (CNS) lymphoma rarely involves the pineal gland, but should be considered in the differential diagnosis of pineal gland tumors in the appropriate clinical setting. PMID:26605125

  16. GABAergic signaling in the rat pineal gland.

    PubMed

    Yu, Haijie; Benitez, Sergio G; Jung, Seung-Ryoung; Farias Altamirano, Luz E; Kruse, Martin; Seo, Jong Bae; Koh, Duk-Su; Muñoz, Estela M; Hille, Bertil

    2016-08-01

    Pinealocytes secrete melatonin at night in response to norepinephrine released from sympathetic nerve terminals in the pineal gland. The gland also contains many other neurotransmitters whose cellular disposition, activity, and relevance to pineal function are not understood. Here, we clarify sources and demonstrate cellular actions of the neurotransmitter γ-aminobutyric acid (GABA) using Western blotting and immunohistochemistry of the gland and electrical recording from pinealocytes. GABAergic cells and nerve fibers, defined as containing GABA and the synthetic GAD67, were identified. The cells represent a subset of interstitial cells while the nerve fibers were distinct from the sympathetic innervation. The GABAA receptor subunit α1 was visualized in close proximity of both GABAergic and sympathetic nerve fibers as well as fine extensions among pinealocytes and blood vessels. The GABAB 1 receptor subunit was localized in the interstitial compartment but not in pinealocytes. Electrophysiology of isolated pinealocytes revealed that GABA and muscimol elicit strong inward chloride currents sensitive to bicuculline and picrotoxin, clear evidence for functional GABAA receptors on the surface membrane. Applications of elevated potassium solution or the neurotransmitter acetylcholine depolarized the pinealocyte membrane potential enough to open voltage-gated Ca(2+) channels leading to intracellular calcium elevations. GABA repolarized the membrane and shut off such calcium rises. In 48-72-h cultured intact glands, GABA application neither triggered melatonin secretion by itself nor affected norepinephrine-induced secretion. Thus, strong elements of GABA signaling are present in pineal glands that make large electrical responses in pinealocytes, but physiological roles need to be found.

  17. Cytologic features of the normal pineal gland on squash preparations.

    PubMed

    Murro, Diana; Alsadi, Alaa; Nag, Sukriti; Arvanitis, Leonidas; Gattuso, Paolo

    2014-11-01

    As primary pineal lesions are extremely rare, many surgical pathologists are unfamiliar with normal pineal cytologic features. We describe cytologic features of the normal pineal gland in patients of varying ages and identify common diagnostic pitfalls. We performed a retrospective review of pineal gland biopsies performed at our institution, where approximately 30,000 surgical specimens are accessioned yearly, for the last 23 years. Only two pineal gland biopsies were found. Although both cases were initially diagnosed as low-grade gliomas on frozen section, the final diagnosis was benign pineal tissue based on light microscopy and immunohistochemistry results. Additionally, we performed squash preparations of five normal pineal gland autopsy specimens with Papanicolaou and Diff-Quik® (Dade Behring, Newark, DE) stains. Infant preparations were highly cellular smears composed of numerous, uniform, single cells with indistinct cytoplasm, small round-to-oval nuclei, fine chromatin, and absent nucleoli and calcifications. The vague microfollicular pattern mimicked a pineocytoma and the fine fibrillary background mimicked a glial neoplasm. Young adult smears were similar; however, microcalcifications were present with fewer background single cells. Older patients had much less cellular smears composed of small clusters of cells with fusiform-to-spindle nuclei, a fine chromatin pattern, and indistinct cytoplasmic borders. There were fewer background single cells and more microcalcifications. The cytologic features of the native pineal gland vary with age. Normal pineal tissue can be confused with a pineocytoma or low-grade glioma. Familiarity with normal pineal gland cytological features will help to avoid a potential misdiagnosis.

  18. The pineal gland as a central regulator of cytokine network.

    PubMed

    Lissoni, Paolo

    1999-01-01

    Even though cytokines may fundamentally act as local factors, the recent advances in the knowledge of neuroimmunomodulation (NIM) would suggest the existence of a central regulation of their secretion and activity. Several neuroactive substances have appeared to influence cytokine secretion, and on the other hand cytokines may modulate the neuroendocrine functions. However, at present only for the pineal gland, whose fundamental NIM role is well known, it is possible to recognize reciprocal influences between cytokine action and pineal endocrine activity, suggesting the existence of feedback mechanisms responsible for a central regulation of cytokine network. Melatonin (MLT), which is the most investigated pineal immunomodulating hormone, may stimulate IL-2 release by T helper-1 (TH-1) lymphocytes and that of IL-12 by dendritic cells (DC), whereas both IL-2 and IL-12 would inhibit MLT release. The physiological significance of IL-2-IL-12-MLT interactions would be the maintenance of an effective TH-1-dependent cellular immunity, including the anticancer immune response. A third possible pineal-cytokine feedback mechanism involves tumor necrosis factor-alpha (TNF-alpha) secretion, with a stimulatory effect of TNF-alpha on MLT release and an inhibitory one of MLT on TNF-alpha production. This finding would explain the anti-cachectic property of MLT itself. A further knowledge of pineal-cytokine interactions, as well as of other endocrine-immune circuits, will allow a better definition of the physiopathology of human chronic immunoinflammatory diseases, whose clinical course has appeared to be influenced by psychoemotional factors.

  19. Sympathetic neuroaxonal dystrophy in the aged rat pineal gland.

    PubMed

    Schmidt, Robert E; Dorsey, Denise A; Parvin, Curtis A; Beaudet, Lucie N

    2006-10-01

    Dysfunction of circadian melatonin production by the pineal gland in aged humans and rats is thought to reflect the functional loss of its sympathetic innervation. Our ultrastructural neuropathologic studies of the sympathetic innervation of the pineal gland of aged (24 months old) Fischer-344 and Sprague-Dawley rats showed loss of nerve terminals as well as the development of neuroaxonal dystrophy (NAD), an ultrastructurally distinctive distal axonopathy, far in excess of that in young control rats. Immunolocalization of tyrosine hydroxylase confirmed the age-related loss of normal noradrenergic innervation and development of NAD. NAD was more frequent in aged female rats compared to males and was particularly severe in aged female Sprague-Dawley rats compared to Fischer-344 rats. Pineal NGF content was significantly increased or unchanged in female and male aged Fischer-344 rats, respectively, compared to young controls. The rat pineal is a sensitive experimental model for the quantitative ultrastructural examination of age-related neuropathological changes in nerve terminals of postganglionic noradrenergic sympathetic axons, changes which may reflect similar changes in the diffusely distributed sympathetic innervation of other targeted endorgans.

  20. Symptomatic glial cysts of the pineal gland.

    PubMed

    Fain, J S; Tomlinson, F H; Scheithauer, B W; Parisi, J E; Fletcher, G P; Kelly, P J; Miller, G M

    1994-03-01

    Small asymptomatic cysts of the pineal gland represent a common incidental finding in adults undergoing computerized tomography or magnetic resonance (MR) imaging or at postmortem examination. In contrast, large symptomatic pineal cysts are rare, being limited to individual case reports or small series. The authors have reviewed 24 cases of large pineal cysts. The mean patient age at presentation was 28.7 years (range 15 to 46 years); 18 were female and six male. Presenting features in 20 symptomatic cases included: headache in 19; nausea and/or vomiting in seven; papilledema in five; visual disturbances in five (diplopia in three, "blurred vision" in two, and unilateral partial oculomotor nerve palsy in one); Parinaud's syndrome in two; hemiparesis in one; hemisensory aberration in one; and seizures in one. Four lesions were discovered incidentally. Magnetic resonance imaging typically demonstrated a 0.8- to 3.0-cm diameter mass (mean 1.7 cm) with homogeneous decreased signal intensity on T1-weighted images, increased signal intensity on T2-weighted images, and a distinct margin. Hydrocephalus was present in eight cases. The cysts were surgically excised via an infratentorial/supracerebellar approach (23 cases) or stereotactically biopsied (one case). Histological examination revealed a cyst wall 0.5 to 2.0 mm thick comprised of three layers: an outer fibrous layer, a middle layer of pineal parenchymal cells with variable calcification, and an inner layer of hypocellular glial tissue often exhibiting Rosenthal fibers and/or granular bodies. Evidence of prior hemorrhage, mild astrocytic degenerative atypia, and disorganization of pineal parenchyma were often present. Postoperative follow-up review in all 24 cases (range 3 months to 10 years) revealed no complications in 21, mild ocular movement deficit in one, gradually resolving Parinaud's syndrome in one, and radiographic evidence of a postoperative venous infarct of the superior cerebellum with ataxia of 1 week

  1. The effect of the transplanted pineal gland on the sympathetic innervation of the rat sublingual gland.

    PubMed

    Chanthaphavong, R S; Murphy, S M; Anderson, C R

    2004-08-01

    We investigated the effect of the pineal on sympathetic neurons that normally innervate the sublingual gland of the rat. When the pineal gland was transplanted into the sublingual gland, it remained as a distinct mass that was innervated by sympathetic axons. Injection of the retrograde tracer, Fast Blue, into the sublingual gland labelled sympathetic neurons in the ipsilateral superior cervical ganglion (SCG). Thirty per cent of all neurons labelled retrogradely by Fast Blue injection into transplanted pineal glands were immunoreactive for both neuropeptide Y (NPY) and calbindin. This combination is characteristic of sympathetic neurons innervating the pineal gland in its normal location, but not the sympathetic vasoconstrictor neurons normally innervating the sublingual gland. This, and our previous study in which the pineal gland was shown to similarly influence the phenotype of salivary secretomotor neurons, suggests that a range of different functional classes of sympathetic neuron are able to change their phenotype in response to signals released by the pineal gland.

  2. [Participation of pineal gland in antistressor activity of adaptogenic drugs].

    PubMed

    Arushanian, É B; Beĭer, É V

    2015-01-01

    Chronic stress produces some morphological changes in rats, including thymus weight reduction, adrenal hypertrophy, and peptic ulcers in stomach. Repeated administration of phytoadaptogenic drugs (ginseng and bilobil) decreased these stress-induced disorders. The antistressor activity of drugs was attenuated upon by removal of the pineal gland. Histochemical and morphometric investigation of pineal tissues in stressed animals showed that that the pharmacological effect was accompanied by increasing functional activity of the pineal gland. It is suggested that pineal mobilization may participate in antistressor activity of phytoadaptogenic drugs.

  3. Asymptomatic and symptomatic glial cysts of the pineal gland.

    PubMed

    Taraszewska, Anna; Matyja, Ewa; Koszewski, Waldemar; Zaczyński, Artur; Bardadin, Krzysztof; Czernicki, Zbigniew

    2008-01-01

    Glial cysts of the pineal gland are benign and mostly asymptomatic incidental lesions found in the brain MRI or at autopsy examinations. In rare cases pineal cysts become symptomatic and require surgical intervention. Symptomatic glial cysts may be clinically and radiologically indistinguishable from cystic neoplasms of the pineal region; therefore, histopathological diagnosis is critical for further prognosis and therapy in operated patients. In this paper we present detailed histopathological characteristics of symptomatic glial cysts in 2 surgical cases and of asymptomatic cysts of the pineal gland found at random in 3 autopsy cases. Both surgical patients, a 19-year-old girl and a 17-year-old boy, presented with severe headaches, associated with syncope in one case and insomnia in the second one. Preoperative MR imaging suggested tumour of the pineal gland in case no. 2. Histopathological and immunohistochemical examination of the specimens from both surgical and all autopsy cases revealed a characteristic pattern of cystic structures within the pineal gland, surrounded by layers of a dense fibrillar glial tissue and pineal parenchyma, consistent with non-neoplastic glial cysts. Although histopathological findings in asymptomatic and symptomatic cysts are essentially the same, the cyst in surgical case 1 was unilocular and partly lined with ependymal cells, whereas the cysts in other cases were multilocular, comprising cavities of various size, formed in the central part of gliotic tissue or directly within the pineal parenchyma, and lacked ependymal lining. Possible pathophysiological and clinicopathological significance of some morphological variants of pineal glial cysts is discussed.

  4. Morphofunctional and signaling molecules overlap of the pineal gland and thymus: role and significance in aging

    PubMed Central

    Paltsev, Michael A.; Polyakova, Victoria O.; Kvetnoy, Igor M.; Anderson, George; Kvetnaia, Tatiana V.; Linkova, Natalia S.; Paltseva, Ekaterina M.; Rubino, Rosa; De Cosmo, Salvatore; De Cata, Angelo; Mazzoccoli, Gianluigi

    2016-01-01

    Deficits in neuroendocrine-immune system functioning, including alterations in pineal and thymic glands, contribute to aging-associated diseases. This study looks at ageing-associated alterations in pineal and thymic gland functioning evaluating common signaling molecules present in both human and animal pinealocytes and thymocytes: endocrine cell markers (melatonin, serotonin, pCREB, AANAT, CGRP, VIP, chromogranin A); cell renovation markers (p53, AIF, Ki67), matrix metalloproteinases (MMP2, MMP9) and lymphocytes markers (CD4, CD5, CD8, CD20). Pineal melatonin is decreased, as is one of the melatonin pathway synthesis enzymes in the thymic gland. A further similarity is the increased MMPs levels evident over age in both glands. Significant differences are evident in cell renovation processes, which deteriorate more quickly in the aged thymus versus the pineal gland. Decreases in the number of pineal B-cells and thymic T-cells were also observed over aging. Collected data indicate that cellular involution of the pineal gland and thymus show many commonalities, but also significant changes in aging-associated proteins. It is proposed that such ageing-associated alterations in these two glands provide novel pharmaceutical targets for the wide array of medical conditions that are more likely to emerge over the course of ageing. PMID:26943046

  5. Morphofunctional and signaling molecules overlap of the pineal gland and thymus: role and significance in aging.

    PubMed

    Paltsev, Michael A; Polyakova, Victoria O; Kvetnoy, Igor M; Anderson, George; Kvetnaia, Tatiana V; Linkova, Natalia S; Paltseva, Ekaterina M; Rubino, Rosa; De Cosmo, Salvatore; De Cata, Angelo; Mazzoccoli, Gianluigi

    2016-03-15

    Deficits in neuroendocrine-immune system functioning, including alterations in pineal and thymic glands, contribute to aging-associated diseases. This study looks at ageing-associated alterations in pineal and thymic gland functioning evaluating common signaling molecules present in both human and animal pinealocytes and thymocytes: endocrine cell markers (melatonin, serotonin, pCREB, AANAT, CGRP, VIP, chromogranin А); cell renovation markers (p53, AIF, Ki67), matrix metalloproteinases (MMP2, MMP9) and lymphocytes markers (CD4, CD5, CD8, CD20). Pineal melatonin is decreased, as is one of the melatonin pathway synthesis enzymes in the thymic gland. A further similarity is the increased MMPs levels evident over age in both glands. Significant differences are evident in cell renovation processes, which deteriorate more quickly in the aged thymus versus the pineal gland. Decreases in the number of pineal B-cells and thymic T-cells were also observed over aging. Collected data indicate that cellular involution of the pineal gland and thymus show many commonalities, but also significant changes in aging-associated proteins. It is proposed that such ageing-associated alterations in these two glands provide novel pharmaceutical targets for the wide array of medical conditions that are more likely to emerge over the course of ageing.

  6. Cytologic features of the normal pineal gland of adults.

    PubMed

    Jiménez-Heffernan, José A; Bárcena, Carmen; Agra, Carolina; Asunción, Alfonso

    2015-08-01

    It is well known that the histology of normal pineal gland may resemble not only pineal tumors but also gliomas, owing to its cellularity which is much greater than that of normal white or gray matter. Our recent experience with a case in which part of a normal gland was submitted for intraoperative consultation, together with the scarcity of cytologic descriptions, led us to perform a cyto-histologic correlation study. In addition to the intraoperative case, we collected five pineal glands from consecutive adult autopsies. During the squash procedure, we often noted the presence of calcified grains. Smears were hypercellular, distributed in tissue fibrillary fragments and as numerous single cells, with crystalline structures. Pineal gland cells (pineocytes) were large, round, epithelioid with ill-defined cytoplasms and moderate nuclear pleomorphism. Spindle cells with greater fibrillary quality were less common. One of the most remarkable findings seen in all cases was the presence of cytoplasmic pigment. Histological evaluation and immunohistochemical staining confirmed that the tissue was normal pineal gland. The histology showed a characteristic lobular aspect and frequent corpora arenacea. The pigment seen cytologically was also encountered in histology and corresponded to lipofuscin. Cytologic features of the pineal gland are peculiar when compared to other normal structures of the central nervous system. These features correlate closely with what is seen on histology. In an adequate clinical context, and in combination with frozen sections, cytology allows a specific recognition of the pineal gland during intraoperative pathologic consultations.

  7. [Magnetic resonance study of the pineal region. Normal pineal gland and simple cysts].

    PubMed

    Caldas, J G; Doyon, D; Lederman, H; Carlier, R

    1998-06-01

    A magnetic resonance imaging (MRI) study of the normal pineal gland and pineal simple cysts was performed in 762 cases. A fine section technique (maximum 3 millimeters) enabled most of the times the identifying of a normal pineal in addition to demonstrating that a pineal without any cyst shows an isointense signal in T1 and T2 which, in turn, is enhanced following gadolinium. The measure of the normal pineal was of about 6.1 millimeters in its diameter length. Pineal simple cysts were observed in a 2.6% frequency in relation to the whole series (762 cases); however reaches 6.1% when only the visualized pineals were considered (329 cases). Also, it was found out that simple cysts were not correlated to age or gender. Simple cysts characteristics are: dimension less or equal to 20 millimeters; absence of expansive effect; similar signal to that of the cerebrospinal fluid; absence of cyst growth.

  8. Calcified inclusions in the superficial pineal gland of the mongolian gerbil, Meriones unguiculatus.

    PubMed

    Japha, J L; Eder, T J; Goldsmith, E D

    1976-01-01

    A histological and histochemical study of the pineal gland of neonatal, juvenile and adult gerbils is described. Calcified inclusions appear within pinealocytes in the superficial pineal about the third week of age, and the incidence of inclusions increased with age until, by the eleventh week, they are found in all animals. The inclusions contain an organic matrix composed of a carbohydrate, probably an acid mucopolysaccharide, complexed to protein. Calcification does not occur in the deep pineal. The data are interpreted to indicate that the formation of calcified inclusions is a normal process within the gerbil pineal. The similarity of the process of calcification in the gerbil and in the human pineal suggests that the gerbil may be an animal of choice for the controlled study of the phenomenon of pineal calcification.

  9. Pineal Gland Volume Assessed by MRI and Its Correlation with 6-Sulfatoxymelatonin Levels among Older Men.

    PubMed

    Sigurdardottir, Lara G; Markt, Sarah C; Sigurdsson, Sigurdur; Aspelund, Thor; Fall, Katja; Schernhammer, Eva; Rider, Jennifer R; Launer, Lenore; Harris, Tamara; Stampfer, Meir J; Gudnason, Vilmundur; Czeisler, Charles A; Lockley, Steven W; Valdimarsdottir, Unnur A; Mucci, Lorelei A

    2016-10-01

    The pineal gland produces the hormone melatonin, and its volume may influence melatonin levels. We describe an innovative method for estimating pineal volume in humans and present the association of pineal parenchyma volume with levels of the primary melatonin metabolite, 6-sulfatoxymelatonin. We selected a random sample of 122 older Icelandic men nested within the AGES-Reykjavik cohort and measured their total pineal volume, their parenchyma volume, and the extent of calcification and cysts. For volume estimations we used manual segmentation of magnetic resonance images in the axial plane with simultaneous side-by-side view of the sagittal and coronal plane. We used multivariable adjusted linear regression models to estimate the association of pineal parenchyma volume and baseline characteristics, including 6-sulfatoxymelatonin levels. We used logistic regression to test for differences in first morning urinary 6-sulfatoxymelatonin levels among men with or without cystic or calcified glands. The pineal glands varied in volume, shape, and composition. Cysts were present in 59% of the glands and calcifications in 21%. The mean total pineal volume measured 207 mm(3) (range 65-536 mm(3)) and parenchyma volume 178 mm(3) (range 65-503 mm(3)). In multivariable-adjusted models, pineal parenchyma volume was positively correlated with 6-sulfatoxymelatonin levels (β = 0.52, p < 0.001). Levels of 6-sulfatoxymelatonin did not differ significantly by presence of cysts or calcification. By using an innovative method for pineal assessment, we found pineal parenchyma volume to be positively correlated with 6-sulfatoxymelatonin levels, in line with other recent studies.

  10. Neuroendocrine mediated effects of electromagnetic-field exposure: Possible role of the pineal gland

    SciTech Connect

    Wilson, W.B.; Stevens, R.G.; Anderson, L.E. )

    1989-01-01

    Reports from recent epidemiological studies have suggested a possible association between extremely low frequently (ELF; including 50- or 60-Hz) electric- and magnetic-field exposure, and increased risk of certain cancers, depression, and miscarriage. ELF field-induced pineal gland dysfunction is a possible etiological factor in these effects. Work in our laboratory and elsewhere has shown that ELF electromagnetic-field exposure can alter the normal circadian rhythm of melatonin synthesis and release in the pineal gland. Consequences of reduced or inappropriately timed melatonin release on the endocrine, neuronal, and immune systems are discussed. Laboratory data linking ELF field exposure to changes in pineal circadian rhythms in both animal and humans are reviewed. The authors suggest that the pineal gland, in addition to being a convenient locus for measuring dyschronogenic effects of ELF field exposure, may play a central role in biological response to these fields via alterations in the melatonin signal.

  11. The originality of Descartes' theory about the pineal gland.

    PubMed

    Lokhorst, G J; Kaitaro, T T

    2001-03-01

    René Descartes thought that the pineal gland is the part of the body with which the soul is most immediately associated. Several prominent historians (such as Soury, Thorndike and Sherrington) have claimed that this idea was not very original. We re-examine the evidence and conclude that their assessment was wrong. We pay special attention to the thesis about the pineal gland which Jean Cousin defended in January, 1641.

  12. Large cysts of the pineal gland: report of two cases.

    PubMed

    Todo, T; Kondo, T; Shinoura, N; Yamada, R

    1991-07-01

    Two cases of large, nontumorous cysts of the pineal gland are reported, the histopathology of which was confirmed using surgically resected specimens. Both patients were middle-aged, and the pineal cysts were found incidentally. The histopathological findings in the two cases were strikingly similar to each other and were characterized by the following points: 1) the cyst wall typically consisted of three layers, namely, collagenous fibers, glia-like cells, and normal pineal cells; 2) the cyst wall was relatively thin, approximately 100 to 300 microns in thickness; and 3) deposits of calcification almost always existed on the side of the layer of collagenous fiber. Because these findings are clearly different from those previously reported, large benign cysts of the pineal gland, or at least some of them, may constitute a new pathological entity. It is important to consider this possible pathological diagnosis when dealing with pineal cysts.

  13. Pineal gland calcification and defective sense of direction.

    PubMed Central

    Bayliss, C R; Bishop, N L; Fowler, R C

    1985-01-01

    Calcification of the pineal gland is shown to be closely related to defective sense of direction. In a tricentre prospective study of 750 patients lateral skull radiographs showed that 394 had calcified pineal glands. Sense of direction was assessed by subjective questioning and objective testing and the results noted on a scale of 0-10 (where 10 equals perfect sense of direction). The average score for the 394 patients with pineal gland calcification was 3.7 (range 0-8), whereas the 356 patients without pineal gland calcification had an average score of 7.6 (range 2-10). This difference was highly significant (p less than 0.01). A smaller parallel study in pigeons showed that pineal calcification also leads to a reduction in homing abilities. The findings suggested that the pineal gland plays an important part in directional sense and that damage to the gland, as indicated by calcification, causes defective sense of direction - perhaps by altering the intrinsic intracranial electromagnetic environment and thus affecting the magnetite response mechanism. Images FIG 1 FIG 3 FIG 4 PMID:3936572

  14. Pineal gland calcification and defective sense of direction.

    PubMed

    Bayliss, C R; Bishop, N L; Fowler, R C

    Calcification of the pineal gland is shown to be closely related to defective sense of direction. In a tricentre prospective study of 750 patients lateral skull radiographs showed that 394 had calcified pineal glands. Sense of direction was assessed by subjective questioning and objective testing and the results noted on a scale of 0-10 (where 10 equals perfect sense of direction). The average score for the 394 patients with pineal gland calcification was 3.7 (range 0-8), whereas the 356 patients without pineal gland calcification had an average score of 7.6 (range 2-10). This difference was highly significant (p less than 0.01). A smaller parallel study in pigeons showed that pineal calcification also leads to a reduction in homing abilities. The findings suggested that the pineal gland plays an important part in directional sense and that damage to the gland, as indicated by calcification, causes defective sense of direction - perhaps by altering the intrinsic intracranial electromagnetic environment and thus affecting the magnetite response mechanism.

  15. Sarcoidosis of the pineal gland: an unusual presentation of neurosarcoidosis

    PubMed Central

    Yang, Isaac; Delpolyi, Amy; Sughrue, Michael E.; Rubenstein, James; Bollen, Andrew W.

    2014-01-01

    Introduction Sarcoidosis is an inflammatory disease characterized by noncaseating granulomas that is rarely found as primary CNS pathology. We report an unusual case of sarcoidosis involving the pineal gland with radiographic, histopathology, and clinical data. Case report A 45-year-old man without evidence of systemic sarcoidosis presented with a history of gradual onset of blurry vision and diplopia that progressed over 3 months. MR imaging demonstrated an enhancing mass in the pineal region. A suboccipital craniotomy was performed with resection of the mass through a supra-cerebellar infratentorial approach. Histopathologic analysis did not reveal a pineoblastoma but instead revealed noncaseating granulomas within the pineal gland. Extensive hematologic laboratory examinations, cerebral spinal fluid studies, and cultures for infection were all negative. This mass lesion was diagnosed as solitary neurosarcoidosis of the pineal gland, without dissemination. The patient was treated with steroids and at 4-year follow-up is asymptomatic with an unremarkable MRI scan. Conclusion This is an unusual case of pineal sarcoidosis mimicking a tumor with associated MRI, CT and histopathologic findings reported together. Although rare, sarcoidosis of the pineal gland should not be excluded from a comprehensive differential diagnosis of an enhancing pineal region mass. PMID:18759061

  16. Occurrence of Pineal Gland Tumors in Combined Chronic Toxicity/Carcinogenicity Studies in Wistar Rats.

    PubMed

    Treumann, Silke; Buesen, Roland; Gröters, Sibylle; Eichler, Jens-Olaf; van Ravenzwaay, Bennard

    2015-08-01

    Pineal gland tumors are very rare brain lesions in rats as well as in other species including humans. A total of 8 (out of 1,360 examined) Wistar rats from 3 different combined chronic toxicity/carcinogenicity or mere carcinogenicity studies revealed pineal gland tumors. The tumors were regarded to be spontaneous and unrelated to treatment. The morphology and immunohistochemical evaluation led to the diagnosis malignant pinealoma. The main characteristics that were variably developed within the tumors were the following: cellular atypia, high mitotic index, giant cells, necrosis, Homer Wright rosettes, Flexner-Wintersteiner rosettes and pseudorosettes, positive immunohistochemical reaction for synaptophysin, and neuron-specific enolase. The pineal gland is not a protocol organ for histopathological examination in carcinogenicity studies. Nevertheless, the pineal gland can occasionally be encountered on the routine brain section or if it is the origin of a tumor protruding into the brain, the finding will be recorded. Therefore, although known to be a rare tumor in rats, pineal neoplasms should be included in the list of possible differential diagnoses for brain tumors, especially when the tumor is located in the region of the pineal body.

  17. Pineal gland lesions: a cytopathologic study of 20 specimens.

    PubMed

    Parwani, Anil V; Baisden, Blaire L; Erozan, Yener S; Burger, Peter C; Ali, Syed Z

    2005-04-25

    Pineal gland lesions are rare, with only a few cytologic descriptions occurring in the literature, according to the authors' knowledge. The current article describes the cytopathologic characteristics of 20 such lesions with discussion of differential diagnoses. Cytologic material was obtained either by fine-needle aspiration biopsy (FNAB) under stearotactic radiologic guidance or by touch imprinting (TI) at the time of frozen sectioning. The 20 specimens include pineoblastoma (five specimens), pineocytoma (four specimens), astrocytoma (three specimens), germ cell tumor (three specimens), meningioma (one specimen), epidermoid cyst (three specimens), and pineal cyst (one specimen). Smears were stained with Diff-Quik and with Papanicolaou and hematoxylin and eosin stains. In selected specimens, immunoperoxidase (IPOX) stains were performed on cell block sections using synaptophysin, neuron-specific enolase, placental alkaline phosphatase, glial fibrillary acidic protein, leukocyte common antigen, cytokeratins, and human chorionic gonadotropin antibodies. Several cytomorphologic characteristics unique to each lesional category with occasional overlapping features were observed. The unique features included the following: small, hyperchromatic, round to oval cells with frequent rosetting (pineocytoma), with a few specimens in addition showing hypercellularity, crowding, mitoses, and necrosis (pineoblastoma); pleomorphic round cells in a fibrillary background (astrocytoma); large polygonal cells with prominent nucleoli and clear cytoplasm (germ cell tumor); spindled fibroblastic cells (meningioma); anucleate squames and mature squamous cells (epidermoid cyst); and small uniform polygonal cells (pineal cyst). When necessary, IPOX studies supported the morphologic diagnoses. FNAB and TI cytology were found to provide a rapid and reliable diagnosis of pineal lesions. This is particularly important when dealing with minute amounts of tissue material. Both techniques

  18. The rat pineal gland comprises an endocannabinoid system.

    PubMed

    Koch, Marco; Habazettl, Iris; Dehghani, Faramarz; Korf, Horst-Werner

    2008-11-01

    In the mammalian pineal gland, the rhythm in melatonin biosynthesis depends on the norepinephrine (NE)-driven regulation of arylalkylamine N-acetyltransferase (AANAT), the penultimate enzyme of melatonin biosynthesis. A recent study showed that phytocannabinoids like tetrahydrocannabinol reduce AANAT activity and attenuate NE-induced melatonin biosynthesis in rat pineal glands, raising the possibility that an endocannabinoid system is present in the pineal gland. To test this hypothesis, we analyzed cannabinoid (CB) receptors and specific enzymes for endocannabinoid biosynthesis or catabolism in rat pineal glands and cultured pinealocytes. Immunohistochemical and immunoblot analyses revealed the presence of CB1 and CB2 receptor proteins, of N-acyl phosphatidyl ethanolamine hydrolyzing phospholipase D (NAPE-PLD), an enzyme catalyzing endocannabinoid biosynthesis and of fatty acid amide hydrolase (FAAH), an endocannabinoid catabolizing enzyme, in pinealocytes, and in pineal sympathetic nerve fibers identified by double immunofluorescence with an antibody against tyrosine hydroxylase. The immunosignals for the CB2 receptor, NAPE-PLD, and FAAH found in pinealocytes did not vary under a 12 hr light:12 hr dark cycle. The CB1 receptor immunoreaction in pinealocytes was significantly reduced at the end of the light phase [zeitgeber time (ZT) 12]. The immunosignal for NAPE-PLD found in pineal sympathetic nerve fibers was reduced in the middle of the dark phase (ZT 18). Stimulation of cultured pinealocytes with NE affected neither the subcellular distribution nor the intensity of the immunosignals for the investigated CB receptors and enzymes. In summary, the pineal gland comprises indispensable compounds of the endocannabinoid system indicating that endocannabinoids may be involved in the control of pineal physiology.

  19. Pineal gland volume in primary insomnia and healthy controls: a magnetic resonance imaging study.

    PubMed

    Bumb, Jan M; Schilling, Claudia; Enning, Frank; Haddad, Leila; Paul, Franc; Lederbogen, Florian; Deuschle, Michael; Schredl, Michael; Nolte, Ingo

    2014-06-01

    Little is known about the relation between pineal volume and insomnia. Melatonin promotes sleep processes and, administered as a drug, it is suitable to improve primary and secondary sleep disorders in humans. Recent magnetic resonance imaging studies suggest that human plasma and saliva melatonin levels are partially determined by the pineal gland volume. This study compares the pineal volume in a group of patients with primary insomnia to a group of healthy people without sleep disturbance. Pineal gland volume (PGV) was measured on the basis of high-resolution 3 Tesla MRI (T1-magnetization prepared rapid gradient echo) in 23 patients and 27 controls, matched for age, gender and educational status. Volume measurements were performed conventionally by manual delineation of the pineal borders in multi-planar reconstructed images. Pineal gland volume was significantly smaller (P < 0.001) in patients (48.9 ± 26.6 mm(3) ) than in controls (79 ± 30.2 mm(3) ). In patients PGV correlated negatively with age (r = -0.532; P = 0.026). Adjusting for the effect of age, PGV and rapid eye movement (REM) latency showed a significant positive correlation (rS  = 0.711, P < 0.001) in patients. Pineal volume appears to be reduced in patients with primary insomnia compared to healthy controls. Further studies are needed to clarify whether low pineal volume is the basis or the consequence of functional sleep changes to elucidate the molecular pathology for the pineal volume loss in primary insomnia.

  20. [Single mechanism of remodelling extracellular matrix in thymus and pineal gland at aging].

    PubMed

    Lin'kova, N S; Poliakova, V O; Kvetnoĭ, I M

    2011-01-01

    The expression of matrix metalloproteinase 2 and 9 in thymus and pineal gland has been verified. These data demonstrate single mechanism of remodelling extracellular matrix in thymus and pineal gland at aging.

  1. Rhythmic control of endocannabinoids in the rat pineal gland.

    PubMed

    Koch, Marco; Ferreirós, Nerea; Geisslinger, Gerd; Dehghani, Faramarz; Korf, Horst-Werner

    2015-01-01

    Endocannabinoids modulate neuroendocrine networks by directly targeting cannabinoid receptors. The time-hormone melatonin synchronizes these networks with external light condition and guarantees time-sensitive and ecologically well-adapted behaviors. Here, the endocannabinoid arachidonoyl ethanolamide (AEA) showed rhythmic changes in rat pineal glands with higher levels during the light-period and reduced amounts at the onset of darkness. Norepinephrine, the essential stimulus for nocturnal melatonin biosynthesis, acutely down-regulated AEA and other endocannabinoids in cultured pineal glands. These temporal dynamics suggest that AEA exerts time-dependent autocrine and/or paracrine functions within the pineal. Moreover, endocananbinoids may be released from the pineal into the CSF or blood stream.

  2. A new identified complication of intracystic hemorrhage in a large pineal gland cyst.

    PubMed

    Mehrzad, Raman; Mishra, Suprav; Feinstein, Alexander; Ho, Michael G

    2014-01-01

    Pineal gland cysts are typically asymptomatic, benign cysts most commonly found incidentally in adults. In rare cases, a large pineal gland cyst can be complicated by intracystic hemorrhage, which could then manifest with neurological symptoms. We report a new complication of intracystic hemorrhage in a large pineal gland cyst in a 40-year-old man with new onset seizures.

  3. The pineal gland and the clinical course of multiple sclerosis.

    PubMed

    Sandyk, R

    1992-01-01

    Clinical, epidemiological, biochemical, immunological, and radiological studies suggest that the pineal gland may be implicated in the pathophysiology of multiple sclerosis (MS). The following communication is concerned with the association among MS, pregnancy, the postpartum period, and melatonin secretion and illustrates, based on a clinical case report, the influence of the pineal gland on the clinical course of MS. This association is noteworthy since MS may worsen during the postpartum period and melatonin secretion is reported to be altered most dramatically by pregnancy and delivery. Since melatonin secretion is cyclical, undergoing diurnal, weekly, seasonal, and annual variations, it is proposed that the pineal gland may be the "prime mover" underlying the spontaneous exacerbations and remissions in MS.

  4. The mammalian pineal gland: known facts, unknown facets.

    PubMed

    Maronde, Erik; Stehle, Jörg H

    2007-01-01

    In the mammalian pineal gland, information on environmental lighting conditions that is neuronally encoded by the retina is converted into nocturnally elevated synthesis of the hormone melatonin. Evolutionary pressure has changed the morphology of vertebrate pinealocytes, eliminating direct photoreception and the endogenous clock function. Despite these changes, nocturnally elevated melatonin synthesis has remained a reliable indicator of time throughout evolution. In the photo-insensitive mammalian pineal gland this message of darkness depends on the master circadian pacemaker in the hypothalamic suprachiasmatic nuclei. The dramatic change in vertebrate pinealocytes has received little attention; here, we therefore link the known evolutionary morphodynamics and well-investigated biochemical details responsible for rhythmic synthesis of melatonin with recently characterized patterns of gene expression in the pineal gland. We also address the enigmatic function of clockwork molecules in mammalian pinealocytes.

  5. Visual evoked potentials in patients with pineal gland cyst.

    PubMed

    Bosnjak, Jelena; Mikula, Ivan; Miskov, Snjezana; Budisic, Mislav; Ivkic, Goran; Demarin, Vida

    2012-09-01

    The functional effect of the pineal gland cyst is difficult to evaluate with visual field examination. The aim of this study is to investigate the usefulness of visual evoked potentials (VEP) in patients with pineal gland cyst due to the possible compression on the visual pathway. Black-and-white pattern-reversal checkerboard VEP were recorded in 75 patients (50 females and 25 males, mean age 26.3 ± 15.7 and 25.6 ± 17.6 years, respectively) with pineal gland cyst detected on magnetic resonance of the brain (subject group) and 75 age and sex-matched control subjects (control group). Amplitudes and P100 latencies were collected and later grouped as: (1) normal finding; (2) prechiasmal; (3) prechiasmal and postchiasmal; and (4) postchiasmal dysfunction. P100 latencies differed significantly between subject (110.26 ± 13.23 ms) and control group (101.01 ± 5.36 ms) (p < 0.01). Findings of the VEP differed significantly (p < 0.01) between subject and control group, mainly due to the postchiasmal dysfunction frequency in subject group. Findings of the VEP differed significantly according to the pineal gland cyst volume (p = 0.006) with more frequent postchiasmal dysfunctions among subjects with larger cysts. Postchiasmal changes were significantly more frequent in patients with described compression of the cyst on surrounding brain structures (p = 0.016). Postchiasmal dysfunction on VEP can be seen in patients with pineal gland cyst, mostly with larger cysts and with compression of the cyst on surrounding brain structures. VEP serve as a useful method to determine functional impairment of the visual pathway in patients with pineal gland cyst.

  6. Peripheral autonomic nerves of human pineal organ terminate on vessels, their supposed role in the periodic secretion of pineal melatonin.

    PubMed

    Manzano E Silva, Maria Joao; Singh, Royana; Haldar, Chandana; Vigh, Béla; Szél, Ágoston

    2012-08-01

    Nonvisual pineal and retinal photoreceptors are synchronizing circadian and circannual periodicity to the environmental light periods in the function of various organs. Melatonin of the pineal organ is secreted at night and represents an important factor of this periodic regulation. Night illumination suppressing melatonin secretion may result in pathological events like breast and colorectal cancer. Experimental works demonstrated the role of autonomic nerves in the pineal melatonin secretion. It was supposed that mammalian pineals have lost their photoreceptor capacity that is present in submammalians, and sympathetic fibers would mediate light information from the retina to regulate melatonin secretion. Retinal afferentation may reach the organ by central nerve fibers via the pineal habenulae as well. In our earlier works we have found that the pineal organ developing from lobular evaginations of the epithalamus differs from peripheral endocrine glands and is composed of a retina-like central nervous tissue that is comprised of cone-like pinealocytes, secondary pineal neurons and glial cells. Their autonomic nerves in submammalians as well as in mammalian animals do not terminate on pineal cells, rather, they run in the meningeal septa among pineal lobules and form vasomotor nerve endings. Concerning the adult human pineal there are no detailed fine structural data about the termination of autonomic fibers, therefore, in the present work we investigated the ultrastructure of the human pineal peripheral autonomic nerve fibers. It was found, that similarly to other parts of the brain, autonomic nerves do not enter the human pineal nervous tissue itself but separated by glial limiting membranes take their course in the meningeal septa of the organ and terminate on vessels by vasomotor endings. We suppose that these autonomic vasomotor nerves serve the regulation of the pineal blood supply according to the circadian and circannual changes of the metabolic activity

  7. [Influence of peptides from pineal gland on thymus function at aging].

    PubMed

    Lin'kova, N S; Poliakova, V O; Trofimov, A V; Sevost'ianova, N N; Kvetnoĭ, I M

    2010-01-01

    The interference between thymus and pineal gland during their involution is considered in this review. The research data about influence of thymus peptides on pineal gland and pineal peptides on thymus is summarized. Analysis of these data showed that pineal peptides (epithalamin, epitalon) had more effective geroprotective effect on thymus involution in comparison with geroprotective effect of thymic peptides (thymalin, thymogen) on involution of pineal gland. The key mechanisms of pineal peptides effect on thymus dystrophy is immunoendocrine cooperation, which is realized as transcription's activation of various proteins.

  8. The midline pineal "eye": MR and CT characteristics of the pineal gland with and without benign cyst formation.

    PubMed

    Jinkins, J R; Xiong, L; Reiter, R J

    1995-09-01

    The purpose of this study was to evaluate the magnetic resonance imaging characteristics of pineal cysts and pineal calcifications and to determine the incidence of benign pineal cysts. Two-hundred-fifty magnetic resonance examinations were retrospectively examined for the incidence of pineal cysts. In addition, 60 collected cases of pineal cysts were evaluated with regard to cross sectional diameter and magnetic resonance signal characteristics. Finally, the magnetic resonance signal characteristics of pineal tissue in 50 patients were compared to companion computed tomographic scans that were scrutinized for the presence or absence of calcification. The incidence of pineal cysts as revealed by magnetic resonance imaging in this study was 10.8%. The minimal and maximal measurements ranged from a low of 2 x 2 x 2 mm to a high of 10 x 12 x 10 mm. The magnetic resonance signal intensities of pineal cyst as compared to cerebrospinal fluid were iso- or hyperintense on all magnetic resonance sequences in the majority of cases. Calcifications of the pineal gland as revealed by computed tomography tended to be isointense to gray matter if the calcifications were small and hypointense to gray matter if large on all magnetic resonance acquisitions. A careful analysis of the magnetic resonance signal characteristics enables the recognition of moderate- to large-sized pineal calcifications and their differentiation from large pineal cysts. However, small cysts of the pineal gland can be difficult or impossible to distinguish on magnetic resonance imaging from calcifications without comparison with computed tomography.

  9. Role of pineal gland in aetiology and treatment of breast cancer.

    PubMed

    Cohen, M; Lippman, M; Chabner, B

    1978-10-14

    The hypothesis that diminished function of the pineal gland may promote the development of breast cancer in human beings is suggested by the relation between breast cancer and prolonged oestrogen excess, and by the observation that the pineal secretion, melatonin, inhibits ovarian oestrogen production, pituitary gonadotrophin production, and sexual development and maturation. The hypothesis is supported by the following points. (1) Pineal calcification is commonest in countries with high rates of breast cancer and lowest in areas with a low incidence; the incidences of pineal calcification and of breast cancer are moderate among the black population in the United States. (2) Chlorpromazine raises serum-melatonin; there are reports that psychiatric patients taking chlorpromazine have a lower incidence of breast cancer. (3) Although information is lacking on breast cancer, the pineal and melatonin may influence tumour induction and growth in experimental animals. (4) The demonstration of a melatonin receptor in human ovary suggests a direct influence of this hormone on the ovarian function, and possibly oestrogen production. (5) Impaired pineal secretion is believed to be an important factor triggering puberty (early menarche is a risk factor for breast cancer).

  10. The Weight of the Pineal Gland in Malignancy

    PubMed Central

    Tapp, E.; Blumfield, Marianne

    1970-01-01

    A series of 150 pineal glands removed at routine postmortems in a general hospital have been examined. Statistical analysis of the weights of 147 of these glands from patients aged between 45 and 90 years, shows that the glands from patients dying of malignant disease are significantly lighter than those where the cause of death was non-malignant. These results are almost the exact reverse of those described recently in a similar series in America. After decalcification very little difference in the weight of the gland can be detected between the two groups and it would appear that the higher weight of the glands from non-malignant patients is due, at least in part, to the presence of a greater amount of mineral in these glands. PMID:4913769

  11. Calcium, calcification, and melatonin biosynthesis in the human pineal gland: a postmortem study into age-related factors.

    PubMed

    Schmid, H A; Requintina, P J; Oxenkrug, G F; Sturner, W

    1994-05-01

    It is believed that pineal calcification may be age-associated and that the well-demonstrated age-related decline in melatonin biosynthesis may be an expression of an alteration in calcium homeostasis in the pinealocyte. Prior correlations of melatonin to calcium deposition and age were made on the basis of radiological or semiquantitative analysis. In this postmortem study of 33 subjects (age range 3 months to 65 years) calcium deposits measured by atomic absorption spectrometry correlated positively with age in day and night samples (day: r = 0.56, P < 0.05; night: r = 0.818, P < 0.001). Nighttime (2200 h to 0800 h) pineal melatonin content (HPLC fluorometry) was higher than daytime melatonin levels (nighttime 3.80 +/- 0.3 vs. daytime 0.85 +/- 0.4 ng/mg protein). Nighttime calcium levels in the supernatant correlated negatively with melatonin content (r = -0.59, P < 0.05).

  12. Structure of the ovine pineal gland during prenatal development.

    PubMed

    Regodón, S; Franco, A; Masot, J; Redondo, E

    1998-12-01

    The structure of the pineal gland of 32 clinically healthy ovine embryos at different stages of development was studied. Embryos were arranged in four age groups, each containing eight embryos (four males and four females), defined in terms of the most relevant histological features: group 1 (27 to 69 days of prenatal development), group 2 (70 to 97 days), group 3 (98 to 116 days), and group 4 (117 to 150 days). At around 30 days of prenatal life, according to topographic criteria, the pineal outline begins to differentiate into a dorsal evagination of the diencephalic medium line, close to the anterior and posterior commissures. The growth of the pineal is biphasic. The ontogenic-proliferative phase begins at 30 days and includes the invasion of ependymal cells and the proliferation of the pineal parenchyma cells. The hypertrophic-differentiation phase includes the volume increment of the pinealoblasts and their differentiation into pinealocytes; this occurs at around 118 days. At around 98 days, the gland acquires its definitive compact appearance due to 1) glandular growth in constant volume and 2) the obliteration of pineal recess. The glandular structure displays a parenchyma made up of pinealoblasts, interstitial cells, and cells containing pigment. The pineal stroma is structured in pseudolobes formed by reticular and collagen fiber septae, which constitute together the interstitial cell prolongation net, which is the support structure of the whole glandular cytology. Capillaries are detected all over the glandular surface, being more abundant in the medullary zone. At around 98 days of prenatal development, VIP (Vasoactive Intestinal Peptide) positive fibers, distributed around blood vessels and among pinealoblasts were detected.

  13. A morphological and chemical study of calcification of the pineal gland.

    PubMed

    Michotte, Y; Lowenthal, A; Knaepen, L; Collard, M; Massart, D L

    1977-06-13

    A general scheme of analysis for the investigation of minute calcification is presented. After low temperature ashing, the samples are subjected to chemical, structural and morphological study, using atomic absorption spectrometry, infrared spectrometry, X-ray diffraction and scanning electron microscopy. Details about the calcification of the human pineal gland are given. The content of trace elements is very high, but within the limits found in other biological apatites. It is concluded that calcification of the pineal is a more general occurence than has been realized.

  14. The nicotinic receptor in the rat pineal gland is an alpha3beta4 subtype.

    PubMed

    Hernandez, Susan C; Vicini, Stefano; Xiao, Yingxian; Dávila-García, Martha I; Yasuda, Robert P; Wolfe, Barry B; Kellar, Kenneth J

    2004-10-01

    The rat pineal gland contains a high density of neuronal nicotinic acetylcholine receptors (nAChRs). We characterized the pharmacology of the binding sites and function of these receptors, measured the nAChR subunit mRNA, and used subunit-specific antibodies to establish the receptor subtype as defined by subunit composition. In ligand binding studies, [3H]epibatidine ([3H]EB) binds with an affinity of approximately 100 pM to nAChRs in the pineal gland, and the density of these sites is approximately 5 times that in rat cerebral cortex. The affinities of nicotinic drugs for binding sites in the pineal gland are similar to those at alpha3beta4 nAChRs heterologously expressed in human embryonic kidney 293 cells. In functional studies, the potencies and efficacies of nicotinic drugs to activate or block whole-cell currents in dissociated pinealocytes match closely their potencies and efficacies to activate or block 86Rb+ efflux in the cells expressing heterologous alpha3beta4 nAChRs. Measurements of mRNA indicated the presence of transcripts for alpha3, beta2, and beta4 nAChR subunits but not those for alpha2, alpha4, alpha5, alpha6, alpha7, or beta3 subunits. Immunoprecipitation with subunit-specific antibodies showed that virtually all [3H]EB-labeled nAChRs contained alpha3 and beta4 subunits associated in one complex. The beta2 subunit was not associated with this complex. Taken together, these results indicate that virtually all of the nAChRs in the rat pineal gland are the alpha3beta4 nAChR subtype and that the pineal gland can therefore serve as an excellent and convenient model in which to study the pharmacology and function of these receptors in a native tissue.

  15. Comparison of three methods for the estimation of pineal gland volume using magnetic resonance imaging.

    PubMed

    Acer, Niyazi; Ilıca, Ahmet Turan; Turgut, Ahmet Tuncay; Ozçelik, Ozlem; Yıldırım, Birdal; Turgut, Mehmet

    2012-01-01

    Pineal gland is a very important neuroendocrine organ with many physiological functions such as regulating circadian rhythm. Radiologically, the pineal gland volume is clinically important because it is usually difficult to distinguish small pineal tumors via magnetic resonance imaging (MRI). Although many studies have estimated the pineal gland volume using different techniques, to the best of our knowledge, there has so far been no stereological work done on this subject. The objective of the current paper was to determine the pineal gland volume using stereological methods and by the region of interest (ROI) on MRI. In this paper, the pineal gland volumes were calculated in a total of 62 subjects (36 females, 26 males) who were free of any pineal lesions or tumors. The mean ± SD pineal gland volumes of the point-counting, planimetry, and ROI groups were 99.55 ± 51.34, 102.69 ± 40.39, and 104.33 ± 40.45 mm(3), respectively. No significant difference was found among the methods of calculating pineal gland volume (P > 0.05). From these results, it can be concluded that each technique is an unbiased, efficient, and reliable method, ideally suitable for in vivo examination of MRI data for pineal gland volume estimation.

  16. Comparison of Three Methods for the Estimation of Pineal Gland Volume Using Magnetic Resonance Imaging

    PubMed Central

    Acer, Niyazi; Ilıca, Ahmet Turan; Turgut, Ahmet Tuncay; Özçelik, Özlem; Yıldırım, Birdal; Turgut, Mehmet

    2012-01-01

    Pineal gland is a very important neuroendocrine organ with many physiological functions such as regulating circadian rhythm. Radiologically, the pineal gland volume is clinically important because it is usually difficult to distinguish small pineal tumors via magnetic resonance imaging (MRI). Although many studies have estimated the pineal gland volume using different techniques, to the best of our knowledge, there has so far been no stereological work done on this subject. The objective of the current paper was to determine the pineal gland volume using stereological methods and by the region of interest (ROI) on MRI. In this paper, the pineal gland volumes were calculated in a total of 62 subjects (36 females, 26 males) who were free of any pineal lesions or tumors. The mean ± SD pineal gland volumes of the point-counting, planimetry, and ROI groups were 99.55 ± 51.34, 102.69 ± 40.39, and 104.33 ± 40.45 mm3, respectively. No significant difference was found among the methods of calculating pineal gland volume (P > 0.05). From these results, it can be concluded that each technique is an unbiased, efficient, and reliable method, ideally suitable for in vivo examination of MRI data for pineal gland volume estimation. PMID:22619577

  17. The function of very long chain polyunsaturated fatty acids in the pineal gland.

    PubMed

    Catalá, Angel

    2010-02-01

    The mammalian pineal gland is a prominent secretory organ with a high metabolic activity. Melatonin (N-acetyl-5-methoxytryptamine), the main secretory product of the pineal gland, efficiently scavenges both the hydroxyl and peroxyl radicals counteracting lipid peroxidation in biological membranes. Approximately 25% of the total fatty acids present in the rat pineal lipids are represented by arachidonic acid (20:4n-6) and docosahexaenoic acid (22:6n-3). These very long chain polyunsaturated fatty acids play important roles in the pineal gland. In addition to the production of melatonin, the mammalian pineal gland is able of convert these polyunsaturated fatty acids into bioactive lipid mediators. Lipoxygenation is the principal lipoxygenase (LOX) activity observed in the rat pineal gland. Lipoxygenation in the pineal gland is exceptional because no other brain regions express significant LOX activities under normal physiological conditions. The rat pineal gland expresses both 12- and 15-lipoxygenase (LOX) activities, producing 12- and 15-hydroperoxyeicosatetraenoic acid (12- and 15-HpETE) from arachidonic acid and 14- and 17-hydroxydocosahexaenoic acid (14- and 17-HdoHE) from docosahexaenoic acid, respectively. The rat pineal also produces hepoxilins via LOX pathways. The hepoxilins are bioactive epoxy-hydroxy products of the arachidonic acid metabolism via the 12S-lipoxygenase (12S-LOX) pathway. The two key pineal biochemical functions, lipoxygenation and melatonin synthesis, may be synergistically regulated by the status of n-3 essential fatty acids.

  18. Computed tomography of the human pineal gland for study of the sleep-wake rhythm: reproducibility of a semi-quantitative approach.

    PubMed

    Schmitz, S A; Platzek, I; Kunz, D; Mahlberg, R; Wolf, K-J; Heidenreich, J O

    2006-10-01

    To propose a semi-quantitative computed tomography (CT) protocol for determining uncalcified pineal tissue (UCPT), and to evaluate its reproducibility in modification of studies showing that the degree of calcification is a potential marker of deficient melatonin production and may prove an instability marker of circadian rhythm. Twenty-two pineal gland autopsy specimens were scanned in a skull phantom with different slice thickness twice and the uncalcified tissue visually assessed using a four-point scale. The maximum gland density was measured and its inverse graded on a non-linear four-point scale. The sum of both scores was multiplied by the gland volume to yield the UCPT. The within-subject variance of UCPT was determined and compared between scans of different slice thickness. The UCPT of the first measurement, in arbitrary units, was 39+/-52.5 for 1 mm slice thickness, 44+/-51.1 for 2 mm, 45+/-34.8 for 4 mm, and 84+/-58.0 for 8 mm. Significant differences of within-subject variance of UCPT were found between 1 and 4 mm, 1 and 8 mm, and 2 and 8 mm slice thicknesses (P<0.05). A superior reproducibility of the semi-quantitative CT determination of UCPT was found using 1 and 2 mm slice thicknesses. These data support the use of thin slices of 1 and 2 mm. The benefit in reproducibility from thin slices has to be carefully weighted against their considerably higher radiation exposure.

  19. Regulation of glycogen content in rat pineal gland by norepinephrine.

    PubMed

    Eugenín, E A; Sáez, C G; Garcés, G; Sáez, J C

    1997-06-20

    In the rat pineal gland the glycogen stores were cytochemically localized in astrocytes and pinealocytes. Moreover, it was found that norepinephrine (NE) induced a time- and concentration-dependent reduction in pineal glycogen content and yielded lactic acid. The NE effect was prevented by blocking alpha1- but not alpha2 or beta-adrenoceptors. Activation of alpha2-adrenoceptors induced a small decrease in glycogen levels that could have pre- and postsynaptic components. Activation of beta-adrenoceptors with 10(-12)-10(-3) M isoproterenol (ISO) induced a bell shape concentration-response curve, presumably due to desensitization, since the response induced by 10(-4) M ISO was greater with shorter period of stimulation. On the other hand, activation of alpha1-adrenoceptors with 10(-12)-10(-3) M phenylephrine (PHN) induced a hyperbolic concentration-response curve with a maximum at concentrations above 10(-8) M. Moreover, treatment with ISO drastically reduced the response induced by PHN concentrations lower but not higher than 10(-6) M, favoring a concentration-dependent response between 10(-6) and 10(-4) M PHN, similar to that induced by equimolar NE concentrations. Thus, the NE-induced reduction in glycogen content of the rat pineal gland is mainly mediated by alpha1-adrenoceptors and modulated by intracellular mechanisms activated by beta-adrenoceptors.

  20. Expression of luteinizing hormone/chorionic gonadotropin receptor in the rat pineal gland.

    PubMed

    Itoh, Masanori T; Hosaka, Takeshi; Takahashi, Noriyuki; Ishizuka, Bunpei

    2006-08-01

    Luteinizing hormone (LH) influences the secretion of melatonin (N-acetyl-5-methoxytryptamine) from the pineal gland. The present study examined the possible presence of LH/chorionic gonadotropin (CG) receptor in the pineal gland of adult female rats. Reverse transcriptase-polymerase chain reaction analyses demonstrated that LH/CG receptor mRNA is expressed in the pineal gland. Western blotting showed that the pineal gland, like the ovary, contains an 80 kDa receptor protein. Immunohistochemistry revealed that LH/CG receptor, arylalkylamine N-acetyltransferase (a regulatory enzyme in melatonin biosynthesis) and serotonin (a melatonin precursor) are localized primarily to the same cells of the pineal gland. We further found that the levels of pineal LH/CG receptor protein in normal cycling female rats change significantly during the estrous cycle, being lowest at early metestrus. These results demonstrate that LH/CG receptor is expressed in the pineal gland, primarily in melatonin-synthesizing cells, namely pinealocytes. Furthermore, it is suggested that LH influences pineal melatonin secretion through binding to this receptor. In addition, LH/CG receptor levels in the pineal gland are regulated during the estrous cycle under normal physiological conditions.

  1. The Lhx9 homeobox gene controls pineal gland development and prevents postnatal hydrocephalus.

    PubMed

    Yamazaki, Fumiyoshi; Møller, Morten; Fu, Cong; Clokie, Samuel J; Zykovich, Artem; Coon, Steven L; Klein, David C; Rath, Martin F

    2015-01-01

    Lhx9 is a member of the LIM homeobox gene family. It is expressed during mammalian embryogenesis in the brain including the pineal gland. Deletion of Lhx9 results in sterility due to failure of gonadal development. The current study was initiated to investigate Lhx9 biology in the pineal gland. Lhx9 is highly expressed in the developing pineal gland of the rat with transcript abundance peaking early in development; transcript levels decrease postnatally to nearly undetectable levels in the adult, a temporal pattern that is generally similar to that reported for Lhx9 expression in other brain regions. Studies with C57BL/6J Lhx9(-/-) mutant mice revealed marked alterations in brain and pineal development. Specifically, the superficial pineal gland is hypoplastic, being reduced to a small cluster of pinealocytes surrounded by meningeal and vascular tissue. The deep pineal gland and the pineal stalk are also reduced in size. Although the brains of neonatal Lhx9(-/-) mutant mice appear normal, severe hydrocephalus develops in about 70% of the Lhx9(-/-) mice at 5-8 weeks of age; these observations are the first to document that deletion of Lhx9 results in hydrocephalus and as such indicate that Lhx9 contributes to the maintenance of normal brain structure. Whereas hydrocephalus is absent in neonatal Lhx9(-/-)mutant mice, the neonatal pineal gland in these animals is hypoplastic. Accordingly, it appears that Lhx9 is essential for early development of the mammalian pineal gland and that this effect is not secondary to hydrocephalus.

  2. Moyamoya Syndrome: Post Cranial Irradiation of Pineal Gland Tumor

    PubMed Central

    Chiewvit, P.; Janyavanich, V.; Soonthonpong, N.; Churoj, A.; Chawalparit, O.; Suthipongchai, S.

    2001-01-01

    Summary A right-handed eight-year-old boy, with headache, vomiting and positive parinaud (s sign was diagnosed as having a pineal gland tumor which histopathological section from surgical biopsy revealed to be a germinoma. The patient underwent ventriculoperitoneal shunt for obstructive hydrocephalus. Thereafter; he received cranial irradiation as definitive treatment. He was well and went back to school until five years later he developed a transient ischemic attack. Cranial magnetic resonance imaging showed a complete cure of the pineal tumor without any other specific abnormality. Eight months later he had an episode of stroke which was demonstrated by cranial computed tomography as acute left cerebral infarction in the middle cerebral artery territory. Cerebral angiography showed Moyamoya syndrome. PMID:20663345

  3. The pineal gland and the mode of onset of schizophrenia.

    PubMed

    Sandyk, R

    1992-01-01

    Recent studies suggest that abnormal melatonin functions may be implicated in the pathophysiology of schizophrenia. Since there is evidence that the presence of pineal calcification (PC) may relate, among other factors, to disturbances in melatonin secretion, I investigated in 23 chronic institutionalized schizophrenic patients the relationship of PC size on CT scan to the mode of onset of schizophrenia which carries both developmental and prognostic significance. Patients with gradual onset schizophrenia had PC size that was significantly larger than those with sudden onset (8.94 +/- 3.96 mm vs. 4.80 +/- 1.75 mm p < .025). These findings suggest that the nature of onset of schizophrenia may be influenced by the activity of the pineal gland, which may exert a role in the development and prognosis of the illness.

  4. A method for extirpation of the pineal gland in albino rats.

    PubMed

    Arav, V I; Slesarev, S M; Slesareva, E V

    2008-09-01

    A method for extirpation of the pineal gland in albino rats and other rodents (e. g., ground squirrels) is proposed. Epiphysectomy is carried out by resection of a fragment of the bone with the underlying pineal gland. Using this method, many animals can be operated within a short period; the method is reliable and simple, which recommends it for chronobiological studies.

  5. TLR4 and CD14 receptors expressed in rat pineal gland trigger NFKB pathway.

    PubMed

    da Silveira Cruz-Machado, Sanseray; Carvalho-Sousa, Claudia Emanuele; Tamura, Eduardo Koji; Pinato, Luciana; Cecon, Erika; Fernandes, Pedro Augusto Carlos Magno; de Avellar, Maria Christina Werneck; Ferreira, Zulma Silva; Markus, Regina Pekelmann

    2010-09-01

    Nuclear factor-kappa B (NFKB), a pivotal player in inflammatory responses, is constitutively expressed in the pineal gland. Corticosterone inhibits pineal NFKB leading to an enhancement of melatonin production, while tumor necrosis factor (TNF) leads to inhibition of Aa-nat transcription and the production of N-acetylserotonin in cultured glands. The reduction in nocturnal melatonin surge favors the mounting of the inflammatory response. Despite these data, there is no clear evidence of the ability of the pineal gland to recognize molecules that signal infection. This study investigated whether the rat pineal gland expresses receptors for lipopolysaccharide (LPS), the endotoxin from the membranes of Gram-negative bacteria, and to establish the mechanism of action of LPS. Here, we show that pineal glands possess both CD14 and toll-like receptor 4 (TLR4), membrane proteins that bind LPS and trigger the NFKB pathway. LPS induced the nuclear translocation of p50/p50 and p50/RELA dimers and the synthesis of TNF. The maximal expression of TNF in cultured glands coincides with an increase in the expression of TNF receptor 1 (TNFR1) in isolated pinealocytes. In addition, LPS inhibited the synthesis of N-acetylserotonin and melatonin. Therefore, the pineal gland transduces Gram-negative endotoxin stimulation by producing TNF and inhibiting melatonin synthesis. Here, we provide evidence to reinforce the idea of an immune-pineal axis, showing that the pineal gland is a constitutive player in the innate immune response.

  6. The immune-pineal axis: stress as a modulator of pineal gland function.

    PubMed

    Couto-Moraes, Renato; Palermo-Neto, João; Markus, Regina Pekelmann

    2009-02-01

    The temporal organization of mammals presents a daily adjustment to the environmental light/dark cycle. The environmental light detected by the retina adjusts the central clock in the suprachiasmatic nuclei, which innervate the pineal gland through a polysynaptic pathway. During the night, this gland produces and releases the nocturnal hormone melatonin, which circulates throughout the whole body and adjusts several bodily functions according to the existence and duration of darkness. We have previously shown that during the time frame of an inflammatory response, pro-inflammatory cytokines, such as tumor necrosis factor-alpha, inhibit while anti-inflammatory mediators, such as glucocorticoids, enhance the synthesis of melatonin, interfering in the daily adjustment of the light/dark cycle. Therefore, injury disconnects the organism from environmental cycling, while recovery restores the light/dark information to the whole organism. Here, we extend these observations by evaluating the effect of a mild restraint stress, which did not induce macroscopic gastric lesions. After 2 h of restraint, there was an increase in circulating corticosterone, indicating activation of the hypothalamus-pituitary-adrenal (HPA) axis. In parallel, an increase in melatonin production was observed. Taking into account the data obtained with models of inflammation and stress, we reinforce the hypothesis that the activity of the pineal gland is modulated by the state of the immune system and the HPA axis, implicating the darkness hormone melatonin as a modulator of defense responses.

  7. Post-natal growth in the rat pineal gland: a stereological study.

    PubMed

    Erbagci, H; Kizilkan, N; Ozbag, D; Erkilic, S; Kervancioglu, P; Canan, S; Gumusburun, E

    2012-10-01

    The purpose was to observe the changes in a rat pineal gland using stereological techniques during lactation and post-weaning periods. Thirty Wistar albino rats were studied during different post-natal periods using light microscopy. Pineal gland volume was estimated using the Cavalieri Method. Additionally, the total number of pinealocytes was estimated using the optical fractionator technique. Pineal gland volume displayed statistically significant changes between lactation and after weaning periods. A significant increase in pineal gland volume was observed from post-natal day 10 to post-natal day 90. The numerical density of pinealocytes became stabilized during lactation and decreased rapidly after weaning. However, the total number of pinealocytes continuously increased during post-natal life of all rats in the study. However, this increment was not statistically significant when comparing the lactation and after weaning periods. The increase in post-natal pineal gland volume may depend on increment of immunoreactive fibres, capsule thickness or new synaptic bodies.

  8. Postnatal neurogenesis in the cow pineal gland: an immunohistochemical study.

    PubMed

    Gómez Esteban, M B; Muñoz Mosqueira, M I; Arroyo, A A; Muñoz Barragán, L

    2013-03-01

    In the pineal gland of cows and rats structures designated rosettes have been described both during embryonic development and in adult animals. In order to investigate the possible nature of the cells comprising such structures, in the present work we studied the pineal glands from 10 cows of one- or four-years-old using conventional immunocytochemical and confocal microscopy techniques. As markers of glial cells, we used anti-vimentin (Vim) and glial fibrillary acidic protein (GFAP) and anti-S-100 sera, and the pinealocytes were labelled with β-III tubulin. As a marker of stem cells, we used an antinestin serum, while an anti-PCNA serum was employed to label proliferating cells. To explore the neuronal nature of some cells of the rosettes, we used an anti-SRIF serum. The rosettes were seen to be present throughout the glandular parenchyma and displayed a central cavity surrounded by cells, most of which expressed all or just some of the above glial labels and nestin, although there were also some rosettes with cells that expressed β-III tubulin and other cells that expressed SRIF. Likewise, in the cells of the rosettes the cell nucleus showed strong expression of PCNA. Confocal microscopy revealed that the walls of the rosettes contained cells that coexpressed Vim/S-100, Vim/GFAP and Vim/nestin. The number of rosettes was significantly greater in the animals of one year of age with respect to the four-year-old cows. The present findings allow us to suggest that rosettes are evolving structures and that most of the cells present in their walls should be considered stem cells, and hence responsible for the postnatal neurogenesis occurring in the pineal gland of cows.

  9. Leptin modulates norepinephrine-mediated melatonin synthesis in cultured rat pineal gland.

    PubMed

    Peliciari-Garcia, Rodrigo Antonio; Andrade-Silva, Jéssica; Cipolla-Neto, José; Carvalho, Carla Roberta de Oliveira

    2013-01-01

    Pineal melatonin synthesis can be modulated by many peptides, including insulin. Because melatonin appears to alter leptin synthesis, in this work we aimed to investigate whether leptin would have a role on norepinephrine- (NE-)mediated melatonin synthesis in cultured rat pineal glands. According to our data, cultured rat pineal glands express leptin receptor isoform b (Ob-Rb). Pineal expression of Ob-Rb mRNA was also observed in vivo. Administration of leptin (1 nM) associated with NE ( 1 µM) reduced melatonin content as well as arylalkylamine-N-acetyl transferase (AANAT) activity and expression in cultured pineal glands. Leptin treatment per se induced the expression of STAT3 in cultured pineal glands, but STAT3 does not participate in the leptin modulation of NE-mediated pineal melatonin synthesis. In addition, the expression of inducible cAMP early repressor (ICER) was further induced by leptin challenge when associated with NE. In conclusion, leptin inhibition of pineal melatonin synthesis appears to be mediated by a reduction in AANAT activity and expression as well as by increased expression of Icer mRNA. Peptidergic signaling within the pineal gland appears to be one of the most important signals which modulates melatonin synthesis; leptin, as a member of this system, is not an exception.

  10. Melatonin formation in pineal gland from rats with hexachlorobenzene experimental porphyria.

    PubMed

    Llambías, Elena B C; Mazzetti, Marta B; Lelli, Sandra M; Aldonatti, Carmen; San Martín de Viale, Leonor C

    2007-01-01

    Hexachlorobenzene produces an experimental hepatic porphyria in rats, which is similar to human porphyria cutanea tarda, with hyperpigmentation as one of its characteristic features. Alterations in tryptophan metabolism have been previously observed in this chronic porphyria. Melatonin formation from tryptophan via serotonin shows diurnal rhythmicity in the pineal gland, and higher values are observed during the dark phase of an imposed light-dark cycle. The purpose of this study was to determine the contents of tryptophan and its metabolites in pineal gland of normal and hexachlorobenzene-treated rats in order to find alterations potentially related to porphyria cutanea tarda. Results show that in animals with this experimental porphyria some tryptophan metabolite levels (serotonin and 5-hydroxyindoleacetic acid) increase only during the light period, whereas tryptophan content remained equal to the controls. Hydroxyindole-O-methyltransferase activity also increases by light in pineal gland from hexachlorobenzene-treated rats. On the other hand, tryptophan is converted to melatonin in the dark period, but this route is not exacerbated in hexachlorobenzene porphyria. The relevance of these alterations is discussed in relation to hyperpigmentation, neoplastic and oxidative stress processes associated with this porphyria.

