Babo, Pedro S; Carvalho, Pedro P; Santo, Vítor E; Faria, Susana; Gomes, Manuela E; Reis, Rui L
2016-11-01
Injectable calcium phosphate cements have been used as a valid alternative to autologous bone grafts for bone augmentation with the additional advantage of enabling minimally invasive implantation procedures and for perfectly fitting the tissue defect. Nevertheless, they have low biodegradability and lack adequate biochemical signaling to promote bone healing and remodeling. In previous in vitro studies, we observed that the incorporation of platelet lysate directly into the cement paste or loaded in hyaluronic acid microspheres allowed to modulate the cement degradation and the in vitro expression of osteogenic markers in seeded human adipose derived stem cells. The present study aimed at investigating the possible effect of this system in new bone formation when implanted in calvarial bilateral defects in rats. Different formulations were assessed, namely plain calcium phosphate cements, calcium phosphate cements loaded with human platelet lysate, hybrid injectable formulations composed of the calcium phosphate cement incorporating hyaluronin acid non-loaded microparticles (20% hyaluronin acid) or with particles loaded with platelet lysate. The degradability and new bone regrowth were evaluated in terms of mineral volume in the defect, measured by micro-computed tomography and histomorphometric analysis upon 4, 8 and 12 weeks of implantation. We observed that the incorporation of hyaluronin acid microspheres induced an overly rapid cement degradation, impairing the osteoconductive properties of the cement composites. Moreover, the incorporation of platelet lysate induced higher bone healing than the materials without platelet lysate, up to four weeks after surgery. Nevertheless, this effect was not found to be significant when compared to the one observed in the sham-treated group. © The Author(s) 2016.
Walford, T; Musa, F I
2015-01-01
Background and Purpose Recently, we demonstrated that a pericellular Ca2+ recycling system potentiates agonist‐evoked Ca2+ signalling and granule secretion in human platelets and hypothesized a role for the membrane complex (MC) in orchestrating the accumulation of Ca2+ in the pericellular region. Previous work has demonstrated that treatment with high concentrations of nicergoline may disrupt the MC through an ability to trigger a re‐organization of the dense tubular system. Experiments were therefore performed to assess whether nicergoline‐induced changes in platelet ultrastructure affects thrombin‐evoked Ca2+ fluxes and dense granule secretion. Experimental Approach Thrombin‐evoked Ca2+ fluxes were monitored in Fura‐2‐ or Fluo‐5N‐loaded human platelets, or using platelet suspensions containing Fluo‐4 or Rhod‐5N K+ salts. Fluorescence microscopy was utilized to monitor microtubule structure and intracellular Ca2+ store distribution in TubulinTracker‐ and Fluo‐5N‐loaded platelets respectively. Dense granule secretion was monitored using luciferin–luciferase. Key Results Nicergoline treatment inhibited thrombin‐evoked Ca2+ signalling and induced alterations in the microtubule structure and the distribution of intracellular Ca2+ stores in platelets. Nicergoline altered the generation and spreading of thrombin‐induced pericellular Ca2+ signals and almost completely prevented dense granule secretion. Stabilization of microtubules using taxol reversed most effects of nicergoline on platelet Ca2+ signalling and partially reversed its effects on dense granule secretion. Conclusions and Implications Nicergoline‐induced alterations to platelet ultrastructure disrupt platelet Ca2+ signalling in a manner that would be predicted if the MC had been disrupted. These data suggest that nicergoline may be a useful prototype for the discovery of novel MC‐disrupting anti‐thrombotics. PMID:26450366
Walford, T; Musa, F I; Harper, A G S
2016-01-01
Recently, we demonstrated that a pericellular Ca(2+) recycling system potentiates agonist-evoked Ca(2+) signalling and granule secretion in human platelets and hypothesized a role for the membrane complex (MC) in orchestrating the accumulation of Ca(2+) in the pericellular region. Previous work has demonstrated that treatment with high concentrations of nicergoline may disrupt the MC through an ability to trigger a re-organization of the dense tubular system. Experiments were therefore performed to assess whether nicergoline-induced changes in platelet ultrastructure affects thrombin-evoked Ca(2+) fluxes and dense granule secretion. Thrombin-evoked Ca(2+) fluxes were monitored in Fura-2- or Fluo-5N-loaded human platelets, or using platelet suspensions containing Fluo-4 or Rhod-5N K(+) salts. Fluorescence microscopy was utilized to monitor microtubule structure and intracellular Ca(2+) store distribution in TubulinTracker- and Fluo-5N-loaded platelets respectively. Dense granule secretion was monitored using luciferin-luciferase. Nicergoline treatment inhibited thrombin-evoked Ca(2+) signalling and induced alterations in the microtubule structure and the distribution of intracellular Ca(2+) stores in platelets. Nicergoline altered the generation and spreading of thrombin-induced pericellular Ca(2+) signals and almost completely prevented dense granule secretion. Stabilization of microtubules using taxol reversed most effects of nicergoline on platelet Ca(2+) signalling and partially reversed its effects on dense granule secretion. Nicergoline-induced alterations to platelet ultrastructure disrupt platelet Ca(2+) signalling in a manner that would be predicted if the MC had been disrupted. These data suggest that nicergoline may be a useful prototype for the discovery of novel MC-disrupting anti-thrombotics. © 2015 The British Pharmacological Society.
Liu, Jing-Han; Zhou, Jun; Ouyang, Xi-Lin; Li, Xi-Jin; Lu, Fa-Qiang
2005-08-01
This study was aimed to further optimize trehalose loading technique including loading temperature, loading time, loading solution and loading concentration of trehalose, based on the established parameters. Loading efficiency in plasma was compared with that in buffer at 37 degrees C; the curves of intracellular trehalose concentration versus loading time at 37 degrees C and 16 degrees C were measured; curves of mean platelet volume (MPV) versus loading time and loading concentration were investigated and compared. According to results obtained, the loaing time, loading temperature, loading solution and trehalose concentration were ascertained for high loading efficiency of trehalose into human platelet. The results showed that the loading efficiency in plasma was markedly higher than that in buffer at 37 degrees C, the loading efficiency in plasma at 37 degrees C was significantly higher than that at 16 degrees C and reached 19.51% after loading for 4 hours, but 6.16% at 16 degrees C. MPV at 16 degrees C was increased by 43.2% than that at 37 degrees C, but had no distinct changes with loading time and loading concentration. In loading at 37 degrees C, MPV increased with loading time and loading concentration positively. Loading time and loading concentration displayed synergetic effect on MPV. MPV increased with loading time and concentration while trehalose loading concentration was above 50 mmol/L. It is concluded that the optimization parameters of trehalose loading technique are 37 degrees C (temperature), 4 hours (leading time), plasma (loading solution), 50 mmol/L (feasible trehalose concentration). The trehalose concentration can be adjusted to meet the requirement of lyophilization.
Stratz, Christian; Bömicke, Timo; Younas, Iris; Kittel, Anja; Amann, Michael; Valina, Christian M; Nührenberg, Thomas; Trenk, Dietmar; Neumann, Franz-Josef; Hochholzer, Willibald
2016-07-19
Previous data suggest that reticulated platelets significantly affect antiplatelet response to thienopyridines. It is unknown whether parameters describing reticulated platelets can predict antiplatelet response to thienopyridines. The authors sought to determine the extent to which parameters describing reticulated platelets can predict antiplatelet response to thienopyridine loading compared with established predictors. This study randomized 300 patients undergoing elective coronary stenting to loading with clopidogrel 600 mg, prasugrel 30 mg, or prasugrel 60 mg. Adenosine diphosphate (ADP)-induced platelet reactivity was assessed by impedance aggregometry before loading (intrinsic platelet reactivity) and again on day 1 after loading. Multiple parameters of reticulated platelets were assessed by automated whole blood flow cytometry: absolute immature platelet count (IPC), immature platelet fraction, and highly fluorescent immature platelet fraction. Each parameter of reticulated platelets correlated significantly with ADP-induced platelet reactivity (p < 0.01 for all 3 parameters). In a multivariable model including all 3 parameters, only IPC remained a significant predictor of platelet reactivity (p < 0.001). In models adjusting each of the 3 parameters for known predictors of on-treatment platelet reactivity including cytochrome P450 2C19 (CYP2C19) polymorphisms, age, body mass index, diabetes, and intrinsic platelet reactivity, only IPC prevailed as an independent predictor (p = 0.001). In this model, IPC was the strongest predictor of on-treatment platelet reactivity followed by intrinsic platelet reactivity. IPC is the strongest independent platelet count-derived predictor of antiplatelet response to thienopyridine treatment. Given its easy availability, together with its even stronger association with on-treatment platelet reactivity compared with known predictors, including the CYP2C19*2 polymorphism, IPC may become the preferred predictor of antiplatelet response to thienopyridine treatment. (Impact of Extent of Clopidogrel-Induced Platelet Inhibition During Elective Stent Implantation on Clinical Event Rate-Advanced Loading Strategies [ExcelsiorLOAD]; DRKS00006102). Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Platelet activation suppresses HIV-1 infection of T cells
2013-01-01
Background Platelets, anucleate cell fragments abundant in human blood, can capture HIV-1 and platelet counts have been associated with viral load and disease progression. However, the impact of platelets on HIV-1 infection of T cells is unclear. Results We found that platelets suppress HIV-1 spread in co-cultured T cells in a concentration-dependent manner. Platelets containing granules inhibited HIV-1 spread in T cells more efficiently than degranulated platelets, indicating that the granule content might exert antiviral activity. Indeed, supernatants from activated and thus degranulated platelets suppressed HIV-1 infection. Infection was inhibited at the stage of host cell entry and inhibition was independent of the viral strain or coreceptor tropism. In contrast, blockade of HIV-2 and SIV entry was less efficient. The chemokine CXCL4, a major component of platelet granules, blocked HIV-1 entry and neutralization of CXCL4 in platelet supernatants largely abrogated their anti-HIV-1 activity. Conclusions Release of CXCL4 by activated platelets inhibits HIV-1 infection of adjacent T cells at the stage of virus entry. The inhibitory activity of platelet-derived CXCL4 suggests a role of platelets in the defense against infection by HIV-1 and potentially other pathogens. PMID:23634812
Platelet activation suppresses HIV-1 infection of T cells.
Solomon Tsegaye, Theodros; Gnirß, Kerstin; Rahe-Meyer, Niels; Kiene, Miriam; Krämer-Kühl, Annika; Behrens, Georg; Münch, Jan; Pöhlmann, Stefan
2013-05-01
Platelets, anucleate cell fragments abundant in human blood, can capture HIV-1 and platelet counts have been associated with viral load and disease progression. However, the impact of platelets on HIV-1 infection of T cells is unclear. We found that platelets suppress HIV-1 spread in co-cultured T cells in a concentration-dependent manner. Platelets containing granules inhibited HIV-1 spread in T cells more efficiently than degranulated platelets, indicating that the granule content might exert antiviral activity. Indeed, supernatants from activated and thus degranulated platelets suppressed HIV-1 infection. Infection was inhibited at the stage of host cell entry and inhibition was independent of the viral strain or coreceptor tropism. In contrast, blockade of HIV-2 and SIV entry was less efficient. The chemokine CXCL4, a major component of platelet granules, blocked HIV-1 entry and neutralization of CXCL4 in platelet supernatants largely abrogated their anti-HIV-1 activity. Release of CXCL4 by activated platelets inhibits HIV-1 infection of adjacent T cells at the stage of virus entry. The inhibitory activity of platelet-derived CXCL4 suggests a role of platelets in the defense against infection by HIV-1 and potentially other pathogens.
NASA Astrophysics Data System (ADS)
Lee, ImShik; Marchant, Roger E.
2001-10-01
The peptide sequence arginine-glycine-aspartate (RGD) found in fibrinogen, von Willebrand factor, fibronectin, and vitronectin, plays a critical role in platelet adhesion and thrombus formation, when bound to the platelet α IIbβ 3 integrin receptor. Using atomic force microscopy (AFM), we have measured the debonding interaction between an RGD peptide-modified AFM probe tip and a human platelet surface from pN to nN levels of force. The peptide sequence, GSSSGRGDSPA, which contains the biologically active RGDSP sequence with a hydrophilic spacer sequence (GSSSG), was covalently coupled to AFM probe tips. Direct measurements on the debonding force for the RGD ligand - α IIbβ 3 platelet receptor system were carried out in Tyrode buffer at room temperature. Our results show three distinct distributions of debonding forces at a loading rate of 12 nN/s, from which we estimate the debonding force for the single ligand-receptor to be ˜93 pN. The results also show evidence for considerable extension in the flexible sample surface during the debonding process, and a linear correlation between the debonding force and the logarithm of the rate of loading. From our analysis, the zero kinetic off-rate Koff(0), the single molecular binding energy Eb, and the transition state xB, assuming rigid binding, were extracted from the data, and estimated to be 22.6 s -1, -2.64×10 -20 J and 0.1 nm, respectively.
Mori, Michela; Rossi, Silvia; Ferrari, Franca; Bonferoni, Maria C; Sandri, Giuseppina; Riva, Federica; Tenci, Marika; Del Fante, Claudia; Nicoletti, Giovanni; Caramella, Carla
2016-03-01
Platelet lysate (PL) was loaded into dressings based on chitosan glutamate (CSG) low and high molecular weight, sericin (Ser), and glycine (Gly). A synergic effect of Ser and PL on fibroblast proliferation was proved in vitro. Two different PL loading approaches were considered: the first provided to prepare dressings by freeze-drying a mixture of PL and CSG/Gly/Ser solution, the second approach consisted in the extemporarily loading of PL in the CSG/Gly/Ser freeze-dried dressings. As for the first approach, PL loading did not produce any variation in dressing mechanical properties. Such dressings absorbed a high amount (about 8-fold of dry weight) of phosphate-buffered saline (fluid mimicking wound exudate), forming a gel with pseudoplastic and elastic properties. Platelet-derived growth factor AB assay indicated that neither freeze-drying nor the excipients alter PL growth factor content. As for the second approach, mechanical and rheological properties of the gel formed upon PL absorption enabled to choose a PL loading of about 90 μL/cm(2). Upon contact with fibroblasts, all PL loaded formulations increased the number not only of viable cells but also of those in the proliferative phase. Histological studies effected on human skin strips pointed out the positive effect of PL loaded dressings on dermal matrix reconstruction. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Ilkan, Zeki; Wright, Joy R; Goodall, Alison H; Gibbins, Jonathan M; Jones, Chris I; Mahaut-Smith, Martyn P
2017-06-02
The role of mechanosensitive (MS) Ca 2+ -permeable ion channels in platelets is unclear, despite the importance of shear stress in platelet function and life-threatening thrombus formation. We therefore sought to investigate the expression and functional relevance of MS channels in human platelets. The effect of shear stress on Ca 2+ entry in human platelets and Meg-01 megakaryocytic cells loaded with Fluo-3 was examined by confocal microscopy. Cells were attached to glass coverslips within flow chambers that allowed applications of physiological and pathological shear stress. Arterial shear (1002.6 s -1 ) induced a sustained increase in [Ca 2+ ] i in Meg-01 cells and enhanced the frequency of repetitive Ca 2+ transients by 80% in platelets. These Ca 2+ increases were abrogated by the MS channel inhibitor Grammostola spatulata mechanotoxin 4 (GsMTx-4) or by chelation of extracellular Ca 2+ Thrombus formation was studied on collagen-coated surfaces using DiOC 6 -stained platelets. In addition, [Ca 2+ ] i and functional responses of washed platelet suspensions were studied with Fura-2 and light transmission aggregometry, respectively. Thrombus size was reduced 50% by GsMTx-4, independently of P2X1 receptors. In contrast, GsMTx-4 had no effect on collagen-induced aggregation or on Ca 2+ influx via TRPC6 or Orai1 channels and caused only a minor inhibition of P2X1-dependent Ca 2+ entry. The Piezo1 agonist, Yoda1, potentiated shear-dependent platelet Ca 2+ transients by 170%. Piezo1 mRNA transcripts and protein were detected with quantitative RT-PCR and Western blotting, respectively, in both platelets and Meg-01 cells. We conclude that platelets and Meg-01 cells express the MS cation channel Piezo1, which may contribute to Ca 2+ entry and thrombus formation under arterial shear. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Meng, Kang; Lü, Shu-Zheng; Zhu, Hua-Gang; Chen, Xin; Ge, Chang-Jiang; Song, Xian-Tao
2010-12-01
Adenosine phosphate-mediated platelet aggregation is a prognostic factor for major adverse cardiac events in patients who have undergone selective percutaneous coronary interventions. This study aimed to assess whether an adjusted loading dose of clopidogrel could more effectively inhibit platelet aggregation in patients undergoing selected percutaneous coronary intervention. A total of 205 patients undergoing selected percutaneous coronary intervention were enrolled in this multicenter, prospective, randomized study. Patients receiving domestic clopidogrel (n = 104) served as the Talcom (Taijia) group; others (n = 101) received Plavix, the Plavix group. Patients received up to 3 additional 300-mg loading doses of clopidogrel to decrease the adenosine phosphate-mediated platelet aggregation index by more than 50% (the primary endpoint) compared with the baseline. The secondary endpoint was major adverse cardiovascular events at 12 months. Compared with the rational loading dosage, the tailored loading dosage better inhibited platelet aggregation based on a > 50% decrease in adenosine phosphate-mediated platelet aggregation (rational loading dosage vs. tailored loading dosage, 48% vs. 73%, P = 0.028). There was no significant difference in the eligible index between the Talcom and Plavix groups (47% vs. 49% at 300 mg; 62% vs. 59% at 600 mg; 74% vs. 72% at 900 mg; P > 0.05) based on a standard adenosine diphosphate-mediated platelet aggregation decrease of > 50%. After 12 months of follow-up, there were no significant differences in major adverse cardiac events (2.5% vs. 2.9%, P = 5.43). No acute or subacute stent thrombosis events occurred. An adjusted loading dose of clopidogrel could have significant effects on antiplatelet aggregation compared with a rational dose, decreasing 1-year major adverse cardiac events in patients undergoing percutaneous coronary interventions based on adenosine phosphate-mediated platelet aggregation with no increase in bleeding.
Montecinos, Viviana P; Morales, Claudio H; Fischer, Thomas H; Burns, Sarah; San Francisco, Ignacio F; Godoy, Alejandro S; Smith, Gary J
2015-01-01
Androgen deprivation therapy (ADT) provides palliation for most patients with advanced prostate cancer (CaP); however, greater than 80% subsequently fail ADT. ADT has been indicated to induce an acute but transient destabilization of the prostate vasculature in animal models and humans. Human re-hydrated lyophilized platelets (hRL-P) were investigated as a prototype for therapeutic agents designed to target selectively the tumour-associated vasculature in CaP. The ability of hRL-P to bind the perturbed endothelial cells was tested using thrombin- and ADP-activated human umbilical vein endothelial cells (HUVEC), as well as primary xenografts of human prostate tissue undergoing acute vascular involution in response to ADT. hRL-P adhered to activated HUVEC in a dose-responsive manner. Systemically administered hRL-P, and hRL-P loaded with super-paramagnetic iron oxide (SPIO) nanoparticles, selectively targeted the ADT-damaged human microvasculature in primary xenografts of human prostate tissue. This study demonstrated that hRL-P pre-loaded with chemo-therapeutics or nanoparticles could provide a new paradigm for therapeutic modalities to prevent the rebound/increase in prostate vasculature after ADT, inhibiting the transition to castration-recurrent growth. PMID:25736582
Pericellular Ca2+ recycling potentiates thrombin-evoked Ca2+ signals in human platelets
Sage, Stewart O; Pugh, Nicholas; Farndale, Richard W; Harper, Alan G S
2013-01-01
We have previously demonstrated that Na+/Ca2+ exchangers (NCXs) potentiate Ca2+ signaling evoked by thapsigargin in human platelets, via their ability to modulate the secretion of autocoids from dense granules. This link was confirmed in platelets stimulated with the physiological agonist, thrombin, and experiments were performed to examine how Ca2+ removal by the NCX modulates platelet dense granule secretion. In cells loaded with the near-membrane indicator FFP-18, thrombin stimulation was observed to elicit an NCX-dependent accumulation of Ca2+ in a pericellular region around the platelets. To test whether this pericellular Ca2+ accumulation might be responsible for the influence of NCXs over platelet function, platelets were exposed to fast Ca2+ chelators or had their glycocalyx removed. Both manipulations of the pericellular Ca2+ rise reduced thrombin-evoked Ca2+ signals and dense granule secretion. Blocking Ca2+-permeable ion channels had a similar effect, suggesting that Ca2+ exported into the pericellular region is able to recycle back into the platelet cytosol. Single cell imaging with extracellular Fluo-4 indicated that thrombin-evoked rises in extracellular [Ca2+] occurred within the boundary described by the cell surface, suggesting their presence within the open canalicular system (OCS). FFP-18 fluorescence was similarly distributed. These data suggest that upon thrombin stimulation, NCX activity creates a rise in [Ca2+] within the pericellular region of the platelet from where it recycles back into the platelet cytosol, acting to both accelerate dense granule secretion and maintain the initial rise in cytosolic [Ca2+]. PMID:24303163
Platelet-independent adhesion of calcium-loaded erythrocytes to von Willebrand factor
Bierings, Ruben; Meems, Henriet; Mul, Frederik P. J.; Geerts, Dirk; Vlaar, Alexander P. J.; Voorberg, Jan; Hordijk, Peter L.
2017-01-01
Adhesion of erythrocytes to endothelial cells lining the vascular wall can cause vaso-occlusive events that impair blood flow which in turn may result in ischemia and tissue damage. Adhesion of erythrocytes to vascular endothelial cells has been described in multiple hemolytic disorders, especially in sickle cell disease, but the adhesion of normal erythrocytes to endothelial cells has hardly been described. It was shown that calcium-loaded erythrocytes can adhere to endothelial cells. Because sickle erythrocyte adhesion to ECs can be enhanced by ultra-large von Willebrand factor multimers, we investigated whether calcium loading of erythrocytes could promote binding to endothelial cells via ultra-large von Willebrand factor multimers. We used (immunofluorescent) live-cell imaging of washed erythrocytes perfused over primary endothelial cells at venular flow rate. Using this approach, we show that calcium-loaded erythrocytes strongly adhere to histamine-stimulated primary human endothelial cells. This adhesion is mediated by ultra-large von Willebrand factor multimers. Von Willebrand factor knockdown or ADAMTS13 cleavage abolished the binding of erythrocytes to activated endothelial cells under flow. Platelet depletion did not interfere with erythrocyte binding to von Willebrand factor. Our results reveal platelet-independent adhesion of calcium-loaded erythrocytes to endothelium-derived von Willebrand factor. Erythrocyte adhesion to von Willebrand factor may be particularly relevant for venous thrombosis, which is characterized by the formation of erythrocyte-rich thrombi. PMID:28249049
Gurbel, Paul A; Cummings, Charles C; Bell, Christopher R; Alford, Amanda B; Meister, Andrew F; Serebruany, Victor L
2003-02-01
Despite the common practice of clopidogrel loading for coronary stenting, the time dependence and degree of platelet inhibition after this therapy are not well defined. We sought to establish an optimal clopidogrel dosing regimen for sustained platelet inhibition in stented patients. Platelets were assessed by conventional aggregation with 5 micromol/L adenosine diphosphate (ADP), 1 microg/mL collagen (COLL), and 750 micromol/L arachidonic acid; whole blood aggregation by 1 microg/mL collagen (WBA); shear-induced closure time (CT); contractile force (CF); and expression of 9 surface receptors by flow cytometry in 100 patients undergoing elective stent placement without glycoprotein (GP) IIb/IIIa receptor antagonists. Blood was obtained at baseline and serially over 5 days poststenting after different clopidogrel loading regimens: 300 mg 24 hours before (Group A), 12 hours before (Group B), 3 to 6 hours before (Group C), and 75 mg at the time of intervention (Group D). Before stenting, ADP, COLL, CT, and WBA were reduced by clopidogrel loading (P <.05). CF was not affected by clopidogrel. Before stenting, GP IIb/IIIa expression increased in groups A through C (P <.05), whereas PECAM-1 and CD107a were reduced (P <.05). At 2 hours and 2 days poststenting, platelets, in general, exhibited an increase in activity that was most inhibited by clopidogrel loading. Clopidogrel inhibited GP Ib, platelet/endothelial cell adhesion molecule-1, CD 107a, CD 151, and GP IIb/IIIa expression at day 5 poststenting. A 300 mg clopidogrel load given 3 to 24 hours before stenting inhibits platelets at the time of the procedure and reduces poststent activity more than a 75 mg dose given at the time of the procedure. The inhibition of adhesive molecule expression may also contribute an antithrombotic effect. Poststent activation of platelets may warrant higher periprocedural dosing.
Xu, Peipei; Zuo, Huaqin; Zhou, Rongfu; Wang, Fan; Liu, Xu; Ouyang, Jian; Chen, Bing
2017-08-29
B-cell lymphoma accounts for approximately 85% of all adult non-Hodgkin's lymphoma cases. Doxorubicin (DOX) is an indispensable drug for the treatment of non-Hodgkin's lymphoma. However, DOX causes severe cardiotoxicity, which limits its use in conventional treatment strategies. In this study, we developed a novel drug delivery system for lymphoma treatment: DOX-loaded platelets that were conjugated with anti-CD22 monoclonal antibodies (mAbs) (DOX-platelet-CD22). Platelets are bio- and immune-compatible drug carriers that can prolong the circulation time of drugs. Anti-CD22 mAb-labeled platelets can precisely deliver DOX to tumor cells. Our in vitro and in vivo experiments showed the enhanced antitumor activity and attenuated cardiotoxicity of DOX when delivered as DOX-platelet-CD22. Compared with other delivery systems, the uptake of DOX-platelet-CD22 by macrophage-like cells decreased. Moreover, DOX-platelet-CD22 showed platelet properties, such as tumor cell-induced platelet aggregation. Therefore, targeted chemotherapy that is mediated by DOX-platelet-CD22 is a promising option for lymphoma treatment.
Mosconi, Lisa; de Leon, Mony; Murray, John; E, Lezi; Lu, Jianghua; Javier, Elizabeth; McHugh, Pauline; Swerdlow, Russell H
2011-01-01
Biomarker studies demonstrate inheritance of glucose hypometabolism and increased amyloid-β deposition in adult offspring of mothers, but not fathers, affected by late-onset Alzheimer's disease (LOAD). The underlying genetic mechanisms are unknown. We investigated whether cognitively normal (NL) individuals with a maternal history of LOAD (MH) have reduced platelet mitochondrial cytochrome oxidase activity (COX, electron transport chain complex IV) compared to those with paternal (PH) or negative family history (NH). Thirty-six consecutive NL individuals (age 55 ± 15 y, range 27-71 y, 56% female, CDR = 0, MMSE ≥28, 28% APOE-4 carriers), including 12 NH, 12 PH, and 12 MH, received a blood draw to measure platelet mitochondrial COX activity. Citrate synthase activity (CS) was measured as a reference. Groups were comparable for clinical and neuropsychological measures. We found that after correcting for CS, COX activity was reduced by 29% in MH compared to NH, and by 30% in MH compared to PH (p ≤ 0.006). Results remained significant controlling for age, gender, education, and APOE. No differences were found between PH and NH. COX measures discriminated MH from the other groups with accuracy ≥75%, and relative risk ≥3 (p ≤ 0.005). Among NL with LOAD-parents, only those with MH showed reduced COX activity in platelet mitochondria compared to PH and NH. The association between maternal history of LOAD and systemic COX reductions suggests transmission via mitochondrial DNA, which is exclusively maternally inherited in humans.
Tenci, Marika; Rossi, Silvia; Bonferoni, Maria Cristina; Sandri, Giuseppina; Boselli, Cinzia; Di Lorenzo, Arianna; Daglia, Maria; Icaro Cornaglia, Antonia; Gioglio, Luciana; Perotti, Cesare; Caramella, Carla; Ferrari, Franca
2016-07-25
The aim of the present work was the development of a powder formulation for the delivery of manuka honey (MH) bioactive components and platelet lysate (PL) in chronic skin ulcers. In particular pectin (PEC)/chitosan (CS) particles were prepared by ionotropic gelation in the presence of calcium chloride and subsequently characterized for particle size, hydration properties and mechanical resistance. Different experimental conditions (calcium chloride and CS concentrations; rest time in the cationic solution) were considered in order to obtain particles characterized by optimal size, hydration properties and mechanical resistance. Two different fractions of MH were examined: one (Fr1), rich in methylglyoxal and the other (Fr2), rich in polyphenols. Particles were loaded with Fr1, fraction able to enhance in vitro proliferation of human fibroblasts, and with PL. The presence of CS in Fr1-loaded particles produced an improvement in cell proliferation. Moreover, PL loading into particles did not affect the biological activity of the hemoderivative. In vivo efficacy of PL- and Fr1-loaded particles was evaluated on a rat wound model. Both treatments markedly increased wound healing to the same extent. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, M.F.; Chap, H.; Braquet, P.
1987-02-15
/sup 32/P-labelled human platelets loaded with quin 2 and pretreated with aspirin were stimulated with 1-100 nM platelet activating factor (PAF-acether or 1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine) in a medium containing the ADP-scavenging system creatine phosphate/creatine phosphokinase. Under these conditions, PAF-acether evoked a characteristic fluorescence change allowing to quantify elevations in cytoplasmic free Ca/sup 2 +/ from internal stores (Ca/sup 2 +/ mobilization) or from external medium (Ca/sup 2 +/ influx), as well as an increased production of phosphatidic acid, reflecting phospholipase C activation. These effects, which can be attributed to PAF-acether only and not to released products such as ADP or thromboxane A2,more » were strongly inhibited in a dose-dependent manner by BN 52021, a specific antagonist of PAF-acether isolated from Ginkgo biloba. As the drug remained inactive against the same effects elicited by thrombin, it is concluded that BN 52021 does not interfere directly with the mechanism of transmembrane signalling involving inositol-phospholipids or (and) some putative receptor-operated channels, but rather acts on the binding of PAF-acether to its presumed membrane receptor.« less
Godino, Cosmo; Pavon, Anna Giulia; Mangieri, Antonio; Salerno, Anna; Cera, Michela; Monello, Alberto; Chieffo, Alaide; Magni, Valeria; Cappelletti, Alberto; Margonato, Alberto; Colombo, Antonio
2017-08-01
The acute effects of statin loading dose (LD) on platelet reactivity in patients with chronic stable angina (CSA) are not completely clear. We hypothesized that LDs of atorvastatin and rosuvastatin have different pharmacodynamic acute effects on platelet aggregability in CSA patients with baseline normal platelet reactivity while on dual antiplatelet therapy (DAPT). From September 2011 to February 2014, all consecutive CSA patients on chronic DAPT (aspirin and clopidogrel) were evaluated before elective percutaneous coronary intervention (PCI). An initial assessment of platelet reactivity in response to thrombin receptor agonist, ADP, and ASP (respectively, indicative of the response to clopidogrel and aspirin) was performed with impedance aggregometry. Patients with high platelet reactivity to ADP test (area under the curve >47) were excluded. The remaining patients were randomized into 3 treatment groups: Group A, atorvastatin LD 80 mg; Group B, rosuvastatin LD 40 mg; and Group C, no statin LD (control group). A second assessment of platelet reactivity was performed ≥12 hours after statin LD. 682 patients were screened and 145 were randomized into the 3 groups. At baseline and after statin LD, no significant difference was found in platelet reactivity in response to 3 different agonists between the 3 groups. Subgroup analysis showed that platelet reactivity to ADP test was significantly lower in patients chronically treated with low-dose statins (n = 94) compared with statin-naïve patients (n = 51; 15.32 ± 1.50 vs 18.59 ± 1.30; P = 0.007). Loading dose of atorvastatin (80 mg) or rosuvastatin (40 mg) did not induce significant variation in platelet reactivity in CSA patients with baseline reduced platelet reactivity as in chronic DAPT. Our data confirm that chronic concomitant treatment with low-dose statins and clopidogrel resulted in significantly lower platelet reactivity compared with clopidogrel alone. © 2017 Wiley Periodicals, Inc.
Platelet lysate and chondroitin sulfate loaded contact lenses to heal corneal lesions.
Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Delfino, Alessio; Riva, Federica; Icaro Cornaglia, Antonia; Marrubini, Giorgio; Musitelli, Giorgio; Del Fante, Claudia; Perotti, Cesare; Caramella, Carla; Ferrari, Franca
2016-07-25
Hemoderivative tear substitutes contain various ephiteliotrophic factors, such as growth factors (GF), involved in ocular surface homeostasis without immunogenic properties. The aim of the present work was the loading of platelet lysate into contact lenses to improve the precorneal permanence of platelet lysate growth factors on the ocular surface to enhance the treatment of corneal lesions. To this purpose, chondroitin sulfate, a sulfated glycosaminoglycan, which is normally present in the extracellular matrix, was associated with platelet lysate. In fact, chondroitin sulfate is capable of electrostatic interaction with positively charged growth factors, in particular, with bFGF, IGF, VEGF, PDGF and TGF-β, resulting in their stabilization and reduced degradation in solution. In the present work, various types of commercially available contact lenses have been loaded with chondroitin sulfate or chondroitin sulfate in association with platelet lysate to achieve a release of growth factors directly onto the corneal surface lesions. One type of contact lenses (PureVision(®)) showed in vitro good proliferation properties towards corneal cells and were able to enhance cut closure in cornea constructs. Copyright © 2016 Elsevier B.V. All rights reserved.
Santos, Maria Teresa; Madrid, Isabel; Moscardo, Antonio; Latorre, Ana M; Bonastre, Juan; Ruano, Miguel; Valles, Juana
2014-01-01
Abstract The optimal dose of aspirin for patients presenting with acute myocardial infarction (AMI) while receiving chronic aspirin therapy has not been clearly established. We evaluated whether continued treatment with 100 mg of aspirin or a loading dose (200-500 mg) influences thromboxane A2 (TX) suppression or platelet reactivity. Sixty-four consecutive patients with AMI and 98 healthy subjects (82 aspirin-free and 16 receiving 100 mg daily for a week) were evaluated. Treatment was at the discretion of the attending physician. Collagen (1 µg/ml)-induced TX synthesis, (14)C-serotonin-release, platelet aggregation, and the PFA-100 assay were evaluated. The platelet TX synthesis of patients receiving a loading dose of aspirin was sixfold lower than that of patients receiving 100 mg of aspirin (p<0.005). This was associated with marked reductions in (14)C-serotonin-release and arachidonic-acid-induced aggregation and an increase in the PFA-100 closure time (p<0.01). Categorization of patients according to their TX synthesis (<95% or ≥ 95% inhibition vs. healthy aspirin-free subjects) revealed that 8% of the patients treated with loading doses had a poor response (<95% inhibition) vs. 53% of those treated with 100 mg (p<0.001). Patients with lower TX inhibition had higher serum NT-Pro-BNP (p<0.005), a marker of poor left ventricular systolic function. Administration of a loading dose of aspirin to patients with AMI during existing chronic aspirin treatment induced greater reductions in platelet TX synthesis and TX-dependent platelet reactivity than the continued treatment alone.
Wang, Yuhuan; Hayes, Vincent; Jarocha, Danuta; Sim, Xiuli; Harper, Dawn C.; Fuentes, Rudy; Sullivan, Spencer K.; Gadue, Paul; Chou, Stella T.; Torok-Storb, Beverly J.; Marks, Michael S.; French, Deborah L.
2015-01-01
Thrombopoiesis is the process by which megakaryocytes release platelets that circulate as uniform small, disc-shaped anucleate cytoplasmic fragments with critical roles in hemostasis and related biology. The exact mechanism of thrombopoiesis and the maturation pathways of platelets released into the circulation remain incompletely understood. We showed that ex vivo–generated murine megakaryocytes infused into mice release platelets within the pulmonary vasculature. Here we now show that infused human megakaryocytes also release platelets within the lungs of recipient mice. In addition, we observed a population of platelet-like particles (PLPs) in the infusate, which include platelets released during ex vivo growth conditions. By comparing these 2 platelet populations to human donor platelets, we found marked differences: platelets derived from infused megakaryocytes closely resembled infused donor platelets in morphology, size, and function. On the other hand, the PLP was a mixture of nonplatelet cellular fragments and nonuniform-sized, preactivated platelets mostly lacking surface CD42b that were rapidly cleared by macrophages. These data raise a cautionary note for the clinical use of human platelets released under standard ex vivo conditions. In contrast, human platelets released by intrapulmonary-entrapped megakaryocytes appear more physiologic in nature and nearly comparable to donor platelets for clinical application. PMID:25852052
Mori, Michela; Rossi, Silvia; Bonferoni, Maria Cristina; Ferrari, Franca; Sandri, Giuseppina; Riva, Federica; Del Fante, Claudia; Perotti, Cesare; Caramella, Carla
2014-01-30
The aim of the present work was the development of a powder formulation for the combined delivery of platelet lysate and of a model antibiotic drug, vancomycin hydrochloride (VCM), in chronic skin ulcers. Calcium alginate particles were prepared by freeze-drying beads obtained by ionic gelation method. The experimental conditions adopted permitted the complete loading of VCM and of PDGF AB, the growth factor chosen as representative of those contained in PL. Such particles where able to absorb PBS (mimicking wound exudate), to form a gel and to modulate the release of VCM and of PDGF AB. They are characterized by enhancement properties of human fibroblast proliferation due to PL presence. In particular, PL, when loaded in alginate particles, was able not only to increase the number of viable cells, but also the number of cells in proliferative phase. Such properties were comparable to those of fresh PL indicating the capability of calcium alginate particles to load PL bioactive substances without altering their activity. The formulation developed is characterized by an easier and a less painful administration with respect to traditional gauzes and semisolid preparations and permits the loading in the same dosage form of active substances of different nature avoiding eventual incompatibility problems. Copyright © 2013 Elsevier B.V. All rights reserved.
Cubero Gómez, José M; Acosta Martínez, Juan; Mendias Benítez, Crsitina; Díaz De La Llera, Luis S; Fernández-Quero, Mónica; Guisado Rasco, Agustí; Villa Gil-Ortega, Manuel; Sánchez González, Ángel
2015-12-01
Diabetic patients with an acute coronary syndrome undergoing percutaneous coronary intervention frequently exhibit high platelet reactivity while on clopidogrel. We hypothesized that in diabetic patients undergoing percutaneous coronary intervention, who exhibit high-platelet-reactivity after standard treatment with clopidogrel, a 60-mg prasugrel loading dose is superior to standard treatment with clopidogrel for optimal P2Y12 inhibition within the first 24-36 h post-angioplasty. VERDI was a prospective, randomized, single-centre, single-blind, parallel-design study (NCT01684813). Consecutive diabetic patients with an non-ST-segment elevation acute coronary syndrome undergoing percutaneous coronary intervention and loaded with clopidogrel were considered for platelet reactivity assessment immediately before angioplasty with the VerifyNow assay measured in P2Y12 reaction units (PRU). Fifty of 63 screened patients (79.4%) had high platelet reactivity (PRU ≥ 208) and were randomized to receive a 60-mg prasugrel loading dose (n = 25) versus clopidogrel standard dose (n = 25). Platelet function was assessed again 24 hours post-angioplasty. Prasugrel achieved greater platelet inhibition than clopidogrel 24 hours post-angioplasty (median [interquartile range], 38 [9-72] vs 285 [240-337], respectively; P < 0.001). The non-high-platelet-reactivity rate (PRU < 208) at 24 h post-angioplasty (primary end point) was higher with prasugrel; 25 patients (100%) in the prasugrel group achieved optimal antiaggregation vs 4 patients (16%) in the clopidogrel group (P < 0.001). No significant acute bleeding was documented in either group. Among type 2 diabetic patients suffering an acute coronary syndrome with high-platelet-reactivity undergoing percutaneous coronary intervention, switching from clopidogrel to prasugrel was superior to standard treatment with clopidogrel for the achievement of optimal antiaggregation within the first 24 hours post-angioplasty.
Vivas, David; Martín, Agustín; Bernardo, Esther; Ortega-Pozzi, María Aranzazu; Tirado, Gabriela; Fernández, Cristina; Vilacosta, Isidre; Núñez-Gil, Iván; Macaya, Carlos; Fernández-Ortiz, Antonio
2015-05-01
Prasugrel and ticagrelor, new P2Y12-adenosine diphosphate receptor antagonists, are associated with greater pharmacodynamic inhibition and reduction of cardiovascular events compared with clopidogrel in patients with an acute coronary syndrome. However, evidence is lacking about the effects of achieving faster and stronger cyclooxygenase inhibition with intravenous lysine acetylsalicylate (LA) compared with oral aspirin on prasugrel-inhibited platelets. This was a prospective, randomized, single-center, open, 2-period crossover platelet function study conducted in 30 healthy volunteers. Subjects were randomly assigned to receive a loading dose of intravenous LA 450 mg plus oral prasugrel 60 mg or loading dose of aspirin 300 mg plus prasugrel 60 mg orally in a crossover fashion after a 2-week washout period between treatments. Platelet function was evaluated at baseline, 30 minutes, 1 h, 4 h, and 24 h using light transmission aggregometry and vasodilator-stimulated phosphoprotein phosphorylation. The primary end point of the study, inhibition of platelet aggregation after arachidonic acid 1.5 mmol/L at 30 minutes, was significantly higher in subjects treated with LA compared with aspirin: 85.3% versus 44.3%, respectively, P=0.003. This differential effect was observed at 1 hour (P=0.002) and 4 hours (P=0.048), but not at 24 hours. Subjects treated with LA presented less variability and faster and greater inhibition of platelet aggregation with arachidonic acid compared with aspirin. The administration of intravenous LA resulted in a significant reduction of platelet reactivity compared with oral aspirin on prasugrel-inhibited platelets. Loading dose of LA achieves an earlier platelet inhibition and with less variability than aspirin. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02243137. © 2015 American Heart Association, Inc.
Davey, Sue; Navarrete, Cristina; Brown, Colin
2017-06-01
Twenty-nine human platelet antigen systems have been described to date, but the majority of current genotyping methods are restricted to the identification of those most commonly associated with alloantibody production in a clinical context. This can result in a protracted investigation if causative human platelet antigens are rare or novel. A targeted next-generation sequencing approach was designed to detect all known human platelet antigens with the additional capability of identifying novel mutations in the encoding genes. A targeted enrichment, high-sensitivity HaloPlex assay was designed to sequence all exons and flanking regions of the six genes known to encode human platelet antigens. Indexed DNA libraries were prepared from 47 previously human platelet antigen-genotyped samples and subsequently combined into one of three pools for sequencing on an Illumina MiSeq platform. The generated FASTQ files were aligned and scrutinized for each human platelet antigen polymorphism using SureCall data analysis software. Forty-six samples were successfully genotyped for human platelet antigens 1 through 29bw, with an average per base coverage depth of 1144. Concordance with historical human platelet antigen genotypes was 100%. A putative novel mutation in Exon 10 of the integrin β-3 (ITGB3) gene from an unsolved case of fetal neonatal alloimmune thrombocytopenia was also detected. A next-generation sequencing-based method that can accurately define all known human platelet antigen polymorphisms was developed. With the ability to sequence up to 96 samples simultaneously, our HaloPlex design could be used for high-throughput human platelet antigen genotyping. This method is also applicable for investigating fetal neonatal alloimmune thrombocytopenia when rare or novel human platelet antigens are suspected. © 2017 AABB.
Gladding, Patrick; Webster, Mark; Zeng, Irene; Farrell, Helen; Stewart, Jim; Ruygrok, Peter; Ormiston, John; El-Jack, Seif; Armstrong, Guy; Kay, Patrick; Scott, Douglas; Gunes, Arzu; Dahl, Marja-Liisa
2008-12-01
This study evaluated the antiplatelet effect of a higher loading and maintenance dose regimen of clopidogrel and a possible drug interaction with verapamil. Clopidogrel loading doses above 600 mg have not resulted in more rapid or complete platelet inhibition. Higher maintenance dosages may be more effective than 75 mg/day. A double-blind, randomized, placebo-controlled trial was undertaken in 60 patients undergoing percutaneous coronary intervention. All patients received clopidogrel 600 mg at the start of the procedure. Using a 2 x 2 design, patients were allocated to clopidogrel 600 mg given 2 h later or matching placebo, and to verapamil 5 mg intra-arterial or placebo. Platelet function was measured using the VerifyNow P2Y12 analyzer (Accumetrics Ltd., San Diego, California) at 2, 4, and 7 h. Patients were further randomized to receive a clopidogrel 75 or 150 mg once daily, with platelet function assessed after 1 week. Two hours after the second dose of clopidogrel or placebo, platelet inhibition was 42 +/- 27% with clopidogrel, compared with 24 +/- 22% with placebo (p = 0.0006). By 5 h after the second dose, platelet inhibition was 49 +/- 30% with clopidogrel, compared with 29 +/- 22% with placebo (p = 0.01). No drug interaction was seen with verapamil. A clopidogrel maintenance dosage of 150 mg daily for 1 week resulted in greater platelet inhibition than 75 mg daily (50 +/- 28% vs. 29 +/- 19%, p = 0.01). In an unselected population undergoing percutaneous coronary intervention a clopidogrel 1,200-mg loading dose, given as two 600-mg doses 2 h apart, results in more rapid and complete platelet inhibition than a single 600-mg dose. A maintenance dosage of 150 mg daily produces greater platelet inhibition than 75 mg daily. (The PRINC trial; ACTRN12606000129583).
Newburg, David S; Tanritanir, Ayse C; Chakrabarti, Subrata
2016-07-01
Human milk strongly quenches inflammatory processes in vitro, and breastfed infants have lower incidence of inflammatory diseases than those fed artificially. Platelets from neonates, in contrast to those from adults, are less responsive to platelet agonists such as collagen, thrombin, ADP, and epinephrine. Breastfed infants absorb oligosaccharides intact from the human milk in their gut to the circulation. This study was to determine whether these oligosaccharides can attenuate platelet function and platelet secretion of pro-inflammatory proteins, and to identify the active component. The natural mixture of oligosaccharides from human milk and pure individual human milk oligosaccharides were tested for their ability to modulate responses of platelets isolated from human blood following exposure to thrombin, ADP, and collagen. Human milk and the natural mixture of human milk oligosaccharides inhibited platelet release of inflammatory proteins. Of the purified human milk oligosaccharides tested, only lactodifucotetraose (LDFT) significantly inhibited thrombin induced release of the pro-inflammatory proteins RANTES and sCD40L. LDFT also inhibited platelet adhesion to a collagen-coated surface, as well as platelet aggregation induced by ADP or collagen. These data indicate that LDFT may help modulate hemostasis by suppressing platelet-induced inflammatory processes in breastfed infants. This activity suggests further study of LDFT for its potential as a therapeutic agent in infants and adults.
Scalable Generation of Universal Platelets from Human Induced Pluripotent Stem Cells
Feng, Qiang; Shabrani, Namrata; Thon, Jonathan N.; Huo, Hongguang; Thiel, Austin; Machlus, Kellie R.; Kim, Kyungho; Brooks, Julie; Li, Feng; Luo, Chenmei; Kimbrel, Erin A.; Wang, Jiwu; Kim, Kwang-Soo; Italiano, Joseph; Cho, Jaehyung; Lu, Shi-Jiang; Lanza, Robert
2014-01-01
Summary Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid “surge” capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates, lamellipodia, and filopodia after activation and circulate in macrophage-depleted animals and incorporate into developing mouse thrombi in a manner identical to human platelets. By knocking out the β2-microglobulin gene, we have generated platelets that are negative for the major histocompatibility antigens. The scalable generation of HLA-ABC-negative platelets from a renewable cell source represents an important step toward generating universal platelets for transfusion as well as a potential strategy for the management of platelet refractoriness. PMID:25418726
Scalable generation of universal platelets from human induced pluripotent stem cells.
Feng, Qiang; Shabrani, Namrata; Thon, Jonathan N; Huo, Hongguang; Thiel, Austin; Machlus, Kellie R; Kim, Kyungho; Brooks, Julie; Li, Feng; Luo, Chenmei; Kimbrel, Erin A; Wang, Jiwu; Kim, Kwang-Soo; Italiano, Joseph; Cho, Jaehyung; Lu, Shi-Jiang; Lanza, Robert
2014-11-11
Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid "surge" capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates, lamellipodia, and filopodia after activation and circulate in macrophage-depleted animals and incorporate into developing mouse thrombi in a manner identical to human platelets. By knocking out the β2-microglobulin gene, we have generated platelets that are negative for the major histocompatibility antigens. The scalable generation of HLA-ABC-negative platelets from a renewable cell source represents an important step toward generating universal platelets for transfusion as well as a potential strategy for the management of platelet refractoriness.
Qiao, Jianlin; Shen, Yang; Shi, Meimei; Lu, Yanrong; Cheng, Jingqiu; Chen, Younan
2014-05-01
Through binding to von Willebrand factor (VWF), platelet glycoprotein (GP) Ibα, the major ligand-binding subunit of the GPIb-IX-V complex, initiates platelet adhesion and aggregation in response to exposed VWF or elevated fluid-shear stress. There is little data regarding non-human primate platelet GPIbα. This study cloned and characterized rhesus monkey (Macaca Mullatta) platelet GPIbα. DNAMAN software was used for sequence analysis and alignment. N/O-glycosylation sites and 3-D structure modelling were predicted by online OGPET v1.0, NetOGlyc 1.0 Server and SWISS-MODEL, respectively. Platelet function was evaluated by ADP- or ristocetin-induced platelet aggregation. Rhesus monkey GPIbα contains 2,268 nucleotides with an open reading frame encoding 755 amino acids. Rhesus monkey GPIbα nucleotide and protein sequences share 93.27% and 89.20% homology respectively, with human. Sequences encoding the leucine-rich repeats of rhesus monkey GPIbα share strong similarity with human, whereas PEST sequences and N/O-glycosylated residues vary. The GPIbα-binding residues for thrombin, filamin A and 14-3-3ζ are highly conserved between rhesus monkey and human. Platelet function analysis revealed monkey and human platelets respond similarly to ADP, but rhesus monkey platelets failed to respond to low doses of ristocetin where human platelets achieved 76% aggregation. However, monkey platelets aggregated in response to higher ristocetin doses. Monkey GPIbα shares strong homology with human GPIbα, however there are some differences in rhesus monkey platelet activation through GPIbα engagement, which need to be considered when using rhesus monkey platelet to investigate platelet GPIbα function. Copyright © 2014 Elsevier Ltd. All rights reserved.
Srimahachota, Suphot; Rojnuckarin, Ponlapat; Udayachalerm, Wasan; Buddhari, Wacin; Chaipromprasit, Jarkarpun; Lertsuwunseri, Vorarit; Akkawat, Benjaporn; Jirapattrathamrong, Somboon
2012-12-01
To compare the efficacy and safety of original (Plavix) and generic (Apolets) clopidogrel 600 mg loading in patients planning to undergo coronary angiography. This is an experimental design, parallel, randomized-controlled study. Coronary artery disease patients planned for cardiac catheterization were recruited Patients were randomized to receive either original or generic clopidogrel 600 mg loading dose. Platelet aggregation induced by 5 micromol/L and 20 micromol/L adenosine diphosphate (ADP) was measured by light transmission aggregometry (LTA) at baseline and 6 hours after clopidogrel 600 mg administration. Forty-nine patients were enrolled, 24 patients received original clopidogrel, and 25 patients received generic clopidogrel. After six hours of loading, there was significantly reduction in platelet aggregation induced by adenosine 5 micromol/L from 41.08 +/- 3.04% to 19.50 +/- 1.68% (p < 0.001) in original group compared to 36.76 +/- 2.66% to 21.32 +/- 2.60% (p < 0.001) in generic group. When induced by 20 micromol/L, the platelet aggregation was reduced from 58.50 +/- 2.09% to 32.25 +/- 2.30% (p < 0.001) in original group and from 61.12 +/- 2.54% to 30.04 +/- 3.14% (p < 0.001) in generic group. There was no significant difference between original and generic clopidogrel in reducing platelet aggregation induced by both adenosine 5 and 20 micromol/L. Groin hematoma was found in one case (4.2%) in the original clopidogrel group. Generic clopidogrel (Apolets) 600 mg loading dose is as effective as original clopidogrel (Plavix) in term of platelet aggregation inhibition.
Weyrich, Andrew S.; Denis, Melvin M.; Schwertz, Hansjorg; Tolley, Neal D.; Foulks, Jason; Spencer, Eliott; Kraiss, Larry W.; Albertine, Kurt H.; McIntyre, Thomas M.
2007-01-01
New activities of human platelets continue to emerge. One unexpected response is new synthesis of proteins from previously transcribed RNAs in response to activating signals. We previously reported that activated human platelets synthesize B-cell lymphoma-3 (Bcl-3) under translational control by mammalian target of rapamycin (mTOR). Characterization of the ontogeny and distribution of the mTOR signaling pathway in CD34+ stem cell–derived megakaryocytes now demonstrates that they transfer this regulatory system to developing proplatelets. We also found that Bcl-3 is required for condensation of fibrin by activated platelets, demonstrating functional significance for mTOR-regulated synthesis of the protein. Inhibition of mTOR by rapamycin blocks clot retraction by human platelets. Platelets from wild-type mice synthesize Bcl-3 in response to activation, as do human platelets, and platelets from mice with targeted deletion of Bcl-3 have defective retraction of fibrin in platelet-fibrin clots mimicking treatment of human platelets with rapamycin. In contrast, overexpression of Bcl-3 in a surrogate cell line enhanced clot retraction. These studies identify new features of post-transcriptional gene regulation and signal-dependant protein synthesis in activated platelets that may contribute to thrombus and wound remodeling and suggest that posttranscriptional pathways are targets for molecular intervention in thrombotic disorders. PMID:17110454
Modifying murine von Willebrand factor A1 domain for in vivo assessment of human platelet therapies.
Chen, Jianchun; Tan, Kui; Zhou, Hairu; Lo, Hsuan-Fu; Tronik-Le Roux, Diana; Liddington, Robert C; Diacovo, Thomas G
2008-01-01
The A1 domain of von Willebrand factor (VWF-A1) plays a crucial role in hemostasis and thrombosis by initiating platelet adhesion at sites of arterial injury through interactions with the platelet receptor glycoprotein Ib alpha (GPIbalpha). Here we report that murine VWF-A1 supports limited binding of human platelets. However, atomic models of GPIbalpha-VWF-A1 complexes identified an electrostatic 'hot-spot' that, when mutated in murine VWF-A1, switches its binding specificity from mouse to human GPIbalpha. Furthermore, mice expressing this mutant VWF-A1 display a bleeding phenotype that can be corrected by infusion of human platelets. Mechanistically, human platelets correct the phenotype by forming occlusive thrombi, an event that can be abrogated by blockade of GPIbalpha or by the preadministration of inhibitors of platelet activation or adhesion (clopidogrel (Plavix) and abciximab (ReoPro), respectively). Thus, by modifying a protein interface, we have generated a potential biological platform for preclinical screening of antithrombotics that specifically target human platelets.
Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation?
Burnouf, Thierry; Strunk, Dirk; Koh, Mickey B C; Schallmoser, Katharina
2016-01-01
The essential physiological role of platelets in wound healing and tissue repair builds the rationale for the use of human platelet derivatives in regenerative medicine. Abundant growth factors and cytokines stored in platelet granules can be naturally released by thrombin activation and clotting or artificially by freeze/thaw-mediated platelet lysis, sonication or chemical treatment. Human platelet lysate prepared by the various release strategies has been established as a suitable alternative to fetal bovine serum as culture medium supplement, enabling efficient propagation of human cells under animal serum-free conditions for a multiplicity of applications in advanced somatic cell therapy and tissue engineering. The rapidly increasing number of studies using platelet derived products for inducing human cell proliferation and differentiation has also uncovered a considerable variability of human platelet lysate preparations which limits comparability of results. The main variations discussed herein encompass aspects of donor selection, preparation of the starting material, the possibility for pooling in plasma or additive solution, the implementation of pathogen inactivation and consideration of ABO blood groups, all of which can influence applicability. This review outlines the current knowledge about human platelet lysate as a powerful additive for human cell propagation and highlights its role as a prevailing supplement for human cell culture capable to replace animal serum in a growing spectrum of applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Demonstration of a specific C3a receptor on guinea pig platelets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuoka, Y.; Hugli, T.E.
1988-05-15
Guinea pig platelets reportedly contain receptors specific for the anaphylatoxin C3a based on both ligand-binding studies and functional responses. A portion of the human 125I-C3a that binds to guinea pig platelets is competitively displaced by excess unlabeled C3a; however, the majority of ligand uptake was nonspecific. Uptake of 125I-C3a by guinea pig platelets is maximal in 1 min, and stimulation of guinea pig platelets by thrombin, ADP, or the Ca2+ ionophore A23187 showed little influence on binding of the ligand. Scatchard analysis indicated that approximately 1200 binding sites for C3a exist per cell with an estimated Kd of 8 xmore » 10(-10) M. Human C3a des Arg also binds to guinea pig platelets, but Scatchard analysis indicated that no specific binding occurred. Because the ligand-binding studies were complicated by high levels of nonspecific uptake, we attempted to chemically cross-link the C3a molecule to a specific component on the platelet surface. Cross-linkage of 125I-C3a to guinea pig platelets with bis(sulfosuccinimidyl)suberate revealed radioactive complexes at 105,000 and 115,000 m.w. on SDS-PAGE gels by autoradiographic analysis. In the presence of excess unlabeled C3a, complex formation was inhibited. No cross-linkage could be demonstrated between the inactive 125I-C3a des Arg and the putative C3a-R on guinea pig platelets. Human C3a, but not C3a des Arg induces serotonin release and aggregation of the guinea pig platelets. Human C3a was unable to induce either serotonin release or promote aggregation of human platelets. Uptake of human 125I-C3a by human platelets was not saturable, and Scatchard analysis was inconclusive. Attempts to cross-link 125I-C3a to components on the surface of human platelets also failed to reveal a ligand-receptor complex. Therefore, we conclude that guinea pig platelets have specific surface receptors to C3a and that human platelets appear devoid of receptors to the anaphylatoxin.« less
Zhou, Rongfu; Wang, Fan; Liu, Xu; Ouyang, Jian; Chen, Bing
2017-01-01
B-cell lymphoma accounts for approximately 85% of all adult non-Hodgkin's lymphoma cases. Doxorubicin (DOX) is an indispensable drug for the treatment of non-Hodgkin's lymphoma. However, DOX causes severe cardiotoxicity, which limits its use in conventional treatment strategies. In this study, we developed a novel drug delivery system for lymphoma treatment: DOX-loaded platelets that were conjugated with anti-CD22 monoclonal antibodies (mAbs) (DOX–platelet–CD22). Platelets are bio- and immune-compatible drug carriers that can prolong the circulation time of drugs. Anti-CD22 mAb-labeled platelets can precisely deliver DOX to tumor cells. Our in vitro and in vivo experiments showed the enhanced antitumor activity and attenuated cardiotoxicity of DOX when delivered as DOX–platelet–CD22. Compared with other delivery systems, the uptake of DOX–platelet–CD22 by macrophage-like cells decreased. Moreover, DOX–platelet–CD22 showed platelet properties, such as tumor cell-induced platelet aggregation. Therefore, targeted chemotherapy that is mediated by DOX–platelet–CD22 is a promising option for lymphoma treatment. PMID:28938559
Ahrens, Ingo; Chen, Yung-Chih; Topcic, Danijal; Bode, Michael; Haenel, David; Hagemeyer, Christoph E; Seeba, Hannah; Duerschmied, Daniel; Bassler, Nicole; Jandeleit-Dahm, Karin A; Sweet, Matthew J; Agrotis, Alex; Bobik, Alex; Peter, Karlheinz
2015-11-01
High mobility group box 1 (HMGB1) acts as both a nuclear protein that regulates gene expression, as well as a pro-inflammatory alarmin that is released from necrotic or activated cells. Recently, HMGB1-expression in human atherosclerotic plaques was identified. Therapeutic blockade of HMGB1 reduced the development of diet-induced atherosclerosis in ApoE knockout mice. Thus, we hypothesised an interaction between HMGB1 and activated platelets. Binding of recombinant HMGB1 to platelets was assessed by flow cytometry. HMGB1 bound to thrombin-activated human platelets (MFI 2.49 vs 25.01, p=0.0079). Blood from wild-type, TLR4 and RAGE knockout mice was used to determine potential HMGB1 receptors on platelets. HMGB1 bound to platelets from wild type C57Bl6 (MFI 2.64 vs 20.3, p< 0.05), and TLR4-/- mice (MFI 2.11 vs 25.65, p< 0.05) but failed to show binding to platelets from RAGE-/- mice (p > 0.05). RAGE expression on human platelets was detected by RT-PCR with mRNA extracted from highly purified platelets and confirmed by Western blot and immunofluorescence microscopy. Platelet activation increased RAGE surface expression (MFI 4.85 vs 6.74, p< 0.05). Expression of HMGB1 in human coronary artery thrombi was demonstrated by immunohistochemistry and revealed high expression levels. Platelets bind HMGB1 upon thrombin-induced activation. Platelet specific expression of RAGE could be detected at the mRNA and protein level and is involved in the binding of HMGB1. Furthermore, platelet activation up-regulates platelet surface expression of RAGE. HMGB1 is highly expressed in platelet-rich human coronary artery thrombi pointing towards a central role for HMGB1 in atherothrombosis, thereby suggesting the possibility of platelet targeted anti-inflammatory therapies for atherothrombosis.
Zou, Siying; Teixeira, Alexandra M.; Yin, Mingzhu; Xiang, Yaozu; Xavier-Ferruccio, Juliana; Zhang, Ping-xia; Hwa, John; Min, Wang; Krause, Diane S.
2018-01-01
Summary Leukemia-Associated RhoGEF (LARG) is highly expressed in platelets, which are essential for maintaining normal hemostasis. We studied the function of LARG in murine and human megakaryocytes and platelets with Larg knockout, shRNA-mediated knockdown and small molecule-mediated inhibition. We found that LARG is important for human, but not murine, megakaryocyte maturation. Larg KO mice exhibit macrothrombocytopenia, internal bleeding in the ovaries and prolonged bleeding times. KO platelets have impaired aggregation, α-granule release and integrin α2bβ3 activation in response to thrombin and thromboxane, but not to ADP. The same agonist-specific reductions in platelet aggregation occur in human platelets treated with a LARG inhibitor. Larg KO platelets have reduced RhoA activation and myosin light chain phosphorylation, suggesting that Larg plays an agonist-specific role in platelet signal transduction. Using 2 different in vivo assays, Larg KO mice are protected from in vivo thrombus formation. Together, these results establish that LARG regulates human megakaryocyte maturation, and is critical for platelet function in both humans and mice. PMID:27345948
Zou, Siying; Teixeira, Alexandra M; Yin, Mingzhu; Xiang, Yaozu; Xavier-Ferrucio, Juliana; Zhang, Ping-Xia; Hwa, John; Min, Wang; Krause, Diane S
2016-08-30
Leukemia-Associated RhoGEF (LARG) is highly expressed in platelets, which are essential for maintaining normal haemostasis. We studied the function of LARG in murine and human megakaryocytes and platelets with Larg knockout (KO), shRNA-mediated knockdown and small molecule-mediated inhibition. We found that LARG is important for human, but not murine, megakaryocyte maturation. Larg KO mice exhibit macrothrombocytopenia, internal bleeding in the ovaries and prolonged bleeding times. KO platelets have impaired aggregation, α-granule release and integrin α2bβ3 activation in response to thrombin and thromboxane, but not to ADP. The same agonist-specific reductions in platelet aggregation occur in human platelets treated with a LARG inhibitor. Larg KO platelets have reduced RhoA activation and myosin light chain phosphorylation, suggesting that Larg plays an agonist-specific role in platelet signal transduction. Using two different in vivo assays, Larg KO mice are protected from in vivo thrombus formation. Together, these results establish that LARG regulates human megakaryocyte maturation, and is critical for platelet function in both humans and mice.
Vassbotn, F S; Havnen, O K; Heldin, C H; Holmsen, H
1994-05-13
Human platelets contain platelet-derived growth factor (PDGF) in their alpha-granules which is released during platelet exocytosis. We show by immunoprecipitation and 125I-PDGF binding experiments that human platelets have functionally active PDGF alpha-receptors, but not beta-receptors. The PDGF alpha-receptor (PDGFR-alpha) was identified as a 170-kDa glycosylated protein-tyrosine kinase as found in other cell types. Stimulation of platelets with 0.1 unit/ml thrombin resulted in a significant increase (2-5-fold) of the tyrosine phosphorylation of the PDGFR-alpha, as determined by immunoprecipitation with phosphotyrosine antiserum as well as with PDGFR-alpha antiserum. The observed thrombin-induced autophosphorylation of the PDGFR-alpha was inhibited by the addition of a neutralizing monoclonal PDGF antibody. Thus, our results suggest that the platelet PDGFR-alpha is stimulated in an autocrine manner by PDGF secreted during platelet activation. Preincubation of platelets with PDGF inhibited thrombin-induced platelet aggregation and secretion of ATP + ADP and beta-hexosaminidase. Thrombin-induced platelet aggregation was also reversed when PDGF was added 30 s after thrombin stimulation. Inhibition of the autocrine PDGF pathway during platelet activation by the PDGF antibody led to a potentiation of thrombin-induced beta-hexosaminidase secretion. Thus, the PDGFR-alpha takes part in a negative feedback regulation during platelet activation. Our demonstration of PDGF alpha-receptors on human platelets and its inhibitory function during platelet activation identifies a new possible role of PDGF in the regulation of thrombosis.
Protein kinase C activates non-capacitative calcium entry in human platelets
Rosado, Juan A; Sage, Stewart O
2000-01-01
In many non-excitable cells Ca2+ influx is mainly controlled by the filling state of the intracellular Ca2+ stores. It has been suggested that this store-mediated or capacitative Ca2+ entry is brought about by a physical and reversible coupling of the endoplasmic reticulum with the plasma membrane. Here we provide evidence for an additional, non-capacitative Ca2+ entry mechanism in human platelets. Changes in cytosolic Ca2+ and Sr2+ were measured in human platelets loaded with the fluorescent indicator fura-2. Depletion of the internal Ca2+ stores with thapsigargin plus a low concentration of ionomycin stimulated store-mediated cation entry, as demonstrated upon Ca2+ or Sr2+ addition. Subsequent treatment with thrombin stimulated further divalent cation entry in a concentration-dependent manner. Direct activation of protein kinase C (PKC) by phorbol-12-myristate-13-acetate or 1-oleoyl-2-acetyl-sn-glycerol also stimulated divalent cation entry, without evoking the release of Ca2+ from intracellular stores. Cation entry evoked by thrombin or activators of PKC was abolished by the PKC inhibitor Ro-31-8220. Unlike store-mediated Ca2+ entry, jasplakinolide, which reorganises actin filaments into a tight cortical layer adjacent to the plasma membrane, did not inhibit divalent cation influx evoked by thrombin when applied after Ca2+ store depletion, or by activators of PKC. Thrombin also activated Ca2+ entry in platelets in which the release from intracellular stores and store-mediated Ca2+ entry were blocked by xestospongin C. These results indicate that the non-capacitative divalent cation entry pathway is regulated independently of store-mediated entry and does not require coupling of the endoplasmic reticulum and the plasma membrane. These results support the existence of a mechanism for receptor-evoked Ca2+ entry in human platelets that is independent of Ca2+ store depletion. This Ca2+ entry mechanism may be activated by occupation of G-protein-coupled receptors, which activate PKC, or by direct activation of PKC, thus generating non-capacitative Ca2+ entry alongside that evoked following the release of Ca2+ from the intracellular stores. PMID:11080259
Yu, Yanbao; Leng, Taohua; Yun, Dong; Liu, Na; Yao, Jun; Dai, Ying; Yang, Pengyuan; Chen, Xian
2013-01-01
Emerging evidences indicate that blood platelets function in multiple biological processes including immune response, bone metastasis and liver regeneration in addition to their known roles in hemostasis and thrombosis. Global elucidation of platelet proteome will provide the molecular base of these platelet functions. Here, we set up a high throughput platform for maximum exploration of the rat/human platelet proteome using integrated proteomics technologies, and then applied to identify the largest number of the proteins expressed in both rat and human platelets. After stringent statistical filtration, a total of 837 unique proteins matched with at least two unique peptides were precisely identified, making it the first comprehensive protein database so far for rat platelets. Meanwhile, quantitative analyses of the thrombin-stimulated platelets offered great insights into the biological functions of platelet proteins and therefore confirmed our global profiling data. A comparative proteomic analysis between rat and human platelets was also conducted, which revealed not only a significant similarity, but also an across-species evolutionary link that the orthologous proteins representing ‘core proteome’, and the ‘evolutionary proteome’ is actually a relatively static proteome. PMID:20443191
Babo, Pedro S; Santo, Vítor E; Gomes, Manuela E; Reis, Rui L
2016-11-01
Despite the biocompatibility and osteoinductive properties of calcium phosphate (CaP) cements their low biodegradability hampers full bone regeneration. Herein the incorporation of CaP cement with hyaluronic acid (HAc) microparticles loaded with platelet lysate (PL) to improve the degradability and biological performance of the cements is proposed. Cement formulations incorporating increasing weight ratios of either empty HAc microparticles or microparticles loaded with PL (10 and 20 wt%) are developed as well as cements directly incorporating PL. The direct incorporation of PL improves the mechanical properties of the plain cement, reaching values similar to native bone. Morphological analysis shows homogeneous particle distribution and high interconnectivity between the HAc microparticles. The cements incorporating PL (with or without the HAc microparticles) present a sustained release of PL proteins for up to 8 d. The sustained release of PL modulates the expression of osteogenic markers in seeded human adipose tissue derived stem cells, thus suggesting the stimulatory role of this hybrid system toward osteogenic commitment and bone regeneration applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abacavir has no prothrombotic effect on platelets in vitro.
Diallo, Yacouba L; Ollivier, Véronique; Joly, Véronique; Faille, Dorothée; Catalano, Giovanna; Jandrot-Perrus, Martine; Rauch, Antoine; Yeni, Patrick; Ajzenberg, Nadine
2016-12-01
HIV patients exposed to abacavir have an increased risk of myocardial infarction, with contradictory results in the literature. The aim of our study was to determine whether abacavir has a direct effect on platelet activation and aggregation using platelets from healthy donors and from HIV-infected patients under therapy with an undetectable viral load. Platelet-rich plasma (PRP) or whole blood from healthy donors was treated with abacavir (5 or 10 μg/mL) or its active metabolite carbovir diphosphate. Experiments were also performed using blood of HIV-infected patients (n = 10) with an undetectable viral load. Platelet aggregation was performed on PRP by turbidimetry and under high shear conditions at 4000 s -1 . Platelet procoagulant potential was analysed by measuring thrombin generation by thrombinography. Abacavir and carbovir diphosphate significantly increased the aggregation of platelets from healthy donors induced by collagen at 2 μg/mL (P = 0.002), but not at 0.5 μg/mL. No effect of abacavir or carbovir diphosphate was observed on platelet aggregation induced by other physiological agonists or by high shear stress, or on thrombin generation. Pretreatment of blood from HIV-infected patients with abacavir produced similar results. Our results suggest that abacavir does not significantly influence platelet activation in vitro when incubated with platelets from healthy donors or from HIV-infected patients. It is, however, not excluded that a synergistic effect with other drugs could promote platelet activation and thereby play a role in the pathogenesis of myocardial infarction. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
IMMUNOREACTIONS INVOLVING PLATELETS
Shulman, N. Raphael
1958-01-01
Quantitative aspects of platelet agglutination and inhibition of clot retraction by the antibody of quinidine purpura were described. The reactions appeared to depend on formation of types of antibody-quinidine-platelet complexes which could fix complement but complement was not necessary for these reactions. Complement fixation was at least 10 times more sensitive than platelet agglutination or inhibition of clot retraction for measurement and detection of antibody activity. Although it has been considered that antibodies of drug purpura act as platelet lysins in the presence of complement and that direct lysis of platelets accounts for development of thrombocytopenia in drug purpura, the present study suggests that attachment of antibody produces a change in platelets which is manifested in vitro only by increased susceptibility to non-specific factors which can alter the stability of platelets in the absence of antibody. The attachment of antibody to platelets in vivo may only indirectly affect platelet survival. In contrast to human platelets, dog, rabbit, and guinea pig platelets, and normal or trypsin-treated human red cells did not agglutinate, fix complement, or adsorb antibody; and intact human endothelial cells did not fix complement or adsorb antibody. Rhesus monkey platelets were not agglutinated by the antibody but did adsorb antibody and fix complement although their activity in these reactions differed quantitatively from that of human platelets. Cinchonine could be substituted for quinidine in agglutination and inhibition of clot retraction reactions but quinine and cinchonidine could not. Attempts to cause passive anaphylaxis in guinea pigs with the antibody of quinidine purpura were not successful. PMID:13525580
Identification of functional VEGF receptors on human platelets.
Selheim, Frode; Holmsen, Holm; Vassbotn, Flemming S
2002-02-13
Platelets secrete platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) upon stimulation. We have demonstrated that platelets have functionally active PDGF alpha-receptors, a transmembrane tyrosine kinase involved in negative feedback regulation. Here we demonstrate the presence of the related VEGF receptors fms-like tyrosine kinase-1 and kinase-insert domain region on human platelets. VEGF itself did not cause platelet aggregation. However, addition of exogenous VEGF to SFRLLN or thrombin-stimulated platelets potentiated platelet aggregation. Moreover, thrombin-induced phosphoinositide 3-kinase and mitogen-activated protein kinase activity were enhanced in the presence of VEGF.
Spinelli, Sherry L.; Lannan, Katie L.; Loelius, Shannon G.
2017-01-01
Abstract Human blood platelets are major hemostatic regulators in the circulation and important in the mediation of chronic inflammation and immunomodulation. They are key elements that promote cardiovascular pathogenesis that leads to atherosclerosis, thrombosis, myocardial infarction, and stroke. New information on tobacco use and platelet dysregulation shows that these highly understudied vascular cells are dysregulated by tobacco smoke. Thus, platelet function studies should be an important consideration for the evaluation of existing and next-generation tobacco and non-tobacco products. Novel in vitro approaches are being sought to investigate these products and their influence on platelet function. Platelets are ideally suited for product assessment, as robust and novel in vitro translational methods are available to assess platelet function. Furthermore, the use of human biological systems has the advantage that risk predictions will better reflect the human condition. PMID:28337466
Rapid resensitization of purinergic receptor function in human platelets.
Mundell, S J; Barton, J F; Mayo-Martin, M B; Hardy, A R; Poole, A W
2008-08-01
Adenosine diphosphate (ADP) is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors (GPCRs), the P2Y(1) and P2Y(12) purinergic receptors. Recently, we demonstrated that both receptors desensitize and internalize in human platelets by differential kinase-dependent mechanisms. To demonstrate whether responses to P2Y(1) and P2Y(12) purinergic receptors resensitize in human platelets and determine the role of receptor traffic in this process. These studies were undertaken either in human platelets or in cells stably expressing epitope-tagged P2Y(1) and P2Y(12) purinergic receptor constructs. In this study we show for the first time that responses to both of these receptors can rapidly resensitize following agonist-dependent desensitization in human platelets. Further, we show that in human platelets or in 1321N1 cells stably expressing receptor constructs, the disruption of receptor internalization, dephosphorylation or subsequent receptor recycling is sufficient to block resensitization of purinergic receptor responses. We also show that, in platelets, internalization of both these receptors is dependent upon dynamin, and that this process is required for resensitization of responses. This study is therefore the first to show that both P2Y(1) and P2Y(12) receptor activities are rapidly and reversibly modulated in human platelets, and it reveals that the underlying mechanism requires receptor trafficking as an essential part of this process.
Blood-Banking Techniques for Plateletpheresis in Swine
Sondeen, Jill L; Prince, Malcolm D; Polykratis, Irene A; Hernandez, Orlando; Torres-Mendoza, Jaime; Guzman, Rodolfo De; Aden, James K; Dubick, Michael A
2014-01-01
During the past several years, trauma resuscitation in human patients has evolved from decreased use of crystalloids to increased use of blood products. Of high interest is the role of platelets in trauma resuscitation. Because conducting prehospital resuscitation in human trauma patients is very difficult, swine are often the animal model of choice for such studies because their coagulation and hemodynamic systems are similar to those in humans. However, consistent production of sufficient swine platelets for such studies has not previously been achieved. We developed a method for producing swine platelets by using standard human techniques and equipment. We assessed pH, pO2, pCO2, lactate, thromboelastography, and platelet aggregation over 5 d of storage to determine whether the swine platelet product met the American Association of Blood Banks (AABB) standards for transfusion. Swine platelets met AABB standards at 24 h but not at later time points. In addition, we fluorescently labeled nonautologous platelets and then measured their percentage recovery over 5 h (the time used in subsequent experimental studies) when transfused into a recipient pig. We showed that 80% of the platelets stored for 24 h remained in the circulation and increased the recipient pigs’ thromboelastographic responses, indicating that the platelets were viable and active. Therefore, swine platelets stored for 24 h by using standard human products met the AABB criteria and were functional. PMID:24827574
Lanza, F; Cazenave, J P; Beretz, A; Sutter-Bay, A; Kretz, J G; Kieny, R
1986-08-01
Adrenaline (1 to 10 microM) can induce the aggregation of human platelets suspended in citrated plasma but does not induce the aggregation of washed human platelets at doses as high as 1 mM, although these platelets respond normally to ADP, PAF-acether, collagen, arachidonic acid, thrombin, the endoperoxide analog U-46619 and the Ca2+ ionophore A23187. Adrenaline (0.5 microM) potentiates the aggregation and secretion induced by all the previous agonists in citrated platelet-rich plasma (cPRP) or in washed platelets. The activation by adrenaline of human platelets is mediated by alpha 2-adrenergic receptors, as demonstrated by inhibition with a series of adrenergic antagonists. The alpha-adrenergic antagonist nicergoline inhibits the activation of human platelets by adrenaline in the following situations: nicergoline inhibits the aggregation and secretion caused by adrenaline in cPRP (IC50 0.22 microM and 0.28 microM respectively); nicergoline inhibits the aggregation and secretion induced by the combination of adrenaline and each aggregating agent listed above in cPRP (IC50 ranging from 0.1 to 2.5 microM) or in washed platelets (IC50 ranging from 0.1 to 0.8 microM); nicergoline inhibits the binding of 3H-yohimbine to washed human platelets (IC50 0.26 microM); the intravenous administration of nicergoline (0.5 mg/kg per day) to patients inhibits significantly the ex vivo response of their platelets to adrenaline in cPRP. High concentrations of nicergoline also inhibit the aggregation and secretion induced by the aggregating agents listed above in cPRP (IC50 range 108 to 670 microM) and in washed platelets (IC50 range 27 to 140 microM) and the adhesion of platelets to collagen-coated surfaces. This latter effect is not mediated through blockade of alpha-adrenoceptors. A possible role of adrenaline in platelet activation in vivo could justify the use of nicergoline (Sermion), an alpha-adrenergic antagonist in combination therapy to prevent arterial thrombosis.
Tsujimoto, Masanori; Kuroyanagi, Gen; Matsushima-Nishiwaki, Rie; Kito, Yuko; Enomoto, Yukiko; Iida, Hiroki; Ogura, Shinji; Otsuka, Takanobu; Tokuda, Haruhiko; Kozawa, Osamu; Iwama, Toru
2016-01-01
Selective inhibitors of factor Xa (FXa) are widely recognized as useful therapeutic tools for stroke prevention in non-valvular atrial fibrillation or venous thrombosis. Thrombin, which is rapidly generated from pro-thrombin through the activation of factor X to FXa, acts as a potent activator of human platelets. Thus, the reduction of thrombin generation by FXa inhibitor eventually causes a suppressive effect on platelet aggregation. However, little is known whether FXa inhibitors directly affect the function of human platelets. We have previously reported that collagen induces the phosphorylation of heat shock protein 27 (HSP27), a low-molecular weight heat shock protein via Rac-dependent activation of p44/p42 mitogen-activated protein (MAP) kinase in human platelets, eventually resulting in the release of HSP27. In the present study, we investigated the direct effect of FXa inhibitor on the collagen-induced human platelet activation. Rivaroxaban as well as edoxaban significantly reduced the collagen-induced phosphorylation of both HSP27 and p44/p42 MAP kinase without affecting the platelet aggregation. Rivaroxaban significantly inhibited the release of phosphorylated HSP27 from collagen-stimulated platelets but not the secretion of platelet derived growth factor-AB. In patients administrated with rivaroxaban, the collagen-induced levels of phosphorylated HSP27 were markedly diminished after 2 days of administration, which failed to affect the platelet aggregation. These results strongly suggest that FXa inhibitor reduces the collagen-stimulated release of phosphorylated HSP27 from human platelets due to the inhibition of HSP27 phosphorylation via p44/p42 MAP kinase. PMID:26867010
Tsujimoto, Masanori; Kuroyanagi, Gen; Matsushima-Nishiwaki, Rie; Kito, Yuko; Enomoto, Yukiko; Iida, Hiroki; Ogura, Shinji; Otsuka, Takanobu; Tokuda, Haruhiko; Kozawa, Osamu; Iwama, Toru
2016-01-01
Selective inhibitors of factor Xa (FXa) are widely recognized as useful therapeutic tools for stroke prevention in non-valvular atrial fibrillation or venous thrombosis. Thrombin, which is rapidly generated from pro-thrombin through the activation of factor X to FXa, acts as a potent activator of human platelets. Thus, the reduction of thrombin generation by FXa inhibitor eventually causes a suppressive effect on platelet aggregation. However, little is known whether FXa inhibitors directly affect the function of human platelets. We have previously reported that collagen induces the phosphorylation of heat shock protein 27 (HSP27), a low-molecular weight heat shock protein via Rac-dependent activation of p44/p42 mitogen-activated protein (MAP) kinase in human platelets, eventually resulting in the release of HSP27. In the present study, we investigated the direct effect of FXa inhibitor on the collagen-induced human platelet activation. Rivaroxaban as well as edoxaban significantly reduced the collagen-induced phosphorylation of both HSP27 and p44/p42 MAP kinase without affecting the platelet aggregation. Rivaroxaban significantly inhibited the release of phosphorylated HSP27 from collagen-stimulated platelets but not the secretion of platelet derived growth factor-AB. In patients administrated with rivaroxaban, the collagen-induced levels of phosphorylated HSP27 were markedly diminished after 2 days of administration, which failed to affect the platelet aggregation. These results strongly suggest that FXa inhibitor reduces the collagen-stimulated release of phosphorylated HSP27 from human platelets due to the inhibition of HSP27 phosphorylation via p44/p42 MAP kinase.
Horie, S; Yamada, M; Satoh, M; Noritake, S; Hiraishi, S; Kizaki, K; Kurusu, O; Nakahara, T; Ishii, H; Kazama, M
1997-06-01
The inhibitory effects of vapiprost hydrochloride (vapiprost), a novel thromboxane A2 receptor antagonist, on platelet aggregation and ATP release were studied using platelet rich plasma (PRP) of humans, guinea pigs, rabbits and rats. In in vitro experiments with human platelet, vapiprost inhibited the aggregation and ATP release stimulated with U-46619, collagen or arachidonic acid (AA) at an IC50 of less than 2.1 x 10(-8) M. Vapiprost did not inhibit the primary aggregation or ATP release of human platelets stimulated with adenosine 5'-diphosphate (ADP), epinephrine (Epi) or platelet activating factor (PAF), but inhibited the secondary aggregation stimulated with those agonists at an IC50 of less than 1.3 x 10(-7) M. The sensitivity of platelets in various species of animals to vapiprost was in the following order: human > or = guinea pigs > rats > rabbits. In ex vivo experiments with guinea pigs which received a single oral dose of vapiprost, the agent demonstrated strong inhibition of ATP release from platelets stimulated with U-46619, collagen or AA at an ID50 of less than 25.8 micrograms/kg. These inhibitory effects were observed within 30 min and sustained for 24 h at a single dosage of 5 mg/kg of vapiprost. In AA-induced pulmonary infarction models of mice, the sudden death rates decreased significantly with the oral administration of 10 mg/kg or more of vapiprost. These results indicate that vapiprost effectively inhibits the secondary aggregation and ATP release of human platelets stimulated with various agonists, and that guinea pig and human platelets are similar in response to vapiprost. Furthermore, it was demonstrated in ex vivo experiments with guinea pigs that the inhibitory action of vapiprost appears rapidly and lasts for long periods.
Rank, A; Nieuwland, R; Liebhardt, S; Iberer, M; Grützner, S; Toth, B; Pihusch, R
2011-02-01
Microparticles (MP) are membrane vesicles with thrombogenic and immunomodulatory properties. We determined MP subgroups from resting platelets, activated platelets and endothelial cells in donors and apheresis platelet concentrates (PC). MP were double stained with annexin V and CD61 (platelet-derived MP; PMP), P-selectin or CD63 (MP from activated platelets) and CD144 plus E-selectin (endothelial cell-derived MP; EMP) and detected by flow cytometry in platelet donors (n=36) and apheresis PC (n=11; Trima™). PC contained MP, mainly from resting platelets [93% (90-95)], and minor fractions of PMP from activated platelets [P-selectin(+) or CD63(+); 4·8% (3·2-7·7) and 2·6% (2·0-4·0)]. Compared to donors, levels of annexin V+ MP, PMP, P-selectin(+) and CD63(+) MP were 1·7-, 2·3-, 8·6- and 3·1-fold higher in PC (all P<0·05). During storage (1-5 days), levels of annexin V+ MP and PMP did not increase, although small increases in the fraction of P-selectin(+) or CD63(+) MP occurred (both P<0·05). PC also contained EMP, which were 2·6- to 3·7-fold enriched in PC compared to donors (P<0·05). Transfusion of apheresis PC also results in transfusion of HLA-carrying PMP and EMP. This might counteract the aim of reducing transfused HLA load by leucodepletion. The increases in PMP exposing P-selectin or CD63 reflect mild platelet activation during storage. We conclude that in leucodepleted platelet apheresis using fluidized particle bed technology, MP are harvested mainly from the donor by apheresis. Improvement in apheresis technology might reduce MP load. © 2010 The Author(s). Vox Sanguinis © 2010 International Society of Blood Transfusion.
Busilacchi, Alberto; Gigante, Antonio; Mattioli-Belmonte, Monica; Manzotti, Sandra; Muzzarelli, Riccardo A A
2013-10-15
The idea of using chitosan as a functional delivery aid to support simultaneously PRP, stem cells and growth factors (GF) is associated with the intention to use morphogenic biomaterials to modulate the natural healing sequence in bone and other tissues. For example, chitosan-chondroitin sulfate loaded with platelet lysate was included in a poly(D,L-lactate) foam that was then seeded with human adipose-derived stem cells and cultured in vitro under osteogenic stimulus: the platelet lysate provided to the bone tissue the most suitable assortment of GF which induces the osteogenic differentiation of the mesenchymal stem cells. PDGF, FGF, IGF and TGF-β were protagonists in the repair of callus fractures. The release of GF from the composites of chitosan-PRP and either nano-hydroxyapatite or tricalcium phosphate was highly beneficial for enhancing MSC proliferation and differentiation, thus qualifying chitosan as an excellent vehicle. A number of biochemical characteristics of chitosan exert synergism with stem cells in the regeneration of soft tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.
Human platelet gel supernatant inactivates opportunistic wound pathogens on skin.
Edelblute, Chelsea M; Donate, Amy L; Hargrave, Barbara Y; Heller, Loree C
2015-01-01
Activation of human platelets produces a gel-like substance referred to as platelet rich plasma or platelet gel. Platelet gel is used clinically to promote wound healing; it also exhibits antimicrobial properties that may aid in the healing of infected wounds. The purpose of this study was to quantify the efficacy of human platelet gel against the opportunistic bacterial wound pathogens Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus on skin. These opportunistic pathogens may exhibit extensive antibiotic resistance, necessitating the development of alternative treatment options. The antimicrobial efficacy of platelet gel supernatants was quantified using an in vitro broth dilution assay, an ex vivo inoculated skin assay, and in an in vivo skin decontamination assay. Human platelet gel supernatants were highly bactericidal against A. baumannii and moderately but significantly bactericidal against S. aureus in vitro and in the ex vivo skin model. P. aeruginosa was not inactivated in vitro; a low but significant inactivation level was observed ex vivo. These supernatants were quite effective at inactivating a model organism on skin in vivo. These results suggest application of platelet gel has potential clinical applicability, not only in the acceleration of wound healing, but also against relevant bacteria causing wound infections.
Platelets are a possible regulator of human endometrial re-epithelialization during menstruation.
Suginami, Koh; Sato, Yukiyasu; Horie, Akihito; Matsumoto, Hisanori; Kyo, Satoru; Araki, Yoshihiko; Konishi, Ikuo; Fujiwara, Hiroshi
2017-01-01
The human endometrium periodically breaks down and regenerates. As platelets have been reported to contribute to the tissue remodeling process, we examined the possible involvement of platelets in endometrial regeneration. The distribution of extravasating platelets throughout the menstrual cycle was immunohistochemically examined using human endometrial tissues. EM-E6/E7/hTERT cells, a human endometrial epithelial cell-derived immortalized cell line, were co-cultured with platelets, and the effects of platelets on the epithelialization response of EM-E6/E7/hTERT cells were investigated by attachment and permeability assays, immunohistochemical staining, and Western blot analysis. Immunohistochemical study showed numerous extravasated platelets in the subluminar stroma during the menstrual phase. The platelets promoted the cell-to-matrigel attachment of EM-E6/E7/hTERT cells concomitantly with the phosphorylation of focal adhesion kinase. They also promoted cell-to-cell contact among EM-E6/E7/hTERT cells in parallel with E-cadherin expression. These results indicate the possible involvement of platelets in the endometrial epithelial re-epithelialization process. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Inhibitory effects of yuzu and its components on human platelet aggregation.
Kim, Tae-Ho; Kim, Hye-Min; Park, Se Won; Jung, Yi-Sook
2015-03-01
Our previous study demonstrated that yuzu has an anti-platelet effect in rat blood. In the present study, we examined whether the anti-platelet effect of yuzu can be extended to human blood by investigating its ability to inhibit aggregations induced by various agonists in human platelet rich plasma (PRP). This study also investigated the underlying mechanism of yuzu focusing on ADP granule secretion, TXB2 formations, and PLCγ/Akt signaling. The results from this study showed that ethanolic yuzu extract (YE), and its components, hesperidin and naringin, inhibited human platelet aggregation in a concentration-dependent manner. YE, hesperidin and naringin also inhibited TXB2 formation and ADP release. The phosphorylation of PLCγ and Akt was significantly inhibited by YE, heperidin and naringin. Furthermore, we demonstrated that YE, heperidin and naringin has anti-platelet effects in rat ex vivo studies, and lower side effects in mice tail bleeding time studies. The results from this study suggest that YE, hesperidin and naringin can inhibit human platelet aggregation, at least partly through the inhibition of PLCγ and Akt, leading to a decrease in TXB2 formation and granule secretion.
Park, Hyung-Jin; Kim, Ja-Won; Song, Kun-Ho; Seo, Kyoung-Won
2015-01-01
Three dogs presented with refractory immune-mediated thrombocytopenia (IMT). All patients failed to respond to prednisone, which is considered a mainstay of immunosuppressive therapy. Vincristine-loaded platelets (VLPs), which act selectively on mononuclear phagocytes,were introduced. After the VLPs were transfused, two dogs responded quickly with improved clinical signs while the third dog with recurrent IMT was euthanized due to its deteriorating condition. This case report describes the efficacy of VLP therapy in refractory IMT patients.
