Effect of intermittent feedback control on robustness of human-like postural control system
NASA Astrophysics Data System (ADS)
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-03-01
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.
Effect of intermittent feedback control on robustness of human-like postural control system.
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-03-02
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.
Effect of intermittent feedback control on robustness of human-like postural control system
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-01-01
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies. PMID:26931281
NASA Astrophysics Data System (ADS)
Goto, Akifumi; Ishida, Mizuri; Sagawa, Koichi
2010-01-01
The purpose of this study is to derive quantitative assessment indicators of the human postural control ability. An inverted pendulum is applied to standing human body and is controlled by ankle joint torque according to PD control method in sagittal plane. Torque control parameters (KP: proportional gain, KD: derivative gain) and pole placements of postural control system are estimated with time from inclination angle variation using fixed trace method as recursive least square method. Eight young healthy volunteers are participated in the experiment, in which volunteers are asked to incline forward as far as and as fast as possible 10 times over 10 [s] stationary intervals with their neck joint, hip joint and knee joint fixed, and then return to initial upright posture. The inclination angle is measured by an optical motion capture system. Three conditions are introduced to simulate unstable standing posture; 1) eyes-opened posture for healthy condition, 2) eyes-closed posture for visual impaired and 3) one-legged posture for lower-extremity muscle weakness. The estimated parameters Kp, KD and pole placements are applied to multiple comparison test among all stability conditions. The test results indicate that Kp, KD and real pole reflect effect of lower-extremity muscle weakness and KD also represents effect of visual impairment. It is suggested that the proposed method is valid for quantitative assessment of standing postural control ability.
Does a crouched leg posture enhance running stability and robustness?
Blum, Yvonne; Birn-Jeffery, Aleksandra; Daley, Monica A; Seyfarth, Andre
2011-07-21
Humans and birds both walk and run bipedally on compliant legs. However, differences in leg architecture may result in species-specific leg control strategies as indicated by the observed gait patterns. In this work, control strategies for stable running are derived based on a conceptual model and compared with experimental data on running humans and pheasants (Phasianus colchicus). From a model perspective, running with compliant legs can be represented by the planar spring mass model and stabilized by applying swing leg control. Here, linear adaptations of the three leg parameters, leg angle, leg length and leg stiffness during late swing phase are assumed. Experimentally observed kinematic control parameters (leg rotation and leg length change) of human and avian running are compared, and interpreted within the context of this model, with specific focus on stability and robustness characteristics. The results suggest differences in stability characteristics and applied control strategies of human and avian running, which may relate to differences in leg posture (straight leg posture in humans, and crouched leg posture in birds). It has been suggested that crouched leg postures may improve stability. However, as the system of control strategies is overdetermined, our model findings suggest that a crouched leg posture does not necessarily enhance running stability. The model also predicts different leg stiffness adaptation rates for human and avian running, and suggests that a crouched avian leg posture, which is capable of both leg shortening and lengthening, allows for stable running without adjusting leg stiffness. In contrast, in straight-legged human running, the preparation of the ground contact seems to be more critical, requiring leg stiffness adjustment to remain stable. Finally, analysis of a simple robustness measure, the normalized maximum drop, suggests that the crouched leg posture may provide greater robustness to changes in terrain height. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mergner, Thomas; Lippi, Vittorio
2018-01-01
Posture control is indispensable for both humans and humanoid robots, which becomes especially evident when performing sensorimotor tasks such as moving on compliant terrain or interacting with the environment. Posture control is therefore targeted in recent proposals of robot benchmarking in order to advance their development. This Methods article suggests corresponding robot tests of standing balance, drawing inspirations from the human sensorimotor system and presenting examples from robot experiments. To account for a considerable technical and algorithmic diversity among robots, we focus in our tests on basic posture control mechanisms, which provide humans with an impressive postural versatility and robustness. Specifically, we focus on the mechanically challenging balancing of the whole body above the feet in the sagittal plane around the ankle joints in concert with the upper body balancing around the hip joints. The suggested tests target three key issues of human balancing, which appear equally relevant for humanoid bipeds: (1) four basic physical disturbances (support surface (SS) tilt and translation, field and contact forces) may affect the balancing in any given degree of freedom (DoF). Targeting these disturbances allows us to abstract from the manifold of possible behavioral tasks. (2) Posture control interacts in a conflict-free way with the control of voluntary movements for undisturbed movement execution, both with "reactive" balancing of external disturbances and "proactive" balancing of self-produced disturbances from the voluntary movements. Our proposals therefore target both types of disturbances and their superposition. (3) Relevant for both versatility and robustness of the control, linkages between the posture control mechanisms across DoFs provide their functional cooperation and coordination at will and on functional demands. The suggested tests therefore include ankle-hip coordination. Suggested benchmarking criteria build on the evoked sway magnitude, normalized to robot weight and Center of mass (COM) height, in relation to reference ranges that remain to be established. The references may include human likeness features. The proposed benchmarking concept may in principle also be applied to wearable robots, where a human user may command movements, but may not be aware of the additionally required postural control, which then needs to be implemented into the robot.
Mergner, Thomas; Lippi, Vittorio
2018-01-01
Posture control is indispensable for both humans and humanoid robots, which becomes especially evident when performing sensorimotor tasks such as moving on compliant terrain or interacting with the environment. Posture control is therefore targeted in recent proposals of robot benchmarking in order to advance their development. This Methods article suggests corresponding robot tests of standing balance, drawing inspirations from the human sensorimotor system and presenting examples from robot experiments. To account for a considerable technical and algorithmic diversity among robots, we focus in our tests on basic posture control mechanisms, which provide humans with an impressive postural versatility and robustness. Specifically, we focus on the mechanically challenging balancing of the whole body above the feet in the sagittal plane around the ankle joints in concert with the upper body balancing around the hip joints. The suggested tests target three key issues of human balancing, which appear equally relevant for humanoid bipeds: (1) four basic physical disturbances (support surface (SS) tilt and translation, field and contact forces) may affect the balancing in any given degree of freedom (DoF). Targeting these disturbances allows us to abstract from the manifold of possible behavioral tasks. (2) Posture control interacts in a conflict-free way with the control of voluntary movements for undisturbed movement execution, both with “reactive” balancing of external disturbances and “proactive” balancing of self-produced disturbances from the voluntary movements. Our proposals therefore target both types of disturbances and their superposition. (3) Relevant for both versatility and robustness of the control, linkages between the posture control mechanisms across DoFs provide their functional cooperation and coordination at will and on functional demands. The suggested tests therefore include ankle-hip coordination. Suggested benchmarking criteria build on the evoked sway magnitude, normalized to robot weight and Center of mass (COM) height, in relation to reference ranges that remain to be established. The references may include human likeness features. The proposed benchmarking concept may in principle also be applied to wearable robots, where a human user may command movements, but may not be aware of the additionally required postural control, which then needs to be implemented into the robot. PMID:29867428
Nishiike, Suetaka; Okazaki, Suzuyo; Watanabe, Hiroshi; Akizuki, Hironori; Imai, Takao; Uno, Atsuhiko; Kitahara, Tadashi; Horii, Arata; Takeda, Noriaki; Inohara, Hidenori
2013-01-01
In this study, we examined the effects of sensory inputs of visual-vestibulosomatosensory conflict induced by virtual reality (VR) on subjective dizziness, posture stability and visual dependency on postural control in humans. Eleven healthy young volunteers were immersed in two different VR conditions. In the control condition, subjects walked voluntarily with the background images of interactive computer graphics proportionally synchronized to their walking pace. In the visual-vestibulosomatosensory conflict condition, subjects kept still, but the background images that subjects experienced in the control condition were presented. The scores of both Graybiel's and Hamilton's criteria, postural instability and Romberg ratio were measured before and after the two conditions. After immersion in the conflict condition, both subjective dizziness and objective postural instability were significantly increased, and Romberg ratio, an index of the visual dependency on postural control, was slightly decreased. These findings suggest that sensory inputs of visual-vestibulosomatosensory conflict induced by VR induced motion sickness, resulting in subjective dizziness and postural instability. They also suggest that adaptation to the conflict condition decreases the contribution of visual inputs to postural control with re-weighing of vestibulosomatosensory inputs. VR may be used as a rehabilitation tool for dizzy patients by its ability to induce sensory re-weighing of postural control.
Voluntarily controlled but not merely observed visual feedback affects postural sway
Asai, Tomohisa; Hiromitsu, Kentaro; Imamizu, Hiroshi
2018-01-01
Online stabilization of human standing posture utilizes multisensory afferences (e.g., vision). Whereas visual feedback of spontaneous postural sway can stabilize postural control especially when observers concentrate on their body and intend to minimize postural sway, the effect of intentional control of visual feedback on postural sway itself remains unclear. This study assessed quiet standing posture in healthy adults voluntarily controlling or merely observing visual feedback. The visual feedback (moving square) had either low or high gain and was either horizontally flipped or not. Participants in the voluntary-control group were instructed to minimize their postural sway while voluntarily controlling visual feedback, whereas those in the observation group were instructed to minimize their postural sway while merely observing visual feedback. As a result, magnified and flipped visual feedback increased postural sway only in the voluntary-control group. Furthermore, regardless of the instructions and feedback manipulations, the experienced sense of control over visual feedback positively correlated with the magnitude of postural sway. We suggest that voluntarily controlled, but not merely observed, visual feedback is incorporated into the feedback control system for posture and begins to affect postural sway. PMID:29682421
Evaluation of the lambda model for human postural control during ankle strategy.
Micheau, Philippe; Kron, Aymeric; Bourassa, Paul
2003-09-01
An accurate modeling of human stance might be helpful in assessing postural deficit. The objective of this article is to validate a mathematical postural control model for quiet standing posture. The postural dynamics is modeled in the sagittal plane as an inverted pendulum with torque applied at the ankle joint. The torque control system is represented by the physiological lambda model. Two neurophysiological command variables of the central nervous system, designated lambda and micro, establish the dynamic threshold muscle at which motoneuron recruitment begins. Kinematic data and electromyographic signals were collected on four young males in order to measure small voluntary sway and quiet standing posture. Validation of the mathematical model was achieved through comparison of the experimental and simulated results. The mathematical model allows computation of the unmeasurable neurophysiological commands lambda and micro that control the equilibrium position and stability. Furthermore, with the model it is possible to conclude that low-amplitude body sway during quiet stance is commanded by the central nervous system.
Frequency-Specific Fractal Analysis of Postural Control Accounts for Control Strategies
Gilfriche, Pierre; Deschodt-Arsac, Véronique; Blons, Estelle; Arsac, Laurent M.
2018-01-01
Diverse indicators of postural control in Humans have been explored for decades, mostly based on the trajectory of the center-of-pressure. Classical approaches focus on variability, based on the notion that if a posture is too variable, the subject is not stable. Going deeper, an improved understanding of underlying physiology has been gained from studying variability in different frequency ranges, pointing to specific short-loops (proprioception), and long-loops (visuo-vestibular) in neural control. More recently, fractal analyses have proliferated and become useful additional metrics of postural control. They allowed identifying two scaling phenomena, respectively in short and long timescales. Here, we show that one of the most widely used methods for fractal analysis, Detrended Fluctuation Analysis, could be enhanced to account for scalings on specific frequency ranges. By computing and filtering a bank of synthetic fractal signals, we established how scaling analysis can be focused on specific frequency components. We called the obtained method Frequency-specific Fractal Analysis (FsFA) and used it to associate the two scaling phenomena of postural control to proprioceptive-based control loop and visuo-vestibular based control loop. After that, convincing arguments of method validity came from an application on the study of unaltered vs. altered postural control in athletes. Overall, the analysis suggests that at least two timescales contribute to postural control: a velocity-based control in short timescales relying on proprioceptive sensors, and a position-based control in longer timescales with visuo-vestibular sensors, which is a brand-new vision of postural control. Frequency-specific scaling exponents are promising markers of control strategies in Humans. PMID:29643816
Lippi, Vittorio; Mergner, Thomas
2017-01-01
The high complexity of the human posture and movement control system represents challenges for diagnosis, therapy, and rehabilitation of neurological patients. We envisage that engineering-inspired, model-based approaches will help to deal with the high complexity of the human posture control system. Since the methods of system identification and parameter estimation are limited to systems with only a few DoF, our laboratory proposes a heuristic approach that step-by-step increases complexity when creating a hypothetical human-derived control systems in humanoid robots. This system is then compared with the human control in the same test bed, a posture control laboratory. The human-derived control builds upon the identified disturbance estimation and compensation (DEC) mechanism, whose main principle is to support execution of commanded poses or movements by compensating for external or self-produced disturbances such as gravity effects. In previous robotic implementation, up to 3 interconnected DEC control modules were used in modular control architectures separately for the sagittal plane or the frontal body plane and successfully passed balancing and movement tests. In this study we hypothesized that conflict-free movement coordination between the robot's sagittal and frontal body planes emerges simply from the physical embodiment, not necessarily requiring a full body control. Experiments were performed in the 14 DoF robot Lucy Posturob (i) demonstrating that the mechanical coupling from the robot's body suffices to coordinate the controls in the two planes when the robot produces movements and balancing responses in the intermediate plane, (ii) providing quantitative characterization of the interaction dynamics between body planes including frequency response functions (FRFs), as they are used in human postural control analysis, and (iii) witnessing postural and control stability when all DoFs are challenged together with the emergence of inter-segmental coordination in squatting movements. These findings represent an important step toward controlling in the robot in future more complex sensorimotor functions such as walking.
Lippi, Vittorio; Mergner, Thomas
2017-01-01
The high complexity of the human posture and movement control system represents challenges for diagnosis, therapy, and rehabilitation of neurological patients. We envisage that engineering-inspired, model-based approaches will help to deal with the high complexity of the human posture control system. Since the methods of system identification and parameter estimation are limited to systems with only a few DoF, our laboratory proposes a heuristic approach that step-by-step increases complexity when creating a hypothetical human-derived control systems in humanoid robots. This system is then compared with the human control in the same test bed, a posture control laboratory. The human-derived control builds upon the identified disturbance estimation and compensation (DEC) mechanism, whose main principle is to support execution of commanded poses or movements by compensating for external or self-produced disturbances such as gravity effects. In previous robotic implementation, up to 3 interconnected DEC control modules were used in modular control architectures separately for the sagittal plane or the frontal body plane and successfully passed balancing and movement tests. In this study we hypothesized that conflict-free movement coordination between the robot's sagittal and frontal body planes emerges simply from the physical embodiment, not necessarily requiring a full body control. Experiments were performed in the 14 DoF robot Lucy Posturob (i) demonstrating that the mechanical coupling from the robot's body suffices to coordinate the controls in the two planes when the robot produces movements and balancing responses in the intermediate plane, (ii) providing quantitative characterization of the interaction dynamics between body planes including frequency response functions (FRFs), as they are used in human postural control analysis, and (iii) witnessing postural and control stability when all DoFs are challenged together with the emergence of inter-segmental coordination in squatting movements. These findings represent an important step toward controlling in the robot in future more complex sensorimotor functions such as walking. PMID:28951719
Postural control in man: the phylogenetic perspective.
Gramsbergen, Albert
2005-01-01
Erect posture in man is a recent affordance from an evolutionary perspective. About eight million years ago, the stock from which modern humans derived split off from the ape family, and from around sixty-thousand years ago, modern man developed. Upright gait and manipulations while standing pose intricate cybernetic problems for postural control. The trunk, having an older evolutionary history than the extremities, is innervated by medially descending motor systems and extremity muscles by the more recent, laterally descending systems. Movements obviously require concerted actions from both systems. Research in rats has demonstrated the interdependencies between postural control and the development of fluent walking. Only 15 days after birth, adult-like fluent locomotion emerges and is critically dependent upon postural development. Vesttibular deprivation induces a retardation in postural development and, consequently, a retarded development of adult-like locomotion. The cerebellum obviously has an important role in mutual adjustments in postural control and extremity movements, or, in coupling the phylogenetic older and newer structures. In the human, the cerebellum develops partly after birth and therefore is vulnerable to adverse perinatal influences. Such vulnerability seems to justify focusing our scientific research efforts onto the development of this structure.
Characterizing Postural Sway during Quiet Stance Based on the Intermittent Control Hypothesis
NASA Astrophysics Data System (ADS)
Nomura, Taishin; Nakamura, Toru; Fukada, Kei; Sakoda, Saburo
2007-07-01
This article illustrates a signal processing methodology for the time series of postural sway and accompanied electromyographs from the lower limb muscles during quiet stance. It was shown that the proposed methodology was capable of identifying the underlying postural control mechanisms. A preliminary application of the methodology provided evidence that supports the intermittent control hypothesis alternative to the conventional stiffness control hypothesis during human quiet upright stance.
Tommasino, Paolo; Campolo, Domenico
2017-02-03
In this work, we address human-like motor planning in redundant manipulators. Specifically, we want to capture postural synergies such as Donders' law, experimentally observed in humans during kinematically redundant tasks, and infer a minimal set of parameters to implement similar postural synergies in a kinematic model. For the model itself, although the focus of this paper is to solve redundancy by implementing postural strategies derived from experimental data, we also want to ensure that such postural control strategies do not interfere with other possible forms of motion control (in the task-space), i.e. solving the posture/movement problem. The redundancy problem is framed as a constrained optimization problem, traditionally solved via the method of Lagrange multipliers. The posture/movement problem can be tackled via the separation principle which, derived from experimental evidence, posits that the brain processes static torques (i.e. posture-dependent, such as gravitational torques) separately from dynamic torques (i.e. velocity-dependent). The separation principle has traditionally been applied at a joint torque level. Our main contribution is to apply the separation principle to Lagrange multipliers, which act as task-space force fields, leading to a task-space separation principle. In this way, we can separate postural control (implementing Donders' law) from various types of tasks-space movement planners. As an example, the proposed framework is applied to the (redundant) task of pointing with the human wrist. Nonlinear inverse optimization (NIO) is used to fit the model parameters and to capture motor strategies displayed by six human subjects during pointing tasks. The novelty of our NIO approach is that (i) the fitted motor strategy, rather than raw data, is used to filter and down-sample human behaviours; (ii) our framework is used to efficiently simulate model behaviour iteratively, until it converges towards the experimental human strategies.
A link-segment model of upright human posture for analysis of head-trunk coordination
NASA Technical Reports Server (NTRS)
Nicholas, S. C.; Doxey-Gasway, D. D.; Paloski, W. H.
1998-01-01
Sensory-motor control of upright human posture may be organized in a top-down fashion such that certain head-trunk coordination strategies are employed to optimize visual and/or vestibular sensory inputs. Previous quantitative models of the biomechanics of human posture control have examined the simple case of ankle sway strategy, in which an inverted pendulum model is used, and the somewhat more complicated case of hip sway strategy, in which multisegment, articulated models are used. While these models can be used to quantify the gross dynamics of posture control, they are not sufficiently detailed to analyze head-trunk coordination strategies that may be crucial to understanding its underlying mechanisms. In this paper, we present a biomechanical model of upright human posture that extends an existing four mass, sagittal plane, link-segment model to a five mass model including an independent head link. The new model was developed to analyze segmental body movements during dynamic posturography experiments in order to study head-trunk coordination strategies and their influence on sensory inputs to balance control. It was designed specifically to analyze data collected on the EquiTest (NeuroCom International, Clackamas, OR) computerized dynamic posturography system, where the task of maintaining postural equilibrium may be challenged under conditions in which the visual surround, support surface, or both are in motion. The performance of the model was tested by comparing its estimated ground reaction forces to those measured directly by support surface force transducers. We conclude that this model will be a valuable analytical tool in the search for mechanisms of balance control.
Destabilization of Human Balance Control by Static and Dynamic Head Tilts
NASA Technical Reports Server (NTRS)
Paloski, William H.; Wood, Scott J.; Feiveson, Alan H.; Black, F. Owen; Hwang, Emma Y.; Reschke, Millard F.
2004-01-01
To better understand the effects of varying head movement frequencies on human balance control, 12 healthy adult humans were studied during static and dynamic (0.14,0.33,0.6 Hz) head tilts of +/-30deg in the pitch and roll planes. Postural sway was measured during upright stance with eyes closed and altered somatosensory inputs provided by a computerized dynamic posturography (CDP) system. Subjects were able to maintain upright stance with static head tilts, although postural sway was increased during neck extension. Postural stability was decreased during dynamic head tilts, and the degree of destabilization varied directly with increasing frequency of head tilt. In the absence of vision and accurate foot support surface inputs, postural stability may be compromised during dynamic head tilts due to a decreased ability of the vestibular system to discern the orientation of gravity.
Otolith and Vertical Canal Contributions to Dynamic Postural Control
NASA Technical Reports Server (NTRS)
Black, F. Owen
1999-01-01
The objective of this project is to determine: 1) how do normal subjects adjust postural movements in response to changing or altered otolith input, for example, due to aging? and 2) how do patients adapt postural control after altered unilateral or bilateral vestibular sensory inputs such as ablative inner ear surgery or ototoxicity, respectively? The following hypotheses are under investigation: 1) selective alteration of otolith input or abnormalities of otolith receptor function will result in distinctive spatial, frequency, and temporal patterns of head movements and body postural sway dynamics. 2) subjects with reduced, altered, or absent vertical semicircular canal receptor sensitivity but normal otolith receptor function or vice versa, should show predictable alterations of body and head movement strategies essential for the control of postural sway and movement. The effect of altered postural movement control upon compensation and/or adaptation will be determined. These experiments provide data for the development of computational models of postural control in normals, vestibular deficient subjects and normal humans exposed to unusual force environments, including orbital space flight.
Spatial Map of Synthesized Criteria for the Redundancy Resolution of Human Arm Movements.
Li, Zhi; Milutinovic, Dejan; Rosen, Jacob
2015-11-01
The kinematic redundancy of the human arm enables the elbow position to rotate about the axis going through the shoulder and wrist, which results in infinite possible arm postures when the arm reaches to a target in a 3-D workspace. To infer the control strategy the human motor system uses to resolve redundancy in reaching movements, this paper compares five redundancy resolution criteria and evaluates their arm posture prediction performance using data on healthy human motion. Two synthesized criteria are developed to provide better real-time arm posture prediction than the five individual criteria. Of these two, the criterion synthesized using an exponential method predicts the arm posture more accurately than that using a least squares approach, and therefore is preferable for inferring the contributions of the individual criteria to motor control during reaching movements. As a methodology contribution, this paper proposes a framework to compare and evaluate redundancy resolution criteria for arm motion control. A cluster analysis which associates criterion contributions with regions of the workspace provides a guideline for designing a real-time motion control system applicable to upper-limb exoskeletons for stroke rehabilitation.
Postural control during quiet bipedal standing in rats
Sato, Yota; Fujiki, Soichiro; Sato, Yamato; Aoi, Shinya; Tsuchiya, Kazuo; Yanagihara, Dai
2017-01-01
The control of bipedal posture in humans is subject to non-ideal conditions such as delayed sensation and heartbeat noise. However, the controller achieves a high level of functionality by utilizing body dynamics dexterously. In order to elucidate the neural mechanism responsible for postural control, the present study made use of an experimental setup involving rats because they have more accessible neural structures. The experimental design requires rats to stand bipedally in order to obtain a water reward placed in a water supplier above them. Their motions can be measured in detail using a motion capture system and a force plate. Rats have the ability to stand bipedally for long durations (over 200 s), allowing for the construction of an experimental environment in which the steady standing motion of rats could be measured. The characteristics of the measured motion were evaluated based on aspects of the rats’ intersegmental coordination and power spectrum density (PSD). These characteristics were compared with those of the human bipedal posture. The intersegmental coordination of the standing rats included two components that were similar to that of standing humans: center of mass and trunk motion. The rats’ PSD showed a peak at approximately 1.8 Hz and the pattern of the PSD under the peak frequency was similar to that of the human PSD. However, the frequencies were five times higher in rats than in humans. Based on the analysis of the rats’ bipedal standing motion, there were some common characteristics between rat and human standing motions. Thus, using standing rats is expected to be a powerful tool to reveal the neural basis of postural control. PMID:29244818
Obayashi, Shigeru; Nakajima, Katsumi; Hara, Yukihiro
2016-01-01
To understand cortical mechanisms related to truncal posture control during human locomotion, we investigated hemodynamic responses in the supplementary motor area (SMA) with quadrupedal and bipedal gaits using functional near-infrared spectroscopy in 10 healthy adults. The subjects performed three locomotor tasks where the degree of postural instability varied biomechanically, namely, hand-knee quadrupedal crawling (HKQuad task), upright quadrupedalism using bilateral Lofstrand crutches (UpQuad task), and typical upright bipedalism (UpBi task), on a treadmill. We measured the concentration of oxygenated hemoglobin (oxy-Hb) during the tasks. The oxy-Hb significantly decreased in the SMA during the HKQuad task, whereas it increased during the UpQuad task. No significant responses were observed during the UpBi task. Based on the degree of oxy-Hb responses, we ranked these locomotor tasks as UpQuad > UpBi > HKQuad. The order of the different tasks did not correspond with postural instability of the tasks. However, qualitative inspection of oxy-Hb time courses showed that oxy-Hb waveform patterns differed between upright posture tasks (peak-plateau-trough pattern for the UpQuad and UpBi tasks) and horizontal posture task (downhill pattern for the HKQuad task). Thus, the SMA may contribute to the control of truncal posture accompanying locomotor movements in humans. PMID:27413555
Boisgontier, Matthieu P; Cheval, Boris; Chalavi, Sima; van Ruitenbeek, Peter; Leunissen, Inge; Levin, Oron; Nieuwboer, Alice; Swinnen, Stephan P
2017-02-01
It remains unclear which specific brain regions are the most critical for human postural control and balance, and whether they mediate the effect of age. Here, associations between postural performance and corticosubcortical brain regions were examined in young and older adults using multiple structural imaging and linear mixed models. Results showed that of the regions involved in posture, the brainstem was the strongest predictor of postural control and balance: lower brainstem volume predicted larger center of pressure deviation and higher odds of balance loss. Analyses of white and gray matter in the brainstem showed that the pedunculopontine nucleus area appeared to be critical for postural control in both young and older adults. In addition, the brainstem mediated the effect of age on postural control, underscoring the brainstem's fundamental role in aging. Conversely, lower basal ganglia volume predicted better postural performance, suggesting an association between greater neural resources in the basal ganglia and greater movement vigor, resulting in exaggerated postural adjustments. Finally, results showed that practice, shorter height and heavier weight (i.e., higher body mass index), higher total physical activity, and larger ankle active (but not passive) range of motion were predictive of more stable posture, irrespective of age. Copyright © 2016 Elsevier Inc. All rights reserved.
A Correlation-based Framework for Evaluating Postural Control Stochastic Dynamics
Hernandez, Manuel E.; Snider, Joseph; Stevenson, Cory; Cauwenberghs, Gert; Poizner, Howard
2016-01-01
The inability to maintain balance during varying postural control conditions can lead to falls, a significant cause of mortality and serious injury among older adults. However, our understanding of the underlying dynamical and stochastic processes in human postural control have not been fully explored. To further our understanding of the underlying dynamical processes, we examine a novel conceptual framework for studying human postural control using the center of pressure (COP) velocity autocorrelation function (COP-VAF) and compare its results to Stabilogram Diffusion Analysis (SDA). Eleven healthy young participants were studied under quiet unipedal or bipedal standing conditions with eyes either opened or closed. COP trajectories were analyzed using both the traditional posturographic measure SDA and the proposed COP-VAF. It is shown that the COP-VAF leads to repeatable, physiologically meaningful measures that distinguish postural control differences in unipedal versus bipedal stance trials with and without vision in healthy individuals. More specifically, both a unipedal stance and lack of visual feedback increased initial values of the COP-VAF, magnitude of the first minimum, and diffusion coefficient, particularly in contrast to bipedal stance trials with open eyes. Use of a stochastic postural control model, based on an Ornstein-Uhlenbeck process that accounts for natural weight-shifts, suggests an increase in spring constant and decreased damping coefficient when fitted to experimental data. This work suggests that we can further extend our understanding of the underlying mechanisms behind postural control in quiet stance under varying stance conditions using the COP-VAF and provides a tool for quantifying future neurorehabilitative interventions. PMID:26011886
Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands.
Segil, Jacob L; Controzzi, Marco; Weir, Richard F ff; Cipriani, Christian
2014-01-01
A myoelectric controller should provide an intuitive and effective human-machine interface that deciphers user intent in real-time and is robust enough to operate in daily life. Many myoelectric control architectures have been developed, including pattern recognition systems, finite state machines, and more recently, postural control schemes. Here, we present a comparative study of two types of finite state machines and a postural control scheme using both virtual and physical assessment procedures with seven nondisabled subjects. The Southampton Hand Assessment Procedure (SHAP) was used in order to compare the effectiveness of the controllers during activities of daily living using a multigrasp artificial hand. Also, a virtual hand posture matching task was used to compare the controllers when reproducing six target postures. The performance when using the postural control scheme was significantly better (p < 0.05) than the finite state machines during the physical assessment when comparing within-subject averages using the SHAP percent difference metric. The virtual assessment results described significantly greater completion rates (97% and 99%) for the finite state machines, but the movement time tended to be faster (2.7 s) for the postural control scheme. Our results substantiate that postural control schemes rival other state-of-the-art myoelectric controllers.
Design and Validation of a Low-Cost Portable Device to Quantify Postural Stability.
Zhu, Yong
2017-03-18
Measurement of the displacement of the center-of-pressure (COP) is an important tool used in biomechanics to assess postural stability and human balance. The goal of this research was to design and validate a low-cost portable device that can offer a quick indication of the state of postural stability and human balance related conditions. Approximate entropy (ApEn) values reflecting the amount of irregularity hiding in COP oscillations were used to calculate the index. The prototype adopted a portable design using the measurements of the load cells located at the four corners of a low-cost force platform. The test subject was asked to stand on the device in a quiet, normal, upright stance for 30 s with eyes open and subsequently for 30 s with eyes closed. Based on the COP displacement signals, the ApEn values were calculated. The results indicated that the prototype device was capable of capturing the increase in regularity of postural control in the visual-deprivation conditions. It was also able to decipher the subtle postural control differences along anterior-posterior and medial-lateral directions. The data analysis demonstrated that the prototype would enable the quantification of postural stability and thus provide a low-cost portable device to assess many conditions related to postural stability and human balance such as aging and pathologies.
Human-like agents with posture planning ability
NASA Technical Reports Server (NTRS)
Jung, Moon R.; Badler, Norman
1992-01-01
Human body models are geometric structures which may be ultimately controlled by kinematically manipulating their joints, but for animation, it is desirable to control them in terms of task-level goals. We address a fundamental problem in achieving task-level postural goals: controlling massively redundant degrees of freedom. We reduce the degrees of freedom by introducing significant control points and vectors, e.g., pelvis forward vector, palm up vector, and torso up vector, etc. This reduced set of parameters are used to enumerate primitive motions and motion dependencies among them, and thus to select from a small set of alternative postures (e.g., bend vs. squat to lower shoulder height). A plan for a given goal is found by incrementally constructing a goal/constraint set based on the given goal, motion dependencies, collision avoidance requirements, and discovered failures. Global postures satisfying a given goal/constraint set are determined with the help of incremental mental simulation which uses a robust inverse kinematics algorithm. The contributions of the present work are: (1) There is no need to specify beforehand the final goal configuration, which is unrealistic for the human body, and (2) the degrees of freedom problem becomes easier by representing body configurations in terms of 'lumped' control parameters, that is, control points and vectors.
NASA Astrophysics Data System (ADS)
Teresa Blázquez, M.; Anguiano, Marta; de Saavedra, Fernando Arias; Lallena, Antonio M.; Carpena, Pedro
2009-05-01
The detrended fluctuation analysis is used to study the behavior of different time series obtained from the trajectory of the center of pressure, the output of the activity of the human postural control system. The results suggest that these trajectories present two different regimes in their scaling properties: persistent (for high frequencies, short-range time scale) to antipersistent (for low frequencies, long-range time scale) behaviors. The similitude between the results obtained for the measurements, done with both eyes open and eyes closed, indicate either that the visual system may be disregarded by the postural control system while maintaining the quiet standing, or that the control mechanisms associated with each type of information (visual, vestibular and somatosensory) cannot be disentangled with the type of analysis performed here.
Development of Postural Muscles and Their Innervation
IJkema-Paassen, J.; Gramsbergen, A.
2005-01-01
Control of posture is a prerequisite for efficient motor performance. Posture depends on muscles capable of enduring contractions, whereas movements often require quick, forceful muscle actions. To serve these different goals, muscles contain fibers that meet these different tasks. Muscles with strong postural functions mainly consist of slow muscle fibers with a great resistance against fatigue. Flexor muscles in the leg and arm muscles are mainly composed of fast muscle fibers producing relatively large forces that are rapidly fatigable. Development of the neuromuscular system continues after birth. We discuss in the human baby and in animal experiments changes in muscle fiber properties, regression from polyneural into mononeural innervation, and developmental changes in the motoneurons of postural muscles during that period. The regression of poly-neural innervation in postural muscles and the development of dendrite bundles of their motoneurons seem to be linked to the transition from the immature into the adult-like patterns of moving and postural control. PMID:16097482
Eye Movements Affect Postural Control in Young and Older Females
Thomas, Neil M.; Bampouras, Theodoros M.; Donovan, Tim; Dewhurst, Susan
2016-01-01
Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions. PMID:27695412
Eye Movements Affect Postural Control in Young and Older Females.
Thomas, Neil M; Bampouras, Theodoros M; Donovan, Tim; Dewhurst, Susan
2016-01-01
Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions.
Neuromechanical tuning of nonlinear postural control dynamics
NASA Astrophysics Data System (ADS)
Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.
2009-06-01
Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.
NASA Technical Reports Server (NTRS)
Collins, J. J.; De Luca, C. J.; Pavlik, A. E.; Roy, S. H.; Emley, M. S.; Young, L. R. (Principal Investigator)
1995-01-01
Stabilogram-diffusion analysis was used to examine how prolonged periods in microgravity affect the open-loop and closed-loop postural control mechanisms. It was hypothesized that following spaceflight: (1) the effective stochastic activity of the open-loop postural control schemes in astronauts is increased; (2) the effective stochastic activity and uncorrelated behavior, respectively, of the closed-loop postural control mechanisms in astronauts are increased; and (3) astronauts utilized open-loop postural controls schemes for shorter time intervals and smaller displacements. Four crew members and two alternates from the 14-day Spacelab Life Sciences 2 Mission were included in the study. Each subject was tested under eyes-open, quiet-standing conditions on multiple preflight and postflight days. The subjects' center-of-pressure trajectories were measured with a force platform and analyzed according to stabilogram-diffusion analysis. It was found that the effective stochastic activity of the open-loop postural control schemes in three of the four crew members was increased following spaceflight. This result is interpreted as an indication that there may be in-flight adaptations to higher-level descending postural control pathways, e.g., a postflight increase in the tonic activation of postural muscles. This change may also be the consequence of a compensatory (e.g., "stiffening") postural control strategy that is adopted by astronauts to account for general feeling of postflight unsteadiness. The crew members, as a group, did not exhibit any consistent preflight/postflight differences in the steady-state behavior of their closed-loop postural control mechanisms or in the functional interaction of their open-loop and closed-loop postural control mechanisms. These results are interpreted as indications that although there may be in-flight adaptations to the vestibular system and/or proprioceptive system, input from the visual system can compensate for such changes during undisturbed stance.
Characterizing the human postural control system using detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Teresa Blázquez, M.; Anguiano, Marta; de Saavedra, Fernando Arias; Lallena, Antonio M.; Carpena, Pedro
2010-01-01
Detrended fluctuation analysis is used to study the behaviour of the time series of the position of the center of pressure, output from the activity of a human postural control system. The results suggest that these trajectories present a crossover in their scaling properties from persistent (for high frequencies, short-range time scale) to anti-persistent (for low frequencies, long-range time scale) behaviours. The values of the scaling exponent found for the persistent parts of the trajectories are very similar for all the cases analysed. The similarity of the results obtained for the measurements done with both eyes open and both eyes closed indicate either that the visual system may be disregarded by the postural control system, while maintaining quiet standing, or that the control mechanisms associated with each type of information (visual, vestibular and somatosensory) cannot be disentangled with this technique.
NASA Astrophysics Data System (ADS)
Murakami, Hiroki; Seki, Hirokazu; Minakata, Hideaki; Tadakuma, Susumu
This paper describes a novel operationality improvement control for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel operationality improvement control by fuzzy algorithm to realize the stable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity, the posture angle of the wheelchair, the human input torque proportion and the total human torque of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.
Ringhof, Steffen; Leibold, Timo; Hellmann, Daniel; Stein, Thorsten
2015-10-01
Recent studies reported on the potential benefits of submaximum clenching of the jaw on human postural control in upright unperturbed stance. However, it remained unclear whether these effects might also be observed among active controls. The purpose of the present study, therefore, was to comparatively examine the influence of concurrent muscle activation in terms of submaximum clenching of the jaw and submaximum clenching of the fists on postural stability. Posturographic analyses were conducted with 17 healthy young adults on firm and foam surfaces while either clenching the jaw (JAW) or clenching the fists (FIST), whereas habitual standing served as the control condition (CON). Both submaximum tasks were performed at 25% maximum voluntary contraction, assessed, and visualized in real time by means of electromyography. Statistical analyses revealed that center of pressure (COP) displacements were significantly reduced during JAW and FIST, but with no differences between both concurrent clenching activities. Further, a significant increase in COP displacements was observed for the foam as compared to the firm condition. The results showed that concurrent muscle activation significantly improved postural stability compared with habitual standing, and thus emphasize the beneficial effects of jaw and fist clenching for static postural control. It is suggested that concurrent activities contribute to the facilitation of human motor excitability, finally increasing the neural drive to the distal muscles. Future studies should evaluate whether elderly or patients with compromised postural control might benefit from these physiological responses, e.g., in the form of a reduced risk of falling. Copyright © 2015 Elsevier B.V. All rights reserved.
Diurnal changes in postural control in normal children: Computerized static and dynamic assessments.
Bourelle, Sophie; Taiar, Redha; Berge, Benoit; Gautheron, Vincent; Cottalorda, Jerome
2014-01-01
Mild traumatic brain injury (mTBI) causes postural control deficits and accordingly comparison of aberrant postural control against normal postural control may help diagnose mTBI. However, in the current literature, little is known regarding the normal pattern of postural control in young children. This study was therefore conducted as an effort to fill this knowledge gap. Eight normal school-aged children participated. Posture assessment was conducted before (7-8 a.m. in the morning) and after (4-7 p.m. in the afternoon) school on regular school days using the Balance Master® evaluation system composed of 3 static tests and 2 dynamic balance tests. A significant difference in the weight-bearing squats was detected between morning hours and afternoon hours (P < 0.05). By end of afternoon, the body weight was borne mainly on the left side with the knee fully extended and at various degrees of knee flexion. A significantly better directional control of the lateral rhythmic weight shifts was observed at the end of the afternoon than at morning hours (P < 0.05). In summary, most of our findings are inconsistent with results from previous studies in adults, suggesting age-related differences in posture control in humans. On a regular school day, the capacity of postural control and laterality or medio-lateral balance in children varies between morning and afternoon hours. We suggest that posturographic assessment in children, either in normal (e.g., physical education and sports training) or in abnormal conditions (e.g., mTBI-associated balance disorders), be better performed late in the afternoon.
Body size and lower limb posture during walking in humans.
Hora, Martin; Soumar, Libor; Pontzer, Herman; Sládek, Vladimír
2017-01-01
We test whether locomotor posture is associated with body mass and lower limb length in humans and explore how body size and posture affect net joint moments during walking. We acquired gait data for 24 females and 25 males using a three-dimensional motion capture system and pressure-measuring insoles. We employed the general linear model and commonality analysis to assess the independent effect of body mass and lower limb length on flexion angles at the hip, knee, and ankle while controlling for sex and velocity. In addition, we used inverse dynamics to model the effect of size and posture on net joint moments. At early stance, body mass has a negative effect on knee flexion (p < 0.01), whereas lower limb length has a negative effect on hip flexion (p < 0.05). Body mass uniquely explains 15.8% of the variance in knee flexion, whereas lower limb length uniquely explains 5.4% of the variance in hip flexion. Both of the detected relationships between body size and posture are consistent with the moment moderating postural adjustments predicted by our model. At late stance, no significant relationship between body size and posture was detected. Humans of greater body size reduce the flexion of the hip and knee at early stance, which results in the moderation of net moments at these joints.
Honarvar, Mohammad Hadi; Nakashima, Motomu
2013-10-01
This research addresses the question: what is the risk of fall initiation at a certain human posture? There are postures from which no one is able to keep their balance and a fall will surely initiate (risk=1), and others from which everyone may regain their stability (risk=0). In other postures, only a portion of people can control their stability. One may interpret risk to chance of a fall to be initiated, and based on the portion of fallers assign a risk value to a given human posture (postural risk). Human posture can be mapped to a point in a 2-dimensional space: the x-v plane, the axes of which are horizontal components of the position and velocity of the center of mass of the body. For every pair of (x, v), the outcome of the balance recovery problem defines whether a person with a given strength level is able to regain their stability when released from a posture corresponding to that point. Using strength distribution data, we estimated the portion of the population who will initiate a fall if starting at a certain posture. A fast calculation approach is also introduced to replace the time-consuming method of solving the recovery problem many times. Postural risk of fall initiation for situations expressed by (x, v) pairs for the entire x-v plane is calculated and shown in a color-map. Copyright © 2013 Elsevier B.V. All rights reserved.
Humanlike agents with posture planning ability
NASA Astrophysics Data System (ADS)
Jung, Moon R.; Badler, Norman I.
1992-11-01
Human body models are geometric structures which may be ultimately controlled by kinematically manipulating their joints, but for animation, it is desirable to control them in terms of task-level goals. We address a fundamental problem in achieving task-level postural goals: controlling massively redundant degrees of freedom. We reduce the degrees of freedom by introducing significant control points and vectors, e.g., pelvis forward vector, palm up vector, and torso up vector, etc. This reduced set of parameters are used to enumerate primitive motions and motion dependencies among them, and thus to select from a small set of alternative postures (e.g., bend versus squat to lower shoulder height). A plan for a given goal is found by incrementally constructing a goal/constraint set based on the given goal, motion dependencies, collision avoidance requirements, and discovered failures. Global postures satisfying a given goal/constraint set are determined with the help of incremental mental simulation which uses a robust inverse kinematics algorithm. The contributions of the present work are: (1) There is no need to specify beforehand the final goal configuration, which is unrealistic for the human body, and (2) the degrees of freedom problem becomes easier by representing body configurations in terms of `lumped' control parameters, that is, control points and vectors.
Analysis of Hand and Wrist Postural Synergies in Tolerance Grasping of Various Objects
Liu, Yuan; Jiang, Li; Yang, Dapeng; Liu, Hong
2016-01-01
Human can successfully grasp various objects in different acceptable relative positions between human hand and objects. This grasp functionality can be described as the grasp tolerance of human hand, which is a significant functionality of human grasp. To understand the motor control of human hand completely, an analysis of hand and wrist postural synergies in tolerance grasping of various objects is needed. Ten healthy right-handed subjects were asked to perform the tolerance grasping with right hand using 6 objects of different shapes, sizes and relative positions between human hand and objects. Subjects were wearing CyberGlove attaching motion tracker on right hand, allowing a measurement of the hand and wrist postures. Correlation analysis of joints and inter-joint/inter-finger modules were carried on to explore the coordination between joints or modules. As the correlation between hand and wrist module is not obvious in tolerance grasping, individual analysis of wrist synergies would be more practical. In this case, postural synergies of hand and wrist were then presented separately through principal component analysis (PCA), expressed through the principal component (PC) information transmitted ratio, PC elements distribution and reconstructed angle error of joints. Results on correlation comparison of different module movements can be well explained by the influence factors of the joint movement correlation. Moreover, correlation analysis of joints and modules showed the wrist module had the lowest correlation among all inter-finger and inter-joint modules. Hand and wrist postures were both sufficient to be described by a few principal components. In terms of the PC elements distribution of hand postures, compared with previous investigations, there was a greater proportion of movement in the thumb joints especially the interphalangeal (IP) and opposition rotation (ROT) joint. The research could serve to a complete understanding of hand grasp, and the design, control of the anthropomorphic hand and wrist. PMID:27580298
Kanekar, Neeta; Aruin, Alexander S
2015-04-01
Humans use anticipatory and compensatory postural strategies to maintain and restore balance when perturbed. Inefficient generation and utilization of anticipatory postural adjustments (APAs) is one of the reasons for postural instability. The aim of the study was to investigate the role of training in improvement of APAs and its effect on subsequent control of posture. Thirteen healthy young adults were exposed to predictable external perturbations before and after a single training session consisting of catches of a medicine ball thrown at the shoulder level. 3-D body kinematics, EMG activity of thirteen trunk and lower limb muscles, and ground reaction forces were recorded before and immediately after a single training session. Muscle onsets, EMG integrals, center of pressure (COP), and center of mass (COM) displacements were analyzed during the anticipatory and compensatory phases of postural control. The effect of a single training session was seen as significantly early muscle onsets and larger anticipatory COP displacements. As a result, significantly smaller peak COM displacements were observed after the perturbation indicating greater postural stability. The outcome of this study provides a background for examining the role of training in improvement of APAs and its effect on postural stability in individuals in need. Copyright © 2014 Elsevier Ltd. All rights reserved.
A method to model anticipatory postural control in driver braking events.
Östh, Jonas; Eliasson, Erik; Happee, Riender; Brolin, Karin
2014-09-01
Human body models (HBMs) for vehicle occupant simulations have recently been extended with active muscles and postural control strategies. Feedback control has been used to model occupant responses to autonomous braking interventions. However, driver postural responses during driver initiated braking differ greatly from autonomous braking. In the present study, an anticipatory postural response was hypothesized, modelled in a whole-body HBM with feedback controlled muscles, and validated using existing volunteer data. The anticipatory response was modelled as a time dependent change in the reference value for the feedback controllers, which generates correcting moments to counteract the braking deceleration. The results showed that, in 11 m/s(2) driver braking simulations, including the anticipatory postural response reduced the peak forward displacement of the head by 100mm, of the shoulder by 30 mm, while the peak head flexion rotation was reduced by 18°. The HBM kinematic response was within a one standard deviation corridor of corresponding test data from volunteers performing maximum braking. It was concluded that the hypothesized anticipatory responses can be modelled by changing the reference positions of the individual joint feedback controllers that regulate muscle activation levels. The addition of anticipatory postural control muscle activations appears to explain the difference in occupant kinematics between driver and autonomous braking. This method of modelling postural reactions can be applied to the simulation of other driver voluntary actions, such as emergency avoidance by steering. Copyright © 2014. Published by Elsevier B.V.
Postural stability of sitting women.
Nag, Pranab K; Vyas, Heer; Nag, Anjali; Pal, Swati
2013-01-01
The study examined the utility of stabilometric dimensions and explored whether the changes in sitting postures were manifested in functional measures of postural control. Eleven women participated in the study, which used 11 chair sitting postures: arms on laps or arms right angled; armrest at a height of 17, 20 and 23 cm; with or without backrest; slouch or straight back; legs right angled at knees or crossed legs. The backrest and armrest shifted 16.3% of body weight from a seat pan. The characteristics of stabilometric dimensions evaluated the influence of seat components and sitting behaviour on postural balance. The study attempted to evaluate stability and its application in human-seat interface design.
Gauchard, G C; Jeandel, C; Perrin, P P
2001-01-01
Ageing is associated with a reduction in balance, in particular through dysfunction of each level of postural control, which results in an increased risk of falling. Conversely, the practice of physical activities has been shown to modulate postural control in elderly people. This study examined the potential positive effects of two types of regular physical and sporting activities on vestibular information and their relation to posture. Gaze and postural stabilisation was evaluated by caloric and rotational vestibular tests on 18 healthy subjects over the age of 60 who regularly practised low-energy or bioenergetic physical activities and on 18 controls of a similar age who only walked on a regular basis. These subjects were also submitted to static and dynamic posturographic tests. The control group displayed less balance control, with a lower vestibular sensitivity and a relatively high dependency on vision compared to the group practising low-energy physical activities, which had better postural control with good vestibular sensitivity and less dependency on vision. The postural control and vestibular sensitivity of subjects practising bioenergetic activities was average, and required higher visual afferent contribution. Low-energy exercises, already shown to have the most positive impact on balance control by relying more on proprioception, also appear to develop or maintain a high level of vestibular sensitivity allowing elderly people practising such exercises to reduce the weight of vision. Copyright 2001 S. Karger AG, Basel
Nakajima, Masashi
2011-03-01
Quiet standing and walking are generally considered to be an automatic process regulated by sensory feedback. In our report "Astasia without abasia due to peripheral neuropathy," which was published in 1994, we proposed that forced stepping in patients lacking the ankle torque is a compensatory motor control in order to maintain an upright posture. A statistical-biomechanics approach to the human postural control system has revealed open-loop (descending) control as well as closed-loop (feedback) control in quiet standing, and fractal dynamics in stride-to-stride fluctuations of walking. The descending control system of bipedal upright posture and gait may have a functional link to cognitive domains. Increasing dependence on the descending control system with aging may play a role in falls in elderly people.
Acceleration feedback improves balancing against reflex delay
Insperger, Tamás; Milton, John; Stépán, Gábor
2013-01-01
A model for human postural balance is considered in which the time-delayed feedback depends on position, velocity and acceleration (proportional–derivative–acceleration (PDA) feedback). It is shown that a PDA controller is equivalent to a predictive controller, in which the prediction is based on the most recent information of the state, but the control input is not involved into the prediction. A PDA controller is superior to the corresponding proportional–derivative controller in the sense that the PDA controller can stabilize systems with approximately 40 per cent larger feedback delays. The addition of a sensory dead zone to account for the finite thresholds for detection by sensory receptors results in highly intermittent, complex oscillations that are a typical feature of human postural sway. PMID:23173196
Body size and lower limb posture during walking in humans
Hora, Martin; Soumar, Libor; Pontzer, Herman; Sládek, Vladimír
2017-01-01
We test whether locomotor posture is associated with body mass and lower limb length in humans and explore how body size and posture affect net joint moments during walking. We acquired gait data for 24 females and 25 males using a three-dimensional motion capture system and pressure-measuring insoles. We employed the general linear model and commonality analysis to assess the independent effect of body mass and lower limb length on flexion angles at the hip, knee, and ankle while controlling for sex and velocity. In addition, we used inverse dynamics to model the effect of size and posture on net joint moments. At early stance, body mass has a negative effect on knee flexion (p < 0.01), whereas lower limb length has a negative effect on hip flexion (p < 0.05). Body mass uniquely explains 15.8% of the variance in knee flexion, whereas lower limb length uniquely explains 5.4% of the variance in hip flexion. Both of the detected relationships between body size and posture are consistent with the moment moderating postural adjustments predicted by our model. At late stance, no significant relationship between body size and posture was detected. Humans of greater body size reduce the flexion of the hip and knee at early stance, which results in the moderation of net moments at these joints. PMID:28192522
An optimal state estimation model of sensory integration in human postural balance
NASA Astrophysics Data System (ADS)
Kuo, Arthur D.
2005-09-01
We propose a model for human postural balance, combining state feedback control with optimal state estimation. State estimation uses an internal model of body and sensor dynamics to process sensor information and determine body orientation. Three sensory modalities are modeled: joint proprioception, vestibular organs in the inner ear, and vision. These are mated with a two degree-of-freedom model of body dynamics in the sagittal plane. Linear quadratic optimal control is used to design state feedback and estimation gains. Nine free parameters define the control objective and the signal-to-noise ratios of the sensors. The model predicts statistical properties of human sway in terms of covariance of ankle and hip motion. These predictions are compared with normal human responses to alterations in sensory conditions. With a single parameter set, the model successfully reproduces the general nature of postural motion as a function of sensory environment. Parameter variations reveal that the model is highly robust under normal sensory conditions, but not when two or more sensors are inaccurate. This behavior is similar to that of normal human subjects. We propose that age-related sensory changes may be modeled with decreased signal-to-noise ratios, and compare the model's behavior with degraded sensors against experimental measurements from older adults. We also examine removal of the model's vestibular sense, which leads to instability similar to that observed in bilateral vestibular loss subjects. The model may be useful for predicting which sensors are most critical for balance, and how much they can deteriorate before posture becomes unstable.
Use of Video Analysis System for Working Posture Evaluations
NASA Technical Reports Server (NTRS)
McKay, Timothy D.; Whitmore, Mihriban
1994-01-01
In a work environment, it is important to identify and quantify the relationship among work activities, working posture, and workplace design. Working posture may impact the physical comfort and well-being of individuals, as well as performance. The Posture Video Analysis Tool (PVAT) is an interactive menu and button driven software prototype written in Supercard (trademark). Human Factors analysts are provided with a predefined set of options typically associated with postural assessments and human performance issues. Once options have been selected, the program is used to evaluate working posture and dynamic tasks from video footage. PVAT has been used to evaluate postures from Orbiter missions, as well as from experimental testing of prototype glove box designs. PVAT can be used for video analysis in a number of industries, with little or no modification. It can contribute to various aspects of workplace design such as training, task allocations, procedural analyses, and hardware usability evaluations. The major advantage of the video analysis approach is the ability to gather data, non-intrusively, in restricted-access environments, such as emergency and operation rooms, contaminated areas, and control rooms. Video analysis also provides the opportunity to conduct preliminary evaluations of existing work areas.
Contributions of visual and embodied expertise to body perception.
Reed, Catherine L; Nyberg, Andrew A; Grubb, Jefferson D
2012-01-01
Recent research has demonstrated that our perception of the human body differs from that of inanimate objects. This study investigated whether the visual perception of the human body differs from that of other animate bodies and, if so, whether that difference could be attributed to visual experience and/or embodied experience. To dissociate differential effects of these two types of expertise, inversion effects (recognition of inverted stimuli is slower and less accurate than recognition of upright stimuli) were compared for two types of bodies in postures that varied in typicality: humans in human postures (human-typical), humans in dog postures (human-atypical), dogs in dog postures (dog-typical), and dogs in human postures (dog-atypical). Inversion disrupts global configural processing. Relative changes in the size and presence of inversion effects reflect changes in visual processing. Both visual and embodiment expertise predict larger inversion effects for human over dog postures because we see humans more and we have experience producing human postures. However, our design that crosses body type and typicality leads to distinct predictions for visual and embodied experience. Visual expertise predicts an interaction between typicality and orientation: greater inversion effects should be found for typical over atypical postures regardless of body type. Alternatively, embodiment expertise predicts a body, typicality, and orientation interaction: larger inversion effects should be found for all human postures but only for atypical dog postures because humans can map their bodily experience onto these postures. Accuracy data supported embodiment expertise with the three-way interaction. However, response-time data supported contributions of visual expertise with larger inversion effects for typical over atypical postures. Thus, both types of expertise affect the visual perception of bodies.
Dynamic Determinants of the Uncontrolled Manifold during Human Quiet Stance
Suzuki, Yasuyuki; Morimoto, Hiroki; Kiyono, Ken; Morasso, Pietro G.; Nomura, Taishin
2016-01-01
Human postural sway during stance arises from coordinated multi-joint movements. Thus, a sway trajectory represented by a time-varying postural vector in the multiple-joint-angle-space tends to be constrained to a low-dimensional subspace. It has been proposed that the subspace corresponds to a manifold defined by a kinematic constraint, such that the position of the center of mass (CoM) of the whole body is constant in time, referred to as the kinematic uncontrolled manifold (kinematic-UCM). A control strategy related to this hypothesis (CoM-control-strategy) claims that the central nervous system (CNS) aims to keep the posture close to the kinematic-UCM using a continuous feedback controller, leading to sway patterns that mostly occur within the kinematic-UCM, where no corrective control is exerted. An alternative strategy proposed by the authors (intermittent control-strategy) claims that the CNS stabilizes posture by intermittently suspending the active feedback controller, in such a way to allow the CNS to exploit a stable manifold of the saddle-type upright equilibrium in the state-space of the system, referred to as the dynamic-UCM, when the state point is on or near the manifold. Although the mathematical definitions of the kinematic- and dynamic-UCM are completely different, both UCMs play similar roles in the stabilization of multi-joint upright posture. The purpose of this study was to compare the dynamic performance of the two control strategies. In particular, we considered a double-inverted-pendulum-model of postural control, and analyzed the two UCMs defined above. We first showed that the geometric configurations of the two UCMs are almost identical. We then investigated whether the UCM-component of experimental sway could be considered as passive dynamics with no active control, and showed that such UCM-component mainly consists of high frequency oscillations above 1 Hz, corresponding to anti-phase coordination between the ankle and hip. We also showed that this result can be better characterized by an eigenfrequency associated with the dynamic-UCM. In summary, our analysis highlights the close relationship between the two control strategies, namely their ability to simultaneously establish small CoM variations and postural stability, but also make it clear that the intermittent control hypothesis better explains the spectral characteristics of sway. PMID:27999535
Dynamic Determinants of the Uncontrolled Manifold during Human Quiet Stance.
Suzuki, Yasuyuki; Morimoto, Hiroki; Kiyono, Ken; Morasso, Pietro G; Nomura, Taishin
2016-01-01
Human postural sway during stance arises from coordinated multi-joint movements. Thus, a sway trajectory represented by a time-varying postural vector in the multiple-joint-angle-space tends to be constrained to a low-dimensional subspace. It has been proposed that the subspace corresponds to a manifold defined by a kinematic constraint, such that the position of the center of mass (CoM) of the whole body is constant in time, referred to as the kinematic uncontrolled manifold ( kinematic-UCM ). A control strategy related to this hypothesis ( CoM-control-strategy ) claims that the central nervous system (CNS) aims to keep the posture close to the kinematic-UCM using a continuous feedback controller, leading to sway patterns that mostly occur within the kinematic-UCM, where no corrective control is exerted. An alternative strategy proposed by the authors ( intermittent control-strategy ) claims that the CNS stabilizes posture by intermittently suspending the active feedback controller, in such a way to allow the CNS to exploit a stable manifold of the saddle-type upright equilibrium in the state-space of the system, referred to as the dynamic-UCM , when the state point is on or near the manifold. Although the mathematical definitions of the kinematic- and dynamic-UCM are completely different, both UCMs play similar roles in the stabilization of multi-joint upright posture. The purpose of this study was to compare the dynamic performance of the two control strategies. In particular, we considered a double-inverted-pendulum-model of postural control, and analyzed the two UCMs defined above. We first showed that the geometric configurations of the two UCMs are almost identical. We then investigated whether the UCM-component of experimental sway could be considered as passive dynamics with no active control, and showed that such UCM-component mainly consists of high frequency oscillations above 1 Hz, corresponding to anti-phase coordination between the ankle and hip. We also showed that this result can be better characterized by an eigenfrequency associated with the dynamic-UCM. In summary, our analysis highlights the close relationship between the two control strategies, namely their ability to simultaneously establish small CoM variations and postural stability, but also make it clear that the intermittent control hypothesis better explains the spectral characteristics of sway.
Postural responses to unexpected perturbations of balance during reaching
Trivedi, Hari; Leonard, Julia A.; Ting, Lena H.; Stapley, Paul J.
2014-01-01
To study the interaction between feedforward and feedback modes of postural control, we investigated postural responses during unexpected perturbations of the support surface that occurred during forward reaching in a standing position. We examined postural responses in lower limb muscles of 9 human subjects. Baseline measures were obtained when subjects executed reaching movements to a target placed in front of them (R condition) and during postural responses to forward and backward support-surface perturbations (no reaching, P condition) during quiet stance. Perturbations were also given at different delays after the onset of reaching movements (RP conditions) as well as with the arm extended in the direction of the target, but not reaching (P/AE condition). Results showed that during perturbations to reaching (RP), the initial automatic postural response, occurring around 100 ms after the onset of perturbations, was relatively unchanged in latency or amplitude compared to control conditions (P and P/AE). However, longer latency postural responses were modulated to aid in the reaching movements during forward perturbations but not during backward perturbations. Our results suggest that the nervous system prioritizes the maintenance of a stable postural base during reaching, and that later components of the postural responses can be modulated to ensure the performance of the voluntary task. PMID:20035321
Madeleine, Pascal; Prietzel, Hanne; Svarrer, Heine; Arendt-Nielsen, Lars
2004-03-01
To quantify neck mobility and posture with and without various postural perturbations. A multivariable 2-group study with repeated measures and treatments. A human performance laboratory. Eleven patients with chronic whiplash injury (mean age, 33.3+/-6.7 y; weight, 73.4+/-11.4 kg; height, 173.3+/-7.2 cm) with a sex- and age-matched control group (mean age, 33.1+/-6.8 y; weight, 68+/-12.5 kg; height, 171.5+/-6.3 cm). Neck mobility and the effects of postural perturbations affecting the visual, vestibular, cutaneous, proprioceptive, and nociceptive systems were measured. Active range of motion, neck position sense, and postural activity. We found significantly reduced neck mobility and increased postural activity in the patient group compared with the control group. In patients, there was significantly greater postural activity with eyes closed, eyes open and speaking, and eyes closed with Achilles' tendons vibrations compared with eyes open with no vibrations. In the controls, there was no significant effect of experimental muscle pain on postural activity. Patients with chronic whiplash injury had a protective response to neck movement and different tuning, sequencing, and execution of the postural synergies probably because of excessive reliance on visual input despite a possible deficit and altered vestibular and/or proprioceptive activity. In healthy volunteers, the pain induced by a single bolus injection of hypertonic saline was probably too limited in intensity and spreading to decrease postural stability.