  11. Cellular Basis of Pineal Gland Development: Emerging Role of Microglia as Phenotype Regulator

    PubMed Central

    Ibañez Rodriguez, María P.

    2016-01-01

    The adult pineal gland is composed of pinealocytes, astrocytes, microglia, and other interstitial cells that have been described in detail. However, factors that contribute to pineal development have not been fully elucidated, nor have pineal cell lineages been well characterized. We applied systematic double, triple and quadruple labeling of cell-specific markers on prenatal, postnatal and mature rat pineal gland tissue combined with confocal microscopy to provide a comprehensive view of the cellular dynamics and cell lineages that contribute to pineal gland development. The pineal gland begins as an evagination of neuroepithelium in the roof of the third ventricle. The pineal primordium initially consists of radially aligned Pax6+ precursor cells that express vimentin and divide at the ventricular lumen. After the tubular neuroepithelium fuses, the distribution of Pax6+ cells transitions to include rosette-like structures and later, dispersed cells. In the developing gland all dividing cells express Pax6, indicating that Pax6+ precursor cells generate pinealocytes and some interstitial cells. The density of Pax6+ cells decreases across pineal development as a result of cellular differentiation and microglial phagocytosis, but Pax6+ cells remain in the adult gland as a distinct population. Microglial colonization begins after pineal recess formation. Microglial phagocytosis of Pax6+ cells is not common at early stages but increases as microglia colonize the gland. In the postnatal gland microglia affiliate with Tuj1+ nerve fibers, IB4+ blood vessels, and Pax6+ cells. We demonstrate that microglia engulf Pax6+ cells, nerve fibers, and blood vessel-related elements, but not pinealocytes. We conclude that microglia play a role in pineal gland formation and homeostasis by regulating the precursor cell population, remodeling blood vessels and pruning sympathetic nerve fibers. PMID:27861587

  12. Cellular Basis of Pineal Gland Development: Emerging Role of Microglia as Phenotype Regulator.

    PubMed

    Ibañez Rodriguez, María P; Noctor, Stephen C; Muñoz, Estela M

    2016-01-01

    The adult pineal gland is composed of pinealocytes, astrocytes, microglia, and other interstitial cells that have been described in detail. However, factors that contribute to pineal development have not been fully elucidated, nor have pineal cell lineages been well characterized. We applied systematic double, triple and quadruple labeling of cell-specific markers on prenatal, postnatal and mature rat pineal gland tissue combined with confocal microscopy to provide a comprehensive view of the cellular dynamics and cell lineages that contribute to pineal gland development. The pineal gland begins as an evagination of neuroepithelium in the roof of the third ventricle. The pineal primordium initially consists of radially aligned Pax6+ precursor cells that express vimentin and divide at the ventricular lumen. After the tubular neuroepithelium fuses, the distribution of Pax6+ cells transitions to include rosette-like structures and later, dispersed cells. In the developing gland all dividing cells express Pax6, indicating that Pax6+ precursor cells generate pinealocytes and some interstitial cells. The density of Pax6+ cells decreases across pineal development as a result of cellular differentiation and microglial phagocytosis, but Pax6+ cells remain in the adult gland as a distinct population. Microglial colonization begins after pineal recess formation. Microglial phagocytosis of Pax6+ cells is not common at early stages but increases as microglia colonize the gland. In the postnatal gland microglia affiliate with Tuj1+ nerve fibers, IB4+ blood vessels, and Pax6+ cells. We demonstrate that microglia engulf Pax6+ cells, nerve fibers, and blood vessel-related elements, but not pinealocytes. We conclude that microglia play a role in pineal gland formation and homeostasis by regulating the precursor cell population, remodeling blood vessels and pruning sympathetic nerve fibers.

  13. The phototransduction cascade in the isolated chick pineal gland revisited.

    PubMed

    Holthues, Heike; Vollrath, Lutz

    2004-03-05

    It is well established that the isolated chick pineal gland is directly light sensitive and that melatonin synthesis of the gland can be inhibited by exposing the gland to light during scotophase. Since not all the steps of the phototransduction cascade have been clarified to the same extent as in the retina, we have treated isolated chick pineal glands with 90 min of light during scotophase and with drugs that affect key-components of vertebrate phototransduction, i.e., cyclic guanosine monophosphate (cGMP) phosphodiesterase 6 (PDE6), cGMP levels and cGMP-gated calcium channels. The endpoint measured was the activity of the rate-limiting enzyme of melatonin synthesis, arylalkylamine N-acetyltransferase (AA-NAT), which is inhibited by light. The effects on AA-NAT activity of light were negated by addition of dipyridamol and zaprinast, either of which inhibits the light-induced activation of PDE6. The effect of light was also counteracted by the nitric oxide donor sodium nitroprusside and C-type natriuretic peptide, both of which increase cGMP levels, and by the calcium channel agonist Bay K 8644, which prevents the cGMP-decrease-induced closure of cGMP-gated calcium channels. Inhibition of nitric oxide synthase (NOS) by N(G)-nitro-l-arginine did not influence the inhibitory effect of light, suggesting that the NOS pathway does not play a role. Since the light effect on AA-NAT activity involves both cGMP and cyclic adenosine monophosphate (cAMP) hydrolysis, we have also studied whether the cGMP-inhibited cAMP phosphodiesterase 3 (PDE3) is involved. As the specific PDE3 inhibitor cilostamide is without effect, we assume that the light-induced decrease of cAMP levels does not involve PDE3. These results taken together strongly suggest that the investigated steps of the phototransduction cascade in the isolated chick pineal gland are basically similar to those in the retina.

  14. Modulation of Aanat gene transcription in the rat pineal gland.

    PubMed

    Ho, Anthony K; Chik, Constance L

    2010-01-01

    The main function of the rat pineal gland is to transform the circadian rhythm generated in the suprachiasmatic nucleus into a rhythmic signal of circulating melatonin characterized by a large nocturnal increase that closely reflects the duration of night period. This is achieved through the tight coupling between environmental lighting and the expression of arylalkylamine-N-acetyltransferase, the rhythm-controlling enzyme in melatonin synthesis. The initiation of Aanat transcription at night is controlled largely by the norepinephrine-stimulated phosphorylation of cAMP response element-binding protein by protein kinase A. However, to accurately reflect the duration of darkness, additional signaling mechanisms also participate to fine-tune the temporal profile of adrenergic-induced Aanat transcription. Here, we reviewed some of these signaling mechanisms, with emphasis on the more recent findings. These signaling mechanisms can be divided into two groups: those involving modification of constitutively expressed proteins and those requiring synthesis of new proteins. This review highlights the pineal gland as an excellent model system for studying neurotransmitter-regulated rhythmic gene expression.

  15. Homeobox genes in the rodent pineal gland: roles in development and phenotype maintenance.

    PubMed

    Rath, Martin F; Rohde, Kristian; Klein, David C; Møller, Morten

    2013-06-01

    The pineal gland is a neuroendocrine gland responsible for nocturnal synthesis of melatonin. During early development of the rodent pineal gland from the roof of the diencephalon, homeobox genes of the orthodenticle homeobox (Otx)- and paired box (Pax)-families are expressed and are essential for normal pineal development consistent with the well-established role that homeobox genes play in developmental processes. However, the pineal gland appears to be unusual because strong homeobox gene expression persists in the pineal gland of the adult brain. Accordingly, in addition to developmental functions, homeobox genes appear to be key regulators in postnatal phenotype maintenance in this tissue. In this paper, we review ontogenetic and phylogenetic aspects of pineal development and recent progress in understanding the involvement of homebox genes in rodent pineal development and adult function. A working model is proposed for understanding the sequential action of homeobox genes in controlling development and mature circadian function of the mammalian pinealocyte based on knowledge from detailed developmental and daily gene expression analyses in rats, the pineal phenotypes of homebox gene-deficient mice and studies on development of the retinal photoreceptor; the pinealocyte and retinal photoreceptor share features not seen in other tissues and are likely to have evolved from the same ancestral photodetector cell.

  16. An autopsy case of sudden unexpected death due to a glial cyst of the pineal gland.

    PubMed

    Na, Joo-Young; Lee, Kyung-Hwa; Kim, Hyung-Seok; Park, Jong-Tae

    2014-09-01

    Pineal cysts are usually asymptomatic; however, they may rarely cause symptoms such as chronic headache, paroxysmal headache with gaze paresis, postural syncope, loss of consciousness, and sudden death. A 30-year-old woman with no specific medical history except chronic headache was found collapsed in a public toilet per se. Postmortem examination revealed no external injuries or internal diseases except a cystic lesion of the pineal gland. Histologic examination showed an internal cyst surrounded by glial tissues and pineal parenchyma that was diagnosed as a glial cyst of the pineal gland. Although the pineal cyst cannot be confirmed as the cause of death, it was considered, as no other cause was evident. Herein, we report a pineal cyst considered as an assumed cause of death.

  17. [Expression of AIF and CGRP markers in pineal gland and thymus during aging].

    PubMed

    Lin'kova, N S; Katanugina, A S; Khavinson, V Kh

    2011-01-01

    We investigated the expression of AIF (apoptotic inducing factor) and CGRP (calcitonin gene related peptide) at autopsy material of pineal gland and thymus of people after 60 years old. The expression of AIF and CGRP was identified in both organs, but it did not change with age, which demonstrates the probable safety of functional activity of neuroimmunoendocrine system at aging. We found correlation between expression AIF and CGRP at pineal gland, but the correlation at thymus wasn't found. It is possible that pineal gland can express unidentified signal molecule controlling the expression of AIF and CGRP.

  18. Historical and cultural aspects of the pineal gland: comparison between the theories provided by Spiritism in the 1940s and the current scientific evidence.

    PubMed

    Lucchetti, Giancarlo; Daher, Jorge C; Iandoli, Decio; Gonçalves, Juliane P B; Lucchetti, Alessandra L G

    2013-01-01

    Significance has been attached to the pineal gland in numerous different cultures and beliefs. One religion that has advanced the role of the pineal gland is Spiritism. The objective of the present study was to compile information on the pineal gland drawing on the books of Francisco Cândido Xavier written through psychography and to carry out a critical analysis of their scientific bases by comparing against evidence in the current scientific literature. A systematic search using the terms "pineal gland" and "epiphysis" was conducted of 12 works allegedly dictated by the spirit "André Luiz". All information on the pineal having potential correlation with the field of medicine and current studies was included. Specialists in the area were recruited to compile the information and draw parallels with the scientific literature. The themes related to the pineal gland were: mental health, reproductive function, endocrinology, relationship with physical activity, spiritual connection, criticism of the theory that the organ exerts no function, and description of a hormone secreted by the gland (reference alluding to melatonin, isolated 13 years later). The historical background for each theme was outlined, together with the theories present in the Spiritist books and in the relevant scientific literature. The present article provides an analysis of the knowledge the scientific community can acquire from the history of humanity and from science itself. The process of formulating hypotheses and scientific theories can benefit by drawing on the cultural aspects of civilization, taking into account so-called non-traditional reports and theories.

  19. Restricted feeding restores rhythmicity in the pineal gland of arrhythmic suprachiasmatic-lesioned rats.

    PubMed

    Feillet, Céline A; Mendoza, Jorge; Pévet, Paul; Challet, Etienne

    2008-12-01

    In mammals, the rhythmic synthesis of melatonin by the pineal gland is tightly controlled by the master clock located in the suprachiasmatic nuclei (SCN). In behaviourally arrhythmic SCN-lesioned rats, we investigated the effects of daily restricted feeding (RF) on pineal melatonin synthesis. RF restored not only a rhythmic transcription of the rate-limiting enzyme for melatonin biosynthesis [arylalkylamine-N-acetyltransferase (AANAT)] and a rhythmic expression of c-FOS but also a rhythmic synthesis of melatonin in the pineal gland. In control rats without functional SCN and fed ad libitum, a daily immobilization stress did not restore any rhythmicity in the pineal gland. Interestingly, a combination of RF and daily stress prior to the time of food access did not markedly impair AaNat mRNA and c-FOS rhythmicity but did abolish the restoration of rhythmic pineal melatonin. These data indicate that the synchronizing effects of RF on the pineal rhythmicity are not due to, and cannot be mimicked by, high levels of circulating glucocorticoids. In keeping with the multi-oscillatory nature of the circadian system, the rhythmicity of pineal melatonin in mammals, until now an exclusive output of the SCN, can also be controlled by daily feeding cues when the SCN clock is lacking. Thus, the present study demonstrates that daily RF in SCN-lesioned rats provides, probably via sympathetic fibres, synchronizing stimuli strong enough to drive rhythmicity in the pineal gland.

  20. Pineal gland function is required for colon antipreneoplastic effects of physical exercise in rats.

    PubMed

    Frajacomo, F T T; de Paula Garcia, W; Fernandes, C R; Garcia, S B; Kannen, V

    2015-10-01

    Light-at-night exposure enhances the risk of cancer. Colon cancer is among the most dangerous tumors affecting humankind. Physical exercise has shown positive effects against colon cancer. Here, we investigated whether pineal gland modulates antipreneoplastic effects of physical exercise in the colon. Surgical and non-surgical pineal impairments were performed to clarify the relationship between the pineal gland activity and manifestation of colonic preneoplastic lesions. Next, a progressive swimming training was applied in rats exposed or not to either non-surgical pineal impairment or carcinogen treatment for 10 weeks. Both surgical and non-surgical pineal impairments increased the development of colon preneoplasia. It was further found that impairing the pineal gland function, higher rates of DNA damage were induced in colonic epithelial and enteric glial cells. Physical exercise acted positively against preneoplasia, whereas impairing the pineal function with constant light exposure disrupts its positive effects on the development of preneoplastic lesions in the colon. This was yet related to increased DNA damage in glial cells and enteric neuronal activation aside from serum melatonin levels. Our findings suggest that protective effects of physical exercise against colon cancer are dependent on the pineal gland activity.

  1. Abnormal EEG and calcification of the pineal gland in schizophrenia.

    PubMed

    Sandyk, R; Kay, S R

    1992-01-01

    Computed tomographic (CT) studies of the brain in schizophrenic patients have demonstrated a variety of structural abnormalities. We reported recently an association between pineal calcification (PC) and cortical and prefrontal cortical atrophy, and third ventricular size on CT scan in chronic schizophrenic patients. These findings indicate that in schizophrenia PC is associated with the morphological brain abnormalities associated with the disease. If PC is, indeed, related to organic cerebral pathology, then one would expect a higher prevalence of pineal gland pathology among patients with electroencephalographic (EEG) abnormalities by comparison to those with a normal EEG. To investigate this hypothesis, we studied the prevalence of PC on CT scan in a sample of 52 neuroleptic-treated schizophrenic patients (29 men, 23 women, mean age: 51.3 years SD = 9.1), of whom 10 (19.2%) had an abnormal EEG. The prevalence of PC in patients with EEG abnormalities was significantly greater by comparison to those with a normal EEG (90.0% vs. 54.8%, X2 = 4.24, p < .05). Since both groups did not differ on any of the historical and demographic data, and since PC was unrelated to neuroleptic exposure, these findings suggest that in schizophrenia PC may be related to the disease process and that it may be a marker of subcortical pathology.

  2. Daily variation of constitutively activated nuclear factor kappa B (NFKB) in rat pineal gland.

    PubMed

    Cecon, Erika; Fernandes, Pedro A; Pinato, Luciana; Ferreira, Zulma S; Markus, Regina P

    2010-01-01

    In mammals, the production of melatonin by the pineal gland is mainly controlled by the suprachiasmatic nuclei (SCN), the master clock of the circadian system. We have previously shown that agents involved in inflammatory responses, such as cytokines and corticosterone, modulate pineal melatonin synthesis. The nuclear transcription factor NFKB, detected by our group in the rat pineal gland, modulates this effect. Here, we evaluated a putative constitutive role for the pineal gland NFKB pathway. Male rats were kept under 12 h:12 h light-dark (LD) cycle or under constant darkness (DD) condition. Nuclear NFKB was quantified by electrophoretic mobility shift assay on pineal glands obtained from animals killed throughout the day at different times. Nuclear content of NFKB presented a daily rhythm only in LD-entrained animals. During the light phase, the amount of NFKB increased continuously, and a sharp drop occurred when lights were turned off. Animals maintained in a constant light environment until ZT 18 showed diurnal levels of nuclear NFKB at ZT15 and ZT18. Propranolol (20 mg/kg, i.p., ZT 11) treatment, which inhibits nocturnal sympathetic input, impaired nocturnal decrease of NFKB only at ZT18. A similar effect was observed in free-running animals, which secreted less nocturnal melatonin. Because melatonin reduces constitutive NFKB activation in cultured pineal glands, we propose that this indolamine regulates this transcription factor pathway in the rat pineal gland, but not at the LD transition. The controversial results regarding the inhibition of pineal function by constant light or blocking sympathetic neurotransmission are discussed according to the hypothesis that the prompt effect of lights-off is not mediated by noradrenaline, which otherwise contributes to maintaining low levels of nuclear NFKB at night. In summary, we report here a novel transcription factor in the pineal gland, which exhibits a constitutive rhythm dependent on environmental photic

  3. Vesicular Glutamate Transporter 2 Expression in the Rat Pineal Gland: Detailed Analysis of Expression Pattern and Regulatory Mechanism

    NASA Astrophysics Data System (ADS)

    Yoshida, Sachine; Hisano, Setsuji

    Melatonin, a hormone secreted by the pineal gland, is closely related physiologically to circadian rhythm, sleep and reproduction, and also psychiatrically to mood disorders in humans. Under circadian control, melatonin secretion is modulated via nocturnal autonomic (adrenergic) stimulation to the gland, which expresses vesicular glutamate transporter (VGLUT) 1, VGLUT2 and a VGLUT1 splice variant (VGLUT1v), glutamatergic markers. Expression of VGLUT2 gene and protein in the intact gland has been reported to exhibit a rhythmic change during a day. To study VGLUT2 expression is under adrenergic control, we here performed an in vitro experiment using dispersed pineal cells of rats. Stimulation of either β-adrenergic receptor or cAMP production to the pineal cells was shown to increase mRNA level of VGLUT2, but not VGLUT1 and VGLUT1v. Because an ability of glutamate to inhibit melatonin production was previously reported in the cultured gland, it is likely that pineal VGLUT2 transports glutamate engaged in the inhibition of melatonin production.

  4. Sudden death due to a glial cyst of the pineal gland.

    PubMed Central

    Milroy, C M; Smith, C L

    1996-01-01

    Asymptomatic cysts of the pineal gland are found frequently by radiological examination of the brain or at postmortem examination. Symptomatic cysts are rare, and may require surgical intervention. Sudden death due to a cystic lesion of the pineal gland is very rare. A case of a 22 year old man who collapsed and died unexpectedly is reported. Postmortem examination revealed a glial cyst of the pineal gland and evidence of chronic obstructive hydrocephalus. Deaths from colloid cysts and pineal gland cysts are rare, but should be considered where no other cause of death is evident, especially with a history of headaches. Their small size, and their possible rupture on dissection can make them difficult to detect if a careful examination is not undertaken. Images PMID:8675746

  5. Functional unity of the thymus and pineal gland and study of the mechanisms of aging.

    PubMed

    Polyakova, V O; Linkova, N S; Kvetnoy, I M; Khavinson, V Kh

    2011-09-01

    The data on the morphology and functions of the thymus and pineal gland in individuals of different age are analyzed and common mechanisms of involution of these organs during aging and the consequencies of this process are discussed. Based on the data on the molecular changes in the thymus and pineal gland during aging, the authors hypothesize the functional unity of these organs and their mutual complementarity in the maintenance of normal immune and endocrine status during aging.

  6. Rhodopsin Kinase Activity in the Mammalian Pineal Gland and Other Tissues

    NASA Astrophysics Data System (ADS)

    Somers, Robert L.; Klein, David C.

    1984-10-01

    Rhodopsin kinase, an enzyme involved in photochemical transduction in the retina, has been found in the mammalian pineal gland in amounts equal to those in the retina; other tissues had 7 percent of this amount, or less. This finding suggests that, in mammals, rhodopsin kinase functions in the pineal gland and other tissues to phosphorylate rhodopsin-like integral membrane receptors and is thereby involved in signal transduction.

  7. The photoreceptive cells of the pineal gland in adult zebrafish (Danio rerio).

    PubMed

    Laurà, Rosaria; Magnoli, Domenico; Zichichi, Rosalia; Guerrera, Maria Cristina; De Carlos, Felix; Suárez, Alberto Álvarez; Abbate, Francesco; Ciriaco, Emilia; Vega, Jose Antonio; Germanà, Antonino

    2012-03-01

    The zebrafish pineal gland plays a fundamental role in the regulation of the circadian rhythm through the melatonin secretion. The pinealocytes, also called photoreceptive cells, are considered the morphofunctional unit of pineal gland. In literature, the anatomical features, the cellular characteristics, and the pinealocytes morphology of zebrafish pineal gland have not been previously described in detail. Therefore, this study was undertaken to analyze the structure and ultrastructure, as well as the immunohistochemical profile of the zebrafish pineal gland with particular reference to the pinealocytes. Here, we demonstrated, using RT-PCR, immunohistochemistry and transmission electron microscopy, the expression of the mRNA for rhodopsin in the pineal gland of zebrafish, as well as its cellular localization exclusively in the pinealocytes of adult zebrafish. Moreover, the ultrastructural observations demonstrated that the pinealocytes were constituted by an outer segment with numerous lamellar membranes, an inner segment with many mitochondria, and a basal pole with the synapses. Our results taken together demonstrated a central role of zebrafish pinealocytes in the control of pineal gland functions.

  8. Effect of calcium on melatonin secretion in chick pineal gland I.

    PubMed

    Pablos, M I; Agapito, M T; Gutierrez-Baraja, R; Reiter, R J; Recio, J M

    1996-10-18

    Melatonin is the neurohormone which is synthesized by the pineal gland and secreted rhythmically. The role of calcium in the activation of melatonin production remains unknown. In this study, we demonstrated that calcium input participates in the regulation of chick pineal gland. Pineal glands from Gallus domesticus were perifuse with Krebs medium (controls) or with Krebs medium plus drugs (ethylene glycol tetraacetic acid (EGTA) or calcium ionophore A23187). When EGTA was added to the perifusion medium, free extracellular calcium concentrations were dramatically decreased and melatonin synthesis was decreased. On the other hand, when the calcium ionophore A23187 was added to the perifusion medium, chick pineal glands exhibited a marked increase in secretion of melatonin. No effects were observed when chick pineal glands were treated with drugs during or after the time of the natural peak levels. We propose that calcium input from extracellular medium and output from intracellular calcium reserves are primary mechanisms in the activation of melatonin synthesis in the chick pineal gland.

  9. Low-grade oligodendroglioma of the pineal gland: a case report and review of the literature

    PubMed Central

    2010-01-01

    Background Gliomas are a very rare subtype of pineal region tumours, whereas oligodendrogliomas of the pineal region are exceedingly rare, since there have been only 3 cases of anaplastic oligodedrogliomas reported this far. Methods-Results We present a case of a low-grade oligodendroglioma arising in the pineal gland of a 37 year-old woman. The patient presented with diplopia associated with a cystic pineal region mass demonstrated on MRI. Total resection was performed and histological examination showed that the cystic wall consisted of tumour cells with a central nucleus a perinuclear halo and minimal pleomorphism. Immnunohistochemical analysis showed that these cells were diffusely positive for CD57, and negative for GFAP, CD10, CD99, cytokeratins, neurofilaments and synaptophysin. FISH analysis was performed in a small number of neoplastic cells, which were not exhausted after immunohistochemistry and did not reveal deletion of 1p and 19q chromosome arms. However, the diagnosis of a low grade oligodendroglioma of the pineal gland was assigned. Conclusion Although the spectrum of tumours arising in the pineal gland is broad, the reports of oligodendrogliomas confined to this location are exceedingly rare, and to the best of our knowledge there is no report of a low-grade oligodendroglioma. However, they should be added in the long list of tumours arising in the pineal gland. PMID:20849631

  10. Cloning, localization and functional properties of a cGMP-gated channel in photoreceptor cells from fish pineal gland.

    PubMed

    Decressac, Sonia; Grechez-Cassiau, Aline; Lenfant, Jacques; Falcón, Jacky; Bois, Patrick

    2002-11-01

    The perception of photic information and its translation into a rhythmic melatonin signal differ considerably among vertebrates. In the fish pineal gland, melatonin biosynthesis is controlled directly by the natural light/dark cycle. There are indications that the mechanisms of phototransduction are similar in the retinal and pineal photoreceptor cells. Here we report the molecular cloning of a novel ionic cyclic guanosine monophosphate (cGMP)-gated channel from trout pineal photoreceptors. The deduced amino acid sequence exhibits a high sequence homology to cyclic nucleotide-gated-3 (CNG) channels from retinal cones. In situ hybridization with sections of trout pineal gland revealed the expression of CNG channel in photoreceptor cells of the pineal organ. Electrophysiological studies by means of patch-clamp technique indicated that the native channel in photoreceptor cells and the expressed channel in a human cell line (HEK 293 cells) have properties similar to those of cone-CNG (cCNG)-3 channels. They are activated by cGMP, insensitive to cyclic adenosine monophosphate (cAMP) and blocked by intracellular Mg2+ ions at positive voltage values. They have a single-channel conductance close to 42 pS in negative voltage range. In transfected HEK cells loaded with the calcium indicator dye Fura 2, direct activation of CNG channels by 8-Br-cGMP increased fluorescence. The signal was blocked by the addition of Mg2+ ions. From these results, it is suggested that the pineal cyclic nucleotide-gated channel is a good candidate for mediating calcium entry into the pineal photoreceptors. It is most probably a key element in the signalling pathways that control the rhythmic production of melatonin.

  11. Incidence of pineal gland cyst and pineoblastoma in children with retinoblastoma during the chemoreduction era.

    PubMed

    Ramasubramanian, Aparna; Kytasty, Christina; Meadows, Anna T; Shields, Jerry A; Leahey, Ann; Shields, Carol L

    2013-10-01

    To report on the frequency of cysts and tumors of the pineal gland in patients with retinoblastoma. Observational retrospective case control study. Institutional. study population: Four hundred eight patients treated for retinoblastoma from January 2000 to January 2012 at Wills Eye Institute, Philadelphia, Pennsylvania, USA. Magnetic resonance imaging (MRI) features of the pineal gland were evaluated in all patients with retinoblastoma. Characteristics of patients with pineal cysts and pineoblastoma were reviewed. Comparison of frequency of pineal gland cyst and pineoblastoma in children managed with systemic chemoreduction vs other methods. Of 408 patients, treatment included systemic chemoreduction in 252 (62%) and nonchemoreduction methods in 156 (38%). Overall, 34 patients (8%) manifested pineal gland cyst and 4 (1%) showed pineoblastoma. Of all 408 patients, comparison (chemoreduction vs nonchemoreduction) revealed pineal cyst (20/252 vs 14/156, P = .7) and pineoblastoma (1/252 vs 3/156, P = .1). The pineal cyst (n = 34) (mean diameter 4 mm) was asymptomatic (n = 34), followed conservatively (n = 34), and with minimal enlargement (n = 2, 9%) but without progression to pineoblastoma. The cyst was found in 22 germline and 12 nongermline patients (P = .15). Among the 4 patients with pineoblastoma, all had germline mutation and 2 had family history of retinoblastoma. Among all patients with family history of retinoblastoma (n = 45), 2 (4%) developed pineoblastoma. The pineoblastoma was asymptomatic in 2 patients and symptomatic with vomiting and headache in 2 patients. The mean interval from date of retinoblastoma detection to pineal cyst was 2 months (median 2, range 0-8 months) and to pineoblastoma was 27 months (median 28, range 7-46 months). Management included aggressive chemotherapy and radiotherapy, with 2 survivors. Pineal gland cyst was incidentally detected in 8% of retinoblastoma patients, causing no symptoms, and without progression to pineoblastoma

  12. Evidence of Pineal Gland Calcification on CBCT is Not Insignificant: What Else You Might Discover about Your Patient.

    PubMed

    Fore, Stacy

    2016-01-01

    The use of CBCT technology in the dental office is increasing rapidly. These scans provide information on anatomy not previously evaluated with traditional 2D films. One structure often mentioned in a CBCT radiology report is the pineal gland. The pineal gland will show evidence of calcification, but this calcification is often dismissed as a normal aging process. This review of the function and influence of the pineal gland may influence the doctor to complete further evaluation of the patient.

  13. Distribution of calcified concretions and calcium ions in the pig pineal gland.

    PubMed

    Lewczuk, B; Przybylska, B; Wyrzykowski, Z

    1994-01-01

    Serial sections of pig pineal glands were stained with von Kossa's and Alizarin red S methods to determine the occurrence and localization of calcified concretions. In the pineal glands of pigs aged eight months, concretions were not found. A small number of concretions was observed in all investigated pineal glands of three years old pigs. The concretions were distributed in the connective tissue of the pineal capsule and septa. The potassium pyroantimonate method was used for ultracytochemical localization of calcium ions. In pinealocytes, precipitates were observed in nuclei, mitochondria, Golgi apparatus, endoplasmic reticulum and cytoplasmic matrix. Single precipitates were found on the outer membranes of dense bodies, multivesicular bodies and lysosomes. There were no differences in the amount or the localization of precipitates between dark and light pinealocytes and between pinealocytes of animals aged both eight months and three years. The results suggest that: (1) the calcified concretions in the pig pineal gland are formed by the leptomeningeal tissue without participation of the pinealocytes, (2) cytoplasmic dense bodies, specific components of the pig pineal gland, are only slightly involved in calcium turnover in the pinealocytes.

  14. Biochemical and hormonal evaluation of pineal glands exposed in vitro to magnetic fields. Final report

    SciTech Connect

    Anderson, L.E.; Leung, F.C.; Miller, D.L.

    1998-11-01

    It has been reported that exposure to extremely low frequency (ELF) magnetic fields can significantly alter pineal melatonin metabolism in vivo. However, whether such changes are due to direct or indirect effects of field exposure has not been clearly demonstrated. The objective of this research project was to examine the effects of magnetic fields on melatonin metabolism in pineal glands in vitro. Chicken pineal glands were cultured in a modified incubator encircled by a magnetic field exposure system. The incubator, that was remote from but attached to a standard laboratory incubator, contained a regulated light source for modulation of the light/dark cycle (12:12 L/D). Pineal glands from 4--6 week old chickens were maintained under 95% O{sub 2}, 5% CO{sub 2} in a static culture system. Because of problems due to contamination and loss of viability of such a system, a perfusion system was developed for EMF studies. Both single and multiple chicken pineal glands were used in the perfusion studies and were kept viable in the perfusion chamber by a continuous flow of medium at 39 C for up to 8 days. Perfusate samples were collected into a fraction collector and were subsequently kept frozen at {minus} 20 C until assays were performed. Melatonin secreted by the cultured pineal glands and released into the medium was measured by a melatonin double antibody radioimmunoassay (RIA) using {sup 125}I-melatonin as the label.

  15. Midline and off-midline infratentorial supracerebellar approaches to the pineal gland.

    PubMed

    Matsuo, Satoshi; Baydin, Serhat; Güngör, Abuzer; Miki, Koichi; Komune, Noritaka; Kurogi, Ryota; Iihara, Koji; Rhoton, Albert L

    2016-10-07

    OBJECTIVE A common approach to lesions of the pineal region is along the midline below the torcula. However, reports of how shifting the approach off midline affects the surgical exposure and relationships between the tributaries of the vein of Galen are limited. The purpose of this study is to examine the microsurgical and endoscopic anatomy of the pineal region as seen through the supracerebellar infratentorial approaches, including midline, paramedian, lateral, and far-lateral routes. METHODS The quadrigeminal cisterns of 8 formalin-fixed adult cadaveric heads were dissected and examined with the aid of a surgical microscope and straight endoscope. Twenty CT angiograms were examined to measure the depth of the pineal gland, slope of the tentorial surface of the cerebellum, and angle of approach to the pineal gland in each approach. RESULTS The midline supracerebellar route is the shortest and provides direct exposure of the pineal gland, although the culmen and inferior and superior vermian tributaries of the vein of Galen frequently block this exposure. The off-midline routes provide a surgical exposure that, although slightly deeper, may reduce the need for venous sacrifice at both the level of the veins from the superior cerebellar surface entering the tentorial sinuses and at the level of the tributaries of the vein of Galen in the quadrigeminal cistern, and require less cerebellar retraction. Shifting from midline to off-midline exposure also provides a better view of the cerebellomesencephalic fissure, collicular plate, and trochlear nerve than the midline approaches. Endoscopic assistance may aid exposure of the pineal gland while preserving the bridging veins. CONCLUSIONS Understanding the characteristics of different infratentorial routes to the pineal gland will aid in gaining a better view of the pineal gland and cerebellomesencephalic fissure and may reduce the need for venous sacrifice at the level of the tentorial sinuses draining the upper

  16. The pineal gland in wild-type and two zebrafish mutants with retinal defects.

    PubMed

    Allwardt, B A; Dowling, J E

    2001-06-01

    Light and transmission electron microscopy were used to characterize the ultrastructural features of the pineal glands of wild-type and two mutant zebrafish strains that have retinal defects. Particular attention was given to the pineal photoreceptors. Photoreceptors in the pineal gland appear quite similar to retinal cone photoreceptors, having many of the same structural characteristics including outer segment disk membranes often confluent with the plasma membrane, calycal processes surrounding the outer segments, and classic connecting cilia. The pineal photoreceptor terminals differ from photoreceptor terminals in the retina in that they have short synaptic ribbons and make dyad synapses which may or may not be invaginated. Pineal photoreceptors in two zebrafish mutants with abnormal retinal photoreceptors were also studied. Pineal photoreceptors in the niezerka (nie) mutant degenerate, as they do in the retina, indicating that pineal and retinal photoreceptors share at least some genes. However, the synaptic terminals of no optokinetic response c (nrc) pineal photoreceptors are normal, suggesting that this mutation is specific to the retina.

  17. Histamine-stimulated cyclic AMP formation in the chick pineal gland: role of protein kinase C.

    PubMed

    Zawilska, J B; Woldan-Tambor, A; Nowak, J Z

    1997-08-15

    The role of protein kinase C (PKC) in histamine (HA)-stimulated cyclic AMP formation in intact chick pineal glands was investigated. In the pineal gland of chick HA, 2-methylHA, 4-methylHA, and N alpha, N alpha-dimethylHA potently increased cyclic AMP accumulation in a concentration-dependent manner. Treatment of intact glands with PKC inhibitors, i.e. chelerythrine and stautosporine, reduced the stimulatory effect of the HA-ergic compounds on cyclic AMP formation. HA, 2-methylHA, 4-methylHA, and N alpha, N alpha-dimethylHA significantly increased inositol-1,4,5-trisphosphate (IP3) levels in intact chick pineal glands, indicating their activities on phospholipase C and 1,2-diacylglycerol formation. The stimulatory effect of HA on IP3 levels was antagonized by aminopotentidine, a potent blocker of H2-like HA receptors in avian pineal gland. Preincubation of chick pineal glands with a PKC activator, 4 beta-phorbol 12, 13-dibutyrate (4 beta-PDB), enhanced the accumulation of cyclic AMP elicited by HA, 2-methylHA, 4-methylHA, and N alpha, N alpha-dimethylHA. On the other hand, 4 beta-phorbol, inactive on the PKC, was ineffective. Our results point to the possibility that PKC is involved in the regulation by HA of cyclic AMP synthesis in the pineal gland of chick. Furthermore, the cyclic AMP response to pineal HA receptor stimulation can be positively modulated by a concomitant activation of the PKC pathway.

  18. [Symptomatic glial cysts of the pineal gland: report of two cases and review of the literature].

    PubMed

    Vajtai, I; Bodosi, M; Varga, Z; Ormos, J; Vörös, E

    1995-08-27

    Referring to two individual cases, the authors review clinical, radiological and histological features of benign glial cysts of the pineal gland. Both patients were young females with aggravating headaches and with convulsions in one case. Symptoms were referable to a space-occupying cystic mass of the pineal gland. On histology, both lesions proved to be non neoplastic cysts without an epithelial lining. Their histogenesis and low growth potential were reinforced by immunohistochemical analysis of pineal antigens and proliferation markers. Glial cysts of the pineal gland are not infrequent, but symptomatic occurrences are exceptional. Most glial cysts are of dysontogenic or degenerative origin. Sometimes, however, the role of hormonal influences or paraneoplastic factors must be considered. Symptoms caused by glial cysts of the pineal gland are non-specific and radiologic imaging technics may contribute little to etiologic diagnosis. Pineal cysts are curable by surgical resection or stereotactic decompression. Whatever the diagnostic approach, emphasis must be laid on the histologic examination in order to avoid unnecessarily aggressive treatment.

  19. Rax : developmental and daily expression patterns in the rat pineal gland and retina.

    PubMed

    Rohde, Kristian; Klein, David C; Møller, Morten; Rath, Martin F

    2011-09-01

    Retina and anterior neural fold homeobox (Rax) gene encodes a transcription factor essential for vertebrate eye development. Recent microarray studies indicate that Rax is expressed in the adult rat pineal gland and retina. The present study reveals that Rax expression levels in the rat change significantly during retinal development with a peak occurring at embryonic day 18, whereas Rax expression in the pineal is relatively delayed and not detectable until embryonic day 20. In both tissues, Rax is expressed throughout postnatal development into adulthood. In the mature rat pineal gland, the abundance of Rax transcripts increases 2-fold during the light period with a peak occurring at dusk. These findings are consistent with the evidence that Rax is of functional importance in eye development and suggest a role of Rax in the developing pineal gland. In addition, it would appear possible that Rax contributes to phenotype maintenance in the mature retina and pineal gland and may facilitate 24-h changes in the pineal transcriptome.

  20. Circadian changes in long noncoding RNAs in the pineal gland.

    PubMed

    Coon, Steven L; Munson, Peter J; Cherukuri, Praveen F; Sugden, David; Rath, Martin F; Møller, Morten; Clokie, Samuel J H; Fu, Cong; Olanich, Mary E; Rangel, Zoila; Werner, Thomas; Mullikin, James C; Klein, David C

    2012-08-14

    Long noncoding RNAs (lncRNAs) play a broad range of biological roles, including regulation of expression of genes and chromosomes. Here, we present evidence that lncRNAs are involved in vertebrate circadian biology. Differential night/day expression of 112 lncRNAs (0.3 to >50 kb) occurs in the rat pineal gland, which is the source of melatonin, the hormone of the night. Approximately one-half of these changes reflect nocturnal increases. Studies of eight lncRNAs with 2- to >100-fold daily rhythms indicate that, in most cases, the change results from neural stimulation from the central circadian oscillator in the suprachiasmatic nucleus (doubling time = 0.5-1.3 h). Light exposure at night rapidly reverses (halving time = 9-32 min) levels of some of these lncRNAs. Organ culture studies indicate that expression of these lncRNAs is regulated by norepinephrine acting through cAMP. These findings point to a dynamic role of lncRNAs in the circadian system.

  1. Homeobox genes and melatonin synthesis: regulatory roles of the cone-rod homeobox transcription factor in the rodent pineal gland.

    PubMed

    Rohde, Kristian; Møller, Morten; Rath, Martin Fredensborg

    2014-01-01

    Nocturnal synthesis of melatonin in the pineal gland is controlled by a circadian rhythm in arylalkylamine N-acetyltransferase (AANAT) enzyme activity. In the rodent, Aanat gene expression displays a marked circadian rhythm; release of norepinephrine in the gland at night causes a cAMP-based induction of Aanat transcription. However, additional transcriptional control mechanisms exist. Homeobox genes, which are generally known to encode transcription factors controlling developmental processes, are also expressed in the mature rodent pineal gland. Among these, the cone-rod homeobox (CRX) transcription factor is believed to control pineal-specific Aanat expression. Based on recent advances in our understanding of Crx in the rodent pineal gland, we here suggest that homeobox genes play a role in adult pineal physiology both by ensuring pineal-specific Aanat expression and by facilitating cAMP response element-based circadian melatonin production.

  2. [Morphometric data on pineal gland of loir (Glis glis) and lerot (Elioyms quercinus) during the annual cycle].

    PubMed

    Legait, H; Roux, M; Dussart, G; Richoux, J P; Contet-Audonneau, J L

    1975-01-01

    The important involution of the pineal gland of Glis glis and Eliomys quercinus during the months of july and august belongs to a polyglandular involution (anterior lobe of the hypophysis, male and female genital glands) characteristic of estivation.

  3. The projection of the calcified pineal gland on slightly rotated AP films as a reliable landmark. A CT study.

    PubMed

    Van Woerden, H H; Vencken, L M

    1979-08-15

    The projection of the pineal gland between the two outer tables of the skull in the AP film has been reconstructed on the basis of the CT print of the head, with and without lateral rotation. In this experimental approach it is proven that rotation up to 5 degrees does not influence the position of the pineal gland on the AP film. The range of the normal position of the pineal in the frontal plane is defined and the normal distribution is given.

  4. Atypical pleomorphic neoplasms of the pineal gland: Case report and review of the literature

    PubMed Central

    Praver, M.; D’Amico, R.; Arraez, C.; Zacharia, B. E.; Varma, H.; Goldman, J. E.; Bruce, J. N.; Canoll, P.

    2015-01-01

    Background: Pineal region tumors are rare and diverse. Among them exist reports of pleomorphic xanthroastrocytoma (PXA) and pleomorphic granular cell astrocytoma (PGCA) of the pineal gland. These related tumors are remarkably similar sharing pleomorphic histologic features with only minor immunohistochemical and ultrastructural differences. Case Description: We present a case of a 42-year old right-handed woman presented with a longstanding history of migraine headaches which had worsened over the two months leading up to her hospitalization. MRI revealed a 1.7 × 1.3 × 1.6 cm intensely enhancing lesion originating in the pineal gland. The tumor closely resembled PGCA but did not strictly fit the diagnostic requirements of either PGCA or PXA. Conclusion: The present case highlights the exotic nature of pineal region tumors with pleomorphic cell histology. Given the diverse range of tumors encountered in the pineal region, pathological confirmation is mandatory. Favorable clinical outcomes demonstrate that surgical resection alone can yield excellent long-term results for tumors falling within the spectrum of pleomorphic lesions of the pineal gland. PMID:26257987

  5. Arterial vascularization of the pineal gland in the fetus of Zavot-bred cattle.

    PubMed

    Aslan, K; Ozcan, S; Aksoy, G; Kurtul, I; Dursun, N

    2003-04-01

    This study aimed at revealing arterial vascularization of the pineal gland of the Zavot-bred foetus. Twenty foetuses, regardless of their sex, at the age of 2-7 months were used. Coloured-latex was injected by way of both the right and left common carotid arteries. Then, dissection was performed and vessels nourishing the pineal gland were documented. The pineal gland is vascularized by a number of 2-5 central rami. A small vessel arising from each of the central rami in two foetuses (10%) was shown anastomosing with a branch of the cranial cerebral artery, which advances in cranio-caudal direction in the callosal groove. Hence, anastomoses were observed between several sub-branches of each caudal cerebral and cranial cerebellar arteries.

  6. Daytime pineal gland activation in rats with colon tumors induced by 1,2-dimethylhydrazine(3).

    PubMed

    Sibarov, Dmitrii A.; Kovalenko, Rimma I.; Anisimov, Vladimir N.; Nozdrachev, Alexander D.

    2000-01-01

    OBJECTIVES: Intact rats and rats with 1,2-dimethylhydrazine induced tumors of large intestine were used in experiments. Previously, blood melatonin concentration in these tumor-bearing rats was shown to increase at night, but not in the daytime. METHODS: The extracellular microelectrode registration of rat daytime pineal gland activity was performed. RESULTS: The existence of different types of pinealocytes in the pineal gland was confirmed. Tumor-bearing rats, in comparison to intact, demonstrated higher spike frequency due to cells switching from regular to pattern (4-6 times gain) activity and appearance of "fast" cells (>5Hz frequency). CONSLUSIONS: The literature about pinealocytes points to the correlation between electrical and secretory processes in pinealocytes; thus we suppose the groups of interacting cells, detected in tumor-bearing rats, to reflect cascade cells activation while pineal gland secretion increases. The results indicate, that in the daytime pinealocytes are secreting substances (not melatonin) in dependence with hormonal background.

  7. Stimulatory effect of bombesin on phosphoinositide metabolism in the rat pineal gland.

    PubMed

    Novotná, R; Novotný, I

    1997-10-03

    The pineal gland is under complex peptidergic nervous control originating from hypothalamic nuclei. The daily rhythm of bombesin-like peptide in the hypothalamus suggests that this neuropeptide, similarly as other neuropeptides, might be involved in modulation of the physiological activity of the pineal gland. In our experiments we studied the mechanism of signal transduction of bombesin in the isolated pineal glands of rats. The phosphoinositide signalling system was examined by measuring 32P-labelling of phosphatidylinositol (PI), phosphatidylinositol phosphate (PIP) and phosphatidylinositol bisphosphate (PIP2), which reflects phosphoinositide cycle activation. Bombesin induced a significant increase in 32P-labelling of PI, PIP and PIP2. The antagonist of this neuropeptide, (D-Phe12-Leu14)-bombesin, suppressed the increase in 32P-labelling of all phosphoinositides. Bombesin was without effect on cAMP dependent protein phosphorylation. The data indicate that bombesin activates the PI signalling system via specific receptors.

  8. Photoperiodic inhibition of testicular development is mediated by the pineal gland in white-footed mice

    SciTech Connect

    Johnston, P.G.; Boshes, M.; Zucker, I.

    1982-05-01

    White-footed mice were maintained in short or long photoperiods from birth to 60 days of age (10 h vs. 14 h of light per day). Testes weights and spermatogenesis were substantially reduced in short daylengths. Pinealectomy at 5-7 days of age eliminated the suppressive effect of photoperiod on the reproductive system. However, testicular development was not retarded in intact males kept from 25 to 60 days of age in short daylengths. Exposure to short daylengths prior to 25 days of age contributes to photoperiodic inhibition of testicular development. Removal of the pineal gland did not consistently affect gonadal maturation in long photoperiods. The pineal gland transduces the effects of short daylengths on reproductive development. Some effects of long daylengths on the neuroendocrine axis of white-footed mice may also be mediated by the pineal gland.

  9. [Pineal gland glutathione peroxidase activity in rats and its age-associated change].

    PubMed

    Razygraev, A V

    2010-01-01

    Glutathione peroxidase activity has been studied in the pineal gland (epiphysis) of young and aging female Wistar rats (2-4 and 17-19 month old). For comparison the same activity was studied in the pyramids of medulla oblongata and in the olfactory tubercle. These two brain structures represent white and gray matter respectively. The determination of the activity was performed with H2O2 as a substrate and with 5,5'-dithio-bis-(2-nitrobenzoic acid) for estimation of the decrease of restored form of glutathione concentration. The glutathione peroxidase activity was higher in the pineal gland than in the brain structures used. Pineal glutathione peroxidase activities (micromole of GSH per minute per milligram of protein, M +/- m) in young and old rats were 1,52 +/- 0,07 and 1,27 +/- 0,06 respectively (p<0,05). The potential reason for the declined enzymatic activity found in the aged rats is the age-associated decrease of the selenium content in the pineal gland. The decline found may be one of the reflections of the pineal gland functional involution.

  10. 68Ga-DOTATATE uptake in pineal gland, a rare physiological variant: case series.

    PubMed

    Riaz, Saima; Syed, Rizwan; Skoura, Evangelia; Alshammari, Alshaima; Gaze, Mark; Sajjan, Rakesh; Halsey, Richard; Bomanji, Jamshed

    2015-11-01

    (68)Ga-DOTATATE PET-CT is widely used for the evaluation of neuroendocrine tumours. Knowledge of the physiological distribution of the radiotracer is of critical importance in characterizing focal areas of uptake. In this case series, we report three paediatric cases (average age 4.7 years ± 0.6 SD) with diagnosed advanced stage IV Neuroblastoma. Two had (68)Ga-DOTATATE PET-CT scans and one underwent (68)Ga-DOTATATE PET-MRI scan to assess for suitability of molecular therapy. Focal increased tracer uptake in the pineal gland was noted in all cases with no morphological abnormality on the corresponding CT and MRI scans. The uptake within the gland was thought to be a physiological variant rather than metastases owing to the heterogeneity of somatostatin receptors expression. The pineal gland has been reported to express somatostatin receptors. The physiological distribution of (68)Ga-DOTATATE uptake in the pineal gland is not routinely seen. Furthermore, the possibility of pineal meningioma is very unlikely as pineal meningiomas are very rare and there was no convincing morphological evidence of meningiomas on CT/MRI scan.

  11. How important is stimulation of alpha-adrenoceptors for melatonin production in rat pineal glands?

    PubMed

    Tobin, V A; McCance, I; Coleman, H A; Parkington, H C

    2002-05-01

    The objective of this study was to determine the role of alpha-adrenoceptors in melatonin production by rat pineal gland. Pineal glands were isolated from adult male rats and maintained in organ baths. The perfusate was sampled every 5 min, stored, and later assayed for melatonin. Exposure to norepinephrine (10 microM) or the beta-adrenoceptor agonist orciprenaline (2-10 microM) increased the glands' production of melatonin. The time courses of melatonin production in response to these agonists were unaffected by the rats' pretreatment in vivo with the alpha-adrenoceptor antagonist prazosin (2 mg/kg i.p., three times). Rats that had had their superior cervical ganglia removed were primed with either orciprenaline (2 mg/kg i.p) or both orciprenaline and phenylephrine (1 mg/kg i.p) 1 hr before decapitation. Exposure of the pineal glands from these rats to orciprenaline evoked melatonin release that was similar in each group. These results lend weight to the suggestion that the marked potentiation by alpha-adrenoceptor agonists of the stimulation of cAMP and N-acetyltransferase (NAT) by beta-adrenoceptor agonists, demonstrated most readily in cultured glands or dispersed rat pinealocytes, does not carry over into significant augmentation of melatonin production in intact pineal glands.

  12. [Substrates and possible mechanisms of pineal gland moon-sensory function in context of redusome hypothesis of aging and control of biological time in ontogenesis].

    PubMed

    Ivanov, S V

    2008-01-01

    As a result of comparison of the normative factors on human pineal gland volume (8 age groups, n=411) with similar factors obtained in the days of the moon phase extremes (n=49) the following phenomena have been determined. As a rule all the moon phase extremes, in particular the new moon, are accompanied by an appreciable reduce of pineal gland volume, a sort of systole. These changes depend on the age factor. The results of the research advance indirect arguments for the redusome hypothesis of aging.

  13. Aicardi syndrome: an unusual case associated with pineal gland cyst and ventricular septal defect.

    PubMed

    Mutlu, Fatih Mehmet; Akin, Ridvan; Uysal, Yusuf; Unay, Bulent; Altinsoy, H Ibrahim; Bayraktar, M Zeki

    2006-12-01

    Aicardi syndrome is a cerebroretinal disorder consisting of a heterogeneous spectrum of clinical findings that includes the triad of infantile spasms, agenesis of the corpus callosum, and chorioretinal lacunae. This report describes a 6-month-old girl who has all of the essential features suggestive of Aicardi syndrome, as well as a pineal gland cyst and ventricular septal defect. Although the characteristic features of Aicardi syndrome have been described, its association with pineal gland cyst and ventricular septal defect has not been reported in the literature.

  14. RGS2 is a feedback inhibitor of melatonin production in the pineal gland.

    PubMed

    Matsuo, Masahiro; Coon, Steven L; Klein, David C

    2013-05-02

    The 24-h rhythmic production of melatonin by the pineal gland is essential for coordinating circadian physiology. Melatonin production increases at night in response to the release of norepinephrine from sympathetic nerve processes which innervate the pineal gland. This signal is transduced through G-protein-coupled adrenergic receptors. Here, we found that the abundance of regulator of G-protein signaling 2 (RGS2) increases at night, that expression is increased by norepinephrine and that this protein has a negative feedback effect on melatonin production. These data are consistent with the conclusion that RGS2 functions on a daily basis to negatively modulate melatonin production.

  15. Morphofunctional changes in the pineal gland during dynamic adaptation to hypothermia.

    PubMed

    Bondarenko, L A; Gubina-Vakulik, G I

    2003-05-01

    The effects of stress induced by hypothermia (+4 degrees C for 3 h) on the pathways of serotonin metabolism in the pineal gland and on its structure were studied in adult male Wistar rats. These experiments showed that the melatonin-forming function of the epiphysis undergoes phasic changes during adaptation: there was a significant increase during the first 15 min, which was followed by gradual inhibition (to initial by 30 min) and then sharp suppression (at 3 h). Suppression of the functional activity of the pineal gland occurred because of exclusion of a proportion of pinealocytes from the process of active functioning.

  16. Characteristics of calcification in tumors of the pineal gland.

    PubMed

    Lin, S R; Crane, M D; Lin, Z S; Bilaniuk, L; Plassche, W M; Marshall, L; Spataro, R F

    1978-03-01

    Thirty-two cases of proved pineal tumor were analyzed. Calcification was seen in 75%. The size, character, and position of the calcification were useful indicators of abnormality on plain-film evaluation. Fray's cranioangle method was more sensitive than Oon's method in determining abnormal position of the calcified pineal tumor on the lateral skull film. Most calcifications were displaced postero-inferiorly or inferiorly, which can be explained by obstructive hydrocephalus or direct tumor expansion.

  17. Characterization of the Expression of Basigin Gene Products Within the Pineal Gland of Mice.

    PubMed

    Tokar, Derek; van Ekeris, Leslie; Linser, Paul J; Ochrietor, Judith D

    2016-11-04

    The expression of Basigin gene products and monocarboxylate transporter-1 (MCT1) has been investigated within the mammalian neural retina and suggests a role for these proteins in cellular metabolism within that tissue. The purpose of the present study was to investigate the expression of these same proteins in the pineal gland of the mouse brain. Mouse pineal gland and neural retina RNA and protein were subjected to quantitative reverse transcription-polymerase chain reaction and immunoblotting analyses. In addition, paraffin-embedded sections of each tissue were analyzed for expression of Basigin gene products and MCT1 via immunohistochemistry. The results indicate that MCT1 and Basigin variant-2, but not Basigin variant-1, are expressed within the mouse pineal gland. The expression of Basigin variant-2 and MCT1 was localized to the capsule surrounding the gland. The position and relative amounts of the gene products suggest that they play a much less prominent role within the pineal gland than in the neural retina.

  18. In silico genome wide mining of conserved and novel miRNAs in the brain and pineal gland of Danio rerio using small RNA sequencing data.

    PubMed

    Agarwal, Suyash; Nagpure, Naresh Sahebrao; Srivastava, Prachi; Kushwaha, Basdeo; Kumar, Ravindra; Pandey, Manmohan; Srivastava, Shreya

    2016-03-01

    MicroRNAs (miRNAs) are small, non-coding RNA molecules that bind to the mRNA of the target genes and regulate the expression of the gene at the post-transcriptional level. Zebrafish is an economically important freshwater fish species globally considered as a good predictive model for studying human diseases and development. The present study focused on uncovering known as well as novel miRNAs, target prediction of the novel miRNAs and the differential expression of the known miRNA using the small RNA sequencing data of the brain and pineal gland (dark and light treatments) obtained from NCBI SRA. A total of 165, 151 and 145 known zebrafish miRNAs were found in the brain, pineal gland (dark treatment) and pineal gland (light treatment), respectively. Chromosomes 4 and 5 of zebrafish reference assembly GRCz10 were found to contain maximum number of miR genes. The miR-181a and miR-182 were found to be highly expressed in terms of number of reads in the brain and pineal gland, respectively. Other ncRNAs, such as tRNA, rRNA and snoRNA, were curated against Rfam. Using GRCz10 as reference, the subsequent bioinformatic analyses identified 25, 19 and 9 novel miRNAs from the brain, pineal gland (dark treatment) and pineal gland (light treatment), respectively. Targets of the novel miRNAs were identified, based on sequence complementarity between miRNAs and mRNA, by searching for antisense hits in the 3'-UTR of reference RNA sequences of the zebrafish. The discovery of novel miRNAs and their targets in the zebrafish genome can be a valuable scientific resource for further functional studies not only in zebrafish but also in other economically important fishes.

  19. The pineal gland: A model for adrenergic modulation of ubiquitin ligases

    PubMed Central

    Liu, Wenjun; Reiter, Russel J.

    2017-01-01

    Introduction A recent study of the pineal gland of the rat found that the expression of more than 3000 genes showed significant day/night variations (The Hartley dataset). The investigators of this report made available a supplemental table in which they tabulated the expression of many genes that they did not discuss, including those coding for components of the ubiquitin proteasome system. Herein we identify the genes of the ubiquitin proteasome system whose expression were significantly influenced by environmental lighting in the Hartley dataset, those that were stimulated by DBcAMP in pineal glands in culture, and those that were stimulated by norepinephrine. Purpose Using the Ubiquitin and Ubiquitin-like Conjugation Database (UUCA) we identified ubiquitin ligases and conjugases, and deubiquitinases in the Hartley dataset for the purpose of determining whether expression of genes of the ubiquitin proteasome pathway were significantly influenced by day/night variations and if these variations were regulated by autonomic innervation of the pineal gland from the superior cervical ganglia. Methods In the Hartley experiments pineal glands groups of rats sacrificed during the day and groups sacrificed during the night were examined for gene expression. Additional groups of rats had their superior cervical ganglia removed surgically or surgically decentralized and the pineal glands likewise examined for gene expression. Results The genes with at least a 2-fold day/night significant difference in expression included genes for 5 ubiquitin conjugating enzymes, genes for 58 ubiquitin E3 ligases and genes for 6 deubiquitinases. A 35-fold day/night difference was noted in the expression of the gene Sik1, which codes for a protein containing both an ubiquitin binding domain (UBD) and an ubiquitin-associated (UBA) domain. Most of the significant differences in these genes were prevented by surgical removal, or disconnection, of the superior cervical ganglia, and most were

  20. Developmental and diurnal expression of the synaptosomal-associated protein 25 (Snap25) in the rat pineal gland.

    PubMed

    Karlsen, Anna S; Rath, Martin F; Rohde, Kristian; Toft, Trine; Møller, Morten

    2013-06-01

    Snap25 (synaptosomal-associated protein) is a 25 kDa protein, belonging to the SNARE-family (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) of proteins, essential for synaptic and secretory vesicle exocytosis. Snap25 has by immunohistochemistry been demonstrated in the rat pineal gland but the biological importance of this is unknown. In this study, we demonstrate a high expression of mRNA encoding Snap25 in all parts of the rat pineal complex, the superficial-, and deep-pineal gland, as well as in the pineal stalk. Snap25 showed a low pineal expression during embryonic stages with a strong increase in expression levels just after birth. The expression showed no day/night variations. Neither removal of the sympathetic input to the pineal gland by superior cervical ganglionectomy nor bilateral decentralization of the superior cervical ganglia significantly affected the expression of Snap25 in the gland. The pineal expression levels of Snap25 were not changed following intraperitoneal injection of isoproterenol. The strong expression of Snap25 in the pineal gland suggests the presence of secretory granules and microvesicles in the rat pinealocyte supporting the concept of a vesicular release. At the transcriptional level, this Snap25-based release mechanism does not exhibit any diurnal rhythmicity and is regulated independently of the sympathetic nervous input to the gland.

  1. NeuroD1: developmental expression and regulated genes in the rodent pineal gland.

    PubMed

    Muñoz, Estela M; Bailey, Michael J; Rath, Martin F; Shi, Qiong; Morin, Fabrice; Coon, Steven L; Møller, Morten; Klein, David C

    2007-08-01

    NeuroD1/BETA2, a member of the bHLH transcription factor family, is known to influence the fate of specific neuronal, endocrine and retinal cells. We report here that NeuroD1 mRNA is highly abundant in the developing and adult rat pineal gland. Pineal expression begins in the 17-day embryo at which time it is also detectable in other brain regions. Expression in the pineal gland increases during the embryonic period and is maintained thereafter at levels equivalent to those found in the cerebellum and retina. In contrast, NeuroD1 mRNA decreases markedly in non-cerebellar brain regions during development. Pineal NeuroD1 levels are similar during the day and night, and do not appear to be influenced by sympathetic neural input. Gene expression analysis of the pineal glands from neonatal NeuroD1 knockout mice identifies 127 transcripts that are down-regulated (>twofold, p < 0.05) and 16 that are up-regulated (>twofold, p < 0.05). According to quantitative RT-PCR, the most dramatically down-regulated gene is kinesin family member 5C ( approximately 100-fold) and the most dramatically up-regulated gene is glutamic acid decarboxylase 1 ( approximately fourfold). Other impacted transcripts encode proteins involved in differentiation, development, signal transduction and trafficking. These findings represent the first step toward elucidating the role of NeuroD1 in the rodent pinealocyte.

  2. A noradrenergic sensitive endogenous clock is present in the rat pineal gland.

    PubMed

    Wongchitrat, Prapimpun; Felder-Schmittbuhl, Marie-Paule; Govitrapong, Piyarat; Phansuwan-Pujito, Pansiri; Simonneaux, Valérie

    2011-01-01

    The aim of this study was to examine the occurrence of endogenous oscillations of Per1, Per2, Bmal1 and Rev-erbα genes in rat pineal explants and to investigate their regulation by adrenergic ligands. Our results show a significant and sustained rhythm of Per2,Bmal1 and Rev-erbα gene expression for up to 48 h in cultured pineal gland with a pattern similar to that observed in vivo. By contrast, the rhythms of Per1 and Aa-nat, the rate-limiting enzyme for melatonin synthesis, were strongly attenuated after 24 h in culture. Addition of the exogenous adrenergic agonist isoproterenol on cultured pineal glands induced a short-term increase in mRNA levels of Per1 and Aa-nat, but not those of Per2,Bmal1 and Rev-erbα. This study demonstrates that the rat pineal gland hosts a circadian oscillator as evidenced by the sustained, noradrenergic-independent, endogenous oscillations of Per2, Bmal1 and Rev-erbα mRNA levels in cultured tissues. Only expression of Per1 was stimulated by adrenergic ligands suggesting that, in vivo, the adrenergic input could synchronize the pineal clock by acting selectively on Per1.

  3. Preliminary report on the correlations among pineal concretions, prostatic calculi and age in human adult males.

    PubMed

    Mori, Ryoichi; Kodaka, Tetsuo; Sano, Tsuneyoshi

    2003-09-01

    By using quantitative image analysis of soft X-ray photographs on the bulk of extracted pineal glands and prostates, we made a preliminary investigation into the correlations among pineal concretions (% by mass), prostatic calculi (% by mass) and age (years) in 40 human adult males, ranging in age from 31 to 95 years (mean (+/-SD) 69.9 +/- 15.2 years), who died and underwent the routine dissection course. The mass concentrations of pineal concretions and prostatic calculi were 17.68 +/- 13.56% (range 0-51.34%) and 0.93 +/- 1.31% (range 0-5.82%), respectively. There was no correlation between the mass concentration of pineal concretions and aging (r = 0.03; P < 1.0). There was no correlation between mass concentration of prostatic calculi and aging (r = 0.28; P < 0.5). No pineal concretions and no prostatic calculi were observed in seven and 10 cases, respectively; in addition, in one case, neither-concretions nor calculi were seen. From such data and from the previously reported suggestion on the counteracting functions between the pineal gland and prostate, a negative correlation between the mass concentrations of pineal concretions and prostatic calculi was expected. This was certainly obtained, but the correlation was low (r = -0.39; P < 0.05). Such a low correlation and no correlations between the concentrations of pineal concretions and aging or between prostatic calculi and aging may have been caused by the examination of relatively older humans. Therefore, further investigations using a number of pair samples collected from males including younger age generations will be necessary.

  4. Daily rhythm and regulation of clock gene expression in the rat pineal gland.

    PubMed

    Simonneaux, V; Poirel, V-J; Garidou, M-L; Nguyen, D; Diaz-Rodriguez, E; Pévet, P

    2004-01-05

    Rhythms in pineal melatonin synthesis are controlled by the biological clock located in the suprachiasmatic nuclei. The endogenous clock oscillations rely upon genetic mechanisms involving clock genes coding for transcription factors working in negative and positive feedback loops. Most of these clock genes are expressed rhythmically in other tissues. Because of the peculiar role of the pineal gland in the photoneuroendocrine axis regulating biological rhythms, we studied whether clock genes are expressed in the rat pineal gland and how their expression is regulated.Per1, Per3, Cry2 and Cry1 clock genes are expressed in the pineal gland and their transcription is increased during the night. Analysis of the regulation of these pineal clock genes indicates that they may be categorized into two groups. Expression of Per1 and Cry2 genes shows the following features: (1) the 24 h rhythm persists, although damped, in constant darkness; (2) the nocturnal increase is abolished following light exposure or injection with a beta-adrenergic antagonist; and (3) the expression during daytime is stimulated by an injection with a beta-adrenergic agonist. In contrast, Per3 and Cry1 day and night mRNA levels are not responsive to adrenergic ligands (as previously reported for Per2) and daily expression of Per3 and Cry1 appears strongly damped or abolished in constant darkness. These data show that the expression of Per1 and Cry2 in the rat pineal gland is regulated by the clock-driven changes in norepinephrine, in a similar manner to the melatonin rhythm-generating enzyme arylalkylamine N-acetyltransferase. The expression of Per3 and Cry1 displays a daily rhythm not regulated by norepinephrine, suggesting the involvement of another day/night regulated transmitter(s).

  5. Insulin modulates norepinephrine-mediated melatonin synthesis in cultured rat pineal gland.

    PubMed

    Garcia, Rodrigo Antonio Peliciari; Afeche, Solange Castro; Scialfa, Julieta Helena; do Amaral, Fernanda Gaspar; dos Santos, Sabrina Heloísa José; Lima, Fabio Bessa; Young, Martin Elliot; Cipolla-Neto, José

    2008-01-02

    The mammalian pineal gland synthesizes melatonin in a circadian manner, peaking during the dark phase. This synthesis is primarily regulated by sympathetic innervations via noradrenergic fibers, but is also modulated by many peptidergic and hormonal systems. A growing number of studies reveal a complex role for melatonin in influencing various physiological processes, including modulation of insulin secretion and action. In contrast, a role for insulin as a modulator of melatonin synthesis has not been investigated previously. The aim of the current study was to determine whether insulin modulates norepinephrine (NE)-mediated melatonin synthesis. The results demonstrate that insulin (10(- 8)M) potentiated norepinephrine-mediated melatonin synthesis and tryptophan hydroxylase (TPOH) activity in ex vivo incubated pineal glands. When ex vivo incubated pineal glands were synchronized (12h NE-stimulation, followed by 12h incubation in the absence of NE), insulin potentiated NE-mediated melatonin synthesis and arylalkylamine-N-acetyltransferase (AANAT) activity. Insulin did not affect the activity of hydroxyindole-O-methyltranferase (HIOMT), nor the gene expression of tpoh, aanat, or hiomt, under any of the conditions investigated. We conclude that insulin potentiates NE-mediated melatonin synthesis in cultured rat pineal gland, potentially through post-transcriptional events.

  6. Proteomic analysis of day-night variations in protein levels in the rat pineal gland.

    PubMed

    Møller, Morten; Sparre, Thomas; Bache, Nicolai; Roepstorff, Peter; Vorum, Henrik

    2007-06-01

    The pineal gland secretes the hormone melatonin. This secretion exhibits a circadian rhythm with a zenith during night and a nadir during day. We have performed proteome analysis of the superficial pineal gland in rats during daytime and nighttime. The proteins were extracted and subjected to 2-DE. Of 1747 protein spots revealed by electrophoresis, densitometric analysis showed the up-regulation of 25 proteins during nighttime and of 35 proteins during daytime. Thirty-seven of the proteins were identified by MALDI-TOF MS. The proteins up-regulated during the night are involved in the Krebs cycle, energy transduction, calcium binding, and intracellular transport. During the daytime, enzymes involved in glycolysis, electron transport, and also the Krebs cycle were up-regulated as well as proteins taking part in RNA binding and RNA processing. Our data show a prominent day-night variation of the protein levels in the rat pineal gland. Some proteins are up-regulated during the night concomitant with the melatonin secretion of the gland. Other proteins are up-regulated during the day indicating a pineal metabolism not related to the melatonin synthesis.

  7. Melatonin and pineal gland peptides are able to correct the impairment of reproductive cycles in rats.

    PubMed

    Arutjunyan, Alexander; Kozina, Ljudmila; Milyutina, Yulia; Korenevsky, Andrew; Stepanov, Michael; Arutyunov, Vladimir

    2012-12-01

    Catecholamines play an important role in the hypothalamic regulation of the synthesis and secretion of gonadotropin- releasing hormone, or gonadoliberin. We have shown that melatonin and the pineal gland peptides (epithalamine and epitalon) exert a correcting influence on the diurnal dynamics of norepinephrine (NE) in the medial preoptic area (MPA) and of dopamine (DA) in the median eminence with arcuate nuclei (ME-Arc) disturbed by single administration of the neurotoxic xenobiotic 1,2-dimethylhydrazine (DMH) in female rats. It has been found that experiments with DMH administration can be used as an animal model of female reproductive system premature aging. The investigation of epithalamine (a polypeptide preparation from the bovine pineal gland) effect on circadian rhythms disturbed by the neurotoxic compound DMH has shown a recovery of the diurnal dynamics of NE in MPA. In addition, NE was found to decrease from 9:30 till 11 o'clock, Circadian Time (CT), which was typical of control animals. Epitalon (Ala-Glu-Asp-Gly) proved to be more effective in ME-Arc. This peptide prevents the xenobiotic caused disturbance of DA diurnal rhythm, keeping this metabolite low at 5 o'clock (CT) with it having increased by 11 o'clock (CT). The data obtained suggest that the pineal gland is important for the circadian signal normalization needed for gonadoliberin surge on the day of proestrus. Melatonin and peptides of the pineal gland can be considered as effective protectors of female reproductive system from xenobiotics and premature aging.