Park, Hyung-Jin; Kim, Ja-Won; Song, Kun-Ho
2015-01-01
Three dogs presented with refractory immune-mediated thrombocytopenia (IMT). All patients failed to respond to prednisone, which is considered a mainstay of immunosuppressive therapy. Vincristine-loaded platelets (VLPs), which act selectively on mononuclear phagocytes,were introduced. After the VLPs were transfused, two dogs responded quickly withimproved clinical signs while the third dogwith recurrent IMT was euthanized due to its deteriorating condition. This case report describesthe efficacy of VLP therapy in refractory IMT patients. PMID:25269722
Human Platelets Exhibit Chemotaxis using Functional N-Formyl Peptide Receptors
2005-01-01
activated phagocytes. Therefore, we examined the chemotactic migration of platelets qualita- tively by videomicroscopy . Platelets in medium were al- lowed...significantly decreased M. Czapiga et al. /Experimental Hematology 33 (2005) 73–84 79Figure 3. Videomicroscopy of human platelets in response to formyl...selected platelets during videomicroscopy from the time of the addition of fMLF (104 M in 1 µL) or PBS. Movement between markers represents 10 frames
Trouillas, Marina; Prat, Marie; Doucet, Christelle; Ernou, Isabelle; Laplace-Builhé, Corinne; Blancard, Patrick Saint; Holy, Xavier; Lataillade, Jean-Jacques
2013-01-04
This study investigated the promising effect of a new Platelet Glue obtained from Cryoprecipitation of Apheresis Platelet products (PGCAP) used in combination with Mesenchymal Stromal Cells (MSC) loaded on ceramic biomaterials to provide novel strategies enhancing bone repair. PGCAP growth factor content was analyzed by ELISA and compared to other platelet and plasma-derived products. MSC loaded on biomaterials (65% hydroxyapatite/35% beta-TCP or 100% beta-TCP) were embedded in PGCAP and grown in presence or not of osteogenic induction medium for 21 days. Biomaterials were then implanted subcutaneously in immunodeficient mice for 28 days. Effect of PGCAP on MSC was evaluated in vitro by proliferation and osteoblastic gene expression analysis and in vivo by histology and immunohistochemistry. We showed that PGCAP, compared to other platelet-derived products, allowed concentrating large amount of growth factors and cytokines which promoted MSC and osteoprogenitor proliferation. Next, we found that PGCAP improves the proliferation of MSC and osteogenic-induced MSC. Furthermore, we demonstrated that PGCAP up-regulates the mRNA expression of osteogenic markers (Collagen type I, Osteonectin, Osteopontin and Runx2). In vivo, type I collagen expressed in ectopic bone-like tissue was highly enhanced in biomaterials embedded in PGCAP in the absence of osteogenic pre-induction. Better results were obtained with 65% hydroxyapatite/35% beta-TCP biomaterials as compared to 100% beta-TCP. We have demonstrated that PGCAP is able to enhance in vitro MSC proliferation, osteoblastic differentiation and in vivo bone formation in the absence of osteogenic pre-induction. This clinically adaptable platelet glue could be of interest for improving bone repair.
2013-01-01
Introduction This study investigated the promising effect of a new Platelet Glue obtained from Cryoprecipitation of Apheresis Platelet products (PGCAP) used in combination with Mesenchymal Stromal Cells (MSC) loaded on ceramic biomaterials to provide novel strategies enhancing bone repair. Methods PGCAP growth factor content was analyzed by ELISA and compared to other platelet and plasma-derived products. MSC loaded on biomaterials (65% hydroxyapatite/35% beta-TCP or 100% beta-TCP) were embedded in PGCAP and grown in presence or not of osteogenic induction medium for 21 days. Biomaterials were then implanted subcutaneously in immunodeficient mice for 28 days. Effect of PGCAP on MSC was evaluated in vitro by proliferation and osteoblastic gene expression analysis and in vivo by histology and immunohistochemistry. Results We showed that PGCAP, compared to other platelet-derived products, allowed concentrating large amount of growth factors and cytokines which promoted MSC and osteoprogenitor proliferation. Next, we found that PGCAP improves the proliferation of MSC and osteogenic-induced MSC. Furthermore, we demonstrated that PGCAP up-regulates the mRNA expression of osteogenic markers (Collagen type I, Osteonectin, Osteopontin and Runx2). In vivo, type I collagen expressed in ectopic bone-like tissue was highly enhanced in biomaterials embedded in PGCAP in the absence of osteogenic pre-induction. Better results were obtained with 65% hydroxyapatite/35% beta-TCP biomaterials as compared to 100% beta-TCP. Conclusions We have demonstrated that PGCAP is able to enhance in vitro MSC proliferation, osteoblastic differentiation and in vivo bone formation in the absence of osteogenic pre-induction. This clinically adaptable platelet glue could be of interest for improving bone repair. PMID:23290259
Hirata, Shinji; Murata, Takahiko; Suzuki, Daisuke; Nakamura, Sou; Jono‐Ohnishi, Ryoko; Hirose, Hidenori; Sawaguchi, Akira; Nishimura, Satoshi; Sugimoto, Naoshi
2016-01-01
Abstract Donor‐independent platelet concentrates for transfusion can be produced in vitro from induced pluripotent stem cells (iPSCs). However, culture at 37°C induces ectodomain shedding on platelets of glycoprotein Ibα (GPIbα), the von Willebrand factor receptor critical for adhesive function and platelet lifetime in vivo, through temperature‐dependent activation of a disintegrin and metalloproteinase 17 (ADAM17). The shedding can be suppressed by using inhibitors of panmetalloproteinases and possibly of the upstream regulator p38 mitogen‐activated protein kinase (p38 MAPK), but residues of these inhibitors in the final platelet products may be accompanied by harmful risks that prevent clinical application. Here, we optimized the culture conditions for generating human iPSC‐derived GPIbα+ platelets, focusing on culture temperature and additives, by comparing a new and safe selective ADAM17 inhibitor, KP‐457, with previous inhibitors. Because cultivation at 24°C (at which conventional platelet concentrates are stored) markedly diminished the yield of platelets with high expression of platelet receptors, 37°C was requisite for normal platelet production from iPSCs. KP‐457 blocked GPIbα shedding from iPSC platelets at a lower half‐maximal inhibitory concentration than panmetalloproteinase inhibitor GM‐6001, whereas p38 MAPK inhibitors did not. iPSC platelets generated in the presence of KP‐457 exhibited improved GPIbα‐dependent aggregation not inferior to human fresh platelets. A thrombus formation model using immunodeficient mice after platelet transfusion revealed that iPSC platelets generated with KP‐457 exerted better hemostatic function in vivo. Our findings suggest that KP‐457, unlike GM‐6001 or p38 MAPK inhibitors, effectively enhances the production of functional human iPSC‐derived platelets at 37°C, which is an important step toward their clinical application. Stem Cells Translational Medicine 2017;6:720–730 PMID:28297575
Generation of Megakaryocytes and Platelets from Human Pluripotent Stem Cells.
Pick, Marjorie
2016-01-01
Human pluripotent stem cells (hPSC) have the potential to produce any tissue type in the body and thus represent a source of cells for regenerative medicine. Here we have shown that human platelets can be produced from embryonic or induced pluripotent stem cells in a defined culture system. We describe a serum- and feeder-free culture system that enabled the generation of megakaryocyte (Mk) progenitors and functional platelets from hPSCs. After 13 days the differentiated population included precursor cells that formed colonies containing differentiated Mks, and after 20 days these Mks were able to fragment into platelet-like particles that were functional. This protocol represents an important step towards the generation of human platelets for therapeutic use.
Human plasma platelet-derived exosomes: effects of aspirin.
Goetzl, Edward J; Goetzl, Laura; Karliner, Joel S; Tang, Norina; Pulliam, Lynn
2016-05-01
Platelet-derived exosomes mediate platelet atherogenic interactions with endothelial cells and monocytes. A new method for isolation of plasma platelet-derived exosomes is described and used to examine effects of aging and aspirin on exosome cargo proteins. Exosome secretion by purified platelets in vitro did not increase after exposure to thrombin or collagen, as assessed by exosome counts and quantification of the CD81 exosome marker. Thrombin and collagen increased exosome content of α-granule chemokines CXCL4 and CXCL7 and cytoplasmic high-mobility group box 1 (HMGB1) protein, but not membrane platelet glycoprotein VI (GPVI), with dependence on extracellular calcium. Aspirin consumption significantly blocked thrombin- and collagen-induced increases in exosome cargo levels of chemokines and HMGB1, without altering total exosome secretion or GPVI cargo. Plasma platelet-derived exosomes, enriched by absorption with mouse antihuman CD42b [platelet glycoprotein Ib (GPIb)] mAb, had sizes and cargo protein contents similar to those of exosomes from purified platelets. The plasma platelet-derived exosome number is lower and its chemokine and HMGB1 levels higher after age 65 yr. Aspirin consumption significantly suppressed cargo protein levels of plasma platelet-derived exosomes without altering total levels of exosomes. Cargo proteins of human plasma platelet-derived exosomes may biomark platelet abnormalities and in vivo effects of drugs.- Goetzl, E. J., Goetzl, L., Karliner, J. S., Tang, N., Pulliam, L. Human plasma platelet-derived exosomes: effects of aspirin. © FASEB.
Thibaut, Julien; Mérieux, Yves; Rigal, Dominique; Gillet, Germain
2012-01-01
Background Neonatal alloimmune thrombocytopenia is mostly due to the presence of maternal antibodies against the fetal platelet antigen HPA-1a on the platelet integrin GPIIb-IIIa. Accurate detection of anti-HPA-1a antibodies in the mother is, therefore, critical. Current diagnostic assays rely on the availability of pools of human platelets that vary according to donors and blood centers. There is still no satisfactory standardization of these assays. Design and Methods Peptide aptamer was used to detect and identify HPA-1a-specific antibodies in human serum that do not require human platelets. A peptide aptamer library was screened using an anti-HPA-1a human monoclonal antibody as a bait to isolate an aptamer that mimics the human platelet antigen HPA-1a. Results This is the first report in platelet immunology of the use of a peptide aptamer for diagnostic purposes. This assay gives better results than the MAIPA currently in use, detecting around 90% of the expected alloantibodies. Conclusions This assay could help define a standard for the quantitation of anti-HPA antibodies. This report also demonstrates that peptide aptamers can potentially detect a variety of biomarkers in body fluids; this is of particular interest for diagnostic purposes. PMID:22133781
Single-step isolation of extracellular vesicles by size-exclusion chromatography
Böing, Anita N.; van der Pol, Edwin; Grootemaat, Anita E.; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk
2014-01-01
Background Isolation of extracellular vesicles from plasma is a challenge due to the presence of proteins and lipoproteins. Isolation of vesicles using differential centrifugation or density-gradient ultracentrifugation results in co-isolation of contaminants such as protein aggregates and incomplete separation of vesicles from lipoproteins, respectively. Aim To develop a single-step protocol to isolate vesicles from human body fluids. Methods Platelet-free supernatant, derived from platelet concentrates, was loaded on a sepharose CL-2B column to perform size-exclusion chromatography (SEC; n=3). Fractions were collected and analysed by nanoparticle tracking analysis, resistive pulse sensing, flow cytometry and transmission electron microscopy. The concentrations of high-density lipoprotein cholesterol (HDL) and protein were measured in each fraction. Results Fractions 9–12 contained the highest concentrations of particles larger than 70 nm and platelet-derived vesicles (46%±6 and 61%±2 of totals present in all collected fractions, respectively), but less than 5% of HDL and less than 1% of protein (4.8%±1 and 0.65%±0.3, respectively). HDL was present mainly in fractions 18–20 (32%±2 of total), and protein in fractions 19–21 (36%±2 of total). Compared to the starting material, recovery of platelet-derived vesicles was 43%±23 in fractions 9–12, with an 8-fold and 70-fold enrichment compared to HDL and protein. Conclusions SEC efficiently isolates extracellular vesicles with a diameter larger than 70 nm from platelet-free supernatant of platelet concentrates. Application SEC will improve studies on the dimensional, structural and functional properties of extracellular vesicles. PMID:25279113
Functional expression of cysteinyl leukotriene receptors on human platelets.
Hasegawa, Shunji; Ichiyama, Takashi; Hashimoto, Kunio; Suzuki, Yasuo; Hirano, Reiji; Fukano, Reiji; Furukawa, Susumu
2010-01-01
Normal peripheral blood leukocytes, such as basophils, eosinophils, B lymphocytes and monocytes/macrophages, have a cysteinyl leukotriene 1 (CysLT1) receptor, while the cysteinyl leukotriene 2 (CysLT2) receptor is expressed in cardiac Purkinje cells, endothelium, brain and leukocytes. However, it is unknown whether or not platelets express the CysLT1 or CysLT2 receptor. In this study we identify and characterize the biological function of the CysLT receptor of human platelets. We determined the CysLT1 or CysLT2 receptor mRNA expression in normal human platelets by RT-PCR and determined protein expression by Western blotting and flow cytometry. Moreover, we examined the effect of cysteinyl leukotrienes (CysLTs) in platelets on the induction of RANTES (Regulated on Activation, Normal T Expressed, and presumably Secreted). We also investigated whether the CysLT1 receptor antagonist pranlukast inhibits CysLT-induced RANTES release. In conclusion, we showed the functional expression of CysLT receptors on human platelets and demonstrated that CysLTs induced the release of significant amounts of RANTES, which suggests a novel role for human platelets in CysLT-mediated allergic inflammation.
Inhibitory Effects of Yuzu and Its Components on Human Platelet Aggregation
Kim, Tae-Ho; Kim, Hye-Min; Park, Se Won; Jung, Yi-Sook
2015-01-01
Our previous study demonstrated that yuzu has an anti-platelet effect in rat blood. In the present study, we examined whether the anti-platelet effect of yuzu can be extended to human blood by investigating its ability to inhibit aggregations induced by various agonists in human platelet rich plasma (PRP). This study also investigated the underlying mechanism of yuzu focusing on ADP granule secretion, TXB2 formations, and PLCγ/Akt signaling. The results from this study showed that ethanolic yuzu extract (YE), and its components, hesperidin and naringin, inhibited human platelet aggregation in a concentration-dependent manner. YE, hesperidin and naringin also inhibited TXB2 formation and ADP release. The phosphorylation of PLCγ and Akt was significantly inhibited by YE, heperidin and naringin. Furthermore, we demonstrated that YE, heperidin and naringin has anti-platelet effects in rat ex vivo studies, and lower side effects in mice tail bleeding time studies. The results from this study suggest that YE, hesperidin and naringin can inhibit human platelet aggregation, at least partly through the inhibition of PLCγ and Akt, leading to a decrease in TXB2 formation and granule secretion. PMID:25767683
Lu, Shi-Jiang; Li, Feng; Yin, Hong; Feng, Qiang; Kimbrel, Erin A; Hahm, Eunsil; Thon, Jonathan N; Wang, Wei; Italiano, Joseph E; Cho, Jaehyung; Lanza, Robert
2011-01-01
Platelets play an essential role in hemostasis and atherothrombosis. Owing to their short storage time, there is constant demand for this life-saving blood component. In this study, we report that it is feasible to generate functional megakaryocytes and platelets from human embryonic stem cells (hESCs) on a large scale. Differential-interference contrast and electron microscopy analyses showed that ultrastructural and morphological features of hESC-derived platelets were indistinguishable from those of normal blood platelets. In functional assays, hESC-derived platelets responded to thrombin stimulation, formed microaggregates, and facilitated clot formation/retraction in vitro. Live cell microscopy demonstrated that hESC-platelets formed lamellipodia and filopodia in response to thrombin activation, and tethered to each other as observed in normal blood. Using real-time intravital imaging with high-speed video microscopy, we have also shown that hESC-derived platelets contribute to developing thrombi at sites of laser-induced vascular injury in mice, providing the first evidence for in vivo functionality of hESC-derived platelets. These results represent an important step toward generating an unlimited supply of platelets for transfusion. Since platelets contain no genetic material, they are ideal candidates for early clinical translation involving human pluripotent stem cells. PMID:21221130
Sergeeva, N S; Shanskii, Ya D; Sviridova, I K; Karalkin, P A; Kirsanova, V A; Akhmedova, S A; Kaprin, A D
2016-11-01
Platelet lysate prepared from donor platelet concentrate and pooled according to a developed technique stimulates migration of multipotent mesenchymal stromal cells of the human adipose tissue and promotes healing of the monolayer defect in cultures of human fibroblasts and multipotent mesenchymal stromal cells in vitro in concentrations close those of fetal calf serum (5-10%). Lysate of platelets from platelet-rich rat blood plasma stimulated healing of the skin defect by promoting epithelialization and granulation tissue formation. The regenerative properties of platelet lysate in vivo increased with increasing its concentration.
Dellera, Eleonora; Bonferoni, Maria Cristina; Sandri, Giuseppina; Rossi, Silvia; Ferrari, Franca; Del Fante, Claudia; Perotti, Cesare; Grisoli, Pietro; Caramella, Carla
2014-11-01
In the treatment of chronic wounds, topical application of anti-infective drugs such as silver sulfadiazine (AgSD) is of primary importance to avoid infections and accelerate wound repair. AgSD is used in burns and chronic wounds for its wide antibacterial spectrum, but presents limitations due to poor solubility and cytotoxicity. In the present work polymeric micelles obtained by self-assembling of chitosan ionically modified by interaction with oleic acid were developed as carriers for AgSD to overcome the drawbacks of the drug. The AgSD loaded micelles were intended to be associated in wound healing with platelet lysate (PL), a hemoderivative rich in growth factors. Unloaded micelles demonstrated good compatibility with both fibroblasts and PL. The relevance of chitosan concentration and of the ratio between chitosan and oleic acid to the drug loading and the particle size of nanoparticles was studied. A marked increase (up to 100 times with respect to saturated solution) of AgSD concentration in micelle dispersion was obtained. Moreover, the encapsulation reduced the cytotoxic effect of the drug towards fibroblasts and the drug incompatibility with PDGF-AB (platelet derived growth factor), chosen as representative of platelet growth factors. Copyright © 2014. Published by Elsevier B.V.
Mazutis, Linas; Wu, Stephen; Sylman, Joanna L.; Ehrlicher, Allen; Machlus, Kellie R.; Feng, Qiang; Lu, Shijiang; Lanza, Robert; Neeves, Keith B.; Weitz, David A.; Italiano, Joseph E.
2014-01-01
Platelet transfusions total >2.17 million apheresis-equivalent units per year in the United States and are derived entirely from human donors, despite clinically significant immunogenicity, associated risk of sepsis, and inventory shortages due to high demand and 5-day shelf life. To take advantage of known physiological drivers of thrombopoiesis, we have developed a microfluidic human platelet bioreactor that recapitulates bone marrow stiffness, extracellular matrix composition, micro-channel size, hemodynamic vascular shear stress, and endothelial cell contacts, and it supports high-resolution live-cell microscopy and quantification of platelet production. Physiological shear stresses triggered proplatelet initiation, reproduced ex vivo bone marrow proplatelet production, and generated functional platelets. Modeling human bone marrow composition and hemodynamics in vitro obviates risks associated with platelet procurement and storage to help meet growing transfusion needs. PMID:25606631
Kiebala, Michelle; Singh, Meera V.; Piepenbrink, Michael S.; Qiu, Xing; Kobie, James J.; Maggirwar, Sanjay B.
2015-01-01
Recent work has indicated that platelets, which are anucleate blood cells, significantly contribute to inflammatory disorders. Importantly, platelets also likely contribute to various inflammatory secondary disorders that are increasingly associated with Human Immunodeficiency Virus Type-1 (HIV) infection including neurological impairments and cardiovascular complications. Indeed, HIV infection is often associated with increased levels of platelet activators. Additionally, cocaine, a drug commonly abused by HIV-infected individuals, leads to increased platelet activation in humans. Considering that orchestrated signaling mechanisms are essential for platelet activation, and that nuclear factor-kappa B (NF-κB) inhibitors can alter platelet function, the role of NF-κB signaling in platelet activation during HIV infection warrants further investigation. Here we tested the hypothesis that inhibitory kappa B kinase complex (IKK) activation would be central for platelet activation induced by HIV and cocaine. Whole blood from HIV-positive and HIV-negative individuals, with or without cocaine abuse was used to assess platelet activation via flow cytometry whereas IKK activation was analyzed by performing immunoblotting and in vitro kinase assays. We demonstrate that increased platelet activation in HIV patients, as measured by CD62P expression, is not altered with reported cocaine use. Furthermore, cocaine and HIV do not activate platelets in whole blood when treated ex vivo. Finally, HIV-induced platelet activation does not involve the NF-κB signaling intermediate, IKKβ. Platelet activation in HIV patients is not altered with cocaine abuse. These results support the notion that non-IKK targeting approaches will be better suited for the treatment of HIV-associated inflammatory disorders. PMID:26076359
Santo, Vítor E; Duarte, Ana Rita C; Popa, Elena G; Gomes, Manuela E; Mano, João F; Reis, Rui L
2012-08-20
A new generation of scaffolds capable of acting not only as support for cells but also as a source of biological cues to promote tissue regeneration is currently a hot topic of in bone Tissue Engineering (TE) research. The inclusion of growth factor (GF) controlled release functionalities in the scaffolds is a possible strategy to achieve such goal. Platelet Lysate (PL) is an autologous source of GFs, providing several bioactive agents known to act on bone regeneration. In this study, chitosan-chondroitin sulfate nanoparticles loaded with PL were included in a poly(D,L-lactic acid) foam produced by supercritical fluid foaming. The tridimensional (3D) structures were then seeded with human adipose-derived stem cells (hASCs) and cultured in vitro under osteogenic stimulus. The osteogenic differentiation of the seeded hASCs was observed earlier for the PL-loaded constructs, as shown by the earlier alkaline phosphatase peak and calcium detection and stronger Runx2 expression at day 7 of culture, in comparison with the control scaffolds. Osteocalcin gene expression was upregulated in presence of PL during all culture period, which indicates an enhanced osteogenic induction. These results suggest the synergistic effect of PL and hASCs in combinatory TE strategies and support the potential of PL to increase the multifunctionality of the 3D hybrid construct for bone TE applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Lea blood group antigen on human platelets.
Dunstan, R A; Simpson, M B; Rosse, W F
1985-01-01
One- and two-stage radioligand assays were used to determine if human platelets possess the Lea antigen. Goat IgG anti-Lea antibody was purified by multiple adsorptions with Le(a-b-) human red blood cells, followed by affinity chromatography with synthetic Lea substance and labeling with 125I. Human IgG anti-Lea antibody was used either in a two stage radioassay with 125I-labeled mouse monoclonal IgG anti-human IgG as the second antibody or, alternatively, purified by Staph protein A chromatography, labeled with 125I, and used in a one-stage radioassay. Platelets from donors of appropriate red blood cell phenotypes were incubated with the antisera, centrifuged through phthalate esters, and assayed in a gamma scintillation counter. Dose response and saturation curve analysis demonstrate the presence of Lewis a antigen on platelets from Lea+ donors. Furthermore, platelets from an Le(a-b-) donor incubated in Le (a+b-) plasma adsorb Lea antigen in a similar manner to red blood cells. The clinical significance of these antigens in platelet transfusion remains undefined.
Lykov, A P; Bondarenko, N A; Surovtseva, M A; Kim, I I; Poveshchenko, O V; Pokushalov, E A; Konenkov, V I
2017-10-01
We studied the effects of human platelet-rich plasma and platelet lysate on proliferation, migration, and colony-forming properties of rat mesenchymal stem cells. Platelet-rich plasma and platelet lysate stimulated the proliferation, migration, and colony formation of mesenchymal stem cells. A real-time study showed that platelet-rich plasma produces the most potent stimulatory effect, while both platelet-rich plasma and platelet lysate stimulated migration of cells.
Selheim, F; Fukami, M H; Holmsen, H; Vassbotn, F S
2000-01-01
Human platelets release platelet-derived growth factor (PDGF) from alpha-granules during platelet activation. We have previously shown that platelets have PDGF alpha-receptors, a transmembrane tyrosine kinase that takes part in negative feedback regulation during platelet activation. Here we have described a study of PDGF-induced tyrosine phosphorylation of platelet substrates and phosphoinositide 3-kinase (PI-3K) activity in collagen-stimulated platelets. By immunoblotting with phosphotyrosine antibodies of collagen-activated platelets we found that PDGF increased the phosphorylation of several platelet substrates, e.g. pp140, pp120 and pp85. PDGF inhibited collagen-induced platelet activation in the presence of inhibitors of autocrine stimulation, thus blocking the pure collagen-induced signal transduction. PDGF enhanced the collagen-induced formation of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) as measured by HPLC. Wortmannin and LY294002, two unrelated inhibitors of PI-3K, were used to investigate the role of PI-3K in PDGF-induced platelet signalling. Incubation of platelets with wortmannin and LY294002 blocked the formation of three phosphorylated inositides as well as the inhibitory effect of PDGF on collagen-induced platelet activation. We conclude that the inhibitory effect of PDGF on platelet activation is PI-3K dependent. This is the first demonstration of a negative regulatory function of 3-phosphorylated inositides in platelets. PMID:10947961
Selheim, F; Fukami, M H; Holmsen, H; Vassbotn, F S
2000-09-01
Human platelets release platelet-derived growth factor (PDGF) from alpha-granules during platelet activation. We have previously shown that platelets have PDGF alpha-receptors, a transmembrane tyrosine kinase that takes part in negative feedback regulation during platelet activation. Here we have described a study of PDGF-induced tyrosine phosphorylation of platelet substrates and phosphoinositide 3-kinase (PI-3K) activity in collagen-stimulated platelets. By immunoblotting with phosphotyrosine antibodies of collagen-activated platelets we found that PDGF increased the phosphorylation of several platelet substrates, e.g. pp140, pp120 and pp85. PDGF inhibited collagen-induced platelet activation in the presence of inhibitors of autocrine stimulation, thus blocking the pure collagen-induced signal transduction. PDGF enhanced the collagen-induced formation of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) as measured by HPLC. Wortmannin and LY294002, two unrelated inhibitors of PI-3K, were used to investigate the role of PI-3K in PDGF-induced platelet signalling. Incubation of platelets with wortmannin and LY294002 blocked the formation of three phosphorylated inositides as well as the inhibitory effect of PDGF on collagen-induced platelet activation. We conclude that the inhibitory effect of PDGF on platelet activation is PI-3K dependent. This is the first demonstration of a negative regulatory function of 3-phosphorylated inositides in platelets.
Long, Dongping; Shang, Yunfei; Qiu, Youyi; Zhou, Bin; Yang, Peihui
2018-04-15
A novel single-cell analysis platform (SCA) was developed for the investigation of platelets adhesion to single human umbilical vein endothelial cell (HUVEC) via using the adhesion molecule (E-selectin) on the damaged HUVEC as the marker site, and integrating electrochemiluminescence (ECL) with the ultrasensitive Au@DL-ZnCQDs nanoprobes. The Au@DL-ZnCQDs nanocomposite, a kind of double layer zinc-coadsorbed carbon quantum dot (ZnCQDs) core-shell nanoprobe, was firstly constructed by using gold nanoparticles (AuNPs) as the core to load with ZnCQDs and then the citrate-modified silver nanoparticles (AgNPs) as the bridge to link AuNPs-ZnCQDs with ZnCQDs to form the core-shell with double layer ZnCQDs (DL-ZnCQDs) nanoprobe, revealed a 10-fold signal amplification. The H 2 O 2 -induced oxidative damage HUVECs were utilized as the cellular model on which anti-E-selectin functionalized nanoprobes specially recognized E-selectin, the SCA showed that the ECL signals decreased with platelets adhesion to single HUVEC. The proposed SCA could effectively and dynamically monitor the adhesion between single HUVEC and platelets in the absence and presence of collagen activation, moreover, be able to quantitatively detect the number of platelets adhesion to single HUVEC, and show a good analytical performance with linear range from 1 to 15 platelets. In contrast, the HUVEC was down-regulated the expression of adhesion molecules by treating with quercetin inhibitor, and the SCA also exhibited the feasibility for analysis of platelets adhesion to single HUVEC. Therefore, the single-cell analysis platform provided a novel and promising protocol for analysis of the single intercellular adhesion, and it will be beneficial to elucidate the pathogenesis of cardiovascular diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Human platelet activation by C3a and C3a des-arg
1983-01-01
C3a liberated from C3 by treatment with C3 convertase (or by trypsin) induced aggregation of gel-filtered human platelets and stimulated serotonin release. At concentrations of 10(-10) M to 8 X 10(-12) M, C3a induced aggregation when added alone to platelets. However, at lower concentrations (2 X 10(-12) M) C3a did not aggregate platelets directly but exhibited highly significant synergism (two-way analysis of variance P less than 0.0001) with ADP in mediating platelet aggregation and release of serotonin. Removal of the C-terminus arginine from C3a abolished anaphylotoxin activity but did not affect the platelet- stimulating activity of the peptide. C3a and C3a des-arg were equally reactive in mediating platelet aggregation and release of serotonin. Further C3a and C3a des-arg exhibited synergism with ADP of equal significance in both aggregation and the release reaction. The concentrations of C3a required for the platelet-stimulating activity involve relatively small number of molecules per platelet (4,000-10,000 for the synergistic reaction with ADP). These data suggest the possibility of a C3a (C3a des-arg) receptor on human platelets. This premise is strengthened by the demonstration ultrastructurally of C3a on the platelet membrane subsequent to C3a stimulation. PMID:6604123
The Effects of Thrombin on Adenyl Cyclase Activity and a Membrane Protein from Human Platelets
Brodie, G. N.; Baenziger, Nancy Lewis; Chase, Lewis R.; Majerus, Philip W.
1972-01-01
Washed human platelets were incubated with 0.1-1.0 U/ml human thrombin and the effects on adenyl cyclase activity and on a platelet membrane protein (designated thrombin-sensitive protein) were studied. Adenyl cyclase activity was decreased 70-90% when intact platelets were incubated with thrombin. The T½ for loss of adenyl cyclase activity was less than 15 sec at 1 U/ml thrombin. There was no decrease of adenyl cyclase activity when sonicated platelets or isolated membranes were incubated with these concentrations of thrombin. Loss of adenyl cyclase activity was relatively specific since the activities of other platelet membrane enzymes were unaffected by thrombin. Prior incubation of platelets with dibutyryl cyclic adenosine monophosphate (AMP), prostaglandin E1, or theophylline protected adenyl cyclase from inhibition by thrombin. Incubation of intact but not disrupted platelets with thrombin resulted in the release of thrombin-sensitive protein from the platelet membrane. The rapid release of this protein (T½ < 15 sec) at low concentrations of thrombin suggested that removal of thrombin-sensitive protein from the platelet membrane is an integral part of the platelet release reaction. This hypothesis is supported by the parallel effects of thrombin on adenyl cyclase activity and thrombin-sensitive protein release in the presence of dibutyryl cyclic AMP, prostaglandin E1, and theophylline at varying concentrations of thrombin. Images PMID:4331802
Mindukshev, Igor; Gambaryan, Stepan; Kehrer, Linda; Schuetz, Claudia; Kobsar, Anna; Rukoyatkina, Natalia; Nikolaev, Viacheslav O; Krivchenko, Alexander; Watson, Steve P; Walter, Ulrich; Geiger, Joerg
2012-07-01
Determinations of platelet receptor functions are indispensable diagnostic indicators of cardiovascular and hemostatic diseases including hereditary and acquired receptor defects and receptor responses to drugs. However, presently available techniques for assessing platelet function have some disadvantages, such as low sensitivity and the requirement of large sample sizes and unphysiologically high agonist concentrations. Our goal was to develop and initially characterize a new technique designed to quantitatively analyze platelet receptor activation and platelet function on the basis of measuring changes in low angle light scattering. We developed a novel technique based on low angle light scattering registering changes in light scattering at a range of different angles in platelet suspensions during activation. The method proved to be highly sensitive for simultaneous real time detection of changes in size and shape of platelets during activation. Unlike commonly-used methods, the light scattering method could detect platelet shape change and aggregation in response to nanomolar concentrations of extracellular nucleotides. Furthermore, our results demonstrate that the advantages of the light scattering method make it a choice method for platelet receptor monitoring and for investigation of both murine and human platelets in disease models. Our data demonstrate the suitability and superiority of this new low angle light scattering method for comprehensive analyses of platelet receptors and functions. This highly sensitive, quantitative, and online detection of essential physiological, pathophysiological and pharmacological-response properties of human and mouse platelets is a significant improvement over conventional techniques.
Niacin and biosynthesis of PGD2 by platelet COX-1 in mice and humans
Song, Wen-Liang; Stubbe, Jane; Ricciotti, Emanuela; Alamuddin, Naji; Ibrahim, Salam; Crichton, Irene; Prempeh, Maxwell; Lawson, John A.; Wilensky, Robert L.; Rasmussen, Lars Melholt; Puré, Ellen; FitzGerald, Garret A.
2012-01-01
The clinical use of niacin to treat dyslipidemic conditions is limited by noxious side effects, most commonly facial flushing. In mice, niacin-induced flushing results from COX-1–dependent formation of PGD2 and PGE2 followed by COX-2–dependent production of PGE2. Consistent with this, niacin-induced flushing in humans is attenuated when niacin is combined with an antagonist of the PGD2 receptor DP1. NSAID-mediated suppression of COX-2–derived PGI2 has negative cardiovascular consequences, yet little is known about the cardiovascular biology of PGD2. Here, we show that PGD2 biosynthesis is augmented during platelet activation in humans and, although vascular expression of DP1 is conserved between humans and mice, platelet DP1 is not present in mice. Despite this, DP1 deletion in mice augmented aneurysm formation and the hypertensive response to Ang II and accelerated atherogenesis and thrombogenesis. Furthermore, COX inhibitors in humans, as well as platelet depletion, COX-1 knockdown, and COX-2 deletion in mice, revealed that niacin evoked platelet COX-1–derived PGD2 biosynthesis. Finally, ADP-induced spreading on fibrinogen was augmented by niacin in washed human platelets, coincident with increased thromboxane (Tx) formation. However, in platelet-rich plasma, where formation of both Tx and PGD2 was increased, spreading was not as pronounced and was inhibited by DP1 activation. Thus, PGD2, like PGI2, may function as a homeostatic response to thrombogenic and hypertensive stimuli and may have particular relevance as a constraint on platelets during niacin therapy. PMID:22406532
Basire, A; Picard, C
2014-11-01
Platelet refractoriness is a serious complication for patients receiving recurrent platelet transfusions, which can be explained by non-immune and immune causes. Human Leukocyte Antigens (HLA) allo-immunization, especially against HLA class I, is the major cause for immune platelet refractoriness. To a lesser extent, allo-antibodies against specific Human Platelet Antigen (HPA) are also involved. Pregnancy, transplantation and previous transfusions can lead to allo-immune reaction against platelet antigens. After transfusion, platelet count is decreased by accelerated platelet destruction related to antibodies fixation on incompatible platelet antigens. New laboratory tests for allo-antibodies identification were developed to improve sensibility and specificity, especially with the LUMINEX(®) technology. The good use and interpretation of these antibodies assays can improve strategies for platelet refractoriness prevention and management with a patient adapted response. Compatible platelets units can be selected according to their identity with recipient typing or immune compatibility regarding HLA or HPA antibodies or HLA epitope compatibility. Prospective studies are needed to further confirm the clinical benefit of new allo-antibodies identification methods and consensus strategies for immune platelet refractoriness management. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Parodi, Guido; Bellandi, Benedetta; Xanthopoulou, Ioanna; Capranzano, Piera; Capodanno, Davide; Valenti, Renato; Stavrou, Katerina; Migliorini, Angela; Antoniucci, David; Tamburino, Corrado; Alexopoulos, Dimitrios
2015-01-01
Morphine is recommended in patients with ST-segment-elevation myocardial infarction, including those undergoing primary percutaneous coronary intervention. Suboptimal antiplatelet effect during and after primary percutaneous coronary intervention is associated with increased thrombotic complications. It was hypothesized a potential drug-drug interaction between morphine and antiplatelet agents. We sought to assess platelet inhibition after a loading dose of the currently recommended antiplatelet agents in ST-segment-elevation myocardial infarction patients according to morphine use. Three hundred patients undergoing primary percutaneous coronary intervention receiving either prasugrel (n = 95) or ticagrelor (n = 205) loading dose had platelet reactivity assessed by VerifyNow 1, 2, and 4 hours after loading dose. Patients treated with morphine (n = 95; 32%) had a higher incidence of vomit (15% versus 2%; P = 0.001). P2Y12 reactivity units 2 hours after the loading dose was 187 (153-221) and 133 (102-165) in patient with and without morphine (P < 0.001); the difference persisted after excluding patients with vomit (P < 0.0001). High residual platelet reactivity (P2Y12 reactivity units ≥ 208) at 2 hours was found in 53% and 29% patients with and without morphine (P < 0.001) and without difference between prasugrel and ticagrelor patients. The independent predictors of high residual platelet reactivity at 2 hours were morphine use (odds ratio, 2.91 [1.71-4.97]; P < 0.0001) and age (odds ratio, 1.03 [1.01-1.05]; P = 0.010). Morphine remained associated with high residual platelet reactivity after propensity score adjustment (c-statistic, 0.68; 95% confidence interval, 0.66-0.70; P = 0.879 for Hosmer-Lemeshow test). In patients with ST-segment-elevation myocardial infarction, morphine use is associated with a delayed onset of action of the oral antiplatelet agents. This association persisted after adjusting for the propensity to receive morphine and after excluding patients with vomit. © 2014 American Heart Association, Inc.
Godschalk, Thea C; Byrne, Robert A; Adriaenssens, Tom; Malik, Nikesh; Feldman, Laurent J; Guagliumi, Giulio; Alfonso, Fernando; Neumann, Franz-Josef; Trenk, Dietmar; Joner, Michael; Schulz, Christian; Steg, Philippe G; Goodall, Alison H; Wojdyla, Roman; Dudek, Dariusz; Wykrzykowska, Joanna J; Hlinomaz, Ota; Zaman, Azfar G; Curzen, Nick; Dens, Jo; Sinnaeve, Peter; Desmet, Walter; Gershlick, Anthony H; Kastrati, Adnan; Massberg, Steffen; Ten Berg, Jurriën M
2017-12-26
High platelet reactivity (HPR) was studied in patients presenting with ST-segment elevation myocardial infarction (STEMI) due to stent thrombosis (ST) undergoing immediate percutaneous coronary intervention (PCI). HPR on P2Y 12 inhibitors (HPR-ADP) is frequently observed in stable patients who have experienced ST. The HPR rates in patients presenting with ST for immediate PCI are unknown. Consecutive patients presenting with definite ST were included in a multicenter ST registry. Platelet reactivity was measured before immediate PCI with the VerifyNow P2Y 12 or Aspirin assay. Platelet reactivity was measured in 129 ST patients presenting with STEMI undergoing immediate PCI. HPR-ADP was observed in 76% of the patients, and HPR on aspirin (HPR-AA) was observed in 13% of the patients. HPR rates were similar in patients who were on maintenance P2Y 12 inhibitor or aspirin since stent placement versus those without these medications. In addition, HPR-ADP was similar in patients loaded with a P2Y 12 inhibitor shortly before immediate PCI versus those who were not. In contrast, HPR-AA trended to be lower in patients loaded with aspirin as compared with those not loaded. Approximately 3 out of 4 ST patients with STEMI undergoing immediate PCI had HPR-ADP, and 13% had HPR-AA. Whether patients were on maintenance antiplatelet therapy while developing ST or loaded with P2Y 12 inhibitors shortly before undergoing immediate PCI had no influence on the HPR rates. This raises concerns that the majority of patients with ST have suboptimal platelet inhibition undergoing immediate PCI. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Gladding, Patrick; Webster, Mark; Zeng, Irene; Farrell, Helen; Stewart, Jim; Ruygrok, Peter; Ormiston, John; El-Jack, Seif; Armstrong, Guy; Kay, Patrick; Scott, Douglas; Gunes, Arzu; Dahl, Marja-Liisa
2008-12-01
This study assessed the effect of pharmacogenetics on the antiplatelet effect of clopidogrel. Variability in clopidogrel response might be influenced by polymorphisms in genes coding for drug metabolism enzymes (cytochrome P450 [CYP] family), transport proteins (P-glycoprotein) and/or target proteins for the drug (adenosine diphosphate-receptor P2Y12). Sixty patients undergoing elective percutaneous coronary intervention in the randomized PRINC (Plavix Response in Coronary Intervention) trial had platelet function measured using the VerifyNow P2Y12 analyzer after a 600-mg or split 1,200-mg loading dose and after a 75- or 150-mg daily maintenance dosage. Polymerase chain reaction-based genotyping evaluated polymorphisms in the CYP2C19, CYP2C9, CYP3A4, CYP3A5, ABCB1, P2Y12, and CES genes. CYP2C19*1*1 carriers had greater platelet inhibition 2 h after a 600-mg dose (median: 23%, range: 0% to 66%), compared with platelet inhibition in CYP2C19*2 or *4 carriers (10%, 0% to 56%, p = 0.029) and CYP2C19*17 carriers (9%, 0% to 98%, p = 0.026). CYP2C19*2 or *4 carriers had greater platelet inhibition with the higher loading dose than with the lower dose at 4 h (37%, 8% to 87% vs. 14%, 0% to 22%, p = 0.002) and responded better with the higher maintenance dose regimen (51%, 15% to 86% vs. 14%, 0% to 67%, p = 0.042). Carriers of the CYP2C19*2 and *4 alleles showed reduced platelet inhibition after a clopidogrel 600-mg loading dose but responded to higher loading and maintenance dose regimens. Genotyping for the relevant gene polymorphisms may help to individualize and optimize clopidogrel treatment. (Australia New Zealand Clinical Trials Registry; ACTRN12606000129583).
5-HT receptor probe (/sup 3/H)8-OH-DPAT labels the 5-HT transporter in human platelets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ieni, J.R.; Meyerson, L.R.
1988-01-01
The present study characterizes a serotonin (5-HT) binding site on human platelet membranes, using (/sup 3/H)8-OH-DPAT as the radioligand. (/sup 3/H)8-OH-DPAT binds specifically and saturably to a site on human platelet membranes with an average K/sub D/ of 43 nM and B/sub max/ of 1078 fmol/mg protein. Determinations of IC/sub 50/ values for various serotonergic characterizing agents in platelets for displacement of (/sup 3/H)8-OH-DPAT were performed. The pharmacological inhibitory profile of the platelet 8-OH-DPAT site is not consistent with profiles reported for brain. 8-OH-DPAT does not inhibit (/sup 3/H) imipramine binding, however, it does inhibit (/sup 3/H)5-HT uptake in humanmore » platelets near 5-HT's K/sub m/ value (IC/sub 50/ = 2-4 ..mu..M). These results suggest that the human platelet site labelled by (/sub 3/H)8-OH-DPAT is pharmocologically different from the neuronal site and probably is a component of the 5-HT transporter. 32 references, 1 figure, 4 tables.« less
Primary porcine Kupffer cell phagocytosis of human platelets involves the CD18 receptor.
Chihara, Ray K; Paris, Leela L; Reyes, Luz M; Sidner, Richard A; Estrada, Jose L; Downey, Susan M; Wang, Zheng-Yu; Tector, A Joseph; Burlak, Christopher
2011-10-15
Hepatic failure has been treated successfully with clinical extracorporeal perfusions of porcine livers. However, dog-to-pig and pig-to-baboon liver xenotransplant models have resulted in severe bleeding secondary to liver xenograft-induced thrombocytopenia. Kupffer cells (KC) are abundant phagocytic cells in the liver. KC express the CD11b/CD18 receptor, which has been implicated in chilled platelet binding and phagocytosis through interaction with platelet surface proteins and carbohydrates. We sought to identify the role of KC CD18 in liver xenograft-induced thrombocytopenia. Primary pig KC were characterized by flow cytometry, immunoblots, and quantitative polymerase chain reaction. Pig KC were used in inhibition assays with fluorescently labeled human platelets. The CD18 receptor was targeted for siRNA knockdown. Domestic and α1,3-galactosyltransferase double knockout porcine KC cultures were approximately 92% positive for CD18 as detected by quantitative polymerase chain reaction and flow cytometry. Use of CD18 blocking antibodies resulted in reduction of human platelet binding and phagocytosis. Additionally, asialofetuin, not fetuin, inhibited platelet phagocytosis suggesting the involvement of an oligosaccharide-binding site. Furthermore, reduced CD18 expression by siRNA resulted in decreased human platelet binding. Our data suggest that primary pig KC bind and phagocytose human platelets with involvement of CD18. Further understanding and modification of CD18 expression in pigs may result in a liver xenograft with reduced thrombocytopenic effects, which could be used as a bridge to allogeneic liver transplantation.
van der Garde, Mark; van Hensbergen, Yvette; Brand, Anneke; Slot, Manon C; de Graaf-Dijkstra, Alice; Mulder, Arend; Watt, Suzanne M; Zwaginga, Jaap Jan
2015-01-01
Human cord blood (CB) hematopoietic stem cell (HSC) transplants demonstrate delayed early neutrophil and platelet recovery and delayed longer term immune reconstitution compared to bone marrow and mobilized peripheral blood transplants. Despite advances in enhancing early neutrophil engraftment, platelet recovery after CB transplantation is not significantly altered when compared to contemporaneous controls. Recent studies have identified a platelet-biased murine HSC subset, maintained by thrombopoietin (TPO), which has enhanced capacity for short- and long-term platelet reconstitution, can self-renew, and can give rise to myeloid- and lymphoid-biased HSCs. In previous studies, we have shown that transplantation of human CB CD34(+) cells precultured in TPO as a single graft accelerates early platelet recovery as well as yielding long-term repopulation in immune-deficient mice. In this study, using a double CB murine transplant model, we investigated whether TPO cultured human CB CD34(+) cells have a competitive advantage or disadvantage over untreated human CB CD34(+) cells in terms of (1) short-term and longer term platelet recovery and (2) longer term hematological recovery. Our studies demonstrate that the TPO treated graft shows accelerated early platelet recovery without impairing the platelet engraftment of untreated CD34(+) cells. Notably, this was followed by a dominant contribution to platelet production through the untreated CD34(+) cell graft over the intermediate to longer term. Furthermore, although the contribution of the TPO treated graft to long-term hematological engraftment was reduced, the TPO treated and untreated grafts both contributed significantly to long-term chimerism in vivo.
Angiolillo, Dominick J.; Badimon, Juan Jose; Saucedo, Jorge F.; Frelinger, Andrew L.; Michelson, Alan D.; Jakubowski, Joseph A.; Zhu, Baojin; Ojeh, Clement K.; Baker, Brian A.; Effron, Mark B.
2011-01-01
Aims Patients with diabetes mellitus (DM) have increased platelet reactivity and reduced platelet response to clopidogrel compared with patients without DM. Prasugrel, a more potent antiplatelet agent, is associated with greater reductions in ischaemic events compared with clopidogrel, particularly in patients with DM. The aim of this study was to perform serial pharmacodynamic assessments of prasugrel with high-dose clopidogrel in patients with DM. Methods and results Optimizing anti-Platelet Therapy In diabetes MellitUS (OPTIMUS)-3 was a prospective, randomized, double-blind, crossover study in patients with type 2 DM and coronary artery disease (CAD). Patients (n= 35) were randomly assigned to either prasugrel 60 mg loading dose (LD)/10 mg maintenance dose (MD) or clopidogrel 600 mg LD/150 mg MD over two 1-week treatment periods separated by a 2-week washout period. Platelet function was assessed by VerifyNow® P2Y12 assay, light transmission aggregometry, and vasodilator-stimulated phosphoprotein phosphorylation at 0, 1, 4, and 24 h and 7 days. Greater platelet inhibition by VerifyNow® P2Y12 was achieved by prasugrel compared with clopidogrel at 4 h post-LD (least squares mean, 89.3 vs. 27.7%, P< 0.0001; primary endpoint). The difference in platelet inhibition between prasugrel and clopidogrel was significant from 1 h through 7 days (P < 0.0001). Similar results were obtained using all other platelet function measures. Prasugrel resulted in fewer poor responders at all time points irrespective of definition used. Conclusion In patients with type 2 DM and CAD, standard-dose prasugrel is associated with greater platelet inhibition and better response profiles during both the loading and maintenance periods when compared with double-dose clopidogrel. Clinical trial identifier: www.clinicaltrials.gov—NCT00642174 PMID:21252171
Chemoproteomic Discovery of AADACL1 as a Novel Regulator of Human Platelet Activation
Holly, Stephen P.; Chang, Jae Won; Li, Weiwei; Niessen, Sherry; Phillips, Ryan M.; Piatt, Raymond; Black, Justin L.; Smith, Matthew C.; Boulaftali, Yacine; Weyrich, Andrew S.; Bergmeier, Wolfgang; Cravatt, Benjamin F.; Parise, Leslie V.
2013-01-01
A comprehensive knowledge of the platelet proteome is necessary for understanding thrombosis and for conceiving novel antiplatelet therapies. To discover new biochemical pathways in human platelets, we screened platelets with a carbamate library designed to interrogate the serine hydrolase subproteome and used competitive activity-based protein profiling to map the targets of active carbamates. We identified an inhibitor that targets arylacetamide deacetylase-like 1 (AADACL1), a lipid deacetylase originally identified in invasive cancers. Using this compound, along with highly selective second-generation inhibitors of AADACL1, metabolomics and RNA interference, we show that AADACL1 regulates platelet aggregation, thrombus growth, RAP1 and PKC activation, lipid metabolism and fibrinogen binding to platelets and megakaryocytes. These data provide the first evidence that AADACL1 regulates platelet and megakaryocyte activation and highlight the value of this chemoproteomic strategy for target discovery in platelets. PMID:23993462
Massimi, Isabella; Guerriero, Raffaella; Lotti, Lavinia Vittoria; Lulli, Valentina; Borgognone, Alessandra; Romani, Federico; Barillà, Francesco; Gaudio, Carlo; Gabbianelli, Marco; Frati, Luigi; Pulcinelli, Fabio M
2014-01-01
Aim The aim of the study was to investigate whether human megakaryocytic cells have an adaptive response to aspirin treatment, leading to an enhancement of multidrug resistance protein-4 (MRP4) expression in circulating platelets responsible for a reduced aspirin action. We recently found that platelet MRP4 overexpression has a role in reducing aspirin action in patients after by-pass surgery. Aspirin enhances MRP4-mRNA levels in rat liver and drug administration transcriptionally regulates MRP4 gene expression through peroxisome proliferator-activated receptor-α (PPARα). Methods The effects induced by aspirin or PPARα agonist (WY14643) on MRP4 modulation were evaluated in vitro in a human megakaryoblastic DAMI cell line, in megakaryocytes (MKs) and in platelets obtained from human haematopoietic progenitor cell (HPC) cultures, and in vivo platelets obtained from aspirin treated healthy volunteers (HV). Results In DAMI cells, aspirin and WY14643 treatment induced a significant increase in MRP4 and PPARα expression. In human MKs grown in the presence of either aspirin or WY14643, MRP4 and PPARα-mRNA were higher than in control cultures and derived platelets showed an enhancement in MRP4 protein expression. The ability of aspirin to modulate MRP4 expression in MKs and to transfer it to platelets was also confirmed in vivo. In fact, we found the highest MRP4 mRNA and protein expression in platelets obtained from HV after 15 days' aspirin treatment. Conclusions The present study provides evidence, for the first time, that aspirin treatment affects the platelet protein pattern through MK genomic modulation. This work represents an innovative and attractive approach, useful both to identify patients less sensitive to aspirin and to improve pharmacological treatment in cardiovascular high-risk patients. PMID:24902864
Ostertag, Luisa M; O'Kennedy, Niamh; Horgan, Graham W; Kroon, Paul A; Duthie, Garry G; de Roos, Baukje
2011-11-01
Bioactive polyphenols from fruits, vegetables, and beverages have anti-platelet effects and may thus affect the development of cardiovascular disease. We screened the effects of 26 low molecular weight phenolic compounds on two in vitro measures of human platelet function. After platelets had been incubated with one of 26 low molecular weight phenolic compounds in vitro, collagen-induced human platelet aggregation and in vitro TRAP-induced P-selectin expression (as marker of platelet activation) were assessed. Incubation of platelet-rich plasma from healthy volunteers with 100 μmol/L hippuric acid, pyrogallol, catechol, or resorcinol significantly inhibited collagen-induced platelet aggregation (all p<0.05; n≥15). Incubation of whole blood with concentrations of 100 μmol/L salicylic acid, p-coumaric acid, caffeic acid, ferulic acid, 4-hydroxyphenylpropionyl glycine, 5-methoxysalicylic acid, and catechol significantly inhibited TRAP-induced surface P-selectin expression (all p<0.05; n=10). Incubation with lower concentrations of phenolics affected neither platelet aggregation nor activation. As concentrations of 100 μmol/L are unlikely to be reached in the circulation, it is doubtful whether consumption of dietary phenolics in nutritionally attainable amounts plays a major role in inhibition of platelet activation and aggregation in humans. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of delayed laboratory processing on platelet serotonin levels.
Sanner, Jennifer E; Frazier, Lorraine; Udtha, Malini
2013-01-01
Despite the availability of established guidelines for measuring platelet serotonin, these guidelines may be difficult to follow in a hospital setting where time to processing may vary from sample to sample. The purpose of this study was to evaluate the effect of the time to processing of human blood samples on the stability of the enzyme-linked immunosorbent assay (ELISA) for the determination of platelet serotonin levels in human plasma. Human blood samples collected from a convenience sample of eight healthy volunteers were analyzed to determine platelet serotonin levels from plasma collected in ethylene diamine tetra acetic acid (EDTA) tubes and stored at 4°C for 3 hr, 5 hr, 8 hr, and 12 hr. Refrigeration storage at 4°C for 3 hr, 5 hr, 8 hr, and 12 hr altered the platelet serotonin measurement when compared to immediate processing. The bias for the samples stored at 4°C for 3 hr was 102.3 (±217.39 ng/10(9) platelets), for 5 hr was 200.1 (±132.76 ng/10(9) platelets), for 8 hr was 146.9 (±221.41 ng/10(9) platelets), and for 12 hr was -67.6 (±349.60 ng/10(9) platelets). Results from this study show that accurate measurement of platelet serotonin levels is dependent on time to processing. Researchers should therefore follow a standardized laboratory guideline for obtaining immediate platelet serotonin levels after blood sample collection.
Effect of platelet lysate on human cells involved in different phases of wound healing.
Barsotti, Maria Chiara; Chiara Barsotti, Maria; Losi, Paola; Briganti, Enrica; Sanguinetti, Elena; Magera, Angela; Al Kayal, Tamer; Feriani, Roberto; Di Stefano, Rossella; Soldani, Giorgio
2013-01-01
Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing.
Effect of Platelet Lysate on Human Cells Involved in Different Phases of Wound Healing
Briganti, Enrica; Sanguinetti, Elena; Magera, Angela; Al Kayal, Tamer; Feriani, Roberto; Di Stefano, Rossella; Soldani, Giorgio
2013-01-01
Background Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Methodology/Principal Findings Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. Conclusion/Significance These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing. PMID:24386412
Transcriptomic analysis of the ion channelome of human platelets and megakaryocytic cell lines.
Wright, Joy R; Amisten, Stefan; Goodall, Alison H; Mahaut-Smith, Martyn P
2016-08-01
Ion channels have crucial roles in all cell types and represent important therapeutic targets. Approximately 20 ion channels have been reported in human platelets; however, no systematic study has been undertaken to define the platelet channelome. These membrane proteins need only be expressed at low copy number to influence function and may not be detected using proteomic or transcriptomic microarray approaches. In our recent work, quantitative real-time PCR (qPCR) provided key evidence that Kv1.3 is responsible for the voltage-dependent K+ conductance of platelets and megakaryocytes. The present study has expanded this approach to assess relative expression of 402 ion channels and channel regulatory genes in human platelets and three megakaryoblastic/erythroleukaemic cell lines. mRNA levels in platelets are low compared to other blood cells, therefore an improved method of isolating platelets was developed. This used a cocktail of inhibitors to prevent formation of leukocyte-platelet aggregates, and a combination of positive and negative immunomagnetic cell separation, followed by rapid extraction of mRNA. Expression of 34 channel-related transcripts was quantified in platelets, including 24 with unknown roles in platelet function, but that were detected at levels comparable to ion channels with established roles in haemostasis or thrombosis. Trace expression of a further 50 ion channel genes was also detected. More extensive channelomes were detected in MEG-01, CHRF-288-11 and HEL cells (195, 185 and 197 transcripts, respectively), but lacked several channels observed in the platelet. These "channelome" datasets provide an important resource for further studies of ion channel function in the platelet and megakaryocyte.
Constitutive modeling of the rheological behavior of platelet suspensions
NASA Astrophysics Data System (ADS)
Sommer, Drew E.
Compression molding of chopped fiber composites is used to manufacture complex 3D geometries with high fiber volume fractions of 50-60% and long, discontinuous fibers and thermoplastic matrices. When prepreg, chopped into platelets, is used as a charge material, the individual platelets remain intact during the molding process and flow relative to one another, as experimental observations show. Heterogeneity of the platelet/resin suspension cannot be considered at the structural scale of molding simulation. Instead, the suspension should be idealized into the homogenized anisotropic and viscous system which obeys the prescribed anisotropic stress-strain rate constitutive relation. The viscosity tensor of the aforementioned constitutive law was analytically evaluated in this work through the representative volume element (RVE) based analysis. An idealized microstructure of platelets was developed to perform such an analysis. The platelets were aligned and arranged in a planar configuration with periodic boundary conditions. Analytic expressions for the effective, anisotropic viscosities were derived by micromechanical analysis for the idealized microstructure of rigid platelets. In this analysis, the load transfer mechanisms and their contribution to the viscosity of the platelet assembly were investigated. The kinematic assumption of linear velocity distributions consistent with the mechanism of shearing rate was adopted. While the platelets were assumed to be rigid, the resin was taken as an incompressible, isotropic fluid which provided for the platelet-to-platelet load transfer. Strain rate and temperature dependence were included by modeling the polymer matrix as a Carreau fluid. Shear strain in the resin was developed due to the relative motion of adjacent platelets. The resin shear strain rate was expressed in terms of the corresponding platelet velocities. Equilibrium of the platelet was used to relate the applied far-field stress to the average strain rate through the viscosity of neat resin and geometric parameters of the RVE constituents. When combined, these parameters defined the effective homogenized viscosities of an anisotropic system equivalent to the platelet/resin suspension. The expressions for the effective viscosities were found to be dependent on the platelet geometry, stack geometry, the platelet volume fraction and the viscosity of neat resin. In this study, the platelet volume fraction was defined as the volume of platelets within the RVE divided by the RVE volume and discriminated from the fiber volume fraction within a platelet. An approach using the "viscous solid analogy'' was developed to leverage structural finite element methods to predict homogenized viscosities of the platelet assembly. A finite element model was constructed to develop a comparison to the analytic expressions for rigid platelets and include the effect of deformation within the platelets. To compare with the analytic expressions, large viscosities were prescribed for the platelet to approximate rigidity. The properties of the deformable platelets were determined by an approach proposed by Pipes and co-workers. The assumption of rigidity was found to be approximate except in the case of elongation along the fiber direction. A laminate analogy was implemented as a homogenization tool to include the effect of orientation on the apparent viscosities of a multi-axial platelet assembly. The aligned platelet suspension was used to predict the `pseudo-ply' properties. Pseudo-laminates, which were assumed to approximate the microstructure, were developed. The effective `pseudo-laminate' viscosities were predicted with classical lamination theory.
Regulating billions of blood platelets: glycans and beyond
Grozovsky, Renata; Giannini, Silvia; Falet, Hervé
2015-01-01
The human body produces and removes 1011 platelets daily to maintain a normal steady state platelet count. Platelet production must be regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Multifaceted and complex mechanisms control platelet production and removal in physiological and pathological conditions. This review will focus on different mechanisms of platelet senescence and clearance with specific emphasis on the role of posttranslational modifications. It will also briefly address platelet transfusion and the role of glycans in the clearance of stored platelets. PMID:26330242
Human recombinant alkaline phosphatase inhibits ex vivo platelet activation in humans.
Tunjungputri, Rahajeng N; Peters, Esther; van der Ven, André; de Groot, Philip G; de Mast, Quirijn; Pickkers, Peter
2016-11-30
Sepsis-associated acute kidney injury (AKI) is associated with high morbidity and mortality. Excessive platelet activation contributes to AKI through the formation of microthrombi and amplification of systemic inflammation. Two phase II trials demonstrated that bovine-intestinal alkaline phosphatase (AP) improved renal function in critically ill patients with sepsis-associated AKI. In this study, we characterised the platelet-inhibiting effects of a human recombinant AP. Whole blood and platelet-rich plasma (PRP) of healthy volunteers (n=6) was pre-treated ex vivo with recAP, whereafter platelet reactivity to ADP, collagen-related peptide (CRP-XL) and Pam3CSK4 was determined by flow cytometry. RecAP (40 U/ml) reduced the platelet reactivity to ADP (inhibition with a median of 47 %, interquartile range 43-49 %; p<0.001) and tended to reduce platelet reactivity to CRP-XL (9 %, 2-25 %; p=0.08) in whole blood. The platelet-inhibiting effects of recAP were more pronounced in PRP both for ADP- (64 %, 54-68 %; p=0.002) and CRP-XL-stimulated samples (60 %, 46-71 %; p=0.002). RecAP rapidly converted ADP into adenosine, whereas antagonism of the A2A adenosine receptor partially reversed the platelet inhibitory effects of recAP. Platelets of septic shock patients (n=5) showed a 31% (22-34%; p=0.03) more pronounced reactivity compared to healthy volunteers, and this was completely reversed by recAP treatment. In conclusion, we demonstrate that recAP inhibits ex vivo human platelet activation through dephosphorylation of ADP and formation of adenosine as its turnover product. RecAP is able to reverse the platelet hyperreactivity present in septic shock patients. These effects may contribute to the beneficial effects of recAP as a new therapeutic candidate for sepsis-associated AKI.
Jalowiec, Jagoda M.; D'Este, Matteo; Bara, Jennifer Jane; Denom, Jessica; Menzel, Ursula; Alini, Mauro; Herrmann, Marietta
2016-01-01
Platelet-rich plasma (PRP) has been used for different applications in human and veterinary medicine. Many studies have shown promising therapeutic effects of PRP; however, there are still many controversies regarding its composition, properties, and clinical efficacy. The aim of this study was to evaluate the influence of different platelet concentrations on the rheological properties and growth factor (GF) release profile of PRP-gels. In addition, the viability of incorporated bone marrow-derived human mesenchymal stem cells (MSCs) was investigated. PRP (containing 1000 × 103, 2000 × 103, and 10,000 × 103 platelets/μL) was prepared from human platelet concentrates. Platelet activation and gelification were achieved by addition of human thrombin. Viscoelastic properties of PRP-gels were evaluated by rheological studies. The release of GFs and inflammatory proteins was measured using a membrane-based protein array and enzyme-linked immunosorbent assay. MSC viability and proliferation in PRP-gels were assessed over 7 days by cell viability staining. Cell proliferation was examined using DNA quantification. Regardless of the platelet content, all tested PRP-gels showed effective cross-linking. A positive correlation between protein release and the platelet concentration was observed at all time points. Among the detected proteins, the chemokine CCL5 was the most abundant. The greatest release appeared within the first 4 h after gelification. MSCs could be successfully cultured in PRP-gels over 7 days, with the highest cell viability and DNA content found in PRP-gels with 1000 × 103 platelets/μL. The results of this study suggest that PRP-gels represent a suitable carrier for both cell and GF delivery for tissue engineering. Notably, a platelet concentration of 1000 × 103 platelets/μL appeared to provide the most favorable environment for MSCs. Thus, the platelet concentration is an important consideration for the clinical application of PRP-gels. PMID:26467221
Stapled peptides as a new technology to investigate protein-protein interactions in human platelets.
Iegre, Jessica; Ahmed, Niaz S; Gaynord, Josephine S; Wu, Yuteng; Herlihy, Kara M; Tan, Yaw Sing; Lopes-Pires, Maria E; Jha, Rupam; Lau, Yu Heng; Sore, Hannah F; Verma, Chandra; O' Donovan, Daniel H; Pugh, Nicholas; Spring, David R
2018-05-28
Platelets are blood cells with numerous crucial pathophysiological roles in hemostasis, cardiovascular thrombotic events and cancer metastasis. Platelet activation requires the engagement of intracellular signalling pathways that involve protein-protein interactions (PPIs). A better understanding of these pathways is therefore crucial for the development of selective anti-platelet drugs. New strategies for studying PPIs in human platelets are required to overcome limitations associated with conventional platelet research methods. For example, small molecule inhibitors can lack selectivity and are often difficult to design and synthesise. Additionally, development of transgenic animal models is costly and time-consuming and conventional recombinant techniques are ineffective due to the lack of a nucleus in platelets. Herein, we describe the generation of a library of novel, functionalised stapled peptides and their first application in the investigation of platelet PPIs. Moreover, the use of platelet-permeable stapled Bim BH3 peptides confirms the part of Bim in phosphatidyl-serine (PS) exposure and reveals a role for the Bim protein in platelet activatory processes. Our work demonstrates that functionalised stapled peptides are a complementary alternative to conventional platelet research methods, and could make a significant contribution to the understanding of platelet signalling pathways and hence to the development of anti-platelet drugs.
Effect of ticlopidine ex vivo on platelet intracellular calcium mobilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derian, C.K.; Friedman, P.A.
1988-04-01
The antiplatelet compound ticlopidine exerts its potent inhibitory activity through an as yet undetermined mechanism(s). The goal of this study was to determine the effect, if any, of ticlopidine ex vivo on platelet calcium mobilization. Ticlopidine inhibited ADP-induced platelet aggregation by 50-80%. In the presence of 1 mM EGTA, ticlopidine inhibited ADP- and thrombin-stimulated increases in (Ca2+)i in fura-2 loaded platelets. We evaluated further the effect of ticlopidine on calcium mobilization by examining both agonist-stimulated formation of inositol trisphosphate in intact platelets and the ability of inositol trisphosphate to release /sup 45/Ca from intracellular sites in permeabilized cells. We showmore » here that while ticlopidine significantly affected agonist-induced intracellular calcium mobilization in intact platelets, the drug was without effect on agonist-stimulated formation of inositol trisphosphate in intact platelets and on inositol trisphosphate-induced /sup 45/Ca release in saponin-permeabilized platelets. Our study demonstrates that ticlopidine exerts at least part of its effect via inhibition of intracellular calcium mobilization but that its site of action remains to be determined.« less
Jolivet-Reynaud, C; Launay, J M; Alouf, J E
1988-04-01
The lytic effect of Clostridium perfringens delta toxin was investigated on goat, human, rabbit, and guinea pig platelets. In contrast to erythrocytes from the latter three species, which are insensitive to the toxin, the platelets were equally lysed by the same amount of toxin. These results suggest the presence of GM2 or GM2-like ganglioside(s) as a specific recognition site of the toxin on platelet plasmic membrane as previously established for sensitive erythrocytes. Plasmic membrane damage of human platelets was evidenced by the release of entrapped alpha-[14C]aminoisobutyric acid used as a cytoplasmic marker. The specific binding of hemolytically active 125I-delta toxin by human and rabbit platelets was practically identical, dose dependent, and inhibitable by GM2. Labeled toxin was also bound by various subcellular organelles separated from rabbit platelets except the 5-hydroxytryptamine (5-HT)-containing dense bodies, suggesting the absence or inaccessibility of GM2 on the surface of the latter organelles. This result correlates with the low amounts of 5-[3H]HT liberated after platelet challenge with delta toxin whereas this mediator was massively liberated upon lysis by the sulfhydryl-activated toxin alveolysin. The levels of M and P forms of phenol sulfotransferase (PST), involved in 5-HT catabolism, were determined in human platelet lysates after challenge with delta toxin, alveolysin, and other disruptive treatments. The low PST-M activities detected after lysis by delta toxin suggest that this isoenzyme is very likely associated to dense bodies in contrast to PST-P which is cytoplasmic. Platelet lysis by the toxin allows easy separation of these organelles.
Dynamic piezoresistive response of hybrid nanocomposites
NASA Astrophysics Data System (ADS)
Gbaguidi, Audrey; Anees, Muhammad; Namilae, Sirish; Kim, Daewon
2017-04-01
Hybrid nanocomposites with carbon nanotubes and graphitic platelets as fillers are known to exhibit remarkable electrical and mechanical properties with many potential strain and damage sensing applications. In this work, we fabricate hybrid nanocomposites with carbon nanotube sheet and coarse graphite platelets as fillers with epoxy matrix. We then examine the electromechanical behavior of these nanocomposites under dynamic loading. The electrical resistivity responses of the nanocomposites are measured in frequency range of 1 Hz to 50 Hz with different levels of induced strains. Axial cycling loading is applied using a uniaxial electrodynamic shaker, and transverse loading is applied on end-clamped specimen using modified speakers. In addition, a dynamic mechanical analysis of nanocomposite specimen is performed to characterize the thermal and dynamic behavior of the nanocomposite. Our results indicate that these hybrid nanocomposites exhibit a distinct piezoresistive response under a wide range of dynamic loading conditions, which can be beneficial for potential sensing applications.
NASA Astrophysics Data System (ADS)
Posokhov, Yevgen
2016-09-01
Environment-sensitive fluorescent probes were used for the spectroscopic visualization of pathological changes in human platelet membranes during cerebral atherosclerosis. It has been estimated that the ratiometric probes 2-(2‧-hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole and 2-phenyl-phenanthr[9,10]oxazole can detect changes in the cholesterol-to-phospholipids molar ratio in human platelet membranes during the disease.
Malinin, Alex; Pokov, Alex; Spergling, Malcolm; Defranco, Anthony; Schwartz, Kenneth; Schwartz, Dianne; Mahmud, Ehtisham; Atar, Dan; Serebruany, Victor
2007-01-01
Clopidogrel inhibits platelet P2Y12 ADP receptors, while ADP, as an inductor of aggregation, stimulates both P2Y12 and P2Y1 platelet receptors. Despite a clinical loading dose routine with clopidogrel, some patients still experience coronary stent thrombosis suggesting persistent platelet activation. The VerifyNow-P2Y12 is a rapid assay that test platelet activity over 3 min and uses of the combination of ADP and prostaglandin E1 (PGE1) to directly measure the effects of clopidogrel on the P2Y12 receptor. ADP is used to maximally activate the platelets by binding to the P2Y1 and P2Y12 platelet receptors, while PGE1 is used to suppress the ADP-induced P2Y1-mediated increase in intracellular calcium levels. The VERIfy Thrombosis risk ASsessment (VERITAS) was a prospective study designed to measure platelet response to clopidogrel therapy in subjects with multiple risk factors or history of vascular disease using this novel point-of-care assay. 166 participants were enrolled in 4 participating sites. Data from 147 participants were analyzed after exclusion of 19 patients due to protocol violations. Platelets were assessed twice at baseline (before clopidogrel) and at 24 h post-loading 450 mg (110 participants) or 7 days after chronic clopidogrel treatment (75 mg/day) (37 patients). All participants received aspirin 81-325 mg for at least 2 days before the study enrollment. Results from the VerifyNow-P2Y12 assay are reported in P2Y12 reaction units (PRU). Clopidogrel therapy resulted in a mean 64.0+/-25.3% PRU reduction. No participant reached PRU inhibition below 10% of baseline. Distribution of PRU values for the VerifyNow-P2Y12 assay shows a separation from baseline to post-clopidogrel assay values with some overlap due to high inter-individual variations in response. VerifyNow-P2Y12 is a reliable, fast and sensitive device suitable for monitoring of platelet inhibition during clopidogrel therapy.
Mohareb, Mina W; Abd Elghany, Mohamed; Sabry, Nirmeen A; Farid, Samar F
2016-08-01
High platelet reactivity (HPR) and suboptimal response to dual antiplatelet therapy (DAPT) may explain high recurrent rates of ischemic events in type 1 and 2 diabetes mellitus (DM) patients undergoing percutaneous coronary intervention (PCI). The aim of this study was to determine the effect of diabetes mellitus on clopidogrel activity in cardiac patients undergoing PCI. This is an observational study. Patients were categorized according to DM status into diabetic group (N.=30) and non-diabetic group (N.=33). All patients received clopidogrel in a loading dose of 600 mg before PCI. Platelet function was assessed using light transmittance aggregometry (LTA) technique at baseline (before clopidogrel administration), 24 hour after clopidogrel loading dose administration and 7-10 days after PCI. All patients were followed up for at least one year after PCI for recurrence of acute cardiac events. There was no statistically significant difference between the two groups with respect to 10 µm adenosine diphosphate (ADP)-induced platelet aggregation measured at baseline (P=0.64), 24 hours after PCI (P=0.874), and 7-10 days after PCI (0.643). Diabetics were not significantly different from non-diabetics in terms of post-PCI acute stent thrombosis (P=0.945), sub-acute stent thrombosis (P=0.945), unstable angina (P=0.29) and cardiac death (P=0.64). There was a statistically significant difference between patients with and without post-PCI acute events regarding ADP aggregation measured 24 hours and 7-10 days after PCI. The use of a high loading dose of clopidogrel (600 mg) in patients undergoing elective PCI can overcome the significant increase in post-PCI platelet aggregation and rate of acute cardiac events induced by diabetes mellitus as co-morbidity in those patients.
Platelet bioreactor: accelerated evolution of design and manufacture.
Thon, Jonathan N; Dykstra, Brad J; Beaulieu, Lea M
2017-07-01
Platelets, responsible for clot formation and blood vessel repair, are produced by megakaryocytes in the bone marrow. Platelets are critical for hemostasis and wound healing, and are often provided following surgery, chemotherapy, and major trauma. Despite their importance, platelets today are derived exclusively from human volunteer donors. They have a shelf life of just five days, making platelet shortages common during long weekends, civic holidays, bad weather, and during major emergencies when platelets are needed most. Megakaryocytes in the bone marrow generate platelets by extruding long cytoplasmic extensions called proplatelets through gaps/fenestrations in blood vessels. Proplatelets serve as assembly lines for platelet production by sequentially releasing platelets and large discoid-shaped platelet intermediates called preplatelets into the circulation. Recent advances in platelet bioreactor development have aimed to mimic the key physiological characteristics of bone marrow, including extracellular matrix composition/stiffness, blood vessel architecture comprising tissue-specific microvascular endothelium, and shear stress. Nevertheless, how complex interactions within three-dimensional (3D) microenvironments regulate thrombopoiesis remains poorly understood, and the technical challenges associated with designing and manufacturing biomimetic microfluidic devices are often under-appreciated and under-reported. We have previously reviewed the major cell culture, platelet quality assessment, and regulatory roadblocks that must be overcome to make human platelet production possible for clinical use [1]. This review builds on our previous manuscript by: (1) detailing the historical evolution of platelet bioreactor design to recapitulate native platelet production ex vivo, and (2) identifying the associated challenges that still need to be addressed to further scale and validate these devices for commercial application. While platelets are among the first cells whose ex vivo production is spearheading major engineering advancements in microfluidic design, the resulting discoveries will undoubtedly extend to the production of other human tissues. This work is critical to identify the physiological characteristics of relevant 3D tissue-specific microenvironments that drive cell differentiation and elaborate upon how these are disrupted in disease. This is a burgeoning field whose future will define not only the ex vivo production of platelets and development of targeted therapies for thrombocytopenia, but the promise of regenerative medicine for the next century.
Effect of cocoa products and flavanols on platelet aggregation in humans: a systematic review.
Peluso, Ilaria; Palmery, Maura; Serafini, Mauro
2015-07-01
Previous evidence suggested an active role of cocoa products and flavanols in modulating platelet aggregation. However, cocoa flavanols are characterized by a low bioavailability that can deeply affect their presence in biological fluids and raise questions on their biological effect in humans. We performed a systematic search on Medline, Embase, Cochrane and ProQuest databases, until April 2015, on the effect of cocoa products on platelet aggregation in human intervention studies. We identified 13 interventions, of which only five involved repeated administration. Different effects were observed on the basis of the platelet aggregation test used, whereas neither a longer duration of treatment nor a higher dose was associated with a higher inhibition of platelet aggregation. In conclusion, the reviewed results suggest that consumption of cocoa products in bolus administration positively affects platelet aggregation in both healthy subjects and diseased patients. On the other hand, more evidence is required in order to assess the effect of long-term cocoa product ingestion and to identify the bioactive components involved.
Ikei, Kenneth N.; Yeung, Jennifer; Apopa, Patrick L.; Ceja, Jesús; Vesci, Joanne; Holinstat, Michael
2012-01-01
Human platelet-type 12-lipoxygenase (12-LOX) has recently been shown to play an important role in regulation of human platelet function by reacting with arachidonic acid (AA). However, a number of other fatty acids are present on the platelet surface that, when cleaved from the phospholipid, can be oxidized by 12-LOX. We sought to characterize the substrate specificity of 12-LOX against six essential fatty acids: AA, dihomo-γ-linolenic acid (DGLA), eicosapentaenoic acid (EPA), α-linolenic acid (ALA), eicosadienoic acid (EDA), and linoleic acid (LA). Three fatty acids were comparable substrates (AA, DGLA, and EPA), one was 5-fold slower (ALA), and two showed no reactivity with 12-LOX (EDA and LA). The bioactive lipid products resulting from 12-LOX oxidation of DGLA, 12-(S)-hydroperoxy-8Z,10E,14Z-eicosatrienoic acid [12(S)-HPETrE], and its reduced product, 12(S)-HETrE, resulted in significant attenuation of agonist-mediated platelet aggregation, granule secretion, αIIbβ3 activation, Rap1 activation, and clot retraction. Treatment with DGLA similarly inhibited PAR1-mediated platelet activation as well as platelet clot retraction. These observations are in surprising contrast to our recent work showing 12(S)-HETE is a prothrombotic bioactive lipid and support our hypothesis that the overall effect of 12-LOX oxidation of fatty acids in the platelet is dependent on the fatty acid substrates available at the platelet membrane. PMID:22984144
A Human Platelet Calcium Calculator Trained by Pairwise Agonist Scanning
Lee, Mei Yan; Diamond, Scott L.
2015-01-01
Since platelet intracellular calcium mobilization [Ca(t)]i controls granule release, cyclooxygenase-1 and integrin activation, and phosphatidylserine exposure, blood clotting simulations require prediction of platelet [Ca(t)]i in response to combinatorial agonists. Pairwise Agonist Scanning (PAS) deployed all single and pairwise combinations of six agonists (ADP, convulxin, thrombin, U46619, iloprost and GSNO used at 0.1, 1, and 10xEC50; 154 conditions including a null condition) to stimulate platelet P2Y1/P2Y12 GPVI, PAR1/PAR4, TP, IP receptors, and guanylate cyclase, respectively, in Factor Xa-inhibited (250 nM apixaban), diluted platelet rich plasma that had been loaded with the calcium dye Fluo-4 NW. PAS of 10 healthy donors provided [Ca(t)]i data for training 10 neural networks (NN, 2-layer/12-nodes) per donor. Trinary stimulations were then conducted at all 0.1x and 1xEC50 doses (160 conditions) as was a sampling of 45 higher ordered combinations (four to six agonists). The NN-ensemble average was a calcium calculator that accurately predicted [Ca (t)]i beyond the single and binary training set for trinary stimulations (R = 0.924). The 160 trinary synergy scores, a normalized metric of signaling crosstalk, were also well predicted (R = 0.850) as were the calcium dynamics (R = 0.871) and high-dimensional synergy scores (R = 0.695) for the 45 higher ordered conditions. The calculator even predicted sequential addition experiments (n = 54 conditions, R = 0.921). NN-ensemble is a fast calcium calculator, ideal for multiscale clotting simulations that include spatiotemporal concentrations of ADP, collagen, thrombin, thromboxane, prostacyclin, and nitric oxide. PMID:25723389
Kadan, M; Doğanci, S; Yildirim, V; Özgür, G; Erol, G; Karabacak, K; Avcu, F
2015-10-01
The role of nitrates and nitric oxide on platelet functions has obtained an increasing attention with respect to their potential effects on cardiovascular disorders. In this study we aimed to analyze the effect of sodium nitrite on platelet functions in human platelets. This in vitro study was designed to show the effect of sodium nitrite on platelet functions in seven healthy volunteers. Blood samples were centrifuged to prepare platelet rich plasma and platelet poor plasma. Platelet rich plasma was diluted with the platelet poor plasma to have a final count of 300,000 ± 25,000 platelets. Platelet rich plasma was incubated with six different increasing doses (from 10 μM to 5 mM) of sodium nitrite for 1 hour at 37°C. Then stimulating agents including collagen (3 μg ml-1), adenosine diphosphate (10 μM), and epinephrine (10 μM) were added to the cuvette. Changes in light transmission were observed for 10 minutes. In addition spontaneous aggregation were performed in control group with all aggregating agents separately. Effect of sodium nitrite on agonist-induced platelet aggregation depends on the concentration of sodium nitrite. Compared with control group, agonist-induced platelet aggregations were significantly suppressed by sodium nitrite at the concentration of 5, 1.0 and 0.5 mM. Our results suggested that sodium nitrite has inhibitory effects in vitro on platelet aggregation in a dose-dependent manner.
A critical role for the regulation of Syk from agglutination to aggregation in human platelets.
Shih, Chun-Ho; Chiang, Tin-Bin; Wang, Wen-Jeng
2014-01-10
Agglucetin, a tetrameric glycoprotein (GP) Ibα agonist from Formosan Agkistrodon acutus venom, has been characterized as an agglutination inducer in human washed platelets (WPs). In platelet-rich plasma (PRP), agglucetin dramatically elicits a biphasic response of agglutination and subsequent aggregation. For clarifying the intracellular signaling events from agglutination to aggregation in human platelets, we examined the essential signaling molecules involved through the detection of protein tyrosine phosphorylation (PTP). In WPs, an anti-GPIbα monoclonal antibody (mAb) AP1, but not a Src kinase inhibitor PP1, completely inhibited agglucetin-induced agglutination. However, PP1 but not AP1 had a potent suppression on platelet aggregation by a GPVI activator convulxin. The PTP analyses showed agglucetin alone can cause a weak pattern involving sequential phosphorylation of Lyn/Fyn, Syk, SLP-76 and phospholipase Cγ2 (PLCγ2). Furthermore, a Syk-selective kinase inhibitor, piceatannol, significantly suppressed the aggregating response in agglucetin-activated PRP. Analyzed by flow cytometry, the binding capacity of fluorophore-conjugated PAC-1, a mAb recognizing activated integrin αIIbβ3, was shown to increase in agglucetin-stimulated platelets. Again, piceatannol but not PP1 had a concentration-dependent suppression on agglucetin-induced αIIbβ3 exposure. Moreover, the formation of signalosome, including Syk, SLP-76, VAV, adhesion and degranulation promoting adapter protein (ADAP) and PLCγ2, are required for platelet aggregation in agglucetin/fibrinogen-activated platelets. In addition, GPIbα-ligation via agglucetin can substantially promote the interactions between αIIbβ3 and fibrinogen. Therefore, the signal pathway of Lyn/Fyn/Syk/SLP-76/ADAP/VAV/PLCγ2/PKC is sufficient to trigger platelet aggregation in agglucetin/fibrinogen-pretreated platelets. Importantly, Syk may function as a major regulator for the response from GPIbα-initiated agglutination to integrin αIIbβ3-dependent aggregation in human platelets. Copyright © 2013 Elsevier Inc. All rights reserved.
A Novel Type of Macrothrombocytopenia Associated with a Defect in α2,3-Sialylation
Jones, Claire; Denecke, Jonas; Sträter, Ronald; Stölting, Torsten; Schunicht, Yvonne; Zeuschner, Dagmar; Klumperman, Judith; Lefeber, Dirk J.; Spelten, Oliver; Zarbock, Alexander; Kelm, Sørge; Strenge, Karen; Haslam, Stuart M.; Lühn, Kerstin; Stahl, Dorothea; Gentile, Luca; Schreiter, Thomas; Hilgard, Philip; Beck-Sickinger, Annette G.; Marquardt, Thorsten; Wild, Martin K.
2011-01-01
We describe a novel type of human thrombocytopenia characterized by the appearance of giant platelets and variable neutropenia. Searching for the molecular defect, we found that neutrophils had strongly reduced sialyl-Lewis X and increased Lewis X surface expression, pointing to a deficiency in sialylation. We show that the glycosylation defect is restricted to α2,3-sialylation and can be detected in platelets, neutrophils, and monocytes. Platelets exhibited a distorted structure of the open canalicular system, indicating defective platelet generation. Importantly, patient platelets, but not normal platelets, bound to the asialoglycoprotein receptor (ASGP-R), a liver cell-surface protein that removes desialylated thrombocytes from the circulation in mice. Taken together, this is the first type of human thrombocytopenia in which a specific defect of α2,3-sialylation and an induction of platelet binding to the liver ASGP-R could be detected. PMID:21864493
Martini, Wenjun Z; Rodriguez, Cassandra M; Deguzman, Rodolfo; Guerra, Jessica B; Martin, Angela K; Pusateri, Anthony E; Cap, Andrew P; Dubick, Michael A
2016-05-01
Ibuprofen is commonly used by warfighters in the deployed environment. This study investigated its dose effects on in vitro coagulation in human and pig blood. Blood samples were collected from 6 normal volunteers and 6 healthy pigs and processed to make platelet-adjusted samples (100 × 10(3)/μL, common transfusion trigger in trauma). Ibuprofen was added to the samples at concentrations of 0 μg/mL (control), the concentration from the highest recommended oral dose (163 μg/mL, 1×), and 2×, 4×, 8×, 10×, 12×, 16×, and 20×. Platelet aggregation by Chrono-Log aggregometer and coagulation by rotational thrombelastogram (Rotem) were assessed at 15 minutes after the addition of ibuprofen. A robust inhibition of ibuprofen on arachidonic acid-induced platelet aggregation was observed at all doses tested in human or pig blood. Collagen-stimulated platelet aggregation was inhibited starting at 1× in human blood and 4× in pig blood. Rotem measurements were similarly compromised in pig and human blood starting at 16×, except clot formation time was prolonged at 1× in human blood (all p < 0.05). Ibuprofen inhibited platelet aggregation at recommended doses, and compromised coagulation at higher doses. Human blood was more sensitive to ibuprofen inhibition. Further effort is needed to investigate ibuprofen dose responses on coagulation in vivo. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
Della Corte, Anna; Maugeri, Norma; Pampuch, Agnieszka; Cerletti, Chiara; de Gaetano, Giovanni; Rotilio, Domenico
2008-02-01
Thrombin is an agonist inducing platelet activation. We combined two-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry (MALDI-TOF MS) to analyse differentially expressed proteins secreted from thrombin-stimulated platelets. Human washed platelets, from healthy volunteers, were stimulated with thrombin 0.5 U/ml at 37 degrees C without stirring and the secreted proteins were resolved by 2D-DIGE. By image analysis, 1094 spots were detected in the 2D gel. The spots whose mean intensity showed at least a five-fold change intensity increase or decrease in the thrombin-activated platelet gel in comparison with unstimulated control were digested by trypsin and subjected to MALDI-TOF MS analysis. Peptides from mass spectra of in-gel digest samples were matched against available databases, using the Mascot search engine (Matrix Science) for peptide mass fingerprint. In the activated platelet secretome, transferrin, glutathione-transferase, WD repeat protein, ER-60, thrombospondin-1 precursor and thrombospondin were the most abundant. Also lamin A, a nuclear protein, not previously identified in platelets, appeared to be released. The novel strategy to combine 2D-DIGE with MALDI-TOF MS is a useful approach for a quantitative analysis of the effect of thrombin on the secretome profile of human platelets.
Measurement of adhesion of human platelets in plasma to protein surfaces in microplates.
Eriksson, Andreas C; Whiss, Per A
2005-01-01
Platelet adhesion is an initial, crucial and complex event for inhibiting blood loss upon vascular injury. Activation and adhesion of platelets also play a fundamental role in the development of thrombosis. A combination of exposed extracellular matrix proteins in the vascular wall and release of activating compounds from the participating cells activate the platelets. New potent anti-platelet agents are in progress but there is a shortage of methods that measure the concerted action of adhesive surfaces and soluble compounds upon platelet adhesion in vitro. The aim of this work was to develop a method to measure adhesion of platelets in plasma with standard laboratory equipment. Platelet-rich plasma from healthy humans was used in studies to optimise the conditions of the present assay. Different proteins were coated in microplate wells and various soluble platelet activators and inhibitors were added to establish the ability of the current method to detect increased as well as decreased platelet adhesion. The amount of platelet adhesion was measured by the reaction between p-nitrophenyl phosphate and the intracellular enzyme acid phosphatase. Adhesion of platelets in plasma to microplate wells coated with albumin, collagen, fibrinogen and activated plasma showed significant surface dependency. The known soluble platelet activators adenosine diphosphate, adrenaline and ristocetin enhanced the levels of adhesion. Available anti-platelet agents such as prostacyclin, forskolin, acetylsalicylic acid and RGD containing peptides caused dose-dependent inhibition of platelet adhesion. This report describes a further development of a previously described method and offers the advantage to use platelets in plasma to measure platelet adhesion to protein surfaces. The assay is simple and flexible and is suitable in basic research for screening and characterisation of platelet adhesion responsiveness.
NOD2 Receptor is Expressed in Platelets and Enhances Platelet Activation and Thrombosis
Zhang, Si; Zhang, Shenghui; Hu, Liang; Zhai, Lili; Xue, Ruyi; Ye, Jianqin; Chen, Leilei; Cheng, Guanjun; Mruk, Jozef; Kunapuli, Satya P.; Ding, Zhongren
2015-01-01
Background Pattern recognition receptor NOD2 (nucleotide binding oligomerization domain 2) is well investigated in immunity, its expression and function in platelets has never been explored. Method and Results Using RT-PCR and Western blot we show that both human and mouse platelets express NOD2, and its agonist MDP induced NOD2 activation as evidenced by receptor dimerization. NOD2 activation potentiates platelet aggregation and secretion induced by low concentration of thrombin or collagen, as well as clot retraction. These potentiating effects of MDP were not seen in platelets from NOD2-deficient mice. Plasma from septic patients also potentiates platelet aggregation induced by thrombin or collagen NOD2-dependently. Using intravital microscopy, we found that MDP administration accelerated in vivo thrombosis in FeCl3-injured mesenteric arteriole thrombosis mouse model. Platelet depletion and transfusion experiments confirmed that NOD2 from platelets contributes to the in vivo thrombosis in mice. NOD2 activation also accelerates platelet-dependent hemostasis. We further found that platelets express RIP2 (receptor-interacting protein 2), and provided evidences suggesting that MAPK and NO/sGC/cGMP/PGK pathways downstream of RIP2 mediate the role of NOD2 in platelets. Finally, MDP stimulates proinflammatory cytokine IL-1β maturation and accumulation in human and mouse platelets NOD2-dependently. Conclusions NOD2 is expressed in platelets and functions in platelet activation and arterial thrombosis, possibly during infection. To our knowledge, this is the first study on NOD-like receptors in platelets which links thrombotic events to inflammation. PMID:25825396
Chen, Wenchun; Druzak, Samuel A; Wang, Yingchun; Josephson, Cassandra D; Hoffmeister, Karin M; Ware, Jerry; Li, Renhao
2017-12-01
Apheresis platelets for transfusion treatment are currently stored at room temperature because after refrigeration platelets are rapidly cleared on transfusion. In this study, the role of von Willebrand factor (VWF) in the clearance of refrigerated platelets is addressed. Human and murine platelets were refrigerated in gas-permeable bags at 4°C for 24 hours. VWF binding, platelet signaling events, and platelet post-transfusion recovery and survival were measured. After refrigeration, the binding of plasma VWF to platelets was drastically increased, confirming earlier studies. The binding was blocked by peptide OS1 that bound specifically to platelet glycoprotein (GP)Ibα and was absent in VWF - / - plasma. Although surface expression of GPIbα was reduced after refrigeration, refrigeration-induced VWF binding under physiological shear induced unfolding of the GPIbα mechanosensory domain on the platelet, as evidenced by increased exposure of a linear epitope therein. Refrigeration and shear treatment also induced small elevation of intracellular Ca 2+ , phosphatidylserine exposure, and desialylation of platelets, which were absent in VWF -/- platelets or inhibited by OS1, which is a monomeric 11-residue peptide (CTERMALHNLC). Furthermore, refrigerated VWF -/- platelets displayed increased post-transfusion recovery and survival than wild-type ones. Similarly, adding OS1 to transgenic murine platelets expressing only human GPIbα during refrigeration improved their post-transfusion recovery and survival. Refrigeration-induced binding of VWF to platelets facilitates their rapid clearance by inducing GPIbα-mediated signaling. Our results suggest that inhibition of the VWF-GPIbα interaction may be a potential strategy to enable refrigeration of platelets for transfusion treatment. © 2017 American Heart Association, Inc.
