Shak, S; Goldstein, I M
1984-09-17
Carbon monoxide significantly inhibits omega-oxidation of exogenous leukotriene B4 to 20-OH-leukotriene B4 and 20-COOH-leukotriene B4 by unstimulated polymorphonuclear leukocytes as well as omega-oxidation of leukotriene B4 that is generated when cells are stimulated with the calcium ionophore, A23187. Inhibition of omega-oxidation by carbon monoxide is concentration-dependent, completely reversible, and specific. Carbon monoxide does not affect synthesis of leukotriene B4 by stimulated polymorphonuclear leukocytes or other cell functions (i.e., degranulation, superoxide anion generation). These findings suggest that a cytochrome P-450 enzyme in human polymorphonuclear leukocytes is responsible for catabolizing leukotriene B4 by omega-oxidation.
1977-01-01
Cationic local anesthetics have been reported to influence cellular responses to surface stimuli by interfering with the function of microtubules and microfilaments. Since unimpaired microtubule and microfilament functions are required by human polymorphonuclear leukocytes in order to respond normally to surface stimulation, we have studied effects of the local anesthetic, tetracaine on the function and morphology of these cells in vitro. Tetracaine (0.25--1.0 mM) significantly reduced extracellular release of the lysosomal enzymes, beta-glucuronidase and lysozyme from polymorphonuclear leukocytes exposed to serum-treated zymosan (a particulate stimulus), zymosan- treated serum (a soluble stimulus), and to the surface-active lectin, concanavalin A. Tetracaine also significantly reduced superoixde anion production (superoxide dismutase-inhibitable cytochrome c reduction) by these cells. Tetrancaine was not cytotoxic and its effects could be reversed completely by washing cells once with buffer. Electron microscope examination of tetracaine-treated cells revealed marked alterations of surface membranes. Microtubules and microfilaments appeared normal in "resting" polymorphonuclear leukocytes, but the increase in microtubules normally observed in stimulated cells was not seen after tetracaine treatment. These results suggest that tetracaine interferes with those interactions between immune reactants and the polymorphonuclear leukocyte cell surface which provoke exocytosis and increased oxidative metabolism. PMID:195003
Lee, Jong Do; You, Myung Hee; Kim, Young Seol; Kim, Jin Woo; Kim, Kwang Won; Kim, Sun Woo; Choi, Young Kil
1986-01-01
Although it has been well established that thyroid hormones increase β-adrenergic receptors of various tissues in the animal studies, there are controversies about the β-adrenergic receptor changes of human mononuclear cells and polymorphonuclear cells. The present study was performed to analyze the change of β-adrenergic receptor of those cells according to the thyroid functional status and to evaluate their usefulness in assessment of sympathetic hyperactivity. We measured [3H]-dihydroalprenolol binding to circulating mononuclear and polymorphonuclear cells from 18 patients with hyperthyrodism, 7 with hypothyroidism, 8 with euthyroid goiter and 21 normal controls. Only with polymorphonuclear cells the receptor concentration was significantly higher (P<0.01) in hyperthyroidism (46.07±4.78 fmol/mg protein) than in the normal control (28.42±2.06 fmol/mg protein) and the affinity constants of both cells were comparable to normal control values. And serum concentrations of T3 were not correlated well with the changes of receptor concentrations in hyperthyroidism. The patients with hypothyroidism and euthyroid goiter showed no significant difference in the receptor concentration and the affinity constants with both cell binding assays. These results indicate that thyroid hormones increase the receptor concentration in polymorphonuclear cells which might be responsible for the symptoms of sympathetic hyperactivity and the polymorphornuclear cells are useful for β-adrenergic receptor assay. PMID:15759381
Systemic Adenosine Triphosphate Impairs Neutrophil Chemotaxis and Host Defense in Sepsis.
Li, Xiaoou; Kondo, Yutaka; Bao, Yi; Staudenmaier, Laura; Lee, Albert; Zhang, Jingping; Ledderose, Carola; Junger, Wolfgang G
2017-01-01
Sepsis remains an unresolved clinical problem. Therapeutic strategies focusing on inhibition of neutrophils (polymorphonuclear neutrophils) have failed, which indicates that a more detailed understanding of the underlying pathophysiology of sepsis is required. Polymorphonuclear neutrophil activation and chemotaxis require cellular adenosine triphosphate release via pannexin-1 channels that fuel autocrine feedback via purinergic receptors. In the current study, we examined the roles of endogenous and systemic adenosine triphosphate on polymorphonuclear neutrophil activation and host defense in sepsis. Prospective randomized animal investigation and in vitro studies. Preclinical academic research laboratory. Wild-type C57BL/6 mice, pannexin-1 knockout mice, and healthy human subjects used to obtain polymorphonuclear neutrophils for in vitro studies. Wild-type and pannexin-1 knockout mice were treated with suramin or apyrase to block the endogenous or systemic effects of adenosine triphosphate. Mice were subjected to cecal ligation and puncture and polymorphonuclear neutrophil activation (CD11b integrin expression), organ (liver) injury (plasma aspartate aminotransferase), bacterial spread, and survival were monitored. Human polymorphonuclear neutrophils were used to study the effect of systemic adenosine triphosphate and apyrase on chemotaxis. Inhibiting endogenous adenosine triphosphate reduced polymorphonuclear neutrophil activation and organ injury, but increased the spread of bacteria and mortality in sepsis. By contrast, removal of systemic adenosine triphosphate improved bacterial clearance and survival in sepsis by improving polymorphonuclear neutrophil chemotaxis. Systemic adenosine triphosphate impairs polymorphonuclear neutrophil functions by disrupting the endogenous purinergic signaling mechanisms that regulate cell activation and chemotaxis. Removal of systemic adenosine triphosphate improves polymorphonuclear neutrophil function and host defenses, making this a promising new treatment strategy for sepsis.
Itzek, Andreas; Chen, Zhiyun; Merritt, Justin; Kreth, Jens
2016-01-01
Salivary agglutination is an important host defense mechanism to aggregate oral commensal bacteria as well as invading pathogens. Saliva flow and subsequent swallowing more easily clear aggregated bacteria compared to single cells. Phagocytic clearance of bacteria through polymorphonuclear neutrophil granulocytes also seems to increase to a certain extent with the size of bacterial aggregates. To determine a connection between salivary agglutination and the host innate immune response by phagocytosis, an in vitro agglutination assay was developed reproducing the average size of salivary bacterial aggregates. Using the oral commensal Streptococcus gordonii as a model organism, the effect of salivary agglutination to the phagocytic clearance through polymorphonuclear neutrophil granulocytes was investigated. Here we describe that salivary aggregates of S. gordonii are readily cleared through phagocytosis, while single bacterial cells showed a significant delay in being phagocytosed and killed. Furthermore, prior to phagocytosis the polymorphonuclear neutrophil granulocytes were able to induce a specific de-aggregation, which was dependent on serine protease activity. The herein presented data suggest that salivary agglutination of bacterial cells leads to an ideal size for recognition by polymorphonuclear neutrophil granulocytes. As a first line of defense, these phagocytic cells are able to recognize the aggregates and de-aggregate them via serine proteases to a more manageable size for efficient phagocytosis and subsequent killing in the phagolysosome. This observed mechanism not only prevents the rapid spreading of oral bacterial cells while entering the bloodstream but would also avoid degranulation of involved polymorphonuclear neutrophil granulocytes thus preventing collateral damage to nearby tissue. PMID:27194631
Itzek, A; Chen, Z; Merritt, J; Kreth, J
2017-06-01
Salivary agglutination is an important host defense mechanism to aggregate oral commensal bacteria as well as invading pathogens. Saliva flow and subsequent swallowing more easily clear aggregated bacteria compared with single cells. Phagocytic clearance of bacteria through polymorphonuclear neutrophil granulocytes also seems to increase to a certain extent with the size of bacterial aggregates. To determine a connection between salivary agglutination and the host innate immune response by phagocytosis, an in vitro agglutination assay was developed reproducing the average size of salivary bacterial aggregates. Using the oral commensal Streptococcus gordonii as a model organism, the effect of salivary agglutination on phagocytic clearance through polymorphonuclear neutrophil granulocytes was investigated. Here we describe how salivary aggregates of S. gordonii are readily cleared through phagocytosis, whereas single bacterial cells showed a significant delay in being phagocytosed and killed. Furthermore, before phagocytosis the polymorphonuclear neutrophil granulocytes were able to induce a specific de-aggregation, which was dependent on serine protease activity. The data presented suggest that salivary agglutination of bacterial cells leads to an ideal size for recognition by polymorphonuclear neutrophil granulocytes. As a first line of defense, these phagocytic cells are able to recognize the aggregates and de-aggregate them via serine proteases to a more manageable size for efficient phagocytosis and subsequent killing in the phagolysosome. This observed mechanism not only prevents the rapid spreading of oral bacterial cells while entering the bloodstream but would also avoid degranulation of involved polymorphonuclear neutrophil granulocytes, so preventing collateral damage to nearby tissue. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Voyich, Jovanka M; Sturdevant, Daniel E; Braughton, Kevin R; Kobayashi, Scott D; Lei, Benfang; Virtaneva, Kimmo; Dorward, David W; Musser, James M; DeLeo, Frank R
2003-02-18
Group A Streptococcus (GAS) evades polymorphonuclear leukocyte (PMN) phagocytosis and killing to cause human disease, including pharyngitis and necrotizing fasciitis (flesh-eating syndrome). We show that GAS genes differentially regulated during phagocytic interaction with human PMNs comprise a global pathogen-protective response to innate immunity. GAS prophage genes and genes involved in virulence, oxidative stress, cell wall biosynthesis, and gene regulation were up-regulated during PMN phagocytosis. Genes encoding novel secreted proteins were up-regulated, and the proteins were produced during human GAS infections. We discovered an essential role for the Ihk-Irr two-component regulatory system in evading PMN-mediated killing and promoting host-cell lysis, processes that would facilitate GAS pathogenesis. Importantly, the irr gene was highly expressed during human GAS pharyngitis. We conclude that a complex pathogen genetic program circumvents human innate immunity to promote disease. The gene regulatory program revealed by our studies identifies previously undescribed potential vaccine antigens and targets for therapeutic interventions designed to control GAS infections.
PHAGOCYTIN: A BACTERICIDAL SUBSTANCE FROM POLYMORPHONUCLEAR LEUCOCYTES
Hirsch, James G.
1956-01-01
A technique has been developed for collecting large numbers of polymorphonuclear leucocytes from peritoneal exudates in rabbits. These cells are obtained essentially free from other cell types and from debris. When microphages so procured are disrupted by physical methods and extracted with aqueous salt solutions, the soluble fraction manifests striking bactericidal activity, especially on Gram-negative enteric bacilli. The susceptible microorganisms are not lysed. This bactericidal substance, which has been called phagocytin, appears to be limited in distribution mainly to the polymorphonuclear leucocyte. No phagocytin is present in extracts of rabbit heart, kidney, or skeletal muscle, and rabbit liver and spleen contain much less than do packed leucocytes. Extracts of human and of guinea pig microphages show less bactericidal activity than rabbit cell preparations. Similar extracts of rat and mouse polymorphonuclear leucocytes contain no demonstrable phagocytin. As indicated by its behavior on dialysis, on exposure to proteolytic enzymes, and on salt fractionation, phagocytin appears to be a protein with general properties characteristic of a globulin. It is clearly different from lysozyme and from properdin. Although phagocytin is reasonably stable at temperatures of 65°C. and lower for several hours, solutions of it gradually lose bactericidal activity on standing for prolonged periods at 4°C. This instability, and also the ease with which phagocytin is inactivated, presumably by adsorption, on exposure to a variety of materials, have thus far rendered fruitless efforts to isolate it. PMID:13319580
Boyko, Anna A; Azhikina, Tatyana L; Streltsova, Maria A; Sapozhnikov, Alexander M; Kovalenko, Elena I
2017-01-01
Cell-type specific variations are typical for the expression of different members of the HSP70 family. In circulating immune cells, HSP70 proteins interact with units of signaling pathways involved in the immune responses and may promote cell survival in sites of inflammation. In this work, we compared basal HSP70 expression and stress-induced HSP70 response in polymorphonuclear and mononuclear human leukocytes. The intracellular content of inducible and constitutive forms of HSP70 was analyzed in relation to the transcriptional activity of HSPA genes. Hyperthermia was used as the stress model for induction of HSP70 synthesis in the cells. Our results demonstrated that granulocytes (mainly neutrophils) and mononuclear cells differ significantly by both basal HSP70 expression and levels of HSP70 induction under hyperthermia. The differences were observed at the levels of HSPA gene transcription and intracellular HSP70 content. The expression of constitutive Hsс70 protein was much higher in mononuclear cells consisting of monocytes and lymphocytes than in granulocytes. At the same time, intact neutrophils showed increased expression of inducible Hsp70 protein compared to mononuclear cells. Heat treatment induced additional expression of HSPA genes in leukocytes. The most pronounced increase in the expression was observed in polymorphonuclear and mononuclear leukocytes for HSPA1A/B. However, in granulocytes, the induction of the transcription of the HSPA8 gene encoding the Hsc70 protein was significantly higher than in mononuclear cells. These variations in transcriptional activity of HSPA genes and intracellular HSP70 content in different populations of leukocytes may reflect specified requirements for the chaperone activity in the cells with a distinct functional role in the immune system.
USDA-ARS?s Scientific Manuscript database
Cattle are the reservoir hosts of Leptospira borgpetersenii serovar Hardjo, and also be reservoir hosts of other Leptospira species such as L. kirschneri, and L. interrogans. As a reservoir host, cattle shed Leptospira, infecting other animals, including humans. Previous studies with human and murin...
Oral warfarin affects peripheral blood leukocyte IL-6 and TNFα production in rats.
Popov, Aleksandra; Belij, Sandra; Subota, Vesna; Zolotarevski, Lidija; Mirkov, Ivana; Kataranovski, Dragan; Kataranovski, Milena
2013-01-01
Warfarin is a Vitamin K (VK) antagonist that affects Vitamin K-dependent (VKD) processes, including blood coagulation, as well as processes unrelated to hemostasis such as bone growth, calcification, and growth of some cell types. In addition, warfarin exerts influence on some non-VKD-related activities, including anti-tumor and immunomodulating activity. With respect to the latter, both immune stimulating and suppressive effects have been noted in different experimental systems. To explore the in vivo immunomodulatory potential of warfarin on one type of activity (i.e., cytokine production) in two different immune cell populations (i.e., mononuclear or polymorphonuclear cells), effects of subchronic oral warfarin intake in rats on pro-inflammatory cytokine (i.e., TNFα, IL-6) production by peripheral blood mononuclear and polymorphonuclear cells (granulocytes) was examined. Differential effects of warfarin intake on TNFα and IL-6 were noted, depending on the type of peripheral blood leukocytes and on the cytokine examined. Specifically, a lack of effect on TNFα and a priming of IL-6 production by mononuclear cells along with a decrease in TNFα and a lack of effect on IL-6 in polymorphonuclear cells were seen in warfarin-exposed hosts. The cell- and cytokine-dependent effects from subchronic oral warfarin intake on peripheral blood leukocytes demonstrated in this study could, possibly, differentially affect reactions mediated by these cells. Ultimately, the observed effects in rats might have implications for those humans who are on long-term/prolonged warfarin therapy.
The role of polymorphonuclear neutrophils during HIV-1 infection.
Yaseen, Mahmoud Mohammad; Abuharfeil, Nizar Mohammad; Yaseen, Mohammad Mahmoud; Shabsoug, Barakat Mohammad
2018-01-01
It is well-recognized that human immunodeficiency virus type-1 (HIV-1) mainly targets CD4 + T cells and macrophages. Nonetheless, during the past three decades, a huge number of studies have reported that HIV-1 can directly or indirectly target other cellular components of the immune system including CD8 + T cells, B cells, dendritic cells, natural killer cells, and polymorphonuclear neutrophils (PMNs), among others. PMNs are the most abundant leukocytes in the human circulation, and are known to play principal roles in the elimination of invading pathogens, regulating different immune responses, healing of injured tissues, and maintaining mucosal homeostasis. Until recently, little was known about the impact of HIV-1 infection on PMNs as well as the impact of PMNs on HIV-1 disease progression. This is because early studies focused on neutropenia and recurrent microbial infections, particularly, during advanced disease. However, recent studies have extended the investigation area to cover new aspects of the interactions between HIV-1 and PMNs. This review aims to summarize these advances and address the impact of HIV-1 infection on PMNs as well as the impact of PMNs on HIV-1 disease progression to better understand the pathophysiology of HIV-1 infection.
Hoe, Nancy P; Ireland, Robin M; DeLeo, Frank R; Gowen, Brian B; Dorward, David W; Voyich, Jovanka M; Liu, Mengyao; Burns, Eugene H; Culnan, Derek M; Bretscher, Anthony; Musser, James M
2002-05-28
Streptococcal inhibitor of complement (Sic) is a secreted protein made predominantly by serotype M1 Group A Streptococcus (GAS), which contributes to persistence in the mammalian upper respiratory tract and epidemics of human disease. Unexpectedly, an isogenic sic-negative mutant adhered to human epithelial cells significantly better than the wild-type parental strain. Purified Sic inhibited the adherence of a sic negative serotype M1 mutant and of non-Sic-producing GAS strains to human epithelial cells. Sic was rapidly internalized by human epithelial cells, inducing cell flattening and loss of microvilli. Ezrin and moesin, human proteins that functionally link the cytoskeleton to the plasma membrane, were identified as Sic-binding proteins by affinity chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. Sic colocalized with ezrin inside epithelial cells and bound to the F-actin-binding site region located in the carboxyl terminus of ezrin and moesin. Synthetic peptides corresponding to two regions of Sic had GAS adherence-inhibitory activity equivalent to mature Sic and inhibited binding of Sic to ezrin. In addition, the sic mutant was phagocytosed and killed by human polymorphonuclear leukocytes significantly better than the wild-type strain, and Sic colocalized with ezrin in discrete regions of polymorphonuclear leukocytes. The data suggest that binding of Sic to ezrin alters cellular processes critical for efficient GAS contact, internalization, and killing. Sic enhances bacterial survival by enabling the pathogen to avoid the intracellular environment. This process contributes to the abundance of M1 GAS in human infections and their ability to cause epidemics.
Trypanosoma cruzi: sequence of phagocytosis and cytotoxicity by human polymorphonuclear leucocytes.
Rimoldi, M T; Cardoni, R L; Olabuenaga, S E; de Bracco, M M
1981-01-01
We have studied the relationship between phagocytosis and cytotoxicity of human polymorphonuclear leucocytes (PMN) to sensitized Trypanosoma cruzi. Assays were done simultaneously using [3H]-uridine labelled epimastigotes as target cells. Phagocytosis was evaluated by the uptake and cytotoxicity by the release of parasite associated [3H]-uridine. Both reactions reached maximum levels at the same effector- to target-cell ratio and antibody concentration. Uptake of epimastigotes by PMN was highest at 30 min and intracellular disruption and release of parasite debris took place later. In conditions that precluded repeated uptake of sensitized radiolabelled T. cruzi, the release profile of [3H]-uridine from PMN that contained intracellular parasites was similar to that of the standard cytotoxic assay. However, as the ingestion phase was separated from the release step, no lag in the onset of the reaction was observed. Although we cannot rule out extracellular killing, the results of this study demonstrate that the bulk of damaged T. cruzi epimastigotes had been previously internalized by the PMN. PMID:7016743
Moriguchi, K; Ohno, N; Ogawa, T; Hirai, K
1999-01-01
When human polymorphonuclear leukocytes (PMN) were attached to glass coverslips, cells always spread and formed reactive oxygen species prior to any experimental stimulation. To avoid this, a polyvinylidine chloride film was used as an inactive substance to place the cells. Cells engaged in phagocytosis on the film exhibited a specific H2O2-mediated luminol chemiluminescence (LCL) at the cell-particle interface; the cells stimulated with 12-O-tetradecanoylphorbol-13-acetate became aggregated and the LCL was observed at the cell-cell contact. These results corresponded well with those obtained by an electron microscopic H2O2-demonstration method.
Tsuda, H; Yamashita, Y; Toyoshima, K; Yamaguchi, N; Oho, T; Nakano, Y; Nagata, K; Koga, T
2000-02-01
To clarify the role of cell surface components of Streptococcus mutans in resistance to phagocytosis by human polymorphonuclear leukocytes (PMNs), several isogenic mutants of S. mutans defective in cell surface components were studied with a luminol-enhanced chemiluminescence (CL) assay, a killing assay, and a transmission electron microscope. The CL responses of human PMNs to mutant Xc11 defective in a major cell surface antigen, PAc, and mutant Xc16 defective in two surface glucosyltransferases (GTF-I and GTF-SI) were the same as the response to the wild-type strain, Xc. In contrast, mutant Xc24R, which was defective in serotype c-specific polysaccharide, induced a markedly higher CL response than the other strains. The killing assay showed that human PMNs killed more Xc24R than the parent strain and the other mutants. The transmission electron microscopic observation indicated that Xc24R cells were more internalized by human PMNs than the parental strain Xc. These results may be reflected by the fact that strain Xc24R was more phagocytosed than strain Xc. The CL response of human PMNs to a mutant defective in polysaccharide serotype e or f was similar to the response to Xc24R. Furthermore, mutants defective in serotype-specific polysaccharide were markedly more hydrophobic than the wild-type strains and the other mutants, suggesting that the hydrophilic nature of polysaccharides may protect the bacterium from phagocytosis. We conclude that the serotype-specific polysaccharide, but not the cell surface proteins on the cell surface of S. mutans, may play an important role in the resistance to phagocytosis.
Tsuda, Hiromasa; Yamashita, Yoshihisa; Toyoshima, Kuniaki; Yamaguchi, Noboru; Oho, Takahiko; Nakano, Yoshio; Nagata, Kengo; Koga, Toshihiko
2000-01-01
To clarify the role of cell surface components of Streptococcus mutans in resistance to phagocytosis by human polymorphonuclear leukocytes (PMNs), several isogenic mutants of S. mutans defective in cell surface components were studied with a luminol-enhanced chemiluminescence (CL) assay, a killing assay, and a transmission electron microscope. The CL responses of human PMNs to mutant Xc11 defective in a major cell surface antigen, PAc, and mutant Xc16 defective in two surface glucosyltransferases (GTF-I and GTF-SI) were the same as the response to the wild-type strain, Xc. In contrast, mutant Xc24R, which was defective in serotype c-specific polysaccharide, induced a markedly higher CL response than the other strains. The killing assay showed that human PMNs killed more Xc24R than the parent strain and the other mutants. The transmission electron microscopic observation indicated that Xc24R cells were more internalized by human PMNs than the parental strain Xc. These results may be reflected by the fact that strain Xc24R was more phagocytosed than strain Xc. The CL response of human PMNs to a mutant defective in polysaccharide serotype e or f was similar to the response to Xc24R. Furthermore, mutants defective in serotype-specific polysaccharide were markedly more hydrophobic than the wild-type strains and the other mutants, suggesting that the hydrophilic nature of polysaccharides may protect the bacterium from phagocytosis. We conclude that the serotype-specific polysaccharide, but not the cell surface proteins on the cell surface of S. mutans, may play an important role in the resistance to phagocytosis. PMID:10639428
Myeloid-derived suppressor cells modulate B-cell responses.
Lelis, Felipe J N; Jaufmann, Jennifer; Singh, Anurag; Fromm, Katja; Teschner, Annkathrin Chiara; Pöschel, Simone; Schäfer, Iris; Beer-Hammer, Sandra; Rieber, Nikolaus; Hartl, Dominik
2017-08-01
Myeloid-derived suppressor cells (MDSCs) are key regulators of adaptive immunity by suppressing T-cell functions. However, their potential action on or interaction with B cells remained poorly understood. Here we demonstrate that human polymorphonuclear MDSCs differentially modulate B-cell function by suppressing B-cell proliferation and antibody production. We further demonstrate that this MDSC-mediated effect is cell contact dependent and involves established mediators such as arginase-1, nitric oxide (NO), reactive oxygen species (ROS) as well as B-cell death. Collectively, our studies provide novel evidence that human MDSCs modulate B cells, which could have future implications for immunotherapy approaches. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Takeichi, O; Saito, I; Okamoto, Y; Tsurumachi, T; Saito, T
1998-01-01
To determine if nitric oxide (NO) is produced by chronically infected human polymorphonuclear leucocytes (PMNs) in vivo, inflamed exudates (periapical exudates: PE) collected from periapical periodontitis patients were examined. Cell-free supernatants and cells were separated by centrifugation. Significant levels of nitrite concentrations were observed in the supernatants. The production of inducible NO synthase (iNOS) in highly purified PMNs derived from PEs was then immunocytochemically determined using rabbit anti-human iNOS antiserum. In vitro, human peripheral blood PMNs (PB-PMNs) isolated from patients were cultured with a combination of Esherichia coli-lipopolysaccharide (LPS), recombinant human interferon-gamma (rhIFN-gamma) and/or interleukin-1 beta (rhIL-1 beta). The stimulated PB-PMNs showed steady-state levels of nitrite. The stimulation of LPS, rhIFN-gamma and rhIL-1 beta showed more NO induction than that of LPS with either IFN-gamma or IL-1 beta, suggesting the synergistic effects of cytokines. Cryostat sections of surgically removed periapical tissues were also immunohistochemically examined for iNOS, IFN-gamma and IL-1 beta. Two-colour immunohistochemistry revealed the interaction of iNOS-producing PMNs and IFN-gamma- or IL-1 beta-producing mononuclear cells. On the basis of these data, we concluded that with the stimulation of inflammatory cytokines derived from mononuclear cells, PMNs can spontaneously produce NO at the site of chronic infection. The present studies are consistent with a hypothesis suggesting that PMNs could be regulated and delicately balanced to produce NO by mononuclear cell-derived cytokines in vivo. NO-producing cells may play a pivotal role in chronic inflammation. Images Figure 2 Figure 4 Figure 5 Figure 6 PMID:9616379
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsan, M.F.; Chen, W.Y.; Scheffel, U.
1978-01-01
The mechanism of ionic gallium-67 localization in inflammatory lesions was studied. Human polymorphonuclear leukocytes (PMN) had higher Ga-67 uptake than lymphocytes, whereas red blood cells had no affinity for Ga-67. Uptake by PMN showed temperature dependence, was independent of Ga-67 concentrations, and was not inhibited by metabolic inhibitors. However, its binding to PMN could be removed by trypsin but not by neuraminidase. These results are consistent with the hypothesis that the plasma membrane serves as a diffusion barrier and Ga-67 only binds to the surface of the PMN plasma membrane. When this membrane's permeability barrier was disrupted, as in heat-killedmore » PMN, Ga-67 uptake increased markedly. Experimental abscesses were induced with E. coli or turpentine in rabbits. Twenty-four hours after i.v. injection, only 20 percent of Ga-67 in abscesses was in fractions containing intact PMN, cell debris or bacteria; the remainder was in a soluble, non-cellular fraction (2,500-g supernatant).« less
Guentsch, A; Puklo, M; Preshaw, P M; Glockmann, E; Pfister, W; Potempa, J; Eick, S
2009-06-01
This study analyzed the interaction of Porphyromonas gingivalis ATCC 33277 and Aggregatibacter actinomycetemcomitans Y4 with peripheral blood polymorphonuclear neutrophils taken from patients with aggressive periodontitis and chronic periodontitis. Peripheral blood polymorphonuclear neutrophils obtained from 12 patients with chronic periodontitis, six patients with aggressive periodontitis and 12 healthy controls were exposed to P. gingivalis and A. actinomycetemcomitans following opsonization of the bacteria using the patient's own serum. Serum immunoglobulin G (IgG) levels against both periodontopathogens were measured. Phagocytosis and killing of the bacteria, as well as the extracellular human neutrophil elastase activity, were quantified. The total amount and the extracellular release of reactive oxygen species were measured using luminol-dependent and isoluminol-dependent chemiluminescence. Polymorphonuclear neutrophils from patients with chronic (62.16 +/- 19.39%) and aggressive (43.26 +/- 26.63%) periodontitis phagocytosed more P. gingivalis than the healthy controls (24.43 +/- 19.87%) at the 30-min time point after exposure to the bacteria (p < 0.05). High serum IgG levels against P. gingivalis and A. actinomycetemcomitans were detected in subjects with periodontitis. Polymorphonuclear neutrophils from subjects with chronic and aggressive periodontitis released significantly more reactive oxygen species and demonstrated greater human neutrophil elastase activity in the absence of any stimulus than polymorphonuclear neutrophils from healthy controls (p < 0.05). Polymorphonuclear neutrophils in chronic periodontitis released significantly more reactive oxygen species when exposed to P. gingivalis and A. actinomycetemcomitans than polymorphonuclear neutrophils in aggressive periodontitis. High serum IgG levels against P. gingivalis and A. actinomycetemcomitans promote phagocytosis in periodontitis. The extracellular release of reactive oxygen species and neutrophil elastase by polymorphonuclear neutrophils may also contribute to damage of the surrounding periodontal tissues.
Pickering, L K; Cleary, T G; Caprioli, R M
1983-04-01
To compare the effect of human colostrum (days 1 to 3 postpartum) and mature milk (days 170 +/- 24 postpartum) on the function of polymorphonuclear leukocytes (PMNL), Ficoll-Hypaque-separated PMNL from the blood of 60 healthy volunteers were incubated with whole colostrum, colostral lipid, and colostral aqueous phase from 30 mothers, or with mature whole milk and its separated components from 30 mothers, and tested for resting and zymosan-stimulated oxidative metabolism, functional activity, and the presence of Fc receptors. Stimulated oxygen consumption, quantitative nitroblue tetrazolium dye reduction, [1-(14)C]glucose utilization, and Fc receptors were significantly (P < 0.05 to P < 0.001) less in PMNL exposed to whole human colostrum or colostral lipid than in non-lipid-exposed cells or cells exposed to the aqueous phase of colostrum. In contrast, PMNL exposed to whole mature milk or to its lipid or aqueous phase caused no significant decrease in any of these parameters when compared to nonexposed cells. In assays of phagocytosis, colostral PMNL or blood PMNL exposed to colostral lipid had a significant (P < 0.001) decrease in their ability to ingest [methyl-(3)H]thymidine-labeled Staphylococcus aureus when compared to non-lipid-exposed PMNL. Blood PMNL exposed to lipid from mature milk had no decrease in ability to ingest S. aureus. Analysis of total lipid and total and individual fatty acid content revealed a uniform increase in all components in mature milk when compared to colostrum. Lipid or lipid-soluble material present in human colostrum but not mature milk causes inhibition of phagocytosis and respiratory burst-related activities of PMNL.
Hu, Xiao-Min; Xu, Yan-Rui; Yan, Ru; Sun, Shu-Liang; Dong, Hong-Liang; Wang, Jun; Gao, Xiao-Ming
2015-01-01
Soluble lactoferrin (LTF) is a versatile molecule that not only regulates the iron homeostasis, but also harbors direct microbicidal and immunomodulating abilities in mammalian body fluids. In contrast, little is known about the function of membrane-bound LTF (mbLTF), although its expression on human polymorphonuclear leukocytes (huPMNs) has been reported for decades. Given that LTF/anti-LTF antibodies represent a potential diagnostic/prognostic biomarker and a therapeutic target in patients with immune disorders, we wished, in the present study, to generate a novel human LTF- (huLTF-) specific mAb suitable for detailed analyses on the expression and function of mbLTF as well as for deciphering the underlying mechanisms. By using the traditional hybridoma cell fusion technology, we obtained a murine IgG1 (kappa) mAb, M-860, against huLTF. M-860 recognizes a conformational epitope of huLTF as it binds to natural, but not denatured, huLTF in ELISA. Moreover, M-860 detects mbLTF by FACS and captures endogenous huLTF in total cell lysates of huPMNs. Functionally, M-860 induces the activation of huPMNs partially through TLR4 but independently of phagocytosis. M-860 is thus a powerful tool to analyze the expression and function of human mbLTF, which will further our understanding of the roles of LTF in health and disease. PMID:26649297
Ko, Hyun Jung; Lim, Sung Sam
2002-11-01
This study was undertaken to investigate the capacity of polymorphonuclear neutrophils (PMNs) to secrete Macrophage Inflammatory Protein (MIP)-1alpha and MIP-1beta after stimulation with Porphyromonas endodontalis lipopolysaccharide (LPS). Escherichia coli LPS was used as a positive control. Venous blood was collected and PMNs were isolated from healthy volunteers. Cells were cultured with various concentrations of LPS for different periods of time. Cell supernatants were assayed by enzyme-linked immunosorbent assay. The levels of chemokine secretion in PMNs stimulated with each LPS were found to be significantly higher than in the unstimulated control cells (p < 0.05), and this expression occurred in a time- and dose-dependent manner. E. coli LPS induced higher levels of cytokines than P. endodontalis LPS. These findings demonstrated that P. endodontalis LPS is capable of stimulating PMNs to produce chemotactic cytokines and suggested that PMNs stimulated with P. endodontalis LPS may play a crucial role in the inflammatory and immunopathological reactions of pulpal and periapical diseases.
Nakata, Makoto; Otsubo, Kouji; Kikuchi, Tomoko; Itou, Takuya; Sakai, Takeo
2010-02-01
This study describes a chemotaxis assay of ferret polymorphonuclear cells (PMNs). The optimal conditions for this chemotaxis assay were investigated for three chemoattractants: zymosan activated serum (ZAS), recombinant human interleukin-8 (rhIL-8) and N-formyl-Met-Leu- Phe (fMLF). In this study, ferret polymorphonuclear cells (PMNs) reacted to ZAS and rhIL-8, but not fMLF. The optimal concentration of ZAS and rhIL-8 were 5% and 100 ng/ml, respectively. The optimal incubation time of each reagent was 60 min. Due to the lack of response shown from fMLF, the existence of formyl peptide receptors (FPR) on ferret PMNs was investigated by evaluating FPR binding using flow cytometry. The receptor was not detected, implying that ferret neutrophils may lack FPR. This study confirms the fundamental experimental conditions for ferret PMNs chemotaxis and elucidates new findings concerning FPR in ferret neutrophils. Copyright 2009 Elsevier Ltd. All rights reserved.
Cosentino, Marco; Luini, Alessandra; Bombelli, Raffaella; Corasaniti, Maria T; Bagetta, Giacinto; Marino, Franca
2014-08-01
Bergamot (Citrus aurantium L. subsp. bergamia) essential oil (BEO) is used in folk medicine as an antiseptic and anthelminthic and to facilitate wound healing. Evidence indicates that BEO has substantial antimicrobial activity; however its effects on immunity have never been examined. We studied the effects of BEO on reactive oxygen species (ROS) production in human polymorphonuclear leukocytes (PMN) and the role of Ca(2+) in the functional responses evoked by BEO in these cells. Results show that BEO increased intracellular ROS production in human PMN, an effect that required the contribution of extracellular (and, to a lesser extent, of intracellular) Ca(2+) . Bergamot essential oil also significantly increased ROS production induced by the chemotactic peptide N-formyl-Met-Leu-Phe and reduced the response to the protein kinase C activator phorbol myristate acetate. In conclusion, this is the first report showing the ability of BEO to increase ROS production in human PMN. This effect could both contribute to the activity of BEO in infections and in tissue healing as well as underlie an intrinsic proinflammatory potential. The relevance of these findings for the clinical uses of BEO needs careful consideration. Copyright © 2014 John Wiley & Sons, Ltd.
Uptake of antibiotics by human polymorphonuclear leukocyte cytoplasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hand, W.L.; King-Thompson, N.L.
Enucleated human polymorphonuclear leukocytes (PMN cytoplasts), which have no nuclei and only a few granules, retain many of the functions of intact neutrophils. To better define the mechanisms and intracellular sites of antimicrobial agent accumulation in human neutrophils, we studied the antibiotic uptake process in PMN cytoplasts. Entry of eight radiolabeled antibiotics into PMN cytoplasts was determined by means of a velocity gradient centrifugation technique. Uptakes of these antibiotics by cytoplasts were compared with our findings in intact PMN. Penicillin entered both intact PMN and cytoplasts poorly. Metronidazole achieved a concentration in cytoplasts (and PMN) equal to or somewhat lessmore » than the extracellular concentration. Chloramphenicol, a lipid-soluble drug, and trimethoprim were concentrated three- to fourfold by cytoplasts. An unusual finding was that trimethroprim, unlike other tested antibiotics, was accumulated by cytoplasts more readily at 25 degrees C than at 37 degrees C. After an initial rapid association with cytoplasts, cell-associated imipenem declined progressively with time. Clindamycin and two macrolide antibiotics (roxithromycin, erythromycin) were concentrated 7- to 14-fold by cytoplasts. This indicates that cytoplasmic granules are not essential for accumulation of these drugs. Adenosine inhibited cytoplast uptake of clindamycin, which enters intact phagocytic cells by the membrane nucleoside transport system. Roxithromycin uptake by cytoplasts was inhibited by phagocytosis, which may reduce the number of cell membrane sites available for the transport of macrolides. These studies have added to our understanding of uptake mechanisms for antibiotics which are highly concentrated in phagocytes.« less
Udhayakumar, V; Muthukkaruppan, V R
1987-01-01
The porin, an outer membrane protein of Salmonella typhimurium, was found to be a suitable antigen for eliciting delayed-type hypersensitivity in mouse salmonellosis. Histological examination of the reaction site revealed that the porin was superior to other antigenic preparations in eliciting a typical delayed-type hypersensitivity reaction consisting of mononuclear cell infiltration without polymorphonuclear cell contamination. This study indicates the importance of using a suitable protein antigen from S. typhi for human application. Images PMID:3028963
New method for estimating digestion of Paracoccidioides brasiliensis by phagocytic cells in vitro.
Goihman-Yahr, M; Essenfeld-Yahr, E; Albornoz, M C; Yarzábal, L; de Gómez, M H; San Martín, B; Ocanto, A; Convit, J
1979-01-01
We describe a method by which phagocytosis and digestion of Paracoccidioides brasiliensis yeast cells by polymorphonuclear leukocytes or other phagocytic cells may be estimated. Suspensions of P. brasiliensis in its yeastlike phase were sonicated, counted, and incubated with known numbers of peripheral blood polymorphonuclear leukocytes. At given intervals, cytocentrifuge droplets were stained by a variation of Papanicolaou's method. Stained preparations were examined with phase-contrast optics. Digested organisms showed total or partial disappearance of protoplasm. Green-stained cell walls resisted digestion. The proportion of digested cells as a function of time was estimated. Images PMID:90683
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besemer, J.; Hujber, A.; Kuhn, B.
1989-10-15
The interaction of {sup 125}I-labeled recombinant human neutrophil activating factor (NAF) with polymorphonuclear leukocytes (PMN) was studied by means of a radioreceptor assay. The binding was characterized by a rapid transition (t1/2 less than or equal to 1 min) from a pH 3-sensitive state at 4{degree}C to pH 3 resistance at 37{degree}C. This was not caused by internalization of NAF since pH 3-resistant bound iodinated NAF could still be exchanged by an excess of nonlabeled NAF, i.e. was dissociable. Internalized iodinated NAF was processed into trichloroacetic acid-soluble forms. Scatchard transformation of binding isotherms at 4 and 37{degree}C led to nonlinearmore » curves, a finding which is consistent with the expression of two receptor populations, one with high (KD = 11-35 pM) and the other with lower affinity (KD = 640-830 pM) at 4 degrees C. Numbers of the low affinity binding sites were approximately 34,000, and those with high affinity were 5,200/PMN when estimated at 4 degrees C. Binding of iodinated NAF to PMN was specific since it could be competed by an excess of nonlabeled NAF but not by two other activators of PMN function, formylmethionyl-leucyl-phenylalanine or human recombinant granulocyte-macrophage colony-stimulating factor. In addition to human PMN, NAF also bound specifically to two human monocytic cell lines; however, only the low affinity binding site could be detected on these cells.« less
Mueller-Leisse, Johanna; Brueggemann, Sabrina; Bouzani, Maria; Schmitt, Anna-Lena; Einsele, Hermann; Loeffler, Juergen
2015-08-01
Invasive aspergillosis is a devastating infectious disease in immunocompromised patients. Besides neutrophils and macrophages, natural killer (NK) cells have recently emerged as important players in immunity to this infection. It was shown that NK cells comprise an essential role in the clearance of Aspergillus fumigatus (A. fumigatus) in neutropenic but not in nonneutropenic mice. However, the antifungal activity of NK cells and their regulation have not been fully characterized. In this study, we investigated the interplay between polymorphonuclear neutrophils (PMNs) or granulocyte myeloid-derived suppressor cells (Gr-MDSCs) with NK cells. Both cell types exhibited an equal inhibitory effect on NK cell activation through downregulation of NKp30 expression on the cell surface and cytotoxicity towards the cell line K562. Furthermore, we showed that NK cell activation and antifungal cytotoxicity were impaired when NK cells had been cultured in the presence of PMNs or Gr-MDSCs before fungal stimulation. Besides the reduced cytotoxicity a decreased release of interferon gamma (IFNγ), a key player in the clearance of an A. fumigatus infection, was observed. Thus, inhibition of NK cell activity by PMNs or Gr-MDSCs might impair an effective anti-fungal immune response during recovery from conditions such as hematopoietic stem cell transplantation. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Knoll-Köhler, Elisabeth; Stiebel, Juliane
2002-08-01
Amine hydrofluorides are widely used to prevent caries. As an acidulated gel, they were also studied for their applicability to reduce pathogenic bacteria in periodontal pockets. We assessed the toxicity of this pharmaceutical amine hydrofluoride preparation on human polymorphonuclear leukocytes in vitro by measuring Trypan blue exclusion and the generation of superoxide anions (O2) by the chemotactic peptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) after a 3-min contact with gel. Depending on the experimental conditions, gel dilutions up to 1.3 x 10(4) resulted in an increase in Trypan blue-colored cells and liberation of beta-glucuronidase. Dilutions between 3 x 10(4) and 1 x 10(5) augmented the fMLP-mediated O2- generation, which could be prevented by Ca2+ chelation with BAPTA-AM (1,2'-bis (o-aminophenoxyethane-N.N.N'.N'-tetraacetic acid tetra (acetoxymethyl) ester) and ethyleneglycoltetraacetic acid (EGTA) or inhibition of protein kinase C (PKC) with staurosporine and bisindolylmaleimide I. respectively. Compared with data published on the minimal inhibitory concentration for periodontal pathogenic bacteria, the cytotoxicity of amine hydrofluorides on eukaryotic cells is much greater and thus of consequence for their clinical use.
Victor, Victor M; Rocha, Milagros; Bañuls, Celia; Alvarez, Angeles; de Pablo, Carmen; Sanchez-Serrano, Maria; Gomez, Marcelino; Hernandez-Mijares, Antonio
2011-10-01
Insulin resistance is a feature of polycystic ovary syndrome (PCOS) and is related to mitochondrial and endothelial function. We tested whether hyperandrogenic insulin-resistant women with PCOS, who have an increased risk of vascular disease, display impaired leukocyte-endothelium interactions, and mitochondrial dysfunction. This was a prospective controlled study conducted in an academic medical center. The study population consisted of 43 lean reproductive-age women with PCOS and 39 controls subjects. We evaluated anthropometric and metabolic parameters, adhesion molecules, and interactions between leukocytes and human umbilical vein endothelial cells. Mitochondrial function was studied by assessing mitochondrial oxygen consumption, membrane potential, reactive oxygen species production, glutathione levels (GSH), and the oxidized glutathione (GSSG)/GSH ratio in polymorphonuclear cells. Impairment of mitochondrial function was observed in the PCOS patients, evident in a decrease in oxygen consumption, an increase in reactive oxygen species production, a decrease in the GSH/GSSG ratio and GSH levels, and an undermining of the membrane potential. PCOS was related to a decrease in polymorphonuclear cell rolling velocity and an increase in rolling flux and adhesion. Increases in IL-6 and TNFα and adhesion molecules (vascular cell adhesion molecule-1 and E-selectin) were also observed. This study supports the hypothesis of an association between insulin resistance and an impaired endothelial and mitochondrial oxidative metabolism. The evidence obtained shows that the inflammatory state related to insulin resistance in PCOS induces a leukocyte-endothelium interaction. These findings may explain the increased risk of vascular disease in women with PCOS.
Chemiluminescence of peripheral polymorphonuclear leukocytes from adult periodontitis patients.
Whyte, G J; Seymour, G J; Cheung, K; Robinson, M F
1989-02-01
Polymorphonuclear leukocytes (PMN's) constitute a primary host resistance factor against infection. This study investigated the chemiluminescent (CL) response of peripheral blood PMN's isolated from human subjects with adult periodontitis. 32 subjects were categorized on the basis of age and periodontal disease status into 4 equal groups--young healthy, young diseased, old healthy and old diseased. PMN CL was stimulated using heat-killed, serum-opsonized Fusobacterium nucleatum--a specific periodontopathic gram-negative anaerobe, and Escherichia coli as a gram-negative control organism. The results showed a statistically significant enhancement (p less than 0.05) in the CL response, which was cell associated, in the young diseased subjects. This was not seen in the old subjects (p greater than 0.05), suggesting that in periodontal disease in young subjects the peripheral blood PMNs may be in a metabolically activated state. There was nevertheless a degree of variability between individual subjects within each of the 4 clinical groups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Caroline; Gagné, Valérie; Fernandes, Maria J.G.
Many cationic drugs are concentrated in acidic cell compartments due to low retro-diffusion of the protonated molecule (ion trapping), with an ensuing vacuolar and autophagic cytopathology. In solid tissues, there is evidence that phagocytic cells, e.g., histiocytes, preferentially concentrate cationic drugs. We hypothesized that peripheral blood leukocytes could differentially take up a fluorescent model cation, quinacrine, depending on their phagocytic competence. Quinacrine transport parameters were determined in purified or total leukocyte suspensions at 37 °C. Purified polymorphonuclear leukocytes (PMNLs, essentially neutrophils) exhibited a quinacrine uptake velocity inferior to that of lymphocytes, but a consistently higher affinity (apparent K{sub M} 1.1more » vs. 6.3 μM, respectively). However, the vacuolar (V)-ATPase inhibitor bafilomycin A1 prevented quinacrine transport or initiated its release in either cell type. PMNLs capture most of the quinacrine added at low concentrations to fresh peripheral blood leukocytes compared with lymphocytes and monocytes (cytofluorometry). Accumulation of the autophagy marker LC3-II occurred rapidly and at low drug concentrations in quinacrine-treated PMNLs (significant at ≥ 2.5 μM, ≥ 2 h). Lymphocytes contained more LAMP1 than PMNLs, suggesting that the mass of lysosomes and late endosomes is a determinant of quinacrine uptake V{sub max}. PMNLs, however, exhibited the highest capacity for pinocytosis (uptake of fluorescent dextran into endosomes). The selectivity of quinacrine distribution in peripheral blood leukocytes may be determined by the collaboration of a non-concentrating plasma membrane transport mechanism, tentatively identified as pinocytosis in PMNLs, with V-ATPase-mediated concentration. Intracellular reservoirs of cationic drugs are a potential source of toxicity (e.g., loss of lysosomal function in phagocytes). - Highlights: • Quinacrine is concentrated in acidic organelles via V-ATPase-mediated ion trapping. • Human peripheral blood leukocytes capture and concentrate quinacrine. • Polymorphonuclear leukocytes do so with higher apparent affinity. • Polymorphonuclear are also more competent than lymphocytes for pinocytosis.« less
Interactions of phagocytes with the Lyme disease spirochete: role of the Fc receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benach, J.L.; Fleit, H.B.; Habicht, G.S.
1984-10-01
The phagocytic capacity of murine and human mononuclear and polymorphonuclear phagocytes (including peripheral blood monocytes and neutrophils), rabbit and murine peritoneal exudate cells, and the murine macrophage cell line P388D1 against the Lyme disease spirochete was studied. All of these cells were capable of phagocytosing the spirochete; phagocytosis was measured by the uptake of radiolabeled spirochetes, the appearance of immunofluorescent bodies in phagocytic cells, and electron microscopy. Both opsonized and nonopsonized organisms were phagocytosed. The uptake of opsonized organisms by neutrophils was blocked by a monoclonal antibody specific for the Fc receptor and by immune complexes; these findings suggested thatmore » most phagocytosis is mediated by the Fc receptor. Similarly, the uptake of opsonized organisms by human monocytes was inhibited by human monomeric IgG1 and by immune complexes. These results illustrate the role of immune phagocytosis of spirochetes in host defense against Lyme disease.« less
Feldman, B F; Ruehl, W W
1984-04-01
In dogs, the pericardial sac contains about 0.3 ml, and the pleural and peritoneal cavities 0-15 ml of clear, straw-colored fluid of pH 7.4, specific gravity 1.016, protein content less than 3.0 g/dl and cell count less than 3000/microliter. Fat can be cleared from chylous fluid with NaOH and ether. Inflammation is indicated by a cell count greater than 3000/microliter. Amylase levels in peritoneal fluid are elevated in necrotizing pancreatitis. The percentage of polymorphonuclear WBC exceeds 50% in bacterial inflammations. Normal joints contain less than 1 ml highly viscid, clear or straw-colored synovial fluid with less than 1000 nucleated cells/microliter. Synovial fluid becomes flocculent and less viscid in septic and occasionally in immune-mediated arthritis, often with cell counts greater than 75,000/microliter, with 75-90% polymorphonuclear WBC. Cerebrospinal fluid is normally acellular, clear and colorless but may be red, yellow or brown with intracranial hematomas. Viral or aseptic meningitis is characterized by mononuclear cell counts of less than 500/microliter. In acute bacterial meningitis, nucleated cell counts are greater than 1000/microliter, with most being polymorphonuclear WBC. Gram staining of cerebrospinal fluid is not useful.
Tullio, Vivian; Mandras, Narcisa; Allizond, Valeria; Nostro, Antonia; Roana, Janira; Merlino, Chiara; Banche, Giuliana; Scalas, Daniela; Cuffini, Anna Maria
2012-10-01
The essential oils have started to be recognized for their potential antimicrobial role only in recent years. Clinical experience showed that the efficacy of antimicrobial agents depends not only on their direct effect on a given microorganism but also on the functional activity of the host immune system. Since data on the effects of essential oils on the innate immune system are scanty and fragmentary, the aim of this study was to evaluate the influence of thyme (red) essential oil (EO), at subinhibitory/inhibitory concentrations, on intracellular killing activity by human polymorphonuclear granulocytes (PMNs) against Candida albicans. In order to provide a frame of reference for the activity of this EO, its in vitro killing activity in the absence of PMNs was also evaluated.Results showed that EO at subminimal inhibitory (subMIC)/minimal inhibitory (MIC) concentrations significantly enhanced intracellular killing of C. albicans in comparison with EO-free controls and was comparable to the positive control (fluconazole). In in vitro killing assays without PMNs, we observed progressive growth of the yeast cells in the presence of EO subMIC/MIC concentrations. A positive antifungal interaction with phagocytes could explain why this EO, which appeared to be only fungistatic in time-kill assays, had efficacy in killing yeast cells once incubated with PMNs. Georg Thieme Verlag KG Stuttgart · New York.
Haapasalo, M; Kerosuo, E; Lounatmaa, K
1990-12-01
The hydrophobicities of human polymorphonuclear leukocytes (PMNLs) and Bacteroides buccae, B. oris, B. oralis, B. veroralis, B. buccalis, B. heparinolyticus, B. intermedius, B. denticola, B. loescheii, B. melaninogenicus, Porphyromonas gingivalis, P. endodontalis, Wolinella recta, and Eubacterium yurii were studied by the hexadecane method. The majority of the strains were equally or less hydrophobic than the PMNLs. Only in the case of E. yurii and the only strain of B. buccalis were all strains more hydrophobic than the PMNLs. However, some strains of B. intermedius, B. oris, B. denticola, and P. gingivalis were also more hydrophobic than the PMNLs. With the exception of B. intermedius and species with a crystalline surface protein layer (S-layer), the strains of all other species with a thick capsule were more hydrophilic than the strains with little or no extracellular polymeric material. All strains of the S-layer species were either quite hydrophilic or hydrophobic depending on the species, totally irrespective of the presence of the capsule. The results suggest that the S-layers of oral anaerobic bacteria may be important determinants of cell surface hydrophobicity.
Johansson, A; Hänström, L; Kalfas, S
2000-08-01
Actinobacillus actinomycetemcomitans produces a pore-forming leukotoxin that lyses human polymorphonuclear leukocytes and monocytes. Certain proteolytic bacteria may coexist with A. actinomycetemcomitans in periodontal pockets. We aimed therefore to examine whether oral bacteria can modify the leukotoxicity of A. actinomycetemcomitans. A total of 55 strains representing 45 bacterial species of the subgingival flora were tested. Each strain was incubated with the highly toxic strain of A. actinomycetemcomitans HK 1519 and the leukotoxic activity of the suspension against human polymorphonuclear leukocytes was determined from the activity of the lactate dehydrogenase released upon lysis of the leukocytes. Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens, Prevotella melaninogenica and Prevotella loeschii inhibited the leukotoxicity of A. actinomycetemcomitans cells as well as the activity of leukotoxin purified from the same strain. The bacterial strains without the ability to block leukotoxic activity also failed to destroy pure leukotoxin even after 5 h of incubation. The proteolytic degradation of leukotoxin by P. gingivalis was mainly dependent on the activity of the enzymes R- and K-gingipains. P. intermedia and P. nigrescens also degraded the leukotoxin by enzymes. The results imply a role of the periodontal microflora in modifying the virulence of A. actinomycetemcomitans by destroying its leukotoxin.
[Presence of lactoferrin (LF) in lymphocutaneous sporotrichosis. Yeast-bound antimicrobial peptide].
Palma-Ramos, Alejandro; Castrillón-Rivera, Laura E; Vega-Mémije, María Elisa; Arenas-Guzmán, Roberto; Rangel-Gamboa, Lucía
Sporotrichosis is a common subcutaneous mycosis in Latin America, produced by dimorphic fungi belong to Sporothrix schenckii complex of cryptic species. Infection is acquired by traumatic inoculation with contaminated organic material. Host immune response includes polymorphonuclear neutrophils chemotaxis and release of granular components. Lactoferrin is a protein member of the transferrin family of iron-binding proteins, present inside polymorphonuclear granular structure, and has been reported to affect growth and development of infectious agents, including fungal organisms. Nevertheless, lactoferrin expression in sporotrichosis infections has not been reported yet. To determine the expression of lactoferrin using immunohistochemical staining in sporotrichosis human infection. The dermatology department's files during a period of five years were reviewed; cases with a diagnosis of sporotrichosis were selected and lactoferrin immunostaining was performed when enough biological material was available. Three cases with a diagnosis of sporotrichosis and adequate biological material on paraffin block were identified. In all cases, lactoferrin immunostaining was positive around yeast cell.
Palma, C; Cassone, A; Serbousek, D; Pearson, C A; Djeu, J Y
1992-11-01
Lipopolysaccharides (LPSs) from Escherichia coli, Serratia marcescens, and Salmonella typhimurium, at doses from 1 to 100 ng/ml, strongly enhanced growth inhibition of Candida albicans by human polymorphonuclear leukocytes (PMN) in vitro. Flow cytometry analysis demonstrated that LPS markedly augmented phagocytosis of Candida cells by increasing the number of yeasts ingested per neutrophil as well as the number of neutrophils capable of ingesting fungal cells. LPS activation caused augmented release of lactoferrin, an iron-binding protein which itself could inhibit the growth of C. albicans in vitro. Antibodies against lactoferrin effectively and specifically reduced the anti-C. albicans activity of both LPS-stimulated and unstimulated PMN. Northern (RNA blot) analysis showed enhanced production of mRNAs for interleukin-1 beta, tumor necrosis factor alpha, and interleukin-6 and in neutrophils within 1 h of stimulation with LPS. The cytokines were also detected in the supernatant of the activated PMN, and their synthesis was prevented by pretreatment of LPS-stimulated PMN with protein synthesis inhibitors, such as emetine and cycloheximide. These inhibitors, however, did not block either lactoferrin release or the anti-Candida activity of LPS-stimulated PMN. These results demonstrate the ability of various bacterial LPSs to augment neutrophil function against C. albicans and suggest that the release of a candidastatic, iron-binding protein, lactoferrin, may contribute to the antifungal effect of PMN. Moreover, the ability to produce cytokines upon stimulation by ubiquitous microbial products such as the endotoxins points to an extraphagocytic, immunomodulatory role of PMN during infection.
van Grevenstein, Wilhelmina M U; Aalbers, Arend G J; Ten Raa, Sander; Sluiter, Wim; Hofland, Leo J; Jeekel, Hans; van Eijck, Casper H J
2007-06-01
Tissue injury induces the acute phase response, aimed at minimizing damage and starting the healing process. Polymorphonuclear leukocytes (PMNs) respond to the presence of specific chemoattractants and begin to appear in large numbers. The aim of this study was to investigate the influence of reactive oxygen species (ROS) produced by PMNs on the interaction between colon carcinoma cells and mesothelial cells. An experimental human in vitro model was designed using Caco-2 colon carcinoma cells and primary cultures of mesothelial cells. Tumor cell adhesion to a mesothelial monolayer was assessed after preincubation of the mesothelium with stimulated PMNs and unstimulated PMNs. Mesothelial cells were also incubated with xanthine/xanthine oxidase (X/XO) complex producing ROS after which adhesion of Caco-2 cells was investigated and the expression of adhesion molecules (ICAM-1, VCAM-1, and CD44) by means of enzyme immunoassay. In the control situation the average adhesion of Caco-2 cells to the mesothelial monolayers was 23%. Mesothelial monolayers incubated with unstimulated PMNs showed a 25% increase of tumor cell adhesion (P < 0.05). The adhesion of tumor to the monolayers incubated with the N-formyl-methionyl-leucyl-phenylalanine-stimulated PMNs increased with 40% (P < 0.01). Incubation of the mesothelium with X/XO resulted in an enhancement of adhesion of Caco-2 cells of 70% and an up-regulation of expression of ICAM-1, VCAM-1, and CD44. This study reveals an increase of tumor cell adhesion to the mesothelium induced by incubating the mesothelial monolayers with PMNs. PMNs are producing a number of products, like proteolytic enzymes, cytokines, and ROS. These factors up-regulate the expression of adhesion molecules and in that way stimulate the adhesion of tumor to the mesothelium.
Blom, Chris; Deller, Brittany L; Fraser, Douglas D; Patterson, Eric K; Martin, Claudio M; Young, Bryan; Liaw, Patricia C; Yazdan-Ashoori, Payam; Ortiz, Angelica; Webb, Brian; Kilmer, Greg; Carter, David E; Cepinskas, Gediminas
2015-04-07
Sepsis-associated encephalopathy (SAE) is a state of acute brain dysfunction in response to a systemic infection. We propose that systemic inflammation during sepsis causes increased adhesion of leukocytes to the brain microvasculature, resulting in blood-brain barrier dysfunction. Thus, our objectives were to measure inflammatory analytes in plasma of severe sepsis patients to create an experimental cytokine mixture (CM), and to use this CM to investigate the activation and interactions of polymorphonuclear leukocytes (PMN) and human cerebrovascular endothelial cells (hCMEC/D3) in vitro. The concentrations of 41 inflammatory analytes were quantified in plasma obtained from 20 severe sepsis patients and 20 age- and sex-matched healthy controls employing an antibody microarray. Two CMs were prepared to mimic severe sepsis (SSCM) and control (CCM), and these CMs were then used for PMN and hCMEC/D3 stimulation in vitro. PMN adhesion to hCMEC/D3 was assessed under conditions of flow (shear stress 0.7 dyn/cm(2)). Eight inflammatory analytes elevated in plasma obtained from severe sepsis patients were used to prepare SSCM and CCM. Stimulation of PMN with SSCM led to a marked increase in PMN adhesion to hCMEC/D3, as compared to CCM. PMN adhesion was abolished with neutralizing antibodies to either β2 (CD18), αL/β2 (CD11α/CD18; LFA-1) or αM/β2 (CD11β/CD18; Mac-1) integrins. In addition, immune-neutralization of the endothelial (hCMEC/D3) cell adhesion molecule, ICAM-1 (CD54) also suppressed PMN adhesion. Human SSCM up-regulates PMN pro-adhesive phenotype and promotes PMN adhesion to cerebrovascular endothelial cells through a β2-integrin-ICAM-1-dependent mechanism. PMN adhesion to the brain microvasculature may contribute to SAE.
Ashkenazi, M; Kohl, S
1990-06-15
Blood polymorphonuclear leukocytes (BPMN) have been shown to mediate antibody-dependent cellular cytotoxicity (ADCC) against HSV-infected cells. Although HSV infections are frequently found in the oral cavity, the ADCC capacity of salivary PMN (SPMN) has not been studied, mainly because methods to isolate SPMN were not available. We have recently developed a method to isolate SPMN, and in this study have evaluated their ADCC activity against HSV-infected cells. SPMN were obtained by repeated washings of the oral cavity, and separated from epithelial cells by nylon mesh filtration. ADCC was quantitatively determined by 51Cr release from HSV-infected Chang liver cells. SPMN in the presence of antibody were able to destroy HSV-infected cells, but SPMN were much less effective in mediating ADCC than BPMN (3.4% vs 40.7%, p less than 0.0001). In the presence of antiviral antibody, SPMN were able to adhere to HSV-infected cells, but less so than BPMN (34% vs 67%), and specific antibody-induced adherence was significantly lower in SPMN (p less than 0.04). The spontaneous adherence to HSV-infected cells was higher for SPMN than BPMN. SPMN demonstrated up-regulation of the adhesion glycoprotein CD18, but down-regulation of the FcRIII receptor. Incubation with saliva decreased ADCC capacity of BPMN, up-regulated CD18 expression, and down-regulated FcRIII expression.
agr-Dependent Interactions of Staphylococcus aureus USA300 with Human Polymorphonuclear Neutrophils
Pang, Yun Yun; Schwartz, Jamie; Thoendel, Matthew; Ackermann, Laynez W.; Horswill, Alexander R.; Nauseef, William M.
2010-01-01
The emergence of serious infections due to community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has fueled interest in the contributions of specific staphylococcal virulence factors to clinical disease. To assess the contributions of agr-dependent factors to the fate of organisms in polymorphonuclear neutrophils (PMN), we examined the consequences for organism and host cells of feeding PMN with wild-type CA-MRSA (LAC) or CA-MRSA (LAC agr KO) at different multiplicities of infection (MOIs). Phagocytosed organisms rapidly increased the transcription of RNAIII in a time- and MOI-dependent fashion; extracellular USA300 (LAC) did not increase RNAIII expression despite having the capacity to respond to autoinducing peptide-enriched culture medium. HOCl-mediated damage and intracellular survival were the same in the wild-type and USA300 (LAC agr KO). PMN lysis by ingested USA300 (LAC) was time- and MOI-dependent and, at MOIs >1, required α-hemolysin (hla) as USA300 (LAC agr KO) and USA300 (LAC hla KO) promoted PMN lysis only at high MOIs. Taken together, these data demonstrate activation of the agr operon in human PMN with the subsequent production of α-hemolysin and PMN lysis. The extent to which these events in the phagosomes of human PMN contribute to the increased morbidity and mortality of infections with USA300 (LAC) merits further study. PMID:20829608
Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors
1977-01-01
Polymorphonuclear leukocyte (PMN) chemotaxis has been examined under conditions which allow phase microscope observations of cells responding to controlled gradients of chemotactic factors. With this visual assay, PMNs can be seen to orient rapidly and reversibly to gradients of N-formylmethionyl peptides. The level of orientation depends upon the mean concentration of peptide present as well as the concentration gradient. The response allows an estimation of the binding constant of the peptide to the cell. In optimal gradients, PMNs can detect a 1% difference in the concentration of peptide. At high cell densities, PMNs incubated with active peptides orient their locomotion away from the center of the cell population. This orientation appears to be due to inactivation of the peptides by the cells. Such inactivation in vivo could help to limit an inflammatory response. PMID:264125
Gorbunov, Nikolai V; McFaul, Steve J; Van Albert, Stephen; Morrissette, Craig; Zaucha, Gary M; Nath, Jayasree
2004-04-01
Impact of air blast overpressure waves (OPW), or shock wave, with the body wall or body armor produces two types of energy waves: high-frequency low-amplitude stress waves and long-duration low-frequency share waves. These types of energy waves are characterized by different mechanisms of primary tissue injury that mostly affect lung. Systemic inflammation and resultant acute respiratory distress syndrome are known major secondary causative agents of delayed multiple organ failure and subsequent death after OPW exposure. However, association of each pattern of the blast OPW-produced energy waves with postexposure inflammatory events has not yet been delineated. The objectives of the present research were a) establishment of a rat model for assessment of the inflammatory response following lung injury produced by exposure to medium-amplitude (approximately 120 kPa) low-frequency (260+/-5 Hz) OPWs; and b) assessment of the dynamics of alteration in polymorphonuclear leukocyte counts and expression of CD11b adhesion molecules on the surface of polymorphonuclear leukocytes and status of iron-transferrin complexes in peripheral blood after OPW exposure. This study focused on the OPW effects at different time periods, using a sequential approach to postexposure events. Lung injury in rat was induced by OPW generated in a laboratory shock tube. Animals were exposed to OPW (at peak overpressure of 118+/-7 kPa) that produced "moderate" lung injury. Military research institute. Twenty-seven CVF Sprague-Dawley rats were subjected to OPW exposures, and 17 sham-treated animals were used as control. Lung tissue and blood samples were collected at 1, 3, 6, 12, and 24 hrs following OPW exposures and compared with samples collected from nonexposed animals. OPW-induced lung injury caused a 2.7-fold increase in the number of circulatory polymorphonuclear leukocytes as early as 1 hr postexposure, which is indicative of mobilization of the pool of marginated polymorphonuclear leukocytes into the free circulation. Polymorphonuclear leukocyte counts increased through the following 3- and 6-hr periods, when they were, respectively, 5-fold and 3.5-fold higher than in controls. These effects were accompanied by a pronounced expression of CD11b in polymorphonuclear leukocytes and tissue sequestration of blood iron-transferrin complexes during the entire 24-hr period of observations. The increase in circulatory polymorphonuclear leukocytes was accompanied by a decrease in iron-transferrin complex concentrations that apparently reflected implication of blood plasma iron in the inflammatory cell response to OPW-induced injury. The observed dynamics in polymorphonuclear leukocyte alterations in peripheral blood after OPW exposure were similar to those found recently in clinical observations of nonpenetrating injury and in animal models of infectious insults. Therefore, our data suggest that the main pattern of proinflammatory alterations in the rat model of lung injury induced by exposure to long-duration shock wave is similar to patterns that are characteristic of major trauma. The data further suggest that the expression of polymorphonuclear leukocyte CD11b and the response of iron-transferrin complex can be considered as potential surrogate markers in blood for systemic alterations following OPW-induced injury and, therefore, warrant further investigation in a human pilot study.
NASA Astrophysics Data System (ADS)
Brill, Gregory E.; Dobrovolsky, Gennady A.; Romanova, Tatyana P.; Porozova, Svetlana G.; Brill, Alexander G.
1997-06-01
In experiments on white male rats short-term immobilization- sound stress was modelled. Decrease of glycogen content and myeloperoxidase activity, increase of lysosomal cationic proteins level and NBT-test parameters as well as fall of adrenaline, dopamine and 5-hydroxytryptamine amount in polymorphonuclear leukocytes were observed. Preliminary transcutaneous He-Ne laser irradiation modified metabolic reaction of leukocytes to stress and prevented stress- induced decrease of biogenic amines content in cells.
Homologous species restriction of the complement-mediated killing of nucleated cells.
Yamamoto, H; Blaas, P; Nicholson-Weller, A; Hänsch, G M
1990-01-01
The homologous restriction of complement (C) lysis is attributed to membrane proteins: decay-accelerating factor (DAF), C8 binding protein (C8bp) and P18/CD59. Since these proteins are also expressed on peripheral blood cells, species restriction was tested for in the complement-mediated killing of antibody-coated human leucocytes by human or rabbit complement. Killing was more efficient when rabbit complement was used. Preincubation of cells with an antibody to DAF abolished the difference. When C1-7 sites were first attached to the cells and either rabbit or human C8, C9 were added, the killing of monocytes and lymphocytes was equally efficient; only in polymorphonuclear neutrophils was a higher efficiency of rabbit C8, C9 seen. Thus, in contrast to haemolysis, restriction occurred predominantly at the C3 level and the action of the terminal complement components was not inhibited. Since C8bp isolated from peripheral blood cells showed essentially similar characteristics as the erythrocyte-derived C8bp, the failure of C8bp to inhibit the action of the terminal components on nucleated cells might reflect differences of the complement membrane interactions between erythrocytes or nucleated cells, respectively. Images Figure 5 PMID:1697561
Maximova, Natalia; Pizzol, Antonio; Giurici, Nagua; Granzotto, Marilena
2015-04-01
In recent years, defibrotide (DFT) has emerged as a promising therapy for veno-occlusive disease (VOD). The aim of this study was to investigate whether DFT prophylaxis affects neutrophil engraftment in patients undergoing hematopoietic stem cell transplantation (HSCT). A cohort of 44 consecutive pediatric patients who underwent HSCT was retrospectively analyzed to see the role of DFT on engraftment. Patients were assigned into two groups based on the use or non-use of prophylaxis with DFT. The mean time to engraftment was statistically different between the two groups for both polymorphonuclear neutrophils (PMN) and white blood cells. Our study supports the hypothesis that prophylaxis with DFT for VOD leads to a delay to the engraftment of PMN in pediatric patients that underwent HSCT.
Polymorphonuclear cell motility, ankylosing spondylitis, and HLA B27.
Pease, C T; Fordham, J N; Currey, H L
1984-01-01
Polymorphonuclear leucocyte (PMN) function was studied in 29 subjects with ankylosing spondylitis (AS). Of these, 20 were HLA B27+ve and 9 B27-ve. There were 30 controls and, of these, 15 were B27+ve. Random and directed cell migration was measured by 2 techniques: migration through a micropore filter and migration under an agar film. The chemo-attractant was either case in-activated serum or zymosan-activated serum. By both techniques directed motility was increased in subjects with B27 or with AS when compared to the B27-ve controls. This suggests that the disease AS and the possession of B27 are both associated with increased PMN motility. PMID:6608924
Probing Tumor Microenvironment with In Vivo Phage Display
2013-07-01
include immune cells (macrophages polymorphonuclear neutrophils, lymphocytes, dendritic cells ), mesenchymal cells (fibroblasts, mesenchymal stem ... cells , immune cells , mesenchymal cells , and extracellular matrix, which are critical to tumor development and progression. Although various probes...example is the production of various growth factors and cytokines by tumor macrophages, which can promote tumor cell growth and angiogenesis
žilinskas, Juozas; žekonis, Jonas; žekonis, Gediminas; Šadzevičienė, Renata; Sapragonienė, Marija; Navickaitė, Justina; Barzdžiukaitė, Ingrida
2011-01-01
Summary Background The anti-inflammatory effects of a homeopathic remedy, Traumeel S, have been observed in experimental and clinical studies; however, its antioxidant properties have not been elucidated. The aim of the present study was to evaluate the antioxidant effects of Traumeel S on peripheral blood neutrophils in patients with periodontitis. Material/Methods The study was performed using venous blood of 22 individuals with chronic periodontitis and 21 healthy subjects. The antioxidant effects of Traumeel S on the production of reactive oxygen species by unstimulated and stimulated with unopsonized E. coli neutrophils were investigated using luminol- and lucigenin-dependent chemiluminescence (CL). Results Polymorphonuclear leukocytes of periodontitis patients produced higher levels (p<0.01) of light output of lucigenin-dependent chemiluminescence and significantly reduced (p<0.01) light output of luminol-dependent chemiluminescence than analogous cells of healthy subjects. Highly diluted (10−4 of the stem solution) Traumeel S significantly (by approximately 50%) reduced superoxide-induced oxidation of lucigenin by unstimulated and stimulated with unopsonized E. coli polymorphonuclear leukocytes of periodontitis patients and had a tendency to intensify luminol-dependent chemiluminescence. Preincubation of the unstimulated and stimulated with unopsonized E. coli polymorphonuclear leukocytes of healthy subjects with Traumeel S exerts no inhibitory action on the luminol- and lucigenin-dependent chemiluminescence of the above-mentioned cells. Conclusions This study indicates that Traumeel S may significantly reduce production of superoxide anion by unstimulated and stimulated peripheral blood polymorphonuclear neutrophils of periodontitis patients. PMID:21525811
Shak, S; Goldstein, I M
1984-08-25
Leukotriene B4 (LTB4), formed by the 5-lipoxygenase pathway in human polymorphonuclear leukocytes (PMN), may be an important mediator of inflammation. Recent studies suggest that human leukocytes can convert LTB4 to products that are less biologically active. To examine the catabolism of LTB4, we developed (using high performance liquid chromatography) a sensitive, reproducible assay for this mediator and its omega-oxidation products (20-OH- and 20-COOH-LTB4). With this assay, we have found that human PMN (but not human monocytes, lymphocytes, or platelets) convert exogenous LTB4 almost exclusively to 20-OH- and 20-COOH-LTB4 (identified by gas chromatography-mass spectrometry). Catabolism of exogenous LTB4 by omega-oxidation is rapid (t1/2 approximately 4 min at 37 degrees C in reaction mixtures containing 1.0 microM LTB4 and 20 X 10(6) PMN/ml), temperature-dependent (negligible at 0 degrees C), and varies with cell number as well as with initial substrate concentration. The pathway for omega-oxidation in PMN is specific for LTB4 and 5(S),12(S)-dihydroxy-6,8,10,14-eicosatetraenoic acid (only small amounts of other dihydroxylated-derivatives of arachidonic acid are converted to omega-oxidation products). Even PMN that are stimulated by phorbol myristate acetate to produce large amounts of superoxide anion radicals catabolize exogenous leukotriene B4 primarily by omega-oxidation. Finally, LTB4 that is generated when PMN are stimulated with the calcium ionophore, A23187, is rapidly catabolized by omega-oxidation. Thus, human PMN not only generate and respond to LTB4, but also rapidly and specifically catabolize this mediator by omega-oxidation.
Human monoclonal antibodies reactive with human myelomonocytic leukemia cells.
Posner, M R; Santos, D J; Elboim, H S; Tumber, M B; Frackelton, A R
1989-04-01
Peripheral blood mononuclear cells from a patient with chronic myelogenous leukemia (CML), in remission, were depleted of CD8-positive T-cells and cultured with Epstein-Barr virus. Four of 20 cultures (20%) secreted human IgG antibodies selectively reactive with the cell surfaces of certain human leukemia cell lines. Three polyclonal, Epstein-Barr virus-transformed, B-cell lines were expanded and fused with the human-mouse myeloma analogue HMMA2.11TG/O. Antibody from secreting clones HL 1.2 (IgG1), HL 2.1 (IgG3), and HL 3.1 (IgG1) have been characterized. All three react with HL-60 (promyelocytic), RWLeu4 (CML promyelocytic), and U937 (monocytic), but not with KG-1 (myeloblastic) or K562 (CML erythroid). There is no reactivity with T-cell lines, Burkitt's cell lines, pre-B-leukemia cell lines, or an undifferentiated CML cell line, BV173. Leukemic cells from two of seven patients with acute myelogenous leukemia and one of five with acute lymphocytic leukemia react with all three antibodies. Normal lymphocytes, monocytes, polymorphonuclear cells, red blood cells, bone marrow cells, and platelets do not react. Samples from patients with other diverse hematopoietic malignancies showed no reactivity. Immunoprecipitations suggest that the reactive antigen(s) is a lactoperoxidase iodinatable series of cell surface proteins with molecular weights of 42,000-54,000 and a noniodinatable protein with a molecular weight of 82,000. Based on these data these human monoclonal antibodies appear to react with myelomonocytic leukemic cells and may detect a leukemia-specific antigen or a highly restricted differentiation antigen.
Nucleosomes and neutrophil activation in sickle cell disease painful crisis
Schimmel, Marein; Nur, Erfan; Biemond, Bart J.; van Mierlo, Gerard J.; Solati, Shabnam; Brandjes, Dees P.; Otten, Hans-Martin; Schnog, John-John; Zeerleder, Sacha
2013-01-01
Activated polymorphonuclear neutrophils play an important role in the pathogenesis of vaso-occlusive painful sickle cell crisis. Upon activation, polymorphonuclear neutrophils can form neutrophil extracellular traps. Neutrophil extracellular traps consist of a meshwork of extracellular DNA, nucleosomes, histones and neutrophil proteases. Neutrophil extracellular traps have been demonstrated to be toxic to endothelial and parenchymal cells. This prospective cohort study was conducted to determine neutrophil extracellular trap formation in sickle cell patients during steady state and painful crisis. As a measure of neutrophil extracellular traps, plasma nucleosomes levels were determined and polymorphonuclear neutrophil activation was assessed measuring plasma levels of elastase-α1-antitrypsin complexes in 74 patients in steady state, 70 patients during painful crisis, and 24 race-matched controls using Enzyme Linked Immunosorbent Assay. Nucleosome levels in steady state sickle cell patients were significantly higher than levels in controls. During painful crisis levels of both nucleosomes and elastase-α1-antitrypsin complexes increased significantly. Levels of nucleosomes correlated significantly to elastase-α1-antitrypsin complex levels during painful crisis, (Sr = 0.654, P<0.001). This was seen in both HbSS/HbSβ0-thalassemia (Sr=0.55, P<0.001) and HbSC/HbSβ+-thalassemia patients (Sr=0.90, P<0.001) during painful crisis. Levels of nucleosomes showed a correlation with length of hospital stay and were highest in patients with acute chest syndrome. These data support the concept that neutrophil extracellular trap formation and neutrophil activation may play a role in the pathogenesis of painful sickle cell crisis and acute chest syndrome. PMID:23911704
Mechanisms of lectin and antibody-dependent polymorphonuclear leukocyte-mediated cytolysis.
Tsunawaki, S; Ikenami, M; Mizuno, D; Yamazaki, M
1983-04-01
The mechanisms of tumor lysis by polymorphonuclear leukocytes (PMNs) were investigated. In antibody-dependent PMN-mediated cytolysis (ADPC), sensitized tumor cells were specifically lysed via Fc receptors on PMNs. On the other hand, lectin-dependent PMN-mediated cytolysis (LDPC) caused nonspecific lysis of several murine tumors after recognition of carbohydrate moieties on the cell membrane of both PMNs and tumor cells. Both ADPC and LDPC depended on glycolysis, and cytotoxicity was mediated by reactive oxygen species; LDPC was dependent on superoxide and ADPC on the myeloperoxidase system. The participation of reactive oxygen species in PMN cytotoxicity was also demonstrated by pharmacological triggering with phorbol myristate acetate. These results indicate that reactive oxygen species have an important role In tumor killing by PMNs and that ADPC and LDPC have partly different cytolytic processes as well as different recognition steps.
Babych, H; Antonyak, H; Sklyarov, A Y
2000-06-01
To investigate the participation of thyroxine in the regulation of energy metabolism in neutrophilic polymorphonuclear leukocytes and their bone marrow precursors. The influence of L-thyroxine (T4; 4 mg/kg every 12 hr from day 2 to 10 of age) was estimated on the activity of hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydrogenase (LDH), glucose-6-phosphate dehydrogenase (G-6-PDH), NADP-dependent isocitrate dehydrogenase (ICDH) and cytochrome C-oxidase in bone marrow myeloid cells and circulating neutrophils of 3, 5 and 10 day (d) old piglets. Serum T4 and 3,5, 3'-triiodothyronine (T3) concentrations were estimated at every stage of experiment by radioimmunoassay. Bone marrow cells of myeloid lineage and blood neutrophilic polymorphonuclear leukocytes were separated by differential centrifugation of haematopoietic cell suspension using Ficoll-Hypaque gradients. The hyperthyroid status resulted in significant increase in PFK and LDH activity in myelokaryocytes of 3 and 3-5 d piglets, while the activity of HK and PK in the cells of 3-10 d animals remained unchanged. Moreover, ICDH activity in myelokaryocytes increased on day 10 and that of cytochrome C oxidase in bone marrow cells at all intervals. Marked increase in HK and LDH activity on day 3-5 was found also in blood polymorphonuclear granulocytes, while PFK and PK activity was increased during the whole period. At the same time even the increase in ICDH and cytochrome C-oxidase activity was observed, respectively, in 3 and 5-10 d old piglet neutrophils. Besides that, T4 inhibited G-6-PDH activity in myeloid cells on day 3 to 10 and did not influence the enzyme activity in circulating leukocytes. The administration of T4 resulted in preferential stimulation of oxidative stages of carbohydrate catabolism in myelocaryocytes, while the activity of glycolytic enzymes in these cells was less affected. On the contrary, the enzymes of glycolysis in blood neutrophils showed higher sensitivity to T4 action as compared to catalysts of oxidative reactions. The intensity of pentose phosphate pathway seems to be inhibited in bone marrow myelocaryocytes of T4 treated animals, while that in blood leukocytes remained unaffected.
Humoral and Innate Antiviral Immunity as Tools to Clear Persistent HIV Infection.
Ferrari, Guido; Pollara, Justin; Tomaras, Georgia D; Haynes, Barton F
2017-03-15
Human immunodeficiency virus (HIV) type 1 uses the CD4 molecule as its principal receptor to infect T cells. HIV-1 integrates its viral genome into the host cell, leading to persistent infection wherein HIV-1 can remain transcriptionally silent in latently infected CD4+ T cells. On reactivation of replication-competent provirus, HIV-1 envelope glycoproteins (Env) are expressed and accumulate on the cell surface, allowing infected cells to be detected and targeted by endogenous immune responses or immune interventions. HIV-1 Env-specific antibodies have the potential to bind HIV-1 cell surface Env and promote elimination of infected CD4+ T cells by recruiting cytotoxic effector cells, such as natural killer cells, monocytes, and polymorphonuclear cells. Harnessing humoral and innate cellular responses has become one focus of research to develop innovative strategies to recruit and redirect cytotoxic effector cells to eliminate the HIV-1 latently infected CD4+ T-cell reservoir. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
An, Jang-Hyun; Kurokawa, Kenji; Jung, Dong-Jun; Kim, Min-Jung; Kim, Chan-Hee; Fujimoto, Yukari; Fukase, Koichi; Coggeshall, K. Mark; Lee, Bok Luel
2014-01-01
The human pathogen Staphylococcus aureus is responsible for many community-acquired and hospital-associated infections and is associated with high mortality. Concern over the emergence of multidrug-resistant strains has renewed interest in the elucidation of host mechanisms that defend against S. aureus infection. We recently demonstrated that human serum mannose-binding lectin (MBL) binds to S. aureus wall teichoic acid (WTA), a cell wall glycopolymer, a discovery that prompted further screening to identify additional serum proteins that recognize S. aureus cell wall components. In this report, we incubated human serum with 10 different S. aureus mutants and determined that serum amyloid P component (SAP) bound specifically to a WTA-deficient S. aureus ΔtagO mutant, but not to tagO-complemented, WTA-expressing cells. Biochemical characterization revealed that SAP recognizes bacterial peptidoglycan as a ligand and that WTA inhibits this interaction. Although SAP binding to peptidoglycan was not observed to induce complement activation, SAP-bound ΔtagO cells were phagocytosed by human polymorphonuclear leukocytes in an Fcγ receptor-dependent manner. These results indicate that SAP functions as a host defense factor, similar to other peptidoglycan recognition proteins and nucleotide-binding oligomerization domain (NOD)-like receptors. PMID:23966633
Marzulli, Giuseppe; Magrone, Thea; Vonghia, Luisa; Kaneko, Masahiro; Takimoto, Hiroaki; Kumazawa, Yoshio; Jirillo, Emilio
2014-01-01
Polyphenols contained in FGM from Negroamaro (N) and Koshu (K) Vitis vinifera have been shown to exhibit several immunomodulating activities. For instance, mice affected by experimental colitis when administered with K-FGM showed an attenuation of the inflammatory process. In murine asthma, K-FGM reduced IgE production and eosinophil number in bronchial alveolar lavage fluid. In vitro, both N- and K-FGM were able to induce T regulatory cells in terms of Foxp-3 molecule expression and release of interleukin-10. In another set of experiments both N- and K-FGM were able to balance rate of proliferation/apoptosis/necrosis of normal human peripheral lymphocytes, thus indicating the property of these compounds to maintain immune homeostatic mechanisms in the host. On the other hand, N- and K-FGM inhibited human basophil degranulation, thus, confirming our previous results obtained with rat basophilic leukemia cells. Finally, N- and K-FGM also decreased oxidative burst of human polymorphonuclear cells and monocytes.Taken together, these findings imply the potential clinical usefulness of FGM administration in inflammatory/allergic conditions, such as chronic asthma.
Neutrophils kill the parasite Trichomonas vaginalis using trogocytosis
Mercer, Frances; Ng, Shek Hang; Brown, Taylor M.; Boatman, Grace; Johnson, Patricia J.
2018-01-01
T. vaginalis, a human-infective parasite, causes the most common nonviral sexually transmitted infection (STI) worldwide and contributes to adverse inflammatory disorders. The immune response to T. vaginalis is poorly understood. Neutrophils (polymorphonuclear cells [PMNs]) are the major immune cell present at the T. vaginalis–host interface and are thought to clear T. vaginalis. However, the mechanism of PMN clearance of T. vaginalis has not been characterized. We demonstrate that human PMNs rapidly kill T. vaginalis in a dose-dependent, contact-dependent, and neutrophil extracellular trap (NET)-independent manner. In contrast to phagocytosis, we observed that PMN killing of T. vaginalis involves taking “bites” of T. vaginalis prior to parasite death, using trogocytosis to achieve pathogen killing. Both trogocytosis and parasite killing are dependent on the presence of PMN serine proteases and human serum factors. Our analyses provide the first demonstration, to our knowledge, of a mammalian phagocyte using trogocytosis for pathogen clearance and reveal a novel mechanism used by PMNs to kill a large, highly motile target. PMID:29408891
Early detection of disease program: Evaluation of the cellular immune response
NASA Technical Reports Server (NTRS)
Criswell, B. S.; Knight, V.; Martin, R. R.; Kasel, J. A.
1974-01-01
The early cellular responses of specific components of the leukocyte and epithelial cell populations to foreign challenges of both an infectious and noninfectious character were evaluated. Procedures for screening potential flight crews were developed, documented, and tested on a control population. Methods for preparing suitable populations of lymphocytes, polymorphonuclear leukocytes, macrophages, and epithelial cells were first established and evaluated. Epithelial cells from viral infected individuals were screened with a number of anti-viral antisera. This procedure showed the earliest indication of disease as well as providing a specific diagnosis to the physicians. Both macrophages and polymorphonuclear leukocytes were studied from normal individuals, smokers, and patients with viral infections. Newer techniques enabling better definition of lymphocyte subpopulations were then developed, namely the E and EAC rosette procedures for recognition of T (thymus-derived) and B (bone-marrow-derived) lymphocyte subpopulations. Lymphocyte and lymphocyte subpopulation response to multiple mitogens have been evaluated.
Burlingham, W J; Jankowska-Gan, E
2007-02-01
Chemokine-driven accumulation of lymphocytes, mononuclear and polymorphonuclear proinflammatory cells in antigenic tissue sites is a key feature of several types of T-cell-dependent autoimmunity and transplant rejection pathology. It is now clear that the immune system expends considerable energy to control this process, exemplified by the sequential layers of regulatory cell input, both innate and adaptive, designed to prevent a classical Type IV or 'delayed-type' hypersensitivity (DTH) reaction from occurring in the visual field of the eye. Yet, despite an abundance of in vitro assays currently available to the human T-cell immunologist, none of them adequately models the human DTH response and its various control features. The theme of this article is that it is relatively easy to model the effector side of the human DTH response with xenogeneic adoptive transfer models. However, we show that in order to detect inhibition of a recall DTH in response to colocalized donor antigen (linked suppression)--a characteristic feature of peripheral tolerance to an organ transplant--both the challenge site and the immunocompetence of the mouse adoptive host are critical factors limiting the sensitivity of the trans-vivo DTH test.
Hermann, Dirk M; Kleinschnitz, Christoph; Gunzer, Matthias
2018-04-24
Polymorphonuclear neutrophil granulocytes (PMN) orchestrate the removal of cell debris in ischemic stroke and intracerebral hemorrhage. In both pathologies, high neutrophil to lymphocyte ratios in peripheral blood are predictive of poor outcome in human stroke patients. Following earlier studies indicating that the cerebral microvasculature forms an efficient barrier that impedes neutrophil brain entry, intravital microscopy and immunohistochemistry in the meantime unequivocally revealed the accumulation of PMN in the ischemic and hemorrhagic brain parenchyma. These studies provide definite evidence that PMN contribute to the degradation of the blood-brain barrier, predisposing the brain to secondary injury, edema, hemorrhage formation, hemorrhage growth and poor neurological recovery. Recent studies demonstrated the role of pro-inflammatory N1 neutrophils in brain edema and neurotoxicity, whereas anti-inflammatory N2 neutrophils were found to limit this excessive immune response, promoting neuronal survival and successful brain remodeling. In view of the recent failure of anti-inflammatory immunotherapies in clinical trials, strategies specifically modulating the brain accumulation, differentiation and action of PMN may open promising perspectives for stroke treatment. Copyright © 2018 Elsevier B.V. All rights reserved.
Dose-dependent protective effect of BPC 157 on capsaicin-induced rhinitis in rats.
Kalogjera, L; Ries, M; Baudoin, T; Ferencic, Z; Trotic, R; Pegan, B
1997-01-01
Protection of BPC 157 on capsaicin-induced rhinitis was studied in Wistar rats for its effect on mastocyte infiltration, degranulation and inflammatory cell infiltration. Animals were pretreated with 10 microg/kg, 10 ng/kg or 2 ml saline i.p. and capsaicin (0.05 ml/nostril of 1750 nmol/l sol.) was applied intranasally. They were then euthanized at 1, 3 and 12 h after capsaicin provocation. Nasal mucosa was analyzed and scored for mastocyte infiltration, degranulation and inflammatory cell infiltration. BPC 157 pretreatment significantly prevented mastocyte infiltration at 1 h. Polymorphonuclear leukocyte infiltration was significantly reduced in rats pretreated with 10 microg/kg BPC 157. A dose-dependent effect of BPC 157 pretreatment was demonstrated only for polymorphonuclear leukocyte infiltration at 12 h.
Windle, B E; Murphy, P A; Cooperman, S
1983-03-01
Rabbit polymorphonuclear leukocytes were purified from rabbit blood by centrifugation on colloidal silica gradients followed by sedimentation in 4% Ficoll. The purified neutrophils had normal random motility, responded to chemotactic stimuli, phagocytosed zymosan particles, made superoxide, and phagocytosed and killed bacteria. However, they did not secret endogenous pyrogens either spontaneously or in response to stimulation with endotoxin, polyinosine:polycytosine, or muramyl dipeptide. Macrophages isolated on the same gradients secreted some pyrogen spontaneously and secreted considerably more in response to the same three stimuli. This evidence reinforces the idea that macrophages are the only source of endogenous pyrogens, and that pyrogens secreted by cell populations that are rich in neutrophils are to be attributed to the monocytes or macrophages that the cell populations contain.
Hellmann, Anna-Maria; Lother, Jasmin; Wurster, Sebastian; Lutz, Manfred B; Schmitt, Anna Lena; Morton, Charles Oliver; Eyrich, Matthias; Czakai, Kristin; Einsele, Hermann; Loeffler, Juergen
2017-01-01
Aspergillus fumigatus is the main cause of invasive fungal infections occurring almost exclusively in immunocompromised patients. An improved understanding of the initial innate immune response is key to the development of better diagnostic tools and new treatment options. Mice are commonly used to study immune defense mechanisms during the infection of the mammalian host with A. fumigatus . However, little is known about functional differences between the human and murine immune response against this fungal pathogen. Thus, we performed a comparative functional analysis of human and murine dendritic cells (DCs), macrophages, and polymorphonuclear cells (PMNs) using standardized and reproducible working conditions, laboratory protocols, and readout assays. A. fumigatus did not provoke identical responses in murine and human immune cells but rather initiated relatively specific responses. While human DCs showed a significantly stronger upregulation of their maturation markers and major histocompatibility complex molecules and phagocytosed A. fumigatus more efficiently compared to their murine counterparts, murine PMNs and macrophages exhibited a significantly stronger release of reactive oxygen species after exposure to A. fumigatus . For all studied cell types, human and murine samples differed in their cytokine response to conidia or germ tubes of A. fumigatus . Furthermore, Dectin-1 showed inverse expression patterns on human and murine DCs after fungal stimulation. These specific differences should be carefully considered and highlight potential limitations in the transferability of murine host-pathogen interaction studies.
Hellmann, Anna-Maria; Lother, Jasmin; Wurster, Sebastian; Lutz, Manfred B.; Schmitt, Anna Lena; Morton, Charles Oliver; Eyrich, Matthias; Czakai, Kristin; Einsele, Hermann; Loeffler, Juergen
2017-01-01
Aspergillus fumigatus is the main cause of invasive fungal infections occurring almost exclusively in immunocompromised patients. An improved understanding of the initial innate immune response is key to the development of better diagnostic tools and new treatment options. Mice are commonly used to study immune defense mechanisms during the infection of the mammalian host with A. fumigatus. However, little is known about functional differences between the human and murine immune response against this fungal pathogen. Thus, we performed a comparative functional analysis of human and murine dendritic cells (DCs), macrophages, and polymorphonuclear cells (PMNs) using standardized and reproducible working conditions, laboratory protocols, and readout assays. A. fumigatus did not provoke identical responses in murine and human immune cells but rather initiated relatively specific responses. While human DCs showed a significantly stronger upregulation of their maturation markers and major histocompatibility complex molecules and phagocytosed A. fumigatus more efficiently compared to their murine counterparts, murine PMNs and macrophages exhibited a significantly stronger release of reactive oxygen species after exposure to A. fumigatus. For all studied cell types, human and murine samples differed in their cytokine response to conidia or germ tubes of A. fumigatus. Furthermore, Dectin-1 showed inverse expression patterns on human and murine DCs after fungal stimulation. These specific differences should be carefully considered and highlight potential limitations in the transferability of murine host–pathogen interaction studies. PMID:29270175
Comparison of colony stimulation factors on in vitro rat and human neutrophil function.