  8. Insulin modulates norepinephrine-mediated melatonin synthesis in cultured rat pineal gland

    USDA-ARS?s Scientific Manuscript database

    The mammalian pineal gland synthesizes melatonin in a circadian manner, peaking during the dark phase. This synthesis is primarily regulated by sympathetic innervations via noradrenergic fibers, but is also modulated by many peptidergic and hormonal systems. A growing number of studies reveal a comp...

  9. Rhodopsin expression in the zebrafish pineal gland from larval to adult stage.

    PubMed

    Magnoli, Domenico; Zichichi, Rosalia; Laurà, Rosaria; Guerrera, Maria Cristina; Campo, Salvatore; de Carlos, Felix; Suárez, Alberto Álvarez; Abbate, Francesco; Ciriaco, Emilia; Vega, Jose Antonio; Germanà, Antonino

    2012-03-09

    The zebrafish pineal gland plays an important role in different physiological functions including the regulation of the circadian clock. In the fish pineal gland the pinealocytes are made up of different segments: outer segment, inner segment and basal pole. Particularly, in the outer segment the rhodopsin participates in the external environment light reception that represents the first biochemical step in the melatonin production. It is well known that the rhodopsin in the adult zebrafish is well expressed in the pineal gland but both the expression and the cellular localization of this protein during development remain still unclear. In this study using qRT-PCR, sequencing and immunohistochemistry the expression as well as the protein localization of the rhodopsin in the zebrafish from larval (10 dpf) to adult stage (90 dpf) were demonstrated. The rhodopsin mRNA expression presents a peak of expression at 10 dpf, a further reduction to 50 dpf before increasing again in the adult stage. Moreover, the cellular localization of the rhodopsin-like protein was always localized in the pinealocyte at all ages examined. Our results demonstrated the involvement of the rhodopsin in the zebrafish pineal gland physiology particularly in the light capture during the zebrafish lifespan.

  10. Tryptophan hydroxylase is modulated by L-type calcium channels in the rat pineal gland.

    PubMed

    Barbosa, Roseli; Scialfa, Julieta Helena; Terra, Ilza Mingarini; Cipolla-Neto, José; Simonneaux, Valérie; Afeche, Solange Castro

    2008-02-27

    Calcium is an important second messenger in the rat pineal gland, as well as cAMP. They both contribute to melatonin synthesis mediated by the three main enzymes of the melatonin synthesis pathway: tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase. The cytosolic calcium is elevated in pinealocytes following alpha(1)-adrenergic stimulation, through IP(3)-and membrane calcium channels activation. Nifedipine, an L-type calcium channel blocker, reduces melatonin synthesis in rat pineal glands in vitro. With the purpose of investigating the mechanisms involved in melatonin synthesis regulation by the L-type calcium channel, we studied the effects of nifedipine on noradrenergic stimulated cultured rat pineal glands. Tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase activities were quantified by radiometric assays and 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin contents were quantified by HPLC with electrochemical detection. The data showed that calcium influx blockaded by nifedipine caused a decrease in tryptophan hydroxylase activity, but did not change either arylalkylamine N-acetyltransferase or hydroxyindole-O-methyltransferase activities. Moreover, there was a reduction of 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin intracellular content, as well as a reduction of serotonin and melatonin secretion. Thus, it seems that the calcium influx through L-type high voltage-activated calcium channels is essential for the full activation of tryptophan hydroxylase leading to melatonin synthesis in the pineal gland.

  11. Control of the Rat Pineal Gland by Light Spectra

    PubMed Central

    Cardinali, Daniel P.; Larin, Frances; Wurtman, Richard J.

    1972-01-01

    Control of pineal hydroxyindole-O-methyl transferase (S-adenosylmethionine:N-acetylserotonin-O-methyl transferase; EC 2.1.1.4) by light spectra was determined by placing groups of rats previously housed in continuous darkness under one of seven light sources for 96 hr; rats were exposed to the same intensity of irradiation. Activity of the enzyme was lowest in rats maintained under green light (λ peak = 530 nm); blue and yellow light were somewhat less effective; red and ultraviolet light did not significantly lower the enzyme activity. The suppression of pineal hydroxyindole-O-methyl transferase by full-spectrum light sources could be correlated with the proportions of their spectral outputs in the blue-green-yellow range. These observations suggest that the retinal photopigment that mediates pineal responses to light in rats is rhodopsin or another compound with similar absorption properties. PMID:4506068

  12. Scanning electron microscopy of the superficial pineal gland of the 15-day-old rat (Rattus norvegicus).

    PubMed

    Ortiz, G G; García, J J; Feria-Velasco, A; Rosales-Corral, S A; Reiter, R J

    2004-06-01

    The presence of a cortex and medulla in the superficial pineal gland has been a controversial point in the morphology of this structure in mammals. The published reports indicate contradictory data especially in rodents. In this study the pineal gland of 15-day-old male rats (Rattus norvegicus) were studied, using scanning electron microscopy, in an attempt to determine whether or not a cortex and medulla are apparent in the pineal gland of young rats. The superficial pineal gland of the 15-day-old rat exhibited both a cortex and a medulla; these areas exhibited different structural organizations. The cortex had a thickness of 40-80 microm and the cells did not show a particular arrangement. The center of the gland was composed of a medulla, which had a width of 1000-1200 microm, and consisted of cells arranged in cords; its morphology was distinctly different from that of the cortex.

  13. Is there a correlation between the pineal gland calcification and migraine?

    PubMed

    Ozlece, H K; Akyuz, O; Ilik, F; Huseyinoglu, N; Aydin, S; Can, S; Serim, V A

    2015-10-01

    The pineal gland calcifications have been associated with some diseases such as cerebral infarction, Alzheimer's disease and intracerebral hemorrhage while most cases are considered idiopathic and physiologic. However, there are limited data in the current literature about the association of pineal calcification and migraine. Our aim was to evaluate this association between migraine and pineal calcification by computed tomography of the brain. In our study, we assessed the computed tomography images of patients, who referred to the neurology outpatient clinic with the complaint of headache and were diagnosed with migraine without aura based according to 2004 criteria of the International Headache Society. 503 migraine patients and 500 control subjects without migraine diagnosis were included in this study. When migraine and control groups were compared by pineal calcification, the rates were determined as 80, 6% and 55% in migraine and control group, respectively. The difference was statistically significant (p < 0.001). In addition, it was seen that pineal calcifications, detected in migraine patients, did not show age-related increase. According to our data, we can point that pineal calcification may be associated with migraine.

  14. Effects of 60-Hz electric fields on serotonin metabolism in the rat pineal gland

    SciTech Connect

    Anderson, L.E.; Hilton, D.I.; Phillips, R.D.; Wilson, B.W.; Chess, E.K.

    1982-06-01

    Serotonin and two of its metabolites, melatonin and 5-methoxytryptophol, exhibit circadian rhythmicity in the pineal gland. We recently reported a marked reduction in the normal night-time increase in melatonin concentration in the pineal glands of rats exposed to 60-Hz electric fields. Concomitant with the apparent abolition of melatonin rhythmicity, serotonin-N-acetyl transferase (SNAT) activity was suppressed. We have now conducted studies to determine if abolition of the rhythm in melatonin production in electric-field-exposed rats arises solely from interference in SNAT activity, or if the availability of pineal serotonin is a factor that is affected by exposure. Pineal serotonin concentrations were compared in rats that were either exposed or sham exposed to 65 kV/m for 30 days. Sham-exposed animals exhibited normal diurnal rhythmicity for pineal concentrations of both melatonin and serotonin; melatonin levels increased markedly during the dark phase with a concurrent decrease in serotonin levels. In the exposed animals, however, normal serotonin rhythmicity was abolished; serotonin levels in these animals did not increase during the light period. The conclusion that electric field exposure results in a biochemical alteration in SNAT enzyme activity can be inferred from the loss of both serotonin and melatonin rhythmicity, as well as by direct measurement of SNAT activity itself. 35 references, 3 figures, 1 table.

  15. Increased vascular permeability and nitric oxide production in response to hypoxia in the pineal gland.

    PubMed

    Kaur, C; Sivakumar, V; Lu, J; Ling, E A

    2007-04-01

    This study examined the factors that may be involved in altering the function of pineal gland in hypoxic conditions. Adult Wistar rats were subjected to hypoxia and the pineal gland was examined for the mRNA and protein expression of hypoxia-inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF), endothelial, neuronal and inducible nitric oxide synthase (eNOS, nNOS, iNOS) at 3 hr-14 days after hypoxic exposure by real time reverse transcription-polymerase chain reaction, Western blotting and immunohistochemistry. Upregulated mRNA and protein expression of HIF-1alpha, VEGF, eNOS, nNOS and iNOS was observed in response to hypoxia. VEGF concentrations as determined by enzyme immunoassay and nitric oxide (NO) production measured by colorimetric assay were significantly higher after hypoxic exposure when compared with the controls. Melatonin content of the pineal gland, as determined by ELISA, was significantly reduced after the hypoxic exposure. Dilated blood vessels expressing eNOS were observed in hypoxic rats. Cells immunoreactive for VEGF were identified as the astrocytes whereas those immunoreactive for iNOS were pinealocytes and macrophages. Our findings indicate that excess production of VEGF and NO in pineal gland in response to hypoxia may be involved in increased vascular permeability as evidenced by an enhanced leakage of rhodamine isothiocyanate (RhIC). The increased vascular permeability may allow free access of serum-derived substances in the pineal gland that may affect the secretory function of the pinealocytes. Administration of exogenous melatonin may be beneficial as it reduced VEGF concentration and NO production significantly in hypoxic rats, and leakage of RhIC was concomitantly reduced.

  16. Posttranslational regulation of TPH1 is responsible for the nightly surge of 5-HT output in the rat pineal gland.

    PubMed

    Huang, Zheping; Liu, Tiecheng; Chattoraj, Asamanja; Ahmed, Samreen; Wang, Michael M; Deng, Jie; Sun, Xing; Borjigin, Jimo

    2008-11-01

    Serotonin (5-hydroxytryptamine, 5-HT), a precursor for melatonin production, is produced abundantly in the pineal gland of all vertebrate animals. The synthesis of 5-HT in the pineal gland is rate limited by tryptophan hydroxylase 1 (TPH1) whose activity displays a twofold increase at night. Earlier studies from our laboratory demonstrate that pineal 5-HT secretion exhibits dynamic circadian rhythms with elevated levels during the early night, and that the increase is controlled by adrenergic signaling at night. In this study, we report that (a) 5-HT total output from the pineal gland and TPH1 protein levels both display diurnal rhythms with a twofold increase at night; (b) stimulation of cAMP signaling elevates 5-HT output in vivo; (c) 5-HT total output and TPH1 protein content in rat pineal gland are both acutely inhibited by light exposure at night. Consistent with these findings, molecular analysis of TPH1 protein revealed that (a) TPH1 is phosphorylated at the serine 58 in vitro and in the night pineal gland; and (b) phosphorylation of TPH1 at this residue is required for cAMP-enhanced TPH1 protein stability. These data support the model that increased nocturnal 5-HT synthesis in the pineal gland is mediated by the phosphorylation of TPH1 at the serine 58, which elevates the TPH1 protein content and activity at night.

  17. The effect of light on melatonin secretion in the cultured pineal glands of Anolis lizards.

    PubMed

    Moore, Ashli F; Menaker, Michael

    2011-10-01

    Melatonin, a hormone produced by the pineal gland, is important for regulating circadian rhythms in many animals. Light at night causes an acute suppression of melatonin in nearly all vertebrate species. A previous study found that light failed to suppress melatonin in the lizard Anolis carolinensis. This is a surprising result given that the Anolis pineal gland is intrinsically photosensitive, is a key pacemaker controlling locomotor activity, and can be directly entrained to a light-dark cycle. To find out if the lack of photic suppression is widespread in the Anolis genus, we investigated the acute effects of light on melatonin secretion in five different species of Anolis using flow-through tissue culture. We administered a two-hour pulse of bright light to isolated pineal glands during the night. The results show photic suppression of melatonin in all five Anolis species, but the suppression is weak relative to that seen in other vertebrates. Moreover, Anolis species differ in the magnitude of the effect. These findings are discussed in the context of vertebrate pineal evolution and the ecology of Anolis lizards. Given their extensive phylogenetic and ecological divergence, Anolis lizards provide a promising system for investigating the ecology and evolution of circadian organization.

  18. Influence of sleep deprivation coupled with administration of melatonin on the ultrastructure of rat pineal gland.

    PubMed

    Lan, C T; Hsu, J C; Ling, E A

    2001-08-10

    The effects of sleep deprivation with or without melatonin treatment on the pineal morphology in rats were studied. Five days after sleep deprivation and using electron microscopy, many of the pinealocytes exhibited structural alterations including dilation of the cisternae of the rough/smooth endoplasmic reticulum, Golgi saccules and mitochondria, and an increase in the numbers of lipid droplets, vacuoles and dense-core vesicles. These features were considered as morphological evidence of increased synthesis or secretion by the pineal gland. In addition, numerous membranous profiles, considered to be degraded cellular organelles, were observed in some pinealocytes and sympathetic nerve terminals. It is suggested that the occurrence of degenerating organelles had resulted from the deleterious effect of sleep deprivation. This may be attributed to an overload of secretory activity of the pineal gland during stress elicited by the long-term sleep deprivation, leading to functional exhaustion and irreversible damage of the oxidation-related organelles. In sleep-deprived rats receiving a single injection of melatonin (10 mg/kg) for 5 consecutive days, the above features indicative of pinealocytic activation were attenuated. In fact, all signs of degeneration of cellular organelles were rarely found. These results suggest that the pineal gland is itself a target for exogenously administered melatonin. Thus, melatonin when administered systemically may be used as a potential neuroprotective drug against neuronal damage induced by sleep deprivation.

  19. Endocrine rhythms in the brown bear (Ursus arctos): Evidence supporting selection for decreased pineal gland size

    PubMed Central

    Ware, Jasmine V; Nelson, O Lynne; Robbins, Charles T; Carter, Patrick A; Sarver, Brice A J; Jansen, Heiko T

    2013-01-01

    Many temperate zone animals adapt to seasonal changes by altering their physiology. This is mediated in large part by endocrine signals that encode day length and regulate energy balance and metabolism. The objectives of this study were to determine if the daily patterns of two important hormones, melatonin and cortisol, varied with day length in captive brown bears (Ursus arctos) under anesthetized and nonanesthetized conditions during the active (March–October) and hibernation periods. Melatonin concentrations varied with time of day and season in nonanesthetized female bears despite exceedingly low nocturnal concentrations (1–4 pg/mL) in the active season. In contrast, melatonin concentrations during hibernation were 7.5-fold greater than those during the summer in anesthetized male bears. Functional assessment of the pineal gland revealed a slight but significant reduction in melatonin following nocturnal light application during hibernation, but no response to beta-adrenergic stimulation was detected in either season. Examination of pineal size in two bear species bears combined with a phylogenetically corrected analysis of pineal glands in 47 other species revealed a strong relationship to brain size. However, pineal gland size of both bear species deviated significantly from the expected pattern. Robust daily plasma cortisol rhythms were observed during the active season but not during hibernation. Cortisol was potently suppressed following injection with a synthetic glucocorticoid. The results suggest that melatonin and cortisol both retain their ability to reflect seasonal changes in day length in brown bears. The exceptionally small pineal gland in bears may be the result of direct or indirect selection. PMID:24303132

  20. Prolonged treatment with glucocorticoid dexamethasone suppresses melatonin production by the chick pineal gland and retina.

    PubMed

    Zawilska, Jolanta B; Sadowska, Magdalena

    2002-01-01

    The chick pineal gland and retina synthesize melatonin in a circadian rhythm with high levels during the night. The rhythmic changes in the hormone production result predominantly from the fluctuation in the activity of serotonin N-acetyltransferase (AA-NAT), a penultimate and key regulatory enzyme in melatonin biosynthesis. The aim of this study was to analyze the effects of an acute and prolonged in vivo treatment with a glucocorticoid dexamethasone (4 mg/kg, ip) on the nocturnal increase in AA-NAT activity in chick pineal gland and retina. In acute experiments, dexamethasone (single dose)-injected chicks were killed after 2 h, while in prolonged experiments the glucocorticoid was given once daily for 7 days and the animals were killed 26-32 h after the last injection. Acute administration of dexamethasone did not affect AA-NAT activity in the chick pineal gland and retina. In the pineal glands and retinas of chicks that were treated with dexamethasone for one week and then killed at the end of the light phase of the 12:12 h light-dark cycle, AA-NAT activity was significantly higher than the enzyme activity found in tissues isolated from the vehicle-treated (control) animals. In addition to that, the nocturnal increase in pineal and, to a lower extent, retinal AA-NAT activity was significantly lower in dexamethasone-treated birds when compared with the respective control groups. It is suggested that prolonged treatment of animals with dexamethasone reduces the amplitude of the rhythmic melatonin production, a phenomenon which may affect chronobiological processes being under control of this hormone.

  1. Histone H3 phosphorylation in the rat pineal gland: adrenergic regulation and diurnal variation.

    PubMed

    Chik, C L; Arnason, T G; Dukewich, W G; Price, D M; Ranger, A; Ho, A K

    2007-04-01

    In this study, we investigated phosphorylation of Ser10 in histone H3 by norepinephrine (NE) in the rat pineal gland. In whole-animal studies, we demonstrated a marked increase in histone H3 phosphorylation in the rat pineal gland during the first half of the dark period. Exposure to light during this period caused a rapid decline in histone H3 phosphorylation with an estimated t1/2 of less than 15 min, indicating a high level of dephosphorylation activity. Corresponding studies in cultured pineal cells revealed that treatment with NE produced an increase in histone H3 phosphorylation that peaked between 2 and 3 h and declined rapidly by 4 h. The NE-induced histone H3 phosphorylation was blocked by cotreatment with propranolol or KT5720, a protein kinase A inhibitor, but not by prazosin or other kinase inhibitors. Moreover, only treatment with dibutyryl cAMP but not other kinase activators mimicked the effect of NE on histone H3 phosphorylation. The NE-stimulated H3 phosphorylation was markedly increased by cotreatment with a serine/threonine phosphatase inhibitor, tautomycin or okadaic acid, supporting a high level of ongoing histone H3 dephosphorylation activity. Together, our results indicate that histone H3 phosphorylation is a naturally occurring event at night in the rat pineal gland that is driven almost exclusively by a NE-->beta-adrenergic-->cAMP/protein kinase A signaling mechanism. This transient histone H3 phosphorylation probably reflects the nocturnal activation of multiple adrenergic-regulated genes in the rat pineal gland.

  2. Studies on the presence of vasopressin, oxytocin and vasotocin in the pineal gland, subcommissural organ and fetal pituitary gland: failure to demonstrate vasotocin in mammals.

    PubMed

    Dogterom, J; Snijdewint, F G; Pévet, P; Swaab, D F

    1980-01-01

    The demonstration of vasotocin in the mammalian pineal gland, subcommissural organ and fetal pituitary gland by bioassay has led to hypotheses regarding the function of this hormone in various reproductive processes. Preliminary examinations of the pineal gland and subcommissural organ with a specific radioimmunoassay failed to show vasotocin immunoreactivity. The presence of vasotocin, vasopressin and oxytocin in the pineal gland, subcommissural organ and fetal neurohypophysis was therefore investigated, using three specific radioimmunoassays. Frog and chicken pituitary glands were used to validate the vasotocin radioimmunoassay. Direct measurements in diluted homogenates of pituitary glands from frogs, chickens, mid-term fetal sheep and near-term fetal seals revealed the presence of vasotocin only in the frog and chicken pituitary glands, while vasopressin and oxytocin were found in the two fetal pituitary homogenates. Vasopressin and ocytocin were measured in homogenates of rat and bovine pineal glands and in preparations of the subcommissural organ of rats and rabbits after extraction with Vycor glass powder, but no specific vasotocin immunoreactivity was observed. These results indicate a discrepancy between the reported biological activity of vasotocin in the pineal gland, subcommissural organ and fetal pituitary gland and the immunoreactivity of this material, which can at present only be explained by the presence of a peptide which is structurally closely related to, but not identical with, vasotocin.

  3. Expression of Bcl-2 and Bax protein in normal pineal gland in children and young adult.

    PubMed

    Marcol, Wiesław; Kotulska, Katarzyna; Larysz-Brysz, Magdalena; Malinowska-Kołodziej, Izabela; Mandera, Marek; Lewin-Kowalik, Joanna

    2006-01-01

    The Bcl family contains both pro and antiapoptotic proteins participating in the regulation of neuronal cell death in several pathological conditions. However, very little is known about physiological profiles of Bcl-2/Bax expression in normal brain. In this study, we examined expression profile of Bcl-2 and Bax proteins in normal pineal gland in children. The material for analysis was obtained by biopsy of pineal parenchyma during surgery of pineal cysts. All specimens were labeled immunohistochemically and analyzed by means of confocal laser scanning microscope. We found only few Bcl-2 expressing (0.7%) and no Bax-immunopositive (0.0%) pinealocytes. Bcl-2-positive cells were mature neurons, neither young ones nor glia.

  4. Increased melatonin synthesis in pineal glands of rats in streptozotocin induced type 1 diabetes.

    PubMed

    Peschke, Elmar; Wolgast, Sabine; Bazwinsky, Ivonne; Pönicke, Klaus; Muhlbauer, Eckhard

    2008-11-01

    It is well-documented that melatonin influences insulin secretion. The effects are mediated by specific, high-affinity, pertussis-toxin-sensitive, G protein-coupled membrane receptors (MT(1) as well MT(2)), which are present in both the pancreatic tissue and islets of rats and humans, as well as in rat insulinoma cells (INS1). Via the Gi-protein-adenylatecyclase-3',5'-cyclic adenosine monophosphate (cAMP) and, possibly, the guanylatecyclase-cGMP pathways, melatonin decreases insulin secretion, whereas, by activating the Gq-protein-phospholipase C-IP(3) pathway, it has the opposite effect. For further analysis of the interactions between melatonin and insulin, diabetic rats were investigated with respect to melatonin synthesis in the pineal gland and plasma insulin levels. In this context, recent investigations have proven that type 2 diabetic rats and humans display decreased melatonin levels, whereas type 1 diabetic IDDM rats or those with diabetes induced by streptozotocin (STZ) of the present study show increased plasma melatonin levels and elevated AA-NAT-mRNA. Furthermore, the mRNA of pineal insulin receptors and beta1-adrenoceptors, including the clock genes Per1 and Bmal1 and the clock-controlled output gene Dbp, increases in both young and middle-aged STZ rats. The results therefore indicate that the decreased insulin levels in STZ-induced type 1 diabetes are associated with higher melatonin plasma levels. In good agreement with earlier investigations, it was shown that the elevated insulin levels observed in type 2 diabetes, are associated with decreased melatonin levels. The results thus prove that a melatonin-insulin antagonism exists. Astonishingly, notwithstanding the drastic metabolic disturbances in STZ-diabetic rats, the diurnal rhythms of the parameters investigated are maintained.

  5. TrueFISP of the pediatric pineal gland: volumetric and microstructural analysis.

    PubMed

    Bumb, J M; Brockmann, M A; Groden, C; Al-Zghloul, M; Nölte, I

    2012-03-01

    Although high-resolution 3D-imaging has markedly improved the imaging of the pediatric pineal gland, the prevalences of typical and atypical cysts as well as in vivo volumes are unknown. The purpose of this study was to compare the frequency of typical and atypical cysts using high-resolution 3D-sequence true fast imaging with steady state precession (trueFISP) and standard sequences and to directly measure the pineal volume in a large pediatric population. In 54 consecutively examined children (age 0-17 years, mean age 5.4 ± 5.6 years, 44% female, 56% male) the prevalence of typical and atypical cysts (thickened rim, trabeculations, asymmetry) was determined using trueFISP (isotropic, 0.8 mm) and standard sequences, 1.5-T, T1-weighted spin echo (T1-SE), T2-weighted turbo spin echo (T2-TSE) and fluid attenuated inversion recovery (FLAIR). Indistinct findings were noted separately. Volumetry was based on the trueFISP datasets. Solid and cystic compartments were approached separately. The pineal volume was correlated to gender and age. The detected frequency of pineal cysts was higher in trueFISP (57.4%) than in standard sequences (T1-SE 7.4%, T2-TSE 14.8%, and FLAIR 13.0%). In trueFISP 66.3% of the detected cysts were classified as atypical (standard sequences 0%). Indistinct findings were lowest in trueFISP. The mean pineal volume was 94.3 ± 159.1 mm³ and no gender related differences were found. Age and volume showed a moderate correlation (r = 0.382) which was remarkably higher in completely solid glands (r = 0.659). TrueFISP imaging improves the detection of pineal cysts in children. A typical cysts are frequently detected as an incidental finding. Volumetric analysis of the pediatric pineal gland is feasible and reveals enormous variation. Whereas gender effects are negligible, the pineal volume in children is dependant on age.

  6. Lack of effect of ghrelin treatment on melatonin production in rat pineal and Harderian glands.

    PubMed

    Djeridane, Yasmina; Touitou, Yvan

    2005-04-01

    The effects of ghrelin, a peptide hormone secreted from the stomach, on melatonin remain unknown. The aim of the study was to investigate possible ghrelin-melatonin interactions by studying the effect of ghrelin treatment on melatonin production in rat pineal and Harderian glands. Young (9 weeks) and old (20 months) male Wistar rats, maintained under a light:dark cycle regimen of 12:12, were assigned randomly to either a single subcutaneous (s.c.) injection of saline or ghrelin (1 microg/rat or 15 microg/rat) 1 h before sacrifice in the middle of the dark phase, or repeated s.c. saline or ghrelin injections (15 microg/rat), 3, 2 and 1 h before sacrificed in the middle of the dark phase. Neither ghrelin doses (1 microg/rat or 15 microg/rat) nor type of treatment (acute or repeated) influenced melatonin levels or the melatonin synthesizing enzymes N-acetyltransferase and hydroxyindole-O-methyltransferase activities, either in pineal gland or in Harderian glands. At the concentrations used, ghrelin does not influence melatonin production in rat pineal and Harderian glands, and therefore is not involved in the regulation of melatonin secretion, at least under our experimental conditions.

  7. Increased plasma ACTH in rats exposed to the elevated plus-maze is independent of the pineal gland.

    PubMed

    Appenrodt, E; Kröning, G; Schwarzberg, H

    1999-11-01

    The involvement of the pineal gland in activation of the hypothalamic-pituitary-adrenocortical (HPA) axis evoked by a stressful stimulus (exposure to the elevated plus-maze) was investigated. Plasma ACTH levels were measured in pinealectomized and pineal-intact rats (sham-operated and non-operated) immediately after a 5 min placement into a plus-maze. A statistically significant elevation in plasma ACTH was measured within all groups; however, no statistical differences between pinealectomized and pineal-intact rats were observed. Similarly, comparison of the plasma ACTH basal values obtained from animals only kept in their home cages did not reveal any statistical differences between pinealectomized and pineal-intact rats. From these results it can be concluded that the pineal gland is not involved in anxiety-related behavior and ACTH response.

  8. Enantioselective micro-2D-HPLC determination of aspartic acid in the pineal glands of rodents with various melatonin contents.

    PubMed

    Han, Hai; Miyoshi, Yurika; Oyama, Tsubasa; Konishi, Ryoko; Mita, Masashi; Hamase, Kenji

    2011-10-01

    Enantioselective determination of aspartic acid (Asp) in the pineal gland of rodents with various melatonin contents was performed using a highly sensitive and selective two-dimensional HPLC system. After derivatization of the amino group with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), NBD-Asp was separated using a capillary monolithic ODS column in the first dimension. The fraction of NBD-Asp was automatically collected and transferred to the second dimension, and the D- and L-Asp were separated and determined using a narrowbore enantioselective column. Large amounts of D-Asp were observed in the pineal gland of the rats and specific strains of mice (C3H and CBA) possessing a high concentration of melatonin in their pineal gland. On the other hand, the amounts of D-Asp were small in the pineal gland of mice possessing a trace or no melatonin in their pineal gland (ddY, ICR, C57BL and BALB/c). In other tissues and physiological fluids, no significant strain-dependent changes of the D-Asp amounts were observed. These results indicate that large amounts of D-Asp are present only in the pineal gland containing large amounts of melatonin, and special care should be taken when selecting mouse strains for the investigation of D-Asp.

  9. Rhythmic Melatonin Response of the Syrian Hamster Pineal Gland to Norepinephrine In Vitro and In Vivo

    DTIC Science & Technology

    1986-01-01

    INTRODUCTION Pineal melatonin synthesis in the rat is stimulated by the adrenergic neurotransmitter norepinephrine (NE) acting predominantly through a...prevent the normal nocturnal surge of pineal melatonin synthesis or of circulating or excreted melatonin in rats, Syrian hamsters, and humans [Ei...et al., 19851 increase daytime melatonin synthesis , an effect magnified by block- ing catecholamine uptake in the nerve endings or by prolonged light

  10. 7α-Hydroxypregnenolone regulating locomotor behavior identified in the brain and pineal gland across vertebrates.

    PubMed

    Tsutsui, Kazuyoshi; Haraguchi, Shogo; Vaudry, Hubert

    2017-09-14

    The brain synthesizes steroids de novo from cholesterol, which are called neurosteroids. Based on extensive studies on neurosteroids over the past thirty years, it is now accepted that neurosteroidogenesis in the brain is a conserved property across vertebrates. However, the formation of bioactive neurosteroids in the brain is still incompletely elucidated in vertebrates. In fact, we recently identified 7α-hydroxypregnenolone (7α-OH PREG) as a novel bioactive neurosteroid stimulating locomotor behavior in the brain of several vertebrates. The follow-up studies have demonstrated that the stimulatory action of brain 7α-OH PREG on locomotor behavior is mediated by the dopaminergic system across vertebrates. More recently, we have further demonstrated that the pineal gland, an endocrine organ located close to the brain, is a major site of the formation of bioactive neurosteroids. In addition to the brain, the pineal gland actively produces 7α-OH PREG de novo from cholesterol as a major pineal neurosteroid that acts on the brain to control locomotor rhythms. This review summarizes the identification, biosynthesis and mode of action of brain and pineal 7α-OH PREG, a new bioactive neurosteroid regulating locomotor behavior, across vertebrates. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Interleukin-1 β Modulates Melatonin Secretion in Ovine Pineal Gland: Ex Vivo Study.

    PubMed

    Herman, A P; Bochenek, J; Skipor, J; Król, K; Krawczyńska, A; Antushevich, H; Pawlina, B; Marciniak, E; Tomaszewska-Zaremba, D

    2015-01-01

    The study was designed to determine the effect of proinflammatory cytokine, interleukin- (IL-) 1β, on melatonin release and expression enzymes essential for this hormone synthesis: arylalkylamine-N-acetyltransferase (AA-NAT) and hydroxyindole-O-methyltransferase (HIOMT) in ovine pineal gland, taking into account the immune status of animals before sacrificing. Ewes were injected by lipopolysaccharide (LPS; 400 ng/kg) or saline, two hours after sunset during short day period (December). Animals were euthanized three hours after the injection. Next, the pineal glands were collected and divided into four explants. The explants were incubated with (1) medium 199 (control explants), (2) norepinephrine (NE; 10 µM), (3) IL-1β (75 pg/mL), or (4) NE + IL-1β. It was found that IL-1β abolished (P < 0.05) NE-induced increase in melatonin release. Treatment with IL-1β also reduced (P < 0.05) expression of AA-NAT enzyme compared to NE-treated explants. There was no effect of NE or IL-1β treatment on gene expression of HIOMT; however, the pineal fragments isolated from LPS-treated animals were characterized by elevated (P < 0.05) expression of HIOMT mRNA and protein compared to the explants from saline-treated ewes. Our study proves that IL-1β suppresses melatonin secretion and its action seems to be targeted on the reduction of pineal AA-NAT protein expression.

  12. Adrenergic and cholinergic regulation of in vitro melatonin release during ontogeny in the pineal gland of Long Evans rats.

    PubMed

    Wagner, G; Brandstätter, R; Hermann, A

    2000-09-01

    Melatonin, produced by the pineal gland, plays an important role in a great variety of neuroendocrine functions. The rhythmic release of melatonin by the mammalian pineal gland is regulated by norepinephrine (NE) acting via alpha- and beta-adrenergic receptors utilizing distinct signal transduction pathways. Acetylcholine has been demonstrated to exert various effects in the mammalian pineal gland, including an inhibitory action on the NE-induced stimulation of melatonin production. However, data obtained by different laboratories on the interaction of adrenergic receptors are not consistent and whether muscarinic and/or nicotinic receptors participate in the various effects of acetylcholine is still contradictory. To investigate noradrenergic as well as cholinergic mechanisms during ontogeny, we have investigated in vitro melatonin release from isolated pineal glands of Long Evans rats of different ages. NE as well as the beta-adrenergic receptor agonist isoproterenol (ISO) significantly elevated the melatonin release in pineal glands from postnatal week 2 on. In pineal glands originating from 2- to 4-week-old rats, simultaneous activation of alpha- and beta-adrenergic receptors by ISO and the alpha-adrenergic receptor agonist methoxamine (MET) or NE resulted in significantly weaker stimulation of melatonin production than beta-receptor activation alone. Acetylcholine evoked a significant increase in melatonin release in pineal glands from 2- to 4-week-old rats. In pineal glands from 8- to 20-week-old animals, ISO, ISO + MET or NE stimulated pineal melatonin release to comparable maxima, whereas acetylcholine was without effect. Our data indicate (1) that the adrenergic stimulation of pineal melatonin production in Long Evans rats is dominated by a beta-adrenergic mechanism, (2) that additional alpha-adrenergic receptor activation is inhibitory and (3) dependent on the developmental status of the animal, and (4) that acetylcholine acting via muscarinic receptors

  13. Significant anti-tumor effect of bevacizumab in treatment of pineal gland glioblastoma multiforme.

    PubMed

    Mansour, Joshua; Fields, Braxton; Macomson, Samuel; Rixe, Olivier

    2014-12-01

    Glioblastoma multiforme (GBM) is the most aggressive subtype of malignant gliomas. Current standard treatment for GBM involves a combination of cytoreduction through surgical resection, followed by radiation with concomitant and adjuvant chemotherapy (temozolomide). The role of bevacizumab in the treatment of GBM continues to be a topic of ongoing research and debate. Despite aggressive treatment, these tumors remain undoubtedly fatal, especially in the elderly. Furthermore, tumors present in the pineal gland are extremely rare, accounting for only 0.1-0.4 % of all adult brain tumors, with this location adding to the complexity of treatment. We present a case of GBM, at the rare location of pineal gland, in an elderly patient who was refractory to initial standard of care treatment with radiation and concomitant and adjuvant temozolomide, but who developed a significant response to anti-angiogenic therapy using bevacizumab.

  14. [The historical background of the pineal gland: I. From a spiritual valve to the seat of the soul].

    PubMed

    López-Muñoz, Francisco; Marín, Fernando; Alamo, Cecilio

    Throughout history, the special anatomical location of the pineal gland in the central nervous system has given rise to a number of physiological hypotheses regarding the functional role of this organ. In classical ancient times, the pineal body (conarium) was considered to be a sort of valve-like sphincter that regulated the flow of the spiritus animalis at the ventricular level. But it was not until the 17th century that the pineal gland finally reached its highest levels of physiological significance, when Rene Descartes considered it to be the anatomical structure that housed the seat of the soul. The Cartesian hypotheses regarding the pineal gland did not arouse much interest in the scientific community of the time, and attention to this organ dwindled from then until the 20th century, when its neuroendocrinological nature was finally confirmed.

  15. The ontogenic expressions of multiple vesicular glutamate transporters during postnatal development of rat pineal gland.

    PubMed

    Yoshida, S; Ina, A; Konno, J; Wu, T; Shutoh, F; Nogami, H; Hisano, S

    2008-03-18

    The pineal gland expresses vesicular glutamate transporters 1 and 2 (VGLUT1 and VGLUT2), which are thought to transport glutamate into synaptic-like microvesicles in the pinealocytes. Recently, we reported that the rat pineal gland also expresses VGLUT1v which is a novel variant of VGLUT1 during the perinatal period. To explore the biological significance of these VGLUT expressions in pineal development, we studied the ontogeny of VGLUT in this gland by in situ hybridization, immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (RT-PCR) using rats. Histological analysis revealed that intensities of VGLUT1 hybridization signal and immunostaining drastically increase by postnatal day (P) 7, whereas VGLUT2 expression exhibits high levels of mRNA and protein at birth and decreases gradually from P7 onward. Quantitative RT-PCR analysis supported these histological observations, showing that expressions of VGLUT1 and VGLUT2 exhibit opposite patterns to each other. Coinciding with VGLUT1-upregulation, RT-PCR data showed that expressions of dynamin 1 and endophilin 1, which are factors predictably involved in the endocytotic recovery of VGLUT1-associated vesicle, are also increased by P7. Quantitative RT-PCR analysis of VGLUT1v demonstrated that its mRNA expression is upregulated by P7, kept at the same level until P14, and apparently decreased at P21, suggesting its functional property required for a certain developmental event. Moreover, a comparison of mRNA expressions at daytime and nighttime revealed that neither VGLUT1 nor VGLUT1v shows any difference in both P7 and P21 glands, whereas VGLUT2 is significantly lower at daytime than at nighttime at P21 but not P7, the time point at which the melatonin rhythm is not yet generated. The present study shows that expressions of these VGLUT types are differentially regulated during postnatal pineal development, each presumably participating in physiologically distinct glutamatergic functions.

  16. The Syrian Hamster Pineal Gland Responds to Isoproterenol in Vivo at Night

    DTIC Science & Technology

    1987-01-01

    pineal melatonin content in Results were analyzed by t tests with the uninjected animals (exp. 2) was typical for Bonferroni correction for multiplicity of... Coggins for technical assistance and Dr. Mark Rollag for melatonin antibody. 12. Lipton JS, Petterborg LJ, Reiter RJ 1981 Influence of propranolol...Axelrod J 1973 Superinduc- glands. Neuroendocrinology 38:193 tion of serotonin N-acetyltransferase 14. Vaughan GM, Lasko J, Coggins SH, and

  17. A rhythmic change of vesicular glutamate transporter (VGLUT) 2 expression in the rat pineal gland.

    PubMed

    Yoshida, Sachine; Hira, Yoshiki; Ehara, Ayuka; Mimura-Yamamoto, Yuka; Kawano, Michihiro; Shutoh, Fumihiro; Nogami, Haruo; Hisano, Setsuji

    2012-01-01

    The pineal gland secretes melatonin under circadian control via nocturnal noradrenergic stimulation, and expresses vesicular glutamate transporter (VGLUT) 1, VGLUT2 and a VGLUT1 splice variant (VGLUT1v). Although we previously reported that VGLUT2 mRNA level of rat pineal gland at postnatal day 21 is higher in the nighttime than in daytime, questions remained as to the time of postnatal onset of this phenomenon and a 24-h change in the mRNA or protein level at postnatal days. The day-night difference in VGLUT2 mRNA level was evident 14 days after birth. In the adult, VGLUT2 mRNA and protein levels increased in the dark phase, with the protein level showing a 6-h delay. The nocturnal elevation in VGLUT2 mRNA level diminished under the constant light condition but persisted under the constant dark condition. The present data suggest that VGLUT2 in the rat pineal gland is involved in some nocturnal glutamatergic function.

  18. The rhythm and blues of gene expression in the rodent pineal gland.

    PubMed

    Karolczak, Magdalena; Korf, Horst-Werner; Stehle, Jörg H

    2005-07-01

    In all vertebrates, melatonin is rhythmically synthesized in the pineal gland and functions as a hormonal message, encoding for the duration of night. In rodents, the nocturnal rise and fall of the arylalkylamine N-ace-tyltransferase (AA-NAT) activity controls the rhythmic synthesis of melatonin. This rhythm is centered around the transcriptional regulation of the AA-NAT by two norepinephrine-inducible transcription factors, the activator CREB (Ca2+/cAMP-response element binding protein) and the inhibitor ICER (inducible cAMP early repressor). CREB is activated by phosphorylation, which is one of the fastest responses in pinealocytes upon adrenergic stimulation, occurring within minutes. ICER in turn accumulates only after several hours, a time gap resulting from the required de novo protein synthesis upon adrenergic stimulation. However, these molecular components of neuroendocrine signaling in the rodent pineal gland are supplemented by the impact of a variety of neurotransmitters and neuromodulators, and by translational and post-translational mechanisms. By molecular crosstalk, those different inputs on pinealocytes seem to fine-tune the shape of the melatonin signal, by interacting at various levels with the NE/cAMP/pCREB/ICER pathway. In addition, these alternate signaling routes may be important in acute "emergency" situations. Together, concerted signaling events in the rodent pineal gland help to generate a stable and reliable hormonal message of darkness for the body, that, however, can be altered rapidly upon sudden and unexpected "error" signals.

  19. Nocturnal headache associated with melatonin deficiency due to a pineal gland cyst.

    PubMed

    Karadaş, Omer; Ipekdal, Ilker H; Ulaş, Umit H; Odabaşi, Zeki

    2012-02-01

    The cyclic nature of some of headache disorders is closely related to melatonin, which is secreted by the pineal gland. We report a 29-year-old male patient with a 2.5-year history of headaches that woke him in the middle of the night. These headaches were pulsatile and continued until sunrise. During these attacks he also suffered from allodynia over the scalp, bilateral conjunctival hyperemia, and nervousness. His brain MRI showed a 5mm by 4mm neuroepithelial cyst in the pineal gland. The peak plasma melatonin level that was measured at 2 am was 28 pg/mL. The patient underwent oral melatonin treatment (6 mg/day). After 1 month he experienced a 70% reduction in his symptoms. When the melatonin dosage was increased to 10mg/day he became headache-free, and 5 months after the treatment began, had no complaints. His 5-month follow-up plasma melatonin level at 2 am was 61 pg/mL. To our knowledge this is the first report of a patient with nocturnal headache associated with a low level of melatonin due to a neuroepithelial cyst in the pineal gland.

  20. Functional development of the circadian clock in the zebrafish pineal gland.

    PubMed

    Ben-Moshe, Zohar; Foulkes, Nicholas S; Gothilf, Yoav

    2014-01-01

    The zebrafish constitutes a powerful model organism with unique advantages for investigating the vertebrate circadian timing system and its regulation by light. In particular, the remarkably early and rapid development of the zebrafish circadian system has facilitated exploring the factors that control the onset of circadian clock function during embryogenesis. Here, we review our understanding of the molecular basis underlying functional development of the central clock in the zebrafish pineal gland. Furthermore, we examine how the directly light-entrainable clocks in zebrafish cell lines have facilitated unravelling the general mechanisms underlying light-induced clock gene expression. Finally, we summarize how analysis of the light-induced transcriptome and miRNome of the zebrafish pineal gland has provided insight into the regulation of the circadian system by light, including the involvement of microRNAs in shaping the kinetics of light- and clock-regulated mRNA expression. The relative contributions of the pineal gland central clock and the distributed peripheral oscillators to the synchronization of circadian rhythms at the whole animal level are a crucial question that still remains to be elucidated in the zebrafish model.

  1. [The morphological response of the pineal gland of old animals on course of melatonin injections].

    PubMed

    Gubina-Vakulik, G I; Bondarenko, L A; Gevorkian, A R

    2009-01-01

    On the old (18-20 months) male rats of Wistar population the influence of the 10 days evening melatonin injections in physiological rang doses on morphological state pineal gland, was studied. It has been shown, that the course of melatonin injections to old rats brings appearance of histological pattern of pineal gland activation: increasing of area of pinealocytes nuclear and density of nuclear and cytoplasm with stein by hallocyanine on total nucleic acid that means stimulation to material both indole, and peptide nature production. Using of melatonin in dose 0.05 mg/kg mass of the body is sparing for pinealocytes of the old rats and slows the apoptosis processes on background of polyploidization. Using of melatonin in dose 0,5 mg/kg mass of the body causes cell's overstrain and induces the forced apoptosis. It's possible to suppose that the geroprotective effect of the evening injections of melatonin is increased due to stimulation of the biosynthesis of neuropeptides in pineal gland.

  2. Adrenergic inducibility of AP-1 binding in the rat pineal gland depends on prior photoperiod.

    PubMed

    Guillaumond, F; Becquet, D; Bosler, O; François-Bellan, A M

    2002-10-01

    The main known function of the pineal gland in mammals is the temporal synchronization of physiological rhythms to seasonal changes of day length (photoperiod). In rat, the transcription factor activating protein-1 (AP-1) displays a circadian rhythm in its DNA binding in the pineal gland, which results from the rhythmic expression of Fra-2. We postulated that, if AP-1 is an important component of pineal gland functioning, then variations in photoperiodic conditions should lead to an adaptation of the AP-1 binding rhythm. Here we show that AP-1 binding patterns adapt to variations in lighting conditions, in the same way as the rhythm of arylalkylamine-N-acetyltransferase (AA-NAT) activity. This adaptation appeared to result from photoperiodic adaptation of the rhythmic fra-2 gene expression and was reflected by an adapted delay between the onset of night and the acrophase of the nocturnal peak. We further showed that photoperiodic adaptation of both the AP-1 binding and AA-NAT activity rhythms resulted from adapted changes in adrenergic inducibility of both variables at night onset. We finally provided evidence that AP-1 shared with the CREM gene encoding the transcriptional repressor protein inducible cAMP early repressor (ICER) the ability to be hypersensitive or subsensitive to adrenergic stimuli, depending on prior photoperiod.

  3. Immunocytochemical characterization of Delta-opioid and Mu-opioid receptor protein in the bovine pineal gland.

    PubMed

    Phansuwan-Pujito, Pansiri; Ebadi, Manuchair; Govitrapong, Piyarat

    2006-01-01

    Opioidergic innervation has been identified in the mammalian pineal gland. Recently, opioid receptors in bovine pineal glands have been characterized; the activation of these receptors leads to the stimulation of melatonin synthesis. In this study, the precise localization of opioid receptors in bovine pineal glands was determined by an immunohistochemical technique using antibodies raised against delta-opioid and mu-opioid receptors. Immunoreactivity of these two receptors was present at a moderate level in pinealocytes. A double-labeling study has shown that delta-opioid receptors are localized predominantly with mu-opioid receptors in the same pinealocytes. These immunopositive pinealocytes are often located in a group; however, some of them are dispersed individually. In addition, both types of receptors were found in glial cells and processes. A small number of delta-receptor-immunoreactive nerve fibers were observed in the perivascular space and intraparenchyma of the pineal gland. Mu-opioid receptor immunoreactivity was found in a number of nerve fibers throughout the gland, and in terminal-like dots on pinealocytes. There was immunocolocalization between delta-opioid receptors or mu-opioid receptors and leu-enkephalin in some nerve fibers. The results of this study indicate that the modulatory effect of the opioid system on melatonin secretion in pineal glands might act via opioid receptors on pinealocytes, whereas receptors located on nerve fibers might modulate the release of opioid peptides.

  4. Beyond the pineal gland assumption: a neuroanatomical appraisal of dualism in Descartes' philosophy.

    PubMed

    Berhouma, Moncef

    2013-09-01

    The problem of the substantial union of the soul and the body and therefore the mechanisms of interaction between them represents the core of the Cartesian dualistic philosophy. This philosophy is based upon a neuroanatomical obvious misconception, consisting mainly on a wrong intraventricular position of the pineal gland and its capacity of movement to act as a valve regulating the flow of animal spirits. Should we consider the Cartesian neurophysiology as a purely anatomical descriptive work and therefore totally incorrect, or rather as a theoretical conception supporting his dualistic philosophy? From the various pre-Cartesian theories on the pineal organ, we try to explain how Descartes used his original conception of neuroanatomy to serve his dualistic philosophy. Moreover, we present an appraisal of the Cartesian neuroanatomical corpus from an anatomical but also metaphysical and theological perspectives. A new interpretation of Descartes' writings and an analysis of the secondary related literature shed the light on the voluntary anatomical approximations aiming to build an ad hoc neurophysiology that allows Descartes' soul-body theory. By its central position within the brain mass and its particular shape, the pineal gland raised diverse metaphysical theories regarding its function, but the most original theory remains certainly its role as the seat of soul in René Descartes' philosophy and more precisely the organ where soul and body interact. The author emphasizes on the critics raised by Descartes' theories on the soul-body interaction through the role of the pineal gland. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Melatonin synthesis in the bovine pineal gland is regulated by type II cyclic AMP-dependent protein kinase.

    PubMed

    Maronde, E; Middendorff, R; Telgmann, R; Müller, D; Hemmings, B; Taskén, K; Olcese, J

    1997-02-01

    We investigated the expression of regulatory (R) and catalytic (C) subunits of cyclic AMP-dependent protein kinase (cAK; ATP:protein phosphotransferase; EC 2.7.1.37) in the bovine pineal gland. In total RNA extracts of bovine pineal glands moderate levels of RI alpha/RII beta and high levels of C alpha and C beta mRNA were found. We were able to detect a strong signal for RII and C subunit at the protein level, whereas RI was apparently absent. Probing sections of the intact bovine pineal gland with RI and RII antibodies stained only RII in pinealocytes. Pairs of cyclic AMP analogues complementing each other in activation of type II cAK, but not cAKI-directed analogue pairs, showed synergistic stimulation of melatonin synthesis. Moreover, melatonin synthesis stimulated by the physiological activator norepinephrine in pineal cell cultures was inhibited by cAK antagonists. Taken together these results show the presence of RII regulatory and both C alpha and C beta catalytic subunits and thus cAKII holoenzyme in the bovine pineal gland. The almost complete inhibition of norepinephrine-mediated melatonin synthesis by the cAK antagonists emphasizes the dominant role of cyclic AMP as the second messenger and cAK as the transducer in bovine pineal signal transduction.

  6. Seasonal postembryonic maturation of the diurnal rhythm of serotonin in the chicken pineal gland.

    PubMed

    Piesiewicz, Aneta; Kedzierska, Urszula; Turkowska, Elzbieta; Adamska, Iwona; Majewski, Pawel M

    2015-02-01

    Previously, we have demonstrated the postembryonic development of chicken (Gallus gallus domesticus L.) pineal gland functions expressed as changes in melatonin (MEL) biosynthesis. Pineal concentrations of MEL and its precursor serotonin (5-HT) were shown to increase between the 2nd and 16th day of life. We also found that levels of the mRNAs encoding the enzymes participating in the final two steps of MEL biosynthesis from 5-HT: arylalkylamine-N-acetyltransferase (AANAT) and hydroxyindole-O-methyltransferase (HIOMT), as well as their enzymatic activities, were raised during postembryonic development. Moreover, the manner of these changes was season-of-hatch dependent, even in animals kept under constant laboratory conditions (L:D 12:12). The most pronounced changes were seen in the concentrations of 5-HT and MEL, as well as in Aanat mRNA level and its enzymatic activity. The high daily variability in 5-HT content suggested that season- and age-dependent changes in the activity of the chicken pineal gland might rely on the availability of 5-HT, i.e. it may be limited by changes in pineal tryptophan (TRP) and/or 5-hydroxytryptophan (5-HTP) levels as well as by the activity of tryptophan hydroxylase (TPH) and aromatic l-amino acid decarboxylase (AADC): two enzymes participating in the conversion of TRP to 5-HT. The present study was undertaken with the following objectives: (1) to examine whether the pineal concentration of the 5-HT precursors TRP and 5-HTP exhibit age- and season-related changes; (2) to look for season-related differences in the transcription of the Tph1 and Ddc genes encoding enzymes TPH and AADC; (3) to identify the step(s) in postembryonic development in which these season-related variations in pineal gland function are most pronounced. Male Hy-line chickens hatched in the summer or winter, from eggs laid by hens held in L:D 16:8 conditions were kept from the day of hatch in L:D 12:12 conditions. At the age of 2 or 9 days, animals were sacrificed

  7. Expression and regulation of Icer mRNA in the Syrian hamster pineal gland.

    PubMed

    Diaz, Elena; Garidou, Marie-Laure; Dardente, Hugues; Salingre, Anthony; Pévet, Paul; Simonneaux, Valérie

    2003-04-10

    Inducible-cAMP early repressor (ICER) is a potent inhibitor of CRE (cAMP-related element)-driven gene transcription. In the rat pineal gland, it has been proposed to be part of the mechanisms involved in the shutting down of the transcription of the gene coding for arylalkylamine N-acetyltransferase (AA-NAT, the melatonin rhythm-generating enzyme). In this study, we report that ICER is expressed in the pineal gland of the photoperiodic rodent Syrian hamster although with some difference compared to the rat. In the Syrian hamster pineal, Icer mRNA levels, low at daytime, displayed a 20-fold increase during the night. Nighttime administration of a beta-adrenergic antagonist, propranolol, significantly reduced Icer mRNA levels although daytime administration of a beta-adrenergic agonist, isoproterenol, was unable to raise the low amount of Icer mRNA. These observations indicate that Icer mRNA expression is induced by the clock-driven norepinephrine release and further suggest that this stimulation is restricted to nighttime, as already observed for Aa-nat gene transcription. Furthermore, we found that the daily profile of Icer mRNA displayed photoperiodic variation with a lengthening of the nocturnal peak in short versus long photoperiod. These data indicate that ICER may be involved in both daily and seasonal regulation of melatonin synthesis in the Syrian hamster.

  8. Analysis of daily and circadian gene expression in the rat pineal gland.

    PubMed

    Fukuhara, Chiaki; Tosini, Gianluca

    2008-02-01

    The mammalian pineal gland is an important component of the circadian system. In the present study, we examined the expression of roughly 8000 genes in the rat pineal gland as a function of time of day under light-dark (LD) cycles and in constant dark (DD) using oligo DNA microarray technique. We identified 47 and 13 genes that showed higher levels at night and day, respectively, under LD. The same patterns of expression were also observed in DD. About half of the genes that peaked at night have a known biological function, i.e., transcription factors and proteins that are involved in signaling cascades, whereas 14 are expressed sequence tags and 8 have an unknown biological function. Twelve of the genes that were up-regulated at night were also up-regulated after 1h NE stimulation, thus suggesting that the expression of these genes is controlled by adrenergic mechanisms. Of the 13 genes that were up-regulated in the daytime, 6 coded for proteins that are involved in intracellular signaling pathways. The results obtained with microarray analysis were well correlated with data obtained using real time quantitative RT-PCR. The present results provide new materials to dissect and understand the pineal physiology.

  9. Adrenoceptor expression and diurnal rhythms of melatonin and its precursors in the pineal gland of type 2 diabetic goto-kakizaki rats.

    PubMed

    Bach, Andreas Gunter; Mühlbauer, Eckhard; Peschke, Elmar

    2010-06-01

    A decrease in the nighttime release of the pineal hormone melatonin is associated with aging and chronic diseases in animals an humans. Melatonin has a protective role in type 2 diabetes; however, its synthesis itself is affected in the disease. The aim of this study was to detect crucially impaired steps in the pineal melatonin synthesis of type 2 diabetic Goto-Kakizaki (GK) rats. Therefore, plasma melatonin concentrations and the pineal content of melatonin and its precursors (tryptophan, 5-hydroxytryptophan, serotonin, and N-acetylserotonin) were quantified in GK rats compared with Wistar rats (each group 8 and 50 wk old) in a diurnal manner (four animals per group and per time point). Additionally, the expression of pineal adrenoceptor subtype mRNA was investigated. We found that in diabetic GK rats, 1) inhibitory alpha-2-adrenoceptors are significantly more strongly expressed than in Wistar rats, 2) the formation of 5-hydroxytryptophan is crucially impaired, and 3) the pineal gland protein content is significantly reduced compared with that in Wistar rats. This is the first time that melatonin synthesis is examined in a type 2 diabetic rat model in a diurnal manner. The present data unveil several reasons for a reduced melatonin secretion in diabetic animals and present an important link in the interaction between melatonin and insulin.

  10. (+)-N-allylnormetazocine enhances N-acetyltransferase activity and melatonin synthesis: preliminary evidence for a functional role of sigma receptors in the rat pineal gland.

    PubMed

    Steardo, L; Monteleone, P; d'Istria, M; Serino, I; Maj, M; Cuomo, V

    1995-11-01

    In the present study, to evaluate the role that sigma receptors play in the physiology of the pineal gland, we assessed the effects of the sigma receptor ligand (+)-N-allylnormetazocine on the gland activity during either the day or the night. As compared to saline, (+)-N-allylnormetazocine enhanced the physiological increases in both pineal N-acetyltransferase (NAT) activity and melatonin content at night, but it did not affect the biosynthetic activity of the gland during the day. Moreover, (+)-N-allylnormetazocine potentiated the enhancement of NAT activity and pineal melatonin content induced by isoproterenol administration during the day. The nocturnal stimulation of pineal NAT activity and melatonin levels by (+)-N-allylnormetazocine was prevented by pretreatment with rimcazole, a specific sigma receptor antagonist. These results demonstrate that sigma receptor activation by (+)-N-allylnormetazocine is not able, by itself, to stimulate pineal melatonin production, whereas it potentiates the biosynthetic activity of the pineal gland when this is stimulated noradrenergically.

  11. The contribution of the pineal gland on daily rhythms and masking in diurnal grass rats, Arvicanthis niloticus.

    PubMed

    Shuboni, Dorela D; Agha, Amna A; Groves, Thomas K H; Gall, Andrew J

    2016-07-01

    Melatonin is a hormone rhythmically secreted at night by the pineal gland in vertebrates. In diurnal mammals, melatonin is present during the inactive phase of the rest/activity cycle, and in primates it directly facilitates sleep and decreases body temperature. However, the role of the pineal gland for the promotion of sleep at night has not yet been studied in non-primate diurnal mammalian species. Here, the authors directly examined the hypothesis that the pineal gland contributes to diurnality in Nile grass rats by decreasing activity and increasing sleep at night, and that this could occur via effects on circadian mechanisms or masking, or both. Removing the pineal gland had no effect on the hourly distribution of activity across a 12:12 light-dark (LD) cycle or on the patterns of sleep-like behavior at night. Masking effects of light at night on activity were also not significantly different in pinealectomized and control grass rats, as 1h pulses of light stimulated increases in activity of sham and pinealectomized animals to a similar extent. In addition, the circadian regulation of activity was unaffected by the surgical condition of the animals. Our results suggest that the pineal gland does not contribute to diurnality in the grass rat, thus highlighting the complexity of temporal niche transitions. The current data raise interesting questions about how and why genetic and neural mechanisms linking melatonin to sleep regulatory systems might vary among mammals that reached a diurnal niche via parallel and independent pathways.

  12. The in vitro maintenance of clock genes expression within the rat pineal gland under standard and norepinephrine-synchronized stimulation.

    PubMed

    Andrade-Silva, Jéssica; Cipolla-Neto, José; Peliciari-Garcia, Rodrigo A

    2014-01-01

    Although the norepinephrine (NE) synchronization protocol was proved to be an important procedure for further modulating in vitro pineal melatonin synthesis, the maintenance of clock genes under the same conditions remained to be investigated. The aim of this study was to investigate the maintenance of the clock genes expression in pineal gland cultures under standard and NE-synchronized stimulation. The glands were separated into three experimental groups: Control, Standard (acute NE-stimulation), and NE-synchronized. The expression of Bmal1, Per2, Cry2, Rev-erbα, the clock controlled gene Dbp and Arylalkylamine-N-acetyltransferase were investigated, as well as melatonin content. No oscillations were observed in the expression of the investigated genes from the control group. Under Standard NE stimulation, the clock genes did not exhibit a rhythmic pattern of expression. However, in the NE-synchronized condition, a rhythmic expression pattern was observed in all cases. An enhancement in pineal gland responsiveness to NE stimulation, reflected in an advanced synthesis of melatonin was also observed. Our results reinforce our previous hypothesis that NE synchronization of pineal gland culture mimics the natural rhythmic release of NE in the gland, increasing melatonin synthesis and keeping the pineal circadian clock synchronized, ensuring the fine adjustments that are relied in the clockwork machinery.

  13. Magnetic resonance imaging based morphologic evaluation of the pineal gland for suspected pineoblastoma in retinoblastoma patients and age-matched controls.

    PubMed

    Pham, Thi Thai Hien; Siebert, Eberhard; Asbach, Patrick; Willerding, Gregor; Erb-Eigner, Katharina

    2015-12-15

    The purpose of this study was to evaluate the morphologic magnetic resonance imaging (MRI) characteristics of the pineal gland in retinoblastoma (Rb) patients without and with pineoblastoma in comparison to age-matched controls to improve early identification of pineoblastomas (trilateral retinoblastoma, TRb). 80 patients with retinoblastoma and 80 age-matched controls who had undergone brain MRI were included in this retrospective institutional review board approved cohort study. Two readers analyzed the following MR characteristics of the pineal gland: signal intensity on T1- and T2-weighted images, enhancement pattern, delineation of the gland, presence of cystic component, size of pineal gland and size of pineal cysts, respectively. A third reader assessed all images for the presence or absence of pineoblastoma. 3 patients were positive (TRb cohort) and 77 negative for pineoblastoma (non-TRb cohort). The mean maximum diameter of the pineal gland was 6.4mm in Rb patients and 6.3mm in age-matched controls. The mean volume of the pineal gland in Rb patients was 93.1mm(3) and was 87.6mm(3) in age-matched controls. Considering all available MRI scans the mean maximum diameter of the pineal gland in TRb patients was 11.2mm and the mean volume in TRb patients was 453.3mm(3). The third reader identified pineoblastomas with a sensitivity of 100% (3 of 3) and a specificity of 94% (72 of 77). Our non-TRb patients did not show significant differences in the size of the pineal gland and pineal gland cysts compared to age-matched controls. The presented data can serve as a reference for the volume of normal pineal glands and pineal cysts in the diagnostic work-up of Rb patients with suspected pineoblastoma. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Expression of the Otx2 homeobox gene in the developing mammalian brain: embryonic and adult expression in the pineal gland.

    PubMed

    Rath, Martin F; Muñoz, Estela; Ganguly, Surajit; Morin, Fabrice; Shi, Qiong; Klein, David C; Møller, Morten

    2006-04-01

    Otx2 is a vertebrate homeobox gene, which has been found to be essential for the development of rostral brain regions and appears to play a role in the development of retinal photoreceptor cells and pinealocytes. In this study, the temporal expression pattern of Otx2 was revealed in the rat brain, with special emphasis on the pineal gland throughout late embryonic and postnatal stages. Widespread high expression of Otx2 in the embryonic brain becomes progressively restricted in the adult to the pineal gland. Crx (cone-rod homeobox), a downstream target gene of Otx2, showed a pineal expression pattern similar to that of Otx2, although there was a distinct lag in time of onset. Otx2 protein was identified in pineal extracts and found to be localized in pinealocytes. Total pineal Otx2 mRNA did not show day-night variation, nor was it influenced by removal of the sympathetic input, indicating that the level of Otx2 mRNA appears to be independent of the photoneural input to the gland. Our results are consistent with the view that pineal expression of Otx2 is required for development and we hypothesize that it plays a role in the adult in controlling the expression of the cluster of genes associated with phototransduction and melatonin synthesis.

  15. Alpha-2 adrenergic activity of bromocriptine and quinpirole in chicken pineal gland. Effects on melatonin synthesis and ( sup 3 H)rauwolscine binding

    SciTech Connect

    Zawilska, J.; Iuvone, P.M. )

    1990-12-01

    In the pineal gland and retina of chickens, serotonin N-acetyl-transferase (NAT) activity and melatonin content are modulated by different receptors, alpha-2 adrenergic receptors in pineal gland and D2-dopamine receptors in retina. The effect of two D2-dopamine receptor agonists, bromocriptine and quinpirole (LY 171555), on melatonin synthesis in these tissues was investigated. Systemic administrations of bromocriptine and quinpirole decreased nocturnal NAT activity and melatonin content of both pineal gland and retina. Bromocriptine was equipotent in the two tissues, whereas quinpirole was approximately 100-fold more potent in retina than in pineal gland. In pineal gland, the suppressive effects of bromocriptine and quinpirole on NAT activity were blocked by yohimbine, a selective alpha-2 adrenergic receptor antagonist, but not by spiperone, a D2-dopamine receptor antagonist. In contrast, bromocriptine- and quinpirole-induced decreases of the enzyme activity in retina were antagonized by spiperone, and not affected by yohimbine. The nocturnal increase of NAT activity of pineal glands in vitro was inhibited with an order of potency clonidine greater than bromocriptine greater than quinpirole. Additionally, bromocriptine and quinpirole displaced the specific binding of (3H)rauwolscine, an alpha-2 adrenergic receptor antagonist, to membranes from chicken pineal gland, with potencies comparable to those observed for inhibition of NAT activity in vitro. It is suggested that bromocriptine and quinpirole, in addition to their D2-dopaminergic activity, can stimulate alpha-2 adrenergic receptors in pineal gland of chicken.

  16. Adenosine triphosphate inhibits melatonin synthesis in the rat pineal gland.

    PubMed

    Souza-Teodoro, Luis Henrique; Dargenio-Garcia, Letícia; Petrilli-Lapa, Camila Lopes; Souza, Ewerton da Silva; Fernandes, Pedro A C M; Markus, Regina P; Ferreira, Zulma S

    2016-03-01

    Adenosine triphosphate (ATP) is released onto the pinealocyte, along with noradrenaline, from sympathetic neurons and triggers P2Y1 receptors that enhance β-adrenergic-induced N-acetylserotonin (NAS) synthesis. Nevertheless, the biotransformation of NAS into melatonin, which occurs due to the subsequent methylation by acetylserotonin O-methyltransferase (ASMT; EC 2.1.1.4), has not yet been evaluated in the presence of purinergic stimulation. We therefore evaluated the effects of purinergic signaling on melatonin synthesis induced by β-adrenergic stimulation. ATP increased NAS levels, but, surprisingly, inhibited melatonin synthesis in an inverse, concentration-dependent manner. Our results demonstrate that enhanced NAS levels, which depend on phospholipase C (PLC) activity (but not the induction of gene transcription), are a post-translational effect. By contrast, melatonin reduction is related to an ASMT inhibition of expression at both the gene transcription and protein levels. These results were independent of nuclear factor-kappa B (NF-kB) translocation. Neither the P2Y1 receptor activation nor the PLC-mediated pathway was involved in the decrease in melatonin, indicating that ATP regulates pineal metabolism through different mechanisms. Taken together, our data demonstrate that purinergic signaling differentially modulates NAS and melatonin synthesis and point to a regulatory role for ATP as a cotransmitter in the control of ASMT, the rate-limiting enzyme in melatonin synthesis. The endogenous production of melatonin regulates defense responses; therefore, understanding the mechanisms involving ASMT regulation might provide novel insights into the development and progression of neurological disorders since melatonin presents anti-inflammatory, neuroprotective, and neurogenic effects.

  17. Embryonic development of the bovine pineal gland (Bos taurus) during prenatal life (30 to 135 days of gestation).

    PubMed

    Regodón, S; Roncero, V

    2005-10-01

    The ontogenesis of the pineal gland of 30 bovine embryos (Bos taurus) has been analysed from 30 until 135 days of gestation by means of optical microscopy and immunohistochemical techniques. For this study, the specimens were grouped into three stages in accordance with the most relevant histological characteristics: Stage 1 (30 to 64 days of prenatal development); Stage 2 (70 to 90 days) and Stage 3 (106 to 135 days). In the cow, it is from 30 days of gestation that the first glandular outline becomes differentiated from the diencephalic ependyma of the third ventricle. This differentiation includes the phenomena of proliferation and multiplication of the ependymal cells that form the epithelium of the pineal outline in development. At 82 days of intrauterine life, in the interior of the pineal parenchyma, we witnessed some incipient pseudoglandular structures that at 135 days were well differentiated. The pineal parenchyma displays a cytology made up of two cellular types of structurally distinct characteristics: pinealoblasts and interstitial cells. Both cellular types begin differentiation at 70 days of embryonic development, the pinealoblasts being greater in number than the interstitial cells. The glandular stroma is formed from the capsular, trabecular and the perivascular connective tissue, filling the interparenchymal space. A dense network of capillaries, which drive across the trabecular connective tissue towards the central glandular zone where their density increases and their calibre is reduced, complete the glandular structure. GFAP positive cells were observed in the embryonic pineal parenchyma in stage 3. At 135 days of gestation, NPY positive fibers entered the pineal gland through the pineal capsule occupying a perivascular localization. Morphological studies of this nature are vital for future use as parameters, indicative of the functional activity of the bovine pineal gland during embryonic development.

  18. Cyclic AMP-inducible genes respond uniformly to seasonal lighting conditions in the rat pineal gland.

    PubMed

    Spessert, R; Gupta, B B P; Rohleder, N; Gerhold, S; Engel, L

    2006-12-01

    The encoding of photoperiodic information ensues in terms of the daily profile in the expression of cyclic AMP (cAMP)-inducible genes such as the arylalkylamine N-acetyltransferase (AA-NAT) gene that encodes the rate-limiting enzyme in melatonin formation. In the present study, we compared the influence of the photoperiodic history on the cAMP-inducible genes AA-NAT, inducible cyclic AMP early repressor (ICER), fos-related antigen-2 (FRA-2), mitogen-activated protein kinase phosphatase-1 (MKP-1), nerve growth factor inducible gene-A (NGFI-A) and nerve growth factor inducible gene-B (NGFI-B) in the pineal gland of rats. For this purpose, we monitored the daily profiles of each gene in the same pineal gland under a long (light/dark 16:8) and a short (light/dark 8:16) photoperiod by measuring the respective mRNA amounts by real-time polymerase chain reaction analysis. We found that, for all genes under investigation, the duration of increased nocturnal expression is lengthened and, in relation to light onset, the nocturnal rise is earlier under the long photoperiod (light/dark 16:8). Furthermore, with the exception of ICER, all other cAMP-inducible genes tend to display higher maximum expression under light/dark 8:16 than under light/dark 16:8. Photoperiod-dependent changes persist for all of the cAMP-inducible genes when the rats are kept for two cycles under constant darkness. Therefore, all cAMP-inducible genes are also influenced by the photoperiod of prior entrained cycles. Our study indicates that, despite differences regarding the expressional control and the temporal phasing of the daily profile, cAMP-inducible genes are uniformly influenced by photoperiodic history in the rat pineal gland.