Effect of long-duration spaceflight on postural control during self-generated perturbations
NASA Technical Reports Server (NTRS)
Layne, C. S.; Mulavara, A. P.; McDonald, P. V.; Pruett, C. J.; Kozlovskaya, I. B.; Bloomberg, J. J.
2001-01-01
This report is the first systematic evaluation of the effects of prolonged weightlessness on the bipedal postural control processes during self-generated perturbations produced by voluntary upper limb movements. Spaceflight impacts humans in a variety of ways, one of which is compromised postflight postural control. We examined the neuromuscular activation characteristics and center of pressure (COP) motion associated with arm movement of eight subjects who experienced long-duration spaceflight (3--6 mo) aboard the Mir space station. Surface electromyography, arm acceleration, and COP motion were collected while astronauts performed rapid unilateral shoulder flexions before and after spaceflight. Subjects generally displayed compromised postural control after flight, as evidenced by modified COP peak-to-peak anterior-posterior and mediolateral excursion, and pathlength relative to preflight values. These changes were associated with disrupted neuromuscular activation characteristics, particularly after the completion of arm acceleration (i.e., when subjects were attempting to maintain upright posture in response to self-generated perturbations). These findings suggest that, although the subjects were able to assemble coordination modes that enabled them to generate rapid arm movements, the subtle control necessary to maintain bipedal equilibrium evident in their preflight performance is compromised after long-duration spaceflight.
Effect of Long-Duration Spaceflight on Postural Control During Self-Generated Perturbations
NASA Technical Reports Server (NTRS)
Layne, Charles S.; Mulavera, Ajitkumar P.; McDonald, P. Vernon; Pruett, Casey J.; Kozlovskaya, Innessa B.; Bloomberg, Jacob J.
2001-01-01
This report is the first systematic evaluation of the effects of prolonged weightlessness on the bipedal postural control processes during self-generated perturbations produced by voluntary upper limb movements. Spaceflight impacts humans in a variety of ways, one of which is compromised postflight postural control. We examined the neuromuscular activation characteristics and center of pressure motion (COP) associated with arm movement of eight subjects who experienced long duration spaceflight (3-6 months) aboard the Mir space station. Surface electromyography (EMG), arm acceleration, and COP motion were collected while astronauts performed rapid unilateral shoulder flexions prior to and after spaceflight. Subjects displayed compromised postural control after flight as evidenced by modified peak-to-peak COP anterior-posterior and medio-lateral motion and COP pathlength relative to preflight values. These changes were associated with disrupted neuromuscular activation characteristics, particularly after the completion of arm acceleration (i.e. when subjects were attempting to maintain their upright posture). These findings suggest that although the subjects were able to assemble coordination modes that enabled them to generate rapid arm movements, the subtle control necessary to maintain bipedal equilibrium evident in their preflight performance is compromised after long duration spaceflight.
Study I: effects of 0.06% and 0.10% blood alcohol concentration on human postural control.
Modig, F; Patel, M; Magnusson, M; Fransson, P A
2012-03-01
Alcohol intoxication causes many accidental falls presented at emergency departments, with the injury severity often related to level of blood alcohol concentration (BAC). One way to evaluate the decline in postural control and the fall risk is to assess standing stability when challenged. The study objective was to comprehensively investigate alcohol-related impairments on postural control and adaptive motor learning at specific BAC levels. Effects of alcohol intoxication at 0.06% and 0.10% BAC were examined with posturography when unperturbed or perturbed by calf vibration. Twenty-five participants (mean age 25.1 years) were investigated standing with either eyes open or closed. Our results revealed several significant findings: (1) stability declined much faster from alcohol intoxication between 0.06% and 0.10% BAC (60-140%) compared with between 0.0% and 0.06% BAC (30%); (2) sustained exposure to repeated balance perturbations augmented the alcohol-related destabilization; (3) there were stronger effects of alcohol intoxication on stability in lateral direction than in anteroposterior direction; and (4) there was a gradual degradation of postural control particularly in lateral direction when the balance perturbations were repeated at 0.06% and 0.10% BAC, indicating adaptation deficits when intoxicated. To summarize, alcohol has profound deteriorating effects on human postural control, which are dose dependent, time dependent and direction specific. The maximal effects of alcohol intoxication on physiological performance might not be evident initially, but may be revealed first when under sustained sensory-motor challenges. Copyright © 2011 Elsevier B.V. All rights reserved.
Widdowson, Christopher; Ganhotra, Jatin; Faizal, Mohammed; Wilko, Marissa; Parikh, Saurin; Adhami, Zainulabidin; Hernandez, Manuel E
2016-08-01
Falls are a leading cause of injury and mortality among adults over the age of 65 years. Given the strong relation between fear of falling and fall risk, identification of the mechanisms that underlie anxiety-related changes in postural control may pave the way to the development of novel therapeutic strategies aimed at reducing fall risk in older adults. First, we review potential mechanisms underlying anxiety-mediated changes in postural control in older adults with and without neurological conditions. We then present a system that allows for the simultaneous recording of neural, physiological, and behavioral data in an immersive virtual reality (VR) environment while implementing sensory and mechanical perturbations to evaluate alterations in sensorimotor integration under conditions with high postural threat. We also discuss applications of VR in minimizing falls in older adults and potential future studies.
A Methodology for Investigating Adaptive Postural Control
NASA Technical Reports Server (NTRS)
McDonald, P. V.; Riccio, G. E.
1999-01-01
Our research on postural control and human-environment interactions provides an appropriate scientific foundation for understanding the skill of mass handling by astronauts in weightless conditions (e.g., extravehicular activity or EVA). We conducted an investigation of such skills in NASA's principal mass-handling simulator, the Precision Air-Bearing Floor, at the Johnson Space Center. We have studied skilled movement-body within a multidisciplinary context that draws on concepts and methods from biological and behavioral sciences (e.g., psychology, kinesiology and neurophysiology) as well as bioengineering. Our multidisciplinary research has led to the development of measures, for manual interactions between individuals and the substantial environment, that plausibly are observable by human sensory systems. We consider these methods to be the most important general contribution of our EVA investigation. We describe our perspective as control theoretic because it draws more on fundamental concepts about control systems in engineering than it does on working constructs from the subdisciplines of biomechanics and motor control in the bio-behavioral sciences. At the same time, we have attempted to identify the theoretical underpinnings of control-systems engineering that are most relevant to control by human beings. We believe that these underpinnings are implicit in the assumptions that cut across diverse methods in control-systems engineering, especially the various methods associated with "nonlinear control", "fuzzy control," and "adaptive control" in engineering. Our methods are based on these theoretical foundations rather than on the mathematical formalisms that are associated with particular methods in control-systems engineering. The most important aspects of the human-environment interaction in our investigation of mass handling are the functional consequences that body configuration and stability have for the pick up of information or the achievement of overt goals. It follows that an essential characteristic of postural behavior is the effective maintenance of the orientation and stability of the sensory and motor "platforms" (e.g., head or shoulders) over variations in the human, the environment and the task. This general skill suggests that individuals should be sensitive to the functional consequences of body configuration and stability. In other words, individuals should perceive the relation between configuration, stability, and performance so that they can adaptively control their interaction with the surroundings. Human-environment interactions constitute robust systems in that individuals can maintain the stability of such interactions over uncertainty about and variations in the dynamics of the interaction. Robust interactions allow individuals to adopt orientations and configurations that are not optimal with respect to purely energetic criteria. Individuals can tolerate variation in postural states, and such variation can serve an important function in adaptive systems. Postural variability generates stimulation which is "textured" by the dynamics of the human-environment system. The texture or structure in stimulation provides information about variation in dynamics, and such information can be sufficient to guide adaption in control strategies. Our method were designed to measure informative patterns of movement variability.
Grasso, R; Zago, M; Lacquaniti, F
2000-01-01
Human erect locomotion is unique among living primates. Evolution selected specific biomechanical features that make human locomotion mechanically efficient. These features are matched by the motor patterns generated in the CNS. What happens when humans walk with bent postures? Are normal motor patterns of erect locomotion maintained or completely reorganized? Five healthy volunteers walked straight and forward at different speeds in three different postures (regular, knee-flexed, and knee- and trunk-flexed) while their motion, ground reaction forces, and electromyographic (EMG) activity were recorded. The three postures imply large differences in the position of the center of body mass relative to the body segments. The elevation angles of the trunk, pelvis, and lower limb segments relative to the vertical in the sagittal plane, the ground reaction forces and the rectified EMGs were analyzed over the gait cycle. The waveforms of the elevation angles along the gait cycle remained essentially unchanged irrespective of the adopted postures. The first two harmonics of these kinematic waveforms explain >95% of their variance. The phase shift but not the amplitude ratio between the first harmonic of the elevation angle waveforms of adjacent pairs was affected systematically by changes in posture. Thigh, shank, and foot angles covaried close to a plane in all conditions, but the plane orientation was systematically different in bent versus erect locomotion. This was explained by the changes in the temporal coupling among the three segments. For walking speeds >1 m s(-1), the plane orientation of bent locomotion indicates a much lower mechanical efficiency relative to erect locomotion. Ground reaction forces differed prominently in bent versus erect posture displaying characteristics intermediate between those typical of walking and those of running. Mean EMG activity was greater in bent postures for all recorded muscles independent of the functional role. The waveforms of the muscle activities and muscle synergies also were affected by the adopted posture. We conclude that maintaining bent postures does not interfere either with the generation of segmental kinematic waveforms or with the planar constraint of intersegmental covariation. These characteristics are maintained at the expense of adjustments in kinetic parameters, muscle synergies and the temporal coupling among the oscillating body segments. We argue that an integrated control of gait and posture is made possible because these two motor functions share some common principles of spatial organization.
NASA Technical Reports Server (NTRS)
1997-01-01
Session TP3 includes short reports on: (1) Modification of Goal-Directed Arm Movements During Inflight Adaptation to Microgravity; (2) Quantitative Analysis of Motion control in Long Term Microgravity; (3) Does the Centre of Gravity Remain the Stabilised Reference during Complex Human Postural Equilibrium Tasks in Weightlessness?; and (4) Arm End-Point Trajectories Under Normal and Microgravity Environments.
Performing saccadic eye movements or blinking improves postural control.
Rougier, Patrice; Garin, Mélanie
2007-07-01
To determine the relationship between eye movement and postural control on an undisturbed upright stance maintenance protocol, 15 young, healthy individuals were tested in various conditions. These conditions included imposed blinking patterns and horizontal and vertical saccadic eye movements. The directions taken by the center of pressure (CP) were recorded via a force platform on which the participants remained in an upright position. The CP trajectories were used to estimate, via a low-pass filter, the vertically projected movements of the center of gravity (CGv) and consequently the difference CP-CGv. An analysis of the frequency shows that regular bilateral blinking does not produce a significant change in postural control. In contrast, performing saccadic eye movements induces some reduced amplitude for both basic CGv and CP-CGv movements principally along the antero-posterior axis. The present result supports the theory that some ocular movements may modify postural control in the maintenance of the upright standing position in human participants.
The effect of extended wake on postural control in young adults.
Smith, Simon S; Cheng, Tiffany; Kerr, Graham K
2012-09-01
The sleep-wake cycle is a major determinant of locomotor activity in humans, and the neural and physiological processes necessary for optimum postural control may be impaired by an extension of the wake period into habitual sleep time. There is growing evidence for such a contribution from sleep-related factors, but great inconsistency in the methods used to assess this contribution, particularly in control for circadian phase position. Postural control was assessed at hourly intervals across 14 h of extended wake in nine young adult participants. Force plate parameters of medio-lateral and anterior-posterior sway, centre of pressure (CoP) trace length, area, and velocity were assessed with eyes open and eyes closed over 3-min periods. A standard measure of psychomotor vigilance was assessed concurrently under constant routine conditions. After controlling for individual differences in circadian phase position, a significant effect of extended wake was found for anterior-posterior sway and for psychomotor vigilance. These data suggest that extended wake may increase the risk of a fall or other consequences of impaired postural control.
Protective effect of prone posture against hypergravity-induced arterial hypoxaemia in humans
Rohdin, M; Petersson, J; Mure, M; Glenny, R W; Lindahl, S G E; Linnarsson, D
2003-01-01
Patients with acute respiratory distress syndrome have increased lung tissue weight and therefore an increased hydrostatic pressure gradient down the lung. Also, they have a better arterial oxygenation in prone (face down) than in supine (face up) posture. We hypothesized that this effect of the direction of gravity also existed in healthy humans, when increased hydrostatic gradients were induced by hypergravity. Ten healthy subjects were studied in a human centrifuge while exposed to 1 or 5 G in anterio-posterior (supine) or posterio-anterior (prone) direction. We measured blood gases using remote-controlled sampling and gas exchange by mass spectrometry. Hypergravity led to marked impairments of arterial oxygenation in both postures and more so in supine posture. At 5 G, the arterial oxygen saturation was 84.6 ± 1.2 % (mean ±s.e.m.) in supine and 89.7 ± 1.4 % in prone posture (P < 0.001 for supine vs. prone). Ventilation and alveolar PO2 were increased at 5 G and did not differ between postures. The alveolar-to-arterial PO2 difference increased at 5 G to 8.0 ± 0.2 kPa and 6.6 ± 0.3 kPa in supine and prone postures (P = 0.003). Arterial oxygenation was less impaired in prone during hypergravity due to a better-preserved alveolo-arterial oxygen transport. We speculate that mammals have developed a cardiopulmonary structure that favours function with the gravitational vector in the posterio-anterior direction. PMID:12598589
Manor, Brad; Costa, Madalena D; Hu, Kun; Newton, Elizabeth; Starobinets, Olga; Kang, Hyun Gu; Peng, C K; Novak, Vera; Lipsitz, Lewis A
2010-12-01
The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (<20/40 vision, n = 81, 77 ± 4 yr old), somatosensory impairment only (inability to perceive 5.07 monofilament on plantar halluxes, n = 48, 80 ± 5 yr old), and combined impairments (n = 25, 80 ± 4 yr old). Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P < 0.01). Lower complexity during quiet standing correlated with greater absolute (R = -0.34, P = 0.002) and percent (R = -0.45, P < 0.001) increases in postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors.
Costa, Madalena D.; Hu, Kun; Newton, Elizabeth; Starobinets, Olga; Kang, Hyun Gu; Peng, C. K.; Novak, Vera; Lipsitz, Lewis A.
2010-01-01
The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (<20/40 vision, n = 81, 77 ± 4 yr old), somatosensory impairment only (inability to perceive 5.07 monofilament on plantar halluxes, n = 48, 80 ± 5 yr old), and combined impairments (n = 25, 80 ± 4 yr old). Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P < 0.01). Lower complexity during quiet standing correlated with greater absolute (R = −0.34, P = 0.002) and percent (R = −0.45, P < 0.001) increases in postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors. PMID:20947715
Age-related changes in human posture control: Sensory organization tests
NASA Technical Reports Server (NTRS)
Peterka, R. J.; Black, F. O.
1989-01-01
Postural control was measured in 214 human subjects ranging in age from 7 to 81 years. Sensory organization tests measured the magnitude of anterior-posterior body sway during six 21 s trials in which visual and somatosensory orientation cues were altered (by rotating the visual surround and support surface in proportion to the subject's sway) or vision eliminated (eyes closed) in various combinations. No age-related increase in postural sway was found for subjects standing on a fixed support surface with eyes open or closed. However, age-related increases in sway were found for conditions involving altered visual or somatosensory cues. Subjects older than about 55 years showed the largest sway increases. Subjects younger than about 15 years were also sensitive to alteration of sensory cues. On average, the older subjects were more affected by altered visual cues whereas younger subjects had more difficulty with altered somatosensory cues.
Active muscle response using feedback control of a finite element human arm model.
Östh, Jonas; Brolin, Karin; Happee, Riender
2012-01-01
Mathematical human body models (HBMs) are important research tools that are used to study the human response in car crash situations. Development of automotive safety systems requires the implementation of active muscle response in HBM, as novel safety systems also interact with vehicle occupants in the pre-crash phase. In this study, active muscle response was implemented using feedback control of a nonlinear muscle model in the right upper extremity of a finite element (FE) HBM. Hill-type line muscle elements were added, and the active and passive properties were assessed. Volunteer tests with low impact loading resulting in elbow flexion motions were performed. Simulations of posture maintenance in a gravity field and the volunteer tests were successfully conducted. It was concluded that feedback control of a nonlinear musculoskeletal model can be used to obtain posture maintenance and human-like reflexive responses in an FE HBM.
Role of cerebellum in learning postural tasks.
Ioffe, M E; Chernikova, L A; Ustinova, K I
2007-01-01
For a long time, the cerebellum has been known to be a structure related to posture and equilibrium control. According to the anatomic structure of inputs and internal structure of the cerebellum, its role in learning was theoretically reasoned and experimentally proved. The hypothesis of an inverse internal model based on feedback-error learning mechanism combines feedforward control by the cerebellum and feedback control by the cerebral motor cortex. The cerebellar cortex is suggested to acquire internal models of the body and objects in the external world. During learning of a new tool the motor cortex receives feedback from the realized movement while the cerebellum produces only feedforward command. To realize a desired movement without feedback of the realized movement, the cerebellum needs to form an inverse model of the hand/arm system. This suggestion was supported by FMRi data. The role of cerebellum in learning new postural tasks mainly concerns reorganization of natural synergies. A learned postural pattern in dogs has been shown to be disturbed after lesions of the cerebral motor cortex or cerebellar nuclei. In humans, learning voluntary control of center of pressure position is greatly disturbed after cerebellar lesions. However, motor cortex and basal ganglia are also involved in the feedback learning postural tasks.
Consequences and assessment of human vestibular failure: implications for postural control.
Colebatch, James G
2002-01-01
Labyrinthine afferents respond to both angular velocity (semicircular canals) and linear acceleration (otoliths), including gravity. Given their response to gravity, the otoliths are likely to have an important role in the postural functions of the vestibular apparatus. Unilateral vestibular ablation has dramatic effects on posture in many animals, but less so in primates. Nevertheless, bilateral vestibular lesions lead to disabling symptoms in man related to disturbed ocular and postural control and impaired perception of slopes and accelerations. While seimicircular canal function can be assessed through its effects on vestibular ocular reflexes, assessment of otolith function in man has traditionally been much more difficult. Recent definition of a short latency vestibulocollic reflex, activated by sound and appearing to arise from the saccule, shows promise as a new method of non-invasive assessment of otolith function.
NASA Astrophysics Data System (ADS)
Goswami, Nandu; Blaber, Andrew; Bareille, Marie-Pierre; Beck, Arnaud; Avan, Paul; Bruner, Michelle; Hinghofer-Szalkay, Helmut
2012-07-01
Orthostatic intolerance remains a problem upon return to Earth from the microgravity environment of spaceflight. A variety of conditions including hypovolemia, cerebral vasoconstriction, cerebral or peripheral vascular disease, or cardiac arrhythmias may result in syncope if the person remains upright. Current research indicates that there is a greater dependence on visual and somatosensory information at the beginning of space flight with a decreased otolith gain during prolonged space flight (Herault et al., 2002). The goal of the research is to further our understanding of the fundamental adaptive homeostatic mechanisms involved in gravity related changes in cardiovascular and postural function. Cardiovascular, cerebrovascular, and postural sensory motor control systems in male and female participants before, during, and after exposure to graded levels of hyper-G were investigated. Hypotheses: 1) Activation of skeletal muscle pump will be directly related to the degree of orthostatic stress. 2) Simultaneous measurement of heart rate, blood pressure and postural sway will predict cardio-postural stability. Blood pressure and heart rate (means and variability), postural sway, center of pressure (COP), baroreflex function, calf blood flow, middle cerebral artery blood flow, non-invasive intracranial pressure measurements, and two-breath CO2 were measured. Results from the study will be used to provide an integrated insight into mechanisms of cardio-postural control and cerebral autoregulation, which are important aspects of human health in flights to Moon, Mars and distant planets.
Noise-Enhanced Human Balance Control
NASA Astrophysics Data System (ADS)
Priplata, Attila; Niemi, James; Salen, Martin; Harry, Jason; Lipsitz, Lewis A.; Collins, J. J.
2002-11-01
Noise can enhance the detection and transmission of weak signals in certain nonlinear systems, via a mechanism known as stochastic resonance. Here we show that input noise can be used to improve motor control in humans. Specifically, we show that the postural sway of both young and elderly individuals during quiet standing can be significantly reduced by applying subsensory mechanical noise to the feet. We further demonstrate with input noise a trend towards the reduction of postural sway in elderly subjects to the level of young subjects. These results suggest that noise-based devices, such as randomly vibrating shoe inserts, may enable people to overcome functional difficulties due to age-related sensory loss.
Posture and cognition in the elderly: interaction and contribution to the rehabilitation strategies.
Borel, L; Alescio-Lautier, B
2014-01-01
In this paper we review the effects of aging on sensory systems and their impact on posture, balance and gait. We also address cognitive aging and attempt to specify which altered cognitive functions negatively impact balance and walking. The role of cognition in postural control is tested with dual-task experiments. This situation results in deleterious effects due to an attentional overload. Given the human cognitive system has limited capacities, we propose that simultaneously performing two tasks depends on the capacity of each individual to perform these tasks on a continuum between automatic execution to highly controlled performance. A level of maximum control exceeds the subject's attentional capacity, which makes it impossible to perform both tasks simultaneously. The subject therefore prioritizes one of the tasks. We use representative dual-task studies from the literature to illustrate the relationship between the different cognitive components and their impact on the control of posture and gait in elderly subjects with altered cognitive capacities and with elderly subjects who are fallers or who have altered sensory-motor capacities. Recently this postural-cognitive relationship was addressed with a new approach. We report how cognitive training can improve dual-task management and we attempt to define the cognitive mechanisms that may be responsible for better postural balance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Posture recognition based on fuzzy logic for home monitoring of the elderly.
Brulin, Damien; Benezeth, Yannick; Courtial, Estelle
2012-09-01
We propose in this paper a computer vision-based posture recognition method for home monitoring of the elderly. The proposed system performs human detection prior to the posture analysis; posture recognition is performed only on a human silhouette. The human detection approach has been designed to be robust to different environmental stimuli. Thus, posture is analyzed with simple and efficient features that are not designed to manage constraints related to the environment but only designed to describe human silhouettes. The posture recognition method, based on fuzzy logic, identifies four static postures and is robust to variation in the distance between the camera and the person, and to the person's morphology. With an accuracy of 74.29% of satisfactory posture recognition, this approach can detect emergency situations such as a fall within a health smart home.
Bobbert, Maarten F; Richard Casius, L J; Kistemaker, Dinant A
2013-05-01
We investigated adjustments of control to initial posture in squat jumping. Eleven male subjects jumped from three initial postures: preferred initial posture (PP), a posture in which the trunk was rotated 18° more backward (BP) and a posture in which it was rotated 15° more forward (FP) than in PP. Kinematics, ground reaction forces and electromyograms (EMG) were collected. EMG was rectified and smoothed to obtain smoothed rectified EMG (srEMG). Subjects showed adjustments in srEMG histories, most conspicuously a shift in srEMG-onset of rectus femoris (REC): from early in BP to late in FP. Jumps from the subjects' initial postures were simulated with a musculoskeletal model comprising four segments and six Hill-type muscles, which had muscle stimulation (STIM) over time as input. STIM of each muscle changed from initial to maximal at STIM-onset, and STIM-onsets were optimized using jump height as criterion. Optimal simulated jumps from BP, PP and FP were similar to jumps of the subjects. Optimal solutions primarily differed in STIM-onset of REC: from early in BP to late in FP. Because the subjects' adjustments in srEMG-onsets were similar to adjustments of the model's optimal STIM-onsets, it was concluded that the former were near-optimal. With the model we also showed that near-maximum jumps from BP, PP and FP could be achieved when STIM-onset of REC depended on initial hip joint angle and STIM-onsets of the other muscles were posture-independent. A control theory that relies on a mapping from initial posture to STIM-onsets seems a parsimonious alternative to theories relying on internal optimal control models. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
[Research on respiration course of human at different postures by electrical impedance tomography].
Chen, Xiaoyan; Wu, Jun; Wang, Huaxiang; Li, Da
2010-10-01
In this paper, the respiration courses of human at different postures are reconstructed by electrical impedance tomography (EIT). Conjugate gradient least squares (CGLS) algorithm is applied to reconstruct the resistivity distribution during respiration courses, and the EIT images taken from human at flat lying, left lying, right lying, sitting and prone postures are reconstructed and compared. The relative changes of the resistivity in region of interest (ROI) are analyzed to evidence the influences caused by different postures. Results show that the changes in postures are the most influential factors for the reconstructions, and the EIT images vary with the postures. In human at flat-lying posture, the left and right lungs have larger pulmonary ventilation volume simultaneously, and the EIT-measured data are of lower variability.
Experimental neck muscle pain impairs standing balance in humans.
Vuillerme, Nicolas; Pinsault, Nicolas
2009-02-01
Impaired postural control has been reported in patients with chronic neck pain of both traumatic and non-traumatic etiologies, but whether painful stimulation of neck muscle per se can affect balance control during quiet standing in humans remains unclear. The purpose of the present experiment was thus to investigate the effect of experimental neck muscle pain on standing balance in young healthy adults. To achieve this goal, 16 male university students were asked to stand upright as still as possible on a force platform with their eyes closed in two conditions of No pain and Pain of the neck muscles elicited by experimental painful electrical stimulation. Postural control and postural performance were assessed by the displacements of the center of foot pressure (CoP) and of the center of mass (CoM), respectively. The results showed increased CoP and CoM displacements variance, range, mean velocity, and mean and median frequencies in the Pain relative to the No pain condition. The present findings emphasize the destabilizing effect of experimental neck muscle pain per se, and more largely stress the importance of intact neck neuromuscular function on standing balance.
Effect of chest physiotherapy on the removal of mucus in patients with cystic fibrosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossman, C.M.; Waldes, R.; Sampson, D.
1982-07-01
We studied the effectiveness of some of the components of a physiotherapy regimen on the removal of mucus from the lungs of 6 subjects with cystic fibrosis. On 5 randomized study days, after inhalation of a /sup 99/mTc-human serum albumin aerosol to label primarily the large airways, the removal of lung radioactivity was measured during 40 min of (a) spontaneous cough while at rest (control), (b) postural drainage, (c) postural drainage plus mechanical percussion, (d) combined maneuvers (postural drainage, deep breathing with vibrations, and percussion) administered by a physiotherapist, (e) directed vigorous cough. Measurements continued for an additional 2 hmore » of quiet rest. Compared with the control day, all forms of intervention significantly improved the removal of mucus: cough (p less than 0.005), physiotherapy maneuvers (0.005 less than or equal to p less than 0.01), postural drainage (p less than 0.05), and postural drainage plus percussion (p less than 0.01). However, there was no significant difference between regimented cough alone and therapist-administered combined maneuvers, nor between postural drainage alone and with mechanical percussion. We conclude that in cystic fibrosis, vigorous, regimented cough sessions may be as effective as therapist-administered physiotherapy in removing pulmonary secretions. Postural drainage, although better than the control maneuver, was not as effective as cough and was not enhanced by mechanical percussion. Frequent, vigorous self-directed cough sessions are potentially as useful as more complex measures for effective bronchial toilet.« less
Postural Control Disturbances Produced By Exposure to HMD and Dome Vr Systems
NASA Technical Reports Server (NTRS)
Harm, D. L.; Taylor, L. C.
2005-01-01
Two critical and unresolved human factors issues in VR systems are: 1) potential "cybersickness", a form of motion sickness which is experienced in virtual worlds, and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Most astronauts and cosmonauts experience perceptual and sensorimotor disturbances during and following space flight. All astronauts exhibit decrements in postural control following space flight. It has been suggested that training in virtual reality (VR) may be an effective countermeasure for minimizing perceptual and/or sensorimotor disturbances. People adapt to consistent, sustained alterations of sensory input such as those produced by microgravity, and experimentally-produced stimulus rearrangements (e.g., reversing prisms, magnifying lenses, flight simulators, and VR systems). Adaptation is revealed by aftereffects including perceptual disturbances and sensorimotor control disturbances. The purpose of the current study was to compare disturbances in postural control produced by dome and head-mounted virtual environment displays. Individuals recovered from motion sickness and the detrimental effects of exposure to virtual reality on postural control within one hour. Sickness severity and initial decrements in postural equilibrium decreases over days, which suggests that subjects become dual-adapted over time. These findings provide some direction for developing training schedules for VR users that facilitate adaptation, and address safety concerns about aftereffects.
Michimoto, Kenjiro; Suzuki, Yasuyuki; Kiyono, Ken; Kobayashi, Yasushi; Morasso, Pietro; Nomura, Taishin
2016-08-01
Intermittent feedback control for stabilizing human upright stance is a promising strategy, alternative to the standard time-continuous stiffness control. Here we show that such an intermittent controller can be established naturally through reinforcement learning. To this end, we used a single inverted pendulum model of the upright posture and a very simple reward function that gives a certain amount of punishments when the inverted pendulum falls or changes its position in the state space. We found that the acquired feedback controller exhibits hallmarks of the intermittent feedback control strategy, namely the action of the feedback controller is switched-off intermittently when the state of the pendulum is located near the stable manifold of the unstable saddle-type upright equilibrium of the inverted pendulum with no active control: this action provides an opportunity to exploit transiently converging dynamics toward the unstable upright position with no help of the active feedback control. We then speculate about a possible physiological mechanism of such reinforcement learning, and suggest that it may be related to the neural activity in the pedunculopontine tegmental nucleus (PPN) of the brainstem. This hypothesis is supported by recent evidence indicating that PPN might play critical roles for generation and regulation of postural tonus, reward prediction, as well as postural instability in patients with Parkinson's disease.
Testing postural control among various osteoporotic patient groups: a literature review.
de Groot, Maartje H; van der Jagt-Willems, Hanna C; van Campen, Jos P C M; Lems, Willem F; Lamoth, Claudine J C
2012-10-01
Osteoporosis can cause vertebral fractures, which might lead to a flexed posture, impaired postural control and consequently increased fall risk. Therefore, the aim of the present review was to examine whether postural control of patients with osteoporosis, vertebral fractures, thoracic kyphosis and flexed posture is affected. Furthermore, instruments measuring postural control were evaluated and examined for sensitivity and easy clinical use. Until February 2011, electronic databases were systematically searched for cross-sectional studies. Methodological quality was assessed with a modified Downs & Black scale. Of the 518 found studies, 18 studies were included. Postural control was generally affected for patients with vertebral fractures, thoracic kyphosis and flexed posture. Patients with osteoporosis had impaired postural control when assessed with computerized instruments. Easy performance-based tests did not show any impairments. There is evidence for an impaired postural control in all patient groups included. Impaired postural control is an important risk factor for falls. Functional performance tests are not sensitive and specific enough to detect affected postural control in patients with osteoporosis. To detect impaired postural control among osteoporotic patients and to obtain more insight into the underlying mechanisms of postural control, computerized instruments are recommended, such as easy-to-use ambulant motion-sensing (accelerometry) technology. © 2012 Japan Geriatrics Society.
Dog experts' brains distinguish socially relevant body postures similarly in dogs and humans.
Kujala, Miiamaaria V; Kujala, Jan; Carlson, Synnöve; Hari, Riitta
2012-01-01
We read conspecifics' social cues effortlessly, but little is known about our abilities to understand social gestures of other species. To investigate the neural underpinnings of such skills, we used functional magnetic resonance imaging to study the brain activity of experts and non-experts of dog behavior while they observed humans or dogs either interacting with, or facing away from a conspecific. The posterior superior temporal sulcus (pSTS) of both subject groups dissociated humans facing toward each other from humans facing away, and in dog experts, a distinction also occurred for dogs facing toward vs. away in a bilateral area extending from the pSTS to the inferior temporo-occipital cortex: the dissociation of dog behavior was significantly stronger in expert than control group. Furthermore, the control group had stronger pSTS responses to humans than dogs facing toward a conspecific, whereas in dog experts, the responses were of similar magnitude. These findings suggest that dog experts' brains distinguish socially relevant body postures similarly in dogs and humans.
Stability and Control of Human Trunk Movement During Walking.
Wu, Q.; Sepehri, N.; Thornton-Trump, A. B.; Alexander, M.
1998-01-01
A mathematical model has been developed to study the control mechanisms of human trunk movement during walking. The trunk is modeled as a base-excited inverted pendulum with two-degrees of rotational freedom. The base point, corresponding to the bony landmark of the sacrum, can move in three-dimensional space in a general way. Since the stability of upright posture is essential for human walking, a controller has been designed such that the stability of the pendulum about the upright position is guaranteed. The control laws are developed based on Lyapunov's stability theory and include feedforward and linear feedback components. It is found that the feedforward component plays a critical role in keeping postural stability, and the linear feedback component, (resulting from viscoelastic function of the musculoskeletal system) can effectively duplicate the pattern of trunk movement. The mathematical model is validated by comparing the simulation results with those based on gait measurements performed in the Biomechanics Laboratory at the University of Manitoba.
Determining Underground Mining Work Postures Using Motion Capture and Digital Human Modeling
Lutz, Timothy J.; DuCarme, Joseph P.; Smith, Adam K.; Ambrose, Dean
2017-01-01
According to Mine Safety and Health Administration (MSHA) data, during 2008–2012 in the U.S., there were, on average, 65 lost-time accidents per year during routine mining and maintenance activities involving remote-controlled continuous mining machines (CMMs). To address this problem, the National Institute for Occupational Safety and Health (NIOSH) is currently investigating the implementation and integration of existing and emerging technologies in underground mines to provide automated, intelligent proximity detection (iPD) devices on CMMs. One research goal of NIOSH is to enhance the proximity detection system by improving its capability to track and determine identity, position, and posture of multiple workers, and to selectively disable machine functions to keep workers and machine operators safe. Posture of the miner can determine the safe working distance from a CMM by way of the variation in the proximity detection magnetic field. NIOSH collected and analyzed motion capture data and calculated joint angles of the back, hips, and knees from various postures on 12 human subjects. The results of the analysis suggests that lower body postures can be identified by observing the changes in joint angles of the right hip, left hip, right knee, and left knee. PMID:28626796
Embodying animals: Body-part compatibility in mammalian, reptile and aves classes.
Pacione, Sandra M; Welsh, Timothy N
2015-09-01
The purpose of the present study was to determine how humans code homologous body parts of nonhuman mammal, reptilian, and aves animals with respect to the representation of the human body. To this end, participants completed body-part compatibility tasks in which responses were executed to colored targets that were superimposed over the upper limbs, lower limbs or head of different animals in different postures. In Experiment 1, the images were of meekats and lizards in bipedal and quadrupedal postures. In Experiment 2, the images were of a human, a penguin, and an owl in a bipedal posture with upper limbs stretched out. Overall, the results revealed that the limbs of nonhuman mammals (meerkat and human) were consistently mapped onto the homologous human body parts only when the mammals were in a bipedal posture. Specifically, body-part compatibility effects emerged for the human and the meerkat in a bipedal posture, but not the meerkat in the quadrupedal posture. Further, consistent body-part compatibility effects were not observed for the lizard in the quadrupedal posture or for the lizard, penguin, or owl in a bipedal posture. The pattern of results suggests that the human bipedal body representation may distinguish taxonomical classes and is most highly engaged when viewing homologous body parts of mammalian animals. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
d'Avella, Andrea
2016-07-01
Santello et al. [1] review an impressive amount of work on the control of biological and artificial hands that demonstrates how the concept of synergies can lead to a successful integration of robotics and neuroscience. Is it possible to generalize the same approach to the control of biological and artificial limbs and bodies beyond the hand? The human hand synergies that appear most relevant for robotic hands are those defined at the kinematic level, i.e. postural synergies [2]. Postural synergies capture the geometric relations among the many joints of the hand and allow for a low dimensional characterization and synthesis of the static hand postures involved in grasping and manipulating a large set of objects. However, many other complex motor skills such as walking, reaching, throwing, and catching require controlling multi-articular time-varying trajectories rather than static postures. Dynamic control of biological and artificial limbs and bodies, especially when geometric and inertial parameters are uncertain and the joints are compliant, poses great challenges. What kind of synergies might simplify the dynamic control of motor skills involving upper and lower limbs as well as the whole body?
Cruise, Denise R; Chagdes, James R; Liddy, Joshua J; Rietdyk, Shirley; Haddad, Jeffrey M; Zelaznik, Howard N; Raman, Arvind
2017-07-26
Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016a,b). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of body lean and visual information on the equilibrium maintenance during stance.
Duarte, Marcos; Zatsiorsky, Vladimir M
2002-09-01
Maintenance of equilibrium was tested in conditions when humans assume different leaning postures during upright standing. Subjects ( n=11) stood in 13 different body postures specified by visual center of pressure (COP) targets within their base of support (BOS). Different types of visual information were tested: continuous presentation of visual target, no vision after target presentation, and with simultaneous visual feedback of the COP. The following variables were used to describe the equilibrium maintenance: the mean of the COP position, the area of the ellipse covering the COP sway, and the resultant median frequency of the power spectral density of the COP displacement. The variability of the COP displacement, quantified by the COP area variable, increased when subjects occupied leaning postures, irrespective of the kind of visual information provided. This variability also increased when vision was removed in relation to when vision was present. Without vision, drifts in the COP data were observed which were larger for COP targets farther away from the neutral position. When COP feedback was given in addition to the visual target, the postural control system did not control stance better than in the condition with only visual information. These results indicate that the visual information is used by the postural control system at both short and long time scales.
Age-related changes in human posture control: Motor coordination tests
NASA Technical Reports Server (NTRS)
Peterka, R. J.; Black, F. O.
1989-01-01
Postural responses to support surface displacements were measured in 214 normal human subjects ranging in age from 7 to 81 years. Motor tests measured leg muscle Electromyography (EMG) latencies, body sway, and the amplitude and timing of changes in center of pressure displacements in response to sudden forward and backward horizontal translations of the support surface upon which the subjects stood. There were small increases in both EMG latencies and the time to reach the peak amplitude of center of pressure responses with increasing age. The amplitude of center of pressure responses showed little change with age if the amplitude measures were normalized by a factor related to subject height. In general, postural responses to sudden translations showed minimal changes with age, and all age related trends which were identified were small relative to the variability within the population.
Understanding Skill in EVA Mass Handling. Volume 1; Theoretical and Operational Foundations
NASA Technical Reports Server (NTRS)
Riccio, Gary; McDonald, Vernon; Peters, Brian; Layne, Charles; Bloomberg, Jacob
1997-01-01
This report describes the theoretical and operational foundations for our analysis of skill in extravehicular mass handling. A review of our research on postural control, human-environment interactions, and exploratory behavior in skill acquisition is used to motivate our analysis. This scientific material is presented within the context of operationally valid issues concerning extravehicular mass handling. We describe the development of meaningful empirical measures that are relevant to a special class of nested control systems: manual interactions between an individual and the substantial environment. These measures are incorporated into a unique empirical protocol implemented on NASA's principal mass handling simulator, the precision air-bearing floor, in order to evaluate skill in extravehicular mass handling. We discuss the components of such skill with reference to the relationship between postural configuration and controllability of an orbital replacement unit, the relationship between orbital replacement unit control and postural stability, the relationship between antecedent and consequent movements of an orbital replacement unit, and the relationship between antecedent and consequent postural movements. Finally, we describe our expectations regarding the operational relevance of the empirical results as it pertains to extravehicular activity tools, training, monitoring, and planning.
One month of contemporary dance modulates fractal posture in aging
Coubard, Olivier A.; Ferrufino, Lena; Nonaka, Tetsushi; Zelada, Oscar; Bril, Blandine; Dietrich, Gilles
2013-01-01
Understanding the human aging of postural control and how physical or motor activity improves balance and gait is challenging for both clinicians and researchers. Previous studies have evidenced that physical and sporting activity focusing on cardiovascular and strength conditioning help older adults develop their balance and gait and/or decrease their frequency of falls. Motor activity based on motor-skill learning has also been put forward as an alternative to develop balance and/or prevent falls in aging. Specifically dance has been advocated as a promising program to boost motor control. In this study, we examined the effects of contemporary dance (CD) on postural control of older adults. Upright stance posturography was performed in 38 participants aged 54–89 years before and after the intervention period, during which one half of the randomly assigned participants was trained to CD and the other half was not trained at all (no dance, ND). CD training lasted 4 weeks, 3 times a week. We performed classical statistic scores of postural signal and dynamic analyses, namely signal diffusion analysis (SDA), recurrence quantification analysis (RQA), and detrended fluctuation analysis (DFA). CD modulated postural control in older trainees, as revealed in the eyes closed condition by a decrease in fractal dimension and an increase in DFA alpha component in the mediolateral plane. The ND group showed an increase in length and mean velocity of postural signal, and the eyes open a decrease in RQA maximal diagonal line in the anteroposterior plane and an increase in DFA alpha component in the mediolateral plane. No change was found in SDA in either group. We suggest that such a massed practice of CD reduced the quantity of exchange between the subject and the environment by increasing their postural confidence. Since CD has low-physical but high-motor impact, we conclude that it may be recommended as a useful program to rehabilitate posture in aging. PMID:24611047
Significance of vestibular and proprioceptive afferentation in the regulation of human posture
NASA Technical Reports Server (NTRS)
Gurfinkel, V. S.
1980-01-01
Viewpoints on the vertical human posture and the relation between postural adaptation during voluntary movements and the guarantee of stable locomotor movements are examined. Various complex sensory systems are discussed.
Pagel, Anna; Arieta, Alejandro Hernandez; Riener, Robert; Vallery, Heike
2016-10-01
Despite recent advances in leg prosthetics, transfemoral amputees still experience limitations in postural control and gait symmetry. It has been hypothesized that artificial sensory information might improve the integration of the prosthesis into the human sensory-motor control loops and, thus, reduce these limitations. In three transfemoral amputees, we investigated the effect of Electrotactile Moving Sensation for Sensory Augmentation (EMSSA) without training and present preliminary findings. Experimental conditions included standing with open/closed eyes on stable/unstable ground as well as treadmill walking. For standing conditions, spatiotemporal posturographic measures and sample entropy were derived from the center of pressure. For walking conditions, step length and stance duration were calculated. Conditions without feedback showed effects congruent with findings in the literature, e.g., asymmetric weight bearing and step length, and validated the collected data. During standing, with EMSSA a tendency to influence postural control in a negative way was found: Postural control was less effective and less efficient and the prosthetic leg was less involved. Sample entropy tended to decrease, suggesting that EMSSA demanded increased attention. During walking, with EMSSA no persistent positive effect was found. This contrasts the positive subjective assessment and the positive effect on one subject's step length.
NASA Astrophysics Data System (ADS)
Biswas, Subir; Quwaider, Muhannad
2008-04-01
The physical safety and well being of the soldiers in a battlefield is the highest priority of Incident Commanders. Currently, the ability to track and monitor soldiers rely on visual and verbal communication which can be somewhat limited in scenarios where the soldiers are deployed inside buildings and enclosed areas that are out of visual range of the commanders. Also, the need for being stealth can often prevent a battling soldier to send verbal clues to a commander about his or her physical well being. Sensor technologies can remotely provide various data about the soldiers including physiological monitoring and personal alert safety system functionality. This paper presents a networked sensing solution in which a body area wireless network of multi-modal sensors can monitor the body movement and other physiological parameters for statistical identification of a soldier's body posture, which can then be indicative of the physical conditions and safety alerts of the soldier in question. The specific concept is to leverage on-body proximity sensing and a Hidden Markov Model (HMM) based mechanism that can be applied for stochastic identification of human body postures using a wearable sensor network. The key idea is to collect relative proximity information between wireless sensors that are strategically placed over a subject's body to monitor the relative movements of the body segments, and then to process that using HMM in order to identify the subject's body postures. The key novelty of this approach is a departure from the traditional accelerometry based approaches in which the individual body segment movements, rather than their relative proximity, is used for activity monitoring and posture detection. Through experiments with body mounted sensors we demonstrate that while the accelerometry based approaches can be used for differentiating activity intensive postures such as walking and running, they are not very effective for identification and differentiation between low activity postures such as sitting and standing. We develop a wearable sensor network that monitors relative proximity using Radio Signal Strength indication (RSSI), and then construct a HMM system for posture identification in the presence of sensing errors. Controlled experiments using human subjects were carried out for evaluating the accuracy of the HMM identified postures compared to a naÃve threshold based mechanism, and its variations over different human subjects. A large spectrum of target human postures, including lie down, sit (straight and reclined), stand, walk, run, sprint and stair climbing, are used for validating the proposed system.
Sparrey, Carolyn J; Bailey, Jeannie F; Safaee, Michael; Clark, Aaron J; Lafage, Virginie; Schwab, Frank; Smith, Justin S; Ames, Christopher P
2014-05-01
The goal of this review is to discuss the mechanisms of postural degeneration, particularly the loss of lumbar lordosis commonly observed in the elderly in the context of evolution, mechanical, and biological studies of the human spine and to synthesize recent research findings to clinical management of postural malalignment. Lumbar lordosis is unique to the human spine and is necessary to facilitate our upright posture. However, decreased lumbar lordosis and increased thoracic kyphosis are hallmarks of an aging human spinal column. The unique upright posture and lordotic lumbar curvature of the human spine suggest that an understanding of the evolution of the human spinal column, and the unique anatomical features that support lumbar lordosis may provide insight into spine health and degeneration. Considering evolution of the skeleton in isolation from other scientific studies provides a limited picture for clinicians. The evolution and development of human lumbar lordosis highlight the interdependence of pelvic structure and lumbar lordosis. Studies of fossils of human lineage demonstrate a convergence on the degree of lumbar lordosis and the number of lumbar vertebrae in modern Homo sapiens. Evolution and spine mechanics research show that lumbar lordosis is dictated by pelvic incidence, spinal musculature, vertebral wedging, and disc health. The evolution, mechanics, and biology research all point to the importance of spinal posture and flexibility in supporting optimal health. However, surgical management of postural deformity has focused on restoring posture at the expense of flexibility. It is possible that the need for complex and costly spinal fixation can be eliminated by developing tools for early identification of patients at risk for postural deformities through patient history (genetics, mechanics, and environmental exposure) and tracking postural changes over time.
Postural Coordination during Socio-motor Improvisation
Gueugnon, Mathieu; Salesse, Robin N.; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G.; Marin, Ludovic
2016-01-01
Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination. PMID:27547193
Postural Coordination during Socio-motor Improvisation.
Gueugnon, Mathieu; Salesse, Robin N; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G; Marin, Ludovic
2016-01-01
Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination.
Dog Experts' Brains Distinguish Socially Relevant Body Postures Similarly in Dogs and Humans
Kujala, Miiamaaria V.; Kujala, Jan; Carlson, Synnöve; Hari, Riitta
2012-01-01
We read conspecifics' social cues effortlessly, but little is known about our abilities to understand social gestures of other species. To investigate the neural underpinnings of such skills, we used functional magnetic resonance imaging to study the brain activity of experts and non-experts of dog behavior while they observed humans or dogs either interacting with, or facing away from a conspecific. The posterior superior temporal sulcus (pSTS) of both subject groups dissociated humans facing toward each other from humans facing away, and in dog experts, a distinction also occurred for dogs facing toward vs. away in a bilateral area extending from the pSTS to the inferior temporo-occipital cortex: the dissociation of dog behavior was significantly stronger in expert than control group. Furthermore, the control group had stronger pSTS responses to humans than dogs facing toward a conspecific, whereas in dog experts, the responses were of similar magnitude. These findings suggest that dog experts' brains distinguish socially relevant body postures similarly in dogs and humans. PMID:22720054
Does increased postural threat lead to more conscious control of posture?
Huffman, J L; Horslen, B C; Carpenter, M G; Adkin, A L
2009-11-01
Although it is well established that postural threat modifies postural control, little is known regarding the underlying mechanism(s) responsible for these changes. It is possible that changes in postural control under conditions of elevated postural threat result from a shift to a more conscious control of posture. The purpose of this study was to determine the influence of elevated postural threat on conscious control of posture and to determine the relationship between conscious control and postural control measures. Forty-eight healthy young adults stood on a force plate at two different surface heights: ground level (LOW) and 3.2-m above ground level (HIGH). Centre of pressure measures calculated in the anterior-posterior (AP) direction were mean position (AP-MP), root mean square (AP-RMS) and mean power frequency (AP-MPF). A modified state-specific version of the Movement Specific Reinvestment Scale was used to measure conscious motor processing (CMP) and movement self-consciousness (MSC). Balance confidence, fear of falling, perceived stability, and perceived and actual anxiety indicators were also collected. A significant effect of postural threat was found for movement reinvestment as participants reported more conscious control and a greater concern about their posture at the HIGH height. Significant correlations between CMP and MSC with AP-MP were observed as participants who consciously controlled and were more concerned for their posture leaned further away from the platform edge. It is possible that changes in movement reinvestment can influence specific aspects of posture (leaning) but other aspects may be immune to these changes (amplitude and frequency).
McKeon, Patrick O; Hertel, Jay
2008-01-01
To answer the following clinical questions: (1) Is poor postural control associated with increased risk of a lateral ankle sprain? (2) Is postural control adversely affected after acute lateral ankle sprain? (3) Is postural control adversely affected in those with chronic ankle instability? PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Only studies assessing postural control measures in participants on a stable force plate performing the modified Romberg test were included. To be included, a study had to address at least 1 of the 3 clinical questions stated above and provide adequate results for calculation of effect sizes or odds ratios where applicable. We calculated odds ratios with 95% confidence intervals for studies assessing postural control as a risk factor for lateral ankle sprains. Effect sizes were estimated with the Cohen d and associated 95% confidence intervals for comparisons of postural control performance between healthy and injured groups, or healthy and injured limbs, respectively. Poor postural control is most likely associated with an increased risk of sustaining an acute ankle sprain. Postural control is impaired after acute lateral ankle sprain, with deficits identified in both the injured and uninjured sides compared with controls. Although chronic ankle instability has been purported to be associated with altered postural control, these impairments have not been detected consistently with the use of traditional instrumented measures. Instrumented postural control testing on stable force plates is better at identifying deficits that are associated with an increased risk of ankle sprain and that occur after acute ankle sprains than at detecting deficits related to chronic ankle instability.
Ax, M; Sanchez-Crespo, A; Lindahl, S G E; Mure, M; Petersson, J
2017-06-01
Previous studies in humans have shown that gravity has little influence on the distribution of lung blood flow while changing posture from supine to prone. This study aimed to evaluate the maximal influence of posture by comparison of regional lung blood flow in the upright and head-down posture in 8 healthy volunteers, using a tilt table. Regional lung blood flow was marked by intravenous injection of macroaggregates of human albumin labeled with 99m Tc or 113m In, in the upright and head-down posture, respectively, during tidal breathing. Both radiotracers remain fixed in the lung after administration. The distribution of radioactivity was mapped using quantitative single photon emission computed tomography (SPECT) corrected for attenuation and scatter. All images were obtained supine during tidal breathing. A shift from upright to the head-down posture caused a clear redistribution of blood flow from basal to apical regions. We conclude that posture plays a role for the distribution of lung blood flow in upright humans, and that the influence of posture, and thereby gravity, is much greater in the upright and head-down posture than in horizontal postures. However, the results of the study demonstrate that lung structure is the main determinant of regional blood flow and gravity is a secondary contributor to the distribution of lung blood flow in the upright and head-down positions. NEW & NOTEWORTHY Using a dual-isotope quantitative SPECT method, we demonstrated that although a shift in posture redistributes blood flow in the direction of gravity, the results are also consistent with lung structure being a greater determinant of regional blood flow than gravity. To our knowledge, this is the first study to use modern imaging methods to quantify the shift in regional lung blood flow in humans at a change between the upright and head-down postures. Copyright © 2017 the American Physiological Society.
Welsh, Timothy N; McDougall, Laura; Paulson, Stephanie
2014-09-01
The purpose of the present research was to determine how humans represent the bodies and limbs of nonhuman mammals based on anatomical and functional properties. To this end, participants completed a series of body-part compatibility tasks in which they responded with a thumb or foot response to the color of a stimulus (red or blue, respectively) presented on different limbs of several animals. Across the studies, this compatibility task was conducted with images of human and nonhuman animals (bears, cows, and monkeys) in bipedal or quadrupedal postures. The results revealed that the coding of the limbs of nonhuman animals is strongly influenced by the posture of the body, but not the functional capacity of the limb. Specifically, body-part compatibility effects were present for both human and nonhuman animals when the figures were in a bipedal posture, but were not present when the animals were in a quadrupedal stance (Experiments 1a-c). Experiments 2a and 2b revealed that the posture-based body-part compatibility effects were not simply a vertical spatial compatibility effect or due to a mismatch between the posture of the body in the image and the participant. These data indicate that nonhuman animals in a bipedal posture are coded with respect to the "human" body representation, whereas nonhuman animals in a quadrupedal posture are not mapped to the human body representation. Overall, these studies provide new insight into the processes through which humans understand, mimic, and learn from the actions of nonhuman animals. Copyright © 2014 Elsevier B.V. All rights reserved.
Does Observation of Postural Imbalance Induce a Postural Reaction?
Tia, Banty; Saimpont, Arnaud; Paizis, Christos; Mourey, France; Fadiga, Luciano; Pozzo, Thierry
2011-01-01
Background Several studies bring evidence that action observation elicits contagious responses during social interactions. However automatic imitative tendencies are generally inhibited and it remains unclear in which conditions mere action observation triggers motor behaviours. In this study, we addressed the question of contagious postural responses when observing human imbalance. Methodology/Principal Findings We recorded participants' body sway while they observed a fixation cross (control condition), an upright point-light display of a gymnast balancing on a rope, and the same point-light display presented upside down. Our results showed that, when the upright stimulus was displayed prior to the inverted one, centre of pressure area and antero-posterior path length were significantly greater in the upright condition compared to the control and upside down conditions. Conclusions/Significance These results demonstrate a contagious postural reaction suggesting a partial inefficiency of inhibitory processes. Further, kinematic information was sufficient to trigger this reaction. The difference recorded between the upright and upside down conditions indicates that the contagion effect was dependent on the integration of gravity constraints by body kinematics. Interestingly, the postural response was sensitive to habituation, and seemed to disappear when the observer was previously shown an inverted display. The motor contagion recorded here is consistent with previous work showing vegetative output during observation of an effortful movement and could indicate that lower level control facilitates contagion effects. PMID:21423622
The effect of height and BMI on computer dynamic posturography parameters in women.
Olchowik, Grażyna; Tomaszewski, Marek; Olejarz, Piotr; Warchoł, Jan; Różańska-Boczula, Monika
2014-01-01
The human body's posture control is a complex system of organs and mechanisms which controls the body's centre of gravity (COG) over its base of support (BOS). Computerised Dynamic Posturography (CDP) allows for the quantitative and objective assessment of the sensory and motor components of the body's posture control system as well as of the integration and adaptation mechanisms in the central nervous system. The aim of this study was to assess the relationships between the body's height and BMI on CDP results in a group of young healthy women without any clinical symptoms of balance disorders. It was found that the MS depended significantly on the height and BMI of the subjects as well as on the SOT conditions. As the height and BMI increased the MS value decreased. The postural response latency (LC) in the MCT statistically significantly depended only on height and showed a positive correlation. The postural response latency increased with height. The postural response amplitude for both right and left lower limbs significantly depended on height and BMI, but only for the backward movement of the platform. The response amplitude for all platform translations under all MCT conditions increased with height and BMI. The body's resultant imbalance caused by the platform perturbations in the ADT was greater in shorter people and those with a lower BMI.
2014-09-04
lasers, and use of mission-oriented protective posture (MOPP) overgarments were associated with increased likelihood for a PDMH condition. 15...history of a vehicular accident/crash, exposure to sand/dust, exposure to lasers, and use of mission-oriented protective posture (MOPP) overgarments...Institutional Review Board and in accordance with Federal and USAF regulations on the protection of human subjects in biomedical and behavioral research
Vision-based posture recognition using an ensemble classifier and a vote filter
NASA Astrophysics Data System (ADS)
Ji, Peng; Wu, Changcheng; Xu, Xiaonong; Song, Aiguo; Li, Huijun
2016-10-01
Posture recognition is a very important Human-Robot Interaction (HRI) way. To segment effective posture from an image, we propose an improved region grow algorithm which combining with the Single Gauss Color Model. The experiment shows that the improved region grow algorithm can get the complete and accurate posture than traditional Single Gauss Model and region grow algorithm, and it can eliminate the similar region from the background at the same time. In the posture recognition part, and in order to improve the recognition rate, we propose a CNN ensemble classifier, and in order to reduce the misjudgments during a continuous gesture control, a vote filter is proposed and applied to the sequence of recognition results. Comparing with CNN classifier, the CNN ensemble classifier we proposed can yield a 96.27% recognition rate, which is better than that of CNN classifier, and the proposed vote filter can improve the recognition result and reduce the misjudgments during the consecutive gesture switch.
Hogan, Kathleen K; Powden, Cameron J; Hoch, Matthew C
2016-10-01
To investigate the effect of foot posture on postural control and dorsiflexion range of motion in individuals with chronic ankle instability. The study employed a cross-sectional, single-blinded design. Twenty-one individuals with self-reported chronic ankle instability (male=5; age=23.76(4.18)years; height=169.27(11.46)cm; weight=73.65(13.37)kg; number of past ankle sprains=4.71(4.10); episode of giving way=17.00(18.20); Cumberland Ankle Instability Score=18.24(4.52); Ankle Instability Index=5.86(1.39)) participated. The foot posture index was used to categorize subjects into pronated (n=8; Foot Posture Index=7.50(0.93)) and neutral (n=13; Foot Posture Index=3.08(1.93)) groups. The dependent variables of dorsiflexion ROM and dynamic and static postural control were collected for both groups at a single session. There were no significant differences in dorsiflexion range of motion between groups (p=0.22) or any of the eyes open time-to-boundary variables (p>0.13). The pronated group had significantly less dynamic postural control than the neutral group as assessed by the anterior direction of the Star Excursion Balance Test (p<0.04). However, the pronated group had significantly higher time-to-boundary values than the neutral group for all eyes closed time-to-boundary variables (p≤0.05), which indicates better eyes closed static postural control. Foot posture had a significant effect on dynamic postural control and eyes closed static postural control in individuals with chronic ankle instability. These findings suggest that foot posture may influence postural control in those with chronic ankle instability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Postural Control in Children: Implications for Pediatric Practice
ERIC Educational Resources Information Center
Westcott, Sarah L.; Burtner, Patricia
2004-01-01
Based on a systems theory of motor control, reactive postural control (RPA) and anticipatory postural control (APA) in children are reviewed from several perspectives in order to develop an evidence-based intervention strategy for improving postural control in children with limitations in motor function. Research on development of postural…
The effects of brief swaying on postural control.
Pagé, Sara; Maheu, Maxime; Landry, Simon P; Champoux, François
2017-12-06
Postural control can be improved with balance training. However, the nature and duration of the training required to enhance posture remains unclear. We studied the effects of 5 min of a self-initiated balance exercise along a single axis on postural control in healthy individuals. Postural control was measured before and after a 5-min period where members of the experimental group were asked to lean their entire body forward and backward and members of the control group were asked to remain seated. A significant improvement for sway velocity, a postural control variable significantly associated with an increased risk of falls, was found in the experimental group following the body sway exercise. These data suggest that a basic exercise can rapidly improve postural control and reduce the risk of falls.
Challenges facing developers of CAD/CAM models that seek to predict human working postures
NASA Astrophysics Data System (ADS)
Wiker, Steven F.