Human Platelet Lipidomics: Variance, Visualization, Flux, and Fuel.
FitzGerald, Garret A
2016-05-10
The cardioprotection afforded by low-dose aspirin reflects the biological importance of the platelet lipid thromboxane A2. In this issue of Cell Metabolism, Slatter et al. (2016) illuminate the breadth, complexity, and variability of the human platelet lipidome under conditions of thrombin activation and aspirin suppression, potentially facilitating the pursuit of precision medicine. Copyright © 2016 Elsevier Inc. All rights reserved.
A Critical Role for the Transient Receptor Potential Channel Type 6 in Human Platelet Activation
Conlon, Christine; Khasawneh, Fadi T.
2015-01-01
While calcium signaling is known to play vital roles in platelet function, the mechanisms underlying its receptor-operated calcium entry component (ROCE) remain poorly understood. It has been proposed, but never proven in platelets, that the canonical transient receptor potential channel-6 (TRPC6) mediates ROCE. Nonetheless, we have previously shown that the mouse TRPC6 regulates hemostasis, thrombogenesis by regulating platelet aggregation. In the present studies, we used a pharmacological approach to characterize the role of TRPC6 in human platelet biology. Thus, interestingly, we observed that a TRPC6 inhibitor exerted significant inhibitory effects on human platelet aggregation in a thromboxane receptor (TPR)-selective manner; no additional inhibition was observed in the presence of the calcium chelator BAPTA. This inhibitor also significantly inhibited human platelet secretion (dense and alpha granules), integrin IIb-IIIa, Akt and ERK phosphorylation, again, in a TPR-selective manner; no effects were observed in response to ADP receptor stimulation. Furthermore, there was a causal relationship between these inhibitory effects, and the capacity of the TRPC6 inhibitor to abrogate elevation in intracellular calcium, that was again found to be TPR-specific. This effect was not found to be due to antagonism of TPR, as the TRPC6 inhibitor did not displace the radiolabeled antagonist [3H]SQ29,548 from its binding sites. Finally, our studies also revealed that TRPC6 regulates human clot retraction, as well as physiological hemostasis and thrombus formation, in mice. Taken together, our findings demonstrate, for the first time, that TRPC6 directly regulates TPR-dependent ROCE and platelet function. Moreover, these data highlight TRPC6 as a novel promising therapeutic strategy for managing thrombotic disorders. PMID:25928636
Rupture Forces among Human Blood Platelets at different Degrees of Activation
Nguyen, Thi-Huong; Palankar, Raghavendra; Bui, Van-Chien; Medvedev, Nikolay; Greinacher, Andreas; Delcea, Mihaela
2016-01-01
Little is known about mechanics underlying the interaction among platelets during activation and aggregation. Although the strength of a blood thrombus has likely major biological importance, no previous study has measured directly the adhesion forces of single platelet-platelet interaction at different activation states. Here, we filled this void first, by minimizing surface mediated platelet-activation and second, by generating a strong adhesion force between a single platelet and an AFM cantilever, preventing early platelet detachment. We applied our setup to measure rupture forces between two platelets using different platelet activation states, and blockade of platelet receptors. The rupture force was found to increase proportionally to the degree of platelet activation, but reduced with blockade of specific platelet receptors. Quantification of single platelet-platelet interaction provides major perspectives for testing and improving biocompatibility of new materials; quantifying the effect of drugs on platelet function; and assessing the mechanical characteristics of acquired/inherited platelet defects. PMID:27146004
NASA Astrophysics Data System (ADS)
Kotha, Shiva Prasad
Bone mineral and bone organic are assumed to be a linearly elastic, brittle material. A simple micromechanical model based on the shear lag theory is developed to model the stress transfer between the mineral platelets of bone. The bone mineral platelets carry most of the applied load while the organic primarily serves to transfer load between the overlapped mineral platelets by shear. Experiments were done to elucidate the mechanism of failure in bovine cortical bone and to decrease the mineral content of control bone with in-vitro fluoride ion treatments. It was suggested that the failure at the ultrastructural level is due to the transverse failure of bonds between the collagen microfibrils in the organic matrix. However, the shear stress transfer and the axial load bearing capacity of the organic is not impaired. Hence, it is assumed that the shear strain in the matrix increases while the shear stress remains constant at the shear yield stress once the matrix starts yielding at the ends of the bone mineral. When the shear stress over the length of the mineral platelet reaches the shear yield stress, no more applied stress is carried by the bone mineral platelets while the organic matrix carries the increased axial load. The bone fails when the axial stress in the organic reaches its ultimate stress. The bone mineral is assumed to dissolve due to in-vitro fluoride ion treatments and precipitate calcium fluoride or fluoroapatite like material. The amount of dissolution is estimated based on 19F Nuclear Magnetic Resonance or a decrease in the carbonate content of bone. The dissolution of bone mineral is assumed to increase the porosity in the organic. We assume that the elastic modulus and the ultimate strength of the organic decrease due to the increased porosity. A simple empirical model is used to model the decrease in the elastic modulus. The strength is modeled to decrease based on an increase in the cross-sectional area occupied by the porosity. The precipitate is assumed to contribute to the mechanical properties of bone due to friction generated by the poisson's contraction of the organic as it carries axial loads. The resulting stress-strain curve predicted by the model resembles the stress-strain curves obtained in the experiments.
Abnormal Whole Blood Thrombi in Humans with Inherited Platelet Receptor Defects
Castellino, Francis J.; Liang, Zhong; Davis, Patrick K.; Balsara, Rashna D.; Musunuru, Harsha; Donahue, Deborah L.; Smith, Denise L.; Sandoval-Cooper, Mayra J.; Ploplis, Victoria A.; Walsh, Mark
2012-01-01
To delineate the critical features of platelets required for formation and stability of thrombi, thromboelastography and platelet aggregation measurements were employed on whole blood of normal patients and of those with Bernard-Soulier Syndrome (BSS) and Glanzmann’s Thrombasthenia (GT). We found that separation of platelet activation, as assessed by platelet aggregation, from that needed to form viscoelastic stable whole blood thrombi, occurred. In normal human blood, ristocetin and collagen aggregated platelets, but did not induce strong viscoelastic thrombi. However, ADP, arachidonic acid, thrombin, and protease-activated-receptor-1 and -4 agonists, stimulated both processes. During this study, we identified the genetic basis of a very rare double heterozygous GP1b deficiency in a BSS patient, along with a new homozygous GP1b inactivating mutation in another BSS patient. In BSS whole blood, ADP responsiveness, as measured by thrombus strength, was diminished, while ADP-induced platelet aggregation was normal. Further, the platelets of 3 additional GT patients showed very weak whole blood platelet aggregation toward the above agonists and provided whole blood thrombi of very low viscoelastic strength. These results indicate that measurements of platelet counts and platelet aggregability do not necessarily correlate with generation of stable thrombi, a potentially significant feature in patient clinical outcomes. PMID:23300803
Chen, Zengsheng; Koenig, Steven C; Slaughter, Mark S; Griffith, Bartley P; Wu, Zhongjun J
2017-11-07
The structural integrity of platelet receptors is essential for platelets to play the normal hemostatic function. The high non-physiologic shear stress (NPSS) commonly exists in blood-contacting medical devices and has been shown to cause platelet receptor shedding. The loss of platelet receptors may impair the normal hemostatic function of platelets. The aim of this study was to quantify NPSS-induced shedding of three key receptors on the platelet surface. Human blood was subjected to the matrix of well-defined shear stresses and exposure times, generated by using a custom-designed blood-shearing device. The expression of three key platelet receptors, glycoprotein (GP) Ibα, GPVI, and GPIIb/IIIa, in sheared blood was quantified using flow cytometry. The quantitative relationship between the loss of each of the three receptors on the platelet surface and shear condition (shear stress level and exposure time) was explored. It was found that these relationships followed well the power law functional form. The coefficients of the power law models for the shear-induced shedding of these platelet receptors were derived with coefficients of determination (R) of 0.77, 0.73, and 0.78, respectively. The power law models with these coefficients may be potentially used to predict the shear-induced platelet receptor shedding of human blood.
Massimi, Isabella; Guerriero, Raffaella; Lotti, Lavinia Vittoria; Lulli, Valentina; Borgognone, Alessandra; Romani, Federico; Barillà, Francesco; Gaudio, Carlo; Gabbianelli, Marco; Frati, Luigi; Pulcinelli, Fabio M
2014-12-01
The aim of the study was to investigate whether human megakaryocytic cells have an adaptive response to aspirin treatment, leading to an enhancement of multidrug resistance protein-4 (MRP4) expression in circulating platelets responsible for a reduced aspirin action. We recently found that platelet MRP4 overexpression has a role in reducing aspirin action in patients after by-pass surgery. Aspirin enhances MRP4-mRNA levels in rat liver and drug administration transcriptionally regulates MRP4 gene expression through peroxisome proliferator-activated receptor-α (PPARα). The effects induced by aspirin or PPARα agonist (WY14643) on MRP4 modulation were evaluated in vitro in a human megakaryoblastic DAMI cell line, in megakaryocytes (MKs) and in platelets obtained from human haematopoietic progenitor cell (HPC) cultures, and in vivo platelets obtained from aspirin treated healthy volunteers (HV). In DAMI cells, aspirin and WY14643 treatment induced a significant increase in MRP4 and PPARα expression. In human MKs grown in the presence of either aspirin or WY14643, MRP4 and PPARα-mRNA were higher than in control cultures and derived platelets showed an enhancement in MRP4 protein expression. The ability of aspirin to modulate MRP4 expression in MKs and to transfer it to platelets was also confirmed in vivo. In fact, we found the highest MRP4 mRNA and protein expression in platelets obtained from HV after 15 days' aspirin treatment. The present study provides evidence, for the first time, that aspirin treatment affects the platelet protein pattern through MK genomic modulation. This work represents an innovative and attractive approach, useful both to identify patients less sensitive to aspirin and to improve pharmacological treatment in cardiovascular high-risk patients. © 2014 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.
The effects of 7.5% NaCl/6% dextran 70 on coagulation and platelet aggregation in humans
NASA Technical Reports Server (NTRS)
Hess, J. R.; Dubick, M. A.; Summary, J. J.; Bangal, N. R.; Wade, C. E.
1992-01-01
The combination solution of 7.5% NaCl/6% dextran 70 (HSD) administered IV gives hemodynamic improvement in the treatment of hemorrhagic hypotension. Since earlier dextran solutions were reported to interfere with blood coagulation, the effects of HSD on the prothrombin time (PT), the activated partial thromboplastin time (APTT), platelet aggregation, and platelet concentration were studied. The HSD mixed with human plasma (1:5 and 1:10) slightly prolonged PT, but had no effect on the APTT, compared with saline controls. The HSD also decreased human platelet aggregation at the 1:5 dilution. In separate mixing studies, the hypertonic saline component of HSD was associated with the prolongation of PT and decreased platelet aggregation. The data from these studies indicate that at its proposed therapeutic dose, HSD is expected to have minimal effect on blood coagulation.
Antiplatelet effects of protopine isolated from Corydalis tubers.
Ko, F N; Wu, T S; Lu, S T; Wu, Y C; Huang, T F; Teng, C M
1989-10-15
Protopine inhibited the aggregation and ATP release of rabbit platelets induced by ADP, arachidonic acid, PAF, collagen and ionophore A23187. Although the platelet aggregation caused by thrombin was not inhibited by protopine (100 micrograms/ml), the release reaction was partially suppressed. In rabbit platelet-rich plasma, protopine also inhibited the platelet aggregation caused by ADP, arachidonic acid, PAF and collagen. The thromboxane B2 formation of washed platelets caused by arachidonic acid, collagen, ionophore A23187 and thrombin was suppressed by protopine. Protopine inhibited the intracellular calcium increase caused by arachidonic acid in quin-2/AM loaded rabbit platelets. In the presence of indomethacin, the intracellular calcium increase caused by collagen and PAF was completely suppressed by protopine, and the intracellular calcium increase caused by thrombin was partially inhibited. The phosphoinositides breakdown caused by collagen and PAF was inhibited by protopine, but that by thrombin was not affected significantly. Protopine did not cause the elevation of cyclic AMP level of platelets. It is concluded that the antiplatelet effects of protopine is due to inhibition on thromboxane formation and phosphoinositides breakdown and then lead to the decrease of intracellular calcium concentration.
Takayama, Hiroshi; Hosaka, Yoshitaka; Nakayama, Kazuyuki; Shirakawa, Kamon; Naitoh, Katsuki; Matsusue, Tomokazu; Shinozaki, Mikihiko; Honda, Motoyasu; Yatagai, Yukiko; Kawahara, Tetsushi; Hirose, Jiro; Yokoyama, Tooru; Kurihara, Michiru; Furusako, Shoji
2008-01-01
Platelet adhesion to vascular subendothelium, mediated in part by interactions between collagen and glycoprotein VI (GPVI) complexed with Fc receptor γ-chain, is crucial for thrombus formation. Antiplatelet therapy benefits patients with various thrombotic and ischemic diseases, but the safety and efficacy of existing treatments are limited. Recent data suggest GPVI as a promising target for a novel antiplatelet therapy, for example, GPVI-specific Abs that deplete GPVI from the surface of platelets. Here, we characterized GPVI-specific auto-Abs (YA-Abs) from the first reported patient with ongoing platelet GPVI deficiency caused by the YA-Abs. To obtain experimentally useful human GPVI–specific mAbs with characteristics similar to YA-Abs, we generated human GPVI–specific mouse mAbs and selected 2 representative mAbs, mF1201 and mF1232, whose binding to GPVI was inhibited by YA-Abs. In vitro, mF1201, but not mF1232, induced human platelet activation and GPVI shedding, and mF1232 inhibited collagen-induced human platelet aggregation. Administration of mF1201 and mF1232 to monkeys caused GPVI immunodepletion with and without both significant thrombocytopenia and GPVI shedding, respectively. When a human/mouse chimeric form of mF1232 (cF1232) was labeled with a fluorescent endocytosis probe and administered to monkeys, fluorescence increased in circulating platelets and surface GPVI was lost. Loss of platelet surface GPVI mediated by cF1232 was successfully reproduced in vitro in the presence of a cAMP-elevating agent. Thus, we have characterized cAMP-dependent endocytosis of GPVI mediated by a human GPVI–specific mAb as what we believe to be a novel antiplatelet therapy. PMID:18382762
Gurbel, Paul A; Bliden, Kevin P; Saucedo, Jorge F; Suarez, Thomas A; DiChiara, Joseph; Antonino, Mark J; Mahla, Elisabeth; Singla, Anand; Herzog, William R; Bassi, Ashwani K; Hennebry, Thomas A; Gesheff, Tania B; Tantry, Udaya S
2009-02-24
The primary objective of this study was to compare the effect of therapy with bivalirudin alone versus bivalirudin plus eptifibatide on platelet reactivity measured by turbidometric aggregometry and thrombin-induced platelet-fibrin clot strength (TIP-FCS) measured by thrombelastography in percutaneous coronary intervention (PCI) patients. The secondary aim was to study the relation of platelet aggregation and TIP-FCS to the occurrence of periprocedural infarction. Bivalirudin is commonly administered alone to clopidogrel naïve (CN) patients and to patients on maintenance clopidogrel therapy (MT) undergoing elective stenting. The effect of adding eptifibatide to bivalirudin on platelet reactivity (PR) and TIP-FCS, and their relation to periprocedural infarction in these patients are unknown. Patients (n = 200) stratified to clopidogrel treatment status were randomly treated with bivalirudin (n = 102) or bivalirudin plus eptifibatide (n = 98). One hundred twenty-eight CN patients were loaded with 600 mg clopidogrel immediately after stenting, and 72 MT patients were not loaded. The PR, TIP-FCS, and myonecrosis markers were serially determined. In CN and MT patients, bivalirudin plus eptifibatide was associated with markedly lower PR at all times (5- and 20-microM adenosine diphosphate-induced, and 15- and 25-microM thrombin receptor activator peptide-induced aggregation; p < 0.001 for all) and reduced mean TIP-FCS (p < 0.05). Patients who had a periprocedural infarction had higher mean 18-h PR (p < 0.0001) and TIP-FCS (p = 0.002). For elective stenting, the addition of eptifibatide to bivalirudin lowered PR to multiple agonists and the tensile strength of the TIP-FCS, 2 measurements strongly associated with periprocedural myonecrosis. Future studies of PR and TIP-FCS for elective stenting may facilitate personalized antiplatelet therapy and enhance the selection of patients for glycoprotein IIb/IIIa blockade. (Peri-Procedural Myocardial Infarction, Platelet Reactivity, Thrombin Generation, and Clot Strength: Differential Effects of Eptifibatide + Bivalirudin Versus Bivalirudin [CLEAR PLATELETS-2]; NCT00370045.
Sondeen, Jill L; de Guzman, Rodolfo; Amy Polykratis, Irene; Dale Prince, Malcolm; Hernandez, Orlando; Cap, Andrew P; Dubick, Michael A
2013-12-01
In the acute care setting, both the tracings and numeric outputs (R time, angle, and MA) of thrombelastography (TEG) may be used to inform treatment decisions. The objective was to determine the sensitivity of TEG to isolated changes in platelet count, hematocrit and fibrinogen concentration in human blood. As pigs have a similar coagulation system, we also compared the responses of the pig blood. Eight volunteers (>18 years of age, no anticoagulation or nonsteroidal anti-inflammatory therapy, not pregnant) were enrolled into this study. Four female anesthetized donor pigs were instrumented percutaneously with a catheter for blood collection. All blood was collected into sodium citrate. The concentration of each component (platelets, fibrinogen, and red blood cells) was changed while keeping the other components constant by use of centrifugation or preparation of each individual's plasma into platelet poor plasma, platelet rich plasma, cryoprecipitate, purified washed platelets, and packed red blood cells as appropriate. TEG (Haemoscope) analysis was performed and compared with the patients' whole blood diluted with lactated Ringer's solution. We demonstrated that the major factor affecting the MA and angle was the platelet count. In fact, reducing platelets alone resulted in TEG profiles and parameters that were similar to lactated Ringer's dilution profiles. Swine blood responses were parallel to that of human blood, although there were offsets especially of TEG-R and angle that confirmed that the swine are hypercoagulable compared with humans. Superficially similar TEG tracing patterns can be produced by divergent mechanisms associated with altered concentrations of blood components.
Hughes, K; Crawford, N
1989-06-06
A high-voltage discharge procedure has been developed for permeabilising the plasma membranes of both human and rat blood platelets. The cells can be resealed by incubation at 37 degrees C, show less than 4% loss of lactate dehydrogenase (LDH) implying minimal cell lysis and also have well maintained morphological and functional integrity. The prototype apparatus used at field strengths between 6 and 8 kV/cm produces membrane pores which allow free diffusion of low molecular weight substances such as adenine nucleotides, inositol phosphate and fluorescent dyes. Two properties, namely Ca2+-induced secretion of granule stored 5-hydroxytryptamine (5HT) and inositol 1,4,5-trisphosphate (IP3)-induced release of intracellularly sequestered 45Ca, which are both well expressed immediately after permeabilisation, are essentially abolished after resealing. The efficiency of permeabilisation and resealing can be simply monitored by shifts in 'apparent platelet volume' using a resistive particle counter (Coulter). Permeabilised platelets show a shift in modal volumes from a control range 4-7 fl to 10-15 fl. Resealing restores these modal volumes to the original control range. Encapsulation of the fluorochrome, Lucifer yellow (Mr 550), during permeabilisation revealed that after resealing greater than 85% of rat platelets, and close to 100% human platelets, contained the encapsulated dye. The initial rates and % aggregation responses of both human and rat platelets to collagen, thrombin and the thromboxane A2-mimetic U46619 remained essentially normal after permeabilisation and resealing further illustrating the maintenance of functional competence following treatment. Resealed rat platelets reinfused into the circulation after labelling with [111In]indium oxine gave survival curves similar to those of control platelets. Therefore, this reversible permeabilisation procedure may allow the use of autologous or heterologous platelets as carrier vehicles for the delivery of drugs and other agents 'in vivo'.
Women's attitude towards routine human platelet antigen-screening in pregnancy.
Winkelhorst, Dian; Loeff, Rosanne M; van den Akker-Van Marle, M Elske; de Haas, Masja; Oepkes, Dick
2017-08-01
Fetal and neonatal alloimmune thrombocytopenia is a potentially life-threatening disease with excellent preventative treatment available for subsequent pregnancies. To prevent index cases, the effectiveness of a population-based screening program has been suggested repeatedly. Therefore, we aimed to evaluate women's attitude towards possible future human platelet antigen-screening in pregnancy. We performed a cross-sectional questionnaire study among healthy pregnant women receiving prenatal care in one of seven participating midwifery practices. Attitude was assessed using a questionnaire based on the validated Multidimensional Measurement of Informed Choice model, containing questions assessing knowledge, attitude and intention to participate. A total of 143 of the 220 women (65%) completed and returned the questionnaire. A positive attitude towards human platelet antigen-screening was expressed by 91% of participants, of which 94% was based on sufficient knowledge. Attitude was more likely to be negatively influenced by the opinion that screening can be frightening. Informed choices were made in 87% and occurred significantly less in women from non-European origin, 89% in European women vs. 60% in non-European women (p = 0.03). Pregnant women in the Netherlands expressed a positive attitude towards human platelet antigen-screening in pregnancy. We therefore expect a high rate of informed uptake when human platelet antigen-screening is implemented. In future counseling on human platelet antigen-screening, ethnicity and possible anxiety associated with a screening test need to be specifically addressed. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.
Characterization of the aggregation responses of camel platelets.
Al Ghumlas, Abeer K; Gader, Abdel Galil M Abdel
2013-09-01
Despite evidence of active hemostasis, camel platelets barely respond to common aggregating agents at standard doses used for human platelet aggregation. The purpose of the study was to find out whether camel platelets can be activated by high doses or combinations of aggregation agonists, and to characterize the receptor that mediates the aggregation response to adenosine diphosphate (ADP), the most potent agonist for camel platelets known so far. Aggregation studies were performed with platelet-rich plasma (PRP) in response to multiple doses or combinations of ADP, epinephrine (EPN), collagen, and arachidonic acid (AA). Aggregation responses to ADP were performed before and after the addition of the ADP receptor (P2Y12) antagonist Clopidogrel. Camel platelets responded to ADP at doses higher than the standard dose for human platelets, and to combinations of EPN and other agonists, while no aggregation was elicited with EPN or AA alone. Clopidogrel blocked the ADP-induced aggregation responses in a dose-dependent fashion in vitro. Camel platelet aggregation can be activated by increasing the dose of some agonists such as ADP, but not AA or EPN. Irreversible aggregation of camel platelets could also be triggered by a combination of EPN and ADP, and collagen and AA. Inhibition with clopidogrel suggests that camel platelets express the ADP receptor, P2Y12. Understanding platelet function in camels will add to the understanding of platelet function in health and disease. © 2013 American Society for Veterinary Clinical Pathology.
Heterogeneity of antibody response to human platelet transfusion.
Wu, K K; Thompson, J S; Koepke, J A; Hoak, J C; Flink, R
1976-01-01
To study the antibody response to human platelet transfusions, nine thrombocytopenia patients with bone marrow failure were given 6 U (3X10(11)) of random platelet concentrates twice a week. Before transfusion, none of the patients had preexisting antibodies detectable with lymphocytotoxicity, platelet aggregation, or capillary leukoagglutination techniques. After receiving 18-78 U of platelets, they became refractory to further transfusions of random platelets and alloantibodies were detectable. Two patterns of antibody response could be identified. In three patients, the sera were not lymphocytotoxic with a panel of standard cells in which all the known HLA antigens in the first and second series were represented at least once. Yet, they caused platelet aggregation with 30, 24, and 60%, respectively, of a donor population studied. The aggregating activities were inhibited by antihuman IgG but not by antihuman IgA or antihuman IgM antiserum. The aggregating antibodies could be absorbed out with donor platelets but not lymphocytes or granulocytes. Antibodies from two of these patients aggregated platelets of their respective siblings matched for both HLA haplotypes. Transfusion of platelets from these two siblings did not increase the platelet count while platelets obtained from aggregation-negative donors did. The sera from the remaining six patients were lymphocytotoxic with 15-100% of the panel of standard cells. They also had aggregating antibodies, which could be absorbed out by both platelets and lymphocytes, suggesting that they were HLA antibodies. These data suggest that the development of platelet-specific antibodies may play an important role in the immunological rejection of isologous platelets, and should be considered in the selection of donors for patients who are refractory to platelets from random donors. PMID:956376
Sheriff, Lozan; Alanazi, Asma; Ward, Lewis S C; Ward, Carl; Munir, Hafsa; Rayes, Julie; Alassiri, Mohammed; Watson, Steve P; Newsome, Phil N; Rainger, G E; Kalia, Neena; Frampton, Jon; McGettrick, Helen M; Nash, Gerard B
2018-02-28
We investigated the adhesive behavior of mesenchymal stem cells (MSC) in blood, which might influence their fate when infused as therapy. Isolated human bone marrow MSC (BMMSC) or umbilical cord MSC (UCMSC) adhered efficiently from flow to the matrix proteins, collagen, or fibronectin, but did not adhere to endothelial selectins. However, when suspended in blood, BMMSC no longer adhered to collagen, while UCMSC adhered along with many aggregated platelets. Neither MSC adhered to fibronectin from flowing blood, although the fibronectin surface did become coated with a platelet monolayer. UCMSC induced platelet aggregation in platelet rich plasma, and caused a marked drop in platelet count when mixed with whole human or mouse blood in vitro, or when infused into mice. In contrast, BMMSC did not activate platelets or induce changes in platelet count. Interestingly, isolated UCMSC and BMMSC both adhered to predeposited platelets. The differences in behavior in blood were attributable to expression of podoplanin (an activating ligand for the platelet receptor CLEC-2), which was detected on UCMSC, but not BMMSC. Thus, platelets were activated when bound to UCMSC, but not BMMSC. Platelet aggregation by UCMSC was inhibited by recombinant soluble CLEC-2, and UCMSC did not cause a reduction in platelet count when mixed with blood from mice deficient in CLEC-2. We predict that both MSC would carry platelets in the blood, but their interaction with vascular endothelium would depend on podoplanin-induced activation of the bound platelets. Such interactions with platelets might target MSC to damaged tissue, but could also be thrombotic. Stem Cells 2018. © 2018 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Global Proteome Analysis Identifies Active Immunoproteasome Subunits in Human Platelets*
Klockenbusch, Cordula; Walsh, Geraldine M.; Brown, Lyda M.; Hoffman, Michael D.; Ignatchenko, Vladimir; Kislinger, Thomas; Kast, Juergen
2014-01-01
The discovery of new functions for platelets, particularly in inflammation and immunity, has expanded the role of these anucleate cell fragments beyond their primary hemostatic function. Here, four in-depth human platelet proteomic data sets were generated to explore potential new functions for platelets based on their protein content and this led to the identification of 2559 high confidence proteins. During a more detailed analysis, consistently high expression of the proteasome was discovered, and the composition and function of this complex, whose role in platelets has not been thoroughly investigated, was examined. Data set mining resulted in identification of nearly all members of the 26S proteasome in one or more data sets, except the β5 subunit. However, β5i, a component of the immunoproteasome, was identified. Biochemical analyses confirmed the presence of all catalytically active subunits of the standard 20S proteasome and immunoproteasome in human platelets, including β5, which was predominantly found in its precursor form. It was demonstrated that these components were assembled into the proteasome complex and that standard proteasome as well as immunoproteasome subunits were constitutively active in platelets. These findings suggest potential new roles for platelets in the immune system. For example, the immunoproteasome may be involved in major histocompatibility complex I (MHC I) peptide generation, as the MHC I machinery was also identified in our data sets. PMID:25146974
Vaiyapuri, Sakthivel; Ali, Marfoua S; Moraes, Leonardo A; Sage, Tanya; Lewis, Kirsty R; Jones, Chris I; Gibbins, Jonathan M
2013-12-01
Dietary flavonoids have long been appreciated in reducing cardiovascular disease risk factors, but their mechanisms of action are complex in nature. In this study, the effects of tangeretin, a dietary flavonoid, were explored on platelet function, signaling, and hemostasis. Tangeretin inhibited agonist-induced human platelet activation in a concentration-dependent manner. It inhibited agonist-induced integrin αIIbβ3 inside-out and outside-in signaling, intracellular calcium mobilization, and granule secretion. Tangeretin also inhibited human platelet adhesion and subsequent thrombus formation on collagen-coated surfaces under arterial flow conditions in vitro and reduced hemostasis in mice. Further characterization to explore the mechanism by which tangeretin inhibits platelet function revealed distinctive effects of platelet signaling. Tangeretin was found to inhibit phosphoinositide 3-kinase-mediated signaling and increase cGMP levels in platelets, although phosphodiesterase activity was unaffected. Consistent with increased cGMP levels, tangeretin increased the phosphorylation of vasodilator-stimulated phosphoprotein at S239. This study provides support for the ability and mechanisms of action of dietary flavonoids to modulate platelet signaling and function, which may affect the risk of thrombotic disease.
Platelet Immunology in China: Research and Clinical Applications.
Wu, Guoguang; Zhou, Yan; Li, Lilan; Zhong, Zhoulin; Li, Hengchong; Li, Haiyan; Yu, Mei; Shen, Weidong; Ni, Heyu
2017-04-01
Immunization against human platelet alloantigens (HPAs) is associated with a number of clinical complications. The detection and identification of clinically relevant platelet antibodies are important for the diagnosis and management of patients affected with immune-mediated thrombocytopenias. Human platelet alloantigen frequencies and the characteristics of antiplatelet antibodies vary widely between ethnic groups. Since 2008, the importance of platelet immunology in the field of transfusion medicine has gained greater recognition by clinical laboratories in China. Laboratories in China have established and improved methods for platelet antibody detection and HPA genotyping techniques, which are used for the diagnosis of alloimmune platelet disorders in clinic and research environments. Research has revealed the frequencies of HPA alleles in different Chinese ethnic groups and compared the differences in HPA gene frequencies between the Chinese Han and other ethnic groups of the world. Production of anti-CD36 isoantibodies is an important risk factor for immune-mediated thrombocytopenia in the Chinese population. Advances in research and clinical application of platelet immunology have significantly improved the clinical diagnosis, treatment including transfusion support, and prevention of alloimmune platelet disorders in the Chinese population. Copyright © 2017. Published by Elsevier Inc.
Quinn, Kieran L.; Henriques, Melanie; Tabuchi, Arata; Han, Bing; Yang, Hong; Cheng, Wei-Erh; Tole, Soumitra; Yu, Hanpo; Luo, Alice; Charbonney, Emmanuel; Tullis, Elizabeth; Lazarus, Alan; Robinson, Lisa A.; Ni, Heyu; Peterson, Blake R.; Kuebler, Wolfgang M.; Slutsky, Arthur S.; Zhang, Haibo
2016-01-01
Objective Neutrophils are involved in the inflammatory responses during atherosclerosis. Human neutrophil peptides (HNPs) released from activated neutrophils exert immune modulating properties. We hypothesized that HNPs play an important role in neutrophil-mediated inflammatory cardiovascular responses in atherosclerosis. Methods and Results We examined the role of HNPs in endothelial-leukocyte interaction, platelet activation, and foam cell formation in vitro and in vivo. We demonstrated that stimulation of human coronary artery endothelial cells with clinically relevant concentrations of HNPs resulted in monocyte adhesion and transmigration; induction of oxidative stress in human macrophages, which accelerates foam cell formation; and activation and aggregation of human platelets. The administration of superoxide dismutase or anti-CD36 antibody reduced foam cell formation and cholesterol efflux. Mice deficient in double genes of low-density lipoprotein receptor and low-density lipoprotein receptor–related protein (LRP), and mice deficient in a single gene of LRP8, the only LRP phenotype expressed in platelets, showed reduced leukocyte rolling and decreased platelet aggregation and thrombus formation in response to HNP stimulation. Conclusion HNPs exert proatherosclerotic properties that appear to be mediated through LRP8 signaling pathways, suggesting an important role for HNPs in the development of inflammatory cardiovascular diseases. PMID:21817096
In vitro effects of polychlorinated biphenyls on human platelets.
Raulf, M; König, W
1991-01-01
Incubation of human platelets with polychlorinated biphenyls (PCB) induced and modulated cellular responses to a different degree. 3,3',4,4'-tetrachlorobiphenyl (TCB) was a more potent inducer of platelet aggregation, serotonin release and 12-HETE generation compared to the other PCB [2,2',3,3'-TCB,3,3'-dichlorobiphenyl (DCB),2,2',4,5,5'-pentachlorobiphenyl (PCB)]. 3,3',4,4'-TCB showed synergistic effects, in combination with other PCB, such as an enhanced formation of 12-HETE, when 3,3'-DCB and 2,2',3,3'-TCB were applied simultaneously. The combined incubation of platelets with PCB and sodium fluoride (NaF), an activator of G-proteins, resulted in synergistic 12-HETE generation compared to stimulation with NaF or PCB alone. Furthermore, when platelets were incubated with the PCB the enzymatic steps controlling the metabolism of the platelet-activating factor (PAF) were modulated. A direct relationship between the extent of platelet activation and the chloro-substitution pattern of PCB exists. PMID:1901832
Platelets contribute to postnatal occlusion of the ductus arteriosus.
Echtler, Katrin; Stark, Konstantin; Lorenz, Michael; Kerstan, Sandra; Walch, Axel; Jennen, Luise; Rudelius, Martina; Seidl, Stefan; Kremmer, Elisabeth; Emambokus, Nikla R; von Bruehl, Marie-Luise; Frampton, Jon; Isermann, Berend; Genzel-Boroviczény, Orsolya; Schreiber, Christian; Mehilli, Julinda; Kastrati, Adnan; Schwaiger, Markus; Shivdasani, Ramesh A; Massberg, Steffen
2010-01-01
The ductus arteriosus (DA) is a fetal shunt vessel between the pulmonary artery and the aorta that closes promptly after birth. Failure of postnatal DA closure is a major cause of morbidity and mortality particularly in preterm neonates. The events leading to DA closure are incompletely understood. Here we show that platelets have an essential role in DA closure. Using intravital microscopy of neonatal mice, we observed that platelets are recruited to the luminal aspect of the DA during closure. DA closure is impaired in neonates with malfunctioning platelet adhesion or aggregation or with defective platelet biogenesis. Defective DA closure resulted in a left-to-right shunt with increased pulmonary perfusion, pulmonary vascular remodeling and right ventricular hypertrophy. Our findings indicate that platelets are crucial for DA closure by promoting thrombotic sealing of the constricted DA and by supporting luminal remodeling. A retrospective clinical study revealed that thrombocytopenia is an independent predictor for failure of DA closure in preterm human newborns, indicating that platelets are likely to contribute to DA closure in humans.
Balint, Bela; Vucetić, Dusan; Trajković-Lakić, Zlatija; Petakov, Marijana; Bugarski, Diana; Brajusković, Goran; Taseski, Jovan
2002-01-01
Cryopreservation of platelets is of great interest, since it could extend the shelf life of therapeutic platelet concentrates and facilitate stockpiling and inventory control in blood banking. Despite the use of many cryopreservation procedures the optimal cryopreservation procedure is not defined yet. We have compared the cryopreservation of human platelets by various protocols employing controlled-rate and non-controlled-rate freezing procedures in combination with different concentrations of DMSO (6% and 10%) or 5% DMSO + 6% HES combination. After storage for 1 to 3 months, samples were thawed and analyzed. Measurements included cell recovery, platelet viability according to hypotonic shock response (HSR), platelet aggregation with ADP, morphological and ultrastructural properties of defrozen platelets. Our findings show that the application of our original procedure for controlled-rate freezing consisting of six cooling steps (cooling rate 1 degree C/min) with compensation of released heat of fusion (cooling rate 2 degrees C/min) has significantly influenced the quality of thawed platelets. At the same time, a concentration of 6% DMSO proved to be the most effective. In summary, cryopreservation of human platelets using controlled-rate freezing procedure in combination with lower (6%) DMSO concentration resulted in less damage from freezing and higher recovered function of platelets.
Di Buduo, Christian A.; Wray, Lindsay S.; Tozzi, Lorenzo; Malara, Alessandro; Chen, Ying; Ghezzi, Chiara E.; Smoot, Daniel; Sfara, Carla; Antonelli, Antonella; Spedden, Elise; Bruni, Giovanna; Staii, Cristian; De Marco, Luigi; Magnani, Mauro; Kaplan, David L.
2015-01-01
We present a programmable bioengineered 3-dimensional silk-based bone marrow niche tissue system that successfully mimics the physiology of human bone marrow environment allowing us to manufacture functional human platelets ex vivo. Using stem/progenitor cells, megakaryocyte function and platelet generation were recorded in response to variations in extracellular matrix components, surface topography, stiffness, coculture with endothelial cells, and shear forces. Millions of human platelets were produced and showed to be functional based on multiple activation tests. Using adult hematopoietic progenitor cells our system demonstrated the ability to reproduce key steps of thrombopoiesis, including alterations observed in diseased states. A critical feature of the system is the use of natural silk protein biomaterial allowing us to leverage its biocompatibility, nonthrombogenic features, programmable mechanical properties, and surface binding of cytokines, extracellular matrix components, and endothelial-derived proteins. This in turn offers new opportunities for the study of blood component production ex vivo and provides a superior tissue system for the study of pathologic mechanisms of human platelet production. PMID:25575540
The clearance mechanism of chilled blood platelets.
Hoffmeister, Karin M; Felbinger, Thomas W; Falet, Hervé; Denis, Cécile V; Bergmeier, Wolfgang; Mayadas, Tanya N; von Andrian, Ulrich H; Wagner, Denisa D; Stossel, Thomas P; Hartwig, John H
2003-01-10
Platelet transfusion is a very common lifesaving medical procedure. Not widely known is the fact that platelets, unlike other blood cells, rapidly leave the circulation if refrigerated prior to transfusion. This peculiarity requires blood services to store platelets at room temperature, limiting platelet supplies for clinical needs. Here, we describe the mechanism of this clearance system, a longstanding mystery. Chilling platelets clusters their von Willebrand (vWf) receptors, eliciting recognition of mouse and human platelets by hepatic macrophage complement type 3 (CR3) receptors. CR3-expressing but not CR3-deficient mice exposed to cold rapidly decrease platelet counts. Cooling primes platelets for activation. We propose that platelets are thermosensors, primed at peripheral sites where most injuries occurred throughout evolution. Clearance prevents pathologic thrombosis by primed platelets. Chilled platelets bind vWf and function normally in vitro and ex vivo after transfusion into CR3-deficient mice. Therefore, GPIb modification might permit cold platelet storage.
Moore, S; Pepper, D S; Cash, J D
1975-02-27
Platelet factor 4 was isolated by gel filtration from the soluble release products of thrombin-aggregated washed human platelets as a proteoglycan-platelet factor 4 complex of molecular weight 358 000, Stokes radius (r-s) of 14.0 nm, sedimentation coefficient (s) of 7.1 S and frictional ratio (f/f-o) of 3.04. The complex was dissociated at high ionic strength (I equals 0.75) and the proteoglycan separated from platelet factor 4 by gel filtration. Platelet factor 4 had a molecular weight of 27 100, r-s of 2.52 nm, s of 2.4 S and f/f-o of 1.26, was insoluble under physiological conditions but readily soluble at pH 3. Under these conditions platelet factor 4 dissociated into four subunits with a molecular weight of 6900, r-s of 1.92 nm, s of 0.8 S, and f/f-o of 1.52. Qualitative N-terminal amino acid analysis showed the presence of glutamic acid or glutamine as the major end group. Platelet factor 4 was compared with protamine sulphate, which has similar biological properties, by electrophoresis at pH 2.2, in which both migrated as single bands but with differing mobility, and by amino acid analysis which showed a more normal distribution of residues than occurred in protamine sulphate. Of the basic amino acids platelet factor 4 (molecular weight 27 100) contained 5.97% arginine, 3.18% histidine, and 12.31% lysine compared to protamine sulphate with 64.2% arginine, 0.6% lysine and no histidine. A partial specific volume (v) of 0.747 was calculated for platelet factor 4 from its amino acid analysis. A membrane fraction with antiheparin activity, an isopycnic density of 1.090-1.110 and r-s of 15-35 nm, was also isolated by sucrose density gradient centrifugation from the ultrasonicated insoluble platelet residue remaining after thrombin-induced aggregation of washed human platelets. Trypsin treatment of the membrane fraction neither solubilised nor destroyed the activity.
Effects of the NO/soluble guanylate cyclase/cGMP system on the functions of human platelets.
Makhoul, Stephanie; Walter, Elena; Pagel, Oliver; Walter, Ulrich; Sickmann, Albert; Gambaryan, Stepan; Smolenski, Albert; Zahedi, René P; Jurk, Kerstin
2018-06-01
Platelets are circulating sentinels of vascular integrity and are activated, inhibited, or modulated by multiple hormones, vasoactive substances or drugs. Endothelium- or drug-derived NO strongly inhibits platelet activation via activation of the soluble guanylate cyclase (sGC) and cGMP elevation, often in synergy with cAMP-elevation by prostacyclin. However, the molecular mechanisms and diversity of cGMP effects in platelets are poorly understood and sometimes controversial. Recently, we established the quantitative human platelet proteome, the iloprost/prostacyclin/cAMP/protein kinase A (PKA)-regulated phosphoproteome, and the interactions of the ADP- and iloprost/prostacyclin-affected phosphoproteome. We also showed that the sGC stimulator riociguat is in vitro a highly specific inhibitor, via cGMP, of various functions of human platelets. Here, we review the regulatory role of the cGMP/protein kinase G (PKG) system in human platelet function, and our current approaches to establish and analyze the phosphoproteome after selective stimulation of the sGC/cGMP pathway by NO donors and riociguat. Present data indicate an extensive and diverse NO/riociguat/cGMP phosphoproteome, which has to be compared with the cAMP phosphoproteome. In particular, sGC/cGMP-regulated phosphorylation of many membrane proteins, G-proteins and their regulators, signaling molecules, protein kinases, and proteins involved in Ca 2+ regulation, suggests that the sGC/cGMP system targets multiple signaling networks rather than a limited number of PKG substrate proteins. Copyright © 2018 Elsevier Inc. All rights reserved.
Musumeci, Lucia; Kuijpers, Marijke J; Gilio, Karen; Hego, Alexandre; Théâtre, Emilie; Maurissen, Lisbeth; Vandereyken, Maud; Diogo, Catia V; Lecut, Christelle; Guilmain, William; Bobkova, Ekaterina V; Eble, Johannes A; Dahl, Russell; Drion, Pierre; Rascon, Justin; Mostofi, Yalda; Yuan, Hongbin; Sergienko, Eduard; Chung, Thomas D Y; Thiry, Marc; Senis, Yotis; Moutschen, Michel; Mustelin, Tomas; Lancellotti, Patrizio; Heemskerk, Johan W M; Tautz, Lutz; Oury, Cécile; Rahmouni, Souad
2015-02-17
A limitation of current antiplatelet therapies is their inability to separate thrombotic events from bleeding occurrences. A better understanding of the molecular mechanisms leading to platelet activation is important for the development of improved therapies. Recently, protein tyrosine phosphatases have emerged as critical regulators of platelet function. This is the first report implicating the dual-specificity phosphatase 3 (DUSP3) in platelet signaling and thrombosis. This phosphatase is highly expressed in human and mouse platelets. Platelets from DUSP3-deficient mice displayed a selective impairment of aggregation and granule secretion mediated by the collagen receptor glycoprotein VI and the C-type lectin-like receptor 2. DUSP3-deficient mice were more resistant to collagen- and epinephrine-induced thromboembolism compared with wild-type mice and showed severely impaired thrombus formation on ferric chloride-induced carotid artery injury. Intriguingly, bleeding times were not altered in DUSP3-deficient mice. At the molecular level, DUSP3 deficiency impaired Syk tyrosine phosphorylation, subsequently reducing phosphorylation of phospholipase Cγ2 and calcium fluxes. To investigate DUSP3 function in human platelets, a novel small-molecule inhibitor of DUSP3 was developed. This compound specifically inhibited collagen- and C-type lectin-like receptor 2-induced human platelet aggregation, thereby phenocopying the effect of DUSP3 deficiency in murine cells. DUSP3 plays a selective and essential role in collagen- and C-type lectin-like receptor 2-mediated platelet activation and thrombus formation in vivo. Inhibition of DUSP3 may prove therapeutic for arterial thrombosis. This is the first time a protein tyrosine phosphatase, implicated in platelet signaling, has been targeted with a small-molecule drug. © 2014 American Heart Association, Inc.
Frelinger, A L; Torres, A S; Caiafa, A; Morton, C A; Berny-Lang, M A; Gerrits, A J; Carmichael, S L; Neculaes, V B; Michelson, A D
2016-01-01
Therapeutic use of activated platelet-rich plasma (PRP) has been explored for wound healing, hemostasis and antimicrobial wound applications. Pulse electric field (PEF) stimulation may provide more consistent platelet activation and avoid complications associated with the addition of bovine thrombin, the current state of the art ex vivo activator of therapeutic PRP. The aim of this study was to compare the ability of PEF, bovine thrombin and thrombin receptor activating peptide (TRAP) to activate human PRP, release growth factors and induce cell proliferation in vitro. Human PRP was prepared in the Harvest SmartPreP2 System and treated with vehicle, PEF, bovine thrombin, TRAP or Triton X-100. Platelet activation and procoagulant markers and microparticle generation were measured by flow cytometry. Released growth factors were measured by ELISA. The releasates were tested for their ability to stimulate proliferation of human epithelial cells in culture. PEF produced more platelet-derived microparticles, P-selectin-positive particles and procoagulant annexin V-positive particles than bovine thrombin or TRAP. These differences were associated with higher levels of released epidermal growth factor after PEF than after bovine thrombin or TRAP but similar levels of platelet-derived, vascular-endothelial, and basic fibroblast growth factors, and platelet factor 4. Supernatant from PEF-treated platelets significantly increased cell proliferation compared to plasma. In conclusion, PEF treatment of fresh PRP results in generation of microparticles, exposure of prothrombotic platelet surfaces, differential release of growth factors compared to bovine thrombin and TRAP and significant cell proliferation. These results, together with PEF's inherent advantages, suggest that PEF may be a superior alternative to bovine thrombin activation of PRP for therapeutic applications.
DUSP3 Phosphatase Deficiency or Inhibition Limit Platelet Activation and Arterial Thrombosis
Musumeci, Lucia; Kuijpers, Marijke J; Gilio, Karen; Hego, Alexandre; Théâtre, Emilie; Maurissen, Lisbeth; Vandereyken, Maud; Diogo, Catia V; Lecut, Christelle; Guilmain, William; Bobkova, Ekaterina V; Eble, Johannes A.; Dahl, Russell; Drion, Pierre; Rascon, Justin; Mostofi, Yalda; Yuan, Hongbin; Sergienko, Eduard; Chung, Thomas DY; Thiry, Marc; Senis, Yotis; Moutschen, Michel; Mustelin, Tomas; Lancellotti, Patrizio; Heemskerk, Johan WM; Tautz, Lutz; Oury, Cécile; Rahmouni, Souad
2015-01-01
Background A limitation of current antiplatelet therapies is their inability to separate thrombotic events from bleeding occurrences. Better understanding of the molecular mechanisms leading to platelet activation is of importance for the development of improved therapies. Recently, protein tyrosine phosphatases (PTPs) have emerged as critical regulators of platelet function. Methods and Results This is the first report implicating the dual-specificity phosphatase 3 (DUSP3) in platelet signaling and thrombosis. This phosphatase is highly expressed in human and mouse platelets. Platelets from DUSP3-deficient mice displayed a selective impairment of aggregation and granule secretion mediated through the collagen receptor glycoprotein VI (GPVI) and the C-type lectin-like receptor 2 (CLEC-2). DUSP3-deficient mice were more resistant to collagen- and epinephrine-induced thromboembolism, compared to wild-type mice, and showed severely impaired thrombus formation upon ferric chloride-induced carotid artery injury. Intriguingly, bleeding times were not altered in DUSP3-deficient mice. At the molecular level, DUSP3 deficiency impaired Syk tyrosine phosphorylation, subsequently reducing phosphorylation of PLCγ2 and calcium fluxes. To investigate DUSP3 function in human platelets, a novel small-molecule inhibitor of DUSP3 was developed. This compound specifically inhibited collagen and CLEC-2-induced human platelet aggregation, thereby phenocopying the effect of DUSP3 deficiency in murine cells. Conclusions DUSP3 plays a selective and essential role in collagen- and CLEC-2-mediated platelet activation and thrombus formation in vivo. Inhibition of DUSP3 may prove therapeutic for arterial thrombosis. This is the first time a PTP, implicated in platelet signaling, has been targeted with a small-molecule drug. PMID:25520375
Hayward, C P M; Moffat, K A; Castilloux, J-F; Liu, Y; Seecharan, J; Tasneem, S; Carlino, S; Cormier, A; Rivard, G E
2012-04-01
Platelet aggregometry and dense granule adenosine triphosphate (ATP) release assays are helpful to diagnose platelet disorders. Some laboratories simultaneously measure aggregation and ATP release using Chronolume® a commercial reagent containing D-luciferin, firefly luciferase and magnesium. Chronolume® can potentiate sub-maximal aggregation responses, normalising canine platelet disorder findings. We investigated if Chronolume® potentiates human platelet aggregation responses after observing discrepancies suspicious of potentiation. Among patients simultaneously tested by light transmission aggregometry (LTA) on two instruments, 18/43 (42%), including 14/24 (58%) with platelet disorders, showed full secondary aggregation with one or more agonists only in tests with Chronolume®. As subjects with Quebec platelet disorder (QPD) did not show the expected absent secondary aggregation responses to epinephrine in tests with Chronolume®, the reason for the discrepancy was investigated using samples from 10 QPD subjects. Like sub-threshold ADP (0.75 μM), Chronolume® significantly increased QPD LTA responses to epinephrine (p<0.0001) and it increased both initial and secondary aggregation responses, leading to dense granule release. This potentiation was not restricted to QPD and it was mimicked adding 1-2 mM magnesium, but not D-luciferin or firefly luciferase, to LTA assays. Chronolume® potentiated the ADP aggregation responses of QPD subjects with a reduced response. Furthermore, it increased whole blood aggregation responses of healthy control samples to multiple agonists, tested at concentrations used for the diagnosis of platelet disorders (p values <0.05). Laboratories should be aware that measuring ATP release with Chronolume® can potentiate LTA and whole blood aggregation responses, which alters findings for some human platelet disorders, including QPD.
Petunin, Alexey; Clemetson, Kenneth J.; Gambaryan, Stepan; Walter, Ulrich
2014-01-01
von Willebrand factor/ristocetin (vWF/R) induces GPIb-dependent platelet agglutination and activation of αIIbβ3 integrin, which also binds vWF. These conditions make it difficult to investigate GPIb-specific signaling pathways in washed platelets. Here, we investigated the specific mechanisms of GPIb signaling using echicetin-coated polystyrene beads, which specifically activate GPIb. We compared platelet activation induced by echicetin beads to vWF/R. Human platelets were stimulated with polystyrene beads coated with increasing amounts of echicetin and platelet activation by echicetin beads was then investigated to reveal GPIb specific signaling. Echicetin beads induced αIIbβ3-dependent aggregation of washed platelets, while under the same conditions vWF/R treatment led only to αIIbβ3-independent platelet agglutination. The average distance between the echicetin molecules on the polystyrene beads must be less than 7 nm for full platelet activation, while the total amount of echicetin used for activation is not critical. Echicetin beads induced strong phosphorylation of several proteins including p38, ERK and PKB. Synergistic signaling via P2Y12 and thromboxane receptor through secreted ADP and TxA2, respectively, were important for echicetin bead triggered platelet activation. Activation of PKG by the NO/sGC/cGMP pathway inhibited echicetin bead-induced platelet aggregation. Echicetin-coated beads are powerful and reliable tools to study signaling in human platelets activated solely via GPIb and GPIb-triggered pathways. PMID:24705415
Takayama, Naoya; Eto, Koji
2012-10-01
Human pluripotent stem cells [PSCs; including human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs)] can infinitely proliferate in vitro and are easily accessible for gene manipulation. Megakaryocytes (MKs) and platelets can be created from human ESCs and iPSCs in vitro and represent a potential source of blood cells for transfusion and a promising tool for studying the human thrombopoiesis. Moreover, disease-specific iPSCs are a powerful tool for elucidating the pathogenesis of hematological diseases and for drug screening. In that context, we and other groups have developed in vitro MK and platelet differentiation systems from human pluripotent stem cells (PSCs). Combining this co-culture system with a drug-inducible gene expression system enabled us to clarify the novel role played by c-MYC during human thrombopoiesis. In the next decade, technical advances (e.g., high-throughput genomic sequencing) will likely enable the identification of numerous gene mutations associated with abnormal thrombopoiesis. Combined with such technology, an in vitro system for differentiating human PSCs into MKs and platelets could provide a novel platform for studying human gene function associated with thrombopoiesis.
Jeong, Young-Hoon; Bliden, Kevin P; Antonino, Mark J; Park, Ki-Soo; Tantry, Udaya S; Gurbel, Paul A
2012-07-01
We analyzed the antiplatelet effects of different P2Y(12) receptor blockers with VerifyNow P2Y12 assay (VN-P2Y12) and light transmittance aggregometry (LTA). The point-of-care VN-P2Y12 has been used to assess the antiplatelet effects in clopidogrel-treated patients but has not been evaluated in detail in patients treated with ticagrelor. Patients were randomly assigned to either ticagrelor [180 mg loading/90 mg twice daily (n = 37)] or clopidogrel [600 mg loading/75 mg daily (n = 39)] on top of aspirin treatment, and platelet reactivity was measured serially during onset, maintenance, and offset phases. High on-treatment platelet reactivity (HPR) was defined as 5 and 20 μM adenosine diphosphate-induced maximal platelet aggregation ≥46% and ≥59%, respectively, and P2Y12 reaction units ≥235. Platelet function measured by VN-P2Y12 correlated well with LTA (.812 ≤ ρ ≤ .823, P < .001). VN-P2Y12 "BASE" values were consistent during administration of both agents. Calculated and reported percent inhibitions by VN-P2Y12 were similar (difference, -0.6%; 95% agreement limits, -22.9% to 21.6%). Platelet inhibition by VN-P2Y12 during clopidogrel and ticagrelor administrations was comparable to platelet inhibition by LTA. HPR determined by LTA and VN-P2Y12 were well matched, and the risk stratification between the two methods showed strong agreement after both therapies (κ > .7). The VerifyNow P2Y12 assay is effective in assessing the antiplatelet effects and in identifying HPR during clopidogrel or ticagrelor therapy. Copyright © 2012 Mosby, Inc. All rights reserved.
Yong, Gerald; Rankin, Jamie; Ferguson, Louise; Thom, Jim; French, John; Brieger, David; Chew, Derek P; Dick, Ron; Eccleston, David; Hockings, Bernard; Walters, Darren; Whelan, Alan; Eikelboom, John W
2009-01-01
There is uncertainty about the benefit of a higher loading dose (LD) of clopidogrel in patients with non-ST elevation acute coronary syndrome (NSTEACS) undergoing early percutaneous coronary intervention (PCI). We compared the effects of a 600- versus a 300-mg LD of clopidogrel on inhibition of platelet aggregation, myonecrosis, and clinical outcomes in patients with NSTEACS undergoing an early invasive management strategy. Patients with NSTEACS (n = 256, mean age 63 years, 81.6% elevated troponin) without thienopyridine for at least 7 days were randomized to receive 600- or 300-mg LD of clopidogrel. Percutaneous coronary intervention was performed in 140 patients, with glycoprotein IIb/IIIa inhibitor use in 68.6%. Adenosine diphosphate (ADP)-induced platelet aggregation was measured by optical platelet aggregometry immediately before coronary angiography. Post-PCI myonecrosis was defined as a next-day troponin I greater than 5 times the upper limit of reference range and greater than baseline levels. Clopidogrel 600-mg LD compared with 300-mg LD was associated with significantly reduced ADP-induced platelet aggregation (49.7% vs 55.7% with ADP 20 micromol/L) but did not reduce post-PCI myonecrosis or adverse clinical outcomes to 6 months. There was no association between preprocedural platelet aggregation and outcome. These data confirm a modest incremental antiplatelet effect of a 600-mg clopidogrel LD compared with 300-mg LD but provide no support for a clinical benefit in patients with NSTEACS managed with an early invasive strategy including a high rate (69%) of glycoprotein IIb/IIIa inhibitor use during PCI.
Human Cancer and Platelet Interaction, a Potential Therapeutic Target.
Wang, Shike; Li, Zhenyu; Xu, Ren
2018-04-20
Cancer patients experience a four-fold increase in thrombosis risk, indicating that cancer development and progression are associated with platelet activation. Xenograft experiments and transgenic mouse models further demonstrate that platelet activation and platelet-cancer cell interaction are crucial for cancer metastasis. Direct or indirect interaction of platelets induces cancer cell plasticity and enhances survival and extravasation of circulating cancer cells during dissemination. In vivo and in vitro experiments also demonstrate that cancer cells induce platelet aggregation, suggesting that platelet-cancer interaction is bidirectional. Therefore, understanding how platelets crosstalk with cancer cells may identify potential strategies to inhibit cancer metastasis and to reduce cancer-related thrombosis. Here, we discuss the potential function of platelets in regulating cancer progression and summarize the factors and signaling pathways that mediate the cancer cell-platelet interaction.
The Biomechanical and Histologic Effects of Platelet-Rich Plasma on Rat Rotator Cuff Repairs
Beck, Jennifer; Evans, Douglas; Tonino, Pietro M.; Yong, Sherri; Callaci, John J.
2013-01-01
Background Rotator cuff tears are common injuries that are often treated with surgical repair. Because of the high concentration of growth factors within platelets, platelet-rich plasma (PRP) has the potential to enhance healing in rotator cuff repairs. Hypothesis Platelet-rich plasma would alter the biomechanical and histologic properties of rotator cuff repair during an acute injury response. Study Design Controlled laboratory study. Methods Platelet-rich plasma was produced from inbred donor rats. A tendon-from-bone supraspinatus tear was created surgically and an immediate transosseous repair performed. The control group underwent repair only. The PRP group underwent a repair with PRP augmentation. Rats in each group were sacrificed at 7, 14, and 21 days. The surgically repaired tendons underwent biomechanical testing, including failure load, stiffness, failure strain, and stress relaxation characteristics. Histological analysis evaluated the cellular characteristics of the repair tissue. Results At 7- and 21-day periods, augmentation with PRP showed statistically significant effects on the biomechanical properties of the repaired rat supraspinatus tear, but failure load was not increased at the 7-, 14-, or 21-day periods (P = .688, .209, and .477, respectively). The control group had significantly higher stiffness at 21 days (P = .006). The control group had higher failure strain at 7 days (P = .02), whereas the PRP group had higher failure strain at 21 days (P = .008). Histologically, the PRP group showed increased fibroblastic response and vascular proliferation at each time point. At 21 days, the collagen fibers in the PRP group were oriented in a more linear fashion toward the tendon footprint. Conclusion In this controlled, rat model study, PRP altered the tissue properties of the supraspinatus tendon without affecting the construct’s failure load. Clinical Relevance The decreased tendon tissue stiffness acutely and failure to enhance tendon-to-bone healing of repairs should be considered before augmenting rotator cuff repairs with PRP. Further studies will be necessary to determine the role of PRP in clinical practice. PMID:22822177
Platelet-derived growth factor inhibits platelet activation in heparinized whole blood.
Selheim, F; Holmsen, H; Vassbotn, F S
1999-08-15
We previously have demonstrated that human platelets have functionally active platelet-derived growth factor alpha-receptors. Studies with gel-filtered platelets showed that an autocrine inhibition pathway is transduced through this tyrosine kinase receptor during platelet activation. The physiological significance of this inhibitory effect of platelet-derived growth factor on gel-filtered platelets activation is, however, not known. In the present study, we investigated whether platelet-derived growth factor inhibits platelet activation under more physiological conditions in heparinized whole blood, which represents a more physiological condition than gel-filtered platelets. Using flow cytometric assays, we demonstrate here that platelet-derived growth factor inhibits thrombin-, thrombin receptor agonist peptide SFLLRN-, and collagen-induced platelet aggregation and shedding of platelet-derived microparticles from the platelet plasma membrane during platelet aggregation in stirred heparinized whole blood. The inhibitory effect of platelet-derived growth factor was dose dependent. However, under nonaggregating conditions (no stirring), we could not demonstrate any significant effect of platelet-derived growth factor on thrombin- and thrombin receptor agonist peptide-induced platelet surface expression of P-selectin. Our results demonstrate that platelet-derived growth factor appears to be a true antithrombotic agent only under aggregating conditions in heparinized whole blood.
Wei, Li-Cheng; Gao, Shu-Guang; Xu, Mai; Jiang, Wei; Tian, Jian; Lei, Guang-Hua
2012-01-01
Summary The white-white tears (meniscus lesion completely in the avascular zone) are without blood supply and theoretically cannot heal. Basal research has demonstrated that menisci are unquestionably important in load bearing, load redistribution, shock absorption, joint lubrication and the stabilization of the knee joint. It has been proven that partial or all-meniscusectomy results in an accelerated degeneration of cartilage and an increased rate of early osteoarthritis. Knee surgeons must face the difficult decision of removing or, if possible, retaining the meniscus; if it is possible to retain the meniscus, surgeons must address the difficulties of meniscal healing. Some preliminary approaches have progressed to improve meniscal healing. However, the problem of promoting meniscal healing in the avascular area has not yet been resolved. The demanding nature of the approach as well as its low utility and efficacy has impeded the progress of these enhancement techniques. Platelet-rich plasma (PRP) is a platelet concentration derived from autologous blood. In recent years, PRP has been used widely in preclinical and clinical applications for bone regeneration and wound healing. Therefore, we hypothesize that the application of platelet-rich plasma for white-white meniscal tears will be a simple and novel technique of high utility in knee surgery. PMID:22847210
NASA Astrophysics Data System (ADS)
Aghayan, H.; Khanchi, A. R.; Yousefi, T.; Ghasemi, H.
2017-12-01
In this research, three type of mesoporous silica with different morphologies, namely fibers, spheres and platelets were synthesized and used as a support for immobilization of [H3PMo6W6O40].nH2O. The samples were then applied as an inorganic composite ion-exchanger for sorption of thorium from aqueous solution. Various techniques including ICP, XRD, BET, SEM and FT-IR methods were used to characterize of the products. The experiment results showed that the [H3PMo6W6O40].nH2O supported on the platelet mesoporous silica exhibited both the highest sorption capacity and fastest kinetics when compared with the fibers and spheres adsorbents. Our results show that the morphology of the mesoporous support, which can produce different channel lengths, pore size and surface area, has a serious effect on the sorption properties and influences: (1) the amount of loading of heteropoly acid in the support (2) the kinetic of the sorption process and (3) the maximum of adsorption capacity. The platelet morphology showed the shortest equilibrium time, the highest loading amount and the highest adsorption capacity therefore delivering the best performance among the three morphologies.
Global proteome analysis identifies active immunoproteasome subunits in human platelets.
Klockenbusch, Cordula; Walsh, Geraldine M; Brown, Lyda M; Hoffman, Michael D; Ignatchenko, Vladimir; Kislinger, Thomas; Kast, Juergen
2014-12-01
The discovery of new functions for platelets, particularly in inflammation and immunity, has expanded the role of these anucleate cell fragments beyond their primary hemostatic function. Here, four in-depth human platelet proteomic data sets were generated to explore potential new functions for platelets based on their protein content and this led to the identification of 2559 high confidence proteins. During a more detailed analysis, consistently high expression of the proteasome was discovered, and the composition and function of this complex, whose role in platelets has not been thoroughly investigated, was examined. Data set mining resulted in identification of nearly all members of the 26S proteasome in one or more data sets, except the β5 subunit. However, β5i, a component of the immunoproteasome, was identified. Biochemical analyses confirmed the presence of all catalytically active subunits of the standard 20S proteasome and immunoproteasome in human platelets, including β5, which was predominantly found in its precursor form. It was demonstrated that these components were assembled into the proteasome complex and that standard proteasome as well as immunoproteasome subunits were constitutively active in platelets. These findings suggest potential new roles for platelets in the immune system. For example, the immunoproteasome may be involved in major histocompatibility complex I (MHC I) peptide generation, as the MHC I machinery was also identified in our data sets. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Electrospun silk fibroin fibers for storage and controlled release of human platelet lysate.
Pignatelli, Cataldo; Perotto, Giovanni; Nardini, Marta; Cancedda, Ranieri; Mastrogiacomo, Maddalena; Athanassiou, Athanassia
2018-04-17
Human platelet lysate (hPL) is a pool of growth factors and cytokines able to induce regeneration of different tissues. Despite its good potentiality as therapeutic tool for regenerative medicine applications, hPL has been only moderately exploited in this field. A more widespread adoption has been limited because of its rapid degradation at room temperature that decreases its functionality. Another limiting factor for its extensive use is the difficulty of handling the hPL gels. In this work, silk fibroin-based patches were developed to address several points: improving the handling of hPL, enabling their delivery in a controlled manner and facilitating their storage by creating a device ready to use with expanded shelf life. Patches of fibroin loaded with hPL were synthesized by electrospinning to take advantage of the fibrous morphology. The release kinetics of the material was characterized and tuned through the control of fibroin crystallinity. Cell viability assays, performed with primary human dermal fibroblasts, demonstrated that fibroin is able to preserve the hPL biological activity and prolong its shelf-life. The strategy of storing and preserving small active molecules within a naturally-derived, protein-based fibrous scaffold was successfully implemented, leading to the design of a biocompatible device, which can potentially simplify the storage and the application of the hPL on a human patient, undergoing medical procedures such as surgery and wound care. Human platelets lysate (hPL) is a mixture of growth factors and cytokines able to induce the regeneration of damaged tissues. This study aims at enclosing hPL in a silk fibroin electrospun matrix to expand its utilization. Silk fibroin showed the ability to preserve the hPL activity at temperature up to 60 °C and the manipulation of fibroin's crystallinity provided a tool to modulate the hPL release kinetic. This entails the possibility to fabricate the hPL silk fibroin patches in advance and store them, resulting in an easy and fast accessibility and an expanded use of hPL for wound healing. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Gurbel, Paul A; Bliden, Kevin P; Butler, Kathleen; Tantry, Udaya S; Gesheff, Tania; Wei, Cheryl; Teng, Renli; Antonino, Mark J; Patil, Shankar B; Karunakaran, Arun; Kereiakes, Dean J; Parris, Cordel; Purdy, Drew; Wilson, Vance; Ledley, Gary S; Storey, Robert F
2009-12-22
Ticagrelor is the first reversibly binding oral P2Y(12) receptor antagonist. This is the first study to compare the onset and offset of platelet inhibition (IPA) with ticagrelor using the PLATO (PLATelet inhibition and patient Outcomes) trial loading dose (180 mg) with a high loading dose (600 mg) of clopidogrel. In a multicenter, randomized, double-blind study, 123 patients with stable coronary artery disease who were taking aspirin therapy (75 to 100 mg/d) received ticagrelor (180-mg load, 90-mg BID maintenance dose [n=57]), clopidogrel (600-mg load, 75-mg/d maintenance dose [n=54]), or placebo (n=12) for 6 weeks. Greater IPA (20 micromol/L ADP, final extent) occurred with ticagrelor than with clopidogrel at 0.5, 1, 2, 4, 8, and 24 hours after loading and at 6 weeks (P<0.0001 for all); by 2 hours after loading, a greater proportion of patients achieved >50% IPA (98% versus 31%, P<0.0001) and >70% IPA (90% versus 16%, P<0.0001) in the ticagrelor group than in the clopidogrel group, respectively. A faster offset occurred with ticagrelor than with clopidogrel (4-to-72-hour slope [% IPA/h] -1.04 versus -0.48, P<0.0001). At 24 hours after the last dose, mean IPA was 58% for ticagrelor versus 52% for clopidogrel (P=NS). IPA for ticagrelor on day 3 after the last dose was comparable to clopidogrel at day 5; IPA on day 5 for ticagrelor was similar to clopidogrel on day 7 and did not differ from placebo (P=NS). Ticagrelor achieved more rapid and greater platelet inhibition than high-loading-dose clopidogrel; this was sustained during the maintenance phase and was faster in offset after drug discontinuation.
Sharda, Anish; Kim, Sarah H.; Jasuja, Reema; Gopal, Srila; Flaumenhaft, Robert; Furie, Barbara C.
2015-01-01
Protein disulfide isomerase (PDI), secreted from platelets and endothelial cells after injury, is required for thrombus formation. The effect of platelet and endothelial cell granule contents on PDI-mediated thrombus formation was studied by intravital microscopy using a mouse model of Hermansky-Pudlak syndrome in which platelet dense granules are absent. Platelet deposition and fibrin generation were nearly absent, and extracellular PDI was significantly reduced in HPS6−/− mice after vascular injury. HPS6−/− platelets displayed impaired PDI secretion and impaired exocytosis of α granules, lysosomes, and T granules due to decreased sensitivity to thrombin, but these defects could be corrected by addition of subthreshold amounts of adenosine 5′-diphosphate (ADP). Human Hermansky-Pudlak syndrome platelets demonstrated similar characteristics. Infusion of wild-type platelets rescued thrombus formation in HPS6−/− mice. Human umbilical vein endothelial cells in which the HPS6 gene was silenced displayed impaired PDI secretion and exocytosis of Weibel-Palade bodies. Defective thrombus formation in Hermansky-Pudlak syndrome, associated with impaired exocytosis of residual granules in endothelial cells and platelets, the latter due to deficiency of ADP, is characterized by a defect in T granule secretion, a deficiency in extracellular PDI secretion, and impaired fibrin generation and platelet aggregation. Hermansky-Pudlak syndrome is an example of a hereditary disease whereby impaired PDI secretion contributes to a bleeding phenotype. PMID:25593336
Rambach, Günter; Blum, Gerhard; Latgé, Jean-Paul; Fontaine, Thierry; Heinekamp, Thorsten; Hagleitner, Magdalena; Jeckström, Hanna; Weigel, Günter; Würtinger, Philipp; Pfaller, Kristian; Krappmann, Sven; Löffler, Jürgen; Lass-Flörl, Cornelia; Speth, Cornelia
2015-10-01
Platelets were recently identified as a part of innate immunity. They are activated by contact with Aspergillus fumigatus; putative consequences include antifungal defense but also thrombosis, excessive inflammation, and thrombocytopenia. We aimed to identify those fungal surface structures that mediate interaction with platelets. Human platelets were incubated with Aspergillus conidia and hyphae, isolated wall components, or fungal surface mutants. Interaction was visualized microscopically; activation was quantified by flow cytometry of specific markers. The capacity of A. fumigatus conidia to activate platelets is at least partly due to melanin, because this effect can be mimicked with "melanin ghosts"; a mutant lacking melanin showed reduced platelet stimulating potency. In contrast, conidial hydrophobin masks relevant structures, because an A. fumigatus mutant lacking the hydrophobin protein induced stronger platelet activation than wild-type conidia. A. fumigatus hyphae also contain surface structures that interact with platelets. Wall proteins, galactomannan, chitin, and β-glucan are not the relevant hyphal components; instead, the recently identified fungal polysaccharide galactosaminogalactan potently triggered platelet activation. Conidial melanin and hydrophobin as well as hyphal galactosaminogalactan represent important pathogenicity factors that modulate platelet activity and thus might influence immune responses, inflammation, and thrombosis in infected patients. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Effects of Nd:YAG laser-heated metal cap on human platelets in vitro
NASA Astrophysics Data System (ADS)
Liu, Xia; Guo, You-chi
1993-03-01
Human platelet-rich plasma (PRP) was irradiated in vitro with a fiberoptic Nd:YAG laser-heated metal cap to study its effects on platelets. The energy of the laser was 5 and 10 watts with an irradiation time of 0, 3, 6, and 9 seconds and 14 watts with an irradiation time of 0, 3, 4, and 5 seconds, respectively. The irradiated PRPs were analyzed for platelet count, aggregation reaction, thromboxane (TX)B2 measurement and electron microscopy. Various degrees of decrease in platelet count were observed in all groups. Except the 5Wx3S group, the other groups showed an increase in the maximum aggregation rate of platelets, which corresponded to the enhancement of TXB2 formation. It was also demonstrated by a transmission electron microscopy in 10Wx3S, 10Wx6S, 10Wx9S, 14Wx3S, 14Wx4S, and 14Wx5S energy groups that alpha- and dense-particles in irradiated platelets became sparse in number or even disappeared, less electron density, irregularity in size and shape, and a tendency for these particles to cluster around platelet membranes and open canalicular systems, which dilated apparently. Furthermore, scanning electron microscopy depicted the appearance of short and thick pseudopods on the surfaces of some irradiated platelets and an increase in the axis rate in most of the irradiated platelets.
Barber, F Alan
2016-05-01
To compare the structural healing and clinical outcomes of triple-loaded single-row with suture-bridging double-row repairs of full-thickness rotator cuff tendons when both repair constructs are augmented with platelet-rich plasma fibrin membrane. A prospective, randomized, consecutive series of patients diagnosed with full-thickness rotator cuff tears no greater than 3 cm in anteroposterior length were treated with a triple-loaded single-row (20) or suture-bridging double-row (20) repair augmented with platelet-rich plasma fibrin membrane. The primary outcome measure was cuff integrity by magnetic resonance imaging (MRI) at 12 months postoperatively. Secondary clinical outcome measures were American Shoulder and Elbow Surgeons, Rowe, Simple Shoulder Test, Constant, and Single Assessment Numeric Evaluation scores. The mean MRI interval was 12.6 months (range, 12-17 months). A total of 3 of 20 single-row repairs and 3 of 20 double-row repairs (15%) had tears at follow-up MRI. The single-row group had re-tears in 1 single tendon repair and 2 double tendon repairs. All 3 tears failed at the original attachment site (Cho type 1). In the double-row group, re-tears were found in 3 double tendon repairs. All 3 tears failed medial to the medial row near the musculotendinous junction (Cho type 2). All clinical outcome measures were significantly improved from the preoperative level (P < .0001), but there was no statistical difference between groups postoperatively. There is no MRI difference in rotator cuff tendon re-tear rate at 12 months postsurgery between a triple-loaded single-row repair or a suture-bridging double-row repair when both are augmented with platelet-rich plasma fibrin membrane. No difference could be demonstrated between these repairs on clinical outcome scores. I, Prospective randomized study. Copyright © 2016 Arthroscopy Association of North America. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nygaard, Gyrid; Department of Biomedicine, University of Bergen, Bergen; Herfindal, Lars
Highlights: • We investigated the impact of cyclic nucleotide analogues on platelet activation. • Different time dependence were found for inhibition of platelet activation. • Additive effect was found using PKA- and PKG-activating analogues. • Our results may explain some of the discrepancies reported for cNMP signalling. - Abstract: In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigatedmore » whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.« less
Zhang, Yiting; Sun, Jianhua; Tan, Minjia; Liu, Yongzhen; Li, Qian; Jiang, Hua; Wang, Huamao; Li, Zonghai; Wan, Wei; Jiang, Hualiang; Lu, Henglei; Wang, Bingshun; Ren, Jin; Gong, Likun
2018-04-07
CH12 is a novel humanized monoclonal antibody against epidermal growth factor receptor variant III (EGFRvIII) for cancer treatment. Unfortunately, in pre-clinical safety evaluation studies, acute thrombocytopenia was observed after administration of CH12 in cynomolgus monkeys, but not rats. More importantly, in vitro experiments found that CH12 can bind and activate platelets in cynomolgus monkey, but not human peripheral blood samples. Cynomolgus monkey-specific thrombocytopenia has been reported previously; however, the underlying mechanism remains unclear. Here, we first showed that CH12 induced thrombocytopenia in cynomolgus monkeys through off-target platelet binding and activation, resulting in platelet destruction. We subsequently found that integrin αIIbβ3 (which is expressed on platelets) contributed to this off-target toxicity. Furthermore, three-dimensional structural modeling of the αIIbβ3 molecules in cynomolgus monkeys, humans, and rats suggested that an additional unique loop exists in the ligand-binding pocket of the αIIb subunit in cynomolgus monkeys, which may explain why CH12 binds to platelets only in cynomolgus monkeys. Moreover, this study supported the hypothesis that the minor differences between cynomolgus monkeys and humans can confuse human risk assessments and suggests that species differences can help the prediction of human risks and avoid losses in drug development. Copyright © 2018. Published by Elsevier Inc.
Martinelli, Daniela; Pereira, Rui Cruz; Mogni, Massimo; Benelli, Roberto; Mastrogiacomo, Maddalena; Coviello, Domenico; Cancedda, Ranieri; Gentili, Chiara
2016-03-01
The amniotic fluid is a new source of multipotent stem cells with therapeutic potential for human diseases. In agreement with the regulatory requirement to reduce and possibly to avoid animal-derived reagents in the culture of cells intended for cell therapy, bovine serum, the most common supplement in the culture medium, was replaced by human platelet-derived growth factors. We tested a new culture medium to expand monolayers of human amniotic fluid stem cells (hAFSC) for clinical use. The AFSC were isolated by c-Kit selection and expanded in media supplemented with either bovine serum or a human platelet lysate (Lyset). We compared proliferation kinetics, colony-forming unit percentage, multilineage differentiation, immunophenotypic characterization and inhibition of peripheral blood mononuclear cell proliferation of the two AFSC cell cultures and we found no significant differences. Moreover, the karyotype analysis of the cells expanded in the presence of the platelet lysate did not present cytogenetic abnormalities and in vitro and in vivo studies revealed no cell tumorigenicity. Platelet derivatives represent a rich source of growth factors that can play a safety role in the homeostasis, proliferation and remodeling of tissue healing. We propose human platelet extracts as a preferential alternative to animal serum for the expansion of stem cells for clinical applications. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Du, Lily M; Nurden, Paquita; Nurden, Alan T; Nichols, Timothy C; Bellinger, Dwight A; Jensen, Eric S; Haberichter, Sandra L; Merricks, Elizabeth; Raymer, Robin A; Fang, Juan; Koukouritaki, Sevasti B; Jacobi, Paula M; Hawkins, Troy B; Cornetta, Kenneth; Shi, Qizhen; Wilcox, David A
2013-01-01
It is essential to improve therapies for controlling excessive bleeding in patients with haemorrhagic disorders. As activated blood platelets mediate the primary response to vascular injury, we hypothesize that storage of coagulation Factor VIII within platelets may provide a locally inducible treatment to maintain haemostasis for haemophilia A. Here we show that haematopoietic stem cell gene therapy can prevent the occurrence of severe bleeding episodes in dogs with haemophilia A for at least 2.5 years after transplantation. We employ a clinically relevant strategy based on a lentiviral vector encoding the ITGA2B gene promoter, which drives platelet-specific expression of human FVIII permitting storage and release of FVIII from activated platelets. One animal receives a hybrid molecule of FVIII fused to the von Willebrand Factor propeptide-D2 domain that traffics FVIII more effectively into α-granules. The absence of inhibitory antibodies to platelet-derived FVIII indicates that this approach may have benefit in patients who reject FVIII replacement therapies. Thus, platelet FVIII may provide effective long-term control of bleeding in patients with haemophilia A.
Du, Lily M.; Nurden, Paquita; Nurden, Alan T.; Nichols, Timothy C.; Bellinger, Dwight A.; Jensen, Eric S.; Haberichter, Sandra L.; Merricks, Elizabeth; Raymer, Robin A.; Fang, Juan; Koukouritaki, Sevasti B.; Jacobi, Paula M.; Hawkins, Troy B.; Cornetta, Kenneth; Shi, Qizhen; Wilcox, David A.
2013-01-01
It is essential to improve therapies for controlling excessive bleeding in patients with haemorrhagic disorders. As activated blood platelets mediate the primary response to vascular injury, we hypothesize that storage of coagulation Factor VIII within platelets may provide a locally inducible treatment to maintain haemostasis for haemophilia A. Here we show that haematopoietic stem cell gene therapy can prevent the occurrence of severe bleeding episodes in dogs with haemophilia A for at least 2.5 years after transplantation. We employ a clinically relevant strategy based on a lentiviral vector encoding the ITGA2B gene promoter, which drives platelet-specific expression of human FVIII permitting storage and release of FVIII from activated platelets. One animal receives a hybrid molecule of FVIII fused to the von Willebrand Factor propeptide-D2 domain that traffics FVIII more effectively into α-granules. The absence of inhibitory antibodies to platelet-derived FVIII indicates that this approach may have benefit in patients who reject FVIII replacement therapies. Thus, platelet FVIII may provide effective long-term control of bleeding in patients with haemophilia A. PMID:24253479
Ghevaert, Cedric; Wilcox, David A; Fang, Juan; Armour, Kathryn L; Clark, Mike R; Ouwehand, Willem H; Williamson, Lorna M
2008-08-01
Fetomaternal alloimmune thrombocytopenia (FMAIT) is caused by maternal generation of antibodies specific for paternal platelet antigens and can lead to fetal intracranial hemorrhage. A SNP in the gene encoding integrin beta3 causes a clinically important maternal-paternal antigenic difference; Leu33 generates the human platelet antigen 1a (HPA-1a), whereas Pro33 generates HPA-1b. As a potential treatment to prevent fetal intracranial hemorrhage in HPA-1a alloimmunized pregnancies, we generated an antibody that blocks the binding of maternal HPA-1a-specific antibodies to fetal HPA-1a1b platelets by combining a high-affinity human HPA-1a-specific scFv (B2) with an IgG1 constant region modified to minimize Fcgamma receptor-dependent platelet destruction (G1Deltanab). B2G1Deltanab saturated HPA-1a+ platelets and substantially inhibited binding of clinical HPA-1a-specific sera to HPA-1a+ platelets. The response of monocytes to B2G1Deltanab-sensitized platelets was substantially less than their response to unmodified B2G1, as measured by chemiluminescence. In addition, B2G1Deltanab inhibited chemiluminescence induced by B2G1 and HPA-1a-specific sera. In a chimeric mouse model, B2G1 and polyclonal Ig preparations from clinical HPA-1a-specific sera reduced circulating HPA-1a+ platelets, concomitant with transient thrombocytopenia. As the Deltanab constant region is uninformative in mice, F(ab')2 B2G1 was used as a proof of principle blocking antibody and prevented the in vivo platelet destruction seen with B2G1 and polyclonal HPA-1a-specific antibodies. These results provide rationale for human clinical studies.
Wang, Chiun-Lang; Yang, Po-Sheng; Tsao, Jeng-Ting; Jayakumar, Thanasekaran; Wang, Meng-Jiy; Sheu, Joen-Rong; Chou, Duen-Suey
2018-01-01
Oxygen free radicals have been implicated in the pathogenesis of toxic liver injury and are thought to be involved in cardiac dysfunction in the cirrhotic heart. Therefore, direct evidence for the electron spin resonance (ESR) detection of how D‑galactosamine (GalN), an established experimental hepatotoxic substance, induced free radicals formation in platelets and primary hepatocytes is presented in the present study. ESR results demonstrated that GalN induced hydroxyl radicals (OH•) in a resting human platelet suspension; however, radicals were not produced in a cell free Fenton reaction system. The GalN‑induced OH• formation was significantly inhibited by the cyclooxygenase (COX) inhibitor indomethasin, though it was not affected by the lipoxygenase (LOX) or cytochrome P450 inhibitors, AA861 and 1‑aminobenzotriazole (ABT), in platelets. In addition, the present study demonstrated that baicalein induced semiquinone free radicals in platelets, which were significantly reduced by the COX inhibitor without affecting the formed OH•. In the mouse primary hepatocytes, the formation of arachidonic acid (AA) induced carbon‑centered radicals that were concentration dependently enhanced by GalN. These radicals were inhibited by AA861, though not affected by indomethasin or ABT. In addition, GalN did not induce platelet aggregation prior to or following collagen pretreatment in human platelets. The results of the present study indicated that GalN and baicalein may induce OH• by COX and LOX in human platelets. GalN also potentiated AA induced carbon‑centered radicals in hepatocytes via cytochrome P450. The present study presented the role of free radicals in the pathophysiological association between platelets and hepatocytes.
Koupenova, Milka; Vitseva, Olga; MacKay, Christopher R.; Beaulieu, Lea M.; Benjamin, Emelia J.; Mick, Eric; Kurt-Jones, Evelyn A.; Ravid, Katya
2014-01-01
Viral infections have been associated with reduced platelet counts, the biological significance of which has remained elusive. Here, we show that infection with encephalomyocarditis virus (EMCV) rapidly reduces platelet count, and this response is attributed to platelet Toll-like receptor 7 (TLR7). Platelet-TLR7 stimulation mediates formation of large platelet-neutrophil aggregates, both in mouse and human blood. Intriguingly, this process results in internalization of platelet CD41-fragments by neutrophils, as assessed biochemically and visualized by microscopy, with no influence on platelet prothrombotic properties. The mechanism includes TLR7-mediated platelet granule release, translocation of P-selectin to the cell surface, and a consequent increase in platelet-neutrophil adhesion. Viral infection of platelet-depleted mice also led to increased mortality. Transfusion of wild-type, TLR7-expressing platelets into TLR7-deficient mice caused a drop in platelet count and increased survival post EMCV infection. Thus, this study identifies a new link between platelets and their response to single-stranded RNA viruses that involves activation of TLR7. Finally, platelet-TLR7 stimulation is independent of thrombosis and has implications to the host immune response and survival. PMID:24755410
Arf6 controls platelet spreading and clot retraction via integrin αIIbβ3 trafficking
Huang, Yunjie; Joshi, Smita; Xiang, Binggang; Kanaho, Yasunori; Li, Zhenyu; Bouchard, Beth A.; Moncman, Carole L.
2016-01-01
Platelet and megakaryocyte endocytosis is important for loading certain granule cargo (ie, fibrinogen [Fg] and vascular endothelial growth factor); however, the mechanisms of platelet endocytosis and its functional acute effects are understudied. Adenosine 5'-diphosphate–ribosylation factor 6 (Arf6) is a small guanosine triphosphate–binding protein that regulates endocytic trafficking, especially of integrins. To study platelet endocytosis, we generated platelet-specific Arf6 knockout (KO) mice. Arf6 KO platelets had less associated Fg suggesting that Arf6 affects αIIbβ3-mediated Fg uptake and/or storage. Other cargo was unaffected. To measure Fg uptake, mice were injected with biotinylated- or fluorescein isothiocyanate (FITC)–labeled Fg. Platelets from the injected Arf6 KO mice showed lower accumulation of tagged Fg, suggesting an uptake defect. Ex vivo, Arf6 KO platelets were also defective in FITC-Fg uptake and storage. Immunofluorescence analysis showed initial trafficking of FITC-Fg to a Rab4-positive compartment followed by colocalization with Rab11-positive structures, suggesting that platelets contain and use both early and recycling endosomes. Resting and activated αIIbβ3 levels, as measured by flow cytometry, were unchanged; yet, Arf6 KO platelets exhibited enhanced spreading on Fg and faster clot retraction. This was not the result of alterations in αIIbβ3 signaling, because myosin light-chain phosphorylation and Rac1/RhoA activation were unaffected. Consistent with the enhanced clot retraction and spreading, Arf6 KO mice showed no deficits in tail bleeding or FeCl3-induced carotid injury assays. Our studies present the first mouse model for defining the functions of platelet endocytosis and suggest that altered integrin trafficking may affect the efficacy of platelet function. PMID:26738539
Arf6 controls platelet spreading and clot retraction via integrin αIIbβ3 trafficking.
Huang, Yunjie; Joshi, Smita; Xiang, Binggang; Kanaho, Yasunori; Li, Zhenyu; Bouchard, Beth A; Moncman, Carole L; Whiteheart, Sidney W
2016-03-17
Platelet and megakaryocyte endocytosis is important for loading certain granule cargo (ie, fibrinogen [Fg] and vascular endothelial growth factor); however, the mechanisms of platelet endocytosis and its functional acute effects are understudied. Adenosine 5'-diphosphate-ribosylation factor 6 (Arf6) is a small guanosine triphosphate-binding protein that regulates endocytic trafficking, especially of integrins. To study platelet endocytosis, we generated platelet-specific Arf6 knockout (KO) mice. Arf6 KO platelets had less associated Fg suggesting that Arf6 affects αIIbβ3-mediated Fg uptake and/or storage. Other cargo was unaffected. To measure Fg uptake, mice were injected with biotinylated- or fluorescein isothiocyanate (FITC)-labeled Fg. Platelets from the injected Arf6 KO mice showed lower accumulation of tagged Fg, suggesting an uptake defect. Ex vivo, Arf6 KO platelets were also defective in FITC-Fg uptake and storage. Immunofluorescence analysis showed initial trafficking of FITC-Fg to a Rab4-positive compartment followed by colocalization with Rab11-positive structures, suggesting that platelets contain and use both early and recycling endosomes. Resting and activated αIIbβ3 levels, as measured by flow cytometry, were unchanged; yet, Arf6 KO platelets exhibited enhanced spreading on Fg and faster clot retraction. This was not the result of alterations in αIIbβ3 signaling, because myosin light-chain phosphorylation and Rac1/RhoA activation were unaffected. Consistent with the enhanced clot retraction and spreading, Arf6 KO mice showed no deficits in tail bleeding or FeCl3-induced carotid injury assays. Our studies present the first mouse model for defining the functions of platelet endocytosis and suggest that altered integrin trafficking may affect the efficacy of platelet function. © 2016 by The American Society of Hematology.