Wheeler, J G; Huffine, M E; Childress, S; Sikes, J
1994-01-01
The effects of rhCSFs on in vitro polymorphonuclear leukocyte (PMN) function were studied in Sprague-Dawley neonatal and adult rats and adult and umbilical cord derived human PMN to compare species response. Following in vitro exposure to buffer or rhCSFs (50-100 micrograms/ml), PMN oxidative burst, chemotactic activity and adherence protein expression were measured. RhG-CSF increased the oxidative burst of adult rat PMN as measured by chemiluminescence and altered CD11b/CD18 in resting neonatal rat but not adult rat cells. RhGM-CSF had no effect on adult rat PMN function in vitro, but led to modest changes in adult rat PMN diapedesis across rat peritoneum. No responses were noted to rhM-CSF. Human PMN responded best to GM-CSF (particularly in the neonate), intermediately to G-CSF and none to M-CSF. These experiments show that the profile of cytokine effects is not similar in adult and neonatal rat PMN when compared to human cells. The diversity of actions in other species must be considered when using rhCSFs in animal models.
Neutrophils extracellular traps damage Naegleria fowleri trophozoites opsonized with human IgG.
Contis-Montes de Oca, A; Carrasco-Yépez, M; Campos-Rodríguez, R; Pacheco-Yépez, J; Bonilla-Lemus, P; Pérez-López, J; Rojas-Hernández, S
2016-08-01
Naegleria fowleri infects humans through the nasal mucosa causing a disease in the central nervous system known as primary amoebic meningoencephalitis (PAM). Polymorphonuclear cells (PMNs) play a critical role in the early phase of N. fowleri infection. Recently, a new biological defence mechanism called neutrophil extracellular traps (NETs) has been attracting attention. NETs are composed of nuclear DNA combined with histones and antibacterial proteins, and these structures are released from the cell to direct its antimicrobial attack. In this work, we evaluate the capacity of N. fowleri to induce the liberation of NETs by human PMN cells. Neutrophils were cocultured with unopsonized or IgG-opsonized N. fowleri trophozoites. DNA, histone, myeloperoxidase (MPO) and neutrophil elastase (NE) were stained, and the formation of NETs was evaluated by confocal microscopy and by quantifying the levels of extracellular DNA. Our results showed N. fowleri induce the liberation of NETs including release of MPO and NE by human PMN cells as exposure interaction time is increased, but N. fowleri trophozoites evaded killing. However, when trophozoites were opsonized, they were susceptible to the neutrophils activity. Therefore, our study suggests that antibody-mediated PMNs activation through NET formation may be crucial for antimicrobial responses against N. fowleri. © 2016 John Wiley & Sons Ltd.
Complement Regulator Factor H Mediates a Two-step Uptake of Streptococcus pneumoniae by Human Cells*
Agarwal, Vaibhav; Asmat, Tauseef M.; Luo, Shanshan; Jensch, Inga; Zipfel, Peter F.; Hammerschmidt, Sven
2010-01-01
Streptococcus pneumoniae, a human pathogen, recruits complement regulator factor H to its bacterial cell surface. The bacterial PspC protein binds Factor H via short consensus repeats (SCR) 8–11 and SCR19–20. In this study, we define how bacterially bound Factor H promotes pneumococcal adherence to and uptake by epithelial cells or human polymorphonuclear leukocytes (PMNs) via a two-step process. First, pneumococcal adherence to epithelial cells was significantly reduced by heparin and dermatan sulfate. However, none of the glycosaminoglycans affected binding of Factor H to pneumococci. Adherence of pneumococci to human epithelial cells was inhibited by monoclonal antibodies recognizing SCR19–20 of Factor H suggesting that the C-terminal glycosaminoglycan-binding region of Factor H mediates the contact between pneumococci and human cells. Blocking of the integrin CR3 receptor, i.e. CD11b and CD18, of PMNs or CR3-expressing epithelial cells reduced significantly the interaction of pneumococci with both cell types. Similarly, an additional CR3 ligand, Pra1, derived from Candida albicans, blocked the interaction of pneumococci with PMNs. Strikingly, Pra1 inhibited also pneumococcal uptake by lung epithelial cells but not adherence. In addition, invasion of Factor H-coated pneumococci required the dynamics of host-cell actin microfilaments and was affected by inhibitors of protein-tyrosine kinases and phosphatidylinositol 3-kinase. In conclusion, pneumococcal entry into host cells via Factor H is based on a two-step mechanism. The first and initial contact of Factor H-coated pneumococci is mediated by glycosaminoglycans expressed on the surface of human cells, and the second step, pneumococcal uptake, is integrin-mediated and depends on host signaling molecules such as phosphatidylinositol 3-kinase. PMID:20504767
Singh, Anju; Periasamy, Sivakumar; Malik, Meenakshi; Bakshi, Chandra Shekhar; Stephen, Laurie; Ault, Jeffrey G; Mannella, Carmen A; Sellati, Timothy J
2017-01-01
Infection with Francisella tularensis ssp. tularensis ( Ft ) strain SchuS4 causes an often lethal disease known as tularemia in rodents, non-human primates, and humans. Ft subverts host cell death programs to facilitate their exponential replication within macrophages and other cell types during early respiratory infection (⩽72 h). The mechanism(s) by which cell death is triggered remains incompletely defined, as does the impact of Ft on mitochondria, the host cell's organellar 'canary in a coal mine'. Herein, we reveal that Ft infection of host cells, particularly macrophages and polymorphonuclear leukocytes, drives necroptosis via a receptor-interacting protein kinase 1/3-mediated mechanism. During necroptosis mitochondria and other organelles become damaged. Ft -induced mitochondrial damage is characterized by: (i) a decrease in membrane potential and consequent mitochondrial oncosis or swelling, (ii) increased generation of superoxide radicals, and (iii) release of intact or damaged mitochondria into the lung parenchyma. Host cell recognition of and response to released mitochondria and other damage-associated molecular patterns engenders a sepsis-like syndrome typified by production of TNF, IL-1 β , IL-6, IL-12p70, and IFN- γ during late-phase tularemia (⩾72 h), but are absent early during infection.
Li, Yong; Xia, Wei; Liu, Ying; Remmer, Henriette A; Voorhees, John; Fisher, Gary J
2013-01-01
Exposure of human skin to solar ultraviolet (UV) irradiation induces matrix metalloproteinase-1 (MMP-1) activity, which degrades type I collagen fibrils. Type I collagen is the most abundant protein in skin and constitutes the majority of skin connective tissue (dermis). Degradation of collagen fibrils impairs the structure and function of skin that characterize skin aging. Decorin is the predominant proteoglycan in human dermis. In model systems, decorin binds to and protects type I collagen fibrils from proteolytic degradation by enzymes such as MMP-1. Little is known regarding alterations of decorin in response to UV irradiation. We found that solar-simulated UV irradiation of human skin in vivo stimulated substantial decorin degradation, with kinetics similar to infiltration of polymorphonuclear (PMN) cells. Proteases that were released from isolated PMN cells degraded decorin in vitro. A highly selective inhibitor of neutrophil elastase blocked decorin breakdown by proteases released from PMN cells. Furthermore, purified neutrophil elastase cleaved decorin in vitro and generated fragments with similar molecular weights as those resulting from protease activity released from PMN cells, and as observed in UV-irradiated human skin. Cleavage of decorin by neutrophil elastase significantly augmented fragmentation of type I collagen fibrils by MMP-1. Taken together, these data indicate that PMN cell proteases, especially neutrophil elastase, degrade decorin, and this degradation renders collagen fibrils more susceptible to MMP-1 cleavage. These data identify decorin degradation and neutrophil elastase as potential therapeutic targets for mitigating sun exposure-induced collagen fibril degradation in human skin.
Windle, B E; Murphy, P A; Cooperman, S
1983-01-01
Rabbit polymorphonuclear leukocytes were purified from rabbit blood by centrifugation on colloidal silica gradients followed by sedimentation in 4% Ficoll. The purified neutrophils had normal random motility, responded to chemotactic stimuli, phagocytosed zymosan particles, made superoxide, and phagocytosed and killed bacteria. However, they did not secret endogenous pyrogens either spontaneously or in response to stimulation with endotoxin, polyinosine:polycytosine, or muramyl dipeptide. Macrophages isolated on the same gradients secreted some pyrogen spontaneously and secreted considerably more in response to the same three stimuli. This evidence reinforces the idea that macrophages are the only source of endogenous pyrogens, and that pyrogens secreted by cell populations that are rich in neutrophils are to be attributed to the monocytes or macrophages that the cell populations contain. PMID:6601619
KING, M K; WOOD, W B
1958-02-01
The evolution of an acute inflammatory exudate produced in rabbits by the intraperitoneal injection of saline has been described. Evidence has been presented that polymorphonuclear leucocytes release endogenous pyrogen into the cell-free fluid of the exudate. Leucocytes from such exudates have also been shown to release pyrogen into the surrounding medium during incubation in vitro at 37 degrees C. The results of parallel cytological studies have provided evidence which suggests that the leucocytes give up their pyrogen while functionally intact. These observations add further support to the hypothesis that polymorphonuclear leucocytes play a significant role in the pathogenesis of fever.
Lee, Jue-Yeon; Seo, Yoo-Na; Park, Hyun-Jung; Park, Yoon-Jeong; Chung, Chong-Pyoung
2012-03-23
A heparin-binding peptide (HBP) sequence from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified and was shown to exhibit cell penetration activity. This cell penetration induced an anti-inflammatory reaction in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. HBP penetrated the cell membrane during the 10 min treatment and reduced the LPS-induced production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cytokines (TNF-α and IL-6) in a concentration-dependent manner. Additionally, HBP inhibited the LPS-induced upregulation of cytokines, including TNF-α and IL-6, and decreased the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. HBP inhibited NF-κB-dependent inflammatory responses by directly blocking the phosphorylation and degradation of IκBα and by subsequently inhibiting the nuclear translocation of the p65 subunit of NF-κB. Taken together, this novel HBP may be potentially useful candidate for anti-inflammatory treatments and can be combined with other drugs of interest to transport attached molecules into cells. Copyright © 2012 Elsevier Inc. All rights reserved.
Li, Ko-Jen; Wu, Cheng-Han; Shen, Chieh-Yu; Kuo, Yu-Min; Yu, Chia-Li; Hsieh, Song-Chou
2016-01-01
The biological significance of membrane transfer (trogocytosis) between polymorphonuclear neutrophils (PMNs) and mononuclear cells (MNCs) remains unclear. We investigated the biological/immunological effects and molecular basis of trogocytosis among various immune cells in healthy individuals and patients with active systemic lupus erythematosus (SLE). By flow cytometry, we determined that molecules in the immunological synapse, including HLA class-I and-II, CD11b and LFA-1, along with CXCR1, are exchanged among autologous PMNs, CD4+ T cells, and U937 cells (monocytes) after cell-cell contact. Small interfering RNA knockdown of the integrin adhesion molecule CD11a in U937 unexpectedly enhanced the level of total membrane transfer from U937 to PMN cells. Functionally, phagocytosis and IL-8 production by PMNs were enhanced after co-culture with T cells. Total membrane transfer from CD4+ T to PMNs delayed PMN apoptosis by suppressing the extrinsic apoptotic molecules, BAX, MYC and caspase 8. This enhancement of activities of PMNs by T cells was found to be mediated via p38- and P44/42-Akt-MAP kinase pathways and inhibited by the actin-polymerization inhibitor, latrunculin B, the clathrin inhibitor, Pitstop-2, and human immunoglobulin G, but not by the caveolin inhibitor, methyl-β-cyclodextrin. In addition, membrane transfer from PMNs enhanced IL-2 production by recipient anti-CD3/anti-CD28 activated MNCs, and this was suppressed by inhibitors of mitogen-activated protein kinase (PD98059) and protein kinase C (Rottlerin). Of clinical significance, decreased total membrane transfer from PMNs to MNCs in patients with active SLE suppressed mononuclear IL-2 production. In conclusion, membrane transfer from MNCs to PMNs, mainly at the immunological synapse, transduces survival and activation signals to enhance PMN functions and is dependent on actin polymerization, clathrin activation, and Fcγ receptors, while membrane transfer from PMNs to MNCs depends on MAP kinase and PKC signaling. Defective membrane transfer from PMNs to MNCs in patients with active systemic lupus erythematous suppressed activated mononuclear IL-2 production.
Li, Peng; Fu, Jian-hua; Li, Xin-zhi
2008-08-01
To study the effect and molecular mechanism of two haw leaf extracts, Vitexin-rhamnoside (VR) and Vitexin-glucoside (VG), and their preparation, Aoshaen injection (AI), on the polymorphonuclear leucocyte (PMN) adhesion during human umbilical vein endothelial cell (HUVEC) anoxia/reoxygenation (A/R) injury. The cell model of A/R injury duplicated by breaking off the oxygen supplying of HUVEC for 60 min followed with reoxygenating for 30 min (phase 1) or 240 min (phase 2) was taken as the experimental objective. The effects of testing drugs (VR, VG and AI) on PMN adhesion in the model cells were measured by enzyme immunoassay, and their effects on PMN superficial adhesion molecule CD11/CD18 expression were measured by flow cytometer respectively. After 60 min of anoxia, HUVEC was shrunk and deformed. The adhesion between PMN and HUVEC significantly revealed at phase 1 in the model group, but it was fewer in the normal cell group, and also lesser in the groups treated with various drugs. The condition of cell adhesion revealed at phase 2 was the similar to that at phase 1. All testing drugs, VR, VG and AI, showed inhibitory effect on the cell adhesion at either phase 1 or phase 2, showing a certain dose-effect relationship. The expression of CD11/ CD18 was also inhibited by the testing drugs, and a good dose-effect relation was shown by VG and AI. At the resting condition, there are almost no expression of CD11/CD18 molecule, but it could be enhanced by incubating PMN with supernate of A/R injured HUVEC culture, and more marked at phase 1. Adding the test drugs into the supernate could inhibit the enhancing of CD11/CD18 molecule expression and reduce the PMN-HUVEC adhesion, which may be one of the molecular mechanisms of haw leaf extracts and their preparation in protecting heart against A/R injury.
Santos, Bruna Parapinski; Souza, Fernando Nogueira; Blagitz, Maiara Garcia; Batista, Camila Freitas; Bertagnon, Heloísa Godoi; Diniz, Soraia Araújo; Silva, Marcos Xavier; Haddad, João Paulo Amaral; Della Libera, Alice Maria Melville Paiva
2017-06-01
The exact influence of caprine arthritis encephalitis virus (CAEV) infection on blood and milk polymorphonuclear leukocytes (PMNLs) and monocyte/macrophages of goats remains unclear. Thus, the present study sought to explore the blood and milk PMNL and monocyte/macrophage functions in naturally CAEV-infected goats. The present study used 18 healthy Saanen goats that were segregated according to sera test outcomes into serologically CAEV negative (n=8; 14 halves) and positive (n=10; 14 halves) groups. All milk samples from mammary halves with milk bacteriologically positive outcomes, somatic cell count ≥2×10 6 cellsmL -1 , and abnormal secretions in the strip cup test were excluded. We evaluated the percentage of blood and milk PMNLs and monocyte/macrophages, the viability of PMNLs and monocyte/macrophages, the levels of intracellular reactive oxygen species (ROS) and the nonopsonized phagocytosis of Staphylococcus aureus and Escherichia coli by flow cytometry. In the present study, a higher percentage of milk macrophages (CD14 + ) and milk polymorphonuclear leukocytes undergoing late apoptosis or necrosis (Annexin-V + /Propidium iodide + ) was observed in CAEV-infected goats; we did not find any further alterations in blood and milk PMNL and monocyte/macrophage functions. Thus, regarding our results, the goats naturally infected with CAEV did not reveal pronounced dysfunctions in blood and milk polymorphonuclear leukocytes and monocytes/macrophages. Copyright © 2017 Elsevier B.V. All rights reserved.
Naarala, J; Kasanen, J-P; Pasanen, P; Pasanen, A-L; Liimatainen, A; Pennanen, S; Liesivuori, J
2003-07-11
Wood dusts are classified as carcinogenic to humans and also produce other toxic, allergic, and acute effects in woodworkers. However, little is known about causative agents in wood dusts and their mechanisms of action. The effects of different tree species and particle size for biological activity were studied. The differences in the production of reactive oxygen species (ROS) and cell death (necrotic and apoptotic) between mouse macrophage (RAW 264.7) cells and human polymorphonuclear leukocytes (PMNL) for pine, birch, and beech dust exposures were investigated in vitro. The pine and birch dust exposure (1-100 microg/ml) produced concentration-dependent ROS production in both the cells, which was one order of magnitude higher with pine dust. The ROS production was faster in human PNML than murine RAW cells. The higher concentrations (500 and/or 1000 microg/ml) decreased ROS formation. With pine and birch dust exposure, this was probably due to the necrotic cell death. The pine dust concentrations of 500 and 1000 microg/ml were cytotoxic to human PMNL. The beech dust exposure activated the ROS production and decreased the cell viability only at the highest concentrations, being least potent of the three dusts. A sign of the apoptotic cell death in the murine RAW cells was observed at the pine dust concentration of 100 microg/ml. The exposure to the birch and beech dusts with a smaller particle size (<5 microm) produced greater ROS production than exposure to the corresponding dust with a wide range of particle sizes. However, changing the particle size did not affect the cell viability. The results indicate that the type of wood dust (tree species and possibly particle size) has a significant impact on the function and viability of phagocytic cells.
de Oca, Roberto Montes; Buendía, Antonio J.; Del Río, Laura; Sánchez, Joaquín; Salinas, Jesús; Navarro, Jose A.
2000-01-01
The role of polymorphonuclear neutrophils (PMNs) in the development of the specific immune response against Chlamydophila abortus (Chlamydia psittaci serotype 1) infection was studied in a pregnant mouse model involving treatment with RB6-8C5 monoclonal antibody. PMN depletion significantly affected the immune response in the liver, in which the T-lymphocyte and F4/80+ cell populations decreased, particularly the CD8+ T-cell population. A Th1-like response, characterized by high levels of gamma interferon without detectable levels of interleukin 4 (IL-4) in serum, was observed in both depleted and nondepleted mice, although an increased production of IL-10 was detected in the depleted group. Our results suggest that PMNs play a very important role in the recruitment of other leukocyte populations to the inflammatory foci but have little influence in the polarization of the immune specific response toward a Th1-like response. PMID:10679002
Springer, Deborah J.; Ren, Ping; Raina, Ramesh; Dong, Yimin; Behr, Melissa J.; McEwen, Bruce F.; Bowser, Samuel S.; Samsonoff, William A.; Chaturvedi, Sudha; Chaturvedi, Vishnu
2010-01-01
Cryptococcus gattii, an emerging fungal pathogen of humans and animals, is found on a variety of trees in tropical and temperate regions. The ecological niche and virulence of this yeast remain poorly defined. We used Arabidopsis thaliana plants and plant-derived substrates to model C. gattii in its natural habitat. Yeast cells readily colonized scratch-wounded plant leaves and formed distinctive extracellular fibrils (40–100 nm diameter ×500–3000 nm length). Extracellular fibrils were observed on live plants and plant-derived substrates by scanning electron microscopy (SEM) and by high voltage- EM (HVEM). Only encapsulated yeast cells formed extracellular fibrils as a capsule-deficient C. gattii mutant completely lacked fibrils. Cells deficient in environmental sensing only formed disorganized extracellular fibrils as apparent from experiments with a C. gattii STE12α mutant. C. gattii cells with extracellular fibrils were more virulent in murine model of pulmonary and systemic cryptococcosis than cells lacking fibrils. C. gattii cells with extracellular fibrils were also significantly more resistant to killing by human polymorphonuclear neutrophils (PMN) in vitro even though these PMN produced elaborate neutrophil extracellular traps (NETs). These observations suggest that extracellular fibril formation could be a structural adaptation of C. gattii for cell-to-cell, cell-to-substrate and/or cell-to- phagocyte communications. Such ecological adaptation of C. gattii could play roles in enhanced virulence in mammalian hosts at least initially via inhibition of host PMN– mediated killing. PMID:20539754
KAISER, H K; WOOD, W B
1962-01-01
Determination of the dose-response curve for rabbit leucocytic pyrogen reveals a hyperthermic "ceiling" at which there is a marked insensitivity to dosage. This finding has important implications in relation to the quantitative assay of leucocytic pyrogen. Polymorphonuclear leucocytes separated from normal rabbit blood possess the capacity to produce less than 5 per cent of the pyrogen generated by the same number of rabbit granulocytes collected from acute peritoneal exudates. Blood granulocytes, separated in the cold from the buffy coat, contain no detectable preformed pyrogen. The amount of preformed pyrogen within exudate granulocytes represents but a small fraction of the pyrogen which the cells are capable of generating when incubated in normal saline at 37 degrees C. It is suggested that the active pyrogen is formed from an inactive precursor within the cells. Under the conditions tested, cell fragments of rabbit granulocytes fail to produce endogenous pyrogen. The fact that the production of pyrogen is blocked at 4 degrees C is in keeping with the hypothesis that it involves metabolic reactions within the cell.
Pawar, R; Gopalakrishnan, C; Bhutani, K K
2001-11-01
The hydroalcoholic extract of the whole plant of Bacopa monniera Wettst. (Scrophulariaceae), exhibited an inhibitory effect on superoxide released from polymorphonuclear (PMN) cells in the nitroblue tetrazolium (NBT) assay. The major saponin bacoside A(3) was found to be responsible for this effect in the herb. This compound showed 85, 91.66, 91.66, and 83 % inhibitions of NBT reduction at the concentrations of 200, 100, 50, and 25 microg/ml, respectively, with an IC(50) value of 10.22 microg/ml. These inhibitory effects were compared with those of the standard positive controls, quercetin and ascorbic acid with IC(50) of 111 and 14.16 microg/ml, respectively. Another major saponin bacopasaponin C was found to be much less potent as compared to bacoside A(3) whereas the remaining two mixtures of saponins were found to be inactive.
Langner, Marini; Machado, Rodrigo Strehl; Patrício, Francy R S; Kawakami, Elisabete
2009-01-01
Although Helicobacter pylori infection is prevalent in our country, there are few studies evaluating the associated histological abnormalities in children. To evaluate the histological features of the gastric mucosa in children and adolescents with Helicobacter pylori gastritis. One hundred and thirty two gastric biopsies from 22 symptomatic patients infected with H. pylori (14F/8M, median age 10 y 5 mo, age range 2 y 11 mo to 16 y 9 mo) were evaluated. Evaluated gastric regions included: antrum (lesser and greater curvature), corpus (lesser and greater curvature), incisura angularis and fundus. Histological examination was performed according to the Updated Sydney System, and regional scores for polymorphonuclear and mononuclear cell infiltrate as well as bacterial density were generated. Fifteen (68.2%) patients presented H. pylori-chronic active gastritis, six (27.3%) presented antrum-predominant H. pylori-chronic active gastritis, and one (4.5%) presented corpus-predominant H. pylori-chronic active gastritis. Polymorphonuclear cell infiltrate and mononuclear cell infiltrate were observed in 93.9% and 98.5% of the biopsy specimens, respectively. Higher histological scores for polymorphonuclear infiltrate, mononuclear infiltrate, and bacterial density were observed in the gastric antrum. Intestinal metaplasia and gastric atrophy were not identified in any patient. Lymphoid aggregates and lymphoid follicles were observed in the gastric antrum of three (13.6%) and seven (31.8%) patients, respectively, but they were not related to antral nodularity. Chronic active gastritis was observed in all patients with H. pylori infection. However, antral or corporeal predominance was not observed in most patients.
Pycnogenol reduces talc-induced neoplastic transformation in human ovarian cell cultures.
Buz'Zard, Amber R; Lau, Benjamin H S
2007-06-01
Talc and poor diet have been suggested to increase the risk of developing ovarian cancer; which can be reduced by a diet rich in fruit and vegetables. Talc is ubiquitous despite concern about its safety, role as a possible carcinogen and known ability to cause irritation and inflammation. It was recently shown that Pycnogenol (Pyc; a proprietary mixture of water-soluble bioflavonoids extracted from French maritime pine bark) was selectively toxic to established malignant ovarian germ cells. This study investigated talc-induced carcinogenesis and Pyc-induced chemoprevention. Normal human epithelial and granulosa ovarian cell lines and polymorphonuclear neutrophils (PMN) were treated with talc, or pretreated with Pyc then talc. Cell viability, reactive oxygen species (ROS) generation and neoplastic transformation by soft agar assay were measured. Talc increased proliferation, induced neoplastic transformation and increased ROS generation time-dependently in the ovarian cells and dose-dependently in the PMN. Pretreatment with Pyc inhibited the talc-induced increase in proliferation, decreased the number of transformed colonies and decreased the ROS generation in the ovarian cells. The data suggest that talc may contribute to ovarian neoplastic transformation and Pyc reduced the talc-induced transformation. Taken together, Pyc may prove to be a potent chemopreventative agent against ovarian carcinogenesis. (c) 2007 John Wiley & Sons, Ltd.
2013-01-01
Chemokine (C-C motif) ligand 3 (CCL3), also known as macrophage inflammatory protein-1α, is a cytokine involved in inflammation and activation of polymorphonuclear leukocytes. CCL3 has been detected in infiltrating cells and tumor cells. Chondrosarcoma is a highly malignant tumor that causes distant metastasis. However, the effect of CCL3 on human chondrosarcoma metastasis is still unknown. Here, we found that CCL3 increased cellular migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells. Pre-treatment of cells with the MMP-2 inhibitor or transfection with MMP-2 specific siRNA abolished CCL3-induced cell migration. CCL3 has been reported to exert its effects through activation of its specific receptor, CC chemokine receptor 5 (CCR5). The CCR5 and AMP-activated protein kinase (AMPK) inhibitor or siRNA also attenuated CCL3-upregulated cell motility and MMP-2 expression. CCL3-induced expression of MMP-2 and migration were also inhibited by specific inhibitors, and inactive mutants of AMPK, p38 mitogen activated protein kinase (p38 or p38-MAPK), and nuclear factor κB (NF-κB) cascades. On the other hand, CCL3 treatment demonstrably activated AMPK, p38, and NF-κB signaling pathways. Furthermore, the expression levels of CCL3, CCR5, and MMP-2 were correlated in human chondrosarcoma specimens. Taken together, our results indicate that CCL3 enhances the migratory ability of human chondrosarcoma cells by increasing MMP-2 expression via the CCR5, AMPK, p38, and NF-κB pathways. PMID:24047437
Dos Anjos, Lúcia Mara Januário; da Fonseca, Adenilson de Souza; Gameiro, Jacy; de Paoli, Flávia
2017-07-01
Anti-inflammatory property of low-level laser therapy (LLLT) has been widely described in literature, although action mechanisms are not always clarified. Thus, this study aimed to evaluate apoptosis mechanisms in the LLLT anti-inflammatory effects on the arthritis experimental model in vivo at two different energy densities (3 and 30 Jcm -2 ). Arthritis was induced in mice by zymosan solution, animals were distributed into five groups, and morphological analysis, immunocytochemistry and gene expressions for apoptotic proteins were performed. Data showed an anti-inflammatory effect, DNA fragmentation in polymorphonuclear (PMN) cells and alteration in gene expression of proteins related to apoptosis pathways after LLLT. p53 gene expression increased at both energy densities, Bcl2 gene expression increased at 3 Jcm -2 , and Bcl2 tissue expression decreased at 30 Jcm -2 . In addition, apoptosis was restricted to PMN cells. Results suggest that apoptosis in PMN cells comprise part of LLLT anti-inflammatory mechanisms by disbalance promotion between expression of pro-apoptotic (Bax and p53) and anti-apoptotic (Bcl-2) proteins, with pro-apoptotic gene expression selectively in PMN cells.
Jagels, M A; Daffern, P J; Zuraw, B L; Hugli, T E
1999-09-01
Polymorphonuclear leukocytes (PMN) and eosinophils (Eos) are important cellular participants in a variety of acute and chronic inflammatory reactions in the airway. Histologic evidence has implicated direct interactions between these two subsets of leukocytes and airway epithelial cells during inflammation. A comprehensive characterization and comparison of physiologic stimuli and adhesion molecule involvement in granulocyte-epithelial-cell interactions done with nontransformed human airway epithelial cells has not been reported. We therefore examined the regulation and biochemical mechanisms governing granulocyte-epithelial-cell adhesion, using either purified PMN or Eos and primary cultures of human bronchial epithelial cells (HBECs). We investigated the involvement of a number of proinflammatory signals associated with allergic and nonallergic airway inflammation, as well as the contribution of several epithelial and leukocyte adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and members of the beta(1), beta(2), and beta(7) integrin families. ICAM-1 was expressed at low levels on cultured HBECs and was markedly upregulated after stimulation with interferon (IFN)-gamma or, to a lesser extent, with tumor necrosis factor (TNF)-alpha or interleukin (IL)-1. VCAM-1 was not present on resting HBECs, and was not upregulated after stimulation with IFN-gamma, IL-1, IL-4, or TNF-alpha. PMN adhesion to HBECs could be induced either through activation of PMN with IL-8, granulocyte-macrophage colony-stimulating factor (GM-CSF), or C5a, but not with IL-5 or by preactivation of HBECs with TNF-alpha or IFN-gamma. Blocking antibody studies indicated that PMN-HBEC adherence depended on beta(2) integrins, primarily alpha(M)beta(2) (Mac-1). Adherence of Eos to HBECs could be induced through activation of Eos with IL-5, GM-CSF, or C5a, but not with IL-8 or by prior activation of HBECs with TNF-alpha of IFN-gamma. Maximal adhesion of Eos and PMN required pretreatment of HBECs with either TNF-alpha or IFN-gamma in addition to leukocyte activation. Adherence of Eos to unstimulated HBECs was mediated through both beta(1) and beta(2) integrins, whereas adhesion of Eos to activated HBECs was dominated by beta(2) integrins. Adhesion of both Eos and PMN was inhibited by treatment of HBECs with blocking antibodies to ICAM-1. Differential utilization of beta(1) and beta(2) integrins by Eos, depending on the activation state of the epithelium, is a novel finding and may affect activation and/or recruitment of Eos in airway tissue. Mechanisms of adhesion of HBECs to Eos and PMN, as evidenced by the different responsiveness of the two latter types of cells to IL-8 and IL-5, may account for a prevalence of Eos over PMN in certain airway diseases.
Xie, Keliang; Wang, Weina; Chen, Hongguang; Han, Huanzhi; Liu, Daquan; Wang, Guolin; Yu, Yonghao
2015-07-01
Sepsis is the leading cause of death in critically ill patients. In recent years, molecular hydrogen, as an effective free radical scavenger, has been shown a selective antioxidant and anti-inflammatory effect, and it is beneficial in the treatment of sepsis. Rho-associated coiled-coil protein kinase (ROCK) participates in junction between normal cells, and regulates vascular endothelial permeability. In this study, we used lipopolysaccharide to stimulate vascular endothelial cells and explored the effects of hydrogen-rich medium on the regulation of adhesion of monocytes to endothelial cells and vascular endothelial permeability. We found that hydrogen-rich medium could inhibit adhesion of monocytes to endothelial cells and decrease levels of adhesion molecules, whereas the levels of transepithelial/endothelial electrical resistance values and the expression of vascular endothelial cadherin were increased after hydrogen-rich medium treatment. Moreover, hydrogen-rich medium could lessen the expression of ROCK, as a similar effect of its inhibitor Y-27632. In addition, hydrogen-rich medium could also inhibit adhesion of polymorphonuclear neutrophils to endothelial cells. In conclusion, hydrogen-rich medium could regulate adhesion of monocytes/polymorphonuclear neutrophils to endothelial cells and vascular endothelial permeability, and this effect might be related to the decreased expression of ROCK protein.
Venketaraman, Vishwanath; Lin, Albert K.; Le, Amy; Kachlany, Scott C.; Connell, Nancy D.; Kaplan, Jeffrey B.
2008-01-01
Two virulence factors produced by the periodontopathogen Aggregatibacter actinomycetemcomitans are leukotoxin, a secreted lipoprotein that kills human polymorphonuclear leukocytes and macrophages, and poly-N-acetylglucosamine (PGA), a surface polysaccharide that mediates intercellular adhesion, biofilm formation and detergent resistance. In this study we examined the roles of leukotoxin and PGA in protecting A. actinomycetemcomitans cells from killing by the human macrophage cell line THP-1. Monolayers of THP-1 cells were infected with single-cell suspensions of a wild-type A. actinomycetemcomitans strain, or of isogenic leukotoxin or PGA mutant strains. After 48 h, viable bacteria were enumerated by dilution plating, macrophage morphology was evaluated microscopically, and macrophage viability was measured by a Trypan blue dye exclusion assay. The number of A. actinomycetemcomitans CFUs increased approximately 2-fold in wells infected with the wild-type strain, but decreased by approximately 70–90% in wells infected with the leukotoxin and PGA mutant strains. Infection with the wild-type or leukotoxin mutant strain caused a significant decrease in THP-1 cell viability, whereas infection with the PGA mutant strain did not result in any detectable changes in THP-1 viability. Pre-treatment of wild-type A. actinomycetemcomitans cells with the PGA-hydrolyzing enzyme dispersin B rendered them sensitive to killing by THP-1 cells. We concluded that both leukotoxin and PGA are necessary for evasion of macrophage killing by A. actinomycetemcomitans. PMID:18573331
Minocycline affects human neutrophil respiratory burst and transendothelial migration.
Parenti, Astrid; Indorato, Boris; Paccosi, Sara
2017-02-01
This study aimed at investigating the in vitro activity of minocycline and doxycycline on human polymorphonuclear (h-PMN) cell function. h-PMNs were isolated from whole venous blood of healthy subjects; PMN oxidative burst was measured by monitoring ROS-induced oxidation of luminol and transendothelial migration was studied by measuring PMN migration through a monolayer of human umbilical vein endothelial cells. Differences between multiple groups were determined by ANOVA followed by Tukey's multiple comparison test; Student's t test for unpaired data for two groups. Minocycline (1-300 µM) concentration dependently and significantly inhibited oxidative burst of h-PMNs stimulated with 100 nM fMLP. Ten micromolar concentrations, which are superimposable to C max following a standard oral dose of minocycline, promoted a 29.8 ± 4 % inhibition of respiratory burst (P < 0.001; n = 6). Doxycycline inhibited ROS production with a lesser extent and at higher concentrations. 10-100 µM minocycline impaired PMN transendothelial migration, with maximal effect at 100 µM (42.5 ± 7 %, inhibition, n = 5, P < 0.001). These results added new insight into anti-inflammatory effects of minocycline exerted on innate immune h-PMN cell function.
Thiruselvi, T; Thirupathi Kumara Raja, S; Shanuja, S K; Iswarya, S; Gnanamani, A
2017-03-01
The present study explores the preparation, characterization and the role of phenolic acid tethered fibrous protein in the management of induced oxidative stress studied under in vitro conditions. In brief, the biomaterial is prepared by engineering the fibrous protein with dihydroxy and trihydroxy phenolic acid moieties and subjected to characterization to ensure the tethering. The resultant biomaterial studied for its efficacy as a free radical scavenger using polymorphonuclear (PMN) cells with induced oxidative stress and also as an agent for cell migration using fibroblasts cells. Results revealed that induced oxidative stress in PMN cells after exposure to UVB radiation managed well with the prepared biomaterial by reducing the levels of superoxide anion, oxygen and hydroxyl radicals. Further, the protein and the phenolic acid interaction supports the cell migration as evidenced from the scratch assay. In conclusion, though phenolic acids are well known for their antimicrobial and antioxidant potential, indenting these acids directly to the wounds is not sensible, but tethering to protein explored the scavenging activity as expected. The present study infers that phenolic acid engineered protein has a significant role in managing the imbalance in the redox state prevailing in wounds and supports the healing at appreciable level. Copyright © 2016 Elsevier B.V. All rights reserved.
Ohlsson, A; Vearncombe, M
1987-02-01
The incidence, cause, and outcome of sepsis and the white blood cell response were studied in 6315 infants born in a regional perinatal unit. The incidence of neonatal sepsis was 6.5 per 1000 live births. Congenital sepsis (12 cases) was overwhelming, with associated maternal infection (92%), neutropenia (75%), and high rate of mortality (50%). The most common organism was Escherichia coli (58%). Gestational age and birth weight were similar in survivors and nonsurvivors. There was a strong correlation between total white blood cell count and both mature and immature neutrophil counts in survivors but this correlation decreased substantially in neonates that died. Analysis of variance indicated that the means for polymorphonuclear leukocyte and immature neutrophil counts were significantly higher in survivors. Nosocomial sepsis (38 cases) occurred in premature low birth weight infants receiving invasive, intensive care. The most common organism was Staphylococcus epidermidis (76%). Total white blood cell, polymorphonuclear leukocyte, and immature neutrophil counts rose significantly in response to sepsis. None died. Prevention of congenital sepsis requires methods to detect early maternal-fetal infection. Providing granulocytes to neutropenic neonates with congenital sepsis might improve outcome.
van Spriel, A B; Leusen, J H; van Egmond, M; Dijkman, H B; Assmann, K J; Mayadas, T N; van de Winkel, J G
2001-04-15
Receptors for human immunoglobulin (Ig)G and IgA initiate potent cytolysis of antibody (Ab)-coated targets by polymorphonuclear leukocytes (PMNs). Mac-1 (complement receptor type 3, CD11b/CD18) has previously been implicated in receptor cooperation with Fc receptors (FcRs). The role of Mac-1 in FcR-mediated lysis of tumor cells was characterized by studying normal human PMNs, Mac-1-deficient mouse PMNs, and mouse PMNs transgenic for human FcR. All PMNs efficiently phagocytosed Ab-coated particles. However, antibody-dependent cellular cytotoxicity (ADCC) was abrogated in Mac-1(-/-) PMNs and in human PMNs blocked with anti-Mac-1 monoclonal Ab (mAb). Mac-1(-/-) PMNs were unable to spread on Ab-opsonized target cells and other Ab-coated surfaces. Confocal laser scanning and electron microscopy revealed a striking difference in immunologic synapse formation between Mac-1(-/-) and wild-type PMNs. Also, respiratory burst activity could be measured outside membrane-enclosed compartments by using Mac-1(-/-) PMNs bound to Ab-coated tumor cells, in contrast to wild-type PMNs. In summary, these data document an absolute requirement of Mac-1 for FcR-mediated PMN cytotoxicity toward tumor targets. Mac-1(-/-) PMNs exhibit defective spreading on Ab-coated targets, impaired formation of immunologic synapses, and absent tumor cytolysis.
Activation of the complement system in patients with porphyrias after irradiation in vivo.
Lim, H W; Poh-Fitzpatrick, M B; Gigli, I
1984-01-01
Irradiation of the forearms of two patients with erythropoietic protoporphyria and one patient with porphyria cutanea tarda resulted in an in vivo activation of the complement system, as assessed by diminution of the hemolytic titers of the third component of complement by 23-57%, and of the fifth component of complement (C5) by 19-47%. Such treatment also generated chemotactic activity for human polymorphonuclear cells; the chemotactic activity was stable at 56 degrees C and antigenically related to human C5. On Sephadex G-75 chromatography the chemotactic activity eluted with an apparent molecular weight of 15,000. These in vivo results extend our previous in vitro observation of photoactivation of complement in sera from patients with erythropoietic protoporphyria and porphyria cutanea tarda, and suggest that the complement system may participate in the pathogenesis of cutaneous phototoxicity in these patients. PMID:6392339
Zhao, Mingli; Zhu, Weiming; Gong, Jianfeng; Zuo, Lugen; Zhao, Jie; Sun, Jing; Li, Ning; Li, Jieshou
2015-01-01
G protein-coupled receptor 43/free fatty acid receptor 2 (GPR43/FFAR2) is essential for polymorphonuclear (PMN) recruitment. We investigated the expression of GPR43/FFAR2 in the colon from Crohn’s disease patients and whether dietary fiber in enteral nutrition increases GPR43+ polymorphonuclear infiltration in mucosa. Segments of ascending colon and white blood cells from peripheral blood were obtained from 46 Crohn’s disease patients and 10 colon cancer patients. The Crohn’s disease patients were grouped by the activity of disease (active or remission) and enteral nutrition with or without dietary fiber. Histological feature, expression and location of GPR43/FFAR2 and level of tumor necrosis factor-α (TNF-α), interleukine-6 (IL-6) and myeloperoxidase were assessed. The results of hematoxylin-eosin and immunohistochemistry staining revealed that the infiltration of immune cells, including GPR43+ PMN, was more severe in active Crohn’s disease patients who consumed normal food or enteral nutrition with dietary fiber than in remission patients and colon cancer patients. This finding was supported by the results of GPR43 and myeloperoxidase expression. Active Crohn’s disease (CD) patients who consumed enteral nutrition without dietary fiber exhibited severe immune cell infiltration similar to the other active CD patients, but GPR43+ PMNs were rarely observed. The level of TNF-α mRNA in active Crohn’s disease patients was higher than those of the other patients. In conclusion, the use of dietary fiber in enteral nutrition by active Crohn’s disease patients might increase GPR43+ PMNs infiltration in colon mucosa. This effect was not observed in Crohn’s disease patients in remission. PMID:26140540
Zhao, Mingli; Zhu, Weiming; Gong, Jianfeng; Zuo, Lugen; Zhao, Jie; Sun, Jing; Li, Ning; Li, Jieshou
2015-07-01
G protein-coupled receptor 43/free fatty acid receptor 2 (GPR43/FFAR2) is essential for polymorphonuclear (PMN) recruitment. We investigated the expression of GPR43/FFAR2 in the colon from Crohn's disease patients and whether dietary fiber in enteral nutrition increases GPR43+ polymorphonuclear infiltration in mucosa. Segments of ascending colon and white blood cells from peripheral blood were obtained from 46 Crohn's disease patients and 10 colon cancer patients. The Crohn's disease patients were grouped by the activity of disease (active or remission) and enteral nutrition with or without dietary fiber. Histological feature, expression and location of GPR43/FFAR2 and level of tumor necrosis factor-α (TNF-α), interleukine-6 (IL-6) and myeloperoxidase were assessed. The results of hematoxylin-eosin and immunohistochemistry staining revealed that the infiltration of immune cells, including GPR43+ PMN, was more severe in active Crohn's disease patients who consumed normal food or enteral nutrition with dietary fiber than in remission patients and colon cancer patients. This finding was supported by the results of GPR43 and myeloperoxidase expression. Active Crohn's disease (CD) patients who consumed enteral nutrition without dietary fiber exhibited severe immune cell infiltration similar to the other active CD patients, but GPR43+ PMNs were rarely observed. The level of TNF-α mRNA in active Crohn's disease patients was higher than those of the other patients. In conclusion, the use of dietary fiber in enteral nutrition by active Crohn's disease patients might increase GPR43+ PMNs infiltration in colon mucosa. This effect was not observed in Crohn's disease patients in remission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madden, M.C.; Friedman, M.; Hanley, N.
1993-06-01
Ozone (O3) exposure in vivo has been reported to degrade arachidonic acid (AA) in the lungs of rodents. The O3-degraded AA products may play a role in the responses to this toxicant. To study the chemical nature and biological activity of O3-exposed AA, we exposed AA in a cell-free, aqueous environment to air, 0.1 ppm O3, or 1.0 ppm O3 for 30-120 min. AA exposed to air was not degraded. All O3 exposures degraded > 98% of the AA to more polar products, which were predominantly aldehydic substances (as determined by reactivity with 2,4-dinitrophenylhydrazine and subsequent separation by HPLC) andmore » hydrogen peroxide. The type and amount of aldehydic substances formed depended on the O3 concentration and exposure duration. A human bronchial epithelial cell line (BEAS-2B, S6 subclone) exposed in vitro to either 0.1 ppm or 1.0 ppm O3 for 1 hr produced AA-derived aldehydic substances, some of which eluted with similar retention times as the aldehydic substances derived from O3 degradation of AA in the cell-free system. In vitro, O3-degraded AA induced an increase in human peripheral blood polymorphonuclear leukocyte (PMN) polarization, decreased human peripheral blood T-lymphocyte proliferation in response to mitogens, and decreased human peripheral blood natural killer cell lysis of K562 target cells. The aldehydic substances, but not hydrogen peroxide, appeared to be the principal active agents responsible for the observed effects. O3-degraded AA may play a role in the PMN influx into lungs and in decreased T-lymphocyte mitogenesis and natural killer cell activity observed in humans and rodents exposed to O3.« less
The Cytoskeleton & ATP in Sulfur Mustard-Mediated Injury to Endothelial Cells & Keratinocytes.
1996-12-01
platelets. J. Cell. Biol. 86:77-86, 1980 . 5. Cassimeris, L, McNeill, H, and Zigmond, SH. Chemoattractant-stimulated polymorphonuclear leukocytes contain two...Arch. Biochem. Biophys. 175:627- 634, 1976. 20. Schraufstatter, IU, Hinshaw, DB, Hyslop , PA, Spragg, RG, and Cochrane, CG: Oxidant injury of cells: DNA... 1980 . 22. Brehe, JE, and Burch, HB. Enzymatic assay for glutathione. Anal Biochem. 74:189, 1976. 23. Griffith, OW. Determination of glutathione and
Andreoli, Maria C C; Dalboni, Maria A; Watanabe, Renato; Manfredi, Silvia R; Canziani, Maria E F; Kallás, Esper G; Sesso, Ricardo C; Draibe, Sergio A; Balakrishnan, Vaidyanathapuram S; Jaber, Bertrand L; Liangos, Orfeas; Cendoroglo, Miguel
2007-12-01
In an in vivo crossover trial, we compared a cellulosic with a synthetic dialyzer with respect to polymorphonuclear cells (PMN) function and apoptosis, cytokine serum levels and synthesis by peripheral blood mononuclear cells (PBMC), and complement activation. Twenty hemodialysis (HD) patients were assigned in alternate order to HD with cellulose acetate (CA) or polysulfone (PS) dialyzer. After 2 weeks, patients were crossed over to the second dialyzer and treated for another 2 weeks. Apoptosis was assessed by flow cytometry in freshly isolated PMN. Phagocytosis and production of peroxide by PMN were studied by flow cytometry in whole blood. PBMC were isolated from blood samples and incubated for 24 h with or without lipopolysaccharide (LPS). There was no impact of dialyzer biocompatibility on PMN apoptosis and function, cytokine synthesis by PBMC or on their serum levels, serum levels of C3a, and terminal complement complex (TCC). Nevertheless, after HD, serum levels of complement correlated negatively with PMN phagocytosis and peroxide production, and positively with PMN apoptosis and cytokine production by PBMC. Although the results did not show a dialyzer advantage on the immunologic parameters, complement activation may have modulated cell function and apoptosis after HD.
Pulmonary accumulation of polymorphonuclear leukocytes in the adult respiratory distress syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powe, J.E.; Short, A.; Sibbald, W.J.
1982-11-01
The polymorphonuclear leukocyte (PMN) plays an integral role in the development of permeability pulmonary edema associated with the adult respiratory distress syndrome (ARDS). This report describes 3 patients with ARDS secondary to systemic sepsis who demonstrated an abnormal diffuse accumulation of Indium (/sup 111/In)-labeled PMNs in their lungs, without concomitant clinical or laboratory evidence of a primary chest infection. In one patient, the accumulation of the pulmonary activity during an initial pass suggested that this observation was related to diffuse leukoaggregation within the pulmonary microvasculature. A 4th patient with ARDS was on high-dose corticosteroids at the time of a similarmore » study, and showed no pulmonary accumulation of PMNs, suggesting a possible reason for the reported beneficial effect of corticosteroids in human ARDS.« less
De Pablo, Carmen; Orden, Samuel; Apostolova, Nadezda; Blanquer, Amando; Esplugues, Juan V; Alvarez, Angeles
2010-06-01
Abacavir and didanosine are nucleoside reverse transcriptase inhibitors (NRTI) widely used in therapy for HIV-infection but which have been linked to cardiovascular complications. The objective of this study was to analyze the effects of clinically relevant doses of abacavir and didanosine on human leukocyte-endothelium interactions and to compare them with those of other NRTIs. The interactions between human leukocytes - specifically peripheral blood polymorphonuclear (PMN) or mononuclear (PBMC) cells - and human umbilical vein endothelial cells were evaluated in a flow chamber system that reproduces conditions in vivo. The expression of adhesion molecules was analyzed by flow cytometry. Abacavir induced a dose-dependent increase in PMN and PBMC rolling and adhesion. This was reproduced by didanosine but not by lamivudine or zidovudine. Both abacavir and didanosine increased Mac-1 expression in neutrophils and monocytes, but produced no effects on either lymphocytes or the expression of endothelial adhesion molecules. The PMN/PBMC rolling and adhesion induced by abacavir or didanosine did not occur when antibodies against Mac-1 or its ligand ICAM-1 were blocked. Abacavir induces significant human leukocyte accumulation through the activation of Mac-1, which in turn interacts with its endothelial ligand ICAM-1. The fact that didanosine exhibits similar effects and that lamivudine and zidovudine do not points to a relationship between the chemical structure of NRTIs and the induction of leukocyte/endothelial cell interactions. This mechanism may be especially relevant to the progression of the vascular damage associated with atherosclerosis and myocardial infarction in abacavir and didanosine-treated patients.
Itagaki, Kiyoshi; Zhang, Qin; Hauser, Carl J
2010-04-01
Inflammation and microvascular thrombosis are interrelated causes of acute lung injury in the systemic inflammatory response syndrome. Neutrophils (polymorphonuclear neutrophil [PMN]) and endothelial cells (EC) activated by systemic inflammatory response syndrome interact to increase pulmonary vascular permeability, but the interactions between PMN and EC are difficult to study. Recently, we reported that sphingosine 1-phosphate is a second messenger eliciting store-operated calcium entry (SOCE) in response to inflammatory agonists in both PMN and EC. Store-operated calcium entry is therefore a target mechanism for the therapeutic modulation of inflammatory PMN-EC interactions. Here, we isolated, modeled, and studied the effects of pharmacologic SOCE inhibition using real-time systems to monitor EC permeability after exposure to activated PMN. We created systems to continuously assess permeability of human pulmonary artery endothelial cells and human microvascular endothelial cells from lung. Endothelial cells show increased permeability after challenge by activated PMN. Such permeability increases can be attenuated by exposure of the cocultures to sphingosine kinase (SK) inhibitors (SKI-2, N,N-dimethylsphingosine [DMS]) or Ca2+ entry inhibitors (Gd3+, MRS-1845). Human microvascular endothelial cells from lung pretreated with SKI-2 or DMS showed decreased permeability when later exposed to activated PMN. Likewise, when PMNs were activated with thapsigargin (TG) in the presence of SKI-2, DMS, Gd, or MRS-1845, their ability to cause EC permeability subsequently was reduced. SKI-2 also inhibited the activation of human pulmonary artery ECs by thrombin. These studies will provide a firm mechanistic foundation for understanding how systemic SOCE inhibition may be used to prevent acute lung injury in vivo.
Alfredo, Patrícia P; Anaruma, Carlos A; Pião, Antônio C S; João, Silvia M A; Casarotto, Raquel A
2009-05-01
This study aimed at verifying the effects of phonophoresis associated with Arnica montana on the acute phase of an inflammatory muscle lesion. Forty Wistar male rats (300+/-50 g), of which the Tibialis Anterior muscle was surgically lesioned, were divided into four groups (n=10 each): control group received no treatment; the ultrasound group (US) was treated in pulsed mode with 1-MHz frequency, 0.5 W/cm(2) intensity (spatial and temporal average - SATA), duty cycle of 1:2 (2 ms on, 4 ms off, 50%), time of application 3 min per session, one session per day, for 3 days; the phonophoresis or ultrasound plus arnica (US+A) group was treated with arnica with the same US parameters plus arnica gel; and the arnica group (A) was submitted to massage with arnica gel, also for 3 min, once a day, for 3 days. Treatment started 24h after the surgical lesion. On the 4th day after lesion creation, animals were sacrificed and sections of the lesioned, inflamed muscle were removed for quantitative (mononuclear and polymorphonuclear cell count) and qualitative histological analysis. Collected data from the 4 groups were statistically analyzed and the significance level set at p<0.05. Results show higher mononuclear cell density in all three treated groups with no significant difference between them, but values were significantly different (p<0.0001) when compared to control group's. As to polymorphonuclear cell density, significant differences were found between control group (p=0.0134) and US, US+A and A groups; the arnica group presented lesser density of polymorphonuclear cells when compared (p=0.0134) to the other groups. No significant difference was found between US and US+A groups. While the massage with arnica gel proved to be an effective anti-inflammatory on acute muscle lesion in topic use, these results point to ineffectiveness of Arnica montana phonophoresis, US having seemingly checked or minimized its anti-inflammatory effect.
Jaques, Jeandre Augusto Dos S; Peres Rezer, João Felipe; Ruchel, Jader Betsch; Gutierres, Jessié; Bairros, André Valle; Gomes Farias, Iria Luiza; Almeida da Luz, Sonia Cristina; Mello Bertoncheli, Claudia de; Chitolina Schetinger, Maria Rosa; Morsch, Vera Maria; Leal, Daniela Bitencourt Rosa
2011-03-01
Methods for the isolation of peripheral blood mononuclear cells (PBMCs) and human lung mononuclear cells (LMCs) have been proposed previously. This study describes a method that allows the separation of lymphocyte-rich LMCs from rats. Trypan blue was applied to determine cell viability. White blood cell and differential cell counts were also performed. Relationships between nucleoside triphosphate diphosphohydrolase (NTPDase, EC 3.6.1.5) activities expressed in milligrams of protein, millions of cells, and millions of viable cells were examined as linear correlations. The lung tissue yielded 82.46% lymphocytes, 8.6% macrophages, 2.20% monocytes, and 1.27% polymorphonuclear cells (PMNs). In LMCs, a very strong correlation was observed as follows: between NTPDase activity, as determined using ATP or ADP as a substrate, expressed in milligrams of protein and that expressed in millions of cells (r ≥ 0.91), between that expressed in milligrams of protein and that expressed in millions of viable cells (r ≥ 0.91), and between that expressed in millions of cells and that expressed in millions of viable cells (r ≥ 0.98). Based on our results, we affirm that NTPDase activity could be expressed in millions of viable cells, millions of cells, or milligrams of protein. 2010 Elsevier Inc. All rights reserved.
Uptake and intracellular activity of AM-1155 in phagocytic cells.
Yamamoto, T; Kusajima, H; Hosaka, M; Fukuda, H; Oomori, Y; Shinoda, H
1996-01-01
The uptake and intracellular activity of AM-1155 in murine J774.1 macrophages and human polymorphonuclear leukocytes were investigated. AM-1155 penetrated phagocytic cells rapidly and reversibly, although the penetration process was not affected by metabolic inhibitors such as sodium fluoride, cyanide m-chlorophenylhydrazone, or ouabain or by nucleoside transport system inhibitors such as adenosine. The intracellular concentration-to-extracellular concentration ratio of AM-1155 in both cell types of phagocytes ranged from 5 to 7. These ratios were almost equal to those for sparfloxacin. The intracellular activity of AM-1155 in J774.1 macrophages, examined with Staphylococcus aureus 209P as a test bacterium, was dependent on the extracellular concentration. AM-1155 at a concentration of 1 microgram/ml reduced the number of viable cells of S. aureus ingested by more than 90%. The intracellular activity of AM-1155 was more potent than those of sparfloxacin, ofloxacin, ciprofloxacin, flomoxef, and erythromycin. These results suggest that the potent intracellular activity of AM-1155 might mainly be due to the high intracellular concentration and its potent in vitro activity. PMID:9124835
Becker, Elmer L.; Ward, Peter A.
1969-01-01
Previous published work has led to the hypothesis that the activatable esterase of chemotaxis is a serine esterase of the rabbit polymorphonuclear leukocyte existing in an inert, phosphonate insusceptible form, which after activation is capable of hydrolyzing aromatic amino acid esters and being inhibited by phosphonates. In the present study, directed to the testing of this hypothesis, we have shown that rabbit peritoneal polymorphonuclear leukocytes contain three esterases capable of hydrolyzing the aromatic amino acid ester, acetyl DL-phenylalanine β-naphthyl ester. Two of these esterases, esterase 1 and esterase 2, are inhibited by various p-nitrophenyl ethyl phosphonate esters. The inhibition of each esterase is irreversible and progressive with time. When the logarithm of the esterase activity remaining after cell and inhibitor have been in contact for a constant time is plotted against the concentration of inhibitor, a straight line results. These results support the conclusion that both esterases are serine esterases. The third esterase, esterase 3, differs from the other two by its inability to be inactivated by any of the phosphonates no matter how high the concentration of phosphonate or prolonged the period of incubation of cell with phosphonate. The activity of esterase 1 is at least 10,000 times more easily inhibited by phosphonates than is that of esterase 2; incubating rabbit polymorphonuclear leukocytes for 15 min at 27°C with 10–9–10–8 M concentrations of various phosphonates inactivates esterase 1, but it required 10–6–10–4 M concentrations of the same phosphonates to inhibit esterase 2. The inhibition profiles of esterase 1 are distinctly different from those of esterase 2 when the two esterases are tested with the phenylalkylphosphonates, chloroalkylphosphonates, and alkylphosphonates. The inhibition profile of esterase 1 is essentially the same as that of the activatable esterase of chemotaxis obtained previously when the same three homologous series of phosphonates were tested for their ability to protect against deactivation by the chemotactic factor or give chemotactic-dependent inhibition. It is tentatively concluded that esterase 1 of the rabbit peritoneal neutrophil is the activated form of the activatable esterase of chemotaxis. PMID:5812915
Brom, J; Knöller, J; Köller, M; König, W
1988-01-01
Pre-incubation of human polymorphonuclear granulocytes with recombinant human tumour necrosis factors (TNF) revealed a time- and dose-dependent reduction of the expression of leukotriene B4-receptor sites. Analysis of the binding data by Scatchard plots showed a shift from a heterologous receptor population (indicating high- and low-affinity subsets) to a homologous population. From the results it is considered that TNF can influence host defence through the modulation of leukotriene B4 receptor affinity. PMID:2851543
The effect of ammonia on canine polymorphonuclear cells.
Breheny, Craig R; Mellanby, Richard J; Hamilton, Julie A; Gow, Adam G
2018-06-24
Hyperammonaemia is a common complication of liver disease in dogs. High concentrations of ammonia can be detrimental to dogs with liver disease for several reasons, notably by causing hepatic encephalopathy (HE) which describes the wide range of neurological abnormalities ranging from altered behaviour to seizures that are well recognised complications in dogs with hepatic disorders. In human patients with liver disease, hyperammonaemia has also been linked to the development of other systemic complications such as dysregulation of the innate immune system. In contrast, the effects of hyperammonaemia on the canine innate immune system is currently unknown. The aim of this study was to investigate the effects of ammonia on the oxidative burst activity of canine polymorphonuclear cells in vitro. Blood obtained from healthy dogs (n = 8) was incubated with escalating concentrations of ammonia ranging from 0 to 250 μM, and the percentage of cells experiencing an oxidative burst was evaluated using a commercial kit (Phagoburst™) and flow cytometry. The spontaneous oxidative burst was evaluated without stimulation and also following stimulation with E coli. The pH of the blood was also measured at the differing ammonia concentrations. There was an increase in the percentage of cells experiencing a spontaneous oxidative burst from ammonia concentrations of 125 μM (p = <0.05) and above (p = <0.01), with a 4.9 fold increase at 200 μM (p = < 0.001). In those cells stimulated with E coli, incubation with increasing ammonia concentrations did not result in a significant difference in oxidative burst from baseline (p = 0.953). There was no statistically significant difference between the pH of the blood at the various ammonia concentrations (p = 0.2) suggesting that the difference in spontaneous oxidative burst was due to the ammonia rather than simply a change in pH conditions. In summary, the spontaneous oxidative burst of neutrophils was significantly increased from baseline. This supports a potential role of ammonia in contributing to innate immune system dysfunction in dogs with liver disease, and may present a future therapeutic target.
Wilson-Welder, Jennifer H.; Frank, Ami T.; Hornsby, Richard L.; Olsen, Steven C.; Alt, David P.
2016-01-01
Cattle are the reservoir hosts of Leptospira borgpetersenii serovar Hardjo, and can also be reservoir hosts of other Leptospira species such as L. kirschneri, and Leptospira interrogans. As a reservoir host, cattle shed Leptospira, infecting other animals, including humans. Previous studies with human and murine neutrophils have shown activation of neutrophil extracellular trap or NET formation, and upregulation of inflammatory mediators by neutrophils in the presence of Leptospira. Humans, companion animals and most widely studied models of Leptospirosis are of acute infection, hallmarked by systemic inflammatory response, neutrophilia, and septicemia. In contrast, cattle exhibit chronic infection with few outward clinical signs aside from reproductive failure. Taking into consideration that there is host species variation in innate immunity, especially in pathogen recognition and response, the interaction of bovine peripheral blood polymorphonuclear cells (PMNs) and several Leptospira strains was evaluated. Studies including bovine-adapted strains, human pathogen strains, a saprophyte and inactivated organisms. Incubation of PMNs with Leptospira did induce slight activation of neutrophil NETs, greater than unstimulated cells but less than the quantity from E. coli P4 stimulated PMNs. Very low but significant from non-stimulated, levels of reactive oxygen peroxides were produced in the presence of all Leptospira strains and E. coli P4. Similarly, significant levels of reactive nitrogen intermediaries (NO2) was produced from PMNs when incubated with the Leptospira strains and greater quantities in the presence of E. coli P4. PMNs incubated with Leptospira induced RNA transcripts of IL-1β, MIP-1α, and TNF-α, with greater amounts induced by live organisms when compared to heat-inactivated leptospires. Transcript for inflammatory cytokine IL-8 was also induced, at similar levels regardless of Leptospira strain or viability. However, incubation of Leptospira strains with bovine PMNs did not affect Leptospira viability as measured by limiting dilution culture. This is in contrast to previously reported results of innate inflammatory activation by Leptospira in human and other animal models, or the activation and interaction of bovine PMNs with Escherichia coli and other bacterial pathogens. While it could be hypothesized that variations in innate receptor recognition, specifically variance in toll-like receptor 2, could underlie the observed reduction of activation in bovine PMNs, additional studies would be needed to explore this possibility. Reduction in neutrophil responses may help to establish nearly asymptomatic chronic Leptospira infection of cattle. This study emphasizes the importance of studying host-pathogen relationships in the appropriate species as extrapolation from other animal models may be incorrect and confounded by differences in the host responses. PMID:27486445
Gui, Tao; Liu, Xing; Tao, Jia; Chen, Jianwen; Li, Yunsheng; Zhang, Meiling; Wu, Ronghua; Zhang, Yuanliang; Peng, Kaisong; Liu, Ya; Zhang, Xiaorong; Zhang, Yunhai
2013-12-01
Human bactericidal/permeability-increasing protein (hBPI) is the only antibacterial peptide which acts against both gram-negative bacteria and neutralizes endotoxins in human polymorphonuclear neutrophils; therefore, hBPI is of great value in clinical applications. In the study, we constructed a hBPI expression vector (pBC1-Loxp-Neo-Loxp-hBPI) containing the full-length hBPI coding sequence which could be specifically expressed in the mammary gland. To validate the function of the vector, in vitro cultured C127 (mouse mammary Carcinoma Cells) were transfected with the vector, and the transgenic cell clones were selected to express hBPI by hormone induction. The mRNA and protein expression of hBPI showed that the constructed vector was effective and suitable for future application in producing mammary gland bioreactor. Then, female and male goat fibroblasts were transfected with the vector, and two male and two female transgenic clonal cell lines were obtained. Using the transgenic cell lines as nuclear donors for somatic cell nuclear transfer, the reconstructed goat embryos produced from all four clones could develop to blastocysts in vitro. In conclusion, we constructed and validated an efficient mammary gland-specific hBPI expression vector, pBC1-Loxp-Neo-Loxp-hBPI, and transgenic hBPI goat embryos were successfully produced, laying foundations for future production of recombinant hBPI in goat mammary gland. Copyright © 2013 Elsevier B.V. All rights reserved.
1986-09-18
systemically with doses of reaction) were sharply reduced. Histo- naltrexone or naloxone and subsequently logically, the infiltration of the dermis...challenged with a lethal dose of antigen. with polymorphonuclear (Arthus reaction) Both naloxone and naltrexone were found and mononuclear cells (delayed...for Integrative Biomedical Research, Eb- roendocrine cell type present in low num- matingen, Switzerland) reported on the bers in the spleen, lymph
GMI-1070, a novel pan-selectin antagonist, reverses acute vascular occlusions in sickle cell mice
Chang, Jungshan; Patton, John T.; Sarkar, Arun; Ernst, Beat
2010-01-01
Leukocyte adhesion in the microvasculature influences blood rheology and plays a key role in vaso-occlusive manifestations of sickle cell disease. Notably, polymorphonuclear neutrophils (PMNs) can capture circulating sickle red blood cells (sRBCs) in inflamed venules, leading to critical reduction in blood flow and vaso-occlusion. Recent studies have suggested that E-selectin expression by endothelial cells plays a key role by sending activating signals that lead to the activation of Mac-1 at the leading edge of PMNs, thereby allowing RBC capture. Thus, the inhibition of E-selectin may represent a valuable target in this disease. Here, we have tested the biologic properties of a novel synthetic pan-selectin inhibitor, GMI-1070, with in vitro assays and in a humanized model of sickle cell vaso-occlusion analyzed by intravital microscopy. We have found that GMI-1070 predominantly inhibited E-selectin–mediated adhesion and dramatically inhibited sRBC-leukocyte interactions, leading to improved microcirculatory blood flow and improved survival. These results suggest that GMI-1070 may represent a valuable novel therapeutic intervention for acute sickle cell crises that should be further evaluated in a clinical trial. PMID:20508165
USDA-ARS?s Scientific Manuscript database
Despite the availability of vaccines, Streptococcus pneumoniae remains a leading cause of life-threatening infections such as pneumonia, bacteremia and meningitis. Polymorphonuclear leukocytes (PMNs) are a key determinant of disease course, because optimal host defense requires an initial robust pul...
Saccharomyces boulardii interferes with Shigella pathogenesis by postinvasion signaling events
Mumy, Karen L.; Chen, Xinhua; Kelly, Ciarán P.; McCormick, Beth A.
2011-01-01
Saccharomyces boulardii is gaining in popularity as a treatment for a variety of diarrheal diseases as well as inflammatory bowel disease. This study was designed to examine the effect of this yeast on infection by Shigella flexneri, a highly infectious and human host-adapted enteric pathogen. We investigated key interactions between the bacteria and host cells in the presence of the yeast in addition to a number of host responses including proinflammatory events and markers. Although the presence of the yeast during infection did not alter the number of bacteria that was able to attach or invade human colon cancer-derived T-84 cells, it did positively impact the tight junction protein zonula occluden-2 and significantly increase the barrier integrity of model epithelia. The yeast also decreased ERK, JNK, and NF-κB activation in response to S. flexneri, events likely responsible for the observed reductions in IL-8 secretion and the transepithelial migration of polymorphonuclear leukocytes across T-84 monolayers. These results, suggesting that the yeast allowed for a dampened inflammatory response, were confirmed in vivo utilizing a highly relevant model of human fetal colonic tissue transplanted into scid mice. Furthermore, a cell-free S. boulardii culture supernatant was also capable of reducing IL-8 secretion by infected T-84 cells. These data suggest that although the use of S. boulardii during infection with S. flexneri may alleviate symptoms associated with the inflammatory response of the host, it would not prevent infection. PMID:18032477
Antibiotic-Enhanced Phagocytosis of ’Borrelia recurrentis’ by Blood Polymorphonuclear Leukocytes.
1979-11-30
hours after Butler 7 institution of antibiotic treatment. Polymorphonuclear leukocytes are known to release endogenous pyrogen after phagocytosis of...other bacteria (6), and endogenous pyrogen may be one of the mediators of the rigor and temperature rise in the Jarisch-Herxheimer reaction (2). Release...the pathogenesis of fever. XII. The effect of phagocytosis on the release of endogenous pyrogen by polymorphonuclear leukocytes. J. Exp. Med. 119:715
Biocompatibility differences with respect to the dialyzer sterilization method.
Müller, T F; Seitz, M; Eckle, I; Lange, H; Kolb, G
1998-01-01
The impact of the method of sterilization (steam vs. ethylene oxide, ETO) on indices of biocompatibility is investigated using polysulfone membranes. Eight patients were treated with a random choice of the high-flux membranes F60S (steam) and F60 (ETO) and the low-flux membrane F6 (ETO). Blood samples were taken prior to and 5, 15, 30, 60, and 180 min after the start of hemodialysis. White blood cell count, platelet count, and plasma concentrations of polymorphonuclear neutrophil elastase, complements C3a and C5a, and beta2-microglobulin were determined. The dialysis procedure was associated with a significant decrease in white blood cell count and beta2-microglobulin level and a significant increase in polymorphonuclear neutrophil elastase and complement C3a and C5a levels. However, the steam-sterilized F60S membrane had a significantly lower impact on the biocompatibility indices than the ETO-sterilized F60 and F6 membranes (p < 0.05 or p < 0.001 for the individual markers). We conclude that using steam instead of ETO for sterilization may improve the biocompatibility of membranes.
Zhang, Meili; Yao, Zhengsheng; Zhang, Zhuo; Garmestani, Kayhan; Goldman, Carolyn K.; Ravetch, Jeffrey V.; Janik, John; Brechbiel, Martin W.; Waldmann, Thomas A.
2006-01-01
CD30 is a member of the tumor necrosis factor receptor family. Overexpression of CD30 on some neoplasms versus its limited expression on normal tissues makes this receptor a promising target for antibody-based therapy. Anaplastic large-cell lymphoma (ALCL) represents a heterogeneous group of aggressive non-Hodgkin lymphomas characterized by the strong expression of CD30. We investigated the therapeutic efficacy of HeFi-1, a mouse IgG1 monoclonal antibody, which recognizes the ligand-binding site on CD30, and humanized anti-Tac antibody (daclizumab), which recognizes CD25, in a murine model of human ALCL. The ALCL model was established by intravenous injection of karpas299 cells into nonobese diabetic/severe combined immuno-deficient (SCID/NOD) wild-type or SCID/NOD Fc receptor common γ chain–deficient (FcRγ–/–) mice. HeFi-1, given at a dose of 100 μg weekly for 4 weeks, significantly prolonged survival of the ALCL-bearing SCID/NOD wild-type and SCID/NOD FcRγ–/– mice (P < .01) as compared with the control groups. In vitro studies showed that HeFi-1 inhibited the proliferation of karpas299 cells, whereas daclizumab did not inhibit cell proliferation. We demonstrated that the expression of FcRγ on polymorphonuclear leukocytes and monocytes was not required for HeFi-1–mediated tumor growth inhibition in vivo, although it was required for daclizumab. PMID:16551968
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Zaheed; Department of Pathology, Harvard Medical School, Boston, MA; Almeciga, Ingrid
Clozapine has been associated with a 1% incidence of agranulocytosis. The formation of an oxidized intermediate clozapine metabolite has been implicated in direct polymorphonuclear (PMN) toxicity. We utilized two separate systems to analyze the role of oxidized clozapine in inducing apoptosis in treated cells. Human PMN cells incubated with clozapine (0-10 {mu}M) in the presence of 0.1 mM H{sub 2}O{sub 2} demonstrated a progressive decrease of surface CD16 expression along with increased apoptosis. RT-PCR analysis showed decreased CD16 but increased FasL gene expression in clozapine-treated PMN cells. No change in constitutive Fas expression was observed in treated cells. In HL-60more » cells induced to differentiate with retinoic acid (RA), a similar increase in FasL expression, but no associated changes in CD16 gene expression, was observed following clozapine treatments. Our results demonstrate increased FasL gene expression in oxidized clozapine-induced apoptotic neutrophils suggesting that apoptosis in granulocytes treated with clozapine involves Fas/FasL interaction that initiates a cascade of events leading to clozapine-induced agranulocytosis.« less
Compagno, Michele; Gullstrand, Birgitta; Jacobsen, Søren; Eilertsen, Gro Ø; Nilsson, Jan Åke; Lood, Christian; Jönsen, Andreas; Truedsson, Lennart; Sturfelt, Gunnar; Bengtsson, Anders A
2016-02-10
Serum-mediated phagocytosis of antibody- and complement-opsonized necrotic cell material (NCM) by polymorphonuclear leukocytes can be quantified by using a flow cytometry-based assay. The phagocytosis of necrotic cell material (PNC) assay parallels the well-known lupus erythematosus cell test. In this study, we aimed to investigate the diagnostic accuracy of the assay and the relationship with clinical manifestations and disease activity in systemic lupus erythematosus (SLE). The diagnostic accuracy for SLE diagnosis of the PNC assay was studied by cross-sectional assessment of blood samples from 148 healthy control subjects and a multicenter rheumatic group (MRG) of 529 patients with different rheumatic symptoms. A cohort of 69 patients with an established SLE diagnosis (SLE cohort) underwent longitudinal clinical and laboratory follow-up for analysis of the temporal relationships between PNC positivity and specific clinical manifestations. In 35 of 529 MRG patients, 13 of whom had SLE, the PNC assay result was positive. Combined positivity of the PNC assay and anti-double-stranded DNA antibodies increased specificity and positive predictive value for SLE diagnosis to 0.99 and 0.67, respectively. In the longitudinal study, 42 of 69 SLE cohort patients had positive results in the PNC assay at least once. PNC assay positivity was associated with current hematological manifestations and could predict mucocutaneous manifestations. When combined with hypocomplementemia, PNC positivity preceded increased Systemic Lupus Erythematosus Disease Activity Index 2000 score, glomerulonephritis, and alopecia. Serum-mediated PNC by polymorphonuclear leukocytes is commonly but not exclusively seen in patients with SLE. The PNC assay may be used in follow-up of patients with SLE and, especially in combination with other routinely assessed laboratory tests, may help to predict flares and different clinical manifestations, including glomerulonephritis. Our results encourage further development of the PNC assay as a complementary laboratory tool in management of patients with SLE.
ANTI-INFLAMMATORY ACTIVITY OF EUCALYPTUS SPP. AND PISTASCIA LENTISCUS LEAF EXTRACTS.
Qabaha, Khaled; Ras, Sari Abu; Abbadi, Jehad; Al-Rimawi, Fuad
2016-01-01
Eucalyptus spp. and Pistascia lentiscus are among the Palestinian trees that are traditionally used in folkloric medicine in treating many diseases; leaves of which are thought to have anti-inflammatory, antibacterial and antioxidant effects. The goal of this study is to evaluate the in vitro inhibitory effect of Eucalyptus spp . and Pistascia lentiscus extracts on Lipopolysacaride (LPS)-induced Interlukin-6 (Il-6) and Tumor Necrosis Factor-α (TNF-α) by polymorphonuclear Cells (PMNCs). Polymorphonuclear cells were isolated from the whole blood using Histopaque (Ficol-1077) method and then cultured in an enriched Roswell Park Memorial Institute (RBMI) medium. Supernatants' Interlukin-6 (IL-6) and Tumor Necrosis Factor (TNF-α) levels were determined 24 hour after LPS stimulation. HPLC was employed to determine the concentration of phenolic compounds in the extracts. The concentrations of TNF-α and IL-6 were compared using paired-samples t test. Eucalyptus spp . and Pistascia lentiscus leaves extracts have shown significant reduction in the levels of both Il-6 and TNF-α Gallic acid; a strong anti-inflammatory agent was found to be the major phenolic compound in both leaf extracts. However, other anti-inflammatory phenolic compounds were detected in Pitascia lentiscus extract including syringic acid and p-coumaric acid, while chlorogenic acid was detected in Eucalyptus spp . leaf extract. Reduction in the levels of Il-6 and TNF-α upon the effect of both Eucalyptus spp . and Pistascia lentiscus extract is an indication of their anti-inflammatory effects. Our results may also indicate that the observed anti-inflammatory effect of the above extracts may be due to the presence of gallic acid and other phenolic compounds. List of Abbreviations and Nomenclature: LPS: Lipopolysacaride, Il-6: Interlukin-6, TNF-α: Tumor Necrosis Factor-α, PMNCs: Polymorphonuclear Cells, HPLC: High Performance Liquid Chromatography, ELISA: Enzyme Linked Immune Sorbent Assay, EDTA: Ethylene Diamine Tetra Acetic acid, PBS: phosphate buffered saline, RPMI: Roswell Park Memorial Institute medium FBS: Fetal Bovine Serum.
ANTI-INFLAMMATORY ACTIVITY OF EUCALYPTUS SPP. AND PISTASCIA LENTISCUS LEAF EXTRACTS
Qabaha, Khaled; Ras, Sari Abu; Abbadi, Jehad; Al-Rimawi, Fuad
2016-01-01
Background: Eucalyptus spp. and Pistascia lentiscus are among the Palestinian trees that are traditionally used in folkloric medicine in treating many diseases; leaves of which are thought to have anti-inflammatory, antibacterial and antioxidant effects. The goal of this study is to evaluate the in vitro inhibitory effect of Eucalyptus spp. and Pistascia lentiscus extracts on Lipopolysacaride (LPS)-induced Interlukin-6 (Il-6) and Tumor Necrosis Factor-α (TNF-α) by polymorphonuclear Cells (PMNCs). Materials and Methods: Polymorphonuclear cells were isolated from the whole blood using Histopaque (Ficol-1077) method and then cultured in an enriched Roswell Park Memorial Institute (RBMI) medium. Supernatants’ Interlukin-6 (IL-6) and Tumor Necrosis Factor (TNF-α) levels were determined 24 hour after LPS stimulation. HPLC was employed to determine the concentration of phenolic compounds in the extracts. The concentrations of TNF-α and IL-6 were compared using paired-samples t test. Results: Eucalyptus spp. and Pistascia lentiscus leaves extracts have shown significant reduction in the levels of both Il-6 and TNF-α Gallic acid; a strong anti-inflammatory agent was found to be the major phenolic compound in both leaf extracts. However, other anti-inflammatory phenolic compounds were detected in Pitascia lentiscus extract including syringic acid and p-coumaric acid, while chlorogenic acid was detected in Eucalyptus spp. leaf extract. Conclusion: Reduction in the levels of Il-6 and TNF-α upon the effect of both Eucalyptus spp. and Pistascia lentiscus extract is an indication of their anti-inflammatory effects. Our results may also indicate that the observed anti-inflammatory effect of the above extracts may be due to the presence of gallic acid and other phenolic compounds. List of Abbreviations and Nomenclature: LPS: Lipopolysacaride, Il-6: Interlukin-6, TNF-α: Tumor Necrosis Factor-α, PMNCs: Polymorphonuclear Cells, HPLC: High Performance Liquid Chromatography, ELISA: Enzyme Linked Immune Sorbent Assay, EDTA: Ethylene Diamine Tetra Acetic acid, PBS: phosphate buffered saline, RPMI: Roswell Park Memorial Institute medium FBS: Fetal Bovine Serum. PMID:28487887
NASA Astrophysics Data System (ADS)
Vinnichenko, M.; Chevolleau, Th; Pham, M. T.; Poperenko, L.; Maitz, M. F.
2002-11-01
Surface modification of austenitic stainless steel (SS) 316L after incubation in growing cell cultures and cell-free media as control has been studied. The following treatments were applied: mouse fibrosarcoma cells L929 for 3 and 7 days, polymorphonuclear neutrophils for 3 and 7 days and human osteosarcoma cells SAOS-2 for 7 and 14 days. Cells were enzymatically removed in all cases. The modified surfaces were probed in comparison with untreated ones by means of spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). XPS shows the appearance of the peak of bonded nitrogen at 400.5 eV characteristic for adsorbed proteins on the surface for each type of cells and for the cell-free medium. Migration of Ni in the adsorbed layer is observed in all cases for samples after the cell cultures. The protein layer thickness is ellipsometrically determined to be within 2.5-6.0 nm for all treated samples with parameterization of its optical constants in Cauchy approach. The study showed that for such biological treatments of the SS the protein layer adsorption is the dominating process in the first 2 weeks, which could play a role in the process of corrosion by complex forming properties with metal ions.
Cassone, A; Palma, C; Djeu, J Y; Aiuti, F; Quinti, I
1993-01-01
Polymorphonuclear granulocytes (PMN; or neutrophils) from uninfected or human immunodeficiency virus-infected subjects were tested for their ability to inhibit growth of Candida albicans and produce interleukin-1 beta (IL-1 beta) and IL-6 in vitro. It was seen that PMN from AIDS (Centers for Disease Control stage IV) patients expressed equal if not greater anticandidal activity compared with the activity expressed by neutrophils from all other subjects examined. On exposure to granulocyte macrophage-colony-stimulating factor or to a mannoprotein constituent (MP-F2) from C. albicans itself, PMN from AIDS patients showed enhanced antifungal activity and production of remarkable quantities of IL-1 beta and IL-6. These findings suggest that the functional abilities of PMN to inhibit Candida growth and secrete relevant proinflammatory and immunomodulatory cytokines are intrinsically preserved in AIDS patients. PMID:8501241
BERLIN, R D; WOOD, W B
1964-05-01
1. Phagocytosis promotes the release of endogenous pyrogen from polymorphonuclear leucocytes. 2. The release of pyrogen, though initiated by the phagocytic event, is not synchronous with it. 3. The postphagocytic release mechanism is not inhibited by sodium fluoride and, therefore, appears not to require continued production of energy by the cell. 4. The release process, on the other hand, is inhibited by arsenite, suggesting the participation of one or more sulfhydryl-dependent enzymes in the over-all reaction. 5. Particle for particle, the ingestion of heat-killed rough pneumococci causes the release of approximately 100 times as much pyrogen as the ingestion of polystyrene beads of the same size. 6. The pyrogen release mechanism of polymorphonuclear leucocytes separated directly from blood, unlike that of granulocytes in acute inflammatory exudates, is not readily activated by incubation of the cells in K-free saline. Despite this difference, both blood and exudate leucocytes following phagocytosis release large amounts of pyrogen, even in the presence of K(+). The fact that the postphagocytic reaction is uninhibited by the concentrations of K(+) which are present in plasma and extracellular fluids, suggests that this mechanism of pyrogen release may well operate in vivo. 7. As might be expected from the foregoing observations, the intravenous injection of a sufficiently large number of heat-killed pneumococci causes fever in the intact host. Intravenously injected polystyrene beads, on the other hand, are significantly less pyrogenic. Evidence is presented to support the conclusion that the fever in both instances is caused by pyrogen released from the circulating leucocytes which have phagocyted the injected particles. 8. The possible relationships of these findings to the pathogenesis of fevers caused by acute bacterial infections are discussed.
Kusher, D I; Dawson, L O; Taylor, A C; Djeu, J Y
1994-03-01
The natural killer cell (NK)/3polymorphonuclear neutrophil axis has recently been identified to be important in early defense against the opportunistic fungi, Candida albicans. Repression of this system is therefore likely to contribute to susceptibility to opportunistic infections. delta 9-Tetrahydrocannabinol (THC), an active constituent of marijuana, has been reported to be immunosuppressive at concentrations that exceed attainable plasma levels. In this report, we examine the possibility that human large granular lymphocytes (LGL) can be immunosuppressed by exposure to THC at physiologically relevant concentrations and probed two functions associated with LGL, i.e., cytokine production and tumoricidal activity. We find that these low levels of THC inhibit tumor necrosis factor-alpha (TNF) induction from LGL by C. albicans and are dependent upon THC dose (0.005-5.0 micrograms/ml) and length of exposure (0.05-3.0 hr). Northern blot analysis indicates that the downregulation of TNF production from LGL by THC resides at the mRNA level. Moreover, exposure of LGL to physiological THC concentrations (0.01-2.0 micrograms/ml) diminishes their cytolytic activity against K562 tumor cells.
Shak, S; Perez, H D; Goldstein, I M
1983-12-25
We have found that a novel dioxygenation product of arachidonic acid, 8(S),15(S)-dihydroxy-5,11-cis-9,13-trans-eicosatetraenoic acid (8,15-diHETE), possesses chemotactic activity for human polymorphonuclear leukocytes comparable to that of leukotriene B4. Authentic 8,15-diHETE, identified by gas chromatography-mass spectrometry, was prepared by treating arachidonic acid with soybean lipoxygenase and was purified by reverse-phase high performance liquid chromatography. Using a "leading front" assay, 8,15-diHETE exhibited significant chemotactic activity at a concentration of 5.0 ng/ml. Maximum chemotactic activity was observed at a concentration of 30 ng/ml. The 8,15-diHETE generated by mixed human leukocytes after stimulation with arachidonic acid and the calcium ionophore, A23187, exhibited quantitatively similar chemotactic activity. Two synthetic all-trans conjugated isomers of 8,15-diHETE, however, were not chemotactic at concentrations up to 500 ng/ml. In contrast to its potent chemotactic activity, 8,15-diHETE (at concentrations up to 10 micrograms/ml) was relatively inactive with respect to its ability to provoke either degranulation or generation of superoxide anion radicals by cytochalasin B-treated leukocytes. Both leukotriene B4 and 8,15-diHETE may be important mediators of inflammation.
In vivo exposure to ozone produces an increase in a 72-kDa heat shock protein in guinea pigs.
Su, W Y; Gordon, T
1997-09-01
Although several lines of evidence have suggested that oxidizing agents can induce heat shock proteins (HSPs) in vitro, little is known about the induction of HSPs during in vivo exposure to oxidants. Guinea pigs were exposed to ozone for 6 h and euthanized up to 72 h later. Proteins from lavage cells and lung tissue were characterized by immunoblotting with 72- and 73/72-kDa HSP monoclonal antibodies. Although 73-kDa HSP was expressed constituitively in lung tissue, it was not affected by ozone. In contrast, 72-kDa HSP was significantly increased in lavage cells and lung tissue of animals exposed to 0.4 and 0.66 parts/million of ozone. Both heat treatment and arsenite induced 72-kDa HSP in cultured alveolar macrophages. The increase in 72-kDa HSP in the lavage cell pellet peaked at 24 h after ozone, whereas the influx of polymorphonuclear leukocytes peaked at 4 h. Examination of the induction of HSPs by ozone may provide clues to the development of ozone tolerance in humans and animals.
Imaging of blood antigen distribution on blood cells by thermal lens microscopy
NASA Astrophysics Data System (ADS)
Kimura, Hiroko; Sekiguchi, Kazuya; Nagao, Fumiko; Mukaida, Masahiro; Kitamori, Takehiko; Sawada, Tsuguo
2000-05-01
Blood group antigens on a cell were measured by a new microscopic method, i.e. thermal lens microscopy which involves spectrometry using a laser-induced thermal-lens effect. The blood group antigen was immunologically stained using antibody labeled with colloidal gold. Human leukocyte antigens (HLA) on lymphocytes and mononuclear leukocytes were observed by the thermal lens microscope, and Lewis blood group antigens on erythrocytes and polymorphonuclear leukocytes were also observed. The antigen distribution on each cell-surface was imaged using this technique. In spite of convex surface of living cells, colloidal gold was correctly quantified by adjusting the deviation of the focal point of the probe laser by the phase of the signal. In the measurement of leukocyte antigens, antigens of HLA-A, -B, -C loci on the lymphocytes were identified and quantitated by using a single cell. The image of HLA-A, -B, -C antigen distribution on a mononuclear leukocyte was obtained. In the measurement of erythrocyte antigens, a small quantity of Lewis antigens was detected on the cord erythrocytes. Localized small quantities of membrane antigens are better quantitated without extraction or cytolysis. Our thermal lens microscope is a powerful and highly sensitive analytical tool for detecting and quantitating localized antigens in single cells and/or cell-surface-associated molecules.
Cadet, Patrick; Mantione, Kirk J; Stefano, George B
2003-05-15
Studies from our laboratory have revealed a novel mu opiate receptor, mu 3, which is expressed in both vascular tissues and leukocytes. The mu 3 receptor is selective for opiate alkaloids and is insensitive to opioid peptides. We now identify the mu 3 receptor at the molecular level using a 441-bp conserved region of the mu 1 receptor. Sequence analysis of the isolated cDNA suggests that it is a novel, alternatively spliced variant of the mu opiate receptor gene. To determine whether protein expressed from this cDNA exhibits the biochemical characteristics expected of the mu 3 receptor, the cDNA clone was expressed in a heterologous system. At the functional level, COS-1 cells transfected with the mu 3 receptor cDNA exhibited dose-dependent release of NO following treatment with morphine, but not opioid peptides (i.e., Met-enkephalin). Naloxone was able to block the effect of morphine on COS-1 transfected cells. Nontransfected COS-1 cells did not produce NO in the presence of morphine or the opioid peptides at similar concentrations. Receptor binding analysis with [(3)H]dihydromorphine further supports the opiate alkaloid selectivity and opioid peptide insensitivity of this receptor. These data suggest that this new mu opiate receptor cDNA encodes the mu 3 opiate receptor, since it exhibits biochemical characteristics known to be unique to this receptor (opiate alkaloid selective and opioid peptide insensitive). Furthermore, using Northern blot, RT-PCR, and sequence analysis, we have demonstrated the expression of this new mu variant in human vascular tissue, mononuclear cells, polymorphonuclear cells, and human neuroblastoma cells.
Repair of surgical wounds in rats using a 10% unripe Musa sapientum peel gel.
Von Atzingen, Dênia Amélia Novato Castelli; Mendonça, Adriana Rodrigues dos Anjos; Mesquita Filho, Marcos; Alvarenga, Vinícius Alves; Assis, Vinícius Almeida; Penazzo, Afonso Esteves; Muzetti, Julio Henrique; Rezende, Thaisa Sousa
2015-09-01
To investigate the efficacy of a 10% gel of unripe banana (Musa sapientum) peel in treating surgical wounds in rats. A longitudinal, prospective, randomized triple-blind study was conducted with 60 Wistar rats (Rattus norvegicus albinus) weighing approximately 400g. The animals were randomly divided into: control group (treated with gel containing no active ingredient) and study group (treated with 10% gel of unripe banana peel). The gel was applied every three days to a 4x4-cm surgical wound created on the back of each animal (day 0) in both groups. Tissue samples were collected for histological analysis on days 14, 21 and 28. On day 14, more extensive vascular proliferation (p=0.023), presence of mononuclear cells (p=0.000), fibroblast proliferation (p=0.012), re-epithelialization (p=0.000), and decreased presence of polymorphonuclear cells (p=0.010) were observed in the study group than in controls. No significant between-group difference in the presence of polymorphonuclear cells was found on day 21. Fibroblast proliferation was significantly greater (p=0.006) in the study group than in the control group on day 28. The 10% gel of unripe banana peel showed anti-inflammatory activity and stimulated wound healing in rat skin when compared with a gel containing no active ingredient.
Jensen, Gitte S; Shah, Bijal; Holtz, Robert; Patel, Ashok; Lo, Donald C
2016-01-01
Objective The aim of this study was to evaluate the effects of water-soluble egg membrane (WSEM) on wrinkle reduction in a clinical pilot study and to elucidate specific mechanisms of action using primary human immune and dermal cell-based bioassays. Methods To evaluate the effects of topical application of WSEM (8%) on human skin, an open-label 8-week study was performed involving 20 healthy females between the age of 45 years and 65 years. High-resolution photography and digital analysis were used to evaluate the wrinkle depth in the facial skin areas beside the eye (crow’s feet). WSEM was tested for total antioxidant capacity and effects on the formation of reactive oxygen species by human polymorphonuclear cells. Human keratinocytes (HaCaT cells) were used for quantitative polymerase chain reaction analysis of the antioxidant response element genes Nqo1, Gclm, Gclc, and Hmox1. Evaluation of effects on human primary dermal fibroblasts in vitro included cellular viability and production of the matrix components collagen and elastin. Results Topical use of a WSEM-containing facial cream for 8 weeks resulted in a significant reduction of wrinkle depth (P<0.05). WSEM contained antioxidants and reduced the formation of reactive oxygen species by inflammatory cells in vitro. Despite lack of a quantifiable effect on Nrf2, WSEM induced the gene expression of downstream Nqo1, Gclm, Gclc, and Hmox1 in human keratinocytes. Human dermal fibroblasts treated with WSEM produced more collagen and elastin than untreated cells or cells treated with dbcAMP control. The increase in collagen production was statistically significant (P<0.05). Conclusion The topical use of WSEM on facial skin significantly reduced the wrinkle depth. The underlying mechanisms of this effect may be related to protection from free radical damage at the cellular level and induction of several antioxidant response elements, combined with stimulation of human dermal fibroblasts to secrete high levels of matrix components. PMID:27789968
Evidence that endoplasmic reticulum (ER) stress and caspase-4 activation occur in human neutrophils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binet, Francois; Chiasson, Sonia; Girard, Denis, E-mail: denis.girard@iaf.inrs.ca
2010-01-01
Apoptosis can result from activation of three major pathways: the extrinsic, the intrinsic, and the most recently identified endoplasmic reticulum (ER) stress-mediated pathway. While the two former pathways are known to be operational in human polymorphonuclear neutrophils (PMNs), the existence of the ER stress-mediated pathway, generally involving caspase-4, has never been reported in these cells. Recently, we have documented that arsenic trioxide (ATO) induced apoptosis in human PMNs by a mechanism that needs to be further investigated. In this study, using immunofluorescence and electron microscopy, we present evidence of ER alterations in PMNs activated by the ER stress inducer arsenicmore » trioxide (ATO). Several key players of the unfolded protein response, including GRP78, GADD153, ATF6, XBP1 and eIF2{alpha} are expressed and activated in PMNs treated with ATO or other ER stress inducers. Although caspase-4 is expressed and activated in neutrophils, treatment with a caspase-4 inhibitor did not attenuate the pro-apoptotic effect of ATO at a concentration that reverses caspase-4 processing and activation. Our results demonstrate for the first time that the ER stress-mediated apoptotic pathway operates in human neutrophils.« less
NASA Technical Reports Server (NTRS)
Rubin, R. J.