2005-11-01
This paper outlines the need for development of human posture prediction models for Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) design applications in product, facility and work design. Challenges facing developers of posture prediction algorithms are presented and discussed.
McKeon, Patrick O; Hertel, Jay
2008-01-01
Objective: To answer the following clinical questions: (1) Is poor postural control associated with increased risk of a lateral ankle sprain? (2) Is postural control adversely affected after acute lateral ankle sprain? (3) Is postural control adversely affected in those with chronic ankle instability? Data Sources: PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Study Selection: Only studies assessing postural control measures in participants on a stable force plate performing the modified Romberg test were included. To be included, a study had to address at least 1 of the 3 clinical questions stated above and provide adequate results for calculation of effect sizes or odds ratios where applicable. Data Extraction: We calculated odds ratios with 95% confidence intervals for studies assessing postural control as a risk factor for lateral ankle sprains. Effect sizes were estimated with the Cohen d and associated 95% confidence intervals for comparisons of postural control performance between healthy and injured groups, or healthy and injured limbs, respectively. Data Synthesis: Poor postural control is most likely associated with an increased risk of sustaining an acute ankle sprain. Postural control is impaired after acute lateral ankle sprain, with deficits identified in both the injured and uninjured sides compared with controls. Although chronic ankle instability has been purported to be associated with altered postural control, these impairments have not been detected consistently with the use of traditional instrumented measures. Conclusions: Instrumented postural control testing on stable force plates is better at identifying deficits that are associated with an increased risk of ankle sprain and that occur after acute ankle sprains than at detecting deficits related to chronic ankle instability. PMID:18523566
Effect of posture on arterial baroreflex control of heart rate in humans
NASA Technical Reports Server (NTRS)
Harrison, M. H.; Rittenhouse, D.; Greenleaf, J. E.
1986-01-01
The effects of blood-volume redistribution induced by postural changes on baroreflex activity are investigated. The central blood volume and baroreceptor functions of ten males between 23-51 years old were examined while they were in the head-up tilt (HUT), head-down tilt (HDT), and supine positions. It is observed that during HDT at 15 deg the pulse interval over the first five cardiac cycles following neck suction onset is 51 + or - 18 ms longer, at 30 deg it is 61 + or - 20 ms longer, and at 45 deg it is 74 + or - 35 ms longer than at supine; during HUT at 15 deg the pulse interval is 25 + or - 9 ms shorter than when supine, but for the 30 and 45 deg there is no significant difference in pulse interval detected. The data reveal that posture does modify arterial baroreflex control of heart rate.
Dusing, Stacey C; Izzo, Theresa A.; Thacker, Leroy R.; Galloway, James C
2014-01-01
Background and Aims Postural control differs between infants born preterm and full term at 1–3 weeks of age. It is unclear if differences persist or alter the development of early behaviors. The aim of this longitudinal study was to compare changes in postural control variability during development of head control and reaching in infants born preterm and full term. Methods Eighteen infants born preterm (mean gestational age 28.3±3.1 weeks) were included in this study and compared to existing data from 22 infants born full term. Postural variability was assessed longitudinally using root mean squared displacement and approximate entropy of the center of pressure displacement from birth to 6 months as measures of the magnitude of the variability and complexity of postural control. Behavioral coding was used to quantify development of head control and reaching. Results Group differences were identified in postural complexity during the development of head control and reaching. Infants born preterm used more repetitive and less adaptive postural control strategies than infants born full term. Both groups changed their postural complexity utilized during the development of head control and reaching. Discussion Early postural complexity was decreased in infants born preterm, compared to infants born full term. Commonly used clinical assessments did not identify these early differences in postural control. Altered postural control in infants born preterm influenced ongoing skill development in the first six months of life. PMID:24485170
Horak, Fay B
2006-09-01
Postural control is no longer considered simply a summation of static reflexes but, rather, a complex skill based on the interaction of dynamic sensorimotor processes. The two main functional goals of postural behaviour are postural orientation and postural equilibrium. Postural orientation involves the active alignment of the trunk and head with respect to gravity, support surfaces, the visual surround and internal references. Sensory information from somatosensory, vestibular and visual systems is integrated, and the relative weights placed on each of these inputs are dependent on the goals of the movement task and the environmental context. Postural equilibrium involves the coordination of movement strategies to stabilise the centre of body mass during both self-initiated and externally triggered disturbances of stability. The specific response strategy selected depends not only on the characteristics of the external postural displacement but also on the individual's expectations, goals and prior experience. Anticipatory postural adjustments, prior to voluntary limb movement, serve to maintain postural stability by compensating for destabilising forces associated with moving a limb. The amount of cognitive processing required for postural control depends both on the complexity of the postural task and on the capability of the subject's postural control system. The control of posture involves many different underlying physiological systems that can be affected by pathology or sub-clinical constraints. Damage to any of the underlying systems will result in different, context-specific instabilities. The effective rehabilitation of balance to improve mobility and to prevent falls requires a better understanding of the multiple mechanisms underlying postural control.
Silva, Marcelo Guimarães; Struber, Lucas; Brandão, José Geraldo T; Daniel, Olivier; Nougier, Vincent
2018-04-01
One of the challenges regarding human motor control is making the movement fluid and at a limited cognitive cost. The coordination between posture and movement is a necessary requirement to perform daily life tasks. The present experiment investigated this interaction in 20 adult men, aged 18-30 years. The cognitive costs associated to postural and movement control when kicking towards a target was estimated using a dual-task paradigm (secondary auditory task). Results showed that addition of the attentional demanding cognitive task yielded a decreased kicking accuracy and an increased timing to perform the movement, mainly during the backswing motion. In addition, significant differences between conditions were found for COP and COM displacement (increased amplitude, mean speed) on the anteroposterior axis. However, no significant differences between conditions were found on the mediolateral axis. Finally, EMG analysis showed that dual-task condition modified the way anticipatory postural adjustments (APAs) were generated. More specifically, we observed an increase of the peroneus longus activity, whereas the temporal EMG showed a decrease of its latency with respect to movement onset. These results suggested a functional adaptation resulting in an invariance of overall APAs, emphasizing that cognitive, postural, and motor processes worked dependently.
DeShaw, Jonathan; Rahmatalla, Salam
2014-08-01
The aim of this study was to develop a predictive discomfort model in single-axis, 3-D, and 6-D combined-axis whole-body vibrations of seated occupants considering different postures. Non-neutral postures in seated whole-body vibration play a significant role in the resulting level of perceived discomfort and potential long-term injury. The current international standards address contact points but not postures. The proposed model computes discomfort on the basis of static deviation of human joints from their neutral positions and how fast humans rotate their joints under vibration. Four seated postures were investigated. For practical implications, the coefficients of the predictive discomfort model were changed into the Borg scale with psychophysical data from 12 volunteers in different vibration conditions (single-axis random fore-aft, lateral, and vertical and two magnitudes of 3-D). The model was tested under two magnitudes of 6-D vibration. Significant correlations (R = .93) were found between the predictive discomfort model and the reported discomfort with different postures and vibrations. The ISO 2631-1 correlated very well with discomfort (R2 = .89) but was not able to predict the effect of posture. Human discomfort in seated whole-body vibration with different non-neutral postures can be closely predicted by a combination of static posture and the angular velocities of the joint. The predictive discomfort model can assist ergonomists and human factors researchers design safer environments for seated operators under vibration. The model can be integrated with advanced computer biomechanical models to investigate the complex interaction between posture and vibration.
Verrusio, W; Gianturco, V; Cacciafesta, M; Marigliano, V; Troisi, G; Ripani, M
2017-04-01
Fall risk in elderly has been related with physical decline, low quality of life and reduced survival. To evaluate the impact of exoskeleton human body posturizer (HBP) on the fall risk in the elderly. 150 subjects (mean age 64.85; 79 M/71 F) with mild fall risk were randomized into two groups: 75 for group treated with human body posturizer (HBP group) and 75 for physical training without HBP group (exercise group). The effects of interventions were assessed by differences in tests related to balance and falls. Medically eligible patients were screened with Tinetti balance and Gait evaluation scale, short physical performance battery and numeric pain rating scale to determine fall risk in elderly people. In the HBP group there was a significant improvement in short physical performance battery, Tinetti scale and Pain Numeric rating scale with a significant reduction in fall risk (p < 0.05). In the exercise group we observed only minimal variations in the test scores. The results at the sixth and twelfth months show a twofold positive effect in the HBP group reducing fall risk and improving quality of life by reducing pain. The use of exoskeleton human body posturizer seems to be a new significant device for prevention of fall in elderly patients. Further research should be carried out to obtain more evidence on effects of robotic technology for fall prevention in the elderly.
The Effect of Body Posture on Brain Glymphatic Transport.
Lee, Hedok; Xie, Lulu; Yu, Mei; Kang, Hongyi; Feng, Tian; Deane, Rashid; Logan, Jean; Nedergaard, Maiken; Benveniste, Helene
2015-08-05
The glymphatic pathway expedites clearance of waste, including soluble amyloid β (Aβ) from the brain. Transport through this pathway is controlled by the brain's arousal level because, during sleep or anesthesia, the brain's interstitial space volume expands (compared with wakefulness), resulting in faster waste removal. Humans, as well as animals, exhibit different body postures during sleep, which may also affect waste removal. Therefore, not only the level of consciousness, but also body posture, might affect CSF-interstitial fluid (ISF) exchange efficiency. We used dynamic-contrast-enhanced MRI and kinetic modeling to quantify CSF-ISF exchange rates in anesthetized rodents' brains in supine, prone, or lateral positions. To validate the MRI data and to assess specifically the influence of body posture on clearance of Aβ, we used fluorescence microscopy and radioactive tracers, respectively. The analysis showed that glymphatic transport was most efficient in the lateral position compared with the supine or prone positions. In the prone position, in which the rat's head was in the most upright position (mimicking posture during the awake state), transport was characterized by "retention" of the tracer, slower clearance, and more CSF efflux along larger caliber cervical vessels. The optical imaging and radiotracer studies confirmed that glymphatic transport and Aβ clearance were superior in the lateral and supine positions. We propose that the most popular sleep posture (lateral) has evolved to optimize waste removal during sleep and that posture must be considered in diagnostic imaging procedures developed in the future to assess CSF-ISF transport in humans. The rodent brain removes waste better during sleep or anesthesia compared with the awake state. Animals exhibit different body posture during the awake and sleep states, which might affect the brain's waste removal efficiency. We investigated the influence of body posture on brainwide transport of inert tracers of anesthetized rodents. The major finding of our study was that waste, including Aβ, removal was most efficient in the lateral position (compared with the prone position), which mimics the natural resting/sleeping position of rodents. Although our finding awaits testing in humans, we speculate that the lateral position during sleep has advantage with regard to the removal of waste products including Aβ, because clinical studies have shown that sleep drives Aβ clearance from the brain. Copyright © 2015 the authors 0270-6474/15/3511034-11$15.00/0.
The Effect of Body Posture on Brain Glymphatic Transport
Lee, Hedok; Xie, Lulu; Yu, Mei; Kang, Hongyi; Feng, Tian; Deane, Rashid; Logan, Jean; Nedergaard, Maiken
2015-01-01
The glymphatic pathway expedites clearance of waste, including soluble amyloid β (Aβ) from the brain. Transport through this pathway is controlled by the brain's arousal level because, during sleep or anesthesia, the brain's interstitial space volume expands (compared with wakefulness), resulting in faster waste removal. Humans, as well as animals, exhibit different body postures during sleep, which may also affect waste removal. Therefore, not only the level of consciousness, but also body posture, might affect CSF–interstitial fluid (ISF) exchange efficiency. We used dynamic-contrast-enhanced MRI and kinetic modeling to quantify CSF-ISF exchange rates in anesthetized rodents' brains in supine, prone, or lateral positions. To validate the MRI data and to assess specifically the influence of body posture on clearance of Aβ, we used fluorescence microscopy and radioactive tracers, respectively. The analysis showed that glymphatic transport was most efficient in the lateral position compared with the supine or prone positions. In the prone position, in which the rat's head was in the most upright position (mimicking posture during the awake state), transport was characterized by “retention” of the tracer, slower clearance, and more CSF efflux along larger caliber cervical vessels. The optical imaging and radiotracer studies confirmed that glymphatic transport and Aβ clearance were superior in the lateral and supine positions. We propose that the most popular sleep posture (lateral) has evolved to optimize waste removal during sleep and that posture must be considered in diagnostic imaging procedures developed in the future to assess CSF-ISF transport in humans. SIGNIFICANCE STATEMENT The rodent brain removes waste better during sleep or anesthesia compared with the awake state. Animals exhibit different body posture during the awake and sleep states, which might affect the brain's waste removal efficiency. We investigated the influence of body posture on brainwide transport of inert tracers of anesthetized rodents. The major finding of our study was that waste, including Aβ, removal was most efficient in the lateral position (compared with the prone position), which mimics the natural resting/sleeping position of rodents. Although our finding awaits testing in humans, we speculate that the lateral position during sleep has advantage with regard to the removal of waste products including Aβ, because clinical studies have shown that sleep drives Aβ clearance from the brain. PMID:26245965
Acute Cutaneous Microvascular Flow Responses to Whole-Body Tilting in Humans
NASA Technical Reports Server (NTRS)
Breit, Gregory A.; Watenpaugh, Donald E.; Ballard, Richard E.; Hargens, Alan R.
1993-01-01
The transition from upright to head-down tilt (HDT) posture in humans increases blood pressure superior to the heart and decreases pressure inferior to the heart. Consequently, above heart level, myogenic arteriolar tone probably increases with HDT, in opposition to the withdrawal of baroreceptor-mediated sympathetic tone. We hypothesized that due to antagonism between central and local controls, the response of the facial cutaneous micro- circulation to acute postural change will be weaker than that in the leg, where these two mechanisms reinforce each other. Cutaneous microvascular flow was measured by laser Doppler flowmetry simultaneously at the shin and the neck of 7 male and 3 female subjects. Subjects underwent a stepwise tilt protocol from standing control to 54 deg head-up tilt (HUT), 30 deg, 12 deg, 0 deg, -6 deg (HDT), -12 deg, -6 deg, 0 deg, 12 deg, 30 deg, 54 deg, and standing, for 30-sec periods with 10-sec transitions between postures. Flows at the shin and the neck increased significantly (P < 0.05) from standing baseline to 12 deg HUT (252 +/- 55 and 126 +/- 9% (bar-X +/- SE) of baseline, respectively). From 12 deg to -12 deg tilt, flows continued to increase at the shin (509 +/- 71% of baseline) but decreased at the neck to baseline levels (100 +/- 15% of baseline). Cutaneous microvascular flow recovered at both sites during the return to standing posture with significant hysteresis. Flow increases from standing to near-supine posture are attributed at both sites to baroreceptor-mediated vasodilation. The great dissimilarity in flow response magnitudes at the two measurement sites may be indicative of central/local regulatory antagonism above heart level and reinforcement below heart level.
Acute Cutaneous Microvascular Flow Responses to Whole-Body Tilting in Humans
NASA Technical Reports Server (NTRS)
Breit, Gregory A.; Watenpaugh, Donald E.; Ballard, Richard E.; Hargens, Alan R.
1993-01-01
The transition from upright to head-down tilt (HDT) posture in humans increases blood pressure superior to the heart and decreases pressure inferior to the heart. Consequently, above heart level, myogenic arteriolar tone probably increases with HDT, in opposition to the withdrawal of baroreceptor-mediated sympathetic tone. We hypothesized that due to antagonism between central and local controls, the response of the facial cutaneous microcirculation to acute postural change will be weaker than that in the leg, where these two mechanisms reinforce each other. Cutaneous microvascular flow was measured by laser Doppler flowmetry simultaneously at the shin and the neck of 7 male and 3 female subjects. Subjects underwent a stepwise tilt protocol from standing control to 54 deg head-up tilt (HUT), 30 deg, 12 deg, O deg, -6 deg (HDT), -12 deg, -6 deg, O deg, 12 deg, 30 deg, 54 deg, and standing, for 30-sec periods with 10-sec transitions between postures. Flows at the shin and the neck increased significantly (P less than 0.05) from standing baseline to 12 deg HUT (252 +/- 55 and 126 +/- 9% (bar X +/- SE) of baseline, respectively). From 12 deg to -12 deg tilt, flows continued to increase at the shin (509 +/- 71% of baseline) but decreased at the neck to baseline levels (100 +/- 15% of baseline). Cutaneous microvascular flow recovered at both sites during the return to standing posture with significant hysteresis. Flow increases from standing to near-supine posture are attributed at both sites to baroreceptor-mediated vasodilation. The great dissimilarity in flow response magnitudes at the two measurement sites may be indicative of central/local regulatory antagonism above heart level and reinforcement below heart level.
Kim, Jongshin; Nam, Kyoung Won; Jang, Ik Gyu; Yang, Hee Kyung; Kim, Kwang Gi; Hwang, Jeong-Min
2012-03-15
To evaluate the accuracy, validity, and reliability of a newly developed infrared optical head tracker (IOHT) using Nintendo Wii remote controllers (WiiMote; Nintendo Co. Ltd., Kyoto, Japan) for measurement of the angle of head posture. The IOHT consists of two infrared (IR) receivers (WiiMote) that are fixed to a mechanical frame and connected to a monitoring computer via a Bluetooth communication channel and an IR beacon that consists of four IR light-emitting diodes (LEDs). With the use of the Cervical Range of Motion (CROM; Performance Attainment Associates, St. Paul, MN) as a reference, one- and three-dimensional (1- and 3-D) head postures of 20 normal adult subjects (20-37 years of age; 9 women and 11 men) were recorded with the IOHT. In comparison with the data from the CROM, the IOHT-derived results showed high consistency. The measurements of 1- and 3-D positions of the human head with the IOHT were very close to those of the CROM. The correlation coefficients of 1- and 3-D positions between the IOHT and the CROM were more than 0.99 and 0.96 (P < 0.05, Pearson's correlation test), respectively. Reliability tests of the IOHT for the normal adult subjects for 1- and 3-D positions of the human head had 95% limits of agreement angles of approximately ±4.5° and ±8.0°, respectively. The IOHT showed strong concordance with the CROM and relatively good test-retest reliability, thus proving its validity and reliability as a head-posture-measuring device. Considering its high performance, ease of use, and low cost, the IOHT has the potential to be widely used as a head-posture-measuring device in clinical practice.
Villarrasa-Sapiña, Israel; Álvarez-Pitti, Julio; Cabeza-Ruiz, Ruth; Redón, Pau; Lurbe, Empar; García-Massó, Xavier
2018-02-01
Excess body weight during childhood causes reduced motor functionality and problems in postural control, a negative influence which has been reported in the literature. Nevertheless, no information regarding the effect of body composition on the postural control of overweight and obese children is available. The objective of this study was therefore to establish these relationships. A cross-sectional design was used to establish relationships between body composition and postural control variables obtained in bipedal eyes-open and eyes-closed conditions in twenty-two children. Centre of pressure signals were analysed in the temporal and frequency domains. Pearson correlations were applied to establish relationships between variables. Principal component analysis was applied to the body composition variables to avoid potential multicollinearity in the regression models. These principal components were used to perform a multiple linear regression analysis, from which regression models were obtained to predict postural control. Height and leg mass were the body composition variables that showed the highest correlation with postural control. Multiple regression models were also obtained and several of these models showed a higher correlation coefficient in predicting postural control than simple correlations. These models revealed that leg and trunk mass were good predictors of postural control. More equations were found in the eyes-open than eyes-closed condition. Body weight and height are negatively correlated with postural control. However, leg and trunk mass are better postural control predictors than arm or body mass. Finally, body composition variables are more useful in predicting postural control when the eyes are open. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yoshikawa, Naoya; Suzuki, Yasuyuki; Kiyono, Ken; Nomura, Taishin
2016-01-01
The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy. PMID:27148031
Yoshikawa, Naoya; Suzuki, Yasuyuki; Kiyono, Ken; Nomura, Taishin
2016-01-01
The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy.
Development of the Coordination between Posture and Manual Control
ERIC Educational Resources Information Center
Haddad, Jeffrey M.; Claxton, Laura J.; Keen, Rachel; Berthier, Neil E.; Riccio, Gary E.; Hamill, Joseph; Van Emmerik, Richard E. A.
2012-01-01
Studies have suggested that proper postural control is essential for the development of reaching. However, little research has examined the development of the coordination between posture and manual control throughout childhood. We investigated the coordination between posture and manual control in children (7- and 10-year-olds) and adults during…
Human arm stiffness and equilibrium-point trajectory during multi-joint movement.
Gomi, H; Kawato, M
1997-03-01
By using a newly designed high-performance manipulandum and a new estimation algorithm, we measured human multi-joint arm stiffness parameters during multi-joint point-to-point movements on a horizontal plane. This manipulandum allows us to apply a sufficient perturbation to subject's arm within a brief period during movement. Arm stiffness parameters were reliably estimated using a new algorithm, in which all unknown structural parameters could be estimated independent of arm posture (i.e., constant values under any arm posture). Arm stiffness during transverse movement was considerably greater than that during corresponding posture, but not during a longitudinal movement. Although the ratios of elbow, shoulder, and double-joint stiffness were varied in time, the orientation of stiffness ellipses during the movement did not change much. Equilibrium-point trajectories that were predicted from measured stiffness parameters and actual trajectories were slightly sinusoidally curved in Cartesian space and their velocity profiles were quite different from the velocity profiles of actual hand trajectories. This result contradicts the hypothesis that the brain does not take the dynamics into account in movement control depending on the neuromuscular servo mechanism; rather, it implies that the brain needs to acquire some internal models of controlled objects.
Identifying postural control and thresholds of instability utilizing a motion-based ATV simulator.
DOT National Transportation Integrated Search
2017-01-01
Our ATV simulator is currently the only one in existence that allows studies of human subjects engaged in active riding, a process that is necessary for ATV operators to perform in order to maintain vehicle control, in a virtual reality environ...
Comparison of human and humanoid robot control of upright stance.
Peterka, Robert J
2009-01-01
There is considerable recent interest in developing humanoid robots. An important substrate for many motor actions in both humans and biped robots is the ability to maintain a statically or dynamically stable posture. Given the success of the human design, one would expect there are lessons to be learned in formulating a postural control mechanism for robots. In this study we limit ourselves to considering the problem of maintaining upright stance. Human stance control is compared to a suggested method for robot stance control called zero moment point (ZMP) compensation. Results from experimental and modeling studies suggest there are two important subsystems that account for the low- and mid-frequency (DC to approximately 1Hz) dynamic characteristics of human stance control. These subsystems are (1) a "sensory integration" mechanism whereby orientation information from multiple sensory systems encoding body kinematics (i.e. position, velocity) is flexibly combined to provide an overall estimate of body orientation while allowing adjustments (sensory re-weighting) that compensate for changing environmental conditions and (2) an "effort control" mechanism that uses kinetic-related (i.e., force-related) sensory information to reduce the mean deviation of body orientation from upright. Functionally, ZMP compensation is directly analogous to how humans appear to use kinetic feedback to modify the main sensory integration feedback loop controlling body orientation. However, a flexible sensory integration mechanism is missing from robot control leaving the robot vulnerable to instability in conditions where humans are able to maintain stance. We suggest the addition of a simple form of sensory integration to improve robot stance control. We also investigate how the biological constraint of feedback time delay influences the human stance control design. The human system may serve as a guide for improved robot control, but should not be directly copied because the constraints on robot and human control are different.
Interference between oculomotor and postural tasks in 7-8-year-old children and adults.
Legrand, Agathe; Doré Mazars, Karine; Lemoine, Christelle; Nougier, Vincent; Olivier, Isabelle
2016-06-01
Several studies in adults having observed the effect of eye movements on postural control provided contradictory results. In the present study, we explored the effect of various oculomotor tasks on postural control and the effect of different postural tasks on eye movements in eleven children (7.8 ± 0.5 years) and nine adults (30.4 ± 6.3 years). To vary the difficulty of the oculomotor task, three conditions were tested: fixation, prosaccades (reactive saccades made toward the target) and antisaccades (voluntary saccades made in the direction opposite to the visual target). To vary the difficulty of postural control, two postural tasks were tested: Standard Romberg (SR) and Tandem Romberg (TR). Postural difficulty did not affect oculomotor behavior, except by lengthening adults' latencies in the prosaccade task. For both groups, postural control was altered in the antisaccade task as compared to fixation and prosaccade tasks. Moreover, a ceiling effect was found in the more complex postural task. This study highlighted a cortical interference between oculomotor and postural control systems.
Montagnani, Federico; Controzzi, Marco; Cipriani, Christian
2015-01-01
Although significant technological advances have been made in the last forty years, natural and effortless control of upper limb prostheses is still an open issue. Commercially available myoelectric prostheses present limited Degrees of Freedom (DoF) mainly because of the lack of available and reliable independent control signals from the human body. Thus, despite the crucial role that an actuated wrist could play in a transradial prosthesis in terms of avoiding compensatory movements, commercial hand prostheses present only manually adjustable passive wrists or actuated rotators controlled by (unnatural) sequential control strategies. In the present study we investigated the synergies between the humeral orientation with respect to the trunk and the forearm pronation/supination angles during the execution of a wide range of activities of daily living, in healthy subjects. Our results showed consistent postural synergies between the two selected body segments for almost the totality of the activities of daily living under investigation. This is a promising result because these postural synergies could be exploited to automatically control the wrist rotator unit in transradial prostheses improving the fluency and the dexterity of the amputee.
Ohnishi, K; Yamamoto, T; Takahashi, A; Tanaka, H; Koyama, M; Ohnishi, T
1999-08-01
The catfish (Synodontis nigriventris) has a unique habitat of keeping an upside-down posture under normal gravity. We examined its postural control under pseudomicrogravity generated artificially, and the effect of unilateral labyrinthectomy on the postural control. The stable swimming posture under pseudomicrogravity was observed in the upside-down swimming catfish but not in the catfish (Corydoras paleatus), which has normal swimming habitat. Furthermore, although S. nigriventris but not C. paleatus could keep the stable swimming posture under normal gravity condition after unilateral labyrinthectomy, the labyrinthectomized fishes could not keep it under pseudomicrogravity. Seven days after the operation, S. nigriventris alone partially recovered the ability to keep an upside-down swimming posture, and did completely, to the control level, 25 days after the operation. Furthermore, when S. nigriventris was under pseudomicrogravity in dark conditions, it showed disturbed swimming postures. These results suggest that the upside-down swimming catfish has superior ability of postural control depending on the labyrinth.
Fernández, Ramón Fuentes; Carter, Pablo; Muñoz, Sergio; Silva, Héctor; Venegas, Gonzalo Hernán Oporto; Cantin, Mario; Ottone, Nicolás Ernesto
2016-01-01
INTRODUCTION Temporomandibular joint disorders (TMJDs) are caused by several factors such as anatomical, neuromuscular and psychological alterations. A relationship has been established between TMJDs and postural alterations, a type of anatomical alteration. An anterior position of the head requires hyperactivity of the posterior neck region and shoulder muscles to prevent the head from falling forward. This compensatory muscular function may cause fatigue, discomfort and trigger point activation. To our knowledge, a method for assessing human postural attitude in more than one plane has not been reported. Thus, the aim of this study was to design a methodology to measure the external human postural attitude in frontal and sagittal planes, with proper validity and reliability analyses. METHODS The variable postures of 78 subjects (36 men, 42 women; age 18–24 years) were evaluated. The postural attitudes of the subjects were measured in the frontal and sagittal planes, using an acromiopelvimeter, grid panel and Fox plane. RESULTS The method we designed for measuring postural attitudes had adequate reliability and validity, both qualitatively and quantitatively, based on Cohen’s Kappa coefficient (> 0.87) and Pearson’s correlation coefficient (r = 0.824, > 80%). CONCLUSION This method exhibits adequate metrical properties and can therefore be used in further research on the association of human body posture with skeletal types and TMJDs. PMID:26768173
Fuentes Fernández, Ramón; Carter, Pablo; Muñoz, Sergio; Silva, Héctor; Oporto Venegas, Gonzalo Hernán; Cantin, Mario; Ottone, Nicolás Ernesto
2016-04-01
Temporomandibular joint disorders (TMJDs) are caused by several factors such as anatomical, neuromuscular and psychological alterations. A relationship has been established between TMJDs and postural alterations, a type of anatomical alteration. An anterior position of the head requires hyperactivity of the posterior neck region and shoulder muscles to prevent the head from falling forward. This compensatory muscular function may cause fatigue, discomfort and trigger point activation. To our knowledge, a method for assessing human postural attitude in more than one plane has not been reported. Thus, the aim of this study was to design a methodology to measure the external human postural attitude in frontal and sagittal planes, with proper validity and reliability analyses. The variable postures of 78 subjects (36 men, 42 women; age 18-24 years) were evaluated. The postural attitudes of the subjects were measured in the frontal and sagittal planes, using an acromiopelvimeter, grid panel and Fox plane. The method we designed for measuring postural attitudes had adequate reliability and validity, both qualitatively and quantitatively, based on Cohen's Kappa coefficient (> 0.87) and Pearson's correlation coefficient (r = 0.824, > 80%). This method exhibits adequate metrical properties and can therefore be used in further research on the association of human body posture with skeletal types and TMJDs. Copyright © Singapore Medical Association.
Arm Dominance Affects Feedforward Strategy more than Feedback Sensitivity during a Postural Task
Walker, Elise H. E.; Perreault, Eric J.
2015-01-01
Handedness is a feature of human motor control that is still not fully understood. Recent work has demonstrated that the dominant and nondominant arm each excel at different behaviors, and has proposed that this behavioral asymmetry arises from lateralization in the cerebral cortex: the dominant side specializes in predictive trajectory control, while the nondominant side is specialized for impedance control. Long-latency stretch reflexes are an automatic mechanism for regulating posture, and have been shown to contribute to limb impedance. To determine whether long-latency reflexes also contribute to asymmetric motor behavior in the upper limbs, we investigated the effect of arm dominance on stretch reflexes during a postural task that required varying degrees of impedance control. Our results demonstrated slightly but significantly larger reflex responses in the biarticular muscles of the nondominant arm, as would be consistent with increased impedance control. These differences were attributed solely to higher levels of voluntary background activity in the nondominant biarticular muscles, indicating that feedforward strategies for postural stability may differ between arms. Reflex sensitivity, which was defined as the magnitude of the reflex response for matched levels of background activity, was not significantly different between arms for a broad subject population ranging from 23–51 years of age. These results indicate that inter-arm differences in feedforward strategies are more influential during posture than differences in feedback sensitivity, in a broad subject population. Interestingly, restricting our analysis to subjects under 40 years of age revealed a small increase in long-latency reflex sensitivity in the nondominant arm relative to the dominant arm. Though our subject numbers were small for this secondary analysis, it suggests that further studies may be required to assess the influence of reflex lateralization throughout development. PMID:25850407
Arm dominance affects feedforward strategy more than feedback sensitivity during a postural task.
Walker, Elise H E; Perreault, Eric J
2015-07-01
Handedness is a feature of human motor control that is still not fully understood. Recent work has demonstrated that the dominant and nondominant arm each excel at different behaviors and has proposed that this behavioral asymmetry arises from lateralization in the cerebral cortex: the dominant side specializes in predictive trajectory control, while the nondominant side is specialized for impedance control. Long-latency stretch reflexes are an automatic mechanism for regulating posture and have been shown to contribute to limb impedance. To determine whether long-latency reflexes also contribute to asymmetric motor behavior in the upper limbs, we investigated the effect of arm dominance on stretch reflexes during a postural task that required varying degrees of impedance control. Our results demonstrated slightly but significantly larger reflex responses in the biarticular muscles of the nondominant arm, as would be consistent with increased impedance control. These differences were attributed solely to higher levels of voluntary background activity in the nondominant biarticular muscles, indicating that feedforward strategies for postural stability may differ between arms. Reflex sensitivity, which was defined as the magnitude of the reflex response for matched levels of background activity, was not significantly different between arms for a broad subject population ranging from 23 to 51 years of age. These results indicate that inter-arm differences in feedforward strategies are more influential during posture than differences in feedback sensitivity, in a broad subject population. Interestingly, restricting our analysis to subjects under 40 years of age revealed a small increase in long-latency reflex sensitivity in the nondominant arm relative to the dominant arm. Though our subject numbers were small for this secondary analysis, it suggests that further studies may be required to assess the influence of reflex lateralization throughout development.
Development of Human Posture Simulation Method for Assessing Posture Angles and Spinal Loads
Lu, Ming-Lun; Waters, Thomas; Werren, Dwight
2015-01-01
Video-based posture analysis employing a biomechanical model is gaining a growing popularity for ergonomic assessments. A human posture simulation method of estimating multiple body postural angles and spinal loads from a video record was developed to expedite ergonomic assessments. The method was evaluated by a repeated measures study design with three trunk flexion levels, two lift asymmetry levels, three viewing angles and three trial repetitions as experimental factors. The study comprised two phases evaluating the accuracy of simulating self and other people’s lifting posture via a proxy of a computer-generated humanoid. The mean values of the accuracy of simulating self and humanoid postures were 12° and 15°, respectively. The repeatability of the method for the same lifting condition was excellent (~2°). The least simulation error was associated with side viewing angle. The estimated back compressive force and moment, calculated by a three dimensional biomechanical model, exhibited a range of 5% underestimation. The posture simulation method enables researchers to simultaneously quantify body posture angles and spinal loading variables with accuracy and precision comparable to on-screen posture matching methods. PMID:26361435
Comparison of Human and Humanoid Robot Control of Upright Stance
Peterka, Robert J.
2009-01-01
There is considerable recent interest in developing humanoid robots. An important substrate for many motor actions in both humans and biped robots is the ability to maintain a statically or dynamically stable posture. Given the success of the human design, one would expect there are lessons to be learned in formulating a postural control mechanism for robots. In this study we limit ourselves to considering the problem of maintaining upright stance. Human stance control is compared to a suggested method for robot stance control called zero moment point (ZMP) compensation. Results from experimental and modeling studies suggest there are two important subsystems that account for the low- and mid-frequency (DC to ~1 Hz) dynamic characteristics of human stance control. These subsystems are 1) a “sensory integration” mechanism whereby orientation information from multiple sensory systems encoding body kinematics (i.e. position, velocity) is flexibly combined to provide an overall estimate of body orientation while allowing adjustments (sensory re-weighting) that compensate for changing environmental conditions, and 2) an “effort control” mechanism that uses kinetic-related (i.e., force-related) sensory information to reduce the mean deviation of body orientation from upright. Functionally, ZMP compensation is directly analogous to how humans appear to use kinetic feedback to modify the main sensory integration feedback loop controlling body orientation. However, a flexible sensory integration mechanism is missing from robot control leaving the robot vulnerable to instability in conditions were humans are able to maintain stance. We suggest the addition of a simple form of sensory integration to improve robot stance control. We also investigate how the biological constraint of feedback time delay influences the human stance control design. The human system may serve as a guide for improved robot control, but should not be directly copied because the constraints on robot and human control are different. PMID:19665564
[Vojta's method as the early neurodevelopmental diagnosis and therapy concept].
Banaszek, Grazyna
2010-01-01
Vaclav Vojta (1917-2000) developed an early diagnostic method of the neurodevelopmental disorder of infants and came up with therapeutic concept consisting in releasing of global motor complexes by means of the stimulation of proper areas on patients body. In the diagnostics apart from very careful observation of the spontaneous movement of the infant and examination of the reflexes that are characteristic for the first weeks of human's life, Vojta applied the examination of the 7 postural reactions. Presence of the trouble in patterns and dynamics of the postural reactions Vojta called Central Nervous Coordination Disorder--CNCD and regarded as work diagnosis or alarm signal indicating necessity of application of the therapy, especially when asymmetry of the muscle tone and primitive reflexes beyond their physiological appearance period are observed or the number of the abnormal reactions exceeds 5. Global motor complexes as reflex locomotion--crawling and rotation--consist of all the partial motion patterns, which are gradually used by healthy infant in the process of postural and motor ontogenesis. Providing the central nervous system with proper external stimulation allows to, using neuronal plasticity, recreate an access to the human's postural development program and gradually replace pathological motor patterns by those more regular. Exercises repeated several times a day rebuilt support, erectile and vertical mechanisms, improve automatic postural control and phase lower limb movement. Affecting especially on autochtonic muscles of the spine exercises balance synergic cooperation of muscle groups in the trunk and those surrounding key body joints. This way they correct body's posture and peripheral motion and pathology of the outlasted primitive reflexes gradually withdraws.
Perrochon, A; Holtzer, R; Laidet, M; Armand, S; Assal, F; Lalive, P H; Allali, G
2017-04-01
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease affecting various neurological domains, such as postural control, cognition, fear of falling, depression-anxiety, and fatigue. This study examined the associations of cognitive functions, fear of falling, depression-anxiety, and fatigue with postural control in patients with MS. Postural control (sway velocity) of 63 patients with MS (age 39.0 ± 8.9 years; %female 57%; Expanded Disability Status Scale score median (interquartile range) 2.0 (1.5)) was recorded on two platforms at stable and unstable conditions. Cognition, fear of falling, depression-anxiety, and fatigue were evaluated by a comprehensive neuropsychological assessment. The associations between these domains and postural control have been measured by multivariable linear regression (adjusted for age, gender, disability, and education). In stable condition, only working memory was associated with postural control (p < 0.05). In unstable condition, working memory, executive functions, attention/processing speed, and fear of falling were associated with postural control (p < 0.05). Specific cognitive domains and fear of falling were associated with postural control in MS patients, particularly in unstable condition. These findings highlight the association of cognitive functions and fear of falling with postural control in MS.
Denommé, Luke T; Mandalfino, Patricia; Cinelli, Michael E
2014-06-01
A major presenting symptom in 'individuals with multiple sclerosis with mild balance disability' (IwMS) is poor postural control, resulting from slowed spinal somatosensory conduction. Postural control deficits in IwMS are most apparent when vision is removed and the base of support is reduced such is the case during tandem and single support stances. The current study used center of pressure (COP) measurements to determine whether postural control differences exist between IwMS and either 'healthy age-matched individuals' (HAMI) or 'community-dwelling older adults' (OA). Postural control was evaluated using a Romberg standing task, which required participants to stand with their feet together and hands by their sides for 45 s with either their eyes open or closed. Results revealed that COP velocity root mean square was greater in IwMS and their COP position was closer to their self-selected maximum stability limits (e.g., greater Standing Index proportion) when vision was removed compared to HAMI. Conversely, IwMS displayed similar postural control characteristics to OA. The current study highlights two novel findings: (1) the utility of novel COP measurements to assess differences in the level of postural control in IwMS; and (2) the benefit of assessing postural control levels in IwMS to not only a population with a fully intact and functional postural control system (HAMI) but also to another population that is thought to experience postural control deficits (OA).
NASA Technical Reports Server (NTRS)
Kim, Kyu-Jung
2005-01-01
Over the past few years high precision three-dimensional (3D) full body laser scanners have been developed to be used as a powerful anthropometry tool for quantification of the morphology of the human body. The full body scanner can quickly extract body characteristics in non-contact fashion. It is required for the Anthropometry and Biomechanics Facility (ABF) to have capabilities for kinematics simulation of a digital human at various postures whereas the laser scanner only allows capturing a single static posture at each time. During this summer fellowship period a theoretical study has been conducted to estimate an arbitrary posture with a series of example postures through finite element (FE) approximation and found that four-point isoparametric FE approximation would result in reasonable maximum position errors less than 5%. Subsequent pilot scan experiments demonstrated that a bead marker with a nominal size of 6 mm could be used as a marker for digitizing 3-D coordinates of anatomical landmarks for further kinematic analysis. Two sessions of human subject testing were conducted for reconstruction of an arbitrary postures from a set of example postures for each joint motion for the forearm/hand complex and the whole upper extremity.
The effect of instructions on postural-suprapostural interactions in three working memory tasks.
Burcal, Christopher J; Drabik, Evan C; Wikstrom, Erik A
2014-06-01
Examining postural control while simultaneously performing a cognitive, or suprapostural task, has shown a fairly consistent trend of improving postural control in young healthy adults and provides insight into postural control mechanisms used in everyday life. However, the role of attention driven by explicit verbal instructions while dual-tasking is less understood. Therefore, the purpose of this investigation is to determine the effects of explicit verbal instructions on the postural-suprapostural interactions among various domains of working memory. A total of 22 healthy young adults with a heterogeneous history of ankle sprains volunteered to participate (age: 22.2±5.1 years; n=10 history of ankle sprains, n=12 no history). Participants were asked to perform single-limb balance trials while performing three suprapostural tasks: backwards counting, random number generation, and the manikin test. In addition, each suprapostural task was completed under three conditions of instruction: no instructions, focus on the postural control task, focus on the suprapostural task. The results indicate a significant effect of instructions on postural control outcomes, with postural performance improving in the presence of instructions across all three cognitive tasks which each stress different aspects of working memory. Further, postural-suprapostural interactions appear to be related to the direction or focus of an individual's attention as instructions to focus on the suprapostural task resulted in the greatest postural control improvements.Thus, attention driven by explicit verbal instructions influence postural-suprapostural interactions as measured by a temporal-spatial postural control outcome, time-to-boundary, regardless of the suprapostural task performed. Copyright © 2014 Elsevier B.V. All rights reserved.
Assessment of Postural Control in Children with Cerebral Palsy: A Review
ERIC Educational Resources Information Center
Pavao, Silvia Leticia; dos Santos, Adriana Neves; Woollacott, Marjorie Hines; Rocha, Nelci Adriana Cicuto Ferreira
2013-01-01
This paper aimed to review studies that assessed postural control (PC) in children with cerebral palsy (CP) and describe the methods used to investigate postural control in this population. It also intended to describe the performance of children with CP in postural control. An extensive database search was performed using the keywords: postural…
Nafati, Gilel; Vuillerme, Nicolas
2011-12-01
This experiment was designed to investigate whether and how decreasing the amount of attentional focus invested in postural control could affect bipedal postural control. Twelve participants were asked to stand upright as immobile as possible on a force platform in one control condition and one cognitive condition. In the latter condition, they performed a short-term digit-span memory task. Decreased center-of-gravity displacements and decreased center-of-foot-pressure displacements minus center-of-gravity displacements were observed in the cognitive condition relative to the control condition. These results suggest that shifting the attentional focus away from postural control by executing a concurrent attention-demanding task could increase postural performance and postural efficiency.
Jazaeri, Seyede Zohreh; Azad, Akram; Mehdizadeh, Hajar; Habibi, Seyed Amirhassan; Mandehgary Najafabadi, Mahbubeh; Saberi, Zakieh Sadat; Rahimzadegan, Hawre; Moradi, Saeed; Behzadipour, Saeed; Parnianpour, Mohamad; Khalaf, Kinda
2018-01-01
Background Although anxiety is a common non-motor outcome of Parkinson's disease (PD) affecting 40% of patients, little attention has been paid so far to its effects on balance impairment and postural control. Improvement of postural control through focusing on the environment (i.e. external focus) has been reported, but the role of anxiety, as a confounding variable, remains unclear. Objectives This study aimed to investigate the influence of anxiety and attentional focus instruction on the standing postural control of PD patients. Methods Thirty-four patients with PD (17 with high anxiety (HA-PD) and 17 with low anxiety (LA-PD)), as well as 17 gender- and age-matched healthy control subjects (HC) participated in the study. Postural control was evaluated using a combination of two levels of postural difficulty (standing on a rigid force plate surface with open eyes (RO) and standing on a foam surface with open eyes (FO)), as well as three attentional focus instructions (internal, external and no focus). Results Only the HA-PD group demonstrated significant postural control impairment as compared to the control, as indicated by significantly greater postural sway measures. Moreover, external focus significantly reduced postural sway in all participants especially during the FO condition. Conclusion The results of the current study provide evidence that anxiety influences balance control and postural stability in patients with PD, particularly those with high levels of anxiety. The results also confirmed that external focus is a potential strategy that significantly improves the postural control of these patients. Further investigation of clinical applicability is warranted towards developing effective therapeutic and rehabilitative treatment plans. PMID:29390029
Effect of altered sensory conditions on multivariate descriptors of human postural sway
NASA Technical Reports Server (NTRS)
Kuo, A. D.; Speers, R. A.; Peterka, R. J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)
1998-01-01
Multivariate descriptors of sway were used to test whether altered sensory conditions result not only in changes in amount of sway but also in postural coordination. Eigenvalues and directions of eigenvectors of the covariance of shnk and hip angles were used as a set of multivariate descriptors. These quantities were measured in 14 healthy adult subjects performing the Sensory Organization test, which disrupts visual and somatosensory information used for spatial orientation. Multivariate analysis of variance and discriminant analysis showed that resulting sway changes were at least bivariate in character, with visual and somatosensory conditions producing distinct changes in postural coordination. The most significant changes were found when somatosensory information was disrupted by sway-referencing of the support surface (P = 3.2 x 10(-10)). The resulting covariance measurements showed that subjects not only swayed more but also used increased hip motion analogous to the hip strategy. Disruption of vision, by either closing the eyes or sway-referencing the visual surround, also resulted in altered sway (P = 1.7 x 10(-10)), with proportionately more motion of the center of mass than with platform sway-referencing. As shown by discriminant analysis, an optimal univariate measure could explain at most 90% of the behavior due to altered sensory conditions. The remaining 10%, while smaller, are highly significant changes in posture control that depend on sensory conditions. The results imply that normal postural coordination of the trunk and legs requires both somatosensory and visual information and that each sensory modality makes a unique contribution to posture control. Descending postural commands are multivariate in nature, and the motion at each joint is affected uniquely by input from multiple sensors.
Park, Jangwoon; Ebert, Sheila M; Reed, Matthew P; Hallman, Jason J
2016-03-01
Previously published statistical models of driving posture have been effective for vehicle design but have not taken into account the effects of age. The present study developed new statistical models for predicting driving posture. Driving postures of 90 U.S. drivers with a wide range of age and body size were measured in laboratory mockup in nine package conditions. Posture-prediction models for female and male drivers were separately developed by employing a stepwise regression technique using age, body dimensions, vehicle package conditions, and two-way interactions, among other variables. Driving posture was significantly associated with age, and the effects of other variables depended on age. A set of posture-prediction models is presented for women and men. The results are compared with a previously developed model. The present study is the first study of driver posture to include a large cohort of older drivers and the first to report a significant effect of age. The posture-prediction models can be used to position computational human models or crash-test dummies for vehicle design and assessment. © 2015, Human Factors and Ergonomics Society.
A Computational Approach for Automated Posturing of a Human Finite Element Model
2016-07-01
Std. Z39.18 July 2016 Memorandum Report A Computational Approach for Automated Posturing of a Human Finite Element Model Justin McKee and Adam...protection by influencing the path that loading will be transferred into the body and is a major source of variability. The development of a finite element ...posture, human body, finite element , leg, spine 42 Adam Sokolow 410-306-2985Unclassified Unclassified Unclassified UU ii Approved for public release
Postural control system influences intrinsic alerting state.
Barra, Julien; Auclair, Laurent; Charvillat, Agnès; Vidal, Manuel; Pérennou, Dominic
2015-03-01
Numerous studies using dual-task paradigms (postural and cognitive) have shown that postural control requires cognitive resources. However, the influence of postural control on attention components has never been directly addressed. Using the attention network test (ANT), which assesses specifically each of the 3 components of attention-alertness, orientation, and executive control-within a single paradigm, we investigated the effect of postural balance demand on these 3 components. Forty-two participants completed the ANT in 3 postural conditions: (a) supine, a very stable position; (b) sitting on a chair, an intermediate position; and (c) standing with feet lined up heel to toe, a very instable position known as the Romberg position. Our results revealed that the difficulty of postural control does modulate alerting in such a way that it improves with the level of instability of the position. Regarding the orienting and executive control components of attention, performance was not different when participants were standing upright or seated, whereas in the supine position, performance dropped. The strong and specific interaction between postural control and the alerting system suggests that these mechanisms may share parts of the underlying neural circuits. We discuss the possible implication of the locus coeruleus, known to be involved in both postural balance and alerting. Also, our findings concerning orienting and executive control systems suggest that supine posture could have a specific effect on cognitive activities. These effects are discussed in terms of particularities resulting from the supine position. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Phase-dependent organization of postural adjustments associated with arm movements while walking.
Nashner, L M; Forssberg, H
1986-06-01
This study examines the interactions between anteroposterior postural responses and the control of walking in human subjects. In the experimental paradigm, subjects walked upon a treadmill, gripping a rigid handle with one hand. Postural responses at different phases of stepping were elicited by rapid arm pulls or pushes against the handle. During arm movements, EMG's recorded the activity of representative arm, ankle, and thigh segment muscles. Strain gauges in the handle measured the force of the arm movement. A Selspot II system measured kinematics of the stepping movements. The duration of support and swing phases were marked by heel and toe switches in the soles of the subjects' shoes. In the first experiment, subjects were instructed to pull on the handle at their own pace. In these trials all subjects preferred to initiate pulls near heel strikes. Next, when instructed to pull as rapidly as possible in response to tone stimuli, reaction times were similar for all phases of the step cycle. Leg muscle responses associated with arm pulls and pushes, referred to as "postural activations," were directionally specific and preceded arm muscle activity. The temporal order and spatial distribution of postural activations in the muscles of the support leg were similar when arm pull movements occurred while the subject was standing in place and after heel strike while walking. Activations began in the ankle and radiated proximally to the thigh and then the arm. Activations of swing leg muscles were also directionally specific and involved flexion and forward or backward thrust of the limb. When arm movements were initiated during transitions from support by one leg to the other, patterns of postural activations were altered. Alterations usually occurred 10-20 ms before hell strikes and involved changes in the timing and sometimes the spatial structure of postural activations. Postural activation patterns are similar during in-place standing and during the support phase of locomotion. Walking and posture control appear to be separately organized but interrelated activities. Our results also suggest that the stepping generators, not peripheral feedback time locked to heel strikes, modulate postural activation patterns.
NASA Astrophysics Data System (ADS)
Chestek, Cynthia A.; Gilja, Vikash; Blabe, Christine H.; Foster, Brett L.; Shenoy, Krishna V.; Parvizi, Josef; Henderson, Jaimie M.
2013-04-01
Objective. Brain-machine interface systems translate recorded neural signals into command signals for assistive technology. In individuals with upper limb amputation or cervical spinal cord injury, the restoration of a useful hand grasp could significantly improve daily function. We sought to determine if electrocorticographic (ECoG) signals contain sufficient information to select among multiple hand postures for a prosthetic hand, orthotic, or functional electrical stimulation system.Approach. We recorded ECoG signals from subdural macro- and microelectrodes implanted in motor areas of three participants who were undergoing inpatient monitoring for diagnosis and treatment of intractable epilepsy. Participants performed five distinct isometric hand postures, as well as four distinct finger movements. Several control experiments were attempted in order to remove sensory information from the classification results. Online experiments were performed with two participants. Main results. Classification rates were 68%, 84% and 81% for correct identification of 5 isometric hand postures offline. Using 3 potential controls for removing sensory signals, error rates were approximately doubled on average (2.1×). A similar increase in errors (2.6×) was noted when the participant was asked to make simultaneous wrist movements along with the hand postures. In online experiments, fist versus rest was successfully classified on 97% of trials; the classification output drove a prosthetic hand. Online classification performance for a larger number of hand postures remained above chance, but substantially below offline performance. In addition, the long integration windows used would preclude the use of decoded signals for control of a BCI system. Significance. These results suggest that ECoG is a plausible source of command signals for prosthetic grasp selection. Overall, avenues remain for improvement through better electrode designs and placement, better participant training, and characterization of non-stationarities such that ECoG could be a viable signal source for grasp control for amputees or individuals with paralysis.
Howard, Charla L; Perry, Bonnie; Chow, John W; Wallace, Chris; Stokic, Dobrivoje S
2017-11-01
Sensorimotor impairments after limb amputation impose a threat to stability. Commonly described strategies for maintaining stability are the posture first strategy (prioritization of balance) and posture second strategy (prioritization of concurrent tasks). The existence of these strategies was examined in 13 below-knee prosthesis users and 15 controls during dual-task standing under increasing postural and cognitive challenge by evaluating path length, 95% sway area, and anterior-posterior and medial-lateral amplitudes of the center of pressure. The subjects stood on two force platforms under usual (hard surface/eyes open) and difficult (soft surface/eyes closed) conditions, first alone and while performing a cognitive task without and then with instruction on cognitive prioritization. During standing alone, sway was not significantly different between groups. After adding the cognitive task without prioritization instruction, prosthesis users increased sway more under the dual-task than single-task standing (p ≤ 0.028) during both usual and difficult conditions, favoring the posture second strategy. Controls, however, reduced dual-task sway under a greater postural challenge (p ≤ 0.017), suggesting the posture first strategy. With prioritization of the cognitive task, sway was unchanged or reduced in prosthesis users, suggesting departure from the posture second strategy, whereas controls maintained the posture first strategy. Individual analysis of dual tasking revealed that greater postural demand in controls and greater cognitive challenge in prosthesis users led to both reduced sway and improved cognitive performance, suggesting cognitive-motor facilitation. Thus, activation of additional resources through increased alertness, rather than posture prioritization, may explain dual-task performance in both prosthesis users and controls under increasing postural and cognitive challenge.
Huang, Cheng-Ya; Zhao, Chen-Guang; Hwang, Ing-Shiou
2014-11-01
Dual-task performance is strongly affected by the direction of attentional focus. This study investigated neural control of a postural-suprapostural procedure when postural focus strategy varied. Twelve adults concurrently conducted force-matching and maintained stabilometer stance with visual feedback on ankle movement (visual internal focus, VIF) and on stabilometer movement (visual external focus, VEF). Force-matching error, dynamics of ankle and stabilometer movements, and event-related potentials (ERPs) were registered. Postural control with VEF caused superior force-matching performance, more complex ankle movement, and stronger kinematic coupling between the ankle and stabilometer movements than postural control with VIF. The postural focus strategy also altered ERP temporal-spatial patterns. Postural control with VEF resulted in later N1 with less negativity around the bilateral fronto-central and contralateral sensorimotor areas, earlier P2 deflection with more positivity around the bilateral fronto-central and ipsilateral temporal areas, and late movement-related potential commencing in the left frontal-central area, as compared with postural control with VIF. The time-frequency distribution of the ERP principal component revealed phase-locked neural oscillations in the delta (1-4Hz), theta (4-7Hz), and beta (13-35Hz) rhythms. The delta and theta rhythms were more pronounced prior to the timing of P2 positive deflection, and beta rebound was greater after the completion of force-matching in VEF condition than VIF condition. This study is the first to reveal the neural correlation of postural focusing effect on a postural-suprapostural task. Postural control with VEF takes advantage of efficient task-switching to facilitate autonomous postural response, in agreement with the "constrained-action" hypothesis. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Lim, Yi Huey; Partridge, Katie; Girdler, Sonya; Morris, Susan L.
2017-01-01
Impairments in postural control affect the development of motor and social skills in individuals with autism spectrum disorder (ASD). This review compared the effect of different sensory conditions on static standing postural control between ASD and neurotypical individuals. Results from 19 studies indicated a large difference in postural control…
Postural perturbations: new insights for treatment of balance disorders
NASA Technical Reports Server (NTRS)
Horak, F. B.; Henry, S. M.; Shumway-Cook, A.; Peterson, B. W. (Principal Investigator)
1997-01-01
This article reviews the neural control of posture as understood through studies of automatic responses to mechanical perturbations. Recent studies of responses to postural perturbations have provided a new view of how postural stability is controlled, and this view has profound implications for physical therapy practice. We discuss the implications for rehabilitation of balance disorders and demonstrate how an understanding of the specific systems underlying postural control can help to focus and enrich our therapeutic approaches. By understanding the basic systems underlying control of balance, such as strategy selection, rapid latencies, coordinated temporal spatial patterns, force control, and context-specific adaptations, therapists can focus their treatment on each patient's specific impairments. Research on postural responses to surface translations has shown that balance is not based on a fixed set of equilibrium reflexes but on a flexible, functional motor skill that can adapt with training and experience. More research is needed to determine the extent to which quantification of automatic postural responses has practical implications for predicting falls in patients with constraints in their postural control system.
Using a System Identification Approach to Investigate Subtask Control during Human Locomotion
Logan, David; Kiemel, Tim; Jeka, John J.
2017-01-01
Here we apply a control theoretic view of movement to the behavior of human locomotion with the goal of using perturbations to learn about subtask control. Controlling one's speed and maintaining upright posture are two critical subtasks, or underlying functions, of human locomotion. How the nervous system simultaneously controls these two subtasks was investigated in this study. Continuous visual and mechanical perturbations were applied concurrently to subjects (n = 20) as probes to investigate these two subtasks during treadmill walking. Novel application of harmonic transfer function (HTF) analysis to human motor behavior was used, and these HTFs were converted to the time-domain based representation of phase-dependent impulse response functions (ϕIRFs). These ϕIRFs were used to identify the mapping from perturbation inputs to kinematic and electromyographic (EMG) outputs throughout the phases of the gait cycle. Mechanical perturbations caused an initial, passive change in trunk orientation and, at some phases of stimulus presentation, a corrective trunk EMG and orientation response. Visual perturbations elicited a trunk EMG response prior to a trunk orientation response, which was subsequently followed by an anterior-posterior displacement response. This finding supports the notion that there is a temporal hierarchy of functional subtasks during locomotion in which the control of upper-body posture precedes other subtasks. Moreover, the novel analysis we apply has the potential to probe a broad range of rhythmic behaviors to better understand their neural control. PMID:28123365
NASA Technical Reports Server (NTRS)
Mullen, T. J.; Appel, M. L.; Mukkamala, R.; Mathias, J. M.; Cohen, R. J.
1997-01-01
We applied system identification to the analysis of fluctuations in heart rate (HR), arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize quantitatively the physiological mechanisms responsible for the couplings between these variables. We characterized two autonomically mediated coupling mechanisms [the heart rate baroreflex (HR baroreflex) and respiratory sinus arrhythmia (ILV-HR)] and two mechanically mediated coupling mechanisms [the blood pressure wavelet generated with each cardiac contraction (circulatory mechanics) and the direct mechanical effects of respiration on blood pressure (ILV-->ABP)]. We evaluated the method in humans studied in the supine and standing postures under control conditions and under conditions of beta-sympathetic and parasympathetic pharmacological blockades. Combined beta-sympathetic and parasympathetic blockade abolished the autonomically mediated couplings while preserving the mechanically mediated coupling. Selective autonomic blockade and postural changes also altered the couplings in a manner consistent with known physiological mechanisms. System identification is an "inverse-modeling" technique that provides a means for creating a closed-loop model of cardiovascular regulation for an individual subject without altering the underlying physiological control mechanisms.
Hemodynamic and ADH responses to central blood volume shifts in cardiac-denervated humans
NASA Technical Reports Server (NTRS)
Convertino, V. A.; Thompson, C. A.; Benjamin, B. A.; Keil, L. C.; Savin, W. M.; Gordon, E. P.; Haskell, W. L.; Schroeder, J. S.; Sandler, H.
1990-01-01
Hemodynamic responses and antidiuretic hormone (ADH) were measured during body position changes designed to induce blood volume shifts in ten cardiac transplant recipients to assess the contribution of cardiac and vascular volume receptors in the control of ADH secretion. Each subject underwent 15 min of a control period in the seated posture, then assumed a lying posture for 30 min at 6 deg head down tilt (HDT) followed by 20 min of seated recovery. Venous blood samples and cardiac dimensions (echocardiography) were taken at 0 and 15 min before HDT, 5, 15, and 30 min of HDT, and 5, 15, and 30 min of seated recovery. Blood samples were analyzed for hematocrit, plasma osmolality, plasma renin activity (PRA), and ADH. Resting plasma volume (PV) was measured by Evans blue dye and percent changes in PV during posture changes were calculated from changes in hematocrit. Heart rate (HR) and blood pressure (BP) were recorded every 2 min. Results indicate that cardiac volume receptors are not the only mechanism for the control of ADH release during acute blood volume shifts in man.
Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina
2014-12-01
Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p < 0.001). An interaction effect between strength and static postural control was found with narrow surface walking and talking while walking (change of β 0.980, p < 0.001 in strength for 1 SD improvements in static postural control for narrow walking, and [Formula: see text] -0.730, p < 0.01 in talking while walking). These results indicate that good static postural control facilitates the utilisation of lower limb strength to better perform complex, dynamic functional balance tasks. Practical implications for assessment and training are discussed.
The role of haptic cues from rough and slippery surfaces in human postural control
NASA Technical Reports Server (NTRS)
Jeka, J. J.; Lackner, J. R.