  19. Gliosarcomas arising from the pineal gland region: uncommon localization and rare tumors.

    PubMed

    Sugita, Yasuo; Terasaki, Mizuhiko; Tanigawa, Ken; Ohshima, Koichi; Morioka, Motohiro; Higaki, Koichi; Nakagawa, Setsuko; Shimokawa, Shoko; Nakashima, Susumu

    2016-02-01

    Gliosarcomas are a variant of glioblastomas and present a biphasic pattern, with coexisting glial and mesenchymal components. In this study, two unusual cases are presented. Case 1 is a 52-year-old woman with a headache and memory disturbance for a month. Case 2 is an 18-year-old man with a headache lasting two weeks. In both cases, an MRI revealed enhancing T1-low to iso, T2-iso to high intensity lesions in the pineal gland region. Histologically, in case 1, the tumor showed spindle cell proliferation with disorganized fascicles and cellular pleomorphism. Tumor cells variously exhibited oncocytic transformation. Immunohistochemically, most of the spindle tumor cells were positive for myoglobin and desmin. Some of the tumor cells were positive for GFAP and S-100 protein. On the other hand, all tumor cells were positive for CD133, Musashi1, and SOX-2 which are the markers of neural stem cells. In case 2, the tumor showed monotonous proliferation of short spindle cells with disorganized fascicles and cellular atypism. The morphological distinction between glial and mesenchymal components was not apparent. Immunohistochemically, most of the spindle tumor cells were positive for desmin. Glial tumor cells that were dispersed within the sarcoma as single cells were positive for GFAP. In addition, all tumor cells were positive for CD133, Musashi1 and SOX-2. Based on these microscopic appearances, and immunohistochemical findings, these cases were diagnosed as gliosarcomas arising from the pineal gland region. These results also indicated that pluripotential cancer stem cells differentiated into glial and muscle cell lines at the time of tumor growth. In a survey of previous publications on gliosarcoma arising from the pineal gland, these cases are the second and third reports found in English scientific writings.

  20. Hypocretin (orexin) in the rat pineal gland: a central transmitter with effects on noradrenaline-induced release of melatonin.

    PubMed

    Mikkelsen, J D; Hauser, F; deLecea, L; Sutcliffe, J G; Kilduff, T S; Calgari, C; Pévet, P; Simonneaux, V

    2001-08-01

    Hypocretin-1 (HCRT-1) and hypocretin 2 (HCRT-2), also known as orexin-A and orexin-B, are two neuropeptides derived from the same precursor. Hypocretinergic neurons have been found exclusively in the hypothalamic dorsolateral area. These neurons are implicated in sleep and feeding through activation of specific G-protein-coupled orexin-1 and orexin-2 receptor (OR-R1 and OR-R2). The purpose of this study was to determine the existence of the HCRT peptides in the central input of the rat pineal gland. Further, OR-R1 and OR-R2 expression was determined in the pineal gland and the effect of HCRT-2 on melatonin synthesis and secretion was analysed in dissociated rat pinealocytes. A large contingent of HCRT-positive nerve fibres and terminals were observed in the epithalamus, many of which entered into the pineal parenchyma. A significant number of nerve fibres endowed with positive boutons were identified in the pineal stalk, though the number of positive fibres decreased along the extension of the stalk. So far, no positive fibres have been found in the superficial pineal gland. RT-PCR analysis revealed the expression of OR-R2 mRNA, whereas OR-R1-receptor mRNA was not detected. When tested alone, HCRT-2 had no effect on secretion of melatonin from cultured rat pinealocytes. However, HCRT-2 partially inhibited (by a maximum of 30%) the beta-adrenergic-induced melatonin secretion. The same effect was seen on activation of N-acetyltransferase activity. The distribution and the large number of HCRT-positive fibres together with the effect on noradrenaline-mediated melatonin release through specific receptors suggests that these peptides may be significant central transmitters in pineal function, probably mediating homeostatic signals to the pineal gland.

  1. Time course and role of the pineal gland in photoperiod control of innate immune cell functions in male Siberian hamsters.

    PubMed

    Yellon, Steven M; Kim, Kiam; Hadley, Allison R; Tran, Long T

    2005-04-01

    The time course of select phagocyte and natural killer activities to short days was determined. In advance of testes regression, circulating granulocyte and monocyte cell numbers in hamsters decreased while lymphocyte numbers increased; phagocytosis and oxidative burst activity also decreased. To determine whether the pineal gland influences these innate immune cell functions, hamsters were exposed to constant light. Photoperiod control of testes weight and basal oxidative burst activity was abolished by treatment with constant light; other phagocyte activities and leukocyte proportions in circulation were not affected. The findings suggest that photoperiod and pineal gland function may regulate certain innate immune activities.

  2. Rosette-forming glioneuronal tumor in the pineal gland and the third ventricle: a case with radiological and clinical implications

    PubMed Central

    Xu, Junqing; Yang, Yong; Liu, Ying; Wei, Mengqi; Ren, Jing; Chang, Yingjuan; Huan, Yi; Yin, Hong

    2012-01-01

    A 39-year-old man presented with more than 20 years history of episodic headache and one year history of dizziness, impaired vision and memory disorders. Computed tomography and Magnetic resonance imaging revealed a cystic mass involving the pineal gland, tectum and the third ventricle and obstruction of the aqueduct. Interestingly, the fourth ventricle was not involved in this case. The pathological diagnosis was rosette forming glioneuronal tumor (RGNT). These lesions are considered low-grade tumors (WHO grade I). We describe here the fifth reported patient with a pineal gland RGNT and the eighth reported patient with a RGNT outside the fourth ventricle. PMID:23256084

  3. Possible role of the pineal gland in pituitary prolactin secretion in female rats.

    PubMed

    Minato, K; Takahashi, K; Ikeno, N; Watanabe, M; Endo, H; Yamamoto, H

    1984-07-01

    Wistar female rats housed under conditions of 12 hr dark/12 hr light were pinealectomized (PX) or underwent sham-operation (SO) 21 days after ovariectomy, on the 7th or on the 15-17 th day of pregnancy. Serum and pituitary prolactin (PRL) levels in ovariectomized (OVX) rats were determined 9 days after pinealectomy. In the case of OVX rats receiving estrogen and progesterone injections (OVX-EP), PRL levels were determined 48 hr after injection administered 7 day after pinealectomy. PRL levels in pregnant rats were determined on the 20th day of pregnancy and in postpartum rats, on the 3rd day following parturition. As compared with the SO control, pinealectomy resulted in a significant decrease in the serum PRL level in the OVX-EP rats but in a significant increase in that level in the OVX, pregnant and postpartum rats. In OVX-EP rats, exogenous estrogen raised the serum PRL level less in PX than in SO rats, probably because the pineal gland is closely related to the facilitation of PRL secretion by estrogen. The high estrogen level in OVX-EP rats seemed to trigger pineal stimulation of PRL release, but low estrogen levels in OVX and postpartum rats or markedly high levels of progesterone in pregnant rats on the 20th day are thought to cause pineal inhibition.

  4. Daily Aa-nat gene expression in the camel (Camelus dromedarius) pineal gland.

    PubMed

    El Allali, Khalid; Sinitskaya, Natalia; Bothorel, Béatrice; Achaaban, Rachid; Pévet, Paul; Simonneaux, Valérie

    2008-09-01

    Arylalkylamine N-acetyltransferase (AA-NAT) is the rhythm-generating enzyme for the synthesis of pineal melatonin. Molecular investigations have revealed two biological models for the activation of AA-NAT. In rodent species, Aa-nat gene transcription is turned off during the daytime and markedly activated at night. In primates, sheep, and cows, the Aa-nat gene is constitutively transcripted with no visible daily variations. This inter-species difference in Aa-nat gene regulation leads to different daily profiles in melatonin synthesis and release. Thus, the nighttime onset of the rise in circulating melatonin is delayed and slow in rodents, whereas it is fast and sharp in sheep. In the camel (Camelus dromedarius), we have observed that circulating melatonin rises immediately after sunset, suggesting AA-NAT activity is regulated at the post-transcriptional level. In agreement with this hypothesis, we report herein the amount of Aa-nat mRNA in the camel pineal gland is high, during both the day and night with no daily variations, while melatonin concentration in the same pineal tissue is five times higher during the night than daytime.

  5. Photoperiodism as a modifier of effect of extremely low-frequency electromagnetic field on morphological properties of pineal gland.

    PubMed

    Lukac, Tamara; Matavulj, Amela; Matavulj, Milica; Rajković, Vesna; Lazetić, Bogosav

    2006-08-01

    The aim of our study was to determine, using histological and stereological methods, whether photoperiodism has any impact on the effects that chronic (three-month long) exposure to LF-EMF (50Hz) has on morphological characteristics on rat's pineal gland. The experiment was performed on 48 Mill Hill male rats (24 experimental and 24 control). Upon birth, 24 rats were exposed for 7h a day, 5 days a week for 3 months to LF-EMF (50 Hz, 50-500microT, 10V/m). In the winter (short days, long nights), the activity of the pineal gland and neuroendocrine sensitivity is increased. The study was performed both during summer and winter, following the identical protocol. After sacrifice of animals, samples of pineal gland were processed for HE staining and then were analyzed using the methods of stereology. The most significant changes in epiphysis in the first group of animals in wintertime are: altered glandular feature, hyperemia, reduced pinealocytes with pale pink, poor cytoplasm and irregular, stick-form nuclei. In the second group (II) pinealocytes are enlarged, with vacuolated cytoplasm and hyper chromatic, enlarged nucleus. Morphological changes of pineal gland at rats in the summertime were not as intense as in the winter and finding of the gland in the group II is compatible with those from the control group. Stereological results show both in winter and summer in the first group the decrease of volume density of pinealocytes, their cytoplasm and nuclei and in the second group in winter increase the volume density of pinealocytes, cytoplasm and nuclei, while in the second group the results in summertime are equal to those from the control group. Photoperiodism is modifier of effect of LF-EMF on morphological structure of pineal gland, because the gland recovery is incomplete in winter and reversible in summer.

  6. Arginine vasotocin activates phosphoinositide signal transduction system and potentiates N-acetyltransferase activity in the rat pineal gland.

    PubMed

    Novotná, R; Jác, M; Hájek, I; Novotný, I

    1999-03-05

    The pineal gland is innervated by pinealopetal peptidergic fibers originating in the hypothalamic nuclei which release arginine vasopressin (AVP) and arginine vasotocin (AVT) from their endings. Since the mechanism of AVT action on the pineal signal transduction and melatonin synthesis has not been determined so far, we examined the effect of AVT on the phosphoinositide signalling system and the N-acetyltransferase (NAT) activity in the rat pineal gland. The effect of AVP 4-9 fragment and AVP analogue desmopressin was also tested. The phosphoinositide signalling system was studied by measuring 32P labelling of phosphatidylinositol (PI), phosphatidylinositol phosphate (PIP) and phosphatidylinositol bisphosphate (PIP2) which reflects PI cycle activation. AVT (10(-5) and 10(-4) M) induced a significant increase in 32P labelling of PI, PIP and PIP2. The AVT mediated activation of the PI signal cascade was supressed by the vasopressin V1 receptor antagonist. The desmopressin and AVP 4-9 fragment were without the effect on PI signalling. To assess the AVT role in the melatonin synthesis we studied the daily pattern of the pineal NAT activity in rats treated by AVT (10 microg/100 g b.w). AVT application in the dark period of the day significantly increased nocturnal NAT activity. It can be summarized that AVT activates PI signalling system and potentiates NAT activity in the rat pineal gland.

  7. Pineal gland: influence on gonads of male rats treated with androgen 3 days after birth.

    PubMed

    Reiter, R J; Hoffman, J C; Rubin, P H

    1968-04-26

    Either blinding or the injection of 1 milligram of testosterone propionate into male Sprague-Dawley rats, 3 days old, results in testes and accessory organs (seminal vesicles and coagulating glands) that are smaller than normal when the rats are 72 days old. The response to blinding is prevented by removal of the pineal gland, whereas the response to treatment with testosterone is unaffected by pinealectomy. Combination of the two treatments in 3-day- old rats causes testes to be less than one-third their normal size at 72 days of age; pinealectomy in these rats permits the reproductive organs to grow to the same size as those in the androgen-treated animals.

  8. Seasonal variations of gonadotropins and prolactin in the laboratory rat. Role of maternal pineal gland.

    PubMed

    Vázquez, N; Díaz, E; Fernández, C; Jiménez, V; Esquifino, A; Díaz, B

    2007-01-01

    The laboratory rat, a non-photoperiodic rodent, exhibits seasonal fluctuations of melatonin. Melatonin has been found to be readily transferred from the maternal to the fetal circulation. No data exist on the possible influence of maternal pineal gland upon seasonal variations of the offspring. The aim of the present study was to asses the influence of the maternal melatonin rhythm on the offspring postnatal development of the reproductive hormones LH, FSH and prolactin. Male offspring from control, pinealectomized (PIN-X) and PIN-X + melatonin (PIN-X+MEL) mother Wistar rats were studied at 21, 31, and 60 days of age. Seasonal age-dependent variations were found for all hormones studied in control offspring but PIN-X offspring showed a tendency to have reduced duration or altered seasonal variations. Maternal melatonin treatment to PIN-X mothers partially restored the effect of pinealectomy. The chronological study of LH, FSH, and prolactin in PIN-X offspring also showed an altered pattern as compared to control-offspring. Melatonin treatment to the mothers partially restored the developmental pattern of reproductive hormones. Results of this study indicate that maternal pineal gland of the laboratory rat is involved in the seasonal postnatal development variations of reproductive hormones of the offspring.

  9. 1800 MHz electromagnetic field effects on melatonin release from isolated pineal glands.

    PubMed

    Sukhotina, Irina; Streckert, Joachim R; Bitz, Andreas K; Hansen, Volkert W; Lerchl, Alexander

    2006-01-01

    Isolated pineal glands of Djungarian hamsters (Phodopus sungorus) were continuously perifused by Krebs-Ringer buffer, stimulated with the beta-adrenergic receptor agonist isoproterenol to induce melatonin synthesis, and exposed for 7 hr to a 1800 MHz continuous wave (CW) or pulsed GSM (Global System for Mobile Communications)-modulated electromagnetic signal at specific absorption rate (SAR) rates of 8, 80, 800, and 2700 mW/kg. Experiments were performed in a blind fashion. Perifusate samples were collected every hour, and melatonin concentrations were measured by a specific radioimmunoassay. Both types of signal significantly enhanced melatonin release at 800 mW/kg SAR, while at 2700 mW/kg SAR, melatonin levels were elevated in the CW, but suppressed in the GSM-exposed pineal glands. As a temperature rise of approximately 1.2 degrees C was measured at 2700 mW/kg SAR, effects at this level are thermal. With regard to radiofrequency electromagnetic fields, the data do not support the 'melatonin hypothesis,' according to which nonthermal exposure suppresses melatonin synthesis.

  10. Molecular Basis for Defining the Pineal Gland and Pinealocytes as Targets for Tumor Necrosis Factor

    PubMed Central

    Carvalho-Sousa, Claudia Emanuele; da Silveira Cruz-Machado, Sanseray; Tamura, Eduardo Koji; Fernandes, Pedro A. C. M.; Pinato, Luciana; Muxel, Sandra M.; Cecon, Erika; Markus, Regina P.

    2011-01-01

    The pineal gland, the gland that translates darkness into an endocrine signal by releasing melatonin at night, is now considered a key player in the mounting of an innate immune response. Tumor necrosis factor (TNF), the first pro-inflammatory cytokine to be released by an inflammatory response, suppresses the translation of the key enzyme of melatonin synthesis (arylalkylamine-N-acetyltransferase, Aanat). Here, we show that TNF receptors of the subtype 1 (TNF-R1) are expressed by astrocytes, microglia, and pinealocytes. We also show that the TNF signaling reduces the level of inhibitory nuclear factor kappa B protein subtype A (NFKBIA), leading to the nuclear translocation of two NFKB dimers, p50/p50, and p50/RelA. The lack of a transactivating domain in the p50/p50 dimer suggests that this dimer is responsible for the repression of Aanat transcription. Meanwhile, p50/RelA promotes the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide, which inhibits adrenergically induced melatonin production. Together, these data provide a mechanistic basis for considering pinealocytes a target of TNF and reinforce the idea that the suppression of pineal melatonin is one of the mechanisms involved in mounting an innate immune response. PMID:22654792

  11. Pineal Gland Calcification in Kurdistan: A Cross-Sectional Study of 480 Roentgenograms.

    PubMed

    Mohammed, Kahee A; Adjei Boakye, Eric; Ismail, Honer A; Geneus, Christian J; Tobo, Betelihem B; Buchanan, Paula M; Zelicoff, Alan P

    2016-01-01

    The goal of this study was to compare the incidence of Pineal Gland Calcification (PGC) by age group and gender among the populations living in the Kurdistan Region-Iraq. This prospective study examined skull X-rays of 480 patients between the ages of 3 and 89 years who sought care at a large teaching public hospital in Duhok, Iraq from June 2014 to November 2014. Descriptive statistics and a binary logistic regression were used for analysis. The overall incidence rate of PGC among the study population was 26.9% with the 51-60 age group and males having the highest incidence. PGC incidence increased after the first decade and remained steady until the age of 60. Thereafter the incidence began to decrease. Logistic regression analysis revealed that both age and gender significantly affected the risk of PGC. After adjusting for age, males were 1.94 (95% CI, 1.26-2.99) times more likely to have PGC compared to females. In addition, a one year increase in age increases the odds of developing PGC by 1.02 (95% CI, 1.01-1.03) units after controlling for the effects of gender. Our analysis demonstrated a close relationship between PGC and age and gender, supporting a link between the development of PGC and these factors. This study provides a basis for future researchers to further investigate the nature and mechanisms underlying pineal gland calcification.

  12. Pineal Gland Calcification in Kurdistan: A Cross-Sectional Study of 480 Roentgenograms

    PubMed Central

    Mohammed, Kahee A.; Ismail, Honer A.; Geneus, Christian J.; Tobo, Betelihem B.; Buchanan, Paula M.; Zelicoff, Alan P.

    2016-01-01

    Objective The goal of this study was to compare the incidence of Pineal Gland Calcification (PGC) by age group and gender among the populations living in the Kurdistan Region-Iraq. Methods This prospective study examined skull X-rays of 480 patients between the ages of 3 and 89 years who sought care at a large teaching public hospital in Duhok, Iraq from June 2014 to November 2014. Descriptive statistics and a binary logistic regression were used for analysis. Results The overall incidence rate of PGC among the study population was 26.9% with the 51–60 age group and males having the highest incidence. PGC incidence increased after the first decade and remained steady until the age of 60. Thereafter the incidence began to decrease. Logistic regression analysis revealed that both age and gender significantly affected the risk of PGC. After adjusting for age, males were 1.94 (95% CI, 1.26–2.99) times more likely to have PGC compared to females. In addition, a one year increase in age increases the odds of developing PGC by 1.02 (95% CI, 1.01–1.03) units after controlling for the effects of gender. Conclusion Our analysis demonstrated a close relationship between PGC and age and gender, supporting a link between the development of PGC and these factors. This study provides a basis for future researchers to further investigate the nature and mechanisms underlying pineal gland calcification. PMID:27415622

  13. The reno-pineal axis: A novel role for melatonin

    PubMed Central

    Kalra, Sanjay; Agrawal, Swati; Sahay, Manisha

    2012-01-01

    The pineal gland is a tiny endocrine gland whose physiologic role has been the focus of much research and much more speculation over the past century. This mini-review discusses recent findings which correlate melatonin and renal physiology, and postulates the presence of a “reno-pineal axis.” Drawing lessons from comparative endocrinology, while quoting human data, it advocates the need to study the “reno-pineal axis” in greater detail. PMID:22470854

  14. Circadian dynamics of the cone-rod homeobox (CRX) transcription factor in the rat pineal gland and its role in regulation of arylalkylamine N-acetyltransferase (AANAT).

    PubMed

    Rohde, Kristian; Rovsing, Louise; Ho, Anthony K; Møller, Morten; Rath, Martin F

    2014-08-01

    The cone-rod homeobox (Crx) gene encodes a transcription factor in the retina and pineal gland. Crx deficiency influences the pineal transcriptome, including a reduced expression of arylalkylamine N-acetyltransferase (Aanat), a key enzyme in nocturnal pineal melatonin production. However, previous functional studies on pineal Crx have been performed in melatonin-deficient mice. In this study, we have investigated the role of Crx in the melatonin-proficient rat pineal gland. The current study shows that pineal Crx transcript levels exhibit a circadian rhythm with a peak in the middle of the night, which is transferred into daily changes in CRX protein. The study further shows that the sympathetic innervation of the pineal gland controls the Crx rhythm. By use of adenovirus-mediated short hairpin RNA gene knockdown targeting Crx mRNA in primary rat pinealocyte cell culture, we here show that intact levels of Crx mRNA are required to obtain high levels of Aanat expression, whereas overexpression of Crx induces Aanat transcription in vitro. This regulatory function of Crx is further supported by circadian analysis of Aanat in the pineal gland of the Crx-knockout mouse. Our data indicate that the rhythmic nature of pineal CRX protein may directly modulate the daily profile of Aanat expression by inducing nighttime expression of this enzyme, thus facilitating nocturnal melatonin synthesis in addition to its role in ensuring a correct tissue distribution of Aanat expression.

  15. A modulatory role of the Rax homeobox gene in mature pineal gland function: Investigating the photoneuroendocrine circadian system of a Rax conditional knockout mouse.

    PubMed

    Rohde, Kristian; Bering, Tenna; Furukawa, Takahisa; Rath, Martin Fredensborg

    2017-10-01

    The retinal and anterior neural fold homeobox gene (Rax) controls development of the eye and the forebrain. Postnatal expression of Rax in the brain is restricted to the pineal gland, a forebrain structure devoted to melatonin synthesis. The role of Rax in pineal function is unknown. In order to investigate the role of Rax in pineal function while circumventing forebrain abnormalities of the global Rax knockout, we generated an eye and pineal-specific Rax conditional knockout mouse. Deletion of Rax in the pineal gland did not affect morphology of the gland, suggesting that Rax is not essential for pineal gland development. In contrast, deletion of Rax in the eye generated an anophthalmic phenotype. In addition to the loss of central visual pathways, the suprachiasmatic nucleus of the hypothalamus housing the circadian clock was absent, indicating that the retinohypothalamic tract is required for the nucleus to develop. Telemetric analyses confirmed the lack of a functional circadian clock. Arylalkylamine N-acetyltransferase (Aanat) transcripts, encoding the melatonin rhythm-generating enzyme, were undetectable in the pineal gland of the Rax conditional knockout under normal conditions, whereas the paired box 6 homeobox gene, known to regulate pineal development, was up-regulated. By injecting isoproterenol, which mimics a nocturnal situation in the pineal gland, we were able to induce pineal expression of Aanat in the Rax conditional knockout mouse, but Aanat transcript levels were significantly lower than those of Rax-proficient mice. Our data suggest that Rax controls pineal gene expression and via Aanat may modulate melatonin synthesis. © 2017 International Society for Neurochemistry.

  16. Neuropeptide Y as a presynaptic modulator of norepinephrine release from the sympathetic nerve fibers in the pig pineal gland.

    PubMed

    Ziółkowska, N; Lewczuk, B; Przybylska-Gornowicz, B

    2015-01-01

    Norepinephrine (NE) released from the sympathetic nerve endings is the main neurotransmitter controlling melatonin synthesis in the mammalian pineal gland. Although neuropeptide Y (NPY) co-exists with NE in the pineal sympathetic nerve fibers it also occurs in a population of non-adrenergic nerve fibers located in this gland. The role of NPY in pineal physiology is still enigmatic. The present study characterizes the effect of NPY on the depolarization-evoked 3H-NE release from the pig pineal explants. The explants of the pig pineal gland were loaded with 3H-NE in the presence of pargyline and superfused with Tyrode medium. They were exposed twice to the modified Tyrode medium containing 60 mM of K+ to evoke the 3H-NE release via depolarization. NPY, specific agonists of Y1- and Y2- receptors and pharmacologically active ligands of α2-adrenoceptors were added to the medium before and during the second depolarization. The radioactivity was measured in medium fractions collected every 2 minutes during the superfusion. NPY (0.1-10 μM) significantly decreased the depolarization-induced 3H-NE release. Similar effect was observed after the treatment with Y2-agonist: NPY13-36, but not with Y1-agonist: [Leu31,Pro34]-NPY. The tritium overflow was lower in the explants exposed to the 5 μM NPY and 1 μM rauwolscine than to rauwolscine only. The effects of 5 μM NPY and 0.05 μM UK 14,304 on the depolarization-evoked 3H-NE release were additive. The results show that NPY is involved in the regulation of NE release from the sympathetic terminals in the pig pineal gland, inhibiting this process via Y2-receptors.

  17. 'TRPing' synaptic ribbon function in the rat pineal gland: neuroendocrine regulation involves the capsaicin receptor TRPV1.

    PubMed

    Reuss, Stefan; Disque-Kaiser, Ursula; Binzen, Uta; Greffrath, Wolfgang; Peschke, Elmar

    2010-01-01

    Synaptic ribbons (SRs) are presynaptic structures thought to regulate and facilitate multivesicular release. In the pineal gland, they display a circadian rhythm with higher levels at night paralleling melatonin synthesis. To gain more insight into the processes involved and the possible functions of these structures, a series of experiments were conducted in rodents. We studied the regional distribution of a molecular marker of pineal SRs, the kinesin motor KIF3A in the gland. Respective immunoreactivity was abundant in central regions of the gland where sympathetic fibers were less dense, and vice versa, revealing that intercellular communication between adjacent pinealocytes is enhanced under low sympathetic influence. KIF3A was found to be colocalized to the transient receptor potential channel of the vanilloid receptor family, subtype 1 (TRPV1). The TRPV1 agonist capsaicin increased melatonin secretion from perifused pineals in a dose-dependent manner that was blocked by the competitive TRPV1 antagonist capsazepine. No change in free intracellular calcium was observed in response to TRPV1 ligands applied to pinealocytes responding to norepinephrine, bradykinin and/or depolarization. These data clearly indicate that TRPV1 actively regulates pineal gland function.

  18. This pineal gland does not mediate phase shifts in the disc shedding rhythm of the rat retina

    SciTech Connect

    Goldman, A.I.

    1982-01-01

    Albino rats were subjected to pinealectomy, superior cervical ganglionectomy, or the appropriate sham preparation and were placed in lighting conditions so that light onset was advanced by 10 hr. After 6 days of this regimen, all animals exhibited a complete shift in their outer segment disc shedding rhythm, indicating that the pineal gland is not a factor in mediating such a shift.

  19. Cartesian theories on the passions, the pineal gland and the pathogenesis of affective disorders: an early forerunner.

    PubMed

    López-Muñoz, F; Alamo, C

    2011-03-01

    The relationship between physical and functional alterations in the pineal gland, the 'passions' (emotions or feelings) and psychopathology has been a constant throughout the history of medicine. One of the most influential authors on this subject was René Descartes, who discussed it in his work The Treatise on the Passions of the Soul (1649). Descartes believed that 'passions' were sensitive movements that the soul, located in the pineal gland, experienced due to its union with the body, by circulating animal spirits. Descartes described sadness as one of the six primitive passions of the soul, which leads to melancholy if not remedied. Cartesian theories had a great deal of influence on the way that mental pathologies were considered throughout the entire 17th century and during much of the 18th century, but the link between the pineal gland and psychiatric disorders it was definitively highlighted in the 20th century, with the discovery of melatonin in 1958. The recent development of a new pharmacological agent acting through melatonergic receptors (agomelatine) has confirmed the close link between the pineal gland and affective disorders.

  20. 3D highly heterogeneous thermal model of pineal gland in-vitro study for electromagnetic exposure using finite volume method

    NASA Astrophysics Data System (ADS)

    Cen, Wei; Hoppe, Ralph; Lu, Rongbo; Cai, Zhaoquan; Gu, Ning

    2017-08-01

    In this paper, the relationship between electromagnetic power absorption and temperature distributions inside highly heterogeneous biological samples was accurately determinated using finite volume method. An in-vitro study on pineal gland that is responsible for physiological activities was for the first time simulated to illustrate effectiveness of the proposed method.

  1. Nuclear CRX and FOXJ1 Expression Differentiates Non-Germ Cell Pineal Region Tumors and Supports the Ependymal Differentiation of Papillary Tumor of the Pineal Region.

    PubMed

    Coy, Shannon; Dubuc, Adrian M; Dahiya, Sonika; Ligon, Keith L; Vasiljevic, Alexandre; Santagata, Sandro

    2017-10-01

    Papillary tumor of the pineal region (PTPR) is a neuroepithelial neoplasm first described in 2003. Despite the anatomic association of PTPR with the pineal gland, the features of these tumors resemble those of the ependymal circumventricular subcommissural organ (SCO) of the posterior third ventricle. Given the presumed distinct derivation of PTPR and pineal parenchymal tumors, we hypothesized that expression of lineage-specific transcription factors could distinguish these tumors and provide additional insight into the differentiation of PTPR. A broad series of pineal region samples was reviewed, including 7 benign pineal glands, 4 pineal cysts, 13 pineocytomas, 28 pineal parenchymal tumors of intermediate differentiation, 11 pineoblastomas, and 18 PTPR. All samples were evaluated by immunohistochemistry for expression of CRX, a master transcriptional regulator of photoreceptor differentiation expressed in pineal gland and retina and/or FOXJ1, a master transcriptional regulator of ciliogenesis expressed in normal ependymal cells and ependymal neoplasms. Diffuse nuclear CRX expression is present in 100% of pineal samples. FOXJ1 is negative in all pineal samples. CRX staining is present in 53% of PTPR, though expression is nearly always limited to rare cells. Diffuse nuclear FOXJ1 expression is present in 100% of PTPR. Fetal human SCO diffusely expressed FOXJ1 but was negative for CRX. Immunohistochemistry for FOXJ1 and CRX differentiates non-germ cell pineal region tumors with high sensitivity and specificity, including pineal parenchymal tumors and PTPR. Our findings support the hypothesis that PTPR have ependymal differentiation and are phenotypically more similar to SCO than pineal gland.

  2. Daily oscillation of gene expression in the retina is phase-advanced with respect to the pineal gland.

    PubMed

    Bai, Lin; Zimmer, Sybille; Rickes, Oliver; Rohleder, Nils; Holthues, Heike; Engel, Lydia; Leube, Rudolf; Spessert, Rainer

    2008-04-08

    The photoreceptive retina and the non-photoreceptive pineal gland are components of the circadian and the melatonin forming system in mammals. To contribute to our understanding of the functional integrity of the circadian system and the melatonin forming system we have compared the daily oscillation of the two tissues under various seasonal lighting conditions. For this purpose, the 24-h profiles of the expression of the genes coding for arylalkylamine N-acetyltransferase (AA-NAT), nerve growth factor inducible gene-A (NGFI-A), nerve growth factor inducible gene-B (NGFI-B), retinoic acid related orphan receptor beta (RORbeta), dopamine D4 receptor, and period2 (Per2) have been simultaneously recorded in the retina and the pineal gland of rats under short day (light/dark 8:16) and long day (light/dark 16:8) conditions. We have found that the cyclical patterns of all genes are phase-advanced in the retina, often with a lengthened temporal interval under short day conditions. In both tissues, the AA-NAT gene expression represents an indication of the output of the relevant pacemakers. The temporal phasing in the AA-NAT transcript amount between the retina and the pineal gland is retained under constant darkness suggesting that the intrinsic self-cycling clock of the retina oscillates in a phase-advanced manner with respect to the self-cycling clock in the suprachiasmatic nucleus, which controls the pineal gland. We therefore conclude that daily rhythms in gene expression in the retina are phase-advanced with respect to the pineal gland, and that the same temporal relationship appears to be valid for the self-cycling clocks influencing the tissues.

  3. MicroRNAs in the pineal gland: miR-483 regulates melatonin synthesis by targeting arylalkylamine N-acetyltransferase.

    PubMed

    Clokie, Samuel J H; Lau, Pierre; Kim, Hyun Hee; Coon, Steven L; Klein, David C

    2012-07-20

    MicroRNAs (miRNAs) play a broad range of roles in biological regulation. In this study, rat pineal miRNAs were profiled for the first time, and their importance was evaluated by focusing on the main function of the pineal gland, melatonin synthesis. Massively parallel sequencing and related methods revealed the miRNA population is dominated by a small group of miRNAs as follows: ~75% is accounted for by 15 miRNAs; miR-182 represents 28%. In addition to miR-182, miR-183 and miR-96 are also highly enriched in the pineal gland, a distinctive pattern also found in the retina. This effort also identified previously unrecognized miRNAs and other small noncoding RNAs. Pineal miRNAs do not exhibit a marked night/day difference in abundance with few exceptions (e.g. 2-fold night/day differences in the abundance of miR-96 and miR-182); this contrasts sharply with the dynamic 24-h pattern that characterizes the pineal transcriptome. During development, the abundance of most pineal gland-enriched miRNAs increases; however, there is a marked decrease in at least one, miR-483. miR-483 is a likely regulator of melatonin synthesis, based on the following. It inhibits melatonin synthesis by pinealocytes in culture; it acts via predicted binding sites in the 3"-UTR of arylalkylamine N-acetyltransferase (Aanat) mRNA, the penultimate enzyme in melatonin synthesis, and it exhibits a developmental profile opposite to that of Aanat transcripts. Additionally, a miR-483 targeted antagonist increased melatonin synthesis in neonatal pinealocytes. These observations support the hypothesis that miR-483 suppresses Aanat mRNA levels during development and that the developmental decrease in miR-483 abundance promotes melatonin synthesis.

  4. Role of postsynaptic alpha-adrenergic receptors in the beta-adrenergic stimulation of melatonin production in the Syrian hamster pineal gland in organ culture.

    PubMed

    Santana, C; Guerrero, J M; Reiter, R J; Menendez-Pelaez, A

    1989-01-01

    The role played by postsynaptic alpha-adrenergic receptors in the stimulation of pineal melatonin production was investigated in the Syrian hamster. The studies were conducted using organ cultured pineal glands collected from both anatomically intact and superior cervical ganglionectomized hamsters. Results obtained indicate that phenylephrine, an alpha-adrenergic agonist, by itself has no effect in promoting melatonin production; however, it potentiates the stimulatory effects of isoproterenol, a beta-adrenergic agonist, on pineal melatonin production in nonoperated hamsters. Similar observations were obtained with pineal glands whose presynaptic terminals were removed by prior superior cervical ganglionectomy. However, a longer incubation time was required (4-6 hours vs. 2 hours) with pineal glands taken from ganglionectomized animals. Apparently, beta-adrenergic activation is an absolute requirement to stimulate pineal melatonin production, and an alpha-adrenergic receptor mechanism potentiates beta-adrenergic activation. In addition, the findings obtained with denervated pineal glands suggest that the regulation of pineal melatonin production by both alpha- and beta-adrenergic mechanisms is through receptors located on postsynaptic structures.

  5. Chronic stress decreases the expression of sympathetic markers in the pineal gland and increases plasma melatonin concentration in rats.

    PubMed

    Dagnino-Subiabre, Alexies; Orellana, Juan A; Carmona-Fontaine, Carlos; Montiel, Juan; Díaz-Velíz, Gabriela; Serón-Ferré, María; Wyneken, Ursula; Concha, Miguel L; Aboitiz, Francisco

    2006-06-01

    Chronic stress affects brain areas involved in learning and emotional responses. Although most studies have concentrated on the effect of stress on limbic-related brain structures, in this study we investigated whether chronic stress might induce impairments in diencephalic structures associated with limbic components of the stress response. Specifically, we analyzed the effect of chronic immobilization stress on the expression of sympathetic markers in the rat epithalamic pineal gland by immunohistochemistry and western blot, whereas the plasma melatonin concentration was determined by radioimmunoassay. We found that chronic stress decreased the expression of three sympathetic markers in the pineal gland, tyrosine hydroxylase, the p75 neurotrophin receptor and alpha-tubulin, while the same treatment did not affect the expression of the non-specific sympathetic markers Erk1 and Erk2, and glyceraldehyde-3-phosphate dehydrogenase. Furthermore, these results were correlated with a significant increase in plasma melatonin concentration in stressed rats when compared with control animals. Our findings indicate that stress may impair pineal sympathetic inputs, leading to an abnormal melatonin release that may contribute to environmental maladaptation. In addition, we propose that the pineal gland is a target of glucocorticoid damage during stress.

  6. Age-related Histological Findings in the Pineal Gland of Crl:CD(SD) Rats.

    PubMed

    Tomonari, Yuki; Sato, Junko; Wako, Yumi; Tsuchitani, Minoru

    2012-12-01

    To provide background data as the pathologic basis, the pineal glands of 190 male and 193 female Crl:CD(SD) rats at ages of 0-7, 51-58, 70-85 and 111 weeks were examined histologically in this study. Mineralization and fibrosis were common findings in the aged rats, whereas they were rarely found in the young ones; mineralization was present in 7, 44, 67 and 79% of males and in 0, 32, 67 and 79% in females, and fibrosis was present in 0, 29, 48 and 44% of males and 0, 18, 40 and 35% of females at ages of 0-7, 51-58, 70-85 and 111 weeks, respectively. Striated muscle fiber appeared regularly in the fibrosis region from 51-58 weeks of age when fibrosis increased, while the origin of this fiber remained unclear. Vacuolation of pineal cells also increased with age in both sexes, though the total incidence was low. There was a low incidence of lymphocytic infiltration in both sexes, but this was not related to age.

  7. Glutamate Transporter-Mediated Glutamate Secretion in the Mammalian Pineal Gland

    PubMed Central

    Kim, Mean-Hwan; Uehara, Shunsuke; Muroyama, Akiko; Hille, Bertil; Moriyama, Yoshinori; Koh, Duk-Su

    2008-01-01

    Glutamate transporters are expressed throughout the central nervous system where their major role is to clear released glutamate from presynaptic terminals. Here we report a novel function of the transporter in rat pinealocytes. This electrogenic transporter conducted inward current in response to L-glutamate and L- or D-aspartate and depolarized the membrane in patch clamp experiments. Ca2+ imaging demonstrated that the transporter-mediated depolarization induced a significant Ca2+ influx through voltage-gated Ca2+ channels. The Ca2+ rise finally evoked glutamate exocytosis as detected by carbon-fiber amperometry and by high-performance liquid chromatography. In pineal slices with densely packed pinealocytes, glutamate released from the cells effectively activated glutamate transporters in neighboring cells. The Ca2+ signal generated by KCl depolarization or acetylcholine propagated through several cell layers by virtue of the regenerative ‘glutamate-induced glutamate release’. Therefore we suggest that glutamate transporters mediate synchronized elevation of L-glutamate and thereby efficiently down-regulate melatonin secretion via previously identified inhibitory metabotropic glutamate receptors in the pineal gland. PMID:18945893

  8. Pharmacological characterization of beta2-adrenoceptor in PGT-beta mouse pineal gland tumour cells.

    PubMed

    Suh, B C; Chae, H D; Chung, J H; Kim, K T

    1999-01-01

    1. The adrenoceptor in a mouse pineal gland tumour cell line (PGT-beta) was identified and characterized using pharmacological and physiological approaches. 2. Adrenaline and noradrenaline, adrenoceptor agonists, stimulated cyclic AMP generation in a concentration-dependent manner, but had no effect on inositol 1,4,5-trisphosphate production. Adrenaline was a more potent activator of cyclic AMP generation than noradrenaline, with half maximal-effective concentrations (EC50) seen at 175+/-22 nM and 18+/-2 microM for adrenaline and noradrenaline, respectively. 3. The addition of forskolin synergistically stimulated the adrenaline-mediated cyclic AMP generation in a concentration-dependent manner. 4. The pA2 value for the specific beta2-adrenoceptor antagonist ICI-118,551 (8.7+/-0.4) as an antagonist of the adrenaline-stimulated cyclic AMP generation were 3 units higher than the value for the betaI-adrenoceptor antagonist atenolol (5.6+/-0.3). 5. Treatment of the cells with adrenaline and forskolin evoked a 3 fold increase in the activity of serotonin N-acetyltransferase with the peak occurring 6 h after stimulation. 6. These results suggest the presence of beta2-adrenoceptors in mouse pineal cells and a functional relationship between the adenylyl cyclase system and the regulation of N-acetyltransferase expression.

  9. Pineal gland as an endocrine gravitational lunasensor: manifestation of moon-phase dependent morphological changes in mice.

    PubMed

    Gerasimov, A V; Kostyuchenko, V P; Solovieva, A S; Olovnikov, A M

    2014-10-01

    We found that some morphological properties of the pineal gland and submandibular salivary gland of mice are significantly distinct at the new and full moon. We suppose that the differences are initiated by the displacements of the electron-dense concretions in the secretory vesicles of pinealocytes. This presumably occurs under the influence of the gravitational field, which periodically changes during different phases of the moon. It seems that the pinealocyte is both an endocrine and gravisensory cell. A periodic secretion of the pineal gland probably stimulates, in a lunaphasic mode, the neuroendocrine system that, in turn, periodically exerts influence on different organs of the body. The observed effect probably serves, within the lifelong clock of a brain, to control development and aging in time.

  10. Glial cyst of the pineal gland: case report and considerations about surgical management.

    PubMed

    Tartara, F; Regolo, P; Terreni, M R; Giovanelli, M

    2000-06-01

    Symptomatic glial cyst of the pineal gland are rare lesions. Origin, natural history and factors leading to cyst enlargement are not completely clear; thus management remain uncertain in some cases. We report a case of symptomatic glial cyst and analyze the implication for surgery. Surgical management is indicated in patients presenting hydrocephalus, mass effect or symptoms related to mesencephalic dysfunction. The infratentorial supracerebellar approach represent the first choice for this condition allowing easy orientation with wide exposure of the tumor and good visibility of deep venous systems that may be preserved. Size of the tumor is a key element in evaluation of the treatment and the appropriate course for asymptomatic cyst less than 1 cm in size consist of conservative management. Periodic follow up is always indicated.

  11. Identification and Treatment of a Pineal Gland Tumor in an Adolescent with Prodromal Psychotic Symptoms

    PubMed Central

    Mittal, Vijay A.; Karlsgodt, Katherine; Zinberg, Jamie; Cannon, Tyrone D.; Bearden, Carrie E.

    2015-01-01

    An adolescent male patient originally presented to a prodromal clinical research program with severe obsessive-compulsive behaviors and subthreshold symptoms of psychosis, which eventually developed into Schneiderian first-rank psychotic symptoms. The patient was followed over a two-year period. His symptoms did not respond to psychotherapy or pharmacological interventions. However, when a pineal gland tumor was discovered and treated with chemotherapy and autologous stem cell rescue, both psychotic symptoms and psychosocial functioning reverted towards baseline. Although subcortical brain structures have been implicated in the pathophysiology of idiopathic psychosis, reports of psychiatric sequelae of treatment of subcortical tumors are extremely rare. Etiological pathways that may have played a role in symptom development are of particular interest, as understanding these mechanisms may shed light on the pathophysiology of psychotic disorders more generally. PMID:20826854

  12. L-aspartate-evoked inhibition of melatonin production in rat pineal glands.

    PubMed

    Yamada, H; Yamaguchi, A; Moriyama, Y

    1997-06-06

    Our previous studies in rat indicated that pinealocytes secrete L-glutamate through microvesicle-mediated exocytosis to regulate negatively melatonin production. Recently, we further found that pinealocytes secrete L-aspartate through microvesicle-mediated exocytosis. In the present study, we investigated the role of L-aspartate in the melatonin production in isolated rat pineal glands. It was found that L-aspartate inhibits norepinephrine-stimulated melatonin production as well as serotonin N-acetyltransferase activity reversibly and dose-dependently, the concentrations required for 50% inhibition being 150 and 175 microM, respectively. L-Asparagine and oxaloacetate, metabolites of L-aspartate, had no effect on the melatonin production. These results suggest that pinealocytes use L-aspartate, as well as L-glutamate, as a negative regulator for melatonin production.

  13. Pineal gland hormone and idiopathic scoliosis: possible effect of melatonin on sleep-related postural mechanisms.

    PubMed

    Pompeiano, O; Manzoni, D; Miele, F

    2002-04-01

    Experimental and clinical evidences indicate that endocrine mechanisms, particularly involving the pineal gland, exert a role in the development of postural deficits leading to the occurrence of idiopatic scoliosis (IS). In particular, experiments performed in bipedal animals have shown that removal of the pineal gland, which secretes melatonin (M), induced a scoliosis, and that in such preparations, administration of this hormone prevented the development of this deformity (cf. 131). It appears also that adolescents with IS showed a reduced level of serum M with respect to age-related control subjects. The possible mechanisms involved in the M regulation of the tonic contraction of the axial musculature have been discussed. It is known that the pineal gland is implicated in the control of circadian rhythms, including the sleep-waking cycle, and that during this cycle there are prominent changes in postural activity, which affect not only the limbs, but also the axial musculature. These changes are characterized by a decrease followed by a suppression of postural activity, which occur particularly during transition from wakefulness to synchronized sleep and, more prominently, to rapid eye movement (REM) sleep. Episodes of postural atonia may also occur during the cataplectic episodes, which are typical of narcolepsy. Cholinergic and/or cholinoceptive neurons located in the dorsal pontine reticular formation (pRF) and the related medullary inhibitory reticulospinal (RS) system, intervene in the suppression of posture during REM sleep, as well as during the cataplectic episodes which occur in narcolepsy. These structures are under the modulatory (inhibitory) influence of the dorsomedial and the dorsolateral pontine tegmentum, where serotoninergic raphe nuclei (RN) neurons and noradrenergic locus coeruleus (LC) neurons are located. We postulated that M may act not only on the circadian pacemaker, but also directly on the pontine tegmental structures involved in the

  14. The association between melatonin production and electrophysiology of the guinea pig pineal gland.

    PubMed

    McCance, I; Parkington, H C; Coleman, H A

    1996-09-01

    Melatonin production by isolated pineal glands from guinea pigs was examined under conditions that affect membrane potential or the firing of action potential-like spikes. In glands from superior cervical ganglionectomized animals, depolarization resulting from increasing extracellular potassium concentration to 100 mM did not initiate melatonin production, and it delayed the response to the beta-adrenoceptor agonist orciprenaline. In glands from intact animals melatonin production was initiated by exposure to 100 mM potassium with a time-course similar to the response to orciprenaline. A proportion of this response was propanol resistant, suggesting that the normal control of melatonin production may involve a neurotransmitter in addition to norepinephrine. Exposure to verapamil or nifedipine, or removal of extracellular calcium, previously shown to eliminate action potential-like spikes, did not substantially affect the increase in melatonin production induced by orciprenaline. Phenylephrine, which stimulates spiking, produced only a slight increase in melatonin production. It is concluded that the depolarization and the spiking are not closely related to the stimulation of melatonin production, but may relate principally to the secretion of a substance other than melatonin.

  15. History of the pineal region tumor.

    PubMed

    Mottolese, C; Szathmari, A

    2015-01-01

    The pineal gland has interested humans from millenniums. In this paper we review back in the history and the evolution of the pineal gland surgery. Originally, this surgery used to carry a high rate of morbidity and mortality. Nowadays the development of the anesthetic, radiological, surgical and intensive care techniques have been responsible of an improvement of the surgical results and better quality of life. It is always interesting to know from where we come.

  16. Diurnal expression of clock genes in pineal gland and brain and plasma levels of melatonin and cortisol in Atlantic salmon parr and smolts.

    PubMed

    Huang, Tien-sheng; Ruoff, Peter; Fjelldal, Per G

    2010-10-01

    In Atlantic salmon, the preadaptation to a marine life, i.e., parr-smolt transformation, and melatonin production in the pineal gland are regulated by the photoperiod. However, the clock genes have never been studied in the pineal gland of this species. The aim of the present study was to describe the diurnal expression of clock genes (Per1-like, Cry2, and Clock) in the pineal gland and brain of Atlantic salmon parr and smolts in freshwater, as well as plasma levels of melatonin and cortisol. By employing an out-of-season smolt production model, the parr-smolt transformation was induced by subjecting triplicate groups of parr to 6 wks (wks 0 to 6) under a 12 h:12 h light-dark (LD) regime followed by 6 wks (wks 6 to 12) of continuous light (LL). The measured clock genes in both pineal gland and brain and the plasma levels of melatonin and cortisol showed significant daily variations in parr under LD in wk 6, whereas these rhythms were abolished in smolts under LL in wk 12. In parr, the pineal Per1-like and Cry2 expression peaked in the dark phase, whereas the pineal Clock expression was elevated during the light phase. Although this study presents novel findings on the clock gene system in the teleost pineal gland, the role of this system in the regulation of smoltification needs to be studied in more detail.

  17. Melatonin Synthesis: Acetylserotonin O-Methyltransferase (ASMT) Is Strongly Expressed in a Subpopulation of Pinealocytes in the Male Rat Pineal Gland.

    PubMed

    Rath, Martin F; Coon, Steven L; Amaral, Fernanda G; Weller, Joan L; Møller, Morten; Klein, David C

    2016-05-01

    The rat pineal gland has been extensively used in studies of melatonin synthesis. However, the cellular localization of melatonin synthesis in this species has not been investigated. Here we focus on the localization of melatonin synthesis using immunohistochemical methods to detect the last enzyme in melatonin synthesis, acetylserotonin O-methyltransferase (ASMT), and in situ hybridization techniques to study transcripts encoding ASMT and two other enzymes in melatonin synthesis, tryptophan hydroxylase (TPH)-1 and aralkylamine N-acetyltransferase. In sections of the rat pineal gland, marked cell-to-cell differences were found in ASMT immunostaining intensity and in the abundance of Tph1, Aanat, and Asmt transcripts. ASMT immunoreactivity was localized to the cytoplasm in pinealocytes in the parenchyma of the superficial pineal gland, and immunopositive pinealocytes were also detected in the pineal stalk and in the deep pineal gland. ASMT was found to inconsistently colocalize with S-antigen, a widely used pinealocyte marker; this colocalization was seen in cells throughout the pineal complex and also in displaced pinealocyte-like cells of the medial habenular nucleus. Inconsistent colocalization between ASMT and TPH protein was also detected in the pineal gland. ASMT protein was not detected in extraepithalamic parts of the central nervous system or in peripheral tissues. The findings in this report are of special interest because they provide reason to suspect that melatonin synthesis varies significantly among individual pinealocytes.

  18. Season-dependent postembryonic maturation of the diurnal rhythm of melatonin biosynthesis in the chicken pineal gland.

    PubMed

    Piesiewicz, A; Kedzierska, U; Podobas, E; Adamska, I; Zuzewicz, K; Majewski, P M

    2012-11-01

    Previously, we have demonstrated that the timing of the nocturnal peak of activity of the pineal arylalkylamine-N-acetyltransferase - a key enzyme in the melatonin biosynthesis pathway - in 3-wk-old chickens kept from the day of hatch under controlled laboratory conditions (L:D 12:12) varies depending on the season of hatch (summer vs. winter). The present study was undertaken to answer the following questions: (1) are season-related differences seen in the level of transcription of genes encoding enzymes of the melatonin biosynthesis pathway? (2) Does the pineal content of the main precursor (serotonin) and the final product (melatonin) exhibit age- and season-related changes? (3) At which step in postembryonic development are these season-related variations in pineal gland function most pronounced? Male Hy-line chickens hatched in the summer or winter, from eggs laid by hens held on L:D 16:8, were kept from the day of hatch under L:D 12:12 conditions. At the age of 2, 9, or 16 d, chickens were sacrificed every 2 h over a 24-h period and their pineal glands, isolated under dim red light, were processed for the measurement of (i) the level of Aanat and Asmt (acetylserotonin O-methyltransferase) mRNAs encoding the two last enzymes involved in melatonin biosynthesis, (ii) the activity of these enzymes, and (iii) the pineal content of serotonin and melatonin. Circadian rhythmicity of all the measured parameters was evaluated by the cosinor method. The levels of Aanat mRNA, AANAT enzymatic activity, and the pineal melatonin content changed during postembryonic development in a manner that was dependent on the season of hatch. Furthermore, the diurnal profile of Asmt mRNA was elevated during the light phase. In "winter" birds, the pattern and amplitude of the diurnal rhythm of accumulation of this transcript did not change with age, while in "summer" birds it increased in an age-related way. In contrast, the enzymatic activity of hydroxyindole-O-methyltransferase (HIOMT

  19. Suppression of melatonin biosynthesis in the chicken pineal gland by retinally perceived light - involvement of D1-dopamine receptors.

    PubMed

    Zawilska, Jolanta B; Berezińska, Małgorzata; Rosiak, Jolanta; Skene, Debra J; Vivien-Roels, Berthe; Nowak, Jerzy Z

    2004-03-01

    In this study the role of retinal dopamine (DA) receptors in the light-induced suppression of melatonin biosynthesis in the chicken pineal gland was examined. Exposure of dark-adapted chickens to low intensity light (4 lux) at night significantly decreased the activity of serotonin N-acetyltransferase (AA-NAT; the penultimate and key regulatory enzyme in melatonin production) and melatonin content in the pineal gland. This suppressive action of light was blocked by intraocular (i.oc.) administration of SCH 23390 (a selective antagonist of D1-DA receptors), but was not affected by sulpiride (a selective antagonist of D2-DA receptors). Injection of DA (i.oc.) to dark-adapted chickens significantly decreased pineal AA-NAT activity and melatonin content in a dose- and time-dependent manner. The action of DA was mimicked by selective agonists of D1-DA receptors, SKF 38393 and SKF 81297, and non-hydrolyzable analogs of cyclic AMP (cAMP), dibutyryl-cAMP and 8-bromo-cAMP. However, i.oc. administration of quinpirole, a selective agonist of D2-DA receptors, did not modify pineal AA-NAT activity. In contrast, quinpirole potently decreased nocturnal AA-NAT activity in the retina. Systemic administration of SCH 23390 to chickens blocked the i.oc. DA-evoked decline in nighttime pineal AA-NAT activity, whereas sulpiride was ineffective. These findings indicate that light activation of retinal dopaminergic neurotransmission, with concomitant stimulation of D1-DA receptors positively coupled to the cAMP generating system, plays an important role in a cascade of events regulating pineal activity.

  20. Age-related incidence of pineal gland calcification in children: a roentgenological study of 1,044 skull films and a review of the literature.

    PubMed

    Winkler, P; Helmke, K

    1987-01-01

    Anterior-posterior and lateral skull roentgenograms of 1,044 children aged 0-18 yr were examined for pineal gland calcification. Eighty children with pineal calcification were identified. Cranial computed tomograms (CCT) existing for half of the 80 cases provided confirmation. In contrast to existing reports on pineal calcification in the first decade of life, we found a significant percentage of "physiological" calcification even between 0 and 6 yr of age (range 2.9-4.2%). Contrary to current opinion we were not able to detect any signs of pineal gland tumors in these cases. We were able to confirm other reports which note a steep rise of the incidence of pineal calcification during the second decade of life.

  1. Chronic stress induces upregulation of brain-derived neurotrophic factor (BDNF) mRNA and integrin alpha5 expression in the rat pineal gland.

    PubMed

    Dagnino-Subiabre, Alexies; Zepeda-Carreño, Rodrigo; Díaz-Véliz, Gabriela; Mora, Sergio; Aboitiz, Francisco

    2006-05-01

    Chronic stress affects brain areas involved in learning and emotional responses. These alterations have been related with the development of cognitive deficits in major depression. Moreover, stress induces deleterious actions on the epithalamic pineal organ, a gland involved in a wide range of physiological functions. The aim of this study was to investigate whether the stress effects on the pineal gland are related with changes in the expression of neurotrophic factors and cell adhesion molecules. Using reverse transcription-polymerase chain reaction (RT-PCR) and Western blot, we analyzed the effect of chronic immobilization stress on the BDNF mRNA and integrin alpha5 expression in the rat pineal gland. We found that BDNF is produced in situ in the pineal gland. Chronic immobilization stress induced upregulation of BDNF mRNA and integrin alpha5 expression in the rat pineal gland but did not produce changes in beta-actin mRNA or in GAPDH expression. Stressed animals also evidenced an increase in anxiety-like behavior and acute gastric lesions. These results suggest that BDNF and integrin alpha5 may have a counteracting effect to the deleterious actions of immobilization stress on functionally stimulated pinealocytes. Furthermore, this study proposes that the pineal gland may be a target of glucocorticoid damage during stress.

  2. A direct influence of moonlight intensity on changes in melatonin production by cultured pineal glands of the golden rabbitfish, Siganus guttatus.

    PubMed

    Takemura, Akihiro; Ueda, Satomi; Hiyakawa, Nanae; Nikaido, Yoshiaki

    2006-04-01

    Rabbitfish are a restricted lunar-synchronized spawner that spawns around a species-specific lunar phase. It is not known how the fish perceive changes in cues from the moon. One possible explanation is that rabbitfish utilize changes in moonlight intensity to establish synchrony. The purpose of the present study was to examine whether or not the pineal gland of the golden rabbitfish can directly perceive changes in moonlight intensity. Isolated pineal glands were statically cultured under natural or artificial light conditions and melatonin secreted into the culture medium was measured using a time-resolved fluoroimmunoassay. Under an artificial light/dark cycle, melatonin secretion significantly increased during the dark phase. Under continuous light conditions, melatonin secretion was suppressed, while culture under continuous dark conditions seemed to duplicate melatonin secretion corresponding to the light/dark cycle in which the fish were acclimated. When cultured pineal glands were kept under natural light conditions on the dates of the full and the new moon, small amounts of melatonin were secreted at night. Moreover, exposure of cultured pineal glands to artificial and natural light conditions resulted in a significant decrease of melatonin secretion within 2 hr. These results suggest that the isolated pineal gland of golden rabbitfish responds to environmental light cycles and that 'brightness' of the night moon has an influence on melatonin secretion from the isolated pineal gland.

  3. Neurotrophic effects of the pineal gland: role of non-neuronal cells in co-cultures of the pineal gland and superior cervical ganglia.

    PubMed

    McNulty, J A; Tsai, S Y; Fox, L M; Madsen, T M; Silberman, S; Tonder, N

    1995-08-01

    The pineal gland (PG) is a source of several trophic factors. In this study, PG and superior cervical ganglia (SCG) from Sprague-Dawley neonates (1-day-old) were co-cultured to test the hypothesis that endogenous release of PG NGF (or an NGF-like cytokine) is sufficient to promote survival of SCG neurons. Neuronal density of SCG neurons was significantly enhanced when co-cultured with PG for 7 days compared to SCG cultured alone. SCG survival and neurite formation in PG co-cultures was less than in SCG treated with exogenous NGF (100 ng/ml). The neurotrophic effect of PG co-cultures was abolished when 1% anti-NGF was added to the medium. Co-cultures of SCG neurons with established 7-day PG cultures induced extensive SCG neurite formation within 24 hr compared to SCG co-cultured with 1-day PG cultures. This suggests that PG neurotrophic effects are due to PG non-neuronal cells (nnc) that proliferate to confluency by 7 days in culture. S-antigen-positive pinealocytes did not proliferate in culture. There was decreased SCG survival when neurons were seeded onto PG cultures that had been previously killed by drying, which suggests that the neurotrophic effects of nnc are not substrate-dependent. Immunocytochemical characterization of PG nnc revealed a heterogenous mixture of astrocytes, macrophage/microglia, and fibroblasts. These findings support the hypothesis that NGF is actively secreted by PG and that nnc are the principal source of this neurotophin.

  4. Benign symptomatic glial cysts of the pineal gland: a report of seven cases and review of the literature.

    PubMed

    Klein, P; Rubinstein, L J

    1989-08-01

    Seven cases of clinically symptomatic benign glial cyst of the pineal gland are reported. The cysts' size ranged from 1.0-4.5 cm in diameter. They were characterised by a golden or, less frequently, brown-reddish proteinaceous or haemorrhagic fluid content. The cyst wall, up to 2 mm thick, consisted of clusters of normal pineal parenchymal cells, often compressed and distorted, surrounded by reactive gliotic tissue which sometimes contained Rosenthal fibres. The presenting clinical features included headache (6/7), signs of raised intracranial pressure, partial or complete Parinaud's syndrome (5/7), cerebellar deficits (2/7), corticospinal and corticopontine fibre (2/7) or sensory (1/7) deficits, and emotional disturbances (2/7). CT and MRI (in 2/7 cases) scans showed a hypodense or nonhomogeneous lesion in the region of the pineal gland, with or without contrast enhancement. Surgical excision resulted in complete clearance of the symptoms in 5/7 patients. The previous literature is reviewed and the clinicopathological correlations and the possible pathogenetic mechanisms are discussed. The need to distinguish this benign lesion from other mass lesions of the pineal region, in particular from pinealocytoma, is stressed.

  5. Benign symptomatic glial cysts of the pineal gland: a report of seven cases and review of the literature.

    PubMed Central

    Klein, P; Rubinstein, L J

    1989-01-01

    Seven cases of clinically symptomatic benign glial cyst of the pineal gland are reported. The cysts' size ranged from 1.0-4.5 cm in diameter. They were characterised by a golden or, less frequently, brown-reddish proteinaceous or haemorrhagic fluid content. The cyst wall, up to 2 mm thick, consisted of clusters of normal pineal parenchymal cells, often compressed and distorted, surrounded by reactive gliotic tissue which sometimes contained Rosenthal fibres. The presenting clinical features included headache (6/7), signs of raised intracranial pressure, partial or complete Parinaud's syndrome (5/7), cerebellar deficits (2/7), corticospinal and corticopontine fibre (2/7) or sensory (1/7) deficits, and emotional disturbances (2/7). CT and MRI (in 2/7 cases) scans showed a hypodense or nonhomogeneous lesion in the region of the pineal gland, with or without contrast enhancement. Surgical excision resulted in complete clearance of the symptoms in 5/7 patients. The previous literature is reviewed and the clinicopathological correlations and the possible pathogenetic mechanisms are discussed. The need to distinguish this benign lesion from other mass lesions of the pineal region, in particular from pinealocytoma, is stressed. Images PMID:2677249

  6. The morphology of the pineal gland of the yellow-toothed cavy (Galea Spixii Wagler, 1831) and red-rumped agouti (Dasyprocta leporina linnaeus, 1758).

    PubMed

    Câmara, Felipe Venceslau; Lopes, Igor Renno Guimarães; de Oliveira, Gleidson Benevides; Bezerra, Ferdinando Vinicius Fernandes; de Oliveira, Radan Elvis Matias; Oliveira Júnior, Carlos Magno; Silva, Alexandre Rodrigues; de Oliveira, Moacir Franco

    2015-08-01

    The pineal gland is an endocrine gland found in all mammals. This article describes the morphology of this important gland in two species of Caviideae, namely the yellow-toothed cavy and the red-rumped agouti. Ten adult animals of the two species used in current analysis were retrieved from the Center for the Multiplication of Wild Animals (CEMAS/UFERSA) and euthanized. The glands were removed and photographed in situ and ex situ. They were fixed in a paraformaldehyde solution 4% or glutaraldehyde 2.5% solution and submitted to routine histological techniques respectively for light and scanning electron microscopy. Macroscopically, the pineal gland with its elongated structure may be found between the cerebral hemispheres facing the rostral colliculi. Microscopically, pinealocytes and some glia cells were predominant. Contrastingly, to the cavy's pineal gland, a capsule covered the organ in the agouti, with the emission of incomplete septa to the interior, which divided it into two lobules. Light and scanning electron microscopes failed to show calcareous concretions in the pineal gland. Based on the topography of the cavy's and agouti's pineal gland, it may be classified as supra-callosum and ABC type.

  7. Decreased melatonin biosynthesis, calcium flux, pineal gland calcification and aging: a hypothetical framework.

    PubMed

    Schmid, H A

    1993-01-01

    Increased pineal calcifications and decreased pineal melatonin biosynthesis, both age related, support the notion of a pineal bio-organic timing mechanism. Decreased calcium ion availability is the single common denominator of diminished beta-postreceptor- and alpha-receptor-stimulating functions in beta-receptor potentiation, which is necessary for nocturnal peak melatonin production. A comprehensive framework for the interaction of aging pineal cell mechanisms, calcium flux and melatonin biosynthesis is presented.

  8. Plasma corticosterone elevation inhibits the activation of nuclear factor kappa B (NFKB) in the Syrian hamster pineal gland.

    PubMed

    Ferreira, Z S; Bothorel, B; Markus, R P; Simonneaux, V

    2012-05-01

    We evaluated how the mild stress-induced increase in endogenous corticosterone affected the pineal gland in Syrian hamsters (Mesocricetus auratus). The animals were maintained under constant light for 1 day, instead of a cycle of 14:10-h, to increase the circulating corticosterone levels during the daytime. The nuclear translocation of nuclear factor kappa B (NFKB), which is the pivotal transcription factor for stress and injury, presented a daily rhythm in normal animals. NFKB nuclear content increased linearly from the onset of light [Zeitgeber Time 0 (ZT0)] until ZT11 and decreased after ZT12 when the plasma corticosterone peak was detected in normal animals. However, the 24-h profiles of the two curves were different, and they did not clearly support an exclusive relationship between corticosterone levels and NFKB content. Therefore, we tested the effect of increased endogenous corticosterone through inducing mild stress by maintaining daytime illumination for one night. This stressful condition, which increased daytime corticosterone levels, resulted in a daytime decrease in NFKB nuclear content, and this was inhibited by mifepristone. Overall, this study shows that NFKB has a daily rhythm in Syrian hamster pineal glands and, by increasing endogenous corticosterone with a stressful condition, NFKB activity is regulated. Therefore, this study suggests that the pineal gland in the Syrian hamster is a sensor of stressful conditions.

  9. Sympathetic neural control of indoleamine metabolism in the rat pineal gland

    NASA Technical Reports Server (NTRS)

    Lynch, H. J.; Hsuan, M.; Wurtman, R. J.

    1975-01-01

    The mechanisms responsible for the acceleration in rat pineal biosynthetic activity in response to prolonged exposure to darkness or to immobilization were investigated in animals whose pineals were surgically denervated. Some animals were adrenalectomized to remove one potential source of circulating catecholamines, and some were subjected to a partial chemical sympathectomy accomplished by a series of intravenous injections of 6-hydroxydopamine. Results suggest that N-acetyltransferase (NAT) activity can be enhanced either by release of norepinephrine from sympathetic terminals within the pineal or from sympathetic nerve terminals elsewhere. The stress of immobilization stimulates the pineal by increasing circulating catecholamines. Photic control of pineal function requires intact pineal sympathetic innervation, since the onset of darkness apparently does not cause a sufficient rise in circulating catecholamines to stimulate the pineal. The present studies suggest that nonspecific stress triggers increased biosynthesis and secretion of melatonin; it is possible that this hormone may participate in mechanisms of adaptation.

  10. Sympathetic neural control of indoleamine metabolism in the rat pineal gland

    NASA Technical Reports Server (NTRS)

    Lynch, H. J.; Hsuan, M.; Wurtman, R. J.

    1975-01-01

    The mechanisms responsible for the acceleration in rat pineal biosynthetic activity in response to prolonged exposure to darkness or to immobilization were investigated in animals whose pineals were surgically denervated. Some animals were adrenalectomized to remove one potential source of circulating catecholamines, and some were subjected to a partial chemical sympathectomy accomplished by a series of intravenous injections of 6-hydroxydopamine. Results suggest that N-acetyltransferase (NAT) activity can be enhanced either by release of norepinephrine from sympathetic terminals within the pineal or from sympathetic nerve terminals elsewhere. The stress of immobilization stimulates the pineal by increasing circulating catecholamines. Photic control of pineal function requires intact pineal sympathetic innervation, since the onset of darkness apparently does not cause a sufficient rise in circulating catecholamines to stimulate the pineal. The present studies suggest that nonspecific stress triggers increased biosynthesis and secretion of melatonin; it is possible that this hormone may participate in mechanisms of adaptation.

  11. Endogenous rhythmicity of Bmal1 and Rev-erb alpha in the hamster pineal gland is not driven by norepinephrine.

    PubMed

    Wongchitrat, Prapimpun; Felder-Schmittbuhl, Marie-Paule; Phansuwan-Pujito, Pansiri; Pévet, Paul; Simonneaux, Valérie

    2009-05-01

    Pineal melatonin is synthesized with daily and seasonal rhythms following the hypothalamic clock-driven release of norepinephrine (NE). The pineal gland of rats and mice, like the biological clock, expresses a number of clock genes. However, the role of pineal clock elements in pineal physiology is still unknown. We examined the expression and regulation of several clock genes (Per1, Cry2, Bmal1 and Rev-erb alpha) under different lighting conditions or following adrenergic treatments in the Syrian hamster, a seasonal rodent. We found that Per1 and Cry2 genes were similarly regulated by the nocturnal release of NE: levels of Per1 and Cry2 mRNA displayed a nocturnal increase that was maintained after 2 days in constant darkness (DD) but abolished after 2 days under constant light (LL), a condition that suppresses endogenous NE release, or after an early night administration of the adrenergic antagonist propranolol. In contrast, Bmal1 and Rev-erb alpha exhibited a different pattern of expression and regulation. mRNA levels of both clock genes displayed a marked daily variation, maintained in DD, with higher values at midday for Bmal1 and at day/night transition for Rev-erb alpha. Remarkably, the daily variation of both Bmal1 and Rev-erb alpha mRNA was maintained in LL conditions and was not affected by propranolol. This study confirms the daily regulation of Per1 and Cry2 gene expression by NE in the pineal gland of rodents and shows for the first time that a second set of clock genes, Bmal1 and Rev-erb alpha are expressed with a circadian rhythm independent of the hypothalamic clock-driven noradrenergic signal.

  12. MRI-based assessment of the pineal gland in a large population of children aged 0-5 years and comparison with pineoblastoma: part I, the solid gland.