Antonino, Mark J; Mahla, Elisabeth; Bliden, Kevin P; Tantry, Udaya S; Gurbel, Paul A
2009-06-01
A clopidogrel loading dose administered during stenting attenuates inflammation marker release. However, less is known of the anti-inflammatory effect of clopidogrel maintenance therapy. Platelet reactivity to adenosine diphosphate and inflammation markers were measured in 110 consecutive patients (69 clopidogrel-naive patients and 41 patients receiving long-term clopidogrel therapy for >6 months) before nonemergent stenting by turbidimetric aggregometry and flow cytometry and multianalyte profiling, respectively. All patients were treated with aspirin. Prestenting adenosine diphosphate-induced platelet aggregation, P-selectin, and activated glycoprotein IIb/IIIa expression were lower in patients receiving long-term clopidogrel therapy compared with the clopidogrel-naive group (p <0.001), accompanied by lower levels of selected inflammation markers (p < or = 0.05). Additionally, there were strong correlations between platelet aggregation and flow cytometric measurements (p < or = 0.04) and between specific inflammation markers (p < or = 0.02). In conclusion, in addition to markedly lowering platelet reactivity to adenosine diphosphate, long-term clopidogrel therapy is associated with an anti-inflammatory effect.
Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum
Vieira-de-Abreu, Adriana; Campbell, Robert A.; Weyrich, Andrew S.
2015-01-01
Platelets are chief effector cells in hemostasis. In addition, however, their specializations include activities and intercellular interactions that make them key effectors in inflammation and in the continuum of innate and adaptive immunity. This review focuses on the immune features of human platelets and platelets from experimental animals and on interactions between inflammatory, immune, and hemostatic activities of these anucleate but complex and versatile cells. The experimental findings and evidence for physiologic immune functions include previously unrecognized biologic characteristics of platelets and are paralleled by new evidence for unique roles of platelets in inflammatory, immune, and thrombotic diseases. PMID:21818701
Existence of a microRNA pathway in anucleate platelets
Landry, Patricia; Plante, Isabelle; Ouellet, Dominique L; Perron, Marjorie P; Rousseau, Guy; Provost, Patrick
2010-01-01
Platelets play a critical role in the maintenance of hemostasis as well as in thrombosis and vessel occlusion that underlie stroke and acute coronary syndromes. Anucleate platelets contain messenger RNAs (mRNAs) and are capable of protein synthesis, raising the issue of how these mRNAs are regulated. Here we show that human platelets harbor an abundant and diverse array of microRNAs (miRNAs), which are known as key regulators of mRNA translation. Further analyses revealed that platelets contain Dicer and Argonaute 2 (Ago2) complexes functional in exogenously supplied miRNA precursor (pre-miRNA) processing and the control of specific reporter transcripts, respectively. Detection of the receptor P2Y12 mRNA in Ago2 immunoprecipitates suggests that P2Y12 expression may be subjected to miRNA control in human platelets. Our study lends an additional level of complexity to the control of gene expression in these anucleate elements of the cardiovascular system. PMID:19668211
Ali, Ferhana Y; Hall, Matthew G; Desvergne, Béatrice; Warner, Timothy D; Mitchell, Jane A
2009-11-01
Peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) is a nuclear receptor found in platelets. PPARbeta/delta agonists acutely inhibit platelet function within a few minutes of addition. As platelets are anucleated, the effects of PPARbeta/delta agonists on platelets must be nongenomic. Currently, the particular role of PPARbeta/delta receptors and their intracellular signaling pathways in platelets are not known. We have used mice lacking PPARbeta/delta (PPARbeta/delta(-/-)) to show the effects of the PPARbeta/delta agonist GW501516 on platelet adhesion and cAMP levels are mediated specifically by PPARbeta/delta, however GW501516 had no PPARbeta/delta-specific effect on platelet aggregation. Studies in human platelets showed that PKCalpha, which can mediate platelet activation, was bound and repressed by PPARbeta/delta after platelets were treated with GW501516. These data provide evidence of a novel mechanism by which PPAR receptors influence platelet activity and thereby thrombotic risk.
O, Ibrahim; M, Oteh; A, A Syukur; HH, Che Hassan; W, S Fadilah; Rahman, MM
2013-01-01
Objectives: To evaluate Aspirin and Clopidogrel resistance/non-responders in patients with acute coronary syndrome (ACS) by using adenosine diposphate and aspirin tests. Methodology: In the study patients with ACS loaded with 300 mg of clopidogrel and 300 mg aspirin and patients on stable daily dose of 75 mg of clopidogrel (more than 3 days) underwent PCI. Response to clopidogrel and Aspirin was assessed by Adenosine Diphosphate (ADP) Test (20 µmol/L) and Aspirin Test (Acetyl Acid) (ASP) 20 µmol/L, respectively, using the Multiplate Platelet Function Analyzer (Dynabyte Medical, Munich, Germany). Results: Sixty four patients were included in this study out of which 57 were with ACS and 7 scheduled for percutaneous coronary intervention (PCI) electively. The proportion of Aspirin good responders and adequate responders were 76.56% and 18.75%, respectively while adequate response and good response to Clopidogrel accounted for 29.7 and 48.4%, respectively Hyperlipidaemia was only co-morbidity associated with higher AUC ADP value (p: 0.046). Hypertriglyceridaemia and serum calcium were weakly correlated with higher AUC ADP serum calcium r=0.08, triglyceride r=0.12. Patients admitted for scheduled PCI and on stable dose of 75mg clopidogrel exhibited lower AUC ADP value as compared to those admitted with acute coronary syndrome given loading dose of 300mg of Clopidogrel. Post loading dose measurement of anti-platelet therapy among ACS patients using the Multiplate Platelet Function Analyzer showed comparable results with other methods. Conclusions : As determined by Multiplate Platelet Function Analyzer, Aspirin resistance/non-responders in this study in acute coronary syndrome patients accounted for 4.69% while Non-responders in Clopidogrel was 21.9%. PMID:24353516
The association of cigarette smoking with enhanced platelet inhibition by clopidogrel.
Bliden, Kevin P; Dichiara, Joseph; Lawal, Lookman; Singla, Anand; Antonino, Mark J; Baker, Brian A; Bailey, William L; Tantry, Udaya S; Gurbel, Paul A
2008-08-12
The purpose of this study was to examine the effect of cigarette smoking on the platelet response to clopidogrel. Response variability to clopidogrel therapy has been demonstrated. Clopidogrel is metabolically activated by several hepatic cytochrome P450 (CYP) isoenzymes, including CYP1A2. Cigarette smoking induces CYP1A2 and may, therefore, enhance the conversion of clopidogrel to its active metabolite. Among 259 consecutive patients undergoing elective coronary stenting; 120 were on chronic clopidogrel therapy and were not loaded; and 139 were clopidogrel naïve and were loaded with 600 mg. There were 104 current smokers (CS) and 155 nonsmokers (NS). The adenosine diphosphate (ADP)-stimulated platelet aggregation (PA) was assessed by conventional aggregometry. The ADP-stimulated total and active glycoprotein (GP) IIb/IIIa expression were assessed with flow cytometry. Low PA was defined as the lowest quartile of 5 micromol/l ADP-induced post-treatment PA. Current smokers on chronic clopidogrel therapy displayed significantly lower PA and ADP-stimulated active GP IIb/IIIa expression compared with NS (p < or = 0.0008 for both). Similarly, CS treated with 600 mg of clopidogrel displayed greater platelet inhibition and lower active GP IIb/IIIa expression compared with NS (p < or = 0.05). In a multivariate Cox regression analysis, current smoking was an independent predictor of low PA (p = 0.0001). Clopidogrel therapy in CS is associated with increased platelet inhibition and lower aggregation as compared with NS. The mechanism of the smoking effect deserves further study and may be an important cause of response variability to clopidogrel therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Aiqun; Chen, Jianwei; Liang, Zhi-Hong
Acute myocardial infarction (AMI) initiation and progression follow complex molecular and structural changes in the nanoarchitecture of platelets. However, it remains poorly understood how the transformation from health to AMI alters the ultrastructural and biomechanical properties of platelets within the platelet activation microenvironment. Here, we show using an atomic force microscope (AFM) that platelet samples, including living human platelets from the healthy and AMI patient, activated platelets from collagen-stimulated model, show distinct ultrastructural imaging and stiffness profiles. Correlative morphology obtained on AMI platelets and collagen-activated platelets display distinct pseudopodia structure and nanoclusters on membrane. In contrast to normal platelets, AMImore » platelets have a stiffer distribution resulting from complicated pathogenesis, with a prominent high-stiffness peak representative of platelet activation using AFM-based force spectroscopy. Similar findings are seen in specific stages of platelet activation in collagen-stimulated model. Further evidence obtained from different force measurement region with activated platelets shows that platelet migration is correlated to the more elasticity of pseudopodia while high stiffness at the center region. Overall, ultrastructural and nanomechanical profiling by AFM provides quantitative indicators in the clinical diagnostics of AMI with mechanobiological significance.« less
Regulation of platelet granule exocytosis by S-nitrosylation
Morrell, Craig N.; Matsushita, Kenji; Chiles, Kelly; Scharpf, Robert B.; Yamakuchi, Munekazu; Mason, Rebecca J. A.; Bergmeier, Wolfgang; Mankowski, Joseph L.; Baldwin, William M.; Faraday, Nauder; Lowenstein, Charles J.
2005-01-01
Nitric oxide (NO) regulates platelet activation by cGMP-dependent mechanisms and by mechanisms that are not completely defined. Platelet activation includes exocytosis of platelet granules, releasing mediators that regulate interactions between platelets, leukocytes, and endothelial cells. Exocytosis is mediated in part by N-ethylmaleimide-sensitive factor (NSF), an ATPase that disassembles complexes of soluble NSF attachment protein receptors. We now demonstrate that NO inhibits exocytosis of dense granules, lysosomal granules, and α-granules from human platelets by S-nitrosylation of NSF. Platelets lacking endothelial NO synthase show increased rolling on venules, increased thrombosis in arterioles, and increased exocytosis in vivo. Regulation of exocytosis is thus a mechanism by which NO regulates thrombosis. PMID:15738422
21 CFR 864.6650 - Platelet adhesion test.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Platelet adhesion test. 864.6650 Section 864.6650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6650 Platelet adhesion...
21 CFR 864.6650 - Platelet adhesion test.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Platelet adhesion test. 864.6650 Section 864.6650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6650 Platelet adhesion...
21 CFR 864.6650 - Platelet adhesion test.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Platelet adhesion test. 864.6650 Section 864.6650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6650 Platelet adhesion...
Talin does not associate exclusively with alpha 2b beta 3 integrin in activated human platelets.
Escolar, G; Diaz-Ricart, M; White, J G
1995-05-01
Talin is a high-molecular-weight protein that may stabilize connections between cytoplasmic actin and the submembrane portion of glycoprotein IIb-IIIa (GPIIb-IIIa) (alpha 2b beta 3 integrin) in thrombin-stimulated human platelets. Using morphologic and electrophoretic techniques, we have examined the association of talin with the cytoskeleton of platelets activated by thrombin in the presence of fibrinogen-coated gold particles (Fgn/Au). Ultrastructural studies confirmed the presence of Fgn/Au firmly bound to the outside membranes of detergent-extracted platelets. Immunoblots of protein bands showed GPIIIa, but not talin, associated with cytoskeletons of activated platelets. Immunogold cytochemical techniques were performed on ultrathin cryosections of whole platelets to localize talin at the ultrastructural level. Studies were performed on normal platelets and platelets defective in GPIIb-IIIa (Glanzmann's thrombasthenia) and GPIb (Bernard-Soulier syndrome). Talin was randomly distributed in the cytoplasm of resting platelets. Activation resulted in binding of Fgn/Au to the surface membrane and redistribution of talin to the submembrane region. However, no definitive colocalization between the two markers was noted. Activated thrombasthenic platelets failed to bind Fgn/Au, but talin was localized to the submembrane location. After activation, talin was confined to the submembrane zone of Bernard-Soulier syndrome platelets. No definitive colocalization was observed between large clusters of Fgn/Au-occupied receptors and talin distributed in the submembrane region. GPIb and GPIIb-IIIa are not necessary for talin to localize in the submembrane region of activated cells. Talin does not redistribute exclusively with GPIIb-IIIa, and it may stabilize connections with other glycoproteins.
Griffeth, Richard J.; García-Párraga, Daniel; Mellado-López, Maravillas; Crespo-Picazo, Jose Luis; Soriano-Navarro, Mario; Martinez-Romero, Alicia; Moreno-Manzano, Victoria
2014-01-01
Dolphins exhibit an extraordinary capacity to heal deep soft tissue injuries. Nevertheless, accelerated wound healing in wild or captive dolphins would minimize infection and other side effects associated with open wounds in marine animals. Here, we propose the use of a biological-based therapy for wound healing in dolphins by the application of platelet-rich plasma (PRP). Blood samples were collected from 9 different dolphins and a specific and simple protocol which concentrates platelets greater than two times that of whole blood was developed. As opposed to a commonly employed human protocol for PRP preparation, a single centrifugation for 3 minutes at 900 rpm resulted in the best condition for the concentration of dolphin platelets. By FACS analysis, dolphin platelets showed reactivity to platelet cell-surface marker CD41. Analysis by electron microscopy revealed that dolphin platelets were larger in size than human platelets. These findings may explain the need to reduce the duration and speed of centrifugation of whole blood from dolphins to obtain a 2-fold increase and maintain proper morphology of the platelets. For the first time, levels of several growth factors from activated dolphin platelets were quantified. Compared to humans, concentrations of PDGF-BB were not different, while TGFβ and VEGF-A were significantly lower in dolphins. Additionally, adipose tissue was obtained from cadaveric dolphins found along the Spanish Mediterranean coast, and adipose-derived mesenchymal stem cells (ASCs) were successfully isolated, amplified, and characterized. When dolphin ASCs were treated with 2.5 or 5% dolphin PRP they exhibited significant increased proliferation and improved phagocytotic activity, indicating that in culture, PRP may improve the regenerative capacity of ASCs. Taken together, we show an effective and well-defined protocol for efficient PRP isolation. This protocol alone or in combination with ASCs, may constitute the basis of a biological treatment for wound-healing and tissue regeneration in dolphins. PMID:25251412
Griffeth, Richard J; García-Párraga, Daniel; Mellado-López, Maravillas; Crespo-Picazo, Jose Luis; Soriano-Navarro, Mario; Martinez-Romero, Alicia; Moreno-Manzano, Victoria
2014-01-01
Dolphins exhibit an extraordinary capacity to heal deep soft tissue injuries. Nevertheless, accelerated wound healing in wild or captive dolphins would minimize infection and other side effects associated with open wounds in marine animals. Here, we propose the use of a biological-based therapy for wound healing in dolphins by the application of platelet-rich plasma (PRP). Blood samples were collected from 9 different dolphins and a specific and simple protocol which concentrates platelets greater than two times that of whole blood was developed. As opposed to a commonly employed human protocol for PRP preparation, a single centrifugation for 3 minutes at 900 rpm resulted in the best condition for the concentration of dolphin platelets. By FACS analysis, dolphin platelets showed reactivity to platelet cell-surface marker CD41. Analysis by electron microscopy revealed that dolphin platelets were larger in size than human platelets. These findings may explain the need to reduce the duration and speed of centrifugation of whole blood from dolphins to obtain a 2-fold increase and maintain proper morphology of the platelets. For the first time, levels of several growth factors from activated dolphin platelets were quantified. Compared to humans, concentrations of PDGF-BB were not different, while TGFβ and VEGF-A were significantly lower in dolphins. Additionally, adipose tissue was obtained from cadaveric dolphins found along the Spanish Mediterranean coast, and adipose-derived mesenchymal stem cells (ASCs) were successfully isolated, amplified, and characterized. When dolphin ASCs were treated with 2.5 or 5% dolphin PRP they exhibited significant increased proliferation and improved phagocytotic activity, indicating that in culture, PRP may improve the regenerative capacity of ASCs. Taken together, we show an effective and well-defined protocol for efficient PRP isolation. This protocol alone or in combination with ASCs, may constitute the basis of a biological treatment for wound-healing and tissue regeneration in dolphins.
Equid Herpesvirus Type 1 Activates Platelets
Stokol, Tracy; Yeo, Wee Ming; Burnett, Deborah; DeAngelis, Nicole; Huang, Teng; Osterrieder, Nikolaus; Catalfamo, James
2015-01-01
Equid herpesvirus type 1 (EHV-1) causes outbreaks of abortion and neurological disease in horses. One of the main causes of these clinical syndromes is thrombosis in placental and spinal cord vessels, however the mechanism for thrombus formation is unknown. Platelets form part of the thrombus and amplify and propagate thrombin generation. Here, we tested the hypothesis that EHV-1 activates platelets. We found that two EHV-1 strains, RacL11 and Ab4 at 0.5 or higher plaque forming unit/cell, activate platelets within 10 minutes, causing α-granule secretion (surface P-selectin expression) and platelet microvesiculation (increased small events double positive for CD41 and Annexin V). Microvesiculation was more pronounced with the RacL11 strain. Virus-induced P-selectin expression required plasma and 1.0 mM exogenous calcium. P-selectin expression was abolished and microvesiculation was significantly reduced in factor VII- or X-deficient human plasma. Both P-selectin expression and microvesiculation were re-established in factor VII-deficient human plasma with added purified human factor VIIa (1 nM). A glycoprotein C-deficient mutant of the Ab4 strain activated platelets as effectively as non-mutated Ab4. P-selectin expression was abolished and microvesiculation was significantly reduced by preincubation of virus with a goat polyclonal anti-rabbit tissue factor antibody. Infectious virus could be retrieved from washed EHV-1-exposed platelets, suggesting a direct platelet-virus interaction. Our results indicate that EHV-1 activates equine platelets and that α-granule secretion is a consequence of virus-associated tissue factor triggering factor X activation and thrombin generation. Microvesiculation was only partly tissue factor and thrombin-dependent, suggesting the virus causes microvesiculation through other mechanisms, potentially through direct binding. These findings suggest that EHV-1-induced platelet activation could contribute to the thrombosis that occurs in clinically infected horses and provides a new mechanism by which viruses activate hemostasis. PMID:25905776
Fuentes, Eduardo; Pereira, Jaime; Alarcón, Marcelo; Valenzuela, Claudio; Pérez, Pablo; Astudillo, Luis; Palomo, Iván
2013-01-01
The purpose of this research was to investigate mechanisms of antiplatelet action of bioactive principle from S. lycopersicum. Aqueous fraction had a high content of nucleosides (adenosine, guanosine, and adenosine 5'-monophosphate) by HPLC analysis. Also aqueous fraction presented flavonoids content. Aqueous fraction inhibited platelet activation by 15 ± 6% (P < 0.05). Fully spread of human platelets on collagen in the presence of aqueous fraction was inhibited from 15 ± 1 to 9 ± 1 μ m(2) (P < 0.001). After incubation of whole blood with aqueous fraction, the platelet coverage was inhibited by 55 ± 12% (P < 0.001). Platelet ATP secretion and aggregation were significantly inhibited by the aqueous fraction. At the same concentrations that aqueous fraction inhibits platelet aggregation, levels of sCD40L significantly decreased and the intraplatelet cAMP levels increased. In addition, SQ22536, an adenylate cyclase inhibitor, attenuated the effect of aqueous fraction toward ADP-induced platelet aggregation and intraplatelet level of cAMP. Platelet aggregation ex vivo (human study) and thrombosis formation in vivo (murine model) were inhibited by aqueous fraction. Finally, aqueous fraction may be used as a functional ingredient adding antiplatelet activities (nucleosides and flavonoids) to processed foods.
Fuentes, Eduardo; Pereira, Jaime; Alarcón, Marcelo; Valenzuela, Claudio; Pérez, Pablo; Astudillo, Luis; Palomo, Iván
2013-01-01
The purpose of this research was to investigate mechanisms of antiplatelet action of bioactive principle from S. lycopersicum. Aqueous fraction had a high content of nucleosides (adenosine, guanosine, and adenosine 5′-monophosphate) by HPLC analysis. Also aqueous fraction presented flavonoids content. Aqueous fraction inhibited platelet activation by 15 ± 6% (P < 0.05). Fully spread of human platelets on collagen in the presence of aqueous fraction was inhibited from 15 ± 1 to 9 ± 1 μm2 (P < 0.001). After incubation of whole blood with aqueous fraction, the platelet coverage was inhibited by 55 ± 12% (P < 0.001). Platelet ATP secretion and aggregation were significantly inhibited by the aqueous fraction. At the same concentrations that aqueous fraction inhibits platelet aggregation, levels of sCD40L significantly decreased and the intraplatelet cAMP levels increased. In addition, SQ22536, an adenylate cyclase inhibitor, attenuated the effect of aqueous fraction toward ADP-induced platelet aggregation and intraplatelet level of cAMP. Platelet aggregation ex vivo (human study) and thrombosis formation in vivo (murine model) were inhibited by aqueous fraction. Finally, aqueous fraction may be used as a functional ingredient adding antiplatelet activities (nucleosides and flavonoids) to processed foods. PMID:24159349
Lung vaso-occlusion in sickle cell disease mediated by arteriolar neutrophil-platelet microemboli.
Bennewitz, Margaret F; Jimenez, Maritza A; Vats, Ravi; Tutuncuoglu, Egemen; Jonassaint, Jude; Kato, Gregory J; Gladwin, Mark T; Sundd, Prithu
2017-01-12
In patients with sickle cell disease (SCD), the polymerization of intraerythrocytic hemoglobin S promotes downstream vaso-occlusive events in the microvasculature. While vaso-occlusion is known to occur in the lung, often in the context of systemic vaso-occlusive crisis and the acute chest syndrome, the pathophysiological mechanisms that incite lung injury are unknown. We used intravital microscopy of the lung in transgenic humanized SCD mice to monitor acute vaso-occlusive events following an acute dose of systemic lipopolysaccharide sufficient to trigger events in SCD but not control mice. We observed cellular microembolism of precapillary pulmonary arteriolar bottlenecks by neutrophil-platelet aggregates. Blood from SCD patients was next studied under flow in an in vitro microfluidic system. Similar to the pulmonary circulation, circulating platelets nucleated around arrested neutrophils, translating to a greater number and duration of neutrophil-platelet interactions compared with normal human blood. Inhibition of platelet P-selectin with function-blocking antibody attenuated the neutrophil-platelet interactions in SCD patient blood in vitro and resolved pulmonary arteriole microembolism in SCD mice in vivo. These results establish the relevance of neutrophil-platelet aggregate formation in lung arterioles in promoting lung vaso-occlusion in SCD and highlight the therapeutic potential of targeting platelet adhesion molecules to prevent acute chest syndrome.
A role for SNAP-25 but not VAMPs in store-mediated Ca2+ entry in human platelets
Redondo, Pedro C; Harper, Alan G S; Salido, Ginés M; Pariente, Jose A; Sage, Stewart O; Rosado, Juan A
2004-01-01
Store-mediated Ca2+ entry (SMCE) is a major mechanism for Ca2+ influx in non-excitable cells. Recently, a conformational coupling mechanism allowing coupling between transient receptor potential channels (TRPCs) and IP3 receptors has been proposed to activate SMCE. Here we have investigated the role of two soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs), which are involved in membrane trafficking and docking, in SMCE in human platelets. We found that the synaptosome-associated protein (SNAP-25) and the vesicle-associated membrane proteins (VAMP) coimmunoprecipitate with hTRPC1 in platelets. Treatment with botulinum toxin (BoNT) E or with tetanus toxin (TeTx), induced cleavage and inactivation of SNAP-25 and VAMPs, respectively. BoNTs significantly reduced thapsigargin- (TG) and agonist-evoked SMCE. Treatment with BoNTs once SMCE had been activated decreased Ca2+ entry, indicating that SNAP-25 is required for the activation and maintenance of SMCE. In contrast, treatment with TeTx had no effect on either the activation or the maintenance of SMCE in platelets. Finally, treatment with BoNT E impaired the coupling between naturally expressed hTRPC1 and IP3 receptor type II in platelets. From these findings we suggest SNAP-25 has a role in SMCE in human platelets. PMID:15121806
Analysis of early thrombus dynamics in a humanized mouse laser injury model.
Wang, Weiwei; Lindsey, John P; Chen, Jianchun; Diacovo, Thomas G; King, Michael R
2014-01-01
Platelet aggregation and thrombus formation at the site of injury is a dynamic process that involves the continuous addition of new platelets as well as thrombus rupture. In the early stages of hemostasis (within minutes after vessel injury) this process can be visualized by transfusing fluorescently labeled human platelets and observing their deposition and detachment. These two counterbalancing events help the developing thrombus reach a steady-state morphology, where it is large enough to cover the injured vessel surface but not too large to form a severe thrombotic occlusion. In this study, the spatial and temporal aspects of early stage thrombus dynamics which result from laser-induced injury on arterioles of cremaster muscle in the humanized mouse were visualized using fluorescent microscopy. It was found that rolling platelets show preference for the upstream region while tethering/detaching platelets were primarily found downstream. It was also determined that the platelet deposition rate is relatively steady, whereas the effective thrombus coverage area does not increase at a constant rate. By introducing a new method to graphically represent the real time in vivo physiological shear stress environment, we conclude that the thrombus continuously changes shape by regional growth and decay, and neither dominates in the high shear stress region.
Evaluating platelet aggregation dynamics from laser speckle fluctuations.
Hajjarian, Zeinab; Tshikudi, Diane M; Nadkarni, Seemantini K
2017-07-01
Platelets are key to maintaining hemostasis and impaired platelet aggregation could lead to hemorrhage or thrombosis. We report a new approach that exploits laser speckle intensity fluctuations, emanated from a drop of platelet-rich-plasma (PRP), to profile aggregation. Speckle fluctuation rate is quantified by the speckle intensity autocorrelation, g 2 (t) , from which the aggregate size is deduced. We first apply this approach to evaluate polystyrene bead aggregation, triggered by salt. Next, we assess dose-dependent platelet aggregation and inhibition in human PRP spiked with adenosine diphosphate and clopidogrel. Additional spatio-temporal speckle analyses yield 2-dimensional maps of particle displacements to visualize platelet aggregate foci within minutes and quantify aggregation dynamics. These findings demonstrate the unique opportunity for assessing platelet health within minutes for diagnosing bleeding disorders and monitoring anti-platelet therapies.
Yang, Yan; Shi, Zhenyin; Reheman, Adili; Jin, Joseph W.; Li, Conglei; Wang, Yiming; Andrews, Marc C.; Chen, Pingguo; Zhu, Guangheng; Ling, Wenhua; Ni, Heyu
2012-01-01
Delphinidin-3-glucoside (Dp-3-g) is one of the predominant bioactive compounds of anthocyanins in many plant foods. Although several anthocyanin compounds have been reported to be protective against cardiovascular diseases (CVDs), the direct effect of anthocyanins on platelets, the key players in atherothrombosis, has not been studied. The roles of Dp-3-g in platelet function are completely unknown. The present study investigated the effects of Dp-3-g on platelet activation and several thrombosis models in vitro and in vivo. We found that Dp-3-g significantly inhibited human and murine platelet aggregation in both platelet-rich plasma and purified platelets. It also markedly reduced thrombus growth in human and murine blood in perfusion chambers at both low and high shear rates. Using intravital microscopy, we observed that Dp-3-g decreased platelet deposition, destabilized thrombi, and prolonged the time required for vessel occlusion. Dp-3-g also significantly inhibited thrombus growth in a carotid artery thrombosis model. To elucidate the mechanisms, we examined platelet activation markers via flow cytometry and found that Dp-3-g significantly inhibited the expression of P-selectin, CD63, CD40L, which reflect platelet α- and δ-granule release, and cytosol protein secretion, respectively. We further demonstrated that Dp-3-g downregulated the expression of active integrin αIIbβ3 on platelets, and attenuated fibrinogen binding to platelets following agonist treatment, without interfering with the direct interaction between fibrinogen and integrin αIIbβ3. We found that Dp-3-g reduced phosphorylation of adenosine monophosphate-activated protein kinase, which may contribute to the observed inhibitory effects on platelet activation. Thus, Dp-3-g significantly inhibits platelet activation and attenuates thrombus growth at both arterial and venous shear stresses, which likely contributes to its protective roles against thrombosis and CVDs. PMID:22624015
21 CFR 864.7695 - Platelet factor 4 radioimmunoassay.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Platelet factor 4 radioimmunoassay. 864.7695 Section 864.7695 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7695 Platelet...
21 CFR 864.7695 - Platelet factor 4 radioimmunoassay.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Platelet factor 4 radioimmunoassay. 864.7695 Section 864.7695 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7695 Platelet...
21 CFR 864.7695 - Platelet factor 4 radioimmunoassay.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Platelet factor 4 radioimmunoassay. 864.7695 Section 864.7695 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7695 Platelet...
21 CFR 864.7695 - Platelet factor 4 radioimmunoassay.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Platelet factor 4 radioimmunoassay. 864.7695 Section 864.7695 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7695 Platelet...
21 CFR 864.7695 - Platelet factor 4 radioimmunoassay.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Platelet factor 4 radioimmunoassay. 864.7695 Section 864.7695 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7695 Platelet...
Bernardi, Martina; Albiero, Elena; Alghisi, Alberta; Chieregato, Katia; Lievore, Chiara; Madeo, Domenico; Rodeghiero, Francesco; Astori, Giuseppe
2013-08-01
A medium supplemented with fetal bovine serum (FBS) is of common use for the expansion of human mesenchymal stromal cells (MSCs). However, its use is discouraged by regulatory authorities because of the risk of zoonoses and immune reactions. Human platelet lysate (PL) obtained by freezing/thawing disruption of platelets has been proposed as a possible substitute of FBS. The process is time-consuming and not well standardized. A new method for obtaining PL that is based on the use of ultrasound is proposed. Platelet sonication was performed by submerging platelet-containing plastic bags in an ultrasonic bath. To evaluate platelet lysis we measured platelet-derived growth factor-AB release. PL efficiency was tested by expanding bone marrow (BM)-MSCs, measuring population doubling time, differentiation capacity and immunogenic properties. Safety was evaluated by karyotyping expanded cells. After 30 minutes of sonication, 74% of platelet derived growth factor-AB was released. PL enhanced BM-MSC proliferation rate compared with FBS. The mean cumulative population doubling (cPD) of cells growth in PL at 10%, 7.5% and 5% was better compared with cPD obtained with 10% FBS. PD time (hours) of MSCs with PL obtained by sonication was shorter than for cPD with PL obtained by freezing/thawing (18.9 versus 17.4, P < 0.01). BM mononucleated cells expressed MSC markers and were able to differentiate into adipogenic, osteogenic and chondrogenic lineages. When BM-MSCs and T cells were co-cultured in close contact, immunosuppressive activity of BM-MSCs was maintained. Cell karyotype showed no genetic alterations. The proposed method for the production of PL by sonication could be a safe, efficient and fast substitute of FBS, without the potential risks of FBS. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Struyf, Sofie; Burdick, Marie D; Proost, Paul; Van Damme, Jo; Strieter, Robert M
2004-10-29
Platelet factor-4 (PF-4)/CXCL4 was the first chemokine described to inhibit neovascularization. Here, the product of the nonallelic variant gene of CXCL4, PF-4var1/PF-4alt, designated CXCL4L1, was isolated for the first time from thrombin-stimulated human platelets and purified to homogeneity. Although secreted CXCL4 and CXCL4L1 differ in only three amino acids, CXCL4L1 was more potent in inhibiting chemotaxis of human microvascular endothelial cells toward interleukin-8 (IL-8)/CXCL8 or basic fibroblast growth factor (bFGF). In vivo, CXCL4L1 was also more effective than CXCL4 in inhibiting bFGF-induced angiogenesis in rat corneas. Thus, activated platelets release CXCL4L1, a potent regulator of endothelial cell biology, which affects angiogenesis and vascular diseases.
Chou, Ming-Li; Wu, Joe-Wei; Gouel, Flore; Jonneaux, Aurélie; Timmerman, Kelly; Renn, Ting-Yi; Laloux, Charlotte; Chang, Hung-Ming; Lin, Liang-Tzung; Devedjian, Jean-Christophe; Devos, David; Burnouf, Thierry
2017-10-01
Human platelet lysates (PLs), which contain multiple neurotrophins, have been proposed for treating neurodegenerative disorders, including Parkinson's disease (PD). However, current PLs suspended in plasma have high protein content and contain fibrinogen/fibrin and, following activation, also proteolytic and thrombogenic enzymes. Upon brain administration, such PLs may saturate the cerebrospinal fluid and exert neurotoxicity. We assessed whether purified PLs, concentrated in neurotrophins, protected dopaminergic neurons in PD models. Platelet concentrates were collected by apheresis and centrifuged to eliminate plasma and recover the platelets. Platelets were lysed by freeze-thaw cycles, and the 10-fold concentrated platelet pellet lysates (PPLs) were heat-treated (at 56 °C for 30 min). The heat-treated PPLs were low in total proteins, depleted in both plasma and platelet fibrinogen, and devoid of thrombogenic and proteolytic activities. They exerted very high neuroprotective activity when non-oncogenic, Lund human mesencephalic (LUHMES) cells that had differentiated into dopaminergic neurons were exposed to the MPP + neurotoxin. Heat treatment improved the neuroprotection and inactivated the neurotoxic blood-borne hepatitis C virus. PPL did not induce inflammation in BV2 microglial cells and inhibited COX-2 expression upon lipopolysaccharide exposure. Intranasal administration in mice revealed (a) diffusion of neurotrophins in the striatum and cortex, and (b) MPTP intoxication neuroprotection in the substantia nigra and striatum and the absence of neuroinflammation. These dedicated heat-treated PPLs can be a safe and valuable candidate for a therapeutic strategy for PD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schweigel, Hardy; Geiger, Jörg; Beck, Florian; Buhs, Sophia; Gerull, Helwe; Walter, Ulrich; Sickmann, Albert; Nollau, Peter
2013-03-01
Tyrosine phosphorylation plays a central role in signal transduction controlling many important biological processes. In platelets, the activity of several signaling proteins is controlled by tyrosine phosphorylation ensuring proper platelet activation and aggregation essential for regulation of the delicate balance between bleeding and hemostasis. Here, we applied Src-homology 2 region (SH2)-profiling for deciphering of the phosphotyrosine state of human platelets activated by adenosine diphosphate (ADP). Applying a panel of 31 SH2-domains, rapid and complex regulation of the phosphotyrosine state of platelets was observed after ADP stimulation. Specific inhibition of platelet P2Y receptors by synthetic drugs revealed a major role for the P2Y1 receptor in tyrosine phosphorylation. Concomitant activation of protein kinase A (PKA) abolished ADP-induced tyrosine phosphorylation in a time and concentration-dependent manner. Given the fact that PKA activity is negatively regulated by the P2Y12 receptor, our data provide evidence for a novel link of synergistic control of the state of tyrosine phosphorylation by both P2Y receptors. By SH2 domain pull down and MS/MS analysis, we identified distinct tyrosine phosphorylation sites in cell adhesion molecules, intracellular adapter proteins and phosphatases suggesting a major, functional role of tyrosine phosphorylation of theses candidate proteins in ADP-dependent signaling in human platelets. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanism of inhibition of cyclo-oxygenase in human blood platelets by carbamate insecticides.
Krug, H F; Hamm, U; Berndt, J
1988-01-01
Carbamates are a widely used class of insecticides and herbicides. They were tested for their ability to affect human blood platelet aggregation and arachidonic acid metabolism in platelets. (1) The herbicides of the carbamate type have no, or only little, influence up to a concentration of 100 microM; the carbamate insecticides, however, inhibit both aggregation and arachidonic acid metabolism in a dose- and time-dependent manner. (2) Carbaryl, the most effective compound, inhibits platelet aggregation and cyclo-oxygenase activity completely at 10 microM. The liberation of arachidonic acid from phospholipids and the lipoxygenase pathway are not affected, whereas the products of the cyclo-oxygenase pathway are drastically decreased. (3) By using [14C]carbaryl labelled in the carbamyl or in the ring moiety, it could be proved that the carbamyl residue binds covalently to platelet proteins. In contrast with acetylsalicylic acid, which acetylates only one protein, carbaryl carbamylates a multitude of platelet proteins. (4) One of the carbamylated proteins was found to be the platelet cyclo-oxygenase, indicating that carbaryl resembles in this respect acetylsalicylic acid, which is known to inhibit this enzyme specifically by acetylation. Images Fig. 4. PMID:3128272
Oldenburg, Amy L; Wu, Gongting; Spivak, Dmitry; Tsui, Frank; Wolberg, Alisa S; Fischer, Thomas H
2011-07-21
Improved methods for imaging and assessment of vascular defects are needed for directing treatment of cardiovascular pathologies. In this paper, we employ magnetomotive optical coherence tomography (MMOCT) as a platform both to detect and to measure the elasticity of blood clots. Detection is enabled through the use of rehydrated, lyophilized platelets loaded with superparamagnetic iron oxides (SPIO-RL platelets) that are functional infusion agents that adhere to sites of vascular endothelial damage. Evidence suggests that the sensitivity for detection is improved over threefold by magnetic interactions between SPIOs inside RL platelets. Using the same MMOCT system, we show how elastometry of simulated clots, using resonant acoustic spectroscopy, is correlated with the fibrin content of the clot. Both methods are based upon magnetic actuation and phase-sensitive optical monitoring of nanoscale displacements using MMOCT, underscoring its utility as a broad-based platform to detect and measure the molecular structure and composition of blood clots.
Olas, Beata; Wachowicz, Barbara; Tomczak, Anna; Erler, Joachim; Stochmal, Anna; Oleszek, Wieslaw
2008-02-01
The aim of the present study was to investigate and compare the anti-platelet action of extracts from three different plants: bark of Yucca schidigera, seeds of grape and berries of Aronia melanocarpa (chokeberry). Anti-platelet action of tested extracts was compared with action of well characterized antioxidative and anti-platelet commercial monomeric polyphenol-resveratrol. The effects of extracts on platelet adhesion to collagen, collagen-induced platelet aggregation and on the production of O2-* in resting platelets and platelets stimulated by a strong platelet agonist-thrombin were studied. The in vitro experiments have shown that all three tested extracts (5-50 microg/ml) rich in polyphenols reduce platelet adhesion, aggregation and generation of O2-* in blood platelets. Comparative studies indicate that all three plant extracts were found to be more reactive in reduction of platelet processes than the solution of pure resveratrol. The tested extracts due to their anti-platelet effects may play an important role as components of human diet in prevention of cardiovascular or inflammatory diseases, where blood platelets are involved.
Messenger RNA profiling of human platelets by microarray hybridization.
Bugert, Peter; Dugrillon, Alex; Günaydin, Ayse; Eichler, Hermann; Klüter, Harald
2003-10-01
Platelets are generally believed to be inactive in terms of de novo protein synthesis. On the other hand, the presence of ribosomes and mRNA molecules is well established. Many studies have used reverse transcriptase (RT) -PCR for detection of gene transcripts in platelets. As RT-PCR is a very sensitive method, any leukocyte contamination of platelet preparations can lead to false results. We performed three filtration procedures to minimize leukocyte contamination of pooled buffy-coat platelet concentrates prior to RNA isolation. Furthermore, by applying a genomic PCR approach with 50 amplification cycles we demonstrated that nucleated cells were not detectable. Microarray hybridization was used to analyze 9,850 individual human genes in RNA from purified platelets. In total we identified 1,526 (15.5%) positive genes. The data were confirmed in six individual experiments each performed on a PC pooled from four individual blood donations. Genes specific for nucleated blood cells such as CD4, CD83 and others were negative and verified the purity of PC. Overrepresentation of positive genes was found in the functional categories of glycoproteins/integrins (22.6% vs. 15.5%, p=0.029) and receptors (20.7% vs. 15.5%, p<0.001). Gene transcripts encoding RANTES, GRO-alpha, MIP-1alpha, MIP-1beta, and others were found at high levels of signal intensity and confirmed literature data. This work provides a mRNA profile of human platelets and a complete list of results can be downloaded from the website of our institute www.ma.uni-heidelberg.de/inst/iti/plt_array.xls. The knowledge about gene transcripts may have an impact on the characterization of novel proteins and their functions in platelets.
Platelets Toll-like receptor-4 in Crohns disease.
Schmid, Werner; Novacek, Gottfried; Vogelsang, Harald; Papay, Pavol; Primas, Christian; Eser, Alexander; Panzer, Simon
2017-02-01
Platelets are activated in Crohn's disease (CD) and interplay with leukocytes. Engagement of Toll-like receptor-4 (TLR-4), which is expressed in human platelets, may be involved in crosstalks between platelets and leukocytes leading to their mutual activation for host defense. Human neutrophil peptides (HNPs), lipoprotein binding peptides, and sCD14 were determined by enzyme-linked immunosorbent assays in 42 patients with active CD, in 43 patients with CD in remission, and in 30 healthy individuals. Neutrophil-platelet aggregates and binding of the TLR-4 monoclonal antibody to platelets were determined by flow cytometry. Levels of HNPs were higher in patients with CD than in controls (P = 0.0003 vs. active CD and P = 0.01 vs. CD in remission). Likewise, neutrophils with adhering platelets were higher in patients with active CD than in controls (P = 0.004). Binding of the TLR-4 antibody in patients with active CD was similar to that in controls, while patients in remission had significantly higher binding capacities (P = 0.59 and P = 0.003). Incubation of plasma from patients with active disease or patients in remission with platelets from healthy controls confirmed lower binding of the TLR-4 antibody in the presence of plasma from active diseased patients compared to controls (P = 0.039), possibly due to high levels of lipopolysaccharides, as suggested by high levels of sCD14 and lipoprotein binding protein. Our study indicates involvement of platelet TLR-4 in enhancing the secretion of antimicrobial peptides from neutrophils. While platelet aggregation can be due to a variety of mechanisms in inflammatory disease, the mutual activation of platelets and neutrophils may augment host defense. © 2016 Stichting European Society for Clinical Investigation Journal Foundation.
Shibuya, Kazunori; Kuwaki, Tomoaki; Tahara, Emiko; Yuki, Chizuru; Akahori, Hiromichi; Kato, Takashi; Miyazaki, Hiroshi
2002-10-01
We examined the stimulatory effect of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) on platelet production in male (NZW x BXSB) F(l) (W/B F(1)) mice, a murine model of idiopathic thrombocytopenic purpura. A cohort of 19- to 25-week-old, severely thrombocytopenic male W/B F(1) mice were given PEG-rHuMGDF at different dosing schedules. Before and at various times after therapy, platelet counts, reticulated platelets, platelet lifespan, and levels of platelet-associated immunoglobulin G were measured. Analysis of megakaryocytic cells was performed. Treatment of male W/B F(1) mice with PEG-rHuMGDF (30 microg/kg/day) three times per week for several weeks resulted in sustained thrombocytosis, accompanied by increased megakaryocytopoiesis in both the bone marrow and spleen. The degree of the platelet response to PEG-rHuMGDF varied between individual mice, likely reflecting the heterogeneity of the disease. Production of new platelets in response to PEG-rHuMGDF was manifested by an increase in reticulated platelets. Levels of platelet-associated immunoglobulin G decreased inversely during periods of thrombocytosis. PEG-rHuMGDF therapy also improved thrombocytopenia in male W/B F(1) mice refractory to splenectomy. Platelet lifespan was not affected by PEG-rHuMGDF. Male W/B F(1) mice treated with pegylated murine MGDF, a homologue of PEG-rHuMGDF, had persistent thrombocytosis for at least 7 months, suggesting that antiplatelet antibody production was not enhanced. PEG-rHuMGDF therapy potently stimulated platelet production, effectively ameliorating thrombocytopenia in a murine model of idiopathic thrombocytopenic purpura.
FlnA binding to PACSIN2 F-BAR domain regulates membrane tubulation in megakaryocytes and platelets.
Begonja, Antonija Jurak; Pluthero, Fred G; Suphamungmee, Worawit; Giannini, Silvia; Christensen, Hilary; Leung, Richard; Lo, Richard W; Nakamura, Fumihiko; Lehman, William; Plomann, Markus; Hoffmeister, Karin M; Kahr, Walter H A; Hartwig, John H; Falet, Hervé
2015-07-02
Bin-Amphiphysin-Rvs (BAR) and Fes-CIP4 homology BAR (F-BAR) proteins generate tubular membrane invaginations reminiscent of the megakaryocyte (MK) demarcation membrane system (DMS), which provides membranes necessary for future platelets. The F-BAR protein PACSIN2 is one of the most abundant BAR/F-BAR proteins in platelets and the only one reported to interact with the cytoskeletal and scaffold protein filamin A (FlnA), an essential regulator of platelet formation and function. The FlnA-PACSIN2 interaction was therefore investigated in MKs and platelets. PACSIN2 associated with FlnA in human platelets. The interaction required FlnA immunoglobulin-like repeat 20 and the tip of PACSIN2 F-BAR domain and enhanced PACSIN2 F-BAR domain membrane tubulation in vitro. Most human and wild-type mouse platelets had 1 to 2 distinct PACSIN2 foci associated with cell membrane GPIbα, whereas Flna-null platelets had 0 to 4 or more foci. Endogenous PACSIN2 and transfected enhanced green fluorescent protein-PACSIN2 were concentrated in midstage wild-type mouse MKs in a well-defined invagination of the plasma membrane reminiscent of the initiating DMS and dispersed in the absence of FlnA binding. The DMS appeared less well defined, and platelet territories were not readily visualized in Flna-null MKs. We conclude that the FlnA-PACSIN2 interaction regulates membrane tubulation in MKs and platelets and likely contributes to DMS formation. © 2015 by The American Society of Hematology.
McKenzie, Marcus E; Malinin, Alex I; Bell, Christopher R; Dzhanashvili, Alex; Horowitz, Eric D; Oshrine, Benjamin R; Atar, Dan; Serebruany, Victor L
2003-04-01
Platelet inhibition after aspirin therapy reduces the risk for the development of acute coronary syndromes. However, the mechanism by which aspirin affect platelets other than by prostaglandin blockade is unclear. We sought to determine the in vitro effects of aspirin on the surface expression of nine platelet receptors using whole blood flow cytometry. Blood from 24 healthy volunteers was incubated for 30 min with 1.8 and 7.2 mg/l phosphate-buffered saline-diluted acetylsalicylic acid in the presence or absence of apyrase. Platelet serotonin release, and the surface expression of platelet receptors with or without apyrase were determined using the following monoclonal antibodies: anit-CD41 [glycoprotein (GP)IIb/IIIa], CD42b (GPIb), CD62p (P-selectin), CD51/CD61 (vitronectin receptor), CD31 [platelet/endothelial cellular adhesion molecule-1 (PECAM-1)], CD107a [lysosomal associated membrane protein (LAMP)-1], CD107b (LAMP-2), CD63 (LIMP or LAMP-3), and CD151 (PETA-3). Samples were then immediately fixed with 2% paraformaldehyde, and run on the flow cytometer within 48 h. Aspirin does not affect serotonin release from human platelets. Dose-dependent inhibition of GPIIb/IIIa, P-selectin, CD63, and CD107a receptor expression was observed in the aspirin-treated whole-blood samples. Apyrase potentiates the effects of aspirin, and independently inhibits PECAM-1. In addition to the known effect of irreversibly inhibiting platelet cyclooxygenase-1, thereby blocking thromboxane A(2) synthesis, it appears that aspirin exhibits direct effects on selective major platelet receptors.
Evaluating platelet aggregation dynamics from laser speckle fluctuations
Hajjarian, Zeinab; Tshikudi, Diane M.; Nadkarni, Seemantini K.
2017-01-01
Platelets are key to maintaining hemostasis and impaired platelet aggregation could lead to hemorrhage or thrombosis. We report a new approach that exploits laser speckle intensity fluctuations, emanated from a drop of platelet-rich-plasma (PRP), to profile aggregation. Speckle fluctuation rate is quantified by the speckle intensity autocorrelation, g2(t), from which the aggregate size is deduced. We first apply this approach to evaluate polystyrene bead aggregation, triggered by salt. Next, we assess dose-dependent platelet aggregation and inhibition in human PRP spiked with adenosine diphosphate and clopidogrel. Additional spatio-temporal speckle analyses yield 2-dimensional maps of particle displacements to visualize platelet aggregate foci within minutes and quantify aggregation dynamics. These findings demonstrate the unique opportunity for assessing platelet health within minutes for diagnosing bleeding disorders and monitoring anti-platelet therapies. PMID:28717586
A novel canine model of immune thrombocytopenia: Has ITP gone to the dogs?
LeVine, Dana N; Birkenheuer, Adam J; Brooks, Marjory B; Nordone, Shila K; Bellinger, Dwight A; Jones, Sam L; Fischer, Thomas H; Oglesbee, Stephen E; Frey, Kahlina; Brinson, Nicole S; Peters, Allison Pazandak; Marr, Henry S; Motsinger-Reif, Alison; Gudbrandsdottir, Sif; Bussel, James B; Key, Nigel S
2014-01-01
Summary Canine immune thrombocytopenia (ITP) is analogous to human ITP, with similar platelet counts and heterogeneity in bleeding phenotype among affected individuals. With a goal of ultimately investigating this bleeding heterogeneity, a canine model of antibody-mediated ITP was developed. Infusion of healthy dogs with 2F9, a murine IgG2a monoclonal antibody to the canine platelet glycoprotein GPIIb (a common target of autoantibodies in ITP) resulted in profound, dose-dependent thrombocytopenia. Model dogs developed variable bleeding phenotypes, e.g. petechiae and haematuria, despite similar degrees of thrombocytopenia. 2F9 infusion was not associated with systemic inflammation, consumptive coagulopathy, or impairment of platelet function. Unexpectedly however, evaluation of cytokine profiles led to the identification of platelets as a potential source of serum interleukin-8 (IL8) in dogs. This finding was confirmed in humans with ITP, suggesting that platelet IL8 may be a previously unrecognized modulator of platelet-neutrophil crosstalk. The utility of this model will allow future study of bleeding phenotypic heterogeneity including the role of neutrophils and endothelial cells in ITP. PMID:25039744
Lu, Ying; Wang, Weiming; Mao, Huiming; Hu, Hai; Wu, Yanling; Chen, Bing-Guan; Liu, Zhongmin
2011-01-01
Immune thrombocytopenia depends upon Fc receptor-mediated phagocytosis that involves signaling through the SH2 tyrosine kinase, Syk. We designed small interfering (siRNA) sequences complementary to Syk coding regions to decrease the expression of Syk in the human macrophage cell line, THP-1. To evaluate the functional effect of siRNA on phagocytosis, we developed a new in vitro assay for antibody-mediated platelet ingestion by THP-1 cells. Incubation of THP-1 cells at 37°C with fluorescence-labeled platelets and anti-platelet antibody promoted ingestion of platelets that could be quantitated by flow cytometry. Transfection of THP-1 cells with Syk-specific siRNA resulted in a reduction in the amount of FcγRII-associated Syk protein. Coincident with decreased Syk expression, we observed inhibition of antibody-mediated platelet ingestion. These results confirm a key role for Syk in antibody-mediated phagocytosis and suggest Syk-specific siRNA as a possible therapeutic candidate for immune thrombocytopenia. Copyright © 2011 Elsevier Inc. All rights reserved.
Serebruany, Victor L; Malinin, Alex I; Atar, Dan
2007-01-01
Numerous randomized studies have shown that the combination of clopidogrel with aspirin yields better clinical outcomes than monotherapy in patients with acute vascular events. However, the impact of the aspirin dose on the antiplatelet potency of clopidogrel is unclear. We sought to compare the antiplatelet profile of aspirin 81 mg (n = 252) versus aspirin 325 mg (n = 459) before and during conventional clopidogrel loading (300 mg), and/or clopidogrel maintenance (75 mg/daily) therapy. Secondary post hoc analysis of an existing dataset consisting of 711 patients after coronary stenting (n = 601) and ischemic stroke (n = 110) treated previously with aspirin for at least 1 month, and then with aspirin + clopidogrel for at least 7 days was performed. Platelet assessments include conventional and whole blood aggregometry, rapid cartridge-based analyzers, and expression of platelet/endothelial cell adhesion molecule-1, P-selectin, and GPIIb/IIIa activity by flow cytometry measured before and after addition of clopidogrel. There was a small but consistent yet non-significant trend towards more potent platelet inhibition with aspirin 325 mg compared to aspirin 81 mg for every platelet activation parameter before addition of clopidogrel. However, after loading and/or 1 week of chronic treatment with clopidogrel + aspirin, measured platelet parameters became very similar between the groups, and identical for collagen-induced aggregation and PFA-100 analyzer readings. Before addition of clopidogrel, aspirin 325 mg has a tendency to provide stronger platelet inhibition than aspirin 81 mg. However, when clopidogrel and aspirin are used in combination, the higher aspirin dose does not translate into superior antiplatelet action. Given that the existing body of evidence supports the comparable efficacy and, particularly, superior safety of lower versus higher doses of aspirin, aspirin 81 mg should be the dose used in combination with clopidogrel. 2007 S. Karger AG, Basel
Aspirin Inhibits Platelet-Derived Sphingosine-1-Phosphate Induced Endothelial Cell Migration.
Polzin, Amin; Knoop, Betül; Böhm, Andreas; Dannenberg, Lisa; Zurek, Mark; Zeus, Tobias; Kelm, Malte; Levkau, Bodo; Rauch, Bernhard H
2018-01-01
Aspirin plays a crucial role in the prevention of cardiovascular diseases. We previously described that aspirin has effects beyond inhibition of platelet aggregation, as it inhibited thrombin-mediated release of sphingosine-1-phosphate (S1P) from human platelets. S1P is a bioactive lipid with important functions on inflammation and apoptosis. In endothelial cells (EC), S1P is a key regulator of cell migration. In this study, we aimed to analyze the effects of aspirin on platelet-induced EC migration. Human umbilical EC migration was measured by Boyden chamber assay. EC migration was induced by platelet supernatants of thrombin receptor-activating peptide-1 (AP1) stimulated platelets. To investigate the S1P receptor subtype that promotes EC migration, specific inhibitors of S1P receptor subtypes were applied. S1P induced EC migration in a concentration-dependent manner. EC migration induced by AP1-stimulated platelet supernatants was reduced by aspirin. S1P1 receptor inhibition almost completely abolished EC migration induced by activated platelets. The inhibition of S1P2 or S1P3 receptor had no effect. Aspirin inhibits EC migration induced by activated platelets that is in part due to S1P and mediated by the endothelial S1P1 receptor. The clinical significance of this novel mechanism of aspirin action has to be investigated in future studies. © 2017 S. Karger AG, Basel.
Baker, Brenda F.; Witztum, Joseph L.; Kwoh, T. Jesse; Pham, Nguyen C.; Salgado, Nelson; McEvoy, Bradley W.; Cheng, Wei; Hughes, Steven G.; Bhanot, Sanjay; Geary, Richard S.
2017-01-01
A thorough analysis of clinical trial data in the Ionis integrated safety database (ISDB) was performed to determine if there is a class effect on platelet numbers and function in subjects treated with 2′-O-methoxyethyl (2′MOE)-modified antisense oligonucleotides (ASOs). The Ionis ISDB includes over 2,600 human subjects treated with 16 different 2′MOE ASOs in placebo-controlled and open-label clinical trials over a range of doses up to 624 mg/week and treatment durations as long as 4.6 years. This analysis showed that there is no class generic effect on platelet numbers and no incidence of confirmed platelet levels below 50 K/μL in subjects treated with 2′MOE ASOs. Only 7 of 2,638 (0.3%) subjects treated with a 2′MOE ASO experienced a confirmed postbaseline (BSLN) platelet count between 100 and 50 K/μL. Three of sixteen 2′MOE ASOs had >10% incidence of platelet decreases >30% from BSLN, suggesting that certain sequences may associate with clinically insignificant platelet declines. Further to these results, we found no evidence that 2′MOE ASOs alter platelet function, as measured by the lack of clinically relevant bleeding in the presence or absence of other drugs that alter platelet function and/or number and by the results from trials conducted with the factor XI (FXI) ASO. PMID:28145801
Schaub, Leasha J; Moore, Hunter B; Cap, Andrew P; Glaser, Jacob J; Moore, Ernest E; Sheppard, Forest R
2017-03-01
Platelet dysfunction has been described as an early component of trauma-induced coagulopathy. The platelet component of trauma-induced coagulopathy remains to be fully elucidated and translatable animal models are required to facilitate mechanistic investigations. We sought to determine if the early platelet dysfunction described in trauma patients could be recapitulated in a nonhuman primate model of polytraumatic hemorrhagic shock. Twenty-four male rhesus macaques weighting 7 to 14 kg were subjected to 60 minutes (min) of severe pressure-targeted controlled hemorrhagic shock (HS) with and without other injuries. After 60 min, resuscitation with 0.9% NaCl and whole blood was initiated. Platelet counts and platelet aggregation assays were performed at baseline (BSLN), end of shock (EOS; T = 60 min), end of resuscitation (EOR; T = 180 min), and T = 360 min on overall cohort. Results are reported as mean ± standard deviation (SD) or median (interquartile range). Statistical analysis was conducted using Spearmen correlation, one-way analysis of variance, two-way repeated-measures analysis of variance, paired t-test or Wilcoxon nonparametric test, with p < 0.05 considered significant. Platelet count in all injury cohorts decreased over time, but no animals developed thrombocytopenia. Correlations were observed between platelet aggregation and platelet count for all agonists: adenosine diphosphate, thrombin recognition-activating peptide-6, collagen, and arachidonic acid. Overall, compared to BSLN, platelet aggregation decreased for all agonist at EOS, EOR, and T = 360 min. When normalized to platelet count, platelet aggregation in response to agonist thrombin recognition-activating peptide-6 demonstrated no change from BSLN at subsequent time points. Aggregation to adenosine diphosphate was significantly less at EOR but not EOS or T = 360 min compared to BSLN. Platelet aggregation to collagen and arachidonic acid was not significantly different at EOS compared to BSLN but was significantly less at EOR and T = 360 min. Nonhuman primates manifest early platelet dysfunction in response to polytraumatic hemorrhagic shock, consistent with that reported in severely injured human patients. Nonhuman primate models potentially are translationally valuable for understanding the mechanisms and pathophysiology of trauma-induced platelet dysfunction.
Fekete, Natalie; Gadelorge, Mélanie; Fürst, Daniel; Maurer, Caroline; Dausend, Julia; Fleury-Cappellesso, Sandrine; Mailänder, Volker; Lotfi, Ramin; Ignatius, Anita; Sensebé, Luc; Bourin, Philippe; Schrezenmeier, Hubert; Rojewski, Markus Thomas
2012-01-01
Background aims The clinical use of human mesenchymal stromal cells (MSC) requires ex vivo expansion in media containing supplements such as fetal bovine serum or, alternatively, human platelet lysate (PL). Methods Platelet concentrates were frozen, quarantine stored, thawed and sterile filtered to obtain PL. PL content and its effect on fibroblast-colony-forming unit (CFU-F) formation, MSC proliferation and large-scale expansion were studied. Results PL contained high levels of basic fibroblast growth factor (bFGF), soluble CD40L (sCD40L), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), platelet-derived growth factor AA (PDGF-AA), platelet-derived growth factor AB/BB (PDGF-AB/BB), chemokine (C-C) ligand 5 (CCL5; RANTES) transforming growth factor-β1 (TGF-β1) and chemokine (C-X-C) ligand 1/2/3 (GRO), with low batch-to-batch variability, and most were stable for up to 14 days. Inhibition of PDGF-BB and bFGF decreased MSC proliferation by about 20% and 50%, respectively. The strongest inhibition (about 75%) was observed with a combination of anti-bFGF + anti-PDGF-BB and anti-bFGF + anti-TGF-β1 + anti-PDGF-BB. Interestingly, various combinations of recombinant PDGF-BB, bFGF and TGF-β1 were not sufficient to promote cell proliferation. PL from whole blood-derived pooled platelet concentrates and apheresis platelet concentrates did not differ significantly in their growth-promoting activity on MSC. Conclusions PL enhances MSC proliferation and can be regarded as a safe tool for MSC expansion for clinical purposes. \\in particular, PDGF-BB and bFGF are essential components for the growth-promoting effect of PL, but are not sufficient for MSC proliferation. PMID:22296115
Srinivasan, Subhashini; Mir, Fozia; Huang, Jin-Sheng; Khasawneh, Fadi T.; Lam, Stephen C.-T.; Le Breton, Guy C.
2009-01-01
ADP plays an integral role in the process of hemostasis by signaling through two platelet G-protein-coupled receptors, P2Y1 and P2Y12. The recent use of antagonists against these two receptors has contributed a substantial body of data characterizing the ADP signaling pathways in human platelets. Specifically, the results have indicated that although P2Y1 receptors are involved in the initiation of platelet aggregation, P2Y12 receptor activation appears to account for the bulk of the ADP-mediated effects. Based on this consideration, emphasis has been placed on the development of a new class of P2Y12 antagonists (separate from clopidogrel and ticlopidine) as an approach to the treatment of thromboembolic disorders. The present work examined the molecular mechanisms by which two of these widely used adenosine-based P2Y12 antagonists (2-methylthioadenosine 5′-monophosphate triethylammonium salt (2MeSAMP) and ARC69931MX), inhibit human platelet activation. It was found that both of these compounds raise platelet cAMP to levels that substantially inhibit platelet aggregation. Furthermore, the results demonstrated that this elevation of cAMP did not require Gi signaling or functional P2Y12 receptors but was mediated through activation of a separate G protein-coupled pathway, presumably involving Gs. However, additional experiments revealed that neither 2MeSAMP nor ARC69931MX (cangrelor) increased cAMP through activation of A2a, IP, DP, or EP2 receptors, which are known to couple to Gs. Collectively, these findings indicate that 2MeSAMP and ARC69931MX interact with an unidentified platelet G protein-coupled receptor that stimulates cAMP-mediated inhibition of platelet function. This inhibition is in addition to that derived from antagonism of P2Y12 receptors. PMID:19346255
Ghevaert, Cedric; Wilcox, David A.; Fang, Juan; Armour, Kathryn L.; Clark, Mike R.; Ouwehand, Willem H.; Williamson, Lorna M.
2008-01-01
Fetomaternal alloimmune thrombocytopenia (FMAIT) is caused by maternal generation of antibodies specific for paternal platelet antigens and can lead to fetal intracranial hemorrhage. A SNP in the gene encoding integrin β3 causes a clinically important maternal-paternal antigenic difference; Leu33 generates the human platelet antigen 1a (HPA-1a), whereas Pro33 generates HPA-1b. As a potential treatment to prevent fetal intracranial hemorrhage in HPA-1a alloimmunized pregnancies, we generated an antibody that blocks the binding of maternal HPA-1a–specific antibodies to fetal HPA-1a1b platelets by combining a high-affinity human HPA-1a–specific scFv (B2) with an IgG1 constant region modified to minimize Fcγ receptor–dependent platelet destruction (G1Δnab). B2G1Δnab saturated HPA-1a+ platelets and substantially inhibited binding of clinical HPA-1a–specific sera to HPA-1a+ platelets. The response of monocytes to B2G1Δnab-sensitized platelets was substantially less than their response to unmodified B2G1, as measured by chemiluminescence. In addition, B2G1Δnab inhibited chemiluminescence induced by B2G1 and HPA-1a–specific sera. In a chimeric mouse model, B2G1 and polyclonal Ig preparations from clinical HPA-1a–specific sera reduced circulating HPA-1a+ platelets, concomitant with transient thrombocytopenia. As the Δnab constant region is uninformative in mice, F(ab′)2 B2G1 was used as a proof of principle blocking antibody and prevented the in vivo platelet destruction seen with B2G1 and polyclonal HPA-1a–specific antibodies. These results provide rationale for human clinical studies. PMID:18654666
Extending The Shelf Life Of Blood Platelets
NASA Technical Reports Server (NTRS)
Surgenor, Douglas M.
1988-01-01
New method of storing human blood platelets extends vitality for transfusions. Packaged as suspension in sterile liquid in plastic blood bags. Each bag placed between pair of plastic grids, and rubberbands placed around sandwich thus formed to hold together. Stored upright in open air or in container through which air pumped at rate of at least 45 L/min. Ensures that platelets receive ample oxygen and expiratory carbon dioxide form platelets removed before pH drops to harmful levels.
Freese, R; Mutanen, M
1995-09-01
To compare the postprandial effects of three oils differing in their fatty acid composition on platelet aggregation and coagulation. The oils studied were low-erucic acid rapeseed oil (RO, oleic acid 54% of fatty acids), sunflower oil (SO, linoleic acid 64% of fatty acids) and butter oil (BO, saturated fatty acids 62% of fatty acids). The postprandial effects of three fat-loads were followed for 5 h. Division of Nutrition, University of Helsinki. Twelve healthy female subjects (aged 23-38 years) were recruited among university students and employees. Postprandial lipaemia was induced by high-fat meals containing fat (RO, SO or BO) 1 g/kg of body weight, skim-milk powder, sugar, strawberries, and water. Each subject ingested each meal in three separate mornings after an overnight fast. The order of the meals was randomised. Blood samples were taken before and 1, 2.5, and 5 h after the test meal. All three test meals similarly affected platelet aggregation in platelet-rich plasma. Aggregation induced by collagen (0.6, 1 and 2.5 micrograms/ml) decreased during the 5-h period after the meals (P = 0.000). ADP-induced aggregation did not change during the follow-up period after any meal (P = 0.105-0.483). All fat loads increased factor VII coagulant activity (F VII:C) (P = 0.000), but in plasma fibrinogen concentration (P = 0.155) or antithrombin III activity (P = 0.278) no postprandial changes were found. These results show that high-fat meals have acute effects on platelet function and F VII:C in healthy women and that these effects are not mediated through the fatty acid composition of the meals.
Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets
Corona de la Peña, Norma; Gutiérrez-Aguilar, Manuel; Hernández-Reséndiz, Ileana; Marín-Hernández, Álvaro
2017-01-01
Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway i.e., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times vs. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation. PMID:28817667
Platelets and Multi-Organ Failure in Sepsis.
Greco, Elisabetta; Lupia, Enrico; Bosco, Ornella; Vizio, Barbara; Montrucchio, Giuseppe
2017-10-20
Platelets have received increasing attention for their role in the pathophysiology of infectious disease, inflammation, and immunity. In sepsis, a low platelet count is a well-known biomarker for disease severity and more recently authors have focused their attention on the active role of platelets in the pathogenesis of multi-organ failure. Septic shock is characterised by a dysregulated inflammatory response, which can impair the microcirculation and lead to organ injury. Being at the crossroads between the immune system, clotting cascade, and endothelial cells, platelets seem to be an appealing central mediator and possible therapeutic target in sepsis. This review focuses on the pathogenic role of platelets in septic organ dysfunction in humans and animal models.
Platelets and Multi-Organ Failure in Sepsis
Greco, Elisabetta; Lupia, Enrico; Bosco, Ornella; Vizio, Barbara; Montrucchio, Giuseppe
2017-01-01
Platelets have received increasing attention for their role in the pathophysiology of infectious disease, inflammation, and immunity. In sepsis, a low platelet count is a well-known biomarker for disease severity and more recently authors have focused their attention on the active role of platelets in the pathogenesis of multi-organ failure. Septic shock is characterised by a dysregulated inflammatory response, which can impair the microcirculation and lead to organ injury. Being at the crossroads between the immune system, clotting cascade, and endothelial cells, platelets seem to be an appealing central mediator and possible therapeutic target in sepsis. This review focuses on the pathogenic role of platelets in septic organ dysfunction in humans and animal models. PMID:29053592
ARF6-dependent regulation of P2Y receptor traffic and function in human platelets.
Kanamarlapudi, Venkateswarlu; Owens, Sian E; Saha, Keya; Pope, Robert J; Mundell, Stuart J
2012-01-01
Adenosine diphosphate (ADP) is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors, the P2Y(1) and P2Y(12) purinoceptors. Recently, we demonstrated that P2Y(1) and P2Y(12) purinoceptor activities are rapidly and reversibly modulated in human platelets, revealing that the underlying mechanism requires receptor internalization and subsequent trafficking as an essential part of this process. In this study we investigated the role of the small GTP-binding protein ADP ribosylation factor 6 (ARF6) in the internalization and function of P2Y(1) and P2Y(12) purinoceptors in human platelets. ARF6 has been implicated in the internalization of a number of GPCRs, although its precise molecular mechanism in this process remains unclear. In this study we show that activation of either P2Y(1) or P2Y(12) purinoceptors can stimulate ARF6 activity. Further blockade of ARF6 function either in cell lines or human platelets blocks P2Y purinoceptor internalization. This blockade of receptor internalization attenuates receptor resensitization. Furthermore, we demonstrate that Nm23-H1, a nucleoside diphosphate (NDP) kinase regulated by ARF6 which facilitates dynamin-dependent fission of coated vesicles during endocytosis, is also required for P2Y purinoceptor internalization. These data describe a novel function of ARF6 in the internalization of P2Y purinoceptors and demonstrate the integral importance of this small GTPase upon platelet ADP receptor function.
Platelets as autonomous drones for hemostatic and immune surveillance.
Li, Jackson LiangYao; Zarbock, Alexander; Hidalgo, Andrés
2017-07-18
Platelets participate in many important physiological processes, including hemostasis and immunity. However, despite their broad participation in these evolutionarily critical roles, the anucleate platelet is uniquely mammalian. In contrast with the large nucleated equivalents in lower vertebrates, we find that the design template for the evolutionary specialization of platelets shares remarkable similarities with human-engineered unmanned aerial vehicles in terms of overall autonomy, maneuverability, and expendability. Here, we review evidence illustrating how platelets are uniquely suited for surveillance and the manner in which they consequently provide various types of support to other cell types. © 2017 Li et al.
Gadi, Dounia; Bnouham, Mohamed; Aziz, Mohammed; Ziyyat, Abderrahim; Legssyer, Abdelkhaleq; Bruel, Arlette; Berrabah, Mohamed; Legrand, Chantal; Fauvel-Lafeve, Françoise; Mekhfi, Hassane
2012-08-10
Blood platelets are directly involved in both haemostatic and pathologic thrombotic processes, through their adhesion, secretion and aggregation. In this study, we investigated the effect of genins (aglycone flavonoids without sugar group) isolated from parsley (Petroselinum crispum) leaves in vitro on human platelet aggregation and adhesion to a collagen-coated surface under physiologic flow conditions. The aggregation and adhesion studies were monitored after pre-incubation of platelets with genins. Genins inhibited dose dependently aggregation induced by thrombin, ADP and collagen. The strongest effect was observed in collagen induced aggregation (IC50 = 0.08 ± 0.01 mg/ml). The HPLC identification of genins compounds revealed the presence of keampferol, apigenin and other not identified compounds. The aggregation tests showed that these compounds have anti-aggregating activity. In addition, adhesion of human platelets to collagen was greatly decreased (over 75 %) by genins (0.3 mg/ml). While the mechanism by which genins act is unclear, we suggest that these compounds may interfere with a multiple target step in the haemostasis process. These results show that genins isolated from parsley has a potent antiplatelet activity. It may be an important source of beneficial antiplatelet compounds that decrease thrombosis and cardiovascular diseases.
The role of platelets during reproduction.
Isermann, Berend; Nawroth, Peter P
2006-01-01
The availability of mice with defined defects within the hemostatic system enabled researchers to identify a role the coagulation system for embryonic and placental development. However, the role of platelets during development has only recently been experimentally addressed, giving some insight into potential functions of platelets during development. Thus, a quantitative embryonic platelet defect (severe thrombopenia secondary to NF-E2 deficiency) is associated with an embryonic growth retardation and reduced vascularisation of the placenta. Maternal platelet deficiency is associated with placental hemorrhage, which, however, does not impair embryonic or maternal survival. In vitro studies established that platelets or platelet conditioned medium regulate the invasive properties of human extravillous trophoblast cells and induce a phenotypical switch of trophoblast cells. These data imply that platelets are of relevance during placentation. Conversely, platelets and the formation of platelet-fibrin aggregates are dispensable for the development of the embryo proper, establishing that the lethal phenotypes observed in some embryo slacking coagulation regulators does not result from an inability to form platelet-fibrin aggregates, but likely reflects altered protease dependent signaling during vascular development.
Ghevaert, Cedric; Herbert, Nina; Hawkins, Louise; Grehan, Nicola; Cookson, Philip; Garner, Steve F; Crisp-Hihn, Abigail; Lloyd-Evans, Paul; Evans, Amanda; Balan, Kottekkattu; Ouwehand, Willem H; Armour, Kathryn L; Clark, Mike R; Williamson, Lorna M
2013-07-18
Fetomaternal alloimmune thrombocytopenia, caused by the maternal generation of antibodies against fetal human platelet antigen-1a (HPA-1a), can result in intracranial hemorrhage and intrauterine death. We have developed a therapeutic human recombinant high-affinity HPA-1a antibody (B2G1Δnab) that competes for binding to the HPA-1a epitope but carries a modified constant region that does not bind to Fcγ receptors. In vitro studies with a range of clinical anti-HPA-1a sera have shown that B2G1Δnab blocks monocyte chemiluminescence by >75%. In this first-in-man study, we demonstrate that HPA-1a1b autologous platelets (matching fetal phenotype) sensitized with B2G1Δnab have the same intravascular survival as unsensitized platelets (190 hours), while platelets sensitized with a destructive immunoglobulin G1 version of the antibody (B2G1) are cleared from the circulation in 2 hours. Mimicking the situation in fetuses receiving B2G1Δnab as therapy, we show that platelets sensitized with a combination of B2G1 (representing destructive HPA-1a antibody) and B2G1Δnab survive 3 times as long in circulation compared with platelets sensitized with B2G1 alone. This confirms the therapeutic potential of B2G1Δnab. The efficient clearance of platelets sensitized with B2G1 also opens up the opportunity to carry out studies of prophylaxis to prevent alloimmunization in HPA-1a-negative mothers.
Shanskii, Ya D; Sergeeva, N S; Sviridova, I K; Kirakozov, M S; Kirsanova, V A; Akhmedova, S A; Antokhin, A I; Chissov, V I
2013-11-01
We compared the composition and biological activity of fetal calf serum and platelet lysate from donor platelet concentrate. In platelet lysate, the concentrations of alkaline phosphatase, lactate dehydrogenase, creatinine, and mineral metabolism parameters were lower, while parameters of lipid and protein metabolism were higher than in fetal calf serum. The concentrations of growth factors (platelet-derived (AA, AB, BB), vascular endothelial, insulin-like, and transforming growth factor β) in platelet lysate 1.7-148.7-fold surpassed the corresponding parameters in fetal calf serum. After replacement of fetal calf serum with platelet lysate in the culture medium (0, 25, 50, 75, and 100%), the count of multipotent mesenchymal stromal cells on day 7 (in comparison with day 1) increased by 154.8, 206.6, 228.2, 367.7, and 396.5%, respectively. Thus, platelet lysate can be an adequate non-xenogenic alternative for fetal calf serum.
Aspirin decreases platelet uptake on Dacron vascular grafts in baboons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackey, W.C.; Connolly, R.J.; Callow, A.D.
The influence of a single dose of aspirin (5.4-7.4 mg/kg) on platelet uptake on 4-mm Dacron interposition grafts was studied in a baboon model using gamma camera scanning for 111-Indium labeled platelets. In vitro assessment of platelet function after aspirin administration revealed that in the baboon, as in the human, aspirin abolished arachidonic acid-induced platelet aggregation, prolonged the lag time between exposure to collagen and aggregation, and decreased plasma thromboxane B2 levels. Aspirin also prolonged the template bleeding time. Scans for 111-Indium labeled platelets revealed that pretreatment with a single dose of aspirin decreased platelet uptake on 4-mm Dacron carotidmore » interposition grafts. This decrease in platelet uptake was associated with a significant improvement in 2-hour graft patency and with a trend toward improved 2-week patency.« less
Effect of graphenenano-platelets on the mechanical properties of Mg/3wt%Al alloy-nanocomposite
NASA Astrophysics Data System (ADS)
Kumar, Pravir; Kujur, MilliSuchita; Mallick, Ashis; Sandar Tun, Khin; Gupta, Manoj
2018-04-01
The bulk Mg/3%Al/0.1%GNP alloy-nano composite was fabricated using powder metallurgy route assisted with microwave sintering and followed by hot extrusion. The microstructural and Raman spectroscopy studies were performed to characterize the graphene nano-platelet(GNP).EDX tests confirmed the presence and the homogeneous distribution of Al and graphene nano-platelets in the magnesium alloy-nanocomposite. The addition of 3 wt% Al and 0.1wt%GNP to the Mg changed Vicker hardness, ultimate tensile strength and failure strain by +46.15%,+17.6% and -5% respectively. The fabricated composite offers higher resistance to the local deformation than monolithic Mg and Mg/3%Al alloy, revealed by the load/unload-indentation depth curve.
Chiang, T M; Wang, Y B; Kang, E S
2000-12-01
Nitric oxide plays an important role in platelet function and platelets possess the endothelial isoform of nitric oxide synthase. Several reports have indicated that nitric oxide is released upon exposure of platelets to collagen. We have reported that a non-integrin platelet protein of 65 kDa is a receptor for type I collagen. By direct measurement of NO release from washed human platelets suspended in Tyrode buffer with a ISO-NO Mark II, World Precision Instruments, Sarasota, FL, USA, p30 sensor, type I collagen, but not ADP and epinephrine, induces the release of NO in a time-dependent manner. The production of NO is inhibited either by preincubation of type I collagen with the platelet type I collagen receptor recombinant protein or by preincubation of platelets with the antibody to the receptor protein, the anti-65 antibody. However, preincubation of platelets with anti-P-selectin and anti-glycoprotein IIb/IIIa did not affect the release of NO by platelets. These results suggest that the 65 kDa platelet receptor for type I collagen is specifically linked to the generation of NO, and that the 65 kDa platelet receptor for type I collagen plays an important new role in platelet function.
Peptide-Mediated Platelet Capture at Gold Micropore Arrays.
Adamson, Kellie; Spain, Elaine; Prendergast, Una; Moran, Niamh; Forster, Robert J; Keyes, Tia E
2016-11-30
Ordered spherical cap gold cavity arrays with 5.4, 1.6, and 0.98 μm diameter apertures were explored as capture surfaces for human blood platelets to investigate the impact of surface geometry and chemical modification on platelet capture efficiency and their potential as platforms for surface enhanced Raman spectroscopy of single platelets. The substrates were chemically modified with single-constituent self-assembled monolayers (SAM) or mixed SAMs comprised of thiol-functionalized arginine-glycine-aspartic acid (RGD, a platelet integrin target) with or without 1-octanethiol (adhesion inhibitor). As expected, platelet adhesion was promoted and inhibited at RGD and alkanethiol modified surfaces, respectively. Platelet adhesion was reversible, and binding efficiency at the peptide modified substrates correlated inversely with pore diameter. Captured platelets underwent morphological change on capture, the extent of which depended on the topology of the underlying substrate. Regioselective capture of the platelets enabled study for the first time of the surface enhanced Raman spectroscopy of single blood platelets, yielding high quality Raman spectroscopy of individual platelets at 1.6 μm diameter pore arrays. Given the medical importance of blood platelets across a range of diseases from cancer to psychiatric illness, such approaches to platelet capture may provide a useful route to Raman spectroscopy for platelet related diagnostics.
Massberg, Steffen; Konrad, Ildiko; Bültmann, Andreas; Schulz, Christian; Münch, Götz; Peluso, Mario; Lorenz, Michael; Schneider, Simon; Besta, Felicitas; Müller, Iris; Hu, Bin; Langer, Harald; Kremmer, Elisabeth; Rudelius, Martina; Heinzmann, Ulrich; Ungerer, Martin; Gawaz, Meinrad
2004-02-01
Platelet-collagen interactions play a fundamental role in the process of arterial thrombosis. The major platelet collagen receptor is the glycoprotein VI (GPVI). Here, we determined the effects of a soluble dimeric form of GPVI on platelet adhesion in vitro and in vivo. We fused the extracellular domain of GPVI with the human immunoglobulin Fc domain. The soluble dimeric form of GPVI (GPVI-Fc) specifically bound to immobilized collagen. Binding of GPVI-Fc to collagen was inhibited competitively by soluble GPVI-Fc, but not control Fc lacking the external GPVI domain. GPVI-Fc inhibited the adhesion of CHO cells that stably express human GPVI and of platelets on collagen and attenuated thrombus formation under shear conditions in vitro. To test the effects of GPVI-Fc in vivo, arterial thrombosis was induced in the mouse carotid artery, and platelet-vessel wall interactions were visualized by intravital fluorescence microscopy. Infusion of GPVI-Fc but not of control Fc virtually abolished stable arrest and aggregation of platelets following vascular injury. Importantly, GPVI-Fc but not control Fc, was detected at areas of vascular injury. These findings further substantiate the critical role of the collagen receptor GPVI in the initiation of thrombus formation at sites of vascular injury and identify soluble GPVI as a promising antithrombotic strategy.
Olas, B; Wachowicz, B; Nowak, P; Kedzierska, M; Tomczak, A; Stochmal, A; Oleszek, W; Jeziorski, A; Piekarski, J
2008-12-01
The antioxidant properties of extract from berries of Aronia melanocarpa (chokeberry) containing: anthocyanidines, phenolic acids and quercetine glycosides on oxidative/nitrative stress induced by peroxynitrite (ONOO(-), a powerful physiological oxidant, nitrating species and inflammatory mediator) in human blood platelets were studied in vitro. The extract from A. melanocarpa (5 - 50 microg/mL) significantly inhibited platelet protein carbonylation (measured by ELISA method) and thiol oxidation estimated with 5,5'-dithio-bis(2-nitro-benzoic acid) (DTNB) induced by peroxynitrite (0.1 mM) (IC(50)--35 microg/mL for protein carbonylation, and IC(50)--33 microg/mL for protein thiol oxidation). The tested extract only slightly reduced platelet protein nitration (measured by C- ELISA method). The extract also caused a distinct reduction of platelet lipid peroxidation induced by peroxynitrite. Moreover, in our preliminary experiments we observed that the extract (50 microg/mL) reduced oxidative/nitrative stress in blood platelets from patients with breast cancer. The obtained results indicate that in vitro the extract from A. melanocarpa has the protective effects against peroxynitrite-induced oxidative/nitrative damage to the human platelet proteins and lipids. The extract from A. melanocarpa seems to be also useful as an antioxidant in patients with breast cancer.
Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Matsushima-Nishiwaki, Rie; Akamatsu, Shigeru; Enomoto, Yukiko; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu
2016-01-01
It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9–25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25–50 µm), large aggregates (50–70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients. PMID:27187380
Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Matsushima-Nishiwaki, Rie; Akamatsu, Shigeru; Enomoto, Yukiko; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu
2016-05-14
It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9-25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25-50 µm), large aggregates (50-70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients.
Mulder, Gerit; Tallis, Arthur J; Marshall, V Tracy; Mozingo, David; Phillips, Laurie; Pierce, Glenn F; Chandler, Lois A; Sosnowski, Barbara K
2009-01-01
The results from a Phase 1/2 study of a replication-defective adenovirus encoding human platelet-derived growth factor (PDGF)-B formulated in a bovine collagen (Ad-5PDGF-B; 2.6% collagen; GAM501) gel for nonhealing neuropathic diabetic foot ulcers is reported. The primary objectives of the study were to evaluate the safety, maximum-tolerated dose, and preliminary biological activity of GAM501. Fifteen patients enrolled into the study with chronic, nonhealing ulcers received either a single administration of GAM501 at one of three dose levels, or up to four administrations of GAM501 at 1-week intervals. All patients received standard of care treatment including debridement and were required to wear an off-loading shoe. GAM501 was found to be safe and well tolerated with no evidence of systemic or local toxicity at all doses so no maximum-tolerated dose was reached. Serum antibody titers to platelet-derived growth factor-B homodimer and collagen were negative and adenoviral DNA was not detected in the blood. In the 12 patients that completed the study, ulcer closure was observed by Month 3 in 10 patients, seven of whom received a single application of GAM501. In conclusion, GAM501 did not appear to have any toxicity at doses that showed biological activity. GAM501 holds promise as a potentially effective treatment for nonhealing diabetic foot ulcers.
Loukachevitch, Lioudmila V; Bensing, Barbara A; Yu, Hai; Zeng, Jie; Chen, Xi; Sullam, Paul M; Iverson, T M
2016-10-11
Streptococcus sanguinis is a leading cause of bacterial infective endocarditis, a life-threatening infection of heart valves. S. sanguinis binds to human platelets with high avidity, and this adherence is likely to enhance virulence. Previous studies suggest that a serine-rich repeat adhesin termed SrpA mediates the binding of S. sanguinis to human platelets via its interaction with sialoglycans on the receptor GPIbα. However, in vitro binding assays with SrpA and defined sialoglycans failed to identify specific high-affinity ligands. To improve our understanding of the interaction between SrpA and human platelets, we determined cocrystal structures of the SrpA sialoglycan binding region (SrpA BR ) with five low-affinity ligands: three sialylated trisaccharides (sialyl-T antigen, 3'-sialyllactose, and 3'-sialyl-N-acetyllactosamine), a sialylated tetrasaccharide (sialyl-Lewis X ), and a sialyl galactose disaccharide component common to these sialoglyans. We then combined structural analysis with mutagenesis to further determine whether our observed interactions between SrpA BR and glycans are important for binding to platelets and to better map the binding site for the physiological receptor. We found that the sialoglycan binding site of SrpA BR is significantly larger than the sialoglycans cocrystallized in this study, which suggests that binding of SrpA to platelets either is multivalent or occurs via a larger, disialylated glycan.
Loukachevitch, Lioudmila V.; Bensing, Barbara A.; Yu, Hai; Zeng, Jie; Chen, Xi; Sullam, Paul M.; Iverson, T M
2016-01-01
Streptococcus sanguinis is a leading cause of bacterial infective endocarditis, a life threatening infection of heart valves. S. sanguinis binds to human platelets with high avidity, and this adherence is likely to enhance virulence. Previous studies suggest that a serine-rich repeat adhesin termed SrpA mediates the binding of S. sanguinis to human platelets via its interaction with sialoglycans on the receptor GPIbα. However, in vitro binding assays between SrpA and defined sialoglycans failed to identify specific high-affinity ligands. To better understand the interaction between SrpA and human platelets, we determined cocrystal structures of the SrpA sialoglycan binding region (SrpABR) with five low-affinity ligands: three sialylated trisaccharides (sialyl-T antigen, 3'-sialyllactose, and 3'-sialyl-N-acetyllactosamine), a sialylated tetrasaccharide (sialyl-LewisX) and a sialyl galactose disaccharide component common to these sialoglyans. We then combined structural analysis with mutagenesis to further determine whether our observed interactions between SrpABR and glycans are important for binding to platelets and to better map the binding site for the physiological receptor. We found that the sialoglycan binding site of SrpABR is significantly larger than the sialoglycans cocrystallized in this study, which suggests that SrpA binding to platelets is either multivalent or occurs via a larger, disialylated glycan. PMID:27685666
Pathophysiological consequences of receptor mistraffic: Tales from the platelet P2Y12 receptor.
Cunningham, Margaret R; Aungraheeta, Riyaad; Mundell, Stuart J
2017-07-05
Genetic variations in G protein-coupled receptor (GPCR) genes can disrupt receptor function in a wide variety of human genetic diseases, including platelet bleeding disorders. Platelets are critical for haemostasis with inappropriate platelet activation leading to the development of arterial thrombosis, which can result in heart attack and stroke whilst decreased platelet activity is associated with an increased risk of bleeding. GPCRs expressed on the surface of platelets play key roles in regulating platelet activity and therefore function. Receptors include purinergic receptors (P2Y 1 and P2Y 12 ), proteinase-activated receptor (PAR1 and PAR4) and thromboxane receptors (TPα), among others. Pharmacological blockade of these receptors forms a powerful therapeutic tool in the treatment and prevention of arterial thrombosis. With the advance of genomic technologies, there has been a substantial increase in the identification of naturally occurring rare and common GPCR variants. These variants include single-nucleotide polymorphisms (SNPs) and insertion or deletions that have the potential to alter GPCR expression or function. A number of defects in platelet GPCRs that disrupt receptor function have now been characterized in patients with mild bleeding disorders. This review will focus on rare, function-disrupting variants of platelet GPCRs with particular emphasis upon mutations in the P2Y 12 receptor gene that affect receptor traffic to modulate platelet function. Further this review will outline how the identification and characterization of function-disrupting GPCR mutations provides an essential link in translating our detailed understanding of receptor traffic and function in cell line studies into relevant human biological systems. Copyright © 2017. Published by Elsevier B.V.
González-Trujano, María Eva; Alvarado-Vásquez, Noé; Mendoza-Sotelo, José; López, Guadalupe; Estrada-Camarena, Erika; Martínez-Mota, Lucia; Moreno, Julia
2012-08-01
Biochemical markers associated with the prognosis of depression in humans are being described in the literature, whereas experimental studies in animal models in search for antidepressant strategies are lacking. The aim of this study was to evaluate platelet morphology, platelet activity and nitric oxide (NO) synthesis as possible biomarkers of depressive-like behavior by using FST alone and in the presence of fluoxetine. Naïve rats were compared to those receiving vehicle or fluoxetine at 10mg/kg i.p. in acute, subchronic and chronic administration in the FST. After behavioral assessment, platelets were isolated from blood samples and analyzed by flow cytometry to determine the platelet mitochondrial membrane potential and NO synthesis. In addition, HPLC and electron microscopy were used to examine 5-HT and tryptophan levels and morphology of platelets, respectively. Rats receiving vehicle and exposed to FST showed depressive-like behavior at all the times tested; after chronic FST rats showed a similar pattern of alteration in platelet morphology and in the studied as possible biochemical markers as those previously recognized in depressive humans. Depressive-like behavior in rats exposed to FST was prevented in the presence of fluoxetine administration at all the times tested and associated with the prevention of alterations in platelet morphology, platelet activity and NO synthesis, and/or in 5-HT concentrations. The results of the present study suggest that platelet function and morphology might be relevant markers for the prognosis of depression and the search for functional treatments. Besides, the relevance of FST as model to study this psychiatric illness is reinforced. Copyright © 2012 Elsevier Inc. All rights reserved.
Love, Melissa S; Millholland, Melanie G; Mishra, Satish; Kulkarni, Swapnil; Freeman, Katie B; Pan, Wenxi; Kavash, Robert W; Costanzo, Michael J; Jo, Hyunil; Daly, Thomas M; Williams, Dewight R; Kowalska, M Anna; Bergman, Lawrence W; Poncz, Mortimer; DeGrado, William F; Sinnis, Photini; Scott, Richard W; Greenbaum, Doron C
2012-12-13
Plasmodium falciparum pathogenesis is affected by various cell types in the blood, including platelets, which can kill intraerythrocytic malaria parasites. Platelets could mediate these antimalarial effects through human defense peptides (HDPs), which exert antimicrobial effects by permeabilizing membranes. Therefore, we screened a panel of HDPs and determined that human platelet factor 4 (hPF4) kills malaria parasites inside erythrocytes by selectively lysing the parasite digestive vacuole (DV). PF4 rapidly accumulates only within infected erythrocytes and is required for parasite killing in infected erythrocyte-platelet cocultures. To exploit this antimalarial mechanism, we tested a library of small, nonpeptidic mimics of HDPs (smHDPs) and identified compounds that kill P. falciparum by rapidly lysing the parasite DV while sparing the erythrocyte plasma membrane. Lead smHDPs also reduced parasitemia in a murine malaria model. Thus, identifying host molecules that control parasite growth can further the development of related molecules with therapeutic potential. Copyright © 2012 Elsevier Inc. All rights reserved.
Potenza, Donatella; Belvisi, Laura
2008-01-21
The aim of this work is to show that transferred-NOE provides useful and detailed information on membrane-bound receptor-ligand interactions in living cells. Here, we study the interaction between intact human platelets and some ligands containing the RGD sequence. Conformational properties of the free and bound pentapeptides are reported.
Healing of skin wounds with a chitosan-gelatin sponge loaded with tannins and platelet-rich plasma.