1995-01-01
Haptic information is critically important in complex sensory-motor tasks such as manipulating objects. Its comparable importance in spatial orientation is only beginning to be recognized. We have shown that postural sway in humans is significantly reduced by lightly touching a stable surface with a fingertip at contact force levels far below those physically necessary to stabilize the body. To investigate further the functional relationship between contact forces at the hand and postural equilibrium, we had subjects stand in the tandem Romberg stance while being allowed physically supportive (force contact) and non-physically supportive (touch contact) amounts of index fingertip force on surfaces with different frictional characteristics. Mean sway amplitude (MSA) was reduced by over 50% with both touch and force contact of the fingertip, compared to standing without fingertip contact. No differences in MSA were observed when touching rough or slippery surfaces. The amplitude of EMG activity in the peroneal muscles and the timing relationships between fingertip forces, body sway and EMG activity suggested that with touch contact of the finger or with force contact on a slippery surface long-loop "reflexes" involving postural muscles were stabilizing sway. With force contact of the fingertip on a rough surface, MSA reduction was achieved primarily through physical support of the body. This pattern of results indicates that light touch contact cues from the fingertip in conjunction with proprioceptive signals about arm configuration are providing information about body sway that can be used to reduce MSA through postural muscle activation.
Rabin, Ely; DiZio, Paul; Ventura, Joel; Lackner, James R
2008-02-01
Lightly touching a stable surface with one fingertip strongly stabilizes standing posture. The three main features of this phenomenon are fingertip contact forces maintained at levels too low to provide mechanical support, attenuation of postural sway relative to conditions without fingertip touch, and center of pressure (CP) lags changes in fingertip shear forces by approximately 250 ms. In the experiments presented here, we tested whether accurate arm proprioception and also whether the precision fingertip contact afforded by the arm's many degrees of freedom are necessary for postural stabilization by finger contact. In our first experiment, we perturbed arm proprioception and control with biceps brachii vibration (120-Hz, 2-mm amplitude). This degraded postural control, resulting in greater postural sway amplitudes. In a second study, we immobilized the touching arm with a splint. This prevented precision fingertip contact but had no effect on postural sway amplitude. In both experiments, the correlation and latency of fingertip contact forces to postural sway were unaffected. We conclude that postural control is executed based on information about arm orientation as well as tactile feedback from light touch, although precision fingertip contact is not essential. The consistent correlation and timing of CP movement and fingertip forces across conditions in which postural sway amplitude and fingertip contact are differentially disrupted suggests posture and the fingertip are controlled in parallel with feedback from the fingertip in this task.
Colnat-Coulbois, S; Gauchard, G C; Maillard, L; Barroche, G; Vespignani, H; Auque, J; Perrin, P P
2011-10-13
Parkinson's disease (PD) is known to affect postural control, especially in situations needing a change in balance strategy or when a concurrent task is simultaneously performed. However, few studies assessing postural control in patients with PD included homogeneous population in late stage of the disease. Thus, this study aimed to analyse postural control and strategies in a homogeneous population of patients with idiopathic advanced (late-stage) PD, and to determine the contribution of peripheral inputs in simple and more complex postural tasks, such as sensory conflicting and dynamic tasks. Twenty-four subjects with advanced PD (duration: median (M)=11.0 years, interquartile range (IQR)=4.3 years; Unified Parkinson's Disease Rating Scale (UPDRS): M "on-dopa"=13.5, IQR=7.8; UPDRS: M "off-dopa"=48.5, IQR=16.8; Hoehn and Yahr stage IV in all patients) and 48 age-matched healthy controls underwent static (SPT) and dynamic posturographic (DPT) tests and a sensory organization test (SOT). In SPT, patients with PD showed reduced postural control precision with increased oscillations in both anterior-posterior and medial-lateral planes. In SOT, patients with PD displayed reduced postural performances especially in situations in which visual and vestibular cues became predominant to organize balance control, as was the ability to manage balance in situations for which visual or proprioceptive inputs are disrupted. In DPT, postural restabilization strategies were often inefficient to maintain equilibrium resulting in falls. Postural strategies were often precarious, postural regulation involving more hip joint than ankle joint in patients with advanced PD than in controls. Difficulties in managing complex postural situations, such as sensory conflicting and dynamic situations might reflect an inadequate sensory organization suggesting impairment in central information processing. Copyright © 2011. Published by Elsevier Ltd.
Freund, Jane E; Stetts, Deborah M; Vallabhajosula, Srikant
2016-06-30
Multiple sclerosis (MS) is a chronic progressive disease of the central nervous system. Compared to healthy individuals, persons with multiple sclerosis (PwMS) have increased postural sway in quiet stance, decreased gait speed and increased fall incidence. Trunk performance has been implicated in postural control, gait dysfunction, and fall prevention in older adults. However, the relationship of trunk performance to postural control and gait has not been adequately studied in PwMS. To compare trunk muscle structure and performance in PwMS to healthy age and gendered-matched controls (HC); to determine the effects of isometric trunk endurance testing on postural control in both populations; and to determine the relationship of trunk performance with postural control, gait and step activity in PwMS. Fifteen PwMS and HC completed ultrasound imaging of trunk muscles, 10 m walk test, isometric trunk endurance tests, and postural sway test. Participants wore a step activity monitor for 7 days. PwMS had worse isometric trunk endurance compared to HC. PwMS trunk flexion endurance negatively correlated to several postural control measures and positively correlated to gait speed and step activity. Clinicians should consider evaluation and interventions directed at impaired trunk endurance in PwMS.
NASA Technical Reports Server (NTRS)
Forth, Katharine E.; Taylor, Laura C.; Paloski, William H.
2006-01-01
The purpose of the present experiment was to compare in normal human subjects the differential effects on postural stability of introducing somatosensory noise via compliant and/or sway-referenced support surfaces during quiet standing. The use of foam surfaces (two thicknesses: thin (0.95cm) and thick (7.62cm)) and sway-referenced support allowed comparison between two different types of destabilizing factors that increased ankle/foot somatosensory noise. Under some conditions neck extensions were used to increase sensory noise by deviating the vestibular system from its optimal orientation for balance control. The impact of these conditions on postural control was assessed through objective measures of instability. Thick foam and sway-referenced support conditions generated comparable instability in subjects, as measured by equilibrium score and minimum time-to-contact. However, simultaneous application of the conditions resulted in greater instability, suggesting a higher level of generated sensory noise and thus, different receptor types affected during each manipulation. Indeed, sway-referenced support generated greater anterior-posterior center-of-mass (COM) sway, while thick foam generated greater medio-lateral COM sway and velocity. Neck extension had minimal effect on postural stability until combined with simultaneous thick foam and sway-referenced support. Thin foam never generated enough sensory noise to affect postural stability even with noise added by sway-reference support or neck extension. These results provide an interesting window into the central integration of redundant sensory information and indicate the postural impact of sensory inputs is not solely based on their existence, but also their level of noise.
Predicting Dynamic Postural Instability Using Center of Mass Time-to-Contact Information
Hasson, Christopher J.; Van Emmerik, Richard E.A.; Caldwell, Graham E.
2008-01-01
Our purpose was to determine whether spatiotemporal measures of center of mass motion relative to the base of support boundary could predict stepping strategies after upper-body postural perturbations in humans. We expected that inclusion of center of mass acceleration in such time-to-contact (TtC) calculations would give better predictions and more advanced warning of perturbation severity. TtC measures were compared with traditional postural variables, which don’t consider support boundaries, and with an inverted pendulum model of dynamic stability developed by Hof et al. (2005). A pendulum was used to deliver sequentially increasing perturbations to 10 young adults, who were strapped to a wooden backboard that constrained motion to sagittal plane rotation about the ankle joint. Subjects were instructed to resist the perturbations, stepping only if necessary to prevent a fall. Peak center of mass and center of pressure velocity and acceleration demonstrated linear increases with postural challenge. In contrast, boundary relevant minimum TtC values decreased nonlinearly with postural challenge, enabling prediction of stepping responses using quadratic equations. When TtC calculations incorporated center of mass acceleration, the quadratic fits were better and gave more accurate predictions of the TtC values that would trigger stepping responses. In addition, TtC minima occurred earlier with acceleration inclusion, giving more advanced warning of perturbation severity. Our results were in agreement with TtC predictions based on Hof’s model, and suggest that TtC may function as a control parameter, influencing the postural control system’s decision to transition from a stationary base of support to a stepping strategy. PMID:18556003
Gabriner, Michael L; Braun, Brittany A; Houston, Megan N; Hoch, Matthew C
2015-02-01
Chronic ankle instability (CAI) is a condition commonly experienced by physically active individuals. It has been suggested that foot orthotics may increase a CAI patient's postural control. For patients with CAI, is there evidence to suggest that an orthotic intervention will help improve postural control? The literature was searched for studies of level 2 evidence or higher that investigated the effects of foot orthotics on postural control in patients with CAI. The search of the literature produced 5 possible studies for inclusion; 2 studies met the inclusion criteria and were included. One randomized controlled trial and 1 outcomes study were included. Foot orthotics appear to be effective at improving postural control in patients with CAI. There is moderate evidence to support the use of foot orthotics in the treatment of CAI to help improve postural control. There is grade B evidence that foot orthotics help improve postural control in people with CAI. The Centre of Evidence Based Medicine recommends a grade of B for level 2 evidence with consistent findings.
Hafström, A; Modig, F; Magnusson, M; Fransson, P A
2014-06-01
Human stability control is a complex process comprising contributions from several partly independent mechanisms such as coordination, feedback and feed-forward control, and adaptation. Acute alcohol intoxication impairs these functions and is recognized as a major contributor to fall traumas. The study aimed to investigate how alcohol intoxication at .06% and .10% blood alcohol concentration (BAC) affected the movement spans and control of posture alignment. The angular positions of the head, shoulder, hip and knees relative to the ankles were measured with a 3D motion analysis system in 25 healthy adults during standing with eyes open or closed and with or without vibratory balance perturbations. Alcohol intoxication significantly increased the movement spans of the head, shoulders, hip and knees in anteroposterior and lateral directions during quiet stance (p < or = .047 and p < or = .003) and balance perturbations (p<.001, both directions). Alcohol intoxication also decreased the ability to reduce the movement spans through adaptation in both anteroposterior (p < or = .011) and lateral (p < or = .004) directions. When sober and submitted to balance perturbations, the subjects aligned the head, shoulders, hip and knees more forward relative to the ankle joint (p < .001), hence adopting a more resilient posture increasing the safety margin for backward falls. Alcohol intoxication significantly delayed this forward realignment (p < or = .022). Alcohol intoxication did not cause any significant posture realignment in the lateral direction. Thus, initiation of adaptive posture realignments to alcohol or other disruptions might be context dependent and associated with reaching a certain level of stability threats. Copyright © 2014 Elsevier B.V. All rights reserved.
Agmon, Maayan; Lavie, Limor; Doumas, Michail
2017-06-01
Degraded hearing in older adults has been associated with reduced postural control and higher risk of falls. Both hearing loss (HL) and falls have dramatic effects on older persons' quality of life (QoL). A large body of research explored the comorbidity between the two domains. The aim of the current review is to describe the comorbidity between HL and objective measures of postural control, to offer potential mechanisms underlying this relationship, and to discuss the clinical implications of this comorbidity. PubMed and Google Scholar were systematically searched for articles published in English up until October 15, 2015, using combinations of the following strings and search words: for hearing: Hearing loss, "Hearing loss," hearing, presbycusis; for postural control: postural control, gait, postural balance, fall, walking; and for age: elderly, older adults. Of 211 screened articles, 7 were included in the systematic review. A significant, positive association between HL and several objective measures of postural control was found in all seven studies, even after controlling for major covariates. Severity of hearing impairment was connected to higher prevalence of difficulties in walking and falls. Physiological, cognitive, and behavioral processes that may influence auditory system and postural control were suggested as potential explanations for the association between HL and postural control. There is evidence for the independent relationship between HL and objective measures of postural control in the elderly. However, a more comprehensive understanding of the mechanisms underlying this relationship is yet to be elucidated. Concurrent diagnosis, treatment, and rehabilitation of these two modalities may reduce falls and increase QoL in older adults. American Academy of Audiology
Orthostatic stress is necessary to maintain the dynamic range of cardiovascular control in space
NASA Technical Reports Server (NTRS)
Baisch, J. F.; Wolfram, G.; Beck, L.; Drummer, C.; Stormer, I.; Buckey, J.; Blomqvist, G.
2000-01-01
In the upright position, gravity fills the low-pressure systems of human circulation with blood and interstitial fluid in the sections below the diaphragm. Without gravity one pressure component in the vessels disappears and the relationship between hydrostatic pressure and oncotic pressure, which regulates fluid passage across the capillary endothelium in the terminal vascular bed, shifts constantly. The visible consequences of this are a puffy face and "bird" legs. The plasma volume shrinks in space and the range of cardiovascular control is reduced. When they stand up for the first time after landing, 30-50% of astronauts suffer from orthostatic intolerance. It remains unclear whether microgravity impairs cardiovascular reflexes, or whether it is the altered volume status that causes the cardiovascular instability following space flight. Lower body negative pressure was used in several space missions to stimulate the cardiovascular reflexes before, during and after a space flight. The results show that cardiovascular reflexes are maintained in microgravity. However, the astronauts' volume status changed in space, towards a volume-retracted state, as measurements of fluid-regulating hormones have shown. It can be hypothesized that the control of circulation and body fluid homeostasis in humans is adapted to their upright posture in the Earth's gravitational field. Autonomic control regulates fluid distribution to maintain the blood pressure in that posture, which most of us have to cope with for two-thirds of the day. A determined amount of interstitial volume is necessary to maintain the dynamic range of cardiovascular control in the upright posture; otherwise orthostatic intolerance may occur more often.
Obesity Impact on the Attentional Cost for Controlling Posture
Mignardot, Jean-Baptiste; Olivier, Isabelle; Promayon, Emmanuel; Nougier, Vincent
2010-01-01
Background This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing. Methods Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1) and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6) maintained postural stability on a force platform in two postural tasks (seated and unipedal). The two postural tasks were performed (1) alone and (2) in a dual-task paradigm in combination with an auditory reaction time task (RT). Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials. Findings (1) Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP), in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2) Whatever the postural task, the additional RT task did not affect postural stability. (3) Seated, RT did not differ between the two groups. (4) RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity. Interpretation Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities. PMID:21187914
Characterization of postural control impairment in women with fibromyalgia
Sempere-Rubio, Núria; López-Pascual, Juan; Aguilar-Rodríguez, Marta; Cortés-Amador, Sara; Espí-López, Gemma; Villarrasa-Sapiña, Israel
2018-01-01
The main goal of this cross-sectional study was to detect whether women with fibromyalgia syndrome (FMS) have altered postural control and to study the sensory contribution to postural control. We also explored the possibility that self-induced anxiety and lower limb strength may be related to postural control. For this purpose, 129 women within an age range of 40 to 70 years were enrolled. Eighty of the enrolled women had FMS. Postural control variables, such as Ellipse, Root mean square (RMS) and Sample entropy (SampEn), in both directions (i.e. mediolateral and anteroposterior), were calculated under five different conditions. A force plate was used to register the center of pressure shifts. Furthermore, isometric lower limb strength was recorded with a portable dynamometer and normalized by lean body mass. The results showed that women with FMS have impaired postural control compared with healthy people, as they presented a significant increase in Ellipse and RMS values (p<0.05) and a significant decrease in SampEn in both directions (p<0.05). Postural control also worsens with the gradual alteration of sensory inputs in this population (p<0.05). Performing a stressor dual task only impacts Ellipse in women with FMS (p>0.05). There were no significant correlations between postural control and lower limb strength (p>0.05). Therefore, women with FMS have impaired postural control that is worse when sensory inputs are altered but is not correlated with their lower limb strength. PMID:29723223
Relationship between antigravity control and postural control in young children.
Sellers, J S
1988-04-01
The purposes of this study were 1) to determine the relationship between antigravity control (supine flexion and prone extension) and postural control (static and dynamic balance), 2) to determine the quality of antigravity and postural control, and 3) to determine whether sex and ethnic group differences correlate with differences in antigravity control and postural control in young children. I tested 107 black, Hispanic, and Caucasian children in a Head Start program, with a mean age of 61 months. The study results showed significant relationships between antigravity control and postural control. Subjects' supine flexion performance was significantly related to the quantity and quality of their static and dynamic balance performance, whereas prone extension performance was related only to the quality of dynamic balance performance. Quality scale measurements (r = .90) indicated that the children in this study had not yet developed full antigravity or postural control. The study results revealed differences between sexes in the quality of static balance and prone extension performance and ethnic differences in static balance, dynamic balance, and prone extension performance.
Najafi, Bijan; Horn, Deena; Marclay, Samuel; Crews, Ryan T.; Wu, Stephanie; Wrobel, James S.
2010-01-01
Introduction Currently, diagnosis of patients with postural instability relies on a rudimentary clinical examination. This article suggests an innovative, portable, and cost-effective prototype to evaluate balance control objectively. Methods The proposed system uses low-cost, microelectromechanical sensor, body-worn sensors (BalanSens™) to measure the motion of ankle and hip joints in three dimensions. We also integrated resulting data into a two-link biomechanical model of the human body for estimating the two-dimensional sway of the center of mass (COM) in anterior–posterior (AP) and medial–lateral (ML) directions. A new reciprocal compensatory index (RCI) was defined to quantify postural compensatory strategy (PCS) performance. To validate the accuracy of our algorithms in assessing balance, we investigated the two-dimensional sway of COM and RCI in 21 healthy subjects and 17 patients with diabetic peripheral neuropathic (DPN) complications using the system just explained. Two different conditions were examined: eyes open (EO) and eyes closed (EC) for duration of at least 30 seconds. Results were compared with center of pressure sway (COP) as measured by a pressure platform (Emed-x system, Novel Inc., Germany). To further investigate the contribution of the somatosensory (SOM) feedback to balance control, healthy subjects performed EO and EC trials while standing on both a rigid and a foam surface. Results A relatively high correlation was observed between COM measured using BalanSens and COP measured using the pressure platform (r = 0.92). Results demonstrated that DPN patients exhibit significantly greater COM sway than healthy subjects for both EO and EC conditions (p < 0.005). The difference becomes highly pronounced while eyes are closed (197 ± 44 cm2 vs 68 ± 56 cm2). Furthermore, results showed that PCS assessed using RCI is significantly better in healthy subjects compared to DPN subjects for both EO and EC conditions, as well as in both ML and AP directions (p < 0.05). Alteration in SOM feedback in healthy subjects resulted in diminished RCI values that were similar to those seen in DPN subjects (p > 0.05). Discussion/Conclusion This study suggested an innovative system that enables the investigation of COM as well as postural control compensatory strategy in humans. Results suggest that neuropathy significantly impacts PCS. PMID:20663438
An investigation of articulatory setting using real-time magnetic resonance imaging
Ramanarayanan, Vikram; Goldstein, Louis; Byrd, Dani; Narayanan, Shrikanth S.
2013-01-01
This paper presents an automatic procedure to analyze articulatory setting in speech production using real-time magnetic resonance imaging of the moving human vocal tract. The procedure extracts frames corresponding to inter-speech pauses, speech-ready intervals and absolute rest intervals from magnetic resonance imaging sequences of read and spontaneous speech elicited from five healthy speakers of American English and uses automatically extracted image features to quantify vocal tract posture during these intervals. Statistical analyses show significant differences between vocal tract postures adopted during inter-speech pauses and those at absolute rest before speech; the latter also exhibits a greater variability in the adopted postures. In addition, the articulatory settings adopted during inter-speech pauses in read and spontaneous speech are distinct. The results suggest that adopted vocal tract postures differ on average during rest positions, ready positions and inter-speech pauses, and might, in that order, involve an increasing degree of active control by the cognitive speech planning mechanism. PMID:23862826
Ecological Relevance Determines Task Priority in Older Adults' Multitasking.
Doumas, Michail; Krampe, Ralf Th
2015-05-01
Multitasking is a challenging aspect of human behavior, especially if the concurrently performed tasks are different in nature. Several studies demonstrated pronounced performance decrements (dual-task costs) in older adults for combinations of cognitive and motor tasks. However, patterns of costs among component tasks differed across studies and reasons for participants' resource allocation strategies remained elusive. We investigated young and older adults' multitasking of a working memory task and two sensorimotor tasks, one with low (finger force control) and one with high ecological relevance (postural control). The tasks were performed in single-, dual-, and triple-task contexts. Working memory accuracy was reduced in dual-task contexts with either sensorimotor task and deteriorated further under triple-task conditions. Postural and force performance deteriorated with age and task difficulty in dual-task contexts. However, in the triple-task context with its maximum resource demands, older adults prioritized postural control over both force control and memory. Our results identify ecological relevance as the key factor in older adults' multitasking. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Hägg, Mary; Tibbling, Lita
2016-07-01
Conclusion All patients with dysphagia after stroke have impaired postural control. IQoro® screen (IQS) training gives a significant and lasting improvement of postural control running parallel with significant improvement of oropharyngeal motor dysfunction (OPMD). Objectives The present investigation aimed at studying the frequency of impaired postural control in patients with stroke-related dysphagia and if IQS training has any effect on impaired postural control in parallel with effect on OPMD. Method A prospective clinical study was carried out with 26 adult patients with stroke-related dysphagia. The training effect was compared between patients consecutively investigated at two different time periods, the first period with 15 patients included in the study more than half a year after stroke, the second period with 11 patients included within 1 month after stroke. Postural control tests and different oropharyngeal motor tests were performed before and after 3 months of oropharyngeal sensorimotor training with an IQS, and at a late follow-up (median 59 weeks after end of training). Result All patients had impaired postural control at baseline. Significant improvement in postural control and OPMD was observed after the completion of IQS training in both intervention groups. The improvements were still present at the late follow-up.
Yilmaz Yelvar, Gul Deniz; Çirak, Yasemin; Dalkilinç, Murat; Demir, Yasemin Parlak; Baltaci, Gul; Kömürcü, Mahmut; Yelvar, Gul Deniz Yilmaz
2016-06-30
Postural control allows performance of daily and sports activities. The previous studies show that postural sway inceases in orthopaedic injuries such as osteoarthritis and total knee arthroplasty. To compare postural sway, risk of falling and function between individuals with and without patellofemoral pain syndrome (PFS). This study included 22 subjects with patellofemoral pain syndrome, age-matched pain-free 22 females serving as a control group. Visual anolog scale and Kujala were used to evaluate the pain. Posturographic assesment was performed by Tetrax posturographic device. Biering Modified Sorenson test for extensor endurance and sit-up test for flexor endurance were used for the evaluation of trunk endurance. Timed get-up and go test was used for lower extremity function. The Student's t Test was used to compare variables between the groups. The Pearson correlation coefficients were calculated to examine correlation between the quantitative variables. Postural sway included eyes open without pillow, eyes open on pillow, eyes closed on pillow, risk of falling, function and postural stabilization included flexor endurance, extansor endurance are impared in patient with patellofemoral pain syndrome when compare to controls. In subjects with PFPS increased postural sway significantly associated with body mass index (r= 0.52), pain duration (r= 0.43), postural control (extansor endurance) (r= -0.50) and risk of falling (r= 0.62) on pillow with open eyes. In addition we found function significantly related with postural control (extansor endurance and flexor endurance) (r= -0.59 and r= -0.59) and risk of falling (r= 0.77)CONCLUSIONS: Decreased neuromuscular control of the trunk core and increased postural sway and falling risk were found in patients with PFPS. Patients may be evaluated for deficits in postural control and falling risk before treatment.
Trunk posture monitoring with inertial sensors
Wong, Man Sang
2008-01-01
Measurement of human posture and movement is an important area of research in the bioengineering and rehabilitation fields. Various attempts have been initiated for different clinical application goals, such as diagnosis of pathological posture and movements, assessment of pre- and post-treatment efficacy and comparison of different treatment protocols. Image-based methods for measurements of human posture and movements have been developed, such as the radiography, photogrammetry, optoelectric technique and video analysis. However, it is found that these methods are complicated to set up, time-consuming to operate and could only be applied in laboratory environments. This study introduced a method of using a posture monitoring system in estimating the spinal curvature changes during trunk movements on the sagittal and coronal planes and providing trunk posture monitoring during daily activities. The system consisted of three sensor modules, each with one tri-axial accelerometer and three uni-axial gyroscopes orthogonally aligned, and a digital data acquisition and feedback system. The accuracy of this system was tested with a motion analysis system (Vicon 370) in calibration with experimental setup and in trunk posture measurement with nine human subjects, and the performance of the posture monitoring system during daily activities with two human subjects was reported. The averaged root mean squared differences between the measurements of the system and motion analysis system were found to be <1.5° in dynamic calibration, and <3.1° for the sagittal plane and ≤2.1° for the coronal plane in estimation of the trunk posture change during trunk movements. The measurements of the system and the motion analysis system was highly correlated (>0.999 for dynamic calibration and >0.829 for estimation of spinal curvature change in domain planes of movement during flexion and lateral bending). With the sensing modules located on the upper trunk, mid-trunk and the pelvic levels, the inclination of trunk segment and the change of spinal curvature in trunk movements could be estimated. The posture information of five subjects was recorded at 30 s intervals during daily activity over a period of 3 days and 2 h a day. The preliminary results demonstrated that the subjects could improve their posture when feedback signals were provided. The posture monitoring system could be used for the purpose of posture monitoring during daily activity. PMID:18196296
Trunk posture monitoring with inertial sensors.
Wong, Wai Yin; Wong, Man Sang
2008-05-01
Measurement of human posture and movement is an important area of research in the bioengineering and rehabilitation fields. Various attempts have been initiated for different clinical application goals, such as diagnosis of pathological posture and movements, assessment of pre- and post-treatment efficacy and comparison of different treatment protocols. Image-based methods for measurements of human posture and movements have been developed, such as the radiography, photogrammetry, optoelectric technique and video analysis. However, it is found that these methods are complicated to set up, time-consuming to operate and could only be applied in laboratory environments. This study introduced a method of using a posture monitoring system in estimating the spinal curvature changes during trunk movements on the sagittal and coronal planes and providing trunk posture monitoring during daily activities. The system consisted of three sensor modules, each with one tri-axial accelerometer and three uni-axial gyroscopes orthogonally aligned, and a digital data acquisition and feedback system. The accuracy of this system was tested with a motion analysis system (Vicon 370) in calibration with experimental setup and in trunk posture measurement with nine human subjects, and the performance of the posture monitoring system during daily activities with two human subjects was reported. The averaged root mean squared differences between the measurements of the system and motion analysis system were found to be < 1.5 degrees in dynamic calibration, and < 3.1 degrees for the sagittal plane and < or = 2.1 degrees for the coronal plane in estimation of the trunk posture change during trunk movements. The measurements of the system and the motion analysis system was highly correlated (> 0.999 for dynamic calibration and > 0.829 for estimation of spinal curvature change in domain planes of movement during flexion and lateral bending). With the sensing modules located on the upper trunk, mid-trunk and the pelvic levels, the inclination of trunk segment and the change of spinal curvature in trunk movements could be estimated. The posture information of five subjects was recorded at 30 s intervals during daily activity over a period of 3 days and 2 h a day. The preliminary results demonstrated that the subjects could improve their posture when feedback signals were provided. The posture monitoring system could be used for the purpose of posture monitoring during daily activity.
Shih, Ching-Hsiang; Shih, Ching-Tien; Chu, Chiung-Ling
2010-01-01
The latest researches adopted software technology turning the Nintendo Wii Balance Board into a high performance change of standing posture (CSP) detector, and assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture). This study extends Wii Balance Board functionality for standing posture correction (i.e., actively adjust abnormal standing posture) to assessed whether two persons with multiple disabilities would be able to actively correct their standing posture by controlling their favorite stimulation on/off using a Wii Balance Board with a newly developed standing posture correcting program (SPCP). The study was performed according to an ABAB design, in which A represented baseline and B represented intervention phases. Data showed that both participants significantly increased time duration of maintaining correct standing posture (TDMCSP) to activate the control system to produce environmental stimulation during the intervention phases. Practical and developmental implications of the findings were discussed.
Matsuura, Yukako; Fujino, Haruo; Hashimoto, Ryota; Yasuda, Yuka; Yamamori, Hidenaga; Ohi, Kazutaka; Takeda, Masatoshi; Imura, Osamu
2015-03-01
The purpose of this study was to assess postural instability in patients with schizophrenia using a pressure-sensitive platform and to examine the effects of anxiety, psychiatric symptoms, and the use of neuroleptic medications on postural sway. Participants were 23 patients with schizophrenia and 23 healthy controls. We found that the patients showed greater overall postural instability than the controls. Furthermore, they demonstrated greater instability when the test was performed with the eyes closed than with the eyes open. However, removal of visual input had less impact on the indices of postural instability in the patients than in the controls, suggesting that schizophrenia is associated with difficulties in integrating visual information and proprioceptive signals. Furthermore, in contrast to the controls, anxiety exacerbated postural instability in the patients. There were significant associations between postural stability and psychiatric symptoms in the patients without extrapyramidal symptoms, whereas medication dose did not significantly correlate with postural stability. Copyright © 2015 Elsevier B.V. All rights reserved.
Postural control in chronic obstructive pulmonary disease: a systematic review.
Porto, E F; Castro, A A M; Schmidt, V G S; Rabelo, H M; Kümpel, C; Nascimento, O A; Jardim, J R
2015-01-01
Patients with chronic obstructive pulmonary disease (COPD) fall frequently, although the risk of falls may seem less important than the respiratory consequences of the disease. Nevertheless, falls are associated to increased mortality, decreased independence and physical activity levels, and worsening of quality of life. The aims of this systematic review was to evaluate information in the literature with regard to whether impaired postural control is more prevalent in COPD patients than in healthy age-matched subjects, and to assess the main characteristics these patients present that contribute to impaired postural control. Five databases were searched with no dates or language limits. The MEDLINE, PubMed, EMBASE, Web of Science, and PEDro databases were searched using "balance", "postural control", and "COPD" as keywords. The search strategies were oriented and guided by a health science librarian and were performed on March 27, 2014. The studies included were those that evaluated postural control in COPD patients as their main outcome and scored more than five points on the PEDro scale. Studies supplied by the database search strategy were assessed independently by two blinded researchers. A total of 484 manuscripts were found using the "balance in COPD or postural control in COPD" keywords. Forty-three manuscripts appeared more than once, and 397 did not evaluate postural control in COPD patients as the primary outcome. Thus, only 14 studies had postural control as their primary outcome. Our study examiners found only seven studies that had a PEDro score higher than five points. The examiners' interrater agreement was 76.4%. Six of those studies were accomplished with a control group and one study used their patients as their own controls. The studies were published between 2004 and 2013. Patients with COPD present postural control impairment when compared with age-matched healthy controls. Associated factors contributing to impaired postural control were muscle weakness, physical inactivity, elderly age, need for supplemental oxygen, and limited mobility.
Forghieri, M; Monzani, D; Mackinnon, A; Ferrari, S; Gherpelli, C; Galeazzi, G M
2016-08-26
Human postural control is dependent on the central integration of vestibular, visual and proprioceptive inputs. Psychological states can affect balance control: anxiety, in particular, has been shown to influence balance mediated by visual stimuli. We hypothesized that patients with eating disorders would show postural destabilization when exposed to their image in a mirror and to the image of a fashion model representing their body ideal in comparison to body neutral stimuli. Seventeen females patients attending a day centre for the treatment of eating disorders were administered psychometric measures of body dissatisfaction, anxiety, depression and underwent posturographic measures with their eyes closed, open, watching a neutral stimulus, while exposed to a full length mirror and to an image of a fashion model corresponding to their body image. Results were compared to those obtained by eighteen healthy subjects. Eating disordered patients showed higher levels of body dissatisfaction and higher postural destabilization than controls, but this was limited to the conditions in which they were exposed to their mirror image or a fashion model image. Postural destabilization under these conditions correlated with measures of body dissatisfaction. In eating disordered patients, body related stimuli seem to act as phobic stimuli in the posturographic paradigm used. If confirmed, this has the potential to be developed for diagnostic and therapeutic purposes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Helmchen, Christoph; Kirchhoff, Jan-Birger; Göttlich, Martin; Sprenger, Andreas
2017-01-01
The cerebellum integrates proprioceptive, vestibular and visual signals for postural control. Cerebellar patients with downbeat nystagmus (DBN) complain of unsteadiness of stance and gait as well as blurred vision and oscillopsia. The aim of this study was to elucidate the differential role of visual input, gaze eccentricity, vestibular and proprioceptive input on the postural stability in a large cohort of cerebellar patients with DBN, in comparison to healthy age-matched control subjects. Oculomotor (nystagmus, smooth pursuit eye movements) and postural (postural sway speed) parameters were recorded and related to each other and volumetric changes of the cerebellum (voxel-based morphometry, SPM). Twenty-seven patients showed larger postural instability in all experimental conditions. Postural sway increased with nystagmus in the eyes closed condition but not with the eyes open. Romberg's ratio remained stable and was not different from healthy controls. Postural sway did not change with gaze position or graviceptive input. It increased with attenuated proprioceptive input and on tandem stance in both groups but Romberg's ratio also did not differ. Cerebellar atrophy (vermal lobule VI, VIII) correlated with the severity of impaired smooth pursuit eye movements of DBN patients. Postural ataxia of cerebellar patients with DBN cannot be explained by impaired visual feedback. Despite oscillopsia visual feedback control on cerebellar postural control seems to be preserved as postural sway was strongest on visual deprivation. The increase in postural ataxia is neither related to modulations of single components characterizing nystagmus nor to deprivation of single sensory (visual, proprioceptive) inputs usually stabilizing stance. Re-weighting of multisensory signals and/or inappropriate cerebellar motor commands might account for this postural ataxia.
Helmchen, Christoph; Kirchhoff, Jan-Birger; Göttlich, Martin; Sprenger, Andreas
2017-01-01
Background The cerebellum integrates proprioceptive, vestibular and visual signals for postural control. Cerebellar patients with downbeat nystagmus (DBN) complain of unsteadiness of stance and gait as well as blurred vision and oscillopsia. Objectives The aim of this study was to elucidate the differential role of visual input, gaze eccentricity, vestibular and proprioceptive input on the postural stability in a large cohort of cerebellar patients with DBN, in comparison to healthy age-matched control subjects. Methods Oculomotor (nystagmus, smooth pursuit eye movements) and postural (postural sway speed) parameters were recorded and related to each other and volumetric changes of the cerebellum (voxel-based morphometry, SPM). Results Twenty-seven patients showed larger postural instability in all experimental conditions. Postural sway increased with nystagmus in the eyes closed condition but not with the eyes open. Romberg’s ratio remained stable and was not different from healthy controls. Postural sway did not change with gaze position or graviceptive input. It increased with attenuated proprioceptive input and on tandem stance in both groups but Romberg’s ratio also did not differ. Cerebellar atrophy (vermal lobule VI, VIII) correlated with the severity of impaired smooth pursuit eye movements of DBN patients. Conclusions Postural ataxia of cerebellar patients with DBN cannot be explained by impaired visual feedback. Despite oscillopsia visual feedback control on cerebellar postural control seems to be preserved as postural sway was strongest on visual deprivation. The increase in postural ataxia is neither related to modulations of single components characterizing nystagmus nor to deprivation of single sensory (visual, proprioceptive) inputs usually stabilizing stance. Re-weighting of multisensory signals and/or inappropriate cerebellar motor commands might account for this postural ataxia. PMID:28056109
Agmon, Maayan; Belza, Basia; Nguyen, Huong Q; Logsdon, Rebecca G; Kelly, Valerie E
2014-01-01
Injury due to falls is a major problem among older adults. Decrements in dual-task postural control performance (simultaneously performing two tasks, at least one of which requires postural control) have been associated with an increased risk of falling. Evidence-based interventions that can be used in clinical or community settings to improve dual-task postural control may help to reduce this risk. THE AIMS OF THIS SYSTEMATIC REVIEW ARE: 1) to identify clinical or community-based interventions that improved dual-task postural control among older adults; and 2) to identify the key elements of those interventions. Studies were obtained from a search conducted through October 2013 of the following electronic databases: PubMed, CINAHL, PsycINFO, and Web of Science. Randomized and nonrandomized controlled studies examining the effects of interventions aimed at improving dual-task postural control among community-dwelling older adults were selected. All studies were evaluated based on methodological quality. Intervention characteristics including study purpose, study design, and sample size were identified, and effects of dual-task interventions on various postural control and cognitive outcomes were noted. Twenty-two studies fulfilled the selection criteria and were summarized in this review to identify characteristics of successful interventions. The ability to synthesize data was limited by the heterogeneity in participant characteristics, study designs, and outcome measures. Dual-task postural control can be modified by specific training. There was little evidence that single-task training transferred to dual-task postural control performance. Further investigation of dual-task training using standardized outcome measurements is needed.
Assessing Somatosensory Utilization during Unipedal Postural Control.
Goel, Rahul; De Dios, Yiri E; Gadd, Nichole E; Caldwell, Erin E; Peters, Brian T; Reschke, Millard F; Bloomberg, Jacob J; Oddsson, Lars I E; Mulavara, Ajitkumar P
2017-01-01
Multisensory-visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orientation with and without vision was assessed. Postural control in this test paradigm was hypothesized to utilize predominantly contributions of somatosensory information from the feet and ankle joint, with minimal vestibular input. Fourteen healthy subjects "stood" supine on their dominant leg while strapped to a backpack frame that was freely moving on air-bearings, to remove available otolith tilt cues with respect to gravity that influences postural control when standing upright. The backpack was attached through a cable to a pneumatic cylinder that provided a gravity-like load. Subjects performed three trials each with Eyes-open (EO) and Eyes-closed (EC) while loaded with 60% body weight. There was no difference in unipedal stance time (UST) across the two conditions with EC condition challenging the postural control system greater than the EO condition. Stabilogram-diffusion analysis (SDA) indicated that the critical mean square displacement was significantly different between the two conditions. Vestibular cues, both in terms of magnitude and the duration for which relevant information was available for postural control in this test paradigm, were minimized. These results support our hypothesis that maintaining unipedal stance in supine orientation without vision, minimizes vestibular contribution and thus predominantly utilizes somatosensory information for postural control.
Advantages and disadvantages of stiffness instructions when studying postural control.
Bonnet, Cédrick T
2016-05-01
To understand the maintenance of upright stance, researchers try to discover the fundamental mechanisms and attentional resources devoted to postural control and eventually to the performance of other tasks (e.g., counting in the head). During their studies, some researchers require participants to stand as steady as possible and other simply ask participants to stand naturally. Surprisingly, a clear and direct explanation of the usefulness of the steadiness requirement seems to be lacking, both in experimental and methodological discussions. Hence, the objective of the present note was to provide advantages and disadvantages of this steadiness requirement in studies of postural control. The advantages may be to study fundamental postural control, to eliminate useless postural variability, to control spurious body motions and to control the participants' thoughts. As disadvantages, this steadiness requirement only leads to study postural control in unnatural upright stance, it changes the focus of attention (internal vs. external) and the nature of postural control (unconscious vs. conscious), it increases the difficulty of a supposedly easy control task and it eliminates or reduces the opportunity to record exploratory behaviors. When looking carefully at the four advantages of the steadiness requirement, one can believe that they are, in fact, more disadvantageous than advantageous. Overall therefore, this requirement seems illegitimate and it is proposed that researchers should not use it in the study of postural control. They may use this requirement only if they search to know the limit until which participants can consciously reduce their postural sway. Copyright © 2015 Elsevier B.V. All rights reserved.
Assessing Somatosensory Utilization during Unipedal Postural Control
Goel, Rahul; De Dios, Yiri E.; Gadd, Nichole E.; Caldwell, Erin E.; Peters, Brian T.; Reschke, Millard F.; Bloomberg, Jacob J.; Oddsson, Lars I. E.; Mulavara, Ajitkumar P.
2017-01-01
Multisensory—visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orientation with and without vision was assessed. Postural control in this test paradigm was hypothesized to utilize predominantly contributions of somatosensory information from the feet and ankle joint, with minimal vestibular input. Fourteen healthy subjects “stood” supine on their dominant leg while strapped to a backpack frame that was freely moving on air-bearings, to remove available otolith tilt cues with respect to gravity that influences postural control when standing upright. The backpack was attached through a cable to a pneumatic cylinder that provided a gravity-like load. Subjects performed three trials each with Eyes-open (EO) and Eyes-closed (EC) while loaded with 60% body weight. There was no difference in unipedal stance time (UST) across the two conditions with EC condition challenging the postural control system greater than the EO condition. Stabilogram-diffusion analysis (SDA) indicated that the critical mean square displacement was significantly different between the two conditions. Vestibular cues, both in terms of magnitude and the duration for which relevant information was available for postural control in this test paradigm, were minimized. These results support our hypothesis that maintaining unipedal stance in supine orientation without vision, minimizes vestibular contribution and thus predominantly utilizes somatosensory information for postural control. PMID:28443004
Sirois-Leclerc, Geneviève; Remaud, Anthony
2017-01-01
Postural control is not a fully automatic process, but requires a certain level of attention, particularly as the difficulty of the postural task increases. This study aimed at testing whether experienced contemporary dancers, because of their specialized training involving the control of posture/balance, would present with a dual-task performance suggesting lesser attentional demands associated with dynamic postural control compared with non-dancers. Twenty dancers and 16 non-dancers performed a dynamic postural tracking task in both antero-posterior and side-to-side directions, while standing on a force platform. The postural task was performed, in turn, 1) as a stand-alone task, and concurrently with both 2) a simple reaction time task and 3) a choice reaction time task. Postural control performance was estimated through variables calculated from centre of pressure movements. Although no overall group difference was found in reaction time values, we found a better ability to control the side to side movements of the centre of pressure during the tracking task in dancers compared with non-dancers, which was dependent on the secondary task. This suggests that such increased ability is influenced by available attentional resources. PMID:28323843
Sirois-Leclerc, Geneviève; Remaud, Anthony; Bilodeau, Martin
2017-01-01
Postural control is not a fully automatic process, but requires a certain level of attention, particularly as the difficulty of the postural task increases. This study aimed at testing whether experienced contemporary dancers, because of their specialized training involving the control of posture/balance, would present with a dual-task performance suggesting lesser attentional demands associated with dynamic postural control compared with non-dancers. Twenty dancers and 16 non-dancers performed a dynamic postural tracking task in both antero-posterior and side-to-side directions, while standing on a force platform. The postural task was performed, in turn, 1) as a stand-alone task, and concurrently with both 2) a simple reaction time task and 3) a choice reaction time task. Postural control performance was estimated through variables calculated from centre of pressure movements. Although no overall group difference was found in reaction time values, we found a better ability to control the side to side movements of the centre of pressure during the tracking task in dancers compared with non-dancers, which was dependent on the secondary task. This suggests that such increased ability is influenced by available attentional resources.
Posture alteration as a measure to accommodate uneven ground in able-bodied gait
Blickhan, Reinhard; Muller, Roy; Rode, Christian
2017-01-01
Though the effects of imposed trunk posture on human walking have been studied, less is known about such locomotion while accommodating changes in ground level. For twelve able participants, we analyzed kinematic parameters mainly at touchdown and toe-off in walking across a 10-cm visible drop in ground level (level step, pre-perturbation step, step-down, step-up) with three postures (regular erect, ~30° and ~50° of trunk flexion from the vertical). Two-way repeated measures ANOVAs revealed step-specific effects of posture on the kinematic behavior of gait mostly at toe-off of the pre-perturbation step and the step-down as well as at touchdown of the step-up. In preparation to step-down, with increasing trunk flexion the discrepancy in hip−center of pressure distance, i.e. effective leg length, (shorter at toe-off versus touchdown), compared with level steps increased largely due to a greater knee flexion at toe-off. Participants rotated their trunk backwards during step-down (2- to 3-fold backwards rotation compared with level steps regardless of trunk posture) likely to control the angular momentum of their whole body. The more pronounced trunk backwards rotation in trunk-flexed walking contributed to the observed elevated center of mass (CoM) trajectories during the step-down which may have facilitated drop negotiation. Able-bodied individuals were found to recover almost all assessed kinematic parameters comprising the vertical position of the CoM, effective leg length and angle as well as hip, knee and ankle joint angles at the end of the step-up, suggesting an adaptive capacity and hence a robustness of human walking with respect to imposed trunk orientations. Our findings may provide clinicians with insight into a kinematic interaction between posture and locomotion in uneven ground. Moreover, a backward rotation of the trunk for negotiating step-down may be incorporated into exercise-based interventions to enhance gait stability in individuals who exhibit trunk-flexed postures during walking. PMID:29281712
Postural Control in Children with Autism.
ERIC Educational Resources Information Center
Kohen-Raz, Reuven; And Others
1992-01-01
Postural control was evaluated in 91 autistic, 166 normal, and 18 mentally retarded children using a computerized posturographic procedure. In comparison to normal children, the autistic subjects were less likely to exhibit age-related changes in postural performance, and postures were more variable and less stable. (Author/JDD)
Inadequate interaction between open- and closed-loop postural control in phobic postural vertigo.
Wuehr, M; Pradhan, C; Novozhilov, S; Krafczyk, S; Brandt, T; Jahn, K; Schniepp, R
2013-05-01
Phobic postural vertigo (PPV) is characterized by a subjective dizziness and postural imbalance. Changes in postural control strategy may cause the disturbed postural performance in PPV. A better understanding of the mechanisms behind this change in strategy is required to improve the diagnostic tools and therapeutic options for this prevalent disorder. Here we apply stabilogram diffusion analysis (SDA) to examine the characteristics and modes of interaction of open- and closed-loop processes that make up the postural control scheme in PPV. Twenty patients with PPV and 20 age-matched healthy controls were recorded on a stabilometer platform with eyes open and with eyes closed. Spatio-temporal changes of the center of pressure (CoP) displacement were analyzed by means of SDA and complementary CoP amplitude measures. (1) Open-loop control mechanisms in PPV were disturbed because of a higher diffusion activity (p < 0.001). (2) The interaction of open- and closed-loop processes was altered in that the sensory feedback threshold of the system was lowered (p = 0.010). These two changes were comparable to those observed in healthy subjects during more demanding balance conditions such as standing with eyes closed. These data indicate that subjective imbalance in PPV is associated with characteristic changes in the coordination of open- and closed-loop mechanisms of postural control. Patients with PPV use sensory feedback inadequately during undisturbed stance, and this impairs postural performance. These changes are compatible with higher levels of anti-gravity muscle activity and co-contraction during the conscious concentration on control of postural stability.
Illusory visual motion stimulus elicits postural sway in migraine patients
Imaizumi, Shu; Honma, Motoyasu; Hibino, Haruo; Koyama, Shinichi
2015-01-01
Although the perception of visual motion modulates postural control, it is unknown whether illusory visual motion elicits postural sway. The present study examined the effect of illusory motion on postural sway in patients with migraine, who tend to be sensitive to it. We measured postural sway for both migraine patients and controls while they viewed static visual stimuli with and without illusory motion. The participants’ postural sway was measured when they closed their eyes either immediately after (Experiment 1), or 30 s after (Experiment 2), viewing the stimuli. The patients swayed more than the controls when they closed their eyes immediately after viewing the illusory motion (Experiment 1), and they swayed less than the controls when they closed their eyes 30 s after viewing it (Experiment 2). These results suggest that static visual stimuli with illusory motion can induce postural sway that may last for at least 30 s in patients with migraine. PMID:25972832
Postural control in restless legs syndrome with medication intervention using pramipexole.
Ahlgrén-Rimpiläinen, Aulikki; Lauerma, Hannu; Kähkönen, Seppo; Aalto, Heikki; Tuisku, Katinka; Holi, Matti; Pyykkö, Ilmari; Rimpiläinen, Ilpo
2014-02-01
Central dopamine regulation is involved in postural control and in the pathophysiology of restless legs syndrome (RLS) and Parkinson's disease (PD). Postural control abnormalities have been detected in PD, but there are no earlier studies with regard to RLS and postural control. Computerized force platform posturography was applied to measure the shift and the velocity (CPFV) of center point of forces (CPF) with eyes open (EO) and eyes closed (EC) in controls (n = 12) and prior and after a single day intervention with pramipexole in RLS subjects (n = 12). CPFV (EO) was significantly lower in the RLS group (p < 0.05) than in controls. After pramipexole intake, the difference disappeared and the subjective symptom severity diminished. Pramipexole did not significantly influence CPFV (EC) or CPF shift direction. Subjects with RLS used extensively visual mechanisms to control vestibule-spinal reflexes to improve or compensate the postural stability. Further research is needed to clarify altered feedback in the central nervous system and involvement of dopamine and vision in the postural control in RLS.
Memari, Amir Hossein; Ghanouni, Parisa; Shayestehfar, Monir; Ghaheri, Banafsheh
2014-01-01
Context: Motor impairments in individuals with autism spectrum disorder (ASD) have been frequently reported. In this review, we narrow our focus on postural control impairments to summarize current literature for patterns, underlying mechanisms, and determinants of posture in this population. Evidence Acquisition: A literature search was conducted through Medline, ISI web of Knowledge, Scopus and Google Scholar to include studies between 1992 and February 2013. Results: Individuals with ASD have problems in maintaining postural control in infancy that well persists into later years. However, the patterns and underlying mechanisms are still unclear. Conclusions: Examining postural control as an endophenotype or early diagnostic marker of autism is a conceptual premise which should be considered in future investigations. At the end of the review, methodological recommendations on the assessment of postural control have also been provided. PMID:25520765
Postural control and balance self-efficacy in women with fibromyalgia: are there differences?
Muto, L H A; Sauer, J F; Yuan, S L K; Sousa, A; Mango, P C; Marques, A P
2015-04-01
Fibromyalgia (FM) is a rheumatic disease characterized by chronic widespread pain and symptoms such as fatigue, sleep disturbances, cognitive difficulties, and depression. Postural instability is a debilitating disorder increasingly recognized as part of FM. To assess and compare postural control and balance self-efficacy in women with and without FM and verify the association of these variables with pain, symptom severity, and strength. Case-control study Physiotherapeutic Clinical Research and Electromyography Laboratory Department of Physical Therapy, Speech Therapy, and Occupational Therapy, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil. Case-control study of 117 women ranging from age 35 to 60 years. Of these, 67 had FM. Posture control was assessed with the modified clinical test of sensory interaction on balance with patients in forceplates, balance self-efficacy with the Activities-specific Balance Confidence Scale, pain severity with the Visual Analog Scale, tender point pain threshold with digital algometry, symptom severity with the fibromyalgia impact questionnaire, and lower limb strength with a dynamometer. Individuals with FM had impaired postural control showing increased speed of oscillation of the center of gravity (P=0.004) and decreased balance self-efficacy (P<0.001). They had moderate to excellent correlations of balance self-efficacy with pain (r=0.7, P<0.01), muscle strength (r=0.52, P<0.01), and symptom severity (r=0.78, P<0.10) compared with the control group. Correlation of postural control with the same variables was weak. Patients with FM have impaired postural control and low balance self-efficacy that are associated with pain, muscle strength, and symptom severity. Postural control and balance self-efficacy needs to be assessed in patients with FM and the treatment goals should be the improvement of postural control and balance self-efficacy.
Age Related Decline in Postural Control Mechanisms.
ERIC Educational Resources Information Center
Stelmach, George E.; And Others
1989-01-01
Studied voluntary and reflexive mechanisms of postural control of young (N=8) and elderly (N=8) adults through measurement of reflexive reactions to large-fast and small-slow ankle rotation postural disturbances. Found reflexive mechanisms relatively intact for both groups although elderly appeared more disadvantaged when posture was under the…
Functional Neuroanatomy for Posture and Gait Control
Takakusaki, Kaoru
2017-01-01
Here we argue functional neuroanatomy for posture-gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture-gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending pathways from the brainstem to the spinal cord. Particularly, reticulospinal pathways arising from the lateral part of the mesopontine tegmentum and spinal locomotor network contribute to this process. On the other hand, walking in unfamiliar circumstance requires cognitive process of postural control, which depends on knowledges of self-body, such as body schema and body motion in space. The cognitive information is produced at the temporoparietal association cortex, and is fundamental to sustention of vertical posture and construction of motor programs. The programs in the motor cortical areas run to execute anticipatory postural adjustment that is optimal for achievement of goal-directed movements. The basal ganglia and cerebellum may affect both the automatic and cognitive processes of posturegait control through reciprocal connections with the brainstem and cerebral cortex, respectively. Consequently, impairments in cognitive function by damages in the cerebral cortex, basal ganglia and cerebellum may disturb posture-gait control, resulting in falling. PMID:28122432
Madeleine, Pascal; Nielsen, Mogens; Arendt-Nielsen, Lars
2011-04-01
The ability to maintain balance is diminished in patients suffering from a whiplash injury. The aim of this study was to characterize the variability of postural control in patients with chronic whiplash injury. For this purpose, we analyzed static postural recordings from 11 whiplash patients and sex- and age-matched asymptomatic healthy volunteers. Static postural recordings were performed randomly with eyes open, eyes closed, and eyes open and speaking (dual task). Spatial-temporal changes of the center of pressure displacement were analyzed to assess the amplitude and structure of postural variability by computing, respectively, the standard deviation/coefficient of variation and sample entropy/fractal dimension of the time series. The amplitude of variability of the center of pressure was larger among whiplash patients compared with controls (P<0.001) while fractal dimension was lower (P<0.001). The sample entropy increased during both eyes closed and a simple dual task compared with eyes open (P<0.05). The analysis of postural control dynamics revealed increased amplitude of postural variability and decreased signal dimensionality related to the deficit in postural stability found in whiplash patients. Linear and nonlinear analyses can thus be helpful for the quantification of postural control in normal and pathological conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.
Brincks, John; Andersen, Elisabeth Due; Sørensen, Henrik; Dalgas, Ulrik
2017-01-01
It is relevant to understand the possible influence of impaired postural balance on walking performance in multiple sclerosis (MS) gait rehabilitation. We expected associations between impaired postural balance and complex walking performance in mildly disabled persons with MS, but not in healthy controls. Thirteen persons with MS (Expanded Disability Status Scale = 2.5) and 13 healthy controls' walking performance were measured at fast walking speed, Timed Up & Go and Timed 25 Feet Walking. Postural balance was measured by stabilometry, 95% confidence ellipse sway area and sway velocity. Except from sway velocity (p = 0.07), significant differences were found between persons with MS and healthy controls in postural balance and walking. Significant correlations were observed between sway area and Timed Up & Go (r = 0.67) and fastest safe walking speed (r = -0.63) in persons with MS but not in healthy controls (r = 0.52 and r = 0.24, respectively). No other significant correlations were observed between postural balance and walking performance in neither persons with MS nor healthy controls. Findings add to the understanding of postural balance and walking in persons with MS, as impaired postural balance was related to complex walking performance. Exercises addressing impaired postural balance are encouraged in early MS gait rehabilitation.
Iyengar, Y R; Vijayakumar, K; Abraham, J M; Misri, Z K; Suresh, B V; Unnikrishnan, B
2014-01-01
This study was executed to find out correlation between postural alignment in sitting measured through photogrammetry and postural control in sitting following stroke. A cross-sectional study with convenient sampling consisting of 45 subjects with acute and sub-acute stroke. Postural alignment in sitting was measured through photogrammetry and relevant angles were obtained through software MB Ruler (version 5.0). Seated postural control was measured through Function in Sitting Test (FIST). Correlation was obtained using Spearman's Rank Correlation co-efficient in SPSS software (version 17.0). Moderate positive correlation (r = 0.385; p < 0.01) was found between angle of lordosis and angle between acromion, lateral epicondyle and point between radius and ulna. Strong negative correlation (r = -0.435; p < 0.01) was found between cranio-vertebral angle and kyphosis. FIST showed moderate positive correlation (r = 0.3446; p < 0.05) with cranio-vertebral angle and strong positive correlation (r = 0.4336; p < 0.01) with Brunnstrom's stage of recovery in upper extremity. Degree of forward head posture in sitting correlates directly with seated postural control and inversely with degree of kyphosis in sitting post-stroke. Postural control in sitting post-stroke is directly related with Brunnstrom's stage of recovery in affected upper extremity in sitting.
Static postural control among school-aged youth with Down syndrome: A systematic review.
Maïano, Christophe; Hue, Olivier; Tracey, Danielle; Lepage, Geneviève; Morin, Alexandre J S; Moullec, Grégory
2018-05-01
Youth with Down syndrome are characterized by motor delays when compared to typically developing (TD) youth, which may be explained by a lower postural control or reduced postural tone. In the present article, we summarize research comparing the static postural control, assessed by posturography, between youth with Down syndrome and TD youth. A systematic literature search was performed in 10 databases and seven studies, published between 2001 and 2017, met our inclusion criteria. Based on the present reviewed findings, it is impossible to conclude that children with Down syndrome present significantly lower static postural control compared to TD children. In contrast, findings showed that adolescents with Down syndrome tended to present significantly lower static postural control compared to TD adolescents when visual and plantar cutaneous inputs were disturbed separately or simultaneously. The present findings should be interpreted with caution given the limitations of the small number of reviewed studies. Therefore, the static postural control among youth with Down syndrome should be further investigated in future rigorous studies examining the contribution of a range of sensory information. Copyright © 2018 Elsevier B.V. All rights reserved.
Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects
Paillard, Thierry; Noé, Frédéric
2015-01-01
The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them. PMID:26640800
Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects.
Paillard, Thierry; Noé, Frédéric
2015-01-01
The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them.
Repositioning the knee joint in human body FE models using a graphics-based technique.
Jani, Dhaval; Chawla, Anoop; Mukherjee, Sudipto; Goyal, Rahul; Vusirikala, Nataraju; Jayaraman, Suresh
2012-01-01
Human body finite element models (FE-HBMs) are available in standard occupant or pedestrian postures. There is a need to have FE-HBMs in the same posture as a crash victim or to be configured in varying postures. Developing FE models for all possible positions is not practically viable. The current work aims at obtaining a posture-specific human lower extremity model by reconfiguring an existing one. A graphics-based technique was developed to reposition the lower extremity of an FE-HBM by specifying the flexion-extension angle. Elements of the model were segregated into rigid (bones) and deformable components (soft tissues). The bones were rotated about the flexion-extension axis followed by rotation about the longitudinal axis to capture the twisting of the tibia. The desired knee joint movement was thus achieved. Geometric heuristics were then used to reposition the skin. A mapping defined over the space between bones and the skin was used to regenerate the soft tissues. Mesh smoothing was then done to augment mesh quality. The developed method permits control over the kinematics of the joint and maintains the initial mesh quality of the model. For some critical areas (in the joint vicinity) where element distortion is large, mesh smoothing is done to improve mesh quality. A method to reposition the knee joint of a human body FE model was developed. Repositions of a model from 9 degrees of flexion to 90 degrees of flexion in just a few seconds without subjective interventions was demonstrated. Because the mesh quality of the repositioned model was maintained to a predefined level (typically to the level of a well-made model in the initial configuration), the model was suitable for subsequent simulations.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Shih, Ching-Tien; Chiang, Ming-Shan
2010-01-01
This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture) and a Wii Balance Board with a newly developed standing posture detection program (i.e. a new software program turns a Wii Balance Board into a precise standing posture detector). The…
Gallea, Cecile; Ewenczyk, Claire; Degos, Bertrand; Welter, Marie-Laure; Grabli, David; Leu-Semenescu, Smaranda; Valabregue, Romain; Berroir, Pierre; Yahia-Cherif, Lydia; Bertasi, Eric; Fernandez-Vidal, Sara; Bardinet, Eric; Roze, Emmanuel; Benali, Habib; Poupon, Cyril; François, Chantal; Arnulf, Isabelle; Lehéricy, Stéphane; Vidailhet, Marie
2017-05-01
The objective of this study was to investigate pedunculopontine nucleus network dysfunctions that mediate impaired postural control and sleep disorder in Parkinson's disease. We examined (1) Parkinson's disease patients with impaired postural control and rapid eye movement sleep behavior disorder (further abbreviated as sleep disorder), (2) Parkinson's disease patients with sleep disorder only, (3) Parkinson's disease patients with neither impaired postural control nor sleep disorder, and (4) healthy volunteers. We assessed postural control with clinical scores and biomechanical recordings during gait initiation. Participants had video polysomnography, daytime sleepiness self-evaluation, and resting-state functional MRIs. Patients with impaired postural control and sleep disorder had longer duration of anticipatory postural adjustments during gait initiation and decreased functional connectivity between the pedunculopontine nucleus and the supplementary motor area in the locomotor network that correlated negatively with the duration of anticipatory postural adjustments. Both groups of patients with sleep disorder had decreased functional connectivity between the pedunculopontine nucleus and the anterior cingulate cortex in the arousal network that correlated with daytime sleepiness. The degree of dysfunction in the arousal network was related to the degree of connectivity in the locomotor network in all patients with sleep disorder, but not in patients without sleep disorder or healthy volunteers. These results shed light on the functional neuroanatomy of pedunculopontine nucleus networks supporting the clinical manifestation and the interdependence between sleep and postural control impairments in Parkinson's disease. © 2016 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
Donker, Stella F.; Roerdink, Melvyn; Greven, An J.