1975-01-01
The intravenous administration of DEHP solubilized by means of a number of different detergents leads to respiratory distress and death in rats. At autopsy the lungs are grossly enlarged, edamatous, and hemorrhagic. Light and electron microscopic evaluation of the lungs indicate engorgement of the interalveolar septa with edema fluid and polymorphonuclear leucocytes, degranulation of the leukocytes, and progessive destruction of the endothelial and epithelial cells. Consistent with the conclusion that solubilized DEHP results in a syndrome of "shock lung" is the associated massive fall in arterial blood pressure and the prevention of the lung pathology by pretreatment with pharmacologic doses of an antiinflammatory steroid, methylprednisolone. Evidence is also presented that suggests that the DEHP inadvertently administered to humans during transfusions is also in a solubilized state in the plasma.
Dianzani, Chiara; Cavalli, Roberta; Zara, Gian Paolo; Gallicchio, Margherita; Lombardi, Grazia; Gasco, Maria Rosa; Panzanelli, Patrizia; Fantozzi, Roberto
2006-01-01
Adhesion of polymorphonuclear cells (PMNs) to vascular endothelial cells (EC) is a critical step in recruitment and infiltration of leukocytes into tissues during inflammation. High doses of butyric acid have been shown to ameliorate inflammation in inflammatory bowel diseases (IBD). Cholesteryl-butyrate solid lipid nanoparticles (chol-but SLN) as prodrug are a possible delivery system for butyric acid. Sodium butyrate or chol-but SLN were coincubated with human PMNs and human umbilical vein EC (HUVEC); adhesion was quantified by computerized microimaging fluorescence analysis. Both chol-but SLN and sodium butyrate displayed antiadhesive effects on FMLP- and IL-1β-stimulated cells in a concentration–response curve (10−8–10−5 M), but chol-but SLN were in all cases more active. Moreover, chol-but SLN inhibited FMLP-induced adhesion of PMNs to FCS-coated plastic wells, thus showing a direct effect on PMNs, while sodium butyrate had little effect. Confocal microscopy showed that fluorescent SLN entered PMNs and HUVEC after 10 min incubation. Chol-but SLN acted either on activated PMN or HUVEC. Chol-but SLN inhibited O2−· production and myeloperoxidase release by PMNs evoked by FMLP, in a dose-dependent, but not time-dependent, manner and were more active than sodium butyrate. In conclusion, in all tests chol-but SLN were more active than sodium butyrate. Thus, chol-but SLN might be a valid alternative to sodium butyrate in the anti-inflammatory therapy of ulcerative colitis, avoiding complications related to the administration of sodium butyrate. PMID:16702992
Fradin, Chantal; Mavor, Abigail L; Weindl, Günther; Schaller, Martin; Hanke, Karin; Kaufmann, Stefan H E; Mollenkopf, Hans; Hube, Bernhard
2007-03-01
Candida albicans is a polymorphic opportunistic fungus that can cause life-threatening systemic infections following hematogenous dissemination in patients susceptible to nosocomial infection. Neutrophils form part of the innate immune response, which is the first line of defense against microbes and is particularly important in C. albicans infections. To compare the transcriptional response of leukocytes exposed to C. albicans, we investigated the expression of key cytokine genes in polymorphonuclear and mononuclear leukocytes after incubation with C. albicans for 1 h. Isolated mononuclear cells expressed high levels of genes encoding proinflammatory signaling molecules, whereas neutrophils exhibited much lower levels, similar to those observed in whole blood. The global transcriptional profile of neutrophils was examined by using an immunology-biased human microarray to determine whether different morphological forms or the viability of C. albicans altered the transcriptome. Hyphal cells appeared to have the broadest effect, although the most strongly induced genes were regulated independently of morphology or viability. These genes were involved in proinflammatory cell-cell signaling, cell signal transduction, and cell growth. Generally, genes encoding known components of neutrophil granules showed no upregulation at this time point; however, lactoferrin, a well-known candidacidal peptide, was secreted by neutrophils. Addition to inhibitors of RNA or protein de novo synthesis did not influence the killing activity within 30 min. These results support the general notion that neutrophils do not require gene transcription to mount an immediate and direct attack against microbes. However, neutrophils exposed to C. albicans express genes involved in communication with other immune cells.
Mirza, Zafar Nazir; Kato, Masahiko; Kimura, Hirokazu; Tachibana, Atsushi; Fujiu, Toru; Suzuki, Masato; Mochizuki, Hiroyuki; Tokuyama, Kenichi; Morikawa, Akihiro
2002-05-01
Beta2-adrenoceptor agonists, used widely as bronchodilator in treating bronchial asthma, may have anti-inflammatory activity. We examined whether various widely prescribed beta2-adrenoceptor agonists differ in anti-inflammatory mechanisms. We investigated effects of these drugs on superoxide anion generation by stimulated human polymorphonuclear leukocytes in vitro using chemiluminescence. At high concentrations, fenoterol significantly inhibited both N-formylmethionyl-leucyl-phenylalanine- and phorbol myristate acetate-induced superoxide generation by neutrophils. In contrast, salbutamol or procaterol partially inhibited generation with the former stimulus but not the latter. Inhibition by salbutamol or procaterol was completely reversed by either propranolol, a nonselective beta-adrenoceptor antagonist, or ICI-118551, a beta2-adrenoceptor-selective antagonist. In contrast, the effect of fenoterol at concentrations exceeding 10(-6) M against superoxide generation with the former stimulus was only partially reversed by antagonists, and the effect of high concentrations of fenoterol against generation with the latter stimulus was not reversed. No drugs scavenged superoxide at the highest concentration used (10(-5) M). Fenoterol at high concentrations has an inhibitory effect on superoxide generation that includes a component not mediated via beta2-adrenoceptors. Direct inhibition at or downstream from protein kinase C may be involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djeu, J.Y.; Parapanios, A.; Halkias, D.
This study was an in vitro attempt to identify the effector cells responsible for growth inhibition of the opportunistic fungus, candida albicans, and to determine if THC or another marijuana derivatives, 11-hydroxyTHC, would adversely affect their function. Using a 24h radiolabel assay, the authors found that growth inhibition of C. albicans was primarily mediated by PMN and monocytes that could be isolated normal human peripheral blood. Both effector cell types caused almost complete inhibition of Candida growth at effector/target ratio of 300/1 and inhibition was often still seen at 30/1-. Incubation of PMN, PBL, or monocytes for 1 hr atmore » 37C with THC or 11-hydroxyTHC caused a marked suppression of function in all 3 cell populations. Maximal suppression was obtained with 7.5-10..mu..g/ml of the drugs in medium containing 10% fetal bovine serum (FBS) or with 2-4..mu..g/ml in 1% FBS. These drug concentrations did not affect lymphoid cell viability or candida growth in the absence of lymphoid effector cells. Marijuana derivatives, therefore, are doubly dangerous in that opportunistic fungi such as C. albicans can grow in their presence while the effector cells that control fungal growth are readily inactivated.« less
Minelli, R; Serpe, L; Pettazzoni, P; Minero, V; Barrera, G; Gigliotti, CL; Mesturini, R; Rosa, AC; Gasco, P; Vivenza, N; Muntoni, E; Fantozzi, R; Dianzani, U; Zara, GP; Dianzani, C
2012-01-01
BACKGROUND AND PURPOSE Cholesteryl butyrate solid lipid nanoparticles (cholbut SLN) provide a delivery system for the anti-cancer drug butyrate. These SLN inhibit the adhesion of polymorphonuclear cells to the endothelium and may act as anti-inflammatory agents. As cancer cell adhesion to endothelium is crucial for metastasis dissemination, here we have evaluated the effect of cholbut SLN on adhesion and migration of cancer cells. EXPERIMENTAL APPROACH Cholbut SLN was incubated with a number of cancer cell lines or human umbilical vein endothelial cells (HUVEC) and adhesion was quantified by a computerized micro-imaging system. Migration was detected by the scratch ‘wound-healing’ assay and the Boyden chamber invasion assay. Expression of ERK and p38 MAPK was analysed by Western blot. Expression of the mRNA for E-cadherin and claudin-1 was measured by RT-PCR. KEY RESULTS Cholbut SLN inhibited HUVEC adhesiveness to cancer cell lines derived from human colon–rectum, breast, prostate cancers and melanoma. The effect was concentration and time-dependent and exerted on both cancer cells and HUVEC. Moreover, these SLN inhibited migration of cancer cells and substantially down-modulated ERK and p38 phosphorylation. The anti-adhesive effect was additive to that induced by the triggering of B7h, which is another stimulus inhibiting both ERK and p38 phosphorylation, and cell adhesiveness. Furthermore, cholbut SLN induced E-cadherin and inhibited claudin-1 expression in HUVEC. CONCLUSION AND IMPLICATIONS These results suggest that cholbut SLN could act as an anti-metastastic agent and they add a new mechanism to the anti-tumour activity of this multifaceted preparation of butyrate. PMID:22049973
Development of a Multimarker Urine Test for Prostate Cancer
2017-10-01
which can, for example, range dramatically from monitoring, in the case of low-risk cancers, to radiation or surgical procedures for higher risk...surgery, radiation , hormone therapy, chemotherapy, brachytherapy, cryotherapy, ultrasound, bisphosphate therapy, biologic 15 therapy, or vaccine therapy...a monokine involved in the acute inflammatory state of polymorphonuclear leukocyte recruitment and activation. CCL3 is expressed in many cell types
Loss of TRPV4 Function Suppresses Inflammatory Fibrosis Induced by Alkali-Burning Mouse Corneas
Okada, Yuka; Shirai, Kumi; Miyajima, Masayasu; Reinach, Peter S.; Yamanaka, Osamu; Sumioka, Takayoshi; Kokado, Masahide; Tomoyose, Katsuo; Saika, Shizuya
2016-01-01
In humans suffering from pulmonary disease and a mouse model, transient receptor potential vanilloid 4 (TRPV4) channel activation contributes to fibrosis. As a corneal alkali burn induces the same response, we determined if such an effect is also attributable to TRPV4 activation in mice. Accordingly, we determined if the alkali burn wound healing responses in wild-type (WT) mice are different than those in their TRPV4-null (KO) counterpart. Stromal opacification due to fibrosis in KO (n = 128) mice was markedly reduced after 20 days relative to that in WT (n = 157) mice. Immunohistochemistry revealed that increases in polymorphonuclear leukocytes and macrophage infiltration declined in KO mice. Semi-quantitative real time RT-PCR of ocular KO fibroblast cultures identified increases in proinflammatory and monocyte chemoattractant protein-1 chemoattractant gene expression after injury. Biomarker gene expression of fibrosis, collagen1a1 and α-smooth muscle actin were attenuated along with macrophage release of interleukin-6 whereas transforming growth factor β, release was unchanged. Tail vein reciprocal bone marrow transplantation between WT and KO chimera mouse models mice showed that reduced scarring and inflammation in KO mice are due to loss of TRPV4 expression on both corneal resident immune cells, fibroblasts and infiltrating polymorphonuclear leukocytes and macrophages. Intraperitoneal TRPV4 receptor antagonist injection of HC-067047 (10 mg/kg, daily) into WT mice reproduced the KO-phenotype. Taken together, alkali-induced TRPV4 activation contributes to inducing fibrosis and inflammation since corneal transparency recovery was markedly improved in KO mice. PMID:28030558
Seitz, Daniel H; Palmer, Annette; Niesler, Ulrike; Fröba, Janine S; Heidemann, Vera; Rittlinger, Anne; Braumüller, Sonja T; Zhou, Shaoxia; Gebhard, Florian; Knöferl, Markus W
2011-12-01
Blunt chest trauma is known to induce a pulmonary invasion of short-lived polymorphonuclear neutrophils and apoptosis of alveolar epithelial type 2 (AT2) cells. Apoptotic cells are removed by alveolar macrophages (AMΦ). We hypothesized that chest trauma alters the phagocytic response of AMΦ as well as the mediator release of AMΦ during phagocytosis. To study this, male Sprague-Dawley rats were subjected to blunt chest trauma. Phagocytosis assays were performed in AMΦ isolated 2 or 24 h after trauma with apoptotic cells or opsonized beads. Phagocytosis of apoptotic AT2 cells by unstimulated AMΦ was significantly increased 2 h after trauma. At 24 h, AMΦ from traumatized animals, stimulated with phorbol-12-myristate-13-acetate, ingested significantly more apoptotic polymorphonuclear neutrophils than AMΦ from sham animals. Alveolar macrophages after trauma released significantly higher levels of tumor necrosis factor α, macrophage inflammatory protein 1α, and cytokine-induced neutrophil chemoattractant 1 when they incorporated latex beads, but significantly lower levels of interleukin 1β and macrophage inflammatory protein 1α when they ingested apoptotic cells. In vivo, phagocytosis of intratracheally instilled latex beads was decreased in traumatized rats. The bronchoalveolar lavage concentrations of the phagocytosis-supporting surfactant proteins A and D after blunt chest trauma were slightly decreased, whereas surfactant protein D mRNA expression in AT2 cells was significantly increased after 2 h. These findings indicate that chest trauma augments the phagocytosis of apoptotic cells by AMΦ. Phagocytosis of opsonized beads enhances and ingestion of apoptotic cells downregulates the immunologic response following lung contusion. Our data emphasize the important role of phagocytosis during posttraumatic inflammation after lung contusion.
Sabel, Michael S; Skitzki, Joseph; Stoolman, Lloyd; Egilmez, Nejat K; Mathiowitz, Edith; Bailey, Nicola; Chang, Wen-Jian; Chang, Alfred E
2004-02-01
Local, sustained delivery of cytokines at a tumor can enhance induction of antitumor immunity and may be a feasible neoadjuvant immunotherapy for breast cancer. We evaluated the ability of intratumoral poly-lactic-acid-encapsulated microspheres (PLAM) containing interleukin 12 (IL-12), tumor necrosis factor alpha (TNF-alpha), and granulocyte-macrophage colony stimulating factor (GM-CSF) in a murine model of breast cancer to generate a specific antitumor response. BALB/c mice with established MT-901 tumors underwent resection or treatment with a single intratumoral injection of PLAM containing IL-12, TNF-alpha, or GM-CSF, alone or in combination. Two weeks later, lymph nodes and spleens were harvested, activated with anti-CD3 monoclonal antibodies (mAb) and rhIL-2, and assessed for antitumor reactivity by an interferon gamma (IFNgamma) release assay. Tumor-infiltrating lymphocyte (TIL) analysis was performed on days 2 and 5 after treatment by mechanically processing the tumors to create a single cell suspension, followed by three-color fluorescence-activated cell sorter (FACS) analysis. Intratumoral injection of cytokine-loaded PLAM significantly suppressed tumor growth, with the combination of IL-12 and TNF-alpha leading to increased infiltration by polymorphonuclear cells and CD8+ T-cells in comparison with controls. The induction of tumor-specific reactive T-cells in the nodes and spleens, as measured by IFN-gamma production, was highest with IL-12 and TNF-alpha. This treatment resulted in resistance to tumor rechallenge. A single intratumoral injection of IL-12 and TNF-alpha-loaded PLAM into a breast tumor leads to infiltration by polymorphonuclear cells and CD8+ T-cells with subsequent tumor regression. In addition, this local therapy induces specific antitumor T-cells in the lymph nodes and spleens, resulting in memory immune response.
Shak, S; Goldstein, I M
1985-09-01
Human polymorphonuclear leukocytes (PMN) not only synthesize and respond to leukotriene B4 (LTB4), but also catabolize this mediator of inflammation rapidly and specifically by omega-oxidation. To characterize the enzyme(s) responsible for omega-oxidation of LTB4, human PMN were disrupted by sonication and subjected to differential centrifugation to yield membrane, granule, and cytosol fractions (identified by biochemical markers). LTB4 omega-hydroxylase activity was concentrated (together with NADPH cytochrome c reductase activity) only in the membrane fraction (specific activity increased 10-fold as compared to whole sonicates, 41% recovery). Negligible activity was detected in granule or cytosol fractions. LTB4 omega-hydroxylase activity in isolated PMN membranes was linear with respect to duration of incubation and protein concentration, was maximal at pH 7.4, had a Km for LTB4 of 0.6 microM, and was dependent on oxygen and on reduced pyridine nucleotides (apparent Km for NADPH = 0.5 microM; apparent Km for NADH = 223 microM). The LTB4 omega-hydroxylase was inhibited significantly by carbon monoxide, ferricytochrome c, SKF-525A, and Triton X-100, but was not affected by alpha-naphthoflavone, azide, cyanide, catalase, and superoxide dismutase. Finally, isolated PMN membranes exhibited a carbon monoxide difference spectrum with a peak at 452 nm. Thus, we have partially purified the LTB4 omega-hydroxylase in human PMN and identified the enzyme as a membrane-associated, NADPH-dependent cytochrome P-450.
Network Analyses Reveal Pervasive Functional Regulation Between Proteases in the Human Protease Web
Fortelny, Nikolaus; Cox, Jennifer H.; Kappelhoff, Reinhild; Starr, Amanda E.; Lange, Philipp F.; Pavlidis, Paul; Overall, Christopher M.
2014-01-01
Proteolytic processing is an irreversible posttranslational modification affecting a large portion of the proteome. Protease-cleaved mediators frequently exhibit altered activity, and biological pathways are often regulated by proteolytic processing. Many of these mechanisms have not been appreciated as being protease-dependent, and the potential in unraveling a complex new dimension of biological control is increasingly recognized. Proteases are currently believed to act individually or in isolated cascades. However, conclusive but scattered biochemical evidence indicates broader regulation of proteases by protease and inhibitor interactions. Therefore, to systematically study such interactions, we assembled curated protease cleavage and inhibition data into a global, computational representation, termed the protease web. This revealed that proteases pervasively influence the activity of other proteases directly or by cleaving intermediate proteases or protease inhibitors. The protease web spans four classes of proteases and inhibitors and so links both recently and classically described protease groups and cascades, which can no longer be viewed as operating in isolation in vivo. We demonstrated that this observation, termed reachability, is robust to alterations in the data and will only increase in the future as additional data are added. We further show how subnetworks of the web are operational in 23 different tissues reflecting different phenotypes. We applied our network to develop novel insights into biologically relevant protease interactions using cell-specific proteases of the polymorphonuclear leukocyte as a system. Predictions from the protease web on the activity of matrix metalloproteinase 8 (MMP8) and neutrophil elastase being linked by an inactivating cleavage of serpinA1 by MMP8 were validated and explain perplexing Mmp8 −/− versus wild-type polymorphonuclear chemokine cleavages in vivo. Our findings supply systematically derived and validated evidence for the existence of the protease web, a network that affects the activity of most proteases and thereby influences the functional state of the proteome and cell activity. PMID:24865846
Menezes, Renato; Bramante, Clóvis Monteiro; da Silva Paiva, Katiúcia Batista; Letra, Ariadne; Carneiro, Everdan; Fernando Zambuzzi, Willian; Granjeiro, José Mauro
2006-09-01
The purpose of this study was to determine the expression of receptor activator of NFkappaB ligand (RANKL) and osteoprotegerin (OPG) associated with bone destruction in periapical cysts and granulomas. Forty human dental chronic periapical lesions were collected after periapical surgery. The lesions collected were fixed in 10% buffered formalin and histologically processed. At least 2 sections of each specimen were stained with hematoxylin and eosin for microscopic diagnosis. After that, 10 human periapical granulomas and 10 cysts were selected for immunohistochemical analysis for RANKL, OPG, and CD68+. Polymorphonuclear neutrophils, macrophages, endothelial cells, and lymphocytes were stained for RANKL and OPG in both lesions. Epithelial cells were also stained for RANKL and OPG in periapical cysts. Quantitative analysis was conducted and the results were expressed as a ratio of the number of immunostained cells over the total number of cells in the field (n = 100). The ratio of RANKL+/total cells was higher than OPG+/total cells in periapical granulomas (0.553 +/- 0.153 and 0.483 +/- 0.189, respectively; P < .0012; paired t test) and in cysts (0.519 +/- 0.09 and 0.339 +/- 0.117, respectively; P < .0001; paired t test). The ratios of OPG+/total cells (P < .0001; paired t test) and RANKL+/total cells (P < .0322; paired t test) were greater in granulomas than in cysts. However, the ratio RANKL+/OPG+ in granulomas (1.336 +/- 0.723) and cysts (1.404 +/- 0.385) was not significantly different. The ratio of CD68+/total cells was significantly higher in granulomas (0.381 +/- 0.040) than in cysts (0.307 +/- 0.068) (P < .0001; unpaired t test with Welch correction). Taking into account the limitations of the experimental approach employed, our findings indicate the presence of RANKL and OPG in cysts and granulomas, strongly suggesting the involvement of these gene products in the development of periapical lesions.
Co-incubation of PMN and CaCo-2 cells modulates inflammatory potential.
Schaefer, M B; Schaefer, C A; Hecker, M; Morty, R E; Witzenrath, M; Seeger, W; Mayer, K
2017-05-20
Polymorphonuclear granulocytes (PMN) are activated in inflammatory reactions. Intestinal epithelial cells are relevant for maintaining the intestinal barrier. We examined interactions of PMN and intestinal epithelial cell-like CaCo-2 cells to elucidate their regulation of inflammatory signalling and the impact of cyclooxygenase (COX), nitric oxide (NO) and platelet-activating factor (PAF). Human PMN and CaCo-2 cells, separately and in co-incubation, were stimulated with the calcium ionophore A23187 or with N-Formyl-methionyl-leucyl-phenylalanin (fMLP) that activates PMN only. Human neutrophil elastase (HNE) and respiratory Burst were measured. To evaluate the modulation of inflammatory crosstalk we applied inhibitors of COX (acetyl salicylic acid; ASA), NO-synthase (N-monomethyl-L-arginin; L-NMMA), and the PAF-receptor (WEB2086). Unstimulated, co-incubation of CaCo-2 cells and PMN led to significantly reduced Burst and elevated HNE as compared to PMN. After stimulation with A23187, co-incubation resulted in an inhibition of Burst and HNE. Using fMLP co-incubation failed to modulate Burst but increased HNE. Without stimulation, all three inhibitors abolished the effect of co-incubation on Burst but did not change HNE. ASA partly prevented modulation of Burst L-NMMA and WEB2086 did not change Burst but abolished mitigation of HNE. Without stimulation, co-incubation reduced Burst and elevated HNE. Activation of PMN and CaCo-2 cells by fMLP as compared to A23187 resulted in a completely different pattern of Burst and HNE, possibly due to single vs. dual cell activation. Anti-inflammatory effect of co-incubation might in part be due to due to COX-signalling governing Burst whereas NO- and PAF-dependent signalling seemed to control HNE release.
Choi, Jongsik; Bogdanski, Denise; Köller, Manfred; Esenwein, Stefan A; Müller, Dietmar; Muhr, Gert; Epple, Matthias
2003-09-01
Nickel-titanium shape-memory alloys (NiTi-SMA) were coated with calcium phosphate by dipping in oversaturated calcium phosphate solution. The layer thickness (typically 5-20 micrometer) can be varied by choice of the immersion time. The porous nature of the layer of microcrystals makes it mechanically stable enough to withstand both the shape-memory transition upon cooling and heating and also strong bending of the material (superelastic effect). This layer may improve the biocompatibility of NiTi-SMA, particulary for osteosynthetic devices by creating a more physiological surface and by restricting a potential nickel release. The adherence of human leukocytes (peripheral blood mononuclear cells and polymorphonuclear neutrophil granulocytes) and platelets to the calcium phosphate layer was analyzed in vitro. In comparison to non-coated NiTi-SMA, leukocytes and platelets showed a significantly increased adhesion to the coated NiTi-SMA.
Chebotar, Igor' V; Konchakova, Evgenia D; Maianskii, Andrey N
2013-08-01
Staphylococcus aureus, a major opportunistic pathogen, is a leading cause of biofilm-related infections in clinical practice. Staphylococcal biofilms are highly resistant to antibacterial medicines and immune effector cells. The main result of our work is the discovery of nano-vesicles in the supernatant of the human neutrophil-S. aureus biofilm system. We also found that phospholipase C treatment causes complete destruction of these vesicles. While the addition of proteinase K led to a partial structural disorganization of the vesicles, DNase treatment did not influence the vesicle structure. These observations allowed us to conclude that phospholipids and proteins play a structure-forming role in the formation of these nano-vesicles. The vesicles demonstrated anti-biofilm activities when tested against Staphylococcus epidermidis (strains 178M and 328/5) biofilms, but were ineffective for S. aureus (strains 5983/2, 5663 and 18A) biofilms.
Anaplasma phagocytophilum infection (granulocytic anaplasmosis) in a dog from Vancouver Island
2005-01-01
Abstract A 7-year-old Labrador retriever had nonspecific clinical signs that included lethargy, malaise, and difficult ambulation. The dog was native to Vancouver Island, British Columbia, and had never left this area. Morulae were identified in polymorphonuclear cells. Serologic studies and polymerase chain reaction (PCR) testing confirmed canine anaplasmosis caused by Anaplasma phagocytophilum. The dog recovered after treatment with tetracycline. PMID:16231653
Iwahi, T; Imada, A
1988-01-01
Two type 1 fimbria-producing strains of Escherichia coli, 31-B and K12W1-3, and two type 1 fimbriae-defective mutants derived from 31-B, BH5 and BH9, were compared for their capacity to induce vesical infection in mice undergoing water diuresis and to interact in vitro with murine peritoneal exudate polymorphonuclear leukocytes (PMN). Strains 31-B and BH5 caused rapid bacterial multiplication in the bladder wall after being inoculated intrabladderly; their log-phase cells grown at 37 degrees C, in striking contrast to their stationary-phase or 17 degrees C-grown cells, resisted phagocytic killing by PMN in the presence of normal murine serum. Strains K12W1-3 and BH9 failed to cause vesical infection, and their cells were always susceptible to the opsonophagocytic killing by PMN irrespective of the growth conditions. Nevertheless, the log-phase cells of the three isogenic strains, 31-B, BH5, and BH9, grown at 37 degrees C gave almost the same chemiluminescent response patterns during incubation with PMN in normal serum. The phagocytic resistance in strains 31-B and BH5 was eliminated by briefly treating bacterial cells with EDTA. These results suggest that the two virulent strains may express an antiphagocytic activity during their growth in the bladder and continue to stimulate the oxidative metabolic burst of PMN without being ingested and killed, and that the antiphagocytic activity may be related to a bacterial surface component(s) that is removed by EDTA. PMID:2894364
Leukotriene B4-loaded microspheres: a new therapeutic strategy to modulate cell activation
Nicolete, Roberto; Rius, Cristina; Piqueras, Laura; Jose, Peter J; Sorgi, Carlos A; Soares, Edson G; Sanz, Maria J; Faccioli, Lúcia H
2008-01-01
Background Leukotriene B4 (LTB4) is a potent inflammatory mediator that also stimulates the immune response. In addition, it promotes polymorphonuclear leukocyte phagocytosis, chemotaxis, chemokinesis and modulates cytokines release. Regarding chemical instability of the leukotriene molecule, in the present study we assessed the immunomodulatory activities conferred by LTB4 released from microspheres (MS). A previous oil-in-water emulsion solvent extraction-evaporation method was chosen to prepare LTB4-loaded MS. Results In the mice cremasteric microcirculation, intraescrotal injection of 0.1 ml of LTB4-loaded MS provoked significant increases in leukocyte rolling flux, adhesion and emigration besides significant decreases in the leukocyte rolling velocity. LTB4-loaded MS also increase peroxisome proliferator-activated receptor-α (PPARα) expression by murine peritoneal macrophages and stimulate them to generate nitrite levels. Monocyte chemoattractant protein-1 (MCP-1) and nitric oxide (NO) productions were also increased when human umbilical vein and artery endothelial cells (HUVECs and HUAECs, respectively) were stimulated with LTB4-loaded MS. Conclusion LTB4-loaded MS preserve the biological activity of the encapsulated mediator indicating their use as a new strategy to modulate cell activation, especially in the innate immune response. PMID:18627613
Human Synovial Lubricin Expresses Sialyl Lewis x Determinant and Has L-selectin Ligand Activity*
Jin, Chunsheng; Ekwall, Anna-Karin Hultgård; Bylund, Johan; Björkman, Lena; Estrella, Ruby P.; Whitelock, John M.; Eisler, Thomas; Bokarewa, Maria; Karlsson, Niclas G.
2012-01-01
Lubricin (or proteoglycan 4 (PRG4)) is an abundant mucin-like glycoprotein in synovial fluid (SF) and a major component responsible for joint lubrication. In this study, it was shown that O-linked core 2 oligosaccharides (Galβ1–3(GlcNAcβ1–6)GalNAcα1-Thr/Ser) on lubricin isolated from rheumatoid arthritis SF contained both sulfate and fucose residues, and SF lubricin was capable of binding to recombinant L-selectin in a glycosylation-dependent manner. Using resting human polymorphonuclear granulocytes (PMN) from peripheral blood, confocal microscopy showed that lubricin coated circulating PMN and that it partly co-localized with L-selectin expressed by these cells. In agreement with this, activation-induced shedding of L-selectin also mediated decreased lubricin binding to PMN. It was also found that PMN recruited to inflamed synovial area and fluid in rheumatoid arthritis patients kept a coat of lubricin. These observations suggest that lubricin is able to bind to PMN via an L-selectin-dependent and -independent manner and may play a role in PMN-mediated inflammation. PMID:22930755
Vegetable dust and airway disease: inflammatory mechanisms.
Cooper, J A; Buck, M G; Gee, J B
1986-01-01
Exposure to cotton or grain dust causes an obstructive bronchitis in certain subjects, mechanisms of which are poorly understood. A difficulty encountered in discerning mechanisms of this airway disease is the lack of knowledge of the active components of these dusts. Clinical features suggest common but not exact mechanisms of the airway disease associated with these vegetable dusts. Human and animal studies show evidence of acellular and cellular inflammatory mechanisms of the bronchoconstriction and inflammation associated with these disorders. Potential cellular sources include alveolar macrophages, polymorphonuclear leukocytes, mast cells, basophils, eosinophils and lymphocytes. Acellular origins include the complement and humoral antibody systems, both of which have been implicated, although their pathogenic role in grain or cotton dust disorders is uncertain. In this review we critically address potential inflammatory mechanisms of airway alterations resulting from cotton or grain dust exposure. General mechanisms of bronchoconstriction are first presented, then specific studies dealing with either of the two dusts are discussed. We believe this area of research may be fruitful in dissecting mechanisms of bronchoconstriction and airway inflammation, especially as more human studies are undertaken. PMID:3519205
Yoneda, M; Maeda, K; Aono, M
1990-01-01
The direct effects of the culture supernatant of oral microorganisms on the bactericidal activity of human polymorphonuclear leukocytes (PMNs) were investigated. The bactericidal activity of PMNs, which were preincubated with the supernatant of Bacteroides gingivalis, Bacteroides intermedius, Bacteroides melaninogenicus or phosphate-buffered saline, was examined by counting the surviving bacteria. B. gingivalis-treated PMNs were found to have a diminished ability for killing bacteria in the presence or absence of serum. The chemiluminescence response of PMNs, which were preincubated with the culture supernatant of B. gingivalis, was strikingly reduced compared with that of PMNs preincubated with phosphate-buffered saline or other bacterial culture supernatants. The production of superoxide anion (O2-) by PMNs stimulated with either formyl-methionyl-leucyl-phenylalanine or phorbol myristate acetate was reduced in both cases after the PMNs were preincubated with the culture supernatant of B. gingivalis. However, it was observed that there was more reduction in superoxide anion (O2-) production stimulated with formyl-methionyl-leucyl-phenylalanine compared with that stimulated with phorbol myristate acetate. These results suggest that B. gingivalis releases a factor which interferes with the bactericidal activity of PMNs by modulating the generation of reactive oxygen species. These suppressive effects on bactericidal activity may be important in the pathogenesis of this microorganism. PMID:2153632
Gielen, Paul R.; Schulte, Barbara M.; Kers-Rebel, Esther D.; Verrijp, Kiek; Bossman, Sandra A.J.F.H.; ter Laan, Mark; Wesseling, Pieter
2016-01-01
Background Gliomas are primary brain tumors that are associated with a poor prognosis. The introduction of new treatment modalities (including immunotherapy) for these neoplasms in the last 3 decades has resulted in only limited improvement in survival. Gliomas are known to create an immunosuppressive microenvironment that hampers the efficacy of (immuno)therapy. One component of this immunosuppressive environment is the myeloid-derived suppressor cell (MDSC). Methods We set out to analyze the presence and activation state of MDSCs in blood (n = 41) and tumor (n = 20) of glioma patients by measuring S100A8/9 and arginase using flow cytometry and qPCR. Inhibition of T cell proliferation and cytokine production after stimulation with anti-CD3/anti-CD28 coated beads was used to measure in vitro MDSC suppression capacity. Results We report a trend toward a tumor grade-dependent increase of both monocytic (M-) and polymorphonuclear (PMN-) MDSC subpopulations in the blood of patients with glioma. M-MDSCs of glioma patients have increased levels of intracellular S100A8/9 compared with M-MDSCs in healthy controls (HCs). Glioma patients also have increased S100A8/9 serum levels, which correlates with increased arginase activity in serum. PMN-MDSCs in both blood and tumor tissue demonstrated high expression of arginase. Furthermore, we assessed blood-derived PMN-MDSC function and showed that these cells have potent T cell suppressive function in vitro. Conclusions These data indicate a tumor grade-dependent increase of MDSCs in the blood of patients with a glioma. These MDSCs exhibit an increased activation state compared with MDSCs in HCs, independent of tumor grade. PMID:27006175
Broadley, C.; Hoover, R. L.
1989-01-01
The plasma protein, ceruloplasmin, has been implicated as an anti-inflammatory agent, although this property has not been demonstrated unequivocally in vivo. The role of this protein in an in vitro system of cultured endothelial cells and polymorphonuclear leukocytes (PMNs) was investigated. One of the initial steps in an inflammatory response is increased adhesion between PMNs and the endothelial lining of the blood vessels. The results showed that ceruloplasmin interferes with this process and reduces the number of phorbol myristate acetate-activated leukocytes that adhere to endothelium. Preincubation of either the activated PMNs or the endothelium with ceruloplasmin did not produce the same results, suggesting that the continuous presence of ceruloplasmin is required. During attachment PMNs become activated and release a variety of substances, including toxic oxygen species such as superoxide and hydrogen peroxide. In the in vitro system used in this study no injury occurred to the endothelial cells, as measured by 51Cr release, when activated PMNs were added with ceruloplasmin. The data show that ceruloplasmin reduced, in a dose dependent manner, the levels of superoxide produced by the activated PMNs, further supporting ceruloplasmin's previously reported role as a scavenger of superoxide. Ceruloplasmin also reduced the levels of superoxide when activated PMNs were in contact with endothelial cells. Although ceruloplasmin interfered with the copper-dependent scavenger enzyme, superoxide dismutase (SOD), in a cell-free system, ceruloplasmin had no effect on SOD in intact endothelial cells. These results suggest that ceruloplasmin may act as an anti-inflammatory agent by reducing the number of PMNs attaching to endothelium and by acting as an extracellular scavenger of superoxide. PMID:2552811
Role of Treg and TH17 cells of the gastric mucosa in children with Helicobacter pylori gastritis.
Gil, Joo Hyun; Seo, Jeong Wan; Cho, Min-Sun; Ahn, Jung-Hyuck; Sung, Hye Youn
2014-02-01
The aim of the present study was to examine the expression of FOXP3, interleukin (IL)-10, transforming growth factor (TGF)-β1, IL-17A, and T helper 17 (TH17) cells/FOXP3+ regulatory T (Treg) cells balance in the gastric mucosa of children with Helicobacter pylori infection, in relation to the gastric histopathology. Antral mucosal biopsies were obtained from 20 children with H pylori(+) gastritis and 20 age- and sex-matched normal controls. Histopathology was assessed by the updated Sydney classification. Gene expression of FOXP3, IL-10, and TGF-β1 was analyzed by quantitative real-time polymerase chain reaction. Immunohistochemical staining for FOXP3+ Treg and TH17 cells was performed. The gene expression levels of FOXP3, TGF-β1, and IL-10 messenger RNA (mRNA) and the number of FOXP3+ Treg were significantly higher in the H pylori(+) gastritis group than in the control group (P < 0.01). FOXP3 mRNA levels were correlated positively with TGF-β1 and IL-10 mRNA levels in the H pylori(+) gastritis group (P < 0.05). Furthermore, FOXP3 mRNA levels were correlated positively with the bacterial density, infiltration of polymorphonuclear cells, and mononuclear cells in the H pylori(+) gastritis group (P < 0.05). The number of TH17 cells was significantly higher in the H pylori(+) gastritis group than in the control group (P < 0.05). In addition, the number of TH17 cells was correlated negatively with the bacterial density and positively with the inflammatory scores of polymorphonuclear cells and mononuclear cells in the H pylori(+) gastritis group (P < 0.05). A negative correlation between the TH17 cells/FOXP3+ Treg ratio and the bacterial density was demonstrated in the H pylori(+) gastritis group (P < 0.05). This study suggested that a TH17/Treg balance toward a Treg-biased response favors the persistence of bacteria, causing chronic active gastritis.
Production and function of cytokines in natural and acquired immunity to Candida albicans infection.
Ashman, R B; Papadimitriou, J M
1995-01-01
Host resistance against infections caused by the yeast Candida albicans is mediated predominantly by polymorphonuclear leukocytes and macrophages. Antigens of Candida stimulate lymphocyte proliferation and cytokine synthesis, and in both humans and mice, these cytokines enhance the candidacidal functions of the phagocytic cells. In systemic candidiasis in mice, cytokine production has been found to be a function of the CD4+ T helper (Th) cells. The Th1 subset of these cells, characterized by the production of gamma interferon and interleukin-2, is associated with macrophage activation and enhanced resistance against reinfection, whereas the Th2 subset, which produces interleukins-4, -6, and -10, is linked to the development of chronic disease. However, other models have generated divergent data. Mucosal infection generally elicits Th1-type cytokine responses and protection from systemic challenge, and identification of cytokine mRNA present in infected tissues of mice that develop mild or severe lesions does not show pure Th1- or Th2-type responses. Furthermore, antigens of C. albicans, mannan in particular, can induce suppressor cells that modulate both specific and nonspecific cellular and humoral immune responses, and there is an emerging body of evidence that molecular mimicry may affect the efficiency of anti-Candida responses within defined genetic contexts. PMID:8531890
Silicosis and coal workers' pneumoconiosis.
Castranova, V; Vallyathan, V
2000-01-01
Exposure to coal mine dust and/or crystalline silica results in pneumoconiosis with initiation and progression of pulmonary fibrosis. This review presents characteristics of simple and complicated coal workers' pneumoconiosis (CWP) as well as pathologic indices of acute and chronic silicosis by summarizing results of in vitro, animal, and human investigations. These results support four basic mechanisms in the etiology of CWP and silicosis: a) direct cytotoxicity of coal dust or silica, resulting in lung cell damage, release of lipases and proteases, and eventual lung scarring; b) activation of oxidant production by pulmonary phagocytes, which overwhelms the antioxidant defenses and leads to lipid peroxidation, protein nitrosation, cell injury, and lung scarring; c) activation of mediator release from alveolar macrophages and epithelial cells, which leads to recruitment of polymorphonuclear leukocytes and macrophages, resulting in the production of proinflammatory cytokines and reactive species and in further lung injury and scarring; d) secretion of growth factors from alveolar macrophages and epithelial cells, stimulating fibroblast proliferation and eventual scarring. Results of in vitro and animal studies provide a basis for proposing these mechanisms for the initiation and progression of pneumoconiosis. Data obtained from exposed workers lend support to these mechanisms. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:10931786
Shak, S; Reich, N O; Goldstein, I M; Ortiz de Montellano, P R
1985-10-25
Human polymorphonuclear leukocytes (PMN) not only generate and respond to leukotriene B4 (LTB4), but also catabolize this mediator of inflammation rapidly and specifically by omega-oxidation (probably due to the action of a cytochrome P-450 enzyme). To develop pharmacologically useful inhibitors of the LTB4 omega-hydroxylase in human PMN, we devised a general scheme for synthesizing terminal acetylenic fatty acids based on the "acetylenic zipper" reaction. We found that the LTB4 omega-hydroxylase in intact PMN and in PMN sonicates is inactivated in a concentration-dependent fashion by terminal acetylenic analogues of lauric, palmitic, and stearic acids (i.e. 11-dodecynoic, 15-hexadecynoic, and 17-octadecynoic acids). Consistent with a suicidal process, inactivation of the LTB4 omega-hydroxylase requires molecular oxygen and NADPH, is time-dependent, and follows pseudo-first-order kinetics. Inactivation of the omega-hydroxylase by acetylenic fatty acids also is dependent on the terminal acetylenic moiety and the carbon chain length. Saturated fatty acids lacking a terminal acetylenic moiety do not inactivate the omega-hydroxylase. In addition, the two long-chain (C16, C18) acetylenic fatty acids inactivate the omega-hydroxylase at much lower concentrations (less than 5.0 microM) than those required for inactivation by the short-chain (C12) terminal acetylenic fatty acid (100 microM). Potent suicidal inhibitors of the LTB4 omega-hydroxylase in human PMN will help elucidate the roles played by LTB4 and its omega-oxidation products in regulating PMN function and in mediating inflammation.
Carmody, Aaron B.; Jarrett, Clayton O.; Hinnebusch, B. Joseph
2013-01-01
Yersinia pestis carries homologues of the toxin complex (Tc) family proteins, which were first identified in other Gram-negative bacteria as having potent insecticidal activity. The Y. pestis Tc proteins are neither toxic to fleas nor essential for survival of the bacterium in the flea, even though tc gene expression is highly upregulated and much more of the Tc proteins YitA and YipA are produced in the flea than when Y. pestis is grown in vitro. We show that Tc+ and Tc− Y. pestis strains are transmitted equivalently from coinfected fleas, further demonstrating that the Tc proteins have no discernible role, either positive or negative, in transmission by the flea vector. Tc proteins did, however, confer Y. pestis with increased resistance to killing by polymorphonuclear leukocytes (PMNs). Resistance to killing was not the result of decreased PMN viability or increased intracellular survival but instead correlated with a Tc protein-dependent resistance to phagocytosis that was independent of the type III secretion system (T3SS). Correspondingly, we did not detect T3SS-dependent secretion of the native Tc proteins YitA and YipA or the translocation of YitA– or YipA–β-lactamase fusion proteins into CHO-K1 (CHO) cells or human PMNs. Thus, although highly produced by Y. pestis within the flea and related to insecticidal toxins, the Tc proteins do not affect interaction with the flea or transmission. Rather, the Y. pestis Tc proteins inhibit phagocytosis by mouse PMNs, independent of the T3SS, and may be important for subverting the mammalian innate immune response immediately following transmission from the flea. PMID:23959716
Grabner, G; Luger, T A; Luger, B M; Smolin, G; Oh, J O
1983-05-01
Rabbit corneal epithelial cell cultures produce a cytokine (CETAF) that greatly enhances the proliferation of C3H/HeJ mouse thymocytes. The rabbit corneal cell line SIRC was used to generate CETAF activity in the culture supernatant. CETAF was then partially purified by Sephacryl S-200 gel filtration, where peaks of activity eluted in a molecular weight range of 95,000-55,000 (CETAF I) and 30,000-15,000 (CETAF II). Similar to the epidermal cell-derived thymocyte-activating factor (ETAF), CETAF (I and II) stimulated the growth of a human dermal fibroblast line (CRL 1445) in a dose-dependent manner, but failed to enhance the proliferation of an Interleukin 2 (IL 2)-dependent T-cell line (CT 6). Although CETAF did not exhibit any IL 2 activity, it clearly enhanced the IL 2 production by C3H/HeJ mouse splenocytes stimulated with suboptimal doses of lectins. Crude SIRC supernatants as well as the partially purified CETAF preparations showed a marked inhibition of polymorphonuclear neutrophil migration at high concentrations, but were significantly chemotactic when diluted samples were tested. CETAF release by SIRC cells was increased by stimulation with mitomycin C, phorbolmyristate acetate, hydroxyurea, silica, lipopolysaccaride B, and when the cells were cultured under serum-free conditions. These observations suggest that corneal epithelial cells may not only interact with the immune system in a way similar to keratinocytes, but may also stimulate corneal stromal cell through the production of CETAF.
Giebink, G S; Wright, P F
1983-01-01
We have previously shown that chinchillas infected with a multiply passaged laboratory strain of influenza A/NWS/33 (H1N1) develop negative middle-ear pressure; polymorphonuclear leukocyte oxidative, bactericidal, and chemotactic dysfunction; and increased susceptibility to pneumococcal otitis media. Because influenza A virus strains show different virulence in humans, three such strains were compared in the chinchilla model. Negative middle-ear pressure and tympanic membrane inflammation developed significantly more often in chinchillas infected with wild-type H3N2 virus than with either wild-type H1N1 virus or an attenuated, cold-adapted H3N2 vaccine strain, CR29. Marked depression in polymorphonuclear leukocyte chemiluminescent activity also developed significantly more often in H3N2 infected animals than in H1N1- or CR29-infected animals. Intranasal challenge of influenza virus-infected animals with type 7 Streptococcus pneumoniae resulted in a significantly greater occurrence of pneumococcal otitis media in H3N2-infected animals than in H1N1-, CR29-, or non-influenza-infected control animals. Clearance of pneumococci from nasal washings of animals infected with wild-type H3N2 was significantly delayed in comparison with the other groups. Thus, the previously demonstrated increased susceptibility to otitis media among children infected with H3N2 influenza virus may relate to the capacity of this strain to induce negative middle-ear pressure, polymorphonuclear leukocyte dysfunction, and alteration in the mucosal clearance of pneumococci. PMID:6885170
Marçal, Juliana R B; Samuel, Renata O; Fernandes, Danielle; de Araujo, Marcelo S; Napimoga, Marcelo H; Pereira, Sanivia A L; Clemente-Napimoga, Juliana T; Alves, Polyanna M; Mattar, Rinaldo; Rodrigues, Virmondes; Rodrigues, Denise B R
2010-06-01
Cysts and granulomas are chronic periapical lesions mediated by a set of inflammatory mediators that develop to contain a periapical infection. This study analyzed the nature of the inflammatory infiltrate, presence of mast cells, and in situ expression of cytokines (interleukin [IL]-17 and transforming growth factor [TGF]-beta), chemokines (macrophage inflammatory protein [MIP]-1beta and monocyte chemotactic protein [MCP]-1), and nuclear transcription factor (FoxP3) in human periapical granulomas and cysts compared with a control group. Fifty-five lesions (25 periapical cysts, 25 periapical granulomas, and 5 controls) were analyzed. The type of inflammatory infiltrate was evaluated by hematoxylin-eosin staining, and the presence of mast cells was analyzed by toluidine blue staining. Indirect immunohistochemistry was used to evaluate the expression of cytokines, chemokines, and FoxP3. The inflammatory infiltrate mainly consisted of mononuclear cells. In cysts, mononuclear infiltrates were significantly more frequent than mixed (polymorphonuclear/mononuclear) infiltrates (P = .04). Mixed inflammatory infiltrates were significantly more frequent in patients with sinus tract (P = .0001). The number of mast cells was significantly higher in granulomas than in cystic lesions (P = .02). A significant difference in the expression of IL-17 (P = .001) and TGF-beta (P = .003) was observed between cysts and granulomas and the control group. Significantly higher IL-17 levels were also observed in cases of patients with sinus tract (P = .03). We observed that chronic periapical lesions might experience a reagudization process that is correlated with an increased leukocyte infiltration, with the predominance of neutrophils attracted by a chemokine milieu, as well as the increased presence of IL-17. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Live Candida albicans suppresses production of reactive oxygen species in phagocytes.
Wellington, Melanie; Dolan, Kristy; Krysan, Damian J
2009-01-01
Production of reactive oxygen species (ROS) is an important aspect of phagocyte-mediated host responses. Since phagocytes play a crucial role in the host response to Candida albicans, we examined the ability of Candida to modulate phagocyte ROS production. ROS production was measured in the murine macrophage cell line J774 and in primary phagocytes using luminol-enhanced chemiluminescence. J774 cells, murine polymorphonuclear leukocytes (PMN), human monocytes, and human PMN treated with live C. albicans produced significantly less ROS than phagocytes treated with heat-killed C. albicans. Live C. albicans also suppressed ROS production in murine bone marrow-derived macrophages from C57BL/6 mice, but not from BALB/c mice. Live C. albicans also suppressed ROS in response to external stimuli. C. albicans and Candida glabrata suppressed ROS production by phagocytes, whereas Saccharomyces cerevisiae stimulated ROS production. The cell wall is the initial point of contact between Candida and phagocytes, but isolated cell walls from both heat-killed and live C. albicans stimulated ROS production. Heat-killed C. albicans has increased surface exposure of 1,3-beta-glucan, a cell wall component that can stimulate phagocytes. To determine whether surface 1,3-beta-glucan exposure accounted for the difference in ROS production, live C. albicans cells were treated with a sublethal dose of caspofungin to increase surface 1,3-beta-glucan exposure. Caspofungin-treated C. albicans was fully able to suppress ROS production, indicating that suppression of ROS overrides stimulatory signals from 1,3-beta-glucan. These studies indicate that live C. albicans actively suppresses ROS production in phagocytes in vitro, which may represent an important immune evasion mechanism.
Live Candida albicans Suppresses Production of Reactive Oxygen Species in Phagocytes▿ †
Wellington, Melanie; Dolan, Kristy; Krysan, Damian J.
2009-01-01
Production of reactive oxygen species (ROS) is an important aspect of phagocyte-mediated host responses. Since phagocytes play a crucial role in the host response to Candida albicans, we examined the ability of Candida to modulate phagocyte ROS production. ROS production was measured in the murine macrophage cell line J774 and in primary phagocytes using luminol-enhanced chemiluminescence. J774 cells, murine polymorphonuclear leukocytes (PMN), human monocytes, and human PMN treated with live C. albicans produced significantly less ROS than phagocytes treated with heat-killed C. albicans. Live C. albicans also suppressed ROS production in murine bone marrow-derived macrophages from C57BL/6 mice, but not from BALB/c mice. Live C. albicans also suppressed ROS in response to external stimuli. C. albicans and Candida glabrata suppressed ROS production by phagocytes, whereas Saccharomyces cerevisiae stimulated ROS production. The cell wall is the initial point of contact between Candida and phagocytes, but isolated cell walls from both heat-killed and live C. albicans stimulated ROS production. Heat-killed C. albicans has increased surface exposure of 1,3-β-glucan, a cell wall component that can stimulate phagocytes. To determine whether surface 1,3-β-glucan exposure accounted for the difference in ROS production, live C. albicans cells were treated with a sublethal dose of caspofungin to increase surface 1,3-β-glucan exposure. Caspofungin-treated C. albicans was fully able to suppress ROS production, indicating that suppression of ROS overrides stimulatory signals from 1,3-β-glucan. These studies indicate that live C. albicans actively suppresses ROS production in phagocytes in vitro, which may represent an important immune evasion mechanism. PMID:18981256
Functional activities of acidic isoferritins and lactoferrin in vitro and in vivo.
Broxmeyer, H E; Gentile, P; Cooper, S; Lu, L; Juliano, L; Piacibello, W; Meyers, P A; Cavanna, F
1984-01-01
The functional activities of acidic isoferritins (AIF) and lactoferin (LF) were evaluated. The inhibitory activity of AIF (AIFIA) was inactivated by preincubation with a monoclonal antibody (2A4) against AIF, but AIFIA was not inactivated by another monoclonal antibody against AIF (1C5), by a monoclonal antibody (3A5) against basic isoferritins, or by a heteroantiserum (LFT) against basic isoferritins. Monoclonal 2A4 also inactivated the inhibitory activity against colony formation by granulocyte-macrophage (CFU-GM) progenitor cells that was constitutively released by human monocytes or induced by human monocytes in the presence of OKT4+ lymphocytes. In addition to OKT4+ lymphocytes, the release of AIFIA from human monocytes was modulated by iron-saturated human LF and OKT8+ lymphocytes, both of which suppressed the release of AIFIA. Evidence for the physiologic relevance of AIF as a regulator of myelopoiesis was presented, in that human AIF suppressed the numbers of CFU-GM, BFU-E, and CFU-GEMM per femur and the cycling status of these cells in mice recovering from a sublethal dosage of Cytoxan. Abnormalities in LF and AIF interactions were found with cells from a pediatric patient with neutrophilia of unknown etiology that were consistent with the disease manifestations of neutrophilia. Polymorphonuclear neutrophils (PMN) from the patient contained low levels (1%-10% of control) of immunologically reactive LF and the LF found was ineffective as a suppressor molecule for the release of GM-CSF from normal mononuclear blood cells. In addition, the patient's GM-CSF releasing mononuclear blood cells were insensitive to the suppressive effects of purified LF, and colony formation by the patient's CFU-GM, but not BFU-E or CFU-GEMM, were insensitive to the suppressive effects of purified AIF. When the activity of purified AIF was assessed against mouse bone marrow cells under serum-free conditions, it was apparent that serum was not needed for the suppressive activity of AIF and that in some cases, serum actually masked the effects of AIF. Human monoblast cell line U937 was found to be a good model in vitro for the actions of LF and AIF; U937 cells induced for Ia-antigens by human gamma interferon were separated into populations of Ia-antigen+ and Ia-antigen- cells by fluorescence activated cell sorting (FACS), and LF and AIF suppressed colony formation only by the Ia-antigen+ U937 cells. A comparative analysis of bovine and human LF against release of GM-CSF from human mononuclear cells demonstrated that both were active in their iron-saturated form.(ABSTRACT TRUNCATED AT 400 WORDS)
Improved survival of newborns receiving leukocyte transfusions for sepsis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cairo, M.S.; Rucker, R.; Bennetts, G.A.
To determine the role of polymorphonuclear (PMN) leukocyte transfusions in neonates with sepsis, 23 consecutive newborns were prospectively randomly selected during an 18-month period in a treatment plan to receive polymorphonuclear leukocyte transfusions with supportive care or supportive care alone. Thirteen neonates received transfusions every 12 hours for a total of five transfusions. Each transfusion consisting of 15 mL/kg of polymorphonuclear leukocytes was subjected to 1,500 rads of radiation. The polymorphonuclear leukocytes were obtained by continuous-flow centrifugation leukapheresis and contained 0.5 to 1.0 X 10(9) granulocytes per 15 mL with less than 10% lymphocytes. Positive findings on blood cultures weremore » obtained in 14/23 patients and seven were randomly selected for each treatment group. Absolute granulocyte counts were less than 1,500/microL in 13 patients but tibial bone marrow examinations revealed that the neutrophil supply pool was depleted in only three patients. The survival was significantly greater in the treatment group compared with the group that did not receive transfusions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jue-Yeon; Seo, Yoo-Na; Park, Hyun-Jung
Highlights: Black-Right-Pointing-Pointer HBP sequence identified from HB-EGF has cell penetration activity. Black-Right-Pointing-Pointer HBP inhibits the NF-{kappa}B dependent inflammatory responses. Black-Right-Pointing-Pointer HBP directly blocks phosphorylation and degradation of I{kappa}B{alpha}. Black-Right-Pointing-Pointer HBP inhibits nuclear translocation of NF-{kappa}B p65 subunit. -- Abstract: A heparin-binding peptide (HBP) sequence from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified and was shown to exhibit cell penetration activity. This cell penetration induced an anti-inflammatory reaction in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. HBP penetrated the cell membrane during the 10 min treatment and reduced the LPS-induced production of nitric oxide (NO), inducible nitric oxide synthase (iNOS),more » and cytokines (TNF-{alpha} and IL-6) in a concentration-dependent manner. Additionally, HBP inhibited the LPS-induced upregulation of cytokines, including TNF-{alpha} and IL-6, and decreased the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. HBP inhibited NF-{kappa}B-dependent inflammatory responses by directly blocking the phosphorylation and degradation of I{kappa}B{alpha} and by subsequently inhibiting the nuclear translocation of the p65 subunit of NF-{kappa}B. Taken together, this novel HBP may be potentially useful candidate for anti-inflammatory treatments and can be combined with other drugs of interest to transport attached molecules into cells.« less
Cianci, Eleonora; Recchiuti, Antonio; Trubiani, Oriana; Diomede, Francesca; Marchisio, Marco; Miscia, Sebastiano; Colas, Romain A.; Dalli, Jesmond; Serhan, Charles N.
2016-01-01
Unresolved inflammation and tissue destruction are underlying mechanisms of periodontitis, which is linked to dysregulated polymorphonuclear neutrophil (PMN) functions. Lipoxin A4 (LXA4) is a specialized proresolving lipid mediator (SPM) that dampens excessive inflammation, promotes resolution, and protects from leukocyte-mediated tissue damage. Human periodontal ligament stem cells (hPDLSCs) represent key players during tissue regeneration and may contribute to resolution of inflammation; thus, they may represent a promising tool in regenerative dentistry. In the present study, we investigated the actions of hPDLSCs on PMN apoptosis and antimicrobial functions, and determined the impact of LXA4 on hPDLSCs. hPDLSCs significantly reduced apoptosis and stimulated microbicidal activity of human PMNs, via both cell-cell interactions and paracrine mechanisms. Lipid mediator metabololipidomics analysis demonstrated that hPDLSCs biosynthesize SPMs, including resolvin D1, D2, D5, and D6; protectin D1; maresins; and LXB4; as well as prostaglandins D2, E2, and F2α. LXA4 significantly enhanced proliferation, migration, and wound healing capacity of hPDLSCs through the activation of its cognate receptor ALX/FPR2, expressed on hPDLSCs. Together, these results demonstrate that hPDLSCs modulate PMN functions, and provide the first evidence that stem cells generate SPM and that the LXA4-ALX/FPR2 axis regulates regenerative functions of hPDLSCs by a novel receptor-mediated mechanism. Significance These findings uncovered unappreciated features of stem cells from the periodontal ligament, supporting the notion that these cells may act as master regulators of pathophysiological events through the release of mediators that promote the resolution of inflammation and bacterial killing. The study also demonstrated that it is possible to modulate important functions of periodontal stem cells using lipoxin A4, a potent endogenous stop signal of inflammation. Thus, this study revealed an unappreciated anti-inflammatory proregenerative circuit that may be exploited to combat periodontal pathologies using resident stem cells. Moreover, the data may represent a more general template to explain the immunomodulatory functions of stem cells. PMID:26607175
Inhibition of polymorphonuclear leukocyte function by Legionella pneumophila exoproducts.
Sahney, N N; Lambe, B C; Summersgill, J T; Miller, R D
1990-08-01
Total exoproducts (relative molecular mass greater than 10,000) from wild-type strains of Legionella pneumophila markedly inhibited human polymorphonuclear leukocyte (PMN) superoxide anion generation, at sub-lethal concentrations, in response to four stimuli [1.7, 0, 0.6 and 3.4% of control for zymosan activated particles (ZAP), phorbol myristate acetate (PMA), calcium ionophore (A 23187), and formyl-methionyl-leucyl-phenylalanine (fMLP), respectively]. PMN chemotaxis towards fMLP and spontaneous migration, were also dramatically inhibited (2.8 and 2.9% of buffer-treated controls, respectively). In contrast, total exoproducts from the cas-1 strain of L. pneumophila, a protease-deficient mutant generated by ethyl methane sulfonate mutagenesis, failed to inhibit PMN superoxide production in response to ZAP and PMA and only partially inhibited PMN response to A 23187 and fMLP. PMN spontaneous migration was unaffected by treatment with total exoproducts from the mutant, while directed chemotaxis was partially inhibited (51.4%). These data demonstrated that L. pneumophila total exoproducts, primarily protease had significant inhibitory effects on normal PMN function and may play an important contributory role in the pathogenesis of legionnaire's disease.
Nagamatsu, Kanna; Hannan, Thomas J.; Guest, Randi L.; Kostakioti, Maria; Hadjifrangiskou, Maria; Binkley, Jana; Dodson, Karen; Raivio, Tracy L.; Hultgren, Scott J.
2015-01-01
Urinary tract infections (UTIs) are among the most common bacterial infections, causing considerable morbidity in females. Infection is highly recurrent despite appropriate antibiotic treatment. Uropathogenic Escherichia coli (UPEC), the most common causative agent of UTIs, invades bladder epithelial cells (BECs) and develops into clonal intracellular bacterial communities (IBCs). Upon maturation, IBCs disperse, with bacteria spreading to neighboring BECs to repeat this cycle. This process allows UPEC to gain a foothold in the face of innate defense mechanisms, including micturition, epithelial exfoliation, and the influx of polymorphonuclear leukocytes. Here, we investigated the mechanism and dynamics of urothelial exfoliation in the early acute stages of infection. We show that UPEC α-hemolysin (HlyA) induces Caspase-1/Caspase-4–dependent inflammatory cell death in human urothelial cells, and we demonstrate that the response regulator (CpxR)-sensor kinase (CpxA) two-component system (CpxRA), which regulates virulence gene expression in response to environmental signals, is critical for fine-tuning HlyA cytotoxicity. Deletion of the cpxR transcriptional response regulator derepresses hlyA expression, leading to enhanced Caspase-1/Caspase-4– and NOD-like receptor family, pyrin domain containing 3-dependent inflammatory cell death in human urothelial cells. In vivo, overexpression of HlyA during acute bladder infection induces more rapid and extensive exfoliation and reduced bladder bacterial burdens. Bladder fitness is restored fully by inhibition of Caspase-1 and Caspase-11, the murine homolog of Caspase-4. Thus, we have discovered that fine-tuning of HlyA expression by the CpxRA system is critical for enhancing UPEC fitness in the urinary bladder. These results have significant implications for our understanding of how UPEC establishes persistent colonization. PMID:25675528
Nagamatsu, Kanna; Hannan, Thomas J; Guest, Randi L; Kostakioti, Maria; Hadjifrangiskou, Maria; Binkley, Jana; Dodson, Karen; Raivio, Tracy L; Hultgren, Scott J
2015-02-24
Urinary tract infections (UTIs) are among the most common bacterial infections, causing considerable morbidity in females. Infection is highly recurrent despite appropriate antibiotic treatment. Uropathogenic Escherichia coli (UPEC), the most common causative agent of UTIs, invades bladder epithelial cells (BECs) and develops into clonal intracellular bacterial communities (IBCs). Upon maturation, IBCs disperse, with bacteria spreading to neighboring BECs to repeat this cycle. This process allows UPEC to gain a foothold in the face of innate defense mechanisms, including micturition, epithelial exfoliation, and the influx of polymorphonuclear leukocytes. Here, we investigated the mechanism and dynamics of urothelial exfoliation in the early acute stages of infection. We show that UPEC α-hemolysin (HlyA) induces Caspase-1/Caspase-4-dependent inflammatory cell death in human urothelial cells, and we demonstrate that the response regulator (CpxR)-sensor kinase (CpxA) two-component system (CpxRA), which regulates virulence gene expression in response to environmental signals, is critical for fine-tuning HlyA cytotoxicity. Deletion of the cpxR transcriptional response regulator derepresses hlyA expression, leading to enhanced Caspase-1/Caspase-4- and NOD-like receptor family, pyrin domain containing 3-dependent inflammatory cell death in human urothelial cells. In vivo, overexpression of HlyA during acute bladder infection induces more rapid and extensive exfoliation and reduced bladder bacterial burdens. Bladder fitness is restored fully by inhibition of Caspase-1 and Caspase-11, the murine homolog of Caspase-4. Thus, we have discovered that fine-tuning of HlyA expression by the CpxRA system is critical for enhancing UPEC fitness in the urinary bladder. These results have significant implications for our understanding of how UPEC establishes persistent colonization.
Plasmodium vivax malaria in spite of atovaquone/proguanil (malarone) prophylaxis.
Povinelli, Laura; Monson, Tim A; Fox, Barry C; Parise, Monica E; Morrisey, Joanne M; Vaidya, Akhil B
2003-01-01
A 70-year-old male scientist, who had returned 5 weeks earlier from Ethiopia, was admitted to the hospital with symptoms consistent with malaria. On physical examination, he had orthostatic hypotension. He was dehydrated and showed a mild clinical delirium. Abdominal examination revealed a possible spleen tip, and he had petechial lesions bilaterally below his knees. Laboratory data revealed his white blood cell count to be 4,500/mL, with 67% polymorphonuclear cells and 15% band forms. The hemoglobin level was 13.9 g/dL, and the platelet count was low, at 32,000/mL.
Salih, H R; Husfeld, L; Adam, D
2000-05-01
Polymorphonuclear leukocytes (PMN) play a central role in the elimination of most extracellular pathogens, and an impairment of their functions predisposes an individual towards local and systemic bacterial and fungal infections. Here we describe a rapid and easy-to-perform cytofluorometric assay for investigation of PMN activity using Candida albicans and Staphylococcus aureus as target organisms. Phagocytes were stained with anti-CD13-RPE antibody, and microorganisms were stained with calcein-AM. Oxidative burst production was measured by oxidation of dihydroethidium. The percentage of killed target organisms after ingestion was determined by staining with ethidium-homodimer-1 after lysis of human cells. The dyes and procedures used in this method were chosen after comparison of different stains and cell preparation techniques described in previous assays. Concerning phagocytosis, the percentages of active phagocytes and of ingested microorganisms were determined. Furthermore, the method allowed measurement of the resulting percentage of PMNs producing respiratory burst, and of the percentage of killed microorganisms. We minimized artifactual changes, which might have been the reason for the difficulties and conflicting results of other cytofluorometric methods. The described method provides a new whole blood cytofluorometric assay, which combines rapid and simple handling with high reproducibility of results obtained by investigation of PMN activity using Candida albicans and Staphylococcus aureus as target organisms.
Jantan, Ibrahim; Harun, Nurul Hikmah; Septama, Abdi Wira; Murad, Shahnaz; Mesaik, M A
2011-04-01
The methanol extracts of 20 selected medicinal plants were investigated for their effects on the respiratory burst of human whole blood, isolated human polymorphonuclear leukocytes (PMNs) and isolated mice macrophages using a luminol/lucigenin-based chemiluminescence assay. We also tested the effect of the extracts on chemotactic migration of PMNs using the Boyden chamber technique. The extracts of Curcuma domestica L., Phyllanthus amarus Schum & Thonn and C. xanthorrhiza Roxb. were the samples producing the strongest oxidative burst of PMNs with luminol-based chemiluminescence, with IC(50) values ranging from 0.5 to 0.7 μg/ml. For macrophage cells, the extracts which showed strong suppressive activity for luminol-based chemiluminescence were C. xanthorrhiza and Garcinia mangostana L. Among the extracts studied, C. mangga Valton & Vazsjip, Piper nigrum L. and Labisia pumila var. alata showed strong inhibitory activity on lucigenin-amplified oxidative burst of PMNs, with IC(50) values ranging from 0.9 to 1.5 μg/ml. The extracts of Zingiber officinale Rosc., Alpinia galangal (L.) Willd and Averrhoa bilimbi Linn showed strong inhibition on the chemotaxic migration of cells, with IC(50) values comparable to that of ibuprofen (1.5 μg/ml). The results suggest that some of these plants were able to modulate the innate immune response of phagocytes at different steps, emphasizing their potential as a source of new immunomodulatory agents.
Selective Biological Responses of Phagocytes and Lungs to Purified Histones.
Fattahi, Fatemeh; Grailer, Jamison J; Lu, Hope; Dick, Rachel S; Parlett, Michella; Zetoune, Firas S; Nuñez, Gabriel; Ward, Peter A
2017-01-01
Histones invoke strong proinflammatory responses in many different organs and cells. We assessed biological responses to purified or recombinant histones, using human and murine phagocytes and mouse lungs. H1 had the strongest ability in vitro to induce cell swelling independent of requirements for toll-like receptors (TLRs) 2 or 4. These responses were also associated with lactate dehydrogenase release. H3 and H2B were the strongest inducers of [Ca2+]i elevations in phagocytes. Cytokine and chemokine release from mouse and human phagocytes was predominately a function of H2A and H2B. Double TLR2 and TLR4 knockout (KO) mice had dramatically reduced cytokine release induced in macrophages exposed to individual histones. In contrast, macrophages from single TLR-KO mice showed few inhibitory effects on cytokine production. Using the NLRP3 inflammasome protocol, release of mature IL-1β was predominantly a feature of H1. Acute lung injury following the airway delivery of histones suggested that H1, H2A, and H2B were linked to alveolar leak of albumin and the buildup of polymorphonuclear neutrophils as well as the release of chemokines and cytokines into bronchoalveolar fluids. These results demonstrate distinct biological roles for individual histones in the context of inflammation biology and the requirement of both TLR2 and TLR4. © 2017 S. Karger AG, Basel.
Cohen, Hannah Caitlin; Lieberthal, Tyler Jacob; Kao, W. John
2014-01-01
Polymorphonuclear leukocytes (PMNs) are recruited to sites of injury and biomaterial implants. Once activated, PMNs can exocytose their granule subsets to recruit monocytes (MCs) and mediate MC/macrophage activation. We investigated the release of myeloperoxidase (MPO), a primary granule marker, and matrix metalloproteinase-9 (MMP-9), a tertiary granule marker, from human blood-derived PMNs cultured on poly(ethylene glycol) (PEG) hydrogels, polydimethylsiloxane (PDMS), tissue culture polystyrene (TCPS) and gelatin-PEG (GP) hydrogels, with and without the presence of the bacterial peptide formyl-Met-Leu-Phe. Supernatants from PMN cultures on PEG-containing hydrogels (i.e., PEG and GP hydrogels) had higher concentrations of MPO than those from PMN cultures on PDMS or TCPS at 2 hours. PMNs on all biomaterials released comparable levels of MMP-9 at 2 hours, indicating that PMNs cultured on PEG-containing hydrogels have different mechanisms of release for primary and tertiary granules. Src family kinases were involved in the release of MPO from PMNs cultured on PEG hydrogels, TCPS and GP hydrogels and in the release of MMP-9 from PMNs cultured on all four materials. The increased release of primary granules from PMNs on PEG-containing hydrogels did not significantly increase MC chemotaxis, indicating that additional co-effectors in the dynamic inflammatory milieu in vivo modulate PMN-mediated MC recruitment. PMID:24497370
Lewis, P A; Sanderson, E S
1927-01-31
From the foregoing description it is evident that when rabbits are inoculated intravenously with equal amounts of tubercle bacilli of bovine and human type respectively, they are subject to an immediate reaction in the form of an interstitial pulmonary exudation, which, being of equal severity and character does not serve to distinguish the type. There is an hyperplasia of the lymphoid tissue which is much more pronounced in the bovine series and which may distinguish this type. Opinion on this point may well be reserved until other typical cultures are examined for this response. The two types are sharply distinguished by the behavior of the tubercle bacillus and by the progression of tubercle formation. Tubercles are formed by both types and for about I week after inoculation they are not distinguishable. Progressively thereafter those formed as a response to the bovine bacillus become more numerous; they caseate and become conglomerate, finally coming to occupy the major part of the pulmonary tissue and its associated lymph nodes. With the human type the tubercles do not progress to caseation, do not become more numerous after their first well defined formation, and finally tend to disappear. The human type bacillus does not multiply considerably, if at all, and disappears early. The bovine bacillus suffers little or no restraint in growth and finally multiplies enormously. It seems clear that so far as histologic evidence goes the fundamental difference in the reaction of the rabbit to the two types of tubercle bacilli is referable to the ability of the animal to restrain the growth of the human type or to the prevalence of conditions which permit a most vigorous multiplication of the bovine type. The initial cellular responses seem to be qualitatively of the same order and their quantitative distinctions are for the most part developed coincidently with the manifest growth of the bovine type bacillus. If we undertake to state the observed results in the terminology of immunity we can say only that the histologic picture discloses a difference in the rate of bacillary multiplication which suggests that a difference in the physiologic requirements for growth of the two types of bacilli is satisfied or unsatisfied, in the respective cases, by the rabbit as host; or on the other hand, that there is a positive growth-restraining action exerted with efficiency against bacilli of the human type. It is evident that the present observations furnish no points of discrimination between these alternatives. There is, however, an occasional result of the injection of human type bacilli into rabbits (not seen in this series) which offers a suggestion. When animals so injected are allowed to live for 2 or 3 months, the lungs at autopsy not infrequently present a few nodules of large size, often 1 cm. in diameter, which are found to be well encapsulated, soft, caseous masses. These often contain large numbers of tubercle bacilli. Since we know nothing of the particular conditions which give rise to these rather exceptional formations it is impossible to draw general conclusions from them, but they do suggest that the rabbit is not lacking in the food materials required by the human type bacillus; and that if the more usual suppression of this type is due to failure of its essential nutritives, it is rather a question of the distribution within the animal than an absence which is responsible. The usual result would then appear to be due to a positive growth-restraining action exerted against the human type bacillus. Certain other points of interest in the histologic picture described are worthy of comment. The lymphocytes do not appear as active cells in any preponderant way in either series and they are much less in evidence in the immune case (human type) than in the non-immune (bovine type). This might suggest that the activity of this cell type is a response to infection rather than that it furnished an effective preexisting barrier against infection in this particular case. If the lymphocytes were the most important agents in the immune reaction, it might be expected that they would show an immediate sharp response in the human series. The large mononuclear type of cell is clearly most closely related physically to the tubercle bacillus within the body of the rabbit and this without distinction as to bacillary type. Foci of these cells are the loci of the disappearing bacilli of human type, and in either the active or necrotic state similar cell collections are the site of the most vigorous multiplication of the bovine bacilli. These cells undoubtedly stand in a central position in any picture which can be drawn of experimental tuberculosis in the rabbit and deserve as a consequence all of the very considerable attention they have received at the hands of numerous observers in recent years. It has been quite usual of late to consider that the whole of the essential reaction of the animal against tubercle bacilli is carried by the cells of the mononuclear series, either lymphocytes or large mononuclears according to the predilections of the observer. We cannot, however, entirely overlook the presence in very large numbers of polymorphonuclear leucocytes, both amphophilic and eosinophilic, in this experimental series. They are much less prominent in the animals injected with the killed culture and hence can hardly be neglected on the assumption that they are merely a part of a reaction to an indifferent foreign body They are in large measure a reaction to the living organism: whether a primary and direct or a secondary, indirect consequence of its presence we are unable to decide. These cells are not massed in any regular relationship to the well formed tubercles or to the clusters of mononuclear cells initiating tubercle formation. They are also very much less abundant in the very severe late lesions of the bovine type where enormous numbers of bacilli are enclosed in the tubercles. It seems possible that the polymorphonuclears are a response to the living free tubercle bacilli as contrasted with either the dead bacilli or the living bacilli segregated in mononuclear cell clusters or in tubercles. They would appear also to be related to something apart from the bacillus itself, either a diffusion or disintegration product, since phagocytosis of bacilli, or the presence of bacilli in close physical relation to polymorphonuclear leucocytes, is so infrequent in general as not to have been observed in this series of experiments.
Lewis, Paul A.; Sanderson, Everett S.
1927-01-01
From the foregoing description it is evident that when rabbits are inoculated intravenously with equal amounts of tubercle bacilli of bovine and human type respectively, they are subject to an immediate reaction in the form of an interstitial pulmonary exudation, which, being of equal severity and character does not serve to distinguish the type. There is an hyperplasia of the lymphoid tissue which is much more pronounced in the bovine series and which may distinguish this type. Opinion on this point may well be reserved until other typical cultures are examined for this response. The two types are sharply distinguished by the behavior of the tubercle bacillus and by the progression of tubercle formation. Tubercles are formed by both types and for about I week after inoculation they are not distinguishable. Progressively thereafter those formed as a response to the bovine bacillus become more numerous; they caseate and become conglomerate, finally coming to occupy the major part of the pulmonary tissue and its associated lymph nodes. With the human type the tubercles do not progress to caseation, do not become more numerous after their first well defined formation, and finally tend to disappear. The human type bacillus does not multiply considerably, if at all, and disappears early. The bovine bacillus suffers little or no restraint in growth and finally multiplies enormously. It seems clear that so far as histologic evidence goes the fundamental difference in the reaction of the rabbit to the two types of tubercle bacilli is referable to the ability of the animal to restrain the growth of the human type or to the prevalence of conditions which permit a most vigorous multiplication of the bovine type. The initial cellular responses seem to be qualitatively of the same order and their quantitative distinctions are for the most part developed coincidently with the manifest growth of the bovine type bacillus. If we undertake to state the observed results in the terminology of immunity we can say only that the histologic picture discloses a difference in the rate of bacillary multiplication which suggests that a difference in the physiologic requirements for growth of the two types of bacilli is satisfied or unsatisfied, in the respective cases, by the rabbit as host; or on the other hand, that there is a positive growth-restraining action exerted with efficiency against bacilli of the human type. It is evident that the present observations furnish no points of discrimination between these alternatives. There is, however, an occasional result of the injection of human type bacilli into rabbits (not seen in this series) which offers a suggestion. When animals so injected are allowed to live for 2 or 3 months, the lungs at autopsy not infrequently present a few nodules of large size, often 1 cm. in diameter, which are found to be well encapsulated, soft, caseous masses. These often contain large numbers of tubercle bacilli. Since we know nothing of the particular conditions which give rise to these rather exceptional formations it is impossible to draw general conclusions from them, but they do suggest that the rabbit is not lacking in the food materials required by the human type bacillus; and that if the more usual suppression of this type is due to failure of its essential nutritives, it is rather a question of the distribution within the animal than an absence which is responsible. The usual result would then appear to be due to a positive growth-restraining action exerted against the human type bacillus. Certain other points of interest in the histologic picture described are worthy of comment. The lymphocytes do not appear as active cells in any preponderant way in either series and they are much less in evidence in the immune case (human type) than in the non-immune (bovine type). This might suggest that the activity of this cell type is a response to infection rather than that it furnished an effective preexisting barrier against infection in this particular case. If the lymphocytes were the most important agents in the immune reaction, it might be expected that they would show an immediate sharp response in the human series. The large mononuclear type of cell is clearly most closely related physically to the tubercle bacillus within the body of the rabbit and this without distinction as to bacillary type. Foci of these cells are the loci of the disappearing bacilli of human type, and in either the active or necrotic state similar cell collections are the site of the most vigorous multiplication of the bovine bacilli. These cells undoubtedly stand in a central position in any picture which can be drawn of experimental tuberculosis in the rabbit and deserve as a consequence all of the very considerable attention they have received at the hands of numerous observers in recent years. It has been quite usual of late to consider that the whole of the essential reaction of the animal against tubercle bacilli is carried by the cells of the mononuclear series, either lymphocytes or large mononuclears according to the predilections of the observer. We cannot, however, entirely overlook the presence in very large numbers of polymorphonuclear leucocytes, both amphophilic and eosinophilic, in this experimental series. They are much less prominent in the animals injected with the killed culture and hence can hardly be neglected on the assumption that they are merely a part of a reaction to an indifferent foreign body They are in large measure a reaction to the living organism: whether a primary and direct or a secondary, indirect consequence of its presence we are unable to decide. These cells are not massed in any regular relationship to the well formed tubercles or to the clusters of mononuclear cells initiating tubercle formation. They are also very much less abundant in the very severe late lesions of the bovine type where enormous numbers of bacilli are enclosed in the tubercles. It seems possible that the polymorphonuclears are a response to the living free tubercle bacilli as contrasted with either the dead bacilli or the living bacilli segregated in mononuclear cell clusters or in tubercles. They would appear also to be related to something apart from the bacillus itself, either a diffusion or disintegration product, since phagocytosis of bacilli, or the presence of bacilli in close physical relation to polymorphonuclear leucocytes, is so infrequent in general as not to have been observed in this series of experiments. PMID:19869252
Analysis of Vaginal Cell Populations during Experimental Vaginal Candidiasis
Fidel, Paul L.; Luo, Wei; Steele, Chad; Chabain, Joseph; Baker, Marc; Wormley, Floyd
1999-01-01
Studies with an estrogen-dependent murine model of vaginal candidiasis suggest that local cell-mediated immunity (CMI) is more important than systemic CMI for protection against vaginitis. The present study, however, showed that, compared to uninfected mice, little to no change in the percentage or types of vaginal T cells occurred during a primary vaginal infection or during a secondary vaginal infection where partial protection was observed. Furthermore, depletion of polymorphonuclear leukocytes (PMN) had no effect on infection in the presence or absence of pseudoestrus. These results indicate a lack of demonstrable effects by systemic CMI or PMN against vaginitis and suggest that if local T cells are important, they are functioning without showing significant increases in numbers within the vaginal mucosa during infection. PMID:10338532
The effects of stress on the enzymes of peripheral leukocytes
NASA Technical Reports Server (NTRS)
Leise, E. M.; Gray, I.
1973-01-01
Previous work showed an early response of rabbit and human leukocyte enzymes to the stress of bacterial infection. Since these represented a mixed population of leukocytes and since polymorphonuclear leukocytes (PMN) increased in these preparations, it was necessary to establish whether the observed increase in lactate dehydrenase (LDH) and protein was the result of an increase in any one particular cell type or in all cells. The need for the development of a simple reproducible method for the differential separation of peripheral leukocytes for the furtherance of our own studies was apparent. It was also becoming increasingly apparent that morphologically similar cells, such as small lymphocytes (L) and macrophages, were capable of different biological functions. A dextran gradient centrifugation method was developed which has provided an easily reproducible technique for separating L from PMN. During the course of this work, in which over 250 rabbits were examined, the pattern of daily leukocyte protein and enzyme variation became increasingly more apparent. This information could have some impact on future work with leukocyte enzymes, by our group and by other workers. The differences in normal protein and enzyme levels maintained by some individuals, and some inbred strains, were evaluated and reported separately. It has been shown that one type of leukocyte may react more to a given stress than other leukocytes.
Rosenberg, Carolina E; Fink, Nilda E; Arrieta, Marcos A; Salibián, Alfredo
2003-11-01
Lead is an element of risk for the environment and human health and has harmful effects that may exceed those of other inorganic toxicants. The immune system is one of the targets of lead. Its immunomodulatory actions depend on the level of exposure, and it has been demonstrated that environmental amounts of the metal alter immune function. Very little information is available regarding the effect of the metal on different aspects of the immune system of lower vertebrates, in particular of amphibians. The aim of this study was to investigate the effect of sublethal lead (as acetate) on the function of polymorphonuclear cells of Bufo arenarum. The results revealed that phagocytic and lytic functions of the adherent blood cells collected from sublethal lead-injected toads and incubated with suspensions of Candida pseudotropicalis were affected negatively. The decrease of the phagocytic activity was correlated with increased blood lead levels (P < 0.0001). Additional information referred to the total and differential leukocyte counts was presented; the only difference found was in the number of blast-like cells that resulted augmented in the samples of lead-injected toads. It was concluded that the evaluation of these parameters might be a reliable tool for the biological monitoring of the immune status of amphibians.
Kruimel, J W; Naber, A H; Curfs, J H; Wenker, M A; Jansen, J B
2000-01-01
Parenteral lipid emulsions are suspected of suppressing the immune function. However, study results are contradictory and mainly concern the conventional long-chain triglyceride emulsions. Polymorphonuclear leukocytes were preincubated with parenteral lipid emulsions. The influence of the lipid emulsions on the production of oxygen radicals by these stimulated leukocytes was studied by measuring chemiluminescence. Three different parenteral lipid emulsions were tested: long-chain triglycerides, a physical mixture of medium- and long-chain triglycerides, and structured triglycerides. Structured triglycerides consist of triglycerides where the medium- and long-chain fatty acids are attached to the same glycerol molecule. Stimulated polymorphonuclear leukocytes preincubated with the physical mixture of medium- and long-chain triglycerides showed higher levels of oxygen radicals (p < .005) and faster production of oxygen radicals (p < .005) compared with polymorphonuclear leukocytes preincubated with long-chain triglycerides or structured triglycerides. Additional studies indicated that differences in results of various lipid emulsions were not caused by differences in emulsifier. The overall production of oxygen radicals was significantly lower after preincubation with the three lipid emulsions compared with controls without lipid emulsion. A physical mixture of medium- and long-chain triglycerides induced faster production of oxygen radicals, resulting in higher levels of oxygen radicals, compared with long-chain triglycerides or structured triglycerides. This can be detrimental in cases where oxygen radicals play either a pathogenic role or a beneficial one, such as when rapid phagocytosis and killing of bacteria is needed. The observed lower production of oxygen radicals by polymorphonuclear leukocytes in the presence of parenteral lipid emulsions may result in immunosuppression by these lipids.
Donma, O; Donma, M M
2002-08-01
Chronic obstructive pulmonary disease (COPD) is a major worldwide health problem. There exists a relationship between COPD and increased oxidative stress, and oxidants may be involved in lung damage during the course of COPD. Polymorphonuclear (PMN) cell recruitment at lung level plays an important role in free radical overproduction, impact inflammatory processes and may alter oxidant-antioxidant balance. Biological aging is thought to be influenced by free radical generation, aging, and the diseases. All the components of the respiratory system are affected by aging. Nutrition, smoking habits and sleep-related disorders also affect the respiratory system. Whether these changes are due to aging or associated with aging is a matter of debate. Since alterations caused by aging and cigarette smoke in lungs of various species were informed to be partly simulated with age-related alterations in human lung, the effects of oxidative agents and antioxidative parameters on both COPD and aging were evaluated.
Risco, Ester; Ghia, Felipe; Vila, Roser; Iglesias, José; Alvarez, Elida; Cañigueral, Salvador
2003-09-01
The immunomodulatory activity of the latex from Croton lechleri (sangre de drago) was determined by in vitro assays. Classical (CP) and alternative (AP) complement pathways activities were determined in human serum. Intracellular generation of reactive oxygen species (ROS) by human polymorphonuclear leukocytes (PMNs) and monocytes, and phagocytosis of opsonised fluorescent microspheres were measured by flow cytometry. Free radical scavenging activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH). Activity on proliferation of murine lymphocytes was also investigated. In addition, anti-inflammatory activity was assayed in vivo by carrageenan-induced rat paw oedema test. Some of the activities were compared with those of the isolated alkaloid taspine. Sangre de drago from Croton lechleri showed immunomodulatory activity. It exhibited a potent inhibitory activity on CP and AP of complement system and inhibited the proliferation of activated T-cells. The latex showed free radical scavenging capacity. Depending on the concentration, it showed antioxidant or prooxidant properties, and stimulated or inhibited the phagocytosis. Moreover, the latex has strong anti-inflammatory activity when administered i. p. Taspine cannot be considered the main responsible for these activities, and other constituents, probably proanthocyanidins, should be also involved.
Sorio, Claudio; Montresor, Alessio; Bolomini-Vittori, Matteo; Caldrer, Sara; Rossi, Barbara; Dusi, Silvia; Angiari, Stefano; Johansson, Jan E; Vezzalini, Marzia; Leal, Teresinha; Calcaterra, Elisa; Assael, Baroukh M; Melotti, Paola; Laudanna, Carlo
2016-05-15
Cystic fibrosis (CF) is a common genetic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Persistent lung inflammation, characterized by increasing polymorphonuclear leukocyte recruitment, is a major cause of the decline in respiratory function in patients with CF and is a leading cause of morbidity and mortality. CFTR is expressed in various cell types, including leukocytes, but its involvement in the regulation of leukocyte recruitment is unknown. We evaluated whether CF leukocytes might present with alterations in cell adhesion and migration, a key process governing innate and acquired immune responses. We used ex vivo adhesion and chemotaxis assays, flow cytometry, immunofluorescence, and GTPase activity assays in this study. We found that chemoattractant-induced activation of β1 and β2 integrins and of chemotaxis is defective in mononuclear cells isolated from patients with CF. In contrast, polymorphonuclear leukocyte adhesion and chemotaxis were normal. The functionality of β1 and β2 integrins was restored by treatment of CF monocytes with the CFTR-correcting drugs VRT325 and VX809. Moreover, treatment of healthy monocytes with the CFTR inhibitor CFTR(inh)-172 blocked integrin activation by chemoattractants. In a murine model of lung inflammation, we found that integrin-independent migration of CF monocytes into the lung parenchyma was normal, whereas, in contrast, integrin-dependent transmigration into the alveolar space was impaired. Finally, signal transduction analysis showed that, in CF monocytes, chemoattractant-triggered activation of RhoA and CDC42 Rho small GTPases (controlling integrin activation and chemotaxis, respectively) was strongly deficient. Altogether, these data highlight the critical regulatory role of CFTR in integrin activation by chemoattractants in monocytes and identify CF as a new, cell type-selective leukocyte adhesion deficiency disease, providing new insights into CF pathogenesis.
Laskowska, Ewa; Jarosz, Łukasz; Grądzki, Zbigniew
2018-01-05
The use of probiotics in sows during pregnancy and lactation and their impact on the quality of colostrum and milk, as well as the health conditions of their offspring during the rearing period, are currently gaining the attention of researchers. The aim of the study was to determine the effect of Bokashi formulation on the concentrations of pro- and anti-inflammatory cytokines in the serum of sows during pregnancy, in their colostrum and milk, and in a culture of Con-A-stimulated polymorphonuclear cells (PMNs) isolated from the colostrum. The study was conducted on 60 sows aged 2-4 years. EM Bokashi were added to the sows' feed. The material for the study consisted of peripheral blood, colostrum, and milk. Blood samples were collected from the sows on days 60 and 114 of gestation. Colostrum and milk samples were collected from all sows at 0, 24, 48, 72, 96, 120, 144, and 168 h after parturition. The results indicate that the use of Bokashi as feed additives resulted in increased concentrations of pro-inflammatory cytokines TNF-α and IL-6, which increase the protective capacity of the colostrum by stimulating cellular immune mechanisms protecting the sow and neonates against infection. At the same time, the increased concentrations of cytokines IL-4, IL-10, TGF-β, and of immunoglobulins in the colostrum and milk from sows in the experimental group demonstrate the immunoregulatory effect of Bokashi on Th2 cells and may lead to increased expression of regulatory T cells and polarization of the immune response from Th1 to Th2.
Oxidative stress and lung injury induced by short-term exposure to wood smoke in guinea pigs.
Ramos, Carlos; Pedraza-Chaverri, José; Becerril, C; Cisneros, J; González-Ávila, G; Rivera-Rosales, R; Sommer, B; Medina-Campos, O N; Montaño, M
2013-11-01
Oxidative stress and lung injury induced by short-term exposure to wood smoke were evaluated in guinea pigs through cell profile, bronchoalveolar lavage (BAL), conventional histology and immunohistochemistry (4-hydroxynonenal, 3-nitrotyrosine, Mn-superoxide dismutase, heme oxygenase-1); malondialdehyde and 4-hydroxynonenal concentration, Mn-superoxide dismutase, glutathione reductase, glutathione peroxidase, and catalase activities in plasma, lung and BAL. Total cells increased in BAL, and the percentage of macrophages, neutrophils and lymphocytes augmented (72-96 h). Histopathological examination of lung tissues showed mild thickening of membranous bronchiole walls, infiltration of foamy macrophages and polymorphonuclear leukocytes in bronchial, bronchiolar and intraalveolar spaces. Goblet cell hyperplasia was also observed in bronchial and bronchiolar epithelia. Plasma malondialdehyde concentration was increased at all times, while 4-hydroxynonenal was increased only in plasma and BAL after 24 h. Plasma glutathione reductase activity increased at 24 and 72 h, BAL glutathione peroxidase activity decreased at 72 and 96 h, whereas catalase activity increased in plasma at 72 h, and decreased in BAL at 24 h. Immunostaining intensity to 4-hydroxynonenal, 3-nitrotyrosine, Mn-superoxide dismutase and heme oxygenase-1 was enhanced mainly in macrophages, bronchial/bronchiolar epithelial cells and type II pneumocytes after 72-96 h of wood smoke exposure. Overall, short-term exposure to wood smoke induces alterations in oxidative/antioxidant state in lung and airway injury, similar to those observed in humans with domestic exposure.
Schambye, H T; Pedersen, F B; Wang, P
1992-01-01
Human polymorphonuclear granulocytes (PMN) were tested for migration and phagocytosis after exposure to CAPD solutions and effluents sampled during the first hour of dialysis from patients treated with lactate or bicarbonate based CAPD-solutions. The effluents from the lactate based solutions (Dianeal and Lockolys) reduced the migration and enhanced the phagocytosis compared to values obtained in a standard cell culture medium. Both cell functions increased during the dialysis period. In contrast, the cell-function only changed slightly when 87b, a bicarbonate based CAPD-solution (pH = 7.4, [HCO3-) = 29mM), was employed. During the first 30 minutes, the cells performed at a higher level when exposed to the 87b effluent than when exposed to the lactate effluents. The observations further indicated that optimal conditions for PMNs are at a bicarbonate concentration of less than 20 mM and a lactate concentration of less than 15mM. PMN migration is reduced by both lactate and bicarbonate based CAPD solutions and effluents collected during the first hour of dialysis. The bio-compatibility of CAPD solutions may be improved by combining the lactate and bicarbonate buffering systems in a solution with a concentration of less than 20 mM of bicarbonate and less than 15 mM of lactate.