    PubMed

    Galluzzi, Paolo; de Jong, Marcus C; Sirin, Selma; Maeder, Philippe; Piu, Pietro; Cerase, Alfonso; Monti, Lucia; Brisse, Hervé J; Castelijns, Jonas A; de Graaf, Pim; Goericke, Sophia L

    2016-07-01

    Differentiation between normal solid (non-cystic) pineal glands and pineal pathologies on brain MRI is difficult. The aim of this study was to assess the size of the solid pineal gland in children (0-5 years) and compare the findings with published pineoblastoma cases. We retrospectively analyzed the size (width, height, planimetric area) of solid pineal glands in 184 non-retinoblastoma patients (73 female, 111 male) aged 0-5 years on MRI. The effect of age and gender on gland size was evaluated. Linear regression analysis was performed to analyze the relation between size and age. Ninety-nine percent prediction intervals around the mean were added to construct a normal size range per age, with the upper bound of the predictive interval as the parameter of interest as a cutoff for normalcy. There was no significant interaction of gender and age for all the three pineal gland parameters (width, height, and area). Linear regression analysis gave 99 % upper prediction bounds of 7.9, 4.8, and 25.4 mm(2), respectively, for width, height, and area. The slopes (size increase per month) of each parameter were 0.046, 0.023, and 0.202, respectively. Ninety-three percent (95 % CI 66-100 %) of asymptomatic solid pineoblastomas were larger in size than the 99 % upper bound. This study establishes norms for solid pineal gland size in non-retinoblastoma children aged 0-5 years. Knowledge of the size of the normal pineal gland is helpful for detection of pineal gland abnormalities, particularly pineoblastoma.

  13. Morphological changes in the pineal gland of rats under conditions of long-term exposure to bright light.

    PubMed

    Gerasimov, A V; Logvinov, S V; Kostyuchenko, V P

    2010-12-01

    Changes in the diurnal light cycle affect the morphofunctional state of the pineal gland. The volume of the nucleus, Golgi apparatus, and mitochondria in pinealocytes decreases after 45-day exposure to bright light. After 90 days, the degree of nuclear polymorphism increased, the specific volume of the Golgi apparatus returned to normal, the volume of the granular endoplasmic reticulum decreased, while the volume of lysosomes, free ribosomes, and polysomes increased. These changes reflect plasticity of pinealocytes and adaptation of the gland to long-term 24-h light exposure.

  14. Immunohistochemical localization of irisin in skin, eye, and thyroid and pineal glands of the crested porcupine (Hystrix cristata).

    PubMed

    Gençer Tarakçı, B; Girgin, A; Timurkaan, S; Yalçın, M H; Gür, F M; Karan, M

    2016-08-01

    Irisin was first identified in muscle cells. We detected irisin immunoreactivity in various organs of the crested porcupine (Hystrix cristata). In the epidermis, irisin immunoreactivity was localized mainly in stratum basale, stratum spinosum and stratum granulosum layers; immunoreactivity was not observed in the stratum corneum. In the dermis, irisin was found in the external and internal root sheath, cortex and medulla of hair follicles, and in sebaceous glands. Irisin immunoreactivity was found in the neural retina and skeletal muscle fibers associated with the eye. The pineal and thyroid glands also exhibited irisin immunoreactivity.

  15. Distribution of components of basal lamina and dystrophin-dystroglycan complex in the rat pineal gland: differences from the brain tissue and between the subdivisions of the gland.

    PubMed

    Bagyura, Zsolt; Pócsai, Károly; Kálmán, Mihály

    2010-01-01

    The pineal gland is an evagination of the brain tissue, a circumventricular neuroendocrine organ. Our immunohistochemical study investigates basal lamina components (laminin, agrin, perlecan, fibronectin), their receptor, the dystrophin-dystroglycan complex (beta-dystroglycan, dystrophin utrophin), aquaporins (-4,-9) and cellular markers (S100, neurofilament, GFAP, glutamine synthetase) in the adult rat corpus pineale. The aim was to compare the immunohistochemical features of the cerebral and pineal vessels and their environment, and to compare their features in the distal and proximal subdivisions of the so-called 'superficial pineal gland'. In contrast to the cerebral vessels, pineal vessels proved to be immunonegative to alpha1-dystrobrevin, but immunoreactive to laminin. An inner, dense, and an outer, loose layer of laminin as two basal laminae were present. The gap between them contained agrin and perlecan. Basal lamina components enmeshed the pinealocytes, too. Components of dystrophin-dystroglycan complex were also distributed along the vessels. Dystrophin, utrophin and agrin gave a 'patchy' distribution rather than a continuous one. The vessels were interconnected by wing-like structures, composed of basal lamina-components: a delicate network forming nests for cells. Cells immunostained with glutamine synthetase, S100-protein or neurofilament protein contacted the vessels, as well as GFAP- or aquaporin-immunostained astrocytes. Within the body a smaller, proximal, GFAP-and aquaporin-containing subdivision, and a larger, distal, GFAP-and aquaporin-free subdivision could be distinguished. The vascular localization of agrin and utrophin, as well as dystrophin, delineated vessels unequally, preferring the proximal or distal end of the body, respectively.

  16. Calcification of the pineal gland: relationship to laterality of the epileptic foci in patients with complex partial seizures.

    PubMed

    Sandyk, R

    1992-01-01

    The right and left temporal lobes differ from each other with respect to the rate of intrauterine growth, the timing of maturation, rate of aging, anatomical organization, neurochemistry, metabolic rate, electroencephalographic measures, and function. These functional differences between the temporal lobes underlies the different patterns of psychopathology and endocrine reproductive disturbances noted in patients with temporolimbic epilepsy. The right hemisphere has greater limbic and reticular connections than the left. Since the pineal gland receives direct innervation from the limbic system and the secretion of melatonin is influenced by an input from the reticular system, I propose that lesions in the right temporal lobe have a greater impact on pineal melatonin functions as opposed to those in the left dominant temporal lobe. Consequently, since calcification of the pineal gland is thought to reflect past secretory activity of the gland, I predicted a higher prevalence of pineal calcification (PC) in epileptic patients with right temporal lobe as opposed to those with left temporal lobe foci. To investigate this hypothesis, the prevalence of PC on CT scan was studied in a sample of 70 patients (43 men, 27 women, mean age: 29.2 years, range 9-58; SD = 10.1) with complex partial seizures, of whom 49 (70.0%) had a right temporal lobe focus. PC was present in 51 patients (72.8%) and was unrelated to any of the historical and demographic data surveyed. In the patients with a focus in the right temporal lobe, PC was present in 46 cases (93.8%) as compared to 5 of 21 patients (23.8%) with left temporal lobe foci.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Detection and high performance liquid chromatography identification of the summer rises of vasopressin and oxytocin immunoreactivity in the rat pineal gland.

    PubMed

    Liu, B; Burbach, J P

    1987-11-01

    The vasopressin (VP) and oxytocin (OT) contents of the rat pineal gland during the summer period were determined by RIAs. Both the levels of VP immunoreactivity and OT immunoreactivity rose markedly in August. The highest level of VP immunoreactivity occurred on August 6 [82 +/- 19 fmol/gland (+/- SEM)], compared to basal levels of 14 +/- 2 fmol/gland. Basal levels of OT immunoreactivity of 20 +/- 8 fmol/gland increased to a peak level of 193 +/- 72 fmol/gland on August 14. Analysis of immunoreactive components by HPLC demonstrated that rises were due to the peptides coeluting with authentic VP and OT, respectively. Levels of immunoreactive VP and OT in the hypothalamus, pituitary gland, and hippocampus did not show variation during the summer. The results show that the VP and OT content of the pineal gland is regulated in a tissue-specific fashion by seasonal influences.

  18. Regulation of 90-kilodalton ribosomal S6 kinase phosphorylation in the rat pineal gland.

    PubMed

    Ho, A K; Mackova, M; Cho, C; Chik, C L

    2003-08-01

    In this study we investigated diurnal changes in the activation state of the 90-kDa ribosomal S6 kinase (p90RSK) in the rat pineal gland. In animals housed under a lighting regimen with 12 h of light, we found an increase in phosphorylated p90RSK during the dark phase, and this increase was abolished by treatment with propranolol or continuous exposure to light. To determine the intracellular mechanism involved, rat pinealocytes were treated with norepinephrine. Norepinephrine caused a parallel increase in phosphorylated p42/44 MAPK (p42/44(MAPK)) and p90RSK that was reduced by prazosin or propranolol, indicating involvement of both alpha(1)- and beta-adrenergic receptors. Treatment with dibutyryl cGMP, 4beta-phorbol 12-myristate 13-acetate, or ionomycin mimicked norepinephrine-stimulated p90RSK phosphorylation, whereas dibutyryl cAMP caused a decrease in p90RSK phosphorylation. Inhibition of p42/44(MAPK) activation by UO126 was effective in reducing norepinephrine-stimulated p90RSK phosphorylation. Moreover, UO126 had an inhibitory effect on norepinephrine-stimulated arylalkyl-N-acetyltransferase activity. These results indicate that the adrenergically regulated nocturnal increase in p90RSK phosphorylation is mainly mediated through a cGMP-->p42/44(MAPK)-dependent mechanism.

  19. The pineal gland of nocturnal mammals. I. The pinealocytes of the bat (Nyctalus noctula, Schreber).

    PubMed

    Pevet, P; Kappers, J A; Voûte, A M

    1977-01-01

    The ultrastructure of the pinealocytes of noctule bats, mammals which live most of the time in darkness or very low light intensities, was examined and compared with the pinealocytes of other mammals. Two different populations of pinealocytes (I and II) were observed. They differ in general aspect, in location and especially in their content of cell organelles involved in synthetic processes. Mitochondria, ribosomes, lysosomes and lipid inclusions were present in the perikaryon of pinealocytes of both populations. In the pinealocytes of population I some granular vesicles, of presumed Golgi origin, and some other structures were observed. Pinealocytes of population II are characterized by many glycogen granules, more or less associated with a large vacuolar system. Moreover, some small vacuoles originating from cisterns of the granular endoplasmic reticulum and containing flocculent material of a moderate electron density are described. The possibility is discussed that these small vacuoles are involved in one of the secretory processes of the pineal gland while the granular vesicles of the pinealocyte of the population I are the products of another.

  20. Timing of mitogen-activated protein kinase (MAPK) activation in the rat pineal gland.

    PubMed

    Ho, A K; Price, D M; Terriff, D; Chik, C L

    2006-06-27

    Activation of members of the mitogen-activated protein kinase (MAPK) family of signaling cascades is a tightly controlled event in rat pinealocytes. Cell culture studies indicate that whereas the NE-->cGMP activation of p42/44MAPK is rapid and transient, the NE-->cAMP activation of p38MAPK is slower and more sustained. The decline in the p42/44MAPK response is in part due to the induction of MAPK phosphatase-1 by NE. In comparison, p38MAPK activation is tightly coupled to the synthesis and degradation of an upstream element in its activation cascade. Whole animal studies confirm activation of p42/44MAPK occurring during the early part of night and precedes p38MAPK activation. Studies with selective MAPK inhibitors reveal a modulating effect of MAPKs on arylalkylamine-N-acetyltransferse (AA-NAT) activity, with involvement of p42/44MAPK in the induction of AA-NAT and p38MAPK participating in the amplitude and duration of the AA-NAT response. These effects of p42/44MAPK and p38MAPK on AA-NAT activity match their timing of activation. Taken together, our studies on the timing of MAPK activation and regulation of AA-NAT by MAPKs add to the importance of MAPKs in regulating the circadian biology of the pineal gland.

  1. BMP signaling orchestrates photoreceptor specification in the zebrafish pineal gland in collaboration with Notch.

    PubMed

    Quillien, Aurélie; Blanco-Sanchez, Bernardo; Halluin, Caroline; Moore, John C; Lawson, Nathan D; Blader, Patrick; Cau, Elise

    2011-06-01

    A variety of signaling pathways have been shown to regulate specification of neuronal subtype identity. However, the mechanisms by which future neurons simultaneously process information from multiple pathways to establish their identity remain poorly understood. The zebrafish pineal gland offers a simple system with which to address questions concerning the integration of signaling pathways during neural specification as it contains only two types of neurons - photoreceptors and projection neurons. We have previously shown that Notch signaling inhibits the projection neuron fate. Here, we show that BMP signaling is both necessary and sufficient to promote the photoreceptor fate. We also demonstrate that crosstalk between BMP and Notch signaling is required for the inhibition of a projection neuron fate in future photoreceptors. In this case, BMP signaling is required as a competence factor for the efficient activation of Notch targets. Our results indicate that both the induction of a photoreceptor fate and the interaction with Notch relies on a canonical BMP/Smad5 pathway. However, the activation of Notch-dependent transcription does not require a canonical Smad5-DNA interaction. Our results provide new insights into how multiple signaling influences are integrated during cell fate specification in the vertebrate CNS.

  2. A novel isoform of the orphan nuclear receptor RORbeta is specifically expressed in pineal gland and retina.

    PubMed

    André, E; Gawlas, K; Becker-André, M

    1998-08-31

    RORbeta is a member of the nuclear hormone receptor superfamily whose ligand is unknown. Expression of RORbeta is confined to the central nervous system and its pattern suggests that this orphan nuclear receptor is implicated in the processing of sensory information and in circadian timing. In rats, RORbeta mRNA levels oscillate robustly in pineal gland and retina, displaying a 24h rhythm. Here we report the cloning of the cDNA of a novel isoform of RORbeta from rat pineal tissue. Expression of this isoform, called RORbeta2, is confined to pineal gland and retina and strongly increases at night. RORbeta2 shares common DNA- and putative ligand-binding domains with the canonical RORbeta (referred to as RORbeta1), but is characterized by a different amino-terminal domain. This structural difference renders RORbeta2 much more selectively binding to DNA than RORbeta1. Moreover, in contrast to RORbeta1, the novel isoform efficiently activates transcription also in non-neuronal cell lines. Thus, the two RORbeta isoforms are likely to regulate different sets of genes in different physiological contexts. 1998 Elsevier Science B.V.

  3. Amyloid β peptide directly impairs pineal gland melatonin synthesis and melatonin receptor signaling through the ERK pathway.

    PubMed

    Cecon, Erika; Chen, Min; Marçola, Marina; Fernandes, Pedro A C; Jockers, Ralf; Markus, Regina P

    2015-06-01

    Melatonin is the hormone produced by the pineal gland known to regulate physiologic rhythms and to display immunomodulatory and neuroprotective properties. It has been reported that Alzheimer disease patients show impaired melatonin production and altered expression of the 2 G protein-coupled melatonin receptors (MTRs), MT₁ and MT₂, but the underlying mechanisms are not known. Here we evaluated whether this dysfunction of the melatonergic system is directly caused by amyloid β peptides (Aβ(1-40) and Aβ(1-42)). Aβ treatment of rat pineal glands elicited an inflammatory response within the gland, evidenced by the up-regulation of 52 inflammatory genes, and decreased the production of melatonin up to 75% compared to vehicle-treated glands. Blocking NF-κB activity prevented this effect. Exposure of HEK293 cells stably expressing recombinant MT₁ or MT₂ receptors to Aβ lead to a 40% reduction in [(125)I]iodomelatonin binding to MT₁. ERK1/2 activation triggered by MTRs, but not by the β₂-adrenergic receptor, was markedly impaired by Aβ in HEK293 transfected cells, as well as in primary rat endothelial cells expressing endogenous MTRs. Our data reveal the melatonergic system as a new target of Aβ, opening new perspectives to Alzheimer disease diagnosis and therapeutic intervention.

  4. Developmental and diurnal dynamics of Pax4 expression in the mammalian pineal gland: nocturnal down-regulation is mediated by adrenergic-cyclic adenosine 3',5'-monophosphate signaling.

    PubMed

    Rath, Martin F; Bailey, Michael J; Kim, Jong-So; Ho, Anthony K; Gaildrat, Pascaline; Coon, Steven L; Møller, Morten; Klein, David C

    2009-02-01

    Pax4 is a homeobox gene that is known to be involved in embryonic development of the endocrine pancreas. In this tissue, Pax4 counters the effects of the related protein, Pax6. Pax6 is essential for development of the pineal gland. In this study we report that Pax4 is strongly expressed in the pineal gland and retina of the rat. Pineal Pax4 transcripts are low in the fetus and increase postnatally; Pax6 exhibits an inverse pattern of expression, being more strongly expressed in the fetus. In the adult the abundance of Pax4 mRNA exhibits a diurnal rhythm in the pineal gland with maximal levels occurring late during the light period. Sympathetic denervation of the pineal gland by superior cervical ganglionectomy prevents the nocturnal decrease in pineal Pax4 mRNA. At night the pineal gland is adrenergically stimulated by release of norepinephrine from the sympathetic innervation; here, we found that treatment with adrenergic agonists suppresses pineal Pax4 expression in vivo and in vitro. This suppression appears to be mediated by cAMP, a second messenger of norepinephrine in the pineal gland, based on the observation that treatment with a cAMP mimic reduces pineal Pax4 mRNA levels. These findings suggest that the nocturnal decrease in pineal Pax4 mRNA is controlled by the sympathetic neural pathway that controls pineal function acting via an adrenergic-cAMP mechanism. The daily changes in Pax4 expression may influence gene expression in the pineal gland.

  5. Circadian and photic regulation of MAP kinase by Ras- and protein phosphatase-dependent pathways in the chick pineal gland.

    PubMed

    Hayashi, Y; Sanada, K; Fukada, Y

    2001-02-23

    Chick pineal mitogen-activated protein kinase (MAPK) exhibits circadian activation and light-dependent deactivation at nighttime. Here we report that, in the chick pineal gland, levels of active forms of MAPK, MEK, Raf-1 and Ras exhibited synchronous circadian rhythms with peaks during the subjective night, suggesting a sequential activation of components in the classical Ras-MAPK pathway in a circadian manner. In contrast, the light-dependent deactivation of MAPK was not accompanied by any change of MEK activity, but it was attributed to the light-dependent activation of protein phosphatase dephosphorylating MAPK. These results indicate that the photic and clock signals regulate MAPK activity via independent pathways, and suggest a pivotal role of MAPK in photic entrainment and maintenance of the circadian oscillation.

  6. Transcription factor dynamics in pineal gland and liver of the Syrian hamster (Mesocricetus auratus) adapts to prevailing photoperiod.

    PubMed

    Maronde, Erik; Pfeffer, Martina; Glass, Yuri; Stehle, Jörg H

    2007-08-01

    The anticipation of day length and duration of darkness is necessary and advantageous for animals to survive and requires a photoperiodic memory. In the Syrian hamster this adaptation to photoperiod is mirrored by seasonal changes in the animal's reproductive state and its liver metabolism. Both events are linked to season-dependent alterations of the nocturnally elevated synthesis of the pineal hormone melatonin. To decipher molecules that are involved in this temporal gating, hamsters were exposed to long photoperiod (16 hr light:8 hr darkness; LP), or short photoperiod (8 hr light:16 hr darkness; SP). Dynamics in gene expression was investigated in the pineal gland [inducible cAMP early repressor (ICER)], and in the liver (ICER; C/EBPdelta; clock genes) using immunochemistry and reverse transcriptase PCR. While in the pineal, ICER rhythms tightly follow the prior duration of light and dark with decreasing levels at the beginning of the dark period in both LP and SP, ICER is not rhythmic in liver. In the liver, clock genes and their protein products reflect differences in photoperiodic history, with enhanced rhythm amplitudes of PER, CRY, CLOCK, and BMAL1 under SP conditions. Thus, in the Syrian hamster transcription factor expression patterns lock onto the prevailing photoperiod in two peripheral oscillators, the pineal gland and the liver, to function as mediators of suprachiasmatic nucleus-derived information on environmental light and dark. This tissue-specific gating in gene transcription represents a strategy to ameliorate consequences of altering environmental lighting conditions on endocrine and metabolic parameters that endow a strong circadian bias.

  7. Phosphodiesterase 10A in the rat pineal gland: localization, daily and seasonal regulation of expression and influence on signal transduction.

    PubMed

    Spiwoks-Becker, Isabella; Wolloscheck, Tanja; Rickes, Oliver; Kelleher, Debra K; Rohleder, Nils; Weyer, Veronika; Spessert, Rainer

    2011-01-01

    The cyclic nucleotide phosphodiesterase 10A (PDE10A) is highly expressed in striatal spiny projection neurons and represents a therapeutic target for the treatment of psychotic symptoms. As reported previously [J Biol Chem 2009; 284:7606-7622], in this study PDE10A was seen to be additionally expressed in the pineal gland where the levels of PDE10A transcript display daily changes. As with the transcript, the amount of PDE10A protein was found to be under daily and seasonal regulation. The observed cyclicity in the amount of PDE10A mRNA persists under constant darkness, is blocked by constant light and is modulated by the lighting regime. It therefore appears to be driven by the master clock in the suprachiasmatic nucleus (SCN). Since adrenergic agonists and dibutyryl-cAMP induce PDE10A mRNA, the in vitro clock-dependent control of Pde10a appears to be mediated via a norepinephrine → β-adrenoceptor → cAMP/protein kinase A signaling pathway. With regard to the physiological role of PDE10A in the pineal gland, the specific PDE10A inhibitor papaverine was seen to enhance the adrenergic stimulation of the second messenger cAMP and cGMP. This indicates that PDE10A downregulates adrenergic cAMP and cGMP signaling by decreasing the half-life of both nucleotides. Consistent with its effect on cAMP, PDE10A inhibition also amplifies adrenergic induction of the cAMP-inducible gene arylalkylamine N-acetyltransferase (Aanat) which codes the rate-limiting enzyme in pineal melatonin formation. The findings of this study suggest that Pde10a expression is under circadian and seasonal regulation and plays a modulatory role in pineal signal transduction and gene expression.

  8. Scientific research on the pineal gland and melatonin: a bibliometric study for the period 1966-1994.

    PubMed

    López-Muñoz, F; Boya, J; Marín, F; Calvo, J L

    1996-04-01

    By means of teledischarge techniques from the database MEDLINE we selected those documents that contained in their title one or several of the following descriptors: pineal*, epiphys*, or melatonin*, in addition to the descriptor pineal-body in the MESH (Medical Subject Headings) section. A total of 7,617 original documents published between 1966 and 1994 were extracted that dealt with any aspect related with the pineal gland or its main secretary product, melatonin. The main bibliometric laws were applied: Price's Law on the increase in scientific literature, Bradford's Law on the dispersion of the scientific literature, and Lotka's Law on the author's productivity. Furthermore, we have analyzed the participation index (PaI) of the main countries within the global production, the productivity index of the authors (PI), and the number of authors/paper index. Our results demonstrate an exponential increase of the scientific literature on the pineal gland ("r" value = 0.983, in contrast with a "r" value = 0.966 after the linear adjustment). The number of publications on melatonin was less than those on other aspects of pineal research until 1991, when this situation was reversed. The journal with the largest number of original papers is Journal of Pineal Research (1st Bradford's zone) with 533 articles, followed by Journal of Neural Transmission (258) and Neuroendocrinology (221), which constituted the 2nd Bradford's zone. The total number of authors is 9,140, responsible for 23,524 authorships. 3.8% of the authors present a PI > or = 1 (large producers), and 64.9% a PI = 0 (occasional authors). Lotka's Law was widely fulfilled in this material since 10.3% of the authors are responsible of 50.2% of all the papers. The average number of authors per paper has changed from 2.29 in 1966 to 3.85 in 1994. The most productive country (during the interval between 1988-1994) was USA (PaI = 30.6), followed by Japan (7.15), United Kingdom (6.45), Germany (6.37), France (6

  9. Human Lacrimal Gland Gene Expression

    PubMed Central

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian

    2017-01-01

    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  10. Effect of L-NAME-induced hypertension on melatonin receptors and melatonin levels in the pineal gland and the peripheral organs of rats.

    PubMed

    Benova, Miroslava; Herichova, Iveta; Stebelova, Katarina; Paulis, Ludovit; Krajcirovicova, Kristina; Simko, Fedor; Zeman, Michal

    2009-04-01

    Melatonin plays a role in blood pressure (BP) control. The aim of this study was to determine whether melatonin concentrations and melatonin receptor levels are altered in L-NAME-treated, NO-deficient hypertensive rats. Two groups of male adult Wistar rats were investigated: rats (n=36) treated with NO-synthase inhibitor L-NAME (40 mg kg(-1)) and age-matched controls (n=36). BP was measured weekly by tail-cuff plethysmography. After 4 weeks, L-NAME administration increased BP (178+/-1 vs. control 118+/-1 mm Hg). At the end of treatment, rats were killed in regular 4 h intervals over a 24-h period. Melatonin concentrations in the plasma, pineal gland, heart and kidney and melatonin receptor (MT(1)) density in the aorta were determined. A significant daily rhythm of melatonin concentrations was found in the blood, pineal gland, kidney and heart of both control and hypertensive rats. Peak nighttime pineal melatonin concentrations were higher in L-NAME-treated rats than in controls (3.38+/-0.48 vs. 1.75+/-0.33 ng per pineal gland). No differences between both groups were found in melatonin concentrations in blood, kidney and heart or in the MT(1) receptor density in the aorta. Our results suggest that L-NAME treatment enhances melatonin production in the pineal gland, potentially by decreasing an inhibitory effect of NO on melatonin production in the pineal gland. However, the enhanced pineal melatonin formation was insufficient to increase melatonin concentrations in circulation, heart and kidney of L-NAME-treated rats, indicating an increased use of melatonin in hypertensive animals.

  11. Pineal gland calcification, lumbar intervertebral disc degeneration and abdominal aorta calcifying atherosclerosis correlate in low back pain subjects: A cross-sectional observational CT study.

    PubMed

    Turgut, Ahmet Tuncay; Sönmez, Iclal; Cakıt, Burcu Duyur; Koşar, Pınar; Koşar, Uğur

    2008-06-01

    The goal of this cross-sectional observational study was to assess the possible impact of pineal gland calcification upon the intervertebral disc degeneration and abdominal aorta atherosclerosis in subjects with low back pain, and to investigate the course of these processes with aging. The study was carried out on 81 (66 women and 15 men) subjects: younger than 45 years (group X, n=22), 45-65 years of age (group Y, n=45), and older than 65 years (group Z, n=14). In addition to clinical data, computed tomography (CT) scan of the brain as well as X-ray and CT examination of the lumbar spine were recorded in this study. The degree of disc degeneration and calcification rates of aortic wall and pineal gland were independently determined by two radiologists. Both ratio of calcified pineal gland and density of pineal calcification increased progressively with aging. Also, both the degree of aortic wall calcification and disc degeneration score increased with advancing age. On CT scan, a positive correlation between degree of aortic wall calcification and disc degeneration score was found (r=0.306, p<0.01). Importantly, there was a positive association between calcification of the pineal gland and degenerative disc disease in X-ray or CT study (r=0.378 and r=0.295, p<0.005 and p<0.01, respectively), as well as between abdominal aorta atherosclerosis and pineal calcification (r=0.634, p<0.001). Our findings suggest that there is a significant interaction between pineal gland calcification and lumbar intervertebral disc degeneration and also abdominal aorta atherosclerosis. However, further studies with a larger subject cohorts are needed.

  12. MRI-based assessment of the pineal gland in a large population of children aged 0-5 years and comparison with pineoblastoma: part II, the cystic gland.

    PubMed

    Sirin, Selma; de Jong, Marcus C; Galluzzi, Paolo; Maeder, Philippe; Brisse, Hervé J; Castelijns, Jonas A; de Graaf, Pim; Goericke, Sophia L

    2016-07-01

    Pineal cysts are a common incidental finding on brain MRI with resulting difficulties in differentiation between normal glands and pineal pathologies. The aim of this study was to assess the size and morphology of the cystic pineal gland in children (0-5 years) and compare the findings with published pineoblastoma cases. In this retrospective multicenter study, 257 MR examinations (232 children, 0-5 years) were evaluated regarding pineal gland size (width, height, planimetric area, maximal cyst(s) size) and morphology. We performed linear regression analysis with 99 % prediction intervals of gland size versus age for the size parameters. Results were compared with a recent meta-analysis of pineoblastoma by de Jong et al. Follow-up was available in 25 children showing stable cystic findings in 48 %, cyst size increase in 36 %, and decrease in 16 %. Linear regression analysis gave 99 % upper prediction bounds of 10.8 mm, 10.9 mm, 7.7 mm and 66.9 mm(2), respectively, for cyst size, width, height, and area. The slopes (size increase per month) of each parameter were 0.030, 0.046, 0.021, and 0.25, respectively. Most of the pineoblastomas showed a size larger than the 99 % upper prediction margin, but with considerable overlap between the groups. We presented age-adapted normal values for size and morphology of the cystic pineal gland in children aged 0 to 5 years. Analysis of size is helpful in discriminating normal glands from cystic pineal pathologies such as pineoblastoma. We also presented guidelines for the approach of a solid or cystic pineal gland in hereditary retinoblastoma patients.

  13. [The sexual peculiarities of aging changes in circannual rhythms of pineal gland, hypophysis, adrenal cortex and thymus functions in healthy subjects].

    PubMed

    Labunets, I F

    2013-01-01

    The interrelations of circannual rhythms of the functional state of pineal gland, hypophysis, adrenal cortex, thymus in healthy women and men from 20 to 79 years were studied. Fluctuations of melatonin, ACTH, cortisol and thymic serum factor, which were exchanged in aging (the season peaks of hormones and its acrophase) were found in blood of healthy 20-29 years old people. The changes of rhythmicity of indices were in male earlier (pineal gland and hypophysis over 30 years, thymus and adrenal cortex over 40 years) and more impressive than in women. The aging changes of pineal gland function's rhythm in healthy subjects have important role for changes of interrelations of circannual rhythms hypophysis, adrenal cortex and thymus.

  14. Fluoride concentrations in the pineal gland, brain and bone of goosander (Mergus merganser) and its prey in Odra River estuary in Poland.

    PubMed

    Kalisinska, Elzbieta; Bosiacka-Baranowska, Irena; Lanocha, Natalia; Kosik-Bogacka, Danuta; Krolaczyk, Katarzyna; Wilk, Aleksandra; Kavetska, Katarzyna; Budis, Halina; Gutowska, Izabela; Chlubek, Dariusz

    2014-12-01

    The aim of the study was to investigate fluoride concentrations in bone, brain and pineal gland of goosander Mergus merganser wintering in the Odra estuary (Poland) as well as in fish originating from its digestive tract. The fluoride concentrations were determined with potentiometric method. Medians of concentrations in goosander had the highest and the lowest values in pineal gland and brain (>760 and <190 mg/kg, respectively). Fluoride concentration in the pineal gland was significantly greater than in the bone and the brain of the duck. In fish, the fluoride concentration ranged from 37 to 640 mg/kg and significant correlation was revealed between the fluoride concentration and fish weight and length. Based on own results and data of other authors, a daily fluoride intake by the goosander in the Odra estuary was estimated at 15 mg. So high fluoride concentrations like in the duck have not been found in mammal brains.

  15. CSF generation by pineal gland results in a robust melatonin circadian rhythm in the third ventricle as an unique light/dark signal.

    PubMed

    Tan, Dun-Xian; Manchester, Lucien C; Reiter, Russel J

    2016-01-01

    Pineal gland is an important organ for the regulation of the bio-clock in all vertebrate species. Its major secretory product is melatonin which is considered as the chemical expression of darkness due to its circadian peak exclusively at night. Pineal melatonin can be either released into the blood stream or directly enter into the CSF of the third ventricle via the pineal recess. We have hypothesized that rather than the peripheral circulatory melatonin circadian rhythm serving as the light/dark signal, it is the melatonin rhythm in CSF of the third ventricle that serves this purpose. This is due to the fact that melatonin circadian rhythm in the CSF is more robust in terms of its extremely high concentration and its precise on/off peaks. Thus, extrapineal-generated melatonin or diet-derived melatonin which enters blood would not interfere with the bio-clock function of vertebrates. In addition, based on the relationship of the pineal gland to the CSF and the vascular structure of this gland, we also hypothesize that pineal gland is an essential player for CSF production. We feel it participates in both the formation and reabsorption of CSF. The mechanisms associated with these processes are reviewed and discussed in this brief review.

  16. Role of monochromatic light on daily variation of clock gene expression in the pineal gland of chick.

    PubMed

    Jiang, Nan; Wang, Zixu; Cao, Jing; Dong, Yulan; Chen, Yaoxing

    2016-11-01

    The avian pineal gland is a master clock that can receive external photic cues and translate them into output rhythms. To clarify whether a shift in light wavelength can influence the circadian expression in chick pineal gland, a total of 240 Arbor Acre male broilers were exposed to white light (WL), red light (RL), green light (GL) or blue light (BL). After 2weeks light illumination, circadian expressions of seven core clock genes in pineal gland and the level of melatonin in plasma were examined. The results showed after illumination with monochromatic light, 24h profiles of all clock gene mRNAs retained circadian oscillation, except that RL tended to disrupt the rhythm of cCry2. Compared to WL, BL advanced the acrophases of the negative elements (cCry1, cCry2, cPer2 and cPer3) by 0.1-1.5h and delayed those of positive elements (cClock, cBmal1 and cBmal2) by 0.2-0.8h. And, RL advanced all clock genes except cClock and cPer2 by 0.3-2.1h, while GL delayed all clock genes by 0.5-1.5h except cBmal2. Meanwhile, GL increased the amplitude and mesor of positive and reduced both parameters of negative clock genes, but RL showed the opposite pattern. Although the acrophase of plasma melatonin was advanced by both GL and RL, the melatonin level was significantly increased in GL and decreased in RL. This tendency was consistent with the variations in the positive clock gene mRNA levels under monochromatic light and contrasted with those of negative clock genes. Therefore, we speculate that GL may enhance positive clock genes expression, leading to melatonin synthesis, whereas RL may enhance negative genes expression, suppressing melatonin synthesis.

  17. Adrenergic regulation and diurnal rhythm of p38 mitogen-activated protein kinase phosphorylation in the rat pineal gland.

    PubMed

    Chik, C L; Mackova, M; Price, D; Ho, A K

    2004-11-01

    In this study, we investigated adrenergic and photoneural regulation of p38MAPK phosphorylation in the rat pineal gland. Norepinephrine (NE), the endogenous neurotransmitter, dose-dependently increased the levels of phosphorylated MAPK kinase 3/6 (MKK3/6) and p38MAPK in rat pinealocytes. Time-course studies showed a gradual increase in MKK3/6 and p38MAPK phosphorylation that peaked between 1 and 2 h and persisted for 4 h post NE stimulation. In cells treated with NE for 2 and 4 h, the inclusion of prazosin or propranolol reduced NE-induced MKK3/6 and p38MAPK phosphorylation, indicating involvement of both alpha- and beta-adrenergic receptors for the sustained response. Whereas treatment with dibutyryl cAMP or ionomycin mimicked the NE-induced MKK3/6 and p38MAPK phosphorylation, neither dibutyryl cGMP nor 4beta-phorbol 12-myristate 13-acetate had an effect. The NE-induced increase in MKK3/6 and p38MAPK phosphorylation was blocked by KT5720 (a protein kinase A inhibitor) and KN93 (a Ca(2+)/calmodulin-dependent kinase inhibitor), but not by KT5823 (a protein kinase G inhibitor) or calphostin C (a protein kinase C inhibitor). In animals housed under a lighting regimen with 12 h of light, MKK3/6 and p38MAPK phosphorylation increased in the rat pineal gland at zeitgeber time 18. The nocturnal increase in p38MAPK phosphorylation was blocked by exposing the animal to constant light and reduced by treatment with propranolol, a beta-adrenergic blocker. Together, our results indicate that activation of p38MAPK is under photoneural control in the rat pineal gland and that protein kinase A and intracellular Ca(2+) signaling pathways are involved in NE regulation of p38MAPK.

  18. The pineal gland of the Indian palm squirrel, Funambulus pennanti (Wroughton).

    PubMed

    Bhaskar, K S; Katti, S R; Sathyanesan, A G

    In the adult palm squirrel, F. pennanti the pineal is a club shaped, elongated structure with a connective tissue capsule. It consists of various types of pinealocytes, glial cells, neurons, nerve fibres, blood vessels and connective tissue. Two types of pinealocytes could be identified by light microscopy. They are large rounded with centrally placed nucleus, and small rounded pinealocytes. They have medium sized processes stainable with Alcian blue, periodic acid Schiff and Nissl methods. The pinealocytes are not stainable with bromophenol blue. However, they are moderately stainable with PAS, Sudan black and Baker's acid hematin. Neurons are seen either singly or in groups with axonal processes. Cystic cavities often lined by cells are a normal feature of adult squirrel pineal, and the lining cells are both pinealocytes and glial cells. Often neuronal endings are seen terminating on these lining cells. PAS positive globules were also seen inside the cysts. In some squirrel pineals, fibrous cysts with an inner core of cells are also seen. Occasionally groups of lymphocytes were also encountered in the pineal. In the fetal pineal, the cells are both larger and smaller ones and arranged in a cortex and medulla pattern and no cystic cavities are seen. The third ventricle enters the base of the pineal as pineal recess.

  19. [Circadian rhythms and light responses of clock gene and arylalkylamine N-acetyltransferase gene expressions in the pineal gland of rats].

    PubMed

    Wang, Guo-Qing; Du, Yu-Zhen; Tong, Jian

    2005-02-25

    This study was to investigate the circadian rhythms and light responses of Clock gene and arylalkylamine N-acetyltransferase (NAT) gene expressions in the rat pineal gland under the 12 h-light : 12 h-dark cycle condition (LD) and constant darkness (DD). Sprague-Dawley rats housed under the light regime of LD (n=36) for 4 weeks and of DD (n=36) for 8 weeks were sampled for the pineal gland once a group (n=6) every 4 h in a circadian day. The total RNA was extracted from each sample and the semiquantitative reverse transcription polymerase chain reaction (RT-PCR) was used to determine the temporal changes in mRNA levels of Clock and NAT genes during different circadian times or zeitgeber times. The data were analysed by the cosine function software, Clock Lab software and the amplitude F test was used to reveal the circadian rhythm. The main results obtained are as follows. (1) In DD or LD condition, both of Clock and NAT genes mRNA levels in the pineal gland showed robust circadian oscillation (P< 0.05) with the peak at the subjective night or at night-time. (2) In comparison with DD regime, the amplitudes and the mRNA levels at peaks of Clock and NAT genes expressions in LD in the pineal gland were significantly reduced (P< 0.05). (3) In DD or LD condition, the circadian expressions of NAT gene were similar in pattern to those of Clock gene in the pineal gland (P> 0.05). These findings suggest that the expressions of Clock and NAT genes in the pineal gland not only show remarkably synchronous endogenous circadian rhythmic changes, but also response to the ambient light signal in a reduced manner.

  20. Daily oscillation and photoresponses of clock gene, Clock, and clock-associated gene, arylalkylamine N-acetyltransferase gene transcriptions in the rat pineal gland.

    PubMed

    Wang, Guo-Qing; Du, Yu-Zhen; Tong, Jian

    2007-01-01

    This study was conducted to investigate the circadian rhythms and light responses of Clock and arylalkylamine N-acetyltransferase (NAT) gene expressions in the rat pineal gland under the environmental conditions of a 12 h light (05:00-17:00 h): 12 h-dark (17:00-05:00 h) cycle (LD) and constant darkness (DD). The pineal gland of Sprague-Dawley rats housed under a LD regime (n=42) for four weeks and of a regime (n=42) for eight weeks were sampled at six different times, every 4 h (n=7 animals per time point), during a 24 h period. Total RNA was extracted from each sample, and the semiquantitative reverse transcription polymerase chain reaction (RT-PCR) was used to determine temporal changes in mRNA levels of Clock and NAT genes during different circadian or zeitgeber times. The data and parameters were analyzed by the cosine function software, Clock Lab software, and the amplitude F test was used to reveal the circadian rhythm. In the DD or LD condition, both the Clock and NAT mRNA levels in the pineal gland showed robust circadian oscillation (p<0.05) with the peak at the subjective night or at nighttime. In comparison with the DD regime, the amplitudes and mRNA levels at the peaks of Clock and NAT expressions in LD in the pineal gland were significantly reduced (p<0.05). In the DD or LD condition, the circadian expressions of NAT were similar in pattern to those of Clock in the pineal gland (p>0.05). These findings indicate that the transcriptions of Clock and NAT genes in the pineal gland not only show remarkably synchronous endogenous circadian rhythmic changes, but also respond to the ambient light signal in a reduced manner.

  1. Diagnostic accuracy of susceptibility-weighted magnetic resonance imaging for the evaluation of pineal gland calcification

    PubMed Central

    Böker, Sarah M.; Bender, Yvonne Y.; Diederichs, Gerd; Fallenberg, Eva M.; Wagner, Moritz; Hamm, Bernd; Makowski, Marcus R.

    2017-01-01

    Objectives To determine the diagnostic performance of susceptibility-weighted magnetic resonance imaging (SWMR) for the detection of pineal gland calcifications (PGC) compared to conventional magnetic resonance imaging (MRI) sequences, using computed tomography (CT) as a reference standard. Methods 384 patients who received a 1.5 Tesla MRI scan including SWMR sequences and a CT scan of the brain between January 2014 and October 2016 were retrospectively evaluated. 346 patients were included in the analysis, of which 214 showed PGC on CT scans. To assess correlation between imaging modalities, the maximum calcification diameter was used. Sensitivity and specificity and intra- and interobserver reliability were calculated for SWMR and conventional MRI sequences. Results SWMR reached a sensitivity of 95% (95% CI: 91%-97%) and a specificity of 96% (95% CI: 91%-99%) for the detection of PGC, whereas conventional MRI achieved a sensitivity of 43% (95% CI: 36%-50%) and a specificity of 96% (95% CI: 91%-99%). Detection rates for calcifications in SWMR and conventional MRI differed significantly (95% versus 43%, p<0.001). Diameter measurements between SWMR and CT showed a close correlation (R2 = 0.85, p<0.001) with a slight but not significant overestimation of size (SWMR: 6.5 mm ± 2.5; CT: 5.9 mm ± 2.4, p = 0.02). Interobserver-agreement for diameter measurements was excellent on SWMR (ICC = 0.984, p < 0.0001). Conclusions Combining SWMR magnitude and phase information enables the accurate detection of PGC and offers a better diagnostic performance than conventional MRI with CT as a reference standard. PMID:28278291

  2. Diagnostic accuracy of susceptibility-weighted magnetic resonance imaging for the evaluation of pineal gland calcification.

    PubMed

    Adams, Lisa C; Böker, Sarah M; Bender, Yvonne Y; Diederichs, Gerd; Fallenberg, Eva M; Wagner, Moritz; Hamm, Bernd; Makowski, Marcus R

    2017-01-01

    To determine the diagnostic performance of susceptibility-weighted magnetic resonance imaging (SWMR) for the detection of pineal gland calcifications (PGC) compared to conventional magnetic resonance imaging (MRI) sequences, using computed tomography (CT) as a reference standard. 384 patients who received a 1.5 Tesla MRI scan including SWMR sequences and a CT scan of the brain between January 2014 and October 2016 were retrospectively evaluated. 346 patients were included in the analysis, of which 214 showed PGC on CT scans. To assess correlation between imaging modalities, the maximum calcification diameter was used. Sensitivity and specificity and intra- and interobserver reliability were calculated for SWMR and conventional MRI sequences. SWMR reached a sensitivity of 95% (95% CI: 91%-97%) and a specificity of 96% (95% CI: 91%-99%) for the detection of PGC, whereas conventional MRI achieved a sensitivity of 43% (95% CI: 36%-50%) and a specificity of 96% (95% CI: 91%-99%). Detection rates for calcifications in SWMR and conventional MRI differed significantly (95% versus 43%, p<0.001). Diameter measurements between SWMR and CT showed a close correlation (R2 = 0.85, p<0.001) with a slight but not significant overestimation of size (SWMR: 6.5 mm ± 2.5; CT: 5.9 mm ± 2.4, p = 0.02). Interobserver-agreement for diameter measurements was excellent on SWMR (ICC = 0.984, p < 0.0001). Combining SWMR magnitude and phase information enables the accurate detection of PGC and offers a better diagnostic performance than conventional MRI with CT as a reference standard.

  3. Morphology and function: MR pineal volume and melatonin level in human saliva are correlated.

    PubMed

    Liebrich, Luisa-Sophie; Schredl, Michael; Findeisen, Peter; Groden, Christoph; Bumb, Jan Malte; Nölte, Ingo S

    2014-10-01

    To investigate the relation between circadian saliva melatonin levels and pineal volume as determined by MRI. Plasma melatonin levels follow a circadian rhythm with a high interindividual variability. In 103 healthy individuals saliva melatonin levels were determined at four time points within 24 h and MRI was performed once (3.0 Tesla, including three-dimensional T2 turbo spin echo [3D-T2-TSE], susceptibility-weighted imaging [SWI]). Pineal volume as well as cyst volume were assessed from multiplanar reconstructed 3D-T2-TSE images. Pineal calcification volume tissue was determined on SWI. To correct for hormonal inactive pineal tissue, cystic and calcified areas were excluded. Sleep quality was assessed with the Landeck Inventory for sleep quality disturbance. Solid and uncalcified pineal volume correlated to melatonin maximum (r = 0.28; P < 0.05) and area under the curve (r = 0.29; P < 0.05). Of interest, solid and uncalcified pineal volume correlated negatively with the sleep rhythm disturbances subscore (r = -0.17; P < 0.05) despite a very homogenous population. Uncalcified solid pineal tissue measured by 3D-T2-TSE and SWI is related to human saliva melatonin levels. The analysis of the sleep quality and pineal volume suggests a linkage between better sleep quality and hormonal active pineal tissue. © 2013 Wiley Periodicals, Inc.

  4. The relationship between ECT nonresponsiveness and calcification of the pineal gland in bipolar patients.

    PubMed

    Sandyk, R; Pardeshi, R

    1990-10-01

    It has been suggested recently that the therapeutic effects of electroconvulsive therapy (ECT) may be mediated in part through stimulation of pineal melatonin secretion. If melatonin does mediate the antidepressant effects of ECT and depression itself is associated in some patients with reduced melatonin secretion, patients with reduced melatonin secretion could respond less readily to ECT. There is evidence to suggest an inverse relationship between melatonin secretion and the degree of pineal calcification. Specifically, heavy pineal calcifications in animals have been reported to be associated with reduced plasma melatonin levels. In this study, an investigation was conducted to establish more precisely the relationship between the clinical response to ECT in 17 bipolar patients and the degrees of pineal calcification present on CT scan. There was a significant association between ECT nonresponsiveness and the presence of pathologically enlarged pineal calcification (i.e., greater than 1 cm in diameter) (p.01). In addition, there was a significant difference in ECT responsiveness in patients without pineal calcification compared to those with pathologically enlarged pineal calcification (F = 6.10; p = .01, one-way ANOVA). These findings indicate an association between enlarged pineal calcification and ECT nonresponsiveness and suggest that reduced melatonin secretion may be associated with ECT nonresponsiveness. An enlarged pineal calcification could be a useful radiological marker of ECT nonresponsiveness and administration of melatonin precursors (i.e., L-tryptophan; 5-HTP) and its cofactors (i.e., pyridoxine, folate) as well as melatonin-release enhancing agents (i.e., 5-methoxypsoralen) prior to ECT might augment its antidepressant effects in bipolar patients.

  5. Expression of protein gene product 9.5, tyrosine hydroxylase and serotonin in the pineal gland of rats with streptozotocin-induced diabetes.

    PubMed

    Tsai, Mang-Hung; Wei, I-Hua; Jiang-Shieh, Ya-Fen; Jou, Ming-Jia; Ko, Miau-Hwa; Chen, Hui-Min; Wu, Ching-Hsiang

    2008-03-01

    Hyperglycemia is a well-known factor in reducing nocturnal pineal melatonin production. However, the mechanism underlying diabetes-induced insufficiency of pineal melatonin has remained uncertain. This study was undertaken to examine the structure, innervation and functional activity of the pineal gland in streptozotocin (STZ)-induced diabetes in rats by immunohistochemistry, Western blotting and image analysis. The number of the pinealocytes and the volume of pineal were also estimated using stereologic quantification including the optical fractionator and Cavalieri's method. It has also shown a progressive reduction of the total area of the pineal gland and the nuclear size of pinealocytes beginning at 4 weeks of induced diabetes. Surprisingly, the immunoreactive intensities and protein amounts of serotonin (5-HT) and protein gene product (PGP) 9.5 in the pineal gland were progressively increased from 4 weeks of diabetes. Meanwhile, nerve fibers immunoreactive for PGP 9.5 had disappeared. Diabetes-induced neuropathy was observed in nerve fibers containing tyrosine hydroxylase (TH). The affected nerve fibers appeared swollen and smooth in outline but they showed a distribution pattern, packing density and protein levels comparable to those of the age-matched control animals. Ultrastructural observations have revealed diabetes-induced deformity of Schwann cells and basal lamina, accumulation of synaptic vesicles and deprivation of the dense-core vesicles in the axon terminals and varicosities. The increase in immunoreactivities in 5-HT and PGP 9.5 and shrinkage of pineal gland in the diabetic rats suggest an inefficient enzyme activity of the pinealocytes. This coupled with the occurrence of anomalous TH nerve fibers, may lead to an ineffective sympathetic innervation of the pinealocytes resulting in reduced melatonin production in STZ-induced diabetes.

  6. A possible role of collagen fibrils in the process of calcification observed in the capsule of the pineal gland in aging rats.

    PubMed

    Humbert, W; Cuisinier, F; Voegel, J C; Pévet, P

    1997-06-01

    The relationship between collagen fibrils and calcified concretions exclusively appearing in the pineal gland of adult/aging rats has been investigated. Deposits of lanthanum, which replace calcium ions are distributed along collagen fibrils with a repeating period of about 70 nm. Calcium has been detected histochemically between collagen bundles surrounding extracellular concretions by means of the pyroantimonate method and by X-ray microanalysis. It is associated with phosphorus. The data presented here suggest that collagen fibrils are involved in the genesis and growth of extracellular concretions located in the connective tissue surrounding the pineal gland of aging rats.

  7. Headaches and pineal cyst: a (more than) coincidental relationship?

    PubMed

    Peres, Mario F P; Zukerman, Eliova; Porto, Pedro P; Brandt, Reynaldo A

    2004-10-01

    Pineal cysts are common findings in neuroimaging studies. The cysts are more frequent in women in their third decade of life. Pineal cysts can be symptomatic, headache is the most common symptom. The pineal gland has important physiological implications in humans, but little is known about the impact of pineal cysts in human physiology. We report 5 headache patients with pineal cyst, 4 women, 1 man, mean age 37.6, mean cyst diameter 10.1 mm. Two patients had migraine without aura, 1 migraine with aura, 1 chronic migraine, and 1 hemicrania continua. Three patients had strictly unilateral headaches. We hypothesize pineal cysts may be not incidental in headache patients, inducing an abnormal melatonin secretion.

  8. Redox capacity of the pineal gland in rats. Effect of castration.

    PubMed

    Ianăs, O; Olinescu, R; Bădescu, I

    1993-01-01

    The day/night cycle-induced effects, and the effect of castration on pineal oxidative potential in rats, were studied herein. Experiments were made in adult and castrated Wistar rats kept under normal light conditions during winter (on December and January). Castration was performed 72 hrs before sacrification. Groups of 6 intact or castrated animals were sacrificed at 4 hr-intervals during 24 hrs (the day/night cycle). Blood and pineal were then taken. Peroxides and total pineal antioxidants in plasma and pineal homogenate were assessed by chemiluminescence. The results obtained prove that photoperiod is involved in the organism oxidative potential, and that pineal is involved in the diurnal rhythm of this potential. Pineal peroxide and antioxidative concentrations show circadian variations with minimum and maximal values during the day or the night, which are also reflected at the plasma level. In the first half of the morning are registered increased peroxide and decreased antioxidative levels while at night the diagrams are reversed. As compared to the intact group, in the castrated one antioxidants and peroxides maintain their biorhythms but their concentrations are significantly changed. The diagram of pineal peroxides in the castrated group is situated above that of the intact one, with statistically significant differences only at midday (12:00). Taking into account the antioxidative characteristics of melatonin, one can suppose that maximum pineal antioxidative levels during the night might be due to maximum concentrations of nocturnal melatonin. The significant increase in peroxide concentration and the decrease in antioxidants after castration would partly explain the physiologic status of the elderly with decreased melatonin production and increased oxidative processes.

  9. Benign glial cysts of the pineal gland: unusual imaging characteristics with histologic correlation.

    PubMed

    Fleege, M A; Miller, G M; Fletcher, G P; Fain, J S; Scheithauer, B W

    1994-01-01

    To describe the spectrum of MR and CT findings in clinically symptomatic pineal cysts and to determine whether there are certain diagnostic imaging features that allow one to distinguish a benign pineal cyst from other neoplasms of the pineal region. MR and CT scans of 19 patients with clinically symptomatic pineal cysts were retrospectively reviewed. Age range was 15 to 46 years with a mean age of 28 years. There were five male and 14 female patients. Presenting features included headache (15 patients), diplopia (four), nausea and vomiting (four), papilledema (four), seizure (three), Parinaud syndrome (two), ataxia (one), and hemiparesis (one). All cysts were resected or biopsied to provide histopathologic confirmation of the diagnosis. Preoperative diagnoses included pineal neoplasm (14 of 19), pineal cyst (3 of 19), and dermoid cyst (2 of 19). The lesions ranged from 0.8 to 3.0 cm, with a mean diameter of 1.6 cm. Three cysts showed fluid/fluid levels consistent with hemorrhage. Slightly less than half (9 of 19) had evidence of hydrocephalus. The MR signal changes were variable but typically demonstrated low signal on T1-weighted images and high signal on T2-weighted images. More than half (7 of 12) demonstrated enhancement with gadolinium. Calcification of the cyst wall was observed in only four of nine patients who had CT studies but identified histologically in all cases. The MR appearance of benign pineal cysts is variable, ranging from that of an uncomplicated cystic mass to a mass associated with hemorrhage, enhancement, or hydrocephalus. This variability may make them indistinguishable from other pineal-region tumors.

  10. Ultradian oscillation in expression of four melatonin receptor subtype genes in the pineal gland of the grass puffer, a semilunar-synchronized spawner, under constant darkness.

    PubMed

    Ikegami, Taro; Maruyama, Yusuke; Doi, Hiroyuki; Hattori, Atsuhiko; Ando, Hironori

    2015-01-01

    Melatonin receptor gene expression as well as melatonin synthesis and secretion activities were examined in the pineal gland of the grass puffer, which exhibits unique lunar/tidal cycle-synchronized mass spawing: spawning occurs before high tide on the day of spring tide during spawing season. Melatonin synthesizing activity was assessed by the abundance of arylalkylamine N-acetyltransferase 2 (AANAT2) mRNA. The amount of aanat2 mRNA was low during light phase and initiated to increase after the light was turned off. The secretion of melatonin from primary pineal organ culture was stimulated after the light was turned off and ceased immediately after the light was turned on. The expression levels of four melatonin receptor subtype genes (mel 1a 1.4, mel 1a 1.7, mel1b, and mel1c) showed synchronous variations, and the levels tended to be high during the dark phase under light/dark conditions. These results suggest that the action of melatonin on the pineal gland is highly dependent on light and photoperiod, possibly with stronger action during night time. Under constant darkness, the expression of four melatonin receptor subtype genes showed unique ultradian oscillations with the period of 14.0-15.4 h, suggesting the presence of a circatidal oscillator in the pineal gland. The present results indicate that melatonin may serve local chronobiological functions in the pineal gland. These cyclic expressions of melatonin receptor genes in the pineal gland may be important in the control of the lunar/tidal cycle-synchronized mass spawning in the grass puffer.

  11. Vitamin A is a necessary factor for sympathetic-independent rhythmic activation of mitogen-activated protein kinase in the rat pineal gland.

    PubMed

    Guillaumond, F; Giraudet, F; Becquet, D; Sage, D; Laforge-Anglade, G; Bosler, O; François-Bellan, A M

    2005-02-01

    The circadian clock in the suprachiasmatic nucleus (SCN) controls day-to-day physiology and behavior by sending timing messages to multiple peripheral oscillators. In the pineal gland, a major SCN target, circadian events are believed to be driven exclusively by the rhythmic release of norepinephrine from superior cervical ganglia (SCG) neurons relaying clock messages through a polysynaptic pathway. Here we show in rat an SCN-driven daily rhythm of pineal MAPK activation that is not dependent on the SCG and whose maintenance requires vitamin A as a blood-borne factor. This finding challenges the dogma that SCG-released norepinephrine is an exclusive mediator of SCN-pineal communication and allows the assumption that humoral mechanisms are involved in pineal integration of temporal messages.

  12. Expression and cellular localization of the transcription factor NeuroD1 in the developing and adult rat pineal gland.

    PubMed

    Castro, Analía E; Benitez, Sergio G; Farias Altamirano, Luz E; Savastano, Luis E; Patterson, Sean I; Muñoz, Estela M

    2015-05-01

    Circadian rhythms govern many aspects of mammalian physiology. The daily pattern of melatonin synthesis and secretion is one of the classic examples of circadian oscillations. It is mediated by a class of neuroendocrine cells known as pinealocytes which are not yet fully defined. An established method to evaluate functional and cytological characters is through the expression of lineage-specific transcriptional regulators. NeuroD1 is a basic helix-loop-helix transcription factor involved in the specification and maintenance of both endocrine and neuronal phenotypes. We have previously described developmental and adult regulation of NeuroD1 mRNA in the rodent pineal gland. However, the transcript levels were not influenced by the elimination of sympathetic input, suggesting that any rhythmicity of NeuroD1 might be found downstream of transcription. Here, we describe NeuroD1 protein expression and cellular localization in the rat pineal gland during development and the daily cycle. In embryonic and perinatal stages, protein expression follows the mRNA pattern and is predominantly nuclear. Thereafter, NeuroD1 is mostly found in pinealocyte nuclei in the early part of the night and in cytoplasm during the day, a rhythm maintained into adulthood. Additionally, nocturnal nuclear NeuroD1 levels are reduced after sympathetic disruption, an effect mimicked by the in vivo administration of α- and β-adrenoceptor blockers. NeuroD1 phosphorylation at two sites, Ser(274) and Ser(336) , associates with nuclear localization in pinealocytes. These data suggest that NeuroD1 influences pineal phenotype both during development and adulthood, in an autonomic and phosphorylation-dependent manner.

  13. The light-induced transcriptome of the zebrafish pineal gland reveals complex regulation of the circadian clockwork by light

    PubMed Central

    Ben-Moshe, Zohar; Alon, Shahar; Mracek, Philipp; Faigenbloom, Lior; Tovin, Adi; Vatine, Gad D.; Eisenberg, Eli; Foulkes, Nicholas S.; Gothilf, Yoav

    2014-01-01

    Light constitutes a primary signal whereby endogenous circadian clocks are synchronized (‘entrained’) with the day/night cycle. The molecular mechanisms underlying this vital process are known to require gene activation, yet are incompletely understood. Here, the light-induced transcriptome in the zebrafish central clock organ, the pineal gland, was characterized by messenger RNA (mRNA) sequencing (mRNA-seq) and microarray analyses, resulting in the identification of multiple light-induced mRNAs. Interestingly, a considerable portion of the molecular clock (14 genes) is light-induced in the pineal gland. Four of these genes, encoding the transcription factors dec1, reverbb1, e4bp4-5 and e4bp4-6, differentially affected clock- and light-regulated promoter activation, suggesting that light-input is conveyed to the core clock machinery via diverse mechanisms. Moreover, we show that dec1, as well as the core clock gene per2, is essential for light-entrainment of rhythmic locomotor activity in zebrafish larvae. Additionally, we used microRNA (miRNA) sequencing (miR-seq) and identified pineal-enhanced and light-induced miRNAs. One such miRNA, miR-183, is shown to downregulate e4bp4-6 mRNA through a 3′UTR target site, and importantly, to regulate the rhythmic mRNA levels of aanat2, the key enzyme in melatonin synthesis. Together, this genome-wide approach and functional characterization of light-induced factors indicate a multi-level regulation of the circadian clockwork by light. PMID:24423866

  14. The light-induced transcriptome of the zebrafish pineal gland reveals complex regulation of the circadian clockwork by light.

    PubMed

    Ben-Moshe, Zohar; Alon, Shahar; Mracek, Philipp; Faigenbloom, Lior; Tovin, Adi; Vatine, Gad D; Eisenberg, Eli; Foulkes, Nicholas S; Gothilf, Yoav

    2014-04-01

    Light constitutes a primary signal whereby endogenous circadian clocks are synchronized ('entrained') with the day/night cycle. The molecular mechanisms underlying this vital process are known to require gene activation, yet are incompletely understood. Here, the light-induced transcriptome in the zebrafish central clock organ, the pineal gland, was characterized by messenger RNA (mRNA) sequencing (mRNA-seq) and microarray analyses, resulting in the identification of multiple light-induced mRNAs. Interestingly, a considerable portion of the molecular clock (14 genes) is light-induced in the pineal gland. Four of these genes, encoding the transcription factors dec1, reverbb1, e4bp4-5 and e4bp4-6, differentially affected clock- and light-regulated promoter activation, suggesting that light-input is conveyed to the core clock machinery via diverse mechanisms. Moreover, we show that dec1, as well as the core clock gene per2, is essential for light-entrainment of rhythmic locomotor activity in zebrafish larvae. Additionally, we used microRNA (miRNA) sequencing (miR-seq) and identified pineal-enhanced and light-induced miRNAs. One such miRNA, miR-183, is shown to downregulate e4bp4-6 mRNA through a 3'UTR target site, and importantly, to regulate the rhythmic mRNA levels of aanat2, the key enzyme in melatonin synthesis. Together, this genome-wide approach and functional characterization of light-induced factors indicate a multi-level regulation of the circadian clockwork by light.

  15. Macrophages/microglia as 'sensors' of injury in the pineal gland of rats following a non-penetrative blast.

    PubMed

    Kaur, C; Singh, J; Lim, M K; Ng, B L; Ling, E A

    1997-04-01

    The pineal gland of adult rats was examined immunohistochemically and electron microscopically following exposure of the animals to a single blast equivalent to 110 kg TNT explosive. The most dramatic feature in rats killed at 7, 14 and 21 days after the blast was the upsurge of a large number of macrophages/microglia intensely immunostained with OX-42, OX-18, OX-6 and ED1 antibodies. These antibodies recognise the complement type three (CR3) receptors, major histocompatibility complex class I and class II (MHC I and MHC II) antigens and monocyte/macrophage antigens. Cell counts in OX-42 immunostained sections showed a two-fold increase at these intervals but returned to normal values at 28 days. The immunolabelled cells appeared extremely hypertrophic after the blast when compared with those in normal rats. In the latter and in rats killed at 28 days after the blast, immunoreactive cells were sparsely distributed. Ultrastructural study confirmed a wider occurrence of perivascular macrophages/microglia after the blast and the cells were laden with massive amounts of phagosomes resembling degenerating pinealocyte processes. It is concluded that the seemingly quiescent macrophages/microglia present normally in pineal gland were activated by the external blast force. The induced changes including the increase in cell numbers and endocytosis, however, were reversible in longer surviving animals.

  16. Circadian-related heteromerization of adrenergic and dopamine D₄ receptors modulates melatonin synthesis and release in the pineal gland.

    PubMed

    González, Sergio; Moreno-Delgado, David; Moreno, Estefanía; Pérez-Capote, Kamil; Franco, Rafael; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ortiz, Jordi; Ferré, Sergi; Canela, Enric; McCormick, Peter J

    2012-01-01

    The role of the pineal gland is to translate the rhythmic cycles of night and day encoded by the retina into hormonal signals that are transmitted to the rest of the neuronal system in the form of serotonin and melatonin synthesis and release. Here we describe that the production of both melatonin and serotonin by the pineal gland is regulated by a circadian-related heteromerization of adrenergic and dopamine D₄ receptors. Through α(₁B)-D₄ and β₁-D₄ receptor heteromers dopamine inhibits adrenergic receptor signaling and blocks the synthesis of melatonin induced by adrenergic receptor ligands. This inhibition was not observed at hours of the day when D₄ was not expressed. These data provide a new perspective on dopamine function and constitute the first example of a circadian-controlled receptor heteromer. The unanticipated heteromerization between adrenergic and dopamine D₄ receptors provides a feedback mechanism for the neuronal hormone system in the form of dopamine to control circadian inputs.

  17. Diurnal variation in p42/44 mitogen-activated protein kinase in the rat pineal gland.

    PubMed

    Ho, A K; Mackova, M; Price, L; Chik, C L

    2003-10-31

    In this study, we investigated whether there was a diurnal difference in mitogen-activated protein kinase (p42/44(MAPK)) phosphorylation in the rat pineal gland. Under a lighting regimen with 12h of darkness, there was a two- to four-fold increase in phosphorylated levels of MAPK kinase 1/2 (MEK1/2) and p42/44(MAPK) 2h after onset of darkness, an increase that was sustained for 8h. The increases in phosphorylated levels of MEK1/2 and p42/44(MAPK) occurred without increases in MEK1/2 and p42/44(MAPK) proteins. When rats were treated with propranolol 1h before onset of darkness or subjected to continuous light exposure during the dark phase, the nocturnal increase in MEK1/2 and p42/44(MAPK) phosphorylation was reduced. Acute light exposure during darkness caused a decline in MEK1/2 and p42/44(MAPK) phosphorylation within 30 min of light exposure. These results indicate the presence of a diurnal difference in MEK1/2 and p42/44(MAPK) phosphorylation in the rat pineal gland that is under adrenergic control.

  18. LC/MS/MS analysis of the endogenous dimethyltryptamine hallucinogens, their precursors, and major metabolites in rat pineal gland microdialysate.

    PubMed

    Barker, Steven A; Borjigin, Jimo; Lomnicka, Izabela; Strassman, Rick

    2013-12-01

    We report a qualitative liquid chromatography-tandem mass spectrometry (LC/MS/MS) method for the simultaneous analysis of the three known N,N-dimethyltryptamine endogenous hallucinogens, their precursors and metabolites, as well as melatonin and its metabolic precursors. The method was characterized using artificial cerebrospinal fluid (aCSF) as the matrix and was subsequently applied to the analysis of rat brain pineal gland-aCSF microdialysate. The method describes the simultaneous analysis of 23 chemically diverse compounds plus a deuterated internal standard by direct injection, requiring no dilution or extraction of the samples. The results demonstrate that this is a simple, sensitive, specific and direct approach to the qualitative analysis of these compounds in this matrix. The protocol also employs stringent MS confirmatory criteria for the detection and confirmation of the compounds examined, including exact mass measurements. The excellent limits of detection and broad scope make it a valuable research tool for examining the endogenous hallucinogen pathways in the central nervous system. We report here, for the first time, the presence of N,N-dimethyltryptamine in pineal gland microdialysate obtained from the rat.

  19. Comparative histology of pineal calcification.

    PubMed

    Vígh, B; Szél, A; Debreceni, K; Fejér, Z; Manzano e Silva, M J; Vígh-Teichmann, I

    1998-07-01

    The pineal organ (pineal gland, epiphysis cerebri) contains several calcified concretions called "brain sand" or acervuli (corpora arenacea). These concretions are conspicuous with imaging techniques and provide a useful landmark for orientation in the diagnosis of intracranial diseases. Predominantly composed of calcium and magnesium salts, corpora arenacea are numerous in old patients. In smaller number they can be present in children as well. The degree of calcification was associated to various diseases. However, the presence of calcified concretions seems not to reflect a specific pathological state. Corpora arenacea occur not only in the actual pineal tissue but also in the leptomeninges, in the habenular commissure and in the choroid plexus. Studies with the potassium pyroantimonate (PPA) method on the ultrastructural localization of free calcium ions in the human pineal, revealed the presence of calcium alongside the cell membranes, a finding that underlines the importance of membrane functions in the production of calcium deposits. Intrapineal corpora arenacea are characterized by a surface with globular structures. Meningeal acervuli that are present in the arachnoid cover of the organ, differ in structure from intrapineal ones and show a prominent concentric lamination of alternating dark and light lines. The electron-lucent lines contain more calcium than the dark ones. There is a correlation between the age of the subject and the number of layers in the largest acervuli. This suggests that the formation of these layers is connected to circannual changes in the calcium level of the organ. The histological organization of the human pineal is basically the same as that of mammalian experimental animals. Pineal concretions present in mammalian animal species are mainly of the meningeal type. Meningeal cells around acervuli contain active cytoplasmic organelles and exhibit alkaline phosphatase reaction in the rat and mink, an indication of a presumable

  20. Effects of ethylene glycol tetraacetic acid, A23187 and calmodulin, calcium activated neutral proteinase antagonists on melatonin secretion in perifused chick pineal gland.

    PubMed

    Agapito, M T; Pablos, M; Reiter, R J; Recio, J M; Gutierrez-Baraja, R

    1998-04-10

    We have recently described, using perifused pineal glands, that calcium influx participates in the activation of chick pineal gland. This study shows that the loss of perifused chick pineal gland activity is a complex process which seems to involve the release of calcium from intracellular stores, calmodulin and calcium-activated neutral protease (CANP). Pineal glands were perifused with Krebs medium (controls) or with Krebs medium plus the drugs ethylene glycol tetraacetic acid (EGTA; calcium chelator), A23187 (calcium ionophore), EGTA plus A23187 (extra-intra cellular calcium chelation), trifluoperazine and CGS9343B (calmodulin inhibitors), and E-64 (CANP inhibitor) at the time of the natural peak of melatonin release. When EGTA or A23187 were added to the perifusion medium, no effects were observed. On the other hand, when the calcium chelator EGTA plus A23187 (free extra and intracellular calcium levels were dramatically decreased), trifluoperazine, CGS 9343B or E-64 were added to the perifusion medium melatonin synthesis increased significantly and was sustained for 8 h. We propose a prominent role for calcium output from intracellular stores in regulating melatonin production primarily by acting on Ca-calmodulin and calcium-activated neutral protease.

  1. Pineal gland expression of the transcription factor Egr-1 is restricted to a population of glia that are distinct from nestin-immunoreactive cells.

    PubMed

    Man, Pui-Sin; Carter, David A

    2008-02-01

    Egr-1 is a plasticity-related transcription factor that has been implicated in circadian regulation of the pineal gland. In the present study we have investigated the cellular expression pattern of Egr-1 in the adult rat pineal. Egr-1 protein is restricted to the nucleus of a sub-population of cells. These cells were characterised using a new transgenic rat model (egr-1-d2EGFP) in which green fluorescent protein is driven by the egr-1 promoter. Cellular filling by GFP revealed that Egr-1-positive cells exhibited processes, indicating a glial cell-type morphology. This was confirmed by co-localizing the GFP-filled processes with vimentin and S-100beta. However, GFP/Egr-1 is expressed in only a tiny minority of the previously identified Id-1/vimentin-positive glial cells and therefore represents a novel sub-set of this (GFAP-negative) glial population. We have also demonstrated for the first time an extensive network of nestin-positive cells throughout the adult pineal gland, however these cells do not co-express Egr-1. Our studies have therefore broadened our understanding of the cell populations that constitute the adult pineal. Cellular localization of Egr-1 has revealed that this factor does not appear to be directly involved in pinealocyte production of melatonin but is required in a sub-set of pineal glia.