2007-01-01
The influence of attention on the dynamical structure of postural sway was examined in 30 healthy young adults by manipulating the focus of attention. In line with the proposed direct relation between the amount of attention invested in postural control and regularity of center-of-pressure (COP) time series, we hypothesized that: (1) increasing cognitive involvement in postural control (i.e., creating an internal focus by increasing task difficulty through visual deprivation) increases COP regularity, and (2) withdrawing attention from postural control (i.e., creating an external focus by performing a cognitive dual task) decreases COP regularity. We quantified COP dynamics in terms of sample entropy (regularity), standard deviation (variability), sway-path length of the normalized posturogram (curviness), largest Lyapunov exponent (local stability), correlation dimension (dimensionality) and scaling exponent (scaling behavior). Consistent with hypothesis 1, standing with eyes closed significantly increased COP regularity. Furthermore, variability increased and local stability decreased, implying ineffective postural control. Conversely, and in line with hypothesis 2, performing a cognitive dual task while standing with eyes closed led to greater irregularity and smaller variability, suggesting an increase in the “efficiency, or “automaticity” of postural control”. In conclusion, these findings not only indicate that regularity of COP trajectories is positively related to the amount of attention invested in postural control, but also substantiate that in certain situations an increased internal focus may in fact be detrimental to postural control. PMID:17401553
Dusing, Stacey C; Izzo, Theresa; Thacker, Leroy R; Galloway, James Cole
2014-10-01
Perception-action theory suggests a cyclical relationship between movement and perceptual information. In this case series, changes in postural complexity were used to quantify an infant's action and perception during the development of early motor behaviors. Three infants born preterm with periventricular white matter injury were included. Longitudinal changes in postural complexity (approximate entropy of the center of pressure), head control, reaching, and global development, measured with the Test of Infant Motor Performance and the Bayley Scales of Infant and Toddler Development, were assessed every 0.5 to 3 months during the first year of life. All 3 infants demonstrated altered postural complexity and developmental delays. However, the timing of the altered postural complexity and the type of delays varied among the infants. For infant 1, reduced postural complexity or limited action while learning to control her head in the midline position may have contributed to her motor delay. However, her ability to adapt her postural complexity eventually may have supported her ability to learn from her environment, as reflected in her relative cognitive strength. For infant 2, limited early postural complexity may have negatively affected his learning through action, resulting in cognitive delay. For infant 3, an increase in postural complexity above typical levels was associated with declining neurological status. Postural complexity is proposed as a measure of perception and action in the postural control system during the development of early behaviors. An optimal, intermediate level of postural complexity supports the use of a variety of postural control strategies and enhances the perception-action cycle. Either excessive or reduced postural complexity may contribute to developmental delays in infants born preterm with white matter injury. © 2014 American Physical Therapy Association.
Agmon, Maayan; Belza, Basia; Nguyen, Huong Q; Logsdon, Rebecca G; Kelly, Valerie E
2014-01-01
Background Injury due to falls is a major problem among older adults. Decrements in dual-task postural control performance (simultaneously performing two tasks, at least one of which requires postural control) have been associated with an increased risk of falling. Evidence-based interventions that can be used in clinical or community settings to improve dual-task postural control may help to reduce this risk. Purpose The aims of this systematic review are: 1) to identify clinical or community-based interventions that improved dual-task postural control among older adults; and 2) to identify the key elements of those interventions. Data sources Studies were obtained from a search conducted through October 2013 of the following electronic databases: PubMed, CINAHL, PsycINFO, and Web of Science. Study selection Randomized and nonrandomized controlled studies examining the effects of interventions aimed at improving dual-task postural control among community-dwelling older adults were selected. Data extraction All studies were evaluated based on methodological quality. Intervention characteristics including study purpose, study design, and sample size were identified, and effects of dual-task interventions on various postural control and cognitive outcomes were noted. Data synthesis Twenty-two studies fulfilled the selection criteria and were summarized in this review to identify characteristics of successful interventions. Limitations The ability to synthesize data was limited by the heterogeneity in participant characteristics, study designs, and outcome measures. Conclusion Dual-task postural control can be modified by specific training. There was little evidence that single-task training transferred to dual-task postural control performance. Further investigation of dual-task training using standardized outcome measurements is needed. PMID:24741296
Saadat, Z; Rojhani-Shirazi, Z; Abbasi, L
2017-12-01
peripheral neuropathy is the most common problem of diabetes. Neuropathy leads to lower extremity somatosensory deficits and postural instability in these patients. However, there are not sufficient evidences for improving postural control in these patients. To investigate the effects of transcutaneous electrical nerve stimulation (TENS) on postural control in patients with diabetic neuropathy. Twenty eighth patients with diabetic neuropathy (40-55 Y/O) participated in this RCT study. Fourteen patients in case group received TENS and sham TENS was used for control group. Force plate platform was used to extract sway velocity and COP displacement parameters for postural control evaluation. The mean sway velocity and center of pressure displacement along the mediolateral and anteroposterior axes were not significantly different between two groups after TENS application (p>0.05). Application of 5min high frequency TENS on the knee joint could not improve postural control in patients with diabetic neuropathy. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Singh, Neeraj Kumar; Snoussi, Hichem; Hewson, David; Duchêne, Jacques
The aim of this study was to develop a method to detecting the critical point interval (CPI) when sensory feedback is used as part of a closed-loop postural control strategy. Postural balance was evaluated using centre of pressure (COP) displacements from a force plate for 17 control and 10 elderly subjects under eyes open, eyes closed, and vibration conditions. A modified local-maximum-modulus wavelet transform analysis using the power spectrum of COP signals was used to calculate CPI. Lower CPI values indicate increased closed-loop postural control with a quicker response to sensory input. Such a strategy requires greater energy expenditure due to the repeated muscular interventions to remain stable. The CPI for elderly occurred significantly quicker than for controls, indicating tighter control of posture. Similar results were observed for eyes closed and vibration conditions. The CPI parameter can be used to detect differences in postural control due to ageing.
The Role of Neuromuscular Changes in Aging and Knee Osteoarthritis on Dynamic Postural Control
Takacs, Judit; Carpenter, Mark G.; Garland, S. Jayne; Hunt, Michael A.
2013-01-01
Knee osteoarthritis (OA) is a chronic joint condition, with 30% of those over the age of 75 exhibiting severe radiographic disease. Nearly 50% of those with knee OA have experienced a fall in the past year. Falls are a considerable public health concern, with a high risk of serious injury and a significant socioeconomic impact. The ability to defend against a fall relies on adequate dynamic postural control, and alterations in dynamic postural control are seen with normal aging. Neuromuscular changes associated with aging may be responsible for some of these alterations in dynamic postural control. Even greater neuromuscular deficits, which may impact dynamic postural control and the ability to defend against a fall, are seen in people with knee OA. There is little evidence to date on how knee OA affects the ability to respond to and defend against falls and the neuromuscular changes that contribute to balance deficits. As a result, this review will: summarize the key characteristics of postural responses to an external perturbation, highlight the changes in dynamic postural control seen with normal aging, review the neuromuscular changes associated with aging that have known and possible effects on dynamic postural control, and summarize the neuromuscular changes and balance problems in knee OA. Future research to better understand the role of neuromuscular changes in knee OA and their effect on dynamic postural control will be suggested. Such an understanding is critical to the successful creation and implementation of fall prevention and treatment programs, in order to reduce the excessive risk of falling in knee OA. PMID:23696951
Drijkoningen, David; Leunissen, Inge; Caeyenberghs, Karen; Hoogkamer, Wouter; Sunaert, Stefan; Duysens, Jacques; Swinnen, Stephan P
2015-12-01
Many patients with traumatic brain injury (TBI) suffer from postural control impairments that can profoundly affect daily life. The cerebellum and brain stem are crucial for the neural control of posture and have been shown to be vulnerable to primary and secondary structural consequences of TBI. The aim of this study was to investigate whether morphometric differences in the brain stem and cerebellum can account for impairments in static and dynamic postural control in TBI. TBI patients (n = 18) and healthy controls (n = 30) completed three challenging postural control tasks on the EquiTest® system (Neurocom). Infratentorial grey matter (GM) and white matter (WM) volumes were analyzed with cerebellum-optimized voxel-based morphometry using the spatially unbiased infratentorial toolbox. Volume loss in TBI patients was revealed in global cerebellar GM, global infratentorial WM, middle cerebellar peduncles, pons and midbrain. In the TBI group and across both groups, lower postural control performance was associated with reduced GM volume in the vermal/paravermal regions of lobules I-IV, V and VI. Moreover, across all participants, worse postural control performance was associated with lower WM volume in the pons, medulla, midbrain, superior and middle cerebellar peduncles and cerebellum. This is the first study in TBI patients to demonstrate an association between postural impairments and reduced volume in specific infratentorial brain areas. Volumetric measures of the brain stem and cerebellum may be valuable prognostic markers of the chronic neural pathology, which complicates rehabilitation of postural control in TBI. © 2015 Wiley Periodicals, Inc.
Running over rough terrain reveals limb control for intrinsic stability.
Daley, Monica A; Biewener, Andrew A
2006-10-17
Legged animals routinely negotiate rough, unpredictable terrain with agility and stability that outmatches any human-built machine. Yet, we know surprisingly little about how animals accomplish this. Current knowledge is largely limited to studies of steady movement. These studies have revealed fundamental mechanisms used by terrestrial animals for steady locomotion. However, it is unclear whether these models provide an appropriate framework for the neuromuscular and mechanical strategies used to achieve dynamic stability over rough terrain. Perturbation experiments shed light on this issue, revealing the interplay between mechanics and neuromuscular control. We measured limb mechanics of helmeted guinea fowl (Numida meleagris) running over an unexpected drop in terrain, comparing their response to predictions of the mass-spring running model. Adjustment of limb contact angle explains 80% of the variation in stance-phase limb loading following the perturbation. Surprisingly, although limb stiffness varies dramatically, it does not influence the response. This result agrees with a mass-spring model, although it differs from previous findings on humans running over surfaces of varying compliance. However, guinea fowl sometimes deviate from mass-spring dynamics through posture-dependent work performance of the limb, leading to substantial energy absorption following the perturbation. This posture-dependent actuation allows the animal to absorb energy and maintain desired velocity on a sudden substrate drop. Thus, posture-dependent work performance of the limb provides inherent velocity control over rough terrain. These findings highlight how simple mechanical models extend to unsteady conditions, providing fundamental insights into neuromuscular control of movement and the design of dynamically stable legged robots and prosthetic devices.
Silvani, Alessandro; Calandra-Buonaura, Giovanna; Johnson, Blair D.; van Helmond, Noud; Barletta, Giorgio; Cecere, Anna G.; Joyner, Michael J.; Cortelli, Pietro
2017-01-01
The upright posture strengthens the coupling between heart period (HP) and systolic arterial pressure (SAP) consistently with a greater contribution of the arterial baroreflex to cardiac control, while paradoxically decreasing cardiac baroreflex sensitivity (cBRS). To investigate the physiological mechanisms that mediate the coupling between HP and SAP in response to different postures, we analyzed the cross-correlation functions between low-frequency HP and SAP fluctuations and estimated cBRS with the sequence technique in healthy male subjects during passive head-up tilt test (HUTT, n = 58), during supine wakefulness, supine slow-wave sleep (SWS), and in the seated and active standing positions (n = 8), and during progressive loss of 1 L blood (n = 8) to decrease central venous pressure in the supine position. HUTT, SWS, the seated, and the standing positions, but not blood loss, entailed significant increases in the positive correlation between HP and the previous SAP values, which is the expected result of arterial baroreflex control, compared with baseline recordings in the supine position during wakefulness. These increases were mirrored by increases in the low-frequency variability of SAP in each condition but SWS. cBRS decreased significantly during HUTT, in the seated and standing positions, and after blood loss compared with baseline during wakefulness. These decreases were mirrored by decreases in the RMSSD index, which reflects cardiac vagal modulation. These results support the view that the cBRS decrease associated with the upright posture is a byproduct of decreased cardiac vagal modulation, triggered by the arterial baroreflex in response to central hypovolemia. Conversely, the greater baroreflex contribution to cardiac control associated with upright posture may be explained, at least in part, by enhanced fluctuations of SAP, which elicit a more effective entrainment of HP fluctuations by the arterial baroreflex. These SAP fluctuations may result from enhanced fluctuations of vascular resistance specific to the upright posture, and not be driven by the accompanying central hypovolemia. PMID:28396638
Silvani, Alessandro; Calandra-Buonaura, Giovanna; Johnson, Blair D; van Helmond, Noud; Barletta, Giorgio; Cecere, Anna G; Joyner, Michael J; Cortelli, Pietro
2017-01-01
The upright posture strengthens the coupling between heart period (HP) and systolic arterial pressure (SAP) consistently with a greater contribution of the arterial baroreflex to cardiac control, while paradoxically decreasing cardiac baroreflex sensitivity (cBRS). To investigate the physiological mechanisms that mediate the coupling between HP and SAP in response to different postures, we analyzed the cross-correlation functions between low-frequency HP and SAP fluctuations and estimated cBRS with the sequence technique in healthy male subjects during passive head-up tilt test (HUTT, n = 58), during supine wakefulness, supine slow-wave sleep (SWS), and in the seated and active standing positions ( n = 8), and during progressive loss of 1 L blood ( n = 8) to decrease central venous pressure in the supine position. HUTT, SWS, the seated, and the standing positions, but not blood loss, entailed significant increases in the positive correlation between HP and the previous SAP values, which is the expected result of arterial baroreflex control, compared with baseline recordings in the supine position during wakefulness. These increases were mirrored by increases in the low-frequency variability of SAP in each condition but SWS. cBRS decreased significantly during HUTT, in the seated and standing positions, and after blood loss compared with baseline during wakefulness. These decreases were mirrored by decreases in the RMSSD index, which reflects cardiac vagal modulation. These results support the view that the cBRS decrease associated with the upright posture is a byproduct of decreased cardiac vagal modulation, triggered by the arterial baroreflex in response to central hypovolemia. Conversely, the greater baroreflex contribution to cardiac control associated with upright posture may be explained, at least in part, by enhanced fluctuations of SAP, which elicit a more effective entrainment of HP fluctuations by the arterial baroreflex. These SAP fluctuations may result from enhanced fluctuations of vascular resistance specific to the upright posture, and not be driven by the accompanying central hypovolemia.
Sunwook, Kim; Nussbaum, Maury A; Quandt, Sara A; Laurienti, Paul J; Arcury, Thomas A
2016-02-01
The aim of the study was to assess potential chronic effects of pesticide exposure on postural control, by examining postural balance of farmworkers and non-farmworkers diverse self-reported lifetime exposures. Balance was assessed during quiet upright stance under four experimental conditions (2 visual × 2 cognitive difficulty). Significant differences in baseline balance performance (eyes open without cognitive task) between occupational groups were apparent in postural sway complexity. When adding a cognitive task to the eyes open condition, the influence of lifetime exposure on complexity ratios appeared different between occupational groups. Removing visual information revealed a negative association of lifetime exposure with complexity ratios. Farmworkers and non-farmworkers may use different postural control strategies even when controlling for the level of lifetime pesticide exposure. Long-term exposure can affect somatosensory/vestibular sensory systems and the central processing of sensory information for postural control.
Sunwook, Kim; Nussbaum, Maury A.; Quandt, Sara A.; Laurienti, Paul J.; Arcury, Thomas A.
2015-01-01
Objective Assess potential chronic effects of pesticide exposure on postural control, by examining postural balance of farmworkers and non-farmworkers diverse self-reported lifetime exposures. Methods Balance was assessed during quiet upright stance under four experimental conditions (2 visual × 2 cognitive difficulty). Results Significant differences in baseline balance performance (eyes open without cognitive task) between occupational groups were apparent in postural sway complexity. When adding a cognitive task to the eyes open condition, the influence of lifetime exposure on complexity ratios appeared different between occupational groups. Removing visual information revealed a negative association of lifetime exposure with complexity ratios. Conclusions Farmworkers and non-farmworkers may use different postural control strategies even when controlling for the level of lifetime pesticide exposure. Long-term exposure can affect somatosensory/vestibular sensory systems and the central processing of sensory information for postural control. PMID:26849257
Huisinga, Jessie M; Filipi, Mary L; Stergiou, Nicholas
2012-01-01
Postural disturbances are one of the first reported symptoms in patients with Multiple Sclerosis (MS). The purpose of this study was to investigate the effect of supervised resistance training on postural control in MS patients. Postural control was assessed using amount of sway variability [Root Mean Square (RMS)] and temporal structure of sway variability [Lyapunov Exponent (LyE)] from 15 MS patients. Posture was evaluated before and after completion of three months of resistance training. There were significant differences between MS patients pretraining and healthy controls for both LyE (p = .000) and RMS (p = .002), but no differences between groups after training. There was a significant decrease in RMS (p = .025) and a significant increase in LyE (p = .049) for MS patients pre- to posttraining. The findings suggested that postural control of MS patients could be affected by a supervised resistance training intervention.
Postural control assessment in students with normal hearing and sensorineural hearing loss.
Melo, Renato de Souza; Lemos, Andrea; Macky, Carla Fabiana da Silva Toscano; Raposo, Maria Cristina Falcão; Ferraz, Karla Mônica
2015-01-01
Children with sensorineural hearing loss can present with instabilities in postural control, possibly as a consequence of hypoactivity of their vestibular system due to internal ear injury. To assess postural control stability in students with normal hearing (i.e., listeners) and with sensorineural hearing loss, and to compare data between groups, considering gender and age. This cross-sectional study evaluated the postural control of 96 students, 48 listeners and 48 with sensorineural hearing loss, aged between 7 and 18 years, of both genders, through the Balance Error Scoring Systems scale. This tool assesses postural control in two sensory conditions: stable surface and unstable surface. For statistical data analysis between groups, the Wilcoxon test for paired samples was used. Students with hearing loss showed more instability in postural control than those with normal hearing, with significant differences between groups (stable surface, unstable surface) (p<0.001). Students with sensorineural hearing loss showed greater instability in the postural control compared to normal hearing students of the same gender and age. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Wang, Zheng; Hallac, Rami R; Conroy, Kaitlin C; White, Stormi P; Kane, Alex A; Collinsworth, Amy L; Sweeney, John A; Mosconi, Matthew W
2016-01-01
Increased postural sway has been repeatedly documented in children with autism spectrum disorder (ASD). Characterizing the control processes underlying this deficit, including postural orientation and equilibrium, may provide key insights into neurophysiological mechanisms associated with ASD. Postural orientation refers to children's ability to actively align their trunk and head with respect to their base of support, while postural equilibrium is an active process whereby children coordinate ankle dorsi-/plantar-flexion and hip abduction/adduction movements to stabilize their upper body. Dynamic engagement of each of these control processes is important for maintaining postural stability, though neither postural orientation nor equilibrium has been studied in ASD. Twenty-two children with ASD and 21 age and performance IQ-matched typically developing (TD) controls completed three standing tests. During static stance, participants were instructed to stand as still as possible. During dynamic stances, participants swayed at a comfortable speed and magnitude in either anterior-posterior (AP) or mediolateral (ML) directions. The center of pressure (COP) standard deviation and trajectory length were examined to determine if children with ASD showed increased postural sway. Postural orientation was assessed using a novel virtual time-to-contact (VTC) approach that characterized spatiotemporal dimensions of children's postural sway (i.e., body alignment) relative to their postural limitation boundary, defined as the maximum extent to which each child could sway in each direction. Postural equilibrium was quantified by evaluating the amount of shared or mutual information of COP time series measured along the AP and ML directions. Consistent with prior studies, children with ASD showed increased postural sway during both static and dynamic stances relative to TD children. In regard to postural orientation processes, children with ASD demonstrated reduced spatial perception of their postural limitation boundary towards target directions and reduced time to correct this error during dynamic postural sways but not during static stance. Regarding postural equilibrium, they showed a compromised ability to decouple ankle dorsi-/plantar-flexion and hip abduction/adduction processes during dynamic stances. These results suggest that deficits in both postural orientation and equilibrium processes contribute to reduced postural stability in ASD. Specifically, increased postural sway in ASD appears to reflect patients' impaired perception of their body movement relative to their own postural limitation boundary as well as a reduced ability to decouple distinct ankle and hip movements to align their body during standing. Our findings that deficits in postural orientation and equilibrium are more pronounced during dynamic compared to static stances suggests that the increased demands of everyday activities in which children must dynamically shift their COP involve more severe postural control deficits in ASD relative to static stance conditions that often are studied. Systematic assessment of dynamic postural control processes in ASD may provide important insights into new treatment targets and neurodevelopmental mechanisms.
Postural Control and Gait Performance in the Diabetic Peripheral Neuropathy: A Systematic Review.
Mustapa, Amirah; Justine, Maria; Mohd Mustafah, Nadia; Jamil, Nursuriati; Manaf, Haidzir
2016-01-01
Purpose. The aim of this paper is to review the published studies on the characteristics of impairments in the postural control and gait performance in diabetic peripheral neuropathy (DPN). Methods. A review was performed by obtaining publication of all papers reporting on the postural control and gait performance in DPN from Google Scholar, Ovid, SAGE, Springerlink, Science Direct (SD), EBSCO Discovery Service, and Web of Science databases. The keywords used for searching were "postural control," "balance," "gait performance," "diabetes mellitus," and "diabetic peripheral neuropathy." Results. Total of 4,337 studies were hit in the search. 1,524 studies were screened on their titles and citations. Then, 79 studies were screened on their abstract. Only 38 studies were eligible to be selected: 17 studies on postural control and 21 studies on the gait performance. Most previous researches were found to have strong evidence of postural control impairments and noticeable gait deficits in DPN. Deterioration of somatosensory, visual, and vestibular systems with the pathologic condition of diabetes on cognitive impairment causes further instability of postural and gait performance in DPN. Conclusions. Postural instability and gait imbalance in DPN may contribute to high risk of fall incidence, especially in the geriatric population. Thus, further works are crucial to highlight this fact in the hospital based and community adults.
Nonlinear analysis of human physical activity patterns in health and disease.
Paraschiv-Ionescu, A; Buchser, E; Rutschmann, B; Aminian, K
2008-02-01
The reliable and objective assessment of chronic disease state has been and still is a very significant challenge in clinical medicine. An essential feature of human behavior related to the health status, the functional capacity, and the quality of life is the physical activity during daily life. A common way to assess physical activity is to measure the quantity of body movement. Since human activity is controlled by various factors both extrinsic and intrinsic to the body, quantitative parameters only provide a partial assessment and do not allow for a clear distinction between normal and abnormal activity. In this paper, we propose a methodology for the analysis of human activity pattern based on the definition of different physical activity time series with the appropriate analysis methods. The temporal pattern of postures, movements, and transitions between postures was quantified using fractal analysis and symbolic dynamics statistics. The derived nonlinear metrics were able to discriminate patterns of daily activity generated from healthy and chronic pain states.
Learning visuomotor transformations for gaze-control and grasping.
Hoffmann, Heiko; Schenck, Wolfram; Möller, Ralf
2005-08-01
For reaching to and grasping of an object, visual information about the object must be transformed into motor or postural commands for the arm and hand. In this paper, we present a robot model for visually guided reaching and grasping. The model mimics two alternative processing pathways for grasping, which are also likely to coexist in the human brain. The first pathway directly uses the retinal activation to encode the target position. In the second pathway, a saccade controller makes the eyes (cameras) focus on the target, and the gaze direction is used instead as positional input. For both pathways, an arm controller transforms information on the target's position and orientation into an arm posture suitable for grasping. For the training of the saccade controller, we suggest a novel staged learning method which does not require a teacher that provides the necessary motor commands. The arm controller uses unsupervised learning: it is based on a density model of the sensor and the motor data. Using this density, a mapping is achieved by completing a partially given sensorimotor pattern. The controller can cope with the ambiguity in having a set of redundant arm postures for a given target. The combined model of saccade and arm controller was able to fixate and grasp an elongated object with arbitrary orientation and at arbitrary position on a table in 94% of trials.
Recovery of postural equilibrium control following spaceflight
NASA Technical Reports Server (NTRS)
Paloski, W. H.; Reschke, M. F.; Black, F. O.; Doxey, D. D.; Harm, D. L.
1992-01-01
Decreased postural stability is observed in most astronauts immediately following spaceflight. Because ataxia may present postflight operational hazards, it is important to determine the incidence of postural instability immediately following landing and the dynamics of recovery of normal postural equilibrium control. It is postulated that postflight postural instability results from in-flight adaptive changes in central nervous system (CNS) processing of sensory information from the visual, vestibular, and proprioceptive systems. The purpose of the present investigation was to determine the magnitude and time course of postflight recovery of postural equilibrium control and, hence, readaptation of CNS processing of sensory information. Thirteen crew members from six spaceflight missions were studied pre- and postflight using a modified commercial posturography system. Postural equilibrium control was found to be seriously disrupted immediately following spaceflight in all subjects. Readaptation to the terrestrial environment began immediately upon landing, proceeded rapidly for the first 10-12 hours, and then proceeded much more slowly for the subsequent 2-4 days until preflight stability levels were reachieved. It is concluded that the overall postflight recovery of postural stability follows a predictable time course.
Return of Postural Control to Baseline After Anaerobic and Aerobic Exercise Protocols
Fox, Zachary G; Mihalik, Jason P; Blackburn, J Troy; Battaglini, Claudio L; Guskiewicz, Kevin M
2008-01-01
Context: With regard to sideline concussion testing, the effect of fatigue associated with different types of exercise on postural control is unknown. Objective: To evaluate the effects of fatigue on postural control in healthy college-aged athletes performing anaerobic and aerobic exercise protocols and to establish an immediate recovery time course from each exercise protocol for postural control measures to return to baseline status. Design: Counterbalanced, repeated measures. Setting: Research laboratory. Patients Or Other Participants: Thirty-six collegiate athletes (18 males, 18 females; age = 19.00 ± 1.01 years, height = 172.44 ± 10.47 cm, mass = 69.72 ± 12.84 kg). Intervention(s): Participants completed 2 counterbalanced sessions within 7 days. Each session consisted of 1 exercise protocol followed by postexercise measures of postural control taken at 3-, 8-, 13-, and 18-minute time intervals. Baseline measures were established during the first session, before the specified exertion protocol was performed. Main Outcome Measure(s): Balance Error Scoring System (BESS) results, sway velocity, and elliptical sway area. Results: We found a decrease in postural control after each exercise protocol for all dependent measures. An interaction was noted between exercise protocol and time for total BESS score (P = .002). For both exercise protocols, all measures of postural control returned to baseline within 13 minutes. Conclusions: Postural control was negatively affected after anaerobic and aerobic exercise protocols as measured by total BESS score, elliptical sway area, and sway velocity. The effect of exertion lasted up to 13 minutes after each exercise was completed. Certified athletic trainers and clinicians should be aware of these effects and their recovery time course when determining an appropriate time to administer sideline assessments of postural control after a suspected mild traumatic brain injury. PMID:18833307
Return of postural control to baseline after anaerobic and aerobic exercise protocols.
Fox, Zachary G; Mihalik, Jason P; Blackburn, J Troy; Battaglini, Claudio L; Guskiewicz, Kevin M
2008-01-01
With regard to sideline concussion testing, the effect of fatigue associated with different types of exercise on postural control is unknown. To evaluate the effects of fatigue on postural control in healthy college-aged athletes performing anaerobic and aerobic exercise protocols and to establish an immediate recovery time course from each exercise protocol for postural control measures to return to baseline status. Counterbalanced, repeated measures. Research laboratory. Thirty-six collegiate athletes (18 males, 18 females; age = 19.00 +/- 1.01 years, height = 172.44 +/- 10.47 cm, mass = 69.72 +/- 12.84 kg). Participants completed 2 counterbalanced sessions within 7 days. Each session consisted of 1 exercise protocol followed by postexercise measures of postural control taken at 3-, 8-, 13-, and 18-minute time intervals. Baseline measures were established during the first session, before the specified exertion protocol was performed. Balance Error Scoring System (BESS) results, sway velocity, and elliptical sway area. We found a decrease in postural control after each exercise protocol for all dependent measures. An interaction was noted between exercise protocol and time for total BESS score (P = .002). For both exercise protocols, all measures of postural control returned to baseline within 13 minutes. Postural control was negatively affected after anaerobic and aerobic exercise protocols as measured by total BESS score, elliptical sway area, and sway velocity. The effect of exertion lasted up to 13 minutes after each exercise was completed. Certified athletic trainers and clinicians should be aware of these effects and their recovery time course when determining an appropriate time to administer sideline assessments of postural control after a suspected mild traumatic brain injury.
Wikstrom, Erik A; Song, Kyeongtak; Lea, Ashley; Brown, Nastassia
2017-07-01
One of the major concerns after an acute lateral ankle sprain is the potential for development of chronic ankle instability (CAI). The existing research has determined that clinician-delivered plantar massage improves postural control in those with CAI. However, the effectiveness of self-administered treatments and the underlying cause of any improvements remain unclear. To determine (1) the effectiveness of a self-administered plantar-massage treatment in those with CAI and (2) whether the postural-control improvements were due to the stimulation of the plantar cutaneous receptors. Crossover study. University setting. A total of 20 physically active individuals (6 men and 14 women) with self-reported CAI. All participants completed 3 test sessions involving 3 treatments: a clinician-delivered manual plantar massage, a patient-delivered self-massage with a ball, and a clinician-delivered sensory brush massage. Postural control was assessed using single-legged balance with eyes open and the Star Excursion Balance Test. Static postural control improved (P ≤ .014) after each of the interventions. However, no changes in dynamic postural control after any of the interventions were observed (P > .05). No differences were observed between a clinician-delivered manual plantar massage and either a patient-delivered self-massage with a ball or a clinician-delivered sensory brush massage in any postural-control outcome. In those with CAI, single 5-minute sessions of traditional plantar massage, self-administered massage, and sensory brush massage each resulted in comparable static postural-control improvements. The results also provide empirical evidence suggesting that the mechanism for the postural-control improvements is the stimulation of the plantar cutaneous receptors.
A method to quantify the "cone of economy".
Haddas, Ram; Lieberman, Isador H
2018-05-01
A non-randomized, prospective, concurrent control cohort study. The purpose of this study is to develop and evaluate a method to quantify the dimensions of the cone of economy (COE) and the energy expenditure associated with maintaining a balanced posture within the COE, scoliosis patients and compare them to matched non-scoliotic controls in a group of adult degenerative. Balance is defined as the ability of the human body to maintain its center of mass (COM) within the base of support with minimal postural sway. The cone of economy refers to the stable region of upright standing posture. The underlying assumption is that deviating outside one's individual cone challenges the balance mechanisms. Adult degenerative scoliosis (ADS) patients exhibit a variety of postural changes within their COE, involving the spine, pelvis and lower extremities, in their effort to compensate for the altered posture. Ten ADS patients and ten non-scoliotic volunteers performed a series of functional balance tests. The dimensions of the COE and the energy expenditure related to maintaining balance within the COE were measured using a human motion video capture system and dynamic surface electromyography. ADS patients presented more COM sway in the sagittal (ADS: 1.59 cm vs. H: 0.61 cm; p = 0.049) and coronal (ADS: 2.84 cm vs. H: 1.72 cm; p = 0.046) directions in comparison to the non-scoliotic control. ADS patients presented with more COM (ADS: 33.30 cm vs. H: 19.13 cm; p = 0.039) and head (ADS: 31.06 cm vs. H: 19.13 cm; p = 0.013) displacements in comparison to the non-scoliotic controls. Scoliosis patients expended more muscle activity to maintain static standing, as manifest by increased muscle activity in their erector spinae (ADS: 37.16 mV vs. H: 20.31 mV; p = 0.050), and gluteus maximus (ADS: 33.12 mV vs. H: 12.09 mV; p = 0.001) muscles. We were able to develop and evaluate a method that quantifies the COE boundaries, COM displacement, and amount of sway within the COE along with the energy expenditure for a specific patient. This method of COE measurement will enable spine care practitioners to objectively evaluate their patients in an effort to determine the most appropriate treatment options, and in objectively documenting the effectiveness of their intervention.
Comparison of Biodynamic Responses in Standing and Seated Human Bodies
NASA Astrophysics Data System (ADS)
MATSUMOTO, Y.; GRIFFIN, M. J.
2000-12-01
The dynamic responses of the human body in a standing position and in a sitting position have been compared. The apparent mass and transmissibilities to the head, six locations along the spine, and the pelvis were measured with eight male subjects exposed to vertical whole-body vibration. In both postures, the principal resonance in the apparent mass occurred in the range 5-6 Hz, with slightly higher frequencies and lower apparent mass in the standing posture. There was greater transmission of vertical vibration to the pelvis and the lower spine and greater relative motion within the lower spine in the standing posture than in the sitting posture at the principal resonance and at higher frequencies. Transmissibilities from the supporting surface (floor or seat) to the thoracic region had similar magnitudes for both standing and sitting subjects. The lumbar spine has less lordosis and may be more compressed and less flexible in the sitting posture than in the standing posture. This may have reduced the relative motions between lumbar vertebrae and both the supporting vibrating surface and the other vertebrae in the sitting posture. The characteristics of the vibration transmitted to the pelvis may have differed in the two postures due to different transmission paths. Increased forward rotation of the pelvis in the standing posture may have caused the differences in responses of the pelvis and the lower spine that were observed between the two postures.
Teng, Ya-Ling; Chen, Chiung-Ling; Lou, Shu-Zon; Wang, Wei-Tsan; Wu, Jui-Yen; Ma, Hui-Ing; Chen, Vincent Chin-Hung
2016-01-01
Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP) postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99); controls (76.53±7.47); t1,59 = -3.28, p<0.001]. The results of mixed-model ANOVAs showed a significant interaction between the group and sensory conditions [F5,295 = 5.55, p<0.001]. Further analysis indicated that AP postural sway was significantly larger for patients compared to the controls in conditions containing unreliable somatosensory information either with visual deprivation or with conflicting visual information. Sensory ratios were not significantly different between groups, although small and non-significant difference in inefficiency to utilize vestibular information was also noted. No significant correlations were found between postural stability and clinical characteristics. To sum up, patients with schizophrenia showed increased postural sway and a higher rate of falls during challenging sensory conditions, which was independent of clinical characteristics. Patients further demonstrated similar pattern and level of utilizing sensory information to maintain balance compared to the controls.
Uhm, Yo-Han; Yang, Dae-Jung
2017-11-01
[Purpose] The purpose of this study was to examine the effect of biofeedback postural control training using whole body vibration in acute stroke patients on balance and gait ability. [Subjects and Methods] Thirty stroke patients participated in this study and were divided into a group of 10, a group for biofeedback postural control training combined with a whole body vibration, one for biofeedback postural control training combined with an aero-step, and one for biofeedback postural control training. Biorescue was used to measure the limits of stability, balance ability, and Lukotronic was used to measure step length, gait ability. [Results] In the comparison of balance ability and gait ability between the groups for before and after intervention, Group I showed a significant difference in balance ability and gait ability compared to Groups II and III. [Conclusion] This study showed that biofeedback postural control training using whole body vibration is effective for improving balance ability and gait ability in stroke patients.
Postural control under clinorotation in upside-down catfish, Synodontis nigriventris.
Ohnishi, K; Takahashi, A; Koyama, M; Ohnishi, T
1996-12-01
The upside-down catfish Synodontis nigriventris has a unique habit of swimming and resting upside-down in free water. This behavior leads to the assumption that the catfish has a specific gravity information processing system. We examined the postural control behaviors in the catfish under clinorotation which is usually used for producing pseudo-microgravity. Synodontis nigriventris kept its body posture at a stable area of the rotated flask in which the catfish was kept, when it was clinorotated at the rate of 60 rpm. In contrast to Synodontis nigriventris, a related species, Corydoras paleatus, did not show such steady postural control. When the flask was rotated at a lower rate of 30 rpm or a higher rate of 100 rpm, Synodontis nigriventris as well as Corydoras paleatus showed a considerable disturbed control of body posture. In this condition, they were frequently rotated with the flask. These findings suggest that Synodontis nigriventris has a high ability to keep upside-down posture and the gravity sensation in this catfish is likely to contribute to its different postural control from that of many other fishes.
Lajoie, Y; Richer, N; Jehu, D A; Polskaia, N; Saunders, D
2016-05-01
In the examination of postural control, instructions to stand as still as possible are common and promote a relatively unnatural sway pattern. The validity of the stability requirement is discussed in the present commentary in response to the discussion initiated by Cedrick T. Bonnet. The advantages of using the stability requirement include: evaluating unbiased postural control, reducing variability in postural sway, manipulating focus of attention, examining the ability to maintain an upright stance, and ecological validity of testing. The disadvantages include: constraining natural postural sway, increasing the complexity of the control condition, promoting an internal focus of attention, and reducing the ability to detect exploratory behaviour. After evaluating the aforementioned advantages and disadvantages, the present commentary suggests that researchers should strive to provide specific instructions to maintain feet, arm and eye position without specifically requiring participants to reduce their postural sway. Copyright © 2015 Elsevier B.V. All rights reserved.
Asseman, François B; Caron, Olivier; Crémieux, Jacques
2008-01-01
The first aim of this study was to analyse the effect of elite training, linked to expertise, in gymnastics on postural performance and control. For this purpose, body sway of expert gymnasts was compared to other sportsmen, non-experts and non-gymnasts, in two different postures: bipedal (easy and unspecific to gymnasts) and unipedal (difficult and fairly specific). The second aim was to compare the groups in the same tasks but in a visual condition for which they were not trained, i.e. with eyes closed. Postural performance was assessed by centre of gravity motion, which was computed from centre of pressure motion, estimating postural control. A significant difference between the two groups was observed for postural performance in the unipedal posture and with eyes open only. Regardless of their posture, the groups were similarly affected by removal of vision. Expertise in gymnastics seemed to improve postural performances only in situations for which their practise is related to, i.e. unipedal with eyes open. These reveal the importance of choosing a relevant postural configuration and visual condition according to the people's training or by extension experience.
Integrated Analytic and Linearized Inverse Kinematics for Precise Full Body Interactions
NASA Astrophysics Data System (ADS)
Boulic, Ronan; Raunhardt, Daniel
Despite the large success of games grounded on movement-based interactions the current state of full body motion capture technologies still prevents the exploitation of precise interactions with complex environments. This paper focuses on ensuring a precise spatial correspondence between the user and the avatar. We build upon our past effort in human postural control with a Prioritized Inverse Kinematics framework. One of its key advantage is to ease the dynamic combination of postural and collision avoidance constraints. However its reliance on a linearized approximation of the problem makes it vulnerable to the well-known full extension singularity of the limbs. In such context the tracking performance is reduced and/or less believable intermediate postural solutions are produced. We address this issue by introducing a new type of analytic constraint that smoothly integrates within the prioritized Inverse Kinematics framework. The paper first recalls the background of full body 3D interactions and the advantages and drawbacks of the linearized IK solution. Then the Flexion-EXTension constraint (FLEXT in short) is introduced for the partial position control of limb-like articulated structures. Comparative results illustrate the interest of this new type of integrated analytical and linearized IK control.
NASA Astrophysics Data System (ADS)
Hong, S. Lee; Bodfish, James W.; Newell, Karl M.
2006-03-01
We investigated the relationship between macroscopic entropy and microscopic complexity of the dynamics of body rocking and sitting still across adults with stereotyped movement disorder and mental retardation (profound and severe) against controls matched for age, height, and weight. This analysis was performed through the examination of center of pressure (COP) motion on the mediolateral (side-to-side) and anteroposterior (fore-aft) dimensions and the entropy of the relative phase between the two dimensions of motion. Intentional body rocking and stereotypical body rocking possessed similar slopes for their respective frequency spectra, but differences were revealed during maintenance of sitting postures. The dynamics of sitting in the control group produced lower spectral slopes and higher complexity (approximate entropy). In the controls, the higher complexity found on each dimension of motion was related to a weaker coupling between dimensions. Information entropy of the relative phase between the two dimensions of COP motion and irregularity (complexity) of their respective motions fitted a power-law function, revealing a relationship between macroscopic entropy and microscopic complexity across both groups and behaviors. This power-law relation affords the postulation that the organization of movement and posture dynamics occurs as a fractal process.
Postural stability is altered by the stimulation of pain but not warm receptors in humans.
Blouin, Jean-Sébastien; Corbeil, Philippe; Teasdale, Normand
2003-10-17
It is now recognized that large diameter myelinated afferents provide the primary source of lower limb proprioceptive information for maintaining an upright standing position. Small diameter afferents transmitting noxious stimuli, however, can also influence motor behaviors. Despite the possible influence of pain on motor behaviors, the effects of pain on the postural control system have not been well documented. Two cutaneous heat stimulations (experiment 1: non-noxious 40 degrees C; experiment 2: noxious 45 degrees C) were applied bilaterally on the calves of the subject with two thermal grills to stimulate A delta and C warm receptors and nociceptors in order to examine their effects on postural stability. The non-noxious stimulation induced a gentle sensation of warmth and the noxious stimulation induced a perception of heat pain (visual analogue scores of 0 and 46 mm, respectively). For both experiments, ten healthy young adults were tested with and without heat stimulations of the lower limbs while standing upright on a force platform with eyes open, eyes closed and eyes closed with tendon co-vibration of tibialis anterior and triceps surae muscles. The center of pressure displacements were analyzed to examine how both stimulations affected the regulation of quiet standing and if the effects were exacerbated when vision was removed or ankle proprioception perturbed. The stimulation of the warm receptors (40 degrees C) did not induce any postural deterioration. With pain (45 degrees C), subjects showed a significant increase in standard deviation, range and mean velocity of postural oscillations as well as standard deviation of the center of pressure velocity. The effects of heat pain were exacerbated when subjects had both their eyes closed and ankle tendons vibrated (increased standard deviation of the center of pressure velocity and mean velocity of the center of pressure). A non-noxious stimulation (40 degrees C) of the small diameter afferents is not a sufficiently intense sensory stimulation to alter the control of posture. A painful stimulation (45 degrees C) of the skin thermoreceptors, however, yielded a deterioration of the postural control system. The observed deteriorating effects of the combined stimulation of nociceptors and Ia afferents (when ankle tendons were vibrated) could result from the convergence of these afferents at the spinal level. This could certainly lead to the hypothesis that individuals suffering from lower limb pain present alterations of the postural control mechanisms; especially populations already at risk of falling (for example, frail elderly) or populations suffering from concomitant lower limb pain and sensory deficits (for example, diabetic polyneuropathy).
Neural Control of Posture in Individuals with Persisting Postconcussion Symptoms.
Helmich, Ingo; Berger, Alisa; Lausberg, Hedda
2016-12-01
Postural instability has been shown to characterize individuals who suffered from long-term symptoms after mild traumatic brain injury. However, recordings of neural processes during postural control are difficult to realize with standard neuroimaging techniques. Thus, we used functional nearinfrared spectroscopy to investigate brain oxygenation of individuals with persistent postconcussion symptoms (pPCS) during postural control in altered environments. We compared brain oxygenation and postural sway during balance control in three groups: individuals suffering from pPCS, individuals with a history of mild traumatic brain injury but without pPCS, and healthy controls. Individuals were investigated during postural control tasks with six different conditions: i) eyes opened, ii) eyes closed, and iii) blurred visual input, each while standing a) on a stable and b) an unstable surface. In all groups, during the eyes closed/unstable surface condition as compared with the other conditions, the postural sway increased as well as the brain oxygenation in frontal brain cortices. In the most difficult balance condition, as compared with the other two groups, subjects with pPCS applied more force over time to keep balance as measured by the force plate system with a significantly greater activation in frontopolar/orbitofrontal areas of the right hemisphere. As subjects with pPCS applied more force over time to control balance, we propose that with regard to cognitive processes, the increase of cerebral activation in these individuals indicates an increase of attention-demanding processes during postural control in altered environments.
Larson, Dennis J; Brown, Stephen H M
2018-02-01
The purpose of this study was to induce both trunk extensor and abdominal muscle fatigue, on separate occasions, and compare their effects on standing postural control and trunk proprioception, as well as look at the effects of a recovery period on these outcome measures. A total of 20 individuals participated, with 10 (5 males and 5 females) completing either a standing postural control or lumbar axial repositioning protocol. Participants completed their randomly assigned protocol on two occasions, separated by at least 4 days, with either their trunk extensor or abdominal muscles being fatigued on either day. Postural control centre of pressure variables and trunk proprioception errors were compared pre- and post-fatigue. Results showed that both trunk extensor and abdominal muscle fatigue significantly degraded standing postural control immediately post-fatigue, with recovery occurring within 2 min post-fatigue. In general, these degradative effects on postural control appeared to be greater when the trunk extensor muscles were fatigued compared to the abdominal muscles. No statistically significant changes in trunk proprioception were found after either fatigue protocol. The present findings demonstrate our body's ability to quickly adapt and reweight somatosensory information to maintain postural control and trunk proprioception, as well as illustrate the importance of considering the abdominal muscles, along with the trunk extensor muscles, when considering the impact of fatigue on trunk movement and postural control. Copyright © 2017 Elsevier B.V. All rights reserved.
Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel
2014-01-01
Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions, a result they have to be awarded of particularly when getting older. PMID:24474907
Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel
2013-01-01
Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions, a result they have to be awarded of particularly when getting older.
Tai Chi training reduced coupling between respiration and postural control
Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li
2015-01-01
In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body’s center-of-mass including those caused by spontaneous respiration. Both aging and disease increase “posturo-respiratory synchronization;” which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86±5yrs) or educational-control program (n=34, 85±6yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (p<0.001). Tai Chi training did not affect traditional parameters of standing postural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part from optimization of this multi-system interaction. PMID:26518241
Static Postural Control in Youth With Osteogenesis Imperfecta Type I.
Pouliot-Laforte, Annie; Lemay, Martin; Rauch, Frank; Veilleux, Louis-Nicolas
2017-10-01
To assess static postural control in eyes-open and eyes-closed conditions in individuals with osteogenesis imperfecta (OI) type I as compared with typically developing (TD) individuals and to explore the relation between postural control and lower limb muscle function. Cross-sectional study. Outpatient department of a pediatric orthopedic hospital. A convenience sample (N=38) of individuals with OI type I (n=22; mean age, 13.1y; range, 6-21y) and TD individuals (n=16; mean age, 13.1y; range, 6-20y) was selected. Participants were eligible if they were between 6 and 21 years and if they did not have any fracture or surgery in the lower limb in the 12 months before testing. Not applicable. Postural control was assessed through static balance tests and muscle function through mechanographic tests on a force platform. Selected postural parameters were path length, velocity, 90% confidence ellipse area, and the ellipse's length of the mediolateral and anteroposterior axes. Mechanographic parameters were peak force and peak power as measured using the multiple two-legged hopping and the single two-legged jump test, respectively. Individuals with OI type I had poorer postural control than did TD individuals as indicated by longer and faster displacements and a larger ellipse area. Muscle function was unrelated to postural control in the OI group. Removing visual information resulted in a larger increase in postural control parameters in the OI group than in the TD group. A proprioceptive deficit could explain poorer postural control in individuals with OI type I. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Lion, Alexis; Gette, Paul; Meyer, Christophe; Seil, Romain; Theisen, Daniel
2018-02-01
Our study aimed to evaluate the effect of cognitive challenge on double-leg postural control under visual and surface perturbations of patients with anterior cruciate ligament reconstruction (ACLR) cleared to return to sport. Double-leg stance postural control of 19 rehabilitated patients with ACLR (age: 24.8 ± 6.7 years, time since surgery: 9.2 ± 1.6 months) and 21 controls (age: 24.9 ± 3.7 years) was evaluated in eight randomized situations combining two cognitive (with and without silent backward counting in steps of seven), two visual (eyes open, eyes closed) and two surface (stable support, foam support) conditions. Sway area and sway path of the centre of foot pressure were measured during three 20-s recordings for each situation. Higher values indicated poorer postural control. Generally, postural control of patients with ACLR and controls was similar for sway area and sway path (p > 0.05). The lack of visual anchorage and the disturbance of the plantar input by the foam support increased sway area and sway path (p < 0.001) similarly in both groups. The addition of the cognitive task decreased sway area and sway path (p < 0.001) similarly in both groups. Patients with ACLR who recently completed their rehabilitation have normalized postural control during double-leg stance tests. The use of a dual task paradigm under increased task complexity modified postural control, but in a similar way in patients with ACLR than in healthy controls. Double-leg stance tests, even under challenging conditions, are not sensitive enough to reveal postural control differences between rehabilitated patients with ACLR and controls. Copyright © 2017 Elsevier B.V. All rights reserved.
Suzuki, Yasuyuki; Nomura, Taishin; Casadio, Maura; Morasso, Pietro
2012-10-07
Human upright posture, as a mechanical system, is characterized by an instability of saddle type, involving both stable and unstable dynamic modes. The brain stabilizes such system by generating active joint torques, according to a time-delayed neural feedback control. What is still unsolved is a clear understanding of the control strategies and the control mechanisms that are used by the central nervous system in order to stabilize the unstable posture in a robust way while maintaining flexibility. Most studies in this direction have been limited to the single inverted pendulum model, which is useful for formalizing fundamental mechanical aspects but insufficient for addressing more general issues concerning neural control strategies. Here we consider a double inverted pendulum model in the sagittal plane with small passive viscoelasticity at the ankle and hip joints. Despite difficulties in stabilizing the double pendulum model in the presence of the large feedback delay, we show that robust and flexible stabilization of the upright posture can be established by an intermittent control mechanism that achieves the goal of stabilizing the body posture according to a "divide and conquer strategy", which switches among different controllers in different parts of the state space of the double inverted pendulum. Remarkably, it is shown that a global, robust stability is achieved even if the individual controllers are unstable and the information exploited for switching from one controller to another is severely delayed, as it happens in biological reality. Moreover, the intermittent controller can automatically resolve coordination among multiple active torques associated with the muscle synergy, leading to the emergence of distinct temporally coordinated active torque patterns, referred to as the intermittent ankle, hip, and mixed strategies during quiet standing, depending on the passive elasticity at the hip joint. Copyright © 2012 Elsevier Ltd. All rights reserved.
Spatial and temporal analysis of postural control in dyslexic children.
Gouleme, Nathalie; Gerard, Christophe Loic; Bui-Quoc, Emmanuel; Bucci, Maria Pia
2015-07-01
The aim of this study is to examine postural control of dyslexic children using both spatial and temporal analysis. Thirty dyslexic (mean age 9.7±0.3years) and thirty non-dyslexic age-matched children participated in the study. Postural stability was evaluated using Multitest Equilibre from Framiral®. Posture was recorded in the following conditions: eyes open fixating a target (EO) and eyes closed (EC) on stable (-S-) and unstable (-U-) platforms. The findings of this study showed poor postural stability in dyslexic children with respect to the non-dyslexic children group, as demonstrated by both spatial and temporal analysis. In both groups of children postural control depends on the condition, and improves when the eyes are open on a stable platform. Dyslexic children have spectral power indices that are higher than in non-dyslexic children and they showed a shorter cancelling time. Poor postural control in dyslexic children could be due to a deficit in using sensory information most likely caused by impairment in cerebellar activity. The reliability of brain activation patterns, namely in using sensory input and cerebellar activity may explain the deficit in postural control in dyslexic children. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Postural Stability in Young Adults with Down Syndrome in Challenging Conditions
Bieć, Ewa; Zima, Joanna; Wójtowicz, Dorota; Wojciechowska-Maszkowska, Bożena; Kręcisz, Krzysztof; Kuczyński, Michał
2014-01-01
To evaluate postural control and performance in subjects with Down syndrome (SwDS), we measured postural sway (COP) in quiet stance in four 20-second tests: with eyes open or closed and on hard or foam surface. Ten SwDS and eleven healthy subjects participated, aged 29.8 (4.8) and 28.4 (3.9), respectively. The time-series recorded with the sampling rate of 100 Hz were used to evaluate postural performance (COP amplitude and mean velocity) and strategies (COP frequency, fractal dimension and entropy). There were no intergroup differences in the amplitude except the stance on foam pad with eyes open when SwDS had larger sway. The COP velocity and frequency were larger in SwDS than controls in all trials on foam pad. During stances on the foam pad SwDS increased fractal dimension showing higher complexity of their equilibrium system, while controls decreased sample entropy exhibiting more conscious control of posture in comparison to the stances on hard support surface. This indicated that each group used entirely different adjustments of postural strategies to the somatosensory challenge. It is proposed that the inferior postural control of SwDS results mainly from insufficient experience in dealing with unpredictable postural stimuli and deficit in motor learning. PMID:24728178
Tekin, Fatih; Kavlak, Erdogan; Cavlak, Ugur; Altug, Filiz
2018-01-01
The aim of this study was to show the effects of an 8-week Neurodevelopmental Treatment based posture and balance training on postural control and balance in diparetic and hemiparetic Cerebral Palsied children (CPC). Fifteen CPC (aged 5-15 yrs) were recruited from Denizli Yağmur Çocukları Rehabilitation Centre. Gross Motor Function Classification System, Gross Motor Function Measure, 1-Min Walking Test, Modified Timed Up and Go Test, Paediatric Balance Scale, Functional Independence Measure for Children and Seated Postural Control Measure were used for assessment before and after treatment. An 8-week NDT based posture and balance training was applied to the CPC in one session (60-min) 2 days in a week. After the treatment program, all participants showed statistically significant improvements in terms of gross motor function (p< 0.05). They also showed statistically significant improvements about balance abilities and independence in terms of daily living activities (p< 0.05). Seated Postural Control Measure scores increased after the treatment program (p< 0.05). The results of this study indicate that an 8-week Neurodevelopmental Treatment based posture and balance training is an effective approach in order to improve functional motor level and functional independency by improving postural control and balance in diparetic and hemiparetic CPC.
Sprenger, Andreas; Wojak, Jann F; Jandl, Nico M; Helmchen, Christoph
2017-01-01
Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive deprivation heavily destabilizes BVF, even when visual control is provided.
Sprenger, Andreas; Wojak, Jann F.; Jandl, Nico M.; Helmchen, Christoph
2017-01-01
Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive deprivation heavily destabilizes BVF, even when visual control is provided. PMID:28919878
Elbasan, Bulent; Akaya, Kamile Uzun; Akyuz, Mufit; Oskay, Deran
2018-02-06
Neurodevelopmental treatment (NDT), neuromuscular electrical stimulation (NMES), and Kinesio Taping (KT) applications are separately used to improve postural control and sitting balance in children with cerebral palsy (CP). The aim of this study is to examine the combined effect of NDT, NMES and KT applications on postural control and sitting balance in children with CP. Forty five children, in 3 groups, between the ages 5-12 years were included in the study. Group 1 received NDT; group 2 received NDT + NMES; and the group 3 received NDT + NMES + KT for 6 weeks. Sitting function evaluated by the sitting section of the gross motor function measure (GMFM), and postural control assessed with the seated postural control measurement (SPCM). Seating section of GMFM was improved significantly in all the groups; however, increases in the group 3 were higher than groups 1 and 2 (p= 0.001). While significant differences were observed in all groups in the SPCM posture (p< 0.001), function (p< 0.001), and the total scores (p< 0.001); the change in the third group was higher according to the comparison of the three groups within each other. Implementation of the NMES, and KT additionally to NDT improve the sitting posture, postural control, seating function, and gross motor function in children with CP.
Postural Control and Gait Performance in the Diabetic Peripheral Neuropathy: A Systematic Review
Mustapa, Amirah; Mohd Mustafah, Nadia; Jamil, Nursuriati
2016-01-01
Purpose. The aim of this paper is to review the published studies on the characteristics of impairments in the postural control and gait performance in diabetic peripheral neuropathy (DPN). Methods. A review was performed by obtaining publication of all papers reporting on the postural control and gait performance in DPN from Google Scholar, Ovid, SAGE, Springerlink, Science Direct (SD), EBSCO Discovery Service, and Web of Science databases. The keywords used for searching were “postural control,” “balance,” “gait performance,” “diabetes mellitus,” and “diabetic peripheral neuropathy.” Results. Total of 4,337 studies were hit in the search. 1,524 studies were screened on their titles and citations. Then, 79 studies were screened on their abstract. Only 38 studies were eligible to be selected: 17 studies on postural control and 21 studies on the gait performance. Most previous researches were found to have strong evidence of postural control impairments and noticeable gait deficits in DPN. Deterioration of somatosensory, visual, and vestibular systems with the pathologic condition of diabetes on cognitive impairment causes further instability of postural and gait performance in DPN. Conclusions. Postural instability and gait imbalance in DPN may contribute to high risk of fall incidence, especially in the geriatric population. Thus, further works are crucial to highlight this fact in the hospital based and community adults. PMID:27525281
ERIC Educational Resources Information Center
Nafati, Gilel; Vuillerme, Nicolas
2011-01-01
This experiment was designed to investigate whether and how decreasing the amount of attentional focus invested in postural control could affect bipedal postural control. Twelve participants were asked to stand upright as immobile as possible on a force platform in one control condition and one cognitive condition. In the latter condition, they…
Assessment of postural balance function.
Kostiukow, Anna; Rostkowska, Elzbieta; Samborski, Włodzimierz
2009-01-01
Postural balance is defined as the ability to stand unassisted without falling. Examination of the patient's postural balance function is a difficult diagnostic task. Most of the balance tests used in medicine provide incomplete information on this coordination ability of the human body. The aim of this study was to review methods of assessment of the patient's postural balance function, including various tests used in medical diagnostics centers.
Posture and posturology, anatomical and physiological profiles: overview and current state of art.
Carini, Francesco; Mazzola, Margherita; Fici, Chiara; Palmeri, Salvatore; Messina, Massimo; Damiani, Provvidenza; Tomasello, Giovanni
2017-04-28
posture is the position of the body in the space, and is controlled by a set of anatomical structures. The maintenance and the control of posture are a set of interactions between muscle-skeletal, visual, vestibular, and skin system. Lately there are numerous studies that correlate the muscle-skeletal and the maintenance of posture. In particular, the correction of defects and obstruction of temporomandibular disorders, seem to have an impact on posture. The aim of this work is to collect information in literature on posture and the influence of the stomatognathic system on postural system. Comparison of the literature on posture and posturology by consulting books and scientific sites. the results obtained from the comparison of the literature show a discrepancy between the thesis. Some studies support the correlation between stomatognathic system and posture, while others deny such a correlation. further studies are necessary to be able to confirm one or the other argument.
Effects of the removal of vision on body sway during different postures in elite gymnasts.
Asseman, F; Caron, O; Crémieux, J
2005-03-01
The aim of this study was to analyse the effects of the removal of vision on postural performance and postural control in function of the difficulty and specificity of the posture. Twelve elite gymnasts were instructed to be as stable as possible with eyes open and eyes closed in three postures: bipedal, unipedal, and handstand ranked from the less difficult and less specific to the more difficult and more specific. The ratios eyes closed on eyes open, computed on CP surface and CP mean velocity, which respectively represents postural performance and postural control, were similar in the bipedal and handstand postures. They were highly increased in the unipedal one. The effect of the removal of vision and so the role of vision on body sway was not directly linked to the difficulty or specificity of the posture; other tasks' characteristics like the segments configuration also played a role.
Fingertip contact influences human postural control
NASA Technical Reports Server (NTRS)
Jeka, J. J.; Lackner, J. R.
1994-01-01
Touch and pressure stimulation of the body surface can strongly influence apparent body orientation, as well as the maintenance of upright posture during quiet stance. In the present study, we investigated the relationship between postural sway and contact forces at the fingertip while subjects touched a rigid metal bar. Subjects were tested in the tandem Romberg stance with eyes open or closed under three conditions of fingertip contact: no contact, touch contact (< 0.98 N of force), and force contact (as much force as desired). Touch contact was as effective as force contact or sight of the surroundings in reducing postural sway when compared to the no contact, eyes closed condition. Body sway and fingertip forces were essentially in phase with force contact, suggesting that fingertip contact forces are physically counteracting body sway. Time delays between body sway and fingertip forces were much larger with light touch contact, suggesting that the fingertip is providing information that allows anticipatory innervation of musculature to reduce body sway. The results are related to observations on precision grip as well as the somatosensory, proprioceptive, and motor mechanisms involved in the reduction of body sway.