Capelozzi, Marco A; Leick-Maldonado, Edna A; Parra, Edwin R; Martins, Mílton A; Tibério, Iolanda F L C; Capelozzi, Vera L
2007-05-14
Fluoxetine treatment effects were determined by evaluating respiratory mechanics (elastance/resistance) and exhaled nitric oxide, as well as mononuclear and polymorphonuclear cell recruitment into the lungs, in an experimental guinea pig model. Guinea pigs were divided into four groups: Fl (fluoxetine only, n=7); Fl+Sw (fluoxetine and forced swimming, n=7); Ns+Sw (normal saline and forced swimming, n=8); and Ns (normal saline only, n=8). Treated animals received oral fluoxetine (10 mg/(kg day)) for 30 consecutive days. On day 31, all animals were anesthetized and mechanically ventilated so that respiratory system elastance and resistance, as well exhaled nitric oxide, could be determined. The lungs were then excised en bloc for histological and immunohistochemical evaluation. Forced swimming induced bronchodilation in untreated animals and bronchoconstriction in fluoxetine-treated animals. Fluoxetine treatment was also associated with mononuclear infiltration (predominantly into alveolar walls) and neutrophil recruitment. In addition, levels of exhaled nitric oxide, an inflammatory marker, were higher in fluoxetine-treated animals. Swimming-induced stress also amplified mononuclear cell recruitment to the lungs. These results show that, in this experimental model, fluoxetine treatment reproduces the pathology of chronic interstitial pneumonia in humans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Qiuling, E-mail: 924969007@qq.com; Ma, Ning; Zhang, Jing
There is increasing evidence that oxidative stress is an important risk factor for arsenic-related diseases. Peripheral blood leukocytes constitute an important defense against microorganisms or pathogens, while the research on the impact of chronic arsenic exposure on peripheral blood leukocytes is much more limited, especially at low level arsenic exposure. The purpose of the present study was to explore whether chronic arsenic exposure affects oxidative stress of peripheral blood leukocytes and possible linkages between oxidative stress and arsenic-induced skin lesions. 75 male inhabitants recruited from an As-endemic region of China were investigated in the present study. The classification of arsenicosismore » was based on the degree of skin lesions. Arsenic levels were measured in drinking water and urine by Atomic Fluorescence Spectroscopy. Urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) was tested by Enzyme-Linked Immunosorbent Assay. 8-OHdG of peripheral blood leukocytes was evaluated using immunocytochemical staining. 8-OHdG-positive reactions were only present in polymorphonuclear leukocytes (PMNs), but not in monocytes (MNs). The 8-OHdG staining of PMN cytoplasm was observed in all investigated populations, while the 8-OHdG staining of PMN nuclei was frequently found along with the elevated amounts of cell debris in individuals with skin lesion. Urinary arsenic levels were increased in the severe skin lesion group compared with the normal group. No relationship was observed between drinking water arsenic or urine 8-OHdG and the degree of skin lesions. These findings indicated that the target and persistent oxidative stress in peripheral blood PMNs may be employed as a sensitive biomarker directly to assess adverse health effects caused by chronic exposure to lower levels of arsenic. -- Highlights: ► Male inhabitants were investigated from an As-endemic region of China. ► 8-OHdG-positive reactions were only present in polymorphonuclear leukocytes (PMNs). ► 8-OHdG staining of PMN nuclei was paralleled by increased debris of cells. ► Oxidative DNA damage of PMNs is associated with arsenic-related skin lesions.« less
Gaida, M M; Günther, F; Wagner, C; Friess, H; Giese, N A; Schmidt, J; Hänsch, G M; Wente, M N
2008-11-01
The chemokine receptor CXCR6 has been described on lymphoid cells and is thought to participate in the homing of activated T-cells to non-lymphoid tissue. We now provide evidence that the chemokine receptor CXCR6 is also expressed by activated polymorphonuclear neutrophils (PMN) in vivo: Examination of biopsies derived from patients with pancreatic carcinoma by confocal laser scan microscopy revealed a massive infiltration of PMN that expressed CXCR6, while PMN of the peripheral blood of these patients did not. To answer the question whether CXCR6 expression is a property of infiltrated and activated PMN, leucocytes were collected from patients with localized soft tissue infections in the course of the wound debridement. By cytofluorometry, the majority of these cells were identified as PMN. Up to 50% of these PMN were also positive for CXCR6. Again, PMN from the peripheral blood of these patients were nearly negative for CXCR6, as were PMN of healthy donors. In a series of in vitro experiments, up-regulation of CXCR6 on PMN of healthy donors by a variety of cytokines was tested. So far, a minor, although reproducible, effect of tumour necrosis factor (TNFalpha) was seen: brief exposure with low-dose TNFalpha induced expression of CXCR6 on the surface of PMN. Furthermore, we could show an increased migration of PMN induced by the axis CXCL16 and CXCR6. In summary, our data provide evidence that CXCR6 is not constitutively expressed on PMN, but is up-regulated under inflammatory conditions and mediates migration of CXCR6-positive PMN.
A novel factor H-Fc chimeric immunotherapeutic molecule against Neisseria gonorrhoeae
Shaughnessy, Jutamas; Gulati, Sunita; Agarwal, Sarika; Unemo, Magnus; Ohnishi, Makoto; Su, Xia-Hong; Monks, Brian G.; Visintin, Alberto; Madico, Guillermo; Lewis, Lisa A.; Golenbock, Douglas T.; Reed, George W.; Rice, Peter A.; Ram, Sanjay
2015-01-01
Neisseria gonorrhoeae (Ng), the causative agent of the sexually transmitted infection gonorrhea, has developed resistance to almost every conventional antibiotic. There is an urgent need to develop novel therapies against gonorrhea. Many pathogens, including Ng, bind the complement inhibitor factor H (FH) to evade complement-dependent killing. Sialylation of gonococcal lipooligosaccharide, as occurs in vivo, augments binding of human FH through its domains 18-20 (FH18-20). We explored the utility of fusing FH18-20 with IgG Fc (FH18-20/Fc) to create a novel anti-infective immunotherapeutic. FH18-20 also binds to select host glycosaminoglycans to limit unwanted complement activation on host cells. To identify mutation(s) in FH18-20 that eliminated complement activation on host cells, yet maintained binding to Ng, we created four mutations in domains 19 or 20 described in atypical hemolytic uremic syndrome that prevented binding of mutated fH to human erythrocytes. One of the mutant proteins (D to G at position 1119 in domain 19; FHD1119G/Fc) facilitated complement-dependent killing of gonococci similar to unmodified FH18-20/Fc, but unlike FH18-20/Fc, did not lyse human erythrocytes. FHD1119G/Fc bound to all (100%) of 15 sialylated clinical Ng isolates tested (including three contemporary ceftriaxone-resistant strains), mediated complement-dependent killing of 10/15 (67%) strains and enhanced C3 deposition (≥10-fold above baseline levels) on each of the five isolates not directly killed by complement. FHD1119G/Fc facilitated opsonophagocytic killing of a serum-resistant strain by human polymorphonuclear neutrophils. FHD1119G/Fc administered intravaginally significantly reduced the duration and burden of gonococcal infection in the mouse vaginal colonization model. FHD1119G/Fc represents a novel immunotherapeutic against multidrug-resistant Ng. PMID:26773149
Variations of the angiotensin II type 1 receptor gene are associated with extreme human longevity.
Benigni, Ariela; Orisio, Silvia; Noris, Marina; Iatropoulos, Paraskevas; Castaldi, Davide; Kamide, Kei; Rakugi, Hiromi; Arai, Yasumichi; Todeschini, Marta; Ogliari, Giulia; Imai, Enyu; Gondo, Yasuyuki; Hirose, Nobuyoshi; Mari, Daniela; Remuzzi, Giuseppe
2013-06-01
Longevity phenotype in humans results from the influence of environmental and genetic factors. Few gene polymorphisms have been identified so far with a modest effect on lifespan leaving room for the search of other players in the longevity game. It has been recently demonstrated that targeted disruption of the mouse homolog of the human angiotensin II type 1 receptor (AT1R) gene (AGTR1) translates into marked prolongation of animal lifespan (Benigni et al., J Clin Invest 119(3):524-530, 2009). Based on the above study in mice, here we sought to search for AGTR1 variations associated to reduced AT1 receptor protein levels and to prolonged lifespan in humans. AGTR1 was sequenced in 173 Italian centenarians and 376 younger controls. A novel non-synonymous mutation was detected in a centenarian. Two polymorphisms in AGTR1 promoter, rs422858 and rs275653, in complete linkage disequilibrium, were significantly associated with the ability to attain extreme old age. We then replicated the study of rs275653 in a large independent cohort of Japanese origin (598 centenarians and semi-supercentenarians, 422 younger controls) and indeed confirmed its association with exceptional old age. In combined analyses, rs275653 was associated to extreme longevity either at recessive model (P = 0.007, odds ratio (OR) 3.57) or at genotype level (P = 0.015). Significance was maintained after correcting for confounding factors. Fluorescence activated cell sorting analysis revealed that subjects homozygous for the minor allele of rs275653 had less AT1R-positive peripheral blood polymorphonuclear cells. Moreover, rs275653 was associated to lower blood pressure in centenarians. These findings highlight the role of AGTR1 as a possible candidate among longevity-enabling genes.
Zaets, Sergey B.; Xu, Da-Zhong; Lu, Qi; Feketova, Eleonora; Berezina, Tamara L.; Gruda, Maryann; Malinina, Inga V.; Deitch, Edwin A.; Olsen, Eva H. N.
2010-01-01
Plasma factor XIII (FXIII) is responsible for stabilization of fibrin clot at the final stage of blood coagulation. Because FXIII has also been shown to modulate inflammation and endothelial permeability, we hypothesized that FXIII diminishes multiple organ dysfunction caused by gut I/R injury. A model of superior mesenteric artery occlusion (SMAO) was used to induce gut I/R injury. Rats were subjected to 45-min SMAO or sham SMAO and treated with recombinant human FXIII A2 subunit (rFXIII) or placebo at the beginning of the reperfusion period. Lung permeability, lung and gut myeloperoxidase activity, gut histology, neutrophil respiratory burst, and microvascular blood flow in the liver and muscles were measured after a 3-h reperfusion period. The effect of activated rFXIII on transendothelial resistance of human umbilical vein endothelial cells was tested in vitro. Superior mesenteric artery occlusion–induced lung permeability as well as lung and gut myeloperoxidase activity was significantly lower in rFXIII-treated versus untreated animals. Similarly, rFXIII-treated rats had lower neutrophil respiratory burst activity and ileal mucosal injury. Rats treated with rFXIII also had higher liver microvascular blood flow compared with the placebo group. Superior mesenteric artery occlusion did not cause FXIII consumption during the study period. In vitro, activated rFXIII caused a dose-dependent increase in human umbilical vein endothelial cell monolayer resistance to thrombin-induced injury. Thus, administration of rFXIII diminishes SMAO-induced multiple organ dysfunction in rats, presumably by preservation of endothelial barrier function and the limitation of polymorphonuclear leukocyte activation. PMID:18948851
Leukocytes in expressed breast milk of asthmatic mothers.
Dixon, D-L; Forsyth, K D
Infants are born immunologically immature. However, breastfeeding mothers retain an immunological link to their infants. While it is generally accepted that infants are at an immunological advantage when compared with formula-fed infants, the benefit of long-term exclusive breastfeeding by atopic mothers remains controversial. Inconsistency in the conferral of benefit may be due to differences in the immunological constituents passed to the recipient infant. The aim of this investigation was to examine the profile of human milk cells and cytokines from asthmatic compared to non-asthmatic mothers. Twenty-five exclusively breastfeeding mothers with a clinical diagnosis of asthma were postpartum age matched in a double-control 2:1 design with 50 non-asthmatic controls. Each mother provided a single milk sample which was assayed for cell differential by flow cytometry, for ex vivo cytokine production in culture and for aqueous phase cytokines. Milks from asthmatic mothers differed from non-asthmatics in that they contained a higher proportion of polymorphonuclear (PMN) cells and lower proportion of lymphocytes, predominantly CD3 + /CD4 + T helper cells, reflected by a decrease in the chemokine CCL5 in the milk aqueous phase. More PMN and lymphocytes from asthmatic mothers expressed the adhesion molecule CD11b and lymphocytes the IgE receptor CD23, than those from non-asthmatic mothers. Changes to human milk leucocyte prevalence, activation state and cytokines due to maternal asthma may result in changes to immunological priming in the infant. Consequently, the protective effect of long-term breastfeeding may be altered in these mother-infant pairs. Copyright © 2016 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.
Lennon, Paul F.; Taylor, Cormac T.; Stahl, Gregory L.; Colgan, Sean P.
1998-01-01
During episodes of inflammation, polymorphonuclear leukocyte (PMN) transendothelial migration has the potential to disturb vascular barrier function and give rise to intravascular fluid extravasation and edema. However, little is known regarding innate mechanisms that dampen fluid loss during PMN-endothelial interactions. Using an in vitro endothelial paracellular permeability model, we observed a PMN-mediated decrease in endothelial paracellular permeability. A similar decrease was elicited by cell-free supernatants from activated PMN (FMLP 10−6 M), suggesting the presence of a PMN-derived soluble mediator(s). Biophysical and biochemical analysis of PMN supernatants revealed a role for PMN-derived 5′-adenosine monophosphate (AMP) and its metabolite, adenosine, in modulation of endothelial paracellular permeability. Supernatants from activated PMN contained micromolar concentrations of bioactive 5′-AMP and adenosine. Furthermore, exposure of endothelial monolayers to authentic 5′-AMP and adenosine increased endothelial barrier function more than twofold in both human umbilical vein endothelial cells and human microvascular endothelial cells. 5′-AMP bioactivity required endothelial CD73-mediated conversion of 5′-AMP to adenosine via its 5′-ectonucleotidase activity. Decreased endothelial paracellular permeability occurred through adenosine A2B receptor activation and was accompanied by a parallel increase in intracellular cAMP. We conclude that activated PMN release soluble mediators, such as 5′-AMP and adenosine, that promote endothelial barrier function. During inflammation, this pathway may limit potentially deleterious increases in endothelial paracellular permeability and could serve as a basic mechanism of endothelial resealing during PMN transendothelial migration. PMID:9782120
CD38+ M-MDSC expansion characterizes a subset of advanced colorectal cancer patients.
Karakasheva, Tatiana A; Dominguez, George A; Hashimoto, Ayumi; Lin, Eric W; Chiu, Christopher; Sasser, Kate; Lee, Jae W; Beatty, Gregory L; Gabrilovich, Dmitry I; Rustgi, Anil K
2018-03-22
Myeloid-derived suppressor cells (MDSCs) are a population of immature immune cells with several protumorigenic functions. CD38 is a transmembrane receptor-ectoenzyme expressed by MDSCs in murine models of esophageal cancer. We hypothesized that CD38 could be expressed on MDSCs in human colorectal cancer (CRC), which might allow for a new perspective on therapeutic targeting of human MDSCs with anti-CD38 monoclonal antibodies in this cancer. Blood samples were collected from 41 CRC patients and 8 healthy donors, followed by peripheral blood mononuclear cell (PBMC) separation. Polymorphonuclear (PMN-) and monocytic (M-) MDSCs and CD38 expression levels were quantified by flow cytometry. The immunosuppressive capacity of M-MDSCs from 10 CRC patients was validated in a mixed lymphocyte reaction (MLR) assay. A significant expansion of CD38+ M-MDSCs and a trend of expansion of CD38+ PMN-MDSCs (accompanied by a trend of increased CD38 expression on both M- and PMN-MDSCs) were observed in PBMCs of CRC patients when compared with healthy donors. The CD38+ M-MDSCs from CRC patients were found to be immunosuppressive when compared with mature monocytes. CD38+ M- and PMN-MDSC frequencies were significantly higher in CRC patients who previously received treatment when compared with treatment-naive patients. This study provides a rationale for an attempt to target M-MDSCs with an anti-CD38 monoclonal antibody in metastatic CRC patients. NCI P01-CA14305603, the American Cancer Society, Scott and Suzi Lustgarten Family Colon Cancer Research Fund, Hansen Foundation, and Janssen Research and Development.
CFTR RECRUITMENT TO PHAGOSOMES IN NEUTROPHILS
Zhou, Yun; Song, Kejing; Painter, Richard G.; Aiken, Martha; Reiser, Jakob; Stanton, Bruce A.; Nauseef, William M.; Wang, Guoshun
2013-01-01
Optimal microbicidal activity of human polymorphonuclear leukocytes (PMN) relies on generation of toxic agents such as hypochlorous acid (HOCl) in phagosomes. HOCl formation requires H2O2 produced by the NADPH oxidase, myeloperoxidase derived from azurophilic granules, and chloride ion. Chloride transport from cytoplasm into phagosomes requires chloride channels which include cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel. However, the phagosomal targeting of CFTR in PMN has not been defined. Using human peripheral blood PMN, we determined that ~95–99% of LAMP-1 positive mature phagosomes were CFTR-positive, as judged by immunostaining and flow cytometric analysis. To establish a model cell system to evaluate CFTR phagosomal recruitment, we stably expressed EGFP alone, EGFP-wt-CFTR and EGFP-ΔF508-CFTR fusion proteins in promyelocytic PLB-985 cells, respectively. After differentiation into neutrophil-like cells, CFTR presentation to phagosomes was examined. EGFP-wt-CFTR was observed to associate with phagosomes and co-localize with LAMP-1. Flow cytometric analysis of the isolated phagosomes indicated that such a phagosomal targeting was determined by the CFTR portion of the fusion protein. In contrast, significantly less EGFP-ΔF508-CFTR was found in phagosomes, indicating a defective targeting of the molecule to the organelle. Importantly, CFTR corrector compound VRT-325 facilitated the recruitment of ΔF508-CFTR to phagosomes. These data demonstrate the possibility of pharmacologic correction of impaired recruitment of mutant CFTR, thereby providing a potential means to augment chloride supply to the phagosomes of PMN in patients with cystic fibrosis to enhance their microbicidal function. PMID:23486169
Tsung, P; Kegeles, S W; Showell, H J; Becker, E L
1975-09-22
An N-acetyl-DL-phenylalanine beta-naphthyl esterase has been purified 26-fold from rabbit peritoneal polymorphonuclear leukocytes. The purified enzyme was inhibited by 10(-7) M p-nitrophenylethyl-5-chloropentylphosphonate. The apparent Km for hydrolysis of N-acetyl-DL-phenylalanine beta-naphthyl ester is 71 muM. Optimal reaction rates were observed at pH 6-8. No divalent cation requirement for the activation of the enzyme activity was observed. The esterase activity was neither inhibited nor stimulated by bacterial factor, complement component C5a, guanosine 3',5'-monophosphate (cyclic GMP) and adenosine 3',5'-monophosphate (cyclic AMP) which are attractants or repellents for polymorphonuclear leukocytes. High chemotactic activity was observed in the partially purified fraction of the enzyme. The chemotactic activity, like the enzyme activity, was completely inhibited by 10(-7) M phosphonate.
Barquero-Calvo, Elías; Mora-Cartín, Ricardo; Arce-Gorvel, Vilma; de Diego, Juana L.; Chacón-Díaz, Carlos; Chaves-Olarte, Esteban; Guzmán-Verri, Caterina; Buret, Andre G.; Gorvel, Jean-Pierre; Moreno, Edgardo
2015-01-01
Most bacterial infections induce the activation of polymorphonuclear neutrophils (PMNs), enhance their microbicidal function, and promote the survival of these leukocytes for protracted periods of time. Brucella abortus is a stealthy pathogen that evades innate immunity, barely activates PMNs, and resists the killing mechanisms of these phagocytes. Intriguing clinical signs observed during brucellosis are the low numbers of Brucella infected PMNs in the target organs and neutropenia in a proportion of the patients; features that deserve further attention. Here we demonstrate that B. abortus prematurely kills human PMNs in a dose-dependent and cell-specific manner. Death of PMNs is concomitant with the intracellular Brucella lipopolysaccharide (Br-LPS) release within vacuoles. This molecule and its lipid A reproduce the premature cell death of PMNs, a phenomenon associated to the low production of proinflammatory cytokines. Blocking of CD14 but not TLR4 prevents the Br-LPS-induced cell death. The PMNs cell death departs from necrosis, NETosis and classical apoptosis. The mechanism of PMN cell death is linked to the activation of NADPH-oxidase and a modest but steadily increase of ROS mediators. These effectors generate DNA damage, recruitments of check point kinase 1, caspases 5 and to minor extent of caspase 4, RIP1 and Ca++ release. The production of IL-1β by PMNs was barely stimulated by B. abortus infection or Br-LPS treatment. Likewise, inhibition of caspase 1 did not hamper the Br-LPS induced PMN cell death, suggesting that the inflammasome pathway was not involved. Although activation of caspases 8 and 9 was observed, they did not seem to participate in the initial triggering mechanisms, since inhibition of these caspases scarcely blocked PMN cell death. These findings suggest a mechanism for neutropenia in chronic brucellosis and reveal a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN. PMID:25946018
Thomsen, K.; Christophersen, L.; Bjarnsholt, T.; Jensen, P. Ø.; Moser, C.
2015-01-01
Polymorphonuclear neutrophils (PMNs) are essential cellular constituents in the innate host response, and their recruitment to the lungs and subsequent ubiquitous phagocytosis controls primary respiratory infection. Cystic fibrosis pulmonary disease is characterized by progressive pulmonary decline governed by a persistent, exaggerated inflammatory response dominated by PMNs. The principal contributor is chronic Pseudomonas aeruginosa biofilm infection, which attracts and activates PMNs and thereby is responsible for the continuing inflammation. Strategies to prevent initial airway colonization with P. aeruginosa by augmenting the phagocytic competence of PMNs may postpone the deteriorating chronic biofilm infection. Anti-P. aeruginosa IgY antibodies significantly increase the PMN-mediated respiratory burst and subsequent bacterial killing of P. aeruginosa in vitro. The mode of action is attributed to IgY-facilitated formation of immobilized bacteria in aggregates, as visualized by fluorescence microscopy and the induction of increased bacterial hydrophobicity. Thus, the present study demonstrates that avian egg yolk immunoglobulins (IgY) targeting P. aeruginosa modify bacterial fitness, which enhances bacterial killing by PMN-mediated phagocytosis and thereby may facilitate a rapid bacterial clearance in airways of people with cystic fibrosis. PMID:25895968
Anti-polymorphonuclear neutrophil antibodies in patients with leukopenia or neutropenia.
Riera, N E; Rosso Saltó, M; Galán, V; Canalejo, K; Khoury, M; Aixalá, M; Kantor, G L; Vermeulen, M; Bengió, R; De Bracco, M M E
2010-02-01
Immune humoral neutropenia (Np) could be the consequence of anti-polymorphonuclear neutrophil (PMN) antibodies, circulating immune complexes (CIC) and/or antibodies against myeloid precursors. Granulocyte immunofluorescence test (GIFT) and a leukoagglutination technique (LAGT) assays are recommended for its diagnosis. Fifty adult patients with secondary Np were screened for anti-PMN. GIFT by flow cytometry from viable PMN and LAGT were employed. In addition, CIC levels, low expression of CD16(b) (CD16 (b)(low)), PMN phenotype and sera tumor necrosis factor-alpha (TNF-alpha) were also evaluated. Direct IgG-PMN binding (dir-GIFT) was positive in 16% of the patients. Antibodies against autologous PMN were detected in 32% of the samples by indirect (ind)-GIFT and demonstrated in 70% of the sera by both ind-GIFT and/or LAGT. Predominance of human neutrophil alloantigen (HNA)-1b and HNA-2 expression was confirmed. CD16(b)(low) was detected in 16% of the patient's PMN and TNF-alpha in 68% of sera patients. Our results suggest that diagnosis of immune Np in the laboratory may be improved by focusing on patient's PMN together with the assessment of cellular markers.
Hovde, C J; Gray, B H
1986-04-01
The physiological changes seen in Pseudomonas aeruginosa after exposure to a bactericidal protein (BP) from the granules of human polymorphonuclear leukocytes were studied. It was demonstrated, using radiolabeled proline or leucine, that both the rate of cellular uptake and amino acid incorporation into trichloroacetic acid-insoluble material were markedly decreased immediately after exposure to BP. The rate of O2 consumption by P. aeruginosa was decreased immediately after exposure to BP and continued to decline exponentially until it ceased completely 30 min after exposure to BP. In the presence of 30 mM CaCl2 or MgCl2, bacteria were protected from death due to BP and respiration rates were unaffected. The cellular ATP pool of P. aeruginosa remained constant for up to 2 h after exposure to BP. Membrane depolarization was measured by the influx of the lipophilic anion thiocyanate. It was shown that the cytoplasmic membrane of P. aeruginosa was partially depolarized after exposure to BP. Purified BP killed 95% of 5 X 10(6) CFU of P. aeruginosa at a concentration of 60 to 100 ng of protein per ml. Although the concentration of bacteria and BP varied with each type of experiment, the BP/bacteria ratio required to cause a 95 to 99% loss in viability remained constant. We propose that cytoplasmic membrane depolarization is the biochemical lesion responsible for the other physiological changes seen and ultimately for the death of P. aeruginosa induced by BP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rollins, T.E.; Siciliano, S.; Kobayashi, S.
1991-02-01
The authors have isolated, in an active state, the C5a receptor from human polymorphonuclear leukocytes. The purification was achieved in a single step using a C5a affinity column in which the C5a molecule was coupled to the resin through its N terminus. The purified receptor, like the crude solubilized molecule, exhibited a single class of high-affinity binding sites with a K{sub d} of 30 pM. Further, the binding of C5a retained its sensitivity to guanine nucleotides, implying that the purified receptor contained a guanine nucleotide-binding protein (G protein). SDS/PAGE revealed the presence of three polypeptides with molecular masses of 42,more » 40, and 36 kDa, which were determined to be the C5a-binding subunit and the {alpha} and {beta} subunits of G{sub i}, respectively. The 36- and 40-kDa polypeptides were identified by immunoblotting and by the ability of pertussis toxin to ADP-ribosylate the 40-kDa molecule. These results confirm their earlier hypothesis that the receptor exists as a complex with a G protein in the presence or absence of C5a. The tight coupling between the receptor and G protein should make possible the identification of the G protein(s) involved in the transduction pathways used by C5a to produce its many biological effects.« less
Wu, Rui; Kausar, Hina; Johnson, Paul; Montoya-Durango, Diego E; Merchant, Michael; Rane, Madhavi J
2007-07-27
We have shown previously that Akt exists in a signal complex with p38 MAPK, MAPK-activated protein kinase-2 (MK2), and heat shock protein 27 (Hsp27) and MK2 phosphorylates Akt on Ser-473. Additionally, dissociation of Hsp27 from Akt, prior to Akt activation, induced polymorphonuclear leukocyte (PMN) apoptosis. However, the role of Hsp27 in regulating Akt activation was not examined. This study tested the hypothesis that Hsp27 regulates Akt activation and promotes cell survival by scaffolding MK2 to the Akt signal complex. Here we show that loss of Akt/Hsp27 interaction by anti-Hsp27 antibody treatment resulted in loss of Akt/MK2 interaction, loss of Akt-Ser-473 phosphorylation, and induced PMN apoptosis. Transfection of myristoylated Akt (AktCA) in HK-11 cells induced Akt-Ser-473 phosphorylation, activation, and Hsp27-Ser-82 phosphorylation. Cotransfection of AktCA with Hsp27 short interfering RNA, but not scrambled short interfering RNA, silenced Hsp27 expression, without altering Akt expression in HK-11 cells. Silencing Hsp27 expression inhibited Akt/MK2 interaction, inhibited Akt phosphorylation and Akt activation, and induced HK-11 cell death. Deletion mutagenesis studies identified acidic linker region (amino acids 117-128) on Akt as an Hsp27 binding region. Deletion of amino acids 117-128 on Akt resulted in loss of its interaction with Hsp27 and MK2 but not with Hsp90 as demonstrated by immunoprecipitation and glutathione S-transferase pulldown studies. Co-transfection studies demonstrated that constitutively active MK2 (MK2EE) phosphorylated Aktwt (wild type) on Ser-473 but failed to phosphorylate Akt(Delta117-128) mutant in transfixed cells. These studies collectively define a novel role of Hsp27 in regulating Akt activation and cellular apoptosis by mediating interaction between Akt and its upstream activator MK2.
Comparison of two models of inflammatory bowel disease in rats.
Catana, Cristina Sorina; Magdas, Cristian; Tabaran, Flaviu Alexandru; Crăciun, Elena Cristina; Deak, Georgiana; Magdaş, Virginia Ana; Cozma, Vasile; Gherman, Călin Mircea; Berindan-Neagoe, Ioana; Dumitraşcu, Dan Lucian
2018-03-26
There is a need for experimental animal models for inflammatory bowel diseases (IBD), but no proposed model has been unanimously accepted. The aim of this study was to develop 2 affordable models of IBD in rats and to compare them. We produced IBD in rats using either dextran sodium sulfate (DSS) or 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). The requirements for experimental models were: a predictable clinical course, histopathology and inflammation similar to human ulcerative colitis (UC) and Crohn's disease (CD). The effect of acute administration of DSS and TNBS on oxidative stress (as measured by the assessment of glutathione peroxidase - GPx) was verified. The activity of whole blood GPx was measured using a commercially available Randox kit (Crumlin, UK). The administration of DSS increased GPx activity compared to the control and TNBS-treated groups, but not to a statistically significant degree. Histological examination of the colonic mucosa following the administration of DSS showed multifocal erosions with minimal to mild inflammatory infiltrate, mainly by polymorphonuclear cells (PMN), lymphocytes and plasma cells. For TNBS-induced colitis, the histological changes manifested as multifocal areas of ulcerative colitis with mild to severe inflammatory infiltrate. Whole blood GPx values displayed a direct dependence on the chemical agent used. Our results show a correlation between histopathology, proinflammatory state and oxidative stress. The experimental DSSor TNBS-induced bowel inflammation used in this study corresponds to human IBD and is reproducible with characteristics indicative of acute inflammation in the case of the protocols mentioned.
Gaster, Richard S; Berger, Aaron J; Monica, Stefanie D; Sweeney, Robert T; Endress, Ryan; Lee, Gordon K
2013-04-01
This study seeks to determine human host response to fetal bovine acellular dermal matrix (ADM) in staged implant-based breast reconstruction. A prospective study was performed for patients undergoing immediate breast reconstruction with tissue expander placement and SurgiMend acellular fetal bovine dermis. At the time of exchange for permanent implant, we obtained tissue specimens of SurgiMend and native capsule. Histological and immunohistochemical assays were performed to characterize the extent of ADM incorporation/degradation, host cell infiltration, neovascularization, inflammation, and host replacement of acellular fetal bovine collagen. Seventeen capsules from 12 patients were included in our study. The average "implantation" time of SurgiMend was 7.8 months (range, 2-23 months). Histological analysis of the biopsy of tissue revealed rare infiltration of host inflammatory cells, even at 23 months. One patient had an infection requiring removal of the tissue expander at 2 months. Contracture, inflammatory changes, edema, and polymorphonuclear leukocyte infiltration were rare in the ADM. An acellular capsule was seen in many cases, at the interface of SurgiMend with the tissue expander. SurgiMend demonstrated a very infrequent inflammatory response. An antibody specific to bovine collagen allowed for direct identification of bovine collagen separate from human collagen. Cellular infiltration and neovascularization of SurgiMend correlated with the quality of the mastectomy skin flap rather than the duration of implantation. Future studies are needed to further characterize the molecular mechanisms underlying tissue incorporation of this product.
Lupus Nephritis: An Overview of Recent Findings
de Zubiria Salgado, Alberto; Herrera-Diaz, Catalina
2012-01-01
Lupus nephritis (LN) is one of the most serious complications of systemic lupus erythematosus (SLE) since it is the major predictor of poor prognosis. In susceptible individuals suffering of SLE, in situ formation and deposit of immune complexes (ICs) from apoptotic bodies occur in the kidneys as a result of an amplified epitope immunological response. IC glomerular deposits generate release of proinflammatory cytokines and cell adhesion molecules causing inflammation. This leads to monocytes and polymorphonuclear cells chemotaxis. Subsequent release of proteases generates endothelial injury and mesangial proliferation. Presence of ICs promotes adaptive immune response and causes dendritic cells to release type I interferon. This induces maturation and activation of infiltrating T cells, and amplification of Th2, Th1 and Th17 lymphocytes. Each of them, amplify B cells and activates macrophages to release more proinflammatory molecules, generating effector cells that cannot be modulated promoting kidney epithelial proliferation and fibrosis. Herein immunopathological findings of LN are reviewed. PMID:22536486
Unripe Musa sapientum peel in the healing of surgical wounds in rats.
Atzingen, Dênia Amélia Novato Castelli Von; Gragnani, Alfredo; Veiga, Daniela Francescato; Abla, Luis Eduardo Felipe; Cardoso, Lorraine Lorene Felix; Ricardo, Thiago; Mendonça, Adriana Rodrigues dos Anjos; Ferreira, Lydia Masako
2013-01-01
To assess the effects of unripe Musa sapientum peel on the healing of surgical wounds in rats. One hundred and twenty Wistar rats were divided into two treatment groups of 60 animals each: the control group (gel without the active ingredient) and experimental group (4% Musa sapientum peel gel). A 4 x 4 cm surgical wound was created on the back of each animal. The wound was cleaned daily with 0.9% saline, treated with 4% gel or natrosol gel (control), and covered with gauze. Animals from both groups were sacrificed after seven, 14 and 21 days of treatment; the tissue from the wound site was removed together with a margin of normal skin for histological analysis. No significant differences in wound contraction rates (p=0.982) were found between time points (seven, 14 and 21 days of treatment) in both groups. However, a significantly higher wound contraction rate was observed in the control group on day 21 compared with the experimental group (p=0.029). There were no significant differences in histomorphological features between groups. The experimental group showed an increased number of polymorphonuclear cells on day 7, with a significant reduction on day 21 (p=0.026). The use of 4% unripe Musa sapientum peel gel on surgical wounds in rats resulted in an increased number of polymorphonuclear cells on day 7, reduced wound contraction, reduced vascular proliferation and increased concentration of collagen fibers on day 21.
Characterization of a neutral protease from lysosomes of rabbit polymorphonuclear leucocytes
Davies, Philip; Rita, Giuseppe A.; Krakauer, Kathrin; Weissmann, Gerald
1971-01-01
1. The subcellular distribution has been investigated of a protease from rabbit polymorphonuclear leucocytes, obtained from peritoneal exudates. The enzyme, optimally active between pH7.0 and 7.5, hydrolyses histone but not haemoglobin, sediments almost exclusively with a granule fraction rich in other lysosomal enzymes, and is latent until the granules are disrupted by various means. 2. Enzymic analysis of specific and azurophilic granules separated by zonal centrifugation showed that neutral protease activity was confined to fractions rich in enzymes characteristic of azurophile granules. 3. Recovery of neutral protease activity from subcellular fractions was several times greater than that found in whole cells. This finding was explained by the presence of a potent inhibitor of the enzyme activity in the cytoplasm. 4. The effect of the inhibitor was reversed by increasing ionic strength (up to 2.5m-potassium chloride) and by polyanions such as heparin and dextran sulphate, but not by an uncharged polymer, dextran. 5. The enzyme was also inhibited, to a lesser extent, by 1-chloro-4-phenyl-3-l-toluene-p-sulphonamidobutan-2-one, soya-bean trypsin inhibitor and ∈-aminohexanoate (∈-aminocaproate). 6. The granule fractions failed to hydrolyse artificial substrates for trypsin and chymotrypsin. 7. Partial separation of the enzyme was achieved by Sephadex gel filtration at high ionic strength and by isoelectric focusing. The partially separated, activated enzyme showed an approximately 300-fold increase in specific activity over that in whole cells. PMID:5126908
Sachdev, Anil; Chugh, Krishan; Raghunathan, Veena; Gupta, Dhiren; Wattal, Chand; Menon, Geetha R
2013-01-01
To evaluate the reproducibility of blind bronchial sampling in patients with suspected diagnosis of bacterial ventilator-associated pneumonia. Prospective study. Pediatric intensive care unit of a tertiary care, multidisciplinary, teaching hospital in Northern India. All consecutive patients on mechanical ventilation for >48 hrs were evaluated clinically for ventilator-associated pneumonia. Children with clinical ventilator-associated pneumonia were subjected to blind bronchial sampling twice. Sixty-eight blind bronchial sampling samples from 34 patients were analyzed for polymorphonuclear cells, the presence, type, and number of bacteria. Acinetobacter baumannii was the most common organism grown from distal respiratory secretions. For polymorphonuclear cells, the concordance between two blind bronchial samples was 85.3% and kappa coefficient was 0.65. The concordance for the presence and type of bacteria in Gram staining in two samples was 85.3% and kappa coefficient was 0.68. The intraclass coefficients for bacterial index and predominant species index were 0.82 (95% confidence interval 0.65-0.91) and 0.89 (95% confidence interval 0.78-0.94), respectively. The use of prior antibiotics did not adversely affect the reproducibility of blind bronchial sampling. No major complications were recorded during the procedure. Blind bronchial sampling of lower respiratory tract secretions in mechanically ventilated patients generates reproducible results of quantitative and qualitative cultures. We suggest that blind bronchial sampling may provide valuable clue to the bacterial etiology in ventilated child with suspected clinical ventilator-associated pneumonia.
Endotoxin-induced shock in the rat. A role for C5a.
Smedegård, G.; Cui, L. X.; Hugli, T. E.
1989-01-01
Administration of endotoxin from gram-negative bacteria to rats results in systemic hypotension, an increased hematocrit, and decreased numbers of circulating leukocytes (polymorphonuclear), monocytes, and platelets. These potentially lethal physiologic changes may be partially attributed to complement activation and generation of anaphylatoxins by the endotoxin (LPS). We demonstrated an elevation in the plasma levels of both C3a and C5a in LPS-treated rats. Injection of 5 micrograms C5ades Arg (rat) into rats produced effects similar to those induced by LPS, including decreased mean arterial pressure (systemic hypotension) and decreased numbers of circulating polymorphonuclear leukocytes, monocytes, and platelets. Unlike the response to LPS, C5a did not increase the hematocrit, indicating little effect on vascular permeability at the doses used. When LPS-treated animals were pretreated with F(ab')2 fragments of rabbit anti-rat C5a, no changes were measured in the circulating cell counts compared with LPS alone; however a significant improvement in the mean arterial pressure and a decrease in hematocrit was observed. We conclude that LPS-induced (septic) shock in the rat may result, in part, from the effects of complement activation and particularly from the generation of C5a. The influence of C5a on the LPS effect in the rat appears to enhance both the hypotensive (mean arterial pressure) and vascular permeability (hematocrit) responses. These results appear to support and confirm earlier observations that anti-human C5a increased survival in a septic-shock monkey model by eliminating circulating C5a and presumably thereby reducing the effects of endotoxin on blood pressure. Our results demonstrate that C5a plays a significant role in the hemodynamic changes associated with endotoxin-induced shock. Neutralization of C5a with specific antibodies may reduce the hypotensive response to endotoxin sufficiently to prevent lethal septic shock both in animals and in man. PMID:2789475
Prokaryotic RNA Associated to Bacterial Viability Induces Polymorphonuclear Neutrophil Activation.
Rodriguez-Rodrigues, Nahuel; Castillo, Luis A; Landoni, Verónica I; Martire-Greco, Daiana; Milillo, M Ayelén; Barrionuevo, Paula; Fernández, Gabriela C
2017-01-01
Polymorphonuclear neutrophils (PMN) are the first cellular line of antibacterial host defense. They sense pathogens through recognition of pathogen-associated molecular patterns (PAMPs) by innate pattern recognition receptors, such as Toll-like receptors (TLR). The aim of this study was to investigate whether PMN sense bacterial viability and explore which viability factor could be involved in this phenomenon. For this purpose, different functions were evaluated in isolated human PMN using live Escherichia coli (Ec) and heat-killed Ec (HK-Ec). We found that bacterial viability was indispensable to induce PMN activation, as measured by forward-scatter (FSC) increase, CD11b surface expression, chemotaxis, reactive oxygen species (ROS) generation and neutrophil extracellular trap (NET) formation. As uncapped non-polyadenylated prokaryotic mRNA has been recognized as a PAMP associated to bacterial viability by macrophages and dendritic cells, total prokaryotic RNA (pRNA) from live Ec was purified and used as a stimulus for PMN. pRNA triggered similar responses to those observed with live bacteria. No RNA could be isolated from HK-Ec, explaining the lack of effect of dead bacteria. Moreover, the supernatant of dead bacteria was able to induce PMN activation, and this was associated with the presence of pRNA in this supernatant, which is released in the killing process. The induction of bactericidal functions (ROS and NETosis) by pRNA were abolished when the supernatant of dead bacteria or isolated pRNA were treated with RNAse. Moreover, endocytosis was necessary for pRNA-induced ROS generation and NETosis, and priming was required for the induction of pRNA-induced ROS in whole blood. However, responses related to movement and degranulation (FSC increase, CD11b up-regulation, and chemotaxis) were still triggered when pRNA was digested with RNase, and were not dependent on pRNA endocytosis or PMN priming. In conclusion, our results indicate that PMN sense live bacteria through recognition of pRNA, and this sensing triggers potent bactericidal mechanisms.
Prokaryotic RNA Associated to Bacterial Viability Induces Polymorphonuclear Neutrophil Activation
Rodriguez-Rodrigues, Nahuel; Castillo, Luis A.; Landoni, Verónica I.; Martire-Greco, Daiana; Milillo, M. Ayelén; Barrionuevo, Paula; Fernández, Gabriela C.
2017-01-01
Polymorphonuclear neutrophils (PMN) are the first cellular line of antibacterial host defense. They sense pathogens through recognition of pathogen-associated molecular patterns (PAMPs) by innate pattern recognition receptors, such as Toll-like receptors (TLR). The aim of this study was to investigate whether PMN sense bacterial viability and explore which viability factor could be involved in this phenomenon. For this purpose, different functions were evaluated in isolated human PMN using live Escherichia coli (Ec) and heat-killed Ec (HK-Ec). We found that bacterial viability was indispensable to induce PMN activation, as measured by forward-scatter (FSC) increase, CD11b surface expression, chemotaxis, reactive oxygen species (ROS) generation and neutrophil extracellular trap (NET) formation. As uncapped non-polyadenylated prokaryotic mRNA has been recognized as a PAMP associated to bacterial viability by macrophages and dendritic cells, total prokaryotic RNA (pRNA) from live Ec was purified and used as a stimulus for PMN. pRNA triggered similar responses to those observed with live bacteria. No RNA could be isolated from HK-Ec, explaining the lack of effect of dead bacteria. Moreover, the supernatant of dead bacteria was able to induce PMN activation, and this was associated with the presence of pRNA in this supernatant, which is released in the killing process. The induction of bactericidal functions (ROS and NETosis) by pRNA were abolished when the supernatant of dead bacteria or isolated pRNA were treated with RNAse. Moreover, endocytosis was necessary for pRNA-induced ROS generation and NETosis, and priming was required for the induction of pRNA-induced ROS in whole blood. However, responses related to movement and degranulation (FSC increase, CD11b up-regulation, and chemotaxis) were still triggered when pRNA was digested with RNase, and were not dependent on pRNA endocytosis or PMN priming. In conclusion, our results indicate that PMN sense live bacteria through recognition of pRNA, and this sensing triggers potent bactericidal mechanisms. PMID:28730145
Radics, T; Kiss, C; Tar, I; Márton, I J
2003-02-01
Apical periodontitis is characterized by the presence of immunocompetent cells producing a wide variety of inflammatory mediators. Releasing cytokines with long-range action, such as interleukin-6 (IL-6) and granulocyte-macrophage colony-stimulating factor (GM-CSF), apical periodontitis may induce changes in remote organs of the host. This study quantified the levels of IL-6 and GM-CSF in symptomatic and asymptomatic human periradicular lesions. Lesions were also characterized by size and histologic findings. Tissue samples were homogenized and supernatants were assayed using an enzyme-linked immunosorbent assay (ELISA). Correlations between cytokine levels and characteristic features (as single variables) of the lesions were analysed. There was a trend for higher levels of IL-6 and GM-CSF in symptomatic than in asymptomatic lesions, but the difference was not significant. Levels also tended to be higher in large than in small lesions, in polymorphonuclear (PMN) cell-rich than in PMN cell-poor samples, and in epithelialized than in non-epithelialized lesions. Significantly higher levels of IL-6 (778.1 +/- 220.5 pg/microg) and GM-CSF (363.3 +/- 98.4 pg/microg) were found in samples coincidentally possessing symptomatic and epithelialized features than in asymptomatic, small, PMN cell-poor, non-epithelialized lesions (IL-6: 45.2 +/- 13.1 pg/microg and GM-CSF: 135.1 +/- 26.4 pg/microg). These results suggest that symptomatic lesions containing epithelial cells represent an immunologically active stage of apical periodontitis, whereas asymptomatic, small, PMN cell-poor, non-epithelialized lesions represent healing apical lesions.
Involvement of leucocyte/endothelial cell interactions in anorexia nervosa.
Víctor, Víctor M; Rovira-Llopis, Susana; Saiz-Alarcón, Vanessa; Sangüesa, Maria C; Rojo-Bofill, Luis; Bañuls, Celia; de Pablo, Carmen; Álvarez, Ángeles; Rojo, Luis; Rocha, Milagros; Hernández-Mijares, Antonio
2015-07-01
Anorexia nervosa is a common psychiatric disorder in adolescence and is related to cardiovascular complications. Our aim was to study the effect of anorexia nervosa on metabolic parameters, leucocyte-endothelium interactions, adhesion molecules and proinflammatory cytokines. This multicentre, cross-sectional, case-control study employed a population of 24 anorexic female patients and 36 controls. We evaluated anthropometric and metabolic parameters, interactions between leucocytes polymorphonuclear neutrophils (PMN) and human umbilical vein endothelial cells (HUVEC), proinflammatory cytokines such as tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) and soluble cellular adhesion molecules (CAMs) including E-selectin, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Anorexia nervosa was related to a decrease in weight, body mass index, waist circumference, systolic blood pressure, glucose, insulin and HOMA-IR, and an increase in HDL cholesterol. These effects disappeared after adjusting for BMI. Anorexia nervosa induced a decrease in PMN rolling velocity and an increase in PMN rolling flux and PMN adhesion. Increases in IL-6 and TNF-α and adhesion molecule VCAM-1 were also observed. This study supports the hypothesis of an association between anorexia nervosa, inflammation and the induction of leucocyte-endothelium interactions. These findings may explain, in part at least, the increased risk of vascular disease among patients with anorexia nervosa. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.
High matrix metalloproteinase activity is a hallmark of periapical granulomas.
de Paula-Silva, Francisco Wanderley Garcia; D'Silva, Nisha J; da Silva, Léa Assed Bezerra; Kapila, Yvonne Lorraine
2009-09-01
The inability to distinguish periapical cysts from granulomas before performing root canal treatment leads to uncertainty in treatment outcomes because cysts have lower healing rates. Searching for differential expression of molecules within cysts or granulomas could provide information with regard to the identity of the lesion or suggest mechanistic differences that may form the basis for future therapeutic intervention. Thus, we investigated whether granulomas and cysts exhibit differential expression of extracellular matrix (ECM) molecules. Human periapical granulomas, periapical cysts, and healthy periodontal ligament tissues were used to investigate the differential expression of ECM molecules by microarray analysis. Because matrix metalloproteinases (MMP) showed the highest differential expression in the microarray analysis, MMPs were further examined by in situ zymography and immunohistochemistry. Data were analyzed by using one-way analysis of variance followed by the Tukey test. We observed that cysts and granulomas differentially expressed several ECM molecules, especially those from the MMP family. Compared with cysts, granulomas exhibited higher MMP enzymatic activity in areas stained for MMP-9. These areas were composed of polymorphonuclear cells (PMNs) in contrast to cysts. Similarly, MMP-13 was expressed by a greater number of cells in granulomas compared with cysts. Our findings indicate that high enzymatic MMP activity in PMNs together with MMP-9 and MMP-13 stained cells could be a molecular signature of granulomas unlike periapical cysts.
High Matrix Metalloproteinase Activity is a Hallmark of Periapical Granulomas
de Paula e Silva, Francisco Wanderley Garcia; D'Silva, Nisha J.; da Silva, Léa Assed Bezerra; Kapila, Yvonne Lorraine
2009-01-01
Introduction Inability to distinguish periapical cysts from granulomas prior to performing root canal treatment leads to uncertainty in treatment outcomes, because cysts have lower healing rates. Searching for differential expression of molecules within cysts or granulomas could provide information with regard to the identity of the lesion or suggest mechanistic differences that may form the basis for future therapeutic intervention. Thus, we investigated whether granulomas and cysts exhibit differential expression of extracellular matrix (ECM) molecules. Methods Human periapical granulomas, periapical cysts, and healthy periodontal ligament tissues were used to investigate the differential expression of ECM molecules by microarray analysis. Since matrix metalloproteinases (MMP) showed the highest differential expression in the microarray analysis, MMPs were further examined by in situ zymography and immunohistochemistry. Data were analyzed using one-way ANOVA followed by Tukey test. Results We observed that cysts and granulomas differentially expressed several ECM molecules, especially those from the matrix metalloproteinase (MMP) family. Compared to cysts, granulomas exhibited higher MMP enzymatic activity in areas stained for MMP-9. These areas were composed of polymorphonuclear cells (PMNs), in contrast to cysts. Similarly, MMP-13 was expressed by a greater number of cells in granulomas compared to cysts. Conclusion Our findings indicate that high enzymatic MMP activity in PMNs together with MMP-9 and MMP-13 stained cells could be a molecular signature of granulomas, unlike periapical cysts. PMID:19720222
Genes Critical for Developing Periodontitis: Lessons from Mouse Models.
de Vries, Teun J; Andreotta, Stefano; Loos, Bruno G; Nicu, Elena A
2017-01-01
Since the etiology of periodontitis in humans is not fully understood, genetic mouse models may pinpoint indispensable genes for optimal immunological protection of the periodontium against tissue destruction. This review describes the current knowledge of genes that are involved for a proper maintenance of a healthy periodontium in mice. Null mutations of genes required for leukocyte cell-cell recognition and extravasation (e.g., Icam-1, P-selectin, Beta2-integrin/Cd18 ), for pathogen recognition and killing (e.g., Tlr2, Tlr4, Lamp-2 ), immune modulatory molecules (e.g., Cxcr2, Ccr4, IL-10, Opg, IL1RA, Tnf- α receptor, IL-17 receptor, Socs3, Foxo1 ), and proteolytic enzymes (e.g., Mmp8, Plasmin ) cause periodontitis, most likely due to an inefficient clearance of bacteria and bacterial products. Several mechanisms resulting in periodontitis can be recognized: (1) inefficient bacterial control by the polymorphonuclear neutrophils (defective migration, killing), (2) inadequate antigen presentation by dendritic cells, or (3) exaggerated production of pro-inflammatory cytokines. In all these cases, the local immune reaction is skewed toward a Th1/Th17 (and insufficient activation of the Th2/Treg) with subsequent osteoclast activation. Finally, genotypes are described that protect the mice from periodontitis: the SCID mouse, and mice lacking Tlr2/Tlr4 , the Ccr1/Ccr5 , the Tnf- α receptor p55 , and Cathepsin K by attenuating the inflammatory reaction and the osteoclastogenic response.
Gaida, M M; Günther, F; Wagner, C; Friess, H; Giese, N A; Schmidt, J; Hänsch, G M; Wente, M N
2008-01-01
The chemokine receptor CXCR6 has been described on lymphoid cells and is thought to participate in the homing of activated T-cells to non-lymphoid tissue. We now provide evidence that the chemokine receptor CXCR6 is also expressed by activated polymorphonuclear neutrophils (PMN) in vivo: Examination of biopsies derived from patients with pancreatic carcinoma by confocal laser scan microscopy revealed a massive infiltration of PMN that expressed CXCR6, while PMN of the peripheral blood of these patients did not. To answer the question whether CXCR6 expression is a property of infiltrated and activated PMN, leucocytes were collected from patients with localized soft tissue infections in the course of the wound debridement. By cytofluorometry, the majority of these cells were identified as PMN. Up to 50% of these PMN were also positive for CXCR6. Again, PMN from the peripheral blood of these patients were nearly negative for CXCR6, as were PMN of healthy donors. In a series of in vitro experiments, up-regulation of CXCR6 on PMN of healthy donors by a variety of cytokines was tested. So far, a minor, although reproducible, effect of tumour necrosis factor (TNFα) was seen: brief exposure with low-dose TNFα induced expression of CXCR6 on the surface of PMN. Furthermore, we could show an increased migration of PMN induced by the axis CXCL16 and CXCR6. In summary, our data provide evidence that CXCR6 is not constitutively expressed on PMN, but is up-regulated under inflammatory conditions and mediates migration of CXCR6-positive PMN. PMID:18778363
beta-Arrestin 2: a Negative Regulator of Inflammatory Responses in Polymorphonuclear Leukocytes.
Basher, Fahmin; Fan, Hongkuan; Zingarelli, Basilia; Borg, Keith T; Luttrell, Lou M; Tempel, George E; Halushka, Perry V; Cook, James A
2008-01-01
Heterotrimeric Gi proteins have been previously implicated in signaling leading to inflammatory mediator production induced by bacterial lipopolysaccharide (LPS). beta-arrestins are ubiquitously expressed proteins that alter G-protein-coupled receptors signaling. beta-arrestin 2 plays a multifaceted role as a scaffold protein in regulating cellular inflammatory responses. Polymorphonuclear leukocytes (PMNs) activated by LPS induce inflammatory responses resulting in organ injury during sepsis. We hypothesized that beta-arrestin 2 is a critical modulator of inflammatory responses in PMNs. To examine the potential role of beta-arrestin 2 in LPS-induced cellular activation, we studied homozygous beta-arrestin 2 (-/-), heterozygous (+/-), and wildtype (+/+) mice. PMNs were stimulated with LPS for 16h. There was increased basal TNFalpha and IL-6 production in the beta-arrestin 2 (-/-) compared to both beta-arrestin 2 (+/-) and (+/+) cells. LPS failed to stimulate TNFalpha production in the beta-arrestin 2 (-/-) PMNs. However, LPS stimulated IL-6 production was increased in the beta-arrestin 2 (-/-) cells compared to (+/+) cells. In subsequent studies, peritoneal PMN recruitment was increased 81% in the beta-arrestin 2 (-/-) mice compared to (+/+) mice (p<0.05). beta-arrestin 2 deficiency resulted in an augmented expression of CD18 and CD62L (p<0.05). In subsequent studies, beta-arrestin 2 (-/-) and (+/+) mice were subjected to cecal ligation and puncture (CLP) and lung was collected and analyzed for myeloperoxidase activity (MPO) as index of PMNs infiltrate. CLP-induced MPO activity was significantly increased (p<0.05) in the beta-arrestin 2 (-/-) compared to (+/+) mice. These studies demonstrate that beta-arrestin 2 is a negative regulator of PMN activation and pulmomary leukosequestration in response to polymicrobial sepsis.
β-Arrestin 2: a Negative Regulator of Inflammatory Responses in Polymorphonuclear Leukocytes
Basher, Fahmin; Fan, Hongkuan; Zingarelli, Basilia; Borg, Keith T.; Luttrell, Lou M.; Tempel, George E.; Halushka, Perry V.; Cook, James A.
2008-01-01
Heterotrimeric Gi proteins have been previously implicated in signaling leading to inflammatory mediator production induced by bacterial lipopolysaccharide (LPS). β-arrestins are ubiquitously expressed proteins that alter G-protein-coupled receptors signaling. β-arrestin 2 plays a multifaceted role as a scaffold protein in regulating cellular inflammatory responses. Polymorphonuclear leukocytes (PMNs) activated by LPS induce inflammatory responses resulting in organ injury during sepsis. We hypothesized that β-arrestin 2 is a critical modulator of inflammatory responses in PMNs. To examine the potential role of β-arrestin 2 in LPS-induced cellular activation, we studied homozygous β-arrestin 2 (-/-), heterozygous (+/-), and wildtype (+/+) mice. PMNs were stimulated with LPS for 16h. There was increased basal TNFα and IL-6 production in the β-arrestin 2 (-/-) compared to both β-arrestin 2 (+/-) and (+/+) cells. LPS failed to stimulate TNFα production in the β-arrestin 2 (-/-) PMNs. However, LPS stimulated IL-6 production was increased in the β-arrestin 2 (-/-) cells compared to (+/+) cells. In subsequent studies, peritoneal PMN recruitment was increased 81% in the β-arrestin 2 (-/-) mice compared to (+/+) mice (p<0.05). β-arrestin 2 deficiency resulted in an augmented expression of CD18 and CD62L (p<0.05). In subsequent studies, β-arrestin 2 (-/-) and (+/+) mice were subjected to cecal ligation and puncture (CLP) and lung was collected and analyzed for myeloperoxidase activity (MPO) as index of PMNs infiltrate. CLP-induced MPO activity was significantly increased (p<0.05) in the β-arrestin 2 (-/-) compared to (+/+) mice. These studies demonstrate that β-arrestin 2 is a negative regulator of PMN activation and pulmomary leukosequestration in response to polymicrobial sepsis. PMID:19079685
Xia, Tian; Zhao, Yan; Sager, Tina; George, Saji; Pokhrel, Suman; Li, Ning; Schoenfeld, David; Meng, Huan; Lin, Sijie; Wang, Xiang; Wang, Meiying; Ji, Zhaoxia; Zink, Jeffrey I.; Mädler, Lutz; Castranova, Vincent; Lin, Shuo; Nel, Andre E.
2014-01-01
We have recently shown that the dissolution of ZnO nanoparticles and Zn2+ shedding leads to a series of sub-lethal and lethal toxicological responses at cellular level that can be alleviated by iron-doping. Iron-doping changes the particle matrix and slows the rate of particle dissolution. To determine whether iron doping of ZnO also leads to lesser toxic effects in vivo, toxicity studies were performed in rodent and zebrafish models. First, we synthesized a fresh batch of ZnO nanoparticles doped with 1–10 wt % of Fe. These particles were extensively characterized to confirm their doping status, reduced rate of dissolution in an exposure medium and reduced toxicity in a cellular screen. Subsequent studies compared the effects of undoped to doped particles in the rat lung, mouse lung and the zebrafish embryo. The zebrafish studies looked at embryo hatching and mortality rates as well as the generation of morphological defects, while the endpoints in the rodent lung included an assessment of inflammatory cell infiltrates, LDH release and cytokine levels in the bronchoalveolar lavage fluid. Iron doping, similar to the effect of the metal chelator, DTPA, interfered in the inhibitory effects of Zn2+ on zebrafish hatching. In the oropharyngeal aspiration model in the mouse, iron doping was associated with decreased polymorphonuclear cell counts and IL-6 mRNA production. Doped particles also elicited decreased heme oxygenase 1 expression in the murine lung. In the intratracheal instillation studies in the rat, Fe-doping was associated with decreased polymorphonuclear cell counts, LDH and albumin levels. All considered, the above data show that Fe-doping is a possible safe design strategy for preventing ZnO toxicity in animals and the environment. PMID:21250651
Defective Innate Cell Response and Lymph Node Infiltration Specify Yersinia pestis Infection
Guinet, Françoise; Avé, Patrick; Jones, Louis; Huerre, Michel; Carniel, Elisabeth
2008-01-01
Since its recent emergence from the enteropathogen Yersinia pseudotuberculosis, Y. pestis, the plague agent, has acquired an intradermal (id) route of entry and an extreme virulence. To identify pathophysiological events associated with the Y. pestis high degree of pathogenicity, we compared disease progression and evolution in mice after id inoculation of the two Yersinia species. Mortality studies showed that the id portal was not in itself sufficient to provide Y. pseudotuberculosis with the high virulence power of its descendant. Surprisingly, Y. pseudotuberculosis multiplied even more efficiently than Y. pestis in the dermis, and generated comparable histological lesions. Likewise, Y. pseudotuberculosis translocated to the draining lymph node (DLN) and similar numbers of the two bacterial species were found at 24 h post infection (pi) in this organ. However, on day 2 pi, bacterial loads were higher in Y. pestis-infected than in Y. pseudotuberculosis-infected DLNs. Clustering and multiple correspondence analyses showed that the DLN pathologies induced by the two species were statistically significantly different and identified the most discriminating elementary lesions. Y. pseudotuberculosis infection was accompanied by abscess-type polymorphonuclear cell infiltrates containing the infection, while Y. pestis-infected DLNs exhibited an altered tissue density and a vascular congestion, and were typified by an invasion of the tissue by free floating bacteria. Therefore, Y. pestis exceptional virulence is not due to its recently acquired portal of entry into the host, but is associated with a distinct ability to massively infiltrate the DLN, without inducing in this organ an organized polymorphonuclear cell reaction. These results shed light on pathophysiological processes that draw the line between a virulent and a hypervirulent pathogen. PMID:18301765
Defective innate cell response and lymph node infiltration specify Yersinia pestis infection.
Guinet, Françoise; Avé, Patrick; Jones, Louis; Huerre, Michel; Carniel, Elisabeth
2008-02-27
Since its recent emergence from the enteropathogen Yersinia pseudotuberculosis, Y. pestis, the plague agent, has acquired an intradermal (id) route of entry and an extreme virulence. To identify pathophysiological events associated with the Y. pestis high degree of pathogenicity, we compared disease progression and evolution in mice after id inoculation of the two Yersinia species. Mortality studies showed that the id portal was not in itself sufficient to provide Y. pseudotuberculosis with the high virulence power of its descendant. Surprisingly, Y. pseudotuberculosis multiplied even more efficiently than Y. pestis in the dermis, and generated comparable histological lesions. Likewise, Y. pseudotuberculosis translocated to the draining lymph node (DLN) and similar numbers of the two bacterial species were found at 24 h post infection (pi) in this organ. However, on day 2 pi, bacterial loads were higher in Y. pestis-infected than in Y. pseudotuberculosis-infected DLNs. Clustering and multiple correspondence analyses showed that the DLN pathologies induced by the two species were statistically significantly different and identified the most discriminating elementary lesions. Y. pseudotuberculosis infection was accompanied by abscess-type polymorphonuclear cell infiltrates containing the infection, while Y. pestis-infected DLNs exhibited an altered tissue density and a vascular congestion, and were typified by an invasion of the tissue by free floating bacteria. Therefore, Y. pestis exceptional virulence is not due to its recently acquired portal of entry into the host, but is associated with a distinct ability to massively infiltrate the DLN, without inducing in this organ an organized polymorphonuclear cell reaction. These results shed light on pathophysiological processes that draw the line between a virulent and a hypervirulent pathogen.
Ackermann, M F; Gasiewicz, T A; Lamm, K R; Germolec, D R; Luster, M I
1989-12-01
Although the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), via its interaction with the Ah receptor, is an extremely potent carcinogen and immunosuppressive agent in experimental animals, its possible actions on polymorphonuclear (PMN) function have not been determined. In addition to their importance against infectious organisms, PMNs have been implicated in antitumor resistance. The present studies examined the effects of in vivo exposure to TCDD on PMN function in B6C3F1 (TCDD sensitive, presence of high affinity Ah receptor) and DBA/2N (TCDD resistant at low doses, defective Ah receptor) mice. Animals received a single oral exposure of 5 or 10 micrograms/kg of TCDD and PMNs were obtained 5 days later from the peritoneal cavity following elicitation with sodium caseinate. TCDD reduced the cytolytic and cytostatic activity of PMA-activated PMNs in B6C3F1, but not in DBA/2N mice, suggesting that this response segregates with the Ah locus. Furthermore, TCDD was found to bind specifically to PMNs from Ah-responsive mice. Neither the production of superoxide and hydrogen peroxide nor degranulation, the latter measured by beta-glucuronidase release, was impaired. Supernatants recovered from PMN cell cultures of TCDD-sensitive mice, but not from resistant DBA/2N mice, showed reduced killing capacity for actinomycin D-treated L929 tumor cells, while their ability to bind to tumor cells was not altered. These data suggest that TCDD interferes with PMN-mediated tumor cell killing by altering the production or secretion of a cytolytic factor. Examination of bone marrow stem cells revealed that granulocytic but not monocytic colonies were reduced after TCDD exposure in vivo and in vitro. Although mature PMNs had detectable levels of Ah receptor, exposure in vitro of these cells to TCDD had no effect on antitumor activity. Thus, it is possible that TCDD may affect PMNs at the level of hematopoiesis, via a direct interaction with granulocyte precursor cells, or modulate PMNs at different stages of maturation.
Iskandar, Irma; Walters, John D
2011-03-01
Clarithromycin inhibits several periodontal pathogens and is concentrated inside gingival fibroblasts and epithelial cells by an active transporter. We hypothesized that polymorphonuclear leukocytes (PMNs) and less mature myeloid cells possess a similar transporter for clarithromycin. It is feasible that clarithromycin accumulation inside PMNs could enhance their ability to kill Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans). To test the first hypothesis, purified PMNs and cultured HL-60 cells were incubated with [(3)H]-clarithromycin. Clarithromycin transport was assayed by measuring changes in cell-associated radioactivity over time. The second hypothesis was examined with PMNs loaded by incubation with clarithromycin (5 μg/ml). Opsonized bacteria were incubated at 37°C with control and clarithromycin-loaded PMNs. Mature human PMNs, HL-60 cells differentiated into granulocytes, and undifferentiated HL-60 cells all took up clarithromycin in a saturable manner. The kinetics of uptake by all yielded linear Lineweaver-Burk plots. HL-60 granulocytes transported clarithromycin with a K(m) of ≈250 μg/ml and a V(max) of 473 ng/min/10(6) cells, which were not significantly different from the values obtained with PMNs. At steady state, clarithromycin levels inside HL-60 granulocytes and PMNs were 28- to 71-fold higher than extracellular levels. Clarithromycin-loaded PMNs killed significantly more A. actinomycetemcomitans and achieved shorter half-times for killing than control PMNs when assayed at a bacteria-to-PMN ratio of 100:1 (P <0.04). At a ratio of 30:1, these differences were not consistently significant. PMNs and less mature myeloid cells possess a transporter that takes up and concentrates clarithromycin. This system could help PMNs cope with an overwhelming infection by A. actinomycetemcomitans.
Lupia, Enrico; Del Sorbo, Lorenzo; Bergerone, Serena; Emanuelli, Giorgio; Camussi, Giovanni; Montrucchio, Giuseppe
2003-01-01
Thrombolytic agents, used to restore blood flow to ischaemic tissues, activate several enzymatic systems with pro-inflammatory effects, thus potentially contributing to the pathogenesis of ischaemia–reperfusion injury. Platelet-activating factor (PAF), a phospholipid mediator of inflammation, has been implicated in the pathogenesis of this process. We previously showed that the infusion of streptokinase (SK) induces the intravascular release of PAF in patients with acute myocardial infarction (AMI), and that cultured human endothelial cells (EC) synthesized PAF in response to SK and plasmin (PLN). In the present study, we investigated the role of the membrane attack complex (MAC) of complement in the PLN-induced synthesis of PAF. In vivo, we showed a correlation between the levels of soluble terminal complement components (sC5b-9) and the concentrations of PAF detected in blood of patients with AMI infused with SK. In vitro both EC and polymorphonuclear neutrophils (PMN), incubated in the presence of PLN and normal human serum, showed an intense staining for the MAC neoepitope, while no staining was detected when they were incubated with PLN in the presence of heat-inactivated normal human serum. Moreover, the insertion of MAC on EC and PMN plasmamembrane elicited the synthesis of PAF. In conclusion, our results elucidate the mechanisms involved in PAF production during the activation of the fibrinolytic system, showing a role for complement products in this setting. The release of PAF may increase the inflammatory response, thus limiting the beneficial effects of thrombolytic therapy. Moreover, it may have a pathogenic role in other pathological conditions, such as transplant rejection, tumoral angiogenesis, and septic shock, where fibrinolysis is activated. PMID:12871223
Lupia, Enrico; Del Sorbo, Lorenzo; Bergerone, Serena; Emanuelli, Giorgio; Camussi, Giovanni; Montrucchio, Giuseppe
2003-08-01
Thrombolytic agents, used to restore blood flow to ischaemic tissues, activate several enzymatic systems with pro-inflammatory effects, thus potentially contributing to the pathogenesis of ischaemia-reperfusion injury. Platelet-activating factor (PAF), a phospholipid mediator of inflammation, has been implicated in the pathogenesis of this process. We previously showed that the infusion of streptokinase (SK) induces the intravascular release of PAF in patients with acute myocardial infarction (AMI), and that cultured human endothelial cells (EC) synthesized PAF in response to SK and plasmin (PLN). In the present study, we investigated the role of the membrane attack complex (MAC) of complement in the PLN-induced synthesis of PAF. In vivo, we showed a correlation between the levels of soluble terminal complement components (sC5b-9) and the concentrations of PAF detected in blood of patients with AMI infused with SK. In vitro both EC and polymorphonuclear neutrophils (PMN), incubated in the presence of PLN and normal human serum, showed an intense staining for the MAC neoepitope, while no staining was detected when they were incubated with PLN in the presence of heat-inactivated normal human serum. Moreover, the insertion of MAC on EC and PMN plasmamembrane elicited the synthesis of PAF. In conclusion, our results elucidate the mechanisms involved in PAF production during the activation of the fibrinolytic system, showing a role for complement products in this setting. The release of PAF may increase the inflammatory response, thus limiting the beneficial effects of thrombolytic therapy. Moreover, it may have a pathogenic role in other pathological conditions, such as transplant rejection, tumoral angiogenesis, and septic shock, where fibrinolysis is activated.
Bednar, M M; Gross, C E; Russell, S R; Fuller, S P; Ahern, T P; Howard, D B; Falck, J R; Reddy, K M; Balazy, M
2000-12-01
Activated polymorphonuclear leukocytes (PMNs) have been suggested to contribute to the development of increased intracranial pressure (ICP). We recently demonstrated that human PMNs produce a novel cytochrome P450-derived arachidonic acid metabolite, 1 6(R)-hydroxyeicosatetraenoic acid [16(R)-HETE], that modulates their function. It was thus of interest to examine this novel mediator in an acute stroke model. 16-HETE was assessed initially in a variety of human PMN and platelet in vitro assays and subsequently in an established rabbit model of thromboembolic stroke. A total of 50 rabbits completed a randomized, blinded, four-arm study, receiving 16(R)-HETE, tissue plasminogen activator, both, or neither. Experiments were completed 7 hours after autologous clot embolization. The primary end point for efficacy was the suppression of increased ICP. In in vitro assays, 16(R)-HETE selectively inhibited human PMN adhesion and aggregation and leukotriene B4 synthesis. In the thromboembolic stroke model, animals that received 16(R)-HETE demonstrated significant suppression of increased ICP (7.7 +/- 1.2 to 13.1 +/- 2.7 mm Hg, baseline versus final 7-h time point, mean +/- standard error), compared with either the vehicle-treated group (7.7 +/- 0.9 to 15.8 +/- 2.6 mm Hg) or the tissue plasminogen activator-treated group (7.6 +/- 0.6 to 13.7 +/- 2.1 mm Hg). The group that received the combination of 16(R)-HETE plus tissue plasminogen activator demonstrated no significant change in ICP for the duration of the protocol (8.6 +/- 0.6 to 11.1 +/- 1.2 mm Hg). 16(R)-HETE suppresses the development of increased ICP in a rabbit model of thromboembolic stroke and may serve as a novel therapeutic strategy in ischemic and inflammatory pathophysiological states.
Inflammation modulates the expression of the intestinal mucins MUC2 and MUC4 in gastric tumors.
Mejías-Luque, R; Lindén, S K; Garrido, M; Tye, H; Najdovska, M; Jenkins, B J; Iglesias, M; Ernst, M; de Bolós, C
2010-03-25
Infection of gastric mucosa by Helicobacter pylori induces an inflammatory response with increased levels of proinflammatory cytokines. Among them, tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 induce the activation of signaling pathways that regulate genes expression, such as MUC2 and MUC4 intestinal mucins ectopically detected in gastric tumors. This study evaluated if the predominant inflammatory cell type correlates with MUC2 and MUC4 expression in human intestinal gastric tumors (n=78). In addition, we analyzed the regulatory effects of the associated inflammatory signaling pathways on their expression in gastric cancer cell lines, and in a mouse model with hyperactivated STAT3 signaling pathway. Tumors with predominant lymphoplasmocytic infiltrate (chronic inflammation), presented higher levels of MUC2 and were more differentiated than tumors with predominant polymorphonuclear infiltrate (acute inflammation). These differences can be attributed to specific cytokines, because TNF-alpha and IL-1beta induced MUC2 but no MUC4 expression in gastric cancer cell lines. The two groups of tumors expressed similar levels of MUC4 that correlated with the expression of STAT3 transcription factor, implicated in the activation of genes through the IL-6 pathway. In gastric tissues from gp130(+/+), gp130(Y757F/Y757F) and gp130(Y757F/Y757F) Stat3(-/+) mice, Muc2 was not detected, whereas Muc4 was found in the gastric tumors developed in the gp130(Y757F/Y757F) mice, with hyperactivated STAT3. These data indicate that the signaling pathways associated with the inflammatory response can modulate the expression of MUC2 and MUC4 intestinal mucin genes, in human and mouse gastric tumors.
Haemophilus ducreyi Partially Activates Human Myeloid Dendritic Cells▿
Banks, Keith E.; Humphreys, Tricia L.; Li, Wei; Katz, Barry P.; Wilkes, David S.; Spinola, Stanley M.
2007-01-01
Dendritic cells (DC) orchestrate innate and adaptive immune responses to bacteria. How Haemophilus ducreyi, which causes genital ulcers and regional lymphadenitis, interacts with DC is unknown. H. ducreyi evades uptake by polymorphonuclear leukocyte and macrophage-like cell lines by secreting LspA1 and LspA2. Many H. ducreyi strains express cytolethal distending toxin (CDT), and recombinant CDT causes apoptosis of DC in vitro. Here, we examined interactions between DC and H. ducreyi 35000HP, which produces LspA1, LspA2, and CDT. In human volunteers infected with 35000HP, the ratio of myeloid DC to plasmacytoid DC was 2.8:1 in lesions, compared to a ratio of 1:1 in peripheral blood. Using myeloid DC derived from monocytes as surrogates for lesional DC, we found that DC infected with 35000HP remained as viable as uninfected DC for up to 48 h. Gentamicin protection and confocal microscopy assays demonstrated that DC ingested and killed 35000HP, but killing was incomplete at 48 h. The expression of LspA1 and LspA2 did not inhibit the uptake of H. ducreyi, despite inactivating Src kinases. Infection of DC with live 35000HP caused less cell surface marker activation than infection with heat-killed 35000HP and lipopolysaccharide (LPS) and inhibited maturation by LPS. However, infection of DC with live bacteria caused the secretion of significantly higher levels of interleukin-6 and tumor necrosis factor alpha than infection with heat-killed bacteria and LPS. The survival of H. ducreyi in DC may provide a mechanism by which the organism traffics to lymph nodes. Partial activation of DC may abrogate the establishment of a full Th1 response and an environment that promotes phagocytosis. PMID:17923525
Role of different pathways of the complement cascade in experimental bullous pemphigoid
Nelson, Kelly C.; Zhao, Minglang; Schroeder, Pamela R.; Li, Ning; Wetsel, Rick A.; Diaz, Luis A.; Liu, Zhi
2006-01-01
Bullous pemphigoid (BP) is an autoimmune subepidermal blistering disease associated with autoantibodies directed against the hemidesmosomal proteins BP180 and BP230 and inflammation. Passive transfer of antibodies to the murine BP180 (mBP180) induces a skin disease that closely resembles human BP. In the present study, we defined the roles of the different complement activation pathways in this model system. Mice deficient in the alternative pathway component factor B (Fb) and injected with pathogenic anti-mBP180 IgG developed delayed and less intense subepidermal blisters. Mice deficient in the classical pathway component complement component 4 (C4) and WT mice pretreated with neutralizing antibody against the first component of the classical pathway, C1q, were resistant to experimental BP. These mice exhibited a significantly reduced level of mast cell degranulation and polymorphonuclear neutrophil (PMN) infiltration in the skin. Intradermal administration of compound 48/80, a mast cell degranulating agent, restored BP disease in C4–/– mice. Furthermore, C4–/– mice became susceptible to experimental BP after local injection of PMN chemoattractant IL-8 or local reconstitution with PMNs. These findings provide the first direct evidence to our knowledge that complement activation via the classical and alternative pathways is crucial in subepidermal blister formation in experimental BP. PMID:17024247
Modulation of Polymorphonuclear Neutrophil Response to N-formyl-l-methionyl-l-leucyl-l-phenylalanine
1988-11-10
mi. Blood drawing was done by a team of ALAAS certified technicians. Previous experience had shown it to be tolerated without evidence of pain or...collected through a 525 nM bandpass filter on a linear scale . G. SIGNAL TRANSDUCTION STUDIES-PERTUSSIS TOXIN PMNs separated on percol gradients were...Clin. Immun. and Immunopath., 15:525, 1980. 16. Gray, G.D., Ohlmann, G.M., Morton. D.R. and Schaaub, R.G., Feline Polymorphonuclear Leukocytes Respond
Lampel, Keith A; Formal, Samuel B; Maurelli, Anthony T
2018-01-01
The history of Shigella , the causative agent of bacillary dysentery, is a long and fascinating one. This brief historical account starts with descriptions of the disease and its impact on human health from ancient time to the present. Our story of the bacterium starts just before the identification of the dysentery bacillus by Kiyoshi Shiga in 1898 and follows the scientific discoveries and principal scientists who contributed to the elucidation of Shigella pathogenesis in the first 100 years. Over the past century, Shigella has proved to be an outstanding model of an invasive bacterial pathogen and has served as a paradigm for the study of other bacterial pathogens. In addition to invasion of epithelial cells, some of those shared virulence traits include toxin production, multiple-antibiotic resistance, virulence genes encoded on plasmids and bacteriophages, global regulation of virulence genes, pathogenicity islands, intracellular motility, remodeling of host cytoskeleton, inflammation/polymorphonuclear leukocyte signaling, apoptosis induction/inhibition, and "black holes" and antivirulence genes. While there is still much to learn from studying Shigella pathogenesis, what we have learned so far has also contributed greatly to our broader understanding of bacterial pathogenesis.
Chlorogenic acid protects mice against lipopolysaccharide-induced acute lung injury.
Zhang, Xu; Huang, Huang; Yang, Tingting; Ye, Yin; Shan, Jianhua; Yin, Zhimin; Luo, Lan
2010-07-01
Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in human diet. Our previous in vitro study demonstrates that CGA presents anti-inflammatory activities in RAW 264.7 cells. Here we show that CGA protects mice against lipopolysaccharide (LPS)-induced acute lung injury (ALI). We treated mice with CGA (5, 20 and 50 mg/kg body weight) 30 min or 3 h after intratracheal administration of LPS. The histological results showed that CGA, at dose of 50 mg/kg, protected mice from LPS-induced ALI which displayed by edema, haemorrhage, blood vessel and alveolar structural damage. CGA inhibited LPS-increased pulmonary MPO activity and migration of polymorphonuclear neutrophils (PMNs) into bronchoalveolar lavage fluid (BALF). Furthermore, CGA markedly decreased the activity of inducible nitric oxide synthase (iNOS) in lung tissues and thus prevented nitric oxide (NO) release in response to LPS challenge. In conclusion, these results indicated that CGA was greatly effective in inhibiting ALI and might act as a potential therapeutic reagent for treating ALI in the future. 2010 Elsevier Ltd. All rights reserved.
Benson, Kathleen F.; Beaman, Joni L.; Ou, Boxin; Okubena, Ademola; Okubena, Olajuwon
2013-01-01
Abstract The impact of chronic inflammatory conditions on immune function is substantial, and the simultaneous application of anti-inflammatory and immune modulating modalities has potential for reducing inflammation-induced immune suppression. Sorghum-based foods, teas, beers, and extracts are used in traditional medicine, placing an importance on obtaining an increased understanding of the biological effects of sorghum. This study examined selected anti-inflammatory and immune-modulating properties in vitro of Jobelyn™, containing the polyphenol-rich leaf sheaths from a West African variant of Sorghum bicolor (SBLS). Freshly isolated primary human polymorphonuclear (PMN) and mononuclear cell subsets were used to test selected cellular functions in the absence versus presence of aqueous and ethanol extracts of SBLS. Both aqueous and nonaqueous compounds contributed to reduced reactive oxygen species formation by inflammatory PMN cells, and reduced the migration of these cells in response to the inflammatory chemoattractant leukotriene B4. Distinct effects were seen on lymphocyte and monocyte subsets in cultures of peripheral blood mononuclear cells. The aqueous extract of SBLS triggered robust upregulation of the CD69 activation marker on CD3− CD56+ natural killer (NK) cells, whereas the ethanol extract of SBLS triggered similar upregulation of CD69 on CD3+ CD56+ NKT cells, CD3+ T lymphocytes, and monocytes. This was accompanied by many-fold increases in the chemokines RANTES/CCL5, Mip-1α/CCL3, and MIP-1β/CCL4. Both aqueous and nonaqueous compounds contribute to anti-inflammatory effects, combined with multiple effects on immune cell activation status. These observations may help suggest mechanisms of action that contribute to the traditional use of sorghum-based products, beverages, and extracts for immune support. PMID:23289787
Chen, Shiu-Jau; Lee, Ching-Ju; Lin, Tzer-Bin; Liu, Hsiang-Jui; Huang, Shuan-Yu; Chen, Jia-Zeng; Tseng, Kuang-Wen
2016-01-07
Ultraviolet B (UVB) irradiation is the most common cause of radiation damage to the eyeball and is a risk factor for human corneal damage. We determined the protective effect of fucoxanthin, which is a carotenoid found in common edible seaweed, on ocular tissues against oxidative UVB-induced corneal injury. The experimental rats were intravenously injected with fucoxanthin at doses of 0.5, 5 mg/kg body weight/day or with a vehicle before UVB irradiation. Lissamine green for corneal surface staining showed that UVB irradiation caused serious damage on the corneal surface, including severe epithelial exfoliation and deteriorated epithelial smoothness. Histopathological lesion examination revealed that levels of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor (VEGF), significantly increased. However, pretreatment with fucoxanthin inhibited UVB radiation-induced corneal disorders including evident preservation of corneal surface smoothness, downregulation of proinflammatory cytokine expression, and decrease of infiltrated polymorphonuclear leukocytes from UVB-induced damage. Moreover, significant preservation of the epithelial integrity and inhibition of stromal swelling were also observed after UVB irradiation in fucoxanthin-treated groups. Pretreatment with fucoxanthin may protect against UVB radiation-induced corneal disorders by inhibiting expression of proinflammatory factors, TNF-α, and VEGF and by blocking polymorphonuclear leukocyte infiltration.
Weitoft, T; Larsson, A; Saxne, T; Manivel, V A; Lysholm, J; Knight, A; Rönnelid, J
2017-09-01
Pentraxin 3 (PTX3) is a locally produced multifunctional protein involved in inflammation, matrix deposition, and immunity. As patients with seropositive rheumatoid arthritis (RA) have a more severe disease course and higher risk of joint destruction than seronegative patients, the aim of the present study was to examine differences in PTX3 in synovial fluid (SF) (and serum) in seropositive compared to seronegative RA, and other local markers of inflammation and destruction. Ninety-seven RA patients with knee effusion were included. Serum and SF levels of PTX3, as well as serum levels of anti-citrullinated protein antibody and rheumatoid factor of immunoglobulin A and M subclasses, and markers of inflammation and potential destruction in SF: white blood cell counts, tumour necrosis factor, interleukin-6, vascular endothelial growth factor, metalloproteinase 3, and cartilage oligomeric matrix protein, were analysed. In addition, a radiographic knee examination was performed. Seropositive patients had significantly higher PTX3 levels in SF than seronegative patients, whereas there was no difference for serum levels. SF-PTX3 levels correlated with disease activity and with local inflammatory markers, especially polymorphonuclear cells, and with autoantibody levels. There was no correlation between PTX3 levels in serum and SF. The correlation of disease activity and autoantibody levels with SF-PTX3 levels in antibody-positive patients suggests a role for PTX3 in the inflammatory process specifically in seropositive RA joints, and supports the hypothesis that seropositive and seronegative RA are different disease entities. Polymorphonuclear granulocytes may be an important source of PTX3 in RA SF.
Jung, Philipp; Abdelbary, Mohamed M H; Kraushaar, Britta; Fetsch, Alexandra; Geisel, Jürgen; Herrmann, Mathias; Witte, Wolfgang; Cuny, Christiane; Bischoff, Markus
2017-02-01
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) isolates of clonal complex 398 (CC398) are frequently found in Europe, and recent studies highlighted the importance of mobile genetic element (MGE) exchange for host adaptation of this lineage. Of note, one of the MGEs commonly found in human S. aureus isolates, the immune evasion cluster (IEC) harboring bacteriophage Saint3, is very rarely found in LA-MRSA CC398 isolates obtained from farm animals, but more frequently found in LA-MRSA CC398 that were retransmitted to humans. Here, we analyzed with a set of S. aureus CC398 isolates harboring/lacking φSaint3 how this MGE affects (i) phagocytosis of CC398 isolates by polymorphonuclear neutrophils (PMNs), and (ii) hemolysis of human and livestock-derived erythrocytes. Isolates lacking φSaint3 were more efficiently phagocytosed by human PMNs in whole blood phagocytosis assays than isolates harboring this bacteriophage, irrespective of their origin. Notably, a similar effect was observed when equine blood was utilized, but not detected with porcine blood. Integration of φSaint3 into LA-MRSA CC398 strains lacking this MGE confirmed these findings, as φSaint3-harboring recipients were again less efficiently ingested by PMNs in equine and human blood than their parental strains. Integration of φSaint3 strongly reduced the hemolytic potential of the culture supernatants against human-derived erythrocytes, and to a smaller extent also against porcine-derived erythrocytes, while φSaint3 integration only slightly affected the hemolytic capacities against equine-derived red blood cells. The significant protective effect of φSaint3 against phagocytosis by equine PMNs suggests that the host specificity of the IEC components might be broader than currently assumed. Copyright © 2016 Elsevier B.V. All rights reserved.
[Mastitis revealing Churg-Strauss syndrome].
Dannepond, C; Le Fourn, E; de Muret, A; Ouldamer, L; Carmier, D; Machet, L
2014-01-01
Churg-Strauss syndrome often involves the skin, and this may sometimes reveal the disease. A 25-year-old woman was referred to a gynaecologist for inflammation of the right breast with breast discharge. Cytological analysis of the liquid showed numerous inflammatory cells, particularly polymorphonuclear eosinophils and neutrophils. Ultrasound examination of the breast was consistent with galactophoritis. CRP was normal, and hypereosinophilia was seen. The patient was subsequently referred to a dermatology unit. Skin examination revealed inflammation of the entire breast, which was painful, warm and erythematous; the border was oedematous with blisters. Necrotic lesions were also present on the thumbs and knees. Skin biopsy of the breast showed a dermal infiltrate with abundant infiltrate of polymorphonuclear eosinophils, including patchy necrosis and intraepidermal vesicles. Histological examination of a biopsy sample from a thumb revealed eosinophilic granuloma and leukocytoclastic vasculitis. The patient was also presenting asthma, pulmonary infiltrates and mononeuropathy at L3, consistent with Churg-Strauss syndrome. Breast involvement in Churg-Strauss syndrome is very rare (only one other case has been reported). This is the first case in which the breast condition revealed the disease. Cutaneous involvement of the breast is, however, also compatible with Wells' cellulitis. The lesions quickly disappeared with 1mg/kg/d oral prednisolone. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan
2016-08-12
Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan
2016-01-01
Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. PMID:27342778
Smitha, K T; Nisha, N; Maya, S; Biswas, Raja; Jayakumar, R
2015-03-01
Polymorphonuclear leukocytes (PMNs) provide the primary host defence against invading pathogens by producing reactive oxygen species (ROS) and microbicidal products. However, few pathogens can survive for a prolonged period of time within the PMNs. Additionally their intracellular lifestyle within the PMNs protect themselves from the additional lethal action of host immune systems such as antibodies and complements. Antibiotic delivery into the intracellular compartments of PMNs is a major challenge in the field of infectious diseases. In order to deliver antibiotics within the PMNs and for the better treatment of intracellular bacterial infections we synthesized rifampicin (RIF) loaded amorphous chitin nanoparticles (RIF-ACNPs) of 350±50 nm in diameter. RIF-ACNPs nanoparticles are found to be non-hemolytic and non-toxic against a variety of host cells. The release of rifampicin from the prepared nanoparticles was ∼60% in 24 h, followed by a sustained pattern till 72 h. The RIF-ACNPs nanoparticles showed 5-6 fold enhanced delivery of RIF into the intracellular compartments of PMNs. The RIF-ACNPs showed anti-microbial activity against Escherichia coli, Staphylococcus aureus and a variety of other bacteria. In summary, our results suggest that RIF-ACNPs could be used to treat a variety of intracellular bacterial infections. Copyright © 2014 Elsevier B.V. All rights reserved.
Kothary, Vishesh; Doster, Ryan S; Rogers, Lisa M; Kirk, Leslie A; Boyd, Kelli L; Romano-Keeler, Joann; Haley, Kathryn P; Manning, Shannon D; Aronoff, David M; Gaddy, Jennifer A
2017-01-01
Streptococcus agalactiae , or Group B Streptococcus (GBS), is a gram-positive bacterial pathogen associated with infection during pregnancy and is a major cause of morbidity and mortality in neonates. Infection of the extraplacental membranes surrounding the developing fetus, a condition known as chorioamnionitis, is characterized histopathologically by profound infiltration of polymorphonuclear cells (PMNs, neutrophils) and greatly increases the risk for preterm labor, stillbirth, or neonatal GBS infection. The advent of animal models of chorioamnionitis provides a powerful tool to study host-pathogen relationships in vivo and ex vivo . The purpose of this study was to evaluate the innate immune response elicited by GBS and evaluate how antimicrobial strategies elaborated by these innate immune cells affect bacteria. Our work using a mouse model of GBS ascending vaginal infection during pregnancy reveals that clinically isolated GBS has the capacity to invade reproductive tissues and elicit host immune responses including infiltration of PMNs within the choriodecidua and placenta during infection, mirroring the human condition. Upon interacting with GBS, murine neutrophils elaborate DNA-containing extracellular traps, which immobilize GBS and are studded with antimicrobial molecules including lactoferrin. Exposure of GBS to holo- or apo-forms of lactoferrin reveals that the iron-sequestration activity of lactoferrin represses GBS growth and viability in a dose-dependent manner. Together, these data indicate that the mouse model of ascending infection is a useful tool to recapitulate human models of GBS infection during pregnancy. Furthermore, this work reveals that neutrophil extracellular traps ensnare GBS and repress bacterial growth via deposition of antimicrobial molecules, which drive nutritional immunity via metal sequestration strategies.
METABOLIC AND MORPHOLOGICAL OBSERVATIONS ON THE EFFECT OF SURFACE-ACTIVE AGENTS ON LEUKOCYTES
Graham, R. C.; Karnovsky, M. J.; Shafer, A. W.; Glass, E. A.; Karnovsky, Manfred L.
1967-01-01
Morphological and metabolic observations have been made on the effects of endotoxin, deoxycholate, and digitonin (at less than 50 µg/ml) on polymorphonuclear leukocytes and mononuclear cells. The agents stimulate the respiration and glucose oxidation of these cells in a manner similar to that seen during phagocytosis. Electron microscopy revealed no morphological changes with the first two agents, but dramatic membrane changes were seen in the case of digitonin. Here tubular projections of characteristic size and shape formed on and split off the membrane. All the agents stimulated uptake of inulin, but efforts to demonstrate increased pinocytosis by electron microscopy have not so far succeeded, probably due to limitations in present experimental techniques. PMID:6034482
Balta, Emre; Stopp, Julian; Castelletti, Laura; Kirchgessner, Henning; Samstag, Yvonne; Wabnitz, Guido H
2017-01-01
Neutrophils or polymorphonuclear cells (PMN) eliminate bacteria via phagocytosis and/or NETosis. Apart from these conventional roles, PMN also have immune-regulatory functions. They can transdifferentiate and upregulate MHCII as well as ligands for costimulatory receptors which enables them to behave as antigen presenting cells (APC). The initial step for activating T-cells is the formation of an immune synapse between T-cells and antigen-presenting cells. However, the immune synapse that develops at the PMN/T-cell contact zone is as yet hardly investigated due to the non-availability of methods for analysis of large number of PMN interactions. In order to overcome these obstacles, we introduce here a workflow to analyse the immune synapse of primary human PMN and T-cells using multispectral imaging flow cytometry (InFlow microscopy) and super-resolution microscopy. For that purpose, we used CD3 and CD66b as the lineage markers for T-cells and PMN, respectively. Thereafter, we applied and critically discussed various "masks" for identification of T-cell PMN interactions. Using this approach, we found that a small fraction of transdifferentiated PMN (CD66b + CD86 high ) formed stable PMN/T-cell conjugates. Interestingly, while both CD3 and CD66b accumulation in the immune synapse was dependent on the maturation state of the PMN, only CD3 accumulation was greatly enhanced by the presence of superantigen. The actin cytoskeleton was weakly rearranged at the PMN side on the immune synapse upon contact with a T-cell in the presence of superantigen. A more detailed analysis using super-resolution microscopy (structured-illumination microscopy, SIM) confirmed this finding. Together, we present an InFlow microscopy based approach for the large scale analysis of PMN/T-cell interactions and - combined with SIM - a possibility for an in-depth analysis of protein translocation at the site of interactions. Copyright © 2016 Elsevier Inc. All rights reserved.
An Equine Intersex with Unilateral Gonadal Agenesis
Basrur, P. K.; Kanagawa, H.; Gilman, J. P. W.
1969-01-01
Cytogenetic and histological studies have been carried out on an intersex horse which was clinically diagnosed as a cryptorchid. The horse had the general conformation of a stallion but the external genitalia included a well developed vulva and a penis. The right testis which was descended was devoid of germ cells and the left “gonad” located in the cavum vaginale contained neither testicular nor ovarian tissue. The male duct system on both sides were relatively well developed despite the absence of a testis on the left side. Chromosome analysis on cultured cells from the descended testis revealed the presence of four chromosomally-distinct cell types with XX, XY, XXY and XO sex complements indicating a quadruple mosaicism. The presence of polymorphonuclear neutrophils exhibiting a drumstick, in the hemopoietic tissues and a sex chromatin body in the nucleated cells of buccal mucosa suggest that mosaicism prevails in other somatic tissues of the horse. On the basis of information derived from similar conditions in humans and some domestic animals it would appear that this horse resulted from an XXY zygote. The four cell types noted in the horse probably resulted through mitotic mechanisms favouring the loss of an X and a Y at different stages during embryonic development. The absence of gonad on the left side of this horse might be causally related to the preponderance of XO cell types in the somatic blastema during early gonadal differentiation. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6.Fig. 7.Fig. 8.Fig. 9.Fig. 10.Fig. 11.Fig. 12.Fig. 13.Fig. 14.Fig. 15.Fig. 16.Fig. 17.Fig. 18.Fig. 19. PMID:4391028
Are soluble factors relevant for polymorphonuclear leukocyte dysregulation in septicemia?