  2. The alpha(2D/A)-adrenergic receptor-linked membrane guanylate cyclase: a new signal transduction system in the pineal gland.

    PubMed

    Venkataraman, V; Duda, T; Sharma, R K

    1998-05-01

    In the pineal gland, the membrane guanylate cyclase activity was specifically stimulated by alpha(2D/A)-adrenergic receptor (alpha(2D/A)-AR) agonists. The agonists, however, did not stimulate the cyclase activity in the cell-free membranes. It was possible to stimulate the cyclase in cell-free membranes by the addition of the pineal soluble fraction, but this stimulation was Ca2+-dependent and alpha(2D/A)-agonist-independent. It was also possible to achieve Ca2+-dependent stimulation of the cyclase by the direct addition of CD-GCAP to the isolated pineal membranes. CD-GCAP is a Ca2+-binding protein and is a specific activator of one of the two members of the ROS-GC subfamily of membrane guanylate cyclases, ROS-GC1. The soluble fraction of the pineal gland stimulated recombinant ROS-GC1 in a Ca2+-dependent fashion. The direct presence of both ROS-GC1 and CD-GCAP in the pineal was established by molecular cloning/PCR studies. The findings demonstrate the existence of a novel signal transduction mechanism--the linkage of the alpha(2D/A)-AR signaling system with ROS-GC1 transduction system, occurring through intracellular Ca2+ via CD-GCAP.

  3. Expression of hydroxyindole-O-methyltransferase enzyme in the human central nervous system and in pineal parenchymal cell tumors.

    PubMed

    Fukuda, Takahiro; Akiyama, Nobutake; Ikegami, Masahiro; Takahashi, Hitoshi; Sasaki, Atsushi; Oka, Hidehiro; Komori, Takashi; Tanaka, Yuko; Nakazato, Youichi; Akimoto, Jiro; Tanaka, Masahiko; Okada, Yoshikazu; Saito, Saburo

    2010-05-01

    Pineal parenchymal tumor (PPT) cells usually show immunoreactivity for synaptophysin, neuron-specific enolase, neurofilament protein, class III beta-tubulin, tau protein, PGP9.5, chromogranin, serotonin, retinal S-antigen, and rhodopsin, but these markers are not specific for PPTs. Melatonin is produced and secreted mainly bypineal parenchymal cells; hydroxyindole-O-methyltransferase (HIOMT) catalyzes the final reaction in melatonin biosynthesis. We hypothesized that HIOMT could serve as a tumor marker of PPTs, and we investigated HIOMT localization and HIOMT expression in samples of normal human tissue and in PPTs, primitive neuroectodermal tumors, and medulloblastomas. In normal tissue, HIOMT was expressed in retinal cells, pineal parenchymal cells, neurons of the Edinger-Westphal nucleus, microglia, macrophages, thyroid follicular epithelium, principal and oxyphil cells of parathyroid gland, adrenal cortical cells, hepatic parenchymal cells, renal tubule epithelium, and enteroendocrine cells of stomach and duodenum. The HIOMT was also expressed in all 46 PPTs studied. The proportions of HIOMT-immunoreactive cells successively decreased in the following tumors: pineocytoma, pineal parenchymal tumor of intermediate differentiation, and pineoblastoma. A few HIOMT-immunoreactive cells were observed in one of 6 primitive neuroectodermal tumors and 23 of 42 medulloblastomas. These results indicate that HIOMT immunohistochemistry may be useful for the diagnosis of PPTs and be a prognostic factor in PPTs.

  4. Multiple sclerosis: the role of the pineal gland in its timing of onset and risk of psychiatric illness.

    PubMed

    Sandyk, R; Awerbuch, G I

    1993-09-01

    The incidence of multiple sclerosis (MS) is age-dependent being rare prior to age 10, unusual prior to age 15, with a peak in the mid 20s. It has been suggested, therefore, that the clinical manifestation of MS is dependent upon having passed the pubertal period. Since pineal melatonin secretion declines from childhood to puberty and as melatonin is an immunomodulator, we have proposed that the dramatic decline in melatonin secretion just prior to the onset of the physical manifestations of puberty may disrupt immune responses resulting in either reactivation of the infective agent or in an increased susceptibility to post-pubertal infection. The fall in melatonin secretion during pre-puberty may also increase the susceptibility of these patients to affective disorder which is associated with lower melatonin secretion and the presence of a phase-advance of their biological rhythms. We predicted, therefore, a higher incidence of affective disorder in patients with pubertal or post-pubertal onset of MS compared to those in whom the disease manifested later. To test this hypothesis, we studied the incidence of affective disorder in relation to age of onset of first neurological symptoms in 31 MS patients, 6 of whom manifested symptoms of MS prior to age 18 (mean = 16.8 years). All patients with pubertal onset MS and only 48% of the control group had an affective disorder. The pubertal onset patients also had a significantly lower nocturnal melatonin levels and a lower incidence of pineal calcification on CT scan. These findings thus support the hypothesis implicating the pineal gland in the timing of onset of MS and in the risk for the development of affective disorder.

  5. TrueFISP imaging of the pineal gland: more cysts and more abnormalities.

    PubMed

    Nolte, Ingo; Brockmann, Marc A; Gerigk, Lars; Groden, Christoph; Scharf, Johann

    2010-04-01

    Although pineal cysts are found with a frequency of over one third in autopsy series, prevalences reported in standard magnetic resonance imaging (MRI) studies only range between 0.14% and 4.9%. With the advances in scanner technology and more sensitive high-resolution 3D-sequences, pineal cysts with atypical appearance are more frequently encountered as an incidental finding. In order to help the radiologist and the clinician to correctly interpret these incidental findings and to avoid follow-up MRI or even surgical intervention, we analysed the frequency of typical and atypical pineal cysts using standard MRI-sequences and a high-resolution 3D-trueFISP-sequence (true-Fast-Imaging-with-Steady-State-Precession). In 111 patients undergoing MRI we analysed the prevalence of pineal cysts in relation to gender and age, as well as the frequency of atypical cysts defined by thickened rim, trabeculations, or asymmetric form using three standard MRI-sequences (T1-SE (T1 weighted spin echo), T2-TSE (T2 weighted turbo spin echo), FLAIR (fluid attenuated inversion recovery)) and compared the diagnostic certainty of these standard sequences with the sensitivity of a high-resolution trueFISP MRI sequence. Using trueFISP pineal cysts were detected more frequently than in the standard sequences (35.1% vs. 9.0% (T1-SE), 4.5% (T2-TSE) and 9.0% (FLAIR)). Diagnostic uncertainty was least frequent in trueFISP. In trueFISP, 41.0% of the detected cysts showed one or more features of atypical cysts (standard sequences: 21.4%). Highest prevalence of cysts was detected in the group of 20-30-year-old patients and decreased with increasing age. High-resolution 3D-sequences like trueFISP increase the detection rate of pineal cysts to levels reported in autoptic series while decreasing the diagnostic uncertainty. Atypically configurated pineal cysts are frequently detected as an incidental finding.

  6. The relationship of thought disorder to third ventricle width and calcification of the pineal gland in chronic schizophrenia.

    PubMed

    Sandyk, R

    1993-01-01

    Since the early writings of Bleuler in 1908, it has been recognized that schizophrenia is a heterogenous disorder with diversity in symptomatology, course, prognosis, and probably etiology. Over the past 50 years, considerable research has been devoted to the prognosis of schizophrenia and despite variability among findings, certain historical and clinical predictors have been established. A recent study undertaken in 58 DSM-III diagnosed schizophrenic inpatients found that of the various clinical clusters assessed prospectively, thought disorder stood out as the single most salient predictor of poor outcome (Kay & Murrill, 1990). In the present study I have investigated the relationship of thought disorder to CT scan measures of third ventricle width (TVW), prefrontal cortical atrophy, and cortical atrophy in 14 chronic schizophrenic patients. In addition, I have studied the relationship of thought disorder to pineal calcification (PC) and choroid plexus (CP) sizes in 20 chronic schizophrenic patients. TVW and PC size were the only neuroradiological measures found to be associated with the degree of thought disorder. These findings suggest that both diencephalic damage and calcification of the pineal gland may be related to disorganized thinking in schizophrenia and, by inference, to an unfavorable prognosis.

  7. CREB phosphorylation and melatonin biosynthesis in the rat pineal gland: involvement of cyclic AMP dependent protein kinase type II.

    PubMed

    Maronde, E; Wicht, H; Taskén, K; Genieser, H G; Dehghani, F; Olcese, J; Korf, H W

    1999-10-01

    Phosphorylation of cyclic AMP response element binding protein (CREB) at amino acid serine 133 appears as an important link between the norepinephrine (NE)-induced activation of second messenger systems and the stimulation of melatonin biosynthesis. Here we investigated in the rat pineal gland: 1) the type of protein kinase that mediates CREB phosphorylation: and 2) its impact on melatonin biosynthesis. Immunochemical or immunocytochemical demonstration of serine133-phosphorylated cyclic AMP regulated element binding protein (pCREB) and radioimmunological detection of melatonin revealed that only cyclic AMP-dependent protein kinase (PKA) inhibitors suppressed NE-induced CREB phosphorylation and stimulation of melatonin biosynthesis, whereas inhibitors of cyclic GMP-dependent protein kinase (PKG), mitogen-activated protein kinase kinase, protein kinase C, or calcium-calmodulin-dependent protein kinase (CaMK) were ineffective. Investigations with cyclic AMP-agonist pairs that selectively activate either PKA type I or II link NE-induced CREB phosphorylation and stimulation of melatonin biosynthesis to the activation of PKA type II. Our data suggest that PKA type II plays an important role in the transcriptional control of melatonin biosynthesis in the rat pineal organ.

  8. Renin-angiotensin system-regulating aminopeptidase activities are modified in the pineal gland of rats with breast cancer induced by N-methyl-nitrosourea.

    PubMed

    Carrera, M P; Ramírez-Expósito, M J; Valenzuela, M T; Dueñas, B; García, M J; Mayas, M D; Martínez-Martos, J M

    2006-03-01

    Pineal function has been considered particularly as a neuroendocrine modulator in hormone responsive tumors, like the hormone-dependent mammary tumors. The complexity of the gland function, moreover, is denoted by the presence of a local renin-angiotensin-system (RAS) that regulates melatonin biosynthesis. Classically, angiotensin II (Ang II) has been considered as the effector peptide of the RAS, but Ang II is not the only active peptide. Several of its degradation products, including angiotensin III (Ang III) and angiotensin IV (Ang IV) also possess biological functions. These peptides are formed via the activity of several aminopeptidases. Our aim is to know their role in the regulation of pineal RAS and breast cancer. Aminopeptidase N (APN), aminopeptidase B (APB) and aminopeptidase A (aspartyl- and glutamyl-aminopeptidase, APA) activities are measured in the pineal gland of rats with breast cancer induced by N-methyl nitrosourea (NMU). Aminopeptidase activities were measured fluorimetrically using their corresponding aminoacyl-beta-naphthylamides as substrates. Specific APN and APB activities in pineal gland of controls and NMU-treated rats were not modified. Aspartyl aminopeptidase activity significantly decreased in NMU-treated rats when compared with control group. On the contrary, glutamyl aminopeptidase activity did not show significant differences between groups. We propose that the local RAS in pineal gland is modified in rats with breast cancer induced by NMU through the inhibition of AspAP activity, which may lead to increased levels of Ang II. Ang II could be responsible of the overproduction of melatonin, supporting a mechanism to restrain the promotion and/or progression of breast cancer.

  9. The role of the pineal gland in the photoperiodic control of bird song frequency and repertoire in the house sparrow, Passer domesticus.

    PubMed

    Wang, Gang; Harpole, Clifford E; Paulose, Jiffin; Cassone, Vincent M

    2014-04-01

    Temperate zone birds are highly seasonal in many aspects of their physiology. In mammals, but not in birds, the pineal gland is an important component regulating seasonal patterns of primary gonadal functions. Pineal melatonin in birds instead affects seasonal changes in brain song control structures, suggesting the pineal gland regulates seasonal song behavior. The present study tests the hypothesis that the pineal gland transduces photoperiodic information to the control of seasonal song behavior to synchronize this important behavior to the appropriate phenology. House sparrows, Passer domesticus, expressed a rich array of vocalizations ranging from calls to multisyllabic songs and motifs of songs that varied under a regimen of different photoperiodic conditions that were simulated at different times of year. Control (SHAM) birds exhibited increases in song behavior when they were experimentally transferred from short days, simulating winter, to equinoctial and long days, simulating summer, and decreased vocalization when they were transferred back to short days. When maintained in long days for longer periods, the birds became reproductively photorefractory as measured by the yellowing of the birds' bills; however, song behavior persisted in the SHAM birds, suggesting a dissociation of reproduction from the song functions. Pinealectomized (PINX) birds expressed larger, more rapid increases in daily vocal rate and song repertoire size than did the SHAM birds during the long summer days. These increases gradually declined upon the extension of the long days and did not respond to the transfer to short days as was observed in the SHAM birds, suggesting that the pineal gland conveys photoperiodic information to the vocal control system, which in turn regulates song behavior.

  10. p19 detected in the rat retina and pineal gland is a guanylyl cyclase-activating protein (GCAP).

    PubMed

    Dejda, Agnieszka; Matczak, Izabela; Gorczyca, Wojciech A

    2002-01-01

    The Ca(2+)-dependent activation of retina-specific guanylyl cyclase (retGC) is mediated by guanylyl cyclase-activating proteins (GCAPs). Here we report for the first time detection of a 19 kDa protein (p19) with GCAP properties in extracts of rat retina and pineal gland. Both extracts stimulate synthesis of cGMP in rod outer segment (ROS) membranes at low (30 nM) but not at high (1 microM) concentrations of Ca(2+). At low Ca(2+), immunoaffinity purified p19 activates guanylyl cyclase(s) in bovine ROS and rat retinal membranes. Moreover, p19 is recognized by antibodies against bovine GCAP1 and, similarly to other GCAPs, exhibits a Ca(2+)-dependent electrophoretic mobility shift.

  11. A Seasonal and Age-Related Study of Interstitial Cells in the Pineal Gland of Male Viscacha (Lagostomus maximus maximus).

    PubMed

    Busolini, Fabricio Ivan; Rosales, Gabriela Judith; Filippa, Verónica Palmira; Mohamed, Fabian Heber

    2017-10-01

    The pineal gland of viscacha exhibits histophysiological variations throughout the year, with periods of maximal activity in winter and minimal activity in summer. The aim of this work is to analyze the interstitial cells (IC) in the pineal gland of male viscachas in relation to season and age. The S-100 protein, glio-fibrillary acidic protein (GFAP), and vimentin were detected in adult and immature animals by immunohistochemistry (IHC). Double-IHC was also performed. The S-100 protein was localized within both, IC nucleus and cytoplasm. GFAP was present only in the cytoplasm. Vimentin was expressed in some IC, besides endothelial cells, and perivascular spaces. In the adult males, the morphometric parameters analyzed for the S-100 protein and GFAP exhibited seasonal variations with higher values of immunopositive area percentage in winter and lower values in summer, whereas the immature ones showed the lowest values for all the adult animals studied. Colocalization of S-100 protein and GFAP was observed. The IC exhibited differential expression for the proteins studied, supporting the hypothesis of the neuroectodermal origin. The IC generate an intraglandular communication network, suggesting its participation in the glandular activity regulation processes. The results of double-IHC might indicate the presence of IC in different functional stages, probably related to the needs of the cellular microenvironment. The morphometric variations in the proteins analyzed between immature and adult viscachas probed to be more salient in the latter, suggesting a direct relationship between the expression of the S-100 protein and GFAP, and animal age. Anat Rec, 2017. © 2017 Wiley Periodicals Inc. Anat Rec, 300:1847-1857, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Age-related changes in the incidence of pineal gland calcification in Turkey: A prospective multicenter CT study.

    PubMed

    Turgut, Ahmet Tuncay; Karakaş, Hakkı Muammer; Ozsunar, Yelda; Altın, Levent; Ceken, Kağan; Alıcıoğlu, Banu; Sönmez, Iclal; Alparslan, Ahmet; Yürümez, Belde; Celik, Tayfun; Kazak, Eda; Geyik, Pınar Özdemir; Koşar, Uğur

    2008-06-01

    The goal of this cross-sectional observational study was to determine the incidence of pineal gland calcification (PGC), to investigate the interaction of PGC and aging, and to compare the incidence of PGC among the populations living in Turkey. In a prospective study the rate of PGC on CT scans of 1376 individuals in six referral centers from different regions of Turkey was investigated, with emphasis on effects of climatological parameters and aging on PGC. It was found that the incidence of PGC increased rapidly after first decade and the increase remains gradual thereafter, higher in males than in females for all age groups. There was a significant difference for incidence and degree of PGC between different clinics and between both sexes (p<0.001). In addition, there was a significant difference for the degree of PGC between the clinics in low altitude group and those in high altitude group (p<0.001 for each). Logistic regression analysis revealed that age, sex, altitude and intensity of sunlight exposure significantly affected the risk of PGC (odds ratios (OR) 1.335, 95% confidence intervals (CI) 1.261-1.414, p<0.001; OR 1.900, 95% CI 1.486-2.428, p<0.001; OR 0.715, 95% CI 0.517-0.990, p<0.05; OR 0.997, 95% CI 0.994-0.999, p<0.01, respectively). Furthermore, by multiple linear regression analysis, high altitude and increased intensity of sunlight exposure were found to affect the degree of PGC (beta=0.003, p<0.001). It is concluded that there is a close relationship between PGC and the aforementioned parameters, supporting a link between the development of PGC and these. This study provides some reference data for new clinical studies on the putative role of pineal gland in future.

  13. Injury switches melatonin production source from endocrine (pineal) to paracrine (phagocytes) - melatonin in human colostrum and colostrum phagocytes.

    PubMed

    Pontes, Gerlândia N; Cardoso, Elaine C; Carneiro-Sampaio, Magda M S; Markus, Regina P

    2006-09-01

    A large number of data show that melatonin has immunomodulatory properties and is produced by immunocompetent cells; also, some evidence suggests a 'feedback' of the activated immune system on the pineal gland. In this paper, we studied immune-pineal interactions in colostrum obtained from healthy puerperae and mothers with mastitis taking into account that, (a) melatonin levels in milk reflects pineal activity and (b) colostrum quiescent mononuclear and polymorphonuclear phagocytes from healthy mothers in culture are adequate for evaluating the ability of immunocompetent cells to produce melatonin. Here we compared the diurnal and nocturnal melatonin levels in colostrum from healthy puerperae and mothers with mastitis; this is a unique noninvasive model for determining pineal activity in the proinflammatory phase of a defense response. In addition, we determined the 'in vitro' production of melatonin by colostrum immunocompetent cells stimulated by enteropathogenic Escherichia coli or zymosan. Suppression of nocturnal melatonin rise in mothers with mastitis was highly correlated with increased tumor necrosis factor-alpha (TNF-alpha) secretion. This result, interpreted taking into account the presence of the transcription factor nuclear factor kappa B in pineal gland, suggest that the proinflammatory cytokine can inhibit nocturnal pineal melatonin production. On the other hand, stimulated, but not quiescent, immunocompetent cells secreted in the colostrum produced melatonin in vitro. In addition, this production ceases after bacteria killing. These results suggest that during the response to an injury the production of melatonin can be transiently shifted from an endocrine (pineal) to a paracrine (immunocompetent cells) source.

  14. Sensorimotor mapping of the human cerebellum during pineal region surgery.

    PubMed

    Mottolese, C; Szathmari, A; Beuriat, P-A; Sirigu, A; Desmurget, M

    2015-01-01

    The cerebellum is a fundamental structure of the central nervous system. However, in humans, its anatomo-functional organization and the processes through which this organization adapts in response to injuries remain widely unknown. Motor and somatosensory evoked potentials were used to map functional representations in the posterior cerebellum of patients with extra- and intracellebellar injuries. Extracerebellar patients had injuries outside the cerebellum (e.g. pineal region, quadrigeminal plate) while intracerebellar patients had injuries within the cerebellum. Data were collected in 20 extracerebellar patients for motor representations. Only preliminary data were gathered for somatosensory representations and intracerebellar patients. In extracerebellar patients, electrical stimulation induced muscle contractions in the ipsilateral hemibody. These representations were somatotopically organized with large overlaps between the face and upper limb in the superior posterior cerebellum and the upper and lower limb in the inferior posterior cerebellum. Neck muscles were represented in the oculomotor vermis. In intracerebellar patients, preliminary data seem to indicate that motor plasticity is achieved by recruiting the contralesional (healthy) cerebellar hemisphere. Although still ongoing, this project could eventually lead to an improvement of the surgical treatment of patients with lesions of the posterior fossa, by improving our knowledge of cerebellar organization and the process of post-lesional plasticity. Copyright © 2014. Published by Elsevier Masson SAS.

  15. [Cascade of biochemical events triggered by stimulation of adrenergic receptors in the rat pineal gland--from cell membrane to nucleus].

    PubMed

    Zawilska, J B; Rosiak, J; Nowak, J Z

    1999-01-01

    Pineal glands of various vertebrate species synthesize melatonin in a circadian rhythm generated by an endogenous pacemaker. The levels of melatonin and activity of serotonin N-acetyltransferase (AA-NAT: a penultimate and key regulatory enzyme in melatonin biosynthesis) are low during the light phase and high during the dark phase of any natural or imposed light-dark illumination cycle. The expression of AA-NAT gene in rat pineal gland is regulated by a photoneural system that acts through the adrenergic-cAMP-related mechanisms in pinealocytes. Concomitant stimulation by noradrenaline of beta 1- and alpha 1-adrenergic receptors, in a mechanism of "AND gate" activation, results in a large, 60-100-fold increase in intrapinealocyte cAMP level. The role of cAMP-dependent transcription factors CREB, ICER and Fra-2 in turning on and off the AA-NAT gene expression is discussed.

  16. Radiometric assay for phenylethanolamine N-methyltransferase and catechol O-methyltransferase in a single tissue sample: application to rat hypothalamic nuclei, pineal gland, and heart

    SciTech Connect

    Culman, J.; Torda, T.; Weise, V.K.

    1987-08-01

    A simple and highly sensitive method for simultaneous assay of phenylethanolamine N-methyltransferase (PNMT) and catechol O-methyltransferase (COMT) is described. These enzymes are determined in a single tissue homogenate using S-(methyl-/sup 3/H) adenosyl-L-methionine as methyl donor and sequentially incubating with the substrates phenylethanolamine and epinephrine. The radioactive products of the enzymatic reactions, N-methylphenylethanolamine and metanephrine, are extracted and then separated by thin-layer chromatography. The identity of the reaction products has been established chromatographically and the conditions for both enzymatic reactions in the assay procedure have been defined. Measurement of PNMT activity in the rat pineal gland or in minute fragments of other tissues (e.g., brain nuclei) has not been possible using previously described methods. Activities of PNMT and COMT in the rat pineal gland, various hypothalamic nuclei, and the auricular and ventricular myocardia are herein reported.

  17. PLURIVESICULAR SECRETORY PROCESSES AND NERVE ENDINGS IN THE PINEAL GLAND OF THE RAT

    PubMed Central

    De Robertis, Eduardo; de Iraldi, Amanda Pellegrino

    1961-01-01

    The pineal body of white normal rats, 1.5 to 3 months old, was studied under the electron microscope. A single type of parenchymal cell—the pinealocyte—is recognized as the main component of the tissue, and some of the structural characteristics of the nucleus and cytoplasm are described. The main morphological characteristic of the pinealocytes is represented by club-shaped perivascular expansions connected to the cell by thin pedicles. They are found lying in a large, clear space surrounding the blood capillaries. The name plurivesicular secretory processes is proposed, to emphasize the main structural feature and the probable function of these cellular expansions. A tubulofibrillar component is mainly found in the pedicle, and within the expansion there are numerous small mitochondria and densily packed vesicles of about 425 A. Two types of vesicles, one with a homogeneous content and another with a very dense osmium deposit, are described. Between the two types there are intermediary forms. In these processes, mitochondria show profound changes which may lead to complete vacuolization. The significance of this plurivesicular secretory component is discussed in the light of recent work on the biogenic amines of the pineal body and preliminary experiments showing the release of the vesicles containing dense granules after treatment with reserpine. These vesicles are interpreted as the site of storage of some of the biogenic amines. Bundles of unmyelinated nerve fibers and endings on large blood vessels which also contain a plurivesicular content are described and tentatively interpreted as adrenergic nerve terminals. PMID:13720811

  18. [Cellular aspects of aging in the pineal gland of the shrew, Crocidura russula].

    PubMed

    Dekar-Madoui, Aicha; Besseau, Laurence; Magnanou, Elodie; Fons, Roger; Ouali, Saliha; Bendjelloul, Mounira; Falcon, Jack

    2012-01-01

    The Greater White-toothed shrew Crocidura russula is short-lived species and the phase of senescence is greatly elongated in captivity. The loss of rhythmicity of biological functions that accompanies its aging is also well documented. C. russula is thus an excellent model to test the effects of aging on biological clocks. Melatonin is a key hormone in the synchronization of behaviors, metabolisms and physiological regulations with environmental factors. In the present work we want to know if the loss of rhythmicity and the reduced melatonin levels registered by the second year of life in this species could be associated to modified ultrastructural features of the pineal parenchyma, site of melatonin synthesis. Transmission electron microscopy (TEM) analysis of young (1-4 months) and old (25-28 months) shrew's pineals show that in older individuals, the parenchyma undergoes alterations affecting mainly nucleus, mitochondria and endoplasmic reticulum cisternae, with increased numbers of dense bodies and the formation of many concretions as well as a depletion of secretory products. These changes suggest a process of slowing pinealocytes metabolism which could explain the gradual reduction of melatonin levels registered during aging in C. russula.

  19. The effect of chronic morphine or methadone exposure and withdrawal on clock gene expression in the rat suprachiasmatic nucleus and AA-NAT activity in the pineal gland.

    PubMed

    Pačesová, D; Novotný, J; Bendová, Z

    2016-07-18

    The circadian rhythms of many behavioral and physiological functions are regulated by the major circadian pacemaker in the suprachiasmatic nucleus. Long-term opiate addiction and drug withdrawal may affect circadian rhythmicity of various hormones or the sleep/activity pattern of many experimental subjects; however, limited research has been done on the long-term effects of sustained opiate administration on the intrinsic rhythmicity in the suprachiasmatic nucleus and pineal gland. Here we compared the effects of repeated daily treatment of rats with morphine or methadone and subsequent naloxone-precipitated withdrawal on the expression of the Per1, Per2, and Avp mRNAs in the suprachiasmatic nucleus and on arylalkylamine N-acetyltransferase activity in the pineal gland. We revealed that 10-day administration and withdrawal of both these drugs failed to affect clock genes and Avp expression in the SCN. Our results indicate that opioid-induced changes in behavioral and physiological rhythms originate in brain structures downstream of the suprachiasmatic nucleus regulatory output pathway. Furthermore, we observed that acute withdrawal from methadone markedly extended the period of high night AA-NAT activity in the pineal gland. This suggests that withdrawal from methadone, a widely used drug for the treatment of opioid dependence, may have stronger impact on melatonin synthesis than withdrawal from morphine.

  20. Effects of Melatonin on Morphological and Functional Parameters of the Pineal Gland and Organs of Immune System in Rats During Natural Light Cycle and Constant Illumination.

    PubMed

    Litvinenko, G I; Shurlygina, A V; Gritsyk, O B; Mel'nikova, E V; Tenditnik, M V; Avrorov, P A; Trufakin, V A

    2015-10-01

    We studied the response of the pineal gland and organs of the immune system to melatonin treatment in Wistar rats kept under conditions of abnormal illumination regimen. The animals were kept under natural light regimen or continuous illumination for 14 days and then received daily injections of melatonin (once a day in the evening) for 7 days. Administration of melatonin to rats kept at natural light cycle was followed by a decrease in percent ratio of CD4+8+ splenocytes and CD4-8+ thymocytes. In 24-h light with the following melatonin injections were accompanied by an increase in percent rate and absolute amount of CD4+8+ cells in the spleen, and a decrease in percent rate of CD11b/c and CD4-8+ splenocytes. In the thymus amount of CD4-8+ cells increased, and absolute number of CD4+25+ cells reduced. Melatonin significantly decreased lipofuscin concentration in the pineal gland during continuous light. Direction and intensity of effects of melatonin on parameters of cell immunity and state of the pineal gland were different under normal and continuous light conditions. It should be taken into account during using of this hormone for correction of immune and endocrine impairments developing during change in light/dark rhythm.

  1. Dephosphorylation of pCREB by protein serine/threonine phosphatases is involved in inactivation of Aanat gene transcription in rat pineal gland.

    PubMed

    Koch, Marco; Mauhin, Viviane; Stehle, Jörg H; Schomerus, Christof; Korf, Horst-Werner

    2003-04-01

    The rat pineal gland is a suitable model to investigate neurotransmitter-controlled gene expression, because it is well established that the stimulation of melatonin biosynthesis by norepinephrine (NE) depends on the activation of the gene that encodes arylalkylamine N-acetyltransferase (AANAT), the melatonin rhythm enzyme. The mechanisms responsible for downregulation of Aanat transcription are less clear. In this in vitro study we investigated the role of pCREB dephosphorylation for termination of Aanat gene transcription. Immunosignals for pCREB, strongly induced after NE stimulation, rapidly decreased after withdrawal of NE. The immunoreactivity of the inhibitory transcription factor ICER increased twofold after NE treatment for 6 h, but did not change within 30 min after removal of the stimulus. Application of protein serine/threonine phosphatase (PSP) inhibitors prevented pCREB dephosphorylation and blocked the decreases in Aanat mRNA levels, AANAT protein amount and melatonin biosynthesis all of which occurred rapidly after NE withdrawal. PSPs in the rat pineal gland were characterized by immunocytochemistry and immunoblotting. NE-stimulation for 8 h induced accumulation of PSP1-catalytic subunit (CSU) in pinealocyte nuclei, but did not affect the distribution of PSP2A-CSU. The results identify dephosphorylation of pCREB by PSPs as an essential mechanism for downregulation of Aanat transcription in the rat pineal gland.

  2. Effect of TNF-alpha on the melatonin synthetic pathway in the rat pineal gland: basis for a 'feedback' of the immune response on circadian timing.

    PubMed

    Fernandes, Pedro A C M; Cecon, Erika; Markus, Regina P; Ferreira, Zulma S

    2006-11-01

    A retino-hypothalamic-sympathetic pathway drives the nocturnal surge of pineal melatonin production that determines the synchronization of pineal function with the environmental light/dark cycle. In many studies, melatonin has been implicated in the modulation of the inflammatory response. However, scant information on the feedback action of molecules present in the blood on the pineal gland during the time course of an inflammatory response is available. Here we analyzed the effect of tumor necrosis factor-alpha (TNF-alpha) and corticosterone on the transcription of the Aa-nat, hiomt and 14-3-3 protein genes in denervated pineal glands of rats stimulated for 5 hr with norepinephrine, using real-time reverse transcription-polymerase chain reaction. The transcription of Aa-nat, a gene encoding the key enzyme in melatonin biosynthesis, together with the synthesis of the melatonin precursor N-acetylserotonin, was inhibited by TNF-alpha. This inhibition was transient, and a preincubation of TNF-alpha for more than 24 hr had no detectable effect. In fact, a protein(s) transcribed, later on, as shown by cycloheximide, was responsible for the reversal of the inhibition of Aa-nat transcription. In addition, corticosterone induced a potentiation of norepinephrine-induced Aa-nat transcription even after 48 hr of incubation. These data support the hypothesis that the nocturnal surge in melatonin is impaired at the beginning of an inflammatory response and restored either during the shutdown of an acute response or in a chronic inflammatory pathology. Here, we introduce a new molecular pathway involved in the feedback of an inflammatory response on pineal activity, and provide a molecular basis for understanding the expression of circadian timing in injured organisms.

  3. Pharmacological, molecular and functional characterization of vasoactive intestinal polypeptide/pituitary adenylate cyclase-activating polypeptide receptors in the rat pineal gland.

    PubMed

    Simonneaux, V; Kienlen-Campard, P; Loeffler, J P; Basille, M; Gonzalez, B J; Vaudry, H; Robberecht, P; Pévet, P

    1998-08-01

    Melatonin secretion from the mammalian pineal gland is strongly stimulated by noradrenaline and also by vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP). Three types of receptors for VIP and PACAP have been characterized so far: VIP1/PACAP receptors and VIP2/PACAP receptors, which possess similar high affinities for VIP and PACAP, and PACAP1 receptors which exhibit a 100-1000-fold higher affinity for PACAP. The aim of the present study was to characterize the receptor subtype(s) mediating the stimulatory effects of VIP and PACAP on melatonin synthesis in the rat pineal gland. Autoradiographic studies showed that PACAP and VIP were equally potent in displacing binding of radioiodinated PACAP27 from pineal sections. Amplification of pineal complementary DNAs by polymerase chain reaction using specific primers for the different receptor subtypes revealed that all three receptor messenger RNAs are expressed and that VIP1/PACAP receptor messenger RNA was predominant over VIP2/PACAP receptor messenger RNA. In vitro, VIP and PACAP stimulated melatonin synthesis with similar high potency and the effect of the two peptides were not additive. The selective VIP1/PACAP receptor agonists [R16]chicken secretin (1-25) and [K15, R16, L27]VIP(1-7)/growth hormone releasing factor(8-27) were significantly more potent than the selective VIP2/PACAP receptor agonist RO 25-1553 in stimulating melatonin secretion. The stimulatory effects of VIP and PACAP were similarly inhibited by the VIP1/PACAP antagonist [acetyl-His1, D-Phe2, K15, R16, L27]VIP(3-7)/growth hormone releasing factor(8-27). These data strongly suggest that VIP and PACAP exert a stimulatory effect on melatonin synthesis mainly through activation of a pineal VIP1/PACAP receptor subtype.

  4. Mechanisms regulating the marked seasonal variation in melatonin synthesis in the European hamster pineal gland.

    PubMed

    Garidou, Marie-Laure; Vivien-Roels, Berthe; Pevet, Paul; Miguez, Jesus; Simonneaux, Valerie

    2003-04-01

    Like many wild species, the European hamster (Cricetus cricetus) adapts to the marked seasonal changes in its environment, namely by hibernation and inhibition of sexual activity in winter. These annual functions are driven by the variation in the environmental factors (light, temperature) that are transmitted to the body through large variations in the duration and amplitude of the nocturnal melatonin rhythm. Here we report that the seasonal variation in melatonin synthesis is mainly driven by arylalkylamine N-acetyltransferase gene transcription and enzyme activation. This, however, does not exclude participation of hydroxyindole-O-methyltransferase, which may relay environmental temperature information. The in vivo experiments show that norepinephrine stimulates melatonin synthesis, this effect being gated at night. The possibility that the variation in pineal metabolism depends on a seasonal change in the suprachiasmatic nuclei clock circadian activity that is transmitted by norepinephrine is discussed.

  5. Calcium concrements in the pineal gland of the Arctic fox (Vulpes lagopus) and their relationship to pinealocytes, glial cells and type I and III collagen fibers.

    PubMed

    Bulc, M; Lewczuk, B; Prusik, M; Gugołek, A; Przybylska-Gornowicz, B

    2010-01-01

    The aim of the present study was to analyze the presence and morphology of the pineal concretions in the Arctic fox and their relationship to pinealocytes, glial cells and collagen fibers. Pineals collected from 7-8 month-old and 3-4 year-old foxes (6 in each age-group) were investigated. Sections of the glands were stained with HE, Mallory's method and alizarin red S as well as subjected to a combined procedure involving immunofluorescent staining with antibodies against antigen S, glial fibril acid protein (GFAP), type I and III collagen and histochemical staining with alizarin red S. The pineal concretions were found in 2 of 6 investigated Arctic foxes aged 3 years and they were not observed in animals aged 7-8 months. The acervuli were present in the parenchyma and the connective tissue septa. They were more numerous in the distal part than in the proximal part of the gland. The acervuli stained with alizarin red S revealed an intensive red fluorescence, what enabled the use of this compound in a combined histochemical-immunofluorescent procedure. A majority of cells in the fox pineal showed positive staining with antibodies against antigen S, a marker of pinealocytes. GFAP-positive cells were especially numerous in the proximal part of the gland. Both antigen S- and GFAP-positive cells were frequently observed close to the concrements. Collagen fibers of type I and III were found in the capsule, connective tissue septa and vessels. Immunoreactive fibers did not form any capsules or basket-like structures surrounding the concrements.

  6. Cannabinoids attenuate norepinephrine-induced melatonin biosynthesis in the rat pineal gland by reducing arylalkylamine N-acetyltransferase activity without involvement of cannabinoid receptors.

    PubMed

    Koch, Marco; Dehghani, Faramarz; Habazettl, Iris; Schomerus, Christof; Korf, Horst-Werner

    2006-07-01

    Cannabinoids modulate neuronal and neuroendocrine circuits by binding to cannabinoid receptors acting upon cAMP/Ca(2+)-mediated intracellular signaling cascades. The rat pineal represents an established model to investigate intracellular signaling processes because a well defined input, the neurotransmitter norepinephrine, is transformed via cAMP/Ca(2+)-dependent mechanisms into an easily detectable output signal, the biosynthesis of melatonin. Here we investigated the impact of cannabinoids on norepinephrine-regulated melatonin biosynthesis in the rat pineal. We demonstrated that treatment of cultured rat pineals with 9-carboxy-11-nor-delta-9-tetrahydrocannabinol (THC), cannabidiol or cannabinol significantly reduced norepinephrine-induced arylalkylamine N-acetyltransferase (AANAT) activity and melatonin biosynthesis. These effects were not mimicked by the cannabinoid receptor agonist WIN55,212-2 and were not blocked by cannabinoid 1 and 2 receptor antagonists. The cannabinoids used did not affect norepinephrine-induced increases in cAMP/Ca(2+) levels. Notably, cannabinoids were found to directly inhibit AANAT activity in lysates of the pineal gland. This effect was specific in so far as cannabinoids did not influence the activity of hydroxyindole-O-methyltransferase (HIOMT), the last enzyme in melatonin biosynthesis. Taken together, our data strongly suggest that cannabinoids inhibit AANAT activity and attenuate melatonin biosynthesis through intracellular actions without involvement of classical cannabinoid receptor-dependent signaling cascades.

  7. Involvement of NF-Y and Sp1 in basal and cAMP-stimulated transcriptional activation of the tryptophan hydroxylase (TPH ) gene in the pineal gland.

    PubMed

    Côté, F; Schussler, N; Boularand, S; Peirotes, A; Thévenot, E; Mallet, J; Vodjdani, G

    2002-05-01

    The expression of the tryptophan hydroxylase (TPH) gene, encoding the rate-limiting enzyme of serotonin biosynthesis, is tightly regulated both at the transcriptional and at the post-transcriptional levels. In the pineal gland, transcription of the gene is activated in response to an intracellular circadian increase of the cAMP concentration. We have previously shown that transcription of a 2.1-kb fragment of the human TPH promoter is induced by cAMP, although it lacks the canonical cAMP responsive element, CRE. The minimal promoter (-73/+29) has only weak transcriptional activity but is responsive to cAMP. It contains an inverted CCAAT box, which was demonstrated to be involved in this response. Here, we have extended our investigation to the functional features of the inverted CCAAT box in the -252/+29 TPH promoter, which has a higher basal activity. We show that an additional cis -acting sequence, the adjacent GC-rich region, cooperates with the inverted CCAAT box for the full activation of basal transcription, and that both elements are essential for the full cAMP response. We also show that in pinealocytes, NF-Y and Sp1 transactivators bind the inverted CCAAT box and GC-rich-region, respectively. These factors participate in a novel pathway for the cAMP-mediated response of the TPH promoter, which is independent of the canonical CRE-mediated response.

  8. Early development of circadian rhythmicity in the suprachiamatic nuclei and pineal gland of teleost, flounder (Paralichthys olivaeus), embryos.

    PubMed

    Mogi, Makoto; Uji, Susumu; Yokoi, Hayato; Suzuki, Tohru

    2015-08-01

    Circadian rhythms enable organisms to coordinate multiple physiological processes and behaviors with the earth's rotation. In mammals, the suprachiasmatic nuclei (SCN), the sole master circadian pacemaker, has entrainment mechanisms that set the circadian rhythm to a 24-h cycle with photic signals from retina. In contrast, the zebrafish SCN is not a circadian pacemaker, instead the pineal gland (PG) houses the major circadian oscillator. The SCN of flounder larvae, unlike that of zebrafish, however, expresses per2 with a rhythmicity of daytime/ON and nighttime/OFF. Here, we examined whether the rhythm of per2 expression in the flounder SCN represents the molecular clock. We also examined early development of the circadian rhythmicity in the SCN and PG. Our three major findings were as follows. First, rhythmic per2 expression in the SCN was maintained under 24 h dark (DD) conditions, indicating that a molecular clock exists in the flounder SCN. Second, onset of circadian rhythmicity in the SCN preceded that in the PG. Third, both 24 h light (LL) and DD conditions deeply affected the development of circadian rhythmicity in the SCN and PG. This is the first report dealing with the early development of circadian rhythmicity in the SCN in fish.

  9. Stroke and pineal gland calcification: lack of association. Results from a population-based study (The Atahualpa Project).

    PubMed

    Del Brutto, Oscar H; Mera, Robertino M; Lama, Julio; Zambrano, Mauricio

    2015-03-01

    It has been suggested that pineal gland calcifications (PGC) represent a risk factor for stroke; however, information comes from a single retrospective hospital-based registry. We aimed to validate this association in a population-based study conducted in rural Ecuador. Atahualpa residents aged ≥60 years were identified during a door-to-door survey and invited to undergo neuroimaging studies (CT/MRI) for identification and rating PGC and lesions consistent with cerebral infarcts and hemorrhages. Cardiovascular health (CVH) status was assessed according to the American Heart Association criteria, and clinical strokes were identified by the use of a validated field instrument and confirmed by neurologists. Out of 248 participants (mean age 70±8 years, 59% women, 73% with poor CVH), 137 (55%) had PGC and 39 (16%) had strokes (silent in 28 cases). PGC were noted in 61% versus 54% persons with and without stroke, respectively. After adjusting for age, sex and cardiovascular health, logistic and ordinal logistic regression models showed no association between any evidence (p=0.916) or severity (p=0.740) of PGC and stroke. PGC is not associated with stroke in this population of community-dwelling elders, where prevalence of PGC and stroke are similar to those found in other regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Modulation of anticancer cytokines IL-2 and IL-12 by melatonin and the other pineal indoles 5-methoxytryptamine and 5-methoxytryptophol in the treatment of human neoplasms.

    PubMed

    Lissoni, P

    2000-01-01

    Lymphocyte number still remains one of the most important immune parameters predicting the prognosis of advanced cancer patients. IL-2 and IL-12 are the main antitumor cytokines in humans, and their effect is modulated by the neuroendocrine system, mainly by the pineal gland through the circadian release of melatonin (MLT) and perhaps that of other indole hormones, such as 5-methoxytryptamine (5-MTT), and 5-methoxytryptophol (5-MTP). MLT has been proven to exert important antitumor immunomodulating effects, whereas the possible immunomodulatory properties of the other pineal indoles are still controversial. In an attempt to better define the pineal neuroendocrine regulation of the anticancer cytokine network, we have evaluated in metastatic solid-tumor patients the effects on lymphocyte number induced by different neuroimmune regimens, consisting of MLT alone (20 mg/day orally in the evening), subcutaneous (s.c.) low-dose IL-2 alone (3 MIU/day in the evening for 6 days/week), s.c. low-dose IL-12 alone (0.5 mcg/kg once/week in the morning), IL-12 plus MLT, IL-2 plus MLT, and IL-2 plus MLT plus 5-MTT (10 mg/day orally in the afternoon) plus 5-MTP (5 mg/day orally at noon). The results showed the following evidence: (1) MLT alone is unable to induce lymphocytosis; (2) MLT significantly enhances IL-2-induced lymphocytosis; (3) IL-12 alone determines lymphocytopenia, which can be reversed by MLT; (4) IL-2 plus IL-12 induces a very pronounced lymphocytosis, which can be further amplified by MLT; (5) a total pineal endocrine replacement therapy with MLT, 5-MTT, and 5-MTP further increases IL-2-induced lymphocytosis with respect to MLT plus IL-2 alone. Therefore, this study confirms that IL-2- and IL-12-dependent anticancer immunity is under a pineal modulation.

  11. Mitogen-activated protein kinase phosphatase-1 (MKP-1): >100-fold nocturnal and norepinephrine-induced changes in the rat pineal gland.

    PubMed

    Price, Donald M; Chik, Constance L; Terriff, David; Weller, Joan; Humphries, Ann; Carter, David A; Klein, David C; Ho, Anthony K

    2004-11-05

    The norepinephrine-driven increase in mitogen-activated protein kinase (MAPK) activity is part of the mechanism that regulates arylalkylamine N-acetyltransferase (AA-NAT) activity in the rat pineal gland. We now report a marked nocturnal increase in the expression of a MAPK phosphatase, MAP kinase phosphatase-1 (MKP-1), that was blocked by maintaining animals in constant light or treatment with propranolol. MKP-1 expression was regulated by norepinephrine acting through both alpha- and beta-adrenergic receptors. These results establish a nocturnal increase in pineal MKP-1 expression that is under the control of a photoneural system. Because substrates of MKP-1 can influence AA-NAT activity, our findings suggest the involvement of MKP-1 in the regulation of the nocturnal AA-NAT signal.

  12. Reactive changes of interstitial glia and pinealocytes in the rat pineal gland challenged with cell wall components from gram-positive and -negative bacteria.

    PubMed

    Jiang-Shieh, Ya Fen; Wu, Ching Hsiang; Chien, Hsiung Fei; Wei, I Hua; Chang, Min Lin; Shieh, Jeng Yung; Wen, Chen Yuan

    2005-01-01

    Lipopolysaccharide (LPS), the major proinflammatory component of gram-negative bacteria, is well known to induce sepsis and microglial activation in the CNS. On the contrary, the effect of products from gram-positive bacteria especially in areas devoid of blood-brain barrier remains to be explored. In the present study, a panel of antibodies, namely, OX-6, OX-42 and ED-1 was used to study the response of microglia/macrophages in the pineal gland of rats given an intravenous LPS or lipoteichoic acid (LTA). These antibodies recognize MHC class II antigens, complement type 3 receptors and unknown lysosomal proteins in macrophages, respectively. In rats given LPS (50 microg/kg) injection and killed 48 h later, the cell density and immunoexpression of OX-6, OX-42 and ED-1 in pineal microglia/macrophages were markedly increased. In rats receiving a high dose (20 mg/kg) of LTA, OX-42 and OX-6, immunoreactivities in pineal microglia/macrophages were also enhanced, but that of ED-1 was not. In addition, both bacterial toxins induced an increase in astrocytic profiles labelled by glial fibrillary acid protein. An interesting feature following LPS or LTA treatment was the lowering effect on serum melatonin, enhanced serotonin immunolabelling and cellular vacuolation as studied by electron microscopy in pinealocytes. The LPS- or LTA-induced vacuoles appeared to originate from the granular endoplasmic reticulum as well as the Golgi saccules. The present results suggest that LPS and LTA could induce immune responses of microglia/macrophages and astroglial activation in the pineal gland. Furthermore, the metabolic and secretory activity of pinealocytes was modified by products from both gram-positive and -negative bacteria.

  13. Effect of dark exposure in the middle of the day on Period1, Period2, and arylalkylamine N-acetyltransferase mRNA levels in the rat suprachiasmatic nucleus and pineal gland.

    PubMed

    Fukuhara, Chiaki

    2004-11-04

    The suprachiasmatic nucleus (SCN) of the mammalian hypothalamus contains a central circadian pacemaker, which adjusts circadian rhythms within the body to environmental light-dark cycles. It has been shown that dark exposure in the day causes phase shifts in circadian rhythms, but it does not induce changes in the melatonin levels in the pineal gland. In this study, we examined the effect of dark exposure on two "circadian clock" genes Period1 and Period2 mRNA levels in the rat SCN, and on Period1, Period2, and arylalkylamine N-acetyltransferase (Aa-Nat, the rate-limiting enzyme in melatonin synthesis) gene expression in the pineal gland. Period1 and Period2 mRNA levels were significantly decreased in the SCN after 0.5 and 2 h, respectively, therefore suggesting that changes in those mRNA levels may be the part of the mechanisms of dark-induced phase shifts. Period1 and Aa-Nat mRNA levels in the pineal gland were not affected by darkness, but Period2 was moderately affected. Since Period1 and Aa-Nat mRNA levels in the pineal gland did not respond to dark stimulation, we further examined whether the pineal gland itself is capable of responding to adrenergic stimulation at this time of the day. Isoproterenol significantly induced Period1 and Aa-Nat mRNA levels; however, it did not affect Period2. Although previous studies have reported that during the day the SCN "gates" the dark information reaching the pineal, our data demonstrate that dark information may reach the pineal during the daytime.

  14. EXTIRPATION OF THE PINEAL BODY

    PubMed Central

    Dandy, Walter E.

    1915-01-01

    1. Following the removal of the pineal I have observed no sexual precocity or indolence, no adiposity or emaciation, no somatic or mental precocity or retardation. 2. Our experiments seem to have yielded nothing to sustain the view that the pineal gland has an active endocrine function of importance either in the very young or adult dogs. 3. The pineal is apparently not essential to life and seems to have no influence upon the animal's well being. PMID:19867913

  15. Selective inhibition of beta(2)-adrenergic receptor-mediated cAMP generation by activation of the P2Y(2) receptor in mouse pineal gland tumor cells.

    PubMed

    Suh, B C; Kim, J S; Namgung, U; Han, S; Kim, K T

    2001-06-01

    Rhythmic noradrenergic signaling from the hypothalamic clock in the suprachiasmatic nucleus to the pineal gland causes an increase in intracellular cAMP which regulates the circadian fluctuation of melatonin synthesis. The activation of phospholipase C (PLC)-coupled P2Y(2) receptors upon treatment with ATP and UTP exclusively inhibited the isoproterenol-stimulated cAMP production in mouse pineal gland tumor cells. However, the activation of other PLC-coupled receptors including P2Y(1) and bombesin receptors had little or no effect on the isoproterenol-stimulated cAMP production. Also, ATP did not inhibit cAMP production caused by forskolin, prostaglandin E(2), or the adenosine analog NECA. These results suggest a selective coupling between signalings of P2Y(2) and beta(2)-adrenergic receptors. The binding of [(3)H]CGP12177 to beta(2)-adrenergic receptors was not effected by the presence of ATP or UTP. Ionomycin decreased the isoproterenol-stimulated cAMP production, whereas phorbol 12-myristate 13-acetate slightly potentiated the isoproterenol response. Chelation of intracellular Ca(2+), however, had little effect on the ATP-induced inhibition of cAMP production, while it completely reversed the ionomycin-induced inhibition. Treatment of cells with pertussis toxin almost completely blocked the inhibitory effect of nucleotides. Pertussis toxin also inhibited the nucleotide-induced increase in intracellular Ca(2+) and inositol 1,4,5-trisphosphate production by 30-40%, suggesting that the ATP-mediated inhibition of the cAMP generation and the partial activation of PLC are mediated by pertussis toxin-sensitive G(i)-protein. We conclude that one of the functions of P2Y(2) receptors on the pineal gland is the selective inhibition of beta-adrenergic receptor-mediated signaling pathways via the inhibitory G-proteins.

  16. Rod outer segment membrane guanylate cyclase type 1-linked stimulatory and inhibitory calcium signaling systems in the pineal gland: biochemical, molecular, and immunohistochemical evidence.

    PubMed

    Venkataraman, V; Nagele, R; Duda, T; Sharma, R K

    2000-05-23

    Recent evidence indicates the presence of a novel alpha(2D/A)-adrenergic receptor (alpha(2D/A)-AR) linked membrane guanylate cyclase signal transduction system in the pineal gland. This system operates via a Ca(2+)-driven rod outer segment membrane guanylate cyclase (ROS-GC). In the present study, this transduction system has been characterized via molecular, immunohistochemical, and biochemical approaches. The two main components of the system are ROS-GC1 and its Ca(2+) regulator, S100B. Both components coexist in pinealocytes where the signaling component alpha(2D/A)-AR also resides. The presence of ROS-GC2 was not detected in the pineal gland. Thus, transduction components involved in processing alpha(2D/A)-AR-mediated signals are Ca(2+), S100B, and ROS-GC1. During this investigation, an intriguing observation was made. In certain pinealocytes, ROS-GC1 coexisted with its other Ca(2+) modulator, guanylate cyclase activating protein type 1 (GCAP1). In these pinealocytes, S100B was not present. The other GCAP protein, GCAP2, which is also a known modulator of ROS-GC in photoreceptors, was not present in the pineal gland. The results establish the identity of an alpha(2D/A)-AR-linked ROS-GC1 transduction system in pinealocytes. Furthermore, the findings show that ROS-GC1, in a separate subpopulation of pinealocytes, is associated with an opposite Ca(2+) signaling pathway, which is similar to phototransduction in retina. Thus, like photoreceptors, pinealocytes sense both positive and negative Ca(2+) signals, where ROS-GC1 plays a pivotal role; however, unlike photoreceptors, the pinealocyte is devoid of the ROS-GC2/GCAP2 signal transduction system.

  17. Survey of spontaneous dystrophic mineralisation of pineal gland in ageing rats.

    PubMed

    Majeed, S K

    1997-11-01

    The survey included 151 rats from several carcinogenicity studies up to 104 weeks and 260 rats from short-term studies up to 52 weeks. All studies were performed during the period 1990-1996. Young rats up to 52 weeks of age showed normal structural appearance, in 134 male rats the incidence of mineralisation was 6.3% and in 126 females the incidence was only slightly less at 5.6%. In ageing rats, 70-104 weeks, 88 males and 63 females showed far higher incidence of mineralisation, 83% and 57% respectively, showing that the incidence of mineralisation in ageing rats was higher in males than females. The focal mineralisation occurred mainly at the margin of the gland in the subcapsular region mostly adjacent to small blood vessels. On occasions these involved the parenchymal cells in the middle part of the gland. The focal mineralisation stained positive with von Kossa indicating presence of calcium and also with PAS (Pariodic Acid-Schiff method), indicating presence of neutral mucopolysaccharide. There was no evidence of positivity with Perl's stain (for ferric salts), Toluidine blue (for protein) or Alcian blue (for acid mucopolysaccharides). With Oil Red O there was evidence of presence of fat or lipid in pinealocytes.

  18. Pineal gland involvement in Erdheim-Chester disease detected on (18)F-FDG PET-CT imaging: a case report and review of literature.

    PubMed

    Mukherjee, Anirban; Dhull, Varun Singh; Karunanithi, Sellam; Sharma, Punit; Durgapal, Prashant; Kumar, Rakesh

    2014-01-01

    Erdheim-Chester disease (ECD) is a rare non-Langerhan's cell histiocytosis affecting multiple organ systems. The most common systemic manifestations are bone lesions, infiltration of the pituitary stalk sometimes leading to diabetes insipidus, pulmonary fibrosis, cardiac failure and exophthalmus. Neurological symptoms as the first clinical manifestations of ECD have been reported in less than one third of cases. We report a rare presentation of a patient of ECD on 18F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography-computed tomography which revealed abnormal (18)F-FDG accumulation in the region of pineal gland, pericardium and bilateral distal tibiae.

  19. Effect of melatonin and 5-methoxytryptamine administration on the testis and pineal gland activity of the fresh-water snake, Natrix piscator.

    PubMed

    Haldar, C; Pandey, R

    1988-01-01

    Effects of melatonin (aMT) and 5-methoxytryptamine (MT) were studied on the testicular activity cycle of the fresh-water snake, Natrix piscator. The subcutaneous implantation and the injections (morning as well as evening) of these two methoxyindoles prevented testicular recrudescence, retarded the testicular active phase, and accelerated the rate of regression of testes, while having no effect on the inactive testes. Contrary to this, these two compounds increased the pineal gland weight during different reproductive phases. These results revealed that both aMT and MT, whether they were continuously released through silastic capsule implants or administered through daily periodic injections, produced inhibitory effects on the testicular function.

  20. Melatonin and cortisol secretion profile in patients with pineal cyst before and after pineal cyst resection.

    PubMed

    Májovský, Martin; Řezáčová, Lenka; Sumová, Alena; Pospíšilová, Lenka; Netuka, David; Bradáč, Ondřej; Beneš, Vladimír

    2017-05-01

    A pineal cyst is a benign affection of the human pineal gland on the borderline between pathology and normality. Only a small percentage of patients present with symptoms and a surgical treatment is indicated in highly selected cases. A melatonin secretion in patients with a pineal cyst before and after a pineal cyst resection has not been studied yet and the effect of surgery on human metabolism is unknown. The present study examined melatonin, cortisol and blood glucose secretion profiles perioperatively in a surgical group of 4 patients. The control group was represented by 3 asymptomatic patients with a pineal cyst. For each patient, 24-h circadian secretion curves of melatonin, cortisol and glycemia were acquired. An analysis of melatonin profiles showed an expected diurnal pattern with the night peak in patients before the surgery and in the control group. In contrast, melatonin levels in patients after the surgery were at their minimum throughout the whole 24-h period. The cortisol secretion was substantially increased in patients after the surgery. Blood glucose sampling showed no statistically significant differences. Clinical results demonstrated statistically significant headache relief measured by Visual Analogue Scale in patients after the surgery. Despite the small number of examined patients, we can conclude that patients with a pineal cyst preserved the physiological secretion of the hormone melatonin while patients who underwent the pineal cyst resection experienced a loss of endogenous pineal melatonin production, which equated with pinealectomy. Surprisingly, cortisol secretion substantially increased in patients after the surgery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Light and electron microscopic immunocytochemical study on the innervation of the pineal gland of the tree shrew (Tupaia glis), with special reference to peptidergic synaptic junctions with pinealocytes.

    PubMed

    Kado, M; Yoshida, A; Hira, Y; Sakai, Y; Matsushima, S

    1999-09-25

    Conventional and immunocytochemical, light- and electron-microscopic studies on the innervation of the pineal gland of the tree shrew (Tupaia glis) were made. Neuropeptide Y (NPY)-immunoreactive fibers, which were abundantly distributed in the gland, disappeared almost completely after superior cervical ganglionectomy, suggesting that these fibers are mostly postganglionic sympathetic fibers. By contrast, tyrosine hydroxylase (TH)-immunoreactive fibers, which were less numerous than NPY-fibers, remained in considerable numbers in ganglionectomized animals, indicating the innervation of TH-positive fibers from extrasympathetic sources. Bundles of substance P (SP)- or calcitonin gene-related peptide (CGRP)-immunoreactive fibers, entering the gland at its distal end, were left intact after ganglionectomy. SP-fibers were numerous, but CGRP-fibers were scarce in the gland. SP-immunoreactive fibers were myelinated and nonmyelinated, and were regarded as peripheral fibers because of the presence of a Schwann cell sheath. NPY- and SP-immunoreactive fibers and endings were mainly localized in the pineal parenchyma. NPY-immunoreactive endings synapsed frequently, and SP-positive ones did less frequently, with the cell bodies of pinealocytes. The results suggest that NPY and SP directly control the activity of pinealocytes. Sections stained for myelin showed that thick and less thick bundles of myelinated fibers entered the gland by way of the habenular and posterior commissures, respectively. Under the electron microscope, the bundles were found to contain also unmyelinated fibers. A considerable number of nerve endings synapsing with the cell bodies of pinealocytes remained in ganglionectomized animals; these endings were not immunoreactive for TH or SP. Such synaptic endings may be the terminals of commissural fibers.

  2. Physiologic calcification of the pineal gland in children on computed tomography: prevalence, observer reliability and association with choroid plexus calcification.

    PubMed

    Doyle, Anthony James; Anderson, Graeme D

    2006-07-01

    To evaluate the prevalence of physiologic pineal calcification, estimate observer variability, and examine the association with choroid plexus calcification. A retrospective review of hard copy head computed tomography films of 242 patients age younger than 16 years by two independent observers. Physiologic pineal calcification was present in 20% of the whole group, in 39% of those 8-14 years age, in 8% of those younger than 10 years age, and in 1% of those younger than age 6 years. Observer agreement was very good (kappa = 0.72). Choroid plexus calcification was present in 16% and was four times as common in those with pineal calcification (38% versus 10%, P = .005), with very good observer agreement (kappa = 0.74). Physiologic pineal calcification is more common in children than previously reported, mostly because of improving computed tomography technology. There is an association with choroid plexus calcification.

  3. Light-Emitting Diodes and Cool White Fluorescent Light Similarly Suppress Pineal Gland Melatonin and Maintain Retinal Function and Morphology in the Rat. Part 1

    NASA Technical Reports Server (NTRS)

    Holley, Daniel C.; Heeke, D.; Mele, G.

    1999-01-01

    Currently, the light sources most commonly used in animal habitat lighting are cool white fluorescent or incandescent lamps. We evaluated a novel light-emitting diode (LED) light source for use in animal habitat lighting by comparing its effectiveness to cool white fluorescent light (CWF) in suppressing pineal gland melatonin and maintaining normal retinal physiology and morphology in the rat. Results of pineal melatonin suppression experiments showed equal suppression of pineal melatonin concentrations for LED light and CWF light at five different light illuminances (100, 40, 10, 1 and 0.1 lux). There were no significant differences in melatonin suppression between LED and CWF light when compared to unexposed controls. Retinal physiology was evaluated using electroretinography. Results show no differences in a-wave implicit times and amplitudes or b-wave implicit times and amplitudes between 100-lux LED-exposed rats and 100-lux CWF-exposed rats. Results of retinal histology assessment show no differences in retinal thickness rod outer segment length and number of rod nuclei between rats exposed to 100-lux LED and 100-lux CWF for days. Furthermore, the retinal pigmented epithelium and rod outer segments of all eyes observed were in good condition and of normal thickness. This study indicates that LED light does not cause retinal damage and can suppress pineal melatonin at similar intensities as a conventional CWF light source. These data suggest that LED light sources may be suitable replacements for conventional light sources used in the lighting of rodent vivariums while providing many mechanical and economical advantages.

  4. Humanization of the mouse mammary gland.

    PubMed

    Wronski, A; Arendt, L M; Kuperwasser, Charlotte

    2015-01-01

    Although mouse models have provided invaluable information on the mechanisms of mammary gland development, anatomical and developmental differences between human and mice limit full understanding of this fundamental process. Humanization of the mouse mammary gland by injecting immortalized human breast stromal cells into the cleared murine mammary fat pad enables the growth and development of human mammary epithelial cells or tissue. This facilitates the characterization of human mammary gland development or tumorigenesis by utilizing the mouse mammary fat pad. Here we describe the process of isolating human mammary stromal and epithelial cells as well as their introduction into the mammary fat pads of immunocompromised mice.

  5. Baseline central nervous system magnetic resonance imaging in early detection of trilateral retinoblastoma: pitfalls in the diagnosis of pineal gland lesions.

    PubMed

    De Ioris, Maria Antonietta; Valente, Paola; Randisi, Francesco; Buzzonetti, Luca; Carai, Andrea; Cozza, Raffaele; Del Bufalo, Francesca; Romanzo, Antonino; Angioni, Adriano; Cacchione, Antonella; Bernardi, Bruno; Mastronuzzi, Angela

    2014-12-01

    Trilateral retinoblastoma (TRB) is a rare disease associating bilateral retinoblastoma (RB) with primitive intracranial neuroblastic tumor. To verify the occurrence of TRB in a single-Center case series and point out the clinical relevance of a baseline brain magnetic resonance imaging (MRI) in RB, focusing on pineal gland lesions. Baseline MRI was routinely performed in all cases of RB from 1999. All MRIs were reviewed for this study and the RB database was checked in order to identify patients characteristics, treatments and follow-up. A total of 107 patients with RB were diagnosed between 1999 and 2012. Sixty-two patients had unilateral RB and 45 bilateral RB. MRI revealed the presence of pineal gland lesions in 10 patients (9%); seven were considered pineal benign cysts (6.5%), while in three patients (2.8%), TRB was suspected. All patients with TRB presented hereditary RB. In one patient, the suspected TRB was metachronous and in the other two patients was synchronous. Biopsy was not performed. Cerobrospinal fluid (CSF) was negative in all patients. The MRI modification, before treatment in the first case and later in the second case, confirmed the TRB diagnosis. The third patient died due to progressive Central Nervous System (CNS) disease that clearly confirmed the TRB diagnosis. None of the three patients had received prior chemotherapeutic treatment. TRB represents a rare condition in this series, occurring in three (2.8%) out of all patients with RB. A synchronous presentation with small lesion seems more frequent when a baseline MRI is performed. When a histologically-proven diagnosis is not available, a suspected diagnosis should be considered with caution and only follow-up will confirm the diagnosis. A wait-and-see approach should be considered. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Nocturnal activation of aurora C in rat pineal gland: its role in the norepinephrine-induced phosphorylation of histone H3 and gene expression.

    PubMed

    Price, D M; Kanyo, R; Steinberg, N; Chik, C L; Ho, A K

    2009-05-01

    We have shown previously that Ser10 phosphorylation of histone H3 occurs in rat pinealocytes after stimulation with norepinephrine (NE) and that histone modifications such as acetylation appear to play an important role in pineal gene transcription. Here we report the nocturnal phosphorylation of a Ser10 histone H3 kinase, Aurora C, in the rat pineal gland. The time profile of this phosphorylation parallels the increase in the level of phospho-Ser10 histone H3. Studies with cultured pinealocytes indicate that Aurora C phosphorylation is induced by NE and this induction can be blocked by cotreatment with propranolol or KT5720, a protein kinase A inhibitor. Moreover, only treatment with dibutyryl cAMP, but not other kinase activators, mimics the effect of NE on Aurora C phosphorylation. These results indicate that Aurora C is phosphorylated primarily by a beta-adrenergic/protein kinase A-mediated mechanism. Treatment with an Aurora C inhibitor reduces the NE-induced histone H3 phosphorylation and suppresses the NE-stimulated induction of arylalkylamine N-acetyltransferase (AA-NAT), the rhythm-controlling enzyme of melatonin synthesis, and melatonin production. The effects of Aurora C inhibitors on adrenergic-induced genes in rat pinealocytes are gene specific: inhibitory for Aa-nat and inducible cAMP repressor but stimulatory for c-fos. Together our results support a role for the NE-stimulated phosphorylation of Aurora C and the subsequent remodeling of chromatin in NE-stimulated Aa-nat transcription. This phenomenon suggests that activation of this mitotic kinase can be induced by extracellular signals to participate in the transcriptional induction of a subset of genes in the rat pineal gland.

  7. In vitro seasonal variations of LH, FSH and prolactin secretion of the male rat are dependent on the maternal pineal gland.

    PubMed

    Díaz, E; Vázquez, N; Fernández, C; Jiménez, V; Esquifino, A; Díaz, B

    2012-01-17

    The maternal pineal gland is involved in the seasonal rhythms entrainment. We evaluate the effect of maternal pinealectomy (PIN-X), also melatonin replacement (PIN-X+MEL) during pregnancy on "in vitro" gonadotropins and prolactin seasonal variations. Male offspring from control, PIN-X and PIN-X+MEL mother Wistar rats were studied at 31 and 60 days of age. In vitro LH release from controls was season-dependent during prepubertal and pubertal periods showing reduced values in winter. The mother pineal gland seems to be important in the entrainment of seasonal variations of in vitro pituitary LH release, since altered secretion showing very high values was observed in summer. Melatonin treatment to PIN-X mothers partially restored the LH response. The effect of pinealectomy upon LH secretion disappears at the pubertal phase. A different pattern was observed for FSH release, without seasonal variations at 31 or at 60 days of age in control offspring, but pinealectomy to mothers or melatonin treatment resulted in seasonal variations. Seasonal influence was also observed in the prolactin pituitary release of controls. PIN-X mother offspring showed delayed seasonal variations at 31 and 60 days of age. The effect of maternal melatonin treatment during pregnancy was observed up to 60 days of age.

  8. MRI exploration of pineal volume in bipolar disorder.

    PubMed

    Sarrazin, Samuel; Etain, Bruno; Vederine, François-Eric; d'Albis, Marc-Antoine; Hamdani, Nora; Daban, Claire; Delavest, Marine; Lépine, Jean-Pierre; Leboyer, Marion; Mangin, Jean-François; Poupon, Cyril; Houenou, Josselin

    2011-12-01

    Circadian rhythm instability and abnormalities of melatonin secretion are considered as trait markers of bipolar disorder. Melatonin is secreted by the pineal gland. We investigated pineal volume in patients with bipolar disorder, and expected to observe smaller than normal pineal glands in cases of bipolar disorder. The primary outcome was the total pineal volume measured for each pineal gland with T1 MRI sequence. Twenty patients with bipolar I and II disorder and twenty controls were recruited. Pineal glands with large cysts (type 3) were excluded. After exclusion of individuals with type 3 cysts, 32 subjects were analyzed for total pineal volume (16 patients with bipolar disorder and 16 controls). Total pineal volume did not differ significantly between patients (total pineal volume=115+/-54.3mm(3)) and controls (total pineal volume=110+/-40.5mm(3)). Contrary to our hypothesis, no difference in total pineal volume between patients with bipolar disorder and healthy subjects was observed. These results indicate that the putative dysfunction of the pineal gland in bipolar disorder could be not directly related to an abnormal volume of the pineal gland. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. [Circadian changes of the density of melatonin receptors 1A in the neurons of the suprachiasmatic nuclei of the rat hypothalamus under conditions of diverse functional activiity of the pineal gland].