Cross-cultural examination of the semantic dimensions of body postures.
Kudoh, T; Matsumoto, D
1985-06-01
In two studies, we examined the cross-cultural validity of the dimensional structures with which postures are judged. In Study 1, 686 Japanese subjects rated 40 posture expressions on sixteen 5-point semantic differential scale items. Subjects inferred an encoder's attitude towards oneself (i.e., the decoding subject) in hypothetical dyadic situations. A principal-component factor analysis yielded evidence for three independent dimensions resembling those proposed by Schlosberg (1954), Osgood (1966), and Williams and Sundene (1965). These three factors were named self-fulfillment, interpersonal positiveness, and interpersonal consciousness. In Study 2, 336 Japanese students again rated the 40 posture expressions on the sixteen 5-point differential items, but an attempt was made to control for the status of the hypothetical encoder. The results of this study essentially replicated those of Study 1. One interesting finding was that although we found the same factors as those found in studies conducted in the West, the order of the factors in our studies was the reverse of the order found in these previous studies. The findings are discussed in terms of proposed cultural differences in the maintenance of human relations.
Flexible Sensing Arrays Fabricated with Carbon Nanofiber Composite Thin Films for Posture Monitoring
NASA Astrophysics Data System (ADS)
Chang, Fuh-Yu; Wang, Ruoh-Huey; Lin, Yu-Hsien; Chen, Tse-Min; Lee, Yueh-Feng; Huang, Shu-Jiuan; Liu, Chia-Ming
2011-06-01
Faulty posture increases joint stress and causes postural pain syndrome. In this paper, we present a portable strain sensing system with flexible sensor arrays to warn patients to correct inappropriate posture. A 3×3 flexible strain sensing array system was fabricated using patterned surface treatment and the tilted-drop process with carbon nanofiber composite solutions on polyimide substrates. Atmospheric plasma was used to enhance or reduce the surface energy in specific areas for patterned surface treatment. A scanning circuit was also developed to capture the signal from the flexible sensing array. The developed system has been used to measure the bent angle of the human neck from 15 to 60°. The results indicate that human posture can be successfully captured by analyzing the measured strains from a flexible strain sensing array.
Intermittent use of an "anchor system" improves postural control in healthy older adults.
Freitas, Milena de Bem Zavanella; Mauerberg-deCastro, Eliane; Moraes, Renato
2013-07-01
Haptic information, provided by a non-rigid tool (i.e., an "anchor system"), can reduce body sway in individuals who perform a standing postural task. However, it was not known whether or not continuous use of the anchor system would improve postural control after its removal. Additionally, it was unclear as to whether or not frequency of use of the anchor system is related to improved control in older adults. The present study evaluated the effect of the prolonged use of the anchor system on postural control in healthy older individuals, at different frequencies of use, while they performed a postural control task (semi-tandem position). Participants were divided into three groups according to the frequency of the anchor system's use (0%, 50%, and 100%). Pre-practice phase (without anchor) was followed by a practice phase (they used the anchor system at the predefined frequency), and a post-practice phase (immediate and late-without anchor). All three groups showed a persistent effect 15min after the end of the practice phase (immediate post-practice phase). However, only the 50% group showed a persistent effect in the late post-practice phase (24h after finishing the practice phase). Older adults can improve their postural control by practicing the standing postural task, and use of the anchor system limited to half of their practice time can provide additional improvement in their postural control. Copyright © 2013 Elsevier B.V. All rights reserved.
The time-delayed inverted pendulum: Implications for human balance control
NASA Astrophysics Data System (ADS)
Milton, John; Cabrera, Juan Luis; Ohira, Toru; Tajima, Shigeru; Tonosaki, Yukinori; Eurich, Christian W.; Campbell, Sue Ann
2009-06-01
The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine three experimental paradigms of time-delayed balance control: (1) mechanical inverted time-delayed pendulum, (2) stick balancing at the fingertip, and (3) human postural sway during quiet standing. Measurements of the transfer function (mechanical stick balancing) and the two-point correlation function (Hurst exponent) for the movements of the fingertip (real stick balancing) and the fluctuations in the center of pressure (postural sway) demonstrate that the upright fixed point is unstable in all three paradigms. These observations imply that the balanced state represents a more complex and bounded time-dependent state than a fixed-point attractor. Although mathematical models indicate that a sufficient condition for instability is for the time delay to make a corrective movement, τn, be greater than a critical delay τc that is proportional to the length of the pendulum, this condition is satisfied only in the case of human stick balancing at the fingertip. Thus it is suggested that a common cause of instability in all three paradigms stems from the difficulty of controlling both the angle of the inverted pendulum and the position of the controller simultaneously using time-delayed feedback. Considerations of the problematic nature of control in the presence of delay and random perturbations ("noise") suggest that neural control for the upright position likely resembles an adaptive-type controller in which the displacement angle is allowed to drift for small displacements with active corrections made only when θ exceeds a threshold. This mechanism draws attention to an overlooked type of passive control that arises from the interplay between retarded variables and noise.
Breniere, Y; Ribreau, C
1998-10-01
In order to analyze the influence of gravity and body characteristics on the control of center of mass (CM) oscillations in stepping in place, equations of motion in oscillating systems were developed using a double-inverted pendulum model which accounts for both the head-arms-trunk (HAT) segment and the two-legged system. The principal goal of this work is to propose an equivalent model which makes use of the usual anthropometric data for the human body, in order to study the ability of postural control to adapt to the step frequency in this particular paradigm of human gait. This model allows the computation of CM-to-CP amplitude ratios, when the center of foot pressure (CP) oscillates, as a parametric function of the stepping in place frequency, whose parameters are gravity and major body characteristics. Motion analysis from a force plate was used to test the model by comparing experimental and simulated values of variations of the CM-to-CP amplitude ratio in the frontal plane versus the frequency. With data from the literature, the model is used to calculate the intersegmental torque which stabilizes the HAT when the Leg segment is subjected to a harmonic torque with an imposed frequency.
2013-01-01
Background The current experiment investigated the impact of two potential confounding variables on the postural balance in young participants: the induced-experimental activity prior to the static postural measurements and the well-documented time-of-day effects. We mainly hypothesized that an exhaustive exercise and a high attention-demanding task should result in alterations of postural control. Methods Ten participants performed three experimental sessions (differentiated by the activity – none, cognitive or physical – prior of the assessment of postural stability), separated by one day at least. Each session included postural balance assessments around 8 a.m., 12.00 p.m. and 5 p.m. ± 30 min. The physical and cognitive activities were performed only before the 12 o’clock assessment. The postural tests consisted of four conditions of quiet stance: stance on a firm surface with eyes open; stance on a firm surface with eyes closed; stance on a foam surface with eyes open and stance on a foam surface with eyes closed. Postural performance was assessed by various center of pressure (COP) parameters. Results Overall, the COP findings indicated activity-related postural impairment, with an increase in body sway in the most difficult conditions (with foam surface), especially when postural measurements are recorded just after the running exercise (physical session) or the psychomotor vigilance test (cognitive session). Conclusions Even if no specific influence of time-of-day on static postural control is demonstrated, our results clearly suggest that the activities prior to balance tests could be a potential confounding variable to be taken into account and controlled when assessing clinical postural balance. PMID:23452958
Difference in postural control between patients with functional and mechanical ankle instability.
Chen, Henry; Li, Hong-Yun; Zhang, Jian; Hua, Ying-Hui; Chen, Shi-Yi
2014-10-01
Lateral ankle sprain is one of the most common injuries. Since the structural and pathological differences in mechanical ankle instability (MAI) and functional ankle instability (FAI) may not be the same, it may be better to treat these as separate groups. The purpose of this study was to compare the difference in postural sway between MAI and FAI in patients with chronic ankle instability (CAI). Twenty-six patients with CAI and 14 healthy control participants were included in the study. The CAI patients were subdivided into MAI (15 patients) and FAI (11 patients) groups. Patients who were diagnosed with lateral ankle ligaments rupture by magnetic resonance imaging and ultrasonography were assigned to the MAI group. All participants performed single-limb postural sway tests 3 times on each leg with eyes closed and open. The average distances from the mean center of pressure position in the mediolateral and anteroposterior directions were recorded and compared among the 3 groups. The unstable ankles in the MAI group showed significantly greater postural sway in the anterior, posterior, and medial directions compared with those in the control group with eyes closed. With eyes open, significantly greater postural sway was found in the anterior direction. In the FAI group, no difference was found in postural sway compared with those in the control group. The MAI group showed significantly greater postural sway in the anterior direction compared with the FAI group with eyes closed and open. No significant difference in postural sway was found between the unstable and stable ankles in the MAI or FAI groups, with or without vision. Patients with MAI have deficits in postural control, especially in anterior-posterior directions. However, no difference was found in postural sway in patients with FAI compared with healthy people. As MAI patients suffer from deficits in postural control, balance training should be applied in those patients. In addition, special training should also include the contralateral side after a unilateral ankle ligament injured. © The Author(s) 2014.
Vertical Heterophoria and Postural Control in Nonspecific Chronic Low Back Pain
Matheron, Eric; Kapoula, Zoï
2011-01-01
The purpose of this study was to test postural control during quiet standing in nonspecific chronic low back pain (LBP) subjects with vertical heterophoria (VH) before and after cancellation of VH; also to compare with healthy subjects with, and without VH. Fourteen subjects with LBP took part in this study. The postural performance was measured through the center of pressure displacements with a force platform while the subjects fixated on a target placed at either 40 or 200 cm, before and after VH cancellation with an appropriate prism. Their postural performance was compared to that of 14 healthy subjects with VH and 12 without VH (i.e. vertical orthophoria) studied previously in similar conditions. For LBP subjects, cancellation of VH with a prism improved postural performance. With respect to control subjects (with or without VH), the variance of speed of the center of pressure was higher, suggesting more energy was needed to stabilize their posture in quiet upright stance. Similarly to controls, LBP subjects showed higher postural sway when they were looking at a target at a far distance than at a close distance. The most important finding is that LBP subjects with VH can improve their performance after prism-cancellation of their VH. We suggest that VH reflects mild conflict between sensory and motor inputs involved in postural control i.e. a non optimal integration of the various signals. This could affect the performance of postural control and perhaps lead to pain. Nonspecific chronic back pain may results from such prolonged conflict. PMID:21479210
Postural Control and Emotion in Children with Autism Spectrum Disorders
Gouleme, Nathalie; Scheid, Isabelle; Peyre, Hugo; Seassau, Magali; Maruani, Anna; Clarke, Julia; Delorme, Richard; Bucci, Maria Pia
2017-01-01
Abstract Autism Spectrum Disorders subjects (ASD) are well known to have deficits in social interaction. We recorded simultaneously eye movements and postural sway during exploration of emotional faces in children with ASD and typically developing children (TD). We analyzed several postural and ocular parameters. The results showed that all postural parameters were significantly greater in children with ASD; ASD made significantly fewer saccades and had shorter fixation time than TD, particularly in the eyes, and especially for unpleasant emotions. These results suggest that poor postural control of ASD and their impaired visual strategies could be due to a lack of interest in social cognition, causing a delay in the development of the cortical areas, and thus could have an effect on their postural control. PMID:29177103
Human body area factors for radiation exchange analysis: standing and walking postures
NASA Astrophysics Data System (ADS)
Park, Sookuk; Tuller, Stanton E.
2011-09-01
Effective radiation area factors ( f eff) and projected area factors ( f p) of unclothed Caucasians' standing and walking postures used in estimating human radiation exchange with the surrounding environment were determined from a sample of adults in Canada. Several three-dimensional (3D) computer body models were created for standing and walking postures. Only small differences in f eff and f p values for standing posture were found between gender (male or female) and body type (normal- or over-weight). Differences between this study and previous studies were much larger: ≤0.173 in f p and ≤0.101 in f eff. Directionless f p values for walking posture also had only minor differences between genders and positions in a stride. However, the differences of mean directional f p values of the positions dependent on azimuth angles were large enough, ≤0.072, to create important differences in modeled radiation receipt. Differences in f eff values were small: 0.02 between the normal-weight male and female models and up to 0.033 between positions in a stride. Variations of directional f p values depending on solar altitudes for walking posture were narrower than those for standing posture. When both standing and walking postures are considered, the mean f eff value, 0.836, of standing (0.826) and walking (0.846) could be used. However, f p values should be selected carefully because differences between directional and directionless f p values were large enough that they could influence the estimated level of human thermal sensation.
The Contribution of Pre-impact Spine Posture on Human Body Model Response in Whole-body Side Impact.
Poulard, David; Subit, Damien; Donlon, John-Paul; Lessley, David J; Kim, Taewung; Park, Gwansik; Kent, Richard W
2014-11-01
The objective of the study was to analyze independently the contribution of pre-impact spine posture on impact response by subjecting a finite element human body model (HBM) to whole-body, lateral impacts. Seven postured models were created from the original HBM: one matching the standard driving posture and six matching pre-impact posture measured for each of six subjects tested in previously published experiments. The same measurements as those obtained during the experiments were calculated from the simulations, and biofidelity metrics based on signals correlation were established to compare the response of HBM to that of the cadavers. HBM responses showed good correlation with the subject response for the reaction forces, the rib strain (correlation score=0.8) and the overall kinematics. The pre-impact posture was found to greatly alter the reaction forces, deflections and the strain time histories mainly in terms of time delay. By modifying only the posture of HBM, the variability in the impact response was found to be equivalent to that observed in the experiments performed with cadavers with different anthropometries. The patterns observed in the responses of the postured HBM indicate that the inclination of the spine in the frontal plane plays a major role. The postured HBM sustained from 2 to 5 bone fractures, including the scapula in some cases, confirming that the pre-impact posture influences the injury outcome predicted by the simulation.
Gera, Geetanjali; Fling, Brett W; Van Ooteghem, Karen; Cameron, Michelle; Frank, James S; Horak, Fay B
2016-09-01
Multiple sclerosis (MS) is associated with balance deficits resulting in falls and impaired mobility. Although rehabilitation has been recommended to address these balance deficits, the extent to which people with MS can learn and retain improvements in postural responses is unknown. To determine the ability of people with MS to improve postural control with surface perturbation training. A total of 24 patients with mild MS and 14 age-matched controls underwent postural control training with a set pattern of continuous, forward-backward, sinusoidal, and surface translations provided by a force platform. Postural control was then tested the following day for retention. The primary outcome measures were the relative phase and center-of-mass (CoM) gain between the body CoM and the platform motion. People with MS demonstrated similar improvements in acquiring and retaining changes in the temporal control of the CoM despite significant deficits in postural motor performance at the baseline. Both MS and control groups learned to anticipate the pattern of forward-backward perturbations, so body CoM shifted from a phase-lag (age-matched controls [CS] = -7.1 ± 1.3; MS = -12.9 ± 1.0) toward a phase-lead (CS = -0.7 ± 1.8; MS = -6.1 ± 1.4) relationship with the surface oscillations. However, MS patients were not able to retain the changes in the spatial control of the CoM acquired during training. People with MS have the capacity to improve use of a feed-forward postural strategy with practice and retain the learned behavior for temporal not spatial control of CoM, despite their significant postural response impairments. © The Author(s) 2015.
Soysal Tomruk, Melda; Uz, Muhammed Zahid; Kara, Bilge; İdiman, Egemen
2016-05-01
Decreased postural control, sensory integration deficits and fatigue are important problems that cause functional impairments in patients with multiple sclerosis (pwMS). To examine the effect of modified clinical Pilates exercises on sensory interaction and balance, postural control and fatigue in pwMS. Eleven patients with multiple sclerosis and 12 healthy matched controls were recruited in this study. Limits of stability and postural stability tests were used to evaluate postural control by Biodex Balance System and sensory interaction assessed. Fatigue was assessed by Modified Fatigue Impact Scale. Pilates exercises were applied two times a week for 10 weeks and measurements were repeated to pwMS after exercise training. Postural control and fatigue (except psychosocial parameter) of pwMS were significantly worser than healthy controls (p<0.05). Significant improvements occurred in sensory interaction (eyes open, foam surface) and total, physical and cognitive scores of fatigue after 10-week modified clinical Pilates training (p<0.05). No significant changes were detected in postural control after the pilates exercises (p>0.05). Ten-week Pilates training is effective to improve sensory interaction and to decrease fatigue. Pilates exercises can be applied safely in ambulatory pwMS for enhance sensory interaction and balance and combat fatigue. More investigations are needed. Copyright © 2016 Elsevier B.V. All rights reserved.
A statistical model including age to predict passenger postures in the rear seats of automobiles.
Park, Jangwoon; Ebert, Sheila M; Reed, Matthew P; Hallman, Jason J
2016-06-01
Few statistical models of rear seat passenger posture have been published, and none has taken into account the effects of occupant age. This study developed new statistical models for predicting passenger postures in the rear seats of automobiles. Postures of 89 adults with a wide range of age and body size were measured in a laboratory mock-up in seven seat configurations. Posture-prediction models for female and male passengers were separately developed by stepwise regression using age, body dimensions, seat configurations and two-way interactions as potential predictors. Passenger posture was significantly associated with age and the effects of other two-way interaction variables depended on age. A set of posture-prediction models are presented for women and men, and the prediction results are compared with previously published models. This study is the first study of passenger posture to include a large cohort of older passengers and the first to report a significant effect of age for adults. The presented models can be used to position computational and physical human models for vehicle design and assessment. Practitioner Summary: The significant effects of age, body dimensions and seat configuration on rear seat passenger posture were identified. The models can be used to accurately position computational human models or crash test dummies for older passengers in known rear seat configurations.
Human posture experiments under water: ways of applying the findings to microgravity
NASA Astrophysics Data System (ADS)
Dirlich, Thomas
For the design and layout human spacecraft interiors the Neutral Body Posture (NBP) in micro-gravity is of great importance. The NBP has been defined as the stable, replicable and nearly constant posture the body "automatically" assumes when a human relaxes in microgravity. Furthermore the NBP, as published, suggests that there is one standard neutral posture for all individuals. Published experiments from space, parabolic flights and under water on the other hand show strong inter-individual variations of neutral (relaxed) postures. This might originate from the quite small sample sizes of subjects analyzed or the different experiment conditions, e. g. space and under water. Since 2008 a collaborative research project focussing on human postures and motions in microgravity has been ongoing at the Technische Univer-sitüt München (TUM). This collaborative effort is undertaken by the Institute of Astronautics a (LRT) and the Institute of Ergonomics (LfE). Several test campaigns have been conducted in simulated microgravity under water using a specially designed standardized experiment setup. Stereo-metric HD video footage and anthropometric data from over 50 subjects (female and male) has been gathered in over 80 experiments. The video data is analyzed using PCMAN software, developed by the LfE, resulting in a 3D volumetric CAD-based model of each subject and posture. Preliminary and ongoing analysis of the data offer evidence for the existence of intra-individually constant neutral postures, as well as continuously recurring relaxation strate-gies. But as with the data published prior the TUM experiments show quite a large variation of inter-individual postures. These variation might be induced or influenced by the special environmental conditions in the underwater experiment. Thus in present paper ways of stan-dardizing data and applying the findings gathered under water to real microgravity are being discussed. The following influences stemming from the differences between underwater and real microgravity environment were analyzed in greater detail: external forces (buoyancy and grav-ity), required fixation, postural changes by breathing and subject orientation to gravitational vector. Goal of this analysis was to understand the respective effects of each environmental influence on subjects posture observed. Each of the different influences was then quantified and the postural change induced by it calculated. These were then combined using a specially programmed multi-body-simulation tool, making it possible to recompute 3D posture data dy-namically to the environmental influences. The simulation is based on the volumetric 3D model of each subject, specific anthropometric data, such as body-fat or muscle ratio, combined with external forces such as gravity and buoyancy. The recomputed data can then be compared independent from the environmental influences. The recomputed 3D posture data can then be re-evaluated focussing again on possible inter-personal neutral posture archetypes in the subject group. Some examples of recomputed data and inter-personal findings will be given.
Postural strategies assessed with inertial sensors in healthy and parkinsonian subjects
Baston, Chiara; Mancini, Martina; Schoneburg, Bernadette; Horak, Fay; Rocchi, Laura
2015-01-01
The present study introduces a novel instrumented method to characterize postural movement strategies to maintain balance during stance (ankle and hip strategy), by means of inertial sensors, positioned on the legs and on the trunk. We evaluated postural strategies in subjects with2 types of parkinsonism: idiopathic Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP),and inage-matched control subjects standing under perturbed conditions implementedby the Sensory Organization Test (SOT).Coordination between the upper and lower segments of the body during postural sway was measured using a covariance index over time, by a sliding-window algorithm. Afterwards, a postural strategy index was computed. We also measuredthe amount of postural sway, as adjunctive information to characterize balance, by the root mean square of the horizontal trunk acceleration signal (RMS). Results showed that control subjects were able to change their postural strategy, whilst PSP and PD subjects persisted in use of an ankle strategy in all conditions.PD subjects had RMS values similar to control subjects even without changing postural strategy appropriately, whereas PSP subjects showed much larger RMS values than controls, resulting in several falls during the most challenging SOT conditions (5 and 6). Results are in accordance with the corresponding clinical literature describing postural behavior in the same kind of subjects. The proposed strategy index, based on the use ofinertial sensors on the upper and lower body segments, isa promising and unobtrusive toolto characterize postural strategies performed to attain balance. PMID:24656713
Experience of handicap and anxiety in phobic postural vertigo.
Holmberg, Johan; Karlberg, Mikael; Harlacher, Uwe; Magnusson, Mans
2005-03-01
We found a difference in gender distribution in a population of phobic postural vertigo patients compared with dizzy patients seen in general neuro-otological practice. It appears as if women with phobic postural vertigo suffer more and are more handicapped by dizziness than both men with phobic postural vertigo and a population with dizziness. These differences may reflect other causes of phobic postural vertigo besides anxiety, such as gender-related coping behaviour and postural strategy. Anxiety influences the degree of suffering and handicap in dizzy patients. Experiences of anxiety and handicap were investigated among a population with phobic postural vertigo. Using the Dizziness Handicap Inventory, the Vertigo Symptom Scale and the Vertigo Handicap Questionnaire, 34 consecutive patients with phobic postural vertigo were compared with a population of 95 consecutive patients seen at a balance disorder clinic. Patients with phobic postural vertigo scored higher than the control subjects with respect to all parameters with the exception of the physical subscale of the Dizziness Handicap Inventory. Because there were significantly more women in the control group we performed a gender-specific analysis of the results. The higher test scores among patients with phobic postural vertigo can be explained by the higher scores among women in this group, while the test results for men were more similar to those of the control group.
Acute Effects of Posture Shirts on Rounded-Shoulder and Forward-Head Posture in College Students.
Manor, John; Hibberd, Elizabeth; Petschauer, Meredith; Myers, Joseph
2016-12-01
Rounded-shoulder and forward-head posture can be contributing factors to shoulder pain. Corrective techniques such as manual therapy and exercise have been shown to improve these altered postures, but there is little evidence that corrective garments such as posture shirts can alter posture. To determine the acute effects of corrective postureshirt use on rounded-shoulder and forward-head posture in asymptomatic college students. Repeated-measures intervention study with counterbalanced conditions. Research laboratory. 24 members of the general student body of a university, 18-25 y old, with a forward shoulder angle (FSA) >52° and no history of upper-extremity surgery, scoliosis, active shoulder pain, or shoulder pain in the previous 3 mo that restricted participation for 3 consecutive days. Photographic posture assessment under a control condition, under a sham or treatment condition (counterbalanced), under another control condition, and treatment or sham. FSA and forward head angle (FHA) calculated from a lateral photograph. FSA decreased relative to the control condition while participants wore the sham shirt (P = .029) but not the corrective posture shirt (P = 1.00). FHA was unchanged between groups (P = .371). Application of a corrective posture shirt did not acutely alter FSA or FHA, while application of a sham shirt may decrease FSA at rest.
NASA Astrophysics Data System (ADS)
Kirchner, M.; Schubert, P.; Schmidtbleicher, D.; Haas, C. T.
2012-10-01
The analysis of postural control has a long history. Traditionally, the amount of body sway is solely used as an index of postural stability. Although this leads to some extent to an effective evaluation of balance performance, the control mechanisms involved have not yet been fully understood. The concept of nonlinear dynamics suggests that variability in the motor output is not randomness but structure, providing the stimulus to reveal the functionality of postural sway. The present work evaluates sway dynamics by means of COP excursions in a quiet standing task versus a dual-task condition in three different test times (30, 60, 300 s). Besides the application of traditional methods-which estimate the overall size of sway-the temporal pattern of body sway was quantified via wavelet transform, multiscale entropy and fractal analysis. We found higher sensitivity of the structural parameters to modulations of postural control strategies and partly an improved evaluation of sway dynamics in longer recordings. It could be shown that postural control modifications take place on different timescales corresponding to the interplay of the sensory systems. A continued application of nonlinear analysis can help to better understand postural control mechanisms.
Postural Control Deficits in Autism Spectrum Disorder: The Role of Sensory Integration
ERIC Educational Resources Information Center
Doumas, Michail; McKenna, Roisin; Murphy, Blain
2016-01-01
We investigated the nature of sensory integration deficits in postural control of young adults with ASD. Postural control was assessed in a fixed environment, and in three environments in which sensory information about body sway from visual, proprioceptive or both channels was inaccurate. Furthermore, two levels of inaccurate information were…
McCaskey, Michael A; Wirth, Brigitte; Schuster-Amft, Corina; de Bruin, Eling D
2018-01-01
Reduced postural control is thought to contribute to the development and persistence of chronic non-specific low back pain (CNLBP). It is therefore frequently assessed in affected patients and commonly reported as the average amount of postural sway while standing upright under a variety of sensory conditions. These averaged linear outcomes, such as mean centre of pressure (CP) displacement or mean CP surface areas, may not reflect the true postural status. Adding nonlinear outcomes and multi-segmental kinematic analysis has been reported to better reflect the complexity of postural control and may detect subtler postural differences. In this cross-sectional study, a combination of linear and nonlinear postural parameters were assessed in patients with CNLBP (n = 24, 24-75 years, 9 females) and compared to symptom-free controls (CG, n = 34, 22-67 years, 11 females). Primary outcome was postural control measured by variance of joint configurations (uncontrolled manifold index, UI), confidence ellipse surface areas (CEA) and approximate entropy (ApEn) of CP dispersion during the response phase of a perturbed postural control task on a swaying platform. Secondary outcomes were segment excursions and clinical outcome correlates for pain and function. Non-parametric tests for group comparison with P-adjustment for multiple comparisons were conducted. Principal component analysis was applied to identify patterns of segmental contribution in both groups. CNLBP and CG performed similarly with respect to the primary outcomes. Comparison of joint kinematics revealed significant differences of hip (P < .001) and neck (P < .025) angular excursion, representing medium to large group effects (r's = .36 - .51). Significant (P's < .05), but moderate correlations of ApEn (r = -.42) and UI (r = -.46) with the health-related outcomes were observed. These findings lend further support to the notion that averaged linear outcomes do not suffice to describe subtle postural differences in CNLBP patients with low to moderate pain status.
Uhm, Yo-Han; Yang, Dae-Jung
2018-02-01
[Purpose] The purpose of this study was to examine the effect of computerized postural control training using whole body vibration on lower limb muscle activity and cerebral cortical activation in acute stroke patients. [Subjects and Methods] Thirty stroke patients participated and were divided into groups of 10, a group of the computerized postural control training using whole body vibration (Group I), the computerized postural control training combined with aero step (Group II) and computerized postural control training (Group III). MP100 was used to measure lower limb muscle activity, and QEEG-8 was used to measure cerebral cortical activation. [Results] Comparison of muscle activity and cerebral cortical activation before and after intervention between groups showed that Group I had significant differences in lower limb muscle activity and cerebral cortical activation compared to Groups II and III. [Conclusion] This study showed that whole body vibration combined computerized postural control training is effective for improving muscle activity and cerebral cortex activity in stroke patients.
Leisure sports and postural control: can a black belt protect your balance from aging?
Krampe, Ralf T; Smolders, Caroline; Doumas, Michail
2014-03-01
To determine potential benefits of intensive leisure sports for age-related changes in postural control, we tested 3 activity groups comprising 70 young (M = 21.67 years, SD = 2.80) and 73 older (M = 62.60 years, SD = 5.19) men. Activity groups were martial artists, who held at least 1st Dan (black belt), sportive individuals exercising sports without explicit balance components, and nonsportive controls. Martial artists had an advantage over sportive individuals in dynamic posture tasks (upright stance on a sway-referenced platform), and these 2 active groups showed better postural control than nonsportive participants. Age-related differences in postural control were larger in nonsportive men compared with the 2 active groups, who were similar in this respect. In contrast, negative age differences in other sensorimotor and cognitive functions did not differ between activity groups. We concluded that individuals engaging in intensive recreational sports have long-term advantages in postural control. However, even in older martial artists with years of practice in their sports, we observed considerable differences favoring the young. (c) 2014 APA, all rights reserved.
Influence of gymnastics training on the development of postural control.
Garcia, Claudia; Barela, José Angelo; Viana, André Rocha; Barela, Ana Maria Forti
2011-03-29
This study investigated the influence of gymnastics training on the postural control of children with and without the use of visual information. Two age groups, aged 5-7 and 9-11 years old, of gymnasts and nongymnasts were asked to maintain an upright and quiet stance on a force platform with eyes open (EO) and eyes closed (EC) for 30s. Area of the stabilogram (AOS) and mean velocity of the center of pressure (COP) in anterior-posterior (AP) and medial-lateral (ML) directions were calculated and used to investigate the effects of gymnastics training, age, and visual information. Younger gymnasts presented greater postural control compared to younger nongymnasts while visual information did not improve postural control in younger nongymnasts. Younger gymnasts displayed improved postural control with EO compared to EC. The mean velocity of the COP in the ML direction was: less for younger gymnasts than younger nongymnasts with EO. These results suggest that gymnastics training promotes improvements in postural control of younger children only, which results from their use of visual information when available. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Toprak Çelenay, Şeyda; Özer Kaya, Derya
2017-04-18
To investigate the effects of an 8-week thoracic stabilization exercise program on back pain, spinal alignment, postural sway, and core endurance in university students. University students were randomly allocated into exercise (n: 28) and control (n: 25) groups. The exercise program was carried out 3 days a week for 8 weeks. Postural pain, spinal alignment, postural sway, and core endurance were assessed via visual analogue scale, Spinal Mouse, Biodex Balance System, and McGill's trunk muscle endurance tests at the baseline and after 8 weeks of training. Differences were observed for postural pain, thoracic and lumbar curvature, dynamic stability index (eyes closed), and core endurance scores in the exercise group between baseline and week 8 (P < 0.05) and all the parameters were significantly different when compared to those of the control group (P < 0.05). The program decreased postural pain, spinal curvatures, and postural sway, and increased core endurance in university students. The program can be effective in postural pain and misalignment of spine problems related to core weakness and balance disorders.
Neural-Learning-Based Telerobot Control With Guaranteed Performance.
Yang, Chenguang; Wang, Xinyu; Cheng, Long; Ma, Hongbin
2017-10-01
In this paper, a neural networks (NNs) enhanced telerobot control system is designed and tested on a Baxter robot. Guaranteed performance of the telerobot control system is achieved at both kinematic and dynamic levels. At kinematic level, automatic collision avoidance is achieved by the control design at the kinematic level exploiting the joint space redundancy, thus the human operator would be able to only concentrate on motion of robot's end-effector without concern on possible collision. A posture restoration scheme is also integrated based on a simulated parallel system to enable the manipulator restore back to the natural posture in the absence of obstacles. At dynamic level, adaptive control using radial basis function NNs is developed to compensate for the effect caused by the internal and external uncertainties, e.g., unknown payload. Both the steady state and the transient performance are guaranteed to satisfy a prescribed performance requirement. Comparative experiments have been performed to test the effectiveness and to demonstrate the guaranteed performance of the proposed methods.
Azadinia, Fatemeh; Ebrahimi-Takamjani, Ismail; Kamyab, Mojtaba; Parnianpour, Mohamad; Asgari, Morteza
2017-01-01
Background: Poor balance performance and impaired postural control have been frequently reported in patients with low back pain. However, postural control is rarely monitored during the course of treatment even though poor postural control may contribute to chronicity and recurrence of symptoms. Therefore, the present study aimed at investigating the effect of a nonextensible lumbosacral orthosis (LSO) versus routine physical therapy on postural stability of patients with nonspecific chronic low back pain. Methods: This was a randomized controlled trial conducted between November 2015 and May 2016 at the outpatient physical therapy clinic of the School of Rehabilitation Sciences. Patients with nonspecific chronic low back pain aged 20 to 55 years were randomly allocated to the intervention and control groups. Both groups received 8 sessions of physical therapy twice weekly for 4 weeks. The intervention group received nonextensible LSO in addition to routine physical therapy. Pain intensity, functional disability, fear of movement/ (re)injury, and postural stability in 3 levels of postural difficulty were measured before and after 4 weeks of intervention. A 2×2×3 mixed model of analysis of variance (ANOVA) was used to determine the main and interactive effects of the 3 factors including group, time, and postural difficulty conditions for each variable of postural stability. Results: The LSO and control groups displayed significant improvement in postural stability at the most difficult postural task conditions (P-value for 95% area ellipse was 0.003; and for phase plane, the mean total velocity and standard deviation of velocity was <0.001). Both groups exhibited a decrease in pain intensity, Oswestry Disability Index, and Tampa Scale of Kinesiophobia after 4 weeks of intervention. A significant difference between groups was found only for functional disability, with greater improvement in the orthosis group (t = 3.60, P<0.001). Conclusion: Both routine physical therapy and LSO significantly improved clinical and postural stability outcomes immediately after 4 weeks of intervention. The orthosis group did not display superior outcomes, except for functional disability.
Azadinia, Fatemeh; Ebrahimi-Takamjani, Ismail; Kamyab, Mojtaba; Parnianpour, Mohamad; Asgari, Morteza
2017-01-01
Background: Poor balance performance and impaired postural control have been frequently reported in patients with low back pain. However, postural control is rarely monitored during the course of treatment even though poor postural control may contribute to chronicity and recurrence of symptoms. Therefore, the present study aimed at investigating the effect of a nonextensible lumbosacral orthosis (LSO) versus routine physical therapy on postural stability of patients with nonspecific chronic low back pain. Methods: This was a randomized controlled trial conducted between November 2015 and May 2016 at the outpatient physical therapy clinic of the School of Rehabilitation Sciences. Patients with nonspecific chronic low back pain aged 20 to 55 years were randomly allocated to the intervention and control groups. Both groups received 8 sessions of physical therapy twice weekly for 4 weeks. The intervention group received nonextensible LSO in addition to routine physical therapy. Pain intensity, functional disability, fear of movement/ (re)injury, and postural stability in 3 levels of postural difficulty were measured before and after 4 weeks of intervention. A 2×2×3 mixed model of analysis of variance (ANOVA) was used to determine the main and interactive effects of the 3 factors including group, time, and postural difficulty conditions for each variable of postural stability. Results: The LSO and control groups displayed significant improvement in postural stability at the most difficult postural task conditions (P-value for 95% area ellipse was 0.003; and for phase plane, the mean total velocity and standard deviation of velocity was <0.001). Both groups exhibited a decrease in pain intensity, Oswestry Disability Index, and Tampa Scale of Kinesiophobia after 4 weeks of intervention. A significant difference between groups was found only for functional disability, with greater improvement in the orthosis group (t = 3.60, P<0.001). Conclusion: Both routine physical therapy and LSO significantly improved clinical and postural stability outcomes immediately after 4 weeks of intervention. The orthosis group did not display superior outcomes, except for functional disability. PMID:29445655
Emotional and movement-related body postures modulate visual processing
Borhani, Khatereh; Làdavas, Elisabetta; Maier, Martin E.; Avenanti, Alessio
2015-01-01
Human body postures convey useful information for understanding others’ emotions and intentions. To investigate at which stage of visual processing emotional and movement-related information conveyed by bodies is discriminated, we examined event-related potentials elicited by laterally presented images of bodies with static postures and implied-motion body images with neutral, fearful or happy expressions. At the early stage of visual structural encoding (N190), we found a difference in the sensitivity of the two hemispheres to observed body postures. Specifically, the right hemisphere showed a N190 modulation both for the motion content (i.e. all the observed postures implying body movements elicited greater N190 amplitudes compared with static postures) and for the emotional content (i.e. fearful postures elicited the largest N190 amplitude), while the left hemisphere showed a modulation only for the motion content. In contrast, at a later stage of perceptual representation, reflecting selective attention to salient stimuli, an increased early posterior negativity was observed for fearful stimuli in both hemispheres, suggesting an enhanced processing of motivationally relevant stimuli. The observed modulations, both at the early stage of structural encoding and at the later processing stage, suggest the existence of a specialized perceptual mechanism tuned to emotion- and action-related information conveyed by human body postures. PMID:25556213
COMPARISON OF ORGAN DOSES IN HUMAN PHANTOMS: VARIATIONS DUE TO BODY SIZE AND POSTURE.
Feng, Xu; Xiang-Hong, Jia; Qian, Liu; Xue-Jun, Yu; Zhan-Chun, Pan; Chun-Xin, Yang
2017-04-20
Organ dose calculations performed using human phantoms can provide estimates of astronauts' health risks due to cosmic radiation. However, the characteristics of such phantoms strongly affect the estimation precision. To investigate organ dose variations with body size and posture in human phantoms, a non-uniform rational B-spline boundary surfaces model was constructed based on cryosection images. This model was used to establish four phantoms with different body size and posture parameters, whose organs parameters were changed simultaneously and which were voxelised with 4 × 4 × 4 mm3 resolution. Then, using Monte Carlo transport code, the organ doses caused by ≤500 MeV isotropic incident protons were calculated. The dose variations due to body size differences within a certain range were negligible, and the doses received in crouching and standing-up postures were similar. Therefore, a standard Chinese phantom could be established, and posture changes cannot effectively protect astronauts during solar particle events. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Yasuda, Kazuhiro; Kaibuki, Naomi; Harashima, Hiroaki; Iwata, Hiroyasu
2017-06-01
Impaired balance in patients with hemiparesis caused by stroke is frequently related to deficits in the central integration of afferent inputs, and traditional rehabilitation reinforces excessive visual reliance by focusing on visual compensation. The present study investigated whether a balance task involving a haptic biofeedback (BF) system, which provided supplementary vibrotactile sensory cues associated with center-of-foot-pressure displacement, improved postural control in patients with stroke. Seventeen stroke patients were assigned to two groups: the Vibrotactile BF and Control groups. During the balance task (i.e., standing on a foam mat), participants in the Vibrotactile BF group tried to stabilize their postural sway while wearing the BF system around the pelvic girdle. In the Control group, participants performed an identical postural task without the BF system. Pre- and post-test measurements of postural control using a force plate revealed that the stability of bipedal posture in the Vibrotactile BF group was markedly improved compared with that in the Control group. A balance task involving a vibrotactile BF system improved postural stability in patients with stroke immediately. This confirms the potential of a haptic-based BF system for balance training, both in routine clinical practice and in everyday life.
Hur, Pilwon; Shorter, K Alex; Mehta, Prashant G; Hsiao-Wecksler, Elizabeth T
2012-04-01
In this paper, a novel analysis technique, invariant density analysis (IDA), is introduced. IDA quantifies steady-state behavior of the postural control system using center of pressure (COP) data collected during quiet standing. IDA relies on the analysis of a reduced-order finite Markov model to characterize stochastic behavior observed during postural sway. Five IDA parameters characterize the model and offer physiological insight into the long-term dynamical behavior of the postural control system. Two studies were performed to demonstrate the efficacy of IDA. Study 1 showed that multiple short trials can be concatenated to create a dataset suitable for IDA. Study 2 demonstrated that IDA was effective at distinguishing age-related differences in postural control behavior between young, middle-aged, and older adults. These results suggest that the postural control system of young adults converges more quickly to their steady-state behavior while maintaining COP nearer an overall centroid than either the middle-aged or older adults. Additionally, larger entropy values for older adults indicate that their COP follows a more stochastic path, while smaller entropy values for young adults indicate a more deterministic path. These results illustrate the potential of IDA as a quantitative tool for the assessment of the quiet-standing postural control system.
Wang, Tien-Ni; Howe, Tsu-Hsin; Hinojosa, Jim; Weinberg, Sharon L
2011-01-01
We examined the relationship between postural control and fine motor skills of preterm infants at 6 and 12 mo adjusted age. The Alberta Infant Motor Scale was used to measure postural control, and the Peabody Developmental Motor Scales II was used to measure fine motor skills. The data analyzed were taken from 105 medical records from a preterm infant follow-up clinic at an urban academic medical center in south Taiwan. Using multiple regression analyses, we found that the development of postural control is related to the development of fine motor skills, especially in the group of preterm infants with delayed postural control. This finding supports the theoretical assumption of proximal-distal development used by many occupational therapists to guide intervention. Further research is suggested to corroborate findings.
Serrien, Ben; Hohenauer, Erich; Clijsen, Ron; Taube, Wolfgang; Baeyens, Jean-Pierre; Küng, Ursula
2017-11-01
How humans maintain balance and change postural control due to age, injury, immobility or training is one of the basic questions in motor control. One of the problems in understanding postural control is the large set of degrees of freedom in the human motor system. Therefore, a self-organizing map (SOM), a type of artificial neural network, was used in the present study to extract and visualize information about high-dimensional balance strategies before and after a 6-week slackline training intervention. Thirteen subjects performed a flamingo and slackline balance task before and after the training while full body kinematics were measured. Range of motion, velocity and frequency of the center of mass and joint angles from the pelvis, trunk and lower leg (45 variables) were calculated and subsequently analyzed with an SOM. Subjects increased their standing time significantly on the flamingo (average +2.93 s, Cohen's d = 1.04) and slackline (+9.55 s, d = 3.28) tasks, but the effect size was more than three times larger in the slackline. The SOM analysis, followed by a k-means clustering and marginal homogeneity test, showed that the balance coordination pattern was significantly different between pre- and post-test for the slackline task only (χ 2 = 82.247; p < 0.001). The shift in balance coordination on the slackline could be characterized by an increase in range of motion and a decrease in velocity and frequency in nearly all degrees of freedom simultaneously. The observation of low transfer of coordination strategies to the flamingo task adds further evidence for the task-specificity principle of balance training, meaning that slackline training alone will be insufficient to increase postural control in other challenging situations.
De Pauw, J; Mercelis, R; Hallemans, A; Van Gils, G; Truijen, S; Cras, P; De Hertogh, W
2018-03-01
Cervical dystonia (CD) is a movement disorder characterized by involuntary muscle contractions leading to an abnormal head posture or movements of the neck. Dysfunctions in somatosensory integration are present and previous data showed enlarged postural sway in stance. Postural control during quiet sitting and the correlation with cervical sensorimotor control were investigated. Postural control during quiet sitting was measured via body sway parameters in 23 patients with CD, regularly receiving botulinum toxin treatment and compared with 36 healthy controls. Amplitude and velocity of displacements of the center of pressure (CoP) were measured by two embedded force plates at 1000 Hz. Three samples of 30 s were recorded with the eyes open and closed. Disease-specific characteristics were obtained in all patients by the Tsui scale, Cervical Dystonia Impact Profile (CDIP-58) and Toronto Western Spasmodic Rating Scale (TWSTRS). Cervical sensorimotor control was assessed with an infrared Vicon system during a head repositioning task. Body sway amplitude and velocity were increased in patients with CD compared to healthy controls. CoP displacements were doubled in patients without head tremor and tripled in patients with a dystonic head tremor. Impairments in cervical sensorimotor control were correlated with larger CoP displacements (r s ranged from 0.608 to 0.748). Postural control is impaired and correlates with dysfunction in cervical sensorimotor control in patients with CD. Treatment is currently focused on the cervical area. Further research towards the potential value of postural control exercises is recommended.
Moll van Charante, A W; Snijders, C J; Mulder, P G
1991-10-01
In a previous case-control study on the effect of impaired perceptual acuity on the risk of industrial injuries at a naval shipyard, three factors which might influence the perception and processing of sensory impressions--alcohol consumption, hearing loss exceeding 20 decibels (dB) and exposure to noise exceeding 82 dB(A)--were found to contribute to the risk of injury. According to recent reports, these factors can all lead to impaired posture control. Because in general about 40% of all accidents are associated with falling, tripping, slipping and the like, a supplementary study has been carried out to unravel possible confounding effects of posture control on these three risk factors. Cases (who had suffered two or more accidents during the preceding 4 years) and controls (who had been accident-free in the same period) were compared as regards posture control measured during silence or noise. No significant difference in posture control was found between cases and controls, either in silence or during exposure to heavy noise.
Development of a sliding mode control model for quiet upright stance.
Zhang, Hongbo; Nussbaum, Maury A; Agnew, Michael J
2016-02-01
Human upright stance appears maintained or controlled intermittently, through some combination of passive and active ankle torques, respectively representing intrinsic and contractile contributions of the ankle musculature. Several intermittent postural control models have been proposed, though it has been challenging to accurately represent actual kinematics and kinetics and to separately estimate passive and active ankle torque components. Here, a simplified single-segment, 2D (sagittal plane) sliding mode control model was developed for application to track kinematics and kinetics during upright stance. The model was implemented and evaluated using previous experimental data consisting of whole body angular kinematics and ankle torques. Tracking errors for the whole-body center-of-mass (COM) angle and angular velocity, as well as ankle torque, were all within ∼10% of experimental values, though tracking performance for COM angular acceleration was substantially poorer. The model also enabled separate estimates of the contributions of passive and active ankle torques, with overall contributions estimated here to be 96% and 4% of the total ankle torque, respectively. Such a model may have future utility in understanding human postural control, though additional work is needed, such as expanding the model to multiple segments and to three dimensions. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Chronic Low Quality Sleep Impairs Postural Control in Healthy Adults.
Furtado, Fabianne; Gonçalves, Bruno da Silva B; Abranches, Isabela Lopes Laguardia; Abrantes, Ana Flávia; Forner-Cordero, Arturo
2016-01-01
The lack of sleep, both in quality and quantity, is an increasing problem in modern society, often related to workload and stress. A number of studies have addressed the effects of acute (total) sleep deprivation on postural control. However, up to date, the effects of chronic sleep deficits, either in quantity or quality, have not been analyzed. Thirty healthy adults participated in the study that consisted of registering activity with a wrist actigraph for more than a week before performing a series of postural control tests. Sleep and circadian rhythm variables were correlated and the sum of activity of the least active 5-h period, L5, a rhythm variable, obtained the greater coefficient value with sleep quality variables (wake after sleep onset WASO and efficiency sleep). Cluster analysis was performed to classify subjects into two groups based on L5 (low and high). The balance tests scores used to asses postural control were measured using Biodex Balance System and were compared between the two groups with different sleep quality. The postural tests were divided into dynamic (platform tilt with eyes open, closed and cursor) and static (clinical test of sensory integration). The results showed that during the tests with eyes closed, the group with worse sleep quality had also worse postural control performance. Lack of vision impairs postural balance more deeply in subjects with chronic sleep inefficiency. Chronic poor sleep quality impairs postural control similarly to total sleep deprivation.
Impairment of Postural Control in Rabbits With Extensive Spinal Lesions
Lyalka, V. F.; Orlovsky, G. N.; Deliagina, T. G.
2009-01-01
Our previous studies on rabbits demonstrated that the ventral spinal pathways are of primary importance for postural control in the hindquarters. After ventral hemisection, postural control did not recover, whereas after dorsal or lateral hemisection it did. The aim of this study was to examine postural capacity of rabbits after more extensive lesion (3/4 section of the spinal cord at T12 level), that is, with only one ventral quadrant spared (VQ animals). They were tested before (control) and after lesion on the platform periodically tilted in the frontal plane. In control animals, tilts of the platform regularly elicited coordinated electromyographic (EMG) responses in the hindlimbs, which resulted in generation of postural corrections and in maintenance of balance. In VQ rabbits, the EMG responses appeared only in a part of tilt cycles, and they could be either correctly or incorrectly phased in relation to tilts. Because of a reduced value and incorrect phasing of EMG responses on both sides, this muscle activity did not cause postural corrective movements in the majority of rabbits, and the body swayed together with the platform. In these rabbits, the ability to perform postural corrections did not recover during the whole period of observation (≤30 days). Low probability of correct EMG responses to tilts in most rabbits as well as an appearance of incorrect responses to tilts suggest that the spinal reflex chains, necessary for postural control, have not been specifically selected by a reduced supraspinal drive transmitted via a single ventral quadrant. PMID:19164112
Chronic Low Quality Sleep Impairs Postural Control in Healthy Adults
Gonçalves, Bruno da Silva B.; Abranches, Isabela Lopes Laguardia; Abrantes, Ana Flávia
2016-01-01
The lack of sleep, both in quality and quantity, is an increasing problem in modern society, often related to workload and stress. A number of studies have addressed the effects of acute (total) sleep deprivation on postural control. However, up to date, the effects of chronic sleep deficits, either in quantity or quality, have not been analyzed. Thirty healthy adults participated in the study that consisted of registering activity with a wrist actigraph for more than a week before performing a series of postural control tests. Sleep and circadian rhythm variables were correlated and the sum of activity of the least active 5-h period, L5, a rhythm variable, obtained the greater coefficient value with sleep quality variables (wake after sleep onset WASO and efficiency sleep). Cluster analysis was performed to classify subjects into two groups based on L5 (low and high). The balance tests scores used to asses postural control were measured using Biodex Balance System and were compared between the two groups with different sleep quality. The postural tests were divided into dynamic (platform tilt with eyes open, closed and cursor) and static (clinical test of sensory integration). The results showed that during the tests with eyes closed, the group with worse sleep quality had also worse postural control performance. Lack of vision impairs postural balance more deeply in subjects with chronic sleep inefficiency. Chronic poor sleep quality impairs postural control similarly to total sleep deprivation. PMID:27732604
Zeinalzadeh, Afsaneh; Talebian, Saeed; Naghdi, Soofia; Salavati, Mahyar; Nazary-Moghadam, Salman; Zeynalzadeh Ghoochani, Bahareh
2018-04-01
To compare the effects of vision and cognitive load on static postural control in subjects with and without patellofemoral pain syndrome (PFPS). Twenty-eight PFPS patients and 28 controls participated in the study. Postural control was assessed in isolation as well as with visual manipulation and cognitive loading on symptomatic limb. The outcome measures of postural control were quantified in terms of area, anterior-posterior (AP), medial-lateral (ML), and mean velocity (MV) of the displacements of center of pressure (COP). In addition, cognitive performance (auditory Stroop task) was measured in the forms of average reaction time and error ratio in baseline (sitting) and different postural conditions. PFPS subjects showed greater increases in area (p = 0.01), AP (p = 0.01), and ML (p = 0.05) displacements of COP in the blindfolded tasks as compared to control group. However, cognitive load did not differently affect postural control in the two groups. Although PFPS and control group had similar reaction times in the sitting position (p = 0.29), PFPS subjects had longer reaction times than healthy subjects in dual task conditions (p = 0.04). Visual inputs seem to be essential for discriminating postural control between PFPS and healthy individuals. PFPS patients biased toward decreasing cognitive performance more than healthy subjects when they perform the single leg stance and cognitive task concurrently.
A model of neuro-musculo-skeletal system for human locomotion under position constraint condition.
Ni, Jiangsheng; Hiramatsu, Seiji; Kato, Atsuo
2003-08-01
The human locomotion was studied on the basis of the interaction of the musculo-skeletal system, the neural system and the environment. A mathematical model of human locomotion under position constraint condition was established. Besides the neural rhythm generator, the posture controller and the sensory system, the environment feedback controller and the stability controller were taken into account in the model. The environment feedback controller was proposed for two purposes, obstacle avoidance and target position control of the swing foot. The stability controller was proposed to imitate the self-balancing ability of a human body and improve the stability of the model. In the stability controller, the ankle torque was used to control the velocity of the body gravity center. A prediction control algorithm was applied to calculate the torque magnitude of the stability controller. As an example, human stairs climbing movement was simulated and the results were given. The simulation result proved that the mathematical modeling of the task was successful.
"Stand up straight": notes toward a history of posture.
Gilman, Sander L
2014-03-01
The essay presents a set of interlinked claims about posture in modern culture. Over the past two centuries it has come to define a wide range of assumptions in the West from what makes human beings human (from Lamarck to Darwin and beyond) to the efficacy of the body in warfare (from Dutch drill manuals in the 17th century to German military medical studies of soldiers in the 19th century). Dance and sport both are forms of posture training in terms of their own claims. Posture separates 'primitive' from 'advanced' peoples and the 'ill' from the 'healthy.' Indeed an entire medical sub-specialty developed in which gymnastics defined and recuperated the body. But all of these claims were also part of a Western attempt to use posture (and the means of altering it) as the litmus test for the healthy modern body of the perfect citizen. Focusing on the centrality of posture in two oddly linked moments of modern thought--modern Zionist thought and Nationalism in early 20th century China--in terms of bodily reform, we show how "posture" brings all of the earlier debates together to reform the body.
Kinematics of the human mandible for different head postures.
Visscher, C M; Huddleston Slater, J J; Lobbezoo, F; Naeije, M
2000-04-01
The influence of head posture on movement paths of the incisal point (IP) and of the mandibular condyles during free open-close movements was studied. Ten persons, without craniomandibular or cervical spine disorders, participated in the study. Open close mandibular movements were recorded with the head in five postures, viz., natural head posture, forward head posture, military posture, and lateroflexion to the right and to the left side, using the Oral Kinesiologic Analysis System (OKAS-3D). This study showed that in a military head posture, the opening movement path of the incisal point is shifted anteriorly relative to the path in a natural head posture. In a forward head posture, the movement path is shifted posteriorly whereas during lateroflexion, it deviates to the side the head has moved to. Moreover, the intra-articular distance in the temporomandibular joint during closing is smaller with the head in military posture and greater in forward head posture, as compared to the natural head posture. During lateroflexion, the intra-articular distance on the ipsilateral side is smaller. The influence of head posture upon the kinematics of the mandible is probably a manifestation of differences in mandibular loading in the different head postures.
Influence of dental occlusion on postural control and plantar pressure distribution.
Scharnweber, Benjamin; Adjami, Frederic; Schuster, Gabriele; Kopp, Stefan; Natrup, Jörg; Erbe, Christina; Ohlendorf, Daniela
2017-11-01
The number of studies investigating correlations between the temporomandibular system and body posture, postural control or plantar pressure distribution is continuously increasing. If a connection can be found, it is often of minor influence or for only a single parameter. However, small subject groups are critical. This study was conducted to define correlations between dental parameters, postural control and plantar pressure distribution in healthy males. In this study, 87 male subjects with an average age of 25.23 ± 3.5 years (ranging from 18 to 35 years) were examined. Dental casts of the subjects were analyzed. Postural control and plantar pressure distribution were recorded by a force platform. Possible orthodontic and orthopedic factors of influence were determined by either an anamnesis or a questionnaire. All tests performed were randomized and repeated three times each for intercuspal position (ICP) and blocked occlusion (BO). For a statistical analysis of the results, non-parametric tests (Wilcoxon-Matched-Pairs-Test, Kruskall-Wallis-Test) were used. A revision of the results via Bonferroni-Holm correction was considered. ICP increases body sway in the frontal (p ≤ 0.01) and sagittal planes (p ≤ 0.03) compared to BO, whereas all other 29 correlations were independent of the occlusion position. For both of the ICP or BO cases, Angle-class, midline-displacement, crossbite, or orthodontic therapy were found to have no influence on postural control or plantar pressure distribution (p > 0.05). However, the contact time of the left foot decreased (p ≤ 0.001) while detecting the plantar pressure distribution in each position. Persistent dental parameters have no effect on postural sway. In addition, postural control and plantar pressure distribution have been found to be independent postural criteria.
Standridge, J. S.; Bhattacharya, Amit; Succop, Paul; Cox, Cyndy; Haynes, Erin
2009-01-01
OBJECTIVE The objective of this study was to determine the effect of non-occupational exposure to manganese on postural balance. METHODS Residents living near a ferromanganese refinery provided hair and blood samples after postural balance testing. The relationship between hair manganese and postural balance was analyzed with logistic regression. Following covariate adjustment, postural balance was compared with control data by analysis of covariance. RESULTS Mean hair manganese was 4.4 µg/g. A significantly positive association was found between hair manganese and sway area (EO, p=0.05; EC, p=0.04) and sway length (EO, p=0.05; EC, p=0.04). Postural balance of residents was significantly larger than controls in 5 out of 8 postural balance outcomes. CONCLUSION Preliminary findings suggest subclinical impairment in postural balance among residents chronically exposed to ambient Mn. A prospective study with a larger sample size is warranted. PMID:19092498
Tai Chi training reduced coupling between respiration and postural control.
Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li
2016-01-01
In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (p<0.001). Tai Chi training did not affect traditional parameters of standing postural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part from optimization of this multi-system interaction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Remaud, Anthony; Thuong-Cong, Cécile; Bilodeau, Martin
2016-01-01
Normal aging results in alterations in the visual, vestibular and somtaosensory systems, which in turn modify the control of balance. Muscle fatigue may exacerbate these age-related changes in sensory and motor functions, and also increase the attentional demands associated with dynamic postural control. The purpose of this study was to investigate the effect of aging on dynamic postural control and posture-related attentional demands before and after a plantar flexor fatigue protocol. Participants (young adults: n = 15; healthy seniors: n = 13) performed a dynamic postural task along the antero-posterior (AP) and the medio-lateral (ML) axes, with and without the addition of a simple reaction time (RT) task. The dynamic postural task consisted in following a moving circle on a computer screen with the representation of the center of pressure (COP). This protocol was repeated before and after a fatigue task where ankle plantar flexor muscles were targeted. The mean COP-target distance and the mean COP velocity were calculated for each trial. Cross-correlation analyses between the COP and target displacements were also performed. RTs were recorded during dual-task trials. Results showed that while young adults adopted an anticipatory control mode to move their COP as close as possible to the target center, seniors adopted a reactive control mode, lagging behind the target center. This resulted in longer COP-target distance and higher COP velocity in the latter group. Concurrently, RT increased more in seniors when switching from static stance to dynamic postural conditions, suggesting potential alterations in the central nervous system (CNS) functions. Finally, plantar flexor muscle fatigue and dual-tasking had only minor effects on dynamic postural control of both young adults and seniors. Future studies should investigate why the fatigue-induced changes in quiet standing postural control do not seem to transfer to dynamic balance tasks. PMID:26834626
Pelosin, Elisa; Bisio, Ambra; Pozzo, Thierry; Lagravinese, Giovanna; Crisafulli, Oscar; Marchese, Roberta; Abbruzzese, Giovanni; Avanzino, Laura
2018-01-01
Postural reactions can be influenced by concomitant tasks or different contexts and are modulated by a higher order motor control. Recent studies investigated postural changes determined by motor contagion induced by action observation (chameleon effect) showing that observing a model in postural disequilibrium induces an increase in healthy subjects’ body sway. Parkinson’s disease (PD) is associated with postural instability and impairments in cognitively controlled balance tasks. However, no studies investigated if viewing postural imbalance might influence postural stability in PD and if patients are able to inhibit a visual postural perturbation. In this study, an action observation paradigm for assessing postural reaction to motor contagion in PD subjects and healthy older adults was used. Postural stability changes were measured during the observation of a static stimulus (control condition) and during a point-light display of a gymnast balancing on a rope (biological stimulus). Our results showed that, during the observation of the biological stimulus, sway area and antero-posterior and medio-lateral displacements of center of pressure significantly increased only in PD participants, whereas correct stabilization reactions were present in elderly subjects. These results demonstrate that PD leads to a decreased capacity to control automatic imitative tendencies induced by motor contagion. This behavior could be the consequence either of an inability to inhibit automatic imitative tendencies or of the cognitive load requested by the task. Whatever the case, the issue about the ability to inhibit automatic imitative tendencies could be crucial for PD patients since it might increase falls risk and injuries. PMID:29545771
Postural strategies assessed with inertial sensors in healthy and parkinsonian subjects.