Wenisch, C; Graninger, W
1995-01-01
Polymorphonuclear leukocytes (PMNs) of twelve patients with gram-negative septicemia exhibited a decreased capacity to phagocytize Escherichia coli and generate reactive oxygen products which normalized within 7 days of treatment. Ex vivo exchange of plasma from age-, sex-, and blood-group-identical normal controls resulted in an increase of both phagocytic capacity and reactive oxygen intermediate generation in PMNs of septicemic patients and transiently reduced phagocytosis and reactive oxygen intermediate production in PMNs of normal controls. These results suggest that extrinsic factors are crucial for PMN function. PMID:7697538
Esterase reactions in acute myelomonocytic leukemia.
Kass, L
1977-05-01
Specific and nonspecific esterase reactions of bone marrow cells from 14 patients with untreated acute myelomonocytic leukemia and six patients with acute histiomonocytic leukemia were examined. The technic for esterase determination permitted simultaneous visualization of both esterases on the same glass coverslip containing the marrow cells. In cases of acute histiomonocytic leukemia, monocytes, monocytoid hemohistioblasts and undifferentiated blasts stained intensely positive for nonspecific esterase, using alpha-naphthyl acetate as the substrate. No evidence of specific esterase activity using naphthol ASD-chloroacetate as the substrate and fast blue BBN as the dye coupler was apparent in these cells. In all of the cases of acute myelomonocytic leukemia, both specific and nonspecific esterases were visualized within monocytes, monocytoid cells, and granulocytic cells that had monocytoid-type nuclei. Nonspecific esterase activity was not observed in polymorphonuclear leukocytes in cases of myelomonocytic leukemia. The results support a current viewpoint that acute myelomonocytic leukemia may be a variant of acute myeloblastic leukemia, and that cytochemically, many of the leukemic cells in myelomonocytic leukemia share properties of both granulocytes and monocytes.
Neutrophil Elastase, Proteinase 3, and Cathepsin G as Therapeutic Targets in Human Diseases
Horwitz, Marshall S.; Jenne, Dieter E.; Gauthier, Francis
2010-01-01
Polymorphonuclear neutrophils are the first cells recruited to inflammatory sites and form the earliest line of defense against invading microorganisms. Neutrophil elastase, proteinase 3, and cathepsin G are three hematopoietic serine proteases stored in large quantities in neutrophil cytoplasmic azurophilic granules. They act in combination with reactive oxygen species to help degrade engulfed microorganisms inside phagolysosomes. These proteases are also externalized in an active form during neutrophil activation at inflammatory sites, thus contributing to the regulation of inflammatory and immune responses. As multifunctional proteases, they also play a regulatory role in noninfectious inflammatory diseases. Mutations in the ELA2/ELANE gene, encoding neutrophil elastase, are the cause of human congenital neutropenia. Neutrophil membrane-bound proteinase 3 serves as an autoantigen in Wegener granulomatosis, a systemic autoimmune vasculitis. All three proteases are affected by mutations of the gene (CTSC) encoding dipeptidyl peptidase I, a protease required for activation of their proform before storage in cytoplasmic granules. Mutations of CTSC cause Papillon-Lefèvre syndrome. Because of their roles in host defense and disease, elastase, proteinase 3, and cathepsin G are of interest as potential therapeutic targets. In this review, we describe the physicochemical functions of these proteases, toward a goal of better delineating their role in human diseases and identifying new therapeutic strategies based on the modulation of their bioavailability and activity. We also describe how nonhuman primate experimental models could assist with testing the efficacy of proposed therapeutic strategies. PMID:21079042
Qiu, F H; Devchand, P R; Wada, K; Serhan, C N
2001-12-01
Aspirin-triggered 15-epi-lipoxin A4 (ATL) is an endogenous lipid mediator that mimics the actions of native lipoxin A4, a putative "stop signal" involved in regulating resolution of inflammation. A metabolically more stable analog of ATL, 15-epi-16-(para-fluoro)-phenoxy-lipoxin A4 analog (ATLa), inhibits neutrophil recruitment in vitro and in vivo and displays potent anti-inflammatory actions. ATLa binds with high affinity to the lipoxin A4 receptor, a G protein-coupled receptor on the surface of leukocytes. In this study, we used freshly isolated human neutrophils to examine ATLa's potential for initiating rapid nuclear responses. Using differential display reverse transcription polymerase chain reaction, we identified a subset of genes that was selectively up-regulated upon short exposure of polymorphonuclear leukocytes to ATLa but not to the chemoattractant leukotriene B4 or vehicle alone. We further investigated ATLa regulation of one of the genes, NAB1, a transcriptional corepressor identified previously as a glucocorticoid-responsive gene in hamster smooth muscle cells. Treatment of human neutrophils with pertussis toxin blocked ATLa up-regulation of NAB1. In addition, ATLa stimulated NAB1 gene expression in murine lung vascular smooth muscle in vivo. These findings provide evidence for rapid transcriptional induction of a cassette of genes via an ATLa-stimulated G protein-coupled receptor pathway that is potentially protective and overlaps with the anti-inflammatory glucocorticoid regulatory circuit.
Chronic dermatophytosis: what is special about Trichophyton rubrum?
Dahl, M V; Grando, S A
1994-01-01
T. rubrum is especially suited to survive on the skin surface. We have presented data to show how it accomplishes this. We will now combine these data with our own thoughts to speculate about how T. rubrum has adapted to the skin of human beings. We believe the organism uses several different strategies. First, many infected patients cannot elicit a cell-mediated immune response to eliminate the fungus. The reasons for this are not completely clear, but trichophytin skin tests are negative at 48 hours despite persistent, chronic, and even widespread infections. Antigens are present on T. rubrum, just as they are on other dermatophytes, but differences in antigen penetration through the skin may prevent induction of immunity. Perhaps, neonatal exposure to the fungus or to cross-reacting antigens of molds may induce tolerance by confusing antigen recognition of self vs. nonself. More likely, persistent infection induces immunologic unresponsiveness by activating specific suppressor T cells. In fact, our attempts to clone T. rubrum-specific T cells from peripherals blood have always yielded suppressor cells, and these cells even suppress proliferation of the clone itself. Second, mannans from T. rubrum probably are better able to suppress cell-mediated immune reactions than are mannans from other fungi. T. rubrum may make more mannan than do other dermatophytes, and the mannan may be a more potent immunosuppressor than are mannans from other dermatophytes. Mannan apparently works by inhibiting critical steps in antigen processing or presentation. This inhibits the immune reaction. Perhaps, mannan even can prevent induction under certain circumstances. Third, T. rubrum is not especially aggressive compared with other dermatophytes. By remaining in the stratum corneum, it may evade immune surveillance, and may evade complement and polymorphonuclear leukocytes that would attach the organism if it tried to invade into viable epidermis. Finally, T. rubrum can survive off the human body as a spore. Its life cycle apparently lets spores desquamate and, thereby, remain plentiful in many human habitats. If a spore finds a warm, moist area of skin, it can crowd out normal flora and grow within the stratum corneum. T. rubrum's ability to infect and its ubiquitous presence account for the high incidence of infections. This, plus the ability of T. rubrum to evade host defenses, accounts for the high prevalence of infections with this fungus.
de Wit, Emmie; Rasmussen, Angela L.; Feldmann, Friederike; Bushmaker, Trenton; Martellaro, Cynthia; Haddock, Elaine; Okumura, Atsushi; Proll, Sean C.; Chang, Jean; Gardner, Don; Katze, Michael G.
2014-01-01
ABSTRACT In March 2013, three fatal human cases of infection with influenza A virus (H7N9) were reported in China. Since then, human cases have been accumulating. Given the public health importance of this virus, we performed a pathogenicity study of the H7N9 virus in the cynomolgus macaque model, focusing on clinical aspects of disease, radiographic, histological, and gene expression profile changes in the upper and lower respiratory tracts, and changes in systemic cytokine and chemokine profiles during infection. Cynomolgus macaques developed transient, mild to severe disease with radiographic evidence of pulmonary infiltration. Virus replicated in the upper as well as lower respiratory tract, with sustained replication in the upper respiratory tract until the end of the experiment at 6 days after inoculation. Virus shedding occurred mainly via the throat. Histopathological changes in the lungs were similar to those observed in humans, albeit less severe, with diffuse alveolar damage, infiltration of polymorphonuclear cells, formation of hyaline membranes, pneumocyte hyperplasia, and fibroproliferative changes. Analysis of gene expression profiles in lung lesions identified pathways involved in tissue damage during H7N9 infection as well as leads for development of therapeutics targeting host responses rather than virus replication. Overall, H7N9 infection was not as severe in cynomolgus macaques as in humans, supporting the possible role of underlying medical complications in disease severity as discussed for human H7N9 infection (H. N. Gao et al., N. Engl. J. Med. 368:2277–2285, 2013, doi:10.1056/NEJMoa1305584). PMID:25118237
Montenegro Raudales, Jorge Luis; Yoshimura, Atsutoshi; SM, Ziauddin; Kaneko, Takashi; Ozaki, Yukio; Ukai, Takashi; Miyazaki, Toshihiro; Latz, Eicke; Hara, Yoshitaka
2016-01-01
Dental calculus is a mineralized deposit associated with periodontitis. The bacterial components contained in dental calculus can be recognized by host immune sensors, such as Toll-like receptors (TLRs), and induce transcription of proinflammatory cytokines, such as IL-1β. Studies have shown that cellular uptake of crystalline particles may trigger NLRP3 inflammasome activation, leading to the cleavage of the IL-1β precursor to its mature form. Phagocytosis of dental calculus in the periodontal pocket may therefore lead to the secretion of IL-1β, promoting inflammatory responses in periodontal tissues. However, the capacity of dental calculus to induce IL-1β secretion in human phagocytes has not been explored. To study this, we stimulated human polymorphonuclear leukocytes (PMNs) and peripheral blood mononuclear cells (PBMCs) with dental calculus collected from periodontitis patients, and measured IL-1β secretion by ELISA. We found that calculus induced IL-1β secretion in both human PMNs and PBMCs. Calculus also induced IL-1β in macrophages from wild-type mice, but not in macrophages from NLRP3- and ASC-deficient mice, indicating the involvement of NLRP3 and ASC. IL-1β induction was inhibited by polymyxin B, suggesting that LPS is one of the components of calculus that induces pro-IL-1β transcription. To analyze the effect of the inorganic structure, we baked calculus at 250°C for 1 h. This baked calculus failed to induce pro-IL-1β transcription. However, it did induce IL-1β secretion in lipid A-primed cells, indicating that the crystalline structure of calculus induces inflammasome activation. Furthermore, hydroxyapatite crystals, a component of dental calculus, induced IL-1β in mouse macrophages, and baked calculus induced IL-1β in lipid A-primed human PMNs and PBMCs. These results indicate that dental calculus stimulates IL-1β secretion via NLRP3 inflammasome in human and mouse phagocytes, and that the crystalline structure has a partial role in the activation of NLRP3 inflammasome. PMID:27632566
Montenegro Raudales, Jorge Luis; Yoshimura, Atsutoshi; Sm, Ziauddin; Kaneko, Takashi; Ozaki, Yukio; Ukai, Takashi; Miyazaki, Toshihiro; Latz, Eicke; Hara, Yoshitaka
2016-01-01
Dental calculus is a mineralized deposit associated with periodontitis. The bacterial components contained in dental calculus can be recognized by host immune sensors, such as Toll-like receptors (TLRs), and induce transcription of proinflammatory cytokines, such as IL-1β. Studies have shown that cellular uptake of crystalline particles may trigger NLRP3 inflammasome activation, leading to the cleavage of the IL-1β precursor to its mature form. Phagocytosis of dental calculus in the periodontal pocket may therefore lead to the secretion of IL-1β, promoting inflammatory responses in periodontal tissues. However, the capacity of dental calculus to induce IL-1β secretion in human phagocytes has not been explored. To study this, we stimulated human polymorphonuclear leukocytes (PMNs) and peripheral blood mononuclear cells (PBMCs) with dental calculus collected from periodontitis patients, and measured IL-1β secretion by ELISA. We found that calculus induced IL-1β secretion in both human PMNs and PBMCs. Calculus also induced IL-1β in macrophages from wild-type mice, but not in macrophages from NLRP3- and ASC-deficient mice, indicating the involvement of NLRP3 and ASC. IL-1β induction was inhibited by polymyxin B, suggesting that LPS is one of the components of calculus that induces pro-IL-1β transcription. To analyze the effect of the inorganic structure, we baked calculus at 250°C for 1 h. This baked calculus failed to induce pro-IL-1β transcription. However, it did induce IL-1β secretion in lipid A-primed cells, indicating that the crystalline structure of calculus induces inflammasome activation. Furthermore, hydroxyapatite crystals, a component of dental calculus, induced IL-1β in mouse macrophages, and baked calculus induced IL-1β in lipid A-primed human PMNs and PBMCs. These results indicate that dental calculus stimulates IL-1β secretion via NLRP3 inflammasome in human and mouse phagocytes, and that the crystalline structure has a partial role in the activation of NLRP3 inflammasome.
Inflammation, Fracture and Bone Repair
Loi, Florence; Córdova, Luis A.; Pajarinen, Jukka; Lin, Tzu-hua; Yao, Zhenyu; Goodman, Stuart B.
2016-01-01
The reconstitution of lost bone is a subject that is germane to many orthopaedic conditions including fractures and non-unions, infection, inflammatory arthritis, osteoporosis, osteonecrosis, metabolic bone disease, tumors, and periprosthetic particle-associated osteolysis. In this regard, the processes of acute and chronic inflammation play an integral role. Acute inflammation is initiated by endogenous or exogenous adverse stimuli, and can become chronic in nature if not resolved by normal homeostatic mechanisms. Dysregulated inflammation leads to increased bone resorption and suppressed bone formation. Crosstalk amongst inflammatory cells (polymorphonuclear leukocytes and cells of the monocyte-macrophage-osteoclast lineage) and cells related to bone healing (cells of the mesenchymal stem cell-osteoblast lineage and vascular lineage) is essential to the formation, repair and remodeling of bone. In this review, the authors provide a comprehensive summary of the literature related to inflammation and bone repair. Special emphasis is placed on the underlying cellular and molecular mechanisms, and potential interventions that can favorably modulate the outcome of clinical conditions that involve bone repair. PMID:26946132
Tasew, Geremew; Gadisa, Endalamaw; Abera, Adugna; Zewude, Aboma; Chanyalew, Menberework; Aseffa, Abraham; Abebe, Markos; Ritter, Uwe; van Zandbergen, Ger; Laskay, Tamás; Tafess, Ketema
2016-04-18
Epidemiological studies in Ethiopia have documented that the risk of visceral leishmaniasis (VL, Kala-azar) is higher among people living with domestic animals. The recent report on isolation of Leishmania donovani complex DNA and the detected high prevalence of anti-leishmanial antibodies in the blood of domestic animals further strengthen the potential role of domestic animals in the epidemiology of VL in Ethiopia. In mammalian hosts polymorphonuclear cells (PMN) and macrophages are the key immune cells influencing susceptibility or control of Leishmania infection. Thus to substantiate the possible role of cattle in VL transmission we investigate the permissiveness of bovine PMN and monocyte derived macrophages (MDM) for Leishmania (L.) donovani infection. Whole blood was collected from pure Zebu (Boss indicus) and their cross with Holstein Friesian cattle. L. donovani (MHOM/ET/67/HU3) wild and episomal green fluorescent protein (eGFP) labelled stationary stage promastigotes were co-incubated with whole blood and MDM to determine infection of these cells. Engulfment of promastigotes by the cells and their transformation to amastigote forms in MDM was studied with direct microscopy. Microscopy and flow cytometry were used to measure the infection rate while PCR-RLFP was used to confirm the infecting parasite. L. donovani infected bovine whole blood PMN in the presence of plasma factors and all cellular elements. Morphological examinations of stained cytospin smears revealed that PMN engulfed promastigotes. Similarly, we were able to show that bovine MDM can be infected by L. donovani, which transformed to amastigote forms in the cells. The in vitro infection of bovine PMN and MDM by L. donovani further strengthens the possibility that cattle might serve as source of L. donovani infection for humans.
Effects of Simulated Microgravity on Functions of Neutrophil-like HL-60 Cells
NASA Astrophysics Data System (ADS)
Wang, Chengzhi; Li, Ning; Zhang, Chen; Sun, Shujin; Gao, Yuxin; Long, Mian
2015-11-01
Altered gravity, especially microgravity affects cellular functions of immune cells and can result in immune dysfunction for long-term, manned spaceflight and space exploration. The underlying mechanism, however, of sensing and responding to the gravity alteration is poorly understood. Here, a rotary cell culture system (RCCS) bioreactor was used to elucidate the effects of simulated microgravity on polymorphonuclear neutrophils (PMN)-like HL-60 cells. Alteration of cell morphology, up-regulation of (nitric oxide) NO production, enhancement of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemotactic protein 1 (MCP-1) secretion, and diversity of cellular adhesion molecule expression were observed for the cells cultured in RCCS, leading to the up-regulated inflammatory immune responses and host defense. It was also indicated that such alterations in biological responses of PMNs mediated the reduced rolling velocity and decreased adhesion of PMN-like HL-60 cells on endothelial cells under shear flow. This work furthers the understandings in the effects and mechanism of microgravity on PMN functions, which are potentially helpful for optimizing the countermeasures to immune suppression in the future long-term, manned spaceflight.
Monoclonal Antibodies Against Tyrosyl-tRNA Synthetase and Its Isolated Cytokine-Like Domain
Khoruzenko, Antonina; Cherednyk, Olga; Filonenko, Valeriy; Kornelyuk, Aleksander
2013-01-01
Tyrosyl-tRNA synthetase (TyrRS) is one of the key enzymes of protein biosynthesis. In addition to its basic role, this enzyme reveals some important non-canonical functions. Under apoptotic conditions, the full-length enzyme splits into two fragments having distinct cytokine activities, thereby linking protein synthesis to cytokine signaling pathways. The NH2-terminal catalytic fragment, known as miniTyrRS, binds strongly to the CXC-chemokine receptor CXCR1 and, like interleukin 8, functions as a chemoattractant for polymorphonuclear leukocytes. On the other hand, an extra COOH-terminal domain of human TyrRS has cytokine activities like those of a mature human endothelial monocyte-activating polypeptide II (EMAP II). Moreover, the etiology of specific diseases (cancer, neuronal pathologies, autoimmune disorders, and disrupted metabolic conditions) is connected to specific aminoacyl-tRNA synthetases. Here we report the generation and characterization of monoclonal antibodies specific to N- and C-terminal domains of TyrRS. Recombinant TyrRS and its N- and C-terminal domains were expressed as His-tag fusion proteins in bacteria. Affinity purified proteins have been used as antigens for immunization and hybridoma cell screening. Monoclonal antibodies specific to catalytic N-terminal module and C-terminal EMAP II-like domain of TyrRS may be useful as tools in various aspects of TyrRS function and cellular localization. PMID:23750478
Tsatsaronis, James A; Hollands, Andrew; Cole, Jason N; Maamary, Peter G; Gillen, Christine M; Ben Zakour, Nouri L; Kotb, Malak; Nizet, Victor; Beatson, Scott A; Walker, Mark J; Sanderson-Smith, Martina L
2013-07-01
In Western countries, invasive infections caused by M1T1 serotype group A Streptococcus (GAS) are epidemiologically linked to mutations in the control of virulence regulatory 2-component operon (covRS). In indigenous communities and developing countries, severe GAS disease is associated with genetically diverse non-M1T1 GAS serotypes. Hypervirulent M1T1 covRS mutant strains arise through selection by human polymorphonuclear cells for increased expression of GAS virulence factors such as the DNase Sda1, which promotes neutrophil resistance. The GAS bacteremia isolate NS88.2 (emm 98.1) is a covS mutant that exhibits a hypervirulent phenotype and neutrophil resistance yet lacks the phage-encoded Sda1. Here, we have employed a comprehensive systems biology (genomic, transcriptomic, and proteomic) approach to identify NS88.2 virulence determinants that enhance neutrophil resistance in the non-M1T1 GAS genetic background. Using this approach, we have identified streptococcal collagen-like protein A and general stress protein 24 proteins as NS88.2 determinants that contribute to survival in whole blood and neutrophil resistance in non-M1T1 GAS. This study has revealed new factors that contribute to GAS pathogenicity that may play important roles in resisting innate immune defenses and the development of human invasive infections.
Inhibition of human neutrophil elastase by α1-antitrypsin functionalized colloidal microcarriers.
Reibetanz, Uta; Schönberg, Maria; Rathmann, Sophie; Strehlow, Vincent; Göse, Martin; Leßig, Jacqueline
2012-07-24
Layer-by-layer (LbL)-coated microcarriers offer a good opportunity as transport systems for active agents into specific cells and tissues. The assembling of oppositely charged polyelectrolytes enables a modular construction of the carriers and therefore an optimized integration and application of drug molecules. Here, we report the multilayer incorporation and transport of α(1)-antitrypsin (AT) by colloidal microcarriers. AT is an anti-inflammatory agent and shows inhibitory effects toward its pro-inflammatory antagonist, human neutrophil elastase (HNE). The highly proteolytic enzyme HNE is released by polymorphonuclear leukocytes (PMNs) during inflammatory processes and can cause host tissue destruction and pain. The high potential of this study is based on a simultaneous intra- and extracellular application of AT-functionalized LbL carriers. Carrier application in PMNs results in significant HNE inhibition within 21 h. Microcarriers phagocytosed by PMNs were time dependently decomposed inside phagolysosomes, which enables the step-by-step release of AT. Here, AT inactivates HNE before being released, which avoids a further HNE concentration increase in the extracellular space and, subsequently, reduces the risk of further tissue destruction. Additionally, AT surface-functionalized microcarriers allow the inhibition of already released HNE in the extracellular space. Finally, this study demonstrates the successful application of LbL carriers for a concurrent extra- and intracellular HNE inhibition aiming the rebalancing of protease and antiprotease concentrations and the subsequent termination of chronic inflammations.
1991-01-01
The rate of filamentous actin (F-actin) depolymerization is proportional to the number of filaments depolarizing and changes in the rate are proportional to changes in filament number. To determine the number and length of actin filaments in polymorphonuclear leukocytes and the change in filament number and length that occurs during the increase in F-actin upon chemoattractant stimulation, the time course of cellular F-actin depolymerization in lysates of control and peptide- stimulated cells was examined. F-actin was quantified by the TRITC- labeled phalloidin staining of pelletable actin. Lysis in 1.2 M KCl and 10 microM DNase I minimized the effects of F-actin binding proteins and G-actin, respectively, on the kinetics of depolymerization. To determine filament number and length from a depolymerization time course, depolymerization kinetics must be limited by the actin monomer dissociation rate. Comparison of time courses of depolymerization in the presence (pointed ends free) or absence (barbed and pointed ends free) of cytochalasin suggested depolymerization occurred from both ends of the filament and that monomer dissociation was rate limiting. Control cells had 1.7 +/- 0.4 x 10(5) filaments with an average length of 0.29 +/- 0.09 microns. Chemo-attractant stimulation for 90 s at room temperature with 0.02 microM N-formylnorleucylleucylphenylalanine caused a twofold increase in F-actin and about a two-fold increase in the total number of actin filaments to 4.0 +/- 0.5 x 10(5) filaments with an average length of 0.27 +/- 0.07 microns. In both cases, most (approximately 80%) of the filaments were quite short (less than or equal to 0.18 micron). The length distributions of actin filaments in stimulated and control cells were similar. PMID:1918158
Reactive Oxygen Species in Inflammation and Tissue Injury
Mittal, Manish; Siddiqui, Mohammad Rizwan; Tran, Khiem; Reddy, Sekhar P.
2014-01-01
Abstract Reactive oxygen species (ROS) are key signaling molecules that play an important role in the progression of inflammatory disorders. An enhanced ROS generation by polymorphonuclear neutrophils (PMNs) at the site of inflammation causes endothelial dysfunction and tissue injury. The vascular endothelium plays an important role in passage of macromolecules and inflammatory cells from the blood to tissue. Under the inflammatory conditions, oxidative stress produced by PMNs leads to the opening of inter-endothelial junctions and promotes the migration of inflammatory cells across the endothelial barrier. The migrated inflammatory cells not only help in the clearance of pathogens and foreign particles but also lead to tissue injury. The current review compiles the past and current research in the area of inflammation with particular emphasis on oxidative stress-mediated signaling mechanisms that are involved in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126–1167. PMID:23991888
Wenisch, C; Parschalk, B; Zedtwitz-Liebenstein, K; Weihs, A; el Menyawi, I; Graninger, W
1996-01-01
Azithromycin was given as a single oral dose (20 mg/kg of body weight) to 12 volunteers in a crossover study with roxithromycin (8 to 12 mg/kg) and clarithromycin (8 to 12 mg/kg). Flow cytometry was used to study the phagocytic functions and the release of reactive oxygen products following phagocytosis by neutrophil granulocytes prior to administration of the three drugs, 16 h after azithromycin administration, and 3 h after clarithromycin and roxithromycin administration. Phagocytic capacity was assessed by measuring the uptake of fluorescein isothiocyanate-labeled bacteria. Reactive oxygen generation after phagocytosis of unlabeled bacteria was estimated by the amount of dihydrorhodamine 123 converted to rhodamine 123 intracellularly. Azithromycin resulted in decreased capacities of the cells to phagocytize Escherichia coli (median [range], 62% [27 to 91%] of the control values; P < 0.01) and generate reactive oxygen products (75% [34 to 26%] of the control values; P < 0.01). Clarithromycin resulted in reduced phagocytosis (82% [75 to 98%] of control values; P < 0.01) but did not alter reactive oxygen production (84% [63 to 113%] of the control values; P > 0.05). Roxithromycin treatment did not affect granulocyte phagocytosis (92% [62 to 118%] of the control values; P > 0.05) or reactive oxygen production (94% [66 to 128%] of the control value; P > 0.05). No relation between intra- and/or extracellular concentrations of azithromycin and/or roxithromycin and the polymorphonuclear phagocyte function and/or reactive oxygen production existed (P > 0.05 for all comparisons). These results demonstrate that the accumulation of macrolides in neutrophils can suppress the response of phagocytic cells to bacterial pathogens after a therapeutic dose. PMID:8878577
Rijkschroeff, Patrick; Jansen, Ineke D C; van der Weijden, Fridus A; Keijser, Bart J F; Loos, Bruno G; Nicu, Elena A
2016-01-01
Polymorphonuclear neutrophils (PMNs) have a major role in the innate immune system. However, little is known about PMN contribution in relation to oral health. The objective of this study was to investigate the numbers and functional characteristics of oral PMNs (oPMNs) compared with circulatory PMNs (cPMNs). Oral rinse and venous blood samples were obtained from 268 systemically and orally healthy volunteers in a cross-sectional observational study. PMN counts, cell cycle analysis and cellular activation state were investigated. Also, reactive oxygen species (ROS) production was analyzed, with and without bacterial stimulation (Fusobacterium nucleatum). In males, 1.2 × 106±1.0 × 106 oPMNs were collected, and showed a tendency to correlate with the levels of gingival bleeding (r=0.215, P=0.008). Comparable oPMNs counts were found among females (1.0 × 106±0.7 × 106). More late-stage apoptotic/necrotic cells were found among the oPMNs (53.1%) compared with the cPMNs (8.5% P<0.001). Without additional stimulation, oPMNs were more activated than cPMNs, as indicated by higher expression of CD11b, CD63 and CD66b, and higher constitutive ROS levels (P<0.001). Notably, in response to bacterial stimulation, oPMNs released comparable ROS levels as cPMNs (P=0.042). In conclusion, this study provides data on viable oPMNs showing high levels of activation in orally and systemically healthy individuals, free of apparent caries lesions and periodontal disease. These data suggests that although the oPMNs are in a more mature stage of their life cycle compared with the cPMNs, oPMNs are still responsive to stimulation, which indicates their functional potential and possible contribution to a healthy oral ecosystem. PMID:27515277
Immune correlates of aging in outdoor-housed captive rhesus macaques (Macaca mulatta)
2012-01-01
Background Questions remain about whether inflammation is a cause, consequence, or coincidence of aging. The purpose of this study was to define baseline immunological characteristics from blood to develop a model in rhesus macaques that could be used to address the relationship between inflammation and aging. Hematology, flow cytometry, clinical chemistry, and multiplex cytokine/chemokine analyses were performed on a group of 101 outdoor-housed captive rhesus macaques ranging from 2 to 24 years of age, approximately equivalent to 8 to 77 years of age in humans. Results These results extend earlier reports correlating changes in lymphocyte subpopulations and cytokines/chemokines with increasing age. There were significant declines in numbers of white blood cells (WBC) overall, as well as lymphocytes, monocytes, and polymorphonuclear cells with increasing age. Among lymphocytes, there were no significant declines in NK cells and T cells, whereas B cell numbers exhibited significant declines with age. Within the T cell populations, there were significant declines in numbers of CD4+ naïve T cells and CD8+ naïve T cells. Conversely, numbers of CD4+CD8+ effector memory and CD8+effector memory T cells increased with age. New multiplex analyses revealed that concentrations of a panel of ten circulating cytokines/chemokines, IFNγ, IL1b, IL6, IL12, IL15, TNFα, MCP1, MIP1α, IL1ra, and IL4, each significantly correlated with age and also exhibited concordant pairwise correlations with every other factor within this group. To also control for outlier values, mean rank values of each of these cytokine concentrations in relation to age of each animal and these also correlated with age. Conclusions A panel of ten cytokines/chemokines were identified that correlated with aging and also with each other. This will permit selection of animals exhibiting relatively higher and lower inflammation status as a model to test mechanisms of inflammation status in aging with susceptibility to infections and vaccine efficacy. PMID:23151307
Nishihara, S; Seki, K; Ikigai, H; Masuda, S
1988-01-01
When mouse polymorphonuclear leukocytes (PMNs) sensitized with rabbit antibody to mouse Ehrlich ascites tumor cells were stimulated by Staphylococcus aureus Cowan I cells, a conspicuous luminol-dependent chemiluminescence was observed in the absence of opsonin. The profile of the chemiluminescence (CL) response evoked by staphylococcal cells from antibody-sensitized PMNs had two peaks. An initial peak, observed within 1 min after stimulation, was sharp and high and a second peak, observed about 5 min after stimulation, was low and extended. The CL response of antibody-sensitized PMNs stimulated by S. aureus Cowan I cells was dose-dependently blocked by preincubation with soluble SpA. Cells of a mutant derived from S. aureus Cowan I strain with trace amounts of cell-bound SpA failed to stimulate the antibody-sensitized PMNs to generate the CL response. The antibody-sensitized PMNs were found to phagocytize SpA-bearing S. aureus cells even in the absence of opsonic serum. These results suggest that the observation presented here might provide a useful tool for the investigation of CL response of PMNs.
Effect of strenuous physical exercise on circulating cell-derived microparticles.
Chaar, Vicky; Romana, Marc; Tripette, Julien; Broquere, Cédric; Huisse, Marie-Geneviève; Hue, Olivier; Hardy-Dessources, Marie-Dominique; Connes, Philippe
2011-01-01
Strenuous exercise is associated with an inflammatory response involving the activation of several types of blood cells. In order to document the specific activation of these cell types, we studied the effect of three maximal exercise tests conducted to exhaustion on the quantitative and qualitative pattern of circulating cell-derived microparticles and inflammatory molecules in healthy subjects. This study mainly indicated that the plasma concentration of microparticles from platelets and polymorphonuclear neutrophils (PMN) was increased immediately after the strenuous exercise. In addition, the increase in plasma concentration of microparticles from PMN and platelets was still observed after 2 hours of recovery. A similar pattern was observed for the IL-6 plasma level. In contrast, no change was observed for either soluble selectins or plasma concentration of microparticles from red blood cells, monocytes and endothelial cells. In agreement, sVCAM-1 and sICAM-1 levels were not changed by the exercise. We conclude that a strenuous exercise is accompanied by platelet- and PMN-derived microparticle production that probably reflects the activation of these two cell types.
6-Shogaol inhibits monosodium urate crystal-induced inflammation--an in vivo and in vitro study.
Sabina, Evan Prince; Rasool, Mahaboobkhan; Mathew, Lazar; Ezilrani, Panneerselvam; Indu, Haridas
2010-01-01
Gout is a rheumatic disease that is manifestated by an intense inflammation secondary to monosodium urate crystal deposition in joints. In the present study, we assessed the effect of 6-shogaol (isolated active principle from ginger) on monosodium urate crystal-induced inflammation in mice; an experimental model for gouty arthritis and compared it with that of the non-steroidal anti-inflammatory drug, indomethacin. Paw volume and levels/activities of lysosomal enzymes, lipid peroxidation, anti-oxidant status and inflammatory mediator TNF-alpha were determined in control and monosodium urate crystal-induced mice. The levels of beta-glucuronidase and lactate dehydrogenase were also measured in monosodium urate crystal-incubated polymorphonuclear leucocytes (PMNL) in vitro. The levels of lysosomal enzymes, lipid peroxidation, and inflammatory mediator tumour necrosis factor-alpha and paw volume were increased significantly and the activities of anti-oxidant status were in turn decreased in monosodium urate crystal-induced mice, whereas these changes were reverted to near normal levels upon 6-shogaol administration. In vitro, 6-shogaol reduced the level of beta-glucuronidase and lactate dehydrogenase in monosodium urate crystal-incubated polymorphonuclear leucocytes in concentration dependent manner when compared to control cells. The present results clearly indicated that 6-shogaol exerted a strong anti-inflammatory effect and can be regarded as useful tool for the treatment of acute gouty arthritis. Copyright 2009 Elsevier Ltd. All rights reserved.
Neutrophil-derived chemokines on the road to immunity.
Tecchio, Cristina; Cassatella, Marco A
2016-04-01
During recent years, it has become clear that polymorphonuclear neutrophils are remarkably versatile cells, whose functions go far beyond phagocytosis and killing. In fact, besides being involved in primary defense against infections-mainly through phagocytosis, generation of toxic molecules, release of toxic enzymes and formation of extracellular traps-neutrophils have been shown to play a role in finely regulating the development and the evolution of inflammatory and immune responses. These latter neutrophil-mediated functions occur by a variety of mechanisms, including the production of newly manufactured cytokines. Herein, we provide a general overview of the chemotactic cytokines/chemokines that neutrophils can potentially produce, either under inflammatory/immune reactions or during their activation in more prolonged processes, such as in tumors. We highlight recent observations generated from studying human or rodent neutrophils in vitro and in vivo models. We also discuss the biological significance of neutrophil-derived chemokines in the context of infectious, neoplastic and immune-mediated diseases. The picture that is emerging is that, given their capacity to produce and release chemokines, neutrophils exert essential functions in recruiting, activating and modulating the activities of different leukocyte populations. Copyright © 2016. Published by Elsevier Ltd.
Medium-chain fatty acid-sensing receptor, GPR84, is a proinflammatory receptor.
Suzuki, Masakatsu; Takaishi, Sachiko; Nagasaki, Miyuki; Onozawa, Yoshiko; Iino, Ikue; Maeda, Hiroaki; Komai, Tomoaki; Oda, Tomiichiro
2013-04-12
G protein-coupled receptor 84 (GPR84) is a putative receptor for medium-chain fatty acids (MCFAs), whose pathophysiological roles have not yet been clarified. Here, we show that GPR84 was activated by MCFAs with the hydroxyl group at the 2- or 3-position more effectively than nonhydroxylated MCFAs. We also identified a surrogate agonist, 6-n-octylaminouracil (6-OAU), for GPR84. These potential ligands and the surrogate agonist, 6-OAU, stimulated [(35)S]GTP binding and accumulated phosphoinositides in a GPR84-dependent manner. The surrogate agonist, 6-OAU, internalized GPR84-EGFP from the cell surface. Both the potential ligands and 6-OAU elicited chemotaxis of human polymorphonuclear leukocytes (PMNs) and macrophages and amplified LPS-stimulated production of the proinflammatory cytokine IL-8 from PMNs and TNFα from macrophages. Furthermore, the intravenous injection of 6-OAU raised the blood CXCL1 level in rats, and the inoculation of 6-OAU into the rat air pouch accumulated PMNs and macrophages in the site. Our results indicate a proinflammatory role of GPR84, suggesting that the receptor may be a novel target to treat chronic low grade inflammation associated-disease.
Medium-chain Fatty Acid-sensing Receptor, GPR84, Is a Proinflammatory Receptor
Suzuki, Masakatsu; Takaishi, Sachiko; Nagasaki, Miyuki; Onozawa, Yoshiko; Iino, Ikue; Maeda, Hiroaki; Komai, Tomoaki; Oda, Tomiichiro
2013-01-01
G protein-coupled receptor 84 (GPR84) is a putative receptor for medium-chain fatty acids (MCFAs), whose pathophysiological roles have not yet been clarified. Here, we show that GPR84 was activated by MCFAs with the hydroxyl group at the 2- or 3-position more effectively than nonhydroxylated MCFAs. We also identified a surrogate agonist, 6-n-octylaminouracil (6-OAU), for GPR84. These potential ligands and the surrogate agonist, 6-OAU, stimulated [35S]GTP binding and accumulated phosphoinositides in a GPR84-dependent manner. The surrogate agonist, 6-OAU, internalized GPR84-EGFP from the cell surface. Both the potential ligands and 6-OAU elicited chemotaxis of human polymorphonuclear leukocytes (PMNs) and macrophages and amplified LPS-stimulated production of the proinflammatory cytokine IL-8 from PMNs and TNFα from macrophages. Furthermore, the intravenous injection of 6-OAU raised the blood CXCL1 level in rats, and the inoculation of 6-OAU into the rat air pouch accumulated PMNs and macrophages in the site. Our results indicate a proinflammatory role of GPR84, suggesting that the receptor may be a novel target to treat chronic low grade inflammation associated-disease. PMID:23449982
Neutrophil formyl-peptide receptors. Relationship to peptide-induced responses and emphysema.
Stockley, R A; Grant, R A; Llewellyn-Jones, C G; Hill, S L; Burnett, D
1994-02-01
A reproducible assay was established to assess the number of formyl-peptide receptors expressed on the surface of human polymorphonuclear leukocytes (PMN). Using this assay the number of receptors was shown to demonstrate wide within- and between-subject variability. However, the receptor numbers were related to the chemotactic response (r = 0.572) and degranulation response (r = 0.512) to the peptide formyl-methionyl-leucyl-phenylalanine. Subsequent studies showed increased receptor numbers on PMN from patients with emphysema (median, 459 x 10(3)/cell; range, 207 to 1,080) as compared with age-matched control subjects (median, 288; range, 168 to 519; p < 0.02), which may explain the increased chemotactic response of the PMN to formyl peptides. This difference was not observed in patients with bronchiectasis, suggesting that the increased receptor number is a feature of emphysema. Furthermore, the increase was largely a feature of smokers with emphysema (median, 463; range, 362 to 1,080), whereas age-matched smokers without emphysema had lower numbers of receptors (p < 0.001; median, 332; range, 243 to 411). This observation suggests a mechanism that may explain the susceptibility of some smokers to the development of emphysema.
Nafiu, Abdulrazaq Bidemi; Rahman, Mohammad Tariqur
2015-10-15
Increased wound healing efficiency by Se(2+) added Carica papaya L. (Caricaceae) fruit extract was linked to increased antioxidant and anti-inflammatory responses during healing. We investigated the impact of Se(2+) or Zn(2+) added papaya water (WE) and phosphate-buffered saline (PE) extracts on cells recruitment and bio-molecular alterations on days 4 and 10 post wounding in an in vivo excision wound. Excision wounds were created on the dorsum of Sprague Dawley rats and treated topically twice/day with 20 μL of PE and WE (5 mg extract/mL), 0.5 μgSe(2+) added PE and WE (PES and WES), or 100 μMZn(2+) added PE and WE (PEZ and WEZ). Deionised water (negative) and Solcoseryl (positive) were applied on the control groups. Histochemical and biochemical assays were used to evaluate cellular and bio-molecular changes in the wound. PES (PE + 0.5 μg Se(2+)) only increased significantly (p < 0.05) wound total protein content (95.14 ± 1.15 mg/g tissue vs positive control; 80.42 ± 0.86 mg/g tissue) on day 10 post wounding. PES increased significantly (p < 0.05) the number of fibroblasts/high power field (HPF) (75.60 ± 9.66) but decreased significantly (p < 0.05) the number of polymorphonuclear leukocytes/HPF (59.20 ± 12.64) in the wound compared to positive control (50.60 ± 12.58 fibroblasts/HPF, 101.00 ± 27.99 polymorphonuclear leukocytes/HPF) on day 4. Similar results were recorded for WES. PES demonstrated increased neovascularization, TGF-β1 and VEGFA expressions at day 4 and increased collagen at day 10. Papaya extract improved wound repair by increasing fibroblasts recruitment and reducing polymorphonuclear leukocytes infiltration through early transient expressions of TGF-β1 and VEGFA at the wound area. The processes were amplified with Se(2+) addition.
Dachir, Shlomit; Cohen, Maayan; Sahar, Rita; Graham, John; Eisenkraft, Arik; Horwitz, Vered; Kadar, Tamar
2014-12-01
Macrophages are known to have key functions in almost every stage of wound healing and there is evidence for their beneficial effects in treating decubital ulcers and deep sternal wound infections in human. This study aimed to investigate the efficacy of a treatment with activated macrophages on ameliorating acute and long-term sulfur mustard (SM) induced skin injuries in the hairless guinea pig (HGP) model. HGP were exposed to SM vapor and treated with either a single or multiple intra-dermal injections of human activated macrophages in suspension (hAMS) into the wound bed. Clinical and histological evaluations were conducted up to 4 weeks post-exposure. A single treatment with hAMS early after exposure (15 min and 6 h) resulted in a reduction in the number of damaged cells and vesications in the epidermis at 24 h. A substantial increase in cellular infiltration, mostly polymorphonuclears, was taking place in the hAMS-treated animals starting as early as 1 h after exposure. This flow of inflammatory cells continued, in the treated group, for at least 4 weeks, long after the injected macrophages were not detected. Repeated injections of hAMS (15 min, 48 h and 7 d post-exposure) decreased significantly the area of the wounds and improved the integrity of the barrier function as expressed by measuring trans-epidermal water loss up to 10 d. Our results indicate that the role of macrophages in wound healing is complex; their efficacy may depend on the timing of administration. Further investigation is required to determine whether they are required during the early phase of wound development and/or during the late phase of scar formation and remodeling.
Pfundt, R; van Ruissen, F; van Vlijmen-Willems, I M; Alkemade, H A; Zeeuwen, P L; Jap, P H; Dijkman, H; Fransen, J; Croes, H; van Erp, P E; Schalkwijk, J
1996-01-01
Skin-derived antileukoproteinase (SKALP), also known as elafin, is a serine proteinase inhibitor first discovered in keratinocytes from hyperproliferative human epidermis. In addition to the proteinase inhibiting domain which is directed against polymorphonuclear leukocyte (PMN) derived enzymes such as elastase and proteinase 3, SKALP contains multiple transglutaminase (TGase) substrate domains which enable crosslinking to extracellular and cell envelope proteins. Here we show that SKALP is constitutively expressed in several epithelia that are continuously subjected to inflammatory stimuli, such as the oral cavity and the vagina where it co-localizes with type 1 TGase. All epithelia from sterile body cavities are negative for SKALP. In general, stratified squamous epithelia are positive, whereas pseudostratified epithelia, simple/glandular epithelia and normal epidermis are negative. SKALP was found in fetal tissues of the oral cavity from 17 wk gestation onwards where it continued to be expressed up to adult life. Remarkably, in fetal epidermis SKALP was found from week 28 onwards, but was downregulated to undetectable levels in neonatal skin within three months, suggesting a role during pregnancy in feto-maternal interactions or in the early maturation phase of the epidermis. Immunoelectron microscopy revealed the presence of SKALP in secretory vesicles including the lamellar granules. In culture models for epidermal keratinocytes we found that expression of the endogenous SKALP gene provided protection against cell detachment caused by purified elastase or activated PMNs. Addition of exogenous recombinant SKALP fully protected the keratinocytes against PMN-dependent detachment whereas superoxide dismutase and catalase were only marginally effective. These findings strongly suggest that the constitutive expression of SKALP in squamous epithelia, and the inducible expression in epidermis participate in the control of epithelial integrity, by inhibiting PMN derived proteinases. PMID:8823304
Aspirin inhibits human telomerase activation in unstable carotid plaques
LI, FANGMING; GUO, YI; JIANG, XIN; ZHONG, JIANXIN; LI, GUANDONG; SUN, SHENGGANG
2013-01-01
The activation of telomerase in unstable plaques is an important factor in atherosclerosis, and may be predictive of the risk of cerebrovascular diseases. Human telomerase reverse transcriptase (hTERT) is a subunit of telomerase that is essential for telomerase activation. The aim of the present study was to investigate whether aspirin inhibits the activation of telomerase and hTERT in unstable carotid plaques. Polymorphonuclear neutrophils (PMNs) derived from carotid plaques were isolated from the washing medium of angioplasty balloons, while circulating PMNs, isolated from arterial blood, served as the controls. A polymerase chain reaction-based telomeric repeat amplification protocol (TRAP) enzyme-linked immunosorbent assay (ELISA) was used to measure the telomerase activity in the cells following treatment with aspirin. The mRNA and protein expression of hTERT were detected by a reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis, respectively. The results revealed that the atherosclerotic plaques were positive for telomerase activity, and that aspirin inhibited the telomerase activity of the PMNs derived from the plaques. In addition, aspirin was demonstrated to inhibit the mRNA and protein expression of hTERT through the suppression of hTERT transcriptional activity; however, it had no inhibitory effect on the telomerase activity of the circulating PMNs. Thus, the activation of telomerase in resident PMNs is critical in the instability of carotid plaques. The upregulation of telomerase and hTERT during the progression of atherosclerosis may indicate a role for telomerase in the vascular remodeling that occurs during atherogenesis. Aspirin was demonstrated to inhibit the activation of telomerase via an hTERT-dependent manner in the PMN cells of unstable carotid plaques, and thus hTERT may be considered as a target in the treatment of cerebrovascular diseases. PMID:23935747
Kothary, Vishesh; Doster, Ryan S.; Rogers, Lisa M.; Kirk, Leslie A.; Boyd, Kelli L.; Romano-Keeler, Joann; Haley, Kathryn P.; Manning, Shannon D.; Aronoff, David M.; Gaddy, Jennifer A.
2017-01-01
Streptococcus agalactiae, or Group B Streptococcus (GBS), is a gram-positive bacterial pathogen associated with infection during pregnancy and is a major cause of morbidity and mortality in neonates. Infection of the extraplacental membranes surrounding the developing fetus, a condition known as chorioamnionitis, is characterized histopathologically by profound infiltration of polymorphonuclear cells (PMNs, neutrophils) and greatly increases the risk for preterm labor, stillbirth, or neonatal GBS infection. The advent of animal models of chorioamnionitis provides a powerful tool to study host-pathogen relationships in vivo and ex vivo. The purpose of this study was to evaluate the innate immune response elicited by GBS and evaluate how antimicrobial strategies elaborated by these innate immune cells affect bacteria. Our work using a mouse model of GBS ascending vaginal infection during pregnancy reveals that clinically isolated GBS has the capacity to invade reproductive tissues and elicit host immune responses including infiltration of PMNs within the choriodecidua and placenta during infection, mirroring the human condition. Upon interacting with GBS, murine neutrophils elaborate DNA-containing extracellular traps, which immobilize GBS and are studded with antimicrobial molecules including lactoferrin. Exposure of GBS to holo- or apo-forms of lactoferrin reveals that the iron-sequestration activity of lactoferrin represses GBS growth and viability in a dose-dependent manner. Together, these data indicate that the mouse model of ascending infection is a useful tool to recapitulate human models of GBS infection during pregnancy. Furthermore, this work reveals that neutrophil extracellular traps ensnare GBS and repress bacterial growth via deposition of antimicrobial molecules, which drive nutritional immunity via metal sequestration strategies. PMID:28217556
Characterization of inflammatory cells in oral paracoccidioidomycosis.
Kaminagakura, E; Bonan, P R F; Jorge, J; Almeida, O P; Scully, C
2007-07-01
Paracoccidioidomycosis (Pmycosis) is one of the most common deep mycoses in many regions of Latin America, particularly in Brazil. Microscopically, it shows granulomatous inflammatory reaction with giant cells, macrophages, lymphocytes, plasma cells, polymorphonuclear neutrophilic leukocytes, and eosinophils. The purpose of this study was to assess the distribution of inflammatory cells in oral Pmycosis. Fifteen cases of oral Pmycosis were studied by immunohistochemistry for the presence of macrophages, CD4(+) and CD8(+) lymphocytes, CD20(+), CD15(+), and S100(+) cells. Macrophages were the main cells in well-organized granulomas and non-granulomatous areas. The CD4 phenotype was predominant in well-organized granulomas and a balance between CD4(+) and CD8(+) cells was observed in non-granulomatous areas. Dendritic, S100(+) cells were found mainly in the epithelium, in subepithelial connective tissue, and at the periphery of organized granulomas. CD15(+) cells were concentrated mainly in areas of intraepithelial microabscess and ulceration. Macrophages and T cells are the predominant cells in oral Pmycosis. Well-organized granulomas contain fewer yeast particles, indicating a more effective host immune response. Better understanding of the histopathological changes in oral Pmycosis might help determine treatment, severity and systemic involvement of the disease.
Clonality in myeloproliferative disorders: Analysis by means of polymerase chain reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilliland, D.G.; Blanchard, K.L.; Levy, J.
1991-08-01
The myeloproliferative syndromes are acquired disorders of hematopoiesis that provide insights into the transition from somatic cell mutation to neoplasia. The clonal origin of specific blood cells can be assessed in patients with X chromosome-linked polymorphisms, taking advantage of random inactivation of the X chromosome. The authors have adapted the PCR for determination of clonality on as few as 100 cells, including individual colonies grown in culture. Amplifying a polymorphic portion of the X chromosome-linked phosphoglycerate kinase (PGK) gene after selective digestion of the active X chromosome with a methylation-sensitive restriction enzyme gave results fully concordant with standard Southern blottingmore » of DNA samples form normal (polyclonal) polymorphonuclear cells (PMN) as well as clonal PMN from patients with myelodysplastic syndrome and polycythemia vera (PCV). They have used this technique to demonstrate heterogeneity of lineage involvement in patients with PCV. The same clinical phenotype may arise from clonal proliferation of different hematopoietic progenitors.« less
STUDIES ON THE PATHOGENESIS OF FEVER
Kaiser, Hans Klaus; Wood, W. Barry
1962-01-01
Determination of the dose-response curve for rabbit leucocytic pyrogen reveals a hyperthermic "ceiling" at which there is a marked insensitivity to dosage. This finding has important implications in relation to the quantitative assay of leucocytic pyrogen. Polymorphonuclear leucocytes separated from normal rabbit blood possess the capacity to produce less than 5 per cent of the pyrogen generated by the same number of rabbit granulocytes collected from acute peritoneal exudates. Blood granulocytes, separated in the cold from the buffy coat, contain no detectable preformed pyrogen. The amount of preformed pyrogen within exudate granulocytes represents but a small fraction of the pyrogen which the cells are capable of generating when incubated in normal saline at 37°C. It is suggested that the active pyrogen is formed from an inactive precursor within the cells. Under the conditions tested, cell fragments of rabbit granulocytes fail to produce endogenous pyrogen. The fact that the production of pyrogen is blocked at 4°C is in keeping with the hypothesis that it involves metabolic reactions within the cell. PMID:14453159
Neutrophils Are Central to Antibody-Mediated Protection against Genital Chlamydia.
Naglak, Elizabeth K; Morrison, Sandra G; Morrison, Richard P
2017-10-01
Determining the effector populations involved in humoral protection against genital chlamydia infection is crucial to development of an effective chlamydial vaccine. Antibody has been implicated in protection studies in multiple animal models, and we previously showed that the passive transfer of immune serum alone does not confer immunity in the mouse. Using the Chlamydia muridarum model of genital infection, we demonstrate a protective role for both Chlamydia -specific immunoglobulin G (IgG) and polymorphonuclear neutrophils and show the importance of an antibody/effector cell interaction in mediating humoral immunity. While neutrophils were found to contribute significantly to antibody-mediated protection in vivo , natural killer (NK) cells were dispensable for protective immunity. Furthermore, gamma interferon (IFN-γ)-stimulated primary peritoneal neutrophils (PPNs) killed chlamydiae in vitro in an antibody-dependent manner. The results from this study support the view that an IFN-γ-activated effector cell population cooperates with antibody to protect against genital chlamydia and establish neutrophils as a key effector cell in this response. Copyright © 2017 Naglak et al.
Lecchi, Cristina; Rota, Nicola; Vitali, Andrea; Ceciliani, Fabrizio; Lacetera, Nicola
2016-12-01
Heat stress exerts a direct negative effect on farm animal health, triggering physiological responses. Environmental high temperature induces immunosuppression in dairy cows, increasing the risk of mastitis and milk somatic cell counts. The influence of heat stress on leukocytes activities has not been fully elucidated. The present in vitro study was aimed at assessing whether the exposure to temperature simulating conditions of severe whole body hyperthermia affects defensive functions of bovine blood polymorphonuclear cells. Blood was collected from seven clinically healthy, multiparous, late lactating Holstein cows. After isolation, PMN were incubated at either 39 or 41°C. Phagocytosis, respiratory burst and apoptosis were then investigated. The selected temperatures of 39°C or 41°C mimicked conditions of normothermia or severe heat stress, respectively. Phagocytosis assay was carried out by measuring the fluorescence of phagocyted fluorescein-labelled E. coli bioparticles. The modulation of oxidative burst activity was studied by the cytochrome C reduction method. Apoptosis was determined by measuring the activities of two enzymes that play an effector role in the process, namely Caspase-3 and Caspase-7. Statistical analyses were performed using SPSS 22.0. A Student t-test for paired samples and a Generalised Estimating Equation were used based on data distribution. The phagocytosis rate was reduced (-37%, P<0.01) when PMN were incubated for 2h at 41°C, when compared to phagocytosis rate measured at 39°C. The oxidative burst, as determined by extracellular production of reactive oxygen species (ROS), was also reduced by the exposure of cells to 41°C compared to 39°C. Such reduction ranged between -2 and -21% (P<0.05). Apoptosis rate was not affected by different temperatures. The results reported in this study suggest that phagocytosis and ROS production in PMN exposed to severe high temperature are impaired, partially explaining the higher occurrence of infections during periods of hot weather. Copyright © 2016 Elsevier B.V. All rights reserved.
Zekonis, Gediminas; Zekonis, Jonas
2004-01-01
The aim of the present investigation was to explore the oxidative activity of peripheral blood polymorphonuclear neutrophils of periodontitis patients and of healthy subjects stimulated with non-opsonized E. coli and lipopolysaccharide of E. coli. The leukocytes for this study were obtained from peripheral venous blood of 22 parodontitis patients and 16 healthy subjects. Oxidative activity of peripheral blood polymorphonuclear neutrophils was measured by method of the luminol-dependent chemiluminescence. The luminol-dependent chemiluminescence of stimulated neutrophils of periodontitis patients with non-opsonized E. coli increased less significantly (p<0.001) as compared to analogous chemiluminescence of control subjects (147126+/-8386 cpm and 189247+/-9134 cpm, respectively). However, the luminol-dependent chemiluminescence of stimulated neutrophils of periodontitis patients with lipopolysaccharide was five times higher than that of the subjects with intact periodontal tissues and comprised 13261+/-1251 cpm and 2627+/-638 cpm, respectively. Our study results show a complex dependence of oxidative function of peripheral polymorphonuclear neutrophils of periodontitis patients upon the nature of stimulants. Therefore further attempts should be made to evaluate its significance in the etiopathogenesis of periodontal tissue diseases of inflammatory origin.
IgA-mediated inhibition of human leucocyte function by interference with Fc gamma and C3b receptors.
Saito, K; Kato, C; Katsuragi, H; Komatsuzaki, A
1991-09-01
The inhibitory effects of IgA from human colostrum, and IgA1 and IgA2 from human serum on the chemiluminescence (CL) response and phagocytosis of polymorphonuclear leucocytes (PML) to Staphylococcus epidermidis and the CL response to formylmethionyl-leucyl-phenylalanine (FMLP) were studied. The dose-dependent inhibition of the luminol-mediated CL response of human PML to the bacteria was observed in the presence of more than 0.1 mg/ml IgA from both colostrum and serum. The preincubation of PML with a solution of IgA enhanced the suppressive effect of IgA on the cells. Removal of IgA from the reaction mixture after preincubation resulted in recovery, with time, of the response of PML to the bacteria. The bacteria treated with IgA did not give rise to any inhibition of the response. The CL response of PML to FMLP was not affected by the presence of IgA in the reaction mixture. The decrease of phagocytic activity of PML in the presence of IgA resulted in a decrease of NADPH oxidase activity of PML after stimulation with the bacteria as compared with the absence of IgA. The effect of IgA on the receptors of Fc and C3b (CR1) on the surface of PML was measured by monitoring erythrocyte-antibody (EA) or erythrocyte-antibody-complement (EAC) rosette formation and by direct and indirect immunofluorescence techniques using anti-CR1 antibody and Fc-specific antibodies. The presence of IgA in the reaction mixture led to a quantitative decrease in CR1 and the ability to bind IgG to the surface of PML.
IgA-mediated inhibition of human leucocyte function by interference with Fc gamma and C3b receptors.
Saito, K; Kato, C; Katsuragi, H; Komatsuzaki, A
1991-01-01
The inhibitory effects of IgA from human colostrum, and IgA1 and IgA2 from human serum on the chemiluminescence (CL) response and phagocytosis of polymorphonuclear leucocytes (PML) to Staphylococcus epidermidis and the CL response to formylmethionyl-leucyl-phenylalanine (FMLP) were studied. The dose-dependent inhibition of the luminol-mediated CL response of human PML to the bacteria was observed in the presence of more than 0.1 mg/ml IgA from both colostrum and serum. The preincubation of PML with a solution of IgA enhanced the suppressive effect of IgA on the cells. Removal of IgA from the reaction mixture after preincubation resulted in recovery, with time, of the response of PML to the bacteria. The bacteria treated with IgA did not give rise to any inhibition of the response. The CL response of PML to FMLP was not affected by the presence of IgA in the reaction mixture. The decrease of phagocytic activity of PML in the presence of IgA resulted in a decrease of NADPH oxidase activity of PML after stimulation with the bacteria as compared with the absence of IgA. The effect of IgA on the receptors of Fc and C3b (CR1) on the surface of PML was measured by monitoring erythrocyte-antibody (EA) or erythrocyte-antibody-complement (EAC) rosette formation and by direct and indirect immunofluorescence techniques using anti-CR1 antibody and Fc-specific antibodies. The presence of IgA in the reaction mixture led to a quantitative decrease in CR1 and the ability to bind IgG to the surface of PML. PMID:1834550
Immune Response in Thyroid Cancer: Widening the Boundaries
Ward, Laura Sterian
2014-01-01
The association between thyroid cancer and thyroid inflammation has been repeatedly reported and highly debated in the literature. In fact, both molecular and epidemiological data suggest that these diseases are closely related and this association reinforces that the immune system is important for thyroid cancer progression. Innate immunity is the first line of defensive response. Unlike innate immune responses, adaptive responses are highly specific to the particular antigen that induced them. Both branches of the immune system may interact in antitumor immune response. Major effector cells of the immune system that directly target thyroid cancer cells include dendritic cells, macrophages, polymorphonuclear leukocytes, mast cells, and lymphocytes. A mixture of immune cells may infiltrate thyroid cancer microenvironment and the balance of protumor and antitumor activity of these cells may be associated with prognosis. Herein, we describe some evidences that immune response may be important for thyroid cancer progression and may help us identify more aggressive tumors, sparing the vast majority of patients from costly unnecessary invasive procedures. The future trend in thyroid cancer is an individualized therapy. PMID:25328756
Steinmann, Ulrike; Borkowski, Julia; Wolburg, Hartwig; Schröppel, Birgit; Findeisen, Peter; Weiss, Christel; Ishikawa, Hiroshi; Schwerk, Christian; Schroten, Horst; Tenenbaum, Tobias
2013-02-28
Bacterial invasion through the blood-cerebrospinal fluid barrier (BCSFB) during bacterial meningitis causes secretion of proinflammatory cytokines/chemokines followed by the recruitment of leukocytes into the CNS. In this study, we analyzed the cellular and molecular mechanisms of polymorphonuclear neutrophil (PMN) and monocyte transepithelial transmigration (TM) across the BCSFB after bacterial infection. Using an inverted transwell filter system of human choroid plexus papilloma cells (HIBCPP), we studied leukocyte TM rates, the migration route by immunofluorescence, transmission electron microscopy and focused ion beam/scanning electron microscopy, the secretion of cytokines/chemokines by cytokine bead array and posttranslational modification of the signal regulatory protein (SIRP) α via western blot. PMNs showed a significantly increased TM across HIBCPP after infection with wild-type Neisseria meningitidis (MC58). In contrast, a significantly decreased monocyte transmigration rate after bacterial infection of HIBCPP could be observed. Interestingly, in co-culture experiments with PMNs and monocytes, TM of monocytes was significantly enhanced. Analysis of paracellular permeability and transepithelial electrical resistance confirmed an intact barrier function during leukocyte TM. With the help of the different imaging techniques we could provide evidence for para- as well as for transcellular migrating leukocytes. Further analysis of secreted cytokines/chemokines showed a distinct pattern after stimulation and transmigration of PMNs and monocytes. Moreover, the transmembrane glycoprotein SIRPα was deglycosylated in monocytes, but not in PMNs, after bacterial infection. Our findings demonstrate that PMNs and monoctyes differentially migrate in a human BCSFB model after bacterial infection. Cytokines and chemokines as well as transmembrane proteins such as SIRPα may be involved in this process.
Dolganiuc, A; Radu, D; Olinescu, A; Vrăbiescu, A
1998-01-01
The investigations were conducted on 3 groups of New Zealand rabbits: 1) controls; 2) injected with procain, i.m. 15 mg/kg body weight, daily, for 30 days; 3) injected with diethylaminoethanol (DEAE), 15 mg/kg body weight, daily, for 35 days. The study was made also on human leukocytes, isolated from the peripheral blood of 10 clinically healthy subjects (adults), procain and DEAE action being investigated in vitro. The free oxygen radicals (FOR) released by PMN leukocytes were evaluated by chemiluminescence, in vitro. Addition of procain or DEAE had no effect on the release of FOR by PMN leukocytes of control rabbits. In the experiment made on rabbits treated with procain or DEAE, the release of FOR by PMN leukocytes was much more reduced, as compared to controls. In the rabbits treated with procain, the intensity of the emitted light was 2.27 mV, in those treated with DEAE, 3.46 mV, while in the controls, the mean value was 6.74 mV. In the in vitro experiments performed on human PMN cells stimulated with opsonized zymosan (OZ), addition of procain or DEAE had an inhibiting effect on the FOR release. As compared to control, the means of the FOR values decreased from 59 to 41.2 mV in case of procain addition and from 67.7 to 50 mV in case of DEAE addition. The fact that the inflammation is associated with accumulation of free radicals, suggests the opportunity to test these substances, especially DEAE, as antioxidant agents.
Suppression of receptor-mediated Ca2+ mobilization and functional leukocyte responses by hyperforin.
Feisst, Christian; Werz, Oliver
2004-04-15
We have recently identified hyperforin, a lipophilic constituent of the herb Hypericum perforatum (St. John's wort), as a dual inhibitor of the proinflammatory enzymes cyclooxygenase-1 and 5-lipoxygenase. The aim of the present study was to further elucidate antiinflammatory properties and respective targets of hyperforin. We found that hyperforin inhibited the generation of reactive oxygen species (ROS) as well as the release of leukocyte elastase (degranulation) in human isolated polymorphonuclear leukocytes (PMNL), challenged by the G protein-coupled receptor (GPCR) ligand N-formyl-methionyl-leucyl-phenylalanine (fMLP) with an IC 50 approximately equal 0.3 microM. When PMNL were stimulated with phorbol-12-myristate-13-acetate (PMA) or ionomycin, hyperforin (up to 10 microM) failed to inhibit ROS production and elastase release, respectively. Moreover, hyperforin blocked receptor-mediated Ca(2+) mobilization ( IC 50 approximately equal 0.4 and 4 microM, respectively) in PMNL and monocytic cells, and caused a rapid decline of the intracellular Ca(2+) concentration in resting cells. In contrast, the Ca(2+) influx induced by ionomycin or thapsigargin was not suppressed. Comparative studies with the specific phospholipase C inhibitor U-73122 and hyperforin revealed similarities between both compounds. Thus, U-73122 and hyperforin blocked fMLP- and PAF-induced Ca(2+) mobilization, ROS formation, and elastase release, but failed to suppress these responses when cells were stimulated by PMA or ionomycin. Also, both compounds rapidly decreased basal Ca(2+) levels in resting cells and led to a rapid decline of the Ca(2+) elevations evoked by fMLP or PAF. Our data suggest that hyperforin targets component(s) within G protein signaling cascades that regulate Ca(2+) homeostasis, coupled to proinflammatory leukocyte functions.
Qiao, Wei-Hua; Liu, Peng; Hu, Dan; Al Shirbini, Mahmoud; Zhou, Xian-Ming; Dong, Nian-Guo
2018-02-01
Antigenicity of xenogeneic tissues is the major obstacle to increased use of these materials in clinical medicine. Residual xenoantigens in decellularized tissue elicit the immune response after implantation, causing graft failure. With this in mind, the potential use is proposed of three protein solubilization-based protocols for porcine aortic valve leaflets decellularization. It was demonstrated that hydrophile solubilization alone achieved incomplete decellularization; lipophile solubilization alone (LSA) completely removed all cells and two most critical xenoantigens - galactose-α(1,3)-galactose (α-Gal) and major histocompatibility complex I (MHC I) - but caused severe alterations of the structure and mechanical properties; sequential hydrophile and lipophile solubilization (SHLS) resulted in a complete removal of cells, α-Gal and MHC I, and good preservation of the structure and mechanical properties. In contrast, a previously reported method using Triton X-100, sodium deoxycholate and IGEPAL CA-630 resulted in a complete removal of all cells and MHC I, but with remaining α-Gal epitope. LSA- and SHLS-treated leaflets showed significantly reduced leucocyte activation (polymorphonuclear elastase) upon interaction with human blood in vitro. When implanted subdermally in rats for 6 weeks, LSA- or SHLS-treated leaflets were presented with more biocompatible implants and all four decellularized leaflets were highly resistant to calcification. These findings illustrate that the SHLS protocol could be considered as a promising decellularization method for the decellularization of xenogeneic tissues in tissue engineering and regenerative medicine. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Steubesand, Nadine; Kiehne, Karlheinz; Brunke, Gabriele; Pahl, Rene; Reiss, Karina; Herzig, Karl-Heinz; Schubert, Sabine; Schreiber, Stefan; Fölsch, Ulrich R; Rosenstiel, Philip; Arlt, Alexander
2009-01-01
Background Candida albicans resides on epithelial surfaces as part of the physiological microflora. However, under certain conditions it may cause life-threatening infections like Candida sepsis. Human β-defensins (hBDs) are critical components of host defense at mucosal surfaces and we have recently shown that hBD-2 and hBD-3 are upregulated in Candida esophagitis. We therefore studied the role of Candidate signalling pathways in order to understand the mechanisms involved in regulation of hBD-expression by C. albicans. We used the esophageal cell line OE21 and analysed the role of paracrine signals from polymorphonuclear leukocytes (PMN) in an in vitro model of esophageal candidiasis. Results Supernatants of C. albicans or indirect coculture with C. albicans induces upregulation of hBD-2 and hBD-3 expression. PMNs strongly amplifies C. albicans-mediated induction of hBDs. By EMSA we demonstrate that C. albicans activates NF-κB and AP-1 in OE21 cells. Inhibition of these pathways revealed that hBD-2 expression is synergistically regulated by both NF-κB and AP-1. In contrast hBD-3 expression is independent of NF-κB and relies solely on an EGFR/MAPK/AP-1-dependent pathway. Conclusion Our analysis of signal transduction events demonstrate a functional interaction of epithelial cells with PMNs in response to Candida infection involving divergent signalling events that differentially govern hBD-2 and hBD-3 expression. PMID:19523197
Agwu, D E; McPhail, L C; Sozzani, S; Bass, D A; McCall, C E
1991-01-01
Receptor-mediated agonists, such as FMLP, induce an early, phospholipase D (PLD)-mediated accumulation of phosphatidic acid (PA) which may play a role in the activation of NADPH oxidase in human PMN. We have determined the effect of changes in PA production on O2 consumption in intact PMN and the level of NADPH oxidase activity measured in a cell-free assay. Pretreatment of cells with various concentrations of propranolol enhanced (less than or equal to 200 microM) or inhibited (greater than 300 microM) PLD-induced production of PA (mass and radiolabel) in a manner that correlated with enhancement or inhibition of O2 consumption in PMN stimulated with 1 microM FMLP in the absence of cytochalasin B. The concentration-dependent effects of propranolol on FMLP-induced NADPH oxidase activation was confirmed by direct assay of the enzyme in subcellular fractions. In PA extracted from cells pretreated with 200 microM propranolol before stimulation with 1 microM FMLP, phospholipase A1 (PLA1)-digestion for 90 min, followed by quantitation of residual PA, showed that a minimum of 44% of PA in control (undigested) sample was diacyl-PA; alkylacyl-PA remained undigested by PLA1. Propranolol was also observed to have a concentration-dependent enhancement of mass of 1,2-DG formed in PMN stimulated with FMLP. DG levels reached a maximum at 300 microM propranolol and remained unchanged up to 500 microM propranolol. However, in contrast to PA levels, the level of DG produced did not correlate with NADPH oxidase activation. Exogenously added didecanoyl-PA activated NADPH oxidase in a concentration-dependent manner (1-300 microM) in a reconstitution assay using membrane and cytosolic fractions from unstimulated PMN. In addition, PA synergized with SDS for oxidase activation. Taken together, these results indicate that PA plays a second messenger role in the activation of NADPH oxidase in human PMN and that regulation of phospholipase D is a key step in the activation pathway. Images PMID:1864964
Kourtis, Iraklis C.; Hirosue, Sachiko; de Titta, Alexandre; Kontos, Stephan; Stegmann, Toon; Hubbell, Jeffrey A.; Swartz, Melody A.
2013-01-01
Nanoparticles have been extensively developed for therapeutic and diagnostic applications. While the focus of nanoparticle trafficking in vivo has traditionally been on drug delivery and organ-level biodistribution and clearance, recent work in cancer biology and infectious disease suggests that targeting different cells within a given organ can substantially affect the quality of the immunological response. Here, we examine the cell-level biodistribution kinetics after administering ultrasmall Pluronic-stabilized poly(propylene sulfide) nanoparticles in the mouse. These nanoparticles depend on lymphatic drainage to reach the lymph nodes and blood, and then enter the spleen rather than the liver, where they interact with monocytes, macrophages and myeloid dendritic cells. They were more readily taken up into lymphatics after intradermal (i.d.) compared to intramuscular administration, leading to ∼50% increased bioavailability in blood. When administered i.d., their distribution favored antigen-presenting cells, with especially strong targeting to myeloid cells. In tumor-bearing mice, the monocytic and the polymorphonuclear myeloid-derived suppressor cell compartments were efficiently and preferentially targeted, rendering this nanoparticulate formulation potentially useful for reversing the highly suppressive activity of these cells in the tumor stroma. PMID:23626707
Kourtis, Iraklis C; Hirosue, Sachiko; de Titta, Alexandre; Kontos, Stephan; Stegmann, Toon; Hubbell, Jeffrey A; Swartz, Melody A
2013-01-01
Nanoparticles have been extensively developed for therapeutic and diagnostic applications. While the focus of nanoparticle trafficking in vivo has traditionally been on drug delivery and organ-level biodistribution and clearance, recent work in cancer biology and infectious disease suggests that targeting different cells within a given organ can substantially affect the quality of the immunological response. Here, we examine the cell-level biodistribution kinetics after administering ultrasmall Pluronic-stabilized poly(propylene sulfide) nanoparticles in the mouse. These nanoparticles depend on lymphatic drainage to reach the lymph nodes and blood, and then enter the spleen rather than the liver, where they interact with monocytes, macrophages and myeloid dendritic cells. They were more readily taken up into lymphatics after intradermal (i.d.) compared to intramuscular administration, leading to ∼50% increased bioavailability in blood. When administered i.d., their distribution favored antigen-presenting cells, with especially strong targeting to myeloid cells. In tumor-bearing mice, the monocytic and the polymorphonuclear myeloid-derived suppressor cell compartments were efficiently and preferentially targeted, rendering this nanoparticulate formulation potentially useful for reversing the highly suppressive activity of these cells in the tumor stroma.
Immunoparalysis: Clinical and immunological associations in SIRS and severe sepsis patients.
Papadopoulos, Panagiotis; Pistiki, Aikaterini; Theodorakopoulou, Maria; Christodoulopoulou, Theodora; Damoraki, Georgia; Goukos, Dimitris; Briassouli, Efrossini; Dimopoulou, Ioanna; Armaganidis, Apostolos; Nanas, Serafim; Briassoulis, George; Tsiodras, Sotirios
2017-04-01
This study was designed to identify changes in the monocytic membrane marker HLA-DR and heat shock proteins (HSPs) in relation to T-regulatory cells (T-regs) and other immunological marker changes in patients with systemic inflammatory response syndrome (SIRS) or sepsis/septic shock. Healthy volunteers, intensive care unit (ICU) patients with SIRS due to head injury and ICU patients with severe sepsis/septic shock were enrolled in the current study. Determination of CD14+/HLA-DR+ cells, intracellular heat-shock proteins and other immunological parameters were performed by flow cytometry and RT-PCR techniques as appropriate. Univariate and multivariate analysis examined associations of CD14/HLA-DR, HSPs, T-regs and suppressor of cytokine signalling (SOCS) proteins with SIRS, sepsis and outcome. Fifty patients (37 with severe sepsis and 13 with SIRS) were enrolled, together with 20 healthy volunteers used as a control group. Compared to healthy individuals, patients with SIRS and severe sepsis showed progressive decline of their CD14/HLA-DR expression (0% to 7.7% to 50% within each study subpopulation, p<0.001). Mean fluorescent intensity (MFI) levels of HSP70 and HSP90 on monocytes and polymorphonuclear cells were significantly higher in SIRS patients compared to controls and fell significantly in severe sepsis/septic shock patients (p<0.05 for all comparisons). There was no statistically significant difference between subgroups for levels of T-regulatory cells or relative copies of Suppressor of Cytokine Signalling 3 (SOCS3) proteins. In univariate models percent of CD14/HLA-DR was associated with mortality (OR: 1.8 95%CI 1.02-3.2, p=0.05), while in multivariate models after adjusting for CD14/HLA-DR only younger age and lower Acute Physiology and Chronic Health Evaluation II (APACHE II) scores were associated with increased chances of survival (beta -0.05, OR 0.9, 95% CI 0.9-0.99, p=0.038 for age and beta -0.11, OR 0.89, 95% CI 0.8-0.99, p=0.037 for APACHE II score). Significant associations with SIRS and sepsis were found for CD14/HLA-DR expression and monocyte and polymorphonuclear cell levels of HSP70 and 90. The role of these biomarkers in assessing the prognosis of sepsis needs to be further explored and validated in prospective studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mittal, Rahul; Gonzalez-Gomez, Ignacio; Goth, Kerstin A.; Prasadarao, Nemani V.
2010-01-01
Escherichia coli K1 is a leading cause of neonatal meningitis in humans. In this study, we sought to determine the pathophysiologic relevance of inducible nitric oxide (iNOS) in experimental E. coli K1 meningitis. By using a newborn mouse model of meningitis, we demonstrate that E. coli infection triggered the expression of iNOS in the brains of mice. Additionally, iNOS−/− mice were resistant to E. coli K1 infection, displaying normal brain histology, no bacteremia, no disruption of the blood–brain barrier, and reduced inflammatory response. Treatment with an iNOS specific inhibitor, aminoguanidine (AG), of wild-type animals before infection prevented the development of bacteremia and the occurrence of meningitis. The infected animals treated with AG after the development of bacteremia also completely cleared the pathogen from circulation and prevented brain damage. Histopathological and micro-CT analysis of brains revealed significant damage in E. coli K1–infected mice, which was completely abrogated by AG administration. Peritoneal macrophages and polymorphonuclear leukocytes isolated from iNOS−/− mice or pretreated with AG demonstrated enhanced uptake and killing of the bacteria compared with macrophages and polymorphonuclear leukocytes from wild-type mice in which E. coli K1 survive and multiply. Thus, NO produced by iNOS may be beneficial for E. coli to survive inside the macrophages, and prevention of iNOS could be a therapeutic strategy to treat neonatal E. coli meningitis. PMID:20093483
Mittal, Rahul; Gonzalez-Gomez, Ignacio; Goth, Kerstin A; Prasadarao, Nemani V
2010-03-01
Escherichia coli K1 is a leading cause of neonatal meningitis in humans. In this study, we sought to determine the pathophysiologic relevance of inducible nitric oxide (iNOS) in experimental E. coli K1 meningitis. By using a newborn mouse model of meningitis, we demonstrate that E. coli infection triggered the expression of iNOS in the brains of mice. Additionally, iNOS-/- mice were resistant to E. coli K1 infection, displaying normal brain histology, no bacteremia, no disruption of the blood-brain barrier, and reduced inflammatory response. Treatment with an iNOS specific inhibitor, aminoguanidine (AG), of wild-type animals before infection prevented the development of bacteremia and the occurrence of meningitis. The infected animals treated with AG after the development of bacteremia also completely cleared the pathogen from circulation and prevented brain damage. Histopathological and micro-CT analysis of brains revealed significant damage in E. coli K1-infected mice, which was completely abrogated by AG administration. Peritoneal macrophages and polymorphonuclear leukocytes isolated from iNOS-/- mice or pretreated with AG demonstrated enhanced uptake and killing of the bacteria compared with macrophages and polymorphonuclear leukocytes from wild-type mice in which E. coli K1 survive and multiply. Thus, NO produced by iNOS may be beneficial for E. coli to survive inside the macrophages, and prevention of iNOS could be a therapeutic strategy to treat neonatal E. coli meningitis.
Balasubramanian, Divya; Ohneck, Elizabeth A.; Chapman, Jessica; Weiss, Andy; Kim, Min Kyung; Reyes-Robles, Tamara; Zhong, Judy; Shaw, Lindsey N.; Lun, Desmond S.; Ueberheide, Beatrix; Shopsin, Bo
2016-01-01
ABSTRACT Staphylococcus aureus is a formidable human pathogen that uses secreted cytolytic factors to injure immune cells and promote infection of its host. Of these proteins, the bicomponent family of pore-forming leukocidins play critical roles in S. aureus pathogenesis. The regulatory mechanisms governing the expression of these toxins are incompletely defined. In this work, we performed a screen to identify transcriptional regulators involved in leukocidin expression in S. aureus strain USA300. We discovered that a metabolic sensor-regulator, RpiRc, is a potent and selective repressor of two leukocidins, LukED and LukSF-PV. Whole-genome transcriptomics, S. aureus exoprotein proteomics, and metabolomic analyses revealed that RpiRc influences the expression and production of disparate virulence factors. Additionally, RpiRc altered metabolic fluxes in the trichloroacetic acid cycle, glycolysis, and amino acid metabolism. Using mutational analyses, we confirmed and extended the observation that RpiRc signals through the accessory gene regulatory (Agr) quorum-sensing system in USA300. Specifically, RpiRc represses the rnaIII promoter, resulting in increased repressor of toxins (Rot) levels, which in turn negatively affect leukocidin expression. Inactivation of rpiRc phenocopied rot deletion and increased S. aureus killing of primary human polymorphonuclear leukocytes and the pathogenesis of bloodstream infection in vivo. Collectively, our results suggest that S. aureus senses metabolic shifts by RpiRc to differentially regulate the expression of leukocidins and to promote invasive disease. PMID:27329753
Fitschen-Oestern, Stefanie; Weuster, Matthias; Lippross, Sebastian; Behrendt, Peter; Fuchs, Sabine; Pufe, Thomas; Tohidnezhad, Mersedeh; Bayer, Andreas; Seekamp, Andreas; Varoga, Deike; Klüter, Tim
2017-03-07
Human-beta defensins (HBD) belong to the family of acute phase peptides and hold a broad antimicrobial spectrum that includes gram-positive and gram-negative bacteria. HBD are up-regulated after severe injuries but the source of posttraumatic HBD expression has not been focused on before. In the current study we analysed the role of liver tissue in expression of HBD after multiple trauma in human and mice. HBD-2 expression has been detected in plasma samples of 32 multiple trauma patients (ISS > 16) over 14 days after trauma by ELISA. To investigate major sources of HBD-2, its expression and regulation in plasma samples, polymorphonuclear neutrophils (PMN) and human tissue samples of liver and skin were analysed by ELISA. As liver samples of trauma patients are hard to obtain we tried to review findings in an established trauma model. Plasma samples and liver samples of 56 male C57BL/6 N-mice with a thorax trauma and a femur fracture were analysed by ELISA, real-time PCR and immunohistochemistry for murine beta defensin 4 (MBD-4) and compared with the expression of control group without trauma. The induction of HBD-2 expression in cultured hepatocytes (Hep G2) was analysed after incubation with IL-6, supernatant of Staphylococcus aureus (SA) and Lipopolysaccharides (LPS). One possible signalling pathway was tested by blocking toll-like receptor 2 (TLR2) in hepatocytes. Compared to healthy control group, plasma of multiple traumatized patients and mice showed significantly higher defensin levels after trauma. Compared to skin cells, which are known for high beta defensin expression, liver tissue showed less HBD-2 expression, but higher HBD-2 expression compared to PMN. Immunhistochemical staining demonstrated upregulated MBD-4 in hepatocytes of traumatised mice. In HepG2 cells HBD-2 expression could be increased by stimulation with IL-6 and SA. Neutralization of HepG2 cells with αTLR2 showed reduced HBD-2 expression after stimulation with SA. Plasma samples of multiple traumatized patients showed high expression of HBD-2, which may protect the severely injured patient from overwhelming bacterial infection. Our data support the hypothesis that liver is one possible source for HBD-2 in plasma while posttraumatic inflammatory response.
Genes Critical for Developing Periodontitis: Lessons from Mouse Models
de Vries, Teun J.; Andreotta, Stefano; Loos, Bruno G.; Nicu, Elena A.
2017-01-01
Since the etiology of periodontitis in humans is not fully understood, genetic mouse models may pinpoint indispensable genes for optimal immunological protection of the periodontium against tissue destruction. This review describes the current knowledge of genes that are involved for a proper maintenance of a healthy periodontium in mice. Null mutations of genes required for leukocyte cell–cell recognition and extravasation (e.g., Icam-1, P-selectin, Beta2-integrin/Cd18), for pathogen recognition and killing (e.g., Tlr2, Tlr4, Lamp-2), immune modulatory molecules (e.g., Cxcr2, Ccr4, IL-10, Opg, IL1RA, Tnf-α receptor, IL-17 receptor, Socs3, Foxo1), and proteolytic enzymes (e.g., Mmp8, Plasmin) cause periodontitis, most likely due to an inefficient clearance of bacteria and bacterial products. Several mechanisms resulting in periodontitis can be recognized: (1) inefficient bacterial control by the polymorphonuclear neutrophils (defective migration, killing), (2) inadequate antigen presentation by dendritic cells, or (3) exaggerated production of pro-inflammatory cytokines. In all these cases, the local immune reaction is skewed toward a Th1/Th17 (and insufficient activation of the Th2/Treg) with subsequent osteoclast activation. Finally, genotypes are described that protect the mice from periodontitis: the SCID mouse, and mice lacking Tlr2/Tlr4, the Ccr1/Ccr5, the Tnf-α receptor p55, and Cathepsin K by attenuating the inflammatory reaction and the osteoclastogenic response. PMID:29163477
Tripp, Ralph A.; Moore, Deborah; Winter, Jorn; Anderson, Larry J.
2000-01-01
A distinct clinical presentation of respiratory syncytial virus (RSV) infection of humans is bronchiolitis, which has clinical features similar to those of asthma. Substance P (SP), a tachykinin neuropeptide, has been associated with neurogenic inflammation and asthma; therefore, we chose to examine SP-induced inflammation with RSV infection. In this study, we examined the production of pulmonary SP associated with RSV infection of BALB/c mice and the effect of anti-SP F(ab)2 antibodies on the pulmonary inflammatory response. The peak production of pulmonary SP occurred between days 3 and 5 following primary RSV infection and day 1 after secondary infection. Treatment of RSV-infected mice with anti-SP F(ab)2 antibodies suggested that SP may alter the natural killer cell response to primary and secondary infection. In mice challenged after formalin-inactivated RSV vaccination, SP appears to markedly enhance pulmonary eosinophilia as well as increase polymorphonuclear cell trafficking to the lung. Based on studies with a strain of RSV that lacks the G and SH genes, the SP response to RSV infection appears to be associated with G and/or SH protein expression. These data suggest that SP may be an important contributor to the inflammatory response to RSV infection and that anti-SP F(ab)2 antibodies might be used to ameliorate RSV-associated disease. PMID:10644330
Tseng, Ching Wen; Kyme, Pierre A.; Arruda, Andrea; Ramanujan, V. Krishnan; Tawackoli, Wafa; Liu, George Y.
2012-01-01
Elderly humans show increased susceptibility to invasive staphylococcal disease after skin and soft tissue infection. However, it is not understood how host immunity changes with aging, and how that predisposes to invasive disease. In a model of severe skin infection, we showed that aged mice (16- to 20-month-old) exhibit dramatic bacterial dissemination compared with young adult mice (2-month-old). Bacterial dissemination was associated with significant reductions of CXCL1 (KC), polymorphonuclear cells (PMNs), and extracellular DNA traps (NETs) at the infection site. PMNs and primary skin fibroblasts isolated from aged mice showed decreased secretion of CXCL2 (MIP-2) and KC in response to MRSA, and in vitro analyses of mitochondrial functions revealed that the mitochondrial electron transport chain complex I plays a significant role in induction of chemokines in the cells isolated from young but not old mice. Additionally, PMNs isolated from aged mice have reduced ability to form NETs and to kill MRSA. Expression of nuclease by S. aureus led to increased bacterial systemic dissemination in young but not old mice, suggesting that defective NETs formation in elderly mice permitted nuclease and non-nuclease expressing S. aureus to disseminate equally well. Overall, these findings suggest that gross impairment of both skin barrier function and innate immunity contributes to the propensity for MRSA to disseminate in aged mice. Furthermore, the study indicates that contribution of bacterial factors to pathogenicity may vary with host age. PMID:22844481
Werb, Z; Reynolds, J J
1975-01-01
1. The immunological cross-reactivity between rabbit collagenases from a variety of normal and pathological sources was examined. The specific antibody raised against collagenase secreted from normal rabbit synovial fibroblasts gave reactions of complete identity with collagenases secreted from fibroblasts derived from rabbit skin, and from synovium from experimentally arthritic rabbits. 2. The rabbit fibroblast collagenase was immunologically identical with collagenases obtained from the organ culture medium of normal rabbit skin, synovium, ear fibrocartilage and subchondral bone. 3. Collagenases from the culture media of normal rabbit synovium and from hyperplastic synovium of rabbits made experimentally arthritic were identical. 4. The collagenase secreted from rabbit fibroblasts gave a reaction completely identical with that of a collagenase extracted directly from a rabbit carcinoma. 5. IgG (immunoglobulin G) from a specific antiserum to rabbit fibroblast collagenase was a potent inhibitor of the collagenases obtained from the culture media of the various rabbit cells and tissues. 6. Collagenases from human synovium and from mouse macrophages and bone were neither precipitated nor inhibited by antibodies to rabbit collagenase. 7. No immunoreactive material was found in lysates of rabbit polymorphonuclear leucocyte granules with the specific antisera to rabbit fibroblast collagenase. No evidence for inactive forms of rabbit collagenase in lysates of the rabbit synovial fibroblasts could be found, either by double immunodiffusion against the specific collagenase, or by displacement of active enzyme from inhibition by the IgG. Images PLATE 1 PMID:56176
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guilloteau, L.; Pepin, M.; Pardon, P.
1990-10-01
The recruitment of polymorphonuclear leucocytes (PMNs) during the development of experimental pyogranulomas induced by Corynebacterium pseudotuberculosis was followed in nine male lambs by scintigraphic examination. Autologous blood PMNs were labelled with 99m-technetium or 111-indium and were re-injected intravenously into infected lambs. The functional properties of the labelled cells were monitored (1) in vitro by measuring their phagocytic and bactericidal activity against C. pseudotuberculosis and their chemotaxis under agarose, and (2) in vivo by following scintigraphically their capacity to accumulate in an inflammatory focus induced by intradermal injection of latex beads coated with Salmonella abortus equi lipopolysaccharide. Following inoculation of corynebacteriamore » into the right ear of lambs, radioactive foci were observed to be localized in the right ear and in the draining lymph nodes during the 4 days following inoculation. Histopathological examination performed 32 h after inoculation confirmed the intense accumulation of PMNs at these sites. With the exception of one animal, which presented visible foci in the neck 14 days postinoculation, no radioactive foci were observed during the later phases of experimental infection, despite the presence of multiple pyogranulomas which were confirmed by bacteriological examination after necropsy of the lambs. Histopathological examination of these lesions revealed layers of fibroblasts, lymphocytes, and macrophages surrounding a necrotic centre. The results of these studies suggest that the contribution of PMNs during the chronic phase of inflammation is considerably reduced in comparison with the acute inflammatory phase of the infectious process.« less
Wambi, Chris O; Sanzari, Jenine K; Sayers, Carly M; Nuth, Manunya; Zhou, Zhaozong; Davis, James; Finnberg, Niklas; Lewis-Wambi, Joan S; Ware, Jeffrey H; El-Deiry, Wafik S; Kennedy, Ann R
2009-08-01
Abstract Dietary antioxidants have radioprotective effects after gamma-radiation exposure that limit hematopoietic cell depletion and improve animal survival. The purpose of this study was to determine whether a dietary supplement consisting of l-selenomethionine, vitamin C, vitamin E succinate, alpha-lipoic acid and N-acetyl cysteine could improve survival of mice after proton total-body irradiation (TBI). Antioxidants significantly increased 30-day survival of mice only when given after irradiation at a dose less than the calculated LD(50/30); for these data, the dose-modifying factor (DMF) was 1.6. Pretreatment of animals with antioxidants resulted in significantly higher serum total white blood cell, polymorphonuclear cell and lymphocyte cell counts at 4 h after 1 Gy but not 7.2 Gy proton TBI. Antioxidants significantly modulated plasma levels of the hematopoietic cytokines Flt-3L and TGFbeta1 and increased bone marrow cell counts and spleen mass after TBI. Maintenance of the antioxidant diet resulted in improved recovery of peripheral leukocytes and platelets after sublethal and potentially lethal TBI. Taken together, oral supplementation with antioxidants appears to be an effective approach for radioprotection of hematopoietic cells and improvement of animal survival after proton TBI.
Benson, Kathleen F; Newman, Robert A; Jensen, Gitte S
2015-01-01
The goal for this study was to evaluate the effects of an Aloe vera-based Nerium oleander extract (NAE-8(®)), compared to an extract of A. vera gel alone (ALOE), and to an aqueous extract of N. oleander (AQ-NOE) in bioassays pertaining to dermatologic potential with respect to antioxidant protection, anti-inflammatory effects, and cytokine profiles in vitro. Cellular antioxidant protection was evaluated in three separate bioassays: The cellular antioxidant protection of erythrocytes (CAP-e) assay, protection of cellular viability and prevention of apoptosis, and protection of intracellular reduced glutathione levels, where the last two assays were performed using human primary dermal fibroblasts. Reduction of intracellular formation of reactive oxygen species (ROS) was tested using polymorphonuclear cells in the absence and presence of oxidative stress. Changes to cytokine and chemokine profiles when whole blood cells and human primary dermal fibroblasts were exposed to test products were determined using a 40-plex Luminex array as a method for exploring the potential cross-talk between circulating and skin-resident cells. The NAE-8(®) provided significantly better antioxidant protection in the CAP-e bioassay than AQ-NOE. NAE-8(®) and AQ-NOE both protected cellular viability and intracellular reduced glutathione, and reduced the ROS formation significantly when compared to control cells, both under inflamed and neutral culture conditions. ALOE showed minimal effect in these bioassays. In contrast to the NAE-8(®), the AQ-NOE showed induction of inflammation in the whole blood cultures, as evidenced by the high induction of CD69 expression and secretion of a number of inflammatory cytokines. The treatment of dermal fibroblasts with NAE-8(®) resulted in selective secretion of cytokines involved in collagen and hyaluronan production as well as re-epithelialization during wound healing. NAE-8(®), a novel component of a commercial cosmetic product, showed beneficial antioxidant protection in several cellular models, without the induction of leukocyte activation and secretion of inflammatory cytokines. The biological efficacy of NAE-8(®) was unique from both ALOE and AQ-NOE.
Formaldehyde exposure impairs the function and differentiation of NK cells.
Kim, Eun-Mi; Lee, Hwa-Youn; Lee, Eun-Hee; Lee, Ki-Mo; Park, Min; Ji, Kon-Young; Jang, Ji-Hun; Jeong, Yun-Hwa; Lee, Kwang-Ho; Yoon, Il-Joo; Kim, Su-Man; Jeong, Moon-Jin; Kim, Kwang Dong; Kang, Hyung-Sik
2013-11-25
We investigated the cytotoxic effects of formaldehyde (FA) on lymphocytes. FA-exposed mice showed a profound reduction not only in the number of natural killer (NK) cells but also in the expression of NK cell-specific receptors, but these mice did not exhibit decreases in the numbers of T or B lymphocytes. FA exposure also induced decreases in NK cytolytic activity and in the expression of NK cell-associated genes, such as IFN-γ, perforin and CD122. To determine the effect of FA on tumorigenicity, C57BL/6 mice were subcutaneously injected with B16F10 melanoma cells after FA exposure. The mass of the B16F10 tumor and the concentration of extravascular polymorphonuclear leukocytes were greater than those in unexposed tumor-bearing control mice. The number and cytolytic activity of NK cells were also reduced in B16F10 tumor-bearing mice exposed to FA. To determine how FA reduces the NK cell number, NK precursor (pNK) cells were treated with FA, and the differentiation status of the NK cells was analyzed. NK cell differentiation was impaired by FA treatment in a concentration-dependent manner. These findings indicate that FA exposure may promote tumor progression by impairing NK cell function and differentiation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Boll, Erik J.; Struve, Carsten; Sander, Anja; Demma, Zachary; Krogfelt, Karen A.; McCormick, Beth A.