Lu, Bitao; Wang, Tianyou; Li, Zhiquan; Dai, Fangying; Lv, Lingmei; Tang, Fengling; Yu, Kun; Liu, Jiawei; Lan, Guangqian
2016-01-01
A chitosan-gelatin sponge (CSGT) was prepared using a chitosan/ascorbic acid solution blend containing gelatin, followed by crosslinking with tannin acid and freeze-drying, thereby combining the chitosan sponge and gelatin sponge. The structure of the CSGT was observed by scanning electron microscopy and was shown to have uniform and abundant pores measuring about 145-240μm in size. We also characterized the sponges by infrared spectroscopy, thermogravimetric analysis, mechanical property tests, swelling behavior analysis, water retention capacity tests, antibacterial property analysis, and cytotoxicity tests. Our data showed that the CSGT had good thermostability and mechanical properties as well as efficient water absorption and retention capacities. Moreover, the CSGT could effectively inhibit the growth of Escherichia coli and Staphylococcus aureus with low toxicity. In animal experiments, macroscopic observations and histological examinations showed that the wound covered by the CSGT healed quickly. Additionally, loading of the CSGT with platelet-rich plasma resulted in further acceleration of wound healing. Therefore, the CSGT and the CSGT with platelet-rich plasma were suitable for application as a wound dressing and may have potential for use in various biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sithu, Srinivas D.; Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202; Srivastava, Sanjay
Acrolein is a common air pollutant that is present in high concentrations in wood, cotton, and tobacco smoke, automobile exhaust and industrial waste and emissions. Exposure to acrolein containing environmental pollutants such as tobacco smoke and automobile exhaust has been linked to the activation of the coagulation and hemostasis pathways and thereby to the predisposition of thrombotic events in human. To examine the effects of acrolein on platelets, adult male C57Bl/6 mice were subjected acute (5 ppm for 6 h) or sub-chronic (1 ppm, 6 h/day for 4 days) acrolein inhalation exposures. The acute exposure to acrolein did not causemore » pulmonary inflammation and oxidative stress, dyslipidemia or induce liver damage or muscle injury. Platelet GSH levels in acrolein-exposed mice were comparable to controls, but acrolein-exposure increased the abundance of protein-acrolein adducts in platelets. Platelets isolated from mice, exposed to both acute and sub-chronic acrolein levels, showed increased ADP-induced platelet aggregation. Exposure to acrolein also led to an increase in the indices of platelet activation such as the formation of platelet-leukocyte aggregates in the blood, plasma PF4 levels, and increased platelet-fibrinogen binding. The bleeding time was decreased in acrolein exposed mice. Plasma levels of PF4 were also increased in mice exposed to environmental tobacco smoke. Similar to inhalation exposure, acrolein feeding to mice also increased platelet activation and established a pro-thrombotic state in mice. Together, our data suggest that acrolein is an important contributing factor to the pro-thrombotic risk in human exposure to pollutants such as tobacco smoke or automobile exhaust, or through dietary consumption.« less
Onuma, Takashi; Tanabe, Kumiko; Kito, Yuko; Tsujimoto, Masanori; Uematsu, Kodai; Enomoto, Yukiko; Matsushima-Nishiwaki, Rie; Doi, Tomoaki; Nagase, Kiyoshi; Akamatsu, Shigeru; Tokuda, Haruhiko; Ogura, Shinji; Iwama, Toru; Kozawa, Osamu; Iida, Hiroki
2017-08-01
Sphingosine 1-phosphate (S1P) is as an extracellular factor that acts as a potent lipid mediator by binding to specific receptors, S1P receptors (S1PRs). However, the precise role of S1P in human platelets that express S1PRs has not yet been fully clarified. We previously reported that heat shock protein 27 (HSP27) is released from human platelets accompanied by its phosphorylation stimulated by collagen. In the present study, we investigated the effect of S1P on the collagen-induced platelet activation. S1P pretreatment markedly attenuated the collagen-induced aggregation. Co-stimulation with S1P and collagen suppressed collagen-induced platelet activation, but the effect was weaker than that of S1P-pretreatment. The collagen-stimulated secretion of platelet-derived growth factor (PDGF)-AB and the soluble CD40 ligand (sCD40L) release were significantly reduced by S1P. In addition, S1P suppressed the collagen-induced release of HSP27 as well as the phosphorylation of HSP27. S1P significantly suppressed the collagen-induced phosphorylation of p38 mitogen-activated protein kinase. S1P increased the levels of GTP-bound Gαi and GTP-bound Gα13 coupled to S1PPR1 and/or S1PR4. CYM50260, a selective S1PR4 agonist, but not SEW2871, a selective S1PR1 agonist, suppressed the collagen-stimulated platelet aggregation, PDGF-AB secretion and sCD40L release. In addition, CYM50260 reduced the release of phosphorylated-HSP27 by collagen as well as the phosphorylation of HSP27. The selective S1PR4 antagonist CYM50358, which failed to affect collagen-induced HSP27 phosphorylation, reversed the S1P-induced attenuation of HSP27 phosphorylation by collagen. These results strongly suggest that S1P inhibits the collagen-induced human platelet activation through S1PR4 but not S1PR1. Copyright © 2017 Elsevier Ltd. All rights reserved.
Necrotic platelets provide a procoagulant surface during thrombosis
Hua, Vu Minh; Abeynaike, Latasha; Glaros, Elias; Campbell, Heather; Pasalic, Leonardo; Chen, Vivien M. Y.
2015-01-01
A subpopulation of platelets fulfills a procoagulant role in hemostasis and thrombosis by enabling the thrombin burst required for fibrin formation and clot stability at the site of vascular injury. Excess procoagulant activity is linked with pathological thrombosis. The identity of the procoagulant platelet has been elusive. The cell death marker 4-[N-(S-glutathionylacetyl)amino]phenylarsonous acid (GSAO) rapidly enters a subpopulation of agonist-stimulated platelets via an organic anion-transporting polypeptide and is retained in the cytosol through covalent reaction with protein dithiols. Labeling with GSAO, together with exposure of P-selectin, distinguishes necrotic from apoptotic platelets and correlates with procoagulant potential. GSAO+ platelets form in occluding murine thrombi after ferric chloride injury and are attenuated with megakaryocyte-directed deletion of the cyclophilin D gene. These platelets form a procoagulant surface, supporting fibrin formation, and reduction in GSAO+ platelets is associated with reduction in platelet thrombus size and fibrin formation. Analysis of platelets from human subjects receiving aspirin therapy indicates that these procoagulant platelets form despite aspirin therapy, but are attenuated by inhibition of the necrosis pathway. These findings indicate that the major subpopulation of platelets involved in fibrin formation are formed via regulated necrosis involving cyclophilin D, and that they may be targeted independent of platelet activation. PMID:26474813
Kirkby, Nicholas S.; Chan, Melissa V.; Finsterbusch, Michaela; Hogg, Nancy; Nourshargh, Sussan; Warner, Timothy D.
2015-01-01
Testing of platelet function is central to the cardiovascular phenotyping of genetically modified mice. Traditional platelet function tests have been developed primarily for testing human samples and the volumes required make them highly unsuitable for the testing of mouse platelets. This limits research in this area. To address this problem, we have developed a miniaturized whole blood aggregometry assay, based on a readily accessible 96-well plate format coupled with quantification of single platelet depletion by flow cytometric analysis. Using this approach, we observed a concentration-dependent loss of single platelets in blood exposed to arachidonic acid, collagen, U46619 or protease activated receptor 4 activating peptide. This loss was sensitive to well-established antiplatelet agents and genetic manipulation of platelet activation pathways. Observations were more deeply analyzed by flow cytometric imaging, confocal imaging, and measurement of platelet releasates. Phenotypic analysis of the reactivity of platelets taken from mice lacking intercellular adhesion molecule (ICAM)-1 identified a marked decrease in fibrinogen-dependent platelet-monocyte interactions, especially under inflammatory conditions. Such findings exemplify the value of screening platelet phenotypes of genetically modified mice and shed further light upon the roles and interactions of platelets in inflammation. PMID:26215112
Gao, Xiao-Ming; Moore, Xiao-Lei; Liu, Yang; Wang, Xin-Yu; Han, Li-Ping; Su, Yidan; Tsai, Alan; Xu, Qi; Zhang, Ming; Lambert, Gavin W; Kiriazis, Helen; Gao, Wei; Dart, Anthony M; Du, Xiao-Jun
2016-07-01
Acute myocardial infarction (AMI) is characterized by a rapid increase in circulating platelet size but the mechanism for this is unclear. Large platelets are hyperactive and associated with adverse clinical outcomes. We determined mean platelet volume (MPV) and platelet-monocyte conjugation (PMC) using blood samples from patients, and blood and the spleen from mice with AMI. We further measured changes in platelet size, PMC, cardiac and splenic contents of platelets and leucocyte infiltration into the mouse heart. In AMI patients, circulating MPV and PMC increased at 1-3 h post-MI and MPV returned to reference levels within 24 h after admission. In mice with MI, increases in platelet size and PMC became evident within 12 h and were sustained up to 72 h. Splenic platelets are bigger than circulating platelets in normal or infarct mice. At 24 h post-MI, splenic platelet storage was halved whereas cardiac platelets increased by 4-fold. Splenectomy attenuated all changes observed in the blood, reduced leucocyte and platelet accumulation in the infarct myocardium, limited infarct size and alleviated cardiac dilatation and dysfunction. AMI-induced elevated circulating levels of adenosine diphosphate and catecholamines in both human and the mouse, which may trigger splenic platelet release. Pharmacological inhibition of angiotensin-converting enzyme, β1-adrenergic receptor or platelet P2Y12 receptor reduced platelet abundance in the murine infarct myocardium albeit having diverse effects on platelet size and PMC. In conclusion, AMI evokes release of splenic platelets, which contributes to the increase in platelet size and PMC and facilitates myocardial accumulation of platelets and leucocytes, thereby promoting post-infarct inflammation. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Murali, Ragothaman; Ponrasu, Thangavel; Cheirmadurai, Kalirajan; Thanikaivelan, Palanisamy
2016-02-01
Development of hybrid scaffolds with synergistic combination of growth factor is a promising approach to promote early in vivo wound repair and tissue regeneration. Here, we show the rapid wound healing in Wistar albino rats using biomimetic collagen-poly(dialdehyde) guar gum based hybrid porous scaffolds covalently immobilized with platelet derived growth factor-BB. The immobilized platelet derived growth factor in the hybrid scaffolds not only enhance the total protein, collagen, hexosamine, and uronic acid contents in the granulation tissue but also provide stronger tissues. The wound closure analysis reveal that the complete epithelialization period is 15.4 ± 0.9 days for collagen-poly(dialdehyde) guar gum-platelet derived growth factor hybrid scaffolds, whereas it is significantly higher for control, collagen, collagen- poly(dialdehyde) guar gum and povidine-iodine treated groups. Further, the histological evaluation shows that the immobilized platelet derived growth factor in the hybrid scaffolds induced a more robust cellular and vascular response in the implanted site. Hence, we demonstrate that the collagen-poly(dialdehyde) guar gum hybrid scaffolds loaded with platelet derived growth factor stimulates chemotactic effects in the implanted site to promote rapid tissue regeneration and wound repair without the assistance of antibacterial agents. © 2015 Wiley Periodicals, Inc.
Tang, K M; Jang, E K; Haslam, R J
1994-06-15
Ultraviolet irradiation of human platelet cytosol in the presence of 32P-labelled cyclic GMP (cGMP) can specifically label 110, 80, 55, 49 and 38 kDa proteins; the 110 kDa species is the subunit of cGMP-inhibited phosphodiesterase (PDE III) and the 80 kDa species that of cGMP-dependent protein kinase (Tang et al., 1993, Biochem. J. 294, 329). We have now shown that although photolabelling of platelet PDE III was inhibited by unlabelled cGMP, 8-bromo-cGMP and cyclic AMP (cAMP), it was not affected by phosphorothioate analogues of these cyclic nucleotides. Specific concentration-dependent inhibitions of the photolabelling of PDE III were observed with the following PDE inhibitors: trequinsin (IC50 = 13 +/- 2 nM), lixazinone (IC50 = 22 +/- 4 nM), milrinone (IC50 = 56 +/- 12 nM), cilostamide (IC50 = 70 +/- 9 nM), siguazodan (IC50 = 117 +/- 29 nM) and 3-isobutyl 1-methylxanthine (IBMX) (IC50 = 3950 +/- 22 nM). Thus, measurements of the inhibitory effects of compounds on the photolabelling of platelet PDE III provide a simple quantitative means of investigating their actions at a molecular level that avoids the need to purify the enzyme. Photolabelling of rat platelet lysate or rat heart homogenate by [32P]cGMP showed that the 110 kDa PDE III present in human material was replaced by a 115 kDa protein, labelling of which was also blocked by PDE III inhibitors. Heart and other rat tissues contained much less of this putative 115 kDa PDE III than rat platelets. In contrast, the 80 kDa protein was labelled much less in platelets than in many other rat tissue homogenates (e.g., heart, aorta, uterus and lung). Thus, comparison of the relative amounts of specific photolabelled proteins in different cells may provide an indication of different patterns of cyclic nucleotide action. We compared the abilities of phosphodiesterase inhibitors to block the photolabelling of PDE III in human platelet cytosol and to increase the iloprost-stimulated accumulation of cAMP in intact platelets. Whereas trequinsin (EC50 = 19 +/- 3 nM), lixazinone (EC50 = 122 +/- 8 nM), milrinone (EC50 = 5320 +/- 970 nM) and siguazodan (EC50 = 18880 +/- 3110 nM) all increased platelet cAMP to the same maximum extent, cilostamide and IBMX increased cAMP further, indicating that they inhibited a PDE isozyme in addition to PDE III.
NASA Astrophysics Data System (ADS)
Skeaff, Clark Murray
Platelets are believed to play a significant role in the development of occlusive vascular diseases. Epidemiological reports have correlated the high intake of marine foods, rich in omega3 fatty acids, with diminished platelet responses and a low incidence of arterial thrombosis and myocardial infarction. The activation of platelet responses is mediated by the accelerated metabolism of membrane phospholipid; therefore, it was of interest to examine, in human volunteers, the effect of a dietary fish oil concentrate (MaxEPA), enriched in omega 3 polyunsaturated fatty acids, on platelet aggregation and phospholipid composition/metabolism. For the complete separation of cellular phospholipids, a one-dimensional thin-layer chromatography system using silica-gel pre-coated glass plates was developed. The solvent system consisted of CHCl_3/CH_3OH/CH _3COOH/H_2O (50/37.5/3.5/2.0, by vol), required approximately 90-120 minutes for full phospholipid separation, and was highly reproducible even under conditions of variable humidity and temperature. The consumption of a fish oil concentrate (MaxEPA) for 6 weeks (3.6 g of 20:5omega 3 and 2.4 g of 22:6omega3 per day) diminished both the collagen- and platelet activating factor-induced maximum aggregation responses in washed human platelet suspensions by 50.1% and 27.2%, respectively, as compared to initial unsupplemented baseline responses. Thrombin -induced aggregation remained unchanged. Thrombin stimulation of intact human platelets produced a significant decrease in the mass of phosphatidylinositol in plasma membrane. In platelets pre-labelled with (2-^3H) glycerol and stimulated with either thrombin or low-dose collagen, the loss of (^3H) phosphatidylinositol did not differ between those subjects consuming olive oil or fish oil. Likewise, the thrombin-stimulated accumulation of diacylglycerol, an activator of protein kinase C, was unaffected by fish oil consumption. The ratio of collagen -induced increase in radioactivity associated with ( ^3H) PIP_2/( ^3H) PIP was 0.41 in fish oil consumers and 1.14 in olive oil consumers. These results are consistent with a dampened collagen-induced phosphatidylinositol 4 -phosphate kinase activity in platelets of healthy individuals consuming dietary fish oil. This effect may be eicosanoid -related based on work with BW 755C, a dual inhibitor of the cyclooxygenase and lipoxygenase enzymes. The relevance of these findings to the altered production of inositol 1,4,5 trisphosphate remains to be determined.
Mojica-Henshaw, Mariluz P; Jacobson, Pam; Morris, Julie; Kelley, Linda; Pierce, Jan; Boyer, Michael; Reems, Jo-Anna
2013-12-01
Fetal bovine serum (FBS) is commonly used as a serum supplement for culturing human mesenchymal stromal cells (hMSCs). However, human cells grown in FBS, especially for extended periods, risk potential exposure to bovine immunogenic proteins and infectious agents. To address this issue, we investigated the ability of a novel human platelet serum supplement to substitute for FBS in hMSC cultures. Platelet lysate-serum (PL-serum) was converted from platelet lysate-plasma (PL-plasma) that was manufactured from pooled platelet-rich plasma (PRP) apheresis units. Growth factor levels and the number of residual intact platelets in PL-serum and PL-plasma were compared with enzyme-linked immunosorbent assays and flow cytometry, respectively. Proliferation responses of hMSCs cultured in PL-serum, PL-plasma, or FBS were assessed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, the immunophenotype of harvested hMSCs was evaluated by flow cytometry and tri-lineage differentiation potential was evaluated by assessing adipogenic, osteogenic and chondrogenic development. Selected growth factor levels in PL-serum were not significantly different from PL-plasma (P > 0.05). hMSC cultures supplemented with PL-serum had comparable growth kinetics to PL-plasma, and hMSC yields were consistently greater than with FBS. hMSCs harvested from cultures supplemented with PL-serum, PL-plasma or FBS had similar cell surface phenotypes and maintained tri-lineage differentiation potential. PL-serum, similar to PL-plasma, can substitute for FBS in hMSC cultures. Use of PL-serum, in contrast to PL-plasma, has an added advantage of not requiring addition of a xenogeneic source of heparin, providing a completely xeno-free culture medium. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Chanda, Chandrasekhar; Sarkar, Angshuman; Sistla, Srinivas; Chakrabarty, Dibakar
2013-11-22
A low molecular weight anti-platelet peptide (6.9 kDa) has been purified from Naja kaouthia venom and was named KT-6.9. MALDI-TOF/TOF mass spectrometry analysis revealed the homology of KT-6.9 peptide sequence with many three finger toxin family members. KT-6.9 inhibited human platelet aggregation process in a dose dependent manner. It has inhibited ADP, thrombin and arachidonic acid induced platelet aggregation process in dose dependent manner, but did not inhibit collagen and ristocetin induced platelet aggregation. Strong inhibition (70%) of the ADP induced platelet aggregation by KT-6.9 suggests competition with ADP for its receptors on platelet surface. Anti-platelet activity of KT-6.9 was found to be 25 times stronger than that of anti-platelet drug clopidogrel. Binding of KT-6.9 to platelet surface was confirmed by surface plasma resonance analysis using BIAcore X100. Binding was also observed by a modified sandwich ELISA method using anti-KT-6.9 antibodies. KT-6.9 is probably the first 3 FTx from Indian monocled cobra venom reported as a platelet aggregation inhibitor. Copyright © 2013 Elsevier Inc. All rights reserved.
Did dinosaurs have megakaryocytes? New ideas about platelets and their progenitors.
Brass, Lawrence F
2005-12-01
Biological evolution has struggled to produce mechanisms that can limit blood loss following injury. In humans and other mammals, control of blood loss (hemostasis) is achieved through a combination of plasma proteins, most of which are made in the liver, and platelets, anucleate blood cells that are produced in the bone marrow by megakaryocytes. Much has been learned about the underlying mechanisms, but much remains to be determined. The articles in this series review current ideas about the production of megakaryocytes from undifferentiated hematopoietic precursors, the steps by which megakaryocytes produce platelets, and the molecular mechanisms within platelets that make hemostasis possible. The underlying theme that connects the articles is the intense investigation of a complex system that keeps humans from bleeding to death, but at the same time exposes us to increased risk of thrombosis and vascular disease.
Cameron, Scott J.; Ture, Sara K.; Mickelsen, Deanne; Chakrabarti, Enakshi; Modjeski, Kristina L.; McNitt, Scott; Seaberry, Micheal; Field, David J.; Le, Nhat-Tu; Abe, Jun-ichi; Morrell, Craig N.
2015-01-01
Background Platelets have a pathophysiologic role in the ischemic microvascular environment of acute coronary syndromes (ACS). Compared to platelet activation in normal healthy conditions, less attention is given to mechanisms of platelet activation in diseased states. Platelet function and mechanisms of activation in ischemic and reactive oxygen species (ROS) rich environments may not be the same as in normal healthy conditions. Extracellular Regulated Protein Kinase 5 (ERK5) is a Mitogen Activated Protein Kinase (MAPK) family member activated in hypoxic, ROS rich environments, and in response to receptor signaling mechanisms. Prior studies suggest a protective effect of ERK5 in endothelial and myocardial cells following ischemia. We present evidence that platelets express ERK5 and platelet ERK5 has an adverse effect on platelet activation via selective receptor-dependent and receptor-independent ROS mediated mechanisms in ischemic myocardium. Methods and Results Using isolated human platelets and a mouse model of myocardial infarction (MI), we found that platelet ERK5 is activated post-MI and platelet specific ERK5−/− mice have less platelet activation, reduced MI size, and improved post-MI heart function. Furthermore, the expression of downstream ERK5 regulated proteins is reduced in ERK5−/− platelets post-MI. Conclusions ERK5 functions as a platelet activator in ischemic conditions and platelet ERK5 maintains the expression of some platelet proteins following MI, leading to infarct expansion. This demonstrates that platelet function in normal healthy conditions is different from platelet function in chronic ischemic and inflammatory conditions. Platelet ERK5 may be a target for acute therapeutic intervention in the thrombotic and inflammatory post-MI environment. PMID:25934838
CRISPR/Cas9-mediated conversion of human platelet alloantigen allotypes.
Zhang, Nanyan; Zhi, Huiying; Curtis, Brian R; Rao, Sridhar; Jobaliya, Chintan; Poncz, Mortimer; French, Deborah L; Newman, Peter J
2016-02-11
Human platelet alloantigens (HPAs) reside on functionally important platelet membrane glycoproteins and are caused by single nucleotide polymorphisms in the genes that encode them. Antibodies that form against HPAs are responsible for several clinically important alloimmune bleeding disorders, including fetal and neonatal alloimmune thrombocytopenia and posttransfusion purpura. The HPA-1a/HPA-1b alloantigen system, also known as the Pl(A1)/Pl(A2) polymorphism, is the most frequently implicated HPA among whites, and a single Leu33Pro amino acid polymorphism within the integrin β3 subunit is responsible for generating the HPA-1a/HPA-1b alloantigenic epitopes. HPA-1b/b platelets, like those bearing other low-frequency platelet-specific alloantigens, are relatively rare in the population and difficult to obtain for purposes of transfusion therapy and diagnostic testing. We used CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9) gene-editing technology to transform Leu33 (+) megakaryocytelike DAMI cells and induced pluripotent stem cells (iPSCs) to the Pro33 allotype. CD41(+) megakaryocyte progenitors derived from these cells expressed the HPA-1b (Pl(A2)) alloantigenic epitope, as reported by diagnostic NciI restriction enzyme digestion, DNA sequencing, and western blot analysis using HPA-1b-specific human maternal alloantisera. Application of CRISPR/Cas9 technology to genetically edit this and other clinically-important HPAs holds great potential for production of designer platelets for diagnostic, investigative, and, ultimately, therapeutic use. © 2016 by The American Society of Hematology.
CRISPR/Cas9-mediated conversion of human platelet alloantigen allotypes
Zhang, Nanyan; Zhi, Huiying; Curtis, Brian R.; Rao, Sridhar; Jobaliya, Chintan; Poncz, Mortimer; French, Deborah L.
2016-01-01
Human platelet alloantigens (HPAs) reside on functionally important platelet membrane glycoproteins and are caused by single nucleotide polymorphisms in the genes that encode them. Antibodies that form against HPAs are responsible for several clinically important alloimmune bleeding disorders, including fetal and neonatal alloimmune thrombocytopenia and posttransfusion purpura. The HPA-1a/HPA-1b alloantigen system, also known as the PlA1/PlA2 polymorphism, is the most frequently implicated HPA among whites, and a single Leu33Pro amino acid polymorphism within the integrin β3 subunit is responsible for generating the HPA-1a/HPA-1b alloantigenic epitopes. HPA-1b/b platelets, like those bearing other low-frequency platelet-specific alloantigens, are relatively rare in the population and difficult to obtain for purposes of transfusion therapy and diagnostic testing. We used CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9) gene-editing technology to transform Leu33+ megakaryocytelike DAMI cells and induced pluripotent stem cells (iPSCs) to the Pro33 allotype. CD41+ megakaryocyte progenitors derived from these cells expressed the HPA-1b (PlA2) alloantigenic epitope, as reported by diagnostic NciI restriction enzyme digestion, DNA sequencing, and western blot analysis using HPA-1b–specific human maternal alloantisera. Application of CRISPR/Cas9 technology to genetically edit this and other clinically-important HPAs holds great potential for production of designer platelets for diagnostic, investigative, and, ultimately, therapeutic use. PMID:26634302
Clavijo, Leonardo C; Maya, Juan; Carlson, Glenn; Angiolillo, Dominick J; Teng, Renli; Caplan, Richard; Price, Matthew J
2015-12-01
Diabetes mellitus (DM) disproportionately affects Hispanic patients. DM patients have enhanced platelet reactivity and reduced sensitivity to clopidogrel. Ticagrelor demonstrated a more rapid onset and greater magnitude of platelet inhibition than clopidogrel in Hispanic patients with stable coronary artery disease (CAD). This subgroup analysis examined the onset and level of platelet inhibition of ticagrelor and clopidogrel in Hispanic patients with DM. This was a subgroup analysis of a randomized, open-label, crossover study in which 40 Hispanic patients with stable CAD received ticagrelor 180 mg loading dose (LD)/90 mg twice-daily maintenance dose (MD) then clopidogrel 600 mg LD/75 mg once-daily MD, or vice versa. The primary end point was on-treatment platelet reactivity at 2 hours post-LD using the VerifyNow™ P2Y12 test. 21 patients had DM and 19 were non-diabetic. At 2 hours post-LD, mean platelet reactivity in the diabetic group was 34.5 PRU with ticagrelor versus 219.3 PRU with clopidogrel (P<0.001), and in the non-diabetic group was 33.7 PRU with ticagrelor versus 181.0 PRU with clopidogrel (P<0.001). In both diabetic and non-diabetic subgroups, mean platelet reactivity declined to a significantly greater extent with ticagrelor than clopidogrel at all time points evaluated (0.5, 2, and 8 hours post LD and after 7-9 days of MD). Patients were significantly more likely to have high on-treatment platelet reactivity (≥208 PRU) during treatment with clopidogrel compared with ticagrelor, regardless of diabetic status. Among Hispanic patients with stable CAD, ticagrelor achieves a faster onset and greater magnitude of platelet inhibition compared with clopidogrel, irrespective of diabetic status. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Fleming, Braden C.; Proffen, Benedikt L.; Vavken, Patrick; Shalvoy, Matthew R.; Machan, Jason T.; Murray, Martha M.
2014-01-01
Purpose The use of an extra-cellular matrix scaffold (ECM) combined with platelets to enhance healing of an ACL graft (“bio-enhanced ACL reconstruction”) has shown promise in animal models. However, the effects of platelet concentration on graft healing remains unknown. The objectives of this study were to determine if increasing the platelet concentration in the ECM scaffold would; 1) improve the graft biomechanical properties, and 2) decrease cartilage damage after surgery. Methods Fifty-five adolescent minipigs were randomized to 5 treatment groups; untreated ACL transection (n=10), conventional ACL reconstruction (n=15), and bio-enhanced ACL reconstruction using 1X (n=10), 3X (n=10) or 5X (n=10) platelet-rich plasma. The graft biomechanical properties, anteroposterior (AP) knee laxity, graft histology and macroscopic cartilage integrity were measured at 15 weeks. Results The mean linear stiffness of the bio-enhanced ACL reconstruction procedure using the 1X preparation was significantly greater than traditional reconstruction while the 3X and 5X preparations were not. The failure loads of all the ACL reconstructed groups were equivalent but significantly greater than untreated ACL transection. There were no significant differences in the ligament maturity index or AP laxity between reconstructed knees. Macroscopic cartilage damage was relatively minor, though significantly less when the ECM-platelet composite was used. Conclusions Only the 1X platelet concentration improved healing over traditional ACL reconstruction. Increasing the platelet concentration from 1X to 5X in the ECM scaffold did not further improve the graft mechanical properties. The use of an ECM-platelet composite decreased the amount of cartilage damage seen after ACL surgery. PMID:24633008
Fleming, Braden C; Proffen, Benedikt L; Vavken, Patrick; Shalvoy, Matthew R; Machan, Jason T; Murray, Martha M
2015-04-01
The use of an extracellular matrix scaffold (ECM) combined with platelets to enhance healing of an anterior cruciate ligament (ACL) graft ("bio-enhanced ACL reconstruction") has shown promise in animal models. However, the effects of platelet concentration on graft healing remain unknown. The objectives of this study were to determine whether increasing the platelet concentration in the ECM scaffold would (1) improve the graft biomechanical properties and (2) decrease cartilage damage after surgery. Fifty-five adolescent minipigs were randomized to five treatment groups: untreated ACL transection (n = 10), conventional ACL reconstruction (n = 15) and bio-enhanced ACL reconstruction using 1× (n = 10), 3× (n = 10) or 5× (n = 10) platelet-rich plasma. The graft biomechanical properties, anteroposterior (AP) knee laxity, graft histology and macroscopic cartilage integrity were measured at 15 weeks. The mean linear stiffness of the bio-enhanced ACL reconstruction procedure using the 1× preparation was significantly greater than traditional reconstruction, while the 3× and 5× preparations were not. The failure loads of all the ACL-reconstructed groups were equivalent but significantly greater than untreated ACL transection. There were no significant differences in the Ligament Maturity Index or AP laxity between reconstructed knees. Macroscopic cartilage damage was relatively minor, though significantly less when the ECM-platelet composite was used. Only the 1× platelet concentration improved healing over traditional ACL reconstruction. Increasing the platelet concentration from 1× to 5× in the ECM scaffold did not further improve the graft mechanical properties. The use of an ECM-platelet composite decreased the amount of cartilage damage seen after ACL surgery.
Balog, K; Huang, A A; Sum, S O; Moore, G E; Thompson, C; Scott-Moncrieff, J C
2013-01-01
Dogs with immune-mediated thrombocytopenia (ITP) are at risk of hemorrhage when platelet count is <50,000/μL. Treatment with vincristine (VINC) or human intravenous immunoglobulin (hIVIG) decreases platelet recovery time compared with treatment with corticosteroids alone. To compare the effect of hIVIG versus VINC on platelet recovery in dogs with ITP. Prospective, randomized study. Twenty dogs with idiopathic ITP (platelet count <16,000/μL) were enrolled. All dogs were treated with corticosteroids. Dogs were randomly assigned to receive a single dose of hIVIG (0.5 g/kg) or VINC (0.02 mg/kg). Outcome measures were platelet recovery time, duration of hospitalization, and survival to discharge. There was no significant difference in age, sex, weight, or initial platelet count between dogs treated with hIVIG (n = 10) and dogs treated with VINC (n = 10). Median platelet recovery time for both groups was 2.5 days (P = .51). Median hospitalization time for all dogs that survived to discharge was 4 days and not different between groups (P = .29). Seven of 10 dogs in the hIVIG group and 10 of 10 in the VINC group survived to discharge. Survival analysis did not identify any significant difference between the groups at discharge, 6 months, and 1 year after entry into the study. No adverse effects were reported in either group. Vincristine should be the first-line adjunctive treatment for the acute management of canine ITP because of lower cost and ease of administration compared with human intravenous immunoglobulin (hIVIG). Copyright © 2013 by the American College of Veterinary Internal Medicine.
Herbert, Nina; Hawkins, Louise; Grehan, Nicola; Cookson, Philip; Garner, Steve F.; Crisp-Hihn, Abigail; Lloyd-Evans, Paul; Evans, Amanda; Balan, Kottekkattu; Ouwehand, Willem H.; Armour, Kathryn L.; Clark, Mike R.; Williamson, Lorna M.
2013-01-01
Fetomaternal alloimmune thrombocytopenia, caused by the maternal generation of antibodies against fetal human platelet antigen-1a (HPA-1a), can result in intracranial hemorrhage and intrauterine death. We have developed a therapeutic human recombinant high-affinity HPA-1a antibody (B2G1Δnab) that competes for binding to the HPA-1a epitope but carries a modified constant region that does not bind to Fcγ receptors. In vitro studies with a range of clinical anti–HPA-1a sera have shown that B2G1Δnab blocks monocyte chemiluminescence by >75%. In this first-in-man study, we demonstrate that HPA-1a1b autologous platelets (matching fetal phenotype) sensitized with B2G1Δnab have the same intravascular survival as unsensitized platelets (190 hours), while platelets sensitized with a destructive immunoglobulin G1 version of the antibody (B2G1) are cleared from the circulation in 2 hours. Mimicking the situation in fetuses receiving B2G1Δnab as therapy, we show that platelets sensitized with a combination of B2G1 (representing destructive HPA-1a antibody) and B2G1Δnab survive 3 times as long in circulation compared with platelets sensitized with B2G1 alone. This confirms the therapeutic potential of B2G1Δnab. The efficient clearance of platelets sensitized with B2G1 also opens up the opportunity to carry out studies of prophylaxis to prevent alloimmunization in HPA-1a–negative mothers. PMID:23656729
/sup 3/H-PAF-acether displacement and inhibition of binding in intact human platelets by BN 52021
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korth, R.; Le Couedic, J.P.; Benveniste, J.
1986-03-05
Intact washed human platelets incubated at 20/sup 0/C in Tyrode's buffer containing 0.25% (w/v) bovine serum albumin bound /sup 3/H paf-acether in a concentration (0-6.5 nM) and time (0-60 min) dependent manner (n=3). BN 52021 (60 ..mu..M) a chemically defined extract from Ginkgo biloba inhibited the binding of increasing concentrations of /sup 3/H paf-acether. Calculated differences between /sup 3/H paf-acether binding in the presence or absence of BN 52021 (60 ..mu..M) reached nearly a plateau in concentrations higher than 0.65 nM /sup 3/H paf-acether. Increasing concentrations of BN 52021 (0-60 ..mu..M) as well as of unlabelled paf-acether (0-50 nM) preventedmore » within 15 min /sup 3/H paf-acether binding (0.65 nM) to platelets in a concentration-dependent way. Increasing BN 52021 concentrations (0-60 ..mu..M) also displaced platelet-bound /sup 3/H paf-acether (0.65 nM) in a concentration-dependent way. Displacement increased with the time length of platelet incubation with BN 52021 and reached a plateau at 15 min. Platelet-bound /sup 3/H paf-acether displacement of 28.3 +/- 6.3%, 31.1 +/- 4.0% and 26.7 +/- 5.6% was observed using 50 nM unlabelled paf-acether, 60 ..mu..M BN 52021 or both substances together (vs 4.3 +/- 7.2% for vehicle alone). No degradation of /sup 3/H paf-acether occurred as assessed by high pressure liquid chromatography. These results demonstrate that BN 52021 competes directly with paf-acether binding sites on human platelets.« less
Essential role for calcium waves in migration of human vascular smooth muscle cells.
Espinosa-Tanguma, Ricardo; O'Neil, Caroline; Chrones, Tom; Pickering, J Geoffrey; Sims, Stephen M
2011-08-01
Vascular smooth muscle cell (SMC) migration is characterized by extension of the lamellipodia at the leading edge, lamellipodial attachment to substrate, and release of the rear (uropod) of the cell, all of which enable forward movement. However, little is known regarding the role of intracellular cytosolic Ca(2+) concentration ([Ca(2+)](i)) in coordinating these distinct activities of migrating SMCs. The objective of our study was to determine whether regional changes of Ca(2+) orchestrate the migratory cycle in human vascular SMCs. We carried out Ca(2+) imaging using digital fluorescence microscopy of fura-2 loaded human smooth muscle cells. We found that motile SMCs exhibited Ca(2+) waves that characteristically swept from the rear of polarized cells toward the leading edge. Ca(2+) waves were less evident in nonpolarized, stationary cells, although acute stimulation of these SMCs with the agonists platelet-derived growth factor-BB or histamine could elicit transient rise of [Ca(2+)](i). To investigate a role for Ca(2+) waves in the migratory cycle, we loaded cells with the Ca(2+) chelator BAPTA, which abolished Ca(2+) waves and significantly reduced retraction, supporting a causal role for Ca(2+) in initiation of retraction. However, lamellipod motility was still evident in BAPTA-loaded cells. The incidence of Ca(2+) oscillations was reduced when Ca(2+) release from intracellular stores was disrupted with the sarcoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin or by treatment with the inositol 1,4,5-trisphosphate receptor blocker 2-aminoethoxy-diphenyl borate or xestospongin C, implicating Ca(2+) stores in generation of waves. We conclude that Ca(2+) waves are essential for migration of human vascular SMCs and can encode cell polarity.
Glovinski, Peter V; Herly, Mikkel; Mathiasen, Anders B; Svalgaard, Jesper D; Borup, Rehannah; Talman, Maj-Lis M; Elberg, Jens J; Kølle, Stig-Frederik T; Drzewiecki, Krzysztof T; Fischer-Nielsen, Anne
2017-02-01
Platelet lysates (PL) represent a promising replacement for xenogenic growth supplement for adipose-derived stem cell (ASC) expansions. However, fresh platelets from human blood donors are not clinically feasible for large-scale cell expansion based on their limited supply. Therefore, we tested PLs prepared via three methods from outdated buffy coat-derived platelet concentrates (PCs) to establish an efficient and feasible expansion of ASCs for clinical use. PLs were prepared by the freeze-thaw method from freshly drawn platelets or from outdated buffy coat-derived PCs stored in the platelet additive solution, InterSol. Three types of PLs were prepared from outdated PCs with platelets suspended in either (1) InterSol (not manipulated), (2) InterSol + supplemented with plasma or (3) plasma alone (InterSol removed). Using these PLs, we compared ASC population doubling time, cell yield, differentiation potential and cell surface markers. Gene expression profiles were analyzed using microarray assays, and growth factor concentrations in the cell culture medium were measured using enzyme-linked immunosorbent assay (ELISA). Of the three PL compositions produced from outdated PCs, removal of Intersol and resuspension in plasma prior to the first freezing process was overall the best. This specific outdated PL induced ASC growth kinetics, surface markers, plastic adherence and differentiation potentials comparable with PL from fresh platelets. ASCs expanded in PL from fresh versus outdated PCs exhibited different expressions of 17 overlapping genes, of which 10 were involved in cellular proliferation, although not significantly reflected by cell growth. Only minor differences in growth factor turnover were observed. PLs from outdated platelets may be an efficient and reliable source of human growth supplement allowing for large-scale ASC expansion for clinical use. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Phylogenetic analysis of platelet-derived growth factor by radio- receptor assay
1982-01-01
Competition between 125I-labeled platelet-derived growth factor (PDGF) and unlabeled PDGF forms the basis of a specific "radio-receptor assay" for quantifying PDGF in clotted blood serum. Human clotted blood serum contains 15 ng/ml of PDGF by radio-receptor assay; this corresponds to a PDGF content of approximately 7.5 x 10(-5) pg per circulating platelet, a figure which is corroborated by purification data. Clotted blood sera from mammals, lower vertebrates and marine invertebrates were screened for homologues of human PDGF by radio-receptor assay. All tested specimens from phylum Chordata contain a mitogenic agent that competes with human PDGF for receptor binding. Sera from tunicates down on the chordate line of evolution and sera from all tested animals on the arthropod line of development were negative. The phylogenetic distribution of PDGF homologue does not correlate with platelet distribution since platelets and their precursor cell--the bone marrow megacaryocyte--are unique to the mammalian hematopoietic system. One anatomical feature appearing coordinately with PDGF on the vertebrate line of development is a pressurized circulatory system. The coincidental appearance of these features may lend support to the hypothesis that PDGF plays a role in maintenance and repair of the vascular lining in vivo. PMID:7142300
Oldenburg, Amy L.; Wu, Gongting; Spivak, Dmitry; Tsui, Frank; Wolberg, Alisa S.; Fischer, Thomas H.
2013-01-01
Improved methods for imaging and assessment of vascular defects are needed for directing treatment of cardiovascular pathologies. In this paper, we employ magnetomotive optical coherence tomography (MMOCT) as a platform both to detect and to measure the elasticity of blood clots. Detection is enabled through the use of rehydrated, lyophilized platelets loaded with superparamagnetic iron oxides (SPIO-RL platelets) that are functional infusion agents that adhere to sites of vascular endothelial damage. Evidence suggests that the sensitivity for detection is improved over threefold by magnetic interactions between SPIOs inside RL platelets. Using the same MMOCT system, we show how elastometry of simulated clots, using resonant acoustic spectroscopy, is correlated with the fibrin content of the clot. Both methods are based upon magnetic actuation and phase-sensitive optical monitoring of nanoscale displacements using MMOCT, underscoring its utility as a broad-based platform to detect and measure the molecular structure and composition of blood clots. PMID:23833549
Oberhänsli, Markus; Lehner, Cédric; Puricel, Serban; Lehmann, Sonja; Togni, Mario; Stauffer, Jean-Christophe; Baeriswyl, Gérard; Goy, Jean-Jacques; Cook, Stéphane
2012-11-01
The salt linked to the clopidogrel molecule in generic preparations is suspected to affect its clinical efficacy. There is a lack of information about inhibition of platelet reactivity by generic preparations. To compare the effect of original clopidogrel (clopidogrel bisulphate [Plavix(®)]), generic clopidogrel preparations (clopidogrel hydrochloride [Clopidogrel-Mepha(®)]; clopidogrel besylate [Clopidogrel Sandoz(®)]) and prasugrel (Efient(®)) on platelet reactivity in patients with coronary artery disease. Patients with coronary artery disease treated with stents received, in a random sequence, original clopidogrel bisulphate, clopidogrel hydrochloride and clopidogrel besylate. Platelet function was assessed with the Multiplate analyser after an initial loading dose (600 mg) and at day 10 after each treatment period. Prasugrel was given for another 10 days. An adenosine diphosphate (ADP) test value<46 antiaggregation units (U) was defined as therapeutic platelet inhibition. Sixty patients (mean age 69 ± 10 years; 50 men) were randomized. Original clopidogrel bisulphate, clopidogrel hydrochloride and clopidogrel besylate provided similar inhibition of platelet reactivity with values of 31 ± 25, 33 ± 28 and 28 ± 23 U, respectively (P not significant). Prasugrel provided better inhibition of platelet function (10 ± 11 vs. 31 ± 25 U for clopidogrel bisulphate; P<0.001). An ADP test value>46 U was measured in 11 patients (18%) with clopidogrel bisulphate, 13 (22%) with clopidogrel besylate and 13 (22%) with clopidogrel hydrochloride compared with only one (2%) with prasugrel. Generic clopidogrel preparations provided similar inhibition of platelet reactivity to original clopidogrel bisulphate, although prasugrel was more efficient. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
RhoG protein regulates platelet granule secretion and thrombus formation in mice.
Goggs, Robert; Harper, Matthew T; Pope, Robert J; Savage, Joshua S; Williams, Christopher M; Mundell, Stuart J; Heesom, Kate J; Bass, Mark; Mellor, Harry; Poole, Alastair W
2013-11-22
Rho GTPases such as Rac, RhoA, and Cdc42 are vital for normal platelet function, but the role of RhoG in platelets has not been studied. In other cells, RhoG orchestrates processes integral to platelet function, including actin cytoskeletal rearrangement and membrane trafficking. We therefore hypothesized that RhoG would play a critical role in platelets. Here, we show that RhoG is expressed in human and mouse platelets and is activated by both collagen-related peptide (CRP) and thrombin stimulation. We used RhoG(-/-) mice to study the function of RhoG in platelets. Integrin activation and aggregation were reduced in RhoG(-/-) platelets stimulated by CRP, but responses to thrombin were normal. The central defect in RhoG(-/-) platelets was reduced secretion from α-granules, dense granules, and lysosomes following CRP stimulation. The integrin activation and aggregation defects could be rescued by ADP co-stimulation, indicating that they are a consequence of diminished dense granule secretion. Defective dense granule secretion in RhoG(-/-) platelets limited recruitment of additional platelets to growing thrombi in flowing blood in vitro and translated into reduced thrombus formation in vivo. Interestingly, tail bleeding times were normal in RhoG(-/-) mice, suggesting that the functions of RhoG in platelets are particularly relevant to thrombotic disorders.
Hlavac, N; Lasta, C S; Dalmolin, M L; Lacerda, L A; de Korte, D; Marcondes, N A; Terra, S R; Fernandes, F B; González, F H D
2017-11-15
Platelet transfusion therapy poses many challenges in veterinary clinical practice. Lack of readily available blood donors, short shelf-life, and inability to administer a sufficient number of platelets to meet a dog's transfusion need are the major difficulties encountered. Platelet additive solutions are already in use at American and European human blood banks, showing to be a realistic alternative. This study compares the in vitro platelet function in plasma, Composol, or SSP+ during storage for 13 days. Platelet rich plasma-platelet concentrate with 35% plasma and 65% platelet additive solutions (Composol or SSP+) and a control group (100% plasma) were prepared. Swirling, platelet count, blood gases, metabolic variables, platelet activation markers, and apoptosis markers were analyzed on days 1, 5, 9 and 13. Swirling was well preserved and pH was acceptable (> 6.2) during storage for all platelet additive solutions units until day 9. SSP + units showed more stable pH and metabolic variables until day 13. Platelets in plasma showed higher glucose consumption than in Composol or in SSP+. The platelet additive solutions units showed better platelet metabolism maintenance, reduced glucose consumption and lactate production. The apoptotic markers were still low for 9 days in platelet concentrates with platelet additive solutions, suggesting the possibility to extend the shelf life with the use of SSP+ or Composol. Our findings suggest that the uses of Composol and SSP+ in canine platelet concentrates are potential alternatives in veterinary blood banks.
Sandor, B; Papp, J; Mozsik, Gy; Szolcsanyi, J; Keszthelyi, Zs; Juricskay, I; Toth, K; Habon, Tamas
2014-12-01
Capsaicin is a well-known component of red pepper. Recent studies have shown that capsaicin could prevent gastric ulcer provoked by various NSAID-s like acetylsalicylic acid (ASA). Primary objective of this human clinical phase I trial was to investigate whether two different doses of capsaicin co-administered with ASA could alter the inhibitory effect of ASA on platelet aggregation. 15 healthy male subjects were involved in the study and treated orally with 400 μg capsaicin, 800 μg capsaicin, 500 mg ASA, 400 μg capsaicin+500 mg ASA and 800 μg capsaicin+500 mg ASA. Blood was drawn before and 1, 2, 6 and 24 hours after the drug administration. After that epinephrine induced platelet aggregation was measured by optical aggregometry. Between treatments, volunteers had a 6-day wash-out period. Our results showed that capsaicin had no effect on platelet aggregation, while as expected, ASA monotherapy resulted in a significant and clinically effective platelet aggregation inhibition (p ≤ 0.001). The combined ASA-capsaicin therapies reached equivalent effectiveness in platelet aggregation inhibition as ASA monotherapy. Our investigation proved that capsaicin did not influence the inhibitory effect of ASA on platelet aggregation, thus the capsaicin-ASA treatment would combine the antiplatelet effect of ASA with the possible gastroprotection of capsaicin.
Crucial parameter of the outcome in Crimean Congo hemorrhagic fever: Viral load.
Hasanoglu, Imran; Guner, Rahmet; Carhan, Ahmet; Kocak Tufan, Zeliha; Yagci-Caglayik, Dilek; Guven, Tumer; Yilmaz, Gul Ruhsar; Tasyaran, Mehmet A
2016-02-01
Crimean Congo hemorrhagic fever (CCHF) is a fatal disease with a mortality rate of 5-30%. CCHF can be asymptomatic or it may progress with bleeding and cause mortality. To evaluate relation of viral load with mortality, clinical and laboratory findings in CCHF. A total of 126 CCHF patients were included. Serum samples obtained from all patients on admission for measurement of viral load. In our study, mortality rate was 11.1%. The most important prognostic factor was viral load. Mean viral load was 8.3×10(7)copy/ml and 4.6×10(9)copy/ml in survived and dead patients, respectively (p<0.005). Probability of survival is found to be significantly reduced where AST >1130U/l, ALT >490U/l, CPK >505U/l, LDH >980U/l, platelet count <23×10(3)/l, creatinine >1.4mg/dl, INR >1.3, d-dimer >7100ng/dl, and viral load >1.03×10(8)copy/ml. Patients with 10(8)copy/ml or higher viral load had diarrhea, headache, unconsciousness, bleeding, and seizure significantly more frequently (p<0.05). WBC, hemoglobin, platelet counts were significantly lower whereas AST, ALT, CPK, LDH, creatinine levels, PT and aPTT time, d-dimer levels, and INR were found to be significantly higher in these group. There are several severity criteria for prognosis of CCHF. In addition to these parameters, we introduce creatinine as a predictive factor for prognosis. Our study, which has the largest number of patients among studies that evaluate viral load on CCHF shows that viral load is the most effective parameter on mortality. Copyright © 2015 Elsevier B.V. All rights reserved.
Adili, Reheman; Tourdot, Benjamin E; Mast, Katherine; Yeung, Jennifer; Freedman, John C; Green, Abigail; Luci, Diane K; Jadhav, Ajit; Simeonov, Anton; Maloney, David J; Holman, Theodore R; Holinstat, Michael
2017-10-01
Adequate platelet reactivity is required for maintaining hemostasis. However, excessive platelet reactivity can also lead to the formation of occlusive thrombi. Platelet 12(S)-lipoxygenase (12-LOX), an oxygenase highly expressed in the platelet, has been demonstrated to regulate platelet function and thrombosis ex vivo, supporting a key role for 12-LOX in the regulation of in vivo thrombosis. However, the ability to pharmacologically target 12-LOX in vivo has not been established to date. Here, we studied the effect of the first highly selective 12-LOX inhibitor, ML355, on in vivo thrombosis and hemostasis. ML355 dose-dependently inhibited human platelet aggregation and 12-LOX oxylipin production, as confirmed by mass spectrometry. Interestingly, the antiplatelet effects of ML355 were reversed after exposure to high concentrations of thrombin in vitro. Ex vivo flow chamber assays confirmed that human platelet adhesion and thrombus formation at arterial shear over collagen were attenuated in whole blood treated with ML355 comparable to aspirin. Oral administration of ML355 in mice showed reasonable plasma drug levels by pharmacokinetic assessment. ML355 treatment impaired thrombus growth and vessel occlusion in FeCl 3 -induced mesenteric and laser-induced cremaster arteriole thrombosis models in mice. Importantly, hemostatic plug formation and bleeding after treatment with ML355 was minimal in mice in response to laser ablation on the saphenous vein or in a cremaster microvasculature laser-induced rupture model. Our data strongly support 12-LOX as a key determinant of platelet reactivity in vivo, and inhibition of platelet 12-LOX with ML355 may represent a new class of antiplatelet therapy. © 2017 American Heart Association, Inc.
Sakata, Ryosuke; McNary, Sean M.; Miyatake, Kazumasa; Lee, Cassandra A.; Van den Bogaerde, James M.; Marder, Richard A.; Reddi, A. Hari
2016-01-01
Background Platelet-rich plasma (PRP) contains high concentrations of autologous growth factors that originate from platelets. Intra-articular injections of PRP have the potential to ameliorate the symptoms of osteoarthritis in the knee. Superficial zone protein (SZP) is a boundary lubricant in articular cartilage and plays an important role in reducing friction and wear and therefore is critical in cartilage homeostasis. Purpose To determine if PRP influences the production of SZP from human joint-derived cells and to evaluate the lubricating properties of PRP on normal bovine articular cartilage. Study Design Controlled laboratory study. Methods Cells were isolated from articular cartilage, synovium, and the anterior cruciate ligament (ACL) from 12 patients undergoing ACL reconstruction. The concentrations of SZP in PRP and culture media were measured by enzyme-linked immunosorbent assay. Cellular proliferation was quantified by determination of cell numbers. The lubrication properties of PRP from healthy volunteers on bovine articular cartilage were investigated using a pin-on-disk tribometer. Results In general, PRP stimulated proliferation in cells derived from articular cartilage, synovium, and ACL. It also significantly enhanced SZP secretion from synovium- and cartilage-derived cells. An unexpected finding was the presence of SZP in PRP (2.89 ± 1.23 µg/mL before activation and 3.02 ± 1.32 µg/mL after activation). In addition, under boundary mode conditions consisting of high loads and low sliding speeds, nonactivated and thrombin-activated PRP decreased the friction coefficient (μ = 0.012 and μ = 0.015, respectively) compared with saline (μ = 0.047, P < 0.004) and high molecular weight hyaluronan (μ = 0.080, P < 0.006). The friction coefficient of the cartilage with PRP was on par with that of synovial fluid. Conclusion PRP significantly stimulates cell proliferation and SZP secretion by articular cartilage and synovium of the human knee joint. Furthermore, PRP contains endogenous SZP and, in a functional bioassay, lubricates bovine articular cartilage explants. Clinical Relevance These findings provide evidence to explain the biochemical and biomechanical mechanisms underlying the efficacy of PRP treatment for osteoarthritis or damage in the knee joint. PMID:25813869
El Haouari, Mohammed
2017-10-05
Enhanced platelet activation and thrombosis are linked to various cardiovascular diseases. Among other mechanisms, oxidative stress seems to play a pivotal role in platelet hyperactivity. Indeed, upon stimulation by physiological agonists, human platelets generate and release several types of reactive oxygen species (ROS) such as O2-, H2O2 or OH- , further amplifying the platelet activation response via various signalling pathways, including, formation of isoprostanes, Ca2+ mobilization and NO inactivation. Furthermore, excessive platelet ROS generation, incorporation of free radicals from environment and/or depletion of antioxidants induce pro-oxidant, pro-inflammatory and platelet hyperaggregability effects, leading to the incidence of cardiovascular events. Here, we review the current knowledge regarding the effect of oxidative stress on platelet signaling pathways and its implication in CVD such as type 2 diabetes mellitus. We also summarize the role of natural antioxidants included in vegetables, fruits and medicinal herbs in reducing platelet function via an oxidative stress-mediated mechanism. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators
Flierl, Ulrike; Nero, Tracy L.; Lim, Bock; Arthur, Jane F.; Yao, Yu; Jung, Stephanie M.; Gitz, Eelo; Pollitt, Alice Y.; Zaldivia, Maria T.K.; Jandrot-Perrus, Martine; Schäfer, Andreas; Nieswandt, Bernhard; Andrews, Robert K.; Parker, Michael W.; Gardiner, Elizabeth E.
2015-01-01
Nucleotide-based drug candidates such as antisense oligonucleotides, aptamers, immunoreceptor-activating nucleotides, or (anti)microRNAs hold great therapeutic promise for many human diseases. Phosphorothioate (PS) backbone modification of nucleotide-based drugs is common practice to protect these promising drug candidates from rapid degradation by plasma and intracellular nucleases. Effects of the changes in physicochemical properties associated with PS modification on platelets have not been elucidated so far. Here we report the unexpected binding of PS-modified oligonucleotides to platelets eliciting strong platelet activation, signaling, reactive oxygen species generation, adhesion, spreading, aggregation, and thrombus formation in vitro and in vivo. Mechanistically, the platelet-specific receptor glycoprotein VI (GPVI) mediates these platelet-activating effects. Notably, platelets from GPVI function–deficient patients do not exhibit binding of PS-modified oligonucleotides, and platelet activation is fully abolished. Our data demonstrate a novel, unexpected, PS backbone–dependent, platelet-activating effect of nucleotide-based drug candidates mediated by GPVI. This unforeseen effect should be considered in the ongoing development programs for the broad range of upcoming and promising DNA/RNA therapeutics. PMID:25646267
Rao, Fang; Yang, Ren-Qiang; Chen, Xiao-Shu; Xu, Jin-Song; Fu, Hui-Min; Su, Hai; Wang, Ling
2014-01-01
Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ). We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg) or increased (120, 180, 240 mmHg) hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa) binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L) was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg). The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs). These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure.
Chen, Xiao-Shu; Xu, Jin-Song; Fu, Hui-Min; Su, Hai; Wang, Ling
2014-01-01
Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ). We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg) or increased (120, 180, 240 mmHg) hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa) binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L) was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg). The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs). These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure. PMID:24586940
The Small GTPase Rif Is Dispensable for Platelet Filopodia Generation in Mice
Goggs, Robert; Savage, Joshua S.; Mellor, Harry; Poole, Alastair W.
2013-01-01
Background Formation of filopodia and other shape change events are vital for platelet hemostatic function. The mechanisms regulating filopodia formation by platelets are incompletely understood however. In particular the small GTPase responsible for initiating filopodia formation by platelets remains elusive. The canonical pathway involving Cdc42 is not essential for filopodia formation in mouse platelets. The small GTPase Rif (RhoF) provides an alternative route to filopodia generation in other cell types and is expressed in both human and mouse platelets. Hypothesis/Objective We hypothesized that Rif might be responsible for generating filopodia by platelets and generated a novel knockout mouse model to investigate the functional role of Rif in platelets. Methodology/Principal Findings Constitutive RhoF−/− mice are viable and have normal platelet, leukocyte and erythrocyte counts and indices. RhoF−/− platelets form filopodia and spread normally on various agonist surfaces in static conditions and under arterial shear. In addition, RhoF−/− platelets have normal actin dynamics, are able to activate and aggregate normally and secrete from alpha and dense granules in response to collagen related peptide and thrombin stimulation. Conclusions The small GTPase Rif does not appear to be critical for platelet function in mice. Functional overlap between Rif and other small GTPases may be responsible for the non-essential role of Rif in platelets. PMID:23359340
Eriksson, Andreas C; Whiss, Per A; Nilsson, Ulrika K
2006-07-01
Lysophosphatidic acid (LPA) and adrenaline are weak platelet activators considered important for thrombus formation, and were previously shown to synergistically increase platelet aggregation. Here we investigate synergistic activation by LPA and adrenaline when measuring platelet adhesion. Platelet-rich plasma from healthy blood donors together with adrenaline and/or LPA were added to protein-coated microplates. Platelets were allowed to adhere and the amount of adhesion detected enzymatically. The LPA and adrenaline combination induced a synergistic increase of platelet adhesion to a normally non-adhesive albumin surface. The degree of synergy varied markedly between individuals; these variations could not be explained by age, gender, blood type or different amounts of platelets, oxidized low-density lipoprotein, insulin or glucose in plasma. There was a trend indicating increased synergistic effect for platelets sensitive to adrenaline stimulation. The synergistic effect was blocked by the alpha2-adrenoceptor antagonist yohimbine and inhibited by the ADP scavenger system creatine phosphate/creatine phosphokinase and antibodies against alphaIIbbeta3. Furthermore, platelets adhering to albumin after adrenaline and LPA treatment expressed P-selectin. In conclusion, LPA and adrenaline act synergistically to increase alphaIIbbeta3-mediated platelet adhesion to albumin, dependent on alpha2-adrenoceptor signalling and platelet secretion. We also confirm that synergistic platelet activation achieved with LPA and adrenaline is highly donor dependent.
Carnevale, Roberto; Bartimoccia, Simona; Nocella, Cristina; Di Santo, Serena; Loffredo, Lorenzo; Illuminati, Giulio; Lombardi, Elisabetta; Boz, Valentina; Del Ben, Maria; De Marco, Luigi; Pignatelli, Pasquale; Violi, Francesco
2014-11-01
Platelets generate oxidized LDL (ox-LDL) via NOX2-derived oxidative stress. We investigated if once generated by activated platelets ox-LDL can propagate platelet activation. Experiments were performed in platelets from healthy subjects (HS), hyper-cholesterolemic patients and patients with NOX2 hereditary deficiency. Agonist-stimulated platelets from HS added with LDL were associated with a dose-dependent increase of reactive oxidant species and ox-LDL. Agonist-stimulated platelets from HS added with a fixed dose of LDL (57.14 μmol/L) or added with homogenized human atherosclerotic plaque showed enhanced ox-LDL formation (approximately +50% and +30% respectively), which was lowered by a NOX2 inhibitor (approximately -35% and -25% respectively). Compared to HS, ox-LDL production was more pronounced in agonist-stimulated platelet rich plasma (PRP) from hyper-cholesterolemic patients but was almost absent in PRP from NOX2-deficient patients. Platelet aggregation and 8-iso-PGF2α-ΙΙΙ formation increased in LDL-treated washed platelets (+42% and +53% respectively) and PRP (+31% and +53% respectively). Also, LDL enhanced platelet-dependent thrombosis at arterial shear rate (+33%) but did not affect platelet activation in NOX2-deficient patients. Platelet activation by LDL was significantly inhibited by CD36 or LOX1 blocking peptides, two ox-LDL receptor antagonists, or by a NOX2 inhibitor. LDL-added platelets showed increased p38MAPK (+59%) and PKC (+51%) phosphorylation, p47(phox) translocation to platelet membrane (+34%) and NOX2 activation (+30%), which were inhibited by ox-LDL receptor antagonists. Platelets oxidize LDL, which in turn amplify platelet activation via specific ox-LDL receptors; both effects are mediated by NOX2 activation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Farnesoid X Receptor and Liver X Receptor Ligands Initiate Formation of Coated Platelets
Unsworth, Amanda J.; Bye, Alexander P.; Tannetta, Dionne S.; Desborough, Michael J.R.; Kriek, Neline; Sage, Tanya; Allan, Harriet E.; Crescente, Marilena; Yaqoob, Parveen; Warner, Timothy D.; Jones, Chris I.
2017-01-01
Objectives— The liver X receptors (LXRs) and farnesoid X receptor (FXR) have been identified in human platelets. Ligands of these receptors have been shown to have nongenomic inhibitory effects on platelet activation by platelet agonists. This, however, seems contradictory with the platelet hyper-reactivity that is associated with several pathological conditions that are associated with increased circulating levels of molecules that are LXR and FXR ligands, such as hyperlipidemia, type 2 diabetes mellitus, and obesity. Approach and Results— We, therefore, investigated whether ligands for the LXR and FXR receptors were capable of priming platelets to the activated state without stimulation by platelet agonists. Treatment of platelets with ligands for LXR and FXR converted platelets to the procoagulant state, with increases in phosphatidylserine exposure, platelet swelling, reduced membrane integrity, depolarization of the mitochondrial membrane, and microparticle release observed. Additionally, platelets also displayed features associated with coated platelets such as P-selectin exposure, fibrinogen binding, fibrin generation that is supported by increased serine protease activity, and inhibition of integrin αIIbβ3. LXR and FXR ligand-induced formation of coated platelets was found to be dependent on both reactive oxygen species and intracellular calcium mobilization, and for FXR ligands, this process was found to be dependent on cyclophilin D. Conclusions— We conclude that treatment with LXR and FXR ligands initiates coated platelet formation, which is thought to support coagulation but results in desensitization to platelet stimuli through inhibition of αIIbβ3 consistent with their ability to inhibit platelet function and stable thrombus formation in vivo. PMID:28619996
P-selectin ligation induces platelet activation and enhances microaggregate and thrombus formation.
Théorêt, Jean-François; Yacoub, Daniel; Hachem, Ahmed; Gillis, Marc-Antoine; Merhi, Yahye
2011-09-01
Platelet P-selectin is a thrombo-inflammatory molecule involved in platelet activation and aggregation. This may occur via the adhesive function of P-selectin and its potential capacity to trigger intracellular signaling. However, its impact on platelet function remains elusive. This study was therefore designed to investigate the relationship between the signaling potential of platelet P-selectin and its function in platelet physiology. Human and mouse platelets were freshly isolated from whole blood. Platelet activation was assessed using flow cytometry and western blot analysis, while platelet physiological responses were evaluated through aggregation, microaggregate formation and in a thrombosis model in wild-type and P-selectin-deficient (CD62P(-/-)) mice. Interaction of P-selectin with its high-affinity ligand, a recombinant soluble form of P-Selectin Glycoprotein Ligand-1 (rPSGL-1), enhances platelet activation, adhesion and microaggregate formation. This augmented platelet microaggregates requires an intact cytoskeleton, but occurs independently of platelet α(IIb)β(3). Thrombus formation and microaggregate were both enhanced by rPSGL-1 in wild-type, but not in CD62P(-/-) mice. In addition, CD62P(-/-) mice exhibited thrombosis abnormalities without an α(IIb)β(3) activation defect. This study demonstrates that the role of platelet P-selectin is not solely adhesive; its binding to PSGL-1 induces platelet activation that enhances platelet aggregation and thrombus formation. Therefore, targeting platelet P-selectin or its ligand PSGL-1 could provide a potential therapeutic approach in the management of thrombotic disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.
Platelets and cancer: a casual or causal relationship: revisited
Menter, David G.; Tucker, Stephanie C.; Kopetz, Scott; Sood, Anil K.; Crissman, John D.; Honn, Kenneth V.
2014-01-01
Human platelets arise as subcellular fragments of megakaryocytes in bone marrow. The physiologic demand, presence of disease such as cancer, or drug effects can regulate the production circulating platelets. Platelet biology is essential to hemostasis, vascular integrity, angiogenesis, inflammation, innate immunity, wound healing, and cancer biology. The most critical biological platelet response is serving as “First Responders” during the wounding process. The exposure of extracellular matrix proteins and intracellular components occurs after wounding. Numerous platelet receptors recognize matrix proteins that trigger platelet activation, adhesion, aggregation, and stabilization. Once activated, platelets change shape and degranulate to release growth factors and bioactive lipids into the blood stream. This cyclic process recruits and aggregates platelets along with thrombogenesis. This process facilitates wound closure or can recognize circulating pathologic bodies. Cancer cell entry into the blood stream triggers platelet-mediated recognition and is amplified by cell surface receptors, cellular products, extracellular factors, and immune cells. In some cases, these interactions suppress immune recognition and elimination of cancer cells or promote arrest at the endothelium, or entrapment in the microvasculature, and survival. This supports survival and spread of cancer cells and the establishment of secondary lesions to serve as important targets for prevention and therapy. PMID:24696047
Ultrastructural Localization of Peroxidase Activity in Human Platelets and Megakaryocytes
Breton-Gorius, Janine; Guichard, Josette
1972-01-01
Normal human platelets and megakaryocytes were examined for peroxidase activity by the diaminobenzidine (DAB) cytochemical technic. When the fixation and the incubation were adequate, a strong reaction was present in the dense tubular system of platelets suspended in plasma or spread on carbon. The black reaction product was ascribed to enzyme activity, since the reaction was completely eliminated when H2O2 or DAB were omitted, or when H2O2 was in excess. In addition, the reaction was inhibited by aminotriazole, cyanide and azide. In the human megakaryocytes, the reaction was localized in the endoplasmic reticulum including the perinuclear envelope. The Golgi complex and the clear vacuolar system were negative for the reaction. After platelet release, the reaction was always seen in the perinuclear space. The nature and function of the enzyme, as well as its possible relationships with catalase, are discussed. ImagesFig 3Fig 4Fig 5Fig 6Fig 7Fig 8Fig 9Fig 10Fig 11Fig 1Fig 2Fig 12Fig 13Fig 14Fig 15Fig 16 PMID:5009974
Bayani, Shahin; Masoomi, Fatemeh; Aghaabbasi, Sharereh; Farsinejad, Alireza
2016-01-01
The purpose of this study was to evaluate the effect of platelet-released growth factor (PRGF) and immediate orthodontic forces on the removal torque of miniscrews. This study was conducted on three male dogs aged 6 to 8 months with a body weight of 17.6 to 18.4 kg. Sixty miniscrews were inserted in the posterior aspect of the femur. There were four groups, including loaded miniscrews with application of PRGF, unloaded miniscrews without application of PRGF, unloaded miniscrews with PRGF, and loaded miniscrews without PRGF. Twenty miniscrews were inserted in the femoral bone of one foot of each dog, including all the aforementioned subgroups. After 12 weeks, the miniscrews were removed by a removal torque tester device and measured in newton centimeters. The mean removal torque values in four groups of immediately loaded screws with PRGF, unloaded screws with PRGF, immediately loaded screws without PRGF, and unloaded screws without PRGF were 19.68, 21.74, 13.65, and 15.46 Ncm, respectively. It was shown that the mean removal torque value for the group with PRGF was significantly higher than that in the other groups (P = .0001). Although there was a tendency toward a decrease in removal torque value with immediate loading, it was not statistically significant (P = .21). According to the results of this study, applying PRGF with miniscrews increased their stability, but the delivery of immediate force on miniscrews had no effect on the miniscrews' stability.
Haworth, Jennifer A; Jenkinson, Howard F; Petersen, Helen J; Back, Catherine R; Brittan, Jane L; Kerrigan, Steve W; Nobbs, Angela H
2017-01-01
A range of Streptococcus bacteria are able to interact with blood platelets to form a thrombus (clot). Streptococcus gordonii is ubiquitous within the human oral cavity and amongst the common pathogens isolated from subjects with infective endocarditis. Two cell surface proteins, Hsa and Platelet adherence protein A (PadA), in S. gordonii mediate adherence and activation of platelets. In this study, we demonstrate that PadA binds activated platelets and that an NGR (Asparagine-Glycine-Arginine) motif within a 657 amino acid residue N-terminal fragment of PadA is responsible for this, together with two other integrin-like recognition motifs RGT and AGD. PadA also acts in concert with Hsa to mediate binding of S. gordonii to cellular fibronectin and vitronectin, and to promote formation of biofilms. Evidence is presented that PadA and Hsa are each reliant on the other's active presentation on the bacterial cell surface, suggesting cooperativity in functions impacting both colonization and pathogenesis. © 2016 The Authors Cellular Microbiology Published by John Wiley & Sons Ltd.
Did dinosaurs have megakaryocytes? New ideas about platelets and their progenitors
Brass, Lawrence F.
2005-01-01
Biological evolution has struggled to produce mechanisms that can limit blood loss following injury. In humans and other mammals, control of blood loss (hemostasis) is achieved through a combination of plasma proteins, most of which are made in the liver, and platelets, anucleate blood cells that are produced in the bone marrow by megakaryocytes. Much has been learned about the underlying mechanisms, but much remains to be determined. The articles in this series review current ideas about the production of megakaryocytes from undifferentiated hematopoietic precursors, the steps by which megakaryocytes produce platelets, and the molecular mechanisms within platelets that make hemostasis possible. The underlying theme that connects the articles is the intense investigation of a complex system that keeps humans from bleeding to death, but at the same time exposes us to increased risk of thrombosis and vascular disease. PMID:16322776
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porcellati, S.; Costantini, V.; Prosdocimi, M.
1987-07-01
The coumarin derivative AD6 is known to inhibit platelet aggregation and release and it possesses vasodilatory properties on coronary arteries of laboratory animals. Furthermore, the inhibition of the production of TxB2 from endogenous substrates after stimulation of human platelets with collagen has been demonstrated. The present report demonstrates that AD6 inhibits the production of labeled arachidonic acid and diglycerides from phospholipids of platelets stimulated with thrombin. This effect is dose-dependent and is already evident at a concentration of the drug (25 microM) which is unable to prevent the aggregation. Apparently, AD6 inhibits the release of arachidonic acid from phosphatidylinositol andmore » choline phosphoglycerides which are the main sources of the substrate for the synthesis of prostaglandins and thromboxanes.« less
Pramanik, Brahmananda; Tadepalli, Tezeswi; Mantena, P. Raju
2012-01-01
In this study, the fractal dimensions of failure surfaces of vinyl ester based nanocomposites are estimated using two classical methods, Vertical Section Method (VSM) and Slit Island Method (SIM), based on the processing of 3D digital microscopic images. Self-affine fractal geometry has been observed in the experimentally obtained failure surfaces of graphite platelet reinforced nanocomposites subjected to quasi-static uniaxial tensile and low velocity punch-shear loading. Fracture energy and fracture toughness are estimated analytically from the surface fractal dimensionality. Sensitivity studies show an exponential dependency of fracture energy and fracture toughness on the fractal dimensionality. Contribution of fracture energy to the total energy absorption of these nanoparticle reinforced composites is demonstrated. For the graphite platelet reinforced nanocomposites investigated, surface fractal analysis has depicted the probable ductile or brittle fracture propagation mechanism, depending upon the rate of loading. PMID:28817017
Dunstan, R A; Simpson, M B
1985-12-01
We have used fluorescence flow cytometry to analyse cell-to-cell variability in the density of platelet ABH, Ii, Lewis, P, P1A1, Bak,a and HLA class I antigens. Human IgG and IgM antibodies were used in a two-stage assay with goat FITC-conjugated antihuman IgG (H&L) antibody as the label, followed by single cell analysis of 10 000 platelets per sample using a 256-channel fluorescence flow cytometer (Becton-Dickinson FACS Analyser). Computer analysis of fluorescence intensity histograms for mean and peak channel and coefficient of variation shows that the degree of heterogeneity in platelet antigen density varies with each particular blood group. The broad fluorescence distribution curves with oligosaccharide antigens (CVs: A = 53, B = 40, I = 44, Lea = 40, P = 40) indicate that these antigens possess a greater variability in the number of sites per cell compared to the more homogeneous distribution of P1,A1 BaK,a and HLA (CVs: P1A1 = 24, HLA = 30). These findings may partly account for the mechanism by which transfusion of ABO-incompatible platelets results in a biphasic survival curve, with a period of early rapid removal of those platelets with a high density of antigen sites, followed by a relatively normal survival curve for those platelets that possess only a few or no antigen sites. In contrast, P1A1 and HLA sites are less variable in number from one platelet to another in a given donor, and immune-mediated removal would be more likely to approximate a single exponential curve.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asmis, Lars; Tanner, Felix C.; Center for Integrative Human Physiology, University of Zuerich, Zuerich
2010-01-22
Background: DMSO is routinely infused together with hematopoietic cells in patients undergoing myeloablative therapy and was recently found to inhibit smooth muscle cells proliferation and arterial thrombus formation in the mouse by preventing tissue factor (TF), a key activator of the coagulation cascade. This study was designed to investigate whether DMSO prevents platelet activation and thus, whether it may represent an interesting agent to be used on drug eluting stents. Methods and results: Human venous blood from healthy volunteers was collected in citrated tubes and platelet activation was studied by cone and platelet analyzer (CPA) and rapid-platelet-function-assay (RPFA). CPA analysismore » showed that DMSO-treated platelets exhibit a lower adherence in response to shear stress (-15.54 {+-} 0.9427%, n = 5, P < 0.0001 versus control). Additionally, aggregometry studies revealed that DMSO-treated, arachidonate-stimulated platelets had an increased lag phase (18.0% {+-} 4.031, n = 9, P = 0.0004 versus control) as well as a decreased maximal aggregation (-6.388 {+-} 2.212%, n = 6, P = 0.0162 versus control). Inhibitory action of DMSO could be rescued by exogenous thromboxane A2 and was mediated, at least in part, by COX-1 inhibition. Conclusions: Clinically relevant concentrations of DMSO impair platelet activation by a thromboxane A2-dependent, COX-1-mediated effect. This finding may be crucial for the previously reported anti-thrombotic property displayed by DMSO. Our findings support a role for DMSO as a novel drug to prevent not only proliferation, but also thrombotic complications of drug eluting stents.« less
Bonnefoy, Arnaud; Daenens, Kim; Feys, Hendrik B.; De Vos, Rita; Vandervoort, Petra; Vermylen, Jos; Lawler, Jack; Hoylaerts, Marc F.
2006-01-01
The function of thrombospondin-1 (TSP-1) in hemostasis was investigated in wild-type (WT) and Tsp1-/- mice, via dynamic platelet interaction studies with A23187-stimulated mesenteric endothelium and with photochemically injured cecum subendothelium. Injected calcein-labeled WT platelets tethered or firmly adhered to almost all A23187-stimulated blood vessels of WT mice, but Tsp1-/- platelets tethered to 45% and adhered to 25.8% of stimulated Tsp1-/- vessels only. Stimulation generated temporary endothelium-associated ultralarge von Willebrand factor (VWF) multimers, triggering platelet string formation in 48% of WT versus 20% of Tsp1-/- vessels. Injection of human TSP-1 or thrombotic thrombocytopenic purpura (TTP) patient-derived neutralizing anti-ADAMTS13 antibodies corrected the defective platelet recruitment in Tsp1-/- mice, while having a moderate effect in WT mice. Photochemical injury of intestinal blood vessels induced thrombotic occlusions with longer occlusion times in Tsp1-/- venules (1027 ± 377 seconds) and arterioles (858 ± 289 seconds) than in WT vessels (559 ± 241 seconds, P < .001; 443 ± 413 seconds, P < .003) due to defective thrombus adherence, resulting in embolization of complete thrombi, a defect restored by both human TSP-1 and anti-ADAMTS13 antibodies. We conclude that in a shear field, soluble or local platelet-released TSP-1 can protect unfolded endothelium-bound and subendothelial VWF from degradation by plasma ADAMTS13, thus securing platelet tethering and thrombus adherence to inflamed and injured endothelium, respectively. PMID:16204318
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pumphrey, C.W.; Chesebro, J.H.; Dewanjee, M.K.
Indium-111-labeled autologous platelets, injected 48 hours after operation, were used to evaluate the thrombogenicity of prosthetic material and the effect of platelet inhibitor therapy in vivo. Dacron double-velour (Microvel) aortofemoral artery bifurcation grafts were placed in 16 patients and unilateral polytetrafluoroethylene femoropopliteal grafts were placed in 10 patients. Half the patients in each group received platelet inhibitors before operation (dipyridamole, 100 mg 4 times a day) and after operation (dipyridamole, 75 mg, and acetylsalicylic acid, 325 mg 3 times a day); the rest of the patients served as control subjects. Five-minute scintigrams of the graft region were taken with amore » gamma camera interfaced with a computer 48, 72, and 96 hours after injection of the labeled platelets. Platelet deposition was estimated from the radioactivities of the grafts and expressed as counts per 100 pixels per microcurie injected. Dipyridamole and aspirin therapy significantly reduced the number of platelets deposited on Dacron grafts and prevented platelet accumulation over 3 days. With the small amount of platelet deposition on polytetrafluoroethylene femoropopliteal artery grafts even in control patients, platelet inhibitor therapy had no demonstrable effect on platelet deposition on these grafts. It is concluded that (1) platelet deposition on vascular grafts in vivo can be quantitated by noninvasive methods, and (2) dipyridamole and aspirin therapy reduced platelet deposition on Dacron aortofemoral artery grafts.« less
Determinants of ABH expression on human blood platelets.
Cooling, Laura L W; Kelly, Kathleen; Barton, James; Hwang, Debbie; Koerner, Theodore A W; Olson, John D
2005-04-15
Platelets express ABH antigens, which can adversely effect platelet transfusion recovery and survival in ABH-incompatible recipients. To date, there has been no large, comprehensive study comparing specific donor factors with ABH expression on platelet membranes and glycoconjugates. We studied ABH expression in 166 group A apheresis platelet donors by flow cytometry, Western blotting, and thin layer chromatography relative to donor age, sex, A1/A2 subgroup, and Lewis phenotype. Overall, A antigen on platelet membranes, glycoproteins, and glycosphingolipids was linked to an A1 red blood cell (RBC) phenotype. Among A1 donors, platelet ABH varied significantly between donors (0%-87%). Intradonor variability, however, was minimal, suggesting that platelet ABH expression is a stable, donor-specific characteristic, with 5% of A1 donors typing as either ABH high- or low-expressers. Group A2 donors, in contrast, possessed a Bombay-like phenotype, lacking both A and H antigens. Unlike RBCs, ABH expression on platelets may be determined primarily by H-glycosyltransferase (FUT1) activity. Identification of A2 and A1 low expressers may increase the availability and selection of crossmatched and HLA-matched platelets. Platelets from group A2 may also be a superior product for patients undergoing A/O major mismatch allogeneic progenitor cell transplantation.
Trugilho, Monique Ramos de Oliveira; Hottz, Eugenio Damaceno; Brunoro, Giselle Villa Flor; Teixeira-Ferreira, André; Carvalho, Paulo Costa; Salazar, Gustavo Adolfo; Zimmerman, Guy A; Bozza, Fernando A; Bozza, Patrícia T; Perales, Jonas
2017-05-01
Dengue is the most prevalent human arbovirus disease worldwide. Dengue virus (DENV) infection causes syndromes varying from self-limiting febrile illness to severe dengue. Although dengue pathophysiology is not completely understood, it is widely accepted that increased inflammation plays important roles in dengue pathogenesis. Platelets are blood cells classically known as effectors of hemostasis which have been increasingly recognized to have major immune and inflammatory activities. Nevertheless, the phenotype and effector functions of platelets in dengue pathogenesis are not completely understood. Here we used quantitative proteomics to investigate the protein content of platelets in clinical samples from patients with dengue compared to platelets from healthy donors. Our assays revealed a set of 252 differentially abundant proteins. In silico analyses associated these proteins with key molecular events including platelet activation and inflammatory responses, and with events not previously attributed to platelets during dengue infection including antigen processing and presentation, proteasome activity, and expression of histones. From these results, we conducted functional assays using samples from a larger cohort of patients and demonstrated evidence for platelet activation indicated by P-selectin (CD62P) translocation and secretion of granule-stored chemokines by platelets. In addition, we found evidence that DENV infection triggers HLA class I synthesis and surface expression by a mechanism depending on functional proteasome activity. Furthermore, we demonstrate that cell-free histone H2A released during dengue infection binds to platelets, increasing platelet activation. These findings are consistent with functional importance of HLA class I, proteasome subunits, and histones that we found exclusively in proteome analysis of platelets in samples from dengue patients. Our study provides the first in-depth characterization of the platelet proteome in dengue, and sheds light on new mechanisms of platelet activation and platelet-mediated immune and inflammatory responses.
Teixeira-Ferreira, André; Carvalho, Paulo Costa; Salazar, Gustavo Adolfo; Zimmerman, Guy A.; Perales, Jonas
2017-01-01
Dengue is the most prevalent human arbovirus disease worldwide. Dengue virus (DENV) infection causes syndromes varying from self-limiting febrile illness to severe dengue. Although dengue pathophysiology is not completely understood, it is widely accepted that increased inflammation plays important roles in dengue pathogenesis. Platelets are blood cells classically known as effectors of hemostasis which have been increasingly recognized to have major immune and inflammatory activities. Nevertheless, the phenotype and effector functions of platelets in dengue pathogenesis are not completely understood. Here we used quantitative proteomics to investigate the protein content of platelets in clinical samples from patients with dengue compared to platelets from healthy donors. Our assays revealed a set of 252 differentially abundant proteins. In silico analyses associated these proteins with key molecular events including platelet activation and inflammatory responses, and with events not previously attributed to platelets during dengue infection including antigen processing and presentation, proteasome activity, and expression of histones. From these results, we conducted functional assays using samples from a larger cohort of patients and demonstrated evidence for platelet activation indicated by P-selectin (CD62P) translocation and secretion of granule-stored chemokines by platelets. In addition, we found evidence that DENV infection triggers HLA class I synthesis and surface expression by a mechanism depending on functional proteasome activity. Furthermore, we demonstrate that cell-free histone H2A released during dengue infection binds to platelets, increasing platelet activation. These findings are consistent with functional importance of HLA class I, proteasome subunits, and histones that we found exclusively in proteome analysis of platelets in samples from dengue patients. Our study provides the first in-depth characterization of the platelet proteome in dengue, and sheds light on new mechanisms of platelet activation and platelet-mediated immune and inflammatory responses. PMID:28542641
Platelets as Cellular Effectors of Inflammation in Vascular Diseases
Rondina, Matthew T.; Weyrich, Andrew S.; Zimmerman, Guy A.
2013-01-01
Platelets are chief effector cells in hemostasis. In addition, they are multifaceted inflammatory cells with functions that span the continuum from innate immune responses to adaptive immunity. Activated platelets have key “thromboinflammatory” activities in a variety of vascular disorders and vasculopathies. Recently-identified inflammatory and immune activities provide insights into the biology of these versatile blood cells that are directly relevant to human vascular diseases. PMID:23704217
Amadio, Patrizia; Baldassarre, Damiano; Sandrini, Leonardo; Weksler, Babette B; Tremoli, Elena; Barbieri, Silvia S
2017-01-01
Cigarette smoke (CS) activates platelets, promotes vascular dysfunction, and enhances Tissue Factor (TF) expression in blood monocytes favoring pro-thrombotic states. Brain-derived neurotrophic factor (BDNF), a member of the family of neurotrophins involved in survival, growth, and maturation of neurons, is released by activated platelets (APLTs) and plays a role in the cardiovascular system. The effect of CS on circulating levels of BDNF is controversial and the function of circulating BDNF in atherothrombosis is not fully understood. Here, we have shown that human platelets, treated with an aqueous extract of CS (CSE), released BDNF in a dose-dependent manner. In addition, incubation of human monocytes with BDNF or with the supernatant of platelets activated with CSE increased TF activity by a Tropomyosin receptor kinase B (TrkB)-dependent mechanism. Finally, comparing serum and plasma samples of 12 male never smokers (NS) and 29 male active smokers (AS) we observed a significant increase in microparticle-associated TF activity (MP-TF) as well as BDNF in AS, while in serum, BDNF behaved oppositely. Taken together these findings suggest that platelet-derived BDNF is involved in the regulation of TF activity and that CS plays a role in this pathway by favoring a pro-atherothrombotic state.
Takayama, Naoya; Nishimura, Satoshi; Nakamura, Sou; Shimizu, Takafumi; Ohnishi, Ryoko; Endo, Hiroshi; Yamaguchi, Tomoyuki; Otsu, Makoto; Nishimura, Ken; Nakanishi, Mahito; Sawaguchi, Akira; Nagai, Ryozo; Takahashi, Kazutoshi; Yamanaka, Shinya; Nakauchi, Hiromitsu
2010-01-01
Human (h) induced pluripotent stem cells (iPSCs) are a potentially abundant source of blood cells, but how best to select iPSC clones suitable for this purpose from among the many clones that can be simultaneously established from an identical source is not clear. Using an in vitro culture system yielding a hematopoietic niche that concentrates hematopoietic progenitors, we show that the pattern of c-MYC reactivation after reprogramming influences platelet generation from hiPSCs. During differentiation, reduction of c-MYC expression after initial reactivation of c-MYC expression in selected hiPSC clones was associated with more efficient in vitro generation of CD41a+CD42b+ platelets. This effect was recapitulated in virus integration-free hiPSCs using a doxycycline-controlled c-MYC expression vector. In vivo imaging revealed that these CD42b+ platelets were present in thrombi after laser-induced vessel wall injury. In contrast, sustained and excessive c-MYC expression in megakaryocytes was accompanied by increased p14 (ARF) and p16 (INK4A) expression, decreased GATA1 expression, and impaired production of functional platelets. These findings suggest that the pattern of c-MYC expression, particularly its later decline, is key to producing functional platelets from selected iPSC clones. PMID:21098095
Senis, Yotis A.; Tomlinson, Michael G.; García, Ángel; Dumon, Stephanie; Heath, Victoria L.; Herbert, John; Cobbold, Stephen P.; Spalton, Jennifer C.; Ayman, Sinem; Antrobus, Robin; Zitzmann, Nicole; Bicknell, Roy; Frampton, Jon; Authi, Kalwant; Martin, Ashley; Wakelam, Michael J.O.; Watson, Stephen P.
2007-01-01
Summary The platelet surface is poorly characterized due to the low abundance of many membrane proteins and the lack of specialist tools for their investigation. In this study we have identified novel human platelet and mouse megakaryocyte membrane proteins using specialist proteomic and genomic approaches. Three separate methods were used to enrich platelet surface proteins prior to identification by liquid chromatography and tandem mass spectrometry: lectin affinity chromatography; biotin/NeutrAvidin affinity chromatography; and free flow electrophoresis. Many known, abundant platelet surface transmembrane proteins and several novel proteins were identified using each receptor enrichment strategy. In total, two or more unique peptides were identified for 46, 68 and 22 surface membrane, intracellular membrane and membrane proteins of unknown sub-cellular localization, respectively. The majority of these were single transmembrane proteins. To complement the proteomic studies, we analysed the transcriptome of a highly purified preparation of mature primary mouse megakaryocytes using serial analysis of gene expression in view of the increasing importance of mutant mouse models in establishing protein function in platelets. This approach identified all of the major classes of platelet transmembrane receptors, including multi-transmembrane proteins. Strikingly, 17 of the 25 most megakaryocyte-specific genes (relative to 30 other SAGE libraries) were transmembrane proteins, illustrating the unique nature of the megakaryocyte/platelet surface. The list of novel plasma membrane proteins identified using proteomics includes the immunoglobulin superfamily member G6b, which undergoes extensive alternate splicing. Specific antibodies were used to demonstrate expression of the G6b-B isoform, which contains an immunoreceptor tyrosine-based inhibition motif. G6b-B undergoes tyrosine phosphorylation and association with the SH2-containing phosphatase, SHP-1, in stimulated platelets suggesting that it may play a novel role in limiting platelet activation. PMID:17186946
Del Fante, Claudia; Perotti, Cesare; Bonferoni, Maria Cristina; Rossi, Silvia; Sandri, Giuseppina; Ferrari, Franca; Scudeller, Luigia; Caramella, Carla Marcella
2011-09-01
Optimal treatment of oral mucositis (OM) due to graft versus host disease (GvHD) is currently not available. Platelet-derived growth factors (PDGFs) have high capability for tissue healing and may play a role in repairing the mucosal barrier. The aim of the present work was to develop a mucoadhesive formulation to administer platelet lysate to oral cavity prolonging contact time of platelet lysate with oral mucosa. The mucoadhesive formulation was characterized for in vitro properties (PDGF-AB concentration, mucoadhesive properties, cytotoxicity, fibroblast proliferation, wound healing). Moreover, a preliminary clinical study on seven GvHD patients with OM refractory to other therapies was conducted, to evaluate feasibility, safety, and efficacy. GVPL (mucoadhesive gel vehicle mixed with platelet lysate)showed good mucoadhesive properties; additionally, it was characterized by good biocompatibility in vitro on fibroblasts and it was able to enhance fibroblast proliferation and wound healing, maintaining the efficacy for up to 14 days following storage at 2-8°C. In vivo, clinical response was good-to-complete in five, fair in one, none in the remaining one. The in vitro results indicate that GVPL has optimal mucoadhesive and healing enhancer properties, maintained over time (up to 14 days); preliminary clinical results suggest that oral application of platelet lysate-loaded mucoadhesive formulation is feasible, safe, well tolerated, and effective. A larger controlled randomized study is needed.
Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis.