Baston, Chiara; Mancini, Martina; Schoneburg, Bernadette; Horak, Fay; Rocchi, Laura
2014-01-01
The present study introduces a novel instrumented method to characterize postural movement strategies to maintain balance during stance (ankle and hip strategy), by means of inertial sensors, positioned on the legs and on the trunk. We evaluated postural strategies in subjects with 2 types of Parkinsonism: idiopathic Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP), and in age-matched control subjects standing under perturbed conditions implemented by the Sensory Organization Test (SOT). Coordination between the upper and lower segments of the body during postural sway was measured using a covariance index over time, by a sliding-window algorithm. Afterwards, a postural strategy index was computed. We also measured the amount of postural sway, as adjunctive information to characterize balance, by the root mean square of the horizontal trunk acceleration signal (RMS). showed that control subjects were able to change their postural strategy, whilst PSP and PD subjects persisted in use of an ankle strategy in all conditions. PD subjects had RMS values similar to control subjects even without changing postural strategy appropriately, whereas PSP subjects showed much larger RMS values than controls, resulting in several falls during the most challenging SOT conditions (5 and 6). Results are in accordance with the corresponding clinical literature describing postural behavior in the same kind of subjects. The proposed strategy index, based on the use of inertial sensors on the upper and lower body segments, is a promising and unobtrusive tool to characterize postural strategies performed to attain balance. Copyright © 2014 Elsevier B.V. All rights reserved.
Evaluation of Neutral Body Posture on Shuttle Mission STS-57 (SPACEHAB-1). Revision
NASA Technical Reports Server (NTRS)
Mount, Frances E.; Whitmore, Mihriban; Stealey, Sheryl L.
2003-01-01
Research has shown that the space environment induces physiological changes in the human body, such as fluid shifts in the upper body and chest cavity, spinal lengthening, muscular atrophy, space motion sickness, cardiopulmonary deconditioning, and bone mass loss, as well as some changes in visual perception. These require a period of adaptation and can substantially affect both crew member performance and posture. These physiological effects, when work activities are conducted, have been known to impact the body's center of gravity, reach, flexibility, and dexterity. All these aspects of posture must be considered to safely and efficiently design space systems and hardware. NASA has documented its microgravity body posture in the Man-Systems Integration Standards (MSIS); the space community uses the MSIS posture to design workstations and tools for space application. However, the microgravity body posture should be further investigated for several reasons, including small sample size in previous studies, possible imprecision, and lack of detail. JSC undertook this study to investigate human body posture exhibited under microgravity conditions. STS-57 crew members were instructed to assume a relaxed posture that was not oriented to any work area or task. Crew members were asked to don shorts and tank tops and to be blindfolded while data were recorded. Video data were acquired once during the mission from each of the six crew members. No one crew member exhibited the typical NBP called out in the MSIS; one composite posture is not adequate. A range of postures may be more constructive for design purposes. Future evaluations should define precise posture requirements for workstation, glove box, maintenance, foot-restraint, and handhold activities.
Barbieri, Fabio A; Polastri, Paula F; Baptista, André M; Lirani-Silva, Ellen; Simieli, Lucas; Orcioli-Silva, Diego; Beretta, Victor S; Gobbi, Lilian T B
2016-04-01
The aim of this study was to investigate the effects of disease severity and medication state on postural control asymmetry during challenging tasks in individuals with Parkinson's disease (PD). Nineteen people with PD and 11 neurologically healthy individuals performed three standing task conditions: bipedal standing, tandem and unipedal adapted standing; the individuals with PD performed the tasks in ON and OFF medication state. The participants with PD were distributed into 2 groups according to disease severity: unilateral group (n=8) and bilateral group (n=11). The two PD groups performed the evaluations both under and without the medication. Two force plates were used to analyze the posture. The symmetric index was calculated for various of center of pressure. ANOVA one-way (groups) and two-way (PD groups×medication), with repeated measures for medication, were calculated. For main effects of group, the bilateral group was more asymmetric than CG. For main effects of medication, only unipedal adapted standing presented effects of PD medication. There was PD groups×medication interaction. Under the effects of medication, the unilateral group presented lower asymmetry of RMS in anterior-posterior direction and area than the bilateral group in unipedal adapted standing. In addition, the unilateral group presented lower asymmetry of mean velocity, RMS in anterior-posterior direction and area in unipedal standing and area in tandem adapted standing after a medication dose. Postural control asymmetry during challenging postural tasks was dependent on disease severity and medication state in people with PD. The bilateral group presented higher postural control asymmetry than the control and unilateral groups in challenging postural tasks. Finally, the medication dose was able to reduce postural control asymmetry in the unilateral group during challenging postural tasks. Copyright © 2015 Elsevier B.V. All rights reserved.
Bonnet, Cédrick T; Delval, Arnaud; Defebvre, Luc
2014-11-15
Patients with Parkinson's disease display impairments of postural control most particularly in active, challenging conditions. The objective of the present study was to analyze early signs of disease-related and also age-related impairments in mediolateral body extension and postural control. Fifty-five participants (18 Hoehn and Yahr stage 2 patients in the off-drug condition, 18 healthy elderly control subjects, and 19 young adults) were included in the study. The participants performed a quiet stance task and two active tasks that analyzed the performance in mediolateral body motion: a limit of stability and a rhythmic weight shift task. As expected, the patients displayed significantly lower and slower body displacement (head, neck, lower back, center of pressure) than elderly control subjects when performing the two body excursion tasks. However, the behavioral variability in both tasks was similar between the groups. Under these active conditions, the patients showed significantly lower contribution of the hip postural control mechanisms compared with the elderly control subjects. Overall, the patients seemed to lower their performance in order to prevent a mediolateral postural instability. However, these patients, at an early stage of their disease, were not unstable in quiet stance. Complementarily, elderly control subjects displayed slower body performance than young adults, which therefore showed an additional age-related impairment in mediolateral postural control. Overall, the study illustrated markers of age-related and Parkinson's disease impairments in mediolateral postural control that may constrain everyday activities in elderly adults and even more in patients with Parkinson's disease. Copyright © 2014 the American Physiological Society.
21 CFR 868.5365 - Posture chair for cardiac or pulmonary treatment.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Posture chair for cardiac or pulmonary treatment. 868.5365 Section 868.5365 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5365 Posture chair...
Shirazi, Zahra Rojhani; Jahromi, Fatemeh Nikhalat
2013-09-01
The maintenance of balance is an essential requirement for the performance of daily tasks and sporting activities and muscular fatigue is a factor to impair postural control, so this study was done to compare the effect of selected muscle groups fatigue on postural control during bipedal stance in healthy subjects. Fifteen healthy female students (24.3 ± 2.6 years) completed three testing session with a break period of at least 2 days. During each session, postural control was assessed during two 30-s trials of bipedal stance with eyes close before and after the fatigue protocol. Fatigue protocols were performed by 60% of their unfatigued Maximum Voluntary Contraction of unilateral ankle plantar flexors, bilateral lumbar extensors and bilateral neck extensors. One of the three fatigue protocols was performed on each session. The result showed that fatigue had a significant effect on COP velocity and it increase COP velocity but there was not found any difference in postural sway between muscle groups. Localized muscle fatigue caused deficits in postural control regardless of the location of fatigue. Authors suggest the possibility of the contributions of central mechanisms to postural deficits due to fatigue and it seems that difference was not between muscle groups due to central fatigue.
Personality traits and individual differences predict threat-induced changes in postural control.
Zaback, Martin; Cleworth, Taylor W; Carpenter, Mark G; Adkin, Allan L
2015-04-01
This study explored whether specific personality traits and individual differences could predict changes in postural control when presented with a height-induced postural threat. Eighty-two healthy young adults completed questionnaires to assess trait anxiety, trait movement reinvestment (conscious motor processing, movement self-consciousness), physical risk-taking, and previous experience with height-related activities. Tests of static (quiet standing) and anticipatory (rise to toes) postural control were completed under low and high postural threat conditions. Personality traits and individual differences significantly predicted height-induced changes in static, but not anticipatory postural control. Individuals less prone to taking physical risks were more likely to lean further away from the platform edge and sway at higher frequencies and smaller amplitudes. Individuals more prone to conscious motor processing were more likely to lean further away from the platform edge and sway at larger amplitudes. Individuals more self-conscious about their movement appearance were more likely to sway at smaller amplitudes. Evidence is also provided that relationships between physical risk-taking and changes in static postural control are mediated through changes in fear of falling and physiological arousal. Results from this study may have indirect implications for balance assessment and treatment; however, further work exploring these factors in patient populations is necessary. Copyright © 2015 Elsevier B.V. All rights reserved.
Aging and Posture Control: Changes in Sensory Organization and Muscular Coordination.
ERIC Educational Resources Information Center
Woollacott, Marjorie H.; And Others
1986-01-01
Examined two aspects of balance control in the older adult: coordination of timing and amplitude of muscle responses to postural perturbations, and ability of the participant to reorganize sensory inputs and subsequently modify postural responses as a consequence of changing environmental conditions. (Author/ABB)
Hsieh, Ru-Lan; Lee, Wen-Chung; Lo, Min-Tzu; Liao, Wei-Cheng
2013-02-01
To assess the differences in postural stability between patients with knee osteoarthritis and controls without knee osteoarthritis, and to evaluate possible relations between postural stability scores and International Classification of Functioning, Disability and Health (ICF) components. An age-matched, case-controlled trial with a cross-sectional design. A teaching hospital. Patients with knee osteoarthritis (n=73) and age-matched controls (n=60). Data on patients' postural stability and additional health-related variables were collected using various instruments. These included the Hospital Anxiety and Depression Scale, the Multidimensional Fatigue Inventory, the World Health Organization Quality of Life Brief Version, the physical function test (chair-rising time), the Chinese version of the Western Ontario and McMaster Universities Osteoarthritis Index, the Chinese version of the Knee Injury and Osteoarthritis Outcome Score, and the Biodex Stability System. A comparison of postural stability in patients with knee osteoarthritis versus that of controls was performed. The relation between postural stability scores for patients with knee osteoarthritis and ICF components was evaluated. Pearson correlation tests were used to determine the variables that correlated with postural stability among these patients. Patients with knee osteoarthritis displayed lower overall postural stability than controls (scores of 0.7 vs. 0.5, P=.006) and scored lower on the environmental domain of the World Health Organization Quality of Life Brief Version (62.2 vs 66.8, P=.014). For patients with knee osteoarthritis, postural stability was weakly associated with the ICF components of body functions and structures, including pain (r=.33-.34, P=.004), physical fatigue (r=.28, P=.016), and reduced motivation (r=.30, P=.011). Weak to moderate associations between postural stability and the ICF components of activities and participation were found; the relevant ICF variables included reduced activity (r=.38, P=.001), physical domain and function (r=.34-.48, P=.001 to P<.004), activities of daily living (r=.51, P<.001), and sports and recreation (r=.35, P=.003). A moderate association between postural stability and the ICF components of personal and environmental factors was observed, including age (r=.52, P<.001) and quality of life (r=0.4, P=.001). Patients with knee osteoarthritis displayed lower postural stability and achieved lower scores in the environmental domain of quality-of-life measures than did controls. The postural stability of patients with knee osteoarthritis was weakly to moderately associated with the following ICF components: body functions and structures, activities and participation, and personal and environmental factors. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Huisinga, Jessie M.; St. George, Rebecca J.; Spain, Rebecca; Overs, Shannon; Horak, Fay B.
2015-01-01
Objective To understand examined the relationship between postural response latencies obtained during postural perturbations and representative measures of balance during standing (sway variables) and during walking (trunk motion). Design Cross-sectional Setting University medical center balance disorders laboratory Participants Forty persons with MS were compared with 20 similar aged control subjects. Twenty subjects with MS had normal walking velocity group and 20 had slow walking velocity based on the 25-foot walk time greater than 5 seconds. Interventions None Main Outcome Measures Postural response latency, sway variables, trunk motion variables Results: We found that subjects with MS with either slow or normal walking velocities had significantly longer postural response latencies than the healthy control group. Postural response latency was not correlated with the 25-ft walk time. Postural response latency was significantly correlated with center of pressure sway variables during quiet standing: root mean square (ρ = 0.334, p=0.040), range (ρ=0.385, p=0.017), mean velocity (ρ=0.337, p=0.038), and total sway area (ρ=0.393, p=0.015). Postural response latency was also significantly correlated with motion of the trunk during walking: sagittal plane range of motion (ρ=0.316, p=0.050) and standard deviation of transverse plane range of motion (ρ=-0.430, p=0.006). Conclusions These findings clearly indicate that slow postural responses to external perturbations in patients with MS contribute to disturbances in balance control, both during standing and walking. PMID:24445088
Time course of the acute effects of core stabilisation exercise on seated postural control.
Lee, Jordan B; Brown, Stephen H M
2017-09-20
Core stabilisation exercises are often promoted for purposes ranging from general fitness to high-performance athletics, and the prevention and rehabilitation of back troubles. These exercises, when performed properly, may have the potential to enhance torso postural awareness and control, yet the potential for achieving immediate gains has not been completely studied. Fourteen healthy young participants performed a single bout of non-fatiguing core stabilisation exercise that consisted of repeated sets of 2 isometric exercises, the side bridge and the four-point contralateral arm-and-leg extension. Seated postural control, using an unstable balance platform on top of a force plate, was assessed before and after exercise, including multiple time points within a 20-minute follow-up period. Nine standard postural control variables were calculated at each time point, including sway displacement and velocity ranges, root mean squares and cumulative path length. Statistical analysis showed that none of the postural control variables were significantly different at any time point following completion of core stabilisation exercise. Thus, we conclude that a single bout of acute core stabilisation exercise is insufficient to immediately improve seated trunk postural control in young healthy individuals.
Anticipatory and compensatory postural adjustments in sitting in children with cerebral palsy.
Bigongiari, Aline; de Andrade e Souza, Flávia; Franciulli, Patrícia Martins; Neto, Semaan El Razi; Araujo, Rubens Correa; Mochizuki, Luis
2011-06-01
The aim of this study was to examine postural control in children with cerebral palsy performing a bilateral shoulder flexion to grasp a ball from a sitting posture. The participants were 12 typically developing children (control) without cerebral palsy and 12 children with cerebral palsy (CP). We analyzed the effect of ball mass (1 kg and 0.18 kg), postural adjustment (anticipatory, APA, and compensatory, CPA), and groups (control and CP) on the electrical activity of shoulder and trunk muscles with surface electromyography (EMG). Greater mean iEMG was seen in CPA, with heavy ball, and for posterior trunk muscles (p<.05). The children with CP presented the highest EMG and level of co-activation (p<.05). Linear regression indicated a positive relationship between EMG and aging for the control group, whereas that relationship was negative for participants with CP. We suggest that the main postural control strategy in children is based on corrections after the beginning of the movement. The linear relationship between EMG and aging suggests that postural control development is affected by central nervous disease which may lead to an increase in muscle co-activation. Copyright © 2011 Elsevier B.V. All rights reserved.
Ting, Lena H.
2014-01-01
The simple act of standing up is an important and essential motor behavior that most humans and animals achieve with ease. Yet, maintaining standing balance involves complex sensorimotor transformations that must continually integrate a large array of sensory inputs and coordinate multiple motor outputs to muscles throughout the body. Multiple, redundant local sensory signals are integrated to form an estimate of a few global, task-level variables important to postural control, such as body center of mass position and body orientation with respect to Earth-vertical. Evidence suggests that a limited set of muscle synergies, reflecting preferential sets of muscle activation patterns, are used to move task variables such as center of mass position in a predictable direction following a postural perturbations. We propose a hierarchal feedback control system that allows the nervous system the simplicity of performing goal-directed computations in task-variable space, while maintaining the robustness afforded by redundant sensory and motor systems. We predict that modulation of postural actions occurs in task-variable space, and in the associated transformations between the low-dimensional task-space and high-dimensional sensor and muscle spaces. Development of neuromechanical models that reflect these neural transformations between low and high-dimensional representations will reveal the organizational principles and constraints underlying sensorimotor transformations for balance control, and perhaps motor tasks in general. This framework and accompanying computational models could be used to formulate specific hypotheses about how specific sensory inputs and motor outputs are generated and altered following neural injury, sensory loss, or rehabilitation. PMID:17925254
Osler, Callum J; Tersteeg, M C A; Reynolds, Raymond F; Loram, Ian D
2013-10-01
Circumstances may render the consequence of falling quite severe, thus maximising the motivation to control postural sway. This commonly occurs when exposed to height and may result from the interaction of many factors, including fear, arousal, sensory information and perception. Here, we examined human vestibular-evoked balance responses during exposure to a highly threatening postural context. Nine subjects stood with eyes closed on a narrow walkway elevated 3.85 m above ground level. This evoked an altered psycho-physiological state, demonstrated by a twofold increase in skin conductance. Balance responses were then evoked by galvanic vestibular stimulation. The sway response, which comprised a whole-body lean in the direction of the edge of the walkway, was significantly and substantially attenuated after ~800 ms. This demonstrates that a strong reason to modify the balance control strategy was created and subjects were highly motivated to minimise sway. Despite this, the initial response remained unchanged. This suggests little effect on the feedforward settings of the nervous system responsible for coupling pure vestibular input to functional motor output. The much stronger, later effect can be attributed to an integration of balance-relevant sensory feedback once the body was in motion. These results demonstrate that the feedforward and feedback components of a vestibular-evoked balance response are differently affected by postural threat. Although a fear of falling has previously been linked with instability and even falling itself, our findings suggest that this relationship is not attributable to changes in the feedforward vestibular control of balance. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Compensatory mechanisms of balance to the scaling of arm-swing frequency.
Ko, Ji Hyun; Wang, Zheng; Challis, John H; Newell, Karl M
2015-11-05
The present study investigated the contribution of the Hof (2007) mechanism 1 (M1-moving the center of pressure (COP) with respect to the vertical projection of the center of mass (COMTotal)); and mechanism 2 (M2-rotating the trunk and upper limbs around the COMTotal) to postural control and the stability of COP-COMTotal cophase as a function of lateral arm-swing frequency. Young adults were instructed to stand still on a force platform while alternating their arm swinging from above the head to the side of their thigh to create perturbations to postural control. Scaling the frequency of arm-swing (random step changes of 0.2 Hz within a bandwidth of 0.2 to 1.6 Hz) increased the SD of COP but decreased the SD of COMTotal. Increments in arm-swing frequency induced a progressive increase in M1 and decrease in M2 in terms of their relative contribution to postural stability. The cophase between COP and COMTotal became more tightly in-phase over increments of arm-swing frequency. These findings show an adaptive compensatory role of M1 and M2 within the stability of COP-COMTotal coupling in the regulation of human balance control. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of 3,4-diaminopyridine on the postural control in patients with downbeat nystagmus.
Sprenger, Andreas; Zils, Elisabeth; Rambold, Holger; Sander, Thurid; Helmchen, Christoph
2005-04-01
Downbeat nystagmus (DBN) is a common, usually persistent ocular motor sign in vestibulocerebellar midline lesions. Postural imbalance in DBN may increase on lateral gaze when downbeat nystagmus increases. 3,4-Diaminopyridine (3,4-DAP) has been shown to suppress the slow-phase velocity component of downbeat nystagmus and its gravity-dependent component with concomitant improvement of oscillopsia. Because the pharmacological effect is thought to be caused by improvement of the vestibulocerebellar Purkinje cell activity, the effect of 3,4-DAP on the postural control of patients with downbeat nystagmus syndrome was examined. Eye movements were recorded with the video-based Eyelink II system. Postural sway and pathway were assessed by posturography in lateral gaze in the light and on eye closure. Two out of four patients showed an improvement of the area of postural sway by 57% of control (baseline) on eye closure. In contrast, downbeat nystagmus in gaze straight ahead and on lateral gaze did not benefit in these two patients, implying a specific influence of 3,4-DAP on the vestibulocerebellar control of posture. It was concluded that 3,4-DAP may particularly influence the postural performance in patients with downbeat nystagmus.
Postural compensation for vestibular loss and implications for rehabilitation.
Horak, Fay B
2010-01-01
This chapter summarizes the role of the vestibular system in postural control so that specific and effective rehabilitation can be designed that facilitates compensation for loss of vestibular function. Patients with bilateral or unilateral loss of peripheral vestibular function are exposed to surface perturbations to quantify automatic postural responses. Studies also evaluated the effects of audio- and vibrotactile-biofeedback to improve stability in stance and gait. The most important role of vestibular information for postural control is to control orientation of the head and trunk in space with respect to gravitoinertial forces, particularly when balancing on unstable surfaces. Vestibular sensory references are particularly important for postural control at high frequencies and velocities of self-motion, to reduce trunk drift and variability, to provide an external reference frame for the trunk and head in space; and to uncouple coordination of the trunk from the legs and the head-in-space from the body CoM. The goal of balance rehabilitation for patients with vestibular loss is to help patients 1) use remaining vestibular function, 2) depend upon surface somatosensory information as their primary postural sensory system, 3) learn to use stable visual references, and 4) identify efficient and effective postural movement strategies.
Relationship between craniomandibular disorders and poor posture.
Nicolakis, P; Nicolakis, M; Piehslinger, E; Ebenbichler, G; Vachuda, M; Kirtley, C; Fialka-Moser, V
2000-04-01
The purpose of this research was to show that a relationship between craniomandibular disorders (CMD) and postural abnormalities has been repeatedly postulated, but still remains unproven. This study was intended to test this hypothesis. Twenty-five CMD patients (mean age 28.2 years) were compared with 25 gender and age matched controls (mean age 28.3 years) in a controlled, investigator-blinded trial. Twelve postural and ten muscle function parameters were examined. Measurements were separated into three subgroups, consisting of those variables associated with the cervical region, the trunk in the frontal plane, and the trunk in the sagittal plane. Within these subgroups, there was significantly more dysfunction in the patients, compared to control subjects (Mann-Whitney U test p < 0.001, p < 0.05, p < 0.01). Postural and muscle function abnormalities appeared to be more common in the CMD group. Since there is evidence of the mutual influence of posture and the craniomandibular system, control of body posture in CMD patients is recommended, especially if they do not respond to splint therapy. Whether poor posture is the reason or the result of CMD cannot be distinguished by the data presented here.
Shih, Ching-Hsiang; Shih, Ching-Tien; Chiang, Ming-Shan
2010-01-01
This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture) and a Wii Balance Board with a newly developed standing posture detection program (i.e. a new software program turns a Wii Balance Board into a precise standing posture detector). The study was performed according to an ABAB design, in which A represented baseline and B represented intervention phases. Both participants significantly increased their target response (body swing) to activate the control system to produce environmental stimulation during the intervention phases. Practical and developmental implications of the findings were discussed.
Hasegawa, Naoya; Takeda, Kenta; Sakuma, Moe; Mani, Hiroki; Maejima, Hiroshi; Asaka, Tadayoshi
2017-10-01
Augmented sensory biofeedback (BF) for postural control is widely used to improve postural stability. However, the effective sensory information in BF systems of motor learning for postural control is still unknown. The purpose of this study was to investigate the learning effects of visual versus auditory BF training in dynamic postural control. Eighteen healthy young adults were randomly divided into two groups (visual BF and auditory BF). In test sessions, participants were asked to bring the real-time center of pressure (COP) in line with a hidden target by body sway in the sagittal plane. The target moved in seven cycles of sine curves at 0.23Hz in the vertical direction on a monitor. In training sessions, the visual and auditory BF groups were required to change the magnitude of a visual circle and a sound, respectively, according to the distance between the COP and target in order to reach the target. The perceptual magnitudes of visual and auditory BF were equalized according to Stevens' power law. At the retention test, the auditory but not visual BF group demonstrated decreased postural performance errors in both the spatial and temporal parameters under the no-feedback condition. These findings suggest that visual BF increases the dependence on visual information to control postural performance, while auditory BF may enhance the integration of the proprioceptive sensory system, which contributes to motor learning without BF. These results suggest that auditory BF training improves motor learning of dynamic postural control. Copyright © 2017 Elsevier B.V. All rights reserved.
Wiesmeier, Isabella K.; Dalin, Daniela; Wehrle, Anja; Granacher, Urs; Muehlbauer, Thomas; Dietterle, Joerg; Weiller, Cornelius; Gollhofer, Albert; Maurer, Christoph
2017-01-01
Objectives: Postural control in elderly people is impaired by degradations of sensory, motor, and higher-level adaptive mechanisms. Here, we characterize the effects of a progressive balance training program on these postural control impairments using a brain network model based on system identification techniques. Methods and Material: We analyzed postural control of 35 healthy elderly subjects and compared findings to data from 35 healthy young volunteers. Eighteen elderly subjects performed a 10 week balance training conducted twice per week. Balance training was carried out in static and dynamic movement states, on support surfaces with different elastic compliances, under different visual conditions and motor tasks. Postural control was characterized by spontaneous sway and postural reactions to pseudorandom anterior-posterior tilts of the support surface. Data were interpreted using a parameter identification procedure based on a brain network model. Results: With balance training, the elderly subjects significantly reduced their overly large postural reactions and approximated those of younger subjects. Less significant differences between elderly and young subjects' postural control, namely larger spontaneous sway amplitudes, velocities, and frequencies, larger overall time delays and a weaker motor feedback compared to young subjects were not significantly affected by the balance training. Conclusion: Balance training reduced overactive proprioceptive feedback and restored vestibular orientation in elderly. Based on the assumption of a linear deterioration of postural control across the life span, the training effect can be extrapolated as a juvenescence of 10 years. This study points to a considerable benefit of a continuous balance training in elderly, even without any sensorimotor deficits. PMID:28848430
The internal representation of head orientation differs for conscious perception and balance control
Dalton, Brian H.; Rasman, Brandon G.; Inglis, J. Timothy
2017-01-01
Key points We tested perceived head‐on‐feet orientation and the direction of vestibular‐evoked balance responses in passively and actively held head‐turned postures.The direction of vestibular‐evoked balance responses was not aligned with perceived head‐on‐feet orientation while maintaining prolonged passively held head‐turned postures. Furthermore, static visual cues of head‐on‐feet orientation did not update the estimate of head posture for the balance controller.A prolonged actively held head‐turned posture did not elicit a rotation in the direction of the vestibular‐evoked balance response despite a significant rotation in perceived angular head posture.It is proposed that conscious perception of head posture and the transformation of vestibular signals for standing balance relying on this head posture are not dependent on the same internal representation. Rather, the balance system may operate under its own sensorimotor principles, which are partly independent from perception. Abstract Vestibular signals used for balance control must be integrated with other sensorimotor cues to allow transformation of descending signals according to an internal representation of body configuration. We explored two alternative models of sensorimotor integration that propose (1) a single internal representation of head‐on‐feet orientation is responsible for perceived postural orientation and standing balance or (2) conscious perception and balance control are driven by separate internal representations. During three experiments, participants stood quietly while passively or actively maintaining a prolonged head‐turned posture (>10 min). Throughout the trials, participants intermittently reported their perceived head angular position, and subsequently electrical vestibular stimuli were delivered to elicit whole‐body balance responses. Visual recalibration of head‐on‐feet posture was used to determine whether static visual cues are used to update the internal representation of body configuration for perceived orientation and standing balance. All three experiments involved situations in which the vestibular‐evoked balance response was not orthogonal to perceived head‐on‐feet orientation, regardless of the visual information provided. For prolonged head‐turned postures, balance responses consistent with actual head‐on‐feet posture occurred only during the active condition. Our results indicate that conscious perception of head‐on‐feet posture and vestibular control of balance do not rely on the same internal representation, but instead treat sensorimotor cues in parallel and may arrive at different conclusions regarding head‐on‐feet posture. The balance system appears to bypass static visual cues of postural orientation and mainly use other sensorimotor signals of head‐on‐feet position to transform vestibular signals of head motion, a mechanism appropriate for most daily activities. PMID:28035656
U.S. Coast Guard Posture Statement With 2009 Budget in Brief
2008-02-01
practice of traffi cking in human beings in order to reduce the loss of migrant lives and threat of illegal entry. Both the National Defense...15 minutes in the raging sea to ensure the remaining three victims reached the safety of the hovering helicopter. Braving wind gusts of 60 knots...Commandant for Mission Support to develop and control policies and programs for human resources management, acquisitions, research and development
Noise and complexity in human postural control: interpreting the different estimations of entropy.
Rhea, Christopher K; Silver, Tobin A; Hong, S Lee; Ryu, Joong Hyun; Studenka, Breanna E; Hughes, Charmayne M L; Haddad, Jeffrey M
2011-03-17
Over the last two decades, various measures of entropy have been used to examine the complexity of human postural control. In general, entropy measures provide information regarding the health, stability and adaptability of the postural system that is not captured when using more traditional analytical techniques. The purpose of this study was to examine how noise, sampling frequency and time series length influence various measures of entropy when applied to human center of pressure (CoP) data, as well as in synthetic signals with known properties. Such a comparison is necessary to interpret data between and within studies that use different entropy measures, equipment, sampling frequencies or data collection durations. The complexity of synthetic signals with known properties and standing CoP data was calculated using Approximate Entropy (ApEn), Sample Entropy (SampEn) and Recurrence Quantification Analysis Entropy (RQAEn). All signals were examined at varying sampling frequencies and with varying amounts of added noise. Additionally, an increment time series of the original CoP data was examined to remove long-range correlations. Of the three measures examined, ApEn was the least robust to sampling frequency and noise manipulations. Additionally, increased noise led to an increase in SampEn, but a decrease in RQAEn. Thus, noise can yield inconsistent results between the various entropy measures. Finally, the differences between the entropy measures were minimized in the increment CoP data, suggesting that long-range correlations should be removed from CoP data prior to calculating entropy. The various algorithms typically used to quantify the complexity (entropy) of CoP may yield very different results, particularly when sampling frequency and noise are different. The results of this study are discussed within the context of the neural noise and loss of complexity hypotheses.
Souvestre, P A; Landrock, C K; Blaber, A P
2008-08-01
Human factors centered aviation accident analyses report that skill based errors are known to be cause of 80% of all accidents, decision making related errors 30% and perceptual errors 6%1. In-flight decision making error is a long time recognized major avenue leading to incidents and accidents. Through the past three decades, tremendous and costly efforts have been developed to attempt to clarify causation, roles and responsibility as well as to elaborate various preventative and curative countermeasures blending state of the art biomedical, technological advances and psychophysiological training strategies. In-flight related statistics have not been shown significantly changed and a significant number of issues remain not yet resolved. Fine Postural System and its corollary, Postural Deficiency Syndrome (PDS), both defined in the 1980's, are respectively neurophysiological and medical diagnostic models that reflect central neural sensory-motor and cognitive controls regulatory status. They are successfully used in complex neurotraumatology and related rehabilitation for over two decades. Analysis of clinical data taken over a ten-year period from acute and chronic post-traumatic PDS patients shows a strong correlation between symptoms commonly exhibited before, along side, or even after error, and sensory-motor or PDS related symptoms. Examples are given on how PDS related central sensory-motor control dysfunction can be correctly identified and monitored via a neurophysiological ocular-vestibular-postural monitoring system. The data presented provides strong evidence that a specific biomedical assessment methodology can lead to a better understanding of in-flight adaptive neurophysiological, cognitive and perceptual dysfunctional status that could induce in flight-errors. How relevant human factors can be identified and leveraged to maintain optimal performance will be addressed.
Age-related effects on postural control under multi-task conditions.
Granacher, Urs; Bridenbaugh, Stephanie A; Muehlbauer, Thomas; Wehrle, Anja; Kressig, Reto W
2011-01-01
Changes in postural sway and gait patterns due to simultaneously performed cognitive (CI) and/or motor interference (MI) tasks have previously been reported and are associated with an increased risk of falling in older adults. The objectives of this study were to investigate the effects of a CI and/or MI task on static and dynamic postural control in young and elderly subjects, and to find out whether there is an association between measures of static and dynamic postural control while concurrently performing the CI and/or MI task. A total of 36 healthy young (n = 18; age: 22.3 ± 3.0 years; BMI: 21.0 ± 1.6 kg/m(2)) and elderly adults (n = 18; age: 73.5 ± 5.5 years; BMI: 24.2 ± 2.9 kg/m(2)) participated in this study. Static postural control was measured during bipedal stance, and dynamic postural control was obtained while walking on an instrumented walkway. Irrespective of the task condition, i.e. single-task or multiple tasks, elderly participants showed larger center-of-pressure displacements and greater stride-to-stride variability than younger participants. Associations between measures of static and dynamic postural control were found only under the single-task condition in the elderly. Age-related deficits in the postural control system seem to be primarily responsible for the observed results. The weak correlations detected between static and dynamic measures could indicate that fall-risk assessment should incorporate dynamic measures under multi-task conditions, and that skills like erect standing and walking are independent of each other and may have to be trained complementarily. Copyright © 2010 S. Karger AG, Basel.
Neuromuscular Control and Coordination during Cycling
ERIC Educational Resources Information Center
Li, Li
2004-01-01
The neuromuscular control aspect of cycling has been investigated through the effects of modifying posture and cadence. These studies show that changing posture has a more profound influence on neuromuscular coordination than does changing slope. Most of the changes with standing posture occur late in the downstroke: increased ankle and knee joint…
de Rengervé, Antoine; Andry, Pierre; Gaussier, Philippe
2015-04-01
Imitation and learning from humans require an adequate sensorimotor controller to learn and encode behaviors. We present the Dynamic Muscle Perception-Action(DM-PerAc) model to control a multiple degrees-of-freedom (DOF) robot arm. In the original PerAc model, path-following or place-reaching behaviors correspond to the sensorimotor attractors resulting from the dynamics of learned sensorimotor associations. The DM-PerAc model, inspired by human muscles, permits one to combine impedance-like control with the capability of learning sensorimotor attraction basins. We detail a solution to learn incrementally online the DM-PerAc visuomotor controller. Postural attractors are learned by adapting the muscle activations in the model depending on movement errors. Visuomotor categories merging visual and proprioceptive signals are associated with these muscle activations. Thus, the visual and proprioceptive signals activate the motor action generating an attractor which satisfies both visual and proprioceptive constraints. This visuomotor controller can serve as a basis for imitative behaviors. In addition, the muscle activation patterns can define directions of movement instead of postural attractors. Such patterns can be used in state-action couples to generate trajectories like in the PerAc model. We discuss a possible extension of the DM-PerAc controller by adapting the Fukuyori's controller based on the Langevin's equation. This controller can serve not only to reach attractors which were not explicitly learned, but also to learn the state/action couples to define trajectories.
Multidigit movement synergies of the human hand in an unconstrained haptic exploration task.
Thakur, Pramodsingh H; Bastian, Amy J; Hsiao, Steven S
2008-02-06
Although the human hand has a complex structure with many individual degrees of freedom, joint movements are correlated. Studies involving simple tasks (grasping) or skilled tasks (typing or finger spelling) have shown that a small number of combined joint motions (i.e., synergies) can account for most of the variance in observed hand postures. However, those paradigms evoked a limited set of hand postures and as such the reported correlation patterns of joint motions may be task-specific. Here, we used an unconstrained haptic exploration task to evoke a set of hand postures that is representative of most naturalistic postures during object manipulation. Principal component analysis on this set revealed that the first seven principal components capture >90% of the observed variance in hand postures. Further, we identified nine eigenvectors (or synergies) that are remarkably similar across multiple subjects and across manipulations of different sets of objects within a subject. We then determined that these synergies are used broadly by showing that they account for the changes in hand postures during other tasks. These include hand motions such as reach and grasp of objects that vary in width, curvature and angle, and skilled motions such as precision pinch. Our results demonstrate that the synergies reported here generalize across tasks, and suggest that they represent basic building blocks underlying natural human hand motions.
Perception of biological motion from size-invariant body representations.
Lappe, Markus; Wittinghofer, Karin; de Lussanet, Marc H E
2015-01-01
The visual recognition of action is one of the socially most important and computationally demanding capacities of the human visual system. It combines visual shape recognition with complex non-rigid motion perception. Action presented as a point-light animation is a striking visual experience for anyone who sees it for the first time. Information about the shape and posture of the human body is sparse in point-light animations, but it is essential for action recognition. In the posturo-temporal filter model of biological motion perception posture information is picked up by visual neurons tuned to the form of the human body before body motion is calculated. We tested whether point-light stimuli are processed through posture recognition of the human body form by using a typical feature of form recognition, namely size invariance. We constructed a point-light stimulus that can only be perceived through a size-invariant mechanism. This stimulus changes rapidly in size from one image to the next. It thus disrupts continuity of early visuo-spatial properties but maintains continuity of the body posture representation. Despite this massive manipulation at the visuo-spatial level, size-changing point-light figures are spontaneously recognized by naive observers, and support discrimination of human body motion.
Upper Limb Posture Estimation in Robotic and Virtual Reality-Based Rehabilitation
Cortés, Camilo; Ardanza, Aitor; Molina-Rueda, F.; Cuesta-Gómez, A.; Ruiz, Oscar E.
2014-01-01
New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation. PMID:25110698
Hadadi, Mohammad; Ebrahimi, Ismaeil; Mousavi, Mohammad Ebrahim; Aminian, Gholamreza; Esteki, Ali; Rahgozar, Mehdi
2017-02-01
Chronic ankle instability is associated with neuromechanical changes and poor postural stability. Despite variety of mechanisms of foot and ankle orthoses, almost none apply comprehensive mechanisms to improve postural control in all subgroups of chronic ankle instability patients. The purpose of this study was to investigate the effect of an ankle support implementing combined mechanisms to improve postural control in chronic ankle instability patients. Cross-sectional study. An ankle support with combined mechanism was designed based on most effective action mechanisms of foot and ankle orthoses. The effect of this orthosis on postural control was evaluated in 20 participants with chronic ankle instability and 20 matched healthy participants. The single-limb stance balance test was measured in both groups with and without the new orthosis using a force platform. The results showed that application of combined mechanism ankle support significantly improved all postural sway parameters in chronic ankle instability patients. There were no differences in means of investigated parameters with and without the orthosis in the healthy group. No statistically significant differences were found in postural sway between chronic ankle instability patients and healthy participants after applying the combined mechanism ankle support. The combined mechanism ankle support is effective in improving static postural control of chronic ankle instability patients to close to the postural sway of healthy individual. the orthosis had no adverse effects on balance performance of healthy individuals. Clinical relevance Application of the combined mechanism ankle support for patients with chronic ankle instability is effective in improving static balance. This may be helpful in reduction of recurrence of ankle sprain although further research about dynamic conditions is needed.
Monjo, Florian; Forestier, Nicolas
2017-08-01
We investigated whether and how the movement initiation condition (IC) encountered during the early movements performed following focal muscle fatigue affects the postural control of discrete ballistic movements. For this purpose, subjects performed shoulder flexions in a standing posture at maximal velocity under two movement IC, i.e., in self-paced conditions and submitted to a Stroop-like task in which participants had to trigger fast shoulder flexions at the presentation of incongruent colors. Shoulder flexion kinematics, surface muscle activity of focal and postural muscles as well as center-of-pressure kinematics were recorded. The initial IC and the order in which subjects were submitted to these two conditions were varied within two separate experimental sessions. IC schedule was repeated before and after fatigue protocols involving shoulder flexors. The aim of this fatigue procedure was to affect acceleration-generating capacities of focal muscles. In such conditions, the postural muscle activity preceding and accompanying movement execution is expected to decrease. Following fatigue, when subjects initially moved in self-paced conditions, postural muscle activity decreased and scaled to the lower focal peak acceleration. This postural strategy then transferred to the Stroop-like task. In contrast, when subjects initially moved submitted to the Stroop-like task, postural muscle activity did not decrease and this transferred to self-paced movements. Regarding the center-of-pressure peak velocity, which is indicative of the efficiency of the postural actions generated in stabilizing posture, no difference appeared between the two sessions post-fatigue. This highlights an optimization of the postural actions when subjects first moved in self-paced conditions, smaller postural muscle activation levels resulting in similar postural consequences. In conclusion, the level of neuromuscular activity associated with the postural control is affected and can be optimized by the initial movement IC experienced post-fatigue. Beyond the fundamental contributions arising from these results, we point out potential applications for trainers and sports instructors. Copyright © 2017 Elsevier B.V. All rights reserved.
Milosavljevic, Stephan
2017-01-01
Introduction Low back pain (LBP) is the most common, costly and disabling musculoskeletal disorder worldwide, and is prevalent in healthcare workers. Posture is a modifiable risk factor for LBP shown to reduce the prevalence of LBP. Our feasibility research suggests that postural feedback might help healthcare workers avoid hazardous postures. The Effectiveness of Lumbopelvic Feedback (ELF) trial will investigate the extent to which postural monitor and feedback (PMF) can reduce exposure to hazardous posture associated with LBP. Methods This is a participant-blinded, randomised controlled trial with blocked cluster random allocation. Participants will include volunteer healthcare workers recruited from aged care institutions and hospitals. A postural monitoring and feedback device will monitor and record lumbopelvic forward bending posture, and provide audio feedback whenever the user sustains a lumbopelvic forward bending posture that exceeds predefined thresholds. The primary outcome measure will be postural behaviour (exceeding thresholds). Secondary outcome measures will be incidence of LBP, participant-reported disability and adherence. Following baseline assessment, we will randomly assign participants to 1 of 2 intervention arms: a feedback group and a no-feedback control group. We will compare between-group differences of changes in postural behaviour by using a repeated measures mixed-effect model analysis of covariance (ANCOVA) at 6 weeks. Postural behaviour baseline scores, work-related psychosocial factors and disability scores will be input as covariates into the statistical models. We will use logistic mixed model analysis and Cox's proportional hazards for assessing the effect of a PMF on LBP incidence between groups. Discussion Posture is a modifiable risk factor for low back disorders. Findings from the ELF trial will inform the design of future clinical trials assessing the effectiveness of wearable technology on minimising hazardous posture during daily living activities in patients with low back disorders. Trial registration number ACTRN12616000449437. PMID:28073798
Postural Stability in Older Adults With Alzheimer Disease.
Mesbah, Normala; Perry, Meredith; Hill, Keith D; Kaur, Mandeep; Hale, Leigh
2017-03-01
The prevalence of adults with Alzheimer disease (AD) aged >65 years is increasing and estimated to quadruple by 2051. The aim of this study was to investigate postural stability in people with mild to moderate AD and factors contributing to postural instability compared with healthy peers (controls). A computerized systematic search of databases and a hand search of reference lists for articles published from 1984 onward (English-language articles only) were conducted on June 2, 2015, using the main key words "postural stability" and "Alzheimer's disease." Sixty-seven studies were assessed for eligibility (a confirmed diagnosis of AD, comparison of measured postural stability between participants with AD and controls, measured factors potentially contributing to postural instability). Data were extracted, and Downs and Black criteria were applied to evaluate study quality. Eighteen articles were analyzed using qualitative synthesis and reported based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Strength of evidence was guided by the Grading of Recommendations Assessment, Development and Evaluation. Strong evidence was found that: (1) older adults with mild to moderate AD have reduced static and functional postural stability compared with healthy peers (controls) and (2) attentional demand during dual-task activity and loss of visual input were key factors contributing to postural instability. Deta-analysis was not possible due to heterogeneity of the data. Postural stability is impaired in older adults with mild to moderate AD. Decreasing visual input and concentrating on multiple tasks decrease postural stability. To reduce falls risk, more research discerning appropriate strategies for the early identification of impairment of postural stability is needed. Standardization of population description and consensus on outcome measures and the variables used to measure postural -instability and its contributing factors are necessary to ensure meaningful synthesis of data. © 2017 American Physical Therapy Association
Measuring postural control during mini-squat posture in men with early knee osteoarthritis.
Petrella, M; Gramani-Say, K; Serrão, P R M S; Lessi, G C; Barela, J A; Carvalho, R P; Mattiello, S M
2017-04-01
Studies have suggested a compromised postural control in individuals with knee osteoarthritis (OA) evidenced by larger and faster displacement of center of pressure (COP). However, quantification of postural control in the mini-squat posture performed by patients with early knee OA and its relation to muscle strength and self-reported symptoms have not been investigated. The main aim of this cross-sectional, observational, controlled study was to determine whether postural control in the mini-squat posture differs between individuals with early knee OA and a control group (CG) and verify the relation among knee extensor torque (KET) and self-reported physical function, stiffness and pain. Twenty four individuals with knee OA grades I and II (OAG) (mean age: 52.35±5.00) and twenty subjects without knee injuries (CG) (mean age: 51.40±8.07) participated in this study. Participants were assessed in postural control through a force plate (Bertec Mod. USA), which provided information about the anterior-posterior (AP) and medial-lateral (ML) COP displacement during the mini-squat, in isometric, concentric and eccentric knee extensor torque (KET) (90°/s) through an isokinetic dynamometer (BiodexMulti-Joint System3, Biodex Medical Incorporation, New York, NY, USA), and in self-reported symptoms through the WOMAC questionnaire. The main outcomes measured were the AP and ML COP amplitude and velocity of displacement; isometric, concentric, and eccentric KET and self-reported physical function, stiffness and pain. No significant differences were found between groups for postural control (p>0.05). Significant lower eccentric KET (p=0.01) and higher scores for the WOMAC subscales of pain (p=<0.001), stiffness (p=0.001) and physical function (p<0.001) were found for the OAG. Moderate and negative correlations were found between the AP COP amplitude of displacement and physical function (ρ=-0.40, p=0.02). Moderate and negative correlations were observed between the AP COP velocity of displacement and physical function (ρ=0.47, p=0.01) and stiffness (ρ=-0.45, p=0.02). The findings of the present study emphasize the importance of rehabilitation from the early degrees of knee OA to prevent postural instability and the need to include quadriceps muscle strengthening, especially by eccentric contractions. The relationship between the self-reported symptoms and a lower and slower COP displacement suggest that the postural control strategy during tasks with a semi-flexed knee should be further investigated. Copyright © 2017 Elsevier B.V. All rights reserved.
Birdwell, J Alexander; Hargrove, Levi J; Weir, Richard F ff; Kuiken, Todd A
2015-01-01
Fine-wire intramuscular electrodes were used to obtain electromyogram (EMG) signals from six extrinsic hand muscles associated with the thumb, index, and middle fingers. Subjects' EMG activity was used to control a virtual three-degree-of-freedom (DOF) hand as they conformed the hand to a sequence of hand postures testing two controllers: direct EMG control and pattern recognition control. Subjects tested two conditions using each controller: starting the hand from a predefined neutral posture before each new posture and starting the hand from the previous posture in the sequence. Subjects demonstrated their abilities to simultaneously, yet individually, move all three DOFs during the direct EMG control trials; however, results showed subjects did not often utilize this feature. Performance metrics such as failure rate and completion time showed no significant difference between the two controllers.
Light and heavy touch reduces postural sway and modifies axial tone in Parkinson’s disease
Franzén, Erika; Paquette, Caroline; Gurfinkel, Victor; Horak, Fay
2014-01-01
Background Light touch with a stable object reduces postural sway by increasing axial postural tone in healthy subjects. However, it is unknown whether subjects with Parkinson’s disease (PD), who have more postural sway and higher axial postural tone than healthy subjects, can benefit from haptic touch. Objective To investigate the effect of light and heavy touch on postural stability and hip tone in subjects with PD. Methods Fourteen subjects with mid-stage PD, and 14 healthy control subjects were evaluated during quiet standing with eyes closed with their arms: 1) crossed, 2) lightly touching a fixed rigid bar in front of them and 3) firmly gripping the bar. Postural sway was measured with a forceplate and axial hip tone was quantified using a unique device that measures the resistance of the hips to yaw rotation while maintaining active stance. Results Subjects with PD significantly decreased their postural sway with light or heavy touch (p<0.001 vs. arms crossed), similarly as control subjects. Without touch, hip tone was larger in PD subjects. With touch, however, tone values were similar in both groups. This change in hip tone with touch was highly correlated with the initial amount of tone (PD: r=− 0.72 to −0.95 and controls: r=−0.74 to−0.85). Conclusions We showed, for the first time, that subjects with PD benefit from touch similarly to control subjects and that despite higher axial postural tone, PD subjects are able to modulate their tone with touch. Future studies should investigate the complex relationship between touch and postural tone. PMID:22415944
Learning and Control Model of the Arm for Loading
NASA Astrophysics Data System (ADS)
Kim, Kyoungsik; Kambara, Hiroyuki; Shin, Duk; Koike, Yasuharu
We propose a learning and control model of the arm for a loading task in which an object is loaded onto one hand with the other hand, in the sagittal plane. Postural control during object interactions provides important points to motor control theories in terms of how humans handle dynamics changes and use the information of prediction and sensory feedback. For the learning and control model, we coupled a feedback-error-learning scheme with an Actor-Critic method used as a feedback controller. To overcome sensory delays, a feedforward dynamics model (FDM) was used in the sensory feedback path. We tested the proposed model in simulation using a two-joint arm with six muscles, each with time delays in muscle force generation. By applying the proposed model to the loading task, we showed that motor commands started increasing, before an object was loaded on, to stabilize arm posture. We also found that the FDM contributes to the stabilization by predicting how the hand changes based on contexts of the object and efferent signals. For comparison with other computational models, we present the simulation results of a minimum-variance model.
Static and dynamic single leg postural control performance during dual-task paradigms.
Talarico, Maria K; Lynall, Robert C; Mauntel, Timothy C; Weinhold, Paul S; Padua, Darin A; Mihalik, Jason P
2017-06-01
Combining dynamic postural control assessments and cognitive tasks may give clinicians a more accurate indication of postural control under sport-like conditions compared to single-task assessments. We examined postural control, cognitive and squatting performance of healthy individuals during static and dynamic postural control assessments in single- and dual-task paradigms. Thirty participants (female = 22, male = 8; age = 20.8 ± 1.6 years, height = 157.9 ± 13.0 cm, mass = 67.8 ± 20.6 kg) completed single-leg stance and single-leg squat assessments on a force plate individually (single-task) and concurrently (dual-task) with two cognitive assessments, a modified Stroop test and the Brooks Spatial Memory Test. Outcomes included centre of pressure speed, 95% confidence ellipse, squat depth and speed and cognitive test measures (percentage of correct answers and reaction time). Postural control performance varied between postural control assessments and testing paradigms. Participants did not squat as deep and squatted slower (P < 0.001) during dual-task paradigms (≤12.69 ± 3.4 cm squat depth, ≤16.20 ± 4.6 cm · s -1 squat speed) compared to single-task paradigms (14.57 ± 3.6 cm squat depth, 19.65 ± 5.5 cm · s -1 squat speed). The percentage of correct answers did not change across testing conditions, but Stroop reaction time (725.81 ± 59.2 ms; F 2,58 = 7.725, P = 0.001) was slowest during single-leg squats compared to baseline (691.64 ± 80.1 ms; P = 0.038) and single-task paradigms (681.33 ± 51.5 ms; P < 0.001). Dynamic dual-task assessments may be more challenging to the postural control system and may better represent postural control performance during dynamic activities.
Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot
Feng, Yongfei; Wang, Hongbo; Yan, Hao; Wang, Xincheng; Jin, Zhennan; Vladareanu, Luige
2017-01-01
The lower limb rehabilitation robot is an application of robotic technology for stroke people with lower limb disabilities. A new applicable and effective sitting/lying lower limb rehabilitation robot (LLR-Ro) is proposed, which has the mechanical limit protection, the electrical limit protection, and the software protection to prevent the patient from the secondary damage. Meanwhile, as a new type of the rehabilitation robots, its hip joint rotation ranges are different in the patient sitting training posture and lying training posture. The mechanical leg of the robot has a variable workspace to work in both training postures. So, if the traditional mechanical limit and the electrical limit cannot be used in the hip joint mechanism design, a follow-up limit is first proposed to improve the compatibility of human-machine motion. Besides, to eliminate the accident interaction force between the patient and LLR-Ro in the process of the passive training, an amendment impedance control strategy based on the position control is proposed to improve the compliance of the LLR-Ro. A simulation experiment and an experiment with a participant show that the passive training of LLR-Ro has compliance. © 2017 Yongfei Feng et al.
Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot
Yan, Hao; Wang, Xincheng; Jin, Zhennan; Vladareanu, Luige
2017-01-01
The lower limb rehabilitation robot is an application of robotic technology for stroke people with lower limb disabilities. A new applicable and effective sitting/lying lower limb rehabilitation robot (LLR-Ro) is proposed, which has the mechanical limit protection, the electrical limit protection, and the software protection to prevent the patient from the secondary damage. Meanwhile, as a new type of the rehabilitation robots, its hip joint rotation ranges are different in the patient sitting training posture and lying training posture. The mechanical leg of the robot has a variable workspace to work in both training postures. So, if the traditional mechanical limit and the electrical limit cannot be used in the hip joint mechanism design, a follow-up limit is first proposed to improve the compatibility of human-machine motion. Besides, to eliminate the accident interaction force between the patient and LLR-Ro in the process of the passive training, an amendment impedance control strategy based on the position control is proposed to improve the compliance of the LLR-Ro. A simulation experiment and an experiment with a participant show that the passive training of LLR-Ro has compliance. PMID:29065571
Marrega, Luiz H G; Silva, Simone M; Manffra, Elisangela F; Nievola, Julio C
2015-01-01
Maintaining balance is a motor task of crucial importance for humans to perform their daily activities safely and independently. Studies in the field of Artificial Intelligence have considered different classification methods in order to distinguish healthy subjects from patients with certain motor disorders based on their postural strategies during the balance control. The main purpose of this paper is to compare the performance between Decision Tree (DT) and Genetic Programming (GP) - both classification methods of easy interpretation by health professionals - to distinguish postural sway patterns produced by healthy and stroke individuals based on 16 widely used posturographic variables. For this purpose, we used a posturographic dataset of time-series of center-of-pressure displacements derived from 19 stroke patients and 19 healthy matched subjects in three quiet standing tasks of balance control. Then, DT and GP models were trained and tested under two different experiments where accuracy, sensitivity and specificity were adopted as performance metrics. The DT method has performed statistically significant (P < 0.05) better in both cases, showing for example an accuracy of 72.8% against 69.2% from GP in the second experiment of this paper.
Impaired perception of surface tilt in progressive supranuclear palsy
Dale, Marian L.; Horak, Fay B.; Wright, W. Geoffrey; Schoneburg, Bernadette M.; Nutt, John G.; Mancini, Martina
2017-01-01
Introduction Progressive supranuclear palsy (PSP) is characterized by early postural instability and backward falls. The mechanisms underlying backward postural instability in PSP are not understood. The aim of this study was to test the hypothesis that postural instability in PSP is a result of dysfunction in the perception of postural verticality. Methods We gathered posturography data on 12 subjects with PSP to compare with 12 subjects with idiopathic Parkinson’s Disease (PD) and 12 healthy subjects. Objective tests of postural impairment included: dynamic sensory perception tests of gravity and of surface oscillations, postural responses to surface perturbations, the sensory organization test of postural sway under altered sensory conditions and limits of stability in stance. Results Perception of toes up (but not toes down) surface tilt was reduced in subjects with PSP compared to both control subjects (p≤0.001 standing, p≤0.007 seated) and subjects with PD (p≤0.03 standing, p≤0.04 seated). Subjects with PSP, PD and normal controls accurately perceived the direction of gravity when standing on a tilting surface. Unlike PD and control subjects, subjects with PSP exerted less postural corrective torque in response to toes up surface tilts. Discussion Difficulty perceiving backward tilt of the surface or body may account for backward falls and postural impairments in patients with PSP. These observations suggest that abnormal central integration of sensory inputs for perception of body and surface orientation contributes to the pathophysiology of postural instability in PSP. PMID:28267762
Çelenay, Şeyda Toprak; Kaya, Derya Özer; Özüdoğru, Anıl
2015-01-01
Spinal posture and mobility are significant for protecting spine. The aim was to compare effects of different postural training interventions on spinal posture and mobility. Ninety-six university students (ages: 18–25 years) were allocated into Electrical Stimulation (ES) (n = 24), Exercise (n = 24), Biofeedback Posture Trainer (Backtone) (n = 24), and Postural Education (n = 24, Controls) groups. All the groups got postural education. The interventions were carried out 3 days a week for 8 weeks. Spinal Mouse device (Idiag, Fehraltorf, Switzerland) was used to detect thoracic and lumbar curvatures and mobility (degrees) in standing and sitting positions. Paired Student’s t-test, one-way ANOVA, and pairwise post-hoc tests were used. ES decreased thoracic curvature, the exercise decreased thoracic and lumbar curvature and increased thoracic mobility in standing position between pre-post training (p < 0.05). Exercise and Backtone improved thoracic curvature in sitting (p <0.05). In Exercise Group, thoracic curvature decreased compared to Backtone and Education Groups, and thoracic mobility increased compared to all groups (p < 0.05). The exercise was effective and superior in improving thoracic and lumbar curves, and mobility among university students. ES decreased thoracic curve. Biofeedback posture trainer improved sitting posture. A prospective randomized controlled trial, Level 1.
Postural Stability is Altered by Blood Shift
NASA Astrophysics Data System (ADS)
Marais, M.; Denise, P.; Guincetre, J. Y.; Normand, H.
2008-06-01
Non-vestibular influences as shift in blood volume changed perception of body posture. Then, factors affecting blood shift may alter postural control. The purpose of our study was to investigate the effects of leg venous contention on postural stability. Twelve subjects were studied on a balance plate for 5 minutes with the eyes closed, in 3 conditions: with no leg venous contention or grade 1 and 3 support stockings. Standard deviation of x and y position was calculated before and after the closure of the eyes. Strong venous contention altered postural stability, after the eyes were closed, during the first 10 s of standing. As support stockings prevent blood shift induced by upright posture, this result is in line with the hypothesis that blood shifts influence the perception of body orientation and postural control among others factors as vision, vestibular inputs... This strong venous contention could induce an increase of fall.
Improving Postural Control in the Battement Tendu: One Teacher's Reflections and Somatic Exercises
ERIC Educational Resources Information Center
Batson, Glenna
2010-01-01
The battement tendu is introduced early in dance training, remaining integral to a dancer's vocabulary. Although appearing relatively simple to execute, the tendu aesthetic takes years to master. One reason might be that efficient performance requires complex coordination of postural balance. Known as postural control, this coordination appears in…
Spatial acoustic radiation of respiratory sounds for sleep evaluation.
Shabtai, Noam R; Zigel, Yaniv
2017-09-01
Body posture has an effect on sleeping quality and breathing disorders and therefore it is important to be recognized for the completion of the sleep evaluation process. Since humans have a directional acoustic radiation pattern, it is hypothesized that microphone arrays can be used to recognize different body postures, which is highly practical for sleep evaluation applications that already measure respiratory sounds using distant microphones. Furthermore, body posture may have an effect on distant microphone measurement; hence, the measurement can be compensated if the body posture is correctly recognized. A spherical harmonics decomposition approach to the spatial acoustic radiation is presented, assuming an array of eight microphones in a medium-sized audiology booth. The spatial sampling and reconstruction of the radiation pattern is discussed, and a final setup for the microphone array is recommended. A case study is shown using recorded segments of snoring and breathing sounds of three human subjects in three body postures in a silent but not anechoic audiology booth.
2011-01-01
Background Psychometric properties include validity, reliability and sensitivity to change. Establishing the psychometric properties of an instrument which measures three-dimensional human posture are essential prior to applying it in clinical practice or research. Methods This paper reports the findings of a systematic literature review which aimed to 1) identify non-invasive three-dimensional (3D) human posture-measuring instruments; and 2) assess the quality of reporting of the methodological procedures undertaken to establish their psychometric properties, using a purpose-build critical appraisal tool. Results Seventeen instruments were identified, of which nine were supported by research into psychometric properties. Eleven and six papers respectively, reported on validity and reliability testing. Rater qualification and reference standards were generally poorly addressed, and there was variable quality reporting of rater blinding and statistical analysis. Conclusions There is a lack of current research to establish the psychometric properties of non-invasive 3D human posture-measuring instruments. PMID:21569486
Nonlinear Variability of Body Sway in Patients with Phobic Postural Vertigo
Schniepp, Roman; Wuehr, Max; Pradhan, Cauchy; Novozhilov, Sergej; Krafczyk, Siegbert; Brandt, Thomas; Jahn, Klaus
2013-01-01
Background: Subjective postural imbalance is a key symptom in the somatoform phobic postural vertigo (PPV). It has been assumed that more attentional control of body posture and / or co-contraction of leg muscles during standing is used to minimize the physiological body sway in PPV. Here we analyze nonlinear variability of body sway in patients with PPV in order to disclose changes in postural control strategy associated with PPV. Methods: Twenty patients with PPV and 20 age-matched healthy subjects (HS) were recorded on a stabilometer platform with eyes open (EO), eyes closed (EC), and while standing on a foam rubber with eyes closed (ECF). Spatio-temporal changes of the center of pressure (CoP) displacement were analyzed to assess the structure of postural variability by computing the scaling exponent α and the sample entropy (SEn) of the time series. Results: With EO on firm ground α and SEn of CoP displacement were significantly lower in patients (p < 0.001). For more difficult conditions (EC, ECF) postural variability in PPV assimilated to that of HS. Conclusion: Postural control in PPV patients differs from HS under normal stance condition. It is characterized by a reduced scaling behavior and higher regularity. These changes in the structure of postural variability might suggest an inappropriate attentional involvement with stabilizing strategies, which are used by HS only for more demanding balance tasks. PMID:23966974
Rasouli, Omid; Vasseljen, Ottar; Fors, Egil A; Lorås, Håvard W; Stensdotter, Ann-Katrin
2018-01-01
As many similar symptoms are reported in fibromyalgia (FM) and chronic fatigue syndrome (CFS), underlying defcits may potentially also be similar. Postural disequilibrium reported in both conditions may thus be explained by similar deviations in postural control strategies. 75 females (25/group FM, CFS and control, age 19-49 years) performed 60 s of quiet standing on a force platform in each of three conditions: 1) firm surface with vision, 2) firm surface without vision and, 3) compliant surface with vision. Migration of center of pressure was decomposed into a slow and a fast component denoting postural sway and lateral forces controlling postural sway, analyzed in the time and frequency domains. Main effects of group for the antero-posterior (AP) and medio-lateral (ML) directions showed that patients displayed larger amplitudes (AP, p = 0.002; ML, p = 0.021) and lower frequencies (AP, p < 0.001; ML, p < 0.001) for the slow component, as well as for the fast component (amplitudes: AP, p = 0.010; ML, p = 0.001 and frequencies: AP, p = 0.001; ML, p = 0.029) compared to controls. Post hoc analyses showed no significant differences between patient groups. In conclusion, both the CFS- and the FM-group differed from the control group. Larger postural sway and insufficient control was found in patients compared to controls, with no significant differences between the two patient groups.