    PubMed

    Pishak, V P; Bulyk, R Ie

    2008-01-01

    An immunohistochemical study of the density of melatonin receptors 1A in the neurons of the rat suprachiasmatic nuclei with diverse functional activity of the pineal gland has been carried out. The density of melatonin receptors 1A under conditions of the physiological function of the pineal gland was characterized by clear-cut diurnal variations. Simultaneously, a dysfunction of the gland results in their marked disturbance. In case of a hypofunction of the pineal body the density of the structures was reliably lower than in case of hyperfunction. It has been demonstrated that in case of a suppressed activity of the pineal body the maximum number of melatonin receptors 1A in the neurons of the hypothalamic suprachiasmatic nuclei shifts from 02.00 a.m. to 02.00 p.m. and constitutes 0.35+/-0.012 conventional units (c.u.) of density, whereas a larger index is noticed at 20 hours making up 0.43+/-0.015 c.u. of density when the gland is activated.

  10. Expression of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) GluR2/3 receptors in the developing rat pineal gland.

    PubMed

    Kaur, C; Sivakumar, V; Ling, E A

    2005-10-01

    The expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type glutamate (GluR2/3) receptors and N-methyl-D-aspartate receptor subtype 1 (NMDAR1) was carried out by immunohistochemistry, double immunofluorescence and real-time RT-PCR analysis in the pineal glands of 1-day to 6-wk-old rats in the present study. GluR2/3 immunopositive cells were distributed throughout the pineal gland and showed branching processes in all age groups. The NMDAR1 immunoreactivity, however, was observed in fewer branched cells. A constitutive mRNA expression of NMDAR1, GluR2 and GluR3 was detected in the pineal glands of various ages and showed no significant difference between the age groups studied. Immunohistochemical and double immunofluorescence results showed that the GluR2/3 were mainly expressed and co-localized with OX-42-positive microglia/macrophages and the glial fibrillary acidic protein (GFAP)-positive astrocytes. Co-localization of NMDAR1 with OX-42- and GFAP-positive cells was much less. The expression of these receptors on the glial cells suggests that they may be involved in the development and growth of the pineal gland in the early postnatal period (1 day to 3 wk) and subsequently in the regulation of melatonin synthesis.

  11. Does histamine stimulate cyclic AMP formation in the avian pineal gland via a novel (non-H1, non-H2, non-H3) histamine receptor subtype.

    PubMed

    Nowak, J Z; Sek, B; D'Souza, T; Dryer, S E

    1995-12-01

    The effects of histamine (HA) and selective HA H1-, H2 and H3-receptor agonists on cyclic AMP formation were investigated in intact chick and duck pineal glands HA potently stimulated the pineal cycle AMP formation. The effect of HA was mimicked fully by N alpha-methylated histamines, and partially by several histaminergic drugs: 2-thiazolylethylamine (H1) amthamine (H2) and R alpha-methyl-histamine (H3). Dimaprit, another selective H2-agonist showed marginal activity. Forskolin highly potentiated the action of HA, and only weakly affected the effects of 2-thiazolylethylamine and amthamine. In the chick pineal, the stimulatory effects of HA and the tested histaminergic drugs were not blocked by mepyramine and thioperamide (H1- and H3-blockers, respectively), but they were antagonized by H2-receptor selective compounds ranitidine and aminopotentidine, which, however, acted in a noncompetitive manner. Another H2-selective blocker zolantidine antagonized the HA effect only when used at very high (30-100 microM) concentrations. In the duck pineal, the stimulatory effect of HA on cyclic AMP production was unaffected by mepyramine (H1), thioperamide (H3), and ranitidine (H2), and only partially inhibited by the H2-blocker aminopotentidine. Electrophysiological experiments revealed that HA is capable of evoking inward currents in most of the tested cells acutely isolated from chick pineal gland. The present findings further indicate that the pharmacological profile of the avian pineal HA receptor, whose stimulation leads to activation of cyclic AMP production, is different from any known HA receptor type (H1, H2, H3), and suggest the existence of either an avian-specific HA receptor, or a novel HA receptor subtype. Electrophysiological data suggest that the pineal HA receptor may be somehow linked to activation of an ionic channel.

  12. The foetal pig pineal gland is richly innervated by nerve fibres containing catecholamine-synthesizing enzymes, neuropeptide Y (NPY) and C-terminal flanking peptide of NPY, but it does not secrete melatonin.

    PubMed

    Bulc, Michał; Lewczuk, Bogdan; Prusik, Magdalena; Całka, Jarosław

    2013-05-01

    Innervation of the mammalian pineal gland during prenatal development is poorly recognized. Therefore, immunofluorescence studies of the pineals of 70- and 90-day-old foetuses of the domestic pig were performed using antibodies against tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DβH), neuropeptide Y (NPY) and C-terminal flanking peptide of NPY (CPON). The investigated glands were supplied by numerous nerve fibres containing TH and DβH. The density of these fibres was higher in the distal and middle parts of the gland than in the proximal one. NPY and CPON were identified in the majority of DβH-positive fibres as well as in a small population of DβH-negative fibres localized mainly in the proximal part of the pineal. The immunoreactive fibres were more numerous in 90-day-old foetuses than in 70-day-old ones. The effect of norepinephrine on melatonin secretion by the foetal pineals in the short-term organ culture was studied to determine the role of DβH-positive fibres during prenatal life. For the same purpose melatonin was measured in the blood in the umbilical cords and in the jugular vein of the mother. The pineals of both groups of foetuses did not secrete melatonin in the organ culture, independently of the presence or absence of norepinephrine in the medium. Melatonin concentrations in the blood in the umbilical cords of foetuses from the same litter and in the jugular vein of their mother were similar. The presence of adrenergic nerve fibres in the pig pineal during gestation does not seem to be associated with the control of melatonin secretion.

  13. The Pineal Gland

    ERIC Educational Resources Information Center

    Kimbrough, T. Daniel; Llewellyn, Gerald C.

    1973-01-01

    Describes a surgical technique for performing pinealectomics, applicable to classroom and laboratory studies, by using a head-holding device for small animals and a flat dissecting tray outfitted with holding straps for larger animals. (CC)

  14. The Pineal Gland

    ERIC Educational Resources Information Center

    Kimbrough, T. Daniel; Llewellyn, Gerald C.

    1973-01-01

    Describes a surgical technique for performing pinealectomics, applicable to classroom and laboratory studies, by using a head-holding device for small animals and a flat dissecting tray outfitted with holding straps for larger animals. (CC)

  15. Circadian rhythms and different photoresponses of Clock gene transcription in the rat suprachiasmatic nucleus and pineal gland.

    PubMed

    Wang, Guo-Qing; Fu, Chun-Ling; Li, Jian-Xiang; Du, Yu-Zhen; Tong, Jian

    2006-08-25

    The aim of this study was to observe and compare the endogenous circadian rhythm and photoresponse of Clock gene transcription in the suprachiasmatic nucleus (SCN) and pineal gland (PG) of rats. With free access to food and water in special darkrooms, Sprague-Dawley rats were housed under the light regime of constant darkness (DD) for 8 weeks (n=36) or 12 hour-light: 12 hour-dark cycle (LD) for 4 weeks (n=36), respectively. Then, their SCN and PG were dissected out every 4 h in a circadian day, 6 rats at each time (n=6). All animal treatments and sampling during the dark phases were conducted under red dim light (<0.1 lux). The total RNA was extracted from each sample and the semi-quantitative RT-PCR was used to determine the temporal mRNA changes of Clock gene in the SCN and PG at different circadian times (CT) or zeitgeber times (ZT). The grayness ratio of Clock/H3.3 bands was served as the relative estimation of Clock gene expression. The experimental data were analyzed by the Cosine method and the Clock Lab software to fit original results measured at 6 time points and to simulate a circadian rhythmic curve which was then examined for statistical difference by the amplitude F test. The main results are as follows: (1) The mRNA levels of Clock gene in the SCN under DD regime displayed the circadian oscillation (P<0.05). The endogenous rhythmic profiles of Clock gene transcription in the PG were similar to those in the SCN (P>0.05) throughout the day with the peak at the subjective night (CT15 in the SCN or CT18 in the PG) and the trough during the subjective day (CT3 in the SCN or CT6 in the PG). (2) Clock gene transcription in the SCN under LD cycle also showed the circadian oscillation (P<0.05), and the rhythmic profile was anti-phasic to that under DD condition (P<0.05). The amplitude and the mRNA level at the peak of Clock gene transcription in the SCN under LD were significantly increased compared with that under DD (P<0.05), while the value of

  16. Tectal pineal cyst in a 1-year-old girl.

    PubMed

    Plowey, Edward D; Vogel, Hannes; Yeom, Kristen W; Jung, Henry; Chao, Kevin; Edwards, Michael S B

    2014-03-01

    Glial cysts of the pineal gland can frequently be found in adults and children, but only rarely do they enlarge to become clinically relevant. We report a unique presentation of a pineal cyst in the midbrain tectum of a 16-month-old girl who initially presented with ptosis and strabismus. Preoperative imaging studies and intraoperative findings revealed no continuity between the tectal cyst and the pineal gland proper. We surmise that this tectal pineal cyst may have arisen from duplicated pineal gland tissue.

  17. Circadian rhythms of pineal function in rats.

    PubMed

    Binkley, S A

    1983-01-01

    In pineal glands melatonin is synthesized daily. Melatonin synthesis in rats kept in most light-dark cycles occurs during the subjective night. This rhythm, which persists in constant dark, is a circadian rhythm which may be a consequence of another circadian rhythm in the pineal gland, of N-acetyltransferase activity (NAT). The NAT rhythm has been studied extensively in rats as a possible component of the system timing circadian rhythms. The NAT rhythm is driven by neural signals transmitted to the pineal gland by the sympathetic nervous system. Environmental lighting exerts precise control over the timing of the NAT rhythm. In rats, there is enough data to describe a daily time course of events in the pineal gland and to describe a pineal "life history." Hypothetical schemes for generation of the NAT rhythm and for its control by light are presented.

  18. Expression of tranferrin receptors in the pineal gland of postnatal and adult rats and its alteration in hypoxia and melatonin treatment.

    PubMed

    Kaur, C; Sivakumar, V; Ling, E A

    2007-02-01

    Transferrin receptors (Tfrc) are membrane bound glycoproteins which function to mediate cellular uptake of iron from transferrin. We examined expression of Tfrc in the pineal gland of rats of different ages from 1 day to 12 weeks. The mRNA and protein expression of Tfrc increased up to 6 weeks of age and decreased in 12 week rats. Tfrc immunoreactivity was observed on pinealocytes and macrophages/microglia. By immunoelectron microscopy, the immunoreaction in pinealocytes was observed in the cytosol, on mitochondria and plasma membrane whereas in macrophages/microglia it was localized on the plasma membrane in 1-day to 2-week old rats. In older rats, the immunoreaction product in pinealocytes was associated with the plasma membrane and mitochondria only. Iron localization was observed in pinealocytes as well as macrophages/microglia. It is suggested that Tfrc are required for uptake of iron for cell proliferation and maturation in the pineal gland upto 6 weeks of age. The significance of Tfrc expression on mitochondria is speculative. They may be involved in iron transport to the mitochondria or for regulation of the secretory activity of pinealocytes. The TfrcmRNA and protein expression increased significantly in response to hypoxia in 12-week rats and this coincided with intense iron staining of the pinealocytes and macrophages/microglia. It is concluded that increased expression of Tfrc in response to hypoxia leads to excess cellular uptake of iron which may be damaging to the cells. Melatonin administration in hypoxic rats may prove to be beneficial as it reduced the Tfrc expression.

  19. Regulation of cAMP-induced arylalkylamine N-acetyltransferase, Period1, and MKP-1 gene expression by mitogen-activated protein kinases in the rat pineal gland.

    PubMed

    Chansard, Mathieu; Iwahana, Eiko; Liang, Jian; Fukuhara, Chiaki

    2005-10-03

    In rodent pineal glands, sympathetic innervation, which leads to norepinephrine release, is a key process in the circadian regulation of physiology and certain gene expressions. It has been shown that gene expression of the rate-limiting enzyme in the melatonin synthesis arylalkylamine N-acetyltransferase (Aa-Nat), circadian clock gene Period1, and mitogen-activated protein kinase (MAPK) phosphtase-1 (MKP-1), is controlled mainly by a norepinephrine-beta-adrenergic receptor-cAMP signaling cascade in the rat pineal gland. To further dissect the signaling cascades that regulate those gene expressions, we examined whether MAPKs are involved in cAMP-induced gene expression. Western blot and immunohistochemical analyses showed that one of the three MAPKs, c-Jun N-terminal kinase (JNK), was expressed in the pineal, and was phosphorylated by cAMP analogue stimulation with a peak 20 min after start of the stimulation, in vitro. A specific JNK inhibitor SP600125 (Anthra[1,9-cd]pyrazol-6(2H)-one1,9-pyrazoloanthrone), but not its negative control (N1-Methyl-1,9-pyrazoloanthrone), significantly reduced cAMP-stimulated Aa-Nat, Period1, and MKP-1 mRNA levels. Although another MAPK, p38(MAPK), has also been shown to be activated by cAMP stimulation, a p38(MAPK) inhibitor, SB203580 (4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole, HCl), showed no effect on cAMP-induced Aa-Nat and Period1 mRNA levels; whereas SB203580, but not its negative analogue SB202474 (4-Ethyl-2(p-methoxyphenyl)-5-(4'-pyridyl)-IH-imidazole, DiHCl), significantly reduced cAMP-induced MKP-1 mRNA levels. Taken together, our data suggest that cAMP-induced Aa-Nat and Period1 are likely to be mediated by activation of JNK, whereas MKP-1 may be mediated by both p38(MAPK) and JNK activations.

  20. [Trilateral retinoblastoma. Correlation between the genetic anomalies of the RB1 gene and the presence of pineal gland cysts].

    PubMed

    Ruiz Del Río, N; Abelairas Gómez, J M; Alonso García de la Rosa, F J; Peralta Calvo, J M; de Las Heras Martín, A

    2014-01-01

    To determine the correlation between the presence of genetic anomalies identified in the RB1 gene and the development of trilateral retinoblastoma. No patients with primitive neuroectodermal tumour (PNET) were identified out of a total of 206 patients, but there were 17 cases of pineal cysts, of which 11 had a genetic study. Of the 11 patients who had a genetic study performed, the anomaly in the germinal line was identified in 8 cases, which was equivalent to 100% of the bilateral retinoblastomas, and 25% of the unilateral ones. It is more common to find a germinal mutation in patients with bilateral disease (P=.024). There are no significant differences in the type of anomaly identified, although the nonsense-frameshift type is more frequent in cases with bilateral involvement. Identification of the genetic anomaly is more frequent in patients who have pineal cysts (Fisher test; P=.490). Nine of the 17 patients received systemic chemotherapy (52.29% of the cases), which could be able to prevent the development of PNET. Although a certain trend was observed in all the mentioned parameters, there was a relationship between, the presence of pineal cysts and bilateral disease (Pearson Chi X2: P=.191), a known family history (Fisher test; P=.114) and age of early diagnosis (Fisher test; P=.114). There were no significant differences in the mutation type identified. Considering pineal cysts as a pre-malignant form of pinealoblastoma, we found a relationship between the germinal line mutation of the RB1 gene and the cases with bilateral or unilateral retinoblastoma. Copyright © 2010 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  1. The pineal gland does not control rod outer segment shedding and phagocytosis in the rat retina and pigment epithelium.

    PubMed

    Tamai, M; Teirstein, P; Goldman, A; O'Brien, P; Chader, G

    1978-06-01

    Diurnal patterns of retinal outer segment shedding and phagocytosis by the pigment epithelium were examined in pinealectomized, superior-cervical-ganglionectomized, and sham-operated rats. Phagocytosis was quantitatively similar in all groups. Sharp increases in the number of large phagosomes were observed soon after lights were turned on in the tree sets of animals. Pinealectomized animals kept in constant darkness over a 24 hr period also exhibited normal shedding patterns. Our results suggest that the pineal does not exert a major influence on the daily rhythms of shedding and phagocytosis observed in the retina-pigment epithelium unit.

  2. Influence of light/dark, seasonal and lunar cycles on serum melatonin levels and synaptic bodies number of the pineal gland of the rat.

    PubMed

    Martínez-Soriano, F; Ruiz-Torner, A; Armañanzas, E; Valverde-Navarro, A A

    2002-01-01

    Synaptic bodies (SB) are ultrastructural organelles observed in the pinealocytes of mammals. According to its shape, they have been classified into synaptic ribbons (SR), synaptic spherules (SS), and intermediate synaptic bodies (ISB). They have been related to the melatonin regulation and production mechanisms of the pineal gland. Circadian and circannual fluctuations of both melatonin and SB have been reported. The possibility that other external factors, apart from light-dark or seasonal cycles, might influence pineal function has been suggested. We studied the evolution of the number of SB and serum melatonin levels not only during light-dark and seasonal phases but also during lunar cycles. Forty male wistar rats were used. Experiment was first carried out in winter and repeated identically in spring. Each season, one group of animals was killed during the new-moon days and a second group during the full-moon days: half of both groups in the photophase and the other half in the scotophase. The number of SB was measured at electron microscopic level whereas serum melatonin levels were determined by radioimmunoassay techniques. Main results showed that SR number and serum melatonin levels were higher during scotophases, winter and full-moon days. The SS only showed a light predominance during winter, whereas predominance of the ISB was found only during the scotophases. These results support the influence of the photophasic factors on the SR and ISB variations. In the case of the SS the influence of the lunar cycles is always dependent on the other factors. Finally, the serum level of melatonin is clearly influenced by the photophasic rhythms and the seasonal periods but not by the lunar cycles.

  3. Biosynthesis and biological action of pineal allopregnanolone

    PubMed Central

    Tsutsui, Kazuyoshi; Haraguchi, Shogo

    2014-01-01

    The pineal gland transduces photoperiodic changes to the neuroendocrine system by rhythmic secretion of melatonin. We recently provided new evidence that the pineal gland is a major neurosteroidogenic organ and actively produces a variety of neurosteroids de novo from cholesterol in birds. Notably, allopregnanolone is a major pineal neurosteroid that is far more actively produced in the pineal gland than the brain and secreted by the pineal gland in juvenile birds. Subsequently, we have demonstrated the biological action of pineal allopregnanolone on Purkinje cells in the cerebellum during development in juvenile birds. Pinealectomy (Px) induces apoptosis of Purkinje cells, whereas allopregnanolone administration to Px chicks prevents cell death. Furthermore, Px increases the number of Purkinje cells that express active caspase-3, a crucial mediator of apoptosis, and allopregnanolone administration to Px chicks decreases the number of Purkinje cells expressing active caspase-3. It thus appears that pineal allopregnanolone prevents cell death of Purkinje cells by suppressing the activity of caspase-3 during development. This paper highlights new aspects of the biosynthesis and biological action of pineal allopregnanolone. PMID:24834027

  4. Pineal cyst: a review of clinical and radiological features.

    PubMed

    Choy, Winward; Kim, Won; Spasic, Marko; Voth, Brittany; Yew, Andrew; Yang, Isaac

    2011-07-01

    Pineal cysts (PCs) are benign and often asymptomatic lesions of the pineal region that are typically small and do not change in size over time. PCs appear as small, well circumscribed, unilocular masses that either reside within or completely replace the pineal gland. This article reviews and discusses the characteristic features of PCs-clinical, histological, and identifiable by various imaging modalities-which assist clinicians in narrowing the differential diagnosis for pineal lesions.

  5. Pineal calcification.

    PubMed

    Bhatti, I H; Khan, A

    1977-04-01

    The incidence of pineal calcification was studied by reviewing skull radiographs of 1400 patients admitted to a major neurosurgical centre at Karachi over an eight year period. The total frequency as well as age and sex distribution of pineal calcification were worked out and compared with frequency and age distribution of calcification reported in Western and Eastern races by different workers.

  6. Papillary tumor of the pineal region

    PubMed Central

    Opatowsky, Michael; O'Rourke, Brian; Layton, Kennith

    2012-01-01

    Presented is a patient with papillary tumor of the pineal region (PTPR), an uncommon and recently recognized neoplasm. As its name implies, PTPR does not arise from the pineal gland itself. The cell of origin is thought to be the specialized ependymocytes of the subcommissural organ. Primary tumors of the pineal region include pineal parenchymal neoplasms, germ cell neoplasms, and tumors arising from adjacent structures, including meningiomas, astrocytomas, and ependymomas. Like other masses in this location, PTPR often leads to obstructive hydrocephalus. Due to the relative paucity of reported cases of PTPR, its natural history is unknown. PMID:22275792

  7. Pineal epidermoid

    PubMed Central

    Senapati, Satya B.; Mishra, Sudhansu S.; Patnaik, Ashis; Patra, Sunil K.

    2012-01-01

    Background: Tumors of pineal region are uncommon, accounting for ≤1% of intracranial tumors in adults and 3–8% of pediatric brain tumors. Epidermoid cysts account for 0.2–1% of all intracranial tumors. The majority occur in and around the cerebellopontine angle and suprasellar area. Getting an epidermoid in pineal region is very rare. Case Description: We report a case of pineal epidermoid, which was diagnosed correctly as epidermoid depending on computed tomography (CT) and magnetic resonance imaging (MRI) findings. Knowing its benign nature, we accordingly planned for its near-total removal. Conclusion: Most cases of pineal tumors present as obstructive hydrocephalus. They either require pre- or postoperative ventriculoperitoneal (VP) shunt. If properly planned, many benign pineal tumors may be successfully excised and, most importantly, postoperative VP shunt could be avoided. PMID:23226611

  8. Characterization of the chicken GCAP gene array and analyses of GCAP1, GCAP2, and GC1 gene expression in normal and rd chicken pineal.

    PubMed

    Semple-Rowland, S L; Larkin, P; Bronson, J D; Nykamp, K; Streit, W J; Baehr, W

    1999-07-28

    This study had three objectives: (1) to characterize the structures of the chicken GCAP1 and GCAP2 genes; (2) to determine if GCAP1, GCAP2, and GC1 genes are expressed in chicken pineal gland; (3) if GC1 is expressed in chicken pineal, to determine if the GC1 null mutation carried by the retinal degeneration (rd) chicken is associated with degenerative changes within the pineal glands of these animals. GCAP1 and GCAP2 gene structures were determined by analyses of chicken cosmid and cDNA clones. The putative transcription start points for these genes were determined using 5'-RACE. GCAP1, GCAP2 and GC1 transcripts were analyzed using Northern blot and RT-PCR. Routine light microscopy was used to examine pineal morphology. Chicken GCAP1 and GCAP2 genes are arranged in a tail-to-tail array. Each protein is encoded by 4 exons that are interrupted by 3 introns of variable length, the positions of which are identical within each gene. The putative transcription start points for GCAP1 and GCAP2 are 314 and 243 bases upstream of the translation start codons of these genes, respectively. As in retina, GCAP1, GCAP2 and GC1 genes are expressed in the chicken pineal. Although the GC1 null mutation is present in both the retina and pineal of the rd chicken, only the retina appears to undergo degeneration. The identical arrangement of chicken, human, and mouse GCAP1/2 genes suggests that these genes originated from an ancient gene duplication/inversion event that occurred during evolution prior to vertebrate diversification. The expression of GC1, GCAP1, and GCAP2 in chicken pineal is consistent with the hypothesis that chicken pineal contains a functional phototransduction cascade. The absence of cellular degeneration in the rd pineal gland suggests that GC1 is not critical for pineal cell survival.

  9. CAFFEINE INJECTION IN THE DARK PHASE PROLONGS THE NOCTURNAL RISE IN SEROTONIN N-ACETYLTRANSFERASE ACTIVITY AND MELATONIN CONTENT IN THE PINEAL GLAND OF MALE RATS.

    PubMed

    Sabry

    1997-12-01

    Caffeine, an important member of methylxanthines, induced a prolonged nocturnal rise in pineal melatonin content and an increase in its rate-limiting enzyme serotonin N-acetyltransferase (NAT) activity. The highest levels were reached five hours after subcutaneous caffeine injection to male rats in the dark phase, where the NAT activity increased from 920+/-70 pM/pineal/h in the control group to 1190+/-120 pM/pineal/h (P<0.001) in the treated group. The pineal melatonin content, as well, was elevated from 520+/-40 pg/pineal in the control group to 1120+/-80 pg/pineal (P<0.001) in caffeine treated group. These changes could be attributed to the depressive effect of caffeine on the activity of phosphodiesterase (PDE), the enzyme responsible for the hydrolysis of the intracellular second messenger cyclic adenosine monophosphate (cAMP).

  10. Pineal Calcification Among Black Patients

    PubMed Central

    Fan, Kuang-Jaw

    1983-01-01

    A postmortem histopathological study was done in 233 pineal glands of black patients. Among them, 70 percent showed microscopic evidence of calcification in the pineal parenchyma. The frequency of calcification increased with age. However, the severity of calcification reached the peak in the 60 to 69 year old age group and then gradually declined. As compared to males, females had slightly higher frequency and reached the peak of severity in younger age groups. When pineal calcification was compared among patients with various malignancies, a higher frequency and more severe calcification were observed in patients with carcinoma of the prostate and the pancreas. A lower frequency and less severe calcification were observed in patients with carcinoma of the breast and the cervix. The results of this study emphasize the important role of sex hormone in genesis of pineal calcification. PMID:6631985

  11. [THE CHANGES OF THE INTERRELATIONS OF THE PINEAL GLAND AND THE ORGANS OF THE IMMUNE SYSTEM IN RATS IN RESPONSE TO MELATONIN ADMINISTRATION IN LIGHT REGIME DISTURBANCES].

    PubMed

    Litvinenko, G I; Gritzyk, O B; Mel'nikova, Ye V; Avrorov, P A; Tenditnik, M V; Shurlygina, A V; Trufakin, V A

    2015-01-01

    In this work the correlation analysis was applied to detect the integrated response of the pineal gland (PG) and immunocompetent organs of male Wistar rats in response to administration of melatonin (MT) in light regime disturbances. Animals were kept for 14 days under natural or continuous light (CL). Then for 7 days they received the injections of either 0.9% solution of sodium chloride or MT, after which the rats were decapitated and the mass of their body, PG, thymus and spleen was determined. The lymphocyte subpopulations of the thymus and spleen were studied by flow cytometry. The amount of lipofuscin in PG was assessed by the intensity of autofluorescence in organ frozen sections in 560-600 nm wavelength range. It was found that under the influence of MT, the number of intraorgan correlations in the immune system increased, regardless of the light regime. In animals on CL treated with MT, the number of interorgan connections was reduced, while negative correlations appeared between PG lipofuscin content and cellular composition of the spleen. The synchronizing and adaptogenic effects of MT were most pronounced under conditions of CL.

  12. Tryptophan hydroxylase mRNA levels are elevated by repeated immobilization stress in rat raphe nuclei but not in pineal gland.

    PubMed

    Chamas, F; Serova, L; Sabban, E L

    1999-06-04

    Repeated stress triggers a wide range of adaptive changes in the central nervous system including the elevation of serotonin (5-HT) metabolism and an increased susceptibility to affective disorders. To begin to examine whether these changes are mediated by alterations in gene expression for tryptophan hydroxylase (TPH), the rate-limiting enzyme in 5-HT biosynthesis, we quantitated its mRNA levels by competitive reverse transcription-polymerase chain reaction (RT-PCR). Repeated immobilization stress (2 h, 7 days) elicited a six- or ten-fold rise in TPH mRNA in median raphe nucleus (MRN) and dorsal raphe nucleus (DRN), respectively, without significantly altering TPH mRNA levels in the pineal gland. In contrast, there was little change in mRNA levels for GTP cyclohydrolase I (GTPCH), the rate limiting enzyme in synthesis of the tetrahydrobiopterin (BH4), the obligate cofactor for TPH. This is the first study to reveal stress-elicited activation of TPH gene expression.

  13. [Interrelations of pineal gland morpho-functional indices and immune system organs in rats exposed to natural illumination regime and continuous illumination].

    PubMed

    Litvinenko, G I; Shurlygina, A V; Gritsyk, O B; Mel'nikova, E V; Avrorov, P A; Tendinitnik, M V; Trufakin, V A

    2014-01-01

    The objective of this investigation was to determine the complex response of the pineal gland (PG) and of the organs of the immune system in Wistar rats in response to a violation of the illumination regime in the experiment. Animals were kept under natural light regime and continuous illumination for 14 days. After that rats were sacrificed and the mass of the body, PG, gonads, thymus and spleen was measured. Thymus and spleen cell subpopulations were determined by flow cytometry. The lipofuscin content in PG was determined by measuring an autofluorescence intensity in frozen tissue sections in the wavelength range of 505-545 nm using a confocal laser scanning microscope LSM 510 META (Carl Zeiss). The correlation analysis showed an increase in the amount and the change of sign and direction of relations between the indices of the state of PG and the immune system. This indicates the up-regulation of the intensity of inter-system relationships and the change of migration and differentiation vector of immunocompetent cells.

  14. Differential resetting process of circadian gene expression in rat pineal glands after the reversal of the light/dark cycle via a 24 h light or dark period transition.

    PubMed

    Wu, Tao; Dong, Yue; Yang, Zhiqiu; Kato, Hisanori; Ni, Yinhua; Fu, Zhengwei

    2009-07-01

    Although studies involving the circadian response to time-zone transitions indicate that the circadian clock usually takes much longer to phase advance than delay, the discrepancy between the circadian resetting induced by photoperiod alteration via a dark or light period transition has yet to be investigated. In mammals, the pineal gland is an important component in the photoneuroendocrine axis, regulating biological rhythms. However, few studies have systematically examined the resetting process of pineal clock-gene expression to date. We investigated the resetting processes of four clock genes (Bmal1, Cry1, Per1, Dec1) and AANAT in the rat pineal gland after the light-dark (LD) reversal via a 24 h light or dark period transition. The resynchronization of the SCN-driven gene AANAT was nearly complete in three days in both situations, displaying similar resetting rates and processes after the differential LD reversals. The resetting processes of the clock genes were characterized by gene-specific, phase-shift modes and differential phase-shift rates between the two different LD reversal modes. The resetting processes of these clock genes were noticeably lengthened after the LD reversal via the light period transition in comparison to via the dark period transition. In addition, among the four examined clock genes, Per1 adjusted most rapidly after the differential LD reversals, while the rhythmic Cry1 expression adjusted most slowly.

  15. Chicktacking pineal clock.

    PubMed

    Okano, Toshiyuki; Fukada, Yoshitaka

    2003-12-01

    Many tissues in non-mammalian vertebrates contain both photoreceptors and circadian clock systems. Among these photosensitive clock structures, the chick pineal gland has been characterized in detail from cellular and molecular aspects of the clock oscillation and entrainment. Analyses of the pineal photic-input pathway revealed a phase-shifting mechanism mediated by activation of G11, one of the Gq-type G-proteins. A major photoreceptive molecule, pinopsin, likely triggers this pathway by transmitting the light signal to the circadian oscillator. In the chick pineal oscillator, the transcription/translation-based autoregulatory feedback loop is composed of positive and negative elements (clock gene products) that are homologous to those identified in mammals. In the molecular cycling, a CACGTG E-box located in the promoter region of the negative element genes plays a central role in the transcriptional regulation. The phase of the molecular cycling is modulated by many regulatory components, among which E4BP4 and extracellular signal-regulated kinase (ERK) are closely associated with the photic entrainment. A light-responsive element was found in the promoter region of the Pinopsin gene, and the element included a CACGTG E-box, suggesting a novel role of the E-box as a point of convergence of light and circadian signals. These observations together point to general and unique features of the chick pineal circadian system among animal clocks.

  16. Transcription factors may frame Aa-nat gene expression and melatonin synthesis at night in the Syrian hamster pineal gland.

    PubMed

    Garidou, Marie-Laure; Diaz, Elena; Calgari, Christiane; Pévet, Paul; Simonneaux, Valérie

    2003-06-01

    Pineal melatonin synthesis is stimulated at night following an increase in arylalkylamine-N-acetyltransferase (AA-NAT) activity. Depending on the species, two mechanisms of enzyme activation have been described: a cAMP/phospho-cAMP response element-binding protein-dependent stimulation of Aa-nat gene transcription in the rat, presumed to occur in all rodents, or a posttranslational regulation of AA-NAT protein in ongulates. The present data obtained in the Syrian hamster indicate another route of AA-NAT regulation. Elevated nocturnal levels of Aa-nat mRNA were strongly suppressed following light exposure or adrenergic antagonist administration, demonstrating the involvement of norepinephrine in the stimulation of melatonin synthesis. However, administration of adrenergic agonists during the day did not increase Aa-nat mRNA unless a protein synthesis inhibitor was given during the previous night. This indicates that an inhibitory protein, synthesized at night, prevents melatonin synthesis during the day. By contrast, a protein synthesis inhibitor given at the beginning of the night markedly reduced Aa-nat mRNA, suggesting that a stimulatory protein (transcription factor?) is necessary for Aa-nat gene transcription at night. Noteworthy, hamsters raised in long photoperiod were responsive to adrenergic agonist injection only in the first hour after light onset, a response that may be important in this photoperiodic species in which the melatonin peak extends into the morning hours in a short photoperiod.

  17. Some questions provoked by a chronic headache (with mixed migraine and cluster headache features) in a woman with a pineal cyst. Answers from a literature review.

    PubMed

    Molina-Martínez, F J; Jiménez-Martínez, M C; Vives-Pastor, B

    2010-09-01

    The main known function of the pineal gland in humans is the production of melatonin. Benign cysts of the gland have been related to headache, although the mechanism of production of this assumed clinical manifestation has not been clearly determined, due to the lack of large prospective studies. The question is complicated by the fact that pineal cysts are frequently found on brain magnetic resonance imaging. Much has been published about the possible role of benign pineal cysts in the pathophisiology of headaches and the potential of melatonin in headache therapy, as well as in other disorders. The aim of this article is to review the current state of the subject. We have tried to place accurately the relation between headache and pineal cysts based on the available evidence, as well as the actual role of melatonin in physiology and pharmacology, more specifically in headache therapy. We include a clinical case to illustrate the subject.

  18. Morphogenesis of the human lacrimal gland

    PubMed Central

    de la Cuadra-Blanco, C; Peces-Peña, M D; Mérida-Velasco, J R

    2003-01-01

    The aim of this study was to determine the main stages of the lacrimal gland's developmental process in humans and to establish its precise morphogenetic timetable. Its onset is generally assumed to take place at O'Rahilly's stage 21, arising from an epithelial thickening of the superior extreme of the temporary conjunctival fornix. However, the present study points to a prior stage in the process: the presence of epithelial–mesenchymal changes in embryos at O'Rahilly's stage 19. The study was performed using light microscopy on serial sections of 37 human specimens: 23 embryos and 14 fetuses ranging from 15 to 137 mm crown–rump length (7–116 weeks of development). Three stages in lacrimal gland morphogenesis were identified: (1) the presumptive glandular stage, O'Rahilly's stages 19–20, characterized by a thickening of the superior fornix epithelium together with surrounding mesenchymal condensation; (2) the bud stage, generally assumed to be the first manifestation of glandular origin, characterized initially by the appearance of nodular formations in the region of the superior conjunctival fornix and concluding with the appearance of lumina within the epithelial buds; and (3) the glandular maturity stage, weeks 9–16, the period in which the gland begins to take on the morphology of adulthood. PMID:14635806

  19. Primary pineal malignant melanoma

    PubMed Central

    Cedeño Diaz, Oderay Mabel; Leal, Roberto García; La Cruz Pelea, Cesar

    2011-01-01

    Primary pineal malignant melanoma is a rare entity, with only thirteen cases reported in the world literature to date. We report a case of a 70-year-old man, who consulted with gait disturbance of six months duration, associated in the last month with dizziness, visual abnormalities and diplopia. No other additional melanocytic lesions were found elsewhere. The magnetic resonance showed a 25 mm expansive mass in the pineal gland that was associated with hydrocephaly, ventricular and transependimary oedema. The lesion was partially excised by a supracerebellar infratentorial approach. The histological examination revealed a melanoma. The patient received radiation therapy, but died of disease 16 weeks later. We herein review the literature on this rare tumour and comment on its clinical, radiological and histopathological features and differential diagnosis. PMID:24765293

  20. Proteomic analysis of human meibomian gland secretions

    PubMed Central

    Tsai, P S; Evans, J E; Green, K M; Sullivan, R M; Schaumberg, D A; Richards, S M; Dana, M R; Sullivan, D A

    2006-01-01

    Background/aim Human tears contain hundreds of proteins that may exert a significant influence on tear film stability, ocular surface integrity, and visual function. The authors hypothesise that many of these proteins originate from the meibomian gland. This study's aim was to begin to develop the proteomic methodology to permit the testing of their hypothesis. Methods Meibomian gland secretions were collected from the lower eyelids of adult volunteers and placed in a chloroform‐methanol mixture. Samples were partitioned in a biphasic system and non‐lipid phase materials were reduced, alkylated, and trypsin digested to obtain peptides for protein identification. This peptide mixture was separated by µ‐capillary reverse phase chromatography and the effluent examined by nano‐electrospray MS and data dependent MS/MS. SEQUEST software was used to identify proteins from the MS/MS spectra. Results The methodological approach to date has permitted the identification of more than 90 proteins in human meibomian gland secretions. Proteins include the α2‐macroglobulin receptor, IgA α chain, farnesoid X activated receptor, interferon regulatory factor 3, lacritin precursor, lactotransferrin, lipocalin 1, lysozyme C precursor, potential phospholipid transporting ATPase IK, seven transmembrane helix receptor (also termed somatostatin receptor type 4), testes development related NYD‐SP21 (also termed high affinity IgE receptor β subunit), and TrkC tyrosine kinase. Conclusions These findings indicate that the meibomian gland secretes a number of proteins into the tear film. It is quite possible that these proteins contribute to the dynamics of the tear film in both health and disease. PMID:16488965

  1. The human meibomian gland epithelial cell line as a model to study meibomian gland dysfunction.

    PubMed

    Hampel, Ulrike; Garreis, Fabian

    2017-10-01

    The meibomian gland dysfunction (MGD) is the leading cause of dry eye disease (DED) throughout the world. The investigation of MGD lacks suitable in vivo and in vitro models. In 2010 a human meibomian gland epithelial cell line (HMGEC) was established, so far the only available meibomian gland cell line. The characterization of HMGEC is of major importance to clarify its suitability for studying the meibomian gland (patho)physiology in vitro. The current culture protocol and new concepts of HMGEC culture will be compared. Hormones are believed to be a key factor in meibomian gland dysfunction thus HMGEC responsiveness to hormone stimulation is crucial to elucidate the hormonal influence on the meibomian gland. This review will summarize current findings about HMGEC and discuss its role in the meibomian gland dysfunction research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Pineal lesions: a multidisciplinary challenge.

    PubMed

    Westphal, Manfred; Emami, Pedram

    2015-01-01

    The pineal region is a complex anatomical compartment, harbouring the pineal gland surrounded by the quadrigeminal plate and the confluents of the internal cerebral veins to form the vein of Galen. The complexity of lesions in that region, however, goes far beyond the pineal parenchyma proper. Originating in the pineal gland, there are not only benign cysts but also numerous different tumour types. In addition, lesions such as tectal gliomas, tentorial meningiomas and choroid plexus papillomas arise from the surrounding structures, occupying that regions. Furthermore, the area has an affinity for metastatic lesions. Vascular lesions complete the spectrum mainly as small tectal arteriovenous malformations or cavernous haemangiomas.Taken together, there is a wide spectrum of lesions, many unique to that region, which call for a multidisciplinary approach. The limited access and anatomical complexity have generated a spectrum of anatomical approaches and raised the interest for neuroendoscopic approaches. Equally complex is the spectrum of treatment modalities such as microsurgery as the main option but stereotactic radiosurgery as an alternative or adjuvant to surgery for selected cases, radiation as for germinoma (see below) and or combinatorial chemotherapy, which may need to precede any other ablative technique as constituents.In this context, we review the current literature and our own series to obtain a snapshot sentiment of how to approach pineal lesions, how to interrelate alternative/competing concepts and review the recent technological advances.

  3. Alternative Isoform Analysis of Ttc8 Expression in the Rat Pineal Gland Using a Multi-Platform Sequencing Approach Reveals Neural Regulation.

    PubMed

    Hartley, Stephen W; Mullikin, James C; Klein, David C; Park, Morgan; Coon, Steven L

    Alternative isoform regulation (AIR) vastly increases transcriptome diversity and plays an important role in numerous biological processes and pathologies. However, the detection and analysis of isoform-level differential regulation is difficult, particularly in the face of complex and incompletely-annotated transcriptomes. Here we have used Illumina short-read/high-throughput RNA-Seq to identify 55 genes that exhibit neurally-regulated AIR in the pineal gland, and then used two other complementary experimental platforms to further study and characterize the Ttc8 gene, which is involved in Bardet-Biedl syndrome and non-syndromic retinitis pigmentosa. Use of the JunctionSeq analysis tool led to the detection of several novel exons and splice junctions in this gene, including two novel alternative transcription start sites which were found to display disproportionately strong neurally-regulated differential expression in several independent experiments. These high-throughput sequencing results were validated and augmented via targeted qPCR and long-read Pacific Biosciences SMRT sequencing. We confirmed the existence of numerous novel splice junctions and the selective upregulation of the two novel start sites. In addition, we identified more than 20 novel isoforms of the Ttc8 gene that are co-expressed in this tissue. By using information from multiple independent platforms we not only greatly reduce the risk of errors, biases, and artifacts influencing our results, we also are able to characterize the regulation and splicing of the Ttc8 gene more deeply and more precisely than would be possible via any single platform. The hybrid method outlined here represents a powerful strategy in the study of the transcriptome.

  4. The 2004 Aschoff/Pittendrigh lecture: Theory of the origin of the pineal gland--a tale of conflict and resolution.

    PubMed

    Klein, David C

    2004-08-01

    A theory is presented that explains the evolution of the pinealocyte from the common ancestral photoreceptor of both the pinealocyte and retinal photoreceptor. Central to the hypothesis is the previously unrecognized conflict between the two chemistries that define these cells-melatonin synthesis and retinoid recycling. At the core of the conflict is the formation of adducts composed of two molecules of retinaldehyde and one molecule of serotonin, analogous to formation in the retina of the toxic bis-retinyl ethanolamine (A2E). The hypothesis argues that early in chordate evolution, at a point before the genes required for melatonin synthesis were acquired, retinaldehyde--which is essential for photon capture--was depleted by reacting with naturally occurring arylalkylamines (tyramine, serotonin, tryptamine, phenylethylamine) and xenobiotic arylalkylamines. This generated toxic bis-retinyl arylalkylamines (A2AAs). The acquisition of arylalkylamine N-acetyltransferase (AANAT) prevented this by N-acetylating the arylalkylamines. Hydroxyindole-O-methyltransferase enhanced detoxification in the primitive photoreceptor by increasing the lipid solubility of serotonin and bis-retinyl serotonin. After the serotonin --> melatonin pathway was established, the next step leading toward the pinealocyte was the evolution of a daily rhythm in melatonin and the capacity to recognize it as a signal of darkness. The shift in melatonin from metabolic garbage to information developed a pressure to improve the reliability of the melatonin signal, which in turn led to higher levels of serotonin in the photodetector. This generated the conflict between serotonin and retinaldehyde, which was resolved by the cellular segregation of the two chemistries. The result, in primates, is a pineal gland that does not detect light and a retinal photodetector that does not make melatonin. High levels of AANAT in the latter tissue might serve the same function AANAT had when first acquired- prevention

  5. Alternative Isoform Analysis of Ttc8 Expression in the Rat Pineal Gland Using a Multi-Platform Sequencing Approach Reveals Neural Regulation

    PubMed Central

    Mullikin, James C.; Klein, David C.; Park, Morgan; Coon, Steven L.

    2016-01-01

    Alternative isoform regulation (AIR) vastly increases transcriptome diversity and plays an important role in numerous biological processes and pathologies. However, the detection and analysis of isoform-level differential regulation is difficult, particularly in the face of complex and incompletely-annotated transcriptomes. Here we have used Illumina short-read/high-throughput RNA-Seq to identify 55 genes that exhibit neurally-regulated AIR in the pineal gland, and then used two other complementary experimental platforms to further study and characterize the Ttc8 gene, which is involved in Bardet-Biedl syndrome and non-syndromic retinitis pigmentosa. Use of the JunctionSeq analysis tool led to the detection of several novel exons and splice junctions in this gene, including two novel alternative transcription start sites which were found to display disproportionately strong neurally-regulated differential expression in several independent experiments. These high-throughput sequencing results were validated and augmented via targeted qPCR and long-read Pacific Biosciences SMRT sequencing. We confirmed the existence of numerous novel splice junctions and the selective upregulation of the two novel start sites. In addition, we identified more than 20 novel isoforms of the Ttc8 gene that are co-expressed in this tissue. By using information from multiple independent platforms we not only greatly reduce the risk of errors, biases, and artifacts influencing our results, we also are able to characterize the regulation and splicing of the Ttc8 gene more deeply and more precisely than would be possible via any single platform. The hybrid method outlined here represents a powerful strategy in the study of the transcriptome. PMID:27684375

  6. Anatomy and Histology of Rodent and Human Major Salivary Glands

    PubMed Central

    Amano, Osamu; Mizobe, Kenichi; Bando, Yasuhiko; Sakiyama, Koji

    2012-01-01

    Major salivary glands of both humans and rodents consist of three pairs of macroscopic glands: parotid, submandibular, and sublingual. These glands secrete serous, mucous or mixed saliva via the proper main excretory ducts connecting the glandular bodies with the oral cavity. A series of discoveries about the salivary ducts in the 17th century by Niels Stensen (1638–1686), Thomas Wharton (1614–1673), and Caspar Bartholin (1655–1738) established the concept of exocrine secretion as well as salivary glands. Recent investigations have revealed the endocrine functions of parotin and a variety of cell growth factors produced by salivary glands. The present review aims to describe macroscopic findings on the major salivary glands of rodents and the microscopic differences between those of humans and rodents, which review should be of interest to those researchers studying salivary glands. PMID:23209333

  7. Diagnosis and treatment of pineal region tumors

    SciTech Connect

    Neuwelt, E.A.

    1984-01-01

    The aim of this volume is to review the pertinent literature dealing with pineal tumors and thus aid in the handling of these rather uncommon lesions. After the first, introductory, chapter, three chapters treat the pathology and diagnosis of pineal tumors. There is also one chapter on intracranial germ cell tumors (natural history and pathogenesis) and one on the normal function of the pineal gland. With the exception of the chapter on diagnostic radiology of pineal tumors, which seems somewhat superficial, these five chapters summarize current knowledge about the nature of these complex lesions and their symptomatology very well. The next nine chapters deal with biopsy and surgery of these tumors and how to manage the patient. The first of these gives a historical review of the development of surgical techniques - from the first attempt by Horsley in 1905 to the microsurgical techniques of today. It is followed by a very important and detailed description of the microsurgical anatomy of the pineal region.

  8. Critical time delay of the pineal melatonin rhythm in humans due to weak electromagnetic exposure.

    PubMed

    Halgamuge, Malka N

    2013-08-01

    Electromagnetic fields (EMFs) can increase free radicals, activate the stress response and alter enzyme reactions. Intracellular signalling is mediated by free radicals and enzyme kinetics is affected by radical pair recombination rates. The magnetic field component of an external EMF can delay the "recombination rate" of free radical pairs. Magnetic fields thus increase radical life-times in biological systems. Although measured in nanoseconds, this extra time increases the potential to do more damage. Melatonin regulates the body's sleep-wake cycle or circadian rhythm. The World Health Organization (WHO) has confirmed that prolonged alterations in sleep patterns suppress the body's ability to make melatonin. Considerable cancer rates have been attributed to the reduction of melatonin production as a result of jet lag and night shift work. In this study, changes in circadian rhythm and melatonin concentration are observed due to the external perturbation of chemical reaction rates. We further analyze the pineal melatonin rhythm and investigate the critical time delay or maturation time of radical pair recombination rates, exploring the impact of the mRNA degradation rate on the critical time delay. The results show that significant melatonin interruption and changes to the circadian rhythm occur due to the perturbation of chemical reaction rates, as also reported in previous studies. The results also show the influence of the mRNA degradation rate on the circadian rhythm's critical time delay or maturation time. The results support the hypothesis that exposure to weak EMFs via melatonin disruption can adversely affect human health.

  9. Importance of the pineal gland, endogenous prostaglandins and sensory nerves in the gastroprotective actions of central and peripheral melatonin against stress-induced damage.

    PubMed

    Brzozowski, Tomasz; Konturek, Peter C; Zwirska-Korczala, Krystyna; Konturek, Stanislaw J; Brzozowska, Iwona; Drozdowicz, Danuta; Sliwowski, Zbigniew; Pawlik, Michal; Pawlik, Wieslaw W; Hahn, Eckhart G

    2005-11-01

    Melatonin attenuates acute gastric lesions induced by topical strong irritants because of scavenging of free radicals, but its role in the pathogenesis of stress-induced gastric lesions has been sparingly investigated. In this study we compared the effects of intragastric (i.g.) or intracerebroventricular (i.c.v.) administration of melatonin and its precursor, L-tryptophan, with or without concurrent treatment with luzindole, a selective antagonist of melatonin MT2 receptors, on gastric lesions induced by water immersion and restraint stress (WRS). The involvement of pineal gland, endogenous prostaglandins (PG) and sensory nerves in gastroprotective action of melatonin and L-tryptophan against WRS was studied in intact or pinealectomized rats or those treated with indomethacin or rofecoxib to suppress cyclooxygenase (COX)-1 and COX-2, respectively, and with capsaicin to induce functional ablation of the sensory nerves. In addition, the influence of i.c.v. and i.g. melatonin on gastric secretion was tested in a separate group of rats equipped with gastric fistulas. At 3.5 hr after the end of WRS, the number of gastric lesions was counted, the gastric blood flow (GBF) was determined by H2-gas clearance technique and plasma melatonin and gastrin levels were measured by specific radioimmunoassay (RIA). Biopsy mucosal samples were taken for determination of expression of mRNA for COX-1 and COX-2 by reverse transcriptase-polymerase chain reaction (RT-PCR) and of the mucosal generation of prostaglandin E2 (PGE2) by RIA. Melatonin applied i.g. (1.25-10 mg/kg) or i.c.v. (1.25-10 microg/kg) dose-dependently inhibited gastric acid secretion and significantly attenuated the WRS-induced gastric damage. This protective effect of melatonin was accompanied by a significant rise in the GBF and plasma melatonin and gastrin levels and in mucosal generation of PGE2. Pinealectomy, which suppressed plasma melatonin levels, aggravated the gastric lesions induced by WRS and these effects

  10. [Development of the human adrenal glands].

    PubMed

    Folligan, K; Bouvier, R; Targe, F; Morel, Y; Trouillas, J

    2005-09-01

    The human adrenal is an endocrine gland located at the superior part of the kidney. Composed of the adrenal cortex of mesoblastic origin and the adrenal medulla of neuroectoblastic origin, the human fetal adrenal grows considerably during the first three months of development. From 12 to 18 weeks of development (WD), the weight of the adrenals increases seven-fold. The gland's weight doubles from 18 to 28 WD and from 28 to 36 WD. At birth, the two adrenals weigh on average 10 g. At the 8th week, two zones are individualized in the adrenal cortex: the definitive zone and the fetal inner zone. At the second trimester, according to ultrastructural and biochemical studies, a third zone, called the transition zone, is individualized between the definitive zone and the fetal inner zone. The definitive zone persists, but the origin of the three zones (glomerular, fascicular and reticular) of adult adrenal cortex is not known. The fetal inner zone regresses from the 5th month of gestation and disappears totally one year after birth. At the 8th week, the immature neuroblasts migrate to the definitive zone, then to the fetal inner zone to compose the adrenal medulla, which develops essentially after birth and during the first year. Before the 10th week, the human fetal adrenal is able to produce steroid hormones, in particular dehydroepiandrosterone sulfate (DHEA-S); the secretion of cortisol remains discussed. The development of the human fetal adrenal is complex and is under the control of hormones (ACTH, LH and betaHCG), growth factors (ACTH essentially) and transcription factors (essentially SF1 and DAX-1). Knowledge of morphological and molecular phenomena of this development permits to understand the pathophisiology of congenital adrenal deficiencies.

  11. [Pineal cyst: usefulness of endoscopic treatment].

    PubMed

    Leveque, S; Derrey, S; Martinaud, O; Freger, P; Proust, F

    2007-06-01

    Glial cysts of the pineal gland are usually benign and asymptomatic. They develop from the pineal parenchyma and contain liquid. The diagnosis is made by magnetic resonance imaging. In contrast large cysts can be symptomatic due to compression of the aqueduct of Sylvius, compression of the midbrain tectum or mass effect in the posterior fossa. We report the case of a symptomatic cyst treated by an endoscopic procedure.

  12. Masses of the pineal region: clinical presentation and radiographic features.

    PubMed

    Gaillard, Frank; Jones, Jeremy

    2010-10-01

    The pineal gland is important in structure, function and in the pathology that can affect it. The significance of the pathology of the gland and its adjacent structures is twofold: anatomical location, and biological behaviour of many of the lesions. The gland is in a critical anatomic location, and as the dorsal portions of the midbrain are compressed, patients may present with obstructive hydrocephalus, and/or with focal neurology. Masses and tumours of the pineal region range widely in behaviour, from the completely benign (eg, pineal cyst) to highly malignant (eg, pineoblastoma). Masses in the pineal region may be benign cysts (most common mass), tumours of various sources as well as rare vascular malformations that result in mass effect. Tumours of the pineal region represent a variety of histologies. Germ cell tumours are the most common: germinomas (50%), teratoma (15%), and choricocarcinoma (5%). Primary tumours of the pineal region make up 15% of all pineal tumours and represent a spectrum of aggressiveness. Other less common tumours also occur in the pineal region including metastatic spread and direct invasion from tumours arising in adjacent structures. Accurate diagnosis is essential to plan appropriate management, and early referral for medical imaging is a necessary first step. Although there is significant overlap in the imaging characteristics of some pineal masses, a distinction between aggressive and benign lesions is usually possible, and invaluable preoperative information is obtained in patients who require histological diagnosis.

  13. Can disturbances in the atmospheric electric field created by powerline corona ions disrupt melatonin production in the pineal gland?

    PubMed

    Henshaw, Denis L; Ward, Jonathan P; Matthews, James C

    2008-11-01

    Recent epidemiological studies have reported an increased risk of leukemia in adults and children near overhead high voltage powerlines at distances beyond the measured range of the direct electric and magnetic fields. Corona ions are emitted by powerlines, forming a plume that is carried away from the line by the wind. The plume generates highly variable disturbances in the atmospheric electric field of tens to a few hundred V/m on time scales from seconds to minutes. Such disturbances can be seen up to several hundred meters from powerlines. It is hypothesized that these random disturbances result in the disruption of nocturnal melatonin synthesis and related circadian rhythms, in turn leading to increased risk of a number of adverse health effects including leukemia. In support of the hypothesis, it is noted that melatonin is highly protective of oxidative damage to the human hemopoietic system. A review of electric field studies provides evidence that (i) diurnal variation in the natural atmospheric electric field may itself act as a weak Zeitgeber; (ii) melatonin disruption by electric fields occurs in rats; (iii) in humans, disturbances in circadian rhythms have been observed with artificial fields as low at 2.5 V/m. Specific suggestions are made to test the aspects of the hypothesis.

  14. The pineal volume: a three-dimensional volumetric study in healthy young adults using 3.0 T MR data.

    PubMed

    Sun, Bo; Wang, Dan; Tang, Yuchun; Fan, Lingzhong; Lin, Xiangtao; Yu, Taifei; Qi, Hengtao; Li, Zhenping; Liu, Shuwei

    2009-11-01

    It is usually difficult to distinguish small pineal tumors via routine or enhanced magnetic resonance (MR) scan. The knowledge of normal pineal size is helpful to detect small pineal lesions, while very few true volumetric data of pineal glands have been reported. Therefore, we obtained the accurate reference range of normal pineal volumes in 112 individuals aged 20-30 years recruited randomly from a healthy community sample. Transverse and sagittal 3.0T magnetic resonance data were obtained using three-dimensional (3D) T1-weighted FSPGR and T2-weighted SE sequences. True pineal volumes were measured from T1-weighted images, while estimated volumes were calculated using pineal length, width and height. All the glands were divided into three types according to the maximum inner diameter of pineal cysts. The prevalence of asymptomatic pineal cyst is 25.00%, with a slight female predominance. In the whole sample, we found no gender differences of pineal volume, but a significant gender difference of pineal volume index. A significant correlation between pineal volume and asymptomatic cyst was found. After excluding cases with big pineal cysts, there were significant correlations between pineal volume and head circumference, body height and body weight, respectively. This study suggests that asymptomatic pineal cysts may exert an important influence on pineal volume.

  15. Dynamic OCT of sweat glands of human finger tip

    NASA Astrophysics Data System (ADS)

    Haruna, Masamitsu; Ueda, Yoshihiro; Ohmi, Masato; Fuji, Toshie

    2006-02-01

    Dynamic optical coherence tomography (OCT) is demonstrated for dynamic study of sweat glands of human finger tip using the all-optical-fiber imaging system. Stress-induced and physical activation of sweat glands can be observed clearly in time-sequential OCT images. The method for image data acquisition is presented as well as the experimental results.

  16. Human eccrine sweat gland cells can reconstitute a stratified epidermis.

    PubMed

    Biedermann, Thomas; Pontiggia, Luca; Böttcher-Haberzeth, Sophie; Tharakan, Sasha; Braziulis, Erik; Schiestl, Clemens; Meuli, Martin; Reichmann, Ernst

    2010-08-01

    Eccrine sweat glands are generally considered to be a possible epidermal stem cell source. Here we compared the multilayered epithelia formed by epidermal keratinocytes and those formed by eccrine sweat gland cells. We demonstrated both in vitro and in vivo the capability of human eccrine sweat gland cells to form a stratified interfollicular epidermis substitute on collagen hydrogels. This is substantiated by the following findings: (1) a stratified epidermis consisting of 10-12 cell layers is formed by sweat gland cells; (2) a distinct stratum corneum develops and is maintained after transplantation onto immuno-incompetent rats; (3) proteins such as filaggrin, loricrin, involucrin, envoplakin, periplakin, and transglutaminases I and III match with the pattern of the normal human skin; (4) junctional complexes and hemidesmosomes are readily and regularly established; (5) cell proliferation in the basal layer reaches homeostatic levels; (6) the sweat gland-derived epidermis is anchored by hemidesmosomes within a well-developed basal lamina; and (7) palmo-plantar or mucosal markers are not expressed in the sweat gland-derived epidermis. These data suggest that human eccrine sweat glands are an additional source of keratinocytes that can generate a stratified epidermis. Our findings raise the question of the extent to which the human skin is repaired and/or permanently renewed by eccrine sweat gland cells.

  17. Age-related incidence of pineal calcification detected by computed tomography

    SciTech Connect

    Zimmerman, R.A.; Bilaniuk, L.T.

    1982-03-01

    The age-related incidence of detectable pineal calcification in 725 patients (age range, newborn-20 yrs) suggests that there is a relationship between calcification and the hormonal role played by the pineal gland in the regulation of sexual development. Pineal calcification (demonstrated by computed tomography (CT) on 8-mm-thick sections) in patients less than 6 years old should be looked upon with suspicion, and follow-up CT should be considered to exclude the possible development of a pineal neoplasm.

  18. Serum-Induced Differentiation of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Sullivan, David A.; Liu, Yang; Kam, Wendy R.; Ding, Juan; Green, Karin M.; Shaffer, Scott A.; Hatton, Mark P.; Liu, Shaohui

    2014-01-01

    Purpose. We hypothesize that culturing immortalized human meibomian gland epithelial cells in serum-containing medium will induce their differentiation. The purpose of this investigation was to begin to test our hypothesis, and explore the impact of serum on gene expression and lipid accumulation in human meibomian gland epithelial cells. Methods. Immortalized and primary human meibomian gland epithelial cells were cultured in the presence or absence of serum. Cells were evaluated for lysosome and lipid accumulation, polar and neutral lipid profiles, and gene expression. Results. Our results support our hypothesis that serum stimulates the differentiation of human meibomian gland epithelial cells. This serum-induced effect is associated with a significant increase in the expression of genes linked to cell differentiation, epithelium development, the endoplasmic reticulum, Golgi apparatus, vesicles, and lysosomes, and a significant decrease in gene activity related to the cell cycle, mitochondria, ribosomes, and translation. These cellular responses are accompanied by an accumulation of lipids within lysosomes, as well as alterations in the fatty acid content of polar and nonpolar lipids. Of particular importance, our results show that the molecular and biochemical changes of immortalized human meibomian gland epithelial cells during differentiation are analogous to those of primary cells. Conclusions. Overall, our findings indicate that immortalized human meibomian gland epithelial cells may serve as an ideal preclinical model to identify factors that control cellular differentiation in the meibomian gland. PMID:24867579

  19. Pineal region tumors: computed tomographic-pathologic spectrum

    SciTech Connect

    Futrell, N.N.; Osborn, A.G.; Cheson. B.D.

    1981-11-01

    While several computed tomographic (CT) studies of posterior third ventricular neoplasms have included descriptions of pineal tumors, few reports have concentrated on these uncommon lesions. Some authors have asserted that the CT appearance of many pineal tumors is virtually pathognomonic. A series of nine biopsy-proved pineal gland and eight other presumed tumors is presented that illustrates their remarkable heterogeneity in both histopathologic and CT appearance. These tumors included germinomas, teratocarcinomas, hamartomas, and other varieties. They had variable margination, attentuation, calcification, and suprasellar extension. Germinomas have the best response to radiation therapy. Biopsy of pineal region tumors is now feasible and is recommended for treatment planning.

  20. Ultrastructural and hormonal changes in the pineal-testicular axis following arecoline administration in rats.

    PubMed

    Saha, Indraneel; Chatterji, Urmi; Chaudhuri-Sengupta, Santasri; Nag, Tapas C; Nag, Debabrata; Banerjee, Samir; Maiti, B R

    2007-04-01

    Arecoline is an alkaloid of betel nut of Areca catechu. Betel nut is chewed by millions of people in the world and it causes oral and hepatic cancers in human. It has therapeutic value for the treatment of Alzheimer and schizophrenia. Arecoline has immunosuppressive, mutagenic and genotoxic effects in laboratory animals. It also affects endocrine functions. The objective of this study was to investigate the effects of arecoline on pineal-testicular axis in rats. Since pineal activity is different between day and night, the current study is undertaken in both the photophase and scotophase. The findings were evaluated by ultrastructural and hormonal studies of pineal and testicular Leydig cells, with quantitations of fructose and sialic acid of sex accessories. Arecoline treatment (10 mg/kg body weight daily for 10 days) caused suppression of pineal activity at ultrastructural level by showing dilatation of the cisternae of the rough endoplasmic reticulum (RER), large autophagosome-like bodies with swollen mitochondrial cristae, numerous lysosomes, degenerated synaptic ribbons and reduced number of synaptic-like microvesicles. Moreover, pineal and serum N-acetylserotonin and melatonin levels were decreased with increased serotonin levels in both the gland and serum. In contrast, testicular Leydig cell activity was stimulated with abundance of smooth endoplasmic reticulum (SER), electron-dense core vesicles and vacuolated secretory vesicles, and increased testosterone level in the arecoline recipients. Consequently, the testosterone target, like prostate, was ultrastructurally stimulated with abundance of RER and accumulation of secretory vesicles. Fructose and sialic acid concentrations were also significantly increased respectively in the coagulating gland and seminal vesicle. These results were more significant in the scotophase than the photophase. The findings suggest that arecoline inhibits pineal activity, but stimulates testicular function (testosterone level

  1. Gene Expression in Human Accessory Lacrimal Glands of Wolfring

    PubMed Central

    Ubels, John L.; Gipson, Ilene K.; Spurr-Michaud, Sandra J.; Tisdale, Ann S.; Van Dyken, Rachel E.; Hatton, Mark P.

    2012-01-01

    Purpose. The accessory lacrimal glands are assumed to contribute to the production of tear fluid, but little is known about their function. The goal of this study was to conduct an analysis of gene expression by glands of Wolfring that would provide a more complete picture of the function of these glands. Methods. Glands of Wolfring were isolated from frozen sections of human eyelids by laser microdissection. RNA was extracted from the cells and hybridized to gene expression arrays. The expression of several of the major genes was confirmed by immunohistochemistry. Results. Of the 24 most highly expressed genes, 9 were of direct relevance to lacrimal function. These included lysozyme, lactoferrin, tear lipocalin, and lacritin. The glands of Wolfring are enriched in genes related to protein synthesis, targeting, and secretion, and a large number of genes for proteins with antimicrobial activity were detected. Ion channels and transporters, carbonic anhydrase, and aquaporins were abundantly expressed. Genes for control of lacrimal function, including cholinergic, adrenergic, vasoactive intestinal polypeptide, purinergic, androgen, and prolactin receptors were also expressed in gland of Wolfring. Conclusions. The data suggest that the function of glands of Wolfring is similar to that of main lacrimal glands and are consistent with secretion electrolytes, fluid, and protein under nervous and hormonal control. Since these glands secrete directly onto the ocular surface, their location may allow rapid response to exogenous stimuli and makes them readily accessible to topical drugs. PMID:22956620

  2. A pineal regulatory element (PIRE) mediates transactivation by the pineal/retina-specific transcription factor CRX.

    PubMed

    Li, X; Chen, S; Wang, Q; Zack, D J; Snyder, S H; Borjigin, J

    1998-02-17

    The circadian hormone melatonin is synthesized predominantly in the pineal gland by the actions of two pineal-specific enzymes: serotonin N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT). Pineal night-specific ATPase (PINA), another pineal- and night-specific protein we recently identified, is produced as a truncated form of the Wilson disease gene (Atp7b) product. To identify the regulatory elements required for pineal-specific gene expression, we isolated sequences upstream of the rat PINA gene and discovered a cis-acting element that is recognized by a novel pineal/retina-specific nuclear factor. This pineal regulatory element (PIRE) has a consensus of TAATC/T and is present in six copies in the 5' regulatory region of the PINA gene, at least three copies in the rat NAT promoter, and at least one copy in each of the putative HIOMT promoters A and B. A recently identified retina-specific protein, cone rod homeobox (CRX), binds to PIRE in vitro and transactivates PIRE-reporter constructs. These data suggest that Crx may play a crucial role in regulating pineal gene expression through interactions with PIRE.

  3. A pineal regulatory element (PIRE) mediates transactivation by the pineal/retina-specific transcription factor CRX

    PubMed Central

    Li, Xiaodong; Chen, Shiming; Wang, Qingliang; Zack, Donald J.; Snyder, Solomon H.; Borjigin, Jimo

    1998-01-01

    The circadian hormone melatonin is synthesized predominantly in the pineal gland by the actions of two pineal-specific enzymes: serotonin N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT). Pineal night-specific ATPase (PINA), another pineal- and night-specific protein we recently identified, is produced as a truncated form of the Wilson disease gene (Atp7b) product. To identify the regulatory elements required for pineal-specific gene expression, we isolated sequences upstream of the rat PINA gene and discovered a cis-acting element that is recognized by a novel pineal/retina-specific nuclear factor. This pineal regulatory element (PIRE) has a consensus of TAATC/T and is present in six copies in the 5′ regulatory region of the PINA gene, at least three copies in the rat NAT promoter, and at least one copy in each of the putative HIOMT promoters A and B. A recently identified retina-specific protein, cone rod homeobox (CRX), binds to PIRE in vitro and transactivates PIRE-reporter constructs. These data suggest that Crx may play a crucial role in regulating pineal gene expression through interactions with PIRE. PMID:9465110

  4. Distribution of Tight Junction Proteins in Adult Human Salivary Glands

    PubMed Central

    Maria, Ola M.; Kim, Jung-Wan Martin; Gerstenhaber, Jonathan A.; Baum, Bruce J.; Tran, Simon D.

    2008-01-01

    Tight junctions (TJs) are an essential structure of fluid-secreting cells, such as those in salivary glands. Three major families of integral membrane proteins have been identified as components of the TJ: claudins, occludin, and junctional adhesion molecules (JAMs), plus the cytosolic protein zonula occludens (ZO). We have been working to develop an orally implantable artificial salivary gland that would be suitable for treating patients lacking salivary parenchymal tissue. To date, little is known about the distribution of TJ proteins in adult human salivary cells and thus what key molecular components might be desirable for the cellular component of an artificial salivary gland device. Therefore, the aim of this study was to determine the distribution of TJ proteins in human salivary glands. Salivary gland samples were obtained from 10 patients. Frozen and formalin-fixed paraffin-embedded sections were stained using IHC methods. Claudin-1 was expressed in ductal, endothelial, and ∼25% of serous cells. Claudins-2, -3, and -4 and JAM-A were expressed in both ductal and acinar cells, whereas claudin-5 was expressed only in endothelial cells. Occludin and ZO-1 were expressed in acinar, ductal, and endothelial cells. These results provide new information on TJ proteins in two major human salivary glands and should serve as a reference for future studies to assess the presence of appropriate TJ proteins in a tissue-engineered human salivary gland. (J Histochem Cytochem 56:1093–1098, 2008) PMID:18765838

  5. Local corticosterone infusion enhances nocturnal pineal melatonin production in vivo.

    PubMed

    Fernandes, P A C M; Bothorel, B; Clesse, D; Monteiro, A W A; Calgari, C; Raison, S; Simonneaux, V; Markus, R P

    2009-02-01

    Melatonin, an important marker of the endogenous rhythmicity in mammals, also plays a role in the body defence against pathogens and injuries. In vitro experiments have shown that either pro- or anti-inflammatory agents, acting directly in the organ, are able to change noradrenaline-induced pineal indoleamine production. Whereas corticosterone potentiates melatonin production, incubation of the gland with tumour necrosis factor-alpha decreases pineal hormonal production. In the present study, we show that nocturnal melatonin production measured by intra-pineal microdialysis is enhanced in pineals perfused with corticosterone at concentrations similar to those measured in inflamed animals. In vitro experiments suggest that this enhancement may be due to an increase in the activity of the two enzymes that convert serotonin to N-acetylserotonin (NAS) and NAS to melatonin. The present results support the hypothesis that the pineal gland is a sensor of inflammation mediators and that it plays a central role in the control of the inflammatory response.

  6. Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior

    PubMed Central

    Alon, Shahar; Vallone, Daniela; Tovin, Adi; Shainer, Inbal; Nisembaum, Laura G.; Aviram, Idit; Smadja-Storz, Sima; Fuentes, Michael; Falcón, Jack; Eisenberg, Eli; Klein, David C.; Burgess, Harold A.; Foulkes, Nicholas S.; Gothilf, Yoav

    2016-01-01

    The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior. PMID:27870848

  7. Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior.