2014-01-01
Summary Enteroaggregative Escherichia coli (EAEC) induces release of pro-inflammatory markers and disruption of intestinal epithelial barriers in vitro suggesting an inflammatory aspect to EAEC infection. However, the mechanisms underlying EAEC-induced mucosal inflammatory responses and the extent to which these events contribute to pathogenesis is not well characterized. Employing an established in vitro model we demonstrated that EAEC prototype strain 042 induces migration of polymorphonuclear neutrophils (PMNs) across polarized T84 cell monolayers. This event was mediated through a conserved host cell signaling cascade involving the 12/15-LOX pathway and led to apical secretion of an arachidonic acid-derived lipid PMN chemoattractant, guiding PMNs across the epithelia to the site of infection. Moreover, supporting the hypothesis that inflammatory responses may contribute to EAEC pathogenesis, we found that PMN transepithelial migration promoted enhanced attachment of EAEC 042 to T84 cells. These findings suggest that EAEC-induced PMN infiltration may favor colonization and thus pathogenesis of EAEC. PMID:21951973
Phagocytic cell function in active brucellosis.
Ocon, P; Reguera, J M; Morata, P; Juarez, C; Alonso, A; Colmenero, J D
1994-01-01
In this study, we analyzed phagocytic cell function in 51 patients with active brucellosis and its relationship with different clinical, serological, and evolutionary variables. A control group was made up of 30 blood donors of similar geographic extraction, age, and sex, with no previous history of brucellosis or known exposure ot the infection or specific antibodies. The investigations were carried out at the time of diagnosis, at the conclusion of treatment, and after 6 months of follow-up. Polymorphonuclear leukocyte adherence and nitroblue tetrazolium reduction in response to Brucella antigen were significantly increased in the patients at the time of diagnosis with respect to the control group. In contrast, chemotaxis in response to Brucella antigen and phagocytosis were significantly reduced in the patients with respect to the control group. The alterations in phagocytic cell function were greater in patients with bacteremia, with focal forms of the disease, or with a longer diagnostic delay. Most of these initial alterations tended to normalize with treatment, indicating their transient character. PMID:8112863
Periodontal disease as a potential factor for systemic inflammatory response in the dog.
Kouki, M I; Papadimitriou, S A; Kazakos, G M; Savas, I; Bitchava, D
2013-01-01
Periodontal disease is an inflammatory disease that has numerous consequences both locally and systemically The aim of this study was to assess whether periodontal disease causes systemic inflammatory response in otherwise healthy, adult dogs. We estimated the total mouth periodontal score (TMPS), measured the concentration of C-reactive protein (CRP), hematocrit, and albumin, and determined the white blood cell (WBC) and polymorphonuclear cell (PMN) counts in client-owned dogs. There was a statistically significant relationship between the gingival bleeding index (TMPS-G) and CRP concentration, and WBC and PMN counts, possibly during the active periods of periodontal tissue destruction. No correlation was found between the periodontal destruction index (TMPS-P) and the measured blood parameters. We conclude that chronic periodontal disease does not cause anemia or a reduction in serum albumin. However, active periods of periodontal inflammation may be associated with laboratory values suggestive of a systemic inflammatory response.
Doan, Charles A.; Zerfas, Leon G.
1927-01-01
In a study of twenty clinical cases with a wide range of diagnoses, repeated total counts of the white cells at 15 minute intervals reveal a large fluctuation at various levels comparable to that found for the normal (1, 2). The granulocytes seem to follow a more or less hourly rhythm, the most marked shift to the left in the Ameth pattern and the moment of greatest percentage of motility coinciding with the peaks. The independence found existing between the peripheral blood concentrations of individual strains of white cells and the red cells, as determined by total and differential counts, their differential response to pathological and pharmacological stimuli, and their normal relative relations, all indicate some separate physiological mechanism of control for each type of cell, either working through, or independently of, their sources of origin. The many factors to which the circulation of the blood, as such, is subject, the complexity of the influences on origin, maturation, delivery, longevity, and destruction of each cell group, the limitations inherent in the present involved, indirect technics of counting, combine to make any single observation subject to grave misinterpretation. The value to the clinician must come in repeated observations, at times when the diagnosis or a therapeutic procedure is in doubt, at frequent intervals, at other times over longer or shorter periods, but always with the relation between consecutive counts, rather than the absolute values, the important point for consideration. Both the red and the white cells probably change their relative concentrations in the peripheral blood from time to time over a considerable range that is quite within normal physiological limits, so that, in theoretical considerations and in practical functional estimations, a zonal concept with adequate individual extremes should always be kept in mind for both physiological and pathological states. A cytological analysis of thirty-two bone marrows from human biopsy and autopsy material shows the striking reciprocity found to exist between the myelocytes and the mature polymorphonuclear leucocytes. This, together with the observed focal uniformity of maturation found in bone marrow, and the periodicity of the fluctuations of the neutrophils in the peripheral blood, leads to the formulation of the hypothesis of a constant functional withdrawal of granulocytes from the peripheral blood with a periodic delivery of new cells from the marrow, which in leucopenia and in leucocytosis represents a depression or a stimulation, respectively, of the normal mechanism. The nature and degree of the response are an approximate index of the cellular factor in the complex of the "resistance" of the particular individual. PMID:19869352
Gronert, K; Martinsson-Niskanen, T; Ravasi, S; Chiang, N; Serhan, C N
2001-01-01
Aspirin-triggered lipoxin A(4) (ATL, 15-epi-LXA(4)) and leukotriene D(4) (LTD(4)) possess opposing vascular actions mediated via receptors distinct from the LXA(4) receptor (ALX) that is involved in leukocyte trafficking. Here, we identified these receptors by nucleotide sequencing and demonstrate that LTD(4) receptor (CysLT(1)) is induced in human vascular endothelia by interleukin-1beta. Recombinant CysLT(1) receptor gave stereospecific binding with both [(3)H]-LTD(4) and a novel labeled mimetic of ATL ([(3)H]-ATLa) that was displaced with LTD(4) and ATLa ( approximately IC(50) 0.2 to 0.9 nmol/L), but not with a bioinactive ATL isomer. The clinically used CysLT(1) receptor antagonist, Singulair, showed a lower rank order for competition with [(3)H]-ATLa (IC(50) approximately 8.3 nmol/L). In contrast, LTD(4) was an ineffective competitive ligand for recombinant ALX receptor with [(3)H]-ATLa, and ATLa did not compete for [(3)H]-LTB(4) binding with recombinant LTB(4) receptor. Endogenous murine CysLT(1) receptors also gave specific [(3)H]-ATLa binding that was displaced with essentially equal affinity by LTD(4) or ATLa. Systemic ATLa proved to be a potent inhibitor (>50%) of CysLT(1)-mediated vascular leakage in murine skin (200 microg/kg) in addition to its ability to block polymorphonuclear leukocyte recruitment to dorsal air pouch (4 microg/kg). These results indicate that ATL and LTD(4) bind and compete with equal affinity at CysLT(1), providing a molecular basis for aspirin-triggered LXs serving as a local damper of both vascular CysLT(1) signals as well as ALX receptor-regulated polymorphonuclear leukocyte traffic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dulin, A.M.; Paape, M.J.; Weinland, B.T.
1984-04-01
A procedure for the measurement of phagocytosis by bovine polymorphonuclear leukocytes (PMN) of /sup 32/P-labeled Staphylococcus aureus was modified so that a larger number of samples could be compared in a single run, and smaller volumes of sample, PMN, and /sup 32/P-labeled S aureus could be used. Results were highly reproducible, with a coefficient of variation between duplicate determinations of less than or equal to 2%. Lysostaphin was prepared from the supernatant of S staphylolyticus and was compared with a commercially available preparation. Effects of lysostaphin on PMN and influence of incubation media on release of /sup 32/P from /supmore » 32/P-labeled S aureus by lysostaphin were examined.« less
Immunopathogenesis in Myasthenia Gravis and Neuromyelitis Optica
Wang, Zhen; Yan, Yaping
2017-01-01
Myasthenia gravis (MG) and neuromyelitis optica (NMO) are autoimmune channelopathies of the peripheral neuromuscular junction (NMJ) and central nervous system (CNS) that are mainly mediated by humoral immunity against the acetylcholine receptor (AChR) and aquaporin-4 (AQP4), respectively. The diseases share some common features, including genetic predispositions, environmental factors, the breakdown of tolerance, the collaboration of T cells and B cells, imbalances in T helper 1 (Th1)/Th2/Th17/regulatory T cells, aberrant cytokine and antibody secretion, and complement system activation. However, some aspects of the immune mechanisms are unique. Both targets (AChR and AQP4) are expressed in the periphery and CNS, but MG mainly affects the NMJ in the periphery outside of CNS, whereas NMO preferentially involves the CNS. Inflammatory cells, including B cells and macrophages, often infiltrate the thymus but not the target—muscle in MG, whereas the infiltration of inflammatory cells, mainly polymorphonuclear leukocytes and macrophages, in NMO, is always observed in the target organ—the spinal cord. A review of the common and discrepant characteristics of these two autoimmune channelopathies may expand our understanding of the pathogenic mechanism of both disorders and assist in the development of proper treatments in the future. PMID:29312313
2013-01-01
Background Bacterial invasion through the blood-cerebrospinal fluid barrier (BCSFB) during bacterial meningitis causes secretion of proinflammatory cytokines/chemokines followed by the recruitment of leukocytes into the CNS. In this study, we analyzed the cellular and molecular mechanisms of polymorphonuclear neutrophil (PMN) and monocyte transepithelial transmigration (TM) across the BCSFB after bacterial infection. Methods Using an inverted transwell filter system of human choroid plexus papilloma cells (HIBCPP), we studied leukocyte TM rates, the migration route by immunofluorescence, transmission electron microscopy and focused ion beam/scanning electron microscopy, the secretion of cytokines/chemokines by cytokine bead array and posttranslational modification of the signal regulatory protein (SIRP) α via western blot. Results PMNs showed a significantly increased TM across HIBCPP after infection with wild-type Neisseria meningitidis (MC58). In contrast, a significantly decreased monocyte transmigration rate after bacterial infection of HIBCPP could be observed. Interestingly, in co-culture experiments with PMNs and monocytes, TM of monocytes was significantly enhanced. Analysis of paracellular permeability and transepithelial electrical resistance confirmed an intact barrier function during leukocyte TM. With the help of the different imaging techniques we could provide evidence for para- as well as for transcellular migrating leukocytes. Further analysis of secreted cytokines/chemokines showed a distinct pattern after stimulation and transmigration of PMNs and monocytes. Moreover, the transmembrane glycoprotein SIRPα was deglycosylated in monocytes, but not in PMNs, after bacterial infection. Conclusions Our findings demonstrate that PMNs and monoctyes differentially migrate in a human BCSFB model after bacterial infection. Cytokines and chemokines as well as transmembrane proteins such as SIRPα may be involved in this process. PMID:23448224
Findlow, Jamie; Taylor, Stephen; Aase, Audun; Horton, Rachel; Heyderman, Robert; Southern, Jo; Andrews, Nick; Barchha, Rita; Harrison, Ewan; Lowe, Ann; Boxer, Emma; Heaton, Charlotte; Balmer, Paul; Kaczmarski, Ed; Oster, Philipp; Gorringe, Andrew; Borrow, Ray; Miller, Elizabeth
2006-01-01
The prediction of efficacy of Neisseria meningitidis serogroup B (MenB) vaccines is currently hindered due to the lack of an appropriate correlate of protection. For outer membrane vesicle (OMV) vaccines, immunogenicity has primarily been determined by the serum bactericidal antibody (SBA) assay and OMV enzyme-linked immunosorbent assay (ELISA). However, the opsonophagocytic assay (OPA), surface labeling assay, whole blood assay (WBA), and salivary antibody ELISA have been developed although correlation with protection is presently undetermined. Therefore, the aim of the study was to investigate further the usefulness of, and relationships between, MenB immunologic assays. A phase II trial of the OMV vaccine, MenBvac, with proven efficacy was initiated to compare immunologic assays incorporating the vaccine and six heterologous strains. Correlations were achieved between the SBA assay, OMV ELISA, and OPA using human polymorphonuclear leukocytes and human complement but not between an OPA using HL60 phagocytic cells and baby rabbit complement. Correlations between the surface labeling assay, the SBA assay, and the OMV ELISA were promising, although target strain dependent. Correlations between the salivary antibody ELISA and other assays were poor. Correlations to the WBA were prevented since many samples had results greater than the range of the assay. The study confirmed the immunogenicity and benefit of a third dose of MenBvac against the homologous vaccine strain using a variety of immunologic assays. These results emphasize the need for standardized methodologies that would allow a more robust comparison of assays between laboratories and promote their further evaluation as correlates of protection against MenB disease. PMID:16861642
Teixeira, Paulo Eduardo Ferlini; Corrêa, Christiane Leal; Oliveira, Fernanda Bittencourt de; Alencar, Alba Cristina Miranda de Barros; Neves, Leandro Batista das; Garcia, Daniel Daipert; Almeida, Fernanda Barbosa de; Pereira, Luis Cláudio Muniz; Machado-Silva, José Roberto; Rodrigues-Silva, Rosângela
2018-01-01
Although sheep farming has grown in the state of Acre over the past four decades, little is known about occurrences of helminthiases in the herds of this region. The objective of the study was to assess the occurrences of non-intestinal helminthiasis among sheep slaughtered in Rio Branco. A total of 110 sheep livers were inspected from two slaughter batches (july 2014 and march 2015) in a slaughterhouse in Rio Branco. Livers with macroscopic lesions were photographed and were then subjected to histopathological analysis under an optical microscope. The macroscopic lesions showed small nodes with inflammatory characteristics and areas of fibrosis, which appeared to be calcified, thus suggesting a granulomatous reaction. Of the 110 evaluated livers, we noticed 110 nodules in total; these nodules have an average size of 0.5 cm. The histopathological analysis showed alterations to the architecture of the hepatic lobe, with multiple foci of necrosis and polymorphonuclear cells. Two samples revealed the presence of helminths from Nematode class and Capillaria sp. eggs identified by the typical morphology and morphometry. This seems to be the first report of Capillaria sp. in sheep livers in Brazil, and it serves as an important alert regarding animal health surveillance and control and regarding the Capillaria sp. zoonotic role in humans.
Kwon, Do Young; Kim, Hyun-Mi; Kim, Eunji; Lim, Yeon-Mi; Kim, Pilje; Choi, Kyunghee; Kwon, Jung-Taek
2016-02-01
Didecyldimethylammonium chloride (DDAC), an antimicrobial agent, has been reported to induce pulmonary toxicity in animal studies. DDAC is frequently used in spray-form household products in combination with ethylene glycol (EG). The purpose of this study was to evaluate the toxic interaction between DDAC and EG in the lung. DDAC at a sub-toxic dose (100 μg/kg body weight) was mixed with a non-toxic dose of EG (100 or 200 μg/kg body weight), and was administrated to rats via intratracheal instillation. Lactate dehydrogenase activity and total protein content in the bronchoalveolar lavage fluid (BALF) were not changed by singly treated DDAC or EG, but significantly enhanced at 1 d after treatment with the mixture, with the effect dependent on the dose of EG. Total cell count in BALF was largely increased and polymorphonuclear leukocytes were predominantly recruited to the lung in rats administrated with the mixture. Inflammatory cytokines, tumor necrosis factor-alpha and interleukin-6 also appeared to be increased by the mixture of DDAC and EG (200 μg/kg body weight) at 1 d post-exposure, which might be associated with the increase in inflammatory cells in lung. BALF protein content and inflammatory cell recruitment in the lung still remained elevated at 7 d after the administration of DDAC with the higher dose of EG. These results suggest that the combination of DDAC and EG can synergistically induce pulmonary cytotoxicity and inflammation, and EG appears to amplify the harmful effects of DDAC on the lung. Therefore pulmonary exposure to these two chemicals commonly found in commercial products can be a potential hazard to human health.
Molecular pharmacological profile of the nonredox-type 5-lipoxygenase inhibitor CJ-13,610.
Fischer, Lutz; Steinhilber, Dieter; Werz, Oliver
2004-07-01
5-Lipoxygenase (5-LO) is a crucial enzyme in the synthesis of the bioactive leukotrienes (LTs) from arachidonic acid (AA), and inhibitors of 5-LO are thought to prevent the untowarded pathophysiological effects of LTs. In this study, we present the molecular pharmacological profile of the novel nonredox-type 5-LO inhibitor CJ-13,610 that was evaluated in various in vitro assays. In intact human polymorphonuclear leukocytes (PMNL), challenged with the Ca(2+)-ionophore A23187, CJ-13,610 potently suppressed 5-LO product formation with an IC(50)=0.07 microm. Supplementation of exogenous AA impaired the efficacy of CJ-13,610, implying a competitive mode of action. In analogy to ZM230487 and L-739.010, two closely related nonredox-type 5-LO inhibitors, CJ-13,610 up to 30 microm failed to inhibit 5-LO in cell-free assay systems under nonreducing conditions, but inclusion of peroxidase activity restored the efficacy of CJ-13,610 (IC(50)=0.3 microm). In contrast to ZM230487 and L-739.010, the potency of CJ-13,610 does not depend on the cell stimulus or the activation pathway of 5-LO. Thus, 5-LO product formation in PMNL induced by phosphorylation events was equally suppressed by CJ-13,610 as compared to Ca(2+)-mediated 5-LO activation. In transfected HeLa cells, CJ-13,610 only slightly discriminated between phosphorylatable wild-type 5-LO and a 5-LO mutant that lacks phosphorylation sites. In summary, CJ-13,610 may possess considerable potential as a potent orally active nonredox-type 5-LO inhibitor that lacks certain disadvantages of former representatives of this class of 5-LO inhibitors.
Delfosse, Verónica C; Tasat, Deborah R; Gioffré, Andrea K
2015-05-01
Epidemiological studies have shown that pollution derived from industrial and vehicular transportation induces adverse health effects causing broad ambient respiratory diseases. Therefore, air pollution should be taken into account when microbial diseases are evaluated. Environmental mycobacteria (EM) are opportunist pathogens that can affect a variety of immune compromised patients, which impacts significantly on human morbidity and mortality. The aim of this study was to evaluate the effect of residual oil fly ash (ROFA) pre-exposure on the pulmonary response after challenge with opportunistic mycobacteria by means of an acute short-term in vivo experimental animal model. We exposed BALB/c mice to ROFA and observed a significant reduction on bacterial clearance at 24 h post infection. To study the basis of this impaired response four groups of animals were instilled with (a) saline solution (Control), (b) ROFA (1 mg kg(-1) BW), (c) ROFA and EM-infected (Mycobacterium phlei, 8 × 10(6) CFU), and (d) EM-infected. Animals were sacrificed 24 h postinfection and biomarkers of lung injury and proinflammatory madiators were examined in the bronchoalveolar lavage. Our results indicate that ROFA was able to produce an acute pulmonary injury characterized by an increase in bronchoalveolar polymorphonuclear (PMN) cells influx and a rise in O2 (-) generation. Exposure to ROFA before M. phlei infection reduced total cell number and caused a significant decline in PMN cells recruitment (p < 0.05), O2 (-) generation, TNFα (p < 0.001), and IL-6 (p < 0.001) levels. Hence, our results suggest that, in this animal model, the acute short-term pre-exposure to ROFA reduces early lung response to EM infection. © 2013 Wiley Periodicals, Inc.
The Cdk5 inhibitor olomoucine promotes corneal debridement wound closure in vivo
Tripathi, Brajendra K.; Stepp, Mary A.; Gao, Chun Y.
2008-01-01
Purpose To investigate the effect of the Cdk5 inhibitor olomoucine on corneal debridement wound healing in vivo. Methods Corneal debridement wounds of 1.5 mm were made on the ocular surface of CD-1 mice. A 20 μl drop of 15 µM olomoucine in 1% DMSO was applied to the wound area immediately after wounding and again after 6 h. Control mice received identical applications of 1% DMSO. Mice were euthanized after 18 h, two weeks, and three weeks for evaluation of wound healing and restratification. Corneas were stained with Richardson’s dye, photographed, and processed for histology and immunofluorescence as whole mounts or paraffin sections. The remaining wound area at 18 h was measured by image analysis. Scratch wounded cultures of human corneal-limbal epithelial cells (HCLE) were used to examine the effect of olomoucine on matrix metalloproteinase (MMP) expression in vitro. MMP-2 and MMP-9 were detected by immunofluorescence and immunoblotting. Results Olomoucine treatment significantly enhanced corneal wound closure without increasing inflammation or infiltration of polymorphonuclear leukocytes 18 h after wounding (p<0.05). The increased localization of MMP-9 within epithelial cells at the wound edge was further enhanced by olomoucine while the expression of MMP-2 was reduced. Olomoucine treatment of scratch wounded HCLE cells produced similar changes in MMP-9 and MMP-2 expression. The examination of treated corneas two and three weeks after wounding showed normal epithelial restratification with no evidence of inflammation or stromal disorganization. Conclusions Topical application of olomoucine in 1% DMSO significantly enhances closure of small epithelial debridement wounds without increasing inflammation or impairing reepithelialization. PMID:18385789
Yamamoto, Sumiharu; Yamane, Masaomi; Yoshida, Osamu; Waki, Naohisa; Okazaki, Mikio; Matsukawa, Akihiro; Oto, Takahiro; Miyoshi, Shinichiro
2015-11-01
Early growth response-1 (Egr-1) has been shown to be a trigger-switch transcription factor that is involved in lung ischemia-reperfusion injury (IRI). Mouse lung transplants were performed in wild-type (WT) C57BL/6 and Egr1-knockout (KO) mice in the following donor → recipient combinations: WT → WT, KO → WT, WT → KO, and KO → KO to determine whether the presence of Egr-1 in the donor or recipient is the most critical factor for IRI. Pulmonary grafts were retrieved after 18 hours of ischemia after 4 hours of reperfusion. We analyzed graft function by analyzing arterial blood gas and histology in each combination and assessed the effects of Egr1 depletion on inflammatory cytokines that are regulated by Egr-1 as well on polymorphonuclear neutrophil (PMN) infiltration. Deletion of Egr1 improved pulmonary graft function in the following order of donor → recipient combinations: WT → WT < WT → KO < KO → WT < KO → KO. Polymerase chain reaction assays for Il1B, Il6, Mcp1, Mip2, Icam1, and Cox2 showed significantly lower expression levels in the KO → KO group than in the other groups. Immunohistochemistry demonstrated clear Egr-1 expression in the nuclei of pulmonary artery endothelial cells and PMN cytoplasm in the WT grafts. Flow cytometry analysis showed that Egr1 deletion reduced PMN infiltration and that the extent of reduction correlated with graft function. Both graft and recipient Egr-1 played a role in lung IRI, but the graft side contributed more to this phenomenon through regulation of PMN infiltration. Donor Egr-1 expression in pulmonary artery endothelial cells may play an important role in PMN infiltration, which results in IRI after lung transplantation.
Definitions and diagnosis of postpartum endometritis in dairy cows.
Dubuc, J; Duffield, T F; Leslie, K E; Walton, J S; LeBlanc, S J
2010-11-01
The objectives of this observational study were to determine and compare diagnostic criteria for postpartum endometritis in dairy cows. Data generated from 1,044 Holstein cows (6 herds) enrolled in a randomized clinical trial were used. Cows were examined for endometritis at 35±3 d (exam 1) and 56±3 d (exam 2) after parturition, using endometrial cytology (cytobrush technique), vaginal discharge scoring (Metricheck device; Simcrotech, Hamilton, New Zealand), and cervical diameter measurement (transrectal palpation). Reproductive data were recorded until 200 d after parturition. Diagnostic criteria for cytological and clinical endometritis were determined based on detrimental effect on subsequent reproductive performance, using logistic regression and Cox proportional hazard models accounting for the effect of herd clustering. Comparison of diagnostic criteria was performed using endometrial cytology as reference test or by quantifying the agreement between diagnostic approaches. At exam 1, diagnostic criteria were ≥6% polymorphonuclear cells and mucopurulent or worse (purulent or foul) vaginal discharge for cytological and clinical endometritis, respectively. At exam 2, diagnostic criteria were ≥4% polymorphonuclear cells and mucopurulent or worse vaginal discharge for cytological and clinical endometritis, respectively. Cows were classified as having cytological endometritis only, clinical endometritis only, or both cytological and clinical endometritis. Prevalence at exam 1 was 13.5, 9.4, and 5.8% for cytological endometritis only, clinical endometritis only, and both cytological and clinical endometritis, respectively. The detrimental effects of cytological and clinical endometritis on reproductive performance were additive. Among cows with clinical endometritis, only 38 and 36% had cytological endometritis at exam 1 and exam 2, respectively. Combination of diagnostic criteria improved neither the accuracy for predicting cytological endometritis nor the agreement between cytological and clinical endometritis. Overall, these results suggested that cytological and clinical endometritis may represent different manifestations of reproductive tract disease. They also suggested that use of the terminology clinical endometritis may not be accurate and that purulent vaginal discharge may be more descriptive. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Guo, Geyong; Zhou, Huaijuan; Wang, Qiaojie; Wang, Jiaxing; Tan, Jiaqi; Li, Jinhua; Jin, Ping; Shen, Hao
2017-01-05
Biomaterial-related bacterial infections cause patient suffering, mortality and extended periods of hospitalization, imposing a substantial burden on medical systems. In this context, understanding of nanomaterials-bacteria-cells interactions is of both fundamental and clinical significance. Herein, nano-MgF 2 films were deposited on titanium substrate via magnetron sputtering. Using this platform, the antibacterial behavior and mechanism of the nano-MgF 2 films were investigated in vitro and in vivo. It was found that, for S. aureus (CA-MRSA, USA300) and S. epidermidis (RP62A), the nano-MgF 2 films possessed excellent anti-biofilm activity, but poor anti-planktonic bacteria activity in vitro. Nevertheless, both the traditional SD rat osteomyelitis model and the novel stably luminescent mouse infection model demonstrated that nano-MgF 2 films exerted superior anti-infection effect in vivo, which cannot be completely explained by the antibacterial activity of the nanomaterial itself. Further, using polymorphonuclear leukocytes (PMNs), the critical immune cells of innate immunity, a complementary investigation of MgF 2 -bacteria-PMNs co-culturing revealed that the nano-MgF 2 films improved the antibacterial effect of PMNs through enhancing their phagocytosis and stability. To our knowledge, this is the first time of exploring the antimicrobial mechanism of nano-MgF 2 from the perspective of innate immunity both in vitro and in vivo. Based on the research results, a plausible mechanism is put forward for the predominant antibacterial effect of nano-MgF 2 in vivo, which may originate from the indirect immune enhancement effect of nano-MgF 2 films. In summary, this study of surface antibacterial design using MgF 2 nanolayer is a meaningful attempt, which can promote the host innate immune response to bacterial pathogens. This may give us a new understanding towards the antibacterial behavior and mechanism of nano-MgF 2 films and pave the way towards their clinical applications.
Brandes, Susanne; Mokhtari, Zeinab; Essig, Fabian; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo
2015-02-01
Time-lapse microscopy is an important technique to study the dynamics of various biological processes. The labor-intensive manual analysis of microscopy videos is increasingly replaced by automated segmentation and tracking methods. These methods are often limited to certain cell morphologies and/or cell stainings. In this paper, we present an automated segmentation and tracking framework that does not have these restrictions. In particular, our framework handles highly variable cell shapes and does not rely on any cell stainings. Our segmentation approach is based on a combination of spatial and temporal image variations to detect moving cells in microscopy videos. This method yields a sensitivity of 99% and a precision of 95% in object detection. The tracking of cells consists of different steps, starting from single-cell tracking based on a nearest-neighbor-approach, detection of cell-cell interactions and splitting of cell clusters, and finally combining tracklets using methods from graph theory. The segmentation and tracking framework was applied to synthetic as well as experimental datasets with varying cell densities implying different numbers of cell-cell interactions. We established a validation framework to measure the performance of our tracking technique. The cell tracking accuracy was found to be >99% for all datasets indicating a high accuracy for connecting the detected cells between different time points. Copyright © 2014 Elsevier B.V. All rights reserved.
Oliver, F; Amon, E U; Breathnach, A; Francis, D M; Sarathchandra, P; Black, A K; Greaves, M W
1991-01-01
A frequent cause of contact urticaria is skin exposure to the common stinging nettle (Urtica dioica). The urticaria is accompanied by a stinging sensation lasting longer than 12 h. Little is known of the cellular and molecular mechanism of stinging-nettle urticaria. After preliminary pharmacological analysis of pro-inflammatory activity in nettle stings, the cellular response of mononuclear cells, polymorphonuclear cells and mast cells was examined in six people 5 min and 12 h after nettle contact. Only mast cell numbers were significantly increased at 12 h. Ultrastructurally, some mast cells showed evidence of degranulation at 5 min and 12 h. At 12 h mast cells were closely associated with dermal dendritic cells and lymphocytes suggesting a functional unit. The mean histamine and serotonin contents of a nettle hair were found to be 6.1 ng and 33.25 pg, respectively. Nettle-sting extracts did not demonstrate histamine release from dispersed rat mast cells in vitro. These results suggest that part of the immediate reaction to nettle stings is due to histamine introduced by the nettle. However, the persistence of the stinging sensation might suggest the presence of substances in nettle fluid directly toxic to nerves or capable of secondary release of other mediators.
Middleton, Andrew M.; Martínez, Nhora; Romero, Stefany; Iregui, Carlos
2013-01-01
The nasal septa of fetal rabbits at 26 days of gestation were harvested by cesarean section of the does while under anesthesia and then exposed to Bordetella bronchiseptica or its lipopolysaccharide (LPS) for periods of 2 and 4 hours. A total of 240 explants were used. The tissues were examined using the Hematoxylin & Eosin technique. Then, semithin sections (0.5 μm) were stained with toluidine blue and examined with indirect immunoperoxidase (IPI) and lectin histochemistry. The most frequent and statistically significant findings were as follows: (1) cell death and increased goblet cell activity when exposed to bacteria and (2) cell death, cytoplasmic vacuolation and infiltration of polymorphonuclear leukocytes when exposed to LPS. The lesions induced by the bacterium were more severe than with LPS alone, except for the cytoplasmic vacuolation in epithelial cells. IPI stained the ciliated border of the epithelium with the bacterium more intensely, while LPS lectin histochemistry preferentially labeled the cytoplasm of goblet cell. These data indicate that B. bronchiseptica and its LPS may have an affinity for specific glycoproteins that would act as adhesion receptors in both locations. PMID:23555071
Invasion of the Placenta during Murine Listeriosis
Le Monnier, Alban; Join-Lambert, Olivier F.; Jaubert, Francis; Berche, Patrick; Kayal, Samer
2006-01-01
Feto-placental infections due to Listeria monocytogenes represent a major threat during pregnancy, and the underlying mechanisms of placental invasion remain poorly understood. Here we used a murine model of listeriosis (pregnant mice, infected at day 14 of gestation) to investigate how this pathogen invades and grows within the placenta to ultimately infect the fetus. When L. monocytogenes is injected intravenously, the invasion of the placenta occurs early after the initial bacteremia, allowing the placental growth of the bacteria, which is an absolute requirement for vertical transmission to the fetus. Kinetically, bacteria first target the cells lining the central arterial canal of the placenta, which stain positively with cytokeratin, demonstrating their fetal trophoblast origin. Bacteria then disseminate rapidly to the other trophoblastic structures, like syncytiotrophoblast cells lining the villous core in the labyrinthine zone of placenta. Additionally, we found that an inflammatory reaction predominantly constituted of polymorphonuclear cells occurs in the villous placenta and participates in the control of infection. Altogether, our results suggest that the infection of murine placenta is dependent, at the early phase, on circulating bacteria and their interaction with endovascular trophoblastic cells. Subsequently, the bacteria spread to the other trophoblastic cells before crossing the placental barrier. PMID:16369023
Cerliani, Juan P; Stowell, Sean R; Mascanfroni, Iván D; Arthur, Connie M; Cummings, Richard D; Rabinovich, Gabriel A
2011-02-01
Effective immunity relies on the recognition of pathogens and tumors by innate immune cells through diverse pattern recognition receptors (PRRs) that lead to initiation of signaling processes and secretion of pro- and anti-inflammatory cytokines. Galectins, a family of endogenous lectins widely expressed in infected and neoplastic tissues have emerged as part of the portfolio of soluble mediators and pattern recognition receptors responsible for eliciting and controlling innate immunity. These highly conserved glycan-binding proteins can control immune cell processes through binding to specific glycan structures on pathogens and tumors or by acting intracellularly via modulation of selective signaling pathways. Recent findings demonstrate that various galectin family members influence the fate and physiology of different innate immune cells including polymorphonuclear neutrophils, mast cells, macrophages, and dendritic cells. Moreover, several pathogens may actually utilize galectins as a mechanism of host invasion. In this review, we aim to highlight and integrate recent discoveries that have led to our current understanding of the role of galectins in host-pathogen interactions and innate immunity. Challenges for the future will embrace the rational manipulation of galectin-glycan interactions to instruct and shape innate immunity during microbial infections, inflammation, and cancer.
Baetta, Roberta; Granata, Agnese; Miglietta, Daniela; Oliva, Francesca; Arnaboldi, Lorenzo; Bonomo, Alessandra; Ferri, Nicola; Ongini, Ennio; Bellosta, Stefano; Corsini, Alberto
2013-06-01
Polymorphonuclear neutrophils, the first leukocytes to infiltrate the inflamed tissue, can make important contributions to vascular inflammatory processes driving the development of atherosclerosis. We herein investigated the effects of atorvastatin and NCX 6560 (a nitric oxide (NO)-donating atorvastatin derivative that has completed a successful phase 1b study) on neutrophilic inflammation in carotid arteries of normocholesterolemic rabbits subjected to perivascular collar placement. Atorvastatin or NCX 6560 were administered orally (5 mg/kg/day or equimolar dose) to New Zealand White rabbits for 6 days, followed by collar implantation 1 h after the last dose. Twenty-four hours later carotids were harvested for neutrophil quantification by immunostaining. Treatment with NCX 6560 was associated with a lower neutrophil infiltration (-39.5 %), while atorvastatin did not affect neutrophil content. The result was independent of effects on plasma cholesterol or differences in atorvastatin bioavailability, which suggests an important role of NO-related mechanisms in mediating this effect. Consistent with these in vivo findings, in vitro studies showed that NCX 6560, as compared to atorvastatin, had greater inhibitory activity on processes involved in neutrophil recruitment, such as migration in response to IL-8 and IL-8 release by endothelial cells and by neutrophils themselves. Pretreatment with NCX 6560, but not with atorvastatin, reduced the ability of neutrophil supernatants to promote monocyte chemotaxis, a well-known pro-inflammatory activity of neutrophils. Experimental data suggest a potential role of NO-releasing statins in the control of the vascular inflammatory process mediated by polymorphonuclear neutrophils.
An, Beum-Soo; Kang, Ji-Houn; Yang, Hyun; Yang, Mhan-Pyo; Jeung, Eui-Bae
2013-02-01
Sap is a plant fluid that primarily consists of water and small amounts of mineral elements, sugars, hormones and other nutrients. Acer mono (A. mono) is an endemic Korean mono maple which was recently suggested to have health benefits due to its abundant calcium and magnesium ion content. In the present study, we examined the effects of sap from Acer okamotoanum (A. okamotoanum) on the phagocytic response of mouse neutrophils in vivo and rat and canine neutrophils in vitro. We tested the regulation of phagocytic activity, oxidative burst activity (OBA) and the levels of filamentous polymeric actin (F-actin) in the absence and presence of dexamethasone (DEX) in vitro and in vivo. Our results showed that DEX primarily reduced OBA in the mouse neutrophils, and that this was reversed in the presence of the sap. By contrast, the phagocytic activity of the mouse cells was not regulated by either DEX or the sap. Rat and canine polymorphonuclear neutrophilic leukocytes (PMNs) responded in vitro to the sap in a similar manner by increasing OBA. However, regulation of phagocytic activity by the sap was different between the species. In canine PMNs, phagocytic activity was enhanced by the sap at a high dose, while it did not significantly modulate this activity in rat PMNs. These findings suggest that the sap of A. okamotoanum stimulates neutrophil activity in the mouse, rat and canine by increasing OBA in vivo and in vitro, and thus may have a potential antimicrobial effect in the PMNs of patients with infections.
Drago-Serrano, Maria Elisa; Campos-Rodriguez, Rafael; Carrero, Julio Cesar; de la Garza, Mireya
2018-03-27
Lactoferrin (Lf) is a conserved cationic non-heme glycoprotein that is part of the innate immune defense system of mammals. Lf is present in colostrum, milk and mucosal sites, and it is also produced by polymorphonuclear neutrophils and secreted at infection sites. Lf and Lf N-terminus peptide-derivatives named lactoferricins (Lfcins) are molecules with microbiostatic and microbicidal action in a wide array of pathogens. In addition, they display regulatory properties on components of nonspecific immunity, including toll-like receptors, pro- and anti-inflammatory cytokines, and reactive oxygen species. Mechanisms explaining the ability of Lf and Lfcins to display both up- and down-modulatory properties on cells are not fully understood but result, in part, from their interactions with membrane receptors that elicit biochemical signal pathways, whereas other receptors enable the nuclear translocation of these molecules for the modulation of target genes. The dual role of Lf and Lfcins as antimicrobials and immunomodulators is of biotechnological and pharmaceutical interest. Native Lf and its peptide-derivatives from human and bovine sources, the recombinant versions of the human protein, and their synthetic peptides have potential application as adjunctive agents in therapies to combat infections caused by multi-resistant bacteria and those caused by fungi, protozoa and viruses, as well as in the prevention and reduction of several types of cancer and response to LPS-shock, among other effects. In this review, we summarize the immunomodulatory properties of the unique multifunctional protein Lf and its N-terminus peptides. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Pyroptosis by caspase11/4-gasdermin-D pathway in alcoholic hepatitis in mice and patients.
Khanova, Elena; Wu, Raymond; Wang, Wen; Yan, Rui; Chen, Yibu; French, Samuel W; Llorente, Cristina; Pan, Stephanie Q; Yang, Qihong; Li, Yuchang; Lazaro, Raul; Ansong, Charles; Smith, Richard D; Bataller, Ramon; Morgan, Timothy; Schnabl, Bernd; Tsukamoto, Hidekazu
2018-05-01
Alcoholic hepatitis (AH) continues to be a disease with high mortality and no efficacious medical treatment. Although severe AH is presented as acute on chronic liver failure, what underlies this transition from chronic alcoholic steatohepatitis (ASH) to AH is largely unknown. To address this question, unbiased RNA sequencing and proteomic analyses were performed on livers of the recently developed AH mouse model, which exhibits the shift to AH from chronic ASH upon weekly alcohol binge, and these results are compared to gene expression profiling data from AH patients. This cross-analysis has identified Casp11 (CASP4 in humans) as a commonly up-regulated gene known to be involved in the noncanonical inflammasome pathway. Immunoblotting confirms CASP11/4 activation in AH mice and patients, but not in chronic ASH mice and healthy human livers. Gasdermin-D (GSDMD), which induces pyroptosis (lytic cell death caused by bacterial infection) downstream of CASP11/4 activation, is also activated in AH livers in mice and patients. CASP11 deficiency reduces GSDMD activation, bacterial load in the liver, and severity of AH in the mouse model. Conversely, the deficiency of interleukin-18, the key antimicrobial cytokine, aggravates hepatic bacterial load, GSDMD activation, and AH. Furthermore, hepatocyte-specific expression of constitutively active GSDMD worsens hepatocellular lytic death and polymorphonuclear leukocyte inflammation. These results implicate pyroptosis induced by the CASP11/4-GSDMD pathway in the pathogenesis of AH. (Hepatology 2018;67:1737-1753). © 2017 by the American Association for the Study of Liver Diseases.
Serendipitous Discovery of an Immunoglobulin-Binding Autotransporter in Bordetella Species▿
Williams, Corinne L.; Haines, Robert; Cotter, Peggy A.
2008-01-01
We describe the serendipitous discovery of BatB, a classical-type Bordetella autotransporter (AT) protein with an ∼180-kDa passenger domain that remains noncovalently associated with the outer membrane. Like genes encoding all characterized protein virulence factors in Bordetella species, batB transcription is positively regulated by the master virulence regulatory system BvgAS. BatB is predicted to share similarity with immunoglobulin A (IgA) proteases, and we showed that BatB binds Ig in vitro. In vivo, a Bordetella bronchiseptica ΔbatB mutant was unable to overcome innate immune defenses and was cleared from the lower respiratory tracts of mice more rapidly than wild-type B. bronchiseptica. This defect was abrogated in SCID mice, suggesting that BatB functions to resist clearance during the first week postinoculation in a manner dependent on B- and T-cell-mediated activities. Taken together with the previous demonstration that polymorphonuclear neutrophils (PMN) are critical for the control of B. bronchiseptica in mice, our data support the hypothesis that BatB prevents nonspecific antibodies from facilitating PMN-mediated clearance during the first few days postinoculation. Neither of the strictly human-adapted Bordetella subspecies produces a fully functional BatB protein; nucleotide differences within the putative promoter region prevent batB transcription in Bordetella pertussis, and although expressed, the batB gene of human-derived Bordetella parapertussis (B. parapertussishu) contains a large in-frame deletion relative to batB of B. bronchiseptica. Taken together, our data suggest that BatB played an important role in the evolution of virulence and host specificity among the mammalian-adapted bordetellae. PMID:18426869
Becker, Elmer L.
1972-01-01
The inhibition profiles obtained when a series of p-nitrophenyl ethyl alkylphosphonates and of p-nitrophenyl ethyl chloroalkylphosphonates were used to interfere with the chemotactic activity of polymorphonuclear leukocytes stimulated by C3a, C5a, and bacterial factor were the same as found previously when C567 was the chemotactic agent. This indicates that as in the chemotactic activity induced by C567, an obligatory step in the chemotaxis caused by C3a, C5a, and bacterial factor is the activation of proesterase 1 of the rabbit polymorphonuclear leukocyte. C5a and C3a activate proesterase 1 of peripheral blood polymophonuclear leukocytes as measured by the increase of acetyl DL-phenylalanine β-naphthyl esterase activity. Attempts to detect in a like manner the proesterase 1 of the same leukocytes using bacterial factor under varying circumstances have consistently failed. It is concluded that bacterial factor, for unknown reasons, is unable to activate proesterase 1 to the same extent as the complement-derived chemotactic factors. The hypothesis of there being a quantitative difference in the ability of bacterial factor to activate proesterase 1 compared with the complement-derived factors explains the previous observations that bacterial factor can not deactivate to itself or to the complement-derived factors, although these latter factors can deactivate to themselves, to each other, and to the bacterial factor. The quantitative difference in the ability of bacterial factor to activate proesterase 1 compared to the complement-derived factors is also associated with and explains the finding that the maximal chemotactic activity attainable when bacterial factor is the chemotactic agent is distinctly less than that obtained using either C3a, C5a, or C567. These results indicate that the activation of proesterase 1 is a general requirement for the chemotactic activity of rabbit polymorphonuclear leukocytes with known macromolecular chemotactic agents and suggest that under several different circumstances the level of chemotactic activity attained is related to the degree of such activation. PMID:4551218
Srikantha, Thyagarajan; Huang, Guanghua; Garnaas, Adam M.; Soll, David R.
2011-01-01
Similar multicellular structures can evolve within the same organism that may have different evolutionary histories, be controlled by different regulatory pathways, and play similar but nonidentical roles. In the human fungal pathogen Candida albicans, a quite extraordinary example of this has occurred. Depending upon the configuration of the mating type locus (a/α versus a/a or α/α), C. albicans forms alternative biofilms that appear similar morphologically, but exhibit dramatically different characteristics and are regulated by distinctly different signal transduction pathways. Biofilms formed by a/α cells are impermeable to molecules in the size range of 300 Da to 140 kDa, are poorly penetrated by human polymorphonuclear leukocytes (PMNs), and are resistant to antifungals. In contrast, a/a or α/α biofilms are permeable to molecules in this size range, are readily penetrated by PMNs, and are susceptible to antifungals. By mutational analyses, a/α biofilms are demonstrated to be regulated by the Ras1/cAMP pathway that includes Ras1→Cdc35→cAMP(Pde2—|)→Tpk2(Tpk1)→Efg1→Tec1→Bcr1, and a/a biofilms by the MAP kinase pathway that includes Mfα→Ste2→ (Ste4, Ste18, Cag1)→Ste11→Hst7→Cek2(Cek1)→Tec1. These observations suggest the hypothesis that while the upstream portion of the newly evolved pathway regulating a/a and α/α cell biofilms was derived intact from the upstream portion of the conserved pheromone-regulated pathway for mating, the downstream portion was derived through modification of the downstream portion of the conserved pathway for a/α biofilm formation. C. albicans therefore forms two alternative biofilms depending upon mating configuration. PMID:21829325
Feuerecker, Matthias; Crucian, Brian; Salam, Alex P; Rybka, Ales; Kaufmann, Ines; Moreels, Marjan; Quintens, Roel; Schelling, Gustav; Thiel, Manfred; Baatout, Sarah; Sams, Clarence; Choukèr, Alexander
2014-09-01
Abstract Feuerecker, Matthias, Brian Crucian, Alex P. Salam, Ales Rybka, Ines Kaufmann, Marjan Moreels, Roel Quintens, Gustav Schelling, Manfred Thiel, Sarah Baatout, Clarence Sams, and Alexander Choukèr. Early adaption in the Antarctic environment at Dome C: Consequences on stress-sensitive innate immune functions. High Alt Med Biol 15:341-348, 2014.-Purpose/Aims: Medical reports of Antarctic expeditions indicate that health is affected under these extreme conditions. The present study at CONCORDIA-Station (Dome C, 3233 m) seeks to investigate the early consequences of confinement and hypobaric hypoxia on the human organism. Nine healthy male participants were included in this study. Data collection occurred before traveling to Antarctica (baseline), and at 1 week and 1 month upon arrival. Investigated parameters included basic physiological variables, psychological stress tests, cell blood count, stress hormones, and markers of innate immune functions in resting and stimulated immune cells. By testing for the hydrogen peroxide (H2O2) production of stimulated polymorphonuclear leukocytes (PMNs), the effects of the hypoxia-adenosine-sensitive immune modulatory pathways were examined. As compared to baseline data, reduced oxygen saturation, hemoconcentration, and an increase of secreted catecholamines was observed, whereas no psychological stress was seen. Upon stimulation, the activity of PMNs and L-selectin shedding was mitigated after 1 week. Endogenous adenosine concentration was elevated during the early phase. In summary, living conditions at high altitude influence the innate immune system's response. After 1 month, some of the early effects on the human organism were restored. As this early adaptation is not related to psychological stress, the changes observed are likely to be induced by environmental stressors, especially hypoxia. As hypoxia is triggering ATP-catabolism, leading to elevated endogenous adenosine concentrations, this and the increased catecholamine concentration might contribute to the early, but reversible downregulation of innate immune functions. This indicates the slope of innate immune adaptation to hypoxia.
McDaniel, Jodi C; Szalacha, Laura; Sales, Michelle; Roy, Sashwati; Chafee, Scott; Parinandi, Narasimham
2017-08-01
Sustained high levels of activated polymorphonuclear leukocytes (PMNs) and PMN-derived proteases in the microenvironment of chronic venous leg ulcers (CVLUs) are linked to chronic inflammation and delayed healing. Uncontrolled PMN activity eventually destroys newly developed tissue and degrades critical growth factors. The bioactive components of fish oil (n-3 eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) have strong inflammation-resolving actions and have been shown to assuage PMN activity, but have not been tested in CVLU patients. This randomized controlled study compared the effectiveness of oral EPA + DHA therapy to a placebo for reducing PMN activation in CVLU microenvironments. At Days 0, 28, and 56, markers of PMNs (CD15) and activated PMNs (CD66b), and levels of PMN-derived proteases human neutrophil elastase and matrix metalloproteinase-8 were measured in CVLU fluid from patients receiving standard compression therapy and (1) EPA + DHA therapy (n = 16) or (2) placebo (n = 19). By Day 56, the EPA + DHA Group had a significantly lower percentage of CD66b+ cells in CVLU fluid compared to Day 0 (p = 0.02) and to Day 28 (p = 0.05). Importantly, there were downward trends in levels of both matrix metalloproteinase-8 and human neutrophil elastase over time in the EPA + DHA Group, which also demonstrated greater reductions in wound area by Day 28 (57% reduction) and Day 56 (76% reduction) than the Control Group (35% and 59%, respectively). Moreover, reductions in wound area had significant negative relationships with CD15+ cells in wound fluid at Days 28 (p = 0.008) and 56 (p < 0.001), and CD66b+ cells at Days 28 (p = 0.04) and 56 (p = 0.009). The collective findings provide supplemental evidence that high levels of activated PMNs in CVLU microenvironments inhibit healing, and suggest that EPA + DHA oral therapy may modulate PMN activity and facilitate healing of CVLUs when added to standard care regimens. © 2017 by the Wound Healing Society.
PERP, a host tetraspanning membrane protein, is required for S almonella‐induced inflammation
Hallstrom, Kelly N.; Srikanth, C. V.; Agbor, Terence A.; Dumont, Christopher M.; Peters, Kristen N.; Paraoan, Luminita; Casanova, James E.; Boll, Erik J.
2015-01-01
Summary S almonella enterica Typhimurium induces intestinal inflammation through the activity of type III secreted effector (T3SE) proteins. Our prior results indicate that the secretion of the T3SE SipA and the ability of SipA to induce epithelial cell responses that lead to induction of polymorphonuclear transepithelial migration are not coupled to its direct delivery into epithelial cells from S almonella. We therefore tested the hypothesis that SipA interacts with a membrane protein located at the apical surface of intestinal epithelial cells. Employing a split ubiquitin yeast‐two‐hybrid screen, we identified the tetraspanning membrane protein, p53 effector related to PMP‐22 (PERP), as a SipA binding partner. SipA and PERP appear to have intersecting activities as we found PERP to be involved in proinflammatory pathways shown to be regulated by SipA. In sum, our studies reveal a critical role for PERP in the pathogenesis of S. Typhimurium, and for the first time demonstrate that SipA, a T3SE protein, can engage a host protein at the epithelial surface. PMID:25486861
Pre-clinical efficacy assessment of Malva sylvestris on chronic skin inflammation.
Prudente, Arthur S; Sponchiado, Graziela; Mendes, Daniel A G B; Soley, Bruna S; Cabrini, Daniela A; Otuki, Michel F
2017-09-01
In the search for improved quality of life, the treatment of skin diseases like psoriasis (hyperproliferative disease) is valid, since it causes huge social discomfort to the patient. In this context, earlier studies showed that Malva sylvestris L. has anti-inflammatory activity demonstrated by acute animal models of skin inflammation, becoming a promising target for further studies. The present investigation aimed to verify the effect of hydroalcoholic extract of M. sylvestris (HEMS) on the chronic inflammatory and hyperproliferative response caused by multiple applications of 12-O-tetradecanoylphorbol-13-acetate (TPA) on mouse ears. Topical application of HEMS reduced oedema, leukocyte migration (mono- and polymorphonuclear cells) and keratinocyte hyperproliferation, confirmed by histology and proliferating cell nuclear antigen (PCNA) immunostaining. It was found that the anti-inflammatory effects of the extract did not involve the glucocorticoid system, and its incubation with HaCaT keratinocytes caused low toxicity and reduced cell proliferation by apoptosis. Thus, HEMS proved to be effective as an anti-psoriatic therapy, with the ability to prevent keratinocyte hyperproliferation and with low toxicity by topical application. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Taurine chloramine: a possible oxidant reservoir.
Ogino, Tetsuya; Than, Tin Aung; Hosako, Mutsumi; Ozaki, Michitaka; Omori, Masako; Okada, Shigeru
2009-01-01
Taurine is abundant in polymorphonuclear leukocytes (PMNs) where it reacts with PMN-derived hypochlorous acid to form taurine chloramine (Tau-NHCl), a substance that does not readily cross the cell membrane. When PMNs were stimulated in PBS lacking taurine, extracellular oxidant concentration was low, but the concentration increased 3-4 fold when 15 mM taurine was added, indicating that taurine lowers oxidant levels inside the cell. When Tau-NHCl was added to Jurkat cells in suspension, its half life was about 75 min. In contrast, membrane-permeable ammonia mono-chloramine (NH2Cl) has a half life of only 6 min. Accordingly, NH2Cl oxidizes cytosolic proteins, such as IkappaB, and inhibits NF-kappaB activation, whereas Tau-NHCl exhibits no comparable effect. However, when NH4+ was added to the medium, Tau-NHCl oxidizes IkappaB and inhibits NF-kappaB activation, probably through oxidant transfer to NH4+ leading to NH2Cl formation. These results indicate that Tau-NHCl can serve as an oxidant reservoir, exhibiting either delayed oxidant effects or acting as an oxidant at a distant site.
Dianzani, Chiara; Foglietta, Federica; Ferrara, Benedetta; Rosa, Arianna Carolina; Muntoni, Elisabetta; Gasco, Paolo; Della Pepa, Carlo; Canaparo, Roberto; Serpe, Loredana
2017-01-01
AIM To improve anti-inflammatory activity while reducing drug doses, we developed a nanoformulation carrying dexamethasone and butyrate. METHODS Dexamethasone cholesteryl butyrate-solid lipid nanoparticles (DxCb-SLN) were obtained with the warm microemulsion method. The anti-inflammatory activity of this novel nanoformulation has been investigated in vitro (cell adhesion to human vascular endothelial cells and pro-inflammatory cytokine release by lipopolysaccharide-induced polymorphonuclear cells) and in vivo (disease activity index and cytokine plasma concentrations in a dextran sulfate sodium-induced mouse colitis) models. Each drug was also administered separately to compare its effects with those induced by their co-administration in SLN at the same concentrations. RESULTS DxCb-SLN at the lowest concentration tested (Dx 2.5 nmol/L and Cb 0.1 μmol/L) were able to exert a more than additive effect compared to the sum of the individual effects of each drug, inducing a significant in vitro inhibition of cell adhesion and a significant decrease of pro-inflammatory cytokine (IL-1β and TNF-α) in both in vitro and in vivo models. Notably, only the DxCb nanoformulation administration was able to achieve a significant cytokine decrease compared to the cytokine plasma concentration of the untreated mice with dextran sulfate sodium-induced colitis. Specifically, DxCb-SLN induced a IL-1β plasma concentration of 61.77% ± 3.19%, whereas Dx or Cb used separately induced a concentration of 90.0% ± 2.8% and 91.40% ± 7.5%, respectively; DxCb-SLN induced a TNF-α plasma concentration of 30.8% ± 8.9%, whereas Dx or Cb used separately induced ones of 99.5% ± 4.9% and 71.1% ± 10.9%, respectively. CONCLUSION Our results indicate that the co-administration of dexamethasone and butyrate by nanoparticles may be beneficial for inflammatory bowel disease treatment. PMID:28694660
Haugland, Gyri T.; Jakobsen, Ragnhild Aakre; Vestvik, Nils; Ulven, Kristian; Stokka, Lene; Wergeland, Heidrun I.
2012-01-01
In the present study, we have isolated leucocytes from peripheral blood, head kidney and spleen from lumpsucker (Cyclopterus lumpus L.), and performed functional studies like phagocytosis and respiratory burst, as well as morphological and cytochemical analyses. Different leucocytes were identified, such as lymphocytes, monocytes/macrophages and polymorphonuclear cells with bean shaped or bilobed nuclei. In addition, cells with similar morphology as described for dendritic cells in trout were abundant among the isolated leucocytes. Flow cytometry was successfully used for measuring phagocytosis and respiratory burst activity. The phagocytic capacity and ability were very high, and cells with different morphology in all three leucocyte preparations phagocytised beads rapidly. Due to lack of available cell markers, the identity of the phagocytic cells could not be determined. The potent non-specific phagocytosis was in accordance with a high number of cells positive for myeloperoxidase, an enzyme involved in oxygen-dependent killing mechanism present in phagocytic cells. Further, high respiratory burst activity was present in the leucocytes samples, verifying a potent oxygen- dependent degradation. At present, the specific antibody immune response could not be measured, as immunoglobulin or B-cells have not yet been isolated. Therefore, analyses of the specific immune response in this fish species await further clarification. The present study presents the first analyses of lumpsucker immunity and also the first within the order Scopaeniformes. PMID:23112870
STUDIES ON ENDOTHELIAL REACTIONS
Foot, Nathan Chandler
1923-01-01
If the spleen be removed from rabbits and tubercle bacilli be injected intravenously, it is found that the lesions produced differ materially from those observed in control animals; the lungs present the most marked contrast, the liver also shows a definite difference in the distribution of the tubercles, and the kidney lesions also differ in the two instances. In discussing these facts we must answer, if possible, the four questions formulated above. It appears that the pulmonary lesions in Group S are small and discrete because of some inhibitory factor that prevents the diffusion of the products of dead tubercle bacilli. The organisms, far from being killed, are more numerous and better preserved in this group, but their destructive action is localized. This seems to be connected with the presence of polymorphonuclear leucocytes, for these cells are more numerous in the lesions and more plentiful in the lumina of the pulmonary capillaries of Group S than they are in the controls. The conclusion to be drawn from this covers the answer to the second question. It is not the tubercle bacillus itself that produces the destructive changes, but the toxins liberated by the breaking down of its substance. The well known experiments of Hodenpyl and Armand-Delille, already referred to in this series of papers, show this to be true; dead tubercle bacilli, or even extracts of these organisms, will produce typical tubercles. Removing the spleen stimulates the production of polymorphonuclear leucocytes, as shown by Johnstone (1922). These cells may prevent the diffusion of split products from the bacilli by removing or neutralizing them. The third question, as to why the liver is more affected after splenectomy than in normal controls, is more readily answered. Probably the spleen acts as a catch-basin for the bacteria; once removed it can no longer withhold them from the portal circulation and the liver receives a larger number than it would were this bacterial filter still operative. On the other hand, there may be an increase in the phagocytic activity of the endothelium of the sinusoids which might take up more bacteria under these changed conditions. Several investigators have claimed, recently, that there is an increased activity of the liver endothelium following splenectomy, their experiments being directed chiefly toward determining the fate of the erythrocytes. Pearce (1918) in reporting the effects of experimental splenectomy in dogs, states that there are definite compensatory changes in the lymph nodes, in the form of an increased proliferation of endothelial phagocytes, and that the stellate cells of the liver sinusoids often show a similar compensatory increase in number. In both cases the cells are, apparently, formed in situ rather than transported to the organs. He says: ‘Such findings suggest the development of a compensatory function on the part of the lymph-nodes and possibly the liver,’ and suggests that, in times of stress ‘the stellate cells of the liver thus assume, in part at least, the function of destroying red blood-corpuscles by phagocytosis.’ Incidentally, he presents an excellent discussion of the history and subject of splenectomy. Motohashi (1922) reports a great increase in the hemophagic power of the hepatic endothelium and an increase in the number of endothelial elements, after some 45 days following splenectomy in rabbits. Nishikawa and Takagi (1922) have observed similar phenomena with white rats, the Kupffer cells taking up erythrocytes in large numbers in splenectomized animals, whereas controls never show similar propensities on the part of these cells. It may be that different substances cause different reactions on the part of the hepatic endothelium. Contributory Experiment.—A side experiment was performed with five rabbits, two splenectomized and three controls, into which uniform doses of pneumococci were injected intravenously. They all died of septicemia after a few days. The results of this experiment strengthen the foregoing conclusions materially. It was found that there were many polymorphonuclear amphophils in the pulmonary capillaries of the splenectomized animals and that there were numerous focal necroses in the livers. The controls showed much fewer polymorphonuclear cells in the lungs and no focal necroses in the livers, while the spleens were actively congested and inflamed. Otherwise the experiment was not of sufficient importance to warrant a separate report. The question as to why the endothelium of the pulmonary capillaries shows no stimulation similar to that observed in the carbon experiment, but rather less activity than that of the controls, must be answered hypothetically for the present. With the carbon, comparatively huge amounts of foreign matter were injected repeatedly; here but one injection of a much smaller amount of suspended tubercle bacilli was administered. The resulting stimulus to the pulmonary endothelium would, therefore, differ materially in the two instances. In one there would be succeeding waves of stimulation following each injection of irritating foreign substance. In the other an entirely different sort of stimulus would result; the bacteria would be withdrawn from the circulation within an hour or two, judging by past experience, and would then multiply, to be cast off into the circulation in driblets, as the lesions containing them broke down. At least it can be said that there is a good theoretical reason for the difference in the endothelial reaction in the lungs of the two groups of animals. PMID:19868788
Physalis angulata induces in vitro differentiation of murine bone marrow cells into macrophages.
da Silva, Bruno José Martins; Rodrigues, Ana Paula D; Farias, Luis Henrique S; Hage, Amanda Anastácia P; Do Nascimento, Jose Luiz M; Silva, Edilene O
2014-10-03
The bone marrow is a hematopoietic tissue that, in the presence of cytokines and growth factors, generates all of the circulating blood cells. These cells are important for protecting the organism against pathogens and for establishing an effective immune response. Previous studies have shown immunomodulatory effects of different products isolated from plant extracts. This study aimed to evaluate the immunomodulatory properties of aqueous Physalis angulata (AEPa) extract on the differentiation of bone marrow cells. Increased cellular area, higher spreading ability and several cytoplasmatic projections were observed in the treated cells, using optical microscopy, suggesting cell differentiation. Furthermore, AEPa did not promote the proliferation of lymphocytes and polymorphonuclear leukocytes, however promotes increased the number of macrophages in the culture. The ultrastructural analysis by Transmission Electron Microscopy of treated cells showed spreading ability, high number of cytoplasmatic projections and increase of autophagic vacuoles. Moreover, a high level of LC3b expression by treated cells was detected by flow cytometry, suggesting an autophagic process. Cell surface expression of F4/80 and CD11b also indicated that AEPa may stimulate differentiation of bone marrow cells mainly into macrophages. In addition, AEPa did not differentiate cells into dendritic cells, as assessed by CD11c analysis. Furthermore, no cytotoxic effects were observed in the cells treated with AEPa. Results demonstrate that AEPa promotes the differentiation of bone marrow cells, particularly into macrophages and may hold promise as an immunomodulating agent.
Physalis angulata induces in vitro differentiation of murine bone marrow cells into macrophages
2014-01-01
Background The bone marrow is a hematopoietic tissue that, in the presence of cytokines and growth factors, generates all of the circulating blood cells. These cells are important for protecting the organism against pathogens and for establishing an effective immune response. Previous studies have shown immunomodulatory effects of different products isolated from plant extracts. This study aimed to evaluate the immunomodulatory properties of aqueous Physalis angulata (AEPa) extract on the differentiation of bone marrow cells. Results Increased cellular area, higher spreading ability and several cytoplasmatic projections were observed in the treated cells, using optical microscopy, suggesting cell differentiation. Furthermore, AEPa did not promote the proliferation of lymphocytes and polymorphonuclear leukocytes, however promotes increased the number of macrophages in the culture. The ultrastructural analysis by Transmission Electron Microscopy of treated cells showed spreading ability, high number of cytoplasmatic projections and increase of autophagic vacuoles. Moreover, a high level of LC3b expression by treated cells was detected by flow cytometry, suggesting an autophagic process. Cell surface expression of F4/80 and CD11b also indicated that AEPa may stimulate differentiation of bone marrow cells mainly into macrophages. In addition, AEPa did not differentiate cells into dendritic cells, as assessed by CD11c analysis. Furthermore, no cytotoxic effects were observed in the cells treated with AEPa. Conclusion Results demonstrate that AEPa promotes the differentiation of bone marrow cells, particularly into macrophages and may hold promise as an immunomodulating agent. PMID:25281406
Tan, Cong-ping; Hou, Yun-hua
2014-04-01
Obesity, characterized as a state of low-level inflammation, is a powerful determinant influencing the development of insulin resistance and progression to type 2 diabetes. The purpose of the present study was to investigate the anti-inflammatory activity of fucoxanthin in experimental high-fat-diet-induced obesity in mice and antioxidant activity in PC12 cells under oxidative stress situation. The anti-inflammatory potential of fucoxanthin in the regulation of maleic dialdehyde (MDA), polymorphonuclear cells (PMNs), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), and cyclooxygenase-2 (COX-2) was determined by ELISA. Fucoxanthin significantly inhibited obesity-induced upregulation of the production of IL-1β, TNF-α, iNOS, and COX-2. Moreover, fucoxanthin suppressed MDA and infiltration of PMNs. The protective effects were associated with lack of hypertrophy and crown-like structures in mammary gland. At the same time, fucoxanthin showed an advantage of antioxidant activity in PC12 cells under oxidative stress situation. These results suggest that supplementation of fucoxanthin is a promising strategy for blocking macrophage-mediated inflammation and inflammation-induced obesity and its associated complications.
Kocur, E; Zeman, K; Tchorzewski, H
1993-01-01
In allergy the immune response is significantly modified by inflammatory processes. Polymorphonuclear leukocytes (PMNLs) are involved in inflammatory processes. Activated PMNLs release many substances, including granulocyte factor (GF), which exerts immunomodulating effects. The present study was performed to determine the effects of allergens and/or GF on the expression of lymphocyte differentiation antigens in short-term cultures and to evaluate the production of migration inhibitory factor (MIF) under the influence of these substances. The studies were carried out on peripheral blood mononuclear cells isolated from patients with type I hypersensitivity, before and after the grass pollen season, and from healthy subjects. GF and allergens were found to increase the CD8 cell number, particularly in 7-day cultures and in patients before exposure to allergens, which correlated with MIF release in these patients under the influence of these factors. The results suggest that the PMNLs may participate in allergic inflammatory reactions.
Parotid Abscess with Involvement of Facial Nerve Branches.
Ozkan, Adile; Ors, Ceyda Hayretdag; Kosar, Sule; Ozisik Karaman, Handan Isin
2015-08-01
Facial nerve paresis is only rarely seen with benign diseases of the parotid gland. A 22-year male had muscle loss in the preauricular region of the right side of his face that extended towards the mandibular angle for the last 6 months. The neurological examination did not reveal any pathology other than right preauricular region muscle atrophy that was limited by the mandibular angle. The Electroneuronography (EnoG) provided a ratio of 55.38%, compared the affected side to left side. Ultrasonography of the defined region showed two mass lesions 13.5 x 7 mm and 10 x 5 mm in size in the anteromedial section of the right parotid gland that were close to each other, without internal calcific foci, and heterogenous hyperechogenic structure without internal vascularization. Fine needle aspiration obtained many polymorphonuclear leukocytes, cell debris, a few mononuclear inflammatory cells and many crystalloid structures. The lesion was diagnosed as a parotid abscess. Antibiotic treatment was started for the parotid gland abscess.
Trøstrup, Hannah; Thomsen, Kim; Christophersen, Lars J; Hougen, Hans P; Bjarnsholt, Thomas; Jensen, Peter Ø; Kirkby, Nikolai; Calum, Henrik; Høiby, Niels; Moser, Claus
2013-01-01
Chronic wounds are presumed to persist in the inflammatory state, preventing healing. Emerging evidence indicates a clinical impact of bacterial biofilms in soft tissues, including Pseudomonas aeruginosa (PA) biofilms. To further investigate this, we developed a chronic PA biofilm wound infection model in C3H/HeN and BALB/c mice. The chronic wound was established by an injection of seaweed alginate-embedded P. aeruginosa PAO1 beneath a third-degree thermal lesion providing full thickness skin necrosis, as in human chronic wounds. Cultures revealed growth of PA, and both alginate with or without PAO1 generated a polymorphonuclear-dominated inflammation early after infection. However, both at days 4 and 7, there were a more acute polymorphonuclear-dominated and higher degree of inflammation in the PAO1 containing group (p < 0.05). Furthermore, PNA-FISH and supplemented DAPI staining showed bacteria organized in clusters, resembling biofilms, and inflammation located adjacent to the PA. The chronic wound infection showed a higher number of PAO1 in the BALB/c mice at day 4 after infection as compared to C3H/HeN mice (p < 0.006). In addition, a higher concentration of interleukin-1beta in the chronic wounds of BALB/c mice was observed at day 7 (p < 0.02), despite a similar number of bacteria in the two mouse strains. The present study succeeded in establishing a chronic PA biofilm infection in mice. The results showed an aggravating impact of local inflammation induced by PA biofilms. In conclusion, our findings indicate that improved infection control of chronic wounds reduces the inflammatory response and may improve healing. © 2013 by the Wound Healing Society.
Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats
Walter, Patrick B.; Knutson, Mitchell D.; Paler-Martinez, Andres; Lee, Sonia; Xu, Yu; Viteri, Fernando E.; Ames, Bruce N.
2002-01-01
Approximately two billion people, mainly women and children, are iron deficient. Two studies examined the effects of iron deficiency and supplementation on rats. In study 1, mitochondrial functional parameters and mitochondrial DNA (mtDNA) damage were assayed in iron-deficient (≤5 μg/day) and iron-normal (800 μg/day) rats and in both groups after daily high-iron supplementation (8,000 μg/day) for 34 days. This dose is equivalent to the daily dose commonly given to iron-deficient humans. Iron-deficient rats had lower liver mitochondrial respiratory control ratios and increased levels of oxidants in polymorphonuclear-leukocytes, as assayed by dichlorofluorescein (P < 0.05). Rhodamine 123 fluorescence of polymorphonuclear-leukocytes also increased (P < 0.05). Lowered respiratory control ratios were found in daily high-iron-supplemented rats regardless of the previous iron status (P < 0.05). mtDNA damage was observed in both iron-deficient rats and rats receiving daily high-iron supplementation, compared with iron-normal rats (P < 0.05). Study 2 compared iron-deficient rats given high doses of iron (8,000 μg) either daily or every third day and found that rats given iron supplements every third day had less mtDNA damage on the second and third day after the last dose compared to daily high iron doses. Both inadequate and excessive iron (10 × nutritional need) cause significant mitochondrial malfunction. Although excess iron has been known to cause oxidative damage, the observation of oxidant-induced damage to mitochondria from iron deficiency has been unrecognized previously. Untreated iron deficiency, as well as excessive-iron supplementation, are deleterious and emphasize the importance of maintaining optimal iron intake. PMID:11854522
Epidermal growth factor in alkali-burned corneal epithelial wound healing.
Singh, G; Foster, C S
1987-06-15
We conducted a double-masked study to evaluate the effect of epidermal growth factor on epithelial wound healing and recurrent erosions in alkali-burned rabbit corneas. Epithelial wounds 10 mm in diameter healed completely under the influence of topical epidermal growth factor, whereas the control corneas did not resurface in the center. On reversal of treatment, the previously nonhealing epithelial defects healed when treated with topical epidermal growth factor eyedrops. Conversely, the epidermal growth factor-treated and resurfaced corneas developed epithelial defects when treatment was discontinued. Histopathologic examination disclosed hyperplastic epithelium growing over the damaged stroma laden with polymorphonuclear leukocytes when treated with epidermal growth factor eyedrops, but it did not adhere to the underlying tissue. Hydropic changes were seen intracellularly as well as between the epithelial cells and the stroma.
NASA Astrophysics Data System (ADS)
Sperandio, F. F.; Bani, G. M. A. C.; Mendes, A. C. S. C.; Brigagão, M. R. P. L.; Santos, G. B.; Malaquias, L. C. C.; Chavasco, J. K.; Verinaud, L. M.; Burger, E.
2015-03-01
Polymorphonuclear neutrophils (PMN) participate in an active way in the innate immunity developed after the fungal infection paracoccidioidomycosis (PCM). Nevertheless, the sole participation of neutrophils is not sufficient to eradicate PCM`s pathogenic fungus: Paracoccidioides brasiliensis (Pb). In that way, we aimed to develop a treatment capable of stimulating PMN to the site of injury through low-level laser therapy (LLLT). (LLLT) is safe to use and has not been linked to microorganism resistance so far; in addition, based on previous studies we understand that LLLT may be useful to treat several medical conditions through the stimulation and activation of certain types of cells. This brief review is based on the novel attempt of activating PMN against a fungal infection.
Antiphagocytic Effect of Slime from a Mucoid Strain of Pseudomonas aeruginosa
Schwarzmann, Stephen; Boring, John R.
1971-01-01
Mucoid strains of Pseudomonas aeruginosa produce a viscid slime when grown on the surface of agar media. These strains are known to colonize persistently the tracheobronchial tree of children with cystic fibrosis. Colonization may result from inhibition of phagocytosis due to slime produced by the organism. Slime separated from one mucoid strain was examined to determine whether it possessed antiphagocytic activity in vitro. Cells of P. aeruginosa, Escherichia coli, and Staphylococcus aureus were rapidly phagocytized by rabbit polymorphonuclear leukocytes when mixtures were rotated for 2 hr at 37 C in the absence of slime. The addition of relatively small amounts of slime to bacteria and leukocytes inhibited phagocytosis as measured by phagocytic killing of the organisms. Inhibition was found to be most complete with P. aeruginosa. PMID:16558051
Rudkin, Fiona M.; Bain, Judith M.; Walls, Catriona; Lewis, Leanne E.; Gow, Neil A. R.; Erwig, Lars P.
2013-01-01
ABSTRACT An important first line of defense against Candida albicans infections is the killing of fungal cells by professional phagocytes of the innate immune system, such as polymorphonuclear cells (PMNs) and macrophages. In this study, we employed live-cell video microscopy coupled with dynamic image analysis tools to provide insights into the complexity of C. albicans phagocytosis when macrophages and PMNs were incubated with C. albicans alone and when both phagocyte subsets were present. When C. albicans cells were incubated with only one phagocyte subtype, PMNs had a lower overall phagocytic capacity than macrophages, despite engulfing fungal cells at a higher rate once fungal cells were bound to the phagocyte surface. PMNs were more susceptible to C. albicans-mediated killing than macrophages, irrespective of the number of C. albicans cells ingested. In contrast, when both phagocyte subsets were studied in coculture, the two cell types phagocytosed and cleared C. albicans at equal rates and were equally susceptible to killing by the fungus. The increase in macrophage susceptibility to C. albicans-mediated killing was a consequence of macrophages taking up a higher proportion of hyphal cells under these conditions. In the presence of both PMNs and macrophages, C. albicans yeast cells were predominantly cleared by PMNs, which migrated at a greater speed toward fungal cells and engulfed bound cells more rapidly. These observations demonstrate that the phagocytosis of fungal pathogens depends on, and is modified by, the specific phagocyte subsets present at the site of infection. PMID:24169578
Mauer, S. Michael; Sutherland, David E. R.; Howard, Richard J.; Fish, Alfred J.; Najarian, John S.; Michael, Alfred F.
1973-01-01
A mechanism of immune glomerular injury is described based on the fixation of antibody (Ab) to an antigen (Ag) that has localized in the glomerular mesangium. Rabbits were given, intravenously (i.v.), aggregated human IgG (AHIgG) or albumin (AHSA) and 10 h later, when the Ag by immunofluorescent microscopy was present in the mesangium, a kidney was removed and transplanted into a normal rabbit. The recipient then received, i.v., rabbit anti-HIgG or anti-HSA. Within minutes of Ab infusion, glomeruli of the donor kidney had polymorphonuclear (PMN) infiltration that over the next few hours became marked and was associated with glomerular cell swelling. At 24 h a decrease in PMN's and early mesangial proliferation was seen. By 3 days there was marked mesangial hypercellularity and increased mesangial matrix. Within minutes after Ab administration rabbit IgG, C3, and fibrin were seen in the glomerular mesangium. There was a fall in complement titer by 1 min after Ab infusion that was due to complement consumption by the donor kidney. Complement then returned to normal levels by 48 h. Significant glomerular injury did not occur (a) in the recipient's own kidney, (b) from Ag administration and transplantation without recipient Ab administration, or (c) from transplantation and Ab administration without prior Ag administration. These studies demonstrated that Ag localized in the glomerular mesangium can react with circulating Ab and complement resulting in severe glomerular injury. PMID:4570015
2011-01-01
Background Evidence in the literature suggests that exopolysaccharides (EPS) produced by bacterial cells are essential for the expression of virulence in these organisms. Secreted EPSs form the framework in which microbial biofilms are built. Methods This study evaluates the role of EPS in Prevotella intermedia for the expression of virulence. This evaluation was accomplished by comparing EPS-producing P. intermedia strains 17 and OD1-16 with non-producing P. intermedia ATCC 25611 and Porphyromonas gingivalis strains ATCC 33277, 381 and W83 for their ability to induce abscess formation in mice and evade phagocytosis. Results EPS-producing P. intermedia strains 17 and OD1-16 induced highly noticeable abscess lesions in mice at 107 colony-forming units (CFU). In comparison, P. intermedia ATCC 25611 and P. gingivalis ATCC 33277, 381 and W83, which all lacked the ability to produce viscous materials, required 100-fold more bacteria (109 CFU) in order to induce detectable abscess lesions in mice. Regarding antiphagocytic activity, P. intermedia strains 17 and OD1-16 were rarely internalized by human polymorphonuclear leukocytes, but other strains were readily engulfed and detected in the phagosomes of these phagocytes. Conclusions These results demonstrate that the production of EPS by P. intermedia strains 17 and OD1-16 could contribute to the pathogenicity of this organism by conferring their ability to evade the host's innate defence response. PMID:21864411
Yamanaka, Takeshi; Yamane, Kazuyoshi; Furukawa, Tomoyo; Matsumoto-Mashimo, Chiho; Sugimori, Chieko; Nambu, Takayuki; Obata, Noboru; Walker, Clay B; Leung, Kai-Poon; Fukushima, Hisanori
2011-08-25
Evidence in the literature suggests that exopolysaccharides (EPS) produced by bacterial cells are essential for the expression of virulence in these organisms. Secreted EPSs form the framework in which microbial biofilms are built. This study evaluates the role of EPS in Prevotella intermedia for the expression of virulence. This evaluation was accomplished by comparing EPS-producing P. intermedia strains 17 and OD1-16 with non-producing P. intermedia ATCC 25611 and Porphyromonas gingivalis strains ATCC 33277, 381 and W83 for their ability to induce abscess formation in mice and evade phagocytosis. EPS-producing P. intermedia strains 17 and OD1-16 induced highly noticeable abscess lesions in mice at 107 colony-forming units (CFU). In comparison, P. intermedia ATCC 25611 and P. gingivalis ATCC 33277, 381 and W83, which all lacked the ability to produce viscous materials, required 100-fold more bacteria (109 CFU) in order to induce detectable abscess lesions in mice. Regarding antiphagocytic activity, P. intermedia strains 17 and OD1-16 were rarely internalized by human polymorphonuclear leukocytes, but other strains were readily engulfed and detected in the phagosomes of these phagocytes. These results demonstrate that the production of EPS by P. intermedia strains 17 and OD1-16 could contribute to the pathogenicity of this organism by conferring their ability to evade the host's innate defence response.
Breivik, T; Rook, G A W
2000-01-01
Periodontal disease is a bacterial dental plaque-induced destructive inflammatory condition of the tooth-supporting tissues, which is thought to be mediated by T lymphocytes secreting T helper 2 (Th2) cytokines, resulting in recruitment of high numbers of antibody-producing B lymphocytes/plasma cells as well as polymorphonuclear leucocytes (PMN) secreting tissue-destructive components, such at matrix metalloproteinases and reactive oxygen metabolites into the gingival connective tissues. One treatment strategy may be to down-regulate the Th2 response to those dental plaque microorganisms which induce the destructive inflammatory response. In this study we have examined the effects of a potent down-regulator of Th2 responses on ligature-induced periodontal disease in an experimental rat model. A single s.c. injection into Wistar rats of 0·1 or 1 mg of SRL172, a preparation of heat-killed Mycobacterium vaccae (NCTC 11659), 13 days before application of the ligature, significantly reduced the subsequent destruction of the tooth-supporting tissues, as measured by loss of periodontal attachment fibres (P < 0·001) and bone (P < 0·002). This protective effect occurred not only on the experimental (ligatured) side but also on the control unligatured side. SRL172 has undergone extensive toxicological studies and safety assessments in humans, and it is suggested that it may provide a safe and novel therapeutic approach to periodontal disease. PMID:10844524
Cui, Hongzhang; Li, Shu; Xu, Caiming; Zhang, Jingwen; Sun, Zhongwei; Chen, Hailong
2017-10-01
The present study aimed to evaluate the protective effects of emodin on severe acute pancreatitis (SAP)‑associated acute lung injury (ALI), and investigated the possible mechanism involved. SAP was induced in Sprague‑Dawley rats by retrograde infusion of 5% sodium taurocholate (1 ml/kg), after which, rats were divided into various groups and were administered emodin, FK866 [a competitive inhibitor of pre‑B‑cell colony‑enhancing factor (PBEF)] or dexamethasone (DEX). DEX was used as a positive control. Subsequently, PBEF expression was detected in polymorphonuclear neutrophils (PMNs) isolated from rat peripheral blood by reverse transcription‑quantitative polymerase chain reaction and western blotting. In addition, histological alterations, apoptosis in lung/pancreatic tissues, apoptosis of peripheral blood PMNs and alterations in the expression of apoptosis‑associated proteins were examined by hematoxylin and eosin staining, terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling assay, Annexin V/propidium iodide (PI) assay and western blotting, respectively. Serum amylase activity and wet/dry (W/D) weight ratios were also measured. An in vitro study was also conducted, in which PMNs were obtained from normal Sprague‑Dawley rats and were incubated with emodin, FK866 or DEX in the presence of lipopolysaccharide (LPS). Apoptosis of PMNs and the expression levels of apoptosis‑associated proteins were examined in cultured PMNs in vitro by Annexin V/PI assay and western blotting, respectively. The results demonstrated that emodin, FK866 and DEX significantly downregulated PBEF expression in peripheral blood PMNs. In addition, emodin, FK866 and DEX reduced serum amylase activity, decreased lung and pancreas W/D weight ratios, alleviated lung and pancreatic injuries, and promoted PMN apoptosis by regulating the expression of apoptosis‑associated proteins: Fas, Fas ligand, B‑cell lymphoma (Bcl)‑2‑associated X protein, cleaved caspase‑3 and Bcl‑extra‑large. In addition, the in vitro study demonstrated that emodin, FK866 and DEX significantly reversed the LPS‑induced decrease of apoptosis in PMNs by regulating the expression of apoptosis‑associated proteins. In conclusion, the present study demonstrated that emodin may protect against SAP‑associated ALI by decreasing PBEF expression, and promoting PMN apoptosis via the mitochondrial and death receptor apoptotic pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simms, H.H.; D'Amico, R.; Monfils, P.
We investigated the effects of untreated intraabdominal sepsis on polymorphonuclear leukocyte (PMN) candicidal activity. Two groups of swine were studied. Group I (n=6) underwent sham laparotomy, group II (n=7) underwent cecal ligation and incision. Untreated intraabdominal sepsis resulted in a progressive decrease in PMN candicidal activity. Concomitant rosetting and phagocytosis assays demonstrated a decrease in both the attachment and phagocytosis of Candida albicans opsonized with both normal and septic swine serum by PMNs in group II. Iodine 125-labeled swine immunoglobulin G (IgG) and fluorescein isothioalanate (FITC)-labeled swine IgG were used to investigate Fc gamma receptor ligand interactions. Scatchard analyses demonstratedmore » a progressive decline in both the binding affinity constant and number of IgG molecules bound per PMN. Stimulation of the oxidative burst markedly reduced 125I-labeled IgG binding in both group I and group II, with a greater decrement being seen in animals with intraabdominal sepsis. Further, in group II, PMN recycling of the Fc gamma receptor to the cell surface after generation of the oxidative burst was reduced by postoperative day 4. Binding of monoclonal antibodies to Fc gamma receptor II, but not Fc gamma receptor I/III markedly reduced intracellular candicidal activity. Immunofluorescence studies revealed a homogeneous pattern of FITC-IgG uptake by nearly all group I PMNs, whereas by postoperative day 8 a substantial number of PMNs from group II failed to internalize the FITC-IgG. These studies suggest that untreated intraabdominal sepsis reduces PMN candicidal activity and that this is due, in part, to altered PMN Fc gamma receptor ligand interactions.« less
Oliveira, Camila Carvalho de; Barros Silva, Paulo Goberlânio de; Ferreira, Antonio Ernando Carlos; Gonçalves, Romélia Pinheiro; Sousa, Fabrício Bitu de; Mota, Mário Rogério Lima; Alves, Ana Paula Negreiros Nunes
2017-11-01
To evaluate the effects of dexamethasone (DEX) and nimesulide (NIM) on Bisphosphonate-related Osteonecrosis of the Jaw (BRONJ) in rats. BRONJ was induced by zoledronic acid (ZA) infusion (0.2mg/kg) in Wistar rats (n=8), followed by extraction of the left lower first molar (BRONJ groups). Control groups (n=40) received saline (IV). For eight weeks, DEX (0.04, 0.4, 4mg/kg) or saline (SAL) were administered by gavage 24h before each infusion of ZA or saline (IV), or NIM (10.3mg/kg) was administered 24h and 12h before each infusion of ZA or saline (IV). The haematological analyses were conducted weekly. After euthanasia (day 70), the jaws were submitted to radiographic and microscopic analysis. Kidney, liver, spleen and stomach were analysed histopathologically. The BRONJ groups showed a higher radiolucent area compared with the control groups (p<0.05). Histomorphometric analysis revealed healing and new bone formation in the control groups, while the BRONJ groups exhibited devitalized bone with bacterial colonies and inflammatory infiltrate. The BRONJ-DEX 0.4 and 4mg/kg groups had a greater number of bacterial colonies (p<0.05) and an increased polymorphonuclear cell count compared to the saline-BRONJ group, while the BRONJ-NIM group had a lower polymorphonuclear count (p<0.05). The BRONJ groups had leucocytosis, which was reduced by DEX administration. Treatments with DEX with or without ZA caused white pulp atrophy. Thus, DEX or NIM therapy was not effective in preventing radiographic and histopathologic events associated with BRONJ. Treatment with DEX attenuated leucocytosis post-infusion with ZA. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stuehler, Claudia; Kuenzli, Esther; Jaeger, Veronika K; Baettig, Veronika; Ferracin, Fabrizia; Rajacic, Zarko; Kaiser, Deborah; Bernardini, Claudia; Forrer, Pascal; Weisser, Maja; Elzi, Luigia; Battegay, Manuel; Halter, Joerg; Passweg, Jakob; Khanna, Nina
2015-09-15
Invasive aspergillosis (IA) remains a leading cause of morbidity and mortality in patients receiving allogeneic hematopoietic stem cell transplantation (HSCT). To date, no reliable immunological biomarkers for management and outcome of IA exist. Here, we investigated reconstitution of antifungal immunity in patients during the first 12 months after HSCT and correlated it with IA. Fifty-one patients were included, 9 with probable/proven IA. We determined quantitative and qualitative reconstitution of polymorphonuclear (PMN), CD4, CD8, and natural killer (NK) cells against Aspergillus fumigatus over 5 time points and compared the values to healthy donors. Absolute CD4 and CD8 cell counts, antigen-specific T-cell responses, and killing capacity of PMN against A. fumigatus were significantly decreased in all patients over 12 months. In patients with probable/proven IA, reactive oxygen species (ROS) production tended to be lower compared to patients without IA, and absolute NK-cell counts remained below 200 cells/µL. Patients with well-controlled IA showed significantly higher ROS production and NK-cell counts compared to patients with poor outcome. This study highlights the importance of functional PMN, T-cell, and NK-cell immunity for the outcome of IA. Larger multicenter studies should address the potential use of NK-cell counts for the management of antifungal therapy. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Daland, Geneva A.; Isaacs, Raphael
1927-01-01
1. The oxygen consumption of blood of normal individuals, when the hemoglobin is saturated with oxygen, is practically zero within the limits of experimental error of the microspirometer used. 2. The oxygen consumed in a microspirometer by the blood of patients with chronic myelogenous leucemia with a high white blood cell count, and of one with leucocytosis from sepsis, was proportional to the number of adult polymorphonuclear neutrophils in the blood. 3. No correlation could be made between the rate of oxygen absorption and the total number of white blood cells in the blood, or the total number of immature cells, or the number of red blood cells, or the amount of oxyhemoglobin. 4. The blood of patients with chronic myelogenous leucemia continued to use oxygen in the microspirometer longer than that of normal individuals, and the hemoglobin, in the leucemic bloods, became desaturated even though exposed to air. 5. In blood in which the bulk. of the cells were immature and the mature cells few, the oxygen consumption was lower than in blood in which the mature cells predominated. The rate of oxygen consumption of the immature cells was relatively low as compared to the mature. 6. The slower rate of oxygen absorption by the immature leucocytes in chronic myelogenous leucemia as compared to the mature cells, places them, in accord with Warburg's reports, in the class of the malignant tissues in this respect rather than in the group of young or embryonic cells. PMID:19869329
Analysis of synovial fluid of the Capybara's stifle joints.
Brombini, Giovanna C; Rahal, Sheila C; Bergamini, Bruno C S; Lopes, Raimundo S; Santos, Ivan F C; Schimming, Bruno C
2017-03-01
Although normal synovial fluid has been well characterized in domestic animals such as dogs, cats, horses, and cows, the available information on larger rodents is scarce. The purpose of the study was to analyze the physical, chemical, and cytologic characteristics of the synovial fluid in stifle joints of Capybaras. Five free-ranging adult female Capybaras (Hydrochoerus hydrochaeris), weighing from 37 to 56 kg were used. Synovial fluid was obtained by aspiration of 10 stifle joints. Samples were analyzed for physical, chemical, and cytologic properties. Spontaneous clotting was negative in 9 samples. Most synovial fluids had pH 8, and protein concentrations ranged from 1.6 to 3.6 g/dL. The mucin clot test was good in all 6 samples that were tested. Nucleated cell counts ranged from 140 to 508 cells/μL. Relative differential leukocyte counts demonstrated a predominance of mononuclear cells (97.6%), including 76.2% undifferentiated mononuclear cells, 18.1% macrophages, and 3.66% lymphocytes. Polymorphonuclear cells included 1.83% neutrophils and 0.2% eosinophils. The synovial stifle joint fluid of healthy free-ranging adult Capybaras is clear, colorless, viscous, and with chemical features and cytologic findings similar to those seen in domestic animals. © 2017 American Society for Veterinary Clinical Pathology.
l-Arginine modulates neonatal lymphocyte proliferation through an interleukin-2 independent pathway
Yu, Hong-Ren; Kuo, Ho-Chang; Huang, Li-Tung; Chen, Chih-Cheng; Tain, You-Lin; Sheen, Jiunn-Ming; Tiao, Mao-Meng; Huang, Hsin-Chun; Yang, Kuender D; Ou, Chia-Yo; Hsu, Te-Yao
2014-01-01
In cases of arginine depletion, lymphocyte proliferation, cytokine production and CD3ζ chain expression are all diminished. In addition to myeloid suppressor cells, polymorphonuclear cells (PMN) also exert T-cell immune suppressive effects through arginase-induced l-arginine depletion, especially during pregnancy. In this study, we investigated how arginase/l-arginine modulates neonatal lymphocyte proliferation. Results showed that the neonatal plasma l-arginine level was lower than in adults (48·1 ± 11·3 versus 86·5 ± 14·6 μm; P = 0·003). Neonatal PMN had a greater abundance of arginase I protein than adult PMN. Both transcriptional regulation and post-transcriptional regulation were responsible for the higher arginase I expression of neonatal PMN. Exogenous l-arginine enhanced neonate lymphocyte proliferation but not that of adult cells. The RNA-binding protein HuR was important but was not the only modulation factor in l-arginine-regulated neonatal T-cell proliferation. l-Arginine-mediated neonatal lymphocyte proliferation could not be blocked by interleukin-2 receptor blocking antibodies. These results suggest that the altered arginase/l-arginine cascade may be one of the mechanisms that contribute to altered neonatal immune responses. Exogenous l-arginine could enhance neonate lymphocyte proliferation through an interleukin-2-independent pathway. PMID:24697328
Miyachi, Y; Niwa, Y
1982-08-01
The effects of potassium iodide, colchicine and dapsone on the in vitro generation of polymorphonuclear leukocyte (PMN)-derived oxygen intermediates were investigated. These three drugs have beneficial effects on those conditions in which PMNs play an important pathogenetic role. Three oxygen intermediates, superoxide anion (O2-), hydrogen peroxide (H2O2), hydroxyl radical (OH.) and chemiluminescence were included in assay studies. Dose response studies were performed with therapeutic doses of the drugs (10 microM--mM). We found that both potassium iodide and dapsone significantly suppressed the generation of oxygen intermediates, except for O2-. Colchicine decreased OH. production. Our results show tha these agents to some extent exert their anti-inflammatory effects by interfering with the PMN-dependent production of oxygen intermediates, thus conferring protection from auto-oxidative tissue injury. This may account for their clinical efficacy in many PMN-mediated dermatological diseases.
Purification and antimicrobial properties of three defensins from rat neutrophils.