Freedman, J E; Loscalzo, J; Benoit, S E; Valeri, C R; Barnard, M R; Michelson, A D
1996-01-01
Highly reactive oxygen species rapidly inactivate nitric oxide (NO), and endothelial product which inhibits platelet activation. We studied platelet inhibition by NO in two brothers with a cerebral thrombotic disorder. Both children had hyperreactive platelets, as determined by whole blood platelet aggregometry and flow cytometric analysis of the platelet surface expression of P-selectin. Mixing experiments showed that the patients'platelets behaved normally in control plasma; however, control platelets suspended in patient plasma were not inhibited by NO. As determined by flow cytometry, in the presence of plasma from either patient there was normal inhibition of the thrombin-induced expression of platelet surface P-selectin by prostacyclin, but not NO. Using a scopoletin assay, we measured a 2.7-fold increase in plasma H2O2 generation in one patient and a 3.4-fold increase in the second patient, both compared woth control plasma. Glutathione peroxidase (GSH-Px) activity was decreased in the patients' plasmas compared with control plasma. The addition of exogenous GSH-Px led to restoration of platelet inhibition by NO. These data show that, in these patients' plasmas, impaired metabolism of reactive oxygen species reduces the bioavailability of NO and impairs normal platelet inhibitory mechanisms. These findings suggest that attenuated NO-mediated platelet inhibition produced by increased reactive oxygen species or impaired antioxidant defense may cause a thrombotic disorder in humans. PMID:8613552
Jung, F; Mrowietz, C; Seyfert, U T; Grewe, R; Franke, R P
2003-01-01
It was investigated whether the NO-donor SIN-1, the active metabolite of molsidomine, influenced the activation of platelets, the formation of circulating platelet aggregates, the spontaneous aggregation of platelets and the activation of the clotting system triggered by a body foreign surface in an in vitro closed-loop perfusion model. With human platelet-rich plasma at micromolar concentrations SIN-1 exerted pronounced effects on the interaction between platelets and an exogenous surface. In the absence of SIN-1, the number of circulating single platelets decreased significantly, which could be due either to the formation of circulating platelet aggregates or to the adhesion of platelets to the stent. Both these processes were blocked by the addition of SIN-1. Moreover, the platelets exhibited hyperaggregability in the absence of SIN-1 whereas the NO-donor was able to completely inhibit spontaneous platelet aggregation. Similar results were obtained in flow cytometry experiments. Without SIN-1, high platelet surface densities of both the GPIb/IX and GPIIb/IIIa receptors were observed. In addition, the density of the fibrinogen receptor increased significantly with the number of perfusion cycles. SIN-1 was able to suppress the augmented GPIIb/IIIa receptor expression significantly. Molsidomine seemed to have the potential to reduce the incidence of thrombotic processes triggered by the exogenous surface of the stent.
Hippophae rhamnoides L. Fruits Reduce the Oxidative Stress in Human Blood Platelets and Plasma.
Olas, Beata; Kontek, Bogdan; Malinowska, Paulina; Żuchowski, Jerzy; Stochmal, Anna
2016-01-01
Effects of the phenolic fraction from Hippophae rhamnoides fruits on the production of thiobarbituric acid reactive substances (TBARS, a marker of lipid peroxidation) and the generation of superoxide anion (O2 (-∙)) in human blood platelets (resting platelets and platelets stimulated by a strong physiological agonist, thrombin) were studied in vitro. We also examined antioxidant properties of this fraction against human plasma lipid peroxidation and protein carbonylation induced by a strong biological oxidant, hydrogen peroxide (H2O2) or H2O2/Fe (a donor of hydroxyl radicals). The tested fraction of H. rhamnoides (0.5- 50 µg/mL; the incubation time: 15 and 60 min) inhibited lipid peroxidation induced by H2O2 or H2O2/Fe. The H. rhamnoides phenolic fraction inhibited not only plasma lipid peroxidation, but also plasma protein carbonylation stimulated by H2O2 or H2O2/Fe. Moreover, the level of O2 (-∙) in platelets significantly decreased. In comparative experiments, the H. rhamnoides fraction was a more effective antioxidant than aronia extract or grape seed extract (at the highest tested concentration, 50 µg/mL). The obtained results suggest that H. rhamnoides fruits may be a new, promising source of natural compounds with antioxidant and antiplatelet activity beneficial not only for healthy people, but also for those with oxidative stress-associated diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendelsohn, M.E.; Yan Zhu; O'Neill, S.
Thrombin plays a critical role in platelet activation, hemostasis, and thrombosis. Cellular activation by thrombin leads to the phosphorylation of multiple proteins, most of which are unidentified. The authors have characterized several 29-kDa proteins that are rapidly phosphorylated following exposure of intact human platelets to thrombin. A murine monoclonal antibody raised to an unidentified estrogen receptor-related 29-kDa protein selectively recognized these proteins as well as a more basic, unphosphorylated 27-kDa protein. Cellular activation by thrombin led to a marked shift in the proportion of protein from the 27-kDa unphosphorylated form to the 29-kDa phosphoprotein species. Using this antibody, they isolatedmore » and sequenced a human cDNA clone encoding a protein that was identical to the mammalian 27-kDa heat shock protein (HSP27), a protein of uncertain function that is known to be phosphorylated to several forms and to be transcriptionally induced by estrogen. The 29-kDa proteins were confirmed to be phosphorylated forms of HSP27 by immunoprecipitation studies. Thus, the estrogen receptor-related protein is HSP27, and the three major 20-kDa proteins phosphorylated in thrombin-activated platelets are forms of HSP27. These data suggest a role for HSP27 in the signal transduction events of platelet activation.« less
Adam, Frédéric; Casari, Caterina; Prévost, Nicolas; Kauskot, Alexandre; Loubière, Cécile; Legendre, Paulette; Repérant, Christelle; Baruch, Dominique; Rosa, Jean-Philippe; Bryckaert, Marijke; de Groot, Philip G; Christophe, Olivier D; Lenting, Peter J; Denis, Cécile V
2016-05-23
von Willebrand disease (VWD)-type 2B is characterized by gain-of-function mutations in the von Willebrand factor (VWF) A1-domain, leading to increased affinity for its platelet-receptor, glycoprotein Ibα. We engineered the first knock-in (KI) murine model for VWD-type 2B by introducing the p.V1316M mutation in murine VWF. Homozygous KI-mice replicated human VWD-type 2B with macrothrombocytopenia (platelet counts reduced by 55%, platelet volume increased by 44%), circulating platelet-aggregates and a severe bleeding tendency. Also, vessel occlusion was deficient in the FeCl3-induced thrombosis model. Platelet aggregation induced by thrombin or collagen was defective for KI-mice at all doses. KI-mice manifested a loss of high molecular weight multimers and increased multimer degradation. In a model of VWF-string formation, the number of platelets/string and string-lifetime were surprisingly enhanced in KI-mice, suggesting that proteolysis of VWF/p.V1316M is differentially regulated in the circulation versus the endothelial surface. Furthermore, we observed increased leukocyte recruitment during an inflammatory response induced by the reverse passive Arthus reaction. This points to an active role of VWF/p.V1316M in the exfiltration of leukocytes under inflammatory conditions. In conclusion, our genetically-engineered VWD-type 2B mice represent an original model to study the consequences of spontaneous VWF-platelet interactions and the physiopathology of this human disease.
1979-01-01
Blood platelets from 10 normal human subjects have been examined with a sensitive differential interference contrast (DIC) microscope. The entire transformation process during adhesion to glass is clearly visible and has been recorded cinematographically, including the disk to sphere change of shape, the formation of sessile protuberances, the extension and retraction of pseudopodia, and the spreading, ruffling, and occasional regression of the hyalomere. The exocytosis of intact dense bodies can be observed either by DIC microscopy, or by epifluorescence microscopy in platelets stained with mepacrine. Details of fluorescent flashes indicate that the dense bodies usually release their contents extracellularly, may do so intracytoplasmically under the influence of strong, short wavelength light on some preparations of mepacrine-stained platelets. The release of one or more dense bodies leaves a crater of variable size on the upper surface of the granulomere. Such craters represent the surface component of the open canalicular system and their formation and disappearance can be directly observed. Because these techniques permit quantitation of several parameters of motility which are not readily observable by other techniques, it is suggested that high extinction DIC microscope examination may become a rapid and useful method of studying congenital and acquired platelet disorders. Many features of platelet transformation have been confirmed and extended by scanning electron micrographs. These can in turn be interpreted by reference to time- lapse films of living platelets. PMID:511936
Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function.
Murphy, Karen J; Chronopoulos, Andriana K; Singh, Indu; Francis, Maureen A; Moriarty, Helen; Pike, Marilyn J; Turner, Alan H; Mann, Neil J; Sinclair, Andrew J
2003-06-01
Flavonoids may be partly responsible for some health benefits, including antiinflammatory action and a decreased tendency for the blood to clot. An acute dose of flavanols and oligomeric procyanidins from cocoa powder inhibits platelet activation and function over 6 h in humans. This study sought to evaluate whether 28 d of supplementation with cocoa flavanols and related procyanidin oligomers would modulate human platelet reactivity and primary hemostasis and reduce oxidative markers in vivo. Thirty-two healthy subjects were assigned to consume active (234 mg cocoa flavanols and procyanidins/d) or placebo (< or = 6 mg cocoa flavanols and procyanidins/d) tablets in a blinded parallel-designed study. Platelet function was determined by measuring platelet aggregation, ATP release, and expression of activation-dependent platelet antigens by using flow cytometry. Plasma was analyzed for oxidation markers and antioxidant status. Plasma concentrations of epicatechin and catechin in the active group increased by 81% and 28%, respectively, during the intervention period. The active group had significantly lower P selectin expression and significantly lower ADP-induced aggregation and collagen-induced aggregation than did the placebo group. Plasma ascorbic acid concentrations were significantly higher in the active than in the placebo group (P < 0.05), whereas plasma oxidation markers and antioxidant status did not change in either group. Cocoa flavanol and procyanidin supplementation for 28 d significantly increased plasma epicatechin and catechin concentrations and significantly decreased platelet function. These data support the results of acute studies that used higher doses of cocoa flavanols and procyanidins.
Inhibition of blood platelet adhesion by phenolics' rich fraction of Hippophae rhamnoides L. fruits.
Olas, B; Kontek, B; Szczesna, M; Grabarczyk, L; Stochmal, A; Zuchowski, J
2017-04-01
Beneficial influence of fruits on human health may be their ability to prevent the hyperactivation of blood platelets and cardiovascular disorders. Effects of the phenolic fraction from Hippophae rhamnoides fruit on different stages of blood platelet activation (platelet adhesion and aggregation) were studied in vitro. We also examined effects of the H. rhamnoides fraction on metabolism of thiol groups, which plays an important role in platelet functions. The effects of the H. rhamnoides fraction on adhesion of blood platelets to collagen and fibrinogen were determined with Tuszynski's and Murphy's method. The platelet aggregation was determined with turbidimetry. The action of the H. rhamnoides fraction on the level of thiol groups in platelet proteins and a level of glutathione (GSH) in platelets was estimated with 5,5'-dithio-bis(2-nitro-benzoic acid). The tested fraction of H. rhamnoides (0.5 - 50 μg/ml; 30 min of the incubation time 30 min) inhibited blood platelets adhesion to collagen and fibrinogen. The effect of the tested fraction on blood platelet adhesion depended on concentration of fraction. In presence of the highest tested concentration which was 50 μg/ml, inhibition of platelet adhesion for thrombin-activated platelets was about 55%. On the other hand, tested plant fraction had no anti-aggregatory properties. Our results showed anti-adhesive properties of phenolic fraction from H. rhamnoides fruit and we suggest that it may be beneficial for prevention of cardiovascular diseases.
Gyulkhandanyan, Armen V; Mutlu, Asuman; Allen, David J; Freedman, John; Leytin, Valery
2014-01-01
Depolarization of mitochondrial inner transmembrane potential (ΔΨm) is a key biochemical manifestation of the intrinsic apoptosis pathway in anucleate platelets. Little is known, however, about the relationship between ΔΨm depolarization and downstream morphological manifestations of platelet apoptosis, cell shrinkage and microparticle (MP) formation. To elucidate this relationship in human platelets. Using flow cytometry, we analyzed ΔΨm depolarization, platelet shrinkage and MP formation in platelets treated with BH3-mimetic ABT-737 and calcium ionophore A23187, well-known inducers of intrinsic platelet apoptosis. We found that at optimal treatment conditions (90min, 37°C) both ABT-737 and A23187 induce ΔΨm depolarization in the majority (88-94%) of platelets and strongly increase intracellular free calcium. In contrast, effects of A23187 and ABT-737 on platelet shrinkage and MP formation are quite different. A23187 strongly stimulates cell shrinkage and MP formation, whereas ABT-737 only weakly induces these events (10-20% of the effect seen with A23187, P<0.0001). These data indicate that a high level of ΔΨm depolarization and intracellular free calcium does not obligatorily ensure strong platelet shrinkage and MP formation. Since ABT-737 efficiently induces clearance of platelets from the circulation, our results suggest that platelet clearance may occur in the absence of the morphological manifestations of apoptosis. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Nhek, Sokha; Clancy, Robert; Lee, Kristen A; Allen, Nicole M; Barrett, Tessa J; Marcantoni, Emanuela; Nwaukoni, Janet; Rasmussen, Sara; Rubin, Maya; Newman, Jonathan D; Buyon, Jill P; Berger, Jeffrey S
2017-04-01
Systemic lupus erythematosus (SLE) is associated with the premature development of cardiovascular disease. The platelet-endothelium interaction is important in the pathogenesis of cardiovascular disease. In this study, we investigated the platelet phenotype from patients with SLE and matched controls, and their effect on endothelial cells. Platelet aggregability was measured in 54 SLE subjects off antiplatelet therapy (mean age 40.1±12.8 years; 82% female; 37% white) with age- and sex-matched controls. Platelets were coincubated with human umbilical vein endothelial cells (HUVECs) and changes to gene expression assessed by an RNA array and quantitative reverse transcription polymerase chain reaction. SLE disease activity index ranged from 0 to 22 (mean 5.1±3.9). Compared with controls, patients with SLE had significantly increased monocyte and leukocyte-platelet aggregation and platelet aggregation in response to submaximal agonist stimulation. An agnostic microarray of HUVECs cocultured with SLE platelets found a platelet-mediated effect on endothelial gene pathways involved in cell activation. Sera from SLE versus control subjects significantly increased (1) activation of control platelets; (2) platelet adhesion to HUVECs; (3) platelet-induced HUVEC gene expression of interleukin-8, and intercellular adhesion molecule 1; and (4) proinflammatory gene expression in HUVECs, mediated by interleukin-1β-dependent pathway. Incubation of SLE-activated platelets with an interleukin-1β-neutralizing antibody or HUVECs pretreated with interleukin-1 receptor antibodies attenuated the platelet-mediated activation of endothelial cells. Platelet activity measurements and subsequent interleukin-1β-dependent activation of the endothelium are increased in subjects with SLE. Platelet-endothelial interactions may play a role in the pathogenesis of cardiovascular disease in patients with SLE. © 2017 American Heart Association, Inc.
Myllylä, G.; Vaheri, A.; Vesikari, T.; Penttinen, K.
1969-01-01
A new method of measuring antibodies by observing sedimentation patterns of platelets has been compared with the complement fixation and haemagglutination inhibition techniques in ten cases of Rubella and seven cases of post-Rubella thrombocytopenic purpura. The method is based on the aggregation of platelets by the joint action of antibody and small size antigens. The platelet aggregation method gave exceptionally high titres in cases of post-Rubella thrombocytopenic purpura. Other serologic methods did not give these high titres. The hypothesis that small size virus antigen and antibody against it are both needed to induce thrombocytopenia during the recovery period is discussed. Large amounts of both may result in clinical symptoms. PMID:5814719
[The influence of nitrates on platelet oxygen metabolism: in vitro studies].
Buczyński, A; Dziedziczak-Buczyńska, M; Gnitecki, W; Kocur, J
1999-01-01
Our investigations were carried out on human blood platelets obtained from persons aged 20-23, free from any systemic diseases. Drugs were incubated with blood platelets. Changes of antioxidant enzymes were detected. Glyceryl trinitrate increased the activity of Zn Cu-SOD (4.62%) and GPx (275.91%), concentration of ATP (13.01%) and the blood platelets aggregations (17.88%). Izosorbide dinitrate increased the activity of ZnCu-SOD (19.46%), GPx (150.36%) and Cat (15.62%), increased concentration of ATP (23.73%) and blood platelets aggregation (3.64%). Both preparats decreased concentration of MDA (Sustonit--30.79%, Iso-Mack--35.04%). Gliceryl trinitrate decreased the activity of catalase otherwise izosorbide dinitrate increased the activity of this enzyme.
Shirzad, Negin; Bordbar, Sima; Goodarzi, Alireza; Mohammad, Monire; Khosravani, Pardis; Sayahpour, Froughazam; Baghaban Eslaminejad, Mohamadreza; Ebrahimi, Marzieh
2017-10-01
The diverse clinical applications for human mesenchymal stem cells (hMSCs) in cellular therapy and regenerative medicine warrant increased focus on developing adequate culture supplements devoid of animal-derived products. In the present study, we have investigated the feasibility of umbilical cord blood-platelet lysate (UCB-PL) as a standard substitute for fetal bovine serum (FBS) and human peripheral blood-PL (PB-PL). In this experimental study, platelet concentrates (PC) from UCB and human PB donors were frozen, melted, and sterilized to obtain PL. Quality control included platelet cell counts, sterility testing (viral and microbial), total protein concentrations, growth factor levels, and PL stability. The effects of UCB-PL and PB-PL on hMSCs proliferation and differentiation into osteocytes, chondrocytes, and adipocytes were studied and the results compared with FBS. UCB-PL contained high levels of protein content, platelet-derived growth factor- AB (PDGF-AB), and transforming growth factor (TGF) compared to PB-PL. All growth factors were stable for at least nine months post-storage at -70˚C. hMSCs proliferation enhanced following treatment with UCB-PL. With all three supplements, hMSCs could differentiate into all three lineages. PB-PL and UCB-PL both were potent in hMSCs proliferation. However, PB promoted osteoblastic differentiation and UCB-PL induced chondrogenic differentiation. Because of availability, ease of use and feasible standardization of UCB-PL, we have suggested that UCB-PL be used as an alternative to FBS and PB-PL for the cultivation and expansion of hMSCs in cellular therapy. Copyright© by Royan Institute. All rights reserved.
McCormack, Matthew P; Hall, Mark A; Schoenwaelder, Simone M; Zhao, Quan; Ellis, Sarah; Prentice, Julia A; Clarke, Ashleigh J; Slater, Nicholas J; Salmon, Jessica M; Jackson, Shaun P; Jane, Stephen M; Curtis, David J
2006-10-01
The generation of platelets from megakaryocytes in the steady state is regulated by a variety of cytokines and transcription factors, including thrombopoietin (TPO), GATA-1, and NF-E2. Less is known about platelet production in the setting of stress thrombopoiesis, a pivotal event in the context of cytotoxic chemotherapy. Here we show in mice that the transcription factor Scl is critical for platelet production after chemotherapy and in thrombopoiesis induced by administration of TPO. Megakaryocytes from these mice showed appropriate increases in number and ploidy but failed to shed platelets. Ultrastructural examination of Scl-null megakaryocytes revealed a disorganized demarcation membrane and reduction in platelet granules. Quantitative real-time polymerase chain reaction showed that Scl-null platelets lacked NF-E2, and chromatin immunoprecipitation analysis demonstrated Scl binding to the NF-E2 promoter in the human megakaryoblastic-cell line Meg-01, along with its binding partners E47, Lmo2, and the cofactors Ldb1 and GATA-2. These findings suggest that Scl acts up-stream of NF-E2 expression to control megakaryocyte development and platelet release in settings of thrombopoietic stress.
Yacoub, Daniel; Théorêt, Jean-François; Villeneuve, Louis; Abou-Saleh, Haissam; Mourad, Walid; Allen, Bruce G; Merhi, Yahye
2006-10-06
The protein kinase C (PKC) family is an essential signaling mediator in platelet activation and aggregation. However, the relative importance of the major platelet PKC isoforms and their downstream effectors in platelet signaling and function remain unclear. Using isolated human platelets, we report that PKCdelta, but not PKCalpha or PKCbeta, is required for collagen-induced phospholipase C-dependent signaling, activation of alpha(IIb)beta(3), and platelet aggregation. Analysis of PKCdelta phosphorylation and translocation to the membrane following activation by both collagen and thrombin indicates that it is positively regulated by alpha(IIb)beta(3) outside-in signaling. Moreover, PKCdelta triggers activation of the mitogen-activated protein kinase-kinase (MEK)/extracellular-signal regulated kinase (ERK) and the p38 MAPK signaling. This leads to the subsequent release of thromboxane A(2), which is essential for collagen-induced but not thrombin-induced platelet activation and aggregation. This study adds new insight to the role of PKCs in platelet function, where PKCdelta signaling, via the MEK/ERK and p38 MAPK pathways, is required for the secretion of thromboxane A(2).
Poon, Man-Chiu; d'Oiron, Roseline
2018-06-07
Glanzmann's thrombasthenia (GT) and Bernard-Soulier's syndrome (BSS) are well-understood congenital bleeding disorders, showing defect/deficiency of platelet glycoprotein (GP) IIb/IIIa (integrin αIIbβ3) and GPIb-IX-V complexes respectively, with relevant clinical, laboratory, biochemical, and genetic features. Following platelet transfusion, affected patients may develop antiplatelet antibodies (to human leukocyte antigen [HLA], and/or αIIbβ3 in GT or GPIb-IX in BSS), which may render future platelet transfusion ineffective. Anti-αIIbβ3 and anti-GPIb-IX may also cross the placenta during pregnancy to cause thrombocytopenia and bleeding in the fetus/neonate. This review will focus particularly on the better studied GT to illustrate the natural history and complications of platelet alloimmunization. BSS will be more briefly discussed. Platelet transfusion, if unavoidable, should be given judiciously with good indications. Patients following platelet transfusion, and women during and after pregnancy, should be monitored for the development of platelet antibodies. There is now a collection of data suggesting the safety and effectiveness of recombinant activated factor VII in the management of affected patients with platelet antibodies. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Fibrinogen Motif Discriminates Platelet and Cell Capture in Peptide-Modified Gold Micropore Arrays.
Adamson, Kellie; Spain, Elaine; Prendergast, Una; Moran, Niamh; Forster, Robert J; Keyes, Tia E
2018-01-16
Human blood platelets and SK-N-AS neuroblastoma cancer-cell capture at spontaneously adsorbed monolayers of fibrinogen-binding motifs, GRGDS (generic integrin adhesion), HHLGGAKQAGDV (exclusive to platelet integrin α IIb β 3 ), or octanethiol (adhesion inhibitor) at planar gold and ordered 1.6 μm diameter spherical cap gold cavity arrays were compared. In all cases, arginine/glycine/aspartic acid (RGD) promoted capture, whereas alkanethiol monolayers inhibited adhesion. Conversely only platelets adhered to alanine/glycine/aspartic acid (AGD)-modified surfaces, indicating that the AGD motif is recognized preferentially by the platelet-specific integrin, α IIb β 3 . Microstructuring of the surface effectively eliminated nonspecific platelet/cell adsorption and dramatically enhanced capture compared to RGD/AGD-modified planar surfaces. In all cases, adhesion was reversible. Platelets and cells underwent morphological change on capture, the extent of which depended on the topography of the underlying substrate. This work demonstrates that both the nature of the modified interface and its underlying topography influence the capture of cancer cells and platelets. These insights may be useful in developing cell-based cancer diagnostics as well as in identifying strategies for the disruption of platelet cloaks around circulating tumor cells.
Fent, János; Bihari, Péter; Vippola, Minnamari; Sarlin, Essi; Lakatos, Susan
2015-08-01
Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Antiplatelet properties of nitrogen monoxide].
Adrie, C
1996-11-01
Nitric (correction of nitrous) oxide (NO) plays a fundamental part in the haemostatic equilibrium between the endothelium and platelets, an equilibrium of established clinical importance in cardiovascular disease. NO stimulates the enzyme guanylate cyclase which is responsible for synthesis of GMPc, the increase of which results in platelet inhibition. Synthesis of NO may have endogenous auto or paracrine origine from platelets or endothelial cells and participates in the local regulation of platelet function in association with other products of endothelial or platelet synthesis. Exogenous administration is common in therapeutics either in molecules which release NO (nitrate derivatives, sodium nitropruside, molsidomine, etc) or by NO gas administered by inhalation. The antiplatelet effect of NO has been clearly demonstrated in vitro, in vivo or ex vivo, in animals and humans, and probably explains, at least partially, the efficacy of nitrate derivatives in ischaemic coronary artery disease. Nevertheless, the platelet inhibition observed with intravenous NO releasing drugs is associated with potentially harmful systemic hypotension. Platelet inhibition by inhalation of NO could be an alternative means of avoiding this unwanted effect.
Zhao, Xuemei; Delgado, Liliana; Weiner, Russell; Laterza, Omar F.
2015-01-01
Thymus- and activation-regulated chemokine (TARC) in serum/plasma associates with the disease activity of atopic dermatitis (AD), and is a promising tool for assessing the response to the treatment of the disease. TARC also exists within platelets, with elevated levels detectable in AD patients. We examined the effects of pre-analytical factors on the quantitation of TARC in human EDTA plasma. TARC levels in platelet-free plasma were significantly lower than those in platelet-containing plasma. After freeze-thaw, TARC levels increased in platelet-containing plasma, but remained unchanged in platelet-free plasma, suggesting TARC was released from the platelets during the freeze-thaw process. In contrast, TARC levels were stable in serum independent of freeze-thaw. These findings underscore the importance of pre-analytical factors to TARC quantitation. Plasma TARC levels should be measured in platelet-free plasma for accurate quantitation. Pre-analytical factors influence the quantitation, interpretation, and implementation of circulating TARC as a biomarker for the development of AD therapeutics. PMID:28936246
Ultrastructure and growth factor content of equine platelet-rich fibrin gels.
Textor, Jamie A; Murphy, Kaitlin C; Leach, J Kent; Tablin, Fern
2014-04-01
To compare fiber diameter, pore area, compressive stiffness, gelation properties, and selected growth factor content of platelet-rich fibrin gels (PRFGs) and conventional fibrin gels (FGs). PRFGs and conventional FGs prepared from the blood of 10 healthy horses. Autologous fibrinogen was used to form conventional FGs. The PRFGs were formed from autologous platelet-rich plasma of various platelet concentrations (100 × 10³ platelets/μL, 250 × 10³ platelets/μL, 500 × 10³ platelets/μL, and 1,000 × 10³ platelets/μL). All gels contained an identical fibrinogen concentration (20 mg/mL). Fiber diameter and pore area were evaluated with scanning electron microscopy. Maximum gelation rate was assessed with spectrophotometry, and gel stiffness was determined by measuring the compressive modulus. Gel weights were measured serially over 14 days as an index of contraction (volume loss). Platelet-derived growth factor-BB and transforming growth factor-β1 concentrations were quantified with ELISAs. Fiber diameters were significantly larger and mean pore areas were significantly smaller in PRFGs than in conventional FGs. Gel weight decreased significantly over time, differed significantly between PRFGs and conventional FGs, and was significantly correlated with platelet concentration. Platelet-derived growth factor-BB and transforming growth factor-β1 concentrations were highest in gels and releasates derived from 1,000 × 10³ platelets/μL. The inclusion of platelets in FGs altered the architecture and increased the growth factor content of the resulting scaffold. Platelets may represent a useful means of modifying these gels for applications in veterinary and human regenerative medicine.
The role of platelet and endothelial GARP in thrombosis and hemostasis.
Vermeersch, Elien; Denorme, Frederik; Maes, Wim; De Meyer, Simon F; Vanhoorelbeke, Karen; Edwards, Justin; Shevach, Ethan M; Unutmaz, Derya; Fujii, Hodaka; Deckmyn, Hans; Tersteeg, Claudia
2017-01-01
Glycoprotein-A Repetitions Predominant protein (GARP or LRRC32) is present on among others human platelets and endothelial cells. Evidence for its involvement in thrombus formation was suggested by full knockout of GARP in zebrafish. To evaluate the role of GARP in platelet physiology and in thrombus formation using platelet and endothelial conditional GARP knock out mice. Platelet and endothelial specific GARP knockout mice were generated using the Cre-loxP recombination system. The function of platelets without GARP was measured by flow cytometry, spreading analysis and aggregometry using PAR4-activating peptide and collagen related peptide. Additionally, clot retraction and collagen-induced platelet adhesion and aggregation under flow were analyzed. Finally, in vivo tail bleeding time, occlusion time of the mesenteric and carotid artery after FeCl3-induced thrombosis were determined in platelet and endothelial specific GARP knock out mice. Platelet specific GARP knockout mice had normal surface GPIb, GPVI and integrin αIIb glycoprotein expression. Although GARP expression was increased upon platelet activation, platelets without GARP displayed normal agonist induced activation, spreading on fibrinogen and aggregation responses. Furthermore, absence of GARP on platelets did not influence clot retraction and had no impact on thrombus formation on collagen-coated surfaces under flow. In line with this, neither the tail bleeding time nor the occlusion time in the carotid- and mesenteric artery after FeCl3-induced thrombus formation in platelet or endothelial specific GARP knock out mice were affected. Evidence is provided that platelet and endothelial GARP are not important in hemostasis and thrombosis in mice.
The role of platelet and endothelial GARP in thrombosis and hemostasis
Vermeersch, Elien; Denorme, Frederik; Maes, Wim; De Meyer, Simon F.; Vanhoorelbeke, Karen; Edwards, Justin; Shevach, Ethan M.; Unutmaz, Derya; Fujii, Hodaka; Deckmyn, Hans; Tersteeg, Claudia
2017-01-01
Background Glycoprotein-A Repetitions Predominant protein (GARP or LRRC32) is present on among others human platelets and endothelial cells. Evidence for its involvement in thrombus formation was suggested by full knockout of GARP in zebrafish. Objectives To evaluate the role of GARP in platelet physiology and in thrombus formation using platelet and endothelial conditional GARP knock out mice. Methods Platelet and endothelial specific GARP knockout mice were generated using the Cre-loxP recombination system. The function of platelets without GARP was measured by flow cytometry, spreading analysis and aggregometry using PAR4-activating peptide and collagen related peptide. Additionally, clot retraction and collagen-induced platelet adhesion and aggregation under flow were analyzed. Finally, in vivo tail bleeding time, occlusion time of the mesenteric and carotid artery after FeCl3-induced thrombosis were determined in platelet and endothelial specific GARP knock out mice. Results Platelet specific GARP knockout mice had normal surface GPIb, GPVI and integrin αIIb glycoprotein expression. Although GARP expression was increased upon platelet activation, platelets without GARP displayed normal agonist induced activation, spreading on fibrinogen and aggregation responses. Furthermore, absence of GARP on platelets did not influence clot retraction and had no impact on thrombus formation on collagen-coated surfaces under flow. In line with this, neither the tail bleeding time nor the occlusion time in the carotid- and mesenteric artery after FeCl3-induced thrombus formation in platelet or endothelial specific GARP knock out mice were affected. Conclusions Evidence is provided that platelet and endothelial GARP are not important in hemostasis and thrombosis in mice. PMID:28278197
Lu, Wan-Jung; Chang, Nen-Chung; Jayakumar, Thanasekaran; Liao, Jiun-Cheng; Lin, Mei-Jiun; Wang, Shwu-Huey; Chou, Duen-Suey; Thomas, Philip Aloysius; Sheu, Joen-Rong
2014-12-01
CME-1, a novel water-soluble polysaccharide, was purified from the mycelia of Cordyceps sinensis, and its chemical structure was characterized to contain mannose and galactose in a ratio of 4:6 (27.6 kDa). CME-1 was originally observed to exert a potent inhibitory effect on tumor migration and a cytoprotective effect against oxidative stress. Activation of platelets caused by arterial thrombosis is relevant to various cardiovascular diseases (CVDs). However, no data are available concerning the effects of CME-1 on platelet activation. Hence, the purpose of this study was to examine the ex vivo and in vivo antithrombotic effects of CME-1 and its possible mechanisms in platelet activation. The aggregometry, immunoblotting, flow cytometric analysis and platelet functional analysis were used in this study. CME-1 (2.3-7.6 μM) exhibited highly potent activity in inhibiting human platelet aggregation when stimulated by collagen, thrombin, and arachidonic acid but not by U46619. CME-1 inhibited platelet activation accompanied by inhibiting Akt, mitogen-activated protein kinases (MAPKs), thromboxane B2 (TxB2) and hydroxyl radical (OH(●)) formation. However, CME-1 interrupted neither FITC-triflavin nor FITC-collagen binding to platelets. CME-1 markedly increased cyclic AMP levels, but not cyclic GMP levels, and stimulated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, but not ODQ, an inhibitor of guanylate cyclase, obviously reversed the CME-1-mediated effects on platelet aggregation and vasodilator-stimulated phosphoprotein (VASP), Akt, p38 MAPK phosphorylation, and TxB2 formation. CME-1 substantially prolonged the closure time of whole blood and the occlusion time of platelet plug formation. This study demonstrates for the first time that CME-1 exhibits highly potent antiplatelet activity that may initially activate adenylate cyclase/cyclic AMP and, subsequently, inhibit intracellular signals (such as Akt and MAPKs), ultimately inhibiting platelet activation. This novel role of CME-1 indicates that CME-1 exhibits high potential for application in treating and preventing CVDs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Purvis, Jeremy E; Chatterjee, Manash S; Brass, Lawrence F; Diamond, Scott L
2008-11-15
To quantify how various molecular mechanisms are integrated to maintain platelet homeostasis and allow responsiveness to adenosine diphosphate (ADP), we developed a computational model of the human platelet. Existing kinetic information for 77 reactions, 132 fixed kinetic rate constants, and 70 species was combined with electrochemical calculations, measurements of platelet ultrastructure, novel experimental results, and published single-cell data. The model accurately predicted: (1) steady-state resting concentrations for intracellular calcium, inositol 1,4,5-trisphosphate, diacylglycerol, phosphatidic acid, phosphatidylinositol, phosphatidylinositol phosphate, and phosphatidylinositol 4,5-bisphosphate; (2) transient increases in intracellular calcium, inositol 1,4,5-trisphosphate, and G(q)-GTP in response to ADP; and (3) the volume of the platelet dense tubular system. A more stringent test of the model involved stochastic simulation of individual platelets, which display an asynchronous calcium spiking behavior in response to ADP. Simulations accurately reproduced the broad frequency distribution of measured spiking events and demonstrated that asynchronous spiking was a consequence of stochastic fluctuations resulting from the small volume of the platelet. The model also provided insights into possible mechanisms of negative-feedback signaling, the relative potency of platelet agonists, and cell-to-cell variation across platelet populations. This integrative approach to platelet biology offers a novel and complementary strategy to traditional reductionist methods.
Biomechanics of P-selectin PSGL-1 bonds: Shear threshold and integrin-independent cell adhesion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Zhihua; Goldsmith, Harry L.; MacIntosh, Fiona A.
2006-03-01
Platelet-leukocyte adhesion may contribute to thrombosis and inflammation. We examined the heterotypic interaction between unactivated neutrophils and either thrombin receptor activating peptide (TRAP) stimulated platelets or P-selectin bearing beads (Ps-beads) in suspension. Cone-plate viscometers were used to apply controlled shear rates from 14-3000/s. Platelet-neutrophil and bead-neutrophil adhesion analysis was performed using both flow cytometry and high-speed videomicroscopy. We observed that while blocking antibodies against either P-selectin or P-selectin glycoprotein ligand-1 (PSGL-1) alone inhibited platelet-neutrophil adhesion by ~60% at 140/s, these reagents completely blocked adhesion at 3000/s. Anti-Mac-1 alone did not alter platelet-neutrophil adhesion rates at any shear rate, though inmore » synergy with selectin antagonists it abrogated cell binding. Unstimulated neutrophils avidly bound Ps-beads and activated platelets in an integrin-independent manner, suggesting that purely selectin-dependent cell adhesion is possible. In support of this, antagonists against P-selectin or PSGL-1 dissociated previously formed platelet-neutrophil and Ps-bead neutrophil aggregates under shear in a variety of experimental systems, including in assays performed with whole blood. In studies where medium viscosity and shear rate were varied, a subtle shear threshold for P-selectin PSGL-1 binding was also noted at shear rates<100/s and at force loading rates of ~300pN/sec. Results are discussed in light of biophysical computations that characterize the collision between unequal size particles in linear shear flow. Overall, our studies reveal an integrin-independent regime for cell adhesion that may be physiologically relevant.« less
Human SolCD39 Inhibits Injury-induced Development of Neointimal Hyperplasia
Drosopoulos, Joan H. F.; Kraemer, Rosemary; Shen, Hao; Upmacis, Rita K.; Marcus, Aaron J.; Musi, Elgilda
2010-01-01
SUMMARY Blood platelets provide the initial response to vascular endothelial injury, becoming activated as they adhere to the injured site. Activated platelets recruit leukocytes, and initiate proliferation and migration of vascular smooth muscle cells (SMC) within the injured vessel wall, leading to development of neointimal hyperplasia. Endothelial CD39/NTPDase1 and recombinant solCD39 rapidly metabolize nucleotides, including stimulatory ADP released from activated platelets, thereby suppressing additional platelet reactivity. Using a murine model of vascular endothelial injury, we investigated whether circulating human solCD39 could reduce platelet activation and accumulation, thus abating leukocyte infiltration and neointimal formation following vascular damage. Intraperitoneally-administered solCD39 ADPase activity in plasma peaked 1 hr post-injection, with an elimination half-life of 43 hr. Accordingly, mice were administered solCD39 or saline 1 hr prior to vessel injury, then either sacrificed 24 hr post-injury or treated with solCD39 or saline (3X weekly) for an additional 18 days. 24 hr post-injury, solCD39-treated mice displayed a reduction in platelet activation and recruitment, P-selectin expression, and leukocyte accumulation in the arterial lumen. Furthermore, repeated administration of solCD39 modulated the late stage of vascular injury by suppressing leukocyte deposition, macrophage infiltration and SMC proliferation/migration, resulting in abrogation of neointimal thickening. In contrast, injured femoral arteries of saline-injected mice exhibited massive platelet thrombus formation, marked P-selectin expression, and leukocyte infiltration. Pronounced neointimal growth with macrophage and SMC accretion was also observed (intimal-to-medial area ratio 1.56±0.34 at 19 days). Thus, systemic administration of solCD39 profoundly affects injury-induced cellular responses, minimizing platelet deposition and leukocyte recruitment, and suppressing neointimal hyperplasia. PMID:20024507
Burdorf, L; Riner, A; Rybak, E; Salles, I I; De Meyer, S F; Shah, A; Quinn, K J; Harris, D; Zhang, T; Parsell, D; Ali, F; Schwartz, E; Kang, E; Cheng, X; Sievert, E; Zhao, Y; Braileanu, G; Phelps, C J; Ayares, D L; Deckmyn, H; Pierson, R N; Azimzadeh, A M; Dandro, Amy; Karavi, Kasinath
2016-05-01
Here, we ask whether platelet GPIb and GPIIb/IIIa receptors modulate platelet sequestration and activation during GalTKO.hCD46 pig lung xenograft perfusion. GalTKO.hCD46 transgenic pig lungs were perfused with heparinized fresh human blood. Results from perfusions in which αGPIb Fab (6B4, 10 mg/l blood, n = 6), αGPIIb/IIIa Fab (ReoPro, 3.5 mg/l blood, n = 6), or both drugs (n = 4) were administered to the perfusate were compared to two additional groups in which the donor pig received 1-desamino-8-d-arginine vasopressin (DDAVP), 3 μg/kg (to pre-deplete von Willebrand Factor (pVWF), the main GPIb ligand), with or without αGPIb (n = 6 each). Platelet sequestration was significantly delayed in αGPIb, αGPIb+DDAVP, and αGPIb+αGPIIb/IIIa groups. Median lung "survival" was significantly longer (>240 vs. 162 min reference, p = 0.016), and platelet activation (as CD62P and βTG) were significantly inhibited, when pigs were pre-treated with DDAVP, with or without αGPIb Fab treatment. Pulmonary vascular resistance rise was not significantly attenuated in any group, and was associated with residual thromboxane and histamine elaboration. The GPIb-VWF and GPIIb/IIIa axes play important roles in platelet sequestration and coagulation cascade activation during GalTKO.hCD46 lung xenograft injury. GPIb blockade significantly reduces platelet activation and delays platelet sequestration in this xenolung rejection model, an effect amplified by adding αGPIIb/IIIa blockade or depletion of VWF from pig lung. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, T.M.; Majerus, P.W.
1986-05-01
Phosphoinositide breakdown in response to thrombin stimulation of human platelets generates messenger molecules that activate PKC (diglyceride) and mobilize Ca/sup + +/ (inositol tris-phosphates). The water soluble products of phospholipase C-mediated metabolism of phosphatidylinositol 4,5-diphosphate are inositol 1,4,5 P/sub 3/ (IP/sub 3/) and inositol 1:2-cyclic 4,5 P/sub 3/ (cIP/sub 3/). A specific phosphatase, IP/sub 3/ 5'-p'tase, cleaves the 5 phosphate from IP/sub 3/ or cIP/sub 3/ to form IP/sub 2/ or cIP/sub 2/ and P/sub i/, none of which mobilizes Ca/sup + +/. Thus, the IP/sub 3/ 5'-p'tase may regulate cellular responses to IP/sub 3/ or cIP/sub 3/. The authorsmore » find that IP/sub 3/ 5'-p'tase isolated from human platelets is phosphorylated by rat brain PKC, resulting in a 4-fold increase in IP/sub 3/ 5'-p'tase activity. The authors phosphorylated IP/sub 3/ 5'-p'tase using ..gamma.. /sup 32/P-ATP and found that the labeled enzyme comigrated on SDS-PAGE with the previously described 40K protein phosphorylated in response to thrombin stimulation of platelets. The similarity of the PKC-phosphorylated IP/sub 3/ 5'-p'tase observed in vitro and the thrombin-stimulated phosphorylated 40K protein known to be phosphorylated by PKC in vivo, suggests that these proteins may be the same. These results suggest that platelet Ca/sup + +/ mobilization maybe regulated by PKC phosphorylation of the IP/sub 3/ 5'-p'tase and can explain the observation that phorbol ester treatment of intact human platelets results in decreased production of IP/sub 3/ and decreased Ca/sup + +/ mobilization upon subsequent thrombin addition.« less
The Hippo pathway regulates human megakaryocytic differentiation.
Lorthongpanich, Chanchao; Jiamvoraphong, Nittaya; Supraditaporn, Kantpitchar; Klaihmon, Phatchanat; U-Pratya, Yaowalak; Issaragrisil, Surapol
2017-01-05
The Hippo pathway is involved in several biological processes in both flies and mammals. Recent studies have shown that the Hippo pathway regulates Drosophila's haematopoiesis; however, understanding of its role in mammalian haematopoiesis is still limited. In flies, deletion of the Hippo component gene, Warts, affects crystal cell differentiation. We explored the role of the Hippo pathway in human haematopoiesis focusing on megakaryopoiesis. To investigate the role of LATS1/2 (a mammalian homolog of Warts) in human megakaryoblastic cell differentiation and platelet formation, megakaryoblastic cell (MEG-01) line was used as a model to gain insight into mechanism of the Hippo pathway in mammalian megakaryopoiesis. Effect of LATS1/2 on megakaryoblastic cell differentiation and platelet production were determined by functional changes. We found that depletion of LATS1/2 resulted in an increase of CD41 + megakaryocytes with impaired platelet biogenesis. Our study shows that the Hippo signalling pathway plays a crucial role in human megakaryoblastic cell differentiation and thrombopoiesis.
NASA Astrophysics Data System (ADS)
Bekeschus, Sander; Brüggemeier, Janik; Hackbarth, Christine; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Partecke, Lars-Ivo; van der Linde, Julia
2018-03-01
Cold atmospheric (physical) plasma has long been suggested to be a useful tool for blood coagulation. However, the clinical applicability of this approach has not been addressed sufficiently. We have previously demonstrated the ability of a clinically accepted atmospheric pressure argon plasma jet (kINPen® MED) to coagulate liver incisions in mice with similar performance compared to the gold standard electrocauterization. We could show that plasma-mediated blood coagulation was dependent on platelet activation. In the present work, we extended on this by investigating kINPen®-mediated platelet activation in anticoagulated human donor blood ex vivo. With focus on establishing high-throughput, multi-parametric platelet activation assays and performing argon feed gas parameter studies we achieved the following results: (i) plasma activated platelets in heparinized but not in EDTA-anticoagulated blood; (ii) plasma decreased total platelet counts but increased numbers of microparticles; (iii) plasma elevated the expression of several surface activation markers on platelets (CD62P, CD63, CD69, and CD41/61); (iv) in platelet activation, wet and dry argon plasma outperformed feed gas admixtures with oxygen and/or nitrogen; (v) plasma-mediated platelet activation was accompanied by platelet aggregation. Platelet aggregation is a necessary requirement for blood clot formation. These findings are important to further elucidate molecular details and clinical feasibility of cold physical plasma-mediated blood coagulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L.; Wiesehahn, G.P.; Morel, P.A.
1989-07-01
Transmission of viral diseases through blood products remains an unsolved problem in transfusion medicine. We have developed a psoralen photochemical system for decontamination of platelet concentrates in which platelets are treated with long wavelength ultraviolet radiation (UVA, 320-400 nm) in the presence of 8-methoxypsoralen (8-MOP). Bacteria, RNA viruses, and DNA viruses ranging in genome size from 1.2 x 10(6) daltons, encompassing the size range of human pathogens, were inoculated into platelet concentrates and subjected to treatment. This system inactivated 25 to 30 logs/h of bacteria Escherichia coli or Staphylococcus aureus, 6 logs/h of bacteriophage fd, 0.9 log/h of bacteriophage R17more » and 1.1 logs/h of feline leukemia virus (FeLV) in platelet concentrates maintained in standard storage bags. Platelet integrity and in vitro function before, immediately following photochemical treatment, and during prolonged storage after treatment, were evaluated by measuring: (1) extracellular pH; (2) platelet yields; (3) extracellular lactate dehydrogenase (LDH) levels; (4) platelet morphology; (5) platelet aggregation responsiveness; (6) thromboxane beta-2 (TXB-2) production; (7) dense body secretion; and (8) alpha granule secretion. These assays demonstrated that this photochemical inactivation system inactivated bacteria and viruses in platelet concentrates with minimal adverse effects on the in vitro function of platelets in comparison to untreated control concentrates maintained under current, standard blood bank conditions.« less
Gramaglia, Irene; Velez, Joyce; Combes, Valery; Grau, Georges E R; Wree, Melanie; van der Heyde, Henri C
2017-03-23
Clinical studies indicate that thrombocytopenia correlates with the development of severe falciparum malaria, suggesting that platelets either contribute to control of parasite replication, possibly as innate parasite killer cells or function in eliciting pathogenesis. Removal of platelets by anti-CD41 mAb treatment, platelet inhibition by aspirin, and adoptive transfer of wild-type (WT) platelets to CD40-KO mice, which do not control parasite replication, resulted in similar parasitemia compared with control mice. Human platelets at a physiologic ratio of 1 platelet to 9 red blood cells (RBCs) did not inhibit the in vitro development or replication of blood-stage Plasmodium falciparum The percentage of Plasmodium -infected (iRBCs) with bound platelets during the ascending parasitemia in Plasmodium chabaudi - and Plasmodium berghei -infected mice and the 48-hour in vitro cycle of P falciparum was <10%. P chabaudi and P berghei iRBCs with apoptotic parasites (TdT + ) exhibited minimal platelet binding (<5%), which was similar to nonapoptotic iRBCs. These findings collectively indicate platelets do not kill bloodstage Plasmodium at physiologically relevant effector-to-target ratios. P chabaudi primary and secondary parasitemia was similar in mice depleted of platelets by mAb-injection just before infection, indicating that activation of the protective immune response does not require platelets. In contrast to the lack of an effect on parasite replication, adoptive transfer of WT platelets to CD40-KO mice, which are resistant to experimental cerebral malaria, partially restored experimental cerebral malaria mortality and symptoms in CD40-KO recipients, indicating platelets elicit pathogenesis and platelet CD40 is a key molecule. © 2017 by The American Society of Hematology.
Kahr, W H; Zheng, S; Sheth, P M; Pai, M; Cowie, A; Bouchard, M; Podor, T J; Rivard, G E; Hayward, C P
2001-07-15
The Quebec platelet disorder (QPD) is an autosomal dominant platelet disorder associated with delayed bleeding and alpha-granule protein degradation. The degradation of alpha-granule, but not plasma, fibrinogen in patients with the QPD led to the investigation of their platelets for a protease defect. Unlike normal platelets, QPD platelets contained large amounts of fibrinolytic serine proteases that had properties of plasminogen activators. Western blot analysis, zymography, and immunodepletion experiments indicated this was because QPD platelets contained large amounts of urokinase-type plasminogen activator (u-PA) within a secretory compartment. u-PA antigen was not increased in all QPD plasmas, whereas it was increased more than 100-fold in QPD platelets (P <.00009), which contained increased u-PA messenger RNA. Although QPD platelets contained 2-fold more plasminogen activator inhibitor 1 (PAI-1) (P <.0008) and 100-fold greater u-PA-PAI-1 complexes (P <.0002) than normal platelets, they contained excess u-PA activity, predominantly in the form of two chain (tcu-PA), which required additional PAI-1 for full inhibition. There was associated proteolysis of plasminogen in QPD platelets, to forms that comigrated with plasmin. When similar amounts of tcu-PA were incubated with normal platelet secretory proteins, many alpha-granule proteins were proteolyzed to forms that resembled degraded QPD platelet proteins. These data implicate u-PA in the pathogenesis of alpha-granule protein degradation in the QPD. Although patients with the QPD have normal to increased u-PA levels in their plasma, without evidence of systemic fibrinogenolysis, their increased platelet u-PA could contribute to bleeding by accelerating fibrinolysis within the hemostatic plug. QPD is the only inherited bleeding disorder in humans known to be associated with increased u-PA.
Mohammadi, Saeed; Nikbakht, Mohsen; Malek Mohammadi, Ashraf; Zahed Panah, Mahdi; Ostadali, Mohammad Reza; Nasiri, Hajar; Ghavamzadeh, Ardeshir
2016-07-01
Mesenchymal stromal cells (MSCs) are employed in various different clinical settings in order to modulate immune response. Human autologous and allogeneic supplements including platelet derivatives such as platelet lysate (PL), platelet-released factors (PRF) and serum are assessed in clinical studies to replace fetal bovine serum (FBS). The immunosuppressive activity and multi-potential characteristic of MSCs appear to be maintained when the cells are expanded in platelet derivatives. Platelet-rich plasma was collected from umbrical cord blood (UCB). Platelet-derived growth factors obtained by freeze and thaw methods. CD62P expression was determined by flow cytometry. The concentration of PDGF-BB and PDGF-AB was detemined by ELISA. We tested the ability of a different concentration of PL-supplemented medium to support the ex vivo expansion of Wharton's jelly derived MSCs. We also investigated the biological/functional properties of expanded MSCs in presence of different concentration of PL. The conventional karyotyping was performed in order to study the chromosomal stability. The gene expression of Collagen I and II aggrecan and SOX-9 in the presence of different concentrations of PL was evaluated by Real-time PCR. We observed 5% and 10% PL, causing greater effects on proliferation of MSCs .These cells exhibited typical morphology, immunophenotype and differentiation capacity. The genetic stability of these derivative cells from Wharton's jelly was demonstrated by a normal karyotype. Furthermore, the results of Real-time PCR analysis showed that the expression of chondrocyte specific genes was higher in MSCs in the presence of 5% and 10% PL, compared with FBS supplement. We demonstrated that PL could be used as an alternative safe source of growth factors for expansion of MSCs and also maintained similar growing potential and phenotype without any effect on chromosomal stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chomyn, A.; Lai, S.T.; Shakeley, R.
1994-06-01
In the present work, the authors demonstrate the possibility of using human blood platelets as mitochondrial donors for the repopulation of mtDNA-less ([rho][sup o]) cells. The noninvasive nature of platelet isolation, combined with the prolonged viability of platelet mitochondria and the simplicity and efficiency of the mitochondria-transfer procedure, has substantially increased the applicability of the [rho][sup o] cell transformation approach for mitochondrial genetic analysis and for the study of mtDNA-linked diseases. This approach has been applied to platelets from several normal human individuals and one individual affected by the myoclonic-epilepsy-and-ragged-red-fibers (MERRF) encephalomyopathy. A certain variability in respiratory capacity was observedmore » among the platelet-derived [rho][sup o] cell transformants from a given normal subject, and it was shown to be unrelated to their mtDNA content. The results of sequential transfer of mitochondria from selected transformants into a [rho][sup o] cell line different from the first [rho][sup o] acceptor strongly suggest that this variability reflected, at least in part, differences in nuclear gene content and/or activity among the original recipient cells. A much greater variability in respiratory capacity was observed among the transformants derived from the MERRF patient and was found to be related to the presence and amount of the mitochondrial tRNA[sup Lys] mutation associated with the MERRF syndrome. An analysis of the relationship between proportion of mtDNA carrying the MERRF mutation and degree of respiratory activity in various transformations derived from the MERRF patient revealed an unusual complementation behavior of the tRNA[sup Lys] mutation, possibly reflecting the distribution of mutant mtDNA among the platelet mitochondria. 29 refs., 4 figs., 1 tab.« less
Mohammadi, Saeed; Nikbakht, Mohsen; Malek Mohammadi, Ashraf; Zahed Panah, Mahdi; Ostadali, Mohammad Reza; Nasiri, Hajar; Ghavamzadeh, Ardeshir
2016-01-01
Background: Mesenchymal stromal cells (MSCs) are employed in various different clinical settings in order to modulate immune response. Human autologous and allogeneic supplements including platelet derivatives such as platelet lysate (PL), platelet-released factors (PRF) and serum are assessed in clinical studies to replace fetal bovine serum (FBS). The immunosuppressive activity and multi-potential characteristic of MSCs appear to be maintained when the cells are expanded in platelet derivatives. Materials and Methods: Platelet-rich plasma was collected from umbrical cord blood (UCB). Platelet-derived growth factors obtained by freeze and thaw methods. CD62P expression was determined by flow cytometry. The concentration of PDGF-BB and PDGF-AB was detemined by ELISA. We tested the ability of a different concentration of PL-supplemented medium to support the ex vivo expansion of Wharton's jelly derived MSCs. We also investigated the biological/functional properties of expanded MSCs in presence of different concentration of PL. The conventional karyotyping was performed in order to study the chromosomal stability. The gene expression of Collagen I and II aggrecan and SOX-9 in the presence of different concentrations of PL was evaluated by Real-time PCR. Results: We observed 5% and 10% PL, causing greater effects on proliferation of MSCs .These cells exhibited typical morphology, immunophenotype and differentiation capacity. The genetic stability of these derivative cells from Wharton's jelly was demonstrated by a normal karyotype. Furthermore, the results of Real-time PCR analysis showed that the expression of chondrocyte specific genes was higher in MSCs in the presence of 5% and 10% PL, compared with FBS supplement. Conclusions: We demonstrated that PL could be used as an alternative safe source of growth factors for expansion of MSCs and also maintained similar growing potential and phenotype without any effect on chromosomal stability. PMID:27489592
Martini, Angela K; Rodriguez, Cassandra M; Cap, Andrew P; Martini, Wenjun Z; Dubick, Michael A
2014-12-01
Acetaminophen (Ace) and meloxicam (Mel) are the two types of analgesic and antipyretic medications. This study investigated the dose responses of acetaminophen and meloxicam on platelet aggregation and coagulation function in human blood samples. Blood samples were collected from six healthy humans and processed to make platelet-adjusted (100 × 10 cells/μl) blood samples. Acetaminophen (Tylenol, Q-PAP, 100 mg/ml) was added at the doses of 0 μg/ml (control), 214 μg/ml (the standard dose, 1 ×), 4 ×, 8 ×, 10 ×, 12 ×, 16 ×, and 20 ×. Similarly, meloxicam (Metacam, 5 mg/ml) was added at doses of 0 μg/ml (control), 2.85 μg/ml (the standard dose, 1 ×), 4 ×, 8 ×, 10 ×, 12 ×, 16 ×, and 20 ×. Fifteen minutes after the addition of acetaminophen and/or meloxicam, platelet aggregation was stimulated with collagen (2 μg/ml) or arachidonic acid (0.5 mmol/l) and assessed using a Chrono-Log 700 aggregometer. Coagulation function was assessed by prothrombin time (PT), activated partial thromboplastin time (aPTT), and using Rotem thrombelastogram. A robust inhibition by acetaminophen and/or meloxicam was observed in arachidonic acid-stimulated platelet aggregation starting at 1 × dose. Collagen-stimulated platelet aggregation was inhibited by ACE starting at 1 × (78 ± 10% of control), and by meloxicam starting at 4 × (72 ± 5% of control, both P < 0.05). The inhibitions by acetaminophen and meloxicam combined were similar to those by acetaminophen or meloxicam. aPTT was prolonged by meloxicam starting at 4 ×. No changes were observed in PT or any of Rotem measurements by acetaminophen and/or meloxicam. Acetaminophen and meloxicam compromised platelet aggregation and aPTT. Further effort is warranted to characterize the effects of acetaminophen and meloxicam on bleeding in vivo.
Mechanism of platelet activation induced by endocannabinoids in blood and plasma.
Brantl, S Annette; Khandoga, Anna L; Siess, Wolfgang
2014-01-01
Platelets play a central role in atherosclerosis and atherothrombosis, and circulating endocannabinoids might modulate platelet function. Previous studies concerning effects of anandamide (N-arachidonylethanolamide) and 2-arachidonoylglycerol (2-AG) on platelets, mainly performed on isolated cells, provided conflicting results. We therefore investigated the action of three main endocannabinoids [anandamide, 2-AG and virodhamine (arachidonoylethanolamine)] on human platelets in blood and platelet-rich plasma (PRP). 2-AG and virodhamine induced platelet aggregation in blood, and shape change, aggregation and adenosine triphosphate (ATP) secretion in PRP. The EC50 of 2-AG and virodhamine for platelet aggregation in blood was 97 and 160 µM, respectively. Lower concentrations of 2-AG (20 µM) and virodhamine (50 µM) synergistically induced aggregation with other platelet stimuli. Platelet activation induced by 2-AG and virodhamine resembled arachidonic acid (AA)-induced aggregation: shape change, the first platelet response, ATP secretion and aggregation induced by 2-AG and virodhamine were all blocked by acetylsalicylic acid (ASA) or the specific thromboxane A2 (TXA2) antagonist daltroban. In addition, platelet activation induced by 2-AG and virodhamine in blood and PRP were inhibited by JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL). In contrast to 2-AG and virodhamine, anandamide, a substrate of fatty acid amidohydrolase, was inactive. Synthetic cannabinoid receptor subtype 1 (CB1) and 2 (CB2) agonists lacked stimulatory as well as inhibitory platelet activity. We conclude that 2-AG and virodhamine stimulate platelets in blood and PRP by a MAGL-triggered mechanism leading to free AA and its metabolism by platelet cyclooxygenase-1/thromboxane synthase to TXA2. CB1, CB2 or non-CB1/CB2 receptors are not involved. Our results imply that ASA and MAGL inhibitors will protect platelets from activation by high endocannabinoid levels, and that pharmacological CB1- and CB2-receptor ligands will not affect platelets and platelet-dependent progression and complications of cardiovascular diseases.
Bonferoni, Maria Cristina; Sandri, Giuseppina; Rossi, Silvia; Dellera, Eleonora; Invernizzi, Alessandro; Boselli, Cinzia; Cornaglia, Antonia Icaro; Del Fante, Claudia; Perotti, Cesare; Vigani, Barbara; Riva, Federica; Caramella, Carla; Ferrari, Franca
2018-02-09
Chitosan oleate was previously proposed to encapsulate in nanocarriers some poorly soluble molecules aimed to wound therapy, such as the anti-infective silver sulfadiazine, and the antioxidant α tocopherol. Because nanocarriers need a suitable formulation to be administered to wounds, in the present paper, these previously developed nanocarriers were loaded into freeze dried dressings based on chitosan glutamate. These were proposed as bioactive dressings aimed to support the application to wounds of platelet lysate, a hemoderivative rich in growth factors. The dressings were characterized for hydration capacity, morphological aspect, and rheological and mechanical behavior. Although chitosan oleate nanocarriers clearly decreased the mechanical properties of dressings, these remained compatible with handling and application to wounds. Preliminary studies in vitro on fibroblast cell cultures demonstrated good compatibility of platelet lysate with nanocarriers and bioactive dressings. An in vivo study on a murine wound model showed an accelerating wound healing effect for the bioactive dressing and its suitability as support of the platelet lysate application to wounds.
Bonferoni, Maria Cristina; Dellera, Eleonora; Invernizzi, Alessandro; Cornaglia, Antonia Icaro; Perotti, Cesare; Vigani, Barbara; Caramella, Carla; Ferrari, Franca
2018-01-01
Chitosan oleate was previously proposed to encapsulate in nanocarriers some poorly soluble molecules aimed to wound therapy, such as the anti-infective silver sulfadiazine, and the antioxidant α tocopherol. Because nanocarriers need a suitable formulation to be administered to wounds, in the present paper, these previously developed nanocarriers were loaded into freeze dried dressings based on chitosan glutamate. These were proposed as bioactive dressings aimed to support the application to wounds of platelet lysate, a hemoderivative rich in growth factors. The dressings were characterized for hydration capacity, morphological aspect, and rheological and mechanical behavior. Although chitosan oleate nanocarriers clearly decreased the mechanical properties of dressings, these remained compatible with handling and application to wounds. Preliminary studies in vitro on fibroblast cell cultures demonstrated good compatibility of platelet lysate with nanocarriers and bioactive dressings. An in vivo study on a murine wound model showed an accelerating wound healing effect for the bioactive dressing and its suitability as support of the platelet lysate application to wounds. PMID:29425164
R1: Platelets and Megakaryocytes contain functional NF-κB
Spinelli, Sherry L.; Casey, Ann E.; Pollock, Stephen J.; Gertz, Jacqueline M.; McMillan, David H.; Narasipura, Srinivasa D.; Mody, Nipa A.; King, Michael R.; Maggirwar, Sanjay B.; Francis, Charles W.; Taubman, Mark B.; Blumberg, Neil; Phipps, Richard P.
2010-01-01
The Nuclear Factor (NF)-κB transcription factor family is well-known for their role in eliciting inflammation and promoting cell survival. We discovered that human megakaryocytes and platelets express the majority of NF-κB family members including the regulatory Inhibitor (I)-κB and Inhibitor Kappa Kinase (IKK) molecules. Objective Investigate the presence and role of NF-κB proteins in megakaryocytes and platelets. Methods and Results Anucleate platelets exposed to NF-κB inhibitors demonstrated impaired fundamental functions involved in repairing vascular injury and thrombus formation. Specifically, NF-κB inhibition diminished lamellapodia formation, decreased clot retraction times and reduced thrombus stability. Moreover, inhibition of I-κB-α phosphorylation (BAY-11-7082) reverts fully spread platelets back to a spheroid morphology. Addition of recombinant IKK-β or I-κB-α protein to BAY inhibitor-treated platelets partially restore platelet spreading in I-κB-α inhibited platelets, and addition of active IKK-β increased endogenous I-κB-α phosphorylation levels. Conclusions These novel findings support a crucial and non-classical role for the NF-κB family in modulating platelet function and reveal that platelets are sensitive to NF-κB inhibitors. As NF-κB inhibitors are being developed as anti-inflammatory and anti-cancer agents, they may have unintended effects on platelets. Based on these data, NF-κB is also identified as a new target to dampen unwanted platelet activation. PMID:20042710
Three-dimensional multi-scale model of deformable platelets adhesion to vessel wall in blood flow
Wu, Ziheng; Xu, Zhiliang; Kim, Oleg; Alber, Mark
2014-01-01
When a blood vessel ruptures or gets inflamed, the human body responds by rapidly forming a clot to restrict the loss of blood. Platelets aggregation at the injury site of the blood vessel occurring via platelet–platelet adhesion, tethering and rolling on the injured endothelium is a critical initial step in blood clot formation. A novel three-dimensional multi-scale model is introduced and used in this paper to simulate receptor-mediated adhesion of deformable platelets at the site of vascular injury under different shear rates of blood flow. The novelty of the model is based on a new approach of coupling submodels at three biological scales crucial for the early clot formation: novel hybrid cell membrane submodel to represent physiological elastic properties of a platelet, stochastic receptor–ligand binding submodel to describe cell adhesion kinetics and lattice Boltzmann submodel for simulating blood flow. The model implementation on the GPU cluster significantly improved simulation performance. Predictive model simulations revealed that platelet deformation, interactions between platelets in the vicinity of the vessel wall as well as the number of functional GPIbα platelet receptors played significant roles in platelet adhesion to the injury site. Variation of the number of functional GPIbα platelet receptors as well as changes of platelet stiffness can represent effects of specific drugs reducing or enhancing platelet activity. Therefore, predictive simulations can improve the search for new drug targets and help to make treatment of thrombosis patient-specific. PMID:24982253
D'Angelo, D D; Davis, M G; Houser, W A; Eubank, J J; Ritchie, M E; Dorn, G W
1995-09-01
Platelet thromboxane receptors are acutely and reversibly upregulated after acute myocardial infarction. To determine if platelet thromboxane receptors are under transcriptional control, we isolated and characterized human genomic DNA clones containing the 5' flanking region of the thromboxane receptor gene. The exon-intron structure of the 5' portion of the thromboxane receptor gene was determined initially by comparing the nucleotide sequence of the 5' flanking genomic clone with that of a novel human uterine thromboxane receptor cDNA that extended the mRNA 141 bp further upstream than the previously identified human placental cDNA. A major transcription initiation site was located in three human tissues approximately 560 bp upstream from the translation initiation codon and 380 bp upstream from any previously identified transcription initiation site. The thromboxane receptor gene has neither a TATA nor a CAAT consensus site. Promoter function of the 5' flanking region of the thromboxane receptor gene was evaluated by transfection of thromboxane receptor gene promoter/chloramphenicol acetyltransferase (CAT) chimera plasmids into platelet-like K562 cells. Thromboxane receptor promoter activity, as assessed by CAT expression, was relatively weak but was significantly enhanced by phorbol ester treatment. Functional analysis of 5' deletion constructs in transfected K562 cells and gel mobility shift localized the major phorbol ester-responsive motifs in the thromboxane receptor gene promoter to a cluster of activator protein-2 (AP-2) binding consensus sites located approximately 1.8 kb 5' from the transcription initiation site. These studies are the first to determine the structure and organization of the 5' end of the thromboxane receptor gene and demonstrate that thromboxane receptor gene expression can be regulated by activation of protein kinase C via induction of an AP-2-like nuclear factor binding to upstream promoter elements. These findings strongly suggest that the mechanism for previously described upregulation of platelet thromboxane receptors after acute myocardial infarction is increased thromboxane receptor gene transcription in platelet-progenitor cells.
Li, Cheng-xue; Zhao, Xin; Qian, Jing; Yan, Jie
2012-07-01
To determine the distribution of integrins and calcium channels on major human and mouse host cells of Leptospira species. The expression of β1, β2 and β3 integrins was detected with immunofluorescence assay on the surface of human monocyte line THP-1, mouse mononuclear-macrophage-like cell line J774A.1, human vascular endothelial cell line HUVEC, mouse vascular endothelial cell EOMA, human hepatocyte line L-02, mouse hepatocyte line Hepa1-6, human renal tubular epithelial cell line HEK-293, mouse glomerular membrane epithelial cell line SV40-MES13, mouse collagen blast line NIH/3T3, human and mouse platelets. The distribution of voltage gate control calcium channels Cav3.1, Cav3.2, Cav3.3 and Cav2.3, and receptor gate calcium channels P(2)X(1), P(2)2X(2), P(2)X(3), P(2)X(4), P(2)X(5), P(2)X(6) and P(2)X(7) were determined with Western blot assay. β1 integrin proteins were positively expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, L-02, Hepa1-6 and HEK-239 cells as well as human and mouse platelets. β2 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, and NIH/3T3 cells. β3 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, Hepa1-6, HEK-239 and NIH/3T3 cells as well as human and mouse platelets. P(2)X(1) receptor gate calcium channel was expressed on the membrane surface of human and mouse platelets, while P(2)X(5) receptor gate calcium channel was expressed on the membrane surface of J774A.1, THP-1, L-02, Hepa1-6, HEK-239 and HUVEC cells. However, the other calcium channels were not detected on the tested cell lines or platelets. There is a large distribution diversity of integrins and calcium channel proteins on the major human and mouse host cells of Leptospira species, which may be associated with the differences of leptospira-induced injury in different host cells.
Platelet lysate formulations based on mucoadhesive polymers for the treatment of corneal lesions.
Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Ferrari, Franca; Mori, Michela; Del Fante, Claudia; Perotti, Cesare; Scudeller, Luigia; Caramella, Carla
2011-02-01
Growth factors contained in platelet α-granules initiate and modulate tissue repair and are proposed for the treatment of soft and hard-tissue surgical conditions and in the management of non-healing wounds. Platelet lysate is a hemoderivative obtained from platelet-rich plasma and is capable of releasing a pool of growth factors. Many medical and surgical techniques have been proposed for the treatment of corneal lesions; management of these conditions remains problematic and healing with standard protocols is unattainable. The aim of this study was to develop formulations suitable for prolonging the contact of platelet lysate with the damaged cornea for the time necessary to exert a therapeutic effect. Two vehicles, one based on polyacrylic acid and one based on chitosan, were autoclaved and loaded with platelet lysate and the resultant formulations were characterized for rheology, mucoadhesion, vehicle compatibility and stability. The proliferation effect was tested on two cell culture types (rabbit corneal epithelial cells and fibroblasts). An in-vitro wound-healing test was performed on fibroblasts. In both cases the formulations were compared with platelet lysate diluted with saline at the same concentration. Both formulations maintained the rheological and mucoadhesive properties of the vehicles and the proliferative activity of platelet lysate. The chitosan formulation was able to significantly enhance epithelial cell growth even after storage of up to 2 weeks (in-use conditions), while the polyacrylic acid formulation was less efficient, probably due to the characteristics of the cell model used. The in-vitro wound-healing test performed on fibroblasts confirmed the differences between the two vehicles. The effect induced by the platelet lysate and chitosan formulation was faster than that of the polyacrylic acid formulation and complete in-vitro wound repair was achieved within 48 h. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society.
Serebruany, Victor; Malinin, Alex; Pokov, Alex; Arora, Umesh; Atar, Dan; Angiolillo, Dominick
2007-01-01
Ongoing search for the optimal dosing regimens, and valid concerns that some GPIIb/IIIa inhibitors may cause rebound platelet activation are limiting the use of these agents in patients with acute vascular events. We assessed the in vitro effects of preincubation with escalating (12.5-200 ng/mL) concentrations of tirofiban on platelet biomarkers in 20 diabetic patients. Platelet activity was assessed by ADP-, and collagen-induced conventional plasma aggregometry, and by whole blood flow cytometry measuring expression of PECAM-1, GPIb, GP IIb/IIIa antigen and activity, vitronectin, P-selectin, LAMP-1, GP 37, LAMP-3, activated and intact PAR-1 thrombin receptors, GPIV, and platelet-monocyte formation. All patients were treated with aspirin (at least 81 mg daily for 1 month); other antiplatelet agents were not allowed. Significant decrease of ADP-induced platelet aggregation was observed starting at the low 12.5 ng/mL concentration (p=0.0001), with total inhibition occurring at 50 ng/mL of tirofiban dose. Inhibition of collagen-induced platelet aggregability requires 25 ng/ml of tirofiban (p=0.002), and was complete at 100 ng/mL. Dose-dependent blockade of GP IIb/IIIa activity was observed with tirofiban concentrations over 50 ng/mL (p=0.003). Other receptors were unaffected even with the high doses of tirofiban (100-200 ng/mL). Tirofiban completely inhibits ADP- and, with the higher dose, collagen-induced platelet aggregation. Higher loading dose of tirofiban used in the ongoing TENACITY trial (100 ng/mL) may be superior with regard to clinical outcomes to the regimens used in PRISM-PLUS (25 ng/mL), or TARGET (50 ng/mL). Selective inhibition of GPIIb/IIIa activity, and lack of alternative platelet activation beyond the GP IIb/IIIa blockade may represent the therapeutic advantage of tirofiban over other agents.
"Non alcoholic fatty liver disease and eNOS dysfunction in humans".
Persico, Marcello; Masarone, Mario; Damato, Antonio; Ambrosio, Mariateresa; Federico, Alessandro; Rosato, Valerio; Bucci, Tommaso; Carrizzo, Albino; Vecchione, Carmine
2017-03-07
NAFLD is associated to Insulin Resistance (IR). IR is responsible for Endothelial Dysfunction (ED) through the impairment of eNOS function. Although eNOS derangement has been demonstrated in experimental models, no studies have directly shown that eNOS dysfunction is associated with NAFLD in humans. The aim of this study is to investigate eNOS function in NAFLD patients. Fifty-four NAFLD patients were consecutively enrolled. All patients underwent clinical and laboratory evaluation and liver biopsy. Patients were divided into two groups by the presence of NAFL or NASH. We measured vascular reactivity induced by patients' platelets on isolated mice aorta rings. Immunoblot assays for platelet-derived phosphorylated-eNOS (p-eNOS) and immunohistochemistry for hepatic p-eNOS have been performed to evaluate eNOS function in platelets and liver specimens. Flow-mediated-dilation (FMD) was also performed. Data were compared with healthy controls. Twenty-one (38, 8%) patients had NAFL and 33 (61, 7%) NASH. No differences were found between groups and controls except for HOMA and insulin (p < 0.0001). Vascular reactivity demonstrated a reduced function induced from NAFLD platelets as compared with controls (p < 0.001), associated with an impaired p-eNOS in both platelets and liver (p < 0.001). NAFL showed a higher impairment of eNOS phosphorylation in comparison to NASH (p < 0.01). In contrast with what observed in vitro, the vascular response by FMD was worse in NASH as compared with NAFL. Our data showed, for the first time in humans, that NAFLD patients show a marked eNOS dysfunction, which may contribute to a higher CV risk. eNOS dysfunction observed in platelets and liver tissue didn't match with FMD.
Gajos, Katarzyna; Kamińska, Agnieszka; Awsiuk, Kamil; Bajor, Adrianna; Gruszczyński, Krzysztof; Pawlak, Anna; Żądło, Andrzej; Kowalik, Artur; Budkowski, Andrzej; Stępień, Ewa
2017-02-01
Among the various biomarkers that are used to diagnose or monitor disease, extracellular vesicles (EVs) represent one of the most promising targets in the development of new therapeutic strategies and the application of new diagnostic methods. The detection of circulating platelet-derived microvesicles (PMVs) is a considerable challenge for laboratory diagnostics, especially in the preliminary phase of a disease. In this study, we present a multistep approach to immobilizing and detecting PMVs in biological samples (microvesicles generated from activated platelets and human platelet-poor plasma) on functionalized silicon substrate. We describe the application of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and spectroscopic ellipsometry methods to the detection of immobilized PMVs in the context of a novel imaging flow cytometry (ISX) technique and atomic force microscopy (AFM). This novel approach allowed us to confirm the presence of the abundant microvesicle phospholipids phosphatidylserine (PS) and phosphatidylethanolamine (PE) on a surface with immobilized PMVs. Phosphatidylcholine groups (C 5 H 12 N + ; C 5 H 15 PNO 4 + ) were also detected. Moreover, we were able to show that ellipsometry permitted the immobilization of PMVs on a functionalized surface to be evaluated. The sensitivity of the ISX technique depends on the size and refractive index of the analyzed microvesicles. Graphical abstract Human platelets activated with thrombin (in concentration 1IU/mL) generate population of PMVs (platelet derived microvesicles), which can be detected and enumerated with fluorescent-label method (imaging cytometry). Alternatively, PMVs can be immobilized on the modified silicon substrate which is functionalized with a specific IgM murine monoclonal antibody against human glycoprotein IIb/IIIa complex (PAC-1). Immobilized PMVs can be subjected to label-free analyses by means ellipsometry, atomic force microscopy (AFM) and time-of-flight secondary ion mass spectrometry (TOF-SIMS).
Murata, K; Sakon, M; Kambayashi, J; Yukawa, M; Yano, Y; Fujitani, K; Kawasaki, T; Shiba, E; Mori, T
1993-04-01
Protein phosphatase 1 is considered to be involved in thrombin-induced platelet activation (Murata et al., Biochem Int 26:327-334, 1992). To clarify the mechanism, we examined the effects of protein phosphatase 1 and 2A inhibitors (calyculin A, tautomycin, okadaic acid) on Ca2+ influx. In the presence of 1 mM Ca2+, thrombin- (0.1 U/ml) induced platelet aggregation and ATP release were inhibited by calyculin A, while this inhibitory effect was abolished in the absence of Ca2+ (EGTA 1 mM). Furthermore, thrombin-induced Mn2+ influx but not intracellular Ca2+ mobilization was inhibited by calyculin A in a dose-related manner. Calyculin A also blocked the ongoing Ca2+ influx when added 3 min after thrombin stimulation. Similar inhibitory effects were observed with okadaic acid and tautomycin in the same potency sequence as the reported one for protein phosphatase 1 (calyculin A > tautomycin > okadaic acid). These results suggest that the anti-platelet effects of phosphatase inhibitors are due to the inhibition of Ca2+ influx and that protein phosphatase 1 plays a key role in the regulation of receptor operated Ca2+ channel of human platelets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molina y Vedia, L.M.; Lapetina, E.G.
1986-08-15
Inositol trisphosphate (IP3) is formed in response to specific agonists that cause activation of phospholipase C and degradation of phosphatidylinositol bisphosphate. IP3 is a second messenger that releases Ca/sup 2 +/ from the dense tubular system to the cytosol in stimulated platelets. Our present information indicates that (/sup 3/H)IP3 is dephosphorylated to (/sup 3/H)inositol bisphosphate (IP2) and (/sup 3/H)inositol monophosphate (IP) by human platelets treated with 0.05-0.10% Triton X-100. This dephosphorylation of (/sup 3/H)IP3 to (/sup 3/H)IP2 and (/sup 3/H)IP is also observed when platelets are permeabilized by electrical stimulation or by 20 micrograms/ml saponin. These detergents or electropermeabilization allowmore » IP3 to access cytosolic IP3 phosphatase. Pretreatment of intact platelets with phorbol dibutyrate and 1-oleyl-2-acetyldiacylglycerol for 30 s, at concentrations that maximally activate protein kinase C, stimulates the conversion of IP3 to IP2 and IP. This suggests a role for protein kinase C in the regulation of IP3 degradation.« less
Cines, Douglas B.; Lebedeva, Tatiana; Nagaswami, Chandrasekaran; Hayes, Vincent; Massefski, Walter; Litvinov, Rustem I.; Rauova, Lubica; Lowery, Thomas J.
2014-01-01
Contraction of blood clots is necessary for hemostasis and wound healing and to restore flow past obstructive thrombi, but little is known about the structure of contracted clots or the role of erythrocytes in contraction. We found that contracted blood clots develop a remarkable structure, with a meshwork of fibrin and platelet aggregates on the exterior of the clot and a close-packed, tessellated array of compressed polyhedral erythrocytes within. The same results were obtained after initiation of clotting with various activators and also with clots from reconstituted human blood and mouse blood. Such close-packed arrays of polyhedral erythrocytes, or polyhedrocytes, were also observed in human arterial thrombi taken from patients. The mechanical nature of this shape change was confirmed by polyhedrocyte formation from the forces of centrifugation of blood without clotting. Platelets (with their cytoskeletal motility proteins) and fibrin(ogen) (as the substrate bridging platelets for contraction) are required to generate the forces necessary to segregate platelets/fibrin from erythrocytes and to compress erythrocytes into a tightly packed array. These results demonstrate how contracted clots form an impermeable barrier important for hemostasis and wound healing and help explain how fibrinolysis is greatly retarded as clots contract. PMID:24335500
Palankar, Raghavendra; Binsker, Ulrike; Haracska, Bianca; Wesche, Jan; Greinacher, Andreas; Hammerschmidt, Sven
2018-04-18
S. aureus associated bacteremia can lead to severe infections with high risk of mortality (e.g. sepsis, infective endocarditis). Many virulence factors and adhesins of S. aureus are known to directly interact with platelets. Extracellular adherence protein, Eap, one of the most important virulence factors in S. aureus mediated infections is a multi-tandem domain protein and has been shown to interact with almost all cell types in the human circulatory system. By using amine reactive fluorescent N-hydroxysuccinimidyl (NHS)-ester dyes and by direct detection with primary fluorescently conjugated anti-histidine (His-tag) antibodies against detect N-terminal His6, we show Eap subdomain Eap D 3 D 4 specifically interacts and rapidly activates human platelets. Furthermore, we validate our finding by using site directed directional immobilization of Eap D 3 D 4 through N-terminal His 6 on nickel (II)-nitrilotriacetic acid (Ni-NTA) functionalized bacteriomimetic microbead arrays to visualize real-time platelet activation through calcium release assay. These methods offer an easily adoptable protocols for screening of S.aureus derived virulence factors and adhesins with platelets. Copyright © 2018 Elsevier GmbH. All rights reserved.
Metabolism of dehydroepiandrosterone sulfate and estrone-sulfate by human platelets.
Garrido, A; Munoz, Y; Sierralta, W; Valladares, L
2012-01-01
The aim of the present research was to study the uptake of DHEAS, and to establish the intracrine capacity of human platelets to produce sex steroid hormones. The DHEAS transport was evaluated through the uptake of [(3)H]-DHEAS in the presence or absence of different substrates through the organic anion transporting polypeptide (OATP) family. The activity of sulfatase enzyme was evaluated, and the metabolism of DHEAS was measured by the conversion of [(3)H]-DHEAS to [(3)H]-androstenedione, [(3)H]-testosterone, [(3)H]-estrone and [(3)H]-17beta-estradiol. Results indicated the existence in the plasma membrane of an OATP with high affinity for DHEAS and estrone sulphate (E(1)S). The platelets showed the capacity to convert DHEAS to active DHEA by the steroid-sulfatase activity. The cells resulted to be a potential site for androgens production, since they have the capacity to produce androstenedione and testosterone; in addition, they reduced [(3)H]-estrone to [(3)H]-17beta-estradiol. This is the first demonstration that human platelets are able to import DHEAS and E(1)S using the OATP family and to convert DHEAS to active DHEA, and to transform E(1)S to 17beta-estradiol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanderBerg, S.R.; Gonias, S.L.
1989-01-01
Covalent conjugates of bovine serum albumin (BSA) and 5-HT, ketanserin or d-lysergic acid were synthesized and characterized by polyacrylamide gel electrophoresis, whole blood clearance experiments in mice and aggregation studies with human platelets. Using the standard synthesis procedure, each mol of BSA bound 13.4 mol of (/sup 3/H)5-HT. Derivatization did not cause significant protein aggregation as determined by electrophoresis. All three conjugates antagonized the ability of 5-HT to amplify aggregation caused by low concentrations of ADP. The antagonist activity of each conjugate was concentration dependent; 2.6 ..mu..M 5-HT-BSA completely inhibited the aggregation caused by 13 ..mu..M 5-HT. None of themore » BSA drug conjugates, including 5-HT-BSA, amplified platelet aggregation caused by ADP in the absence of 5-HT. Aggregation by ristocetin, collagen, epinephrine or ADP alone was not significantly affected by the conjugates. Whole blood elimination experiments in mice demonstrated that the three conjugates and underivatized BSA are equally stable in the circulation. These prototypic 5-HT drug-protein conjugates may be useful for probing 5-HT/sub 2/ receptor-ligand interactions in human platelets.« less
Effect of electric charge on the adhesion of human blood platelets.
Lowkis, B; Szymonowicz, M
1993-01-01
The paper presents the results of research into the effect of the size and depth of the implanted electric charge on the adhesion of human blood platelets. The experiments were carried out on polyethylene terephthalate PET foil of 36 microns thickness. The electret formation process was carried out in an electron-beam device. The electrization conditions were such that electrets with the excess electric charge accumulated at various depths were obtained. The selection of conditions was verified by investigating the space charge distribution with the use of the virtual electrode method. The microscopic observation of non-electrified foils and electrets as well as the quantitative examination of the adhesion of human blood platelets has explicitly confirmed the positive influence of the electret effect on the thrombogenesis of PET foil. This made it possible to define the optimum electrization conditions. The research has additionally indicated that the relationship between the amount of adherent blood platelets and the size of the electric charge is not a simple relation of the kind: the larger negative charge, the more thrombogenic material. The decisive and positive effect of the space charge has been confirmed by analysing the effectiveness of the surface and space charge.
Morgan, Lloyd T; Thomas, Christopher P; Kühn, Hartmut; O'Donnell, Valerie B
2010-10-01
Arachidonate-containing oxidized phospholipids are acutely generated by 12-LOX (12-lipoxygenase) in agonist-activated platelets. In the present study, formation of structurally related lipids by oxidation of DHA (docosahexaenoic acid)-containing phospholipids is demonstrated using lipidomic approaches. Precursor scanning reverse-phase LC (liquid chromatography)-MS/MS (tandem MS) identified a new family of lipids that comprise phospholipid-esterified HDOHE (hydroxydocosahexaenoic acid). Two diacyl and two plasmalogen PEs (phosphatidylethanolamines) containing predominantly the 14-HDOHE positional isomer (18:0p/14-HDOHE-PE, 18:0a/14-HDOHE-PE, 16:0a/14-HDOHE-PE and 16:0p/14-HDOHE-PE) were structurally characterized using MS/MS and by comparison with biogenic standards. An involvement of 12-LOX was indicated as purified recombinant human 12-LOX also generated the 14-HDOHE isomer from DHA. Pharmacological studies using inhibitors and recombinant platelet 12-LOX indicate that they form via esterification of newly formed non-esterified HDOHE. HDOHE-PEs formed at significant rates (2-4 ng/4×10(7) cells) within 2-180 min of thrombin stimulation, and their formation was blocked by calcium chelation. In summary, a new family of oxidized phospholipid was identified in thrombin-activated human platelets.
Layered nanocomposites inspired by the structure and mechanical properties of nacre.
Wang, Jianfeng; Cheng, Qunfeng; Tang, Zhiyong
2012-02-07
Nacre (mother-of-pearl), made of inorganic and organic constituents (95 vol% aragonite calcium carbonate (CaCO(3)) platelets and 5 vol% elastic biopolymers), possesses a unique combination of remarkable strength and toughness, which is compatible for conventional high performance materials. The excellent mechanical properties are related to its hierarchical structure and precisely designed organic-inorganic interface. The rational design of aragonite platelet strength, aspect ratio of aragonite platelets, and interface strength ensures that the strength of nacre is maximized under platelet pull-out failure mode. At the same time, the synergy of strain hardening mechanisms acting over multiple scales results in platelets sliding on one another, and thus maximizes the energy dissipation of viscoplastic biopolymers. The excellent integrated mechanical properties with hierarchical structure have inspired chemists and materials scientists to develop biomimetic strategies for artificial nacre materials. This critical review presents a broad overview of the state-of-the-art work on the preparation of layered organic-inorganic nanocomposites inspired by nacre, in particular, the advantages and disadvantages of various biomimetic strategies. Discussion is focused on the effect of the layered structure, interface, and component loading on strength and toughness of nacre-mimic layered nanocomposites (148 references). This journal is © The Royal Society of Chemistry 2012
Bertling, Anne; Brodde, Martin F; Visser, Mayken; Treffon, Janina; Fennen, Michelle; Fender, Anke C; Kelsch, Reinhard; Kehrel, Beate E
2017-09-01
Hemarthrosis, or bleeding into the joints, is a hallmark of hemophilia. Heme triggers oxidative stress, inflammation, and destruction of cartilage and bone. The haptoglobin-CD163-heme oxygenase-1 (HO-1) pathway circumvents heme toxicity through enzymatic degradation of heme and transcription of antioxidant genes. Plasma-derived factor concentrates contain many proteins that might impact on cellular pathways in joints, blood, and vessels. Activation of platelets from healthy volunteers was assessed by flow cytometry analysis of fibrinogen binding and CD62P expression. Platelet CXCL4 release was measured by ELISA. Human peripheral blood mononuclear cells were exposed to CXCL4 or platelet supernatants (untreated or pre-stimulated with factor VIII (FVIII) products) during their differentiation to macrophages and analyzed for CD163 expression. Some macrophage cultures were additionally incubated with autologous hemoglobin for 18 h for analysis of HO-1 expression. Platelet CXCL4 release was increased by all 8 tested plasma-derived FVIII products but not the 3 recombinant products. Macrophages exposed to supernatant from platelets treated with some plasma-derived FVIII products downregulated CD163 surface expression and failed to upregulate the athero- and joint protective enzyme HO-1 in response to hemoglobin. Plasma-derived FVIII products might promote bleeding-induced joint injury via generation of macrophages that are unable to counteract redox stress.
Tandon, N N; Holland, E A; Kralisz, U; Kleinman, H K; Robey, F A; Jamieson, G A
1991-01-01
A microtitre adhesion assay has been developed to define parameters affecting the adherence of washed platelets to laminin. Adherence was optimally supported by Mg2+ and was inhibited by Ca2+ and by anti-laminin Fab fragments, but significant adhesion (75-90% of control) was found both in heparinized plasma containing physiological levels of bivalent cations and in plasma anti-coagulated with EGTA. Adherence was unaffected by platelet activation with ADP but was decreased by 50% by treatment with alpha-thrombin (1 unit/ml, 5 min). Adherence was unaffected by monospecific polyclonal antibodies to glycoprotein (GP) Ib and GPIV, and was normal with platelets from two patients with Glanzmann's thrombasthaenia, indicating that GPIb, the GPIIb/IIIa complex and GPIV are not involved in platelet-laminin interaction. Affinity chromatography of Triton-solubilized membranes on laminin-Sepharose followed by elution with 0.2 M-glycine/HCl (pH 2.85) identified a major band with a molecular mass of 67 kDa in the reduced and of 53 kDa in the unreduced form. This protein gave a positive reaction on Western blotting with a monospecific polyclonal antibody raised against the high-affinity laminin receptor isolated from human breast carcinoma tissue. The adhesion of platelets to laminin was inhibited by two monoclonal IgM antibodies specific to the LR-1 domain of the 67 kDa receptor. The binding protein was surface-oriented, as shown by flow cytofluorimetry and by the fact that it could be iodinated in intact platelets, but it was not labelled by the periodate-borotritide procedure, suggesting that it did not contain terminal sialic acid. The laminin-derived peptides Tyr-Ile-Gly-Ser-Arg and Cys-Asp-Pro-Gly-Tyr-Ile-Gly-Ser-Arg-NH2, which constitute a complementary binding domain in laminin for the 67 kDa receptor, themselves supported platelet adhesion, bound to the receptor and inhibited the adhesion of platelets to laminin. In addition, Fab fragments of anti-Tyr-Ile-Gly-Ser-Arg antibody inhibited platelet adhesion to laminin. These results demonstrate that the high-affinity 67 kDa laminin receptor previously identified in a range of normal and transformed cells and its complementary Tyr-Ile-Gly-Ser-Arg binding domain play an important role in the interaction of platelets with laminin. Images Fig. 4. Fig. 8. PMID:1826081
Duan, Xin; Sandell, Linda J.; Chinzei, Nobuaki; Holguin, Nilsson; Silva, Matthew J.; Schiavinato, Antonella
2017-01-01
Objective To investigate the therapeutic potential of intra-articular hyaluronan-derivative HYADD® 4-G and/or platelet-rich plasma (PRP) in a mouse model of non-invasive joint injury. Methods Non-invasive axial tibial loading was used to induce joint injury in 10-week-old C57BL/6J mice (n = 86). Mice underwent a single loading of either 6 Newton (N) or 9N axial tibial compression. HYADD® 4-G was injected intra-articularly at 8 mg/mL or 15 mg/mL either before or after loading with or without PRP. Phosphate-buffered-saline was injected as control. Knee joints were harvested at 5 or 56 days post-loading and prepared for micro-computed tomography scanning and subsequently processed for histology. Immunostaining was performed for aggrecan to monitor its distribution, for CD44 to monitor chondrocyte reactive changes and for COMP (cartilage oligomeric matrix protein) as an index for cartilage matrix changes related to loading and cartilage injury. TUNEL assay was performed to identify chondrocyte apoptosis. Results Loading initiated cartilage proteoglycan loss and chondrocyte apoptosis within 5 days with slowly progressive post-traumatic osteoarthritis (no cartilage degeneration, but increased synovitis and ectopic calcification after 9N loading) at 56 days. Mice treated with repeated HYADD® 4-G (15 mg/mL) or HYADD® 4-G (8 mg/mL) ± PRP or PRP alone exhibited no significant improvement in the short-term (5 days) and long-term (56 days) consequences of joint loading except for a trend for improved bone changes compared to non-loaded joints. Conclusion While we failed to show an overall effect of intra-articular delivery of hyaluronan-derivative and/or PRP in reversing/protecting the pathological events in cartilage and synovium following joint injury, some bone alterations were relatively less severe with hyaluronan-derivative at higher concentration or in association with PRP. PMID:28406954
Platelet lysate obtained via plateletpheresis performed in standing and awake equine donors.