    PubMed

    Ben-Moshe Livne, Zohar; Alon, Shahar; Vallone, Daniela; Bayleyen, Yared; Tovin, Adi; Shainer, Inbal; Nisembaum, Laura G; Aviram, Idit; Smadja-Storz, Sima; Fuentes, Michael; Falcón, Jack; Eisenberg, Eli; Klein, David C; Burgess, Harold A; Foulkes, Nicholas S; Gothilf, Yoav

    2016-11-01

    The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior.

  8. Pineal expression-promoting element (PIPE), a cis-acting element, directs pineal-specific gene expression in zebrafish

    PubMed Central

    Asaoka, Yoichi; Mano, Hiroaki; Kojima, Daisuke; Fukada, Yoshitaka

    2002-01-01

    The pineal gland, sharing morphological and biochemical similarities with the retina, plays a unique and central role in the photoneuroendocrine system. The unique development of the pineal gland is directed by a specific combination of the expressed genes, but little is known about the regulatory mechanism underlying the pineal-specific gene expression. We isolated a 1.1-kbp fragment upstream of the zebrafish exo-rhodopsin (exorh) gene, which is expressed specifically in the pineal gland. Transgenic analysis using an enhanced green fluorescent protein reporter gene demonstrated that the proximal 147-bp region of the exorh promoter is sufficient to direct pineal-specific expression. This region contains three copies of a putative cone rod homeobox (Crx)/Otx-binding site, which is known to be required for expression of both retina- and pineal-specific genes. Deletion and mutational analyses of the exorh promoter revealed that a previously uncharacterized sequence TGACCCCAATCT termed pineal expression-promoting element (PIPE) is required for pineal-specific promoter activity in addition to the Crx/Otx-binding sites. By using the zebrafish rhodopsin (rh) promoter that drives retina-specific expression, we created a reporter construct having ectopic PIPE in the rh promoter at a position equivalent to that in the exorh promoter by introducing five nucleotide changes. Such a slight modification in the rh promoter induced ectopic enhanced green fluorescent protein expression in the pineal gland without affecting its retinal expression. These results identify PIPE as a critical cis-element contributing to the pineal-specific gene expression, in combination with the Crx/Otx-binding site(s). PMID:12438694

  9. Frequency of varicella zoster virus DNA in human adrenal glands.

    PubMed

    Badani, Hussain; White, Teresa; Schulick, Nicole; Raeburn, Christopher D; Topkaya, Ibrahim; Gilden, Don; Nagel, Maria A

    2016-06-01

    Varicella zoster virus (VZV) becomes latent in ganglionic neurons derived from neural crest cells. Because the adrenal gland also contains medullary chromaffin cells of neural crest origin, we examined human adrenal glands and medullary chromaffin cell tumors (pheochromocytomas) for VZV and herpes simplex virus type 1 (HSV-1). We found VZV, but not HSV-1, DNA in 4/63 (6 %) normal adrenal glands. No VZV transcripts or antigens were detected in the 4 VZV DNA-positive samples. No VZV or HSV-1 DNA was found in 21 pheochromocytomas.

  10. Neurotransmitter Influence on Human Meibomian Gland Epithelial Cells

    PubMed Central

    Kam, Wendy R.

    2011-01-01

    Purpose. A striking characteristic of the human meibomian gland is its rich sensory, sympathetic, and parasympathetic innervation, yet the functional relevance of these nerve fibers remains unknown. Acting on the hypothesis that neurotransmitters are released in the vicinity of the gland, act on glandular receptors, and influence the production, secretion, and/or delivery of meibomian gland secretions to the ocular surface, the goal in this study was to begin to determine whether neurotransmitters influence the meibomian gland. Methods. Immortalized human meibomian gland epithelial (SLHMG) cells were examined for the presence of vasoactive intestinal peptide (VIP) and muscarinic acetylcholine (mACh) receptor transcripts and proteins. Cells were also exposed to VIP, carbachol, forskolin, and/or 3-isobutyl-1-methylxanthine (IBMX) to determine whether these agents, alone or in combination, modulate the adenylyl cyclase pathway, the accumulation of intracellular free calcium ([Ca2+]i), or cell proliferation. Results. Results demonstrate that SLHMG cells transcribe and translate VIP and mACh receptors; VIP, with either IBMX or forskolin, activates the adenylyl cyclase pathway, and the effect of VIP and forskolin together is synergistic; both VIP and carbachol increase intracellular [Ca2+] in SLHMG cells; and VIP with forskolin stimulates SLHMG cell proliferation. Conclusions. This study shows that parasympathetic neurotransmitters and their agonists influence the function of human meibomian gland epithelial cells. It remains to be determined whether this action alters the production, secretion, and/or delivery of meibum to the ocular surface. PMID:21969302

  11. Anatomy and histology of rodent and human major salivary glands: -overview of the Japan salivary gland society-sponsored workshop-.

    PubMed

    Amano, Osamu; Mizobe, Kenichi; Bando, Yasuhiko; Sakiyama, Koji

    2012-10-31

    MAJOR SALIVARY GLANDS OF BOTH HUMANS AND RODENTS CONSIST OF THREE PAIRS OF MACROSCOPIC GLANDS: parotid, submandibular, and sublingual. These glands secrete serous, mucous or mixed saliva via the proper main excretory ducts connecting the glandular bodies with the oral cavity. A series of discoveries about the salivary ducts in the 17th century by Niels Stensen (1638-1686), Thomas Wharton (1614-1673), and Caspar Bartholin (1655-1738) established the concept of exocrine secretion as well as salivary glands. Recent investigations have revealed the endocrine functions of parotin and a variety of cell growth factors produced by salivary glands.The present review aims to describe macroscopic findings on the major salivary glands of rodents and the microscopic differences between those of humans and rodents, which review should be of interest to those researchers studying salivary glands.

  12. Culture, Immortalization, and Characterization of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Liu, Shaohui; Hatton, Mark P.; Khandelwal, Payal

    2010-01-01

    Purpose. Meibomian gland epithelial cells are essential in maintaining the health and integrity of the ocular surface. However, very little is known about their physiological regulation. In this study, the cellular control mechanisms were explored, first to establish a defined culture system for the maintenance of primary epithelial cells from human meibomian glands and, second, to immortalize these cells, thereby developing a preclinical model that could be used to identify factors that regulate cell activity. Methods. Human meibomian glands were removed from lid segments after surgery, enzymatically digested, and dissociated. Isolated epithelial cells were cultured in media with or without serum and/or 3T3 feeder layers. To attempt immortalization, the cells were exposed to retroviral human telomerase reverse transcriptase (hTERT) and/or SV40 large T antigen cDNA vectors, and antibiotic-resistant cells were selected, expanded, and subcultured. Analyses for possible biomarkers, cell proliferation and differentiation, lipid-related enzyme gene expression, and the cellular response to androgen were performed with biochemical, histologic, and molecular biological techniques. Results. It was possible to isolate viable human meibomian gland epithelial cells and to culture them in serum-free medium. These cells proliferated, survived through at least the fifth passage, and contained neutral lipids. Infection with hTERT immortalized these cells, which accumulated neutral lipids during differentiation, expressed multiple genes for lipogenic enzymes, responded to androgen, and continued to proliferate. Conclusions. The results show that human meibomian gland epithelial cells may be isolated, cultured, and immortalized. PMID:20335607

  13. Early-life sleep deprivation persistently depresses melatonin production and bio-energetics of the pineal gland: potential implications for the development of metabolic deficiency.

    PubMed

    Chen, Li-You; Tiong, Cheng; Tsai, Chung-Hung; Liao, Wen-Chieh; Yang, Shun-Fa; Youn, Su-Chung; Mai, Fu-Der; Chang, Hung-Ming

    2015-03-01

    Early-life sleep deprivation (ESD) is a serious condition with severe metabolic sequelae. The pineal hormone melatonin plays an important role in homeostatic regulation of metabolic function. Considering norepinephrine-mediated Ca(2+) influx and subsequent protein kinase A (PKA) activation is responsible for downstream cAMP-response element-binding protein (CREB) phosphorylation and melatonin biosynthesis, the present study determined whether Ca(2+) expression, together with the molecular machinery participated in melatonin production would significantly alter after ESD. Weaning rats subjected to chronic ESD and maintained naturally (light:dark cycle = 12:12) to adulthood were processed for time-of-flight secondary ion mass spectrometry, immunoblotting, immunohistochemistry together with spectrometric assay to detect the Ca(2+) signaling, adrenoreceptors, PKA, phosphorylated CREB (pCREB) as well as the serum level of melatonin, respectively. Pineal bio-energetics and metabolic function were determined by measuring the cytochrome oxidase activity and serum level of glucose, triglyceride, insulin, high- and low-density lipoproteins, respectively. Results indicated that in normal rats, strong Ca(2+) signaling along with intense adrenoreceptors, PKA, and pCREB activities were all detected in pinealocytes. Enhanced Ca(2+) imaging and signaling pathway corresponded well with intact bio-energetics, normal melatonin production and metabolic activity. However, following ESD, not only Ca(2+) but also pineal signaling activities were all significantly decreased. Blood analysis showed reduced melatonin level and impaired metabolic function after ESD. As depressed Ca(2+)-mediated signaling pathway and melatonin biosynthesis are positively correlated with the development of metabolic dysfunction, supplementary use of melatonin in childhood may thus serve as a practical way to prevent or counteract the ESD-induced metabolic deficiency.

  14. [Surgical approaches to pineal region - review article].

    PubMed

    Májovský, M; Netuka, D; Beneš, V

    The pineal region is a deep-seated part of the brain surrounded by highly eloquent structures. Differential diagnosis of space-occupying lesions in this region encompasses pineal gland cysts, pineal gland tumours, metastases, germ cell tumours, meningiomas, gliomas, hemangioblastomas and neuroectodermal tumours. A treatment strategy is based mainly on tumour anatomical characteristics and histological type. Except germinatous tumours, a surgical excision is the treatment of choice. Microsurgical approaches: The microsurgical supracerebellar-infratentorial approach is an essential approach to the pineal region. Despite certain risks, it allows a straightforward and completely extracerebral approach with a minimal cerebellar retraction. The other basic approach is the microsurgical occipital-transtentorial approach that is advantageous in patients with a supratentorial tumour extension or a steep tentorium. The interhemispheric-transcallosal approach and the transcortical-transventricular approach are possible options in selected cases.Endoscopic approaches: The neuroendoscopy provides a minimally invasive method to perform a tumour biopsy and to treat hydrocephalus in one session. Stereotactic biopsy: The stereotactic needle biopsy represents an alternative to the endoscopic biopsy in patients without hydrocephalus and in patients with dorsally located lesions inaccessible from the third ventricle. Modern neurosurgery offers a rich variety of surgical approaches to the pineal region. The complexity of space-occupying lesions in this region requires an individualised treatment, a prudent preoperative planning and a meticulous surgical technique.

  15. Pineal apoplexy: is it a facilitator for the development of pineal cysts?

    PubMed

    McNeely, P D; Howes, W J; Mehta, V

    2003-02-01

    The radiographic identification of pineal cysts has increased dramatically within the last two decades due to the advent of magnetic resonance imaging. Pineal cysts are often found incidentally with only a minority of these lesions ever becoming symptomatic and requiring treatment. Many theories attempting to explain the pathogenesis of these cysts exist. We describe a case of a 12-year-old girl who presents with a pineal hemorrhage of unknown etiology with associated hydrocephalus. Her hydrocephalus was initially treated with an external ventricular drain followed by a third ventriculostomy. She had no evidence of elevated beta human chorionic gonadotropin or alpha-fetoprotein within the serum or cerebrospinal fluid. Follow-up imaging at seven weeks revealed resolution of her hemorrhage, however, there was development of a progressive cystic lesion within the pineal region. In order to make a definitive tissue diagnosis, a supracerebellar infratentorial surgical approach with complete resection was performed. During the resection, brownish fluid was aspirated from the cyst and the cyst wall was removed. The pathological diagnosis was a pineal cyst. Although cases have been described of pineal apoplexy with an underlying cyst, this case describes the development of a progressive pineal cyst secondary to a hemorrhage. This case demonstrates that pineal hemorrhage may be a promotor for the development or progression of pineal cysts.

  16. Differential effects of indolepyruvic acid and 5-hydroxytryptophan on indole metabolism in the pineal gland of the rat during the light-dark cycle.

    PubMed

    Ferretti, C; Blengio, M; Ghi, P; Genazzani, E

    1990-10-23

    The effect of two serotonin precursors, 5-hydroxytryptophan (5-OH-TRP) and indolepyruvic acid (IPA), a tryptophan ketoanalogue, on rat pineal indole metabolism during the light-dark cycle was investigated. 5-OH-TRP drastically increased the production of 5-hydroxyindoleacetic acid at a dose of only 10 mg/kg, whereas 50-100 mg/kg was needed to reach higher serotonin levels. It had no effect on the pathway leading to the production of N-acetylserotonin and melatonin. IPA, on the other hand, led to a marked dose-related increase in tryptophan, 5-OH-TRP, serotonin and 5-OH-indoleacetic acid, and was also active on N-acetylserotonin and melatonin synthesis in both phases. The different behaviour of these two substances with regard to melatonin synthesis was also confirmed by their effects on N-acetyltransferase, since IPA increased, whereas 5-OH-TRP decreased its activity. These data suggest that an increase in serotonin does not necessarily lead to an increase in melatonin, and that IPA may in fact induce this effect by altering the activity on N-acetyltransferase, which is regarded as a key enzyme in pineal hormone synthesis.

  17. Imagery of pineal tumors.

    PubMed

    Deiana, G; Mottolese, C; Hermier, M; Louis-Tisserand, G; Berthezene, Y

    2015-01-01

    Pineal tumors are rare and include a large variety of entities. Germ cell tumors are relatively frequent and often secreting lesions. Pineal parenchymal tumors include pineocytomas, pineal parenchymal tumor of intermediate differentiation, pineoblastomas and papillary tumors of the pineal region. Other lesions including astrocytomas and meningiomas as well as congenital malformations i.e. benign cysts, lipomas, epidermoid and dermoid cysts, which can also arise from the pineal region. Imagery is often non-specific but detailed analysis of the images compared with the hormone profile can narrow the spectrum of possible diagnosis.

  18. Rabies viral antigen in human tongues and salivary glands.

    PubMed

    Li, Z; Feng, Z; Ye, H

    1995-10-01

    Lingual and major salivary tissue samples from three cases of rabies were stained with the immunoperoxidase (ABC) technique. All tissue blocks had been embedded in paraffin 4-10 years before. The first antibody used was monoclonal antirabies nucleocapsin (N) mouse antibody (HAM). Four out of five pieces of tongue from two cases showed a large amount of granular staining indicating rabies antigen (RVAg) inside serous glandular cells, terminal nerves, muscle cells and covering epithelial cells including taste cells. In the tissue probes from the third case only minimal granular staining was found, probably due to complete absence of the serous gland. In contrast to the tongue, only a little weakly reacting material was found in 4 out of 9 probes of salivary gland, either in acini or in nerve fibres. The amount of RVAg is evidently much greater in the human tongue than in major salivary glands, whereas major salivary glands from infected dogs, foxes and skunks reportedly contain much RVAg. As the human tongue's serous gland appears to be a preferred location for RVAg, it may be a source of oral infection.

  19. Changes in Gene Expression in Human Meibomian Gland Dysfunction

    PubMed Central

    Liu, Shaohui; Richards, Stephen M.; Lo, Kristine; Hatton, Mark; Fay, Aaron

    2011-01-01

    Purpose. Meibomian gland dysfunction (MGD) may be the leading cause of dry eye syndrome throughout the world. However, the precise mechanism(s) underlying the pathogenesis of this disease is unclear. This study was conducted to identify meibomian gland genes that may promote the development and/or progression of human MGD. Methods. Lid tissues were obtained from male and female MGD patients and age-matched controls after eyelid surgeries (e.g., to correct entropion or ectropion). Meibomian glands were isolated and processed for RNA extraction and the analysis of gene expression. Results. The results show that MGD is associated with significant alterations in the expression of almost 400 genes in the human meibomian gland. The levels of 197 transcripts, including those encoding various small proline-rich proteins and S100 calcium-binding proteins, are significantly increased, whereas the expression of 194 genes, such as claudin 3 and cell adhesion molecule 1, is significantly decreased. These changes, which cannot be accounted for by sex differences, are accompanied by alterations in many gene ontologies (e.g., keratinization, cell cycle, and DNA repair). The findings also show that the human meibomian gland contains several highly expressed genes that are distinct from those in an adjacent tissue (i.e., conjunctival epithelium). Conclusions. The results demonstrate that MGD is accompanied by multiple changes in gene expression in the meibomian gland. The nature of these alterations, including the upregulation of genes encoding small proline-rich proteins and S100 calcium-binding proteins, suggest that keratinization plays an important role in the pathogenesis of MGD. PMID:21372006

  20. Precursors of hexoneogenesis within the human mammary gland

    USDA-ARS?s Scientific Manuscript database

    The human mammary gland is capable of de novo synthesis of glucose and galactose (hexoneogenesis); however, the carbon source is incompletely understood. In this study, we investigated the role of acetate, glutamine, lactate and glycerol as potential carbon sources for hexoneogenesis. Healthy breast...

  1. Pineal parenchymal tumor of intermediate differentiation.

    PubMed

    Patil, Meena; Karandikar, Manjiri

    2015-01-01

    The 2007 World Health Organization classification of tumors of the central nervous system identified "pineal parenchymal tumor of intermediate differentiation" (PPTID) as a new pineal parenchymal neoplasm, located between pineocytoma and pineoblastoma as grade II or III. Because of the small number of reported cases, the classification of PPT is still a matter of controversy. We report a case of PPTID. A 25-year-old female patient was admitted to hospital with complaints of a headache, nausea, vomiting since 1-year. Computed tomography/magnetic resonance imaging of the brain showed well-defined, mildly enhancing lesion in the region of the pineal gland with areas of calcification. The tumor was excised. After 3 years, she presented with metastasis in thoracic and lumbosacral spinal region. This is a rare event.

  2. Microstructural analysis of pineal volume using trueFISP imaging.

    PubMed

    Bumb, Jan M; Brockmann, Marc A; Groden, Christoph; Nolte, Ingo

    2013-04-28

    To determine the spectrum of pineal microstructures (solid/cystic parts) in a large clinical population using a high-resolution 3D-T2-weighted sequence. A total of 347 patients enrolled for cranial magnetic resonance imaging were randomly included in this study. Written informed consent was obtained from all patients. The exclusion criteria were artifacts or mass lesions prohibiting evaluation of the pineal gland in any of the sequences. True-FISP-3D-imaging (1.5-T, isotropic voxel 0.9 mm) was performed in 347 adults (55.4 ± 18.1 years). Pineal gland volume (PGV), cystic volume, and parenchyma volume (cysts excluded) were measured manually. Overall, 40.3% of pineal glands were cystic. The median PGV was 54.6 mm(3) (78.33 ± 89.0 mm(3)), the median cystic volume was 5.4 mm(3) (15.8 ± 37.2 mm(3)), and the median parenchyma volume was 53.6 mm(3) (71.9 ± 66.7 mm(3)). In cystic glands, the standard deviation of the PGV was substantially higher than in solid glands (98% vs 58% of the mean). PGV declined with age (r = -0.130, P = 0.016). The high interindividual volume variation is mainly related to cysts. Pineal parenchyma volume decreased slightly with age, whereas gender-related effects appear to be negligible.

  3. Microstructural analysis of pineal volume using trueFISP imaging

    PubMed Central

    Bumb, Jan M; Brockmann, Marc A; Groden, Christoph; Nolte, Ingo

    2013-01-01

    AIM: To determine the spectrum of pineal microstructures (solid/cystic parts) in a large clinical population using a high-resolution 3D-T2-weighted sequence. METHODS: A total of 347 patients enrolled for cranial magnetic resonance imaging were randomly included in this study. Written informed consent was obtained from all patients. The exclusion criteria were artifacts or mass lesions prohibiting evaluation of the pineal gland in any of the sequences. True-FISP-3D-imaging (1.5-T, isotropic voxel 0.9 mm) was performed in 347 adults (55.4 ± 18.1 years). Pineal gland volume (PGV), cystic volume, and parenchyma volume (cysts excluded) were measured manually. RESULTS: Overall, 40.3% of pineal glands were cystic. The median PGV was 54.6 mm3 (78.33 ± 89.0 mm3), the median cystic volume was 5.4 mm3 (15.8 ± 37.2 mm3), and the median parenchyma volume was 53.6 mm3 (71.9 ± 66.7 mm3). In cystic glands, the standard deviation of the PGV was substantially higher than in solid glands (98% vs 58% of the mean). PGV declined with age (r = -0.130, P = 0.016). CONCLUSION: The high interindividual volume variation is mainly related to cysts. Pineal parenchyma volume decreased slightly with age, whereas gender-related effects appear to be negligible. PMID:23671752

  4. Clinical management of pineal cysts: a worldwide online survey.

    PubMed

    Májovský, Martin; Netuka, David; Beneš, Vladimír

    2016-04-01

    A pineal cyst is a benign affection of a pineal gland on the borderline between a pathological lesion and a variant of normality. Clinical management of patients with a pineal cyst remains controversial, especially when patients present with non-specific symptoms. An online questionnaire consisting of 13 questions was completed by 110 neurosurgeons worldwide. Responses were entered into a database and subsequently analysed. Based on data from the questionnaire, the main indication criteria for pineal cyst resection are hydrocephalus (90 % of the respondents), Parinaud's syndrome (80 %) and growth of the cyst (68 %). Only 15 % of the respondents occasionally operate on patients with non-specific symptoms. If surgery is indicated, improvement is expected in 88 % of the patients. The vast majority of the respondents favour a supracerebellar infratentorial approach to the pineal region. Most (78 %) of the respondents regarded the patient registry as a potentially useful instrument. This survey sheds light on the current practice of pineal cyst management across the world. Most of the respondents perform surgery on pineal cysts only if patients are presenting with symptoms attributable to a mass effect. Surgery for patients with non-specific complaints (headache, vertigo) is not widely accepted, although it may prove effective. A prospective patient registry might be useful in the decision-making process in the clinical management of pineal cysts.

  5. Pineal calcification is associated with pediatric primary brain tumor.

    PubMed

    Tuntapakul, Supinya; Kitkhuandee, Amnat; Kanpittaya, Jaturat; Johns, Jeffrey; Johns, Nutjaree Pratheepawanit

    2016-12-01

    Melatonin has been associated with various tumors, including brain tumor, and shown to inhibit growth of neuroblastoma cells and gliomas in animal models. Likewise, patients with glioblastoma receiving melatonin reported better survival than controls. Pineal calcification may lead to a decreased production of melatonin by calcified glands. This study assessed association between pineal calcification and primary brain tumor in pediatric/adolescent patients. Medical chart review was conducted in 181 patients <15 years old who had undergone brain computed tomography (CT) during 2008-2012. Pineal calcification was identified using brain CT scan by an experienced neurosurgeon. Primary brain tumor was confirmed by CT scan and histology, and association with pineal calcification was estimated using multiple logistic regression, adjusted for age and gender. Primary brain tumor was detected in 51 patients (mean age 9.0, standard deviation 4.0 years), with medulloblastoma being the most common (11 patients). Pineal calcification was detected in 12 patients (23.5%) with primary brain tumor, while only 11 patients (8.5%) without tumor had pineal calcification. Adjusted for patients' ages and genders, pineal calcification was associated with an increase in primary brain tumor of 2.82-fold (odds ratio 2.82; 95% confidence interval 1.12-7.08, P = 0.027). Pineal calcification appears to be associated with primary brain tumor. Further studies to explore this link are discussed and warranted. © 2016 John Wiley & Sons Australia, Ltd.

  6. Human salivary gland stem cells ameliorate hyposalivation of radiation-damaged rat salivary glands.

    PubMed

    Jeong, Jaemin; Baek, Hyunjung; Kim, Yoon-Ju; Choi, Youngwook; Lee, Heekyung; Lee, Eunju; Kim, Eun Sook; Hah, Jeong Hun; Kwon, Tack-Kyun; Choi, Ik Joon; Kwon, Heechung

    2013-11-15

    Salivary function in mammals may be defective for various reasons, such as aging, Sjogren's syndrome or radiation therapy in head and neck cancer patients. Recently, tissue-specific stem cell therapy has attracted public attention as a next-generation therapeutic reagent. In the present study, we isolated tissue-specific stem cells from the human submandibular salivary gland (hSGSCs). To efficiently isolate and amplify hSGSCs in large amounts, we developed a culture system (lasting 4-5 weeks) without any selection. After five passages, we obtained adherent cells that expressed mesenchymal stem cell surface antigen markers, such as CD44, CD49f, CD90 and CD105, but not the hematopoietic stem cell markers, CD34 and CD45, and that were able to undergo adipogenic, osteogenic and chondrogenic differentiation. In addition, hSGSCs were differentiated into amylase-expressing cells by using a two-step differentiation method. Transplantation of hSGSCs to radiation-damaged rat salivary glands rescued hyposalivation and body weight loss, restored acinar and duct cell structure, and decreased the amount of apoptotic cells. These data suggest that the isolated hSGSCs, which may have characteristics of mesenchymal-like stem cells, could be used as a cell therapy agent for the damaged salivary gland.

  7. Long-term in vivo pineal microdialysis.

    PubMed

    Sun, Xing; Liu, Tiecheng; Deng, Jie; Borjigin, Jimo

    2003-09-01

    This study describes the development of a new technique for long-term measurement of daily 5-hydroxytryptamine (5-HT) and melatonin contents in the pineal gland of freely moving rats. The technique features a number of novel improvements over previous protocols. It allows visualization of the pineal gland for accurate targeting of the guide cannula, which minimizes bleeding; incurs no direct injury to the surrounding brain tissues; and causes no interference with the sympathetic innervation from the superior cervical ganglia. Robust releases of melatonin and indole precursors were continuously monitored quantitatively and reproducibly for more than 2 wk in the same animal. In addition, effects of pharmacological agents on in vivo pineal circadian rhythms can be studied reproducibly over time, and gene expression profiles can be correlated with physiological consequences in single animals. Using these approaches, it is found that beta-adrenergic activation leads to decreased release of 5-HT, and that increased cAMP signaling in vivo results in activation of N-acetyltransferase gene induction and melatonin production. These studies will enhance the understanding of signaling pathways that regulate pineal 5-HT and melatonin synthesis and secretion.

  8. Anatomy of the human mammary gland: Current status of knowledge.

    PubMed

    Hassiotou, Foteini; Geddes, Donna

    2013-01-01

    Mammary glands are unique to mammals, with the specific function of synthesizing, secreting, and delivering milk to the newborn. Given this function, it is only during a pregnancy/lactation cycle that the gland reaches a mature developmental state via hormonal influences at the cellular level that effect drastic modifications in the micro- and macro-anatomy of the gland, resulting in remodeling of the gland into a milk-secretory organ. Pubertal and post-pubertal development of the breast in females aids in preparing it to assume a functional state during pregnancy and lactation. Remarkably, this organ has the capacity to regress to a resting state upon cessation of lactation, and then undergo the same cycle of expansion and regression again in subsequent pregnancies during reproductive life. This plasticity suggests tight hormonal regulation, which is paramount for the normal function of the gland. This review presents the current status of knowledge of the normal macro- and micro-anatomy of the human mammary gland and the distinct changes it undergoes during the key developmental stages that characterize it, from embryonic life through to post-menopausal age. In addition, it discusses recent advances in our understanding of the normal function of the breast during lactation, with special reference to breastmilk, its composition, and how it can be utilized as a tool to advance knowledge on normal and aberrant breast development and function. Finally, anatomical and molecular traits associated with aberrant expansion of the breast are discussed to set the basis for future comparisons that may illuminate the origin of breast cancer.

  9. Replication of Oral BK Virus in Human Salivary Gland Cells

    PubMed Central

    Burger-Calderon, Raquel; Madden, Victoria; Hallett, Ryan A.; Gingerich, Aaron D.; Nickeleit, Volker

    2014-01-01

    BK polyomavirus (BKPyV) is the most common viral pathogen among allograft patients. Increasing evidence links BKPyV to the human oral compartment and to HIV-associated salivary gland disease (HIVSGD). To date, few studies have analyzed orally derived BKPyV. This study aimed to characterize BKPyV isolated from throat wash (TW) samples from HIVSGD patients. The replication potential of HIVSGD-derived clinical isolates HIVSGD-1 and HIVSGD-2, both containing the noncoding control region (NCCR) architecture OPQPQQS, were assessed and compared to urine-derived virus. The BKPyV isolates displayed significant variation in replication potential. Whole-genome alignment of the two isolates revealed three nucleotide differences that were analyzed for a potential effect on the viral life cycle. Analysis revealed a negligible difference in NCCR promoter activity despite sequence variation and emphasized the importance of functional T antigen (Tag) for efficient replication. HIVSGD-1 encoded full-length Tag, underwent productive infection in both human salivary gland cells and kidney cells, and expressed viral DNA and Tag protein. Additionally, HIVSGD-1 generated DNase-resistant particles and by far surpassed the replication potential of the kidney-derived isolate in HSG cells. HIVSGD-2 encoded a truncated form of Tag and replicated much less efficiently. Quantitation of infectious virus, via the fluorescent forming unit assay, suggested that HIVSGD BKPyV had preferential tropism for salivary gland cells over kidney cells. Similarly, the results suggested that kidney-derived virus had preferential tropism for kidney cells over salivary gland cells. Evidence of HIVSGD-derived BKPyV oral tropism and adept viral replication in human salivary gland cells corroborated the potential link between HIVSGD pathogenesis and BKPyV. PMID:24173219

  10. Expression of steroidogenic enzymes in human sebaceous glands.

    PubMed

    Inoue, Takayoshi; Miki, Yasuhiro; Kakuo, Shingo; Hachiya, Akira; Kitahara, Takashi; Aiba, Setsuya; Zouboulis, Christos C; Sasano, Hironobu

    2014-09-01

    Androgens are well known to influence sebum synthesis and secretion. Various factors related to androgen biosynthesis are expressed in human sebaceous glands. In this study, immunohistochemical analysis of human skin specimens from 43 subjects indicated that various androgen-producing and -metabolizing enzymes were functionally localized to sebocytes accumulating lipid droplets and that the exclusive expression of 17β-hydroxysteroid dehydrogenase type 2 (17β-HSD2 (HSD17B2)) in sebaceous glands was negatively correlated with that of peroxisome proliferator-activated receptor gamma (PPARγ (PPARG)), which also significantly changed in an age-dependent manner. We also demonstrated that the changes of 17β-HSD2 expression in human immortalized sebocytes (SZ95) influenced the expressions of sebogenesis-related factors. In addition, the overexpression of 17β-HSD2 in SZ95 significantly increased the androstenedione production and markedly decreased the amounts of testosterone and dihydrotestosterone when DHEA was added externally. On the other hand, the phosphorylation of mammalian target of rapamycin, which is well known to induce sebum secretion and the onset and/or aggravation of acne, was increased by the addition of testosterone in the presence of IGF1 in hamster sebocytes. These results all indicated that local androgen biosynthesis and metabolism in human sebaceous glands could play a pivotal role in sebum synthesis and secretion. © 2014 Society for Endocrinology.

  11. [Generation of transgenic mice expressing human lysozyme in mammary gland].

    PubMed

    Yan, Hua; Li, Guo-cai; Sun, Huai-chang

    2005-10-01

    To evaluate the feasibility of generating animal mammary gland bioreactors expressing human lysozyme (hLYZ). The recombinant vector p205C3-hLYZ, as a result of connecting the hLYZ cDNA with the mammry gland expression vector p205C3, was used to generate transfer genic mice by microinjection. A total of 136 F0 mice were obtained, of which 7 (2 females and 5 males) and 4 (1 females and 3 males) were found to contain the transfer-gene by PCR and Southern blotting respectively. The results of Western blotting indicated that the expressed protein had the same molecular weight as that of normal hLYZ. From the F1 generation on, the mice mated only with their brothers or sisters and a colony of F7 transgenic mice was obtained. Among the offspring, the female transgenic mice maintained and expressed the transfer-gene stably with an expression level as high as 750 mg/L. The expressed protein had strong tissue specificity, and in addition to the mammary glands, some degree of ectropic expression in the spleens and intestines of the transgenic mice was confirmed by dot blotting assay. These data indicate that the mice mammary gland bioreactors expressing hLYZ have been successfully generated.

  12. Pineal cysts-A benign association with familial retinoblastoma.

    PubMed

    Gupta, Aditya Kumar; Jones, Michael; Prelog, Kristina; Bui, John; Zhu, Jacqui; Ng, Anthea; Dalla-Pozza, Luciano

    2016-09-01

    Patients with familial/heritable retinoblastoma (RB) are at increased risk of developing second malignancies throughout life, including a pineoblastoma (trilateral RB [TRB]) in early childhood. Current guidelines recommend regular surveillance brain imaging for those with heritable RB until 5 years of age. The presence of pineal cysts has been reported in patients with RB. Pineal cysts are thought to arise due to focal degeneration of the pineal gland and can be found incidentally. The finding of pineal abnormalities including cysts in children with RB on imaging is disconcerting, as it raises the possibility of an underlying malignancy, specifically a pinealoblastoma. The authors reviewed the imaging findings and clinical significance of pineal cysts in 69 patients diagnosed with RB at our center between December 1999 and November 2015. Twenty-six patients had pineal cysts found on brain magnetic resonance imaging (MRI) scans performed either at diagnosis or follow-up. Thirty-eight of 69 patients had underlying heritable RB. Nineteen of 38 familial RB patients had a pineal cyst compared with 3 out of 26 with sporadic RB (P = .004). In the majority, the imaging characteristics and size of the cysts remained stable or resolved. In this cohort, pineal cysts were detected at significantly increased frequency in heritable RB. This may be a benign association or may reflect abnormal underlying biology of pineal tissue in individuals highly susceptible to malignancy. Imaging characteristics can be helpful in distinguishing between benign and malignant lesions. The presence of a pineal cyst in patients with unilateral disease may be a useful indicator of underlying heritable RB.

  13. TGFβ signaling regulates lipogenesis in human sebaceous glands cells

    PubMed Central

    2013-01-01

    Background Sebaceous glands are components of the skin essential for its normal lubrication by the production of sebum. This contributes to skin health and more importantly is crucial for the skin barrier function. A mechanistic understanding of sebaceous gland cells growth and differentiation has lagged behind that for keratinocytes, partly because of a lack of an in vitro model that can be used for experimental manipulation. Methods We have developed an in vitro culture model to isolate and grow primary human sebocytes without transformation that display functional characteristics of sebocytes. We used this novel method to probe the effect of Transforming Growth Factor β (TGFβ) signaling on sebocyte differentiation, by examining the expression of genes involved in lipogenesis upon treatment with TGFβ1. We also repressed TGFβ signaling through knockdown of the TGFβ Receptor II to address if the effect of TGFβ activation is mediated via canonical Smad signal transduction. Results We find that activation of the TGFβ signaling pathway is necessary and sufficient for maintaining sebocytes in an undifferentiated state. The presence of TGFβ ligand triggered decreased expression in genes required for the production of characteristics sebaceous lipids and for sebocyte differentiation such as FADS2 and PPARγ, thereby decreasing lipid accumulation through the TGFβ RII-Smad2 dependent pathway. Conclusion TGFβ signaling plays an essential role in sebaceous gland regulation by maintaining sebocytes in an undifferentiated state. This data was generated using a novel method for human sebocyte culture, which is likely to prove generally useful in investigations of sebaceous gland growth and differentiation. These findings open a new paradigm in human skin biology with important implications for skin therapies. PMID:23343495

  14. Pineal calcification: its mechanism and significance.

    PubMed

    Krstić, R

    1986-01-01

    On the basis of conventional transmission electron microscopy and ultracytochemical reactions for demonstration of calcium, for glucose-6-phosphatase, and for Ca2+-ATPase, intracellular and extracellular mineralization foci in the superficial pineal gland of the Mongolian gerbil (Meriones unguiculatus) have been described. The initial intracellular calcification sites occur in the cytoplasmic matrix, vacuoles, mitochondria and the endoplasmic reticulum of large clear pinealocytes. These loci, and particularly those within the cytoplasmic matrix, transform into acervuli by a further addition of hydroxyapatite crystals. The cells gradually degenerate, die, break down, and the acervuli reach the extracellular space. It has been suggested that the reason for a rise in intracellular calcium levels could be the incapacity of Ca2+-ATPase to eliminate this cation from the cell, so that the hypercalcemic intracellular milieu becomes favourable for the initial crystallization. The primary extracellular mineralization sites occur in the calcium-rich flocculent material. The mineralization process in the gerbil pineal gland is interpreted as a histophysiological phenomenon intimately related to the metabolic activity of the pineal gland.

  15. Evidence for differential photic regulation of pineal melatonin synthesis in teleosts.

    PubMed

    Migaud, H; Davie, A; Martinez Chavez, C C; Al-Khamees, S

    2007-11-01

    The aim of this study was to compare the circadian control of melatonin production in teleosts. To do so, the effects of ophthalmectomy on circulating melatonin rhythms were studied along with ex vivo pineal culture in six different teleosts. Results strongly suggested that the circadian control of melatonin production could have dramatically changed with at least three different systems being present in teleosts when one considers the photic regulation of pineal melatonin production. First, salmonids presented a decentralized system in which the pineal gland responds directly to light independently of the eyes. Then, in seabass and cod both the eyes and the pineal gland are required to sustain full night-time melatonin production. Finally, a third type of circadian control of melatonin production is proposed in tilapia and catfish in which the pineal gland would not be light sensitive (or only slightly) and required the eyes to perceive light and inhibit melatonin synthesis. Further studies (anatomical, ultrastructural, retinal projections) are needed to confirm these results. Ex vivo experiments indirectly confirmed these results, as while the pineal gland responded normally to day-night rhythms in salmonids, seabass and cod, only very low levels were obtained at night in tilapia and no melatonin could be measured from isolated pineal glands in catfish. Together, these findings suggest that mechanisms involved in the perception of light and the transduction of this signal through the circadian axis has changed in teleosts possibly as a reflection of the photic environment in which they have evolved in.

  16. Pituitary gland and sella turcica in human trisomy 18 fetuses.

    PubMed

    Kjaer, I; Keeling, J W; Reintoft, I; Hjalgrim, H; Nolting, D; Fischer Hansen, B

    1998-02-26

    The purpose of this study was to elucidate the phenotypic conditions in the sella turcica/pituitary gland complex in human trisomy 18 fetuses. Fourteen human fetuses with gestational ages from 12 to 39 weeks were included in the study. Normal fetuses at corresponding ages were used as controls. Whole body and special radiographic examination was undertaken before the midsagittal cranial base block, including the pituitary gland, was excised and analyzed histologically and immunohistochemically (keratin wide spectrum [KWS], thyroid-stimulating hormone [TSH], and neurophysin [Nph]). In all trisomy 18 fetuses, TSH-positive adenopituitary tissue was present in the sella and in greater or lesser amounts pharyngeally. The neurohypophysis was Nph-positive and located normally in the sella turcica. The adenohypophyseal tissue reacted either KWS-faint or KWS-negative, whereas KWS-positive reaction occurs in normal fetuses. This circumstance might suggest an altered cytoskeletal structure of the surface ectoderm in the pituitary placode in trisomy 18. The sella turcica was malformed in all the fetuses. Very broad craniopharyngeal canals were observed in some of the fetuses. Because endocrine disorders occur in many congenital malformations, it is essential in future studies to chart the sella turcica/pituitary gland region systematically in different genotypes.

  17. Isolation and characterization of sweat gland myoepithelial cells from human skin.

    PubMed

    Kurata, Ryuichiro; Futaki, Sugiko; Nakano, Itsuko; Tanemura, Atsushi; Murota, Hiroyuki; Katayama, Ichiro; Sekiguchi, Kiyotoshi

    2014-01-01

    Stem cells routinely maintain the main epidermal components, i.e. the interfollicular epidermis, hair follicles, and sweat glands. Human sweat glands present throughout the body are glandular exocrine organs that mainly play a role in thermoregulation by sweating. Emerging evidence points to the presence of stem cells in sweat glands, but it remains unclear whether such stem cells exist in human sweat glands. Here, we attempted to gather evidence for stem cells in human sweat glands, which would be characterized by self-renewal ability and multipotency. First, we explored human sweat gland cells for expression of stem cell markers. CD29 and Notch, epidermal stem cell markers, were found to reside among α-smooth muscle actin-positive myoepithelial cells in human sweat glands. Next, sweat gland myoepithelial cells were isolated from human skin as a CD29(hi)CD49f (hi) subpopulation. The myoepithelial cell-enriched CD29(hi)CD49f (hi) subpopulation possessed the ability to differentiate into sweat gland luminal cells in sphere-forming assays. Furthermore, CD29(hi)CD49f (hi) subpopulation-derived sphere-forming cells exhibited long-term proliferative potential upon multiple passaging, indicating that the CD29(hi)CD49f (hi) myoepithelial subpopulation includes stem cells with self-renewal ability. These findings provide evidence that human sweat gland myoepithelial cells contain stem cells that possess both self-renewal ability and multipotency to differentiate into sweat glands.

  18. Papillary tumor of pineal region: A rare entity

    PubMed Central

    Patil, Meena; Karandikar, Manjiri

    2016-01-01

    Pineal tumors comprise 0.4 – 1.0% of intracranial space-occupying lesions in adults. Papillary tumor of pineal region (PTPR) is a very rare entity. It has been newly described in WHO 2007 classification of brain tumors. Only a few case reports are available in the literature. We report a case of a 60 year-old female presenting with headache, giddiness and reduced vision. Imaging studies showed a pineal mass with areas of hemorrhage. All ventricles were normal. There was a past history of a pineal gland tumor excised 2 years ago. This case is being reported for its rarity and aggressiveness in the form of recurrence. Limited/available immunohistochemistry workup has been done. PMID:27695568

  19. Papillary tumor of pineal region: A rare entity.

    PubMed

    Patil, Meena; Karandikar, Manjiri

    2016-01-01

    Pineal tumors comprise 0.4 - 1.0% of intracranial space-occupying lesions in adults. Papillary tumor of pineal region (PTPR) is a very rare entity. It has been newly described in WHO 2007 classification of brain tumors. Only a few case reports are available in the literature. We report a case of a 60 year-old female presenting with headache, giddiness and reduced vision. Imaging studies showed a pineal mass with areas of hemorrhage. All ventricles were normal. There was a past history of a pineal gland tumor excised 2 years ago. This case is being reported for its rarity and aggressiveness in the form of recurrence. Limited/available immunohistochemistry workup has been done.

  20. Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum

    PubMed Central

    Choi, Eunyoung; Roland, Joseph T.; Barlow, Brittney J.; O’Neal, Ryan; Rich, Amy E.; Nam, Ki Taek; Shi, Chanjuan; Goldenring, James R.

    2014-01-01

    Objective The glands of the stomach body and antral mucosa contain a complex compendium of cell lineages. In lower mammals, the distribution of oxyntic glands and antral glands define the anatomical regions within the stomach. We examined in detail the distribution of the full range of cell lineages within the human stomach. Design We determined the distribution of gastric gland cell lineages with specific immunocytochemical markers in entire stomach specimens from three non-obese organ donors. Results The anatomical body and antrum of the human stomach were defined by the presence of ghrelin and gastrin cells, respectively. Concentrations of somatostatin cells were observed in the proximal stomach. Parietal cells were seen in all glands of the body of stomach as well as in over 50% of antral glands. MIST1-expressing chief cells were predominantly observed in the body, although individual glands of the antrum also showed MIST1-expressing chief cells. While classically-described antral glands were observed with gastrin cells and deep antral mucous cells without any parietal cells, we also observed a substantial population of mixed-type glands containing both parietal cells and G cells throughout the antrum. Conclusions Enteroendocrine cells show distinct patterns of localization in the human stomach. The existence of antral glands with mixed cell lineages indicates that human antral glands may be functionally chimeric with glands assembled from multiple distinct stem cell populations. PMID:24488499

  1. Distinct effects of the serotonin-noradrenaline reuptake inhibitors milnacipran and venlafaxine on rat pineal monoamines.

    PubMed

    Muneoka, Katsumasa; Kuwagata, Makiko; Ogawa, Tetsuo; Shioda, Seiji

    2015-06-17

    Monoamine systems are involved in the pathology and therapeutic mechanism of depression. The pineal gland contains large amounts of serotonin as a precursor for melatonin, and its activity is controlled by noradrenergic sympathetic nerves. Pineal diurnal activity and its release of melatonin are relevant to aberrant states observed in depression. We investigated the effects on pineal monoamines of serotonin-noradrenaline reuptake inhibitors, which are widely used antidepressants. Four days of milnacipran treatment led to an increase in noradrenaline and serotonin levels, whereas 4 days of venlafaxine treatment reduced 5-hydroxyindoleacetic acid levels; both agents induced an increase in dopamine levels. Our data suggest that milnacipran increases levels of the precursor for melatonin synthesis by facilitating the noradrenergic regulation of pineal activity and that venlafaxine inhibits serotonin reuptake into noradrenergic terminals on the pineal gland.

  2. Transcranial sonography in the evaluation of pineal lesions: two-year follow up study.

    PubMed

    Budisić, Mislav; Bosnjak, Jelena; Lovrencić-Huzjan, Arijana; Strineka, Maja; Bene, Raphael; Azman, Drazen; Bedek, Darko; Trkanjec, Zlatko; Demarin, Vida

    2008-12-01

    We have recently reported that transcranial sonography (TCS) is a method competitive to magnetic resonance neuroimaging (MRI) in the evaluation of pineal gland lesions. The aim of the present is study was to assess the usefulness of TCS in a larger patient sample during a two-year follow up. Twenty patients with incidental pineal gland cyst (PGC) detected by MRI scan of the brain and 40 healthy controls without any previous documented data on a disease related to pineal gland were evaluated by TCS and compared with MRI scans. There were no statistically significant differences in PGC size measured by TCS by two observers (p = 0.475), PGC size measured by TCS and MRI (first observer, p = 0.453; and second observer, p = 0.425), size of the pineal gland measured by TCS and MRI in control group (first observer, p = 0.497; and second observer, p = 0.370), and pineal gland size measured by TCS by two observers in control group (p = 0.473). Study results suggested TCS to be a suitable method in the evaluation of pineal gland lesions. Although its resolution cannot match the MRI resolution, its repeatability and accuracy might add to its practical value. We suggest that the repeat MRI scan of such lesions might be replaced by clinical and TCS follow up.

  3. Human Salivary Gland Stem Cells Functionally Restore Radiation Damaged Salivary Glands.

    PubMed

    Pringle, Sarah; Maimets, Martti; van der Zwaag, Marianne; Stokman, Monique A; van Gosliga, Djoke; Zwart, Erik; Witjes, Max J H; de Haan, Gerald; van Os, Ronald; Coppes, Rob P

    2016-03-01

    Adult stem cells are often touted as therapeutic agents in the regenerative medicine field, however data detailing both the engraftment and functional capabilities of solid tissue derived human adult epithelial stem cells is scarce. Here we show the isolation of adult human salivary gland (SG) stem/progenitor cells and demonstrate at the single cell level in vitro self-renewal and differentiation into multilineage organoids. We also show in vivo functionality, long-term engraftment, and functional restoration in a xenotransplantation model. Indeed, transplanted human salisphere-derived cells restored saliva production and greatly improved the regenerative potential of irradiated SGs. Further selection for c-Kit expression enriched for cells with enhanced regenerative potencies. Interestingly, interaction of transplanted cells with the recipient SG may also be involved in functional recovery. Thus, we show for the first time that salispheres cultured from human SGs contain stem/progenitor cells capable of self-renewal and differentiation and rescue of saliva production. Our study underpins the therapeutic promise of salisphere cell therapy for the treatment of xerostomia.

  4. Human eccrine sweat gland epithelial cultures express ductal characteristics.

    PubMed Central

    Brayden, D J; Cuthbert, A W; Lee, C M

    1988-01-01

    1. Isolated human eccrine sweat glands were cultured in vitro. Cells were harvested and plated onto permeable supports to form confluent cell sheets, area 0.2 cm2. These were used to study the electrogenic transepithelial transport of ions by measurement of short-circuit current (SCC). Epithelial sheets had a basal SCC of 5.89 +/- 0.62 microA cm-2 (n = 33) and a transepithelial resistance of 74.1 +/- 5.6 omega cm2 (n = 33). The transepithelial potential difference varied between -0.2 and -1.8 mV with a mean value of -0.71 +/- 0.09 mV (n = 33). 2. The basal current was abolished by addition of 10 microM-amiloride to the apical bathing solution. The concentration of amiloride which inhibited basal SCC by 50% (EC50) was 0.4 microM. Cultures prepared from the secretory coil of sweat glands, rather than from whole glands, were similarly sensitive to amiloride (EC50 = 0.8 microM). 3. Lysylbradykinin (LBK), carbachol, isoprenaline, prostaglandin E2 (PGE2) and A23187 all increased SCC in cultures from whole glands. LBK responses were obtained with basolateral and not with apical application. Furthermore LBK actions were not substantially altered by cyclo-oxygenase inhibition but showed marked desensitization upon repeated application. Sheet cultures prepared from sweat gland coils also showed SCC responses to both carbachol and LBK. Forskolin, an activator of adenylate cyclase, did not alter SCC in either type of preparation. 4. Replacement of chloride and of chloride and bicarbonate in the bathing solution did not cause attenuation of the responses to LBK or carbachol in whole-gland sheet cultures. Furthermore responses were unaffected by piretanide or acetazolamide. These results were taken to indicate that anion secretion was not the basis for the SCC responses. 5. Responses to LBK and carbachol were significantly reduced by amiloride (10 microM), this effect being reversible. No responses to LBK or carbachol were seen when N-methyl-D-glucamine (NMDG) was used to

  5. Pineal parenchymal tumours and pineal cysts.

    PubMed

    Jouvet, A; Vasiljevic, A; Champier, J; Fèvre Montange, M

    2015-01-01

    Pineal parenchymal tumours (PPTs) and pineal cysts represent one third of the pineal region lesions. PPTs are subdivided into pineocytoma (PC), pineoblastoma (PB) and PPT with intermediate differentiation (PPTID). We report morphological and immunochemical features which permit to grade these tumours. The description of histopathological features and grading is based on a large cooperative series and on the WHO 2007 classification. PCs occur in adults between the third and the sixth decade of life. PBs typically occur in children. PPTIDs have a peak incidence in young adults between 20 and 40 years of age. There is no sex preference. PC is characterized by a uniform cell proliferation with large fibrillary pineocytomatous rosettes. PB is a high-density tumour composed of small blue cells with hyper-chromatic, round or carrot shaped nuclei. PPTIDs have lobulated or diffuse patterns. Grading is based on morphological features, count of mitoses and neurofilament protein (NFP) expression. PCs (grade I) have no mitosis and NFP is highly expressed in pineocytomatous rosettes. PBs (grade IV) are high mitotic tumours and present low or no expression of NFPs. PPTIDs are grade II when mitoses are fewer than 6 for 10 high-power fields and NFPs are expressed, and are grade III when mitoses are greater or equal to 6 or are fewer than 6 with NFPs lowly expressed. Pineal cysts may be differentiated from PPTs by the high expression of NFPs and no expression of Ki-67. Copyright © 2014. Published by Elsevier Masson SAS.

  6. Pineal calcification in relation to menopause in schizophrenia.

    PubMed

    Sandyk, R

    1992-01-01

    I have suggested that critical changes in melatonin secretion, as mediated by the pineal gland, may exert a crucial role in the onset and pathogenesis of schizophrenia. Since pineal calcification (PC) is thought to reflect the metabolic and secretory activity of the gland, I investigated in 29 randomly selected chronic institutionalized female schizophrenic patients the association of PC on CT scan with premenopausal (prior to age 40) versus menopausal (ages 40-55) onset of illness. The premenopausal patients were found to show a significantly higher prevalence of PC than the menopausal patients (55.5% vs. 18.1%; X2 = 3.93, df = 1, p < .05). Since PC was unrelated to historical, demographic, and treatment variables, these findings highlight the importance of the pineal gland for the timing of the onset of schizophrenia, particularly in relation to the female reproductive state. The results carry theoretical implications on the pathogenesis of schizophrenia and suggest that the pineal gland may exert a protective effect against its onset.

  7. Chronic exposure to 60-Hz electric fields: effects on pineal function in the rat

    SciTech Connect

    Wilson, B.W.; Anderson, L.E.; Hilton, D.I.; Philips, R.D.

    1980-01-01

    As a component of studies to search for effects of 60-Hz electric field exposure on mammalian endocrine function, concentrations of melatonin, 5-methoxytryptophol, and serotonin-N-acetyl transferase activity were measured in the pineal glands of rats exposed or sham-exposed at 65 kV/m for 30 days.In two replicate experiments there were statistically significant differences between exposed and control rats in that the normal nocturnal increase in pineal melatonin content was depressed in the exposed animals. Concentrations of 5-methoxytryptophol were increased in the pineal glands of the exposed groups when compared to sham-exposed controls. An alteration was also observed in serotonin-N-acetyl transferase activity, with lower levels measured in pineal glands from exposed animals.

  8. Daytime Unresponsiveness of the Human and Syrian Hamster Pineal to Adrenergic Stimulation

    DTIC Science & Technology

    1989-01-01

    et al., 1981; Li et al., 1988). Experimental animals have also been variably resistent to induction of changes in the melatonin rhythm if the light... melatonin content in burned rats and hamsters is essentially normal (Vaughan et al., 1985). Acute adverse stimuli, such as insulin -induced hyoglycemia...or excreted melatonin in humans during the day by a variety of influences (including naps, psychological stress, exercise, insulin hypoglycemia, and

  9. Clarification of the terminology of the major human salivary glands: acinus and alveolus are not synonymous.

    PubMed

    Gilloteaux, Jacques; Afolayan, Adebowale

    2014-08-01

    Discrepancies in the terminology of the major human salivary glands often appear in anatomical textbooks and tend to adversely affect student's learning experience in Microscopic Anatomy. The main culprit is the inconsistent description of the morphology of these glands secretory end pieces where "acinus" and "alveolus" are used interchangeably. The correct terminology originated from Malpighi (1687), repeated by Kölliker (1854), but over the years has been misinterpreted by prominent authors as a result of the nature of specimen preparation. This commentary is based on etymology, current standard light microscopy, research studies and consultation with experts. The overall objective of this publication is to recommend that textbooks should endeavour to modify the relevant descriptions about this terminology in their future editions. The most appropriate terminology for the major human salivary glands would be: (1) the parotid gland, entirely serous, should be called compound acinar glands; (2) the submandibular glands are mixed glands; their serous components are compound acinar while some of the mucinous areas are tubular with serous, crescents or demilunes, as acinar end pieces hence they should be named compound tubuloacinar glands; (3) the sublingual glands, mainly mucous glands with tubular shape, with small acinar end pieces that are serous crescents thence they should be called compound tubuloacinar glands.

  10. Eccrine Sweat Glands are Major Contributors to Reepithelialization of Human Wounds

    PubMed Central

    Rittié, Laure; Sachs, Dana L.; Orringer, Jeffrey S.; Voorhees, John J.; Fisher, Gary J.

    2014-01-01

    Eccrine sweat glands are skin-associated epithelial structures (appendages) that are unique to some primates including humans and are absent in the skin of most laboratory animals including rodents, rabbits, and pigs. On the basis of the known importance of other skin appendages (hair follicles, apocrine glands, and sebaceous glands) for wound repair in model animals, the present study was designed to assess the role of eccrine glands in the repair of wounded human skin. Partial-thickness wounds were generated on healthy human forearms, and epidermal repair was studied in skin biopsy samples obtained at precise times during the first week after wounding. Wound reepithelialization was assessed using immunohistochemistry and computer-assisted 3-dimensional reconstruction of in vivo wounded skin samples. Our data demonstrate a key role for eccrine sweat glands in reconstituting the epidermis after wounding in humans. More specifically, i) eccrine sweat glands generate keratinocyte outgrowths that ultimately form new epidermis; ii) eccrine sweat glands are the most abundant appendages in human skin, outnumbering hair follicles by a factor close to 3; and iii) the rate of expansion of keratinocyte outgrowths from eccrine sweat glands parallels the rate of reepithelialization. This novel appreciation of the unique importance of eccrine sweat glands for epidermal repair may be exploited to improve our approaches to understanding and treating human wounds. PMID:23159944

  11. Eccrine sweat glands are major contributors to reepithelialization of human wounds.

    PubMed

    Rittié, Laure; Sachs, Dana L; Orringer, Jeffrey S; Voorhees, John J; Fisher, Gary J

    2013-01-01

    Eccrine sweat glands are skin-associated epithelial structures (appendages) that are unique to some primates including humans and are absent in the skin of most laboratory animals including rodents, rabbits, and pigs. On the basis of the known importance of other skin appendages (hair follicles, apocrine glands, and sebaceous glands) for wound repair in model animals, the present study was designed to assess the role of eccrine glands in the repair of wounded human skin. Partial-thickness wounds were generated on healthy human forearms, and epidermal repair was studied in skin biopsy samples obtained at precise times during the first week after wounding. Wound reepithelialization was assessed using immunohistochemistry and computer-assisted 3-dimensional reconstruction of in vivo wounded skin samples. Our data demonstrate a key role for eccrine sweat glands in reconstituting the epidermis after wounding in humans. More specifically, (i) eccrine sweat glands generate keratinocyte outgrowths that ultimately form new epidermis; (ii) eccrine sweat glands are the most abundant appendages in human skin, outnumbering hair follicles by a factor close to 3; and (iii) the rate of expansion of keratinocyte outgrowths from eccrine sweat glands parallels the rate of reepithelialization. This novel appreciation of the unique importance of eccrine sweat glands for epidermal repair may be exploited to improve our approaches to understanding and treating human wounds.

  12. Pineal melatonin synthesis in Syrian hamsters: A summary

    NASA Astrophysics Data System (ADS)

    Rollag, M. D.

    1982-12-01

    During the past decade there has been ample documentation of the proposition that the pineal gland mediates photoperiodic influences upon reproductive behavior of hamsters. It is commonly hypothesized that the pineal gland expresses its activity by transformation of photoperiodic information into an hormonal output, that hormone being melatonin. If this hypothesis is correct, there must be some essential diffrence in melatonin's output when hamsters are exposed to different photoperiodic environments. The experiments summarized in this communication analyze pineal melatonin contents in Syrian hamsters maintained in a variety of photoperiodic conditions during different physiological states. The results demonstrate that adult hamsters have a daily surge in pineal melatonin content throughout their lifetime when exposed to simulated annual photoperiodic cycles. There is some fluctuation in the amount of pineal melatonin produced during different physiological states and photoperiodic environments, but these fluctuations seem small when compared to those normally found for other regulatory hormones. When hamsters are exposed to different photoperiodic regimens, the daily melatonin surge maintains a relatively constant phase relationship with respect to the onset of daily activity. There is a concomitant change in its phase relationship with respect to light-dark transitions.

  13. Dynamic OCT of mentally stress-induced sweating in sweat glands of the human finger tip

    NASA Astrophysics Data System (ADS)

    Ohmi, Masato; Ueda, Yoshihiro; Haruna, Masamitsu

    2007-02-01

    We demonstrate in-vivo imaging of sweat glands of human finger tip using the dynamic optical coherence tomography (OCT). Mentally-stress-induced sweating in sweat glands of human finger tip can be observed clearly in time-sequential OCT images. In the experiment, a sweat pore opened clearly on the skin surface according to a stimulus of sound.

  14. Human Parotid Gland Alpha-Amylase Secretion as a Function of Chronic Hyperbaric Exposure

    DTIC Science & Technology

    1979-01-01

    parotid ...Pullman, WA 99163 Gilman, S. C, G. J. Fischer, R. J. Biersner, R. D. Thornton, and D. A. Miller. 1979. Human parotid gland alpha-amylase secretion...as a function of chronic hyperbaric exposure. Undersea Biomed. Res. 6(3):303-307.—Secretion of a-amylase by the human parotid gland increased

  15. Oncostatic activity of pineal neuroendocrine treatment with the pineal indoles melatonin and 5-methoxytryptamine in untreatable metastatic cancer patients progressing on melatonin alone.

    PubMed

    Lissoni, Paolo; Rovelli, Franco; Frassineti, Andrea; Fumagalli, Luca; Malysheva, Ola; Conti, Ario; Maestroni, Georges

    2000-01-01

    OBJECTIVE: The recent advances in psycho-neuro-endocrino-immunology have demonstrated the existence of several endogenous neuroendocrine substances, capable of affecting both tumor growth and host anticancer immune defenses. The pineal gland would represent one of the most important organs releasing antiproliferative and immunostimulating substances, the most known of them is melatonin (MLT). However, MLT would not be the only pineal indole provided by antitumor activity. Other pineal indoles, namely 5-methoxytryptamine (5-MTT), would play antitumor effects, by either inhibiting cancer cell proliferation or stimulating the anticancer immunity. Preliminary data have shown that MLT may deserve antitumor activity in the treatment of human neoplasms, whereas at present there are no clear data about 5-MTT. In an attempt to obtain some preliminary data about the anticancer properties of 5-MTT in humans, we have evaluated the efficacy of MLT plus 5-MTT in untreatable advanced cancer patients progressing on MLT alone. METHODS: The study included 73 untreatable advanced solid tumor patients, who had progressed after two months of MLT therapy alone. According to tumor histotype, patients were randomized to receive MLT alone (20 mg/day orally in the evening) or MLT plus 5-MTT (1 mg at noon orally), every day for at least two months. The clinical response was evaluated according to WHO criteria. RESULTS: A partial response (PR) occurred in two patients treated with MLT + 5-MTT and in none of the patients receiving MLT alone. A stable disease (SD) was achieved in only 2/37 patients on MLT therapy alone, and in 8/36 patients receiving MLT plus 5-MTT. Therefore, the percent of non-progressing patients (SD + PR) obtained with MLT plus 5-MTT was significantly higher than that obtained with MLT alone. Moreover, the relief of asthenia and depressant symptoms was significantly higher in patients concomitantly treated with 5-MTT. DISCUSSION: This preliminary study would suggest that

  16. Incidental pineal cysts in children who undergo 3-T MRI.

    PubMed

    Whitehead, Matthew T; Oh, Christopher C; Choudhri, Asim F

    2013-12-01

    Pineal cysts, both simple and complex, are commonly encountered in children. More cysts are being detected with MR technology; however, nearly all pineal cysts are benign and require no follow-up. To discover the prevalence of pineal cysts in children at our institution who have undergone high-resolution 3-T MRI. We retrospectively reviewed 100 consecutive 3-T brain MRIs in children ages 1 month to 17 years (mean 6.8 ± 5.1 years). We evaluated 3-D volumetric T1-W imaging, axial T2-W imaging, axial T2-W FLAIR (fluid attenuated inversion recovery) and coronal STIR (short tau inversion recovery) sequences. Pineal parenchymal and cyst volumes were measured in three planes. Cysts were analyzed for the presence and degree of complexity. Pineal cysts were present in 57% of children, with a mean maximum linear dimension of 4.2 mm (range 1.5-16 mm). Of these cysts, 24.6% showed thin septations or fluid levels reflecting complexity. None of the cysts demonstrated complete T2/FLAIR signal suppression. No cyst wall thickening or nodularity was present. There was no significant difference between the ages of children with and without cysts. Cysts were more commonly encountered in girls than boys (67% vs. 52%; P = 0.043). There was a slight trend toward increasing pineal gland volume with age. Pineal cysts are often present in children and can be incidentally detected by 3-T MRI. Characteristic-appearing pineal cysts in children are benign, incidental findings, for which follow-up is not required if there are no referable symptoms or excessive size.

  17. Comparison of proliferating cells between human adult and fetal eccrine sweat glands.

    PubMed

    Li, Hai-Hong; Fu, Xiao-Bing; Zhang, Lei; Zhou, Gang

    2008-04-01

    Studies of sweat glands had demonstrated that there were degenerating cells and proliferating cells in the eccrine sweat glands. To compare the differences in the proliferating cells between human adult and fetal eccrine sweat glands, immunostaining of proliferating-associated proliferating cell nuclear antigen (PCNA) and Ki67 nuclear antigen (Ki67) was performed, and the location and the percentage of the positive staining cells were analyzed. The results showed that a few cells of the secretory and ductal portion in both the adult and fetal eccrine sweat glands stained positive with Ki67 and PCNA. The labeling index of PCNA in adult eccrine sweat glands was 34.71 +/- 8.37%, while that in the fetal was 62.72 +/- 6.54%. The labeling index of PCNA in fetal eccrine sweat glands was higher than that in adult. Myoepithelial cells were negative staining with anti-PCNA antibody in adult eccrine sweat glands, while in the fetal a few myoepithelial cells were positive staining. Labeling index of Ki67 in adult eccrine sweat glands was similar to that in the fetal, ranging from 0.5 to 4.3%. Myoepithelial cells of the adult and fetal eccrine sweat glands both were negative staining with anti-Ki67 antibody. We concluded that the myoepithelial cells had proliferating ability only in fetal eccrine sweat glands, and that the proliferating ability of fetal eccrine sweat glands was stronger than that of the adult.

  18. THE ULTRASTRUCTURE AND HISTOPHYSIOLOGY OF HUMAN ECCRINE SWEAT GLANDS

    PubMed Central

    Munger, Bryce L.

    1961-01-01

    The electron microscopy of human eccrine sweat glands has been studied before and after stimulation by pilocarpine iontophoresis. The identity of the dark and clear cells in the secretory segment as defined by Montagna et al. (23) was determined by studying serial sections, thin for electron microscopy and thick for light microscopy. Cells with numerous apical secretory vacuoles are termed mucoid (dark) cells, since these vacuoles stain positively for acid mucopolysaccharide. Clear cells are intimately associated with intercellular canaliculi. The "cuticular border" of surface cells of the duct is a condensation of tonofilaments and granules. Numerous mitochondria are concentrated in basal cells of the duct. The presence of mucoid cells in the secretory segment may bear on the interpretation of the pathologic findings in the disease cystic fibrosis of the pancreas, and suggests that this disease may be due to a basic disorder of mucopolysaccharide production. The possible roles of the various cellular components in the elaboration of sweat are discussed. PMID:14477206

  19. Weight gain increases human aromatase expression in mammary gland.

    PubMed

    Chen, Dong; Zhao, Hong; Coon, John S; Ono, Masanori; Pearson, Elizabeth K; Bulun, Serdar E

    2012-05-15

    Adulthood weight gain predicts estrogen receptor-positive breast cancer. Because local estrogen excess in the breast likely contributes to cancer development, and aromatase is the key enzyme in estrogen biosynthesis, we investigated the role of local aromatase expression in weight gain-associated breast cancer risk in a humanized aromatase (Arom(hum)) mouse model containing the coding region and the 5'-regulatory region of the human aromatase gene. Compared with littermates on normal chow, female Arom(hum) mice on a high fat diet gained more weight, and had a larger mammary gland mass with elevated total human aromatase mRNA levels via promoters I.4 and II associated with increased levels of their regulators TNFα and C/EBPβ. There was no difference in total human aromatase mRNA levels in gonadal white adipose tissue. Our data suggest that diet-induced weight gain preferentially stimulates local aromatase expression in the breast, which may lead to local estrogen excess and breast cancer risk.

  20. Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum.

    PubMed

    Choi, Eunyoung; Roland, Joseph T; Barlow, Brittney J; O'Neal, Ryan; Rich, Amy E; Nam, Ki Taek; Shi, Chanjuan; Goldenring, James R

    2014-11-01

    The glands of the stomach body and antral mucosa contain a complex compendium of cell lineages. In lower mammals, the distribution of oxyntic glands and antral glands define the anatomical regions within the stomach. We examined in detail the distribution of the full range of cell lineages within the human stomach. We determined the distribution of gastric gland cell lineages with specific immunocytochemical markers in entire stomach specimens from three non-obese organ donors. The anatomical body and antrum of the human stomach were defined by the presence of ghrelin and gastrin cells, respectively. Concentrations of somatostatin cells were observed in the proximal stomach. Parietal cells were seen in all glands of the body of the stomach as well as in over 50% of antral glands. MIST1 expressing chief cells were predominantly observed in the body although individual glands of the antrum also showed MIST1 expressing chief cells. While classically described antral glands were observed with gastrin cells and deep antral mucous cells without any parietal cells, we also observed a substantial population of mixed type glands containing both parietal cells and G cells throughout the antrum. Enteroendocrine cells show distinct patterns of localisation in the human stomach. The existence of antral glands with mixed cell lineages indicates that human antral glands may be functionally chimeric with glands assembled from multiple distinct stem cell populations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Overview of Human Salivary Glands: Highlights of Morphology and Developing Processes.

    PubMed

    de Paula, Fernanda; Teshima, Tathyane Harumi Nakajima; Hsieh, Ricardo; Souza, Milena Monteiro; Nico, Marcello Menta Simonsen; Lourenco, Silvia Vanessa

    2017-02-13

    Salivary glands are essential organs that produce and secrete saliva to the oral cavity. During gland morphogenesis, many developmental processes involve a series of coordinated movements and reciprocal interactions between the epithelium and mesenchyme that generate the ductal system and the secretory units. Recent studies have shown new findings about salivary gland development, particularly regarding lumen formation and expansion, with the involvement of apoptosis and cell polarization, respectively. Moreover, it has been observed that human minor salivary glands start forming earlier than previously published and that distinct apoptotic mediators can trigger duct lumen opening in humans. This review summarizes updated morphological and cellular features of human salivary glands and also explores new aspects of the human developmental process. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc.

  2. The megachiropteran pineal organ: a comparative morphological and volumetric investigation with special emphasis on the remarkably large pineal of Dobsonia praedatrix.

    PubMed Central

    Bhatnagar, K P; Frahm, H D; Stephan, H

    1990-01-01

    smaller but similarly shaped pineal is noted in the other three Dobsonia. Data on the largest known pineals in ratitae birds, seals and walruses have been compared with that of D. praedatrix and the human pineal. This study supports the hypothesis that pineal development may reflect dependence on habitat and possibly other related