Eisenhauer, P B; Harwig, S S; Szklarek, D; Ganz, T; Selsted, M E; Lehrer, R I
1989-01-01
Three cysteine-rich cationic peptides, designated RatNP-1, RatNP-3, and RatNP-4, were purified from an acid extract of rat polymorphonuclear neutrophils, sequenced, and tested for antimicrobial activity. The peptides ranged from 29 to 32 amino acids in length (Mr, 3,252 to 3,825), and each contained all eight invariantly conserved "framework" residues that are characteristic of defensins. Each of the peptides killed Escherichia coli ML-35, Acinetobacter calcoaceticus HON-1, Staphylococcus aureus 502A, and Candida albicans 820 in vitro. RatNP-1, the most cationic rat defensin, was also the most potent. With this report, a total of 13 distinct defensins have been characterized in the polymorphonuclear leukocytes of four mammalian species. The existence of the defensin system in rats should facilitate investigations of the in vivo role of defensins in experimental infections. Images PMID:2543629
Hurtrel, B; Lagrange, P H; Michel, J C
1980-01-01
Cyclophosphamide (CY) increased whereas the talc embedded in a calcium phosphate gel (TCP) decreased the susceptibility of mice to systemic candidiasis estimated by measuring mean survival time and "renal infectivity" 12 h after challenge. Transfers of plasma from CY- and TCP-treated mice did not modify cnadidiasis susceptibility of recipient mice. Granulopenia and granulocytosis induced respectively by CY and TCP were significantly correlated with susceptibility or resistance to candidiasis. Nevertheless, TCP produced significant reticuloendothelial stimulation which could be also correlated with TCP protection. Reticuloendothelial stimulation with associated granulopenia in TCP-CY-treated mice gave protection against Listeria monocytogenes challenge but not against Candida albicans. Thus, blood polymorphonuclear leukocytes seem to play the main role in natural resistance of mice to candidiasis. This was corroborated after injection of immunostimulants; a good correlation was found between C. albicans resistance and the induced granulocytosis.
Chemiluminescence and phagocytic responses of rat polymorphonuclear neutrophils to leptospires.
Isogai, E; Isogai, H; Wakizaka, H; Miura, H; Kurebayashi, Y
1989-11-01
The interaction of leptospires with polymorphonuclear neutrophils (PMN) was examined by the luminol-dependent chemiluminescence (CL) test. Whole blood CL changed in relation to the stage of leptospiral infection both in susceptible (SUS) and resistant (RES) rats. The intensity of CL grew with an increasing number of leptospires in the blood. CL responses were observed in isolated PMN upon exposure to living leptospires. In contrast, the same bacteria, having been inactivated by formalin, did not stimulate PMN. A variation was found in the CL response by different living strains of Leptospira. The CL intensity was arranged as follows: L. illini greater than L. biflexa greater than L. interrogans avirulent strains greater than L. interrogans virulent strains. The CL response was markedly enhanced by an opsonization of leptospires. Specific opsonization was shown to increase the rate of phagocytosis of leptospires with relation to the CL response.
Ster, C; Loiselle, M-C; Lacasse, P
2012-02-01
The periparturient period is marked by metabolic, hormonal, and immunological changes, which have an effect on the incidence of infectious and metabolic diseases. In a previous study, a slower increase in milk production was induced by milking cows once daily during the first week of lactation, leading to an improvement in levels of several metabolites, including nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHBA). The aim was to determine the influence of serum collected on d 2, 5, and 61 postpartum from cows milked once or twice daily on immune cell functions and to determine which of the constituents were responsible for these effects. Peripheral blood mononuclear cells (PBMC) and polymorphonuclear leukocytes were collected from healthy midlactation cows and their immune functions (i.e., proliferation and interferon-γ production and chemotaxis, phagocytosis, and oxidative burst, respectively), were evaluated in presence of serum, NEFA, and BHBA. Proliferation of PBMC was greater with d-61 (65.1±1.6%) serum than with d-2 (37.3±2.4%) or d-5 (48.4±1.6%) serum and greater with d-2 and -5 serum from cows milked once (42.2±3.7 and 54.0±2.5) compared with cows milked twice daily (32.4±3.0 and 42.9±2.1). Proliferation was inversely correlated with the concentration of NEFA and BHBA in the serum (r=-0.86). Adding NEFA to d-61 serum to reach the level present in d-5 serum decreased proliferation to the level observed with d-5 serum. No effect of BHBA addition was observed. The release of interferon-γ by PBMC was lower in d-5 serum (766±63 pg/mL) than in d-61 serum (1,187±90 pg/mL) and by NEFA. Milking frequency did not affect chemotaxis, phagocytosis, or oxidative burst of polymorphonuclear leukocytes. Phagocytosis decreased over time in serum from d 2 to 61. Similarly, oxidative burst was greater with d-5 serum (12.7×10(8) ± 1.6×10(8) relative light units) than with d-61 serum (9.0×10(8) ± 1.6×10(8) relative light units). The NEFA had a negative effect on oxidative burst, but BHBA did not. In conclusion, several immune cell functions appear affected by the NEFA concentration. Therefore, strategies that prevent increases in blood NEFA during the transition period may limit postpartum immunosuppression. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Luo, Wen-Hui; Yang, Ya-Wun
2016-04-01
The aim of this study was to investigate the induction of antigen-specific T cell activation and cell cycle modulation by a poly-DL-lactide/glycolide (PLGA) nanoparticle (NP)-primed CD11b(+)Gr-1(high) subset isolated from mouse bone marrow. PLGA NPs containing the ovalbumin (OVA) antigen were prepared using the double emulsion and solvent evaporation method, and protein release rate and cell viability were determined. The Lin2(¯)CD11b(+)Gr-1(high)Ly6c(low) (Gr-1(high)) subset was sorted from the bone marrow of C57BL/6 J mice by fluorescence-activated cell sorting (FACS) and co-cultured with OT-I CD8(+) splenic T cells. Proliferation of OT-I CD8(+) T cells was monitored, and cell cycles were determined by 5-bromo-2'-deoxyuridine (BrdU) labeling. Treatment of Gr-1(high) cells with PLGA/OVA NPs upregulated expression of the SIINFEKL-H2K(b) complex in the context of MHC I. Co-cultures of OT-I CD8(+) T cells with the PLGA/OVA NP-primed Gr-1(high) cells induced the proliferation of T cells in vitro and modulated cell division and morphology. Treatment of Gr-1(high) cells with PLGA/OVA NPs also induced cell apoptosis and necrosis. This study demonstrated the function of PLGA/OVA NPs in the activation of OT-I CD8(+) T cells and the capability of cross-presentation via the Gr-1(high) polymorphonuclear subset from mouse bone marrow.
Deaton, J D; Guerrero, T; Howard, T H
1992-01-01
In vitro Ca++ activates gelsolin to sever F-actin and form a gelsolin-actin (GA) complex at the+end of F-actin that is not dissociated by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) but is separated by EGTA+PIP/PIP2. The gelsolin blocks the+end on the actin filament, but the-end of the filament can still initiate actin polymerization. In thrombin activated platelets, evidence suggests that severing of F-actin by gelsolin increases GA complex, creates one-end actin nucleus and one cryptic+end actin nucleus per cut, and then dissociates to yield free+ends to nucleate rapid actin assembly. We examined the role of F-actin severing in creation and regulation of nuclei and polymerization in polymorphonuclear neutrophils (PMNs). At 2-s intervals after formyl peptide (FMLP) activation of endotoxin free (ETF) PMNs, change in GA complex was correlated with change in+end actin nuclei,-end actin nuclei, and F-actin content. GA complex was quantitated by electrophoretograms of proteins absorbed by antigelsolin from cells lysed in 10 mM EGTA,+end actin nuclei as cytochalasin (CD) sensitive and-end actin nuclei as CD insensitive increases in G-pyrenyl actin polymerization rates induced by the same PMNs, and F-actin content by NBDphallacidin binding to fixed cells. Thirty three percent of gelsolin was in GA complex in basal ETF PMNs; from 2-6 s, GA complexes dissociate (low = 15% at 10 s) and sequentially+end nuclei and F-actin content and then-end nuclei increase to a maximum at 10 s. At > s GA complex increase toward basal and + end nuclei and F-actin content returned toward basal. These kinetic data show gelsolin regulates availability of + end nuclei and actin polymerization in FMLP. However, absence of an initial increase in GA complex or - end nucleating activity shows FMLP activation does not cause gelsolin to sever F- or to bind G-actin to create cryptic + end nuclei in PMNs; the results suggest the + nucleus formation is gelsolin independent. PMID:1337290
Deaton, J D; Guerrero, T; Howard, T H
1992-12-01
In vitro Ca++ activates gelsolin to sever F-actin and form a gelsolin-actin (GA) complex at the+end of F-actin that is not dissociated by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) but is separated by EGTA+PIP/PIP2. The gelsolin blocks the+end on the actin filament, but the-end of the filament can still initiate actin polymerization. In thrombin activated platelets, evidence suggests that severing of F-actin by gelsolin increases GA complex, creates one-end actin nucleus and one cryptic+end actin nucleus per cut, and then dissociates to yield free+ends to nucleate rapid actin assembly. We examined the role of F-actin severing in creation and regulation of nuclei and polymerization in polymorphonuclear neutrophils (PMNs). At 2-s intervals after formyl peptide (FMLP) activation of endotoxin free (ETF) PMNs, change in GA complex was correlated with change in+end actin nuclei,-end actin nuclei, and F-actin content. GA complex was quantitated by electrophoretograms of proteins absorbed by antigelsolin from cells lysed in 10 mM EGTA,+end actin nuclei as cytochalasin (CD) sensitive and-end actin nuclei as CD insensitive increases in G-pyrenyl actin polymerization rates induced by the same PMNs, and F-actin content by NBDphallacidin binding to fixed cells. Thirty three percent of gelsolin was in GA complex in basal ETF PMNs; from 2-6 s, GA complexes dissociate (low = 15% at 10 s) and sequentially+end nuclei and F-actin content and then-end nuclei increase to a maximum at 10 s. At > s GA complex increase toward basal and + end nuclei and F-actin content returned toward basal. These kinetic data show gelsolin regulates availability of + end nuclei and actin polymerization in FMLP. However, absence of an initial increase in GA complex or - end nucleating activity shows FMLP activation does not cause gelsolin to sever F- or to bind G-actin to create cryptic + end nuclei in PMNs; the results suggest the + nucleus formation is gelsolin independent.
Harrison, J D; Hodgson, A; Haines, J W; Stather, J W
1993-07-01
As an input to dose assessments, measurements have been made of the clearance of Pu and Am after subcutaneous implantation in rats for six particulate materials and one dust from the Maralinga test sites. The tissue distribution of Pu and Am were measured in groups of six animals at one month and 6 months after implantation. In addition, in vitro solubility tests were carried out on eight different particulate materials. Histological examination of the subcutaneous implantation site was undertaken after one year for selected materials. Autoradiographs of tissue sections showed that particles were surrounded by fibrotic tissue with macrophage and polymorphonuclear cell infiltration, the normal tissue response to foreign materials. The clearance data have been used to make estimates of the likely range in potential radiation doses in humans. To calculate the dose from dissolved 239Pu and 241Am, four different situations have been considered. For the dust, the results suggest that dissolution essentially ceases after the removal of Pu and Am from the surfaces of dust particles. From the values obtained, the acute release of a fraction of 10(-2) of both nuclides from a dust contaminated wound was assumed. For a number of particles the results suggested continued dissolution and the clearance of 10(-3) per year of both nuclides, continuing for a number of years, has therefore been considered. For the least soluble particles, there was no clear evidence of continued clearance and the acute release of 10(-4) has therefore been taken as a lower estimate for dose calculations.(ABSTRACT TRUNCATED AT 250 WORDS)
Deng, Qiuchan; Sun, Mingxia; Yang, Kun; Zhu, Min; Chen, Kang; Yuan, Jin; Wu, Minhao; Huang, Xi
2013-01-01
Purpose. We explored the role of myeloid-related protein 8 and 14 (MRP8/14) in Pseudomonas aeruginosa (PA) keratitis. Methods. MRP8/14 mRNA levels in human corneal scrapes and mouse corneas infected by PA were tested using real-time PCR. MRP8/14 protein expression in C57BL/6 (B6) corneas was confirmed using Western blot assay and immunohistochemistry. B6 mice were injected subconjunctivally with siRNA for MRP8/14, and then infected with PA. Bacterial plate counts and myeloperoxidase assays were used to determine the bacterial load and polymorphonuclear neutrophil (PMN) infiltration in infected B6 corneas. Pro-inflammatory cytokine levels in vivo and in vitro were examined with PCR and ELISA. In murine macrophage-like RAW264.7 cells, phagocytosis and bacterial killing were assessed using plate count assays, and reactive oxygen species (ROS) and nitric oxide (NO) levels were tested with flow cytometry and Griess assay, respectively. Results. MRP8/14 expression levels were increased significantly in human corneal scrapes and B6 corneas after PA infection. Silencing of MRP8/14 in B6 corneas significantly reduced the severity of corneal disease, bacterial clearance, PMN infiltration, and pro-inflammatory cytokine expression after PA infection. In vitro studies demonstrated further that silencing of MRP8/14 suppressed pro-inflammatory cytokine production, bacterial killing, and ROS production, but not phagocytosis or NO production. Conclusions. Our study demonstrated a dual role for MRP8/14 in bacterial keratitis. Although MRP8/14 promotes bacterial clearance by enhancing ROS production, it functions more importantly as an inflammatory amplifier at the ocular surface by enhancing pro-inflammatory cytokine expression, thus contributing to the corneal susceptibility. PMID:23299480
An in vitro examination of the antioxidant and anti-inflammatory properties of buckwheat honey.
van den Berg, A J J; van den Worm, E; van Ufford, H C Quarles; Halkes, S B A; Hoekstra, M J; Beukelman, C J
2008-04-01
Hydroxyl radical and hypochlorite anion formed at the wound site from superoxide anion produced by activated polymorphonuclear neutrophils (PMNs) are considered important factors in impaired wound healing. Superoxide anion may also react with nitric oxide produced by macrophages to form peroxynitrite, a third strong oxidant that damages surrounding tissue. In order to select honey for use in wound-healing products, different samples were compared for their capacity to reduce levels of reactive oxygen species (ROS) in vitro. Honey samples were tested in assays for inhibition of ROS production by activated human PMNs, antioxidant activity (scavenging of superoxide anion in a cell-free system) and inhibition of human complement (reducing levels of ROS by limiting formation of complement factors that attract and stimulate PMNs). For buckwheat honey (NewYork, US), moisture and free acid content were determined by refractive index measurement and potentiometric titration respectively. Honey constituents other than sugars were investigated by thin layer chromatography, using natural product reagent to detect phenolic compounds. Constituents with antioxidant properties were detected by spraying the chromatogram with DPPH. Although most honey samples were shown to be active, significant differences were observed, with the highly active honey exceeding the activities of samples with minor effects by factors of 4 to 30. Most pronounced activities were found for American buckwheat honey from the state of NewYork. Phenolic constituents of buckwheat honey were shown to have antioxidant activity. As buckwheat honey was most effective in reducing ROS levels, it was selected for use in wound-healing products. The major antioxidant properties in buckwheat honey derive from its phenolic constituents, which are present in relatively large amounts. Its phenolic compounds may also exert antibacterial activity, whereas its low pH and high free acid content may assist wound healing.
Flow Cytometric Determination of Panton-Valentine Leucocidin S Component Binding
Gauduchon, Valérie; Werner, Sandra; Prévost, Gilles; Monteil, Henri; Colin, Didier A.
2001-01-01
The binding of the S component (LukS-PV) from the bicomponent staphylococcal Panton-Valentine leucocidin to human polymorphonuclear neutrophils (PMNs) and monocytes was determined using flow cytometry and a single-cysteine substitution mutant of LukS-PV. The mutant was engineered by replacing a glycine at position 10 with a cysteine and was labeled with a fluorescein moiety. The biological activity of the mutant was identical to that of the native protein. It has been shown that LukS-PV has a high affinity for PMNs (Kd = 0.07 ± 0.02 nM, n = 5) and monocytes (Kd = 0.020 ± 0.003 nM, n = 3) with maximal binding capacities of 197,000 and 80,000 LukS-PV molecules per cell, respectively. The nonspecifically bound molecules of LukS-PV do not form pores in the presence of the F component (LukF-PV) of leucocidin. LukS-PV and HlgC share the same receptor on PMNs, but the S components of other staphylococcal leukotoxins, HlgA, LukE, and LukM, do not compete with LukS-PV for its receptor. Extracellular Ca2+ at physiological concentrations (1 to 2 nM) has only a slight influence on the LukS-PV binding, in contrast to its complete inhibition by Zn2+. The down-regulation by phorbol 12-myristate 13-acetate (PMA) of the binding of LukS-PV was blocked by staurosporine, suggesting that the regulatory effect of PMA depends on protein kinase C activation. The labeled mutant form of LukS-PV has proved very useful for detailed binding studies of circulating white cells by flow cytometry. LukS-PV possesses a high specific affinity for a unique receptor on PMNs and monocytes. PMID:11254598
Vongsak, Boonyadist; Gritsanapan, Wandee; Wongkrajang, Yuvadee; Jantan, Ibrahim
2013-11-01
The ethanol extract of Moringa oleifera Lam. leaves and its major constituents, crypto-chlorogenic acid, quercetin 3-O-glucoside and kaempferol 3-O-glucoside, were investigated on the respiratory burst of human whole blood and isolated human polymorphonuclear leukocytes (PMNs) using a luminol-based chemiluminescence assay. The chemotactic migration of PMNs was also investigated using the Boyden chamber technique. The ethanol extract demonstrated inhibitory activities on the oxidative burst and the chemotactic migration of PMNs. Quercetin 3-O-glucoside, crypto-chlorogenic acid, and kaempferol 3-O-glucoside, isolated from the extract, expressed relatively strong inhibitory activity on the oxidative burst of PMNs with IC50 values of 4.1, 6.7 and 7.0 microM, respectively, comparable with that of aspirin. They also demonstrated strong inhibition of chemotatic migration of PMNs with IC50 values of 9.5, 15.9 and 18.2 microM, respectively. The results suggest that M. oleifera leaves could modulate the immune response of human phagocytes, linking to its ethnopharmacological use as an anti-inflammatory agent. The immunomodulating activity of the plant was mainly due to its major components.
Chemical, enzymatic and cellular antioxidant activity studies of Agaricus blazei Murrill.
Hakime-Silva, Ricardo A; Vellosa, José C R; Khalil, Najeh M; Khalil, Omar A K; Brunetti, Iguatemy L; Oliveira, Olga M M F
2013-09-01
Mushrooms possess nutritional and medicinal properties that have long been used for human health preservation and that have been considered by researchers as possible sources of free radical scavengers. In this work, the antioxidant properties of water extracts from Agaricus blazei Murill, produced by maceration and decoction, are demonstrated in vitro. Resistance to oxidation is demonstrated through three mechanisms: i) inhibition of enzymatic oxidative process, with 100% inhibition of HRP (horseradish peroxidase) and MPO (myeloperoxidase); ii) inhibition of cellular oxidative stress, with 80% inhibition of the oxidative burst of polymorphonuclear neutrophils (PMNs); and iii) direct action over reactive species, with 62% and 87% suppression of HOCl and superoxide anion radical (O2• -), respectively. From the data, it was concluded that the aqueous extract of A. blazei has significant antioxidant activity, indicating its possible application for nutraceutical and medicinal purposes.
Chang, Peixi; Li, Weitian; Shi, Guolin; Li, Huan; Yang, Xiaoqing; Xia, Zechen; Ren, Yuan; Li, Zhiwei; Chen, Huanchun; Bei, Weicheng
2018-01-01
ABSTRACT Streptococcus suis is a highly invasive pathogen that can cause sepsis and meningitis in pigs and humans. However, we have limited understanding of the mechanisms S. suis uses to evade innate immunity. To investigate the involvement of the two-component signal transduction system of S. suis in host immune defense, we examined the expression of 15 response regulators of S. suis following stimulation with polymorphonuclear leukocytes (PMNs). We found that several response regulators were significantly up-regulated including vraR. Thus, we constructed an isogenic deletion mutant of vraSR genes in S. suis and demonstrated VraSR promotes both bacterial survival in human blood and resistance to human PMN-mediated killing. The VraSR mutant was more susceptible to phagocytosis by human PMNs and had greater sensitivity to oxidant and lysozyme than wild-type S. suis. Furthermore, in vitro findings and in vivo evidence from a mouse infection model together strongly demonstrate that ΔvraSR had greatly attenuated virulence compared with wild-type S. suis. Collectively, our data reveal that VraSR is a critical regulatory system that contributes to the survival of S. suis and its ability to defend against host innate immunity. PMID:29471718
Elewa, Yaser Hosny Ali; Ichii, Osamu; Takada, Kensuke; Nakamura, Teppei; Masum, Md Abdul; Kon, Yasuhiro
2018-01-01
Bleomycin (BLM) has been reported to induce lung inflammation and fibrosis in human and mice and showed genetic susceptibility. Interestingly, the C57BL/6 (B6) mice had prominent mediastinal fat-associated lymphoid cluster (MFALCs) under healthy condition, and showed susceptibility to development of lung fibrosis following BLM administration. However, the pathogenesis of lung lesion progression, and their correlation with MFALC morphologies, remain to be clarified. To investigate the correlations between MFALC structures and lung injuries in B6 mice, histopathological examination of mediastinal fat tissues and lungs was examined at 7 and 21 days (d) following a single 50 μL intranasal (i.n.) instillation of either BLM sulfate (5 mg/kg) (BLM group) or phosphate-buffered saline (control group). The lung fibrosis was examined by Masson's trichrome (MT) stain of paraffin sections and mRNA expression levels of Col1a1, Col3a1, and Acta2 in different frozen lung samples. Furthermore, immunohistochemistry for CD3, B220, Iba1, Gr1, BrdU, LYVE-1, and peripheral node addressin (PNAd) was performed to detect T- and B-cells, macrophages, granulocytes, proliferating cells, lymph vessels (LVs), and high endothelial venules (HEVs). We found that MFALCs were more abundant in the BLM group as compared to the control group. The lung of BLM group developed pneumonitis with severe cellular infiltrations at 7 days and significant collagen deposition (MT) and higher expression of Col1a1, and Col3a1 at 21 days post-administration. Numerous immune cells, proliferating cells, HEVs, and LVs were observed in both MFALCs and lungs of the BLM group. Interestingly, PNAd + HEVs were observed in the lungs of the BLM group, but not the control group. Moreover, numerous Gr1 + polymorphonuclear and mononuclear-like ring cells were found in the MFALCs and lungs of the BLM group. Interestingly, flow cytometric analysis revealed a significant increase of B-cell populations within the MFALCs of BLM group suggesting a potential proliferative induction of B-cells following inflammation. Furthermore, significant positive correlations were observed between quantitative parameters of these immune cells in both the lungs and MFALCs. Thus, we suggest a potentially important role for MFALCs and HEVs in the progression of lung disease, especially in inflammatory lung disease.
Laser fluorescence fluctuation excesses in molecular immunology experiments
NASA Astrophysics Data System (ADS)
Galich, N. E.; Filatov, M. V.
2007-04-01
A novel approach to statistical analysis of flow cytometry fluorescence data have been developed and applied for population analysis of blood neutrophils stained with hydroethidine during respiratory burst reaction. The staining based on intracellular oxidation hydroethidine to ethidium bromide, which intercalate into cell DNA. Fluorescence of the resultant product serves as a measure of the neutrophil ability to generate superoxide radicals after induction respiratory burst reaction by phorbol myristate acetate (PMA). It was demonstrated that polymorphonuclear leukocytes of persons with inflammatory diseases showed a considerably changed response. Cytofluorometric histograms obtained have unique information about condition of neutrophil population what might to allow a determination of the pathology processes type connecting with such inflammation. A novel approach to histogram analysis is based on analysis of high-momentum dynamic of distribution. The features of fluctuation excesses of distribution have unique information about disease under consideration.
Bishayi, Biswadev; Nandi, Ajeya; Dey, Rajen; Adhikary, Rana
2017-08-01
Literature reveals that interaction with live Staphylococcus aureus (S. aureus) or heat killed S. aureus (HKSA) promotes secretion of CXCL-8 or interleukin-8 (IL-8) from leukocytes, however, the expressions of CXCR1 in murine splenic (SPM), peritoneal macrophages (PM) and resident fresh bone marrow cells (FBMC) have not been identified. Currently, very few studies are available on the functional characterization of CXCR1 in mouse macrophage subtypes and its modulation in relation to acute S. aureus infection. SPM, PM and FBMCs were infected with viable S. aureus or stimulated with HKSA in presence and absence of anti-CXCR1 antibody in this study. We reported here that CXCR1 was not constitutively expressed by macrophage subtypes and the receptor was induced only after S. aureus stimulation. The CXCR1 band was found specific as we compared with human polymorphonuclear neutrophils (PMNs) as a positive control (data not shown). Although, we did not show that secreted IL-8 from S. aureus-infected macrophages promotes migration of PMNs. Blocking of cell surface CXCR1 decreases the macrophage's ability to clear staphylococcal infection, attenuates proinflammatory cytokine production and the increased catalase and decreased superoxide dismutase (SOD) enzymes of the bacteria might indicate their role in scavenging macrophage derived hydrogen peroxide (H 2 O 2 ). The decreased levels of cytokines due to CXCR1 blockade before S. aureus infection appear to regulate the killing of bacteria by destroying H 2 O 2 and nitric oxide (NO). Moreover, functional importance of macrophage subpopulation heterogeneity might be important in designing new effective approaches to limit S. aureus infection induced inflammation and cytotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Time course of pulmonary burden in mice exposed to residual oil fly ash
Carvalho, Giovanna Marcella Cavalcante; Nagato, Lilian Katiê da Silva; Fagundes, Sheila da Silva; dos Santos, Flávia Brandão; Calheiros, Andrea Surrage; Malm, Olaf; Bozza, Patricia Torres; Saldiva, Paulo Hilário N.; Faffe, Débora Souza; Rocco, Patricia Rieken Macedo; Zin, Walter Araujo
2014-01-01
Residual oil fly ash (ROFA) is a common pollutant in areas where oil is burned. This particulate matter (PM) with a broad distribution of particle diameters can be inhaled by human beings and putatively damage their respiratory system. Although some studies deal with cultured cells, animals, and even epidemiological issues, so far a comprehensive analysis of respiratory outcomes as a function of the time elapsed after exposure to a low dose of ROFA is wanted. Thus, we aimed to investigate the time course of mechanical, histological, and inflammatory lung changes, as well as neutrophils in the blood, in mice exposed to ROFA until 5 days after exposure. BALB/c mice (25 ± 5 g) were randomly divided into 7 groups and intranasally instilled with either 10 μL of sterile saline solution (0.9% NaCl, CTRL) or ROFA (0.2 μg in 10 μL of saline solution). Pulmonary mechanics, histology (normal and collapsed alveoli, mononuclear and polymorphonuclear cells, and ultrastructure), neutrophils (in blood and bronchoalveolar lavage fluid) were determined at 6 h in CTRL and at 6, 24, 48, 72, 96, and 120 h after ROFA exposure. ROFA contained metal elements, especially iron, polycyclic aromatic hydrocarbons (PAHs), and organochlorines. Lung resistive pressure augmented early (6 h) in the course of lung injury and other mechanical, histological and inflammatory parameters increased at 24 h, returning to control values at 120 h. Blood neutrophilia was present only at 24 and 48 h after exposure. Swelling of endothelial cells with adherent neutrophils was detected after ROFA instillation. No neutrophils were present in the lavage fluid. In conclusion, the exposure to ROFA, even in low doses, induced early changes in pulmonary mechanics, lung histology and accumulation of neutrophils in blood of mice that lasted for 4 days and disappeared spontaneously. PMID:25309454
Time course of pulmonary burden in mice exposed to residual oil fly ash.
Carvalho, Giovanna Marcella Cavalcante; Nagato, Lilian Katiê da Silva; Fagundes, Sheila da Silva; Dos Santos, Flávia Brandão; Calheiros, Andrea Surrage; Malm, Olaf; Bozza, Patricia Torres; Saldiva, Paulo Hilário N; Faffe, Débora Souza; Rocco, Patricia Rieken Macedo; Zin, Walter Araujo
2014-01-01
Residual oil fly ash (ROFA) is a common pollutant in areas where oil is burned. This particulate matter (PM) with a broad distribution of particle diameters can be inhaled by human beings and putatively damage their respiratory system. Although some studies deal with cultured cells, animals, and even epidemiological issues, so far a comprehensive analysis of respiratory outcomes as a function of the time elapsed after exposure to a low dose of ROFA is wanted. Thus, we aimed to investigate the time course of mechanical, histological, and inflammatory lung changes, as well as neutrophils in the blood, in mice exposed to ROFA until 5 days after exposure. BALB/c mice (25 ± 5 g) were randomly divided into 7 groups and intranasally instilled with either 10 μL of sterile saline solution (0.9% NaCl, CTRL) or ROFA (0.2 μg in 10 μL of saline solution). Pulmonary mechanics, histology (normal and collapsed alveoli, mononuclear and polymorphonuclear cells, and ultrastructure), neutrophils (in blood and bronchoalveolar lavage fluid) were determined at 6 h in CTRL and at 6, 24, 48, 72, 96, and 120 h after ROFA exposure. ROFA contained metal elements, especially iron, polycyclic aromatic hydrocarbons (PAHs), and organochlorines. Lung resistive pressure augmented early (6 h) in the course of lung injury and other mechanical, histological and inflammatory parameters increased at 24 h, returning to control values at 120 h. Blood neutrophilia was present only at 24 and 48 h after exposure. Swelling of endothelial cells with adherent neutrophils was detected after ROFA instillation. No neutrophils were present in the lavage fluid. In conclusion, the exposure to ROFA, even in low doses, induced early changes in pulmonary mechanics, lung histology and accumulation of neutrophils in blood of mice that lasted for 4 days and disappeared spontaneously.
Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils
NASA Astrophysics Data System (ADS)
Wang, Zhenjia; Li, Jing; Cho, Jaehyung; Malik, Asrar B.
2014-03-01
Inflammatory diseases such as acute lung injury and ischaemic tissue injury are caused by the adhesion of a type of white blood cell--polymorphonuclear neutrophils--to the lining of the circulatory system or vascular endothelium and unchecked neutrophil transmigration. Nanoparticle-mediated targeting of activated neutrophils on vascular endothelial cells at the site of injury may be a useful means of directly inactivating neutrophil transmigration and hence mitigating vascular inflammation. Here, we report a method employing drug-loaded albumin nanoparticles, which efficiently deliver drugs into neutrophils adherent to the surface of the inflamed endothelium. Using intravital microscopy of tumour necrosis factor-α-challenged mouse cremaster post-capillary venules, we demonstrate that fluorescently tagged albumin nanoparticles are largely internalized by neutrophils adherent to the activated endothelium via cell surface Fcɣ receptors. Administration of albumin nanoparticles loaded with the spleen tyrosine kinase inhibitor, piceatannol, which blocks `outside-in' β2 integrin signalling in leukocytes, detached the adherent neutrophils and elicited their release into the circulation. Thus, internalization of drug-loaded albumin nanoparticles into neutrophils inactivates the pro-inflammatory function of activated neutrophils, thereby offering a promising approach for treating inflammatory diseases resulting from inappropriate neutrophil sequestration and activation.
van Lent, P L; Licht, R; Dijkman, H; Holthuysen, A E; Berden, J H; van den Berg, W B
2001-11-01
Previously we have shown that synovial lining macrophages (SLMs) determine the onset of experimental immune complex-mediated arthritis (ICA). During joint inflammation, many leukocytes undergo apoptosis, and removal of leukocytes by SLMs may regulate resolution of inflammation. In this study we investigated binding and uptake of apoptotic leukocytes by SLMs and its impact on the onset of murine experimental arthritis. We used an in vitro model to evaluate phagocytosis of apoptotic cells on chemotaxis. Phagocytosis of apoptotic thymocytes resulted in a significant decrease (58%) of chemotactic activity for polymorphonuclear neutrophils (PMNs). If apoptotic cells were injected directly into a normal murine knee joint, SLMs resulted in a prominent uptake of cells. After ICA induction, electron micrographs showed that apoptotic leukocytes were evidently present in SLMs on days 1 and 2. Injection of apoptotic leukocytes into the knee joint 1 h before induction of ICA significantly inhibited PMN infiltration into the knee joint at 24 h (61% decrease). This study indicates that uptake of apoptotic leukocytes by SLM reduces chemotactic activity and inhibits the onset of experimental arthritis. These findings indicate an important mechanism in the resolution of joint inflammation.
BERLIN, R D; WOOD, W B
1964-05-01
The metabolic reactions responsible for the release of endogenous pyrogen from rabbit granulocytes incubated in 0.15 M NaCl are specifically inhibited by the presence of K(+) (and by related alkali metal ions, Rb(+) and Cs(+)) in the medium. The inhibitory action of K(+) apparently involves penetration of the cell membrane and is directly antagonized by the cardiac glycoside, ouabain. It is concluded, therefore, that the inhibition of pyrogen release by extracellular K(+) is due to transport of K(+) into the cell. Although the precise molecular mechanisms which are responsible for the release of pyrogen from granulocytes incubated in K-free saline have not been elucidated, further study of the process has revealed: (a) that it is preceded by the accumulation of pyrogen within the cell, (b) that it depends upon the catalytic action of one or more sulfhydryl-containing enzymes, (c) that it does not require energy, either from glycolysis or from reactions depending on molecular oxygen, and (d) that its inhibition by K(+) and by arsenite is qualitatively similar to the depression caused by these same reagents on the release of other leucocytic proteins; i.e., lysozyme and aldolase.
Effects of stingless bee propolis on experimental asthma.
de Farias, José Hidelbland Cavalcante; Reis, Aramys Silva; Araújo, Marcio Antonio Rodrigues; Araújo, Maria José Abigail Mendes; Assunção, Anne Karine Martins; de Farias, Jardel Cavalcante; Fialho, Eder Magalhães Silva; Silva, Lucilene Amorim; Costa, Graciomar Conceição; Guerra, Rosane Nassar Meireles; Ribeiro, Maria Nilce Sousa; do Nascimento, Flávia Raquel Fernandes
2014-01-01
Bee products have been used empirically for centuries, especially for the treatment of respiratory diseases. The present study evaluated the effect of treatment with a propolis hydroalcoholic extract (PHE) produced by Scaptotrigona aff. postica stingless bee in a murine asthma model. BALB/c mice were immunized twice with ovalbumin (OVA) subcutaneously. After 14 days, they were intranasally challenged with OVA. Groups P50 and P200 received PHE by gavage at doses of 50 and 200 mg/kg, respectively. The DEXA group was treated with intraperitoneal injection of dexamethasone. The OVA group received only water. The mice were treated daily for two weeks and then they were immunized a second time with intranasal OVA. The treatment with PHE decreased the cell number in the bronchoalveolar fluid (BAL). Histological analysis showed reduced peribronchovascular inflammation after treatment with PHE especially the infiltration of polymorphonuclear cells. In addition, the concentration of interferon- γ (IFN- γ ) in the serum was decreased. These results were similar to those obtained with dexamethasone. Treatment with S. aff postica propolis reduced the pathology associated with murine asthma due an inhibition of inflammatory cells migration to the alveolar space and the systemic progression of the allergic inflammation.
Comparison of the Functional microRNA Expression in Immune Cell Subsets of Neonates and Adults
Yu, Hong-Ren; Hsu, Te-Yao; Huang, Hsin-Chun; Kuo, Ho-Chang; Li, Sung-Chou; Yang, Kuender D.; Hsieh, Kai-Sheng
2016-01-01
Diversity of biological molecules in newborn and adult immune cells contributes to differences in cell function and atopic properties. Micro RNAs (miRNAs) are reported to involve in the regulation of immune system. Therefore, determining the miRNA expression profile of leukocyte subpopulations is important for understanding immune system regulation. In order to explore the unique miRNA profiling that contribute to altered immune in neonates, we comprehensively analyzed the functional miRNA signatures of eight leukocyte subsets (polymorphonuclear cells, monocytes, CD4+ T cells, CD8+ T cells, natural killer cells, B cells, plasmacytoid dendritic cells, and myeloid dendritic cells) from both neonatal and adult umbilical cord and peripheral blood samples, respectively. We observed distinct miRNA profiles between adult and neonatal blood leukocyte subsets, including unique miRNA signatures for each cell lineage. Leukocyte miRNA signatures were altered after stimulation. Adult peripheral leukocytes had higher let-7b-5p expression levels compared to neonatal cord leukocytes across multiple subsets, irrespective of stimulation. Transfecting neonatal monocytes with a let-7b-5p mimic resulted in a reduction of LPS-induced interleukin (IL)-6 and TNF-α production, while transfection of a let-7b-5p inhibitor into adult monocytes enhanced IL-6 and TNF-α production. With this functional approach, we provide intact differential miRNA expression profiling of specific immune cell subsets between neonates and adults. These studies serve as a basis to further understand the altered immune response observed in neonates and advance the development of therapeutic strategies. PMID:28066425
Pian, Yaya; Li, Xueqin; Zheng, Yuling; Wu, Xiaohong; Yuan, Yuan; Jiang, Yongqiang
2016-01-01
The Gram-positive bacterium Streptococcus suis serotype 2 (S. suis 2), an important zoonotic pathogen, induces strong systemic infections in humans; sepsis and meningitis are the most common clinical manifestations and are often accompanied by bacteremia. However, the mechanisms of S. suis 2 survival in human blood are not well understood. In our previous study, we identified muramidase-released protein (MRP), a novel human fibrinogen (hFg)-binding protein (FBP) in S. suis 2 that is an important epidemic infection marker with an unknown mechanism in pathogenesis. The present study demonstrates that the N-terminus of MRP (a.a. 283–721) binds to both the Aα and Bβ chains of the D fragment of hFg. Strikingly, the hFg-MRP interaction improved the survival of S. suis 2 in human blood and led to the aggregation and exhaustion of polymorphonuclear neutrophils (PMNs) via an αXβ2 integrin-dependent mechanism. Other Fg-binding proteins, such as M1 (GAS) and FOG (GGS), also induced PMNs aggregation; however, the mechanisms of these FBP-hFg complexes in the evasion of PMN-mediated innate immunity remain unclear. MRP is conserved across highly virulent strains in Europe and Asia, and these data shed new light on the function of MRP in S. suis pathogenesis. PMID:27231021
Pian, Yaya; Li, Xueqin; Zheng, Yuling; Wu, Xiaohong; Yuan, Yuan; Jiang, Yongqiang
2016-05-27
The Gram-positive bacterium Streptococcus suis serotype 2 (S. suis 2), an important zoonotic pathogen, induces strong systemic infections in humans; sepsis and meningitis are the most common clinical manifestations and are often accompanied by bacteremia. However, the mechanisms of S. suis 2 survival in human blood are not well understood. In our previous study, we identified muramidase-released protein (MRP), a novel human fibrinogen (hFg)-binding protein (FBP) in S. suis 2 that is an important epidemic infection marker with an unknown mechanism in pathogenesis. The present study demonstrates that the N-terminus of MRP (a.a. 283-721) binds to both the Aα and Bβ chains of the D fragment of hFg. Strikingly, the hFg-MRP interaction improved the survival of S. suis 2 in human blood and led to the aggregation and exhaustion of polymorphonuclear neutrophils (PMNs) via an αXβ2 integrin-dependent mechanism. Other Fg-binding proteins, such as M1 (GAS) and FOG (GGS), also induced PMNs aggregation; however, the mechanisms of these FBP-hFg complexes in the evasion of PMN-mediated innate immunity remain unclear. MRP is conserved across highly virulent strains in Europe and Asia, and these data shed new light on the function of MRP in S. suis pathogenesis.
Upregulation of CSPG3 accompanies neuronal progenitor proliferation and migration in EAE.
Sajad, Mir; Zargan, Jamil; Chawla, Raman; Umar, Sadiq; Khan, Haider A
2011-03-01
The molecular identities of signals that regulate the CNS lesion remodeling remain unclear. Herein, we report for the first time that extracellular matrix chondroitin sulphate proteoglycan, CSPG3 (neurocan) is upregulated after primary inflammatory injury. EAE was induced using myelin oligodendrocyte glycoprotein (MOG) (35-55) which was characterized by massive polymorphonuclear cell infiltration and loss of myelin basic protein expression along with steep decrease of CNPase. Periventricular white matter (PVWM) and cortex presented with astrogliosis evidenced by increased Glial fibrillary acidic protein (GFAP) immunoreactivity 20 days post immunization (p.i). Neuronal progenitor cell (NPC) proliferation increased after first acute episode in the subventricular zone (SVZ), corpus callosum, and cortex, indicating migration of cells to structures other than rostral migration stream and olfactory bulb, which is indicative of cell recruitment for repair process and was confirmed by presence of thin myelin sheaths in the shadow plaques. Earlier CSPG3 has been demonstrated to impede regeneration. We observed neuroinflammation-induced up-regulation of the CSPG3 expression in two most affected regions viz. PVWM and cortex after proliferation and migration of NPCs. Our results show possible role of reactive astrogliosis in lesion remodeling and redefine the relation between inflammation and endogenous cellular repair which can aid in designing of newer therapeutic strategies.
Lymphatic vessels correlate closely with inflammation index in alkali burned cornea.
Yan, Hao; Qi, Chaoxiu; Ling, Shiqi; Li, Weihua; Liang, Linyi
2010-08-01
To study the relationship between corneal lymphangiogenesis and inflammation in alkali burned corneas. Rat corneal lymphatic and blood vessels were labeled and distinguished by whole mount immunofluorescence and 5'-nase-alkaline phosphatase (5'-NA-ALP) double enzyme-histochemistry. Then, lymphatic vessel areas (LVA) and lymphatic vessel counting (LVC) were examined. Corneal inflammation was evaluated by inflammation index (IF) grading, histopathology, electron microscope, and polymorphonuclear leukocyte (PMN) infiltration. The relationship between LVC, LVA, IF, and PMN was examined, respectively. In addition, corneal lymphatic vessels of eleven human alkali burned corneas were examined by lymphatic vessel endothelial receptor (LYVE-1) immunohistochemistry. Corneal lymphangiogenesis occurred on Day 3, reached the peak at the end of two weeks, and disappeared five weeks after alkaline burns. Both LVA and LVC were strongly and positively correlated with IF after corneal alkaline burns. However, the relationship between LVC and PMN, between LVA and PMN were significant but converse. Among eleven human alkali burned corneas, corneal lymphangiogenesis was present in three corneas. Corneal lymphagiogenesis develops after alkaline burns and correlates closely with corneal inflammation.
Daland, G A; Isaacs, R
1927-06-30
1. The oxygen consumption of blood of normal individuals, when the hemoglobin is saturated with oxygen, is practically zero within the limits of experimental error of the microspirometer used. 2. The oxygen consumed in a microspirometer by the blood of patients with chronic myelogenous leucemia with a high white blood cell count, and of one with leucocytosis from sepsis, was proportional to the number of adult polymorphonuclear neutrophils in the blood. 3. No correlation could be made between the rate of oxygen absorption and the total number of white blood cells in the blood, or the total number of immature cells, or the number of red blood cells, or the amount of oxyhemoglobin. 4. The blood of patients with chronic myelogenous leucemia continued to use oxygen in the microspirometer longer than that of normal individuals, and the hemoglobin, in the leucemic bloods, became desaturated even though exposed to air. 5. In blood in which the bulk. of the cells were immature and the mature cells few, the oxygen consumption was lower than in blood in which the mature cells predominated. The rate of oxygen consumption of the immature cells was relatively low as compared to the mature. 6. The slower rate of oxygen absorption by the immature leucocytes in chronic myelogenous leucemia as compared to the mature cells, places them, in accord with Warburg's reports, in the class of the malignant tissues in this respect rather than in the group of young or embryonic cells.
Grosso, Matthew J; Frangiamore, Salvatore J; Ricchetti, Eric T; Bauer, Thomas W; Iannotti, Joseph P
2014-03-19
Propionibacterium acnes is a clinically relevant pathogen with total shoulder arthroplasty. The purpose of this study was to determine the sensitivity of frozen section histology in identifying patients with Propionibacterium acnes infection during revision total shoulder arthroplasty and investigate various diagnostic thresholds of acute inflammation that may improve frozen section performance. We reviewed the results of forty-five patients who underwent revision total shoulder arthroplasty. Patients were divided into the non-infection group (n = 15), the Propionibacterium acnes infection group (n = 18), and the other infection group (n = 12). Routine preoperative testing was performed and intraoperative tissue culture and frozen section histology were collected for each patient. The histologic diagnosis was determined by one pathologist for each of the four different thresholds. The absolute maximum polymorphonuclear leukocyte concentration was used to construct a receiver operating characteristics curve to determine a new potential optimal threshold. Using the current thresholds for grading frozen section histology, the sensitivity was lower for the Propionibacterium acnes infection group (50%) compared with the other infection group (67%). The specificity of frozen section was 100%. Using a receiver operating characteristics curve, an optimized threshold was found at a total of ten polymorphonuclear leukocytes in five high-power fields (400×). Using this threshold, the sensitivity of frozen section for Propionibacterium acnes was increased to 72%, and the specificity remained at 100%. Using current histopathology grading systems, frozen sections were specific but showed low sensitivity with respect to the Propionibacterium acnes infection. A new threshold value of a total of ten or more polymorphonuclear leukocytes in five high-power fields may increase the sensitivity of frozen section, with minimal impact on specificity.
Libbey, Jane E.; Kennett, Nikki J.; Wilcox, Karen S.; White, H. Steve; Fujinami, Robert S.
2011-01-01
Cells that can participate in an innate immune response within the central nervous system (CNS) include infiltrating cells (polymorphonuclear leukocytes [PMNs], macrophages, and natural killer [NK] cells) and resident cells (microglia and sometimes astrocytes). The proinflammatory cytokine interleukin-6 (IL-6) is produced by all of these cells and has been implicated in the development of behavioral seizures in the Theiler's murine encephalomyelitis virus (TMEV)-induced seizure model. The assessment, via PCR arrays, of the mRNA expression levels of a large number of chemokines (ligands and receptors) in TMEV-infected and mock-infected C57BL/6 mice both with and without seizures did not clearly demonstrate the involvement of PMNs, monocytes/macrophages, or NK cells in the development of seizures, possibly due to overlapping function of the chemokines. Additionally, C57BL/6 mice unable to recruit or depleted of infiltrating PMNs and NK cells had seizure rates comparable to those of controls following TMEV infection, and therefore PMNs and NK cells do not significantly contribute to seizure development. In contrast, C57BL/6 mice treated with minocycline, which affects monocytes/macrophages, microglial cells, and PMNs, had significantly fewer seizures than controls following TMEV infection, indicating monocytes/macrophages and resident microglial cells are important in seizure development. Irradiated bone marrow chimeric mice that were either IL-6-deficient mice reconstituted with wild-type bone marrow cells or wild-type mice reconstituted with IL-6-deficient bone marrow cells developed significantly fewer behavioral seizures following TMEV infection. Therefore, both resident CNS cells and infiltrating cells are necessary for seizure development. PMID:21543484
Identification of Reprogrammed Myeloid Cell Transcriptomes in NSCLC
Gupta, Ravi; Fischer, Kari R.; Choi, Hyejin; El Rayes, Tina; Ryu, Seongho; Nasar, Abu; Spinelli, Cathy F.; Andrews, Weston; Elemento, Olivier; Nolan, Daniel; Stiles, Brendon; Rafii, Shahin; Narula, Navneet; Davuluri, Ramana; Altorki, Nasser K.; Mittal, Vivek
2015-01-01
Lung cancer is the leading cause of cancer related mortality worldwide, with non-small cell lung cancer (NSCLC) as the most prevalent form. Despite advances in treatment options including minimally invasive surgery, CT-guided radiation, novel chemotherapeutic regimens, and targeted therapeutics, prognosis remains dismal. Therefore, further molecular analysis of NSCLC is necessary to identify novel molecular targets that impact prognosis and the design of new-targeted therapies. In recent years, tumor “activated/reprogrammed” stromal cells that promote carcinogenesis have emerged as potential therapeutic targets. However, the contribution of stromal cells to NSCLC is poorly understood. Here, we show increased numbers of bone marrow (BM)-derived hematopoietic cells in the tumor parenchyma of NSCLC patients compared with matched adjacent non-neoplastic lung tissue. By sorting specific cellular fractions from lung cancer patients, we compared the transcriptomes of intratumoral myeloid compartments within the tumor bed with their counterparts within adjacent non-neoplastic tissue from NSCLC patients. The RNA sequencing of specific myeloid compartments (immature monocytic myeloid cells and polymorphonuclear neutrophils) identified differentially regulated genes and mRNA isoforms, which were inconspicuous in whole tumor analysis. Genes encoding secreted factors, including osteopontin (OPN), chemokine (C-C motif) ligand 7 (CCL7) and thrombospondin 1 (TSP1) were identified, which enhanced tumorigenic properties of lung cancer cells indicative of their potential as targets for therapy. This study demonstrates that analysis of homogeneous stromal populations isolated directly from fresh clinical specimens can detect important stromal genes of therapeutic value. PMID:26046767
Tripathi, Trivendra; Abdi, Mahshid; Alizadeh, Hassan
2013-01-01
The aim of this study is to determine if the mannose-induced protein (MIP-133) from Acanthamoeba castellanii trophozoites induces apoptosis of corneal epithelial cells through a cytosolic phospholipase A2α (cPLA2α)-mediated pathway. The efficacy of cPLA2α inhibitors to provide protection against Acanthamoeba keratitis was examined in vivo. Chinese hamster corneal epithelial (HCORN) cells were incubated with or without MIP-133. MIP-133 induces significant increase in cPLA2α and macrophage inflammatory protein-2 (MIP-2/CXCL2) levels from corneal cells. Moreover, cPLA2α inhibitors, MAFP (Methyl-arachidonyl fluorophosphonate) and AACOCF3 (Arachidonyl trifluoromethyl ketone), significantly reduce cPLA2α and CXCL2 from these cells (P< 0.05). Additionally, cPLA2α inhibitors significantly inhibit MIP-133-induced apoptosis in HCORN cells (P< 0.05). Subconjunctival injection of purified MIP-133 in Chinese hamster eyes induced cytopathic effects resulting in corneal ulceration. Animals infected with A. castellanii-laden contact lenses and treated with AACOCF3 and CAY10650, showed significantly less severe keratitis as compared with control animals. Collectively, the results indicate that cPLA2α is involved in MIP-133 induced apoptosis of corneal epithelial cells, polymorphonuclear neutrophil infiltration, and production of CXCL2. Moreover, cPLA2α inhibitors can be used as a therapeutic target in Acanthamoeba keratitis. PMID:23792108
Neutrophils are immune cells preferentially targeted by retinoic acid in elderly subjects
2010-01-01
Background The immune system gradually deteriorates with age and nutritional status is a major factor in immunosenescence. Of the many nutritional factors implicated in age-related immune dysfunction, vitamin A may be a good candidate, since vitamin A concentrations classically decrease during aging whereas it may possess important immunomodulatory properties via its active metabolites, the retinoic acids. This prompted us to investigate the immune response induced by retinoids in adults and elderly healthy subjects. Before and after oral supplementation with 13cis retinoic acid (0.5 mg/kg/day during 28 days), whole blood cells were phenotyped, and functions of peripheral blood mononuclear cells (PBMC) and polymorphonuclear cells (PMN) were investigated by flow cytometry and ELISA tests. Results In both young adults (n = 20, 25 ± 4 years) and older subjects (n = 20, 65 ± 4 years), retinoic acid supplementation had no effect on the distribution of leukocyte subpopulations or on the functions of PBMC (Il-2 and sIl-2R production, membrane expression of CD25). Concerning PMN, retinoic acid induced an increase in both spontaneous migration and cell surface expression of CD11b in the two different age populations, whereas bactericidal activity and phagocytosis remained unchanged. Conclusions We demonstrated that retinoic acid induces the same intensity of immune response between adult and older subjects, and more specifically affects PMN functions, i.e. adhesion and migration, than PBMC functions. PMID:20727130
[Protective effect of Helianthus annuus (sunflower) on myocardial infarction in New Zealand rabbit].
Guardia-Espinoza, Edith; Herrera-Hurtado, Gianina Liseth del Carmen; Garrido-Jacobi, Saúl; Cárdenas-Peralta, Danitza; Martínez-Romero, Christian; Hernández-Figueroa, Pedro; Condori-Calizaya, Mary; La Barrera-Llacchua, Juan; Flores-Ángeles, Miguel
2015-01-01
Determine the protective effect of oil Helianthus annuus (Sunflower) on myocardial infarction induced by epinephrine in New Zealand rabbits. The rabbits were randomized into five groups (8 per group): blank, negative control, experimental 1 (10 mg / kg), experimental 2 (20 mg / kg) and three experimental (40 mg/ kg). Experimental groups 1, 2 and 3 received Helianthus annuus oil for two weeks. Epinephrine (2 mg/Kg) to the negative, Experimental Control 1, 2 and 3 groups was given over two consecutive days with an interval of 24 h after pretreatment with oil. Twenty four hours after the last administration, the rabbits were anesthetized and sacrificed. Serum troponin I and polymorphonuclear evaluated by .mu.m.sup.2. Significant difference between the negative control group and the experimental groups 1, 2 and 3 was found in the serum variables troponin I and polymorphonuclear by .mu.m.sup.2. Helianthus annuus oil at doses of 20 mg/kg has protective effect on myocardial infarction induced by epinephrine in New Zealand rabbits.
SPECIES SPECIFICITY OF LEUKOCYTIC PYROGENS
Bornstein, Donald L.; Woods, James W.
1969-01-01
Polymorphonuclear neutrophilic leukocytes of the dog, cat, and goat release leukocytic pyrogen under the same conditions as the heterophile polymorphonuclear leukocytes of the rabbit. The characteristics of the febrile response to an intravenous injection of homologous leukocytic pyrogen in all four species are very similar: a brisk monophasic fever reaching a peak between 30 and 50 min with smooth defervescence to the baseline by 3 hr. Shivering, which is not obvious in the rabbit, is noted in the dog, cat, and goat during the first 30 min. Quantitative differences in response reveal the cat to be the most sensitive of of these species to homologous leukocytic pyrogen, followed by the rabbit, dog, and goat. The response to heterologous pyrogen is in most cases markedly diminished compared to that after equal doses of homologous protein, suggesting the operation of species specificity, although canine and feline pyrogen behaved very similarly in all tests. Species specificity of leukocytic pyrogen is probably related to amino acid substitutions in different species of a common mammalian protein effector molecule. PMID:5343431
Huang, Wen-Nan; Tso, Tim K; Wu, Hsiao-Chih; Yang, Hsiu-Fen; Tsay, Gregory J
2016-12-01
Serologically active clinically quiescent (SACQ) patients with systemic lupus erythematosus (SLE) account for 8-12% of all patients with SLE, but there is disagreement about whether such patients are indeed clinically stable. Patients with clinically active SLE have decreased macrophage function, although the status of SACQ patients with SLE is unclear. This study compared 18 patients who met the diagnostic criteria for SACQ SLE with 18 healthy volunteers with regard to the capability of macrophages to clear apoptotic bodies by use of a modified serum-free phagocytosis test. Macrophages that naturally differentiated from monocytes were used to engulf apoptotic cells developed from polymorphonuclear neutrophils. The results showed that macrophages from SACQ patients with SLE had less phagocytotic capability than those from healthy controls. The significant reduction of macrophage phagocytotic capability in these patients suggests the potential for disease recurrence. The use of a serum-free method confirmed the presence of intrinsic factors that modulate the decrease of macrophage function in SLE. © 2015 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lichter, J.P.; Konopka, R.G.; Hartman, M.T.
Use of (/sup 111/In)granulocytes in the study of pulmonary inflammation requires study of their in vivo behavior. To study the pulmonary deposition of these cells and their ability to migrate from the capillary to the alveolus, we injected (/sup 111/In)granulocytes into dogs 24 h after the induction of a right lower lobe pneumococcal pneumonia. Using external imaging, we found rapid clearance of (/sup 111/In)granulocytes from the uninvolved lung (with a residual radioactivity of 24.5 +/- 4.2% at 4 h). In contrast, 83 +/- 12.4% of the initial radioactivity was present in inflamed lung at 4 h. Bronchoalveolar lavage fluid frommore » the inflamed lung was more cellular than that from control lung, contained a greater fraction of polymorphonuclear leukocytes (82 +/- 4.1% versus 20 +/- 6.2%), and much greater cell-associated radioactivity (ratio of 423:1, inflamed to control). Autoradiography disclosed that this radioactivity was localized to consolidated alveoli and was not prominently distributed in arterioles or venules or in airways larger than 0.6 mm. We conclude that (/sup 111/In)granulocytes are biologically active in the setting of acute lung inflammation.« less
Kawana, M; Kawana, C; Yokoo, T; Quie, P G; Giebink, G S
1991-01-01
To determine whether oxidative metabolic products of phagocytic cells are present in the middle ear during experimental pneumococcal otitis media, we measured the concentration of myeloperoxidase (MPO) in middle ear fluid (MEF) and the capacity of neutrophils isolated from MEF and peripheral blood to produce MPO and superoxide anion (O2-) after in vitro stimulation. Free MPO in MEF was significantly increased 24 and 48 h after either viable or nonviable pneumococci were inoculated into the middle ear. In vitro-stimulated production of MPO and O2- from middle ear neutrophils was significantly less than that from peripheral blood neutrophils 24 h after nonviable pneumococci were inoculated but similar to it after 48 h. Twenty-four hours after viable pneumococci were inoculated, middle ear neutrophils stimulated in vitro produced less MPO but the same amount of O2- as did blood neutrophils. Oxidative metabolic products, therefore, are released from phagocytic cells into the MEF during pneumococcal otitis media, and future studies will need to define the contribution of these products to acute and chronic middle ear tissue injury. PMID:1657782
Hussain, Zahid; Dastagir, Nida; Hussain, Shabbir; Jabeen, Almas; Zafar, Salman; Malik, Rizwana; Bano, Saira; Wajid, Abdul; Choudhary, M Iqbal
2016-08-01
Two fungal cultures Aspergillus niger and Cunninghamella blakesleeana were used for the biotransformation of methenolone enanthate (1). Biotransformation with A. niger led to the synthesis of three new (2-4), and three known (5-7) metabolites, while fermentation with C. blakesleeana yielded metabolite 6. Substrate 1 and the resulting metabolites were evaluated for their immunomodulatory activities. Substrate 1 was found to be inactive, while metabolites 2 and 3 showed a potent inhibition of ROS generation by whole blood (IC50=8.60 and 7.05μg/mL), as well as from isolated polymorphonuclear leukocytes (PMNs) (IC50=14.0 and 4.70μg/mL), respectively. Moreover, compound 3 (34.21%) moderately inhibited the production of TNF-α, whereas 2 (88.63%) showed a potent inhibition of TNF-α produced by the THP-1 cells. These activities indicated immunomodulatory potential of compounds 2 and 3. All products were found to be non-toxic to 3T3 mouse fibroblast cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Steinhäuser, Christine; Dallenga, Tobias; Tchikov, Vladimir; Schaible, Ulrich E; Schütze, Stefan; Reiling, Norbert
2014-04-02
Macrophages and polymorphonuclear neutrophils are professional phagocytes essential in the initial host response against intracellular pathogens such as Mycobacterium tuberculosis. Phagocytosis is the first step in phagocyte-pathogen interaction, where the pathogen is engulfed into a membrane-enclosed compartment termed a phagosome. Subsequent effector functions of phagocytes result in killing and degradation of the pathogen by promoting phagosome maturation, and, terminally, phago-lysosome fusion. Intracellular pathogenic microbes use various strategies to avoid detection and elimination by phagocytes, including induction of apoptosis to escape host cells, thereby generating apoptotic blebs as shuttles to other cells for pathogens and antigens thereof. Hence, phagosomes represent compartments where host and pathogen become quite intimate, and apoptotic blebs are carrier bags of the pathogen's legacy. In order to investigate the molecular mechanisms underlying these interactions, both phagosomes and apoptotic blebs are required as purified subcellular fractions for subsequent analysis of their biochemical properties. Here, we describe a lipid-based procedure to magnetically label surfaces of either pathogenic mycobacteria or apoptotic blebs for purification by a strong magnetic field in a novel free-flow system. Copyright © 2014 John Wiley & Sons, Inc.
Cheng, Qi; Carlson, Brian; Pillai, Sub; Eby, Ron; Edwards, Lorri; Olmsted, Stephen B.; Cleary, Patrick
2001-01-01
The capsular polysaccharides of group B streptococci (GBS) are a primary focus of vaccine development. Immunogenicity and long-lasting protection are best achieved by conjugating polysaccharides to a T-cell-dependent protein antigen. Streptococcal C5a peptidase (SCPB) is a conserved surface protein that is expressed by all streptococcal serotypes tested to date, and it is a possible carrier protein that could itself induce a protective immune response. Clearance of GBS from lungs, mucosal surfaces, or blood probably depends on the opsonophagocytic response of tissue-specific macrophages and polymorphonuclear leukocytes (PMNs). In this study, we examined the potential of antibody directed against SCPB from a serotype II strain to enhance the capacity of mouse bone marrow macrophages (from primary cultures) and human PMNs in whole blood to kill GBS in vitro. Our experiments demonstrated that Streptococcus serotypes Ia, Ib, II, III, and V, preopsonized with anti-SCPB antibody, were killed more rapidly by cultured macrophages and PMNs in whole blood than were nonopsonized GBS. The increased rate of killing was accompanied by an increased macrophage oxidative burst. Furthermore, opsonization was serotype transparent. Immunization with SCPB conjugated to capsular polysaccharide type III produced polysaccharide-specific antibodies. It is interesting that this antiserum promoted serotype-independent killing of streptococci. These data support the use of SCPB in a GBS polysaccharide conjugate vaccine. SCPB not only enhanced the immunogenicity of polysaccharide components of the vaccine, but it might also induce additional serotype-independent protective antibodies. PMID:11254587
Cheng, Q; Carlson, B; Pillai, S; Eby, R; Edwards, L; Olmsted, S B; Cleary, P
2001-04-01
The capsular polysaccharides of group B streptococci (GBS) are a primary focus of vaccine development. Immunogenicity and long-lasting protection are best achieved by conjugating polysaccharides to a T-cell-dependent protein antigen. Streptococcal C5a peptidase (SCPB) is a conserved surface protein that is expressed by all streptococcal serotypes tested to date, and it is a possible carrier protein that could itself induce a protective immune response. Clearance of GBS from lungs, mucosal surfaces, or blood probably depends on the opsonophagocytic response of tissue-specific macrophages and polymorphonuclear leukocytes (PMNs). In this study, we examined the potential of antibody directed against SCPB from a serotype II strain to enhance the capacity of mouse bone marrow macrophages (from primary cultures) and human PMNs in whole blood to kill GBS in vitro. Our experiments demonstrated that Streptococcus serotypes Ia, Ib, II, III, and V, preopsonized with anti-SCPB antibody, were killed more rapidly by cultured macrophages and PMNs in whole blood than were nonopsonized GBS. The increased rate of killing was accompanied by an increased macrophage oxidative burst. Furthermore, opsonization was serotype transparent. Immunization with SCPB conjugated to capsular polysaccharide type III produced polysaccharide-specific antibodies. It is interesting that this antiserum promoted serotype-independent killing of streptococci. These data support the use of SCPB in a GBS polysaccharide conjugate vaccine. SCPB not only enhanced the immunogenicity of polysaccharide components of the vaccine, but it might also induce additional serotype-independent protective antibodies.
Zeng, Qing; He, Xiao-Long; Xiao, Han-Sheng; DU, Lei; Li, Yu-Jing; Chen, Le-Cheng; Tian, Hui-Wen; Huang, Sheng-He; Cao, Hong
2017-01-20
To investigate whether Lactobacillus rhamnosus GG conditioned medium(LGG-CM)has preventive effect against E. coli K1-induced neuropathogenicity in vitro by inhibiting nuclear factor-κB (NF-κB) signaling pathway. An in vitro blood-brain barrier (BBB) model was constructed using human brain microvascular endothelial cells (HBMECs). The effect of LGG-CM on E. coli-actived NF-κB signaling pathway was assayed using Western blotting. Invasion assay and polymorphonuclear leukocyte (PMN) transmigration assay were performed to explore whether LGG-CM could inhibit E. coli invasion and PMN transmigration across the BBB in vitro. The expressions of ZO-1 and CD44 were detected using Western blotting and immunofluorescence. The changes of trans-epithelial electric resistance (TEER) and bacterial translocation were determined to evaluate the BBB permeability. Pre-treament with LGG-CM inhibited E. coli-activated NF-κB signaling pathway in HBMECs and decreased the invasion of E. coli K1 and transmigration of PMN. Western blotting showed that LGG-CM could alleviate E. coli-induced up-regulation of CD44 and down-regulation of ZO-1 expressions in HBMECs. In addition, pre-treatment with LGG-CM alleviated E. coli K1-induced reduction of TEER and suppressed bacterial translocation across the BBB in vitro. LGG-CM can block E. coli-induced activation of NF-κB signaling pathway and thereby prevents E. coli K1-induced neuropathogenicity by decreasing E. coli K1 invasion rates and PMN transmigration.
Aseptic meningitis in children: analysis of 506 cases.
Michos, Athanasios G; Syriopoulou, Vassiliki P; Hadjichristodoulou, Christos; Daikos, George L; Lagona, Evagelia; Douridas, Panagiotis; Mostrou, Glykeria; Theodoridou, Maria
2007-08-01
Non-polio human enteroviruses are the leading cause of aseptic meningitis in children. The role of enterovirus PCR for diagnosis and management of aseptic meningitis has not been fully explored. A retrospective study was conducted to determine the epidemiological, clinical, and laboratory characteristics of aseptic meningitis and to evaluate the role of enterovirus PCR for the diagnosis and management of this clinical entity. The medical records of children who had as discharge diagnosis aseptic or viral meningitis were reviewed. A total of 506 children, median age 5 years, were identified. The annual incidence rate was estimated to be 17/100,000 children less than 14 years of age. Most of the cases occurred during summer (38%) and autumn (24%). The dominant clinical symptoms were fever (98%), headache (94%) and vomiting (67%). Neck stiffness was noted in 60%, and irritation in 46% of the patients. The median number of CSF cell count was 201/mm(3) with polymorphonuclear predominance (>50%) in 58.3% of the cases. Enterovirus RNA was detected in CSF in 47 of 96 (48.9%) children tested. Children with positive enterovirus PCR had shorter hospitalization stay as compared to children who had negative PCR or to children who were not tested (P = 0.01). There were no serious complications or deaths. Enteroviruses accounted for approximately one half of cases of aseptic meningitis. PCR may reduce the length of hospitalization and plays important role in the diagnosis and management of children with aseptic meningitis.
Topley, N; Kaur, D; Petersen, M M; Jörres, A; Williams, J D; Faict, D; Holmes, C J
1996-02-01
The inclusion of bicarbonate in the formulation of peritoneal dialysis solutions may avoid the in vitro impairment of certain cell functions seen with acidic lactate-based fluids. The supranormal physiological levels of HCO3- and PCO2 inherent in such formulations may, however, not be biocompatible. This study compared the in vitro biocompatibility of a pH 5.2 lactate-based formulation with formulations containing either 40 mM lactate at pH 7.4, 38 mM HCO3- at pH 6.8 (PCO2 at approximately 240 mm Hg) or 7.4 (PCO2 at approximately 60 mm Hg), and 25 mM HCO3- plus 15 mM lactate at pH 6.8 (PCO2 at approximately 160 mm Hg) or 7.4 (PCO2 at approximately 40 mm Hg). Significant release of lactate dehydrogenase or decreases in ATP content by human peritoneal mesothelial cells (HPMC) and human peripheral polymorphonuclear leukocytes (PMN) after a 30-min exposure to each test solution was only seen with the pH 5.2 lactate-based fluid. The ATP content of HPMC exposed to this fluid returned to control levels after 30 min of recovery in M199 control medium but showed a trend toward decreasing ATP content at 240 min. Similarly, interleukin (IL)-1 beta-induced IL-6 synthesis by HPMC was also only significantly reduced by the pH 5.2 lactate solution. PMN chemiluminescence was unaffected by 30-min exposure to all test solutions except for the pH 5.2 lactate formulation. Staphylococcus epidermidis phagocytosis was reduced to between 46 to 57% of control with all test solutions except the pH 5.2 lactate solution, which further suppressed the chemiluminescence response to 17% of control. These data suggest that short exposure to supranormal physiological levels of HCO3- and PCO2 does not impair HPMC or PMN viability and function. Furthermore, neutral pH lactate-containing solutions show equivalent biocompatibility to bicarbonate-based ones.
Graybill, John R.; Bocanegra, Rosie; Najvar, Laura K.; Loebenberg, David; Luther, Mike F.
1998-01-01
Outbred ICR mice were immune suppressed either with hydrocortisone or with 5-fluorouracil and were infected intranasally with Aspergillus fumigatus. Beginning 3 days before infection some groups of mice were given recombinant human granulocyte colony-stimulating factor (G-CSF), SCH56592 (an antifungal triazole), or both. Corticosteroid-pretreated mice responded to SCH56592 and had reduced counts in lung tissue and prolonged survival. In these mice, G-CSF strongly antagonized the antifungal activity of SCH56592. Animals treated with both agents developed large lung abscesses with polymorphonuclear leukocytes and large amounts of Aspergillus. In contrast, mice made neutropenic with 5-fluorouracil and then infected with A. fumigatus conidia benefited from either G-CSF or triazoles, and the effect of the combination was additive rather than antagonistic. Host predisposing factors contribute in different ways to the outcome of growth factor therapy in aspergillosis. PMID:9756743
Leliebre-Lara, Vivian; Pferschy-Wenzig, Eva-Maria; Widowitz, Ute; Ortmann, Sabine; Lima, Clara Nogueiras; Bauer, Rudolf
2015-01-01
In vitro anti-inflammatory activity of 4 extracts with different polarity from the basidiomycete Navisporus floccosus was evaluated by determination of the inhibition of prostaglandin E2 formation catalyzed by purified cyclooxygenase (COX)-1 and COX-2 enzymes, and of the inhibition of leukotriene (LT) B4 formation in human polymorphonuclear leukocytes. The n-hexane extract showed the highest activity in all 3 assays. Through analysis by gas chromatography coupled with mass spectrometry (GC-MS), 9 fatty acids and fatty acid esters were identified as the major constituents of this extract. As several of them also showed inhibitory activity in the COX and LTB4 formation assays, it can be assumed that the unsaturated as well as the saturated fatty acids, and maybe also the fatty acid esters, present in the extract synergistically contribute to its in vitro anti-inflammatory activity.
Horiuchi, Y; Masuzawa, M
1995-06-01
Prototheca wickerhamii, an achlorophyllous algae, was previously found to induce massive epithelioid cell granulomas in the skin of mice. By means of light microscopy, examination was made of the histological reactions involved in epithelioid cell granulomas induced by intradermal and/or subcutaneous inoculation of Prototheca wickerhamii in BALB/c and ICR mice. Six BALB/c mice showed granuloma nodules while only three of six ICR mice did so. Based on the results of the present and previous studies, BALB/c mice may be considered a strain particularly vulnerable to contracting epithelioid cell granuloma and ICR mice, a resistant strain. In very early lesions at one week following initial prototheca inoculation, cellular infiltration with varying numbers of polymorphonuclear leukocytes, lymphocytes and some macrophages was observed throughout the dermis and subcutaneous fat tissue. In early lesions at one to two months after inoculation, focal granulomas composed of histiocytic cells and/or macrophages were observed. Mast cells were occasionally present among the histiocytic cell infiltrates. In the granulomatous lesions at two to three months, scattered eosinophils and some lymphocytes were seen. Central necrosis, with numerous neutrophils and many endospores surrounded by the granuloma, was often observed. In late stage lesions at six months, massive lymphocyte and plasma cell infiltration surrounding and/or intervening between vacuolated epithelioid cell clusters was evident. Histological reactions in epithelioid cell granuloma and the ultimate course of this disease can be staged from the histological point of view as follows: 1) diffuse inflammation, 2) cell proliferation leading to epithelioid cell formation, 3) hypertrophy of epithelioid cells with consequent formation of cell aggregates and/or organized granuloma and 4) degeneration of granuloma.(ABSTRACT TRUNCATED AT 250 WORDS)
Tani-Ishii, N; Wang, C Y; Stashenko, P
1995-08-01
The bone-resorptive cytokines interleukin 1 (IL-1) and tumor necrosis factor (TNF) have been implicated in the pathogenesis of many chronic inflammatory diseases, including pulpitis and apical periodontitis.To further elucidate their role in these disorders, we have identified cells that express IL-1 alpha and TNF alpha in infected pulps and in developing rat periapical lesions after surgical pulp exposure. As detected by immunohistochemistry, IL-1 alpha- and TNF alpha-positive cells were present as early as 2 days after pulp exposure in both the pulp and periapical region. The numbers of cytokine-expressing cells increased up to day 4 in the pulp and up to day 30 in the periapex. In contrast, cells expressing IL-1 beta and TNF beta, the homologous forms of these mediators, were not found in pulp or periapical lesions during this period. Cells expressing IL-1 alpha and TNF alpha were identified primarily as macrophages and fibroblasts, with occasional staining of polymorphonuclear leukocytes. Osteoblasts and osteoclasts were also positive, whereas lymphocytes were negative. In general, cytokine-expressing cells were located proximal to abscesses and the root apex. These findings demonstrate that cells that express bone-resorptive cytokines IL-1 alpha and TNF alpha are present immediately after pulp exposure in this model, which supports the hypothesis that these mediators play a key role in pulpal and periapical pathogenesis, including the concomitant bone destruction. They also indicate that both resident connective tissue cells as well as infiltrating cells express bone-resorptive cytokines in response to infection in these lesions.
Glucose supplementation has minimal effects on blood neutrophil functionand gene expression in vitro
USDA-ARS?s Scientific Manuscript database
During early lactation, glucose availability is low and the effect of glucose supply on bovine polymorphonuclear leukocyte (PMNL) function is poorly understood. The objective of this study was to determine the effect of glucose supplementation on the function and transcriptomic inflammatory respons...
Acute in vitro and in vivo toxicity of a commercial grade boron nitride nanotube mixture.
Kodali, Vamsi K; Roberts, Jenny R; Shoeb, Mohammad; Wolfarth, Michael G; Bishop, Lindsey; Eye, Tracy; Barger, Mark; Roach, Katherine A; Friend, Sherri; Schwegler-Berry, Diane; Chen, Bean T; Stefaniak, Aleksandr; Jordan, Kevin C; Whitney, Roy R; Porter, Dale W; Erdely, Aaron D
2017-10-01
Boron nitride nanotubes (BNNTs) are an emerging engineered nanomaterial attracting significant attention due to superior electrical, chemical and thermal properties. Currently, the toxicity profile of this material is largely unknown. Commercial grade BNNTs are composed of a mixture (BNNT-M) of ∼50-60% BNNTs, and ∼40-50% impurities of boron and hexagonal boron nitride. We performed acute in vitro and in vivo studies with commercial grade BNNT-M, dispersed by sonication in vehicle, in comparison to the extensively studied multiwalled carbon nanotube-7 (MWCNT-7). THP-1 wild-type and NLRP3-deficient human monocytic cells were exposed to 0-100 µg/ml and C57BL/6 J male mice were treated with 40 µg of BNNT-M for in vitro and in vivo studies, respectively. In vitro, BNNT-M induced a dose-dependent increase in cytotoxicity and oxidative stress. This was confirmed in vivo following acute exposure increase in bronchoalveolar lavage levels of lactate dehydrogenase, pulmonary polymorphonuclear cell influx, loss in mitochondrial membrane potential and augmented levels of 4-hydroxynonenal. Uptake of this material caused lysosomal destabilization, pyroptosis and inflammasome activation, corroborated by an increase in cathepsin B, caspase 1, increased protein levels of IL-1β and IL-18 both in vitro and in vivo. Attenuation of these effects in NLRP3-deficient THP-1 cells confirmed NLRP3-dependent inflammasome activation by BNNT-M. BNNT-M induced a similar profile of inflammatory pulmonary protein production when compared to MWCNT-7. Functionally, pretreatment with BNNT-M caused suppression in bacterial uptake by THP-1 cells, an effect that was mirrored in challenged alveolar macrophages collected from exposed mice and attenuated with NLRP3 deficiency. Analysis of cytokines secreted by LPS-challenged alveolar macrophages collected after in vivo exposure to dispersions of BNNT-M showed a differential macrophage response. The observed results demonstrated acute inflammation and toxicity in vitro and in vivo following exposure to sonicated BNNT-M was in part due to NLRP3 inflammasome activation.
Halatek, Tadeusz; Stanislawska, Magdalena; Kaminska, Irena; Cieslak, Malgorzata; Swiercz, Radoslaw; Wasowicz, Wojciech
2017-02-23
Welding processes that generate fumes containing toxic metals, such as hexavalent chromium (Cr(VI)), manganese (Mn), and nickel (Ni), have been implicated in lung injury, inflammation, and lung tumor promotion in animal models. The principal objective of this study was to determine the dynamics of toxic effects of inhalation exposure to morphologically rated welding dust from stainless steel welding and its soluble form in TSE System with a dynamic airflow. We assessed the pulmonary toxicity of welding dust in Wistar rats exposed to 60.0 mg/m 3 of respirable-size welding dust (mean diameter 1.17 µm) for 2 weeks (6 h/day, 5 days/week); the aerosols were generated in the nose-only exposure chambers (NOEC). An additional aim included the study of the effect of betaine supplementation on oxidative deterioration in rat lung during 2 weeks of exposure to welding dust or water-soluble dust form. The animals were divided into eight groups (n = 8 per group): control, dust, betaine, betaine + dust, soluble-form dust, soluble-form dust + betaine, saline and saline + betaine groups. Rats were euthanized 1 or 2 weeks after the last exposure for assessment of pulmonary toxicity. Differential cell counts, total protein concentrations and cellular enzyme (lactate dehydrogenase-LDH) activities were determined in bronchoalveolar lavage (BAL) fluid, and corticosterone and thiobarbituric acid reactive substances (TBARS) concentrations were assessed in serum. The increase in polymorphonuclear (PMN) leukocytes in BAL fluid (a cytological index of inflammatory responses of the lung) is believed to reflect pulmonary toxicity of heavy metals. Biomarkers of toxicity assessed in bronchoalveolar fluids indicate that the level of the toxic effect depends mainly on the solubility of studied metal compounds; biomarkers that showed treatment effects included: total cell, neutrophil and lymphocyte counts, total protein concentrations, and cellular enzyme (lactate dehydrogenase) activity. Betaine supplementation at 250 mg/kg/day in all study rats groups attenuated stress indices, and corticosterone and TBARS serum levels, and simultaneously stimulated increase of polymorphonuclear cells in BALF of rats. The study confirmed deleterious effect of transitory metals and particles during experimental inhalation exposure to welding dusts, evidenced in the lungs and brain by increased levels of total protein, higher cellular influx, rise of LDH in BALF, elevated TBARS and increased corticosterone in serum of rats. Our result confirm also the hypothesis about the effect of the welding dusts on the oxidative stress responsible for disturbed systemic homeostasis and impairment of calcium regulation.
Use of insulin-like growth factor in the healing of open wounds in diabetic and non-diabetic rats.
Achar, Rosi Aparecida Nunes; Silva, Thiago Couto; Achar, Eduardo; Martines, Roosecelis Brasil; Machado, José Lucio Martins
2014-02-01
To analyze the effects of application of 1% and 3% insulin-like growth factor I (IGF-1) cream on the process of wound healing in induced skin lesions in diabetic and non-diabetic rats and evaluate its effect on expression of myofibroblasts. Ninety-six Wistar adult male rats were divided into six groups, with 16 rats in each group, as follows: group 1: non-diabetic, untreated; group 2: non-diabetic, treated with 1% IGF-1 cream; group 3: non-diabetic, treated with 3% IGF-1 cream; group 4: diabetic, untreated; group 5: diabetic, treated with 1% IGF-1 cream; and group 6: diabetic, treated with 3% IGF-1 cream. In groups 4, 5, and 6, diabetes was induced by intravenous injection of alloxan. After diabetes had been induced, animals were mantained for 3 months. The experimental procedure consisted of the creation of a circular incision of 0.9 mm in diameter using a metal punch. Following this, wounds were treated daily according to the assigned treatment regimen. Groups 2 and 5 were treated with 1% IGF-1 cream, groups 3 and 6 with 3% IGF-1 cream, and groups 1 and 4 and the untreated groups with 0.9% saline solution. From each group, samples from 4 rats were taken at three, seven, 14, and 21 days after the injury. Samples were fixed in 10% formalin to prepare slides for histological analysis. Slides stained with hematoxylin-eosin (H&E) and Masson were observed vascular proliferation, mononuclear cells, polymorphonuclear cells, fibroblast proliferation, re-epithelialization, and collagen fibers. This study analyzed the expression of α-smooth muscle actin using specific antibodies to correlate the temporal expression of α-smooth muscle-specific actin (α-SM actin), a molecular marker for myofibroblast transformation. Macroscopic observation of wounds showed a more rapid re-epithelialization of wounds treated with IGF. Regarding acute inflammatory reactions, the results of the analysis of vascular proliferation and polymorphonuclear and mononuclear cells showed no statistically significant differences in any of the periods studied (according to the results of a Mann-Whitney test). The initial immunohistochemical analysis of tissue samples conducted to compare the expression of α-smooth muscle actin between groups showed a relevant response in the expression of myofibroblasts. Data were analyzed using ANOVA and were found to be statistically significant. The topical application of 1% and 3% IGF-1 creams increases the expression of myofibroblasts in the process of wound healing in rats.
Neutrophil chemotaxis by Propionibacterium acnes lipase and its inhibition.
Lee, W L; Shalita, A R; Suntharalingam, K; Fikrig, S M
1982-01-01
The chemoattraction of Propionibacterium acnes lipase for neutrophils and the effect of lipase inhibitor and two antibiotic agents on the chemotaxis were evaluated. Of the various fractions tested, partially purified lipase (fraction 2c) was the most active cytotaxin produced by P. acnes. Serum mediators were not required for the generation of chemotaxis by lipase in vitro. Diisopropyl phosphofluoridate at low concentration (10(-4) mM) completely inhibited lipase activity as well as polymorphonuclear leukocyte chemotaxis generated by lipase. Tetracycline hydrochloride and erythromycin base at concentrations of 10(-1) mM and 1 mM, respectively, caused 100% inhibition of PMN migration toward lipase or zymosan-activated serum. The inhibiting activity of the antibiotics was directed against cells independently of any effect on lipase. Chemotaxis by P. acnes lipase suggests a wider role for this enzyme in the inflammatory process and the pathogenesis of acne vulgaris. Images PMID:7054130
Innate immunity during Equid herpesvirus 1 (EHV-1) infection.
Bridges, C G; Edington, N
1986-01-01
Intrinsic phagocytosis and killing of C. albicans by equine monocytes and polymorphonuclear leucocytes (PMN) was examined during Equid Herpesvirus 1 (EHV-1) (subtypes 1 or 2) and Adenovirus infections. Monocyte function increased during EHV-1 subtype 2 and Adenovirus infection. Conversely, there was an impairment of monocyte ingestion during EHV-1 subtype 1 infection which was ascribed to virus replication in peripheral blood mononuclear cells. PMN phagocytosis was not decreased in any of the infections studied. The raised levels of haemolytic complement in animals which subsequently developed EHV-1 subtype 1 induced paresis suggested an abnormality of complement turnover. Increased levels of interferon were evident in the nasal secretions of both subtype 1 and subtype 2 infected animals but only subtype 1 virus induced measurable levels of serum interferon. No intrinsic abnormality of interferon production by monocytes or lymphocytes was found. PMID:2431815
Analysis of serum and cerebrospinal fluid in clinically normal adult miniature donkeys.
Mozaffari, A A; Samadieh, H
2013-09-01
To establish reference intervals for serum and cerebrospinal fluid (CSF) parameters in clinically healthy adult miniature donkeys. Experiments were conducted on 10 female and 10 male clinically normal adult miniature donkeys, randomly selected from five herds. Lumbosacral CSF collection was performed with the sedated donkey in the standing position. Cell analysis was performed immediately after the samples were collected. Blood samples were obtained from the jugular vein immediately after CSF sample collection. Sodium, potassium, glucose, urea nitrogen, total protein, calcium, chloride, phosphorous and magnesium concentrations were measured in CSF and serum samples. A paired t-test was used to compare mean values between female and male donkeys. The CSF was uniformly clear, colourless and free from flocculent material, with a specific gravity of 1.002. The range of total nucleated cell counts was 2-4 cells/μL. The differential white cell count comprised only small lymphocytes. No erythrocytes or polymorphonuclear cells were observed on cytological examination. Reference values were obtained for biochemical analysis of serum and CSF. Gender had no effect on any variables measured in serum or CSF (p>0.05). CSF analysis can provide important information in addition to that gained by clinical examination. CSF analysis has not previously been performed in miniature donkeys; this is the first report on the subject. In the present study, reference intervals for total nucleated cell count, total protein, glucose, urea nitrogen, sodium, potassium, chloride, calcium, phosphorous and magnesium concentrations of serum and CSF were determined for male and female miniature donkeys.
Lee, Su Hwan; Shin, Ju Hye; Song, Joo Han; Leem, Ah Young; Park, Moo Suk; Kim, Young Sam; Chang, Joon; Chung, Kyung Soo
2018-04-15
Insulin-like growth factor-1 (IGF-1) levels are known to increase in the bronchoalveolar lavage fluid (BALF) of patients with acute respiratory distress syndrome. Herein, we investigated the role of IGF-1 in lipopolysaccharide (LPS)-induced lung injury. In LPS-treated cells, expressions of receptor-interacting protein 3 (RIP3) and phosphorylated mixed lineage kinase domain-like protein (MLKL) were decreased in IGF-1 receptor small interfering RNA (siRNA)-treated cells compared to control cells. The levels of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-10, tumour necrosis factor-α, and macrophage inflammatory protein 2/C-X-C motif chemokine ligand 2 in the supernatant were significantly reduced in IGF-1 receptor siRNA-treated cells compared to control cells. In LPS-induced murine lung injury model, total cell counts, polymorphonuclear leukocytes counts, and pro-inflammatory cytokine levels in the BALF were significantly lower and histologically detected lung injury was less common in the group treated with IGF-1 receptor monoclonal antibody compared to the non-treated group. On western blotting, RIP3 and phosphorylated MLKL expressions were relatively decreased in the IGF-1 receptor monoclonal antibody group compared to the non-treated group. IGF-1 may be associated with RIP3-mediated necroptosis in vitro, while blocking of the IGF-1 pathway may reduce LPS-induced lung injuries in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.
Trehalose does not affect the functions of human neutrophils in vitro.
Tanaka, Koji; Kawamura, Mikio; Otake, Kohei; Toiyama, Yuji; Okugawa, Yoshinaga; Inoue, Yasuhiro; Uchida, Keiichi; Araki, Toshimitsu; Mohri, Yasuhiko; Kusunoki, Masato
2014-02-01
Trehalose, naturally occurring disaccharide, has been reported to prevent postoperative abdominal adhesions in animal models. We investigated whether trehalose affects the function of human polymorphonuclear neutrophils (PMNs) in vitro to assess the feasibility of its clinical application as an anti-adhesive barrier. Human PMNs were obtained from 17 healthy volunteers. Escherichia coli and Staphylococcus aureus were used for the bacterial infection model, whereas lipopolysaccharide (LPS) and interleukin (IL)-1β were used for inflammation induction model. The PMN phagocytosis rates of bacteria and apoptosis/necrosis were assessed on trehalose, maltose, and control media. Cytokines; namely, tumor necrosis factor-α, IL-1α, IL-1Ra, IL-6, and IL-8; and PMN-elastase were measured on each medium in both models. There were no significant differences in the phagocytosis rates, apoptosis/necrosis rates, or levels of all cytokines or PMN-elastase among the three media in the bacterial infection model. There were also no significant differences in the levels of all cytokines and PMN-elastase among the three media in the IL-1β inflammation induction model. PMN-elastase was lower in trehalose and maltose medium after LPS stimulation, at 3 and 24 h. Our results suggest that trehalose does not affect the cellular function, cytokine production, or release of PMN-elastase of human PMNs in an in vitro bacterial infection model.
Shih, W W; Baumhefner, R W; Tourtellotte, W W; Haskell, C M; Korn, E L; Fahey, J L
1983-01-01
Cyclophosphamide (CY), 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) and 5-fluorouracil (5-FU) were given in single course schedules to chronic progressive multiple sclerosis (MS) patients clinically stable for 6 months. The following peripheral immune cellular parameters were measured before, during and after each drug administration: white blood count (WBC), polymorphonuclear count (PMN), lymphocyte count, percentage of T cells, T cell response to phytohaemagglutinin (PHA), percentage of B cells, percentage of cells bearing receptors for the Fc portion of immunoglobulin (% FcR cells), killer (K) cell activity defined by antibody-dependent cellular cytotoxicity (ADCC), and natural killer (NK) cell activity. Central nervous system (CNS) immunoglobulin G (IgG) synthesis was also measured. The patients were followed carefully by both quantitative and qualitative methods for any change in their neurologic condition. Selective reduction in NK activity was observed with CY and 5-FU while no significant alteration was seen in %FcR cells and K activity. CY differed from 5-FU in reducing lymphocyte count and B cell percentage while 5-FU decreased the percentage of T cells. CCNU, but not the other drugs, reduced T cell proliferative response to PHA. In addition, CCNU, which is known to penetrate well into the nervous system, caused a modest reduction in CNS IgG synthesis, while 5-FU had an uncertain effect. Clinically the patients were unchanged or continued to progress in their disability. The results suggest an independence of the CNS immune from the systemic immune system in MS in response to many immunosuppressive drugs. PMID:6603303
Natural cellular resistance of beige mice against Cryptococcus neoformans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hidore, M.R.; Murphy, J.W.
Previous reports have demonstrated that natural killer (NK) cells are capable of inhibiting the growth of Cryptococcus neoformans in vitro, and recent studies indicate that adoptively transferred NK cell-enriched spleen cell populations enhance clearance of cryptococci from the tissues of cyclophosphamide-pretreated recipients. The primary objective of these studies was to confirm that NK cells participate in early clearance of C. neoformans in vivo. Secondarily, the anti-cryptococcal activities of polymorphonuclear leukocytes and macrophages were examined. Seven-week-old C57BL/6 bg/+ mice, which have normal levels of NK cell activity, were compared with their bg/bg littermates, which have impaired NK cell function. One andmore » 3 days after injecting both groups of mice i.v. with 2 x 10/sup 4/ cryptococci, the authors assessed the NK cell activities in spleens, lungs, and livers and clearance of the organism from corresponding tissues as determined by the mean log/sub 1//sup 0/ numbers of cryptococcal colony-forming units (CFU) per organ. Although the data indicated a correlation between early clearance of cryptococci from tissues and levels of NK cell activities in the corresponding tissues, it was also possible that differences in phagocytic cell function between the bg/+ and bg/bg animals could account for the observed differences in clearance of cryptococci from the tissues. These data indicate that NK cells were the effector cells responsible for enhanced early clearance of cryptococci from the tissues of bg/+ animals when compared with clearance from the tissues of the bg/bg littermates. Furthermore, they confirm the hypothesis that NK cells can affect C. neoformans under in vivo conditions.« less
Biochemical Basis of Virulence in Epidemic Typhus
1979-08-01
felt, however, that this level of phagocytosis was not unusually low because "rough" isolates of Brucella abortis and Pgul m were phagocytized to a...of polymorphonuclear leukocytes with smooth and rough strains of Brucella abortis . Infect. Immun. 23:737-742. 10. Martin, S. P., and R. Green. 1958
Sjöström, K; Ou, J; Whitney, C; Johnson, B; Darveau, R; Engel, D; Page, R C
1994-01-01
Although periodontal treatment by scaling and root planing (SCRP) is known to induce bacteremia, the effect of this procedure on the host immune response is not known. We have determined pre- and post-SCRP immunoglobulin G antibody titers to antigens of Actinobacillus actinomycetemcomitans in the sera of 22 patients with rapidly progressive periodontitis. We also assessed the ability of these sera to enhance phagocytosis and killing of A. actinomycetemcomitans by human polymorphonuclear leukocytes by using a polymorphonuclear leukocyte chemiluminescence (CL) assay. Specific anti-A. actinomycetemcomitans antibody titers were significantly increased at 6 and 12 months after beginning treatment, and CL values were significantly increased at 12 months, whereas mean interproximal pocket depths were significantly decreased at 12 months after beginning treatment. When patients were classified as either seropositive (twice the median titer of control subjects; n = 10) or seronegative (n = 12), both median titers and CL values were significantly increased for the seronegative group at 6 and 12 months after treatment. In the seropositive group, only the median titer was significantly increased at 12 months. Western blot (immunoblot) patterns for six seronegative and six seropositive patients differed remarkably at the baseline. Before treatment, all of the seropositive patients recognized high-molecular-mass lipopolysaccharide (LPS) and a large number of protein components. Patterns were virtually unaffected by therapy. Before treatment, only one of the seronegative patients recognized the LPS smear and none reacted strongly with protein components. Following treatment, slight LPS staining was observed for five of six seronegative patients and detection of protein bands was enhanced in all cases. We conclude that treatment by SCRP induces a humoral immune response, especially in seronegative patients, and that response may play a role in the observed beneficial effects of periodontal treatment. Images PMID:8262620
The effects of beta 2-agonists and methylxanthines on neutrophil function in vitro.