Sumner, Scarlett M; Naskou, Maria C; Thoresen, Merrilee; Copland, Ian; Peroni, John F
2017-07-01
Platelet preparations containing growth factors, attachment factors, and enzymes are appealing to enhance healing of injured tissues and as an alternative to xenogenic serum in cell culture media. Plateletpheresis is commonly used to collect platelets in human medicine but has not been validated in horses. Plateletpheresis to collect platelet concentrate was performed on six female, mixed breed, chemically restrained horses using commercially available apheresis equipment. Before and immediately after plateletpheresis, we performed physical examinations and collected blood for chemistry and coagulation panels and then again at 8, 16, 24, and 48 hours after the procedure. To produce platelet lysate, the platelet concentrate underwent two freeze-thaw cycles followed by centrifugation and filtration processing. The platelet lysate was then analyzed for cellular debris, fibrinogen, and growth factors. The collected platelet concentration contained a mean platelet yield of 390 × 10 3 /μL. Donor platelet count decreased from a mean of 193 × 10 3 /μL to 138 × 10 3 /μL after plateletpheresis, but no individual was at risk for hemorrhage. Pooled platelet lysate had minimal cellular residue and contained growth factor concentrations at 6.1 ng/mL for transforming growth factor-β1, at 3.5 ng/mL for platelet-derived growth factor-BB, and at 13.8 ng/mL for vascular endothelial growth factor-A. Plateletpheresis using commercially available apheresis equipment is a feasible option for collecting platelet concentrate from equine donors. The lysate generated from the apheresis product contains growth factors and has potential to be used as a fetal bovine serum substitute for cell culture. © 2017 AABB.
Guessous, Fadila; Marcinkiewicz, Marek; Polanowska-Grabowska, Renata; Kongkhum, Sudawadee; Heatherly, Daniel; Obrig, Tom; Gear, Adrian R. L.
2005-01-01
Shiga toxins (Stxs) produced by Shigella dysenteriae type 1 and enterohemorrhagic Escherichia coli are the most common cause of hemolytic-uremic syndrome (HUS). It is well established that vascular endothelial cells, mainly those located in the renal microvasculature, are targets for Stxs. The aim of the present research was to evaluate whether E. coli-derived Shiga toxin 2 (Stx2) incubated with human microvascular endothelial cells (HMEC-1) induces release of chemokines and other factors that might stimulate platelet function. HMEC-1 were exposed for 24 h in vitro to Stx2, lipopolysaccharide (LPS), or the Stx2-LPS combination, and chemokine production was assessed by immunoassay. More interleukin-8 was released than stromal cell-derived factor 1α (SDF-1α) or SDF-1β and RANTES. The Stx2-LPS combination potentiated chemokine release, but Stx2 alone caused more release of SDF-1α at 24 h than LPS or Stx2-LPS did. In the presence of low ADP levels, HMEC-1 supernatants activated platelet function assessed by classical aggregometry, single-particle counting, granule secretion, P-selectin exposure, and the formation of platelet-monocyte aggregates. Supernatants from HMEC-1 exposed only to Stx2 exhibited enhanced exposure of platelet P-selectin and platelet-THP-1 cell interactions. Blockade of platelet cyclooxygenase by indomethacin prevented functional activation. The chemokine RANTES enhanced platelet aggregation induced by SDF-1α, macrophage-derived chemokine, or thymus and activation-regulated chemokine in the presence of very low ADP levels. These data support the hypothesis that microvascular endothelial cells exposed to E. coli O157:H7-derived Stx2 and LPS release chemokines and other factors, which when combined with low levels of primary agonists, such as ADP, cause platelet activation and promote the renal thrombosis associated with HUS. PMID:16299328
Pradhan, Subhashree; Khatlani, Tanvir; Nairn, Angus C; Vijayan, K Vinod
2017-08-11
Thrombosis is caused by the activation of platelets at the site of ruptured atherosclerotic plaques. This activation involves engagement of G protein-coupled receptors (GPCR) on platelets that promote their aggregation. Although it is known that protein kinases and phosphatases modulate GPCR signaling, how serine/threonine phosphatases integrate with G protein signaling pathways is less understood. Because the subcellular localization and substrate specificity of the catalytic subunit of protein phosphatase 1 (PP1c) is dictated by PP1c-interacting proteins, here we sought to identify new PP1c interactors. GPCRs signal via the canonical heterotrimeric Gα and Gβγ subunits. Using a yeast two-hybrid screen, we discovered an interaction between PP1cα and the heterotrimeric G protein Gβ 1 subunit. Co-immunoprecipitation studies with epitope-tagged PP1c and Gβ 1 revealed that Gβ 1 interacts with the PP1c α, β, and γ1 isoforms. Purified PP1c bound to recombinant Gβ 1 -GST protein, and PP1c co-immunoprecipitated with Gβ 1 in unstimulated platelets. Thrombin stimulation of platelets induced the dissociation of the PP1c-Gβ 1 complex, which correlated with an association of PP1c with phospholipase C β3 (PLCβ3), along with a concomitant dephosphorylation of the inhibitory Ser 1105 residue in PLCβ3. siRNA-mediated depletion of GNB1 (encoding Gβ 1 ) in murine megakaryocytes reduced protease-activated receptor 4, activating peptide-induced soluble fibrinogen binding. Thrombin-induced aggregation was decreased in PP1cα -/- murine platelets and in human platelets treated with a small-molecule inhibitor of Gβγ. Finally, disruption of PP1c-Gβ 1 complexes with myristoylated Gβ 1 peptides containing the PP1c binding site moderately decreased thrombin-induced human platelet aggregation. These findings suggest that Gβ 1 protein enlists PP1c to modulate GPCR signaling in platelets.
Effects of Acute Exposure to an Environmental Electrophile on Human Platelet Bioenergetics
Exposure to air pollution is a global public health problem associated with cardiovascular morbidity and mortality. Exposure to particulate matter (PM) has been reported to activate circulating platelets in vulnerable populations (patients with type 2 diabetes or coronary heart d...
Luci, Diane K.; Jameson, J. Brian; Yasgar, Adam; Diaz, Giovanni; Joshi, Netra; Kantz, Auric; Markham, Kate; Perry, Steve; Kuhn, Norine; Yeung, Jennifer; Kerns, Edward H.; Schultz, Lena; Holinstat, Michael; Nadler, Jerry L.; Taylor-Fishwick, David A.; Jadhav, Ajit; Simeonov, Anton; Holman, Theodore R.; Maloney, David J.
2014-01-01
Human lipoxygenases (LOXs) are a family of iron-containing enzymes which catalyze the oxidation of polyunsaturated fatty acids to provide the corresponding bioactive hydroxyeicosatetraenoic acid (HETE) metabolites. These eicosanoid signaling molecules are involved in a number of physiologic responses such as platelet aggregation, inflammation, and cell proliferation. Our group has taken a particular interest in platelet-type 12-(S)-LOX (12-LOX) because of its demonstrated role in skin diseases, diabetes, platelet hemostasis, thrombosis, and cancer. Herein, we report the identification and medicinal chemistry optimization of a 4-((2-hydroxy-3-methoxybenzyl)amino)benzenesulfonamide-based scaffold. Top compounds, exemplified by 35 and 36, display nM potency against 12-LOX, excellent selectivity over related lipoxygenases and cyclooxygenases, and possess favorable ADME properties. In addition, both compounds inhibit PAR-4 induced aggregation and calcium mobilization in human platelets and reduce 12-HETE in β-cells. PMID:24393039
NASA Technical Reports Server (NTRS)
Rubin, R. J.; Schiffer, C. A.
1975-01-01
Platelet concentrates were shown to contain 18-38 mg/100 ml of a phthalate plasticizer (DEHP) which arose by migration from the vinyl plastic packs in which the plateletes were prepared and stored. Transfusion of these platelets into 6 adult patients with leukemia resulted in peak blood plasma levels of DEHP ranging from 0.34 - 0.83 mg/100 ml. The blood levels fell mono-exponentially with a mean rate of 2.83 percent per minute and a half-life of 28.0 minutes. Urine was assayed by a method that would measure unchanged DEHP as well as all phthalic acid-containing metabolities. In two patients, at most 60 and 90% of the infused dose, respectively, was excreted in the urine collected for 24 hours post-transfusion. These estimates, however, could be high due to the simultaneous excretion of DEHP remaining from previous transfusions or arising from uncontrolled environmental exposures.
Moreau, Thomas; Evans, Amanda L; Vasquez, Louella; Tijssen, Marloes R; Yan, Ying; Trotter, Matthew W; Howard, Daniel; Colzani, Maria; Arumugam, Meera; Wu, Wing Han; Dalby, Amanda; Lampela, Riina; Bouet, Guenaelle; Hobbs, Catherine M; Pask, Dean C; Payne, Holly; Ponomaryov, Tatyana; Brill, Alexander; Soranzo, Nicole; Ouwehand, Willem H; Pedersen, Roger A; Ghevaert, Cedric
2016-04-07
The production of megakaryocytes (MKs)--the precursors of blood platelets--from human pluripotent stem cells (hPSCs) offers exciting clinical opportunities for transfusion medicine. Here we describe an original approach for the large-scale generation of MKs in chemically defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: GATA1, FLI1 and TAL1. The forward programmed MKs proliferate and differentiate in culture for several months with MK purity over 90% reaching up to 2 × 10(5) mature MKs per input hPSC. Functional platelets are generated throughout the culture allowing the prospective collection of several transfusion units from as few as 1 million starting hPSCs. The high cell purity and yield achieved by MK forward programming, combined with efficient cryopreservation and good manufacturing practice (GMP)-compatible culture, make this approach eminently suitable to both in vitro production of platelets for transfusion and basic research in MK and platelet biology.
Rywaniak, Joanna; Luzak, Boguslawa; Podsedek, Anna; Dudzinska, Dominika; Rozalski, Marcin; Watala, Cezary
2015-01-01
Polyphenolic compounds of plant origin are well known to be beneficial to human health: they exert protective effects on haemostasis and have a particular influence on blood platelets. However, the anti-platelet properties of polyphenolic compounds observed so far have not been weighed against their potential cytotoxic action against platelets. The aim of this study was to demonstrate that anti-platelet and cytotoxic effects on blood platelets may interfere and therefore, may often lead to confusion when evaluating the properties of plant extracts or other agents towards blood platelets. The anti-platelet and cytotoxic in vitro effects of plant extracts obtained from the husks of walnuts (J. regia) and flowers of arnica (A. montana) on platelet reactivity and viability were examined. Platelet function was assessed using standard methods (flow cytometry: P-selectin expression, activation of GPIIbIIIa complex, vasodilator-stimulated phosphoprotein, VASP index; turbidimetric and impedance aggregometry) and newly set assays (flow cytometric monitoring of platelet cytotoxicity). The results reveal that none of the studied plant extracts demonstrated cytotoxicity towards blood platelets. The phenolic acid-rich extract of A. montana (7.5 and 15 µg/ml) significantly reduced the ADP-induced aggregation in both whole blood and PRP, and decreased the platelet reactivity index (PRI; VASP phosphorylation) in whole blood, while showing excellent antioxidant capacity. The extract of J. regia husks significantly reduced ADP-induced platelet aggregation in whole blood when applied at 7.5 µg/ml, and only slightly decreased the PRI at 15 µg/ml. Both examined extracts suppressed platelet hyper-reactivity, and such influence did not interfere with cytotoxic effects of the extracts. Thus, its high polyphenol content, excellent antioxidant capacity and distinct anti-platelet properties, in combination with its lack of toxicity, make the extract of A. montana flowers a possible candidate as an anti-platelet agent or a compounding diet supplement.
Ashraf, Tariq; Ahmed, Munir; Talpur, M Saeed; Kundi, Asadullah; Faruqui, Azhar Masood A; Jaffery, Abdul Hafeez; Fareed, Aslam
2005-10-01
The primary objective of this study was to test the hypothesis that the antiplatelet effects of loading dose of locally manufactured clopidogrel Lowplat referred as drug (B) 600 mg (8 tablets) given once is comparable to the antiplatelet effects of loading dose of foreign manufactured clopidogrel Plavix referred as drug (A) 600 mg (8 tablets) given once in patients with suspected ischemic heart disease. This was a double blind, randomized, cross over, study, to compare the safety and efficacy of study drug (B) versus (A) in adult subjects suffering from suspected ischemic heart disease presented at National Institute of Cardiovascular Disease (NICVD), Karachi. Mean platelet aggregation inhibition by drug (B) was 60.7% (p<0.001), while with drug (A) it was 57.8% (p<0.001), using 20 micromol/L ADP, which is statistically significant and comparable. Clopidogrel 600 mg as loading dose was well tolerated. Both drugs were equally effective in reducing the platelet aggregation. CLAP-IHD confirmed that drug (B) and (A) are equally effective and comparable antithrombotics in Pakistani population. The cost benefit of drug (B) should be made beneficial to the patients.
Nhek, Sokha; Clancy, Robert; Lee, Kristen A.; Allen, Nicole M.; Barrett, Tessa J.; Marcantoni, Emanuela; Nwaukoni, Janet; Rasmussen, Sara; Rubin, Maya; Newman, Jonathan D.; Buyon, Jill P.; Berger, Jeffrey S.
2017-01-01
Objective Systemic lupus erythematosus (SLE) is associated with the premature development of cardiovascular disease. The platelet–endothelium interaction is important in the pathogenesis of cardiovascular disease. In this study, we investigated the platelet phenotype from patients with SLE and matched controls, and their effect on endothelial cells. Approach and Results Platelet aggregability was measured in 54 SLE subjects off antiplatelet therapy (mean age 40.1±12.8 years; 82% female; 37% white) with age- and sex-matched controls. Platelets were coincubated with human umbilical vein endothelial cells (HUVECs) and changes to gene expression assessed by an RNA array and quantitative reverse transcription polymerase chain reaction. SLE disease activity index ranged from 0 to 22 (mean 5.1±3.9). Compared with controls, patients with SLE had significantly increased monocyte and leukocyte–platelet aggregation and platelet aggregation in response to submaximal agonist stimulation. An agnostic microarray of HUVECs cocultured with SLE platelets found a platelet-mediated effect on endothelial gene pathways involved in cell activation. Sera from SLE versus control subjects significantly increased (1) activation of control platelets; (2) platelet adhesion to HUVECs; (3) platelet-induced HUVEC gene expression of interleukin-8, and intercellular adhesion molecule 1; and (4) proinflammatory gene expression in HUVECs, mediated by interleukin-1β–dependent pathway. Incubation of SLE-activated platelets with an interleukin-1β–neutralizing antibody or HUVECs pretreated with interleukin-1 receptor antibodies attenuated the platelet-mediated activation of endothelial cells. Conclusions Platelet activity measurements and subsequent interleukin-1β–dependent activation of the endothelium are increased in subjects with SLE. Platelet–endothelial interactions may play a role in the pathogenesis of cardiovascular disease in patients with SLE. PMID:28153882
Yacoub, Daniel; Hachem, Ahmed; Théorêt, Jean-François; Gillis, Marc-Antoine; Mourad, Walid; Merhi, Yahye
2010-12-01
CD40 ligand is a thromboinflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40 ligand (sCD40L), which has been shown to influence platelet activation, although its exact functional impact on platelets and the underlying mechanisms remain undefined. We aimed to determine the impact and the signaling mechanisms of sCD40L on platelets. sCD40L strongly enhances platelet activation and aggregation. Human platelets treated with a mutated form of sCD40L that does not bind CD40, and CD40(-/-) mouse platelets failed to elicit such responses. Furthermore, sCD40L stimulation induces the association of the tumor necrosis factor receptor-associated factor-2 with platelet CD40. Notably, sCD40L primes platelets through activation of the small GTPase Rac1 and its downstream target p38 mitogen-activated protein kinase, which leads to platelet shape change and actin polymerization. Moreover, sCD40L exacerbates thrombus formation and leukocyte infiltration in wild-type mice but not in CD40(-/-) mice. sCD40L enhances agonist-induced platelet activation and aggregation through a CD40-dependent tumor necrosis factor receptor-associated factor-2/Rac1/p38 mitogen-activated protein kinase signaling pathway. Thus, sCD40L is an important platelet primer predisposing platelets to enhanced thrombus formation in response to vascular injury. This may explain the link between circulating levels of sCD40L and cardiovascular diseases.
Chen, Zengsheng; Mondal, Nandan K; Zheng, Shirong; Koenig, Steven C; Slaughter, Mark S; Griffith, Bartley P; Wu, Zhongjun J
2017-11-28
Thrombosis and bleeding are devastating adverse events in patients supported with blood-contacting medical devices (BCMDs). In this study, we delineated that high non-physiological shear stress (NPSS) caused platelet dysfunction that may contribute to both thrombosis and bleeding. Human blood was subjected to NPSS with short exposure time. Levels of platelet surface GPIbα and GPVI receptors as well as activation level of GPIIb/IIIa in NPSS-sheared blood were examined with flow cytometry. Adhesion of sheared platelets on fibrinogen, von Willibrand factor (VWF), and collagen was quantified with fluorescent microscopy. Ristocetin- and collagen-induced platelet aggregation was characterized by aggregometry. NPSS activated platelets in a shear and exposure time-dependent manner. The number of activated platelets increased with increasing levels of NPSS and exposure time, which corresponded well with increased adhesion of sheared platelets on fibrinogen. Concurrently, NPSS caused shedding of GPIbα and GPVI in a manner dependent on shear and exposure time. The loss of intact GPIbα and GPVI increased with increasing levels of NPSS and exposure time. The number of platelets adhered on VWF and collagen decreased with increasing levels of NPSS and exposure time, respectively. The decrease in the number of platelets adhered on VWF and collagen corresponded well with the loss in GPIbα and GPVI on platelet surface. Both ristocetin- and collagen-induced platelet aggregation in sheared blood decreased with increasing levels of NPSS and exposure time. The study clearly demonstrated that high NPSS causes simultaneous platelet activation and receptor shedding, resulting in a paradoxical effect on platelet function via two distinct mechanisms. The results from the study suggested that the NPSS could induce the concurrent propensity for both thrombosis and bleeding in patients.
Schulz, C; von Brühl, M-L; Barocke, V; Cullen, P; Mayer, K; Okrojek, R; Steinhart, A; Ahmad, Z; Kremmer, E; Nieswandt, B; Frampton, J; Massberg, S; Schmidt, R
2011-05-01
Platelets play a central role in hemostasis, in inflammatory diseases such as atherosclerosis, and during thrombus formation following vascular injury. Thereby, platelets interact intensively with monocytes and enhance their recruitment to the vascular wall. To investigate the role of the extracellular matrix metalloproteinase inducer (EMMPRIN) in platelet-monocyte interactions. Isolated human monocytes were perfused in vitro over firmly adherent platelets to allow investigation of the role of EMMPRIN in platelet-monocyte interactions under flow conditions. Monocytes readily bound to surface-adherent platelets. Both antibody blockade and gene silencing of monocyte EMMPRIN substantially attenuated firm adhesion of monocytes to platelets at arterial and venous shear rates. In vivo, platelet interactions with the murine monocyte cell line ANA-1 were significantly decreased when ANA-1 cells were pretreated with EMMPRIN-silencing small interfering RNA prior to injection into wild-type mice. Using intravital microscopy, we showed that recruitment of EMMPRIN-silenced ANA-1 to the injured carotid artery was significantly reduced as compared with control cells. Further silencing of EMMPRIN resulted in significantly fewer ANA-1-platelet aggregates in the mouse circulation as determined by flow cytometry. Finally, we identified glycoprotein (GP)VI as a critical corresponding receptor on platelets that mediates interaction with monocyte EMMPRIN. Thus, blocking of GPVI inhibited the effect of EMMPRIN on firm monocyte adhesion to platelets under arterial flow conditions in vitro, and abrogated EMMPRIN-mediated platelet-monocyte aggregate formation in vivo. EMMPRIN supports platelet-monocyte interactions and promotes monocyte recruitment to the arterial wall. Therefore, EMMPRIN might represent a novel target to reduce vascular inflammation and atherosclerotic lesion development. © 2011 International Society on Thrombosis and Haemostasis.
Fibrin activates GPVI in human and mouse platelets
Alshehri, Osama M.; Montague, Samantha; Watson, Stephanie K.; Frampton, Jon; Bender, Markus; Watson, Steve P.
2015-01-01
The glycoprotein VI (GPVI)-Fc receptor γ (FcRγ) chain is the major platelet signaling receptor for collagen. Paradoxically, in a FeCl3 injury model, occlusion, but not initiation of thrombus formation, is delayed in GPVI-deficient and GPVI-depleted mice. In this study, we demonstrate that GPVI is a receptor for fibrin and speculate that this contributes to development of an occlusive thrombus. We observed a marked increase in tyrosine phosphorylation, including the FcRγ chain and Syk, in human and mouse platelets induced by thrombin in the presence of fibrinogen and the αIIbβ3 blocker eptifibatide. This was not seen in platelets stimulated by a protease activated receptor (PAR)-4 peptide, which is unable to generate fibrin from fibrinogen. The pattern of tyrosine phosphorylation was similar to that induced by activation of GPVI. Consistent with this, thrombin did not induce tyrosine phosphorylation of Syk and the FcRγ chain in GPVI-deficient mouse platelets. Mouse platelets underwent full spreading on fibrin but not fibrinogen, which was blocked in the presence of a Src kinase inhibitor or in the absence of GPVI. Spreading on fibrin was associated with phosphatidylserine exposure (procoagulant activity), and this too was blocked in GPVI-deficient platelets. The ectodomain of GPVI was shown to bind to immobilized monomeric and polymerized fibrin. A marked increase in embolization was seen following FeCl3 injury in GPVI-deficient mice, likely contributing to the delay in occlusion in this model. These results demonstrate that GPVI is a receptor for fibrin and provide evidence that this interaction contributes to thrombus growth and stability. PMID:26282541
Protti, Alessandro; Fortunato, Francesco; Caspani, Maria L.; Pluderi, Mauro; Lucchini, Valeria; Grimoldi, Nadia; Solimeno, Luigi P.; Fagiolari, Gigliola; Ciscato, Patrizia; Zella, Samis M. A.; Moggio, Maurizio; Comi, Giacomo P.; Gattinoni, Luciano
2014-01-01
Platelets can serve as general markers of mitochondrial (dys)function during several human diseases. Whether this holds true even during sepsis is unknown. Using spectrophotometry, we measured mitochondrial respiratory chain biochemistry in platelets and triceps brachii muscle of thirty patients with septic shock (within 24 hours from admission to Intensive Care) and ten surgical controls (during surgery). Results were expressed relative to citrate synthase (CS) activity, a marker of mitochondrial density. Patients with septic shock had lower nicotinamide adenine dinucleotide dehydrogenase (NADH)/CS (p = 0.015), complex I/CS (p = 0.018), complex I and III/CS (p<0.001) and complex IV/CS (p = 0.012) activities in platelets but higher complex I/CS activity (p = 0.021) in triceps brachii muscle than controls. Overall, NADH/CS (r2 = 0.00; p = 0.683) complex I/CS (r2 = 0.05; p = 0.173), complex I and III/CS (r2 = 0.01; p = 0.485), succinate dehydrogenase (SDH)/CS (r2 = 0.00; p = 0.884), complex II and III/CS (r2 = 0.00; p = 0.927) and complex IV/CS (r2 = 0.00; p = 0.906) activities in platelets were not associated with those in triceps brachii muscle. In conclusion, several respiratory chain enzymes were variably inhibited in platelets, but not in triceps brachii muscle, of patients with septic shock. Sepsis-induced mitochondrial changes in platelets do not reflect those in other organs. PMID:24787741
Lee, Ji-Hye; Nam, Jinwoo; Kim, Hee Joong; Yoo, Jeong Joon
2015-03-11
For successful tissue regeneration, effective cell delivery to defect site is very important. Various types of polymer biomaterials have been developed and applied for effective cell delivery. PLGA (poly lactic-co-glycolic acid), a synthetic polymer, is a commercially available and FDA approved material. Platelet-rich plasma (PRP) is an autologous growth factor cocktail containing various growth factors including PDGF, TGFβ-1 and BMPs, and has shown positive effects on cell behaviors. We hypothesized that PRP pretreatment on PLGA mesh using different methods would cause different patterns of platelet adhesion and stages which would modulate cell adhesion and proliferation on the PLGA mesh. In this study, we pretreated PRP on PLGA using three different methods including simple dripping (SD), dynamic oscillation (DO) and centrifugation (CE), then observed the amount of adhered platelets and their activation stage distribution. The highest amount of platelets was observed on CE mesh and calcium treated CE mesh. Moreover, calcium addition after PRP coating triggered dramatic activation of platelets which showed large and flat morphologies of platelets with rich fibrin networks. Human chondrocytes (hCs) and human bone marrow stromal cells (hBMSCs) were next cultured on PRP-pretreated PLGA meshes using different preparation methods. CE mesh showed a significant increase in the initial cell adhesion of hCs and proliferation of hBMSCs compared with SD and DO meshes. The results demonstrated that the centrifugation method can be considered as a promising coating method to introduce PRP on PLGA polymeric material which could improve cell-material interaction using a simple method.
Bedet, Alexandre; Razazi, Keyvan; Boissier, Florence; Surenaud, Mathieu; Hue, Sophie; Giraudier, Stéphane; Brun-Buisson, Christian; Mekontso Dessap, Armand
2018-06-01
Thrombocytopenia is a common feature of sepsis and may involve various mechanisms often related to the inflammatory response. This study aimed at evaluating factors associated with thrombocytopenia during human septic shock. In particular, we used a multiplex analysis to assess the role of endogenous sepsis mediators. Prospective, observational study. Thrombocytopenia was defined as an absolute platelet count <100 G/L or a 50% relative decrease in platelet count during the first week of septic shock. Plasma concentrations of 27 endogenous mediators involved in sepsis and platelet pathophysiology were assessed at day-1 using a multi-analyte Milliplex human cytokine kit. Patients with underlying diseases at risk of thrombocytopenia (hematological malignancies, chemotherapy, cirrhosis, and chronic heart failure) were excluded. Thrombocytopenia occurred in 33 (55%) of 60 patients assessed. Patients with thrombocytopenia were more prone to present with extrapulmonary infections and bacteremia. Disseminated intravascular coagulation was frequent (81%) in these patients. Unbiased hierarchical clustering identified five different clusters of sepsis mediators, including one with markers of platelet activation (e.g., thrombospondin-1) positively associated with platelet count, one with markers of inflammation (e.g., tumor necrosis factor alpha and heat shock protein 70), and endothelial dysfunction (e.g., intercellular adhesion molecule-1 and vascular cell adhesion molecule-1) negatively associated with platelet count, and another involving growth factors of thrombopoiesis (e.g., thrombopoietin), also negatively associated with platelet count. Surrogates of hemodilution (e.g., hypoprotidemia and higher fluid balance) were also associated with thrombocytopenia. Multiple mechanisms seemed involved in thrombocytopenia during septic shock, including endothelial dysfunction/coagulopathy, hemodilution, and altered thrombopoiesis.
NASA Astrophysics Data System (ADS)
Ndungu, Patrick Gathura
Bipolar electrochemistry occurs when an isolated conductive substrate inside an electric field supports both oxidation and reduction reactions. The method requires no direct contact between the power supply and the substrate. In the following thesis bipolar electrochemistry has been used to deposit palladium onto isolated graphite platelets, carbon nanofibers (CNF), and carbon nanotubes (CNT), as well as, various metals, a semiconductor, and an electropolymer on CNTs. Initial work used pulsed DC electric fields to deposit palladium onto isolated graphite platelets. Transmission electron microscopy (TEM) studies on the platelets found palladium metal on one area, indicative of a bipolar mechanism, and palladium deposits that varied from surface bound to highly ramified deposits. No correlation was found between the frequency used to prepare the deposits and the palladium metal dispersion. The same field intensities and frequencies used on the graphite platelets were used to produce CNFs with palladium on one tip. The amount of palladium deposited on one tip of a CNF was controlled by adjusting how long the electric field was applied. Preliminary experiments to produce bulk quantities of CNFs with palladium bipolar electrodeposits used CNFs ball milled with silica, and CNFs suspended in tetrahydrofuran or methylene chloride. The palladium content, measured by atomic absorption spectroscopy, of the functionalized CNFs in silica showed no difference with increased CNF loading; however, TEM studies found a small number of functionalized chloride used suspensions with high loadings of CNFs which led to small percentages of CNFs with bipolar electrodeposited palladium. Finally CNTs obtained commercially and CNTs grown using chemical vapor deposition were successfully functionalized using bipolar electrodeposition. These experiments demonstrate a reliable and controlled method to modify nanostructured materials.
Ludwig, Hilary C; Birdwhistell, Kate E; Brainard, Benjamin M; Franklin, Samuel P
2017-12-01
It remains unestablished whether use of cyclooxygenase (COX)-2 inhibitors impairs platelet activation and anabolic growth factor release from platelets in platelet-rich plasma (PRP). The purpose of this study was to assess the effects of a COX-2 inhibitor on platelet activation and anabolic growth factor release from canine PRP when using a clinically applicable PRP activator and to determine whether a 3-day washout would be sufficient to abrogate any COX-2 inhibitor-related impairment on platelet function. Controlled laboratory study. Ten healthy dogs underwent blood collection and PRP preparation. Dogs were then administered a COX-2 inhibitor for 7 days, after which PRP preparation was repeated. The COX-2 inhibitor was continued for 4 more days and PRP preparation performed a third time, 3 days after discontinuation of the COX-2 inhibitor. Immediately after PRP preparation, the PRP was divided into 4 aliquots: 2 unactivated and 2 activated using human γ-thrombin (HGT). One activated and 1 unactivated sample were assessed using flow cytometry for platelet expression of CD62P and platelet-bound fibrinogen using the canine activated platelet-1 (CAP1) antibody. The 2 remaining samples were centrifuged and the supernatant assayed for transforming growth factor-β1 (TGF-β1), platelet-derived growth factor-BB (PDGF-BB), and thromboxane B2 (TXB2) concentrations. Differences in platelet activation and TGF-β1, PDGF-BB, and TXB2 concentrations over the 3 study weeks were evaluated using a 1-way repeated-measures ANOVA, and comparisons between activated and unactivated samples within a study week were assessed with paired t tests. There were no statistically significant ( P > .05) effects of the COX-2 inhibitor on percentage of platelets positive for CD62P or CAP1 or on concentrations of TGF-β1, PDGF-BB, or TXB2. All unactivated samples had low levels of activation or growth factor concentrations and significantly ( P < .05) greater activation and growth factor concentrations in HGT-activated samples. This COX-2 inhibitor did not impair platelet activation, growth factor release, or TXB2 production in this canine PRP when using HGT as an activator. Studies are warranted to determine whether COX-2 inhibitors affect platelet activation and growth factor release from human PRPs. These results suggest that there is no need to withhold a COX-2 inhibitor before PRP preparation, particularly if thrombin is going to be used to activate the PRP. This is clinically relevant information because many patients who are candidates for PRP therapy for treatment of musculoskeletal injury are also using COX-2 inhibitors.
Hippophae rhamnoides L. Fruits Reduce the Oxidative Stress in Human Blood Platelets and Plasma
Olas, Beata; Kontek, Bogdan; Malinowska, Paulina; Żuchowski, Jerzy; Stochmal, Anna
2016-01-01
Effects of the phenolic fraction from Hippophae rhamnoides fruits on the production of thiobarbituric acid reactive substances (TBARS, a marker of lipid peroxidation) and the generation of superoxide anion (O2 −∙) in human blood platelets (resting platelets and platelets stimulated by a strong physiological agonist, thrombin) were studied in vitro. We also examined antioxidant properties of this fraction against human plasma lipid peroxidation and protein carbonylation induced by a strong biological oxidant, hydrogen peroxide (H2O2) or H2O2/Fe (a donor of hydroxyl radicals). The tested fraction of H. rhamnoides (0.5– 50 µg/mL; the incubation time: 15 and 60 min) inhibited lipid peroxidation induced by H2O2 or H2O2/Fe. The H. rhamnoides phenolic fraction inhibited not only plasma lipid peroxidation, but also plasma protein carbonylation stimulated by H2O2 or H2O2/Fe. Moreover, the level of O2 −∙ in platelets significantly decreased. In comparative experiments, the H. rhamnoides fraction was a more effective antioxidant than aronia extract or grape seed extract (at the highest tested concentration, 50 µg/mL). The obtained results suggest that H. rhamnoides fruits may be a new, promising source of natural compounds with antioxidant and antiplatelet activity beneficial not only for healthy people, but also for those with oxidative stress-associated diseases. PMID:26933473
Armour, Kathryn L; Smith, Cheryl S; Turner, Craig P; Kirton, Christopher M; Wilkes, Anthony M; Hadley, Andrew G; Ghevaert, Cedric; Williamson, Lorna M; Clark, Michael R
2014-01-01
G1Δnab is a mutant human IgG1 constant region with a lower ability to interact with FcγR than the natural IgG constant regions. Radiolabelled RBCs and platelets sensitised with specific G1Δnab Abs were cleared more slowly from human circulation than IgG1-sensitised counterparts. However, non-destructive splenic retention of G1Δnab-coated RBCs required investigation and plasma radioactivities now suggest this also occurred for platelets sensitised with an IgG1/G1Δnab mixture. In vitro assays with human cells showed that G1Δnab-sensitised RBCs did not cause FcγRI-mediated monocyte activation, FcγRIIIa-mediated antibody-dependent cell-mediated cytotoxicity (ADCC) or macrophage phagocytosis although they did adhere to macrophages. Thus, FcγRII was implicated in the adhesion despite the Δnab mutation reducing the already low-affinity binding to this receptor class. Additional contacts via P-selectin enhance the interaction of sensitised platelets with monocytes and this system provided evidence of FcγRII-dependent activation by G1Δnab. These results emphasise the physiological relevance of low-affinity interactions: It appears that FcγRII interactions of G1Δnab allowed splenic retention of G1Δnab-coated RBCs with inhibitory FcγRIIb binding preventing RBC destruction and that FcγRIIb engagement by G1Δnab on IgG1/G1Δnab-sensitised platelets overcame activation by IgG1. Considering therapeutic blocking Abs, G1Δnab offers lower FcγR binding and a greater bias towards inhibition than IgG2 and IgG4 constant regions. PMID:24285214
Nishiyama, U; Kuwaki, T; Akahori, H; Kato, T; Ikeda, Y; Miyazaki, H
2005-02-01
Previous in vitro studies demonstrated that thrombopoietin (TPO) acts on platelets to activate a variety of intracellular signaling pathways and to enhance platelet sensitivity to multiple agonists. Little is known, however, about whether TPO exerts prothrombotic effects in vivo. The aim of this study was to examine the effects of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF), a pegylated N-terminal domain of human TPO, in a rat model of venous thrombosis. A microthrombus was photochemically induced on the vessel wall of a mesenteric venule, but the vessel was not occluded by it. A single intravenous injection of PEG-rHuMGDF (3 microg kg(-1)) after the thrombus generation into normal rats enhanced the thrombus size, resulting in transient thrombotic occlusion in the majority of rats. Stimulatory effects on thrombus growth were also observed following administration of glycosylated recombinant human full-length TPO (6 microg kg(-1)). In rats rendered thrombocytopenic by total body irradiation, however, PEG-rHuMGDF, even at 300 microg kg(-1), did not induce a significant increase in thrombus size or thrombotic occlusion. Platelets from thrombocytopenic rats had decreased surface levels of c-Mpl and decreased sensitivity to PEG-rHuMGDF in an in vitro aggregation response. Thus, decreased prothrombotic effects of PEG-rHuMGDF in thrombocytopenic rats might be the result not only of low platelet counts but also of decreased platelet reactivity to PEG-rHuMGDF. These results indicate that PEG-rHuMGDF has little effect on venous thrombus formation in thrombocytopenic states associated with high endogenous TPO levels.
A virally inactivated functional growth factor preparation from human platelet concentrates.
Su, C-Y; Kuo, Y P; Lin, Y C; Huang, C-T; Tseng, Y H; Burnouf, T
2009-08-01
Human platelet growth factors (HPGF) are essential for tissue regeneration and may replace fetal bovine serum (FBS) in cell therapy. No method for the manufacture of standardized virally inactivated HPGF has been developed yet. Platelet concentrates (PC) were subjected to solvent/detergent (S/D) treatment (1% TnBP/1% Triton X-45), oil extraction, hydrophobic interaction chromatography and sterile filtration. Platelet-derived growth factor (PDGF)-AB, -BB and -AA, transforming growth factor-beta1 (TGF-beta1), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1) and vascular endothelium growth factor (VEGF) were measured by ELISA. Composition in proteins and lipids was determined, protein profiles were obtained by SDS-PAGE, and TnBP and Triton X-45 were assessed by gas chromatography and high-performance liquid chromatography, respectively. Cell growth promoting activity of HPGF was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay using human embryonic kidney (HEK293A) fibroblast and Statens Seruminstitute rabbit corneal (SIRC) epithelial cell lines. The GF preparation contained a mean of 16.66, 2.04, 1.53, 72.19, 0.33, 48.59 and 0.44 ng/ml of PDGF-AB, -BB, -AA, TGF-beta1, EGF, IGF-1 and VEGF, respectively. The protein profile was typical of platelet releasates and had less than 2 p.p.m. of residual S/D agents. MTS assay of HEK293A and SIRC cultures showed that the GF preparation at 10% and 0.1% (v/v), respectively, could successfully replace 10% FBS for cell proliferation. Cell-stimulating activity of HPGF on HEK293A was over twice that of PC releasates. STANDARDIZED and functional virally inactivated HPGF can be prepared from human PC for possible applications in cell therapy and regenerative medicine.
2011-01-01
Background Guidelines recommend an early initiation of aspirin treatment in patients with acute cerebral ischemia. Comparative studies on the best starting dose for initiating aspirin therapy to achieve a rapid antiplatelet effect do not exist. This study evaluated the platelet inhibitory effect in healthy volunteers by using three different aspirin loading doses to gain a model for initiating antiplatelet treatment in acute strokes patients. Methods Using whole blood aggregometry, this study with a prospective, uncontrolled, open, crossover design examined 12 healthy volunteers treated with three different aspirin loading doses: intravenous 500 mg aspirin, oral 500 mg aspirin, and a course of 200 mg aspirin on two subsequent days followed by a five-day course of 100 mg aspirin. Aspirin low response was defined as change of impedance exceeding 0 Ω after stimulation with arachidonic acid. Results Sufficient antiplatelet effectiveness was gained within 30 seconds when intravenous 500 mg aspirin was used. The mean time until antiplatelet effect was 74 minutes for 500 mg aspirin taken orally and 662 minutes (11.2 hours) for the dose scheme with 200 mg aspirin with a high inter- and intraindividual variability in those two regimes. Platelet aggregation returned to the baseline range during the wash-out phase within 4 days. Conclusion Our study reveals that the antiplatelet effect differs significantly between the three different aspirin starting dosages with a high inter- and intraindividual variability of antiplatelet response in our healthy volunteers. To ensure an early platelet inhibitory effect in acute stroke patients, it could be advantageous to initiate the therapy with an intravenous loading dose of 500 mg aspirin. However, clinical outcome studies must still define the best way to initiate antiplatelet treatment with aspirin. PMID:21466682
Fujii, Toshihiro; Sakata, Asuka; Nishimura, Satoshi; Eto, Koji; Nagata, Shigekazu
2015-10-13
Phosphatidylserine (PtdSer) exposure on the surface of activated platelets requires the action of a phospholipid scramblase(s), and serves as a scaffold for the assembly of the tenase and prothrombinase complexes involved in blood coagulation. Here, we found that the activation of mouse platelets with thrombin/collagen or Ca(2+) ionophore at 20 °C induces PtdSer exposure without compromising plasma membrane integrity. Among five transmembrane protein 16 (TMEM16) members that support Ca(2+)-dependent phospholipid scrambling, TMEM16F was the only one that showed high expression in mouse platelets. Platelets from platelet-specific TMEM16F-deficient mice exhibited defects in activation-induced PtdSer exposure and microparticle shedding, although α-granule and dense granule release remained intact. The rate of tissue factor-induced thrombin generation by TMEM16F-deficient platelets was severely reduced, whereas thrombin-induced clot retraction was unaffected. The imaging of laser-induced thrombus formation in whole animals showed that PtdSer exposure on aggregated platelets was TMEM16F-dependent in vivo. The phenotypes of the platelet-specific TMEM16F-null mice resemble those of patients with Scott syndrome, a mild bleeding disorder, indicating that these mice may provide a useful model for human Scott syndrome.
Satchell, Claudette S; O'Halloran, Jane A; Cotter, Aoife G; Peace, Aaron J; O'Connor, Eileen F; Tedesco, Anthony F; Feeney, Eoin R; Lambert, John S; Sheehan, Gerard J; Kenny, Dermot; Mallon, Patrick W G
2011-10-15
Current or recent use of abacavir for treating human immunodeficiency virus type 1 (HIV-1) infection has been associated with increased rates of myocardial infarction (MI). Given the role of platelet aggregation in thrombus formation in MI and the reversible nature of the abacavir association, we hypothesized that patients treated with abacavir would have increased platelet reactivity. In a prospective study in adult HIV-infected patients, we determined associations between antiretrovirals (ARVs), and in particular the nucleoside reverse transcriptase inhibitor abacavir, and platelet reactivity by measuring time-dependent platelet aggregation in response to agonists: adenosine diphosphate (ADP), thrombin receptor-activating peptide (TRAP), collagen, and epinephrine. Of 120 subjects, 40 were ARV-naive and 80 ARV-treated, 40 of whom were receiving abacavir. No consistent differences in platelet reactivity were observed between the ARV-naive and ARV-treated groups. In contrast, within the ARV-treated group, abacavir-treated subjects had consistently higher percentages of platelet aggregation upon exposure to ADP, collagen, and epinephrine (P = .037, P = .022, and P = .032, respectively) and had platelets that were more sensitive to aggregation upon exposure to TRAP (P = .025). The consistent increases in platelet reactivity observed in response to a range of agonists provides a plausible underlying mechanism to explain the reversible increased rates of MI observed in abacavir-treated patients.
Platelet-Rich Plasma and Platelet Gel: A Review
Everts, Peter A.M.; Knape, Johannes T.A.; Weibrich, Gernot; Schönberger, Jacques P.A.M.; Hoffmann, Johannes; Overdevest, Eddy P.; Box, Henk A.M.; van Zundert, André
2006-01-01
Abstract: Strategies to reduce blood loss and transfusion of allogeneic blood products during surgical procedures are important in modern times. The most important and well-known autologous techniques are preoperative autologous predonation, hemodilution, perioperative red cell salvage, postoperative wound blood autotransfusion, and pharmacologic modulation of the hemostatic process. At present, new developments in the preparation of preoperative autologous blood component therapy by whole blood platelet-rich plasma (PRP) and platelet-poor plasma (PPP) sequestration have evolved. This technique has been proven to reduce the number of allogeneic blood transfusions during open heart surgery and orthopedic operations. Moreover, platelet gel and fibrin sealant derived from PRP and PPP mixed with thrombin, respectively, can be exogenously applied to tissues to promote wound healing, bone growth, and tissue sealing. However, to our disappointment, not many well-designed scientific studies are available, and many anecdotic stories exist, whereas questions remain to be answered. We therefore decided to study perioperative blood management in more detail with emphasis on the application and production of autologous platelet gel and the use of fibrin sealant. This review addresses a large variety of aspects relevant to platelets, platelet-rich plasma, and the application of platelet gel. In addition, an overview of recent animal and human studies is presented. PMID:16921694
Platelet-Derived S100A8/A9 and Cardiovascular Disease in Systemic Lupus Erythematosus.
Lood, Christian; Tydén, Helena; Gullstrand, Birgitta; Jönsen, Andreas; Källberg, Eva; Mörgelin, Matthias; Kahn, Robin; Gunnarsson, Iva; Leanderson, Tomas; Ivars, Fredrik; Svenungsson, Elisabet; Bengtsson, Anders A
2016-08-01
Levels of S100A8/A9, a proinflammatory and prothrombotic protein complex, are increased in several diseases, and high levels predispose to cardiovascular disease (CVD). Recently, platelet S100A8/A9 synthesis was described in mice and humans in relation to CVD. The aim of this study was to investigate the role of platelet S100A8/A9 in systemic lupus erythematosus (SLE), a disease with markedly increased cardiovascular morbidity, as well as the exact platelet distribution of the S100A8/A9 proteins. The occurrence and distribution of platelet S100A8/A9 protein were detected by enzyme-linked immunosorbent assay, electron microscopy, Western blotting, and flow cytometry in healthy controls (n = 79) and in 2 individual cohorts of SLE patients (n = 148 and n = 318, respectively) and related to cardiovascular morbidity. We observed that human platelets expressed S100A8/A9 proteins, and that these were localized in close proximity to intracellular membranes and granules as well as on the cell surface upon activation with physiologic and pathophysiologic stimuli. Interestingly, S100A8/A9 was enriched at sites of membrane interactions, indicating a role of S100A8/A9 in cell-cell communication. S100A8/A9 levels were highly regulated by interferon-α, both in vivo and in vitro. Patients with SLE had increased platelet S100A8/A9 content compared with healthy individuals. Increased levels of platelet S100A8/A9 were associated with CVD, particularly myocardial infarction (odds ratio 4.8, 95% confidence interval 1.5-14.9, P = 0.032 [adjusted for age, sex, and smoking]). Platelets contain S100A8/A9 in membrane-enclosed vesicles, enabling rapid cell surface deposition upon activation. Furthermore, platelet S100A8/A9 protein levels were increased in SLE patients, particularly in those with CVD, and may be a future therapeutic target. © 2016, American College of Rheumatology.
Early outgrowth cells versus endothelial colony forming cells functions in platelet aggregation.
Bou Khzam, Lara; Bouchereau, Olivier; Boulahya, Rahma; Hachem, Ahmed; Zaid, Younes; Abou-Saleh, Haissam; Merhi, Yahye
2015-11-09
Endothelial progenitor cells (EPCs) have been implicated in neoangiogenesis, endothelial repair and cell-based therapies for cardiovascular diseases. We have previously shown that the recruitment of EPCs to sites of vascular lesions is facilitated by platelets where EPCs, in turn, modulate platelet function and thrombosis. However, EPCs encompass a heterogeneous population of progenitor cells that may exert different effects on platelet function. Recent evidence suggests the existence of two EPC subtypes: early outgrowth cells (EOCs) and endothelial colony-forming cells (ECFCs). We aimed at characterizing these two EPC subtypes and at identifying their role in platelet aggregation. EOCs and ECFCs were generated from human peripheral blood mononuclear cells (PBMCs) seeded in conditioned media on fibronectin and collagen, respectively. The morphological, phenotypical and functional characteristics of EOCs and ECFCs were assessed by optical and confocal laser scanning microscopes, cell surface markers expression, and Matrigel tube formation. The impact of EOCs and ECFCs on platelet aggregation was monitored in collagen-induced optical aggregometry and compared with PBMCs and human umbilical vein endothelial cells (HUVECs). The levels of the anti-platelet agents' nitric oxide (NO) and prostacyclin (PGI2) released from cultured cells as well as the expression of their respective producing enzymes NO synthases (NOS) and cyclooxygenases (COX) were also assessed. We showed that EOCs display a monocytic-like phenotype whereas ECFCs have an endothelial-like phenotype. We demonstrated that both EOCs and ECFCs and their supernatants inhibited platelet aggregation; however ECFCs were more efficient than EOCs. This could be related to the release of significantly higher amounts of NO and PGI2 from ECFCs, in comparison to EOCs. Indeed, ECFCs, like HUVECs, constitutively express the endothelial (eNOS)-and inducible (iNOS)-NOS isoforms, and COX-1 and weakly express COX-2, whereas EOCs do not constitutively express these NO and PGI2 producing enzymes. The different morphological, phenotypic and more importantly the release of the anti-aggregating agents PGI2 and NO in each EPC subtype are implicated in their respective roles in platelet function and thus, may be linked to the increased efficiency of ECFCs in inhibiting platelet aggregation as compared to EOCs.
21 CFR 640.27 - Emergency provisions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Platelets § 640.27 Emergency provisions. The use of... must be transfused with the platelets from a specific donor, and (b) the plateletpheresis procedure is... donor and the physician has certified in writing that the donor's health permits plateletpheresis. [40...
Bai, Kehua; Wang, Ke; Li, Xiaoyu; Wang, Jie; Zhang, Jie; Song, Li; Wang, Jin; Zhang, Suli; Lau, Wayne Bond; Ma, Xinliang; Liu, Huirong
2013-09-01
Hypercoagulability, platelet activation, and thrombocytopenia are the chief characteristics of preeclampsia, but their responsible underlying molecular mechanisms remain obscure. Recent studies have demonstrated that the autoantibody against angiotensin II type 1 receptor (AT1-AA) constitutes a novel risk factor for preeclampsia. However, the role of AT1-AA in platelet activation and hypercoagulability in preeclampsia has never been investigated. In the present study, we determined whether AT1-AA promotes platelet aggregation in vitro, and dissected the potential underlying mechanisms. AT1-AA was detected by enzyme-linked immunosorbent assay. After immunoglobulin G fractions purified from the preeclamptic patient positive sera were added to platelets isolated from healthy volunteers, platelet aggregation and intracellular Ca(2+) levels were detected. AT1-AA significantly enhanced in vitro collagen-induced platelet aggregation, an effect blocked by the AT1 receptor antagonist losartan. Additionally, AT1-AA increased and maintained collagen-induced cytosolic calcium concentration throughout the experiment. We demonstrated for the first time that AT1-AA significantly promotes collagen-induced platelet aggregation through angiotensin type 1 receptor activation in vitro, potentially via increased intracellular Ca(2+) concentration, supporting AT1-AA as a potential contributor to the hypercoagulable state of preeclampsia.
Nickel, Robert Sheppard; Winkler, Anne M; Horan, John T; Hendrickson, Jeanne E
2016-09-01
Alloimmunization to red blood cell (RBC) antigens after transfusion is well described in patients with sickle cell disease (SCD). We recently demonstrated that leukocyte-reduced RBC transfusions appeared to induce human leukocyte antigen (HLA) antibodies in some children with SCD; now, we hypothesize that residual platelets contained in transfused RBC products may lead to platelet glycoprotein antibody formation. A cross-sectional study was conducted among never pregnant pediatric patients with SCD who either had received many RBC transfusions or had never received any transfusions. Serum was tested for antibodies to platelet-specific glycoproteins using a commercial enzyme immunoassay. Platelet-specific glycoprotein antibodies were found in 12 of 90 patients (13%) in the transfused group versus 5 of 24 patients (21%) in the never transfused group (p = 0.35). The prevalence of antibodies as well as the median standardized optical density for these two groups was not significantly different for any of the studied platelet glycoprotein antigens. There was no association with the presence of platelet-specific glycoprotein antibodies with either RBC or HLA antibodies. Leukocyte-reduced RBC transfusions do not appear to induce platelet-specific glycoprotein antibodies. The positive platelet-specific glycoprotein antibody results from this study may represent platelet autoantibodies, platelet alloantibodies, or false-positive reactions. A better understanding of the immunobiology of patients with SCD at baseline and after blood product exposure may help improve future transfusion and transplantation. © 2016 AABB.
Platelet-rich plasma differs according to preparation method and human variability.
Mazzocca, Augustus D; McCarthy, Mary Beth R; Chowaniec, David M; Cote, Mark P; Romeo, Anthony A; Bradley, James P; Arciero, Robert A; Beitzel, Knut
2012-02-15
Varying concentrations of blood components in platelet-rich plasma preparations may contribute to the variable results seen in recently published clinical studies. The purposes of this investigation were (1) to quantify the level of platelets, growth factors, red blood cells, and white blood cells in so-called one-step (clinically used commercial devices) and two-step separation systems and (2) to determine the influence of three separate blood draws on the resulting components of platelet-rich plasma. Three different platelet-rich plasma (PRP) separation methods (on blood samples from eight subjects with a mean age [and standard deviation] of 31.6 ± 10.9 years) were used: two single-spin processes (PRPLP and PRPHP) and a double-spin process (PRPDS) were evaluated for concentrations of platelets, red and white blood cells, and growth factors. Additionally, the effect of three repetitive blood draws on platelet-rich plasma components was evaluated. The content and concentrations of platelets, white blood cells, and growth factors for each method of separation differed significantly. All separation techniques resulted in a significant increase in platelet concentration compared with native blood. Platelet and white blood-cell concentrations of the PRPHP procedure were significantly higher than platelet and white blood-cell concentrations produced by the so-called single-step PRPLP and the so-called two-step PRPDS procedures, although significant differences between PRPLP and PRPDS were not observed. Comparing the results of the three blood draws with regard to the reliability of platelet number and cell counts, wide variations of intra-individual numbers were observed. Single-step procedures are capable of producing sufficient amounts of platelets for clinical usage. Within the evaluated procedures, platelet numbers and numbers of white blood cells differ significantly. The intra-individual results of platelet-rich plasma separations showed wide variations in platelet and cell numbers as well as levels of growth factors regardless of separation method.
Human plasma fibrinogen adsorption and platelet adhesion to polystyrene.
Tsai, W B; Grunkemeier, J M; Horbett, T A
1999-02-01
The purpose of this study was to further investigate the role of fibrinogen adsorbed from plasma in mediating platelet adhesion to polymeric biomaterials. Polystyrene was used as a model hydrophobic polymer; i.e., we expected that the role of fibrinogen in platelet adhesion to polystyrene would be representative of other hydrophobic polymers. Platelet adhesion was compared to both the amount and conformation of adsorbed fibrinogen. The strategy was to compare platelet adhesion to surfaces preadsorbed with normal, afibrinogenemic, and fibrinogen-replenished afibrinogenemic plasmas. Platelet adhesion was determined by the lactate dehydrogenase (LDH) method, which was found to be closely correlated with adhesion of 111In-labeled platelets. Fibrinogen adsorption from afibrinogenemic plasma to polystyrene (Immulon I(R)) was low and <10 ng/cm2. Platelet adhesion was absent on surfaces preadsorbed with afibrinogenemic plasma when the residual fibrinogen was low enough (<60 microg/mL). Platelet adhesion was restored on polystyrene preadsorbed with fibrinogen-replenished afibrinogenemic plasma. Addition of even small, subnormal concentrations of fibrinogen to afibrinogenemic plasma greatly increased platelet adhesion. In addition, surface-bound fibrinogen's ability to mediate platelet adhesion was different, depending on the plasma concentration from which fibrinogen was adsorbed. These differences correlated with changes in the binding of a monoclonal antibody that binds to the Aalpha chain RGDS (572-575), suggesting alteration in the conformation or orientation of the adsorbed fibrinogen. Platelet adhesion to polystyrene preadsorbed with blood plasma thus appears to be a strongly bivariate function of adsorbed fibrinogen, responsive to both low amounts and altered states of the adsorbed molecule. Copyright 1999 John Wiley & Sons, Inc.
Turner, Justine M; Field, Catherine J; Goruk, Sue; Wizzard, Pamela; Dicken, Bryan J; Bruce, Aisha; Wales, Paul W
2016-05-01
Fish oil monotherapy has been an advance for treating intestinal failure-associated liver disease (IFALD). However, such patients are at risk of bleeding complications from liver disease and because fish oil can inhibit thrombosis. We have previously reported abnormal platelet function in neonatal piglets given fish oil monotherapy during parenteral nutrition (PN). The purpose of this study was to determine if abnormal fatty acid composition of the platelets could explain the prior observed antiplatelet effect. Neonatal piglets were assigned to 2 treatments: PN with fish oil monotherapy (FO; n = 4) or PN with soy oil (SO; n = 5). On day 14, plasma was collected and platelets isolated by centrifuging. The fatty acid content in plasma and platelet plug were measured using gas liquid chromatography and compared with controls (CON; n = 5). The arachidonic acid (AA) content in the FO group was on average half that of the SO group, in both the platelets (FO, 3.5% vs SO, 7.6%; P = .021; CON, 4.5%-11%) and the plasma (FO, 3.8% vs SO, 9.2%; P = .002; CON, 6.1%-9.5%). No bleeding complications were observed for any piglets during PN treatment. Using platelet mapping, we have previously shown that neonatal piglets given fish oil monotherapy have abnormal platelet function in the AA pathway. This report demonstrates that such an abnormality can be explained by platelet AA deficiency. Platelet mapping and platelet fatty acid analysis should be undertaken in human infants treated with fish oil monotherapy during PN. © 2015 American Society for Parenteral and Enteral Nutrition.
Lynch, D M; Lynch, J M; Howe, S E
1985-03-01
A quantitative ELISA assay for the measurement of in vivo bound platelet-associated IgG (PAIgG) using intact patient platelets is presented. The assay requires quantitation and standardization of the number of platelets bound to microtiter plate wells and an absorbance curve using quantitated IgG standards. Platelet-bound IgG was measured using an F(ab')2 peroxidase labeled anti-human IgG and o-phenylenediamine dihydrochloride (OPD) as the substrate. Using this assay, PAIgG for normal individuals was 2.8 +/- 1.6 fg/platelet (mean +/- 1 SD; n = 30). Increased levels were found in 28 of 30 patients with clinical autoimmune thrombocytopenia (ATP) with a range of 7.0-80 fg/platelet. Normal PAIgG levels were found in 26 of 30 patients with nonimmune thrombocytopenia. In the sample population studied, the PAIgG assay showed a sensitivity of 93%, specificity of 90%, a positive predictive value of 0.90, and a negative predictive value of 0.93. The procedure is highly reproducible (CV = 6.8%) and useful in evaluating patients with suspected immune mediated thrombocytopenia.
Lee, Young Seok; Jin, Cai De; Kim, Moo Hyun; Guo, Long Zhe; Cho, Young-Rak; Park, Kyungil; Park, Jong Sung; Park, Tae-Ho; Kim, Young Dae
2015-01-01
There is insufficient data on the efficacy of prasugrel and ticagrelor in Korean patients with ST-segment elevation myocardial infarction (STEMI). I n the current double-blind, prospective pilot study, 39 patients with STEMI undergoing primary percutaneous coronary intervention were randomized to receive prasugrel 60 mg loading dose (LD) followed by 10 mg daily maintenance dose (n=19), or ticagrelor 180 mg LD followed by 90 mg twice daily maintenance dose (n=20). We assessed platelet reactivity with the VerifyNow and Vasodilator-Stimulated Phosphoprotein (VASP) P2Y12 assays. Compared to baseline platelet reactivity, both prasugrel and ticagrelor groups achieved similar and significantly lower P2Y12 reaction units (PRU) (259 [IQR: 230 to 281] vs. 28 [12 to 55] for prasugrel; 261 [196 to 286] vs. 43 [11 to 61] for ticagrelor), and platelet reactivity indexes (PRI) (51.2% [39.3 to 61.3] vs. 8.1% [6.1 to 14.7] for prasugrel; 47.5% [38.4 to 50.4] vs. 11.2% [7.1 to 15.5] for ticagrelor, all P values <0.001) at 48 h post-LD. Most patients had low platelet reactivity with 95% PRU values <85 and 82% with PRI <16%. Both prasugrel and ticagrelor were effective for platelet inhibition in Korean STEMI patients with almost no patients exhibiting high platelet reactivity at 48 h after the LD. Our finding of a high number of patients with very low platelet reactivity deserves further studies to assess the safety of the drugs (Prasugrel and Ticagrelor in ST-segment Elevation Myocardial Infarction Study, NCT02075125).
Spindler, Kurt P.; Murray, Martha M.; Carey, James L.; Zurakowski, David; Fleming, Braden C.
2009-01-01
Many anterior cruciate ligament (ACL) reconstructions have increased laxity postoperatively. We hypothesized that enhancing an ACL graft with a collagen-platelet composite (CPC) would improve knee laxity and graft structural properties. We also hypothesized the platelet concentration in the CPC would affect these parameters. Twelve goats underwent ACL reconstruction with autologous patellar tendon graft. In six goats, a collagen-platelet composite was placed around the graft (CPC group). In the remaining six goats, the collagen scaffold only was used (COLL group). Three goats were excluded due to complications. After 6 weeks in vivo, anterior–posterior (AP) laxity and tensile properties of the ACL reconstructed knees were measured and normalized against the contralateral intact knee. At a knee flexion angle of 30°, the average increase in AP laxity was 40% less in the CPC group than the COLL group (p = 0.045). At 60°, the AP laxity was 30% less in the CPC group, a difference that was close to statistical significance (p = 0.080). No differences were found between treatment groups with respect to the structural properties (p > 0.30). However, there were significant correlations between serum platelet concentration and AP laxity (R2 = 0.643; p = 0.009), maximum load (R2 = 0.691; p = 0.006), and graft stiffness (R2 = 0.840; p < 0.001). In conclusion, use of a CPC to enhance healing of an allograft ACL reconstruction inversely correlated with early sagittal plane laxity and the systemic platelet count was highly predictive of ACL reconstruction graft strength and stiffness at 6 weeks. These findings emphasize the importance of further research on delineating the effect of platelets in treating of ACL injuries. PMID:19009602
Spindler, Markus; van Eeuwijk, Judith M M; Schurr, Yvonne; Nurden, Paquita; Nieswandt, Bernhard; Stegner, David; Reinhold, Annegret; Bender, Markus
2018-06-27
Bone marrow megakaryocytes (MKs) produce platelets by extending proplatelets into sinusoidal blood vessels. Defects in thrombopoiesis can lead to thrombocytopenia associated with increased bleeding tendency. Recently, the platelet disorder congenital autosomal recessive small-platelet thrombocytopenia (CARST) was described which is caused by mutations in the ADAP (Adhesion and degranulation promoting adaptor protein; synonym: FYB, SLAP130/120) gene, and characterized by microthrombocytopenia and bleeding symptoms. In this study we used constitutive ADAP-deficient mice (Adap -/- ) as a model to investigate mechanisms underlying the microthrombocytopenia in CARST. We show that Adap -/- mice display several characteristics of human CARST, with moderate thrombocytopenia and smaller-sized platelets. Adap -/- platelets had a shorter life span than control platelets, and macrophage depletion, but not splenectomy, increased platelet counts in mutant mice to control levels. Whole sternum 3D confocal imaging and intravital two-photon microscopy revealed altered morphology of ADAP-deficient MKs with signs of fragmentation and ectopic release of (pro)platelet-like particles into the bone marrow compartment. In addition, cultured bone marrow-derived MKs lacking ADAP showed reduced spreading on extracellular matrix proteins as well as activation of β1 integrins, impaired podosome formation, and displayed defective polarization of the demarcation membrane system in vitro. MK-/platelet-specific ADAP deficient mice (PF4-cre) also produced less and smaller-sized platelets and released platelets ectopically. These data demonstrate that the abnormal platelet production in the mutant mice is a MK-intrinsic defect. Taken together, these results point to a so far unidentified role of ADAP in the process of MK polarization and platelet biogenesis. Copyright © 2018 American Society of Hematology.
Mapuche herbal medicine inhibits blood platelet aggregation.
Falkenberg, Susan Skanderup; Tarnow, Inge; Guzman, Alfonso; Mølgaard, Per; Simonsen, Henrik Toft
2012-01-01
12 plant species traditionally used by the Mapuche people in Chile to treat wounds and inflammations have been evaluated for their direct blood platelet inhibition. Seven of the 12 tested plant species showed platelet inhibitory effect in sheep blood, and four of these were also able to inhibit the ADP- (5.0 μM) and collagen- (2.0 μg/mL) induced aggregations in human blood. These four species in respective extracts (in brackets) were Blechnum chilense (MeOH), Luma apiculata (H(2)O), Amomyrtus luma (DCM : MeOH 1 : 1) and Cestrum parqui (DCM : MeOH 1 : 1). The platelet aggregating inhibitory effects of A. luma (DCM : MeOH 1 : 1), and L. apiculata (H(2)O) were substantial and confirmed by inhibition of platelet surface activation markers.
Mapuche Herbal Medicine Inhibits Blood Platelet Aggregation
Falkenberg, Susan Skanderup; Tarnow, Inge; Guzman, Alfonso; Mølgaard, Per; Simonsen, Henrik Toft
2012-01-01
12 plant species traditionally used by the Mapuche people in Chile to treat wounds and inflammations have been evaluated for their direct blood platelet inhibition. Seven of the 12 tested plant species showed platelet inhibitory effect in sheep blood, and four of these were also able to inhibit the ADP- (5.0 μM) and collagen- (2.0 μg/mL) induced aggregations in human blood. These four species in respective extracts (in brackets) were Blechnum chilense (MeOH), Luma apiculata (H2O), Amomyrtus luma (DCM : MeOH 1 : 1) and Cestrum parqui (DCM : MeOH 1 : 1). The platelet aggregating inhibitory effects of A. luma (DCM : MeOH 1 : 1), and L. apiculata (H2O) were substantial and confirmed by inhibition of platelet surface activation markers. PMID:22028732
Viau, Sabrina; Chabrand, Lucie; Eap, Sandy; Lorant, Judith; Rouger, Karl; Goudaliez, Francis; Sumian, Chryslain; Delorme, Bruno
2017-01-01
We recently developed and characterized a standardized and clinical grade human Platelet Lysate (hPL) that constitutes an advantageous substitute for fetal bovine serum (FBS) for human mesenchymal stem cell (hMSC) expansion required in cell therapy procedures, avoiding xenogenic risks (virological and immunological) and ethical issues. Because of the progressive use of pathogen-reduced (PR) labile blood components, and the requirement of ensuring the viral safety of raw materials for cell therapy products, we evaluated the impact of the novel procedure known as THERAFLEX UV-Platelets for pathogen reduction on hPL quality (growth factors content) and efficacy (as a medium supplement for hMSC expansion). This technology is based on short-wave ultraviolet light (UV-C) that induces non-reversible damages in DNA and RNA of pathogens while preserving protein structures and functions, and has the main advantage of not needing the addition of any photosensitizing additives (that might secondarily interfere with hMSCs). We applied the THERAFLEX UV-Platelets procedure on fresh platelet concentrates (PCs) suspended in platelet additive solution and prepared hPL from these treated PCs. We compared the quality and efficacy of PR-hPL with the corresponding non-PR ones. We found no impact on the content of five cytokines tested (EGF, bFGF, PDGF-AB, VEGF and IGF-1) but a significant decrease in TGF-ß1 (-21%, n = 11, p<0.01). We performed large-scale culture of hMSCs from bone marrow (BM) during three passages and showed that hPL or PR-hPL at 8% triggered comparable BM-hMSC proliferation as FBS at 10% plus bFGF. Moreover, after proliferation of hMSCs in an hPL- or PR-hPL-containing medium, their profile of membrane marker expression, their clonogenic potential and immunosuppressive properties were maintained, in comparison with BM-hMSCs cultured under FBS conditions. The potential to differentiate towards the adipogenic and osteogenic lineages of hMSCs cultured in parallel in the three conditions also remained identical. We demonstrated the feasibility of using UV-C-treated platelets to subsequently obtain pathogen-reduced hPL, while preserving its optimal quality and efficacy for hMSC expansion in cell therapy applications.
Viau, Sabrina; Chabrand, Lucie; Eap, Sandy; Lorant, Judith; Rouger, Karl; Goudaliez, Francis; Sumian, Chryslain; Delorme, Bruno
2017-01-01
Background We recently developed and characterized a standardized and clinical grade human Platelet Lysate (hPL) that constitutes an advantageous substitute for fetal bovine serum (FBS) for human mesenchymal stem cell (hMSC) expansion required in cell therapy procedures, avoiding xenogenic risks (virological and immunological) and ethical issues. Because of the progressive use of pathogen-reduced (PR) labile blood components, and the requirement of ensuring the viral safety of raw materials for cell therapy products, we evaluated the impact of the novel procedure known as THERAFLEX UV-Platelets for pathogen reduction on hPL quality (growth factors content) and efficacy (as a medium supplement for hMSC expansion). This technology is based on short-wave ultraviolet light (UV-C) that induces non-reversible damages in DNA and RNA of pathogens while preserving protein structures and functions, and has the main advantage of not needing the addition of any photosensitizing additives (that might secondarily interfere with hMSCs). Methodology / Principal findings We applied the THERAFLEX UV-Platelets procedure on fresh platelet concentrates (PCs) suspended in platelet additive solution and prepared hPL from these treated PCs. We compared the quality and efficacy of PR-hPL with the corresponding non-PR ones. We found no impact on the content of five cytokines tested (EGF, bFGF, PDGF-AB, VEGF and IGF-1) but a significant decrease in TGF-ß1 (-21%, n = 11, p<0.01). We performed large-scale culture of hMSCs from bone marrow (BM) during three passages and showed that hPL or PR-hPL at 8% triggered comparable BM-hMSC proliferation as FBS at 10% plus bFGF. Moreover, after proliferation of hMSCs in an hPL- or PR-hPL-containing medium, their profile of membrane marker expression, their clonogenic potential and immunosuppressive properties were maintained, in comparison with BM-hMSCs cultured under FBS conditions. The potential to differentiate towards the adipogenic and osteogenic lineages of hMSCs cultured in parallel in the three conditions also remained identical. Conclusion / Significance We demonstrated the feasibility of using UV-C-treated platelets to subsequently obtain pathogen-reduced hPL, while preserving its optimal quality and efficacy for hMSC expansion in cell therapy applications. PMID:28763452
21 CFR 864.8175 - Calibrator for platelet counting.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calibrator for platelet counting. 864.8175 Section 864.8175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8175 Calibrator for...
21 CFR 864.8175 - Calibrator for platelet counting.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Calibrator for platelet counting. 864.8175 Section 864.8175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8175 Calibrator for...
21 CFR 864.8175 - Calibrator for platelet counting.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Calibrator for platelet counting. 864.8175 Section 864.8175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8175 Calibrator for...
21 CFR 864.8175 - Calibrator for platelet counting.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Calibrator for platelet counting. 864.8175 Section 864.8175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8175 Calibrator for...
21 CFR 864.8175 - Calibrator for platelet counting.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Calibrator for platelet counting. 864.8175 Section 864.8175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8175 Calibrator for...
Danesh, B J; McLaren, M; Russell, R I; Lowe, G D; Forbes, C D
1989-01-01
Parameters of platelet thromboxane biosynthesis were measured 24 h after ingestion of equivalent salicylate doses (500 mg) of aspirin (ASA) and choline magnesium trisalicylate (CMT), a non-acetylated salicylate. In random order, 10 healthy volunteers received these drugs on 2 separate days, 2 weeks apart. While ASA significantly prolonged bleeding time, and decreased plasma thromboxane generation and serum thromboxane B2 levels, CMT failed to produce such effects. Thus CMT, which lacks an acetyl moiety in its structure, has no inhibitory effect on platelet thromboxane biosynthesis, and may therefore be considered safer than ASA for therapeutic use, when inhibition of platelet function can be hazardous.
Haas, Jessica; Sandrock-Lang, Kirstin; Gärtner, Florian; Jung, Christian Billy; Zieger, Barbara; Parrotta, Elvira; Kurnik, Karin; Sinnecker, Daniel; Wanner, Gerhard; Laugwitz, Karl-Ludwig; Massberg, Steffen; Moretti, Alessandra
2015-01-01
Human induced pluripotent stem cells (hiPSCs) represent a versatile tool to model genetic diseases and are a potential source for cell transfusion therapies. However, it remains elusive to which extent patient-specific hiPSC-derived cells functionally resemble their native counterparts. Here, we generated a hiPSC model of the primary platelet disease Glanzmann thrombasthenia (GT), characterized by dysfunction of the integrin receptor GPIIbIIIa, and compared side-by-side healthy and diseased hiPSC-derived platelets with peripheral blood platelets. Both GT-hiPSC-derived platelets and their peripheral blood equivalents showed absence of membrane expression of GPIIbIIIa, a reduction of PAC-1 binding, surface spreading and adherence to fibrinogen. We demonstrated that GT-hiPSC-derived platelets recapitulate molecular and functional aspects of the disease and show comparable behavior to their native counterparts encouraging the further use of hiPSC-based disease models as well as the transition towards a clinical application. PMID:25607928
Evidence that the platelet plasma membrane does not contain a (Ca2+ + Mg2+)-dependent ATPase.
Steiner, B; Lüscher, E F
1985-09-10
The present study was designed to determine the subcellular distribution of the platelet (Ca2+ + Mg2+)-ATPase. Human platelets were surface labeled by the periodate-boro[3H]hydride method. Plasma membrane vesicles were then isolated to a purity of approx. 90% by a procedure utilizing wheat germ agglutinin affinity chromatography. These membranes were found to be 2.6-fold enriched in surface glycoproteins compared to an unfractionated vesicle fraction and almost 7-fold enriched compared to intact platelets. In contrast, the isolated plasma membranes showed a decreased specific activity of the (Ca2+ + Mg2+)-ATPase compared to the unfractionated vesicle fraction. This decrease in specific activity was found to be similar to that of an endoplasmic reticulum marker, glucose-6-phosphatase, and to that of a platelet inner membrane marker, phospholipase A2. We conclude, therefore, that the (Ca2+ + Mg2+)-ATPase is not located in the platelet plasma membrane but is restricted to membranes of intracellular origin.
1997-07-11
severity of the increase in MAP and SVR is accounted for by the profound depressant effect of Ao SFH on cardie output (Table III). We have not examined...1985. N- acetylcysteine potentiates inhibition of platelet aggregation by nitroglycerin. / Clin Invest 76:703-708. 34. Mendelsohn, M., S. O’Neill...D. George, and J. Loscalzo. 1990. Inhibition of fibrinogen binding to human platelets by S-nitroso-N- acetylcysteine . / Biol Chem 265:19028-19034. 27
Characterization of static adhesion of human platelets in plasma to protein surfaces in microplates.
Eriksson, Andreas C; Whiss, Per A
2009-04-01
Platelet adhesion is a complex and important event for prevention of blood loss after vessel injury. This study investigated fundamental adhesive mechanisms occurring in an in-vitro assay developed for the measurement of static adhesion of human platelets in plasma. The aim was to gain methodological knowledge that could be used for interpretations of results from other studies using this specific assay. Involvement of adhesive receptors was investigated by the use of various antibodies as well as therapeutic drugs (abciximab, eptifibatide and tirofiban). Inhibitors of adenosine 5'-diphosphate receptors (cangrelor, MRS2179) and of thromboxane A(2) signalling (BM-531) were used to estimate the role of autocrine activation. Adhesion to collagen was found to be mainly mediated by alpha(2)beta(1) and to some extent by alpha(IIb)beta(3). Adhesion to fibrinogen was mediated by alpha(IIb)beta(3). In addition, adenosine 5'-diphosphate-induced adhesion to albumin was dependent on alpha(IIb)beta(3). Furthermore, experiments with cangrelor and BM-531 showed that the majority of the adhesive interactions tested were dependent on adenosine 5'-diphosphate or thromboxane A(2). We conclude that the mechanisms of adhesion measured by the static platelet adhesion assay are in accordance with the current knowledge regarding platelet activation and adhesion. Despite its simplicity, we suggest that this adhesion assay could be used as a screening device for the study of the influence of various surfaces and soluble substances on platelet adhesion.
Leal, Claudio A M; Leal, Daniela B R; Adefegha, Stephen A; Morsch, Vera M; da Silva, José E P; Rezer, João F P; Schrekker, Clarissa M L; Abdalla, Faida H; Schetinger, Maria R C
2016-07-01
Platelet aggregation and adenosine deaminase (ADA) activity were evaluated in pregnant women living with some disease conditions including hypertension, diabetes mellitus and human immunodeficiency virus infection. The subject population is consisted of 15 non-pregnant healthy women [control group (CG)], 15 women with normal pregnancy (NP), 7 women with hypertensive pregnancy (HP), 10 women with gestational diabetes mellitus (GDM) and 12 women with human immunodeficiency virus-infected pregnancy (HIP) groups. The aggregation of platelets was checked using an optical aggregometer, and serum ADA activity was determined using the colorimetric method. After the addition of 5 µM of agonist adenosine diphosphate, the percentage of platelet aggregation was significantly (p < 0·05) increased in NP, HP, GDM and HIP groups when compared with the CG, while the addition of 10 µM of the same agonist caused significant (p < 0·05) elevations in HP, GDM and HIP groups when compared with CG. Furthermore, ADA activity was significantly (p < 0·05) enhanced in NP, HP, GDM and HIP groups when compared with CG. In this study, the increased platelet aggregation and ADA activity in pregnancy and pregnancy-associated diseases suggest that platelet aggregation and ADA activity could serve as peripheral markers for the development of effective therapy in the maintenance of homeostasis and some inflammatory process in these pathophysiological conditions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Émond, Hélène; Boyer, Lucie; Roy, Denis-Claude; Pineault, Nicolas
2012-11-20
Umbilical cord blood (UCB) transplantation is associated with prolonged periods of cytopenia. Ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs) is currently investigated as a mean to accelerate hematological recovery. Contrary to neutrophils, platelet recovery remains problematic. For this reason, we have developed a culture protocol promoting the expansion of megakaryocyte (Mk) progenitors. The objective of this work was to determine whether the expanded (E) UCB HSPCs could accelerate platelet recovery in vivo using a murine HSPC transplantation model. The thrombopoietic activity of UCB and mobilized peripheral blood CD34(+) cells expanded under mild hyperthermia (MH, ie, 39°C) with the optimized megakaryocyte progenitor cocktail (OMPC) diverged significantly from the nonexpanded (NE) cells of origin; E cells provided rapid platelet release, while NE cells strongly contributed to platelet production past 10 days of transplantation. Consequently, the complementary of both cell sources was investigated. Cotransplantation of NE with E UCB cells significantly improved the recovery of human platelets (hPLTs) in vivo due to their complementary and synergistic thrombopoietic activities. Moreover, short-term human bone marrow (BM) reconstitution was also improved. Finally, we show that early hPLT release is dependent on Mk-primed cells and that E cells do not act as accessory cells, but have a more active role. In conclusion, hPLT recovery and short-term BM engraftment can be efficiently improved by the cotransplantation of Mk-primed UCB cells with NE HSPCs in a murine transplantation model.
Bertling, Anne; Brodde, Martin F.; Visser, Mayken; Treffon, Janina; Fennen, Michelle; Fender, Anke C.; Kelsch, Reinhard; Kehrel, Beate E.
2017-01-01
Background Hemarthrosis, or bleeding into the joints, is a hallmark of hemophilia. Heme triggers oxidative stress, inflammation, and destruction of cartilage and bone. The haptoglobin-CD163-heme oxygenase-1 (HO-1) pathway circumvents heme toxicity through enzymatic degradation of heme and transcription of antioxidant genes. Plasma-derived factor concentrates contain many proteins that might impact on cellular pathways in joints, blood, and vessels. Methods Activation of platelets from healthy volunteers was assessed by flow cytometry analysis of fibrinogen binding and CD62P expression. Platelet CXCL4 release was measured by ELISA. Human peripheral blood mononuclear cells were exposed to CXCL4 or platelet supernatants (untreated or pre-stimulated with factor VIII (FVIII) products) during their differentiation to macrophages and analyzed for CD163 expression. Some macrophage cultures were additionally incubated with autologous hemoglobin for 18 h for analysis of HO-1 expression. Results Platelet CXCL4 release was increased by all 8 tested plasma-derived FVIII products but not the 3 recombinant products. Macrophages exposed to supernatant from platelets treated with some plasma-derived FVIII products downregulated CD163 surface expression and failed to upregulate the athero- and joint protective enzyme HO-1 in response to hemoglobin. Conclusion Plasma-derived FVIII products might promote bleeding-induced joint injury via generation of macrophages that are unable to counteract redox stress. PMID:29070980
Cathepsin G-Dependent Modulation of Platelet Thrombus Formation In Vivo by Blood Neutrophils
Faraday, Nauder; Schunke, Kathryn; Saleem, Sofiyan; Fu, Juan; Wang, Bing; Zhang, Jian; Morrell, Craig; Dore, Sylvain
2013-01-01
Neutrophils are consistently associated with arterial thrombotic morbidity in human clinical studies but the causal basis for this association is unclear. We tested the hypothesis that neutrophils modulate platelet activation and thrombus formation in vivo in a cathepsin G-dependent manner. Neutrophils enhanced aggregation of human platelets in vitro in dose-dependent fashion and this effect was diminished by pharmacologic inhibition of cathepsin G activity and knockdown of cathepsin G expression. Tail bleeding time in the mouse was prolonged by a cathepsin G inhibitor and in cathepsin G knockout mice, and formation of neutrophil-platelet conjugates in blood that was shed from transected tails was reduced in the absence of cathepsin G. Bleeding time was highly correlated with blood neutrophil count in wildtype but not cathepsin G deficient mice. In the presence of elevated blood neutrophil counts, the anti-thrombotic effect of cathepsin G inhibition was greater than that of aspirin and additive to it when administered in combination. Both pharmacologic inhibition of cathepsin G and its congenital absence prolonged the time for platelet thrombus to form in ferric chloride-injured mouse mesenteric arterioles. In a vaso-occlusive model of ischemic stroke, inhibition of cathepsin G and its congenital absence improved cerebral blood flow, reduced histologic brain injury, and improved neurobehavioral outcome. These experiments demonstrate that neutrophil cathepsin G is a physiologic modulator of platelet thrombus formation in vivo and has potential as a target for novel anti-thrombotic therapies. PMID:23940756
The Slc35d3 gene, encoding an orphan nucleotide sugar transporter, regulates platelet-dense granules
Chintala, Sreenivasulu; Tan, Jian; Gautam, Rashi; Rusiniak, Michael E.; Guo, Xiaoli; Li, Wei; Gahl, William A.; Huizing, Marjan; Spritz, Richard A.; Hutton, Saunie; Novak, Edward K.; Swank, Richard T.
2007-01-01
Platelet dense granules are lysosome-related organelles which contain high concentrations of several biologically important low-molecular-weight molecules. These include calcium, serotonin, adenine nucleotides, pyrophosphate, and polyphosphate, which are necessary for normal blood hemostasis. The synthesis of dense granules and other lysosome-related organelles is defective in inherited diseases such as Hermansky-Pudlak syndrome (HPS) and Chediak-Higashi syndrome (CHS). HPS and CHS mutations in 8 human and at least 16 murine genes have been identified. Previous studies produced contradictory findings for the function of the murine ashen (Rab27a) gene in platelet-dense granules. We have used a positional cloning approach with one line of ashen mutants to establish that a new mutation in a second gene, Slc35d3, on mouse chromosome 10 is the basis of this discrepancy. The platelet-dense granule defect is rescued in BAC transgenic mice containing the normal Slc35d3 gene. Thus, Slc35d3, an orphan member of a nucleotide sugar transporter family, specifically regulates the contents of platelet-dense granules. Unlike HPS or CHS genes, it has no apparent effect on other lysosome-related organelles such as melanosomes or lysosomes. The ash-Roswell mouse mutant is an appropriate model for human congenital-isolated delta-storage pool deficiency. PMID:17062724
LC-MS Analysis of Human Platelets as a Platform for Studying Mitochondrial Metabolism
Parry, Robert C.; Wang, Qingqing; Gillespie, Kevin P.; Saillant, Noelle N.; Sims, Carrie; Mesaros, Clementina; Snyder, Nathaniel W.; Blair, Ian A.
2016-01-01
Perturbed mitochondrial metabolism has received renewed interest as playing a causative role in a range of diseases. Probing alterations to metabolic pathways requires a model in which external factors can be well controlled, allowing for reproducible and meaningful results. Many studies employ transformed cellular models for these purposes; however, metabolic reprogramming that occurs in many cancer cell lines may introduce confounding variables. For this reason primary cells are desirable, though attaining adequate biomass for metabolic studies can be challenging. Here we show that human platelets can be utilized as a platform to carry out metabolic studies in combination with liquid chromatography-tandem mass spectrometry analysis. This approach is amenable to relative quantification and isotopic labeling to probe the activity of specific metabolic pathways. Availability of platelets from individual donors or from blood banks makes this model system applicable to clinical studies and feasible to scale up. Here we utilize isolated platelets to confirm previously identified compensatory metabolic shifts in response to the complex I inhibitor rotenone. More specifically, a decrease in glycolysis is accompanied by an increase in fatty acid oxidation to maintain acetyl-CoA levels. Our results show that platelets can be used as an easily accessible and medically relevant model to probe the effects of xenobiotics on cellular metabolism. PMID:27077278
Hang, Ta-Chun; Tedford, Nathan C.; Reddy, Raven J.; Rimchala, Tharathorn; Wells, Alan; White, Forest M.; Kamm, Roger D.; Lauffenburger, Douglas A.
2013-01-01
The process of angiogenesis is under complex regulation in adult organisms, particularly as it often occurs in an inflammatory post-wound environment. As such, there are many impacting factors that will regulate the generation of new blood vessels which include not only pro-angiogenic growth factors such as vascular endothelial growth factor, but also angiostatic factors. During initial postwound hemostasis, a large initial bolus of platelet factor 4 is released into localized areas of damage before progression of wound healing toward tissue homeostasis. Because of its early presence and high concentration, the angiostatic chemokine platelet factor 4, which can induce endothelial anoikis, can strongly affect angiogenesis. In our work, we explored signaling crosstalk interactions between vascular endothelial growth factor and platelet factor 4 using phosphotyrosine-enriched mass spectrometry methods on human dermal microvascular endothelial cells cultured under conditions facilitating migratory sprouting into collagen gel matrices. We developed new methods to enable mass spectrometry-based phosphorylation analysis of primary cells cultured on collagen gels, and quantified signaling pathways over the first 48 h of treatment with vascular endothelial growth factor in the presence or absence of platelet factor 4. By observing early and late signaling dynamics in tandem with correlation network modeling, we found that platelet factor 4 has significant crosstalk with vascular endothelial growth factor by modulating cell migration and polarization pathways, centered around P38α MAPK, Src family kinases Fyn and Lyn, along with FAK. Interestingly, we found EphA2 correlational topology to strongly involve key migration-related signaling nodes after introduction of platelet factor 4, indicating an influence of the angiostatic factor on this ambiguous but generally angiogenic signal in this complex environment. PMID:24023389
Popa, Miruna; Tahir, Sibgha; Elrod, Julia; Kim, Su Hwan; Leuschner, Florian; Kessler, Thorsten; Bugert, Peter; Pohl, Ulrich; Wagner, Andreas H; Hecker, Markus
2018-06-12
Monocyte extravasation into the vessel wall is a key step in atherogenesis. It is still elusive how monocytes transmigrate through the endothelial cell (EC) monolayer at atherosclerosis predilection sites. Platelets tethered to ultra-large von Willebrand factor (ULVWF) multimers deposited on the luminal EC surface following CD40 ligand (CD154) stimulation may facilitate monocyte diapedesis. Human ECs grown in a parallel plate flow chamber for live-cell imaging or Transwell permeable supports for transmigration assay were exposed to fluid or orbital shear stress and CD154. Human isolated platelets and/or monocytes were superfused over or added on top of the EC monolayer. Plasma levels and activity of the ULVWF multimer-cleaving protease ADAMTS13 were compared between coronary artery disease (CAD) patients and controls and were verified by the bioassay. Two-photon intravital microscopy was performed to monitor CD154-dependent leukocyte recruitment in the cremaster microcirculation of ADAMTS13-deficient versus wild-type mice. CD154-induced ULVWF multimer-platelet string formation on the EC surface trapped monocytes and facilitated transmigration through the EC monolayer despite high shear stress. Two-photon intravital microscopy revealed CD154-induced ULVWF multimer-platelet string formation preferentially in venules, due to strong EC expression of CD40, causing prominent downstream leukocyte extravasation. Plasma ADAMTS13 abundance and activity were significantly reduced in CAD patients and strongly facilitated both ULVWF multimer-platelet string formation and monocyte trapping in vitro. Moderate ADAMTS13 deficiency in CAD patients augments CD154-mediated deposition of platelet-decorated ULVWF multimers on the luminal EC surface, reinforcing the trapping of circulating monocytes at atherosclerosis predilection sites and promoting their diapedesis.
Li, Ru; Klockenbusch, Cordula; Lin, Liwen; Jiang, Honghui; Lin, Shujun; Kast, Juergen
2016-12-02
Physiological stimuli such as thrombin, or pathological stimuli such as lysophosphatidic acid (LPA), activate platelets. The activated platelets bind to monocytes through P-selectin-PSGL-1 interactions but also release the contents of their granules, commonly called "platelet releasate". It is known that monocytes in contact with platelet releasate produce reactive oxygen species (ROS). Reversible cysteine oxidation by ROS is considered to be a potential regulator of protein function. In a previous study, we used THP-1 monocytic cells exposed to LPA- or thrombin-induced platelet releasate and a modified biotin switch assay to unravel the biological processes that are influenced by reversible cysteine oxidation. To gain a better understanding of the redox regulation of monocytes in atherosclerosis, we have now altered the modified biotin switch to selectively quantify protein sulfenic acid, a subpopulation of reversible cysteine oxidation. Using arsenite as reducing agent in the modified biotin switch assay, we were able to quantify 1161 proteins, in which more than 100 sulfenic acid sites were identified. Bioinformatics analysis of the quantified sulfenic acid sites highlighted the relevant, previously missed biological process of monocyte transendothelial migration, which included integrin β 2 . Flow cytometry validated the activation of LFA-1 (α L β 2 ) and Mac-1 (α M β 2 ), two subfamilies of integrin β 2 complexes, on human primary monocytes following platelet releasate treatment. The activation of LFA-1 was mediated by ROS from NADPH oxidase (NOX) activation. Production of ROS and activation of LFA-1 in human primary monocytes were independent of P-selectin-PSGL-1 interaction. Our results proved the modified biotin switch assay to be a powerful tool with the ability to reveal new regulatory mechanisms and identify new therapeutic targets.
Toscano, Miguel G; Navarro-Montero, Oscar; Ayllon, Veronica; Ramos-Mejia, Veronica; Guerrero-Carreno, Xiomara; Bueno, Clara; Romero, Tamara; Lamolda, Mar; Cobo, Marien; Martin, Francisco; Menendez, Pablo; Real, Pedro J
2015-01-01
Human embryonic stem cells (hESCs) are a unique in vitro model for studying human developmental biology and represent a potential source for cell replacement strategies. Platelets can be generated from cord blood progenitors and hESCs; however, the molecular mechanisms and determinants controlling the in vitro megakaryocytic specification of hESCs remain elusive. We have recently shown that stem cell leukemia (SCL) overexpression accelerates the emergence of hemato-endothelial progenitors from hESCs and promotes their subsequent differentiation into blood cells with higher clonogenic potential. Given that SCL participates in megakaryocytic commitment, we hypothesized that it may potentiate megakaryopoiesis from hESCs. We show that ectopic SCL expression enhances the emergence of megakaryocytic precursors, mature megakaryocytes (MKs), and platelets in vitro. SCL-overexpressing MKs and platelets respond to different activating stimuli similar to their control counterparts. Gene expression profiling of megakaryocytic precursors shows that SCL overexpression renders a megakaryopoietic molecular signature. Connectivity Map analysis reveals that trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), both histone deacetylase (HDAC) inhibitors, functionally mimic SCL-induced effects. Finally, we confirm that both TSA and SAHA treatment promote the emergence of CD34(+) progenitors, whereas valproic acid, another HDAC inhibitor, potentiates MK and platelet production. We demonstrate that SCL and HDAC inhibitors are megakaryopoiesis regulators in hESCs.