Llewellyn-Jones, C G; Stockley, R A
1994-08-01
Therapeutic agents which affect polymorphonuclear neutrophil (PMN) functions have the potential to reduce or increase PMN activation and, hence, influence the progression of lung inflammation. We have assessed the effects of the beta 2-agonist, terbutaline, and the methylxanthine, aminophylline, on PMN functions in vitro at both therapeutic and higher concentrations. At therapeutic levels, both agents increased PMN chemotaxis to formyl-methionyl-leucyl-phenylalanine (FMLP) in a dose-dependent manner from a control value of 22.5 +/- 3.58 cells.field-1 to 26.1 +/- 4.73 cells.field-1 with 4 mg.l-1 terbutaline, and to 26.3 +/- 4.49 cells.field-1 with 20 mg.l-1 aminophylline. When the cells were preincubated with higher doses of the agents in separate experiments there was inhibition of chemotaxis from a control value of 31.1 +/- 2.06 cells.field-1 to 18.3 +/- 0.82 cells.field-1 at 160 mg.l-1 terbutaline, and to 16.1 +/- 0.77 cells.field-1 at 400 mg.l-1 aminophylline. A similar effect was seen when the PMNs were preincubated with terbutaline and aminophylline prior to assessment of superoxide anion generation, with stimulation of superoxide release at therapeutic levels of the drugs and inhibition at higher doses (19% increase from resting control cells at terbutaline 4 mg.l-1 and 53% reduction at 160 mg.l-1; 28% increase with aminophylline 20 mg.l-1 and 22% reduction at 400 mg.l-1). Both terbutaline and aminophylline had no effect on PMN degranulation, as assessed by the degradation of fibronectin.(ABSTRACT TRUNCATED AT 250 WORDS)
Holden, B A; Reddy, M K; Sankaridurg, P R; Buddi, R; Sharma, S; Willcox, M D; Sweeney, D F; Rao, G N
1999-09-01
Contact lens-induced peripheral ulcer (CLPU), a sudden-onset adverse event observed with extended wear of hydrogel lenses, is characterized by a single, small, circular, focal anterior stromal infiltrate in the corneal periphery or midperiphery. The condition is always associated with a significant overlying epithelial loss and resolves in a scar. The aim was to determine, by using histopathologic techniques, the nature and type of the corneal infiltrate of these events. Three CLPUs observed in three patients using disposable hydrogel lenses on an extended-wear schedule were examined. The eye was topically anesthetized, and a corneal section including all of the infiltrate was taken. A small triangular piece of conjunctiva immediately adjacent to the infiltrate was sectioned. The tissue was immediately fixed, processed, stained using hematoxylin and eosin and periodic acid-Schiff stains, and examined by using light microscopy. The diameter of these three corneal infiltrates varied from 0.3 to 0.6 mm. Histopathology of the corneal sections revealed a focal epithelial loss corresponding to the infiltrated stroma in all three patients. The adjacent epithelium was thinned. Bowman's layer was intact in two patients and had a localized area of loss in the remaining patient. The anterior stroma was densely infiltrated with polymorphonuclear leukocytes and had focal areas of necrosis. The infiltration was most dense in the region immediately underlying Bowman's layer. No other infiltrative cell type was seen in any of the sections. Histopathology of the conjunctiva revealed features consistent with normal conjunctival tissue. On histopathology of CLPU, distinctive features (i.e., focal corneal epithelial loss, an intact Bowman's membrane, and a localized infiltration of the anterior stroma with polymorphonuclear leukocytes) were seen. These features suggest that the event is an acute inflammatory process and probably noninfective in nature.
Jeon, Kye-Im; Xu, Xiangbin; Aizawa, Toru; Lim, Jae Hyang; Jono, Hirofumi; Kwon, Dong-Seok; Abe, Jun-Ichi; Berk, Bradford C; Li, Jian-Dong; Yan, Chen
2010-05-25
Inflammation is a hallmark of many diseases, such as atherosclerosis, chronic obstructive pulmonary disease, arthritis, infectious diseases, and cancer. Although steroids and cyclooxygenase inhibitors are effective antiinflammatory therapeutical agents, they may cause serious side effects. Therefore, developing unique antiinflammatory agents without significant adverse effects is urgently needed. Vinpocetine, a derivative of the alkaloid vincamine, has long been used for cerebrovascular disorders and cognitive impairment. Its role in inhibiting inflammation, however, remains unexplored. Here, we show that vinpocetine acts as an antiinflammatory agent in vitro and in vivo. In particular, vinpocetine inhibits TNF-alpha-induced NF-kappaB activation and the subsequent induction of proinflammatory mediators in multiple cell types, including vascular smooth muscle cells, endothelial cells, macrophages, and epithelial cells. We also show that vinpocetine inhibits monocyte adhesion and chemotaxis, which are critical processes during inflammation. Moreover, vinpocetine potently inhibits TNF-alpha- or LPS-induced up-regulation of proinflammatory mediators, including TNF-alpha, IL-1beta, and macrophage inflammatory protein-2, and decreases interstitial infiltration of polymorphonuclear leukocytes in a mouse model of TNF-alpha- or LPS-induced lung inflammation. Interestingly, vinpocetine inhibits NF-kappaB-dependent inflammatory responses by directly targeting IKK, independent of its well-known inhibitory effects on phosphodiesterase and Ca(2+) regulation. These studies thus identify vinpocetine as a unique antiinflammatory agent that may be repositioned for the treatment of many inflammatory diseases.
Vinpocetine inhibits NF-κB–dependent inflammation via an IKK-dependent but PDE-independent mechanism
Jeon, Kye-Im; Xu, Xiangbin; Aizawa, Toru; Lim, Jae Hyang; Jono, Hirofumi; Kwon, Dong-Seok; Berk, Bradford C.; Li, Jian-Dong; Yan, Chen
2010-01-01
Inflammation is a hallmark of many diseases, such as atherosclerosis, chronic obstructive pulmonary disease, arthritis, infectious diseases, and cancer. Although steroids and cyclooxygenase inhibitors are effective antiinflammatory therapeutical agents, they may cause serious side effects. Therefore, developing unique antiinflammatory agents without significant adverse effects is urgently needed. Vinpocetine, a derivative of the alkaloid vincamine, has long been used for cerebrovascular disorders and cognitive impairment. Its role in inhibiting inflammation, however, remains unexplored. Here, we show that vinpocetine acts as an antiinflammatory agent in vitro and in vivo. In particular, vinpocetine inhibits TNF-α–induced NF-κB activation and the subsequent induction of proinflammatory mediators in multiple cell types, including vascular smooth muscle cells, endothelial cells, macrophages, and epithelial cells. We also show that vinpocetine inhibits monocyte adhesion and chemotaxis, which are critical processes during inflammation. Moreover, vinpocetine potently inhibits TNF-α- or LPS-induced up-regulation of proinflammatory mediators, including TNF-α, IL-1β, and macrophage inflammatory protein-2, and decreases interstitial infiltration of polymorphonuclear leukocytes in a mouse model of TNF-α- or LPS-induced lung inflammation. Interestingly, vinpocetine inhibits NF-κB–dependent inflammatory responses by directly targeting IKK, independent of its well-known inhibitory effects on phosphodiesterase and Ca2+ regulation. These studies thus identify vinpocetine as a unique antiinflammatory agent that may be repositioned for the treatment of many inflammatory diseases. PMID:20448200
Limb, G. A.; Brown, K. A.; Wolstencroft, R. A.; Ellis, B. A.; Dumonde, D. C.
1989-01-01
A single intra-articular injection of lymphokine into the guinea-pig knee joint resulted in a sequence of changes in joint architecture whose histopathological features resembled that of an acute inflammatory reaction progressing to a chronic state. At 24 h there was a mild hyperplasia and hypertrophy of the synovium with intense polymorphonuclear leucocyte infiltration. At 72 h, the synovium was heavily infiltrated with diffuse and focal aggregations of mononuclear cells; erosion of cartilage and bone by synovial pannus was accompanied by a subsynovial fibrosis. By 1 week, leucocytic infiltration of the synovium had decreased markedly although the erosion and fibrosis persisted. However, when lymphokine was injected together with oil-elicited peritoneal exudate cells a more intense arthritis ensued: at 72 h synovial pannus was prominently eroding bone and this was accompanied by the appearance of multinucleate cells resembling osteoclasts in the zone of erosion. These features were shown to resemble closely the histopathology of experimental allergic arthritis in the guinea-pig, in contrast to the lesser severity of synovitis resulting from the adoptive cellular transfer of delayed hypersensitivity into the joint. The results indicate that lymphokines may play a role in the induction of experimental allergic arthritis by recruiting and activating cells involved in chronic inflammation. Images Fig. 1 Fig. 2 Fig. 3 PMID:2765396
Pacifici, R; Patrini, G; Venier, I; Parolaro, D; Zuccaro, P; Gori, E
1994-06-01
This report describes the 24-hr time course of the immunomodulatory effects of an acute s.c. injection of morphine in C57BL6 mice, and correlates these effects with the drug's analgesic properties and serum levels. Acute morphine treatment had a biphasic effect on various immune parameters: there was an increase in in vitro phagocytosis and the killing of Candida Albican cells by peritoneal polymorphonuclear leukocytes 20 and 40 min after the injection of morphine, 20 mg/kg, when analgesia and serum morphine concentrations were at their peak. Interestingly, 24 hr after morphine administration (when antinociception and morphine blood levels were no longer detectable) these parameters underwent a marked reduction. Similarly, macrophage-mediated inhibition of tumor cells proliferation was first stimulated (at 20 and 40 min) and then depressed (at 24 hr). Splenic natural killer cell cytotoxicity, determined by standard 51Cr release from YAC-1 target cells, also was evaluated. No differences in natural killer activity was observed at any of the monitored time points. In addition, we evaluated the immunomodulatory effects of an acute injection of methadone (a synthetic narcotic compound) at a dose inducing the same degree of analgesia as morphine. None of the tested immunoparameters were affected by the administration of methadone, which indicates the different drug-sensitivity of immunological correlates in vivo.
Nemoto, E; Nakamura, M; Shoji, S; Horiuchi, H
1997-01-01
Early-onset periodontitis (EOP) is characterized by rapidly progressive alveolar bone loss, chemotactic defects of neutrophils, and significant familial aggregation. We found immature myeloid lineage cells, defined as promyelocytes, in the peripheral blood in patients with EOP. A hematological examination of peripheral blood cells showed normal reference values regarding cell proportions. Flow cytometry revealed significantly lower expression of CD16, a glycosylphosphatidylinositol (GPI)-anchored protein, on peripheral neutrophils in patients compared with those in age- and sex-matched healthy controls, whereas the levels of CD11a and CD11b expression were similar. The chemotactic response of neutrophils was lower toward not only formyl-methionyl-leucyl-phenylalanine but also complement fragment C5a than that of healthy controls. The expression of another GPI-anchored protein, CD14, was equally expressed by controls and patients. Therefore, the low level of CD16 expression was not due to the incomplete synthesis of the GPI anchor. GPI anchors of CD16 on neutrophils from controls and patients were both partially resistant to phosphatidylinositol-specific phospholipase C. The presence of promyelocytes in peripheral blood, low expression of CD16, and low chemotactic response of neutrophils suggest that patients with EOP have an abnormal maturation system in myeloid lineage cells in the bone marrow, which may be associated with the onset and course of EOP. PMID:9284170
Brunel, Shan F; Willment, Janet A; Brown, Gordon D; Devereux, Graham; Warris, Adilia
2018-04-01
Aspergillus fumigatus infects up to 50% of cystic fibrosis (CF) patients and may play a role in progressive lung disease. As cystic fibrosis transmembrane conductance regulator is expressed in cells of the innate immune system, we hypothesised that impaired antifungal immune responses play a role in CF-related Aspergillus lung disease. Peripheral blood mononuclear cells, polymorphonuclear cells (PMN) and monocytes were isolated from blood samples taken from CF patients and healthy volunteers. Live-cell imaging and colorimetric assays were used to assess antifungal activity in vitro . Production of reactive oxygen species (ROS) was measured using luminol-induced chemiluminescence and was related to clinical metrics as collected by case report forms. CF phagocytes are as effective as those from healthy controls with regards to phagocytosis, killing and restricting germination of A. fumigatus conidia. ROS production by CF phagocytes was up to four-fold greater than healthy controls (p<0.05). This effect could not be replicated in healthy phagocytes by priming with lipopolysaccharide or serum from CF donors. Increased production of ROS against A. fumigatus by CF PMN was associated with an increased number of clinical exacerbations in the previous year (p=0.007) and reduced lung function (by forced expiratory volume in 1 s) (p=0.014). CF phagocytes mount an intrinsic exaggerated release of ROS upon A. fumigatus stimulation which is associated with clinical disease severity.
Brunel, Shan F.; Brown, Gordon D.; Devereux, Graham; Warris, Adilia
2018-01-01
Aspergillus fumigatus infects up to 50% of cystic fibrosis (CF) patients and may play a role in progressive lung disease. As cystic fibrosis transmembrane conductance regulator is expressed in cells of the innate immune system, we hypothesised that impaired antifungal immune responses play a role in CF-related Aspergillus lung disease. Peripheral blood mononuclear cells, polymorphonuclear cells (PMN) and monocytes were isolated from blood samples taken from CF patients and healthy volunteers. Live-cell imaging and colorimetric assays were used to assess antifungal activity in vitro. Production of reactive oxygen species (ROS) was measured using luminol-induced chemiluminescence and was related to clinical metrics as collected by case report forms. CF phagocytes are as effective as those from healthy controls with regards to phagocytosis, killing and restricting germination of A. fumigatus conidia. ROS production by CF phagocytes was up to four-fold greater than healthy controls (p<0.05). This effect could not be replicated in healthy phagocytes by priming with lipopolysaccharide or serum from CF donors. Increased production of ROS against A. fumigatus by CF PMN was associated with an increased number of clinical exacerbations in the previous year (p=0.007) and reduced lung function (by forced expiratory volume in 1 s) (p=0.014). CF phagocytes mount an intrinsic exaggerated release of ROS upon A. fumigatus stimulation which is associated with clinical disease severity. PMID:29651422
McIntosh, Anne; Meikle, Lynsey M.; Ormsby, Michael J.; McCormick, Beth A.; Christie, John M.; Brewer, James M.; Roberts, Mark
2017-01-01
ABSTRACT Salmonella invasion protein A (SipA) is a dual-function effector protein that plays roles in both actin polymerization and caspase-3 activation in intestinal epithelial cells. To date its function in other cell types has remained largely unknown despite its expression in multiple cell types and its extracellular secretion during infection. Here we show that in macrophages SipA induces increased caspase-3 activation early in infection. This activation required a threshold level of SipA linked to multiplicity of infection and may be a limiting factor controlling bacterial numbers in infected macrophages. In polymorphonuclear leukocytes, SipA or other Salmonella pathogenicity island 1 effectors had no effect on induction of caspase-3 activation either alone or in the presence of whole bacteria. Tagging of SipA with the small fluorescent phiLOV tag, which can pass through the type three secretion system, allowed visualization and quantification of caspase-3 activation by SipA-phiLOV in macrophages. Additionally, SipA-phiLOV activation of caspase-3 could be tracked in the intestine through multiphoton laser scanning microscopy in an ex vivo intestinal model. This allowed visualization of areas where the intestinal epithelium had been compromised and demonstrated the potential use of this fluorescent tag for in vivo tracking of individual effectors. PMID:28630067
Delayed Dermal Hypersensitivity in Mice to Spherule and Mycelial Extracts of Coccidioides immitis
Kong, Yi-Chi M.; Savage, D. C.; Kong, Leighton N. L.
1966-01-01
Kong, Yi-chi M. (University of California, Berkeley), D. C. Savage, and Leighton N. L. Kong. Delayed dermal hypersensitivity in mice to spherule and mycelial extracts of Coccidioides immitis. J. Bacteriol. 91:876–883. 1966.—A delayed hypersensitivity reaction to spherule and mycelial extracts of Coccidioides immitis was elicited in the footpads of mice vaccinated with killed spherules. Emulsification of the spherules with Freund's adjuvants was unnecessary, but a high concentration of antigen was required to elicit the reaction. Injection of the extracts produced, initially, a swelling which subsided within 4 hr, and then induration, which began at 6 to 8 hr and reached a maximum at 24 hr. The time course of the reaction corresponded to that of the tuberculin reaction in BCG-vaccinated mice. The histological response to coccidioidal extracts was characterized by the early infiltration of both polymorphonuclear and mononuclear cells, and the subsequent predominance of mononuclear cells at 24 to 48 hr. By 72 hr, the mononuclear cells comprised >90% of the cellular infiltrate. Animals infected intranasally with arthrospores (1 to 5 ld50) reacted negatively before and during the crisis period; thereafter (by 28 to 31 days after infection), up to 50% of the survivors showed a delayed reaction. Images PMID:5894227
Ouabain Modulates Zymosan-Induced Peritonitis in Mice
Leite, Jacqueline Alves; Alves, Anne Kaliery De Abreu; Galvão, José Guilherme Marques; Teixeira, Mariana Pires; Rumjanek, Vivian Mary; Rodrigues-Mascarenhas, Sandra
2015-01-01
Ouabain, a potent inhibitor of the Na+, K+-ATPase, was identified as an endogenous substance. Recently, ouabain was shown to affect various immunological processes. We have previously demonstrated the ability of ouabain to modulate inflammation, but little is known about the mechanisms involved. Thus, the aim of the present work is to evaluate the immune modulatory role of ouabain on zymosan-induced peritonitis in mice. Our results show that ouabain decreased plasma exudation (33%). After induction of inflammation, OUA treatment led to a 46% reduction in the total number of cells, as a reflex of a decrease of polymorphonuclear leukocytes, which does not appear to be due to cell death. Furthermore, OUA decreased TNF-α (57%) and IL-1β (58%) levels, without interfering with IL-6 and IL-10. Also, in vitro experiments show that ouabain did not affect endocytic capacity. Moreover, electrophoretic mobility shift assay (EMSA) shows that zymosan treatment increased (85%) NF-κB binding activity and that ouabain reduced (30%) NF-κB binding activity induced by zymosan. Therefore, our data suggest that ouabain modulated acute inflammatory response, reducing the number of cells and cytokines levels in the peritoneal cavity, as well as NFκB activation, suggesting a new mode of action of this substance. PMID:26078492
Zeidler-Erdely, Patti C.; Antonini, James M.; Meighan, Terence G.; Young, Shih-Houng; Eye, Tracy J.; Hammer, Mary Ann; Erdely, Aaron
2016-01-01
Pulmonary toxicity studies often use bronchoalveolar lavage (BAL) to investigate potential adverse lung responses to a particulate exposure. The BAL cellular fraction is counted, using automated (i.e. Coulter Counter®), flow cytometry or manual (i.e. hemocytometer) methods, to determine inflammatory cell influx. The goal of the study was to compare the different counting methods to determine which is optimal for examining BAL cell influx after exposure by inhalation or intratracheal instillation (ITI) to different particles with varying inherent pulmonary toxicities in both rat and mouse models. General findings indicate that total BAL cell counts using the automated and manual methods tended to agree after inhalation or ITI exposure to particle samples that are relatively nontoxic or at later time points after exposure to a pneumotoxic particle when the response resolves. However, when the initial lung inflammation and cytotoxicity was high after exposure to a pneumotoxic particle, significant differences were observed when comparing cell counts from the automated, flow cytometry and manual methods. When using total BAL cell count for differential calculations from the automated method, depending on the cell diameter size range cutoff, the data suggest that the number of lung polymorphonuclear leukocytes (PMN) varies. Importantly, the automated counts, regardless of the size cutoff, still indicated a greater number of total lung PMN when compared with the manual method, which agreed more closely with flow cytometry. The results suggest that either the manual method or flow cytometry would be better suited for BAL studies where cytotoxicity is an unknown variable. PMID:27251196
Zeidler-Erdely, Patti C; Antonini, James M; Meighan, Terence G; Young, Shih-Houng; Eye, Tracy J; Hammer, Mary Ann; Erdely, Aaron
2016-08-01
Pulmonary toxicity studies often use bronchoalveolar lavage (BAL) to investigate potential adverse lung responses to a particulate exposure. The BAL cellular fraction is counted, using automated (i.e. Coulter Counter®), flow cytometry or manual (i.e. hemocytometer) methods, to determine inflammatory cell influx. The goal of the study was to compare the different counting methods to determine which is optimal for examining BAL cell influx after exposure by inhalation or intratracheal instillation (ITI) to different particles with varying inherent pulmonary toxicities in both rat and mouse models. General findings indicate that total BAL cell counts using the automated and manual methods tended to agree after inhalation or ITI exposure to particle samples that are relatively nontoxic or at later time points after exposure to a pneumotoxic particle when the response resolves. However, when the initial lung inflammation and cytotoxicity was high after exposure to a pneumotoxic particle, significant differences were observed when comparing cell counts from the automated, flow cytometry and manual methods. When using total BAL cell count for differential calculations from the automated method, depending on the cell diameter size range cutoff, the data suggest that the number of lung polymorphonuclear leukocytes (PMN) varies. Importantly, the automated counts, regardless of the size cutoff, still indicated a greater number of total lung PMN when compared with the manual method, which agreed more closely with flow cytometry. The results suggest that either the manual method or flow cytometry would be better suited for BAL studies where cytotoxicity is an unknown variable.
Baumann, U; Chouchakova, N; Gewecke, B; Köhl, J; Carroll, M C; Schmidt, R E; Gessner, J E
2001-07-15
We induced the passive reverse Arthus reaction to IgG immune complexes (IC) at different tissue sites in mice lacking C3 treated or not with a C5aR-specific antagonist, or in mice lacking mast cells (Kit(W)/Kit(W-v) mice), and compared the inflammatory responses with those in the corresponding wild-type mice. We confirmed that IC inflammation of skin can be mediated largely by mast cells expressing C5aR and FcgammaRIII. In addition, we provided evidence for C3-independent C5aR triggering, which may explain why the cutaneous Arthus reaction develops normally in C3(-/-) mice. Furthermore, some, but not all, of the acute changes associated with the Arthus response in the lung were significantly more intense in normal mice than in C3(-/-) or Kit(W)/Kit(W-v) mice, indicating for C3- and mast cell-dependent and -independent components. Finally, we demonstrated that C3 contributed to the elicitation of neutrophils to alveoli, which corresponded to an increased synthesis of TNF-alpha, macrophage-inflammatory protein-2, and cytokine-induced neutrophil chemoattractant. While mast cells similarly influenced alveolar polymorphonuclear leukocyte influx, the levels of these cytokines remained largely unaffected in mast cell deficiency. Together, the phenotypes of C3(-/-) mice and Kit(W)/Kit(W-v) mice suggest that complement and mast cells have distinct tissue site-specific requirements acting by apparently distinct mechanisms in the initiation of IC inflammation.
Toxicity and health effects of vehicle emissions in Shanghai
NASA Astrophysics Data System (ADS)
Ye, Shun-Hua; Zhou, Wei; Song, Jian; Peng, Bao-Cheng; Yuan, Dong; Lu, Yuan-Ming; Qi, Ping-Ping
In China, the number of vehicles is increasing rapidly with the continuous development of economy, and vehicle emission pollution in major cities is more serious than ever. In this article, we summarized the results of a series of short-term assays, animal experiments and epidemiology investigations on the genotoxicity, immunotoxicity, respiratory toxicity and health effects of vehicle emissions in Shanghai, including gasoline exhausts (gas condensate and particles), diesel exhaust particles (DEP) and scooter exhaust particles (SEP). The results showed that: (1) Both gases and particulate phases of the exhausts of different kinds of vehicles showed strong mutagenicity in Ames test (TA98 and TA100 strains), rat hepatocyte unscheduled DNA synthesis (UDS) assay, and mouse micronucleus assay, and vehicle emissions could induce the transformation of Syrian hamster embryo (SHE) cells. DEP and SEP could induce the transformation of human diploid cell strain (KMB-13) cells, immunohistochemistry assay showed that c-myc and p21 proteins were highly expressed in the transformed cells. DEP and SEP could also inhibit the gap junctional intercellular communication (GJIC) of BALB/C3T3 cells (2) Vehicle emissions could decrease the number of macrophages in the lung (bronchial alveolar lavage fluid) (BALF) of male SD rats. Vehicle emissions could also increase the proportion of polymorphonuclear leukocytes (PMN), the content of cetyneuraminic acid (NA), the activity of lactate dehydrogenase (LDH), alkali phosphate (AKP), acid phosphate (ACP) in the lung BALF of the animals. (3) In epidemiology investigation, the proportion of those who have respiratory symptoms and chronic obstructive pulmonary diseases (COPD) in the workers who were exposed to DEP ( n=806) were much higher than those of the controls ( n=413). The OR (odd ratio) values of angina, nasal obstruction, phlegm, short of breath and COPD were 2.27, 3.08, 3.00, 3.19 and 2.32, respectively, and the proportion of those who have indisposed sensation of nose or laryngopharynx, cough, phlegm and pharyngitis in the workers who were occupationally exposed to gasoline exhausts ( n=157) were also higher than those of controls ( n=121), the OR values were 2.43, 3.76, 2.58, and 3.70, respectively, and in the 40 gasoline exhausts exposed workers, the frequencies of 6-TG (thioguanine), sister chromatid exchanges (SCEs) and micronuclei in peripheral blood were markedly higher ( P<0.05) than those of controls. The SI (T lymphocytes transformation) activity, total E rosette, E active rosette, content of immunoglobulin A (IgA) and fibrin (FN) of the exposed group were significantly ( P<0.05) decreased compared with those of the control. All the results showed that vehicle emissions could not only induce adverse effects on respiratory and immune system of occupationally exposed people, but also have potential carcinogenicity to human beings.
The effect of citrus-derived oil on bovine blood neutrophil response in vitro
USDA-ARS?s Scientific Manuscript database
Research on the use of natural products to treat or prevent microbial invasion as alternatives to antibiotic use is growing.Polymorphonuclear leukocytes (PMNL) play a vital role with regard to the innate immune response that affects severity and or duration of mastitis. To our knowledge, effect of c...
USDA-ARS?s Scientific Manuscript database
The molecular and cellular basis for the enhanced lung pathology and mortality caused by Mannheimia haemolytica in bighorn sheep (BHS, Ovis canadenesis), in comparison to domestic sheep (DS, Ovis aries), is not clear. Polymorphonuclear leukocytes (PMNs) of BHS are four- to eight-fold more susceptibl...
Bando, Hironori; Iguchi, Genzo; Fukuoka, Hidenori; Taniguchi, Masaaki; Kawano, Seiji; Saitoh, Miki; Yoshida, Kenichi; Matsumoto, Ryusaku; Suda, Kentaro; Nishizawa, Hitoshi; Takahashi, Michiko; Morinobu, Akio; Kohmura, Eiji; Ogawa, Wataru; Takahashi, Yutaka
2015-10-01
Immunoglobulin (Ig) G4-related hypophysitis is an emerging clinical entity, which is characterized by an elevated serum IgG4 concentration and infiltration of IgG4-positive plasma cells in the pituitary. Although some criteria for its diagnosis have been proposed, they have not been fully established. In particular, differential diagnosis from secondary chronic inflammation including granulomatosis with polyangiitis (GPA) is difficult in some cases. We describe central diabetes insipidus with pituitary swelling exhibiting infiltration of IgG4-positive cells. A 43-year-old woman in the remission stage of GPA presented with sudden-onset polyuria and polydipsia. Pituitary magnetic resonance imaging revealed swelling of the anterior and posterior pituitary and stalk, with heterogeneous gadolinium enhancement and disappearance of the high signal intensity of the posterior pituitary. Evaluation of biochemical markers for GPA suggested that the disease activity was well-controlled. Endocrinological examination revealed the presence of central diabetes insipidus and growth hormone deficiency. Pituitary biopsy specimen showed IgG4-positive cells, with a 43% IgG4(+)/IgG(+) ratio, which met the criteria for IgG4-related hypophysitis. However, substantial infiltration of polymorphonuclear neutrophils with giant cells was also noted, resulting in a final diagnosis of pituitary involvement of GPA. These results suggest that pituitary involvement of GPA should be taken into account for the differential diagnosis of IgG4-related hypophysitis.
Kim, Kwang Joon; Shin, Yong Kyoo; Song, Jin Ho; Oh, Byung Kwon; Choi, Myung Sup; Sohn, Uy Dong
2002-02-01
1. The purpose of this study was to investigate the protective effects of defibrotide, a single-stranded polydeoxyribonucleotide, on ischaemia-reperfusion injury to the liver using a rat model. 2. Ischaemia of the left and median lobes was created by total inflow occlusion for 30 min followed by 60 min of reperfusion. Hepatic injury was assessed by the release of liver enzymes (alanine transferase, ALT and lactic dehydrogenase, LDH). Hepatic oxidant stress was measured by superoxide production, lipid peroxidation and nitrite/nitrate formation. Leukocyte-endothelium interaction and Kupffer cell mobilization were quantified by measuring hepatic myeloperoxidase (MPO), polymorphonuclear leukocyte adherence to superior mesenteric artery (SMA) and immunostaining of Kupffer cell. 3. Defibrotide treatment resulted in a significant inhibition of postreperfusion superoxide generation, lipid peroxidation, serum ALT activity, serum LDH activity, MPO activity, serum nitrite/nitrate level, leukocyte adherence to SMA, and Kupffer cell mobilization, indicating a significant attenuation of hepatic dysfunction. 4. A significant correlation existed between liver ischaemia/reperfusion and hepatic injury, suggesting that liver ischaemia/reperfusion injury is mediated predominantly by generation of oxygen free radicals and mobilization of Kupffer cells. 5. We conclude that defibrotide significantly protects the liver against liver ischaemia/reperfusion injury by interfering with Kupffer cell mobilization and formation of oxygen free radicals. This study provides strong evidence that defibrotide has important beneficial effects on acute inflammatory tissue injury such as that occurring in the reperfusion of the ischaemic liver.
Luukkainen, R; Hakala, M; Sajanti, E; Huhtala, H; Yli-Kerttula, U; Hämeenkorpi, R
1992-01-01
The predictive relevance of synovial fluid analysis and some other variables for the efficacy of intra-articular corticosteroid injections in 30 patients with rheumatoid arthritis and hydropsy in a knee joint was evaluated in a prospective study. At the onset of the study, the knee joints were aspirated and 30 mg triamcinolone hexacetonide injected intra-articularly. The circumferences and the tenderness scores of the knee joints were measured at onset, after two months, and at the end of the six months' follow up. Of the variables studied, synovial fluid C4, percentage of synovial fluid polymorphonuclear leucocytes, blood haemoglobin, and serum C3 correlated significantly with the decrease in knee joint circumference after two months, whereas only the percentage of synovial fluid polymorphonuclear leucocytes correlated significantly after six months. Between the patients with and without improvement in the tenderness scores of the knee joints, only serum IgM differed at the examination after two months; this was higher in patients whose scores showed no improvement. PMID:1632661
Sorg, Nadine; Poppe, Carolin; Bunos, Milica; Wingenfeld, Eva; Hümmer, Christiane; Krämer, Ariane; Stock, Belinda; Seifried, Erhard; Bonig, Halvard
2015-06-01
Red blood cell (RBC) depletion is a standard technique for preparation of ABO-incompatible bone marrow transplants (BMTs). Density centrifugation or apheresis are used successfully at clinical scale. The advent of a bone marrow (BM) processing module for the Spectra Optia (Terumo BCT) provided the initiative to formally compare our standard technology, the COBE2991 (Ficoll, manual, "C") with the Spectra Optia BMP (apheresis, semiautomatic, "O"), the Sepax II NeatCell (Ficoll, automatic, "S"), the Miltenyi CliniMACS Prodigy density gradient separation system (Ficoll, automatic, "P"), and manual Ficoll ("M"). C and O handle larger product volumes than S, P, and M. Technologies were assessed for RBC depletion, target cell (mononuclear cells [MNCs] for buffy coats [BCs], CD34+ cells for BM) recovery, and cost/labor. BC pools were simultaneously purged with C, O, S, and P; five to 18 BM samples were sequentially processed with C, O, S, and M. Mean RBC removal with C was 97% (BCs) or 92% (BM). From both products, O removed 97%, and P, S, and M removed 99% of RBCs. MNC recovery from BC (98% C, 97% O, 65% P, 74% S) or CD34+ cell recovery from BM (92% C, 90% O, 67% S, 70% M) were best with C and O. Polymorphonuclear cells (PMNs) were depleted from BCs by P, S, and C, while O recovered 50% of PMNs. Time savings compared to C or M for all tested technologies are considerable. All methods are in principle suitable and can be selected based on sample volume, available technology, and desired product specifications beyond RBC depletion and MNC and/or CD34+ cell recovery. © 2015 AABB.
Gabner, S; Egerbacher, M; Gasse, H; Hewicker-Trautwein, M; Höltig, D; Waldmann, K-H; Blecha, F; Saalmüller, A; Hennig-Pauka, I
2017-10-01
Innate immunity is critically important for the outcome of infection in many diseases. It was previously shown that cathelicidin PR-39, an important porcine multifunctional host defence peptide, is elevated in bronchoalveolar lavage fluid and respiratory tract tissue after experimental infection with Actinobacillus pleuropneumoniae (A.pp.). To date, neutrophil polymorphonuclear leukocytes (PMNs) are thought to be the only source of PR-39. The aim of this study was to further characterize PR-39⁺ cells and selected immune cell populations in lung tissue during the peracute (7-10 hours), acute (2 days), reconvalescent (7 days) and chronic (21 days) stages of experimental infection with A.pp. serotype 2. In total, six mock-infected control pigs and 12 infected pigs were examined. Using immunofluorescence double-labeling, antibodies against PR-39 were combined with antibodies against CD3 (T-cells), CD79 (B-cells), Iba1 (activated macrophages), TTF-1 (lung epithelial cells expressing surfactant proteins), macrophage/L1 protein and myeloperoxidase (MPO, cells of the myeloid linage). In the peracute and acute phases of infection, total PR-39⁺ cells and myeloid linage cells increased, whereas CD3⁺ cells and TTF-1⁺ cells decreased. Double labeling revealed that most Macrophage/L1 protein+ cells and to a lesser extent MPO⁺ cells co-expressed PR-39. In addition, few bronchial epithelial cells and type 2 alveolar epithelial cells (both identified with TTF-1) produced PR-39. Occasionally, CD3⁺ T cells expressing PR-39 were seen in infected animals. Taken together, this study identifies cell types, other than PMNs, in lungs of A.pp.-infected pigs that are capable of producing PR-39. In addition, these findings provide further insights into the dynamics of different immune cell populations during A.pp.-infection.
Multiple roles of Pseudomonas aeruginosa TBCF10839 PilY1 in motility, transport and infection
Bohn, Yu-Sing Tammy; Brandes, Gudrun; Rakhimova, Elza; Horatzek, Sonja; Salunkhe, Prabhakar; Munder, Antje; van Barneveld, Andrea; Jordan, Doris; Bredenbruch, Florian; Häußler, Susanne; Riedel, Kathrin; Eberl, Leo; Jensen, Peter Østrup; Bjarnsholt, Thomas; Moser, Claus; Hoiby, Niels; Tümmler, Burkhard; Wiehlmann, Lutz
2008-01-01
Polymorphonuclear neutrophils are the most important mammalian host defence cells against infections with Pseudomonas aeruginosa. Screening of a signature tagged mutagenesis library of the non-piliated P. aeruginosa strain TBCF10839 uncovered that transposon inactivation of its pilY1 gene rendered the bacterium more resistant against killing by neutrophils than the wild type and any other of the more than 3000 tested mutants. Inactivation of pilY1 led to the loss of twitching motility in twitching-proficient wild-type PA14 and PAO1 strains, predisposed to autolysis and impaired the secretion of quinolones and pyocyanin, but on the other hand promoted growth in stationary phase and bacterial survival in murine airway infection models. The PilY1 population consisted of a major full-length and a minor shorter PilY1* isoform. PilY1* was detectable in small extracellular quinolone-positive aggregates, but not in the pilus. P. aeruginosa PilY1 is not an adhesin on the pilus tip, but assists in pilus biogenesis, twitching motility, secretion of secondary metabolites and in the control of cell density in the bacterial population. PMID:19054330
Schulz, J; Fahr, R D; Finn, G; Naumann, I
1999-04-01
In dairy goats there is less evidence for relationships between udder form traits, results of physical udder examinations and mastitis indicators in the milk than in dairy cows. In 413 goats (predominantly Weisse Deutsche Edelziege and Bunte Deutsche Edelziege) from five herds (free from C.A.E.) repeated investigations of 2537 udder halves and fore milk samples were carried out in order to compare udder traits with findings in the milk. Less than 20% positive bacteriological findings and a low incidence of clinical mastitis testified a good clinical udder health status of the herds. Small teat-floor distances, loose hanging of the udders and bottle-shaped teats, findings which tended to become more frequent as lactation and lactation numbers progressed, indurative alterations of the mammary tissues and the teats tended to be connected with higher milk cell counts (> 1 million/microliter), more polymorphonuclear milk cells (> 40%), higher electrical milk conductivity (> 6.8 mS/cm) and lower milk lactose content (< 4.6%). A similar effect had a bad state of foot trimming. It is proposed to include the studied udder traits into herd health programs and breeding schemes for goats.
li, Lin; Pian, Yaya; Chen, Shaolong; Hao, Huaijie; Zheng, Yuling; Zhu, Li; Xu, Bin; Liu, Keke; Li, Min; Jiang, Hua; Jiang, Yongqiang
2016-01-01
Vascular leakage frequently occurs in patients with severe Staphylococcus aureus infection. However, the mechanism underlying S. aureus infection-induced vascular leakage remains unclear. Here, we identified the S. aureus virulence factor phenol-soluble modulin (PSM)α4 from the culture supernatant of strain USA300 as a stimulator of heparin-binding protein (HBP) release from polymorphonuclear neutrophils (PMNs) and demonstrated that PSMα4-induced HBP release from PMNs leads to vascular leakage. PSMα4 appeared less cytolytic than PSMα1–3 and was insensitive to lipoproteins; it significantly increased myeloperoxidase and elastase release from PMNs and cell surface CD63 expression in PMNs. PSMα4-induced HBP release required formyl peptide receptor 2 (FPR2) and phosphoinositide 3-kinase (PI3K) and depended on Ca2+ influx and cytoskeleton rearrangement. Thus, PSMα4 may stimulate HBP release by activating FPR2 and PI3K to initiate PMN degranulation. PSMα4-induced HBP release from PMNs increased endothelial cell monolayer permeability in vitro and induced vascular leakage in mice. This novel function of PSMα4 may contribute to the pathogenesis of S. aureus and may be a potential therapeutic target. PMID:27383625
Pouliot, Marc; Fiset, Marie-Elaine; Massé, Mireille; Naccache, Paul H; Borgeat, Pierre
2002-11-01
Polymorphonuclear neutrophils (granulocytes; PMNs) are often the first blood cells to migrate toward inflammatory lesions to perform host defense functions. PMNs respond to specific stimuli by releasing several factors and generate lipid mediators of inflammation from the 5-lipoxygenase and the inducible cyclooxygenase (COX)-2 pathways. In view of adenosine's anti-inflammatory properties and suppressive impact on the 5-lipoxygenase pathway, we addressed in this study the impact of this autacoid on the COX-2 pathway. We observed that adenosine up-regulates the expression of the COX-2 enzyme and mRNA. Production of PGE(2) in response to exogenous arachidonic acid was also increased by adenosine and correlated with COX-2 protein levels. The potentiating effect of adenosine on COX-2 could be mimicked by pharmacological increases of intracellular cAMP levels, involving the latter as a putative second messenger for the up-regulation of COX-2 by adenosine. Specific COX-2 inhibitors were used to confirm the predominant role of the COX-2 isoform in the formation of prostanoids by stimulated PMNs. Withdrawal of extracellular adenosine strikingly emphasized the inhibitory potential of PGE(2) on leukotriene B(4) formation and involved the EP(2) receptor subtype in this process. Thus, adenosine may promote a self-limiting regulatory process through the increase of PGE(2) generation, which may result in the inhibition of PMN functions. This study identifies a new aspect of the anti-inflammatory properties of adenosine in leukocytes, introducing the concept that this autacoid may exert its immunomodulatory activities in part by modifying the balance of lipid mediators generated by PMNs.
Nitrating reactive nitric oxygen species transform acetaminophen to 3-nitroacetaminophen.
Lakshmi, V M; Hsu, F F; Davis, B B; Zenser, T V
2000-09-01
Nitrating reactive nitric oxygen species (RNOS) elicit many of the deleterious effects of the inflammatory response. Their high reactivity and short half-life make RNOS analysis difficult. Reaction of acetaminophen (APAP) with RNOS generated by various conditions was evaluated by HPLC. When [(14)C]APAP was incubated at pH 7.4, the same new product (3NAP) was produced by at least three separate pathways represented by the following conditions: myeloperoxidase oxidation of NO(2)(-), NO(2)Cl, and ONOO(-) or Sin-1. Diethylamine NONO and spermine NONO did not convert APAP to 3NAP. 3NAP was stable at pH 5, 7.4, or 9, and at pH 7.4 with ONOO(-), spermine NONO, Sin-1, or H(2)O(2). HOCl transformed 3NAP, which was prevented by APAP, ascorbic acid, taurine, or NO(2)(-). ONOO(-)-derived 3NAP was identified by (1)H NMR as 3-nitroacetaminophen or 3-nitro-N-acetyl-p-aminophenol, and the product mass was verified by EI/ESI mass spectrometry. Human polymorphonuclear neutrophils incubated with [(14)C]APAP and stimulated with beta-phorbol 12-myristate 13-acetate produced 3NAP in the presence of NO(2)(-). Neutrophil 3NAP formation was verified by mass spectrometry and was consistent with myeloperoxidase oxidation of NO(2)(-). Spermine NONO supported 3NAP formation by stimulated cells in the absence of NO(2)(-). Results demonstrate that 3NAP is a product of nitrating RNOS generated by at least three separate pathways and may be a biomarker for nitrating mediators of inflammation.
Cytokine production by oral and peripheral blood neutrophils in adult periodontitis.
Galbraith, G M; Hagan, C; Steed, R B; Sanders, J J; Javed, T
1997-09-01
Proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin 1 beta (IL-1 beta) also possess bone-resorptive properties, and are generally considered to play a role in the pathogenesis of periodontal disease. In the present study, TNF-alpha and IL-1 beta production by oral and peripheral blood polymorphonuclear leukocytes (PMN) was examined in 40 patients with adult periodontitis and 40 orally healthy matched controls. Oral PMN released considerable amounts of both cytokines in unstimulated culture, and there was no difference between patients and controls when the cytokine levels were corrected for cell number. However, when the effect of disease activity was examined, cytokine release by oral PMN was found to be greatest in patients with advanced periodontitis. Within the healthy control group, IL-1 beta production by oral PMN was significantly higher in males (Mann-Whitney test, P = 0.0008). Examination of IL-1 beta production by peripheral blood PMN exposed to recombinant human granulocyte-macrophage colony stimulating factor revealed no difference between the patient and control groups. In contrast, IL-1 beta production by peripheral blood PMN was significantly reduced in patients with advanced disease (Mann-Whitney test, P = 0.02), and peripheral PMN IL-1 beta synthesis was greater in female controls (Mann-Whitney test, P = 0.054). No effect of race on cytokine production could be discerned in patients or controls. These results indicate that several factors influence cytokine production in oral health and disease, and that a dichotomy in cytokine gene expression exists between oral and peripheral blood PMN in adult periodontitis.
Garscha, Ulrike; Voelker, Susanna; Pace, Simona; Gerstmeier, Jana; Emini, Besa; Liening, Stefanie; Rossi, Antonietta; Weinigel, Christina; Rummler, Silke; Schubert, Ulrich S; Scriba, Gerhard K E; Çelikoğlu, Erşan; Çalışkan, Burcu; Banoglu, Erden; Sautebin, Lidia; Werz, Oliver
2016-11-01
The pro-inflammatory leukotrienes (LTs) are formed from arachidonic acid (AA) in activated leukocytes, where 5-lipoxygenase (5-LO) translocates to the nuclear envelope to assemble a functional complex with the integral nuclear membrane protein 5-LO-activating protein (FLAP). FLAP, a MAPEG family member, facilitates AA transfer to 5-LO for efficient conversion, and LT biosynthesis critically depends on FLAP. Here we show that the novel LT biosynthesis inhibitor BRP-187 prevents the 5-LO/FLAP interaction at the nuclear envelope of human leukocytes without blocking 5-LO nuclear redistribution. BRP-187 inhibited 5-LO product formation in human monocytes and polymorphonuclear leukocytes stimulated by lipopolysaccharide plus N-formyl-methionyl-leucyl-phenylalanine (IC 50 =7-10nM), and upon activation by ionophore A23187 (IC 50 =10-60nM). Excess of exogenous AA markedly impaired the potency of BRP-187. Direct 5-LO inhibition in cell-free assays was evident only at >35-fold higher concentrations, which was reversible and not improved under reducing conditions. BRP-187 prevented A23187-induced 5-LO/FLAP complex assembly in leukocytes but failed to block 5-LO nuclear translocation, features that were shared with the FLAP inhibitor MK886. Whereas AA release, cyclooxygenases and related LOs were unaffected, BRP-187 also potently inhibited microsomal prostaglandin E 2 synthase-1 (IC 50 =0.2μM), another MAPEG member. In vivo, BRP-187 (10mg/kg) exhibited significant effectiveness in zymosan-induced murine peritonitis, suppressing LT levels in peritoneal exudates as well as vascular permeability and neutrophil infiltration. Together, BRP-187 potently inhibits LT biosynthesis in vitro and in vivo, which seemingly is caused by preventing the 5-LO/FLAP complex assembly and warrants further preclinical evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.
Calderón-Garcidueñas, L; Gambling, T M; Acuña, H; García, R; Osnaya, N; Monroy, S; Villarreal-Calderón, A; Carson, J; Koren, H S; Devlin, R B
2001-06-01
The principal objective of this study is to evaluate by light and electron microscopy (LM, EM) the heart tissues in stray southwest and northeast metropolitan Mexico City (SWMMC, NEMMC) dogs and compare their findings to those from 3 less polluted cities (Cuernavaca, Tlaxcala, and Tuxpam). Clinically healthy mongrel dogs, including 109 from highly polluted SWMMC and NEMMC, and 43 dogs from less polluted cities were studied. Dogs residing in cities with lower levels of pollutants showed little or no cardiac abnormalities. Mexico City and Cuernavaca dogs exhibited LM myocardial alterations including apoptotic myocytes, endothelial and immune effector cells, degranulated mast cells associated with scattered foci of mononuclear cells in left and right ventricles and interventricular septum, and clusters of adipocytes interspersed with mononuclear cells. Vascular changes included scattered polymorphonuclear leukocytes (PMN) margination and microthrombi in capillaries, and small venous and arteriolar blood vessels. Small veins exhibited smooth muscle cell hyperplasia, and arteriolar blood vessels showed deposition of particulate matter (PM) in the media and adventitia. Unmyelinated nerve fibers showed endoneural and epineural degranulated mast cells. EM examination of myocardial mast cells showed distended and abundant rough endoplasmic reticulum with few secretory granules. Myocardial capillaries exhibited fibrin deposition and their endothelial cells displayed increased luminal and abluminal pinocytic activity and the formation of anemone-like protrusions of the endothelium into the lumen. A close association between myocardial findings, lung epithelial and endothelial pathology, and chronic inflammatory lung changes was noted. The myocardial changes described in dogs exposed to ambient air pollutants may form the basis for developing hypothesis-driven mechanistic studies that might explain the epidemiological data of increased cardiovascular morbidity and mortality in people exposed to air pollutants.
Relationship between zinc malnutrition and alterations in murine peripheral blood leukocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, L.E.; Morford, L.A.; Fraker, P.J.
1991-03-15
Studies using a murine model have shown that the immune system responds rapidly and adversely to zinc deficiency. The extent of alteration of peripheral blood leukocytes (PBL) and immunoglobulin levels were investigated in four zinc dietary groups: zinc adequate (ZA); restricted fed zinc adequate (RZA); marginal zinc deficient (MZD, 72-76% of ZA mouse weight); and severely zinc deficient. The peripheral white blood cell count was 3.66 {plus minus} 1.08 {times} 10{sup 6} cells/ml for ZA mice decreasing by 21%, 28% and 54% for RZA, MZD and SZD mice respectively. An equally dramatic change in the flow cytometric light scatter profilemore » was found. ZA mice had 66% lymphocytes and 21% polymorphonuclear granulocytes (PMN) in their peripheral blood while MZD and SZD mice contained 43% and 30% lymphocytes and 40% and 60% PMNs respectively. Analysis of the phenotypic distribution of specific classes of lymphocytes revealed ZA blood contained 25% B-cells and 40% T-cells (CD5{sup +}). B-cells decreased 40-50% for RZA and MZD mice and 60-70% for SZD mice. The decline in CD5{sup +} T-cells was more modest at 30% and 45% for MZD and SZD mice. A nearly 40% decline in both T{sub h} and T{sub c/s} cells was noted for both MZD and SZD mice. Radioimmunoassay of serum for changes in IgM and IgG content revealed no change among dietary groups while serum zinc decreased 10% for RZA mice and 50% for both MZD and SZD mice. The authors conclude that peripheral blood differential counts in concert with total B and T-cell phenotype may serve as indicators of zinc status while serum zinc and Ig will not.« less
Victor, Victor M.; Rovira-Llopis, Susana; Bañuls, Celia; Diaz-Morales, Noelia; Martinez de Marañon, Arantxa; Rios-Navarro, Cesar; Alvarez, Angeles; Gomez, Marcelino; Rocha, Milagros; Hernández-Mijares, Antonio
2016-01-01
Cardiovascular diseases and oxidative stress are related to polycystic ovary syndrome (PCOS) and insulin resistance (IR). We have evaluated the relationship between myeloperoxidase (MPO) and leukocyte activation in PCOS patients according to homeostatic model assessment of IR (HOMA-IR), and have explored a possible correlation between these factors and endocrine and inflammatory parameters. This was a prospective controlled study conducted in an academic medical center. The study population consisted of 101 PCOS subjects and 105 control subjects. We divided PCOS subjects into PCOS non-IR (HOMA-IR<2.5) and PCOS IR (HOMA-IR>2.5). Metabolic and anthropometric parameters, total and mitochondrial reactive oxygen species (ROS) production, MPO levels, interactions between human umbilical vein endothelial cells and leukocytes, adhesion molecules (E-selectin, ICAM-1 and VCAM-1) and proinflammatory cytokines (IL-6 and TNF-α) were evaluated. Oxidative stress was observed in PCOS patients, in whom there was an increase in total and mitochondrial ROS production and MPO levels. Enhanced rolling flux and adhesion, and a decrease in polymorphonuclear cell rolling velocity were also detected in PCOS subjects. Increases in IL-6 and TNF-α and adhesion molecules (E-selectin, ICAM-1 and VCAM-1) were also observed, particularly in the PCOS IR group, providing evidence that inflammation and oxidative stress are related in PCOS patients. HOMA-IR was positively correlated with hsCRP (p<0.001, r = 0.304), ROS production (p<0.01, r = 0.593), leukocyte rolling flux (p<0.05, r = 0.446), E-selectin (p<0.01, r = 0.436) and IL-6 (p<0.001, r = 0.443). The results show an increase in the rate of ROS and MPO levels in PCOS patients in general, and particularly in those with IR. Inflammation in PCOS induces leukocyte-endothelium interactions and a simultaneous increase in IL-6, TNF-α, E-selectin, ICAM-1 and VCAM-1. These conditions are aggravated by the presence of IR. PMID:27007571
Chi, Feng; Bo, Tao; Wu, Chun-Hua; Jong, Ambrose; Huang, Sheng-He
2012-01-01
IbeA-induced NF-κB signaling through its primary receptor vimentin as well as its co-receptor PSF is required for meningitic E. coli K1 penetration and leukocyte transmigration across the blood-brain barrier (BBB), which are the hallmarks of bacterial meningitis. However, it is unknown how vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB, which are required for bacteria-mediated pathogenicities. IbeA-induced E. coli K1 invasion, polymorphonuclear leukocyte (PMN) transmigration and IKK/NF-κB activation are blocked by Caffeic acid phenethyl ester (CAPE), an inhibitor of NF-κB. IKKα/β phosphorylation is blocked by ERK inhibitors. Co-immunoprecipitation analysis shows that vimentin forms a complex with IκB, NF-κB and tubulins in the resting cells. A dissociation of this complex and a simultaneous association of PSF with NF-κB could be induced by IbeA in a time-dependent manner. The head domain of vimentin is required for the complex formation. Two cytoskeletal components, vimentin filaments and microtubules, contribute to the regulation of NF-κB. SiRNA-mediated knockdown studies demonstrate that IKKα/β phosphorylation is completely abolished in HBMECs lacking vimentin and PSF. Phosphorylation of ERK and nuclear translocation of NF-κB are entirely dependent on PSF. These findings suggest that vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB activation. PSF is essential for translocation of NF-κB and ERK to the nucleus. These findings reveal previously unappreciated facets of the IbeA-binding proteins. Cooperative contributions of vimentin and PSF to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB may represent a new paradigm in pathogen-induced signal transduction and lead to the development of novel strategies for the prevention and treatment of bacterial meningitis.
Sica, S; Rutella, S; Di Mario, A; Salutari, P; Rumi, C; Ortu la Barbera, E; Etuk, B; Menichella, G; D'Onofrio, G; Leone, G
1996-08-01
Recombinant human granulocyte colony-stimulating factor (rhG-CSF) 16 micrograms/kg/day was given to 9 healthy donors to recruit hemopoietic progenitors (HP) for allogeneic transplantation or donor leukocyte infusion. rhG-CSF was administered s.c. for 5 days. No side effects were encountered except for moderate bone pain and lumbago. Mobilization was effective, reaching a peak median value of 187 x 10(3) CD34+ cells/ml (range 51.2-1127) and 2170 x 10(3) colony-forming units-granulocyte macrophage (CFU-GM)/ml (range 1138-4190). Peak values were obtained at a median of 4 days of rhG-CSF and represented, respectively, a 13-fold and a 37-fold increase from baseline values (p = 0.0007 and p = 0.006). White blood cell (WBC) counts increased 6-fold from baseline values (p < 0.0007) and reached a median peak of 34 x 10(6)/ml (23.5-59). Polymorphonuclear (PMN), and mononuclear (MNC) cells increased 10-fold and 2-fold, respectively (p = 0.0039 and p = 0.0026) and reached a median peak of 32.1 x 10(6)/ml (18.2-52) and 4.42 x 10(6)/ml (3.14-12.42). Absolute lymphocyte and monocyte counts increased at peak day in all donors 1.5-fold and 5.7-fold from baseline values (p = 0.0017 and p = 0.0018). In 7 of 9 donors, lymphocyte subsets were analyzed in detail. CD3+ and CD19+ lymphocytes increased 1.5-fold and 3-fold, respectively (p = 0.032 for both). NK and activated T lymphocytes doubled at a median of 4 days of rhG-CSF (p = 0.032 and p = NS, respectively). Similar changes were observed in lymphocytes collected in leukapheresis product. T helper and T suppressor subsets displayed a similar increase. Thus, besides the anticipated priming effect on HP and PMN, rhG-CSF in healthy donors produced an unexpected and still unexplained modification of lymphocyte subsets in peripheral blood.
Zen, Ke; Guo, Yalan; Bian, Zhen; Lv, Zhiyuan; Zhu, Dihan; Ohnishi, Hiroshi; Matozaki, Takashi; Liu, Yuan
2018-01-01
Signal regulatory protein α (SIRPα), an immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptor, is an essential negative regulator of leukocyte inflammatory responses. Here we report that SIRPα cytoplasmic signalling ITIMs in neutrophils are cleaved during active inflammation and that the loss of SIRPα ITIMs enhances the polymorphonuclear leukocyte (PMN) inflammatory response. Using human leukocytes and two inflammatory models in mice, we show that the cleavage of SIRPα ITIMs in PMNs but not monocytes occurs at the post-acute stage of inflammation and correlates with increased PMN recruitment to inflammatory loci. Enhanced transmigration of PMNs and PMN-associated tissue damage are confirmed in mutant mice expressing SIRPα but lacking the ITIMs. Moreover, the loss of SIRPα ITIMs in PMNs during colitis is blocked by an anti-interleukin-17 (IL-17) antibody. These results demonstrate a SIRPα-based mechanism that dynamically regulates PMN inflammatory responses by generating a CD47-binding but non-signalling SIRPα ‘decoy’. PMID:24026300
Lee, Wilson D; Flynn, Andrew N; LeBlanc, Justin M; Merrill, John K; Dick, Paul; Morck, Douglas W; Buret, Andre G
2004-01-01
The pathology of bacterial pneumonia, such as seen in the bovine lung infected with Mannheimia haemolytica, is due to pathogen virulence factors and to inflammation initiated by the host. Tilmicosin is a macrolide effective in treating bacterial pneumonia and recent findings suggest that this antibiotic may provide anti-inflammatory benefits by inducing polymorphonuclear neutrophilic leukocyte (PMN) apoptosis. Using an in vitro bovine system, we examined the cell-specificity of tilmicosin, characterized the changes in spontaneous leukotriene B4 (LTB4) synthesis by PMN exposed to the macrolide, and assessed its effects on PMN Fas expression. Previous findings demonstrated that tilmicosin is able to induce PMN apoptosis. These results were confirmed in this study by the Annexin-V staining of externalized phosphatidylserine and the analysis with flow cytometry. The cell-specificity of tilmicosin was assessed by quantification of apoptosis in bovine PMN, mononuclear leukocytes, monocyte-derived macrophages, endothelial cells, epithelial cells, and fibroblasts cultured with the macrolide. The effect of tilmicosin on spontaneous LTB4 production by PMN was evaluated via an enzyme-linked immunosorbent assay. Finally, the mechanisms of tilmicosin-induced PMN apoptosis were examined by assessing the effects of tilmicosin on surface Fas expression on PMN. Tilmicosin-induced apoptosis was found to be at least partially cell-specific, as PMN were the only cell type tested to die via apoptosis in response to incubation with tilmicosin. PMN incubated with tilmicosin under conditions that induce apoptosis spontaneously produced less LTB4, but did not exhibit altered Fas expression. In conclusion, tilmicosin-induced apoptosis is specific to PMN, inhibits spontaneous LTB4 production, and occurs through a pathway independent of Fas upregulation.
Spragg, R G; Hinshaw, D B; Hyslop, P A; Schraufstätter, I U; Cochrane, C G
1985-01-01
To investigate mechanisms whereby oxidant injury of cells results in cell dysfunction and death, cultured endothelial cells or P388D1 murine macrophage-like cells were exposed to oxidants including H2O2, O2-. (generated by the enzymatic oxidation of xanthine), or to stimulated polymorphonuclear leukocytes (PMN). Although Trypan Blue exclusion was not diminished before 30 min, cellular ATP was found to fall to less than 30% of control values within 3 min of exposure to 5 mM H2O2. Stimulated PMN plus P388D1 caused a 50% fall in cellular ATP levels. During the first minutes of oxidant injury, total adenylate content of cells fell by 85%. Cellular ADP increased 170%, AMP increased 900%, and an 83% loss of ATP was accompanied by a stoichiometric increase in IMP and inosine. Calculated energy charge [(ATP + 1/2 AMP)/(ATP + ADP + AMP)] fell from 0.95 to 0.66. Exposure of P388D1 to oligomycin plus 2-deoxyglucose (which inhibit oxidative and glycolytic generation of ATP, respectively) resulted in a rate of ATP fall similar to that induced by H2O2. In addition, nucleotide alterations induced by exposure to oligomycin plus 2-deoxyglucose were qualitatively similar to those induced by the oxidant. Loss of cell adenylates could not be explained by arrest of de novo purine synthesis or increased ATP consumption by the Na+-K+ ATPase or the mitochondrial F0-ATPase. These results indicate that H2O2 causes a rapid and profound fall in cellular ATP levels similar to that seen when ATP production is arrested by metabolic inhibitors. PMID:2997279
Mendoza-Novelo, Birzabith; Castellano, Laura E; Padilla-Miranda, Ruth G; Lona-Ramos, María C; Cuéllar-Mata, Patricia; Vega-González, Arturo; Murguía-Pérez, Mario; Mata-Mata, José L; Ávila, Eva E
2016-11-01
The extracellular matrix molecules remaining in bioscaffolds derived from decellularized xenogeneic tissues appear to be important for inducing cell functions conducting tissue regeneration. Here, we studied whether decellularization methods, that is, detergent Triton X-100 (TX) alone and TX combined with reversible alkaline swelling (STX), applied to bovine pericardial tissue, could affect the bioscaffold components. The in vitro macrophage response, subdermal biodegradation, and cell infiltration were also studied. The results indicate a lower leaching of fibronectin, but a higher leaching of laminin and sulfated glycosaminoglycans from tissues decellularized with STX and TX, respectively. The in vitro secretion of interleukin-6 and monocyte chemoattractant protein by RAW264.7 macrophages is promoted by decellularized bioscaffold leachates. A lower polymorphonuclear cell density is observed around decellularized bioscaffolds at 1-day implantation; concurrently showing a higher cell infiltration in STX- than in TX-implant. Cells infiltrated into TX-implant show a fibroblastic morphology at 7-day implantation, concurrently the capillary formation is observed at 14-day. Pericardial bioscaffolds suffer biodegradation more pronounced in STX- than in TX-implant. Both TX and STX decellularization methods favor a high leaching of basal lamina components, which presumably promotes a faster macrophage stimulation compared to nondecellularized tissue, and appear to be associated with an increased host cell infiltration in a rat subdermal implantation. Meanwhile, the connective tissue components leaching from TX decellularized bioscaffolds, unlike the STX ones, appear to be associated with an enhanced angiogenesis accompanied by an early-promoted fibroblastic cell transition. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2810-2822, 2016. © 2016 Wiley Periodicals, Inc.
Yano, Junko; Noverr, Mairi C.; Fidel, Paul L.
2011-01-01
Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects a significant number of women during their reproductive years. More than two decades of research have been focused on the mechanisms associated with susceptibility or resistance to symptomatic infection. Adaptive immunity by Th1-type CD4+ T cells and downstream cytokine responses are considered the predominant host defense mechanisms against mucosal Candida infections. However, numerous clinical and animal studies have indicated no or limited protective role of cells and cytokines of the Th1 or Th2 lineage against vaginal infection. The role for Th17 is only now begun to be investigated in-depth for VVC with results already showing significant controversy. On the other hand, a clinical live-challenge study and an established animal model have shown that a symptomatic condition is intimately associated with the vaginal infiltration of polymorphonuclear leukocytes (PMNs) but with no effect on vaginal fungal burden. Subsequent studies identified S100A8 and S100A9 Alarmins as key chemotactic mediators of the acute PMN response. These chemotactic danger signals appear to be secreted by vaginal epithelial cells upon interaction and early adherence of Candida. Thus, instead of a putative immunodeficiency against Candida involving classical immune cells and cytokines of the adaptive response, the pathological inflammation in VVC is now considered a consequence of a non-productive innate response initiated by non-classical immune mediators. PMID:22182685
Etiopathogenesis, clinical diagnosis and treatment of thromboangiitis obliterans – current practices
Joviliano, Edwaldo Edner; Dellalibera-Joviliano, Renata; Dalio, Marcelo; Évora, Paulo RB; Piccinato, Carlos E
2009-01-01
Thromboangiitis obliterans (TAO) is a segmental inflammatory occlusive disorder that affects small- and medium-sized arteries, and arm and leg veins of young smokers. Several different diagnostic criteria have been offered for the diagnosis of TAO. Clinically, it manifests as migratory thrombophlebitis or signs of arterial insufficiency in the extremities. It is characterized by highly cellular and inflammatory occlusive thrombi, primarily of the distal extremities. Thromboses are often occlusive and sometimes display moderate, nonspecific inflammatory infiltrate, consisting mostly of polymorphonuclear leukocytes, mononuclear cells and rare multinuclear giant cells. The immune system appears to play a critical role in the etiology of TAO. However, knowledge about immunological aspects involved in the progression of vascular tissue inflammation, and consequently, the evolution of this disease, is still limited. There are several studies that suggest the involvement of genetic factors and results have shown increasing levels of antiendothelial cell antibodies in patients with active disease. Vasodilation is impaired in patients with TAO. TAO disorder may actually be an autoimmune disorder, probably initiated by an unknown antigen in the vascular endothelium, possibly a component of nicotine. There are various therapies available for treatment of TAO, but the major and indispensable measure is smoking cessation. Except for discontinuation of tobacco use, no forms of therapy are definitive. Sympathectomy, cilostazol and prostaglandin analogues (prostacyclin or prostaglandin E) have been used in specific conditions. Recently, therapeutic angiogenesis with autologous transplantation of bone marrow mononuclear cells has been studied in patients with critical limb ischemia. PMID:22477511
de Andres, María C; Perez-Pampin, Eva; Calaza, Manuel; Santaclara, Francisco J; Ortea, Ignacio; Gomez-Reino, Juan J; Gonzalez, Antonio
2015-08-29
DNA methylation is an epigenetic mechanism regulating gene expression that has been insufficiently studied in the blood of rheumatoid arthritis (RA) patients, as only T cells and total peripheral blood mononuclear cells (PBMCs) from patients with established RA have been studied and with conflicting results. Five major blood cell subpopulations: T, B and NK cells, monocytes, and polymorphonuclear leukocytes, were isolated from 19 early RA patients and 17 healthy controls. Patient samples were taken before and 1 month after the start of treatment with methotrexate (MTX). Analysis included DNA methylation with high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry-selected reaction monitoring (HPLC-ESI-MS/MS-SRM) and expression levels of seven methylation-specific enzymes by quantitative polymerase chain reaction (qPCR). Disease-modifying anti-rheumatic drug (DMARD)-naïve early RA patients showed global DNA hypomethylation in T cells and monocytes, together with a lower expression of DNA methyltrasnferase 1 (DNMT1), the maintenance DNA methyltransferase, which was also decreased in B cells. Furthermore, significantly increased expression of ten-eleven translocation1 (TET1), TET2 and TET3, enzymes involved in demethylation, was found in monocytes and of TET2 in T cells. There was also modest decreased expression of DNMT3A in B cells and of growth arrest and DNA-damage-inducible protein 45A (GADD45A) in T and B cells. Treatment with MTX reverted hypomethylation in T cells and monocytes, which were no longer different from controls, and increased global methylation in B cells. In addition, DNMT1 and DNMT3A showed a trend to reversion of their decreased expression. Our results confirm global DNA hypomethylation in patients with RA with specificity for some blood cell subpopulations and their reversal with methotrexate treatment. These changes are accompanied by parallel changes in the levels of enzymes involved in methylation, suggesting the possibility of regulation at this level.
Immunomodulatory effect of glucan on specific and nonspecific immunity after vaccination in puppies.
Haladová, Eva; Mojžišová, Jana; Smrčo, Peter; Ondrejková, Anna; Vojtek, Boris; Prokeš, Marián; Petrovová, Eva
2011-03-01
The objective of the study was to determine the immunostimulatory effect of β-(1,3/1,6)-D-glucan in puppies. The effect exerted on the efficacy of vaccination, especially against canine parvovirus and rabies infection, was studied. The application of vaccine and glucan leads to significant increases in the nonspecific immunological parameters (phagocytic ability of leukocytes, blastogenic response of lymphocytes, metabolic and chemotactic activity of polymorphonuclear cells). The level of antibodies against canine parvovirus (Ab CPV) and rabies infection reached the most statistically significant values on the 28th day after the application of vaccine and a syrup containing β-(1,3/1,6)-D-glucan (Group GV) as compared to the control group (Group V, puppies receiving only vaccine). Dogs without glucan supplementation did not produce such significant levels of antibodies. We can conclude that glucan has relevant immunostimulatory effects in dogs with altered immunity. The glucan product tested in this study (PleraSAN V, PLEURAN, Bratislava, Slovakia) could be used in the small animal clinical practice.
Ubiquitination in Periodontal Disease: A Review.
Tsuchida, Sachio; Satoh, Mamoru; Takiwaki, Masaki; Nomura, Fumio
2017-07-10
Periodontal disease (periodontitis) is a chronic inflammatory condition initiated by microbial infection that leads to gingival tissue destruction and alveolar bone resorption. The periodontal tissue's response to dental plaque is characterized by the accumulation of polymorphonuclear leukocytes, macrophages, and lymphocytes, all of which release inflammatory mediators and cytokines to orchestrate the immunopathogenesis of periodontal disease. Ubiquitination is achieved by a mechanism that involves a number of factors, including an ubiquitin-activating enzyme, ubiquitin-conjugating enzyme, and ubiquitin-protein ligase. Ubiquitination is a post-translational modification restricted to eukaryotes that are involved in essential host processes. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Increasing numbers of recent reports have provided evidence that many approaches are delivering promising reports for discovering the relationship between ubiquitination and periodontal disease. The scope of this review was to investigate recent progress in the discovery of ubiquitinated protein in diseased periodontium and to discuss the ubiquitination process in periodontal diseases.
Carmona-Fonseca, Jaime; Arango, Eliana; Maestre, Amanda
2013-01-01
Studies on gestational malaria and placental malaria have been scarce in malaria-endemic areas of the Western Hemisphere. To describe the histopathology of placental malaria in Colombia, a longitudinal descriptive study was conducted. In this study, 179 placentas were studied by histologic analysis (112 with gestational malaria and 67 negative for malaria). Placental malaria was confirmed in 22.35%, 50.0% had previous infections, and 47.5% had acute infections. Typical malaria-associated changes were observed in 37%. The most common changes were villitis, intervillitis, deciduitis, increased fibrin deposition, increased syncytial knots, mononuclear (monocytes/macrophages and lymphocytes), polymorphonuclear cell infiltration, and trophozoites in fetal erythrocytes. No association was found between type of placental changes observed and histopathologic classification of placental malaria. The findings are consistent with those reported for placental malaria in other regions. Plasmodium vivax was the main parasite responsible for placental and gestational malaria, but its role in the pathogenesis of placental malaria was not conclusive. PMID:23546807
Ubiquitination in Periodontal Disease: A Review
Tsuchida, Sachio; Satoh, Mamoru; Takiwaki, Masaki; Nomura, Fumio
2017-01-01
Periodontal disease (periodontitis) is a chronic inflammatory condition initiated by microbial infection that leads to gingival tissue destruction and alveolar bone resorption. The periodontal tissue’s response to dental plaque is characterized by the accumulation of polymorphonuclear leukocytes, macrophages, and lymphocytes, all of which release inflammatory mediators and cytokines to orchestrate the immunopathogenesis of periodontal disease. Ubiquitination is achieved by a mechanism that involves a number of factors, including an ubiquitin-activating enzyme, ubiquitin-conjugating enzyme, and ubiquitin–protein ligase. Ubiquitination is a post-translational modification restricted to eukaryotes that are involved in essential host processes. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Increasing numbers of recent reports have provided evidence that many approaches are delivering promising reports for discovering the relationship between ubiquitination and periodontal disease. The scope of this review was to investigate recent progress in the discovery of ubiquitinated protein in diseased periodontium and to discuss the ubiquitination process in periodontal diseases. PMID:28698506
Diethylcarbamazine Attenuates the Development of Carrageenan-Induced Lung Injury in Mice
Ribeiro, Edlene Lima; Barbosa, Karla Patricia de Souza; Fragoso, Ingrid Tavares; Donato, Mariana Aragão Matos; Oliveira dos Santos Gomes, Fabiana; da Silva, Bruna Santos; Silva, Amanda Karolina Soares e; Rocha, Sura Wanessa Santos; Amaro da Silva Junior, Valdemiro; Peixoto, Christina Alves
2014-01-01
Diethylcarbamazine (DEC) is an antifilarial drug with potent anti-inflammatory properties as a result of its interference with the metabolism of arachidonic acid. The aim of the present study was to evaluate the anti-inflammatory activity of DEC in a mouse model of acute inflammation (carrageenan-induced pleurisy). The injection of carrageenan into the pleural cavity induced the accumulation of fluid containing a large number of polymorphonuclear cells (PMNs) as well as infiltration of PMNs in lung tissues and increased production of nitrite and tumor necrosis factor-α and increased expression of interleukin-1β, cyclooxygenase (COX-2), and inducible nitric oxide synthase. Carrageenan also induced the expression of nuclear factor-κB. The oral administration of DEC (50 mg/Kg) three days prior to the carrageenan challenge led to a significant reduction in all inflammation markers. The present findings demonstrate that DEC is a potential drug for the treatment of acute lung inflammation. PMID:24550603
Facial paralysis due to an occult parotid abscess.
Orhan, Kadir Serkan; Demirel, Tayfun; Kocasoy-Orhan, Elif; Yenigül, Kubilay
2008-01-01
Facial paralysis associated with benign diseases of the parotid gland is very rare. It has been reported in approximately 16 cases of acute suppurative parotitis or parotid abscess. We presented a 45-year-old woman who developed facial paralysis secondary to an occult parotid abscess. Initially, there was no facial paralysis and the signs and symptoms were suggestive of acute parotitis, for which medical treatment was initiated. Three days later, left-sided facial palsy of HB (House-Brackmann) grade 5 developed. Ultrasonography revealed a pretragal, hypoechoic mass, 10x8 mm in size, causing inflammation in the surrounding tissue. Fine needle aspiration biopsy obtained from the mass revealed polymorphonuclear leukocytes and lymphocytes. No malignant cells were observed. The lesion was diagnosed as an occult parotid abscess. After a week, the mass disappeared and facial paralysis improved to HB grade 4. At the end of the first month, facial paralysis improved to HB grade 1. At three months, facial nerve function was nearly normal.
Rates of hospital-acquired bloodstream infections in patients with specific malignancy.
Mayo, J W; Wenzel, R P
1982-07-01
Prospective surveillance of hospitalized patients with leukemia or solid tumors was performed in order to define the rate of nosocomial bloodstream infection according to specific diagnosis. During the 38-month study, there were 842 nosocomial blood stream infections in 704 patients, 22% of whom had leukemia or solid tumors. In the patients with malignancy, the diagnoses associated with the highest rate of bloodstream infections were chronic myeloid leukemia (18.4/100 patients), acute lymphocyte leukemia (17.7/100), promyelocytic and undifferentiated leukemia (16.1/100) and acute monocytic/myelomonocyte (13.8/100). In 76% of patients with chronic lymphocytic, chronic myeloid, or undifferentiated leukemia, the peripheral blood polymorphonuclear leukocyte count at the time of bacteremia was less than 100 cells/mm-3. In contrast to patients with leukemia, those with solid tumors, as a group, were at no greater risk of bloodstream infection than those without malignancy. In preparation for prophylactic trials of antibiotics or immunotherapy this study has more clearly defined the risk of bloodstream infection in cancer patients.
Tubulointerstitial nephritis and uveitis syndrome in a twelve-year-old girl.
Paladini, Alessia; Venturoli, Vittorio; Mosconi, Giovanni; Zambianchi, Loretta; Serra, Luigi; Valletta, Enrico
2013-01-01
Tubulointerstitial nephritis and uveitis (TINU) syndrome is a rare disorder defined by the combination of biochemical abnormalities, tubulointerstitial nephritis, and uveitis. We describe a 12-year-old female, presented with a ten-day history of fever, characterized by sudden onset and rapid spontaneous resolution in few hours, accompanied by shivering, extreme fatigue, and loss of appetite. Laboratory values were consistent with renal failure of tubular origin. Renal biopsy confirmed a tubulointerstitial nephritis, with acute tubulitis, polymorphonuclear infiltration, and microabscesses. The renal interstitium was occupied by a dense inflammatory infiltrate, consisting of lymphocytes, plasma cells, and neutrophils. Glomerular structures were preserved. Ophthalmological examination that suggested a previous asymptomatic bilateral uveitis and HLA typing (HLA-DQA1∗0101/0201 and HLA-DQB1∗0303/0503) further supported the suspect of TINU syndrome. TINU syndrome is probably an underdiagnosed disorder, responsible for many cases of idiopathic anterior uveitis in young patients, especially in those who have asymptomatic renal disease and when proper diagnostic tests are not performed at the time of presentation.
Silva, Liliana M R; Muñoz-Caro, Tamara; Burgos, Rafael A; Hidalgo, Maria A; Taubert, Anja; Hermosilla, Carlos
2016-01-01
Professional mononuclear phagocytes such as polymorphonuclear neutrophils (PMN), monocytes, and macrophages are considered as the first line of defence against invasive pathogens. The formation of extracellular traps (ETs) by activated mononuclear phagocytes is meanwhile well accepted as an effector mechanism of the early host innate immune response acting against microbial infections. Recent investigations showed evidence that ETosis is a widely spread effector mechanism in vertebrates and invertebrates being utilized to entrap and kill bacteria, fungi, viruses, and protozoan parasites. ETs are released in response to intact protozoan parasites or to parasite-specific antigens in a controlled cell death process. Released ETs consist of nuclear DNA as backbone adorned with histones, antimicrobial peptides, and phagocyte-specific granular enzymes thereby producing a sticky extracellular matrix capable of entrapping and killing pathogens. This review summarizes recent data on protozoa-induced ETosis. Special attention will be given to molecular mechanisms of protozoa-induced ETosis and on its consequences for the parasites successful reproduction and life cycle accomplishment.
Pareja-Santos, Alessandra; Oliveira Souza, Valdênia Maria; Bruni, Fernanda M; Sosa-Rosales, Josefina Ines; Lopes-Ferreira, Mônica; Lima, Carla
2008-07-01
Thalassophryne maculosa fish envenomation is characterized by severe pain, dizziness, fever, edema and necrosis. Here, the dynamic of cellular influx, activation status of phagocytic cells, and inflammatory modulator production in the acute inflammatory response to T. maculosa venom was studied using an experimental model. Leukocyte counting was performed (2 h to 21 days) after venom injection in BALB/c mice footpads. Our results showed an uncommon leukocyte migration kinetic after venom injection, with early mononuclear cell recruitment followed by elevated and delayed neutrophil influx. The pattern of chemokine expression is consistent with the delay in neutrophil recruitment to the footpad: T. maculosa venom stimulated an early production of IL-1beta, IL-6, and MCP-1, but was unable to induce an effective early TNF-alpha and KC release. Complementary to these observations, we detected a marked increase in soluble KC and TNF-alpha in footpad at 7 days post-venom injection when a prominent influx of neutrophils was also detected. In addition, we demonstrated that bone marrow-derived macrophages and dendritic cells were strongly stimulated by the venom, showing up-regulated ability to capture FITC-dextran. Thus, the reduced levels of KC and TNF-alpha in footpad of mice concomitant with a defective accumulation of neutrophils at earlier times provide an important clue to uncovering the mechanism by which T. maculosa venom regulates neutrophil movement.
USDA-ARS?s Scientific Manuscript database
Glutamine is the preferred AA used by polymorphonuclear leukocytes (PMN) during the inflammatory response. However, the effect of other AA on bovine PMN response during inflammation and how this is altered by stage of lactation has not been fully elucidated. The objective of this study was to dete...
Calderón-Garcidueñas, L; Mora-Tiscareño, A; Fordham, L A; Chung, C J; García, R; Osnaya, N; Hernández, J; Acuña, H; Gambling, T M; Villarreal-Calderón, A; Carson, J; Koren, H S; Devlin, R B
2001-06-01
A complex mixture of air pollutants is present in the ambient air in urban areas. People, animals, and vegetation are chronically and sequentially exposed to outdoor pollutants. The objective of this first of 2 studies is to evaluate by light and electron microscopy the lungs of Mexico City dogs and compare the results to those of 3 less polluted cities in MEXICO: One hundred fifty-two clinically healthy stray mongrel dogs (91 males/61 females), including 43 dogs from 3 less polluted cities, and 109 from southwest and northeast metropolitian Mexico City (SWMMC, NEMMC) were studied. Lungs of dogs living in Mexico City and Cuernavaca exhibited patchy chronic mononuclear cell infiltrates along with macrophages loaded with particulate matter (PM) surrounding the bronchiolar walls and extending into adjacent vascular structures; bronchiolar epithelial and smooth muscle hyperplasia, peribronchiolar fibrosis, microthrombi, and capillary and venule polymorphonuclear leukocytes (PMN) margination. Ultrafine PM was seen in alveolar type I and II cells, endothelial cells, interstitial macrophages (Mtheta), and intravascular Mtheta-like cells. Bronchoalveolar lavage showed significant numbers of alveolar macrophages undergoing proliferation. Exposure to complex mixtures of pollutants-predominantly particulate matter and ozone-is causing lung structural changes induced by the sustained inflammatory process and resulting in airway and vascular remodeling and altered repair. Cytokines released from both, circulating inflammatory and resident lung cells in response to endothelial and epithelial injury may be playing a role in the pathology described here. Deep concern exists for the potential of an increasing rise in lung diseases in child populations exposed to Mexico City's environment.
Ethylene formation by polymorphonuclear leukocytes. Role of myeloperoxidase
1978-01-01
Ethylene formation from the thioethers, beta-methylthiopropionaldehyde (methional) and 2-keto-4-thiomethylbutyric acid by phagocytosing polymorphonuclear leukocytes (PMNs) was found to be largely dependent on myeloperoxidase (MPO). Conversion was less than 10% of normal when MPO-deficient PMNs were employed; formation by normal PMNs was inhibited by the peroxidase inhibitors, azide, and cyanide, and a model system consisting of MPO, H2O2, chloride (or bromide) and EDTA was found which shared many of the properties of the predominant PMN system. MPO-independent mechanisms of ethylene formation were also identified. Ethylene formation from methional by phagocytosing eosinophils and by H2O2 in the presence or absence of catalase was stimulated by azide. The presence of MPO-independent, azide-stimulable systems in the PMN preparations was suggested by the azide stimulation of ethylene formation from methional when MPO-deficient leukocytes were employed. Ethylene formation by dye-sensitized photooxidation was also demonstrated and evidence obtained for the involvement of singlet oxygen (1O2). These findings are discussed in relation to the participation of H2O2, hydroxyl radicals, the superoxide anion and 1O2 in the formation of ethylene by PMNs and by the MPO model system. PMID:212502
Hydrogen-rich water attenuates experimental periodontitis in a rat model.
Kasuyama, Kenta; Tomofuji, Takaaki; Ekuni, Daisuke; Tamaki, Naofumi; Azuma, Tetsuji; Irie, Koichiro; Endo, Yasumasa; Morita, Manabu
2011-12-01
Reactive oxygen species (ROS) contribute to the development of periodontitis. As molecular hydrogen can act as a scavenger of ROS, we examined the effects of treatment with hydrogen-rich water on a rat model of periodontitis. A ligature was placed around the maxillary molars for 4 weeks to induce periodontitis, and the animals were given drinking water with or without hydrogen-rich water. The rats with periodontitis which were treated with pure water showed a time-dependent increase in serum ROS level. Compared with the rats without periodontitis, the periodontitis-induced rats which were given pure water also showed polymorphonuclear leucocyte infiltration and alveolar bone loss at 4 weeks. Hydrogen-rich water intake inhibited an increase in serum ROS level and lowered expression of 8-hydroxydeoxyguanosine and nitrotyrosine in the periodontal tissue at 4 weeks. Such conditions prevented polymorphonuclear leucocyte infiltration and osteoclast differentiation following periodontitis progression. Furthermore, inflammatory signalling pathways, such as mitogen-activated protein kinases, were less activated in periodontal lesions from hydrogen-rich water-treated rats as compared with pure water-treated rats. Consuming hydrogen-rich water might be beneficial in suppressing periodontitis progression by decreasing gingival oxidative stress. © 2011 John Wiley & Sons A/S.
Sabina, E P; Rasool, M
2008-01-01
In the present study, we have investigated the efficacy of Indian ayurvedic herbal formulation Triphala on monosodium urate crystal-induced inflammation in mice; an experimental model for gouty arthritis and compared it with that of the non-steroidal anti-inflammatory drug, Indomethacin. The anti-arthritic effect of Triphala was evaluated by measuring changes in the paw volume, lysosomal enzyme activities, lipid peroxidation, anti-oxidant status and inflammatory mediator TNF-alpha in control and monosodium urate crystal-induced mice. The levels of beta-glucuronidase and lactate dehydrogenase were also measured in monosodium urate crystal-incubated polymorphonuclear leucocytes (PMNL). Triphala treatment (1 gm/kg/b.w. orally) significantly inhibited the paw volume and the levels of lysosomal enzymes, lipid peroxidation and inflammatory mediator tumour necrosis factor-alpha; however the anti-oxidant status was found to be increased in plasma, liver and spleen of monosodium urate crystal-induced mice when compared to control mice. In addition, beta-glucuronidase and lactate dehydrogenase level were reduced in Triphala (100 microg/ml) treated monosodium urate crystal-incubated polymorphonuclear leucocytes. In conclusion, the results obtained clearly indicated that Triphala exerted a strong anti-inflammatory effect against gouty arthritis.
Capacity of anaerobic bacteria from necrotic dental pulps to induce purulent infections.
Sundqvist, G K; Eckerbom, M I; Larsson, A P; Sjögren, U T
1979-08-01
Combinations of bacteria isolated from the root canals of teeth with necrotic pulps and periapical bone destruction were tested for their capacity to induce abscess formation and transmissible infections when inoculated subcutaneously into guinea pigs. Transmissible infections could be induced with combinations obtained from teeth with purulent apical inflammation, but not with combinations from symptomless teeth with chronic apical inflammation. All combinations which gave transmissible infections contained strains of Bacteroides melaninogenicus or B. asaccharolyticus (formerly B. melaninogenicus subsp. asaccharolyticus). The results suggest that purulent inflammation in the apical region in certain cases may be induced by specific combinations of bacteria in the root canal and that the presence of B. melaninogenicus or B. asaccharolyticus in such combinations is essential. However, with one exception, the strains needed the support of additional microorganisms to achieve pathogenicity. The results indicate that Peptostreptococcus micros was also essential. Histological sections of the lesions in the guinea pigs showed that all bacterial combinations induced acute inflammation with an accumulation of polymorphonuclear leukocytes and the formation of an abscess. However, the presence of B. melaninogenicus or B. asaccharolyticus in the combinations resulted in a failure of abscess resolution, with a gradually increaseing accumulation of polymorphonuclear leukocytes.
de Wit, Emmie; Rasmussen, Angela L; Feldmann, Friederike; Bushmaker, Trenton; Martellaro, Cynthia; Haddock, Elaine; Okumura, Atsushi; Proll, Sean C; Chang, Jean; Gardner, Don; Katze, Michael G; Munster, Vincent J; Feldmann, Heinz
2014-08-12
In March 2013, three fatal human cases of infection with influenza A virus (H7N9) were reported in China. Since then, human cases have been accumulating. Given the public health importance of this virus, we performed a pathogenicity study of the H7N9 virus in the cynomolgus macaque model, focusing on clinical aspects of disease, radiographic, histological, and gene expression profile changes in the upper and lower respiratory tracts, and changes in systemic cytokine and chemokine profiles during infection. Cynomolgus macaques developed transient, mild to severe disease with radiographic evidence of pulmonary infiltration. Virus replicated in the upper as well as lower respiratory tract, with sustained replication in the upper respiratory tract until the end of the experiment at 6 days after inoculation. Virus shedding occurred mainly via the throat. Histopathological changes in the lungs were similar to those observed in humans, albeit less severe, with diffuse alveolar damage, infiltration of polymorphonuclear cells, formation of hyaline membranes, pneumocyte hyperplasia, and fibroproliferative changes. Analysis of gene expression profiles in lung lesions identified pathways involved in tissue damage during H7N9 infection as well as leads for development of therapeutics targeting host responses rather than virus replication. Overall, H7N9 infection was not as severe in cynomolgus macaques as in humans, supporting the possible role of underlying medical complications in disease severity as discussed for human H7N9 infection (H. N. Gao et al., N. Engl. J. Med. 368:2277-2285, 2013, doi:10.1056/NEJMoa1305584). Influenza A virus H7N9 emerged early in 2013, and human cases have continued to emerge since then. Although H7N9 virus-induced disease in humans is often very severe and even lethal, the majority of reported H7N9 cases occurred in older people and people with underlying medical conditions. To better understand the pathogenicity of this virus, healthy cynomolgus macaques were inoculated with influenza A virus H7N9. Cynomolgus macaques were used as a model because the receptor distribution for H7N9 virus in macaques was recently shown to be more similar to that in humans than that of other frequently used animal models. From comparison with previous studies, we conclude that the emerging H7N9 influenza virus was more pathogenic in cynomolgus macaques than seasonal influenza A viruses and most isolates of the pandemic H1N1 virus but less pathogenic than the 1918 Spanish influenza virus or highly pathogenic avian influenza (HPAI) H5N1 virus. Copyright © 2014 de Wit et al.
Immune Cells from SR/CR Mice Induce the Regression of Established Tumors in BALB/c and C57BL/6 Mice
Koch, Janne; Hau, Jann; Pravsgaard Christensen, Jan; Elvang Jensen, Henrik; Bagge Hansen, Morten; Rieneck, Klaus
2013-01-01
Few experimental models are available for the study of natural resistance to cancer. One of them is the SR/CR (spontaneous regression/complete resistance) mouse model in which natural resistance to a variety of cancer types appeared to be inherited in SR/CR strains of BALB/c and C57BL/6 mice. The genetic, cellular, and molecular effector mechanisms in this model are largely unknown, but cells from the innate immune system may play a significant role. In contrast to previous observations, the cancer resistance was limited to S180 sarcoma cancer cells. We were unable to confirm previous observations of resistance to EL-4 lymphoma cells and J774A.1 monocyte-macrophage cancer cells. The cancer resistance against S180 sarcoma cells could be transferred to susceptible non-resistant BALB/c mice as well as C57BL/6 mice after depletion of both CD4+/CD8+ leukocytes and B-cells from SR/CR mice. In the responding recipient mice, the cancer disappeared gradually following infiltration of a large number of polymorphonuclear granulocytes and remarkably few lymphocytes in the remaining tumor tissues. This study confirmed that the in vivo growth and spread of cancer cells depend on a complex interplay between the cancer cells and the host organism. Here, hereditary components of the immune system, most likely the innate part, played a crucial role in this interplay and lead to resistance to a single experimental cancer type. The fact that leukocytes depleted of both CD4+/CD8+ and B cells from the cancer resistant donor mice could be transferred to inhibit S180 cancer cell growth in susceptible recipient mice support the vision of an efficient and adverse event free immunotherapy in future selected cancer types. PMID:23555858
Sikiric, P; Jadrijevic, S; Seiwerth, S; Sosa, T; Deskovic, S; Perovic, D; Aralica, G; Grabarevic, Z; Rucman, R; Petek, M; Jagic, V; Turkovic, B; Ziger, T; Rotkvic, I; Mise, S; Zoricic, I; Sebecic, B; Patrlj, L; Kocman, B; Sarlija, M; Mikus, D; Separovic, J; Hanzevacki, M; Gjurasin, M; Miklic, P
1999-12-01
Recently, the effectiveness of pentadecapeptide BPC 157 and other anti-ulcer agents, called 'direct cytoprotection', was evidenced in totally gastrectomized rats duodenum challenged with cysteamine 24 h after surgery, and sacrificed 24 h after ulcerogen application. The further focus was on the possibility that this effect could be seen over a more prolonged period (1, 2, 4 weeks), and in other parts of the gastrointestinal tract (i.e. oesophagus). After the removal of the stomach, the oesophagus and jejunum were joined by a termino-lateral anastomosis. The animals were euthanized 7, 14 or 28 d after surgery, when oesophagitis was blindly assessed both macroscopically (percentage of ulcerations areas) and microscopically (percentage of areas of ulcers, regeneration and hyperplasia; number of inflammatory cells - polymorphonuclear and mononuclear). Starting 24 h after surgery, the medication was continuously given in the drinking water, in a volume of 12.5 mL/rat daily, until euthanasia at the end of the observation period, i.e. 7, 14, 28 d following surgery. Based on previous experiments, the doses of agents were daily calculated per kg b.w. as follows: BPC 157 125 mg or 125 ng, cholestyramine 2.5 mg, ranitidine 125 mg, sucralfate 725 mg, whereas controls received 72.5 mL x kg(-1) water. In support of these initial findings, and considering gastrectomized acid-free rats as an ideal model for long-term cytoprotective studies as well, pentadecapeptide BPC 157 markedly attenuated termino-lateral oesophagojejunal anastomosis-reflux oesophagitis also over a quite prolonged period. This efficacy was only partly shared by other anti-ulcer agents. After 1-week-old oesophagitis (microscopical assessment), but not after 2 or 4 weeks, less damaged mucosa was noted in rats drinking ranitidine or sucralfate compared to controls. Similar effectiveness was noted for cholestyramine. The obtained results were supported also by inflammatory cell assessment. Compared with control values, BPC 157-treated groups consistently presented less polymorphonuclears and less mononuclears in all assessed periods. Interestingly, the values obtained in other treated groups showed no difference compared with control values. Thus, despite limitations, a generalization supporting a direct importance of a common cytoprotective approach, could be clearly provided. A useful, long-lasting cytoprotective activity (apparently more prominent in BPC 157 rats, than in reference agents, ranitidine, sucralfate, as well as cholestyramine) may be a likely suitable therapy in otherwise resistant reflux oesophagitis conditions.
Llitjos, Jean-François; Auffray, Cédric; Alby-Laurent, Fanny; Rousseau, Christophe; Merdji, Hamid; Bonilla, Nelly; Toubiana, Julie; Belaïdouni, Nadia; Mira, Jean-Paul; Lucas, Bruno; Chiche, Jean-Daniel; Pène, Frédéric
2016-08-01
Severe sepsis remains a frequent and dreaded complication in cancer patients. Beyond the often fatal short-term outcome, the long-term sequelae of severe sepsis may also impact directly on the prognosis of the underlying malignancy in survivors. The immune system is involved in all stages of tumour development, in the detection of transforming and dying cells and in the prevention of tumour growth and dissemination. In fact, the profound and sustained immune defects induced by sepsis may constitute a privileged environment likely to favour tumour growth. We investigated the impact of sepsis on malignant tumour growth in a double-hit animal model of polymicrobial peritonitis, followed by subcutaneous inoculation of MCA205 fibrosarcoma cells. As compared to their sham-operated counterparts, post-septic mice exhibited accelerated tumour growth. This was associated with intratumoural accumulation of CD11b(+) Ly6G(high) polymorphonuclear cells (PMNs) that could be characterized as granulocytic myeloid-derived suppressor cells (G-MDSCs). Depletion of granulocytic cells in post-septic mice inhibited the sepsis-enhanced tumour growth. Toll-like receptor (TLR)-4 (Tlr4) and Myd88 deficiencies prevented sepsis-induced expansion of G-MDSCs and tumour growth. Our results demonstrate that the myelosuppressive environment induced by severe bacterial infections promotes malignant tumour growth, and highlight a critical role of CD11b(+) Ly6G(high) G-MDSCs under the control of TLR-dependent signalling. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.