Tsetsarkin, Konstantin A.; Sampson-Johannes, Adam; Sawyer, Lynette; Kinsey, John; Higgs, Stephen; Vanlandingham, Dana L.
2013-01-01
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that recently re-emerged in Africa and rapidly spread into countries of the Indian Ocean basin and South-East Asia. The mean viremic blood donation risk for CHIKV on La Réunion reached 1.5% at the height of the 2005–2006 outbreaks, highlighting the need for development of safety measures to prevent transfusion-transmitted infections. We describe successful inactivation of CHIKV in human platelets and plasma using photochemical treatment with amotosalen and long wavelength UVA illumination. Platelet components in additive solution and plasma units were inoculated with two different strains of high titer CHIKV stock (6.0–8.0 logs/mL), and then treated with amotosalen and exposure to 1.0–3.0 J/cm2 UVA. Based on in vitro assays of infectious virus pre- and post-treatment to identify endpoint dilutions where virus was not detectable, mean viral titers could effectively be reduced by > 6.4 ± 0.6 log10 TCID50/mL in platelets and ≥ 7.6 ± 1.4 logs in plasma, indicating this treatment has the capacity to prevent CHIKV transmission in human blood components collected from infected donors in or traveling from areas of CHIKV transmission. PMID:23530077
Identification of platelet refractoriness in oncohematologic patients
Ferreira, Aline Aparecida; Zulli, Roberto; Soares, Sheila; de Castro, Vagner; Moraes-Souza, Helio
2011-01-01
OBJECTIVES: To identify the occurrence and the causes of platelet refractoriness in oncohematologic patients. INTRODUCTION: Platelet refractoriness (unsatisfactory post-transfusion platelet increment) is a severe problem that impairs the treatment of oncohematologic patients and is not routinely investigated in most Brazilian services. METHODS: Forty-four episodes of platelet concentrate transfusion were evaluated in 16 patients according to the following parameters: corrected count increment, clinical conditions and detection of anti-platelet antibodies by the platelet immunofluorescence test (PIFT) and panel reactive antibodies against human leukocyte antigen class I (PRA-HLA). RESULTS: Of the 16 patients evaluated (median age: 53 years), nine (56%) were women, seven of them with a history of pregnancy. An unsatisfactory increment was observed in 43% of the transfusion events, being more frequent in transfusions of random platelet concentrates (54%). Platelet refractoriness was confirmed in three patients (19%), who presented immunologic and non-immunologic causes. Alloantibodies were identified in eight patients (50%) by the PIFT and in three (19%) by the PRA-HLA. Among alloimmunized patients, nine (64%) had a history of transfusion, and three as a result of pregnancy (43%). Of the former, two were refractory (29%). No significant differences were observed, probably as a result of the small sample size. CONCLUSION: The high rate of unsatisfactory platelet increment, refractoriness and alloimmunization observed support the need to set up protocols for the investigation of this complication in all chronically transfused patients, a fundamental requirement for the guarantee of adequate management. PMID:21437433
Influence of mental stress on platelet bioactivity
Koudouovoh-Tripp, Pia; Sperner-Unterweger, Barbara
2012-01-01
It is well established that various mental stress conditions contribute, or at least influence, underlying pathophysiological mechanisms in somatic, as well as in psychiatric disorders; blood platelets are supposed to represent a possible link in this respect. The anculeated platelets are the smallest corpuscular elements circulating in the human blood. They display different serotonergic markers which seem to reflect the central nervous serotonin metabolism. They are known as main effectors in haematological processes but recent research highlights their role in the innate and adaptive immune system. Platelets are containing a multitude of pro-inflammatory and immune-modulatory bioactive compounds in their granules and are expressing immune-competent surface markers. Research gives hint that platelets activation and reactivity is increased by mental stress. This leads to enhanced cross talk with the immune system via paracrine secretion, receptor interaction and formation of platelet leucocyte-aggregates. Recently it has been demonstrated that the immune system can have a remarkable impact in the development of psychiatric disorders. Therefore platelets represent an interesting research area in psychiatry and their role as a possible biomarker has been investigated. We review the influence of mental stress on what is termed platelet bioactivity in this article, which subsumes the mainly immune-modulatory activity of platelets in healthy volunteers, elderly persons with chronic care-giving strain, patients with cardiovascular diseases who are prone to psychosocial stress, as well as in patients with posttraumatic stress disorder. Research data suggest that stress enhances platelet activity, reactivity and immune-modulatory capacities. PMID:24175179
Sallmon, Hannes; Weber, Sven C; Dirks, Juliane; Schiffer, Tamara; Klippstein, Tamara; Stein, Anja; Felderhoff-Müser, Ursula; Metze, Boris; Hansmann, Georg; Bührer, Christoph; Cremer, Malte; Koehne, Petra
2018-01-01
The role of platelets for mediating closure of the ductus arteriosus in human preterm infants is controversial. Especially, the effect of low platelet counts on pharmacological treatment failure is still unclear. In this retrospective study of 471 preterm infants [<1,500 g birth weight (BW)], who were treated for a patent ductus arteriosus (PDA) with indomethacin or ibuprofen, we investigated whether platelet counts before or during pharmacological treatment had an impact on the successful closure of a hemodynamically significant PDA. The effects of other factors, such as sepsis, preeclampsia, gestational age, BW, and gender, were also evaluated. Platelet counts before initiation of pharmacological PDA treatment did not differ between infants with later treatment success or failure. However, we found significant associations between low platelet counts during pharmacological PDA therapy and treatment failure ( p < 0.05). Receiver operating characteristic (ROC) curve analysis showed that platelet counts after the first, and before and after the second cyclooxygenase inhibitor (COXI) cycle were significantly associated with treatment failure (area under the curve of >0.6). However, ROC curve analysis did not reveal a specific platelet cutoff-value that could predict PDA treatment failure. Multivariate logistic regression analysis showed that lower platelet counts, a lower BW, and preeclampsia were independently associated with COXI treatment failure. We provide further evidence for an association between low platelet counts during pharmacological therapy for symptomatic PDA and treatment failure, while platelet counts before initiation of therapy did not affect treatment outcome.
Okuda-Tanino, Asa; Sugawara, Daiki; Tashiro, Takumi; Iwashita, Masaya; Obara, Yutaro; Moriya, Takahiro; Tsushima, Chisato; Saigusa, Daisuke; Tomioka, Yoshihisa; Ishii, Kuniaki; Nakahata, Norimichi
2017-01-01
Licochalcones extracted from Glycyrrhiza inflata are known to have a variety of biological properties such as anti-inflammatory, anti-bacterial, and anti-tumor activities, but their action on platelet aggregation has not yet been reported. Therefore, in this study we investigated the effects of licochalcones on platelet aggregation. Collagen and U46619, a thromboxane A2 receptor agonist, caused rabbit platelet aggregation, which was reversed by pretreatment with licochalcones A, C and D in concentration-dependent manners. Among these compounds, licochalcone A caused the most potent inhibitory effect on collagen-induced platelet aggregation. However, the licochalcones showed marginal inhibitory effects on thrombin or ADP-induced platelet aggregation. In addition to rabbit platelets, licochalcone A attenuated collagen-induced aggregation in human platelets. Because licochalcone A also inhibited arachidonic acid-induced platelet aggregation and production of thromboxane A2 induced by collagen in intact platelets, we further examined the direct interaction of licochalcone A with cyclooxygenase (COX)-1. As expected, licochalcone A caused an inhibitory effect on both COX-1 and COX-2 in vitro. Regarding the effect of licochalcone A on COX-1 enzyme reaction kinetics, although licochalcone A showed a stronger inhibition of prostaglandin E2 synthesis induced by lower concentrations of arachidonic acid, Vmax values in the presence or absence of licochalcone A were comparable, suggesting that it competes with arachidonic acid at the same binding site on COX-1. These results suggest that licochalcones inhibit collagen-induced platelet aggregation accompanied by inhibition of COX-1 activity. PMID:28282426
Katada, J; Takiguchi, Y; Muramatsu, M; Fujiyoshi, T; Uno, I
1997-10-01
The in vitro and in vivo pharmacological profiles of NSL-9403 [orotyl-serylarginyl-glycyl-asparatyl-tryptophane], a platelet glycoprotein IIb/IIIa (GpIIb/IIIa) antagonist, has been studied. NSL-9403 inhibited platelet aggregation of human platelet-rich plasma (PRP) with IC50 values of 4.3 +/- 0.4 microM (collagen) and 1.8 +/- 0.3 microM (ADP), which was about 100 times more potent than RGDS. It also inhibited the binding of fibrinogen to activated platelets. Ex vivo collagen and ADP-induced platelet aggregation in a guinea pig was inhibited after a bolus intravenous administration of NSL-9403 at 1.25 mg/kg and above. NSL-9403 had an anti-thrombotic effect in in vivo thrombosis models. In a platelet agonist-induced pulmonary embolic sudden death model, where a bolus injection of collagen and epinephrine induced sudden death in mice, intravenous administration of NSL-9403 before an injection of collagen and epinephrine inhibited this platelet-agonist induced death in a dose dependent manner. In an arterio-venous shunt, infusion of NSL-9403 at 3 mg/kg/hour prevented an increase in circulation pressure due to thrombus formation in the shunt circuit and platelet loss. Infusion of NSL-9403 at 1 to 10 mg/kg/hour produced a complete inhibition of platelet-dependent arterial thrombosis in a dog femoral arterial thrombosis model. Thus NSL-9403 is a potent inhibitor or platelet aggregation in vitro and a potent anti-thrombotic agent in vivo with a relatively short duration of action.
Extramitochondrial energy production in platelets.
Ravera, Silvia; Signorello, Maria Grazia; Bartolucci, Martina; Ferrando, Sara; Manni, Lucia; Caicci, Federico; Calzia, Daniela; Panfoli, Isabella; Morelli, Alessandro; Leoncini, Giuliana
2018-05-01
Energy demand in human platelets is very high, to carry out their functions. As for most human cells, the aerobic metabolism represents the primary energy source in platelets, even though mitochondria are negligibly represented. Following the hypothesis that other structures could be involved in chemical energy production, in this work, we have investigated the functional expression of an extramitochondrial aerobic metabolism in platelets. Oximetric and luminometric analyses showed that platelets consume large amounts of oxygen and produce ATP in the presence of common respiring substrates, such as pyruvate + malate or succinate, although morphological electron microscopy analysis showed that these contain few mitochondria. However, evaluation of the anaerobic glycolytic metabolism showed that only 13% of consumed glucose was converted to lactate. Interestingly, the highest OXPHOS activity was observed in the presence of NADH, not a readily permeant respiring substrate for mitochondria. Also, oxygen consumption and ATP synthesis fuelled by NADH were not affected by atractyloside, an inhibitor of the adenine nucleotide translocase, suggesting that these processes may not be ascribed to mitochondria. Functional data were confirmed by immunofluorescence microscopy and Western blot analyses, showing a consistent expression of the β subunit of F 1 F o -ATP synthase and COXII, a subunit of Complex IV, but a low signal of translocase of the inner mitochondrial membrane (a protein not involved in OXPHOS metabolism). Interestingly, the NADH-stimulated oxygen consumption and ATP synthesis increased in the presence of the physiological platelets agonists, thrombin or collagen. Data suggest that in platelets, aerobic energy production is mainly driven by an extramitochondrial OXPHOS machinery, originated inside the megakaryocyte, and that this metabolism plays a pivotal role in platelet activation. This work represents a further example of the existence of an extramitochondrial aerobic metabolism, which can contribute to the cellular energy balance. © 2018 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.
Okamura, Yosuke; Fukui, Yoshihito; Kabata, Koki; Suzuki, Hidenori; Handa, Makoto; Ikeda, Yasuo; Takeoka, Shinji
2009-10-21
We have studied biocompatible spherical carriers carrying a dodecapeptide, HHLGGAKQAGDV (H12), on their surface as platelet substitutes. This peptide is a fibrinogen γ-chain carboxy-terminal sequence (γ400-411) and specifically recognizes the active form of glycoprotein IIb/IIIa on activated platelets. Our purpose is to assess the possibility of making a novel platelet substitute consisting of disk-shaped nanosheets having a large contact area for the targeting site, rather than conventional small contact area spherical carriers. The H12 peptide was conjugated to the surface of the free-standing nanosheets made of biodegradable poly(d,l-lactide-co-glycolide) (PLGA). These H12-PLGA nanosheets were fabricated onto 3 μm disk-shaped patterned hydrophobic octadecyl regions on a SiO(2) substrate. By way of comparison, spherical H12-PLGA microparticles with the same surface area and conjugation number of H12 were also prepared. The resulting H12-PLGA nanosheets specifically interacted with the activated platelets adhered on the collagen surface at twice the rate of the H12-PLGA microparticles under flow conditions, and showed platelet thrombus formation in a two-dimensional spreading manner. Thus, H12-PLGA nanosheets might be a suitable candidate novel platelet alternative substitute for infused human platelet concentrates for the treatment of bleeding in patients with severe thrombocytopenia.
TCDD and omeprazole prime platelets through the aryl hydrocarbon receptor (AhR) non-genomic pathway.
Pombo, Mónica; Lamé, Michael W; Walker, Naomi J; Huynh, Danh H; Tablin, Fern
2015-05-19
The role of the aryl hydrocarbon receptor (AhR) in hemostasis has recently gained increased attention. Here, we demonstrate, by qRT-PCR and western blot, that human platelets express both AhR mRNA and AhR protein. AhR protein levels increase in a dose dependent manner when incubated with either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or omeprazole. Treatment of platelets with puromycin blocks increased AhR protein synthesis in the presence of AhR activators. Additionally, treatment of platelets with either activator results in phosphorylation of p38MAPK and cPLA2, two key signaling molecules in platelet activation pathways. Using the AhR competitive inhibitors alpha naphthoflavone and CH-223191, we show that phosphorylation of p38MAPK is AhR dependent. Further, inhibition of p38MAPK blocks downstream cPLA2 phosphorylation induced by TCDD or omeprazole. Treatment with AhR activators results in platelet priming, as demonstrated by increased platelet aggregation, which is inhibited by AhR antagonists. Our data support a model of the platelet AhR non-genomic pathway in which treatment with AhR activators results in increased expression of the AhR, phosphorylation of p38MAPK and cPLA2, leading to platelet priming in response to agonist. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Functional Divergence of Platelet Protein Kinase C (PKC) Isoforms in Thrombus Formation on Collagen*
Gilio, Karen; Harper, Matthew T.; Cosemans, Judith M. E. M.; Konopatskaya, Olga; Munnix, Imke C. A.; Prinzen, Lenneke; Leitges, Michael; Liu, Qinghang; Molkentin, Jeffery D.; Heemskerk, Johan W. M.; Poole, Alastair W.
2010-01-01
Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent α-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCα and PKCβ, whereas the novel isoform, PKCθ, negatively regulates these events. PKCδ also negatively regulates thrombus formation but not α-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCα or PKCβ showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKCθ. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen. PMID:20479008
Functional divergence of platelet protein kinase C (PKC) isoforms in thrombus formation on collagen.
Gilio, Karen; Harper, Matthew T; Cosemans, Judith M E M; Konopatskaya, Olga; Munnix, Imke C A; Prinzen, Lenneke; Leitges, Michael; Liu, Qinghang; Molkentin, Jeffery D; Heemskerk, Johan W M; Poole, Alastair W
2010-07-23
Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent alpha-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCalpha and PKCbeta, whereas the novel isoform, PKC, negatively regulates these events. PKCdelta also negatively regulates thrombus formation but not alpha-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCalpha or PKCbeta showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKC. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen.
Intracellular origin and ultrastructure of platelet-derived microparticles.
Ponomareva, A A; Nevzorova, T A; Mordakhanova, E R; Andrianova, I A; Rauova, L; Litvinov, R I; Weisel, J W
2017-08-01
Essentials Platelet microparticles play a major role in pathologies, including hemostasis and thrombosis. Platelet microparticles have been analyzed and classified based on their ultrastructure. The structure and intracellular origin of microparticles depend on the cell-activating stimulus. Thrombin-treated platelets fall apart and form microparticles that contain cellular organelles. Background Platelet-derived microparticles comprise the major population of circulating blood microparticles that play an important role in hemostasis and thrombosis. Despite numerous studies on the (patho)physiological roles of platelet-derived microparticles, mechanisms of their formation and structural details remain largely unknown. Objectives Here we studied the formation, ultrastructure and composition of platelet-derived microparticles from isolated human platelets, either quiescent or stimulated with one of the following activators: arachidonic acid, ADP, collagen, thrombin or calcium ionophore A23187. Methods Using flow cytometry, transmission and scanning electron microscopy, we analyzed the intracellular origin, structural diversity and size distributions of the subcellular particles released from platelets. Results The structure, dimensions and intracellular origin of microparticles depend on the cell-activating stimulus. The main structural groups include a vesicle surrounded by one thin membrane or multivesicular structures. Thrombin, unlike other stimuli, induced formation of microparticles not only from the platelet plasma membrane and cytoplasm but also from intracellular structures. A fraction of these vesicular particles having an intracellular origin contained organelles, such as mitochondria, glycogen granules and vacuoles. The size of platelet-derived microparticles depended on the nature of the cell-activating stimulus. Conclusion The results obtained provide a structural basis for the qualitative differences of various platelet activators, for specific physiological and pathological effects of microparticles, and for development of advanced assays. © 2017 International Society on Thrombosis and Haemostasis.
Platelets and their chemokines in atherosclerosis—clinical applications
von Hundelshausen, Philipp; Schmitt, Martin M. N.
2014-01-01
The concept of platelets as important players in the process of atherogenesis has become increasingly accepted due to accumulating experimental and clinical evidence. Despite the progress in understanding the molecular details of atherosclerosis, particularly by using animal models, the inflammatory and thrombotic roles of activated platelet s especially in the human system remain difficult to dissect, as often only the complications of atherosclerosis, i.e., stroke and myocardial infarction are definable but not the plaque burden. Platelet indices including platelet count and mean platelet volume (MPV) and soluble mediators released by activated platelets are associated with atherosclerosis. The chemokine CXCL4 has multiple atherogenic activities, e.g., altering the differentiation of T cells and macrophages by inhibiting neutrophil and monocyte apoptosis and by increasing the uptake of oxLDL and synergizing with CCL5. CCL5 is released and deposited on endothelium by activated platelets thereby triggering atherogenic monocyte recruitment, which can be attenuated by blocking the corresponding chemokine receptor CCR5. Atheroprotective and plaque stabilizing properties are attributed to CXCL12, which plays an important role in regenerative processes by attracting progenitor cells. Its release from luminal attached platelets accelerates endothelial healing after injury. Platelet surface molecules GPIIb/IIIa, GP1bα, P-selectin, JAM-A and the CD40/CD40L dyade are crucially involved in the interaction with endothelial cells, leukocytes and matrix molecules affecting atherogenesis. Beyond the effects on the arterial inflammatory infiltrate, platelets affect cholesterol metabolism by binding, modifying and endocytosing LDL particles via their scavenger receptors and contribute to the formation of lipid laden macrophages. Current medical therapies for the prevention of atherosclerotic therapies enable the elucidation of mechanisms linking platelets to inflammation and atherosclerosis. PMID:25152735
Oral thrombin inhibitor aggravates platelet adhesion and aggregation during arterial thrombosis.
Petzold, Tobias; Thienel, Manuela; Konrad, Ildiko; Schubert, Irene; Regenauer, Ron; Hoppe, Boj; Lorenz, Michael; Eckart, Annekathrin; Chandraratne, Sue; Lennerz, Carsten; Kolb, Christof; Braun, Daniel; Jamasbi, Janina; Brandl, Richard; Braun, Siegmund; Siess, Wolfgang; Schulz, Christian; Massberg, Steffen
2016-11-30
In patients with atrial fibrillation, oral anticoagulation with oral thrombin inhibitors (OTIs), in contrast to vitamin K antagonists (VKAs), associates with a modest increase in acute coronary syndromes (ACSs). Whether this observation is causatively linked to OTI treatment and, if so, whether OTI action is the result of a lower antithrombotic efficacy of OTI compared to VKA or reflects a yet undefined prothrombotic activity of OTI remain unclear. We analyzed platelet function in patients receiving OTI or dose-adapted VKA under static and flow conditions. In vivo, we studied arterial thrombosis in OTI-, VKA-, and vehicle-treated mice using carotid ligation and wire injury models. Further, we examined thrombus formation on human atherosclerotic plaque homogenates under arterial shear to address the relevance to human pathology. Under static conditions, aggregation in the presence of ristocetin was increased in OTI-treated blood, whereas platelet reactivity and aggregation to other agonists were only marginally affected. Under flow conditions, firm platelet adhesion and thrombus formation on von Willebrand factor, collagen, and human atherosclerotic plaque were increased in the presence of OTI in comparison to VKA. OTI treatment was associated with increased thrombus formation in injured carotid arteries of mice. Inhibition or ablation of GPIbα-thrombin interactions abolished the effect of OTI on thrombus formation, suggesting a mechanistic role of the platelet receptor GPIbα and its thrombin-binding site. The effect of OTI was also abrogated in the presence of aspirin. In summary, OTI treatment has prothrombotic activity that might contribute to the increase in ACS observed clinically in patients. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Yoshida, Mitsuhiro; Sakuma, Junko; Hayashi, Seiji; Abe, Kin'ya; Saito, Izumu; Harada, Shizuko; Sakatani, Mitsunoir; Yamamoto, Satoru; Matsumoto, Norinao; Kaneda, Yasufumi; Kishmoto, Tadamitsu
1995-10-01
Interstitial pneumonia is characterized by alveolitis with resulting fibrosis of the interstitium. To determine the relevance of humoral factors in the pathogenesis of interstitial pneumonia, we introduced expression vectors into Wistar rats via the trachea to locally overexpress humoral factors in the lungs. Human interleukin (IL) 6 and IL-6 receptor genes induced lymphocytic alveolitis without marked fibroblast proliferation. In contrast, overexpression of human transforming growth factor β1 or human platelet-derived growth factor B gene induced only mild or apparent cellular infiltration in the alveoli, respectively. However, both factors induced significant proliferation of fibroblasts and deposition of collagen fibrils. These histopathologic changes induced by the transforming growth factor β1 and platelet-derived growth factor B gene are partly akin to those changes seen in lung tissues from patients with pulmonary fibrosis and markedly contrast with the changes induced by overexpression of the IL-6 and IL-6 receptor genes that mimics lymphocytic interstitial pneumonia.
Schäfer, Andreas; Flierl, Ulrike; Pförtsch, Stephanie; Seydelmann, Nora; Micka, Jan; Bauersachs, Johann
2010-10-01
Use of proton-pump inhibitors (PPIs) is common in patients on dual antiplatelet therapy (DAT). Recent warnings about potential interactions of PPIs with clopidogrel metabolism leading to impaired DAT efficacy has prompted the recommendation of substituting PPIs with H(2)-receptor antagonists such as ranitidine. We investigated whether ranitidine interacts with P2Y(12) inhibition on the platelet level. Blood was collected from 15 patients with stable coronary artery disease, who had undergone elective coronary intervention. Clopidogrel responsiveness was assessed 24h after the administration of a 600mg loading dose using the P2Y(12) specific platelet-reactivity-index (PRI) and light-transmittance aggregometry in the presence and absence of a pharmacologically relevant concentration of the H(2)-receptor antagonist ranitidine (400ng/ml). Adding ranitidine enhanced P2Y(12)-mediated platelet reactivity to ADP assessed by the PRI (mean PRI+/-SEM: before ranitidine 28+/-5%; after ranitidine 37+/-5%, p=0.0025). Similarly, prostaglandin E1 (PGE(1))-mediated inhibition of ADP-induced aggregation was abrogated in the presence of ranitidine (Agg(max)+/-SEM: before PGE(1) 41+/-2%; after PGE(1) 29+/-2%, p<0.01 vs. before PGE(1); after PGE(1)+ranitidine 42+/-2%, p<0.01 vs. after PGE(1)). Exposition of platelets with ranitidine significantly enhanced their responsiveness to ADP and contributed to impaired P2Y(12) inhibition suggesting that ranitidine interacts with clopidogrel efficacy through adenylyl cyclase inhibition on the platelet level. Copyright 2010 Elsevier Ltd. All rights reserved.
Reevaluation of the role of the polar groups of collagen in the platelet-collagen interaction.
Chesney, C. M.; Pifer, D. D.; Crofford, L. J.; Huch, K. M.
1983-01-01
Chemical modification of collagen is a tool for exploring the platelet-collagen interaction. Since collagen must polymerize prior to the initiation of platelet aggregation and secretion, modification must be shown to affect platelet-collagen interaction and not collagen-collagen interaction. To address this point, the authors carried out the following chemical modifications on soluble monomeric collagen and preformed fibrillar collagen in parallel: 1) N-and O-acetylation, 2) esterification of the carboxyl groups, 3) succinylation of the free amino groups, 4) esterification of succinylated collagen. Intrinsic viscosity studies of the modified soluble collagens were consistent with normal triple helix conformation. Electron microscopy revealed all modified fibrillar collagen to maintain a fibrillar structure. Platelet aggregation and secretion of 14C-serotonin and platelet factor 4 by soluble and fibrillar collagen, respectively, were studied in human platelet-rich plasma. Neutralization of polar groups by 1) totally abolished aggregation and secretion by both collagens, while blocking acidic groups 2) resulted in enhanced aggregation and secretion by both soluble and fibrillar collagen. Blockage of amino groups by 3) abolished aggregation and secretion by both collagens. Esterified succinylated collagen 4) caused aggregation and secretion at relatively high collagen concentrations. These data support the theory that positive groups of collagen are important in platelet-collagen interaction. Images Figure 1 PMID:6881287
Cerecedo, Doris; Martínez-Vieyra, Ivette; Maldonado-García, Deneb; Hernández-González, Enrique; Winder, Steve J
2015-11-01
Platelets are the most prominent elements of blood tissue involved in hemostasis at sites of blood vessel injury. Platelet cytoskeleton is responsible for their shape modifications observed during activation and adhesion to the substratum; therefore the interactions between cytoskeleton and plasma membrane are critical to modulate blood platelet functions. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to membrane/lipid rafts (MLR) and regulate lateral diffusion of membrane proteins and lipids. Resting, thrombin-activated, and adherent human platelets were processed for biochemical studies including western-blot and immunprecipitation assays and confocal analysis were performed to characterize the interaction of MLR with the main cytoskeleton elements and β-dystroglycan as well as with the association of caveolin-1 PY14 with focal adhesion proteins. We transfected a megakaryoblast cell line (Meg-01) to deplete β-dystroglycan, subsequent to their differentiation to the platelet progenitors. Our data showed a direct interaction of the MLR with cytoskeleton to regulate platelet shape, while an association of caveolin-1 PY14 with vinculin is needed to establish focal adhesions, which are modulated for β-dystroglycan. In conclusion, caveolin-1 PY14 in association with platelet cytoskeleton participate in focal adhesions dynamics. © 2015 Wiley Periodicals, Inc.
Rodrigues, Sofia N; Gonçalves, Inês C; Martins, M C L; Barbosa, Mário A; Ratner, Buddy D
2006-11-01
The effect of surface wettability on fibrinogen adsorption, platelet adhesion and platelet activation was investigated using self-assembled monolayers (SAMs) containing different ratios of longer chain methyl- and shorter chain hydroxyl-terminated alkanethiols (C15CH3 vs. C11OH) on gold. Protein adsorption studies were performed using radiolabeled human fibrinogen (HFG). Platelet adhesion and activation studies with and without pre-adsorbed fibrinogen, albumin and plasma were assessed using scanning electron microscopy (SEM) and a glutaraldehyde-induced fluorescence technique (GIFT). Results demonstrated a linear decrease of HFG adsorption with the increase of OH groups on the monolayer (increase of the hydrophilicity). Platelet adhesion and activation also decrease with increase of hydrophilicity of surface. Concerning SAMs pre-immersed in proteins, fibrinogen adsorption was related with high platelet adhesion and activation. The passivant effect of albumin on platelet adhesion and activation was only demonstrated on SAMs contained C11OH. When all the blood proteins are present (plasma) platelet adhesion was almost absent on SAMs with 65% and 100% C11OH. This could be explained by the higher albumin affinity of the SAMs with 65% C11OH and the lower total protein adsorption associated with SAMs with 100% C11OH.
Jiang, Yiyue; Lei, Cheng; Yasumoto, Atsushi; Kobayashi, Hirofumi; Aisaka, Yuri; Ito, Takuro; Guo, Baoshan; Nitta, Nao; Kutsuna, Natsumaro; Ozeki, Yasuyuki; Nakagawa, Atsuhiro; Yatomi, Yutaka; Goda, Keisuke
2017-07-11
According to WHO, about 10 million new cases of thrombotic disorders are diagnosed worldwide every year. Thrombotic disorders, including atherothrombosis (the leading cause of death in the US and Europe), are induced by occlusion of blood vessels, due to the formation of blood clots in which aggregated platelets play an important role. The presence of aggregated platelets in blood may be related to atherothrombosis (especially acute myocardial infarction) and is, hence, useful as a potential biomarker for the disease. However, conventional high-throughput blood analysers fail to accurately identify aggregated platelets in blood. Here we present an in vitro on-chip assay for label-free, single-cell image-based detection of aggregated platelets in human blood. This assay builds on a combination of optofluidic time-stretch microscopy on a microfluidic chip operating at a high throughput of 10 000 blood cells per second with machine learning, enabling morphology-based identification and enumeration of aggregated platelets in a short period of time. By performing cell classification with machine learning, we differentiate aggregated platelets from single platelets and white blood cells with a high specificity and sensitivity of 96.6% for both. Our results indicate that the assay is potentially promising as predictive diagnosis and therapeutic monitoring of thrombotic disorders in clinical settings.
21 CFR 640.22 - Collection of source material.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Platelets § 640.22 Collection of source material. (a) Whole blood used as the source of Platelets shall be collected as prescribed in § 640.4. (b... uninterrupted venipuncture with minimal damage to, and minimal manipulation of, the donor's tissue. [40 FR 4304...
Isolation of a 5-Kilodalton Actin-Sequestering Peptide from Human Blood Platelets
NASA Astrophysics Data System (ADS)
Safer, Daniel; Golla, Rajasree; Nachmias, Vivianne T.
1990-04-01
Resting human platelets contain ≈0.3 mM unpolymerized actin. When freshly drawn and washed platelets are treated with saponin, 85-90% of the unpolymerized actin diffuses out. Analysis by polyacrylamide gel electrophoresis under nondenaturing conditions shows that the bulk of this unpolymerized actin migrates with a higher mobility than does pure G-actin, profilactin, or actin-gelsolin complex. When muscle G-actin is added to fresh or boiled saponin extract, the added muscle actin is shifted to the high-mobility form. The saponin extract contains an acidic peptide having a molecular mass in the range of 5 kDa, which has been purified to homogeneity by reverse-phase HPLC. This peptide also shifts muscle actin to the high-mobility form. Addition of either boiled saponin extract or the purified peptide to muscle G-actin also strongly and stoichiometrically inhibits salt-induced polymerization, as assayed by falling-ball viscometry and by sedimentation. We conclude that this peptide binds to the bulk of the unpolymerized actin in platelets and prevents it from polymerizing.
NASA Astrophysics Data System (ADS)
Laloy, Julie; Haguet, Hélène; Alpan, Lutfiye; Mancier, Valérie; Mejia, Jorge; Levi, Samuel; Dogné, Jean-Michel; Lucas, Stéphane; Rousse, Céline; Fricoteaux, Patrick
2017-08-01
Copper/silver core/shell nanopowders with different metal ratio have been elaborated by electrochemistry (ultrasound-assisted electrolysis followed by a displacement reaction). Characterization was performed by several methods (X-ray diffraction, scanning electron microscope, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, centrifugal liquid sedimentation, and zeta potential measurements). The mean diameter of all nanoparticles is around 10 nm. The impact of each nanopowder on hemolysis, platelet aggregation, and coagulation has been studied on whole human blood. Hemolysis assays were performed with spectrophotometric measurement and platelet aggregation, with light transmission aggregometry and was compared to Cu/Pt core/shell nanoparticles with similar size as negative control. Calibrated thrombin generation test has been used for a coagulation study. They neither impact platelet aggregation nor hemolysis and have a procoagulant effect whatever their composition (i.e., metal ratio). These results highlight that such nanopowders have a potential use in medical applications (e.g., wound dressing).
Bjornson, H. S.; Hill, E. O.
1973-01-01
The effects of Bacteroides sp., Fusobacterium mortiferum, Bacteroides fragilis, and Sphaerophorus necrophorus on various parameters of blood coagulation in vivo and in vitro were determined and compared to the coagulation effects of Escherichia coli and Salmonella minnesota, wild type and R595. Intravenous injection of washed cells, culture filtrate, lipopolysaccharide, or lipid A of the anaerobic gram-negative microorganisms into mice resulted in acceleration of coagulation. Lipopolysaccharide and lipid A of the anaerobic microorganisms had no apparent effect on circulating platelets in mice or rabbits and did not cause aggregation of human platelets in vitro. Washed cells, lipopolysaccharide, and lipid A of Bacteroides sp. and F. mortiferum also significantly accelerated the clotting time of recalcified platelet poor normal human plasma and C6-deficient rabbit plasma. Lipid A, but not lipopolysaccharide, of E. coli and washed cells of S. minnesota R595 accelerated coagulation by a similar mechanism. These results indicated that Bacteroides sp. and F. mortiferum can accelerate blood coagulation in vivo and in vitro by a mechanism which does not involve platelets or terminal components of complement. PMID:4594118
Abacavir increases platelet reactivity via competitive inhibition of soluble guanylyl cyclase
Baum, Paul D.; Sullam, Paul M.; Stoddart, Cheryl A.; McCune, Joseph M.
2011-01-01
Objective To provide a molecular mechanism that explains the association of the antiretroviral guanosine analogue, abacavir, with an increased risk of myocardial infarction. Design Drug effects were studied with biochemical and cellular assays. Methods Human platelets were incubated with nucleoside analogue drugs ex vivo. Platelet activation stimulated by ADP was studied by measuring surface P-selectin with flow cytometry. Inhibition of purified soluble guanylyl cyclase was quantified using an ELISA to measure cGMP production. Results Pre-incubation of platelets in abacavir significantly increased activation in response to ADP in a time and dose-dependent manner. The active anabolite of abacavir, carbovir triphosphate, competitively inhibited soluble guanylyl cyclase activity with a Ki of 55 μmol/l. Conclusion Abacavir competitively inhibits guanylyl cyclase, leading to platelet hyper-reactivity. This may explain the observed increased risk of myocardial infarction in HIV patients taking abacavir. PMID:21941165
Parrish, William R; Roides, Breana; Hwang, Julia; Mafilios, Michael; Story, Brooks; Bhattacharyya, Samir
2016-01-01
Background Therapeutic success of platelet-rich plasma (PRP) may vary based on the composition and preparation method. The objective of this study was to evaluate the cellular components of platelet concentrates produced by a leucocyte-rich (LR-PRP) and a leucocyte-poor PRP systems (LP-PRP). Methods Parameters evaluated included platelet recovery, platelet concentration, red blood cell (RBC) and white blood cell (WBC) composition, platelet growth factor release and stimulation of human tendon cell proliferation in vitro. Results Platelet recoveries were 52% for LP-PRP and 89% for LR-PRP. LR-PRP demonstrated greater reproducibility with a 4.2% coefficient of variation (CV) compared with 19.4% for LP-PRP (p<0.001). LR-PRP demonstrated a greater increase in platelet concentration (7.9-fold) than LP-PRP (2.2-fold; p<0.001). LP-PRP showed 5.0-fold reductions in WBCs, while LR-PRP showed a 4.0-fold increase (p<0.001). LP-PRP reduced RBCs to a haematocrit of 0.25, while LR-PRP reduced haematocrit to 11.8. LP-PRP did not coagulate robustly on reactivation with CaCl2, and released significantly lower levels of epidermal growth factor (EGF) and transforming growth factor β1 (TGF-β1) than whole blood (p<0.03). LP-PRP also did not stimulate tendon cell proliferation greater than whole blood. In contrast, LR-PRP showed increases in each growth factor on activation with CaCl2 (p<0.01) and stimulated greater proliferation (p<0.05) compared with whole blood. Forced activation of LP-PRP with exogenous thrombin rescued the coagulation deficiency and induced greater growth factor release than comparable whole blood (p<0.03). Conclusions These data suggest that non-platelet cellular components in platelet concentrates are important for proper platelet function, including thrombin generation, growth factor release and clot retraction. PMID:27900155
Parrish, William R; Roides, Breana; Hwang, Julia; Mafilios, Michael; Story, Brooks; Bhattacharyya, Samir
2016-01-01
Therapeutic success of platelet-rich plasma (PRP) may vary based on the composition and preparation method. The objective of this study was to evaluate the cellular components of platelet concentrates produced by a leucocyte-rich (LR-PRP) and a leucocyte-poor PRP systems (LP-PRP). Parameters evaluated included platelet recovery, platelet concentration, red blood cell (RBC) and white blood cell (WBC) composition, platelet growth factor release and stimulation of human tendon cell proliferation in vitro. Platelet recoveries were 52% for LP-PRP and 89% for LR-PRP. LR-PRP demonstrated greater reproducibility with a 4.2% coefficient of variation (CV) compared with 19.4% for LP-PRP (p<0.001). LR-PRP demonstrated a greater increase in platelet concentration (7.9-fold) than LP-PRP (2.2-fold; p<0.001). LP-PRP showed 5.0-fold reductions in WBCs, while LR-PRP showed a 4.0-fold increase (p<0.001). LP-PRP reduced RBCs to a haematocrit of 0.25, while LR-PRP reduced haematocrit to 11.8. LP-PRP did not coagulate robustly on reactivation with CaCl 2 , and released significantly lower levels of epidermal growth factor (EGF) and transforming growth factor β1 (TGF-β1) than whole blood (p<0.03). LP-PRP also did not stimulate tendon cell proliferation greater than whole blood. In contrast, LR-PRP showed increases in each growth factor on activation with CaCl 2 (p<0.01) and stimulated greater proliferation (p<0.05) compared with whole blood. Forced activation of LP-PRP with exogenous thrombin rescued the coagulation deficiency and induced greater growth factor release than comparable whole blood (p<0.03). These data suggest that non-platelet cellular components in platelet concentrates are important for proper platelet function, including thrombin generation, growth factor release and clot retraction.
Lammel, Justus; Tohidnezhad, Mersedeh; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Cremer, Jochen; Jahr, Holger; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen
2017-01-01
Platelet-released growth factors (PRGF) and its related clinically used formulations (e.g., Vivostat Platelet-Rich Fibrin (PRF®)) contain a variety of chemokines, cytokines, and growth factors and are therefore used to support healing of chronic, hard-to-heal, or infected wounds. Human beta-defensin-3 (hBD-3) is an antimicrobial peptide inducibly expressed in human keratinocytes especially upon wounding. The potent antimicrobial activity of hBD-3 together with its wound closure-promoting activities suggests that hBD-3 may play a crucial role in wound healing. Therefore, we analyzed the influence of PRGF on hBD-3 expression in human primary keratinocytes in vitro. In addition, we investigated the influence of Vivostat PRF on hBD-3 expression in artificially generated human skin wounds in vivo. PRGF treatment of primary keratinocytes induced a significant, concentration- and time-dependent increase in hBD-3 gene expression which was partially mediated by the epidermal growth factor receptor (EGFR). In line with these cell culture data, in vivo experiments revealed an enhanced hBD-3 expression in experimentally produced human wounds after the treatment with Vivostat PRF. Thus, the induction of hBD-3 may contribute to the beneficial effects of thrombocyte concentrate lysates in the treatment of chronic or infected wounds. PMID:28811680
Platelet-Rich Plasma (PRP) for Acute Muscle Injury: A Systematic Review
A. Hamid, Mohamad Shariff; Yusof, Ashril; Mohamed Ali, Mohamed Razif
2014-01-01
Introduction Acute muscle injury is one of the commonest injuries that often result in loss of training and competition time. The best management for muscle injury has not been identified. Sports medicine practitioners used several approaches in attempt to accelerate time to recovery from muscle injury. More recently growing interest focussed on autologous blood product injection. Methods A literature search was conducted systematically using OvidMEDLINE, PubMed, EMBASE, SPORTDiscus and CINAHL databases to retrieve articles published until December 2012. Controlled trials and controlled laboratory studies comparing different strategies to promote early recovery of muscle injury were included. The methodological quality of studies was assessed. Results There are limited studies on the effects of PRP therapy for muscle injury. Three in vivo laboratory studies and one pilot human study were reviewed. The laboratory studies reported histological evidence on significant acceleration of muscle healing in animals treated with autologous conditioned serum (ACS), platelet-rich plasma (PRP) and platelet rich fibrin matrix (PRFM). A pilot human study found athletes treated with repeated ACS injection recovers significantly faster than retrospective controls. Conclusion Several in vivo laboratory studies suggest beneficial effects of ACS, PRP and PRFM in accelerating muscle recovery. Evidence to suggest similar effects on humans is however limited, as valuable information from robust human controlled trials is still not available at this moment. Hence, more studies of satisfactory methodological quality with platelet-rich plasma interventions on muscle injury are justified. PMID:24587389
Kreuz, Peter Cornelius; Krüger, Jan Philipp; Metzlaff, Sebastian; Freymann, Undine; Endres, Michaela; Pruss, Axel; Petersen, Wolf; Kaps, Christian
2015-10-01
To evaluate the chondrogenic potential of platelet concentrates on human subchondral mesenchymal progenitor cells (MPCs) as assessed by histomorphometric analysis of proteoglycans and type II collagen. Furthermore, the migratory and proliferative effect of platelet concentrates were assessed. Platelet-rich plasma (PRP) was prepared using preparation kits (Autologous Conditioned Plasma [ACP] Kit [Arthrex, Naples, FL]; Regen ACR-C Kit [Regen Lab, Le Mont-Sur-Lausanne, Switzerland]; and Dr.PRP Kit [Rmedica, Seoul, Republic of Korea]) by apheresis (PRP-A) and by centrifugation (PRP-C). In contrast to clinical application, freeze-and-thaw cycles were subsequently performed to activate platelets and to prevent medium coagulation by residual fibrinogen in vitro. MPCs were harvested from the cortico-spongious bone of femoral heads. Chondrogenic differentiation of MPCs was induced in high-density pellet cultures and evaluated by histochemical staining of typical cartilage matrix components. Migration of MPCs was assessed using a chemotaxis assay, and proliferation activity was measured by DNA content. MPCs cultured in the presence of 5% ACP, Regen, or Dr.PRP formed fibrous tissue, whereas MPCs stimulated with 5% PRP-A or PRP-C developed compact and dense cartilaginous tissue rich in type II collagen and proteoglycans. All platelet concentrates significantly (ACP, P = .00041; Regen, P = .00029; Dr.PRP, P = .00051; PRP-A, P < .0001; and PRP-C, P < .0001) stimulated migration of MPCs. All platelet concentrates but one (Dr.PRP, P = .63) showed a proliferative effect on MPCs, as shown by significant increases (ACP, P = .027; Regen, P = .0029; PRP-A, P = .00021; and PRP-C, P = .00069) in DNA content. Platelet concentrates obtained by different preparation methods exhibit different potentials to stimulate chondrogenic differentiation, migration, and proliferation of MPCs. Platelet concentrates obtained by commercially available preparation kits failed to induce chondrogenic differentiation of MPCs, whereas highly standardized PRP preparations did induce such differentiation. These findings suggest differing outcomes with PRP treatment in stem cell-based cartilage repair. Our findings may help to explain the variability of results in studies examining the use of PRP clinically. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Chiang, T M; Beachey, E H; Kang, A H
1975-09-10
The denatured alpha1(I) chain and the cyanogen bromide peptide, alpha1(I)-CB5, of chick skin collagen cause the release of serotonin and leakage of lactic dehydrogenase from human platelets in a manner similar to the release reaction mediated by adenosine diphosphate and native collagen. These peptides also cause a decrease in the level of adenosine 3':5'-monophosphate (cAMP) in platelets. Adenylate cyclase activity of platelets is partially inhibited by these peptides as well as by native collagen, ADP, and epinephrine, but cAMP phosphodiesterase activity is unaltered by these substances. In contrast, the level of platelet guanosine 3':5'-monophosphate (cGMP) is increased by the collagen peptides as well as the other aggregating agents. The increase is associated with increased guanylate cyclase, but normal cGMP phosphodiesterase activities of platelets. Optical rotatory and viscometric measurements of the alpha1 chains and alpha1-CB5 of chick skin in 0.01 M phosphate/0.15 M sodium chloride, pH 7.4, at various temperatures as a function of time indicate that no detectable renaturation occurs at 37 degrees for at least 30 min of observation. Molecular sieve chromatography of alpha1-CB5 in the phosphate buffer at 37 degrees shows that its elution position is identical to that performed under denaturing conditions (at 45 degrees) with no evidence of higher molecular weight aggregates, and the alpha1-CB5 glycopeptide fraction eluting from the column at the position of its monomer retains the platelet aggregating activity. Additionally, electron microscopic examination of the platelet-rich plasma that had been reacted with these peptides fail to show any ordered collagen structures. These data indicate that the denatured alpha1 chain and alpha1-CB5 glycopeptide of chick skin collagen mediate platelet aggregation through the "physiologic" release reaction in a manner similar to that induced by other aggregating agents such as ADP, epinephrine, or native collagen, and support the conclusion that the aggregating activity of the alpha1 chain and alpha1-CB5 is not likely to be due to the formation of polymerized products.
Code of Federal Regulations, 2012 CFR
2012-07-01
... blood, including but not limited to blood plasma, platelets, red or white blood corpuscles, and other... Incinerators for Which Construction is Commenced After June 20, 1996 § 60.51c Definitions. Bag leak detection system means an instrument that is capable of monitoring PM loadings in the exhaust of a fabric filter in...
Modulation of platelet functions by crude rice (Oryza sativa) bran policosanol extract.
Wong, Wai-Teng; Ismail, Maznah; Imam, Mustapha Umar; Zhang, Yi-Da
2016-07-28
Rice bran is bioactive-rich and has proven health benefits for humans. Moreover, its source, the brown rice has antioxidant, hypolipidemic and other functional properties that are increasingly making it a nutritional staple especially in Asian countries. This study investigated the antiplatelet aggregation mechanisms of crude hexane/methanolic rice bran extract, in which policosanol was the targeted bioactive. Platelets play a vital role in pathogenesis of atherosclerosis and cardiovascular diseases, and their increased activities could potentially cause arterial thrombus formation or severe bleeding disorders. Thus, in this study, platelet aggregation and adhesion of platelets to major components of basal lamina were examined in vitro. In addition, cellular protein secretion was quantified as a measurement of platelet activation. Adenosine diphosphate (ADP), collagen, and arachidonic acid (AA)-induced aggregation were studied using the microtiter technique. Rat platelets were pre-treated with various concentrations of policosanol extract, and the adhesion of platelets onto collagen- and laminin-coated surface (extracellular matrix) was studied using the acid phosphatase assay. The effect of crude policosanol extract on released proteins from activated platelets was measured using modified Lowry determination method. Rice bran policosanol extract significantly inhibited in vitro platelet aggregation induced by different agonists in a dose dependent manner. The IC50 of ADP-, collagen-, and AA-induced platelet aggregation were 533.37 ± 112.16, 635.94 ± 78.45 and 693.86 ± 70.57 μg/mL, respectively. The present study showed that crude rice bran policosanol extract significantly inhibited platelet adhesion to collagen in a dose dependent manner. Conversely, at a low concentration of 15.625 μg/mL, the extract significantly inhibited platelet adhesion to laminin stimulated by different platelet agonists. In addition to the alteration of cell adhesive properties, cellular protein secretion of the treated platelets towards different stimulants were decreased upon crude extract treatment. Our results showed that crude rice bran policosanol extract could inhibit in vitro platelet adhesion, aggregation and secretion upon activation using agonists. These findings serve as a scientific platform to further explore alternative therapies in cardiovascular diseases related to platelet malfunction.
Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation
Fuentes, Eduardo; Caballero, Julio; Alarcón, Marcelo; Rojas, Armando; Palomo, Iván
2014-01-01
Background Chlorogenic acid is a potent phenolic antioxidant. However, its effect on platelet aggregation, a critical factor in arterial thrombosis, remains unclear. Consequently, chlorogenic acid-action mechanisms in preventing platelet activation and thrombus formation were examined. Methods and Results Chlorogenic acid in a dose-dependent manner (0.1 to 1 mmol/L) inhibited platelet secretion and aggregation induced by ADP, collagen, arachidonic acid and TRAP-6, and diminished platelet firm adhesion/aggregation and platelet-leukocyte interactions under flow conditions. At these concentrations chlorogenic acid significantly decreased platelet inflammatory mediators (sP-selectin, sCD40L, CCL5 and IL-1β) and increased intraplatelet cAMP levels/PKA activation. Interestingly, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent A2A receptor antagonist) attenuated the antiplatelet effect of chlorogenic acid. Chlorogenic acid is compatible to the active site of the adenosine A2A receptor as revealed through molecular modeling. In addition, chlorogenic acid had a significantly lower effect on mouse bleeding time when compared to the same dose of aspirin. Conclusions Antiplatelet and antithrombotic effects of chlorogenic acid are associated with the A2A receptor/adenylate cyclase/cAMP/PKA signaling pathway. PMID:24598787
C-reactive protein enhances IgG-mediated phagocyte responses and thrombocytopenia.
Kapur, Rick; Heitink-Pollé, Katja M J; Porcelijn, Leendert; Bentlage, Arthur E H; Bruin, Marrie C A; Visser, Remco; Roos, Dirk; Schasfoort, Richard B M; de Haas, Masja; van der Schoot, C Ellen; Vidarsson, Gestur
2015-03-12
Immune-mediated platelet destruction is most frequently caused by allo- or autoantibodies via Fcγ receptor-dependent phagocytosis. Disease severity can be predicted neither by antibody isotype nor by titer, indicating that other factors play a role. Here we show that the acute phase protein C-reactive protein (CRP), a ligand for Fc receptors on phagocytes, enhances antibody-mediated platelet destruction by human phagocytes in vitro and in vivo in mice. Without antiplatelet antibodies, CRP was found to be inert toward platelets, but it bound to phosphorylcholine exposed after oxidation triggered by antiplatelet antibodies, thereby enhancing platelet phagocytosis. CRP levels were significantly elevated in patients with allo- and autoantibody-mediated thrombocytopenias compared with healthy controls. Within a week, intravenous immunoglobulin treatment in children with newly diagnosed immune thrombocytopenia led to significant decrease of CRP levels, increased platelet numbers, and clinically decreased bleeding severity. Furthermore, the higher the level of CRP at diagnosis, the longer it took before stable platelet counts were reached. These data suggest that CRP amplifies antibody-mediated platelet destruction and may in part explain the aggravation of thrombocytopenia on infections. Hence, targeting CRP could offer new therapeutic opportunities for these patients. © 2015 by The American Society of Hematology.
Does the liquid method of electret forming influence the adhesion of blood platelets?
Lowkis, B; Szymanowicz, M
1995-01-01
This work presents the results of the effect of the electric charge on the adhesion of blood platelets. All experiments were carried out on polyethylene foil. The liquid method was used to form electrets. The evaluation of the electret effect influence on the adhesion of blood platelets was made on the basis of the observation of the electret surface after the contact with fresh citrate human blood group O Rh+ in an electron scanning microscope. Experimental results confirmed the essential influence of the electric charge on the process of adhesion of blood platelets. It was noticed that the preliminary aging of electrets decreases the density of the surface charge and improves the athrombogenic characteristics of polyethylene foil.
Daniele, Simona; Pietrobono, Deborah; Fusi, Jonathan; Lo Gerfo, Annalisa; Cerri, Eugenio; Chico, Lucia; Iofrida, Caterina; Petrozzi, Lucia; Baldacci, Filippo; Giacomelli, Chiara; Galetta, Fabio; Siciliano, Gabriele; Bonuccelli, Ubaldo; Trincavelli, Maria L.; Franzoni, Ferdinando; Martini, Claudia
2018-01-01
The loss of protein homeostasis that has been associated with aging leads to altered levels and conformational instability of proteins, which tend to form toxic aggregates. In particular, brain aging presents characteristic patterns of misfolded oligomers, primarily constituted of β-amyloid (Aβ), tau, and α-synuclein (α-syn), which can accumulate in neuronal membranes or extracellular compartments. Such aging-related proteins can also reach peripheral compartments, thus suggesting the possibility to monitor their accumulation in more accessible fluids. In this respect, we have demonstrated that α-syn forms detectable hetero-aggregates with Aβ or tau in red blood cells (RBCs) of healthy subjects. In particular, α-syn levels and its heteromeric interactions are modulated by plasma antioxidant capability (AOC), which increases in turn with physical activity. In order to understand if a specific distribution of misfolded proteins can occur in other blood cells, a cohort of human subjects was enrolled to establish a correlation among AOC, the level of physical exercise and the concentrations of aging-related proteins in platelets. The healthy subjects were divided depending on their level of physical exercise (i.e., athletes and sedentary subjects) and their age (young and older subjects). Herein, aging-related proteins (i.e., α-syn, tau and Aβ) were confirmed to be present in human platelets. Among such proteins, platelet tau concentration was demonstrated to decrease in athletes, while α-syn and Aβ did not correlate with physical exercise. For the first time, α-syn was shown to directly interact with Aβ and tau in platelets, forming detectable hetero-complexes. Interestingly, α-syn interaction with tau was inversely related to plasma AOC and to the level of physical activity. These results suggested that α-syn heterocomplexes, particularly with tau, could represent novel indicators to monitor aging-related proteins in platelets. PMID:29441013
Veloso, D
2003-01-01
Many in vitro studies have shown that activation of prekallikrein (PK) to kallikrein (KAL) in normal plasma triggers rapid activation of the coagulation cascade. In agreement, the coagulation activation is impaired in PK-deficient plasma. Paradoxically, PK-deficient patients show a tendency to thrombosis. To investigate the discrepancy between the in vitro and in vivo findings, we analyzed the effect of KAL on the rate of platelet aggregation. For this research, physiologic concentrations of washed human platelets were incubated for 5 and/or 10 min with approximately 2.2 to 88 nM human plasma KAL (< 1/100 to approximately 1/3 of PK concentrations in plasma) prior to the addition of high concentrations of alpha-thrombin (54 nM) or fibrinogen plus ADP. KAL concentrations were arbitrarily selected on the assumption that concentrations of free KAL (the enzymatically active species) were minute in normal plasma and higher when KAL production was enhanced, and/or inhibitors were depleted. Full platelet aggregation was that seen in the absence of KAL or PK. Inhibition of platelet aggregation stimulated by thrombin was markedly increased with increased KAL concentrations and incubation times. The degree of inhibition by KAL was smaller when ADP was the agonist. The data suggest that KAL may play a role in the modulation of platelet aggregation in vivo under normal conditions as well as when prolonged, high concentrations of KAL occur in blood. The data may also help to explain the intriguing observation that PK-deficient patients show a tendency to thrombotic episodes and myocardial infarction whereas in vitro assays predict bleeding.
Lee-Sundlov, Melissa M; Ashline, David J; Hanneman, Andrew J; Grozovsky, Renata; Reinhold, Vernon N; Hoffmeister, Karin M; Lau, Joseph Ty
2017-01-01
Glycosyltransferases, usually residing within the intracellular secretory apparatus, also circulate in the blood. Many of these blood-borne glycosyltransferases are associated with pathological states, including malignancies and inflammatory conditions. Despite the potential for dynamic modifications of glycans on distal cell surfaces and in the extracellular milieu, the glycan-modifying activities present in systemic circulation have not been systematically examined. Here, we describe an evaluation of blood-borne sialyl-, galactosyl- and fucosyltransferase activities that act upon the four common terminal glycan precursor motifs, GlcNAc monomer, Gal(β3)GlcNAc, Gal(β4)GlcNAc and Gal(β3)GalNAc, to produce more complex glycan structures. Data from radioisotope assays and detailed product analysis by sequential tandem mass spectrometry show that blood has the capacity to generate many of the well-recognized and important glycan motifs, including the Lewis, sialyl-Lewis, H- and Sialyl-T antigens. While many of these glycosyltransferases are freely circulating in the plasma, human and mouse platelets are important carriers for others, including ST3Gal-1 and β4GalT. Platelets compartmentalize glycosyltransferases and release them upon activation. Human platelets are also carriers for large amounts of ST6Gal-1 and the α3-sialyl to Gal(β4)GlcNAc sialyltransferases, both of which are conspicuously absent in mouse platelets. This study highlights the capability of circulatory glycosyltransferases, which are dynamically controlled by platelet activation, to remodel cell surface glycans and alter cell behavior. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Li, Qiang; Ren, Lijie; Liu, Xiaohui; Chu, Chunjun; Ozaki, Yukio; Zhang, Jian; Zhu, Li
2013-01-01
Platelets play a pivotal role in atherothrombosis and the antiplatelet agents have been proved to be useful in preventing onset of acute clinical events including myocardial infarction and stroke. Increasing number of natural compounds has been identified to be potential antiplatelet agents. Here we report the antiplatelet effect of glaucocalyxin A (GLA), an ent-diterpenoid that we isolated and purified from the aerial parts of Rabdosia japonica (Burm. f.) var. glaucocalyx (Maxim.) Hara, and investigate the molecular mechanisms by which GLA inhibits platelet activation and thrombus formation. The effect of GLA on platelet activation was measured using platelets freshly isolated from peripheral blood of healthy donors. Results showed that pretreatment of human platelets with lower concentrations of GLA (0.01μg/ml, 0.1μg/ml) significantly inhibited platelet aggregation induced by collagen (P<0.001) and CRP (P<0.01), a synthetic GPVI ligand, but not by ADP and U46619. Accordingly, GLA inhibited collagen-stimulated tyrosine phosphorylation of Syk, LAT, and phospholipase Cγ2, the signaling events in collagen receptor GPⅥ pathway. GLA also inhibited platelet p-selectin secretion and integrin activation by convulxin, a GPVI selective ligand. Additionally, GLA was found to inhibit low-dose thrombin-induced platelet activation. Using a flow chamber device, GLA was found to attenuate platelet adhesion on collagen surfaces in high shear condition. In vivo studies showed that GLA administration increased the time for complete occlusion upon vascular injury in mice, but did not extend tail-bleeding time when mice were administered with relatively lower doses of GLA. Therefore, the present results provide the molecular basis for the inhibition effect of GLA on platelet activation and its in vivo effect on thrombus formation, suggesting that GLA could potentially be developed as an antiplatelet and antithrombotic agent. PMID:24386454
DREAM plays an important role in platelet activation and thrombogenesis
Kim, Kyungho; Tseng, Alan; Barazia, Andrew; Italiano, Joseph E.
2017-01-01
Downstream regulatory element antagonist modulator (DREAM), a transcriptional repressor, is known to modulate pain responses. However, it is unknown whether DREAM is expressed in anucleate platelets and plays a role in thrombogenesis. By using intravital microscopy with DREAM-null mice and their bone marrow chimeras, we demonstrated that both hematopoietic and nonhematopoietic cell DREAMs are required for platelet thrombus formation following laser-induced arteriolar injury. In a FeCl3-induced thrombosis model, we found that compared with wild-type (WT) control and nonhematopoietic DREAM knockout (KO) mice, DREAM KO control and hematopoietic DREAM KO mice showed a significant delay in time to occlusion. Tail bleeding time was prolonged in DREAM KO control mice, but not in WT or DREAM bone marrow chimeric mice. In vivo adoptive transfer experiments further indicated the importance of platelet DREAM in thrombogenesis. We found that DREAM deletion does not alter the ultrastructural features of platelets but significantly impairs platelet aggregation and adenosine triphosphate secretion induced by numerous agonists (collagen-related peptide, adenosine 5′-diphosphate, A23187, thrombin, or U46619). Biochemical studies revealed that platelet DREAM positively regulates phosphoinositide 3-kinase (PI3K) activity during platelet activation. Using DREAM-null platelets and PI3K isoform-specific inhibitors, we observed that platelet DREAM is important for α-granule secretion, Ca2+ mobilization, and aggregation through PI3K class Iβ (PI3K-Iβ). Genetic and pharmacological studies in human megakaryoblastic MEG-01 cells showed that DREAM is important for A23187-induced Ca2+ mobilization and its regulatory function requires Ca2+ binding and PI3K-Iβ activation. These results suggest that platelet DREAM regulates PI3K-Iβ activity and plays an important role during thrombus formation. PMID:27903531
Nonthrombogenic Hydrogel Coatings with Carbene-Cross-Linking Bioadhesives.
Nanda, Himansu Sekhar; Shah, Ankur Harish; Wicaksono, Gautama; Pokholenko, Oleksandr; Gao, Feng; Djordjevic, Ivan; Steele, Terry W J
2018-05-14
Bioadhesives are a current unmet clinical need for mending of blood contacting soft tissues without inducing thrombosis. Recent development of carbene precursor bioadhesives with the advantages of on-demand curing, tuneable modulus, and wet adhesion have been synthesized by grafting diazirine onto poly (amidoamine) (PAMAM-G5) dendrimers. Herein, the structure activity relationships of platelet adhesion and activation is evaluated for the first time on the cured PAMAM-g-diazirine bioadhesives. Three strategies were employed to prevent healthy human donor platelets from adhering and activating on light-cured bioadhesive surfaces: (1) Attenuation of cationic surface charge, (2) antifouling composites by incorporating heparin and alginate in uncured formulation, and (3) heparin wash of cured bioadhesive surface. Topographical imaging of cured and ethanol dehydrated bioadhesive surfaces was used to quantify the adhered and activated platelets with scanning electron microscopy, whose resolution allowed identification of round senescent, short dendritic, and long dendritic platelets. Cured surfaces of PAMAM-g-diazirine (15%) had 10300 ± 500 adhered platelets mm -2 with 99.7% activation into short/long dendritic cells. Reduction of primary amines by higher degree of diazirine grafting or capping of free amines by acetylation reduces platelet adherence (2400 ± 200 vs 3000 ± 300, respectively). Physical incorporation of heparin and alginate in the formulations reduced the activated platelet; 1300 ± 300 and 300 ± 50, activated platelets mm -2 , in comparison with additive free adhesive formulation. Similarly, heparin rinse of the surface of additive free bioadhesive reduced the activated platelet to platelets of heparin composites at 600 ± 100 platelets mm -2 . PAMAM-g-diazirine (15%) bioadhesive retained the photocured mechanical properties and lap shear adhesion despite the addition of heparin and alginate additives.
Platelet cyclooxygenase expression in normal dogs.
Thomason, J; Lunsford, K; Mullins, K; Stokes, J; Pinchuk, L; Wills, R; McLaughlin, R; Langston, C; Pruett, S; Mackin, A
2011-01-01
Human platelets express both cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). Variation in COX-2 expression could be a mechanism for variable response to aspirin. The hypotheses were that circulating canine platelets express COX-1 and COX-2, and that aspirin alters COX expression. The objective was to identify changes in platelet COX expression and in platelet function caused by aspirin administration to dogs. Eight female, intact hounds. A single population, repeated measures design was used to evaluate platelet COX-1 and COX-2 expression by flow cytometry before and after aspirin (10 mg/kg Q12h for 10 days). Platelet function was analyzed via PFA-100(®) (collagen/epinephrine), and urine 11-dehydro-thromboxane B(2) (11-dTXB(2)) was measured and normalized to urinary creatinine. Differences in COX expression, PFA-100(®) closure times, and urine 11-dTXB(2 ): creatinine ratio were analyzed before and after aspirin administration. Both COX-1 and COX-2 were expressed in canine platelets. COX-1 mean fluorescent intensity (MFI) increased in all dogs, by 250% (range 63-476%), while COX-2 expression did not change significantly (P = 0.124) after aspirin exposure, with large interindividual variation. PFA-100(®) closure times were prolonged and urine 11-dTXB(2) concentration decreased in all dogs after aspirin administration. Canine platelets express both COX isoforms. After aspirin exposure, COX-1 expression increased despite impairment of platelet function, while COX-2 expression varied markedly among dogs. Variability in platelet COX-2 expression should be explored as a potential mechanism for, or marker of, variable aspirin responsiveness. Copyright © 2011 by the American College of Veterinary Internal Medicine.
Dual mechanism of integrin αIIbβ3 closure in procoagulant platelets.
Mattheij, Nadine J A; Gilio, Karen; van Kruchten, Roger; Jobe, Shawn M; Wieschhaus, Adam J; Chishti, Athar H; Collins, Peter; Heemskerk, Johan W M; Cosemans, Judith M E M
2013-05-10
Inactivation of integrin αIIbβ3 reverses platelet aggregate formation upon coagulation. Platelets from patient (Scott) and mouse (Capn1(-/-) and Ppif(-/-)) blood reveal a dual mechanism of αIIbβ3 inactivation: by calpain-2 cleavage of integrin-associated proteins and by cyclophilin D/TMEM16F-dependent phospholipid scrambling. These data provide novel insight into the switch mechanisms from aggregating to procoagulant platelets. Aggregation of platelets via activated integrin αIIbβ3 is a prerequisite for thrombus formation. Phosphatidylserine-exposing platelets with a key role in the coagulation process disconnect from a thrombus by integrin inactivation via an unknown mechanism. Here we show that αIIbβ3 inactivation in procoagulant platelets relies on a sustained high intracellular Ca(2+), stimulating intracellular cleavage of the β3 chain, talin, and Src kinase. Inhibition of calpain activity abolished protein cleavage, but only partly suppressed αIIbβ3 inactivation. Integrin αIIbβ3 inactivation was unchanged in platelets from Capn1(-/-) mice, suggesting a role of the calpain-2 isoform. Scott syndrome platelets, lacking the transmembrane protein TMEM16F and having low phosphatidylserine exposure, displayed reduced αIIbβ3 inactivation with the remaining activity fully dependent on calpain. In platelets from Ppif(-/-) mice, lacking mitochondrial permeability transition pore (mPTP) formation, agonist-induced phosphatidylserine exposure and αIIbβ3 inactivation were reduced. Treatment of human platelets with cyclosporin A gave a similar phenotype. Together, these data point to a dual mechanism of αIIbβ3 inactivation via calpain(-2) cleavage of integrin-associated proteins and via TMEM16F-dependent phospholipid scrambling with an assistant role of mPTP formation.
Martín-Granado, Víctor; Ortiz-Rivero, Sara; Carmona, Rita; Gutiérrez-Herrero, Sara; Barrera, Mario; San-Segundo, Laura; Sequera, Celia; Perdiguero, Pedro; Lozano, Francisco; Martín-Herrero, Francisco; González-Porras, José Ramón; Muñoz-Chápuli, Ramón; Porras, Almudena; Guerrero, Carmen
2017-12-19
Previous observations indicated that C3G (RAPGEF1) promotes α-granule release, evidenced by the increase in P-selectin exposure on the platelet surface following its activation. The goal of the present study is to further characterize the potential function of C3G as a modulator of the platelet releasate and its implication in the regulation of angiogenesis. Proteomic analysis revealed a decreased secretion of anti-angiogenic factors from activated transgenic C3G and C3G∆Cat platelets. Accordingly, the secretome from both transgenic platelets had an overall pro-angiogenic effect as evidenced by an in vitro capillary-tube formation assay with HUVECs (human umbilical vein endothelial cells) and by two in vivo models of heterotopic tumor growth. In addition, transgenic C3G expression in platelets greatly increased mouse melanoma cells metastasis. Moreover, immunofluorescence microscopy showed that the pro-angiogenic factors VEGF and bFGF were partially retained into α-granules in thrombin- and ADP-activated mouse platelets from both, C3G and C3GΔCat transgenic mice. The observed interaction between C3G and Vesicle-associated membrane protein (Vamp)-7 could explain these results. Concomitantly, increased platelet spreading in both transgenic platelets upon thrombin activation supports this novel function of C3G in α-granule exocytosis. Collectively, our data point out to the co-existence of Rap1GEF-dependent and independent mechanisms mediating C3G effects on platelet secretion, which regulates pathological angiogenesis in tumors and other contexts. The results herein support an important role for platelet C3G in angiogenesis and metastasis.
GPIbα is required for platelet-mediated hepatic thrombopoietin generation.
Xu, Miao; Li, June; Neves, Miguel Antonio Dias; Zhu, Guangheng; Carrim, Naadiya; Yu, Ruoying; Gupta, Sahil; Marshall, John; Rotstein, Ori; Peng, Jun; Hou, Ming; Kunishima, Shinji; Ware, Jerry; Branch, Donald R; Lazarus, Alan; Ruggeri, Zaverio M; Freedman, John; Ni, Heyu
2018-05-24
Thrombopoietin (TPO), a hematopoietic growth factor produced predominately by the liver is essential for thrombopoiesis. Prevailing theory posits circulating TPO levels are maintained through its clearance by platelets and megakaryocytes via surface c-Mpl receptor internalization. Interestingly, we found in GPIbα-/- mice, a 2-3-fold decrease in circulating TPO compared to wild-type (WT) controls, which was consistent in GPIbα-deficient human Bernard-Soulier Syndrome (BSS) patients. We showed that lower TPO levels in GPIbα-deficient conditions was not due to increased TPO clearance by GPIbα-/- platelets, but rather through decreased hepatic TPO mRNA transcription and production. We found WT, but not GPIbα-/- platelet transfusions rescued both hepatic TPO mRNA and circulating TPO levels in GPIbα-/- mice. In vitro hepatocyte co-cultures with platelets or GPIbα coupled beads further confirm the disruption of platelet-mediated hepatic TPO generation in absence of GPIbα. Treatment of GPIbα-/- platelets with neuraminidase caused significant desialylation, however, strikingly, desialylated GPIbα-/- platelets could not rescue impaired hepatic TPO production both in vivo and in vitro, suggesting GPIbα, independent of platelet desialylation, is a pre-requisite for hepatic TPO generation. Additionally, impaired hepatic TPO production was recapitulated in IL-4/GPIbα transgenic mice as well as with antibodies targeting extracellular portion of GPIbα, demonstrating that the N-terminus of GPIbα is required for platelet-mediated hepatic TPO-generation. These findings reveal a novel non-redundant regulatory role of platelets in hepatic TPO homeostasis, which not only improves our understanding of constitutive TPO regulation but also has important implications in diseases related to GPIbα such as BSS and auto- and alloimmune-mediated thrombocytopenias. Copyright © 2018 American Society of Hematology.
Paradoxical Effect of Nonphysiological Shear Stress on Platelets and von Willebrand Factor.
Chen, Zengsheng; Mondal, Nandan K; Ding, Jun; Koenig, Steven C; Slaughter, Mark S; Wu, Zhongjun J
2016-07-01
Blood can become hypercoagulable by shear-induced platelet activation and generation of microparticles. It has been reported that nonphysiological shear stress (NPSS) could induce shedding of platelet receptor glycoprotein (GP) Ibα, which may result in an opposite effect to hemostasis. The aim of this study was to investigate the influence of the NPSS on platelets and von Willebrand factor (vWF). Human blood was exposed to two levels of NPSS (25 Pa, 125 Pa) with an exposure time of 0.5 s, generated by using a novel blood-shearing device. Platelet activation (P-selectin expression, GPIIb/IIIa activation and generation of microparticles) and shedding of three platelet receptors (GPIbα, GPVI, GPIIb/IIIa) in sheared blood were quantified using flow cytometry. Aggregation capacity of sheared blood induced by ristocetin and collagen was evaluated using an aggregometer. Shear-induced vWF damage was characterized with Western blotting. Consistent with the published data, the NPSS caused significantly more platelets to become activated with increasing NPSS level. Meanwhile, the NPSS induced the shedding of platelet receptors. The loss of the platelet receptors increased with increasing NPSS level. The aggregation capacity of sheared blood induced by ristocetin and collagen decreased. There was a loss of high molecular weight multimers (HMWMs) of vWF in sheared blood. These results suggest that the NPSS induced a paradoxical effect. More activated platelets increase the risk of thrombosis, while the reduction in platelet receptors and the loss of HMWM-vWF increased the propensity of bleeding. The finding might provide a new perspective to understand thrombosis and acquired bleeding disorder in patients supported with blood contacting medical devices. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Paradoxical Effect of Non-Physiological Shear Stress on Platelets and von Willebrand factor
Chen, Zengsheng; Mondal, Nandan K; Ding, Jun; Koenig, Steven C.; Slaughter, Mark S.; Wu, Zhongjun J.
2016-01-01
Blood can become hypercoagulable by shear-induced platelet activation and generation of microparticles. It has been reported that non-physiological shear stress (NPSS) could induce shedding of platelet receptor glycoprotein (GP) Ibα, which may result in an opposite effect to hemostasis. The aim of this study was to investigate the influence of the NPSS on platelets and von Willebrand factor (vWF). Human blood was exposed to two levels of NPSS (25Pa, 125Pa) with an exposure time of 0.5 sec., generated by using a novel blood shearing device. Platelet activation (P-selectin expression, GPIIb/IIIa activation and generation of microparticles) and shedding of three platelet receptors (GPIbα, GPVI, GPIIb/IIIa) in sheared blood were quantified using flow cytometry. Aggregation capacity of sheared blood induced by ristocetin and collagen was evaluated using an aggregometer. Shear-induced vWF damage was characterized with western blotting. Consistent with the published data, the NPSS caused significantly more platelets to become activated with increasing NPSS level. Meanwhile, the NPSS induced the shedding of platelet receptors. The loss of the platelet receptors increased with increasing NPSS level. The aggregation capacity of sheared blood induced by ristocetin and collagen decreased. There was a loss of high molecular weight multimers (HMWM) of vWF in sheared blood. These results suggest that the NPSS induced a paradoxical effect. More activated platelets increase the risk of thrombosis while the reduction in platelet receptors and the loss of HMWM-vWF increased the propensity of bleeding. The finding might provide a new perspective to understand thrombosis and acquired bleeding disorder in patients supported with blood contacting medical devices. PMID:26582038
Huang, P Y; Hellums, J D
1993-01-01
A population balance equation (PBE) mathematical model for analyzing platelet aggregation kinetics was developed in Part I (Huang, P. Y., and J. D. Hellums. 1993. Biophys. J. 65: 334-343) of a set of three papers. In this paper, Part II, platelet aggregation and related reactions are studied in the uniform, known shear stress field of a rotational viscometer, and interpreted by means of the model. Experimental determinations are made of the platelet-aggregate particle size distributions as they evolve in time under the aggregating influence of shear stress. The PBE model is shown to give good agreement with experimental determinations when either a reversible (aggregation and disaggregation) or an irreversible (no disaggregation) form of the model is used. This finding suggests that for the experimental conditions studied disaggregation processes are of only secondary importance. During shear-induced platelet aggregation, only a small fraction of platelet collisions result in the binding together of the involved platelets. The modified collision efficiency is approximately zero for shear rates below 3000 s-1. It increases with shear rates above 3000 s-1 to about 0.01 for a shear rate of 8000 s-1. Addition of platelet chemical agonists yields order of magnitude increases in collision efficiency. The collision efficiency for shear-induced platelet aggregation is about an order of magnitude less at 37 degrees C than at 24 degrees C. The PBE model gives a much more accurate representation of aggregation kinetics than an earlier model based on a monodispersed particle size distribution. PMID:8369442
Orellana, Renan; Kato, Sumie; Erices, Rafaela; Bravo, María Loreto; Gonzalez, Pamela; Oliva, Bárbara; Cubillos, Sofía; Valdivia, Andrés; Ibañez, Carolina; Brañes, Jorge; Barriga, María Isabel; Bravo, Erasmo; Alonso, Catalina; Bustamente, Eva; Castellon, Enrique; Hidalgo, Patricia; Trigo, Cesar; Panes, Olga; Pereira, Jaime; Mezzano, Diego; Cuello, Mauricio A; Owen, Gareth I
2015-04-15
An increase in circulating platelets, or thrombocytosis, is recognized as an independent risk factor of bad prognosis and metastasis in patients with ovarian cancer; however the complex role of platelets in tumor progression has not been fully elucidated. Platelet activation has been associated with an epithelial to mesenchymal transition (EMT), while Tissue Factor (TF) protein expression by cancer cells has been shown to correlate with hypercoagulable state and metastasis. The aim of this work was to determine the effect of platelet-cancer cell interaction on TF and "Metastasis Initiating Cell (MIC)" marker levels and migration in ovarian cancer cell lines and cancer cells isolated from the ascetic fluid of ovarian cancer patients. With informed patient consent, ascitic fluid isolated ovarian cancer cells, cell lines and ovarian cancer spheres were co-cultivated with human platelets. TF, EMT and stem cell marker levels were determined by Western blotting, flow cytometry and RT-PCR. Cancer cell migration was determined by Boyden chambers and the scratch assay. The co-culture of patient-derived ovarian cancer cells with platelets causes: 1) a phenotypic change in cancer cells, 2) chemoattraction and cancer cell migration, 3) induced MIC markers (EMT/stemness), 3) increased sphere formation and 4) increased TF protein levels and activity. We present the first evidence that platelets act as chemoattractants to cancer cells. Furthermore, platelets promote the formation of ovarian cancer spheres that express MIC markers and the metastatic protein TF. Our results suggest that platelet-cancer cell interaction plays a role in the formation of metastatic foci.
Mira, J A; Neukam, K; López-Cortés, L F; Rivero-Juárez, A; Téllez, F; Girón-González, J A; de los Santos-Gil, I; Ojeda-Burgos, G; Merino, D; Ríos-Villegas, M J; Collado, A; Torres-Cornejo, A; Macías, J; Rivero, A; Pérez-Pérez, M; Pineda, J A
2015-09-01
The aim of this study was to assess the efficacy of and the risk of major bleeding during pegylated interferon (peg-IFN)/ribavirin (RBV) treatment among human immunodeficiency virus (HIV)/hepatitis C virus (HCV)-coinfected patients according to the pretreatment platelet count. Two hundred and seventy-four HCV/HIV-coinfected, previously naïve individuals with compensated cirrhosis enrolled in one Spanish prospective cohort who received peg-IFN/RBV were included in this study. The frequency of severe bleeding and sustained virological response (SVR) rate were compared between patients with a pretreatment platelet count ≤70,000/mm(3) and >70,000/mm(3), respectively. Sixty-one (22 %) patients had a baseline platelet count ≤70,000/mm(3). The median (Q1-Q3) pretreatment platelet count was 58,000 (49,000-65,000) cells/mm(3) in the platelet ≤70,000 group and 129,000 (102,500-166,000) cells/mm(3) in the platelet >70,000 group (p < 0.0001). Seventeen (28 %) subjects of the platelet ≤70,000 group and 71 (33 %) patients of the platelet >70,000 group achieved SVR (p = 0.4). Only 2 (3.2 %) patients in the platelet ≤70,000 group developed a severe hemorrhagic event, specifically esophageal variceal bleeding. The efficacy of therapy with peg-IFN/RBV in HIV/HCV-coinfected patients with low pretreatment platelet counts is comparable to that found in the overall subset of subjects with compensated cirrhosis. The frequency of severe hemorrhagic events related with this therapy is low in this population.
Magwenzi, Simbarashe; Woodward, Casey; Wraith, Katie S.; Aburima, Ahmed; Raslan, Zaher; Jones, Huw; McNeil, Catriona; Wheatcroft, Stephen; Yuldasheva, Nadira; Febbriao, Maria; Kearney, Mark
2015-01-01
Oxidized low-density lipoprotein (oxLDL) promotes unregulated platelet activation in dyslipidemic disorders. Although oxLDL stimulates activatory signaling, it is unclear how these events drive accelerated thrombosis. Here, we describe a mechanism for oxLDL-mediated platelet hyperactivity that requires generation of reactive oxygen species (ROS). Under arterial flow, oxLDL triggered sustained generation of platelet intracellular ROS, which was blocked by CD36 inhibitors, mimicked by CD36-specific oxidized phospholipids, and ablated in CD36−/− murine platelets. oxLDL-induced ROS generation was blocked by the reduced NAD phosphate oxidase 2 (NOX2) inhibitor, gp91ds-tat, and absent in NOX2−/− mice. The synthesis of ROS by oxLDL/CD36 required Src-family kinases and protein kinase C (PKC)-dependent phosphorylation and activation of NOX2. In functional assays, oxLDL abolished guanosine 3′,5′-cyclic monophosphate (cGMP)-mediated signaling and inhibited platelet aggregation and arrest under flow. This was prevented by either pharmacologic inhibition of NOX2 in human platelets or genetic ablation of NOX2 in murine platelets. Platelets from hyperlipidemic mice were also found to have a diminished sensitivity to cGMP when tested ex vivo, a phenotype that was corrected by infusion of gp91ds-tat into the mice. This study demonstrates that oxLDL and hyperlipidemia stimulate the generation of NOX2-derived ROS through a CD36-PKC pathway and may promote platelet hyperactivity through modulation of cGMP signaling. PMID:25710879
Seizer, Peter; Borst, Oliver; Langer, Harald F; Bültmann, Andreas; Münch, Götz; Herouy, Yared; Stellos, Konstantinos; Krämer, Björn; Bigalke, Boris; Büchele, Berthold; Bachem, Max G; Vestweber, Dietmar; Simmet, Thomas; Gawaz, Meinrad; May, Andreas E
2009-04-01
The Extracellular Matrix Metalloproteinase Inducer (EMMPRIN, CD147, basigin) is an immunoglobulin-like receptor expressed in various cell types. During cellular interactions homotypic EMMPRIN-EMMPRIN interactions are known to induce the synthesis of matrix metalloproteinases. Recently, we have identified EMMPRIN as a novel receptor on platelets. To our knowledge EMMPRIN has not been shown to serve as adhesion receptor, yet. Here we characterise platelet glycoprotein VI (GPVI) as a novel adhesion receptor for EMMPRIN. Human platelets were prestimulated with ADP and perfused over immobilised recombinant EMMPRIN-Fc or Fc-fragments under arterial shear conditions. ADP-stimulated platelets showed significantly enhanced rolling (but not enhanced firm adhesion) on immobilised EMMPRIN-Fc compared to Fc. Pretreatment of platelets with blocking mAbs anti-EMMPRIN or anti-GPVI leads to a significant reduction of rolling platelets on immobilised EMMPRIN-Fc, whereas pretreatment with blocking mAbs anti-p-selectin, anti-alpha4-integrin or anti-GPIIb/IIIa complex (20 microg/ml each) had no effect. Consistently, chinese hamster ovary (CHO) cells stably transfected with GPVI showed enhanced rolling (but not adhesion) on immobilised EMMPRIN-Fc in comparison to non-transfected CHO cells. Similarly, CHO cells stably transfected with EMMPRIN showed enhanced rolling on immobilised GPVI-Fc (or EMMPRIN-Fc) compared to non transfected CHO-cells. Finally, specific binding of EMMPRIN to GPVI was demonstrated by a modified ELISA and surface plasmon resonance technology with a dissociation constant of 88 nM. Platelet GPVI is a novel receptor for EMMPRIN and can mediate platelet rolling via GPVI-EMMPRIN interaction.
Streptococcus sanguinis-induced cytokine and matrix metalloproteinase-1 release from platelets.
Cognasse, Fabrice; Hamzeh-Cognasse, Hind; Chabert, Adrien; Jackson, Elke; Arthaud, Charles-Antoine; Garraud, Olivier; McNicol, Archie
2014-04-22
Streptococcus sanguinis (S.sanguinis), a predominant bacterium in the human oral cavity, has been widely associated with the development of infective endocarditis. Platelets play both a haemostatic function and can influence both innate and adaptive immune responses. Previous studies have shown that S.sanguinis can interact with, and activate, platelets. The aim of this study was to determine whether S.sanguinis stimulates the release of matrix metalloproteinases (MMPs) 1, 2 and 9 and the pro-inflammatory mediators SDF-1, VEGF and sCD40L, from platelets and to subsequently pharmacologically address the release mechanism (s). S.sanguinis stimulated the release of MMP-1, SDF-1, VEGF and sCD40L from platelets and inhibitors of cyclooxygenase and phosphatidylinositol 3-kinase, and antagonists of the αIIbβ3 integrin and glycoprotein Ib, each inhibited the secretion of all factors. Therefore the release of MMP-1, SDF-1, VEGF and sCD40L occurs late in the platelet response to S.sanguinis and highlights the complex intracellular signalling pathways stimulated in response to S.sanguinis which lead to haemostasis, MMP and pro-inflammatory mediator secretion.
Danesh, B J; Saniabadi, A R; Russell, R I; Lowe, G D
1987-12-01
We have compared the effects of acetyl salicylic acid (ASA, aspirin) and choline magnesium trisalicylate (CMT), a non-acetylated salicylate product, on platelet aggregation in human whole blood ex-vivo. Using a whole blood platelet counter, platelet aggregation was quantified by measuring the fall in the number of single platelets at peak aggregation in response to collagen, arachidonic acid (AA), as well as spontaneous aggregation. In double blind and random order, 12 healthy volunteers received, on two separate occasions 10 days apart, a single oral dose of 652 mg ASA or 655 mg CMT. Despite a comparable absorption of salicylic acid from the two drugs, ingestion of ASA resulted in a marked inhibition of platelet aggregation induced by collagen (p less than 0.005), AA (p less than 0.01) and spontaneous aggregation (p less than 0.01), whereas such effects were not observed after CMT ingestion. We suggest that CMT may have therapeutic potential as an alternative to aspirin when inhibition of platelet aggregation can induce bleeding complications.
Luzak, Boguslawa; Golanski, Jacek; Rozalski, Marek; Krajewska, Urszula; Olas, Beata
2010-01-01
Introduction Some polyphenolic compounds extracted from Aronia melanocarpa fruits (AM) have been reported to be cardioprotective agents. In this study we evaluated the ability of AM extract to increase the efficacy of human umbilical vein endothelial cells (HUVECs) to inhibit platelet functions in vitro. Material and methods This study encompasses two models of monitoring platelet reactivity: optical aggregation and platelet degranulation (monitored as the surface CD62P expression) in PRP upon the stimulation with ADP. Results We observed that only at low concentrations (5 µg/ml) did AM extract significantly improve antiplatelet action of HUVECs towards ADP-activated platelets in the aggregation test. Conclusions It is concluded that the potentiating effect of AM extract on the endothelial cell-mediated inhibition of platelet aggregation clearly depends on the used concentrations of Aronia-derived active compounds. Therefore, despite these encouraging preliminary outcomes on the beneficial effects of AM extract polyphenols, more profound dose-effect studies should certainly be considered before the implementation of Aronia-originating compounds in antiplatelet therapy and the prevention of cardiovascular diseases. PMID:22371737
Théorêt, Jean-François; Chahrour, Wissam; Yacoub, Daniel; Merhi, Yahye
2006-01-01
P-selectin is involved, with P-selectin glycoprotein (GP)-ligand-1 (PSGL-1), in platelet/leukocyte interactions during thrombo-inflammatory reactions; it also stabilizes platelet aggregates. Its antagonism accelerates thrombolysis and enhances the anti-aggregatory effects of GPIIb–IIIa inhibitors. This study was designed to investigate the mechanisms of P-selectin-mediated platelet aggregation. In freshly isolated human platelets, P-selectin translocation after thrombin stimulation increased rapidly to 48, 72, and 86% positive platelets after 60, 120, and 300 s, respectively. Platelet aggregation at 60 s post-stimulation averaged 46.7±1.9% and its extent followed closely the kinetics of P-selectin translocation. Pre-treatment of platelets with P-selectin antagonists, a recombinant PSGL-1 (rPSGL-Ig) or a blocking monoclonal antibody, significantly delayed platelet aggregation in a dose-dependent manner. At 100 μg ml−1 of rPSGL-Ig, platelet aggregation was completely inhibited up to 60 s post-stimulation and increased thereafter to reach maximal aggregation at 5 min. The second phase of platelet aggregation, in the presence of rPSGL-Ig, was completely prevented by the addition of a GPIIb–IIIa antagonist (Reopro) at 60 s, whereas its addition in the absence of rPSGL-Ig was without any significant effect. Combination of rPSGL-Ig with Reopro or with an inhibitor of Pi3K (LY294002), which reduces GPIIb–IIIa activation, showed to be more effective in inhibiting platelet aggregation, in comparison to the effects observed individually. rPSGL-Ig blocks P-selectin, whereas Reopro and LY294002 block GPIIb–IIIa and its activation, respectively, without a major effect on the percentage of platelets expressing P-selectin. In summary, platelet P-selectin participates with GPIIb–IIIa in the initiation of platelet aggregation. Its inhibition, with rPSGL-Ig, delays the aggregation process and increases the anti-aggregatory potency of Reopro. Thus, combination of P-selectin and GPIIb–IIIa antagonism may constitute a promising therapeutic option in the management of thrombotic disorders. PMID:16633357
Théorêt, Jean-François; Chahrour, Wissam; Yacoub, Daniel; Merhi, Yahye
2006-06-01
1. P-selectin is involved, with P-selectin glycoprotein (GP)-ligand-1 (PSGL-1), in platelet/leukocyte interactions during thrombo-inflammatory reactions; it also stabilizes platelet aggregates. Its antagonism accelerates thrombolysis and enhances the anti-aggregatory effects of GPIIb-IIIa inhibitors. This study was designed to investigate the mechanisms of P-selectin-mediated platelet aggregation. 2. In freshly isolated human platelets, P-selectin translocation after thrombin stimulation increased rapidly to 48, 72, and 86% positive platelets after 60, 120, and 300 s, respectively. Platelet aggregation at 60 s post-stimulation averaged 46.7 +/- 1.9% and its extent followed closely the kinetics of P-selectin translocation. 3. Pre-treatment of platelets with P-selectin antagonists, a recombinant PSGL-1 (rPSGL-Ig) or a blocking monoclonal antibody, significantly delayed platelet aggregation in a dose-dependent manner. At 100 microg ml(-1) of rPSGL-Ig, platelet aggregation was completely inhibited up to 60 s post-stimulation and increased thereafter to reach maximal aggregation at 5 min. The second phase of platelet aggregation, in the presence of rPSGL-Ig, was completely prevented by the addition of a GPIIb-IIIa antagonist (Reopro) at 60 s, whereas its addition in the absence of rPSGL-Ig was without any significant effect. 4. Combination of rPSGL-Ig with Reopro or with an inhibitor of Pi3K (LY294002), which reduces GPIIb-IIIa activation, showed to be more effective in inhibiting platelet aggregation, in comparison to the effects observed individually. 5. rPSGL-Ig blocks P-selectin, whereas Reopro and LY294002 block GPIIb-IIIa and its activation, respectively, without a major effect on the percentage of platelets expressing P-selectin. 6. In summary, platelet P-selectin participates with GPIIb-IIIa in the initiation of platelet aggregation. Its inhibition, with rPSGL-Ig, delays the aggregation process and increases the anti-aggregatory potency of Reopro. Thus, combination of P-selectin and GPIIb-IIIa antagonism may constitute a promising therapeutic option in the management of thrombotic disorders.