Rasouli, Omid; Vasseljen, Ottar; Fors, Egil A.; Lorås, Håvard W.
2018-01-01
As many similar symptoms are reported in fibromyalgia (FM) and chronic fatigue syndrome (CFS), underlying defcits may potentially also be similar. Postural disequilibrium reported in both conditions may thus be explained by similar deviations in postural control strategies. 75 females (25/group FM, CFS and control, age 19–49 years) performed 60 s of quiet standing on a force platform in each of three conditions: 1) firm surface with vision, 2) firm surface without vision and, 3) compliant surface with vision. Migration of center of pressure was decomposed into a slow and a fast component denoting postural sway and lateral forces controlling postural sway, analyzed in the time and frequency domains. Main effects of group for the antero-posterior (AP) and medio-lateral (ML) directions showed that patients displayed larger amplitudes (AP, p = 0.002; ML, p = 0.021) and lower frequencies (AP, p < 0.001; ML, p < 0.001) for the slow component, as well as for the fast component (amplitudes: AP, p = 0.010; ML, p = 0.001 and frequencies: AP, p = 0.001; ML, p = 0.029) compared to controls. Post hoc analyses showed no significant differences between patient groups. In conclusion, both the CFS- and the FM-group differed from the control group. Larger postural sway and insufficient control was found in patients compared to controls, with no significant differences between the two patient groups. PMID:29617424
Glofcheskie, Grace O; Brown, Stephen H M
2017-04-01
Trunk motor control is essential for athletic performance, and inadequate trunk motor control has been linked to an increased risk of developing low back and lower limb injury in athletes. Research is limited in comparing relationships between trunk neuromuscular control, postural control, and trunk proprioception in athletes from different sporting backgrounds. To test for these relationships, collegiate level long distance runners and golfers, along with non-athletic controls were recruited. Trunk postural control was investigated using a seated balance task. Neuromuscular control in response to sudden trunk loading perturbations was measured using electromyography and kinematics. Proprioceptive ability was examined using active trunk repositioning tasks. Both athlete groups demonstrated greater trunk postural control (less centre of pressure movement) during the seated task compared to controls. Athletes further demonstrated faster trunk muscle activation onsets, higher muscle activation amplitudes, and less lumbar spine angular displacement in response to sudden trunk loading perturbations when compared to controls. Golfers demonstrated less absolute error and variable error in trunk repositioning tasks compared to both runners and controls, suggestive of greater proprioceptive ability. This suggests an interactive relationship between neuromuscular control, postural control, and proprioception in athletes, and that differences exist between athletes of various training backgrounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Negahban, Hossein; Aryan, Najmolhoda; Mazaheri, Masood; Norasteh, Ali Asghar; Sanjari, Mohammad Ali
2013-06-01
It was hypothesized that training in 'static balance' or 'dynamic balance' sports has differential effects on postural control and its attention demands during quiet standing. In order to test this hypothesis, two groups of female athletes practicing shooting, as a 'static balance' sport, and Taekwondo, as a 'dynamic balance' sport, and a control group of non-physically active females voluntarily participated in this study. Postural control was assessed during bipedal and unipedal stance with and without performing a Go/No-go reaction time task. Visual and/or support surface conditions were manipulated in bipedal and unipedal stances in order to modify postural difficulty. Mixed model analysis of variance was used to determine the effects of dual tasking on postural and cognitive performance. Similar pattern of results were found in bipedal and unipedal stances, with Taekwondo practitioners displaying larger sway, shooters displaying lower sway and non-athletes displaying sway characteristics intermediate to Taekwondo and shooting athletes. Larger effect was found in bipedal stance. Single to dual-task comparison of postural control showed no significant effect of mental task on sway velocity in shooters, indicating less cognitive effort invested in balance control during bipedal stance. We suggest that expertise in shooting has a more pronounced effect on decreased sway in static balance conditions. Furthermore, shooters invest less attention in postures that are more specific to their training, i.e. bipedal stance. Copyright © 2012 Elsevier B.V. All rights reserved.
Jacobi-Polishook, Talia; Shorer, Zamir; Melzer, Itshak
2009-05-15
To investigate the effects of Methylphenidate (MPH) on postural stability in attention deficit hyperactivity disorder (ADHD) children in single and dual task conditions. A randomized controlled double-blind study analyzing postural stability in 24 ADHD children before and after MPH vs. placebo treatments, in three task conditions: (1) Single task, standing still; (2) dual task, standing still performing a memory-attention demanding task; (3) standing still listening to music. MPH resulted in a significant improvement in postural stability during the dual task condition and while listening to music, with no equivalent improvement in placebo controls. MPH improves postural stability in ADHD, especially when an additional task is performed. This is probably due to enhanced attention abilities, thus contributing to improved balance control during performance of tasks that require attention. MPH remains to be studied as a potential drug treatment to improve balance control and physical functioning in other clinical populations.
Mezzarobba, Susanna; Grassi, Michele; Valentini, Roberto; Bernardis, Paolo
2018-03-01
The intricate linkage between Freezing of Gait (FoG) and postural control in Parkinson's disease (PD) is unclear. We analyzed the impact of FoG on dynamic postural control. 24 PD patients, 12 with (PD + FoG), 12 without FoG (PD-FoG), and 12 healthy controls, were assessed in ON state. Mobility and postural control were measured with clinical scales (UPDRS III, BBS, MPAS) and with kinematic and kinetic analysis during three tasks, characterized by levels of increasing difficulty to plan sequential movement of postural control: walk (W), gait initiation (GI) and sit-to-walk (STW). The groups were balanced by age, disease duration, disease severity, mobility and balance. During STW, the spatial distribution of COP trajectories in PD + FoG patients are spread over medial-lateral space more than in the PD-FoG (p < .001). Moreover, the distribution of COP positions. in the transition between sit-to-stand and gait initiation, is not properly shifted toward the leading leg, as in PD-FoG and healthy controls, but it is more centrally dispersed (p < .01) with a delayed weight forward progression (p < .05). In GI task and walk task, COM and COP differences are less evident and even absent between PD patients. PD + FoG show postural control differences in STW, compared with PD-FoG and healthy. Different spatial distribution of COP trajectories, between two PD groups are probably due to a deficit to plan postural control during a more demanding motor pattern, such as STW. Copyright © 2018 Elsevier B.V. All rights reserved.
Real-Time Hand Posture Recognition Using a Range Camera
NASA Astrophysics Data System (ADS)
Lahamy, Herve
The basic goal of human computer interaction is to improve the interaction between users and computers by making computers more usable and receptive to the user's needs. Within this context, the use of hand postures in replacement of traditional devices such as keyboards, mice and joysticks is being explored by many researchers. The goal is to interpret human postures via mathematical algorithms. Hand posture recognition has gained popularity in recent years, and could become the future tool for humans to interact with computers or virtual environments. An exhaustive description of the frequently used methods available in literature for hand posture recognition is provided. It focuses on the different types of sensors and data used, the segmentation and tracking methods, the features used to represent the hand postures as well as the classifiers considered in the recognition process. Those methods are usually presented as highly robust with a recognition rate close to 100%. However, a couple of critical points necessary for a successful real-time hand posture recognition system require major improvement. Those points include the features used to represent the hand segment, the number of postures simultaneously recognizable, the invariance of the features with respect to rotation, translation and scale and also the behavior of the classifiers against non-perfect hand segments for example segments including part of the arm or missing part of the palm. A 3D time-of-flight camera named SR4000 has been chosen to develop a new methodology because of its capability to provide in real-time and at high frame rate 3D information on the scene imaged. This sensor has been described and evaluated for its capability for capturing in real-time a moving hand. A new recognition method that uses the 3D information provided by the range camera to recognize hand postures has been proposed. The different steps of this methodology including the segmentation, the tracking, the hand modeling and finally the recognition process have been described and evaluated extensively. In addition, the performance of this method has been analyzed against several existing hand posture recognition techniques found in literature. The proposed system is able to recognize with an overall recognition rate of 98% and in real-time 18 out the 33 postures of the American sign language alphabet. This recognition is translation, rotation and scale invariant.
Yelshyna, Darya; Bicho, Estela
2016-01-01
The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer's disease (AD). In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs), Multiple Layer Perceptrons (MLPs), Radial Basis Function Neural Networks (RBNs), and Deep Belief Networks (DBNs) on 72 participants (36 AD patients and 36 healthy subjects) exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight), with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA) score), top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%), test (40%), and validation (10%). Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics. PMID:28074090
Costa, Luís; Gago, Miguel F; Yelshyna, Darya; Ferreira, Jaime; David Silva, Hélder; Rocha, Luís; Sousa, Nuno; Bicho, Estela
2016-01-01
The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer's disease (AD). In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs), Multiple Layer Perceptrons (MLPs), Radial Basis Function Neural Networks (RBNs), and Deep Belief Networks (DBNs) on 72 participants (36 AD patients and 36 healthy subjects) exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight), with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA) score), top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%), test (40%), and validation (10%). Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics.
Sleep quality, sleeping postures, and sleeping equipment in patients with ankylosing spondylitis
Yolbaş, Servet; Yıldırım, Ahmet; Düzenci, Deccane; Gündoğdu, Barış; Özgen, Metin; Koca, Süleyman Serdar
2017-08-23
Background/aim: Inflammatory back pain, spinal stiffness, and limited spinal mobility are characteristic features of ankylosing spondylitis (AS). Sleeping postures can affect and/or reflect sleeping disturbances. The aim of the study was to evaluate sleeping postures and sleep disturbances in patients with AS. Materials and methods: Seventy-seven patients with AS and 49 healthy controls were enrolled. The Pittsburgh Sleep Quality Index (PSQI) and the Insomnia Severity Index (ISI) were applied to both groups. The most common sleeping postures were noted. Results: There was no significant difference between the groups in terms of sleeping postures. Total PSQI and ISI scores were higher in the AS group than in the controls (P = 0.004 and P = 0.038, respectively). The selection of sleeping postures of active and inactive patients were similar. The number of pillows used was not the same in the AS and control groups (P = 0.016). The frequency of customized bed use was higher in the AS group compared to the control group (P = 0.004). Conclusion: Sleep disturbances are more of a problem in patients with AS compared to healthy patients and in active AS patients compared to inactive ones. However, sleeping postures do not seem to affect either sleep disturbances or disease activity in patients with AS.
Malakhov, M V; Makarenkova, E A; Mel'nikov, A A; Vikulov, A D
2014-01-01
The influence of breath holding and voluntary hyperventilation on the classic stabilometric parameters and the frequency characteristic of stabilographic signal were studied. We measured the stabilometric parameters on the force platform ("Ritm", Russia) on the healthy volunteers (n = 107) during quiet breath, voluntary hyperventilation (20 seconds) and maximal inspiratory breath holding (20 seconds). Respiratory frequency, respiratory amplitude and ventilation were estimated with strain gauge. We found that antero-posterior and medio-lateral sway amplitude and velocity as well as sway surface at breath-holding and at quiet breathing were the same, so breath holding didn't influence the postural stability. However the spectral parameters shifted to the high frequency range due to alteration of the respiratory muscles contractions during breath-holding versus quiet breath. Voluntary hyperventilation caused significant increase of all stabilographic indices that implied an impairment of postural stability, which was due to the increase of respiration frequency and amplitude. We also found that the spectral indices moved toward the high-frequency range with more pronounced degree of this shift versus breath holding. Besides, amplitudes of spectral peaks also increased. Perhaps such change of spectral indices was due to distortion of proprioceptive information because of increased excitability of nerve fibers during hyperventilation. Maximal inspiration breath holding causes strain of the postural control mechanisms that is reflected as elevation of postural sway frequency with no postural stability changes. Hyperventilation leads to the most prominent strain of balance function and decrease of steadiness that is manifested as increase of center of pressure oscillations amplitude and frequency.
End-state comfort trumps handedness in object manipulation.
Coelho, Chase J; Studenka, Breanna E; Rosenbaum, David A
2014-04-01
A goal of research on human perception and performance is to explore the relative importance of constraints shaping action selection. The present study concerned the relative importance of two constraints that have not been directly contrasted: (1) the tendency to grasp objects in ways that afford comfortable or easy-to-control final postures; and (2) the tendency to grasp objects with the dominant rather than the nondominant hand. We asked participants to reach out and grasp a horizontal rod whose left or right end was to be placed into a target after a 90° rotation. In one condition, we told participants which hand to use and let them choose an overhand or underhand initial grasp. In another condition, we told participants which grasp to use and let them choose either hand. Participants sacrificed hand preference to perform the task in a way that ensured a comfortable or easy to control thumb-up posture at the time of object placement, indicating that comfort trumped handedness. A second experiment confirmed that comfort was indeed higher for thumb-down postures than thumb-up postures. A third experiment confirmed that the choice data could be linked to objective performance differences. The results point to the importance of identifying constraint weightings for action selection and support an account of hand selection that ascribes hand preference to sensitivity to performance differences. The results do not support the hypothesis that hand preference simply reflects a bias to use the dominant hand.
Muscle coordination is habitual rather than optimal.
de Rugy, Aymar; Loeb, Gerald E; Carroll, Timothy J
2012-05-23
When sharing load among multiple muscles, humans appear to select an optimal pattern of activation that minimizes costs such as the effort or variability of movement. How the nervous system achieves this behavior, however, is unknown. Here we show that contrary to predictions from optimal control theory, habitual muscle activation patterns are surprisingly robust to changes in limb biomechanics. We first developed a method to simulate joint forces in real time from electromyographic recordings of the wrist muscles. When the model was altered to simulate the effects of paralyzing a muscle, the subjects simply increased the recruitment of all muscles to accomplish the task, rather than recruiting only the useful muscles. When the model was altered to make the force output of one muscle unusually noisy, the subjects again persisted in recruiting all muscles rather than eliminating the noisy one. Such habitual coordination patterns were also unaffected by real modifications of biomechanics produced by selectively damaging a muscle without affecting sensory feedback. Subjects naturally use different patterns of muscle contraction to produce the same forces in different pronation-supination postures, but when the simulation was based on a posture different from the actual posture, the recruitment patterns tended to agree with the actual rather than the simulated posture. The results appear inconsistent with computation of motor programs by an optimal controller in the brain. Rather, the brain may learn and recall command programs that result in muscle coordination patterns generated by lower sensorimotor circuitry that are functionally "good-enough."
Temporal changes in postural sway caused by ultrashort-acting hypnotics: triazolam and zolpidem.
Nakamura, M; Ishii, M; Niwa, Y; Yamazaki, M; Ito, H
2005-01-01
Two ultrashort-acting hypnotics, triazolam 0.25 mg and zolpidem 10 mg, were studied for their effects on equilibrium function in humans. Eight healthy male subjects participated in a double-blind, placebo-controlled study after informed consent. They subjected to static equilibrium tests, oculomotor tests and an assay of drug concentrations in the blood. Zolpidem was statistically significant in postural sway in tandem stance test, as defined by parametric values of tracing sum length and polygonal area of foot pressure center measured by a gait analysis system. In the tandem stance test, triazolam was statistically significant in postural sway only as defined by the polygonal area. However, in the Romberg test, the only statistically significant difference in zolpidem use was observed in polygonal area values. Blood concentrations of triazolam and zolpidem were found to closely correlate with the extent of postural sway in both tandem stance and Romberg tests. In this study, zolpidem with minimal muscle-relaxant effect incurred imbalance more extensively than triazolam, which is known for its effect of muscle relaxation. In addition, gaze deviation nystagmus was observed only in zolpidem use in 5 of 8 subjects (62.5%). From these results, it is suggested that in the use of hypnotics, sway derives from the suppression of the central nervous system relevant to awakening rather than from muscle relaxation. The prior reference to blood concentrations of hypnotics should help improve safety care in minimizing loss of balance control and possible fall. Copyright 2005 S. Karger AG, Basel.
Kadri, Mohamed Abdelhafid; Noé, Frederic; Nouar, Merbouha Boulahbel; Paillard, Thierry
2017-09-01
To compare the effects of unilateral strength training by stimulated and voluntary contractions on muscle strength and monopedal postural control of the contralateral limb. 36 non-active healthy male subjects were recruited and split randomly into three groups. Two groups of 12 subjects took part in a strength-training program (3 sessions a week over 8 weeks) comprising 43 contractions of the quadriceps femoris of the ipsilateral limb (at 20% of the MVC). One group carried out voluntary contractions exclusively (VOL group), while the other group benefited exclusively from electro-induced contractions (NMES group). The other 12 subjects formed the control (CON) group. Assessments of MVC and monopedal postural control in static and dynamic postural tasks were performed with the ipsilateral (ISPI) and contralateral (CONTRA) limbs before (PRE) and after (POST) completion of the training program. After the training program, the MVC of the IPSI and CONTRA limbs increased similarly for both experimental groups (VOL and NMES). There were no significant improvements of monopedal postural control for the IPSI or CONTRA limbs in either the VOL or NMES experimental group. No change was observed for the CON group over the protocol period. The purposed training program with NMES vs VOL contractions induced strength gains but did not permit any improvement of contralateral monopedal postural control in healthy young subjects. This has potential for therapeutic application and allows clinicians to focus their training programs on dynamic and poly-articular exercises to improve the postural control in young subjects.
Postural Instability Induced by Visual Motion Stimuli in Patients With Vestibular Migraine
Lim, Yong-Hyun; Kim, Ji-Soo; Lee, Ho-Won; Kim, Sung-Hee
2018-01-01
Patients with vestibular migraine are susceptible to motion sickness. This study aimed to determine whether the severity of posture instability is related to the susceptibility to motion sickness. We used a visual motion paradigm with two conditions of the stimulated retinal field and the head posture to quantify postural stability while maintaining a static stance in 18 patients with vestibular migraine and in 13 age-matched healthy subjects. Three parameters of postural stability showed differences between VM patients and controls: RMS velocity (0.34 ± 0.02 cm/s vs. 0.28 ± 0.02 cm/s), RMS acceleration (8.94 ± 0.74 cm/s2 vs. 6.69 ± 0.87 cm/s2), and sway area (1.77 ± 0.22 cm2 vs. 1.04 ± 0.25 cm2). Patients with vestibular migraine showed marked postural instability of the head and neck when visual stimuli were presented in the retinal periphery. The pseudo-Coriolis effect induced by head roll tilt was not responsible for the main differences in postural instability between patients and controls. Patients with vestibular migraine showed a higher visual dependency and low stability of the postural control system when maintaining quiet standing, which may be related to susceptibility to motion sickness. PMID:29930534
Postural Instability Induced by Visual Motion Stimuli in Patients With Vestibular Migraine.
Lim, Yong-Hyun; Kim, Ji-Soo; Lee, Ho-Won; Kim, Sung-Hee
2018-01-01
Patients with vestibular migraine are susceptible to motion sickness. This study aimed to determine whether the severity of posture instability is related to the susceptibility to motion sickness. We used a visual motion paradigm with two conditions of the stimulated retinal field and the head posture to quantify postural stability while maintaining a static stance in 18 patients with vestibular migraine and in 13 age-matched healthy subjects. Three parameters of postural stability showed differences between VM patients and controls: RMS velocity (0.34 ± 0.02 cm/s vs. 0.28 ± 0.02 cm/s), RMS acceleration (8.94 ± 0.74 cm/s 2 vs. 6.69 ± 0.87 cm/s 2 ), and sway area (1.77 ± 0.22 cm 2 vs. 1.04 ± 0.25 cm 2 ). Patients with vestibular migraine showed marked postural instability of the head and neck when visual stimuli were presented in the retinal periphery. The pseudo-Coriolis effect induced by head roll tilt was not responsible for the main differences in postural instability between patients and controls. Patients with vestibular migraine showed a higher visual dependency and low stability of the postural control system when maintaining quiet standing, which may be related to susceptibility to motion sickness.
NASA Technical Reports Server (NTRS)
Sayenko D.; Miller, T.; Sayenko. I.; Kozlovskaya, I.; Reschke, M.
2004-01-01
Posture disorders are an inevitable consequence of exposure to microgravity . However, the role of different sensorimotor and sensory factors on postural function at different stages of the exposure to microgravity still remains unknown. The results obtained in a 6 hr dry immersion (DI) study where chest pushes served as a pre- and post-immersion perturbation, and DI was used as an analog of microgravity suggest that in addition to vestibular contributions, postural control may be related to a reduction of support loading and consequent decline of the tone of anti-gravitational muscles. Analysis of postural video data in response to chest pushes obtained before and after DI indicate that the structure of corrective responses was modified so that postural perturbations from threshold to moderate pushes showed a significant rise in the amplitude of ankle and knee angular displacement. With push intensity near the submaximal level, equilibrium was maintained by the elimination of excessive degrees of freedom; as manifested by the restriction of the hip joints mobility when coupled with a reduction of the knee and ankle displacement. These results suggest that DI increases the sensitivity of the posture control system by making posture control more rigid reflecting a change of the weight bearing receptors.
Three-dimensional evaluation of postural stability in Parkinson's disease with mobile technology.
Ozinga, Sarah J; Koop, Mandy Miller; Linder, Susan M; Machado, Andre G; Dey, Tanujit; Alberts, Jay L
2017-01-01
Postural instability is a hallmark of Parkinson's disease. Objective metrics to characterize postural stability are necessary for the development of treatment algorithms to aid in the clinical setting. The aim of this project was to validate a mobile device platform and resultant three-dimensional balance metric that characterizes postural stability. A mobile Application was developed, in which biomechanical data from inertial sensors within a mobile device were processed to characterize movement of center of mass in the medial-lateral, anterior-posterior and trunk rotation directions. Twenty-seven individuals with Parkinson's disease and 27 age-matched controls completed various balance tasks. A postural stability metric quantifying the amplitude (peak-to-peak) of sway acceleration in each movement direction was compared between groups. The peak-to-peak value in each direction for each individual with Parkinson's disease across all trials was expressed as a normalized value of the control data to identify individuals with severe postural instability, termed Cleveland Clinic-Postural Stability Index. In all conditions, the balance metric for peak-to-peak was significantly greater in Parkinson's disease compared to controls (p < 0.01 for all tests). The balance metric, in conjunction with mobile device sensors, provides a rapid and systematic metric for quantifying postural stability in Parkinson's disease.
Papa, Evan V; Garg, Hina; Dibble, Leland E
2015-01-01
Falls are the leading cause of traumatic brain injury and fractures and the No. 1 cause of emergency department visits by older adults. Although declines in muscle strength and sensory function contribute to increased falls in older adults, skeletal muscle fatigue is often overlooked as an additional contributor to fall risk. In an effort to increase awareness of the detrimental effects of skeletal muscle fatigue on postural control, we sought to systematically review research studies examining this issue. The specific purpose of this review was to provide a detailed assessment of how anticipatory and reactive postural control tasks are influenced by acute muscle fatigue in healthy older individuals. An extensive search was performed using the CINAHL, Scopus, PubMed, SPORTDiscus, and AgeLine databases for the period from inception of each database to June 2013. This systematic review used standardized search criteria and quality assessments via the American Academy for Cerebral Palsy and Developmental Medicine Methodology to Develop Systematic Reviews of Treatment Interventions (2008 version, revision 1.2, AACPDM, Milwaukee, Wisconsin). A total of 334 citations were found. Six studies were selected for inclusion, whereas 328 studies were excluded from the analytical review. The majority of articles (5 of 6) utilized reactive postural control paradigms. All studies incorporated extrinsic measures of muscle fatigue, such as declines in maximal voluntary contraction or available active range of motion. The most common biomechanical postural control task outcomes were spatial measures, temporal measures, and end-points of lower extremity joint kinetics. On the basis of systematic review of relevant literature, it appears that muscle fatigue induces clear deteriorations in reactive postural control. A paucity of high-quality studies examining anticipatory postural control supports the need for further research in this area. These results should serve to heighten awareness regarding the potential negative effects of acute muscle fatigue on postural control and support the examination of muscle endurance training as a fall risk intervention in future studies.
Postural-Sway Response in Learning-Disabled Children: Pilot Data.
ERIC Educational Resources Information Center
Polatajko, H. J.
1987-01-01
The postural-sway response of five learning disabled (LD) and five nondisabled children was evaluated using a force platform. From statistical analysis of the two groups, the LD children appeared to use visual input to compensate for postural problems and had significant difficulty controlling posture with eyes closed. (SK)
Dalton, Brian H; Rasman, Brandon G; Inglis, J Timothy; Blouin, Jean-Sébastien
2017-04-15
We tested perceived head-on-feet orientation and the direction of vestibular-evoked balance responses in passively and actively held head-turned postures. The direction of vestibular-evoked balance responses was not aligned with perceived head-on-feet orientation while maintaining prolonged passively held head-turned postures. Furthermore, static visual cues of head-on-feet orientation did not update the estimate of head posture for the balance controller. A prolonged actively held head-turned posture did not elicit a rotation in the direction of the vestibular-evoked balance response despite a significant rotation in perceived angular head posture. It is proposed that conscious perception of head posture and the transformation of vestibular signals for standing balance relying on this head posture are not dependent on the same internal representation. Rather, the balance system may operate under its own sensorimotor principles, which are partly independent from perception. Vestibular signals used for balance control must be integrated with other sensorimotor cues to allow transformation of descending signals according to an internal representation of body configuration. We explored two alternative models of sensorimotor integration that propose (1) a single internal representation of head-on-feet orientation is responsible for perceived postural orientation and standing balance or (2) conscious perception and balance control are driven by separate internal representations. During three experiments, participants stood quietly while passively or actively maintaining a prolonged head-turned posture (>10 min). Throughout the trials, participants intermittently reported their perceived head angular position, and subsequently electrical vestibular stimuli were delivered to elicit whole-body balance responses. Visual recalibration of head-on-feet posture was used to determine whether static visual cues are used to update the internal representation of body configuration for perceived orientation and standing balance. All three experiments involved situations in which the vestibular-evoked balance response was not orthogonal to perceived head-on-feet orientation, regardless of the visual information provided. For prolonged head-turned postures, balance responses consistent with actual head-on-feet posture occurred only during the active condition. Our results indicate that conscious perception of head-on-feet posture and vestibular control of balance do not rely on the same internal representation, but instead treat sensorimotor cues in parallel and may arrive at different conclusions regarding head-on-feet posture. The balance system appears to bypass static visual cues of postural orientation and mainly use other sensorimotor signals of head-on-feet position to transform vestibular signals of head motion, a mechanism appropriate for most daily activities. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Gait, posture and cognition in Parkinson's disease
Barbosa, Alessandra Ferreira; Chen, Janini; Freitag, Fernanda; Valente, Debora; Souza, Carolina de Oliveira; Voos, Mariana Callil; Chien, Hsin Fen
2016-01-01
Gait disorders and postural instability are the leading causes of falls and disability in Parkinson's disease (PD). Cognition plays an important role in postural control and may interfere with gait and posture assessment and treatment. It is important to recognize gait, posture and balance dysfunctions by choosing proper assessment tools for PD. Patients at higher risk of falling must be referred for rehabilitation as early as possible, because antiparkinsonian drugs and surgery do not improve gait and posture in PD. PMID:29213470
Howells, Brooke E; Clark, Ross A; Ardern, Clare L; Bryant, Adam L; Feller, Julian A; Whitehead, Timothy S; Webster, Kate E
2013-09-01
Postural control impairments may persist following anterior cruciate ligament (ACL) reconstruction. The effect of a secondary task on postural control has, however, not been determined. The purpose of this case-control study was to compare postural control in patients following ACL reconstruction with healthy individuals with and without a secondary task. 45 patients (30 men and 15 women) participated at least 6 months following primary ACL reconstruction surgery. Participants were individually matched by age, gender and sports activity to healthy controls. Postural control was measured using a Nintendo Wii Balance Board and customised software during static single-leg stance and with the addition of a secondary task. The secondary task required participants to match the movement of an oscillating marker by adducting and abducting their arm. Centre of pressure (CoP) path length in both medial-lateral and anterior-posterior directions, and CoP total path length. When compared with the control group, the anterior-posterior path length significantly increased in the ACL reconstruction patients' operated (12.3%, p=0.02) and non-operated limbs (12.8%, p=0.02) for the single-task condition, and the non-operated limb (11.5%, p=0.006) for the secondary task condition. The addition of a secondary task significantly increased CoP path lengths in all measures (p<0.001), although the magnitude of the increase was similar in both the ACL reconstruction and control groups. ACL reconstruction patients showed a reduced ability in both limbs to control the movement of the body in the anterior-posterior direction. The secondary task affected postural control by comparable amounts in patients after ACL reconstruction and healthy controls. Devices for the objective measurement of postural control, such as the one used in this study, may help clinicians to more accurately identify patients with deficits who may benefit from targeted neuromuscular training programs.
The influence of the aquatic environment on the control of postural sway.
Marinho-Buzelli, Andresa R; Rouhani, Hossein; Masani, Kei; Verrier, Mary C; Popovic, Milos R
2017-01-01
Balance training in the aquatic environment is often used in rehabilitation practice to improve static and dynamic balance. Although aquatic therapy is widely used in clinical practice, we still lack evidence on how immersion in water actually impacts postural control. We examined how postural sway measured using centre of pressure and trunk acceleration parameters are influenced by the aquatic environment along with the effects of visual information. Our results suggest that the aquatic environment increases postural instability, measured by the centre of pressure parameters in the time-domain. The mean velocity and area were more significantly affected when individuals stood with eyes closed in the aquatic environment. In addition, a more forward posture was assumed in water with eyes closed in comparison to standing on land. In water, the low frequencies of sway were more dominant compared to standing on dry land. Trunk acceleration differed in water and dry land only for the larger upper trunk acceleration in mediolateral direction during standing in water. This finding shows that the study participants potentially resorted to using their upper trunk to compensate for postural instability in mediolateral direction. Only the lower trunk seemed to change acceleration pattern in anteroposterior and mediolateral directions when the eyes were closed, and it did so depending on the environment conditions. The increased postural instability and the change in postural control strategies that the aquatic environment offers may be a beneficial stimulus for improving balance control. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Bodfish, James W.; Parker, Dawn E.; Lewis, Mark H.; Sprague, Robert L.; Newell, Karl M.
2001-01-01
This study examined whether dynamic measures of postural stability differentiated stereotyped movement disorder from dyskinetic movement disorder in a severely mentally retarded population. Participants (N=20) with either stereotypy or dyskinesia movement disorders and a control group were given a goal-oriented postural stability task. Both groups…
Effects of Dyslexia on Postural Control in Adults
ERIC Educational Resources Information Center
Patel, M.; Magnusson, M.; Lush, D.; Gomez, S.; Fransson, P. A.
2010-01-01
Dyslexia has been shown to affect postural control. The aim of the present study was to investigate the difference in postural stability measured as torque variance in an adult dyslexic group (n=14, determined using the Adult Dyslexia Checklist (ADCL) and nonsense word repetition test) and an adult non-dyslexic group (n=39) on a firm surface and…
Postural Strategies in Prader-Willi and Down Syndrome Patients
ERIC Educational Resources Information Center
Cimolin, Veronica; Galli, Manuela; Grugni, Graziano; Vismara, Luca; Precilios, Helmer; Albertini, Giorgio; Rigoldi, Chiara; Capodaglio, Paolo
2011-01-01
Patients affected by Down (DS) and Prader-Willi syndrome (PWS) are characterised by some common clinical and functional features including gait disorders and reduced postural control. The aim of our study was to quantitatively compare postural control in adult PWS and DS. We studied 12 PWS and 19 DS adult patients matched for age, height, weight…
Doumas, Michail
2017-01-01
We investigated whether stimulating the cerebellum and primary motor cortex (M1) using transcranial direct current stimulation (tDCS) could affect postural control in young and older adults. tDCS was employed using a double-blind, sham-controlled design, in which young (aged 18–35) and older adults (aged 65+) were assessed over three sessions, one for each stimulatory condition–M1, cerebellar and sham. The effect of tDCS on postural control was assessed using a sway-referencing paradigm, which induced platform rotations in proportion to the participant’s body sway, thus assessing sensory reweighting processes. Task difficulty was manipulated so that young adults experienced a support surface that was twice as compliant as that of older adults, in order to minimise baseline age differences in postural sway. Effects of tDCS on postural control were assessed during, immediately after and 30 minutes after tDCS. Additionally, the effect of tDCS on corticospinal excitability was measured by evaluating motor evoked potentials using transcranial magnetic stimulation immediately after and 30 minutes after tDCS. Minimal effects of tDCS on postural control were found in the eyes open condition only, and this was dependent on the measure assessed and age group. For young adults, stimulation had only offline effects, as cerebellar stimulation showed higher mean power frequency (MPF) of sway 30 minutes after stimulation. For older adults, both stimulation conditions delayed the increase in sway amplitude witnessed between blocks one and two until stimulation was no longer active. In conclusion, despite tDCS’ growing popularity, we would caution researchers to consider carefully the type of measures assessed and the groups targeted in tDCS studies of postural control. PMID:28099522
Craig, Chesney E; Doumas, Michail
2017-01-01
We investigated whether stimulating the cerebellum and primary motor cortex (M1) using transcranial direct current stimulation (tDCS) could affect postural control in young and older adults. tDCS was employed using a double-blind, sham-controlled design, in which young (aged 18-35) and older adults (aged 65+) were assessed over three sessions, one for each stimulatory condition-M1, cerebellar and sham. The effect of tDCS on postural control was assessed using a sway-referencing paradigm, which induced platform rotations in proportion to the participant's body sway, thus assessing sensory reweighting processes. Task difficulty was manipulated so that young adults experienced a support surface that was twice as compliant as that of older adults, in order to minimise baseline age differences in postural sway. Effects of tDCS on postural control were assessed during, immediately after and 30 minutes after tDCS. Additionally, the effect of tDCS on corticospinal excitability was measured by evaluating motor evoked potentials using transcranial magnetic stimulation immediately after and 30 minutes after tDCS. Minimal effects of tDCS on postural control were found in the eyes open condition only, and this was dependent on the measure assessed and age group. For young adults, stimulation had only offline effects, as cerebellar stimulation showed higher mean power frequency (MPF) of sway 30 minutes after stimulation. For older adults, both stimulation conditions delayed the increase in sway amplitude witnessed between blocks one and two until stimulation was no longer active. In conclusion, despite tDCS' growing popularity, we would caution researchers to consider carefully the type of measures assessed and the groups targeted in tDCS studies of postural control.
Stensdotter, Ann-Katrin; Tengman, Eva; Häger, Charlotte
2016-05-01
To explore long-term consequences of anterior cruciate ligament (ACL) rupture on postural sway and control strategies during bilateral quiet standing, in subjects treated with or without reconstructive surgery compared to uninjured controls. 70 individuals who had unilateral ACL rupture 23±2.4 years ago (33 received ACL reconstructive surgery, ACLR, and 37 had physiotherapy only, ACLPT) and 33 uninjured matched controls (CTRL) (mean age 46±5.3) stood quietly with eyes closed for 3min on a firm and on a compliant surface, respectively. Center of pressure (CoP) was registered with a force plate and postural sway was calculated from center of mass (CoM) derived from 3D kinematics. Sway density (SD) analyses of CoP assessed distance and duration of stable phases. The torque controlling postural sway was estimated from CoP-CoM. Comparisons across conditions to CTRL revealed larger CoP-CoM-area in ACLR (p=0.017, CI: 10.95, 143.10), but not in ACLPT. Mean distance between SD-peaks was greater for ACLR (p<0.001, CI: 1.73, 5.31) than for ACLPT (p=0.006, CI: 0.56, 4.12) relative to CTRL. Duration of SD-peaks was smaller for both ACLR and ACLPT (p<0.001, CI: -4.04, -1.23 and -3.82, -1.03, respectively) compared to CTRL. CoM-area in the ACL-groups did not differ from CTRL. ACL-injured subjects demonstrated greater postural control efforts than CTRL but without significant differences in postural sway. Control efforts were thus not directly associated with sway and further research should be focused on variance in postural control strategies. Copyright © 2016. Published by Elsevier B.V.
Analysis of operational comfort in manual tasks using human force manipulability measure.
Tanaka, Yoshiyuki; Nishikawa, Kazuo; Yamada, Naoki; Tsuji, Toshio
2015-01-01
This paper proposes a scheme for human force manipulability (HFM) based on the use of isometric joint torque properties to simulate the spatial characteristics of human operation forces at an end-point of a limb with feasible magnitudes for a specified limb posture. This is also applied to the evaluation/prediction of operational comfort (OC) when manually operating a human-machine interface. The effectiveness of HFM is investigated through two experiments and computer simulations of humans generating forces by using their upper extremities. Operation force generation with maximum isometric effort can be roughly estimated with an HFM measure computed from information on the arm posture during a maintained posture. The layout of a human-machine interface is then discussed based on the results of operational experiments using an electric gear-shifting system originally developed for robotic devices. The results indicate a strong relationship between the spatial characteristics of the HFM and OC levels when shifting, and the OC is predicted by using a multiple regression model with HFM measures.
Postural Hand Synergies during Environmental Constraint Exploitation
Della Santina, Cosimo; Bianchi, Matteo; Averta, Giuseppe; Ciotti, Simone; Arapi, Visar; Fani, Simone; Battaglia, Edoardo; Catalano, Manuel Giuseppe; Santello, Marco; Bicchi, Antonio
2017-01-01
Humans are able to intuitively exploit the shape of an object and environmental constraints to achieve stable grasps and perform dexterous manipulations. In doing that, a vast range of kinematic strategies can be observed. However, in this work we formulate the hypothesis that such ability can be described in terms of a synergistic behavior in the generation of hand postures, i.e., using a reduced set of commonly used kinematic patterns. This is in analogy with previous studies showing the presence of such behavior in different tasks, such as grasping. We investigated this hypothesis in experiments performed by six subjects, who were asked to grasp objects from a flat surface. We quantitatively characterized hand posture behavior from a kinematic perspective, i.e., the hand joint angles, in both pre-shaping and during the interaction with the environment. To determine the role of tactile feedback, we repeated the same experiments but with subjects wearing a rigid shell on the fingertips to reduce cutaneous afferent inputs. Results show the persistence of at least two postural synergies in all the considered experimental conditions and phases. Tactile impairment does not alter significantly the first two synergies, and contact with the environment generates a change only for higher order Principal Components. A good match also arises between the first synergy found in our analysis and the first synergy of grasping as quantified by previous work. The present study is motivated by the interest of learning from the human example, extracting lessons that can be applied in robot design and control. Thus, we conclude with a discussion on implications for robotics of our findings. PMID:28900393
[Research of joint-robotics-based design of biomechanics testing device on human spine].
Deng, Guoyong; Tian, Lianfang; Mao, Zongyuan
2009-12-01
This paper introduces the hardware and software of a biomechanical robot-based testing device. The bottom control orders, posture and torque data transmission, and the control algorithms are integrated in a unified visual control platform by Visual C+ +, with easy control and management. By using hybrid force-displacement control method to load the human spine, we can test the organizational structure and the force state of the FSU (Functional spinal unit) well, which overcomes the shortcomings due to the separation of the force and displacement measurement, thus greatly improves the measurement accuracy. Also it is esay to identify the spinal degeneration and the load-bearing impact on the organizational structure of the FSU after various types of surgery.
Trial-to-trial adaptation in control of arm reaching and standing posture
Pienciak-Siewert, Alison; Horan, Dylan P.
2016-01-01
Classical theories of motor learning hypothesize that adaptation is driven by sensorimotor error; this is supported by studies of arm and eye movements that have shown that trial-to-trial adaptation increases with error. Studies of postural control have shown that anticipatory postural adjustments increase with the magnitude of a perturbation. However, differences in adaptation have been observed between the two modalities, possibly due to either the inherent instability or sensory uncertainty in standing posture. Therefore, we hypothesized that trial-to-trial adaptation in posture should be driven by error, similar to what is observed in arm reaching, but the nature of the relationship between error and adaptation may differ. Here we investigated trial-to-trial adaptation of arm reaching and postural control concurrently; subjects made reaching movements in a novel dynamic environment of varying strengths, while standing and holding the handle of a force-generating robotic arm. We found that error and adaptation increased with perturbation strength in both arm and posture. Furthermore, in both modalities, adaptation showed a significant correlation with error magnitude. Our results indicate that adaptation scales proportionally with error in the arm and near proportionally in posture. In posture only, adaptation was not sensitive to small error sizes, which were similar in size to errors experienced in unperturbed baseline movements due to inherent variability. This finding may be explained as an effect of uncertainty about the source of small errors. Our findings suggest that in rehabilitation, postural error size should be considered relative to the magnitude of inherent movement variability. PMID:27683888
Trial-to-trial adaptation in control of arm reaching and standing posture.
Pienciak-Siewert, Alison; Horan, Dylan P; Ahmed, Alaa A
2016-12-01
Classical theories of motor learning hypothesize that adaptation is driven by sensorimotor error; this is supported by studies of arm and eye movements that have shown that trial-to-trial adaptation increases with error. Studies of postural control have shown that anticipatory postural adjustments increase with the magnitude of a perturbation. However, differences in adaptation have been observed between the two modalities, possibly due to either the inherent instability or sensory uncertainty in standing posture. Therefore, we hypothesized that trial-to-trial adaptation in posture should be driven by error, similar to what is observed in arm reaching, but the nature of the relationship between error and adaptation may differ. Here we investigated trial-to-trial adaptation of arm reaching and postural control concurrently; subjects made reaching movements in a novel dynamic environment of varying strengths, while standing and holding the handle of a force-generating robotic arm. We found that error and adaptation increased with perturbation strength in both arm and posture. Furthermore, in both modalities, adaptation showed a significant correlation with error magnitude. Our results indicate that adaptation scales proportionally with error in the arm and near proportionally in posture. In posture only, adaptation was not sensitive to small error sizes, which were similar in size to errors experienced in unperturbed baseline movements due to inherent variability. This finding may be explained as an effect of uncertainty about the source of small errors. Our findings suggest that in rehabilitation, postural error size should be considered relative to the magnitude of inherent movement variability. Copyright © 2016 the American Physiological Society.
Laboissière, Rafael; Letievant, Jean-Charles; Ionescu, Eugen; Barraud, Pierre-Alain; Mazzuca, Michel; Cian, Corinne
2015-01-01
Motion sickness (MS) usually occurs for a narrow band of frequencies of the imposed oscillation. It happens that this frequency band is close to that which are spontaneously produced by postural sway during natural stance. This study examined the relationship between reported susceptibility to motion sickness and postural control. The hypothesis is that the level of MS can be inferred from the shape of the Power Spectral Density (PSD) profile of spontaneous sway, as measured by the displacement of the center of mass during stationary, upright stance. In Experiment 1, postural fluctuations while standing quietly were related to MS history for inertial motion. In Experiment 2, postural stability measures registered before the onset of a visual roll movement were related to MS symptoms following the visual stimulation. Study of spectral characteristics in postural control showed differences in the distribution of energy along the power spectrum of the antero-posterior sway signal. Participants with MS history provoked by exposure to inertial motion showed a stronger contribution of the high frequency components of the sway signal. When MS was visually triggered, sick participants showed more postural sway in the low frequency range. The results suggest that subject-specific PSD details may be a predictor of the MS level. Furthermore, the analysis of the sway frequency spectrum provided insight into the intersubject differences in the use of postural control subsystems. The relationship observed between MS susceptibility and spontaneous posture is discussed in terms of postural sensory weighting and in relation to the nature of the provocative stimulus.
Feedback equilibrium control during human standing
Alexandrov, Alexei V.; AA, Frolov; FB, Horak; P, Carlson-Kuhta; S, Park
2006-01-01
Equilibrium maintenance during standing in humans was investigated with a 3-joint (ankle, knee and hip) sagittal model of body movement. The experimental paradigm consisted of sudden perturbations of humans in quiet stance by backward displacements of the support platform. Data analysis was performed using eigenvectors of motion equation. The results supported three conclusions. First, independent feedback control of movements along eigenvectors (eigenmovements) can adequately describe human postural responses to stance perturbations. This conclusion is consistent with previous observations (Alexandrov et al., 2001b) that these same eigenmovements are also independently controlled in a feed-forward manner during voluntary upper-trunk bending. Second, independent feedback control of each eigenmovement is sufficient to provide its stability. Third, the feedback loop in each eigenmovement can be modeled as a linear visco-elastic spring with delay. Visco-elastic parameters and time-delay values result from the combined contribution of passive visco-elastic mechanisms and sensory systems of different modalities. PMID:16228222
INFLUENCE OF INJURY ON DYNAMIC POSTURAL CONTROL IN RUNNERS.
Meardon, Stacey; Klusendorf, Anna; Kernozek, Thomas
2016-06-01
Injury has been linked with altered postural control in active populations. The association between running injury and dynamic postural control has not been examined. The purpose of this study was to examine dynamic postural control in injured and uninjured runners using the Star Excursion Balance Test (SEBT), Time to Stabilization (TTS) of ground reaction forces following a single-leg landing, and postural stability indices reflecting the fluctuations in GRFs during single-leg landing and stabilization tasks (forward and lateral hop). It was hypothesized that dynamic postural control differences would exist between runners with a history of injury that interrupted training for ≥7 days (INJ) when compared to runners without injury (CON). Case-control study. Twenty-two INJ (14 F, 8 M; 23.7 ± 2.1 y; 22.3 ± 2.8 kg/m2; 29.5 ± 16.3 mi/wk) currently running > 50% pre-injury mileage without pain were compared with twenty-two matched CON (14F, 8M; 22.7 ± 1.2 y; 22.7 ± 2.7 kg/m2; 31.2 ± 19.6 mi/wk). INJ group was stratified by site of injury into two groups (Hip/Thigh/Knee and Lower Leg/Ankle/Foot) for secondary analysis. Leg length-normalized anterior, posterolateral, and posteromedial reach distances on the SEBT, medial/lateral and anterior/posterior ground reaction force TTS, directional postural stability indices, and a composite dynamic postural stability index (DPSI), were assessed using mixed model ANOVA (α=0.05) and effect sizes (d). No group X direction interaction or group differences were observed for the SEBT (p=0.51, 0.71) or TTS (p=0.83, 0.72) measures. A group X direction interaction was found for postural stability indices during the forward landing task (p<0.01). Both Hip/Thigh/Knee and Lower leg/Ankle/Foot INJ groups demonstrated a greater vertical postural stability index (VPSI) (p=0.01 for both, d=0.80, 0.95) and DPSI (p=0.01, 0.02, d=0.75, 0.93) when compared to CON suggesting impaired balance control. A group X direction interaction was also found for postural stability indices during the lateral landing task (p=0.03). Only the Hip/Thigh/Knee INJ runners displayed a greater VPSI (p=0.01, d=0.91) and DPSI (p=0.017, d=0.89) when compared to CON. When compared to CON, INJ runners demonstrated impaired dynamic control of vertical forces when performing the single leg landing and stabilization tasks. Clinicians should consider addressing dynamic control of vertical loads through functional tasks during the rehabilitation of running injury. Level 3.
Foot anatomy specialization for postural sensation and control
Ivanenko, Y. P.; Gurfinkel, V. S.
2012-01-01
Anthropological and biomechanical research suggests that the human foot evolved a unique design for propulsion and support. In theory, the arch and toes must play an important role, however, many postural studies tend to focus on the simple hinge action of the ankle joint. To investigate further the role of foot anatomy and sensorimotor control of posture, we quantified the deformation of the foot arch and studied the effects of local perturbations applied to the toes (TOE) or 1st/2nd metatarsals (MT) while standing. In sitting position, loading and lifting a 10-kg weight on the knee respectively lowered and raised the foot arch between 1 and 1.5 mm. Less than 50% of this change could be accounted for by plantar surface skin compression. During quiet standing, the foot arch probe and shin sway revealed a significant correlation, which shows that as the tibia tilts forward, the foot arch flattens and vice versa. During TOE and MT perturbations (a 2- to 6-mm upward shift of an appropriate part of the foot at 2.5 mm/s), electromyogram (EMG) measures of the tibialis anterior and gastrocnemius revealed notable changes, and the root-mean-square (RMS) variability of shin sway increased significantly, these increments being greater in the MT condition. The slow return of RMS to baseline level (>30 s) suggested that a very small perturbation changes the surface reference frame, which then takes time to reestablish. These findings show that rather than serving as a rigid base of support, the foot is compliant, in an active state, and sensitive to minute deformations. In conclusion, the architecture and physiology of the foot appear to contribute to the task of bipedal postural control with great sensitivity. PMID:22157121
Ruffieux, Jan; Mouthon, Audrey; Keller, Martin; Mouthon, Michaël; Annoni, Jean-Marie; Taube, Wolfgang
2018-01-01
Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults. PMID:29472847
Ruffieux, Jan; Mouthon, Audrey; Keller, Martin; Mouthon, Michaël; Annoni, Jean-Marie; Taube, Wolfgang
2018-01-01
Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults.
Masi, Alfonse T.; Nair, Kalyani; Evans, Tyler; Ghandour, Yousef
2010-01-01
Background Myofascial tissues generate integrated webs and networks of passive and active tensional forces that provide stabilizing support and that control movement in the body. Passive [central nervous system (CNS)–independent] resting myofascial tension is present in the body and provides a low-level stabilizing component to help maintain balanced postures. This property was recently called “human resting myofascial tone” (HRMT). The HRMT model evolved from electromyography (EMG) research in the 1950s that showed lumbar muscles usually to be EMG-silent in relaxed gravity-neutral upright postures. Methods Biomechanical, clinical, and physiological studies were reviewed to interpret the passive stiffness properties of HRMT that help to stabilize various relaxed functions such as quiet balanced standing. Biomechanical analyses and experimental studies of the lumbar multifidus were reviewed to interpret its passive stiffness properties. The lumbar multifidus was illustrated as the major core stabilizing muscle of the spine, serving an important passive biomechanical role in the body. Results Research into muscle physiology suggests that passive resting tension (CNS-independent) is generated in sarcomeres by the molecular elasticity of low-level cycling cross-bridges between the actomyosin filaments. In turn, tension is complexly transmitted to intimately enveloping fascial matrix fibrils and other molecular elements in connective tissue, which, collectively, constitute the myofascial unit. Postural myofascial tonus varies with age and sex. Also, individuals in the population are proposed to vary in a polymorphism of postural HRMT. A few people are expected to have outlier degrees of innate postural hypotonicity or hypertonicity. Such biomechanical variations likely predispose to greater risk of related musculoskeletal disorders, a situation that deserves greater attention in clinical practice and research. Axial myofascial hypertonicity was hypothesized to predispose to ankylosing spondylitis. This often-progressive deforming condition of vertebrae and sacroiliac joints is characterized by stiffness features and particular localization of bony lesions at entheseal sites. Such unique features imply concentrations and transmissions of excessive force, leading to tissue micro-injury and maladaptive repair reactions. Conclusions The HRMT model is now expanded and translated for clinical relevance to therapists. Its passive role in helping to maintain balanced postures is supported by biomechanical principles of myofascial elasticity, tension, stress, stiffness, and tensegrity. Further research is needed to determine the molecular basis of HRMT in sarcomeres, the transmission of tension by the enveloping fascial elements, and the means by which the myofascia helps to maintain efficient passive postural balance in the body. Significant deficiencies or excesses of postural HRMT may predispose to symptomatic or pathologic musculoskeletal disorders whose mechanisms are currently unexplained. PMID:21589685
Geometrical approach to neural net control of movements and posture
NASA Technical Reports Server (NTRS)
Pellionisz, A. J.; Ramos, C. F.
1993-01-01
In one approach to modeling brain function, sensorimotor integration is described as geometrical mapping among coordinates of non-orthogonal frames that are intrinsic to the system; in such a case sensors represent (covariant) afferents and motor effectors represent (contravariant) motor efferents. The neuronal networks that perform such a function are viewed as general tensor transformations among different expressions and metric tensors determining the geometry of neural functional spaces. Although the non-orthogonality of a coordinate system does not impose a specific geometry on the space, this "Tensor Network Theory of brain function" allows for the possibility that the geometry is non-Euclidean. It is suggested that investigation of the non-Euclidean nature of the geometry is the key to understanding brain function and to interpreting neuronal network function. This paper outlines three contemporary applications of such a theoretical modeling approach. The first is the analysis and interpretation of multi-electrode recordings. The internal geometries of neural networks controlling external behavior of the skeletomuscle system is experimentally determinable using such multi-unit recordings. The second application of this geometrical approach to brain theory is modeling the control of posture and movement. A preliminary simulation study has been conducted with the aim of understanding the control of balance in a standing human. The model appears to unify postural control strategies that have previously been considered to be independent of each other. Third, this paper emphasizes the importance of the geometrical approach for the design and fabrication of neurocomputers that could be used in functional neuromuscular stimulation (FNS) for replacing lost motor control.
Albiol-Pérez, Sergio; Gil-Gómez, José-Antonio; Muñoz-Tomás, María-Teresa; Gil-Gómez, Hermenegildo; Vial-Escolano, Raquel; Lozano-Quilis, José-Antonio
2017-03-23
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor clinical alterations among others. Postural problems have serious consequences for patients, not only limiting their daily life but also increasing some risks, like the risk of fall. Inadequate postural control and postural instability is a major problem in PD patients. A Virtual Motor Rehabilitation System (VMR) has been tested in patients with PD in the intervention period. Our purpose was to analyze the evolution of the spatial postural control during the intervention period, to see if there are any changes caused precisely by this intervention. Ten people with PD carried out 15 virtual rehabilitation sessions. We tested a groundbreaking system based on Virtual Motor Rehabilitation in two periods of time (baseline evaluation and final evaluation). In the training sessions, the participants performed a customizable treatment using a low-cost system, the Active Balance Rehabilitation system (ABAR). We stored the pressure performed by the participants every five hundredths of a second, and we analyzed the patients' pressure when they maintained their body on the left, on the right, and in the center in sitting position. Our system was able to measure postural control in every patient in each of the virtual rehabilitation sessions. There are no significant differences in the performance of postural control in any of the positions evaluated throughout the sessions. Moreover, the results show a trend to an improvement in all positions. This improvement is especially remarkable in the left/right positions, which are the most important positions in order to avoid problems such as the risk of fall. With regard to the suitability of the ABAR system, we have found outstanding results in enjoyment, success, clarity, and helpfulness. Although PD is a progressive neurodegenerative disorder, the results demonstrate that patients with PD maintain or even improve their postural control in all positions. We think that the main factor influencing these results is that patients use more of their available cognitive processing to improve their postural control. The ABAR system allows us to make this assumption because the system requires the continuous attention of patients, promoting cognitive processing.
Models of the vestibular system and postural control
NASA Technical Reports Server (NTRS)
Young, L. R.; Weiss, A.
1974-01-01
Applications of control theory and systems analysis to the problem of orientation and posture control are discussed, with the possible long range goals of contributing to the development of hardware for rehabilitation of the handicapped.
Human Body 3D Posture Estimation Using Significant Points and Two Cameras
Juang, Chia-Feng; Chen, Teng-Chang; Du, Wei-Chin
2014-01-01
This paper proposes a three-dimensional (3D) human posture estimation system that locates 3D significant body points based on 2D body contours extracted from two cameras without using any depth sensors. The 3D significant body points that are located by this system include the head, the center of the body, the tips of the feet, the tips of the hands, the elbows, and the knees. First, a linear support vector machine- (SVM-) based segmentation method is proposed to distinguish the human body from the background in red, green, and blue (RGB) color space. The SVM-based segmentation method uses not only normalized color differences but also included angle between pixels in the current frame and the background in order to reduce shadow influence. After segmentation, 2D significant points in each of the two extracted images are located. A significant point volume matching (SPVM) method is then proposed to reconstruct the 3D significant body point locations by using 2D posture estimation results. Experimental results show that the proposed SVM-based segmentation method shows better performance than other gray level- and RGB-based segmentation approaches. This paper also shows the effectiveness of the 3D posture estimation results in different postures. PMID:24883422
Cerebellar transcranial direct current stimulation improves adaptive postural control.
Poortvliet, Peter; Hsieh, Billie; Cresswell, Andrew; Au, Jacky; Meinzer, Marcus
2018-01-01
Rehabilitation interventions contribute to recovery of impaired postural control, but it remains a priority to optimize their effectiveness. A promising strategy may involve transcranial direct current stimulation (tDCS) of brain areas involved in fine-tuning of motor adaptation. This study explored the effects of cerebellar tDCS (ctDCS) on postural recovery from disturbance by Achilles tendon vibration. Twenty-eight healthy volunteers participated in this sham-ctDCS controlled study. Standing blindfolded on a force platform, four trials were completed: 60 s quiet standing followed by 20 min active (anodal-tDCS, 1 mA, 20 min, N = 14) or sham-ctDCS (40 s, N = 14) tDCS; three quiet standing trials with 15 s of Achilles tendon vibration and 25 s of postural recovery. Postural steadiness was quantified as displacement, standard deviation and path derived from the center of pressure (COP). Baseline demographics and quiet standing postural steadiness, and backwards displacement during vibration were comparable between groups. However, active-tDCS significantly improved postural steadiness during vibration and reduced forward displacement and variability in COP derivatives during recovery. We demonstrate that ctDCS results in short-term improvement of postural adaptation in healthy individuals. Future studies need to investigate if multisession ctDCS combined with training or rehabilitation interventions can induce prolonged improvement of postural balance. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Dusing, Stacey C; Thacker, Leroy R; Galloway, James C
2016-08-01
Infants born preterm are at increased risk of developmental disabilities, that may be attributed to their early experiences and ability to learn. The purpose of this paper was to evaluate the ability of infants born preterm to adapt their postural control to changing task demands. This study included 18 infants born at 32 weeks of gestation or less whose posture was compared in supine under 2 conditions, with and without a visual stimulus presented. The postural variability, measured with root mean squared displacement of the center of pressure, and postural complexity, measured with the approximate entropy of the center of pressure displacement were measured longitudinally from 2.5 to 5 months of age. The infants looked at the toys in midline for several months prior to adapting their postural variability in a manner similar to full term infants. Only after postural variability was reduced in both the caudal cephalic and medial lateral direction in the toy condition did the infants learn to reach for the toy. Postural complexity did not vary between conditions. These findings suggest that infants used a variety of strategies to control their posture. In contrast to research with infants born full term, the infants born preterm in this study did not identify the successful strategy of reducing movement of the center of pressure until months after showing interest in the toy. This delayed adaptation may impact the infants ability to learn over time. Copyright © 2016 Elsevier Inc. All rights reserved.
The Importance of Postural Control in Relation to Technical Abilities in Small-Sided Soccer Games
Edis, Çağlar; Vurgun, Hikmet
2016-01-01
Abstract Making assessments regarding postural control and balance is very important for injury prevention in soccer. However, there has been no study that has associated postural control variables with branch-specific technical properties in a game. The aim of the present study was to determine the relationships between variables designating postural control levels and technical performance variables in different (1:1, 2:2 and 3:3) small-sided games (SSGs). Sixteen trained male amateur soccer players volunteered to take part in the study (age 17.2 ± 1.02 years, body height 176.25 ± 0.07 m, body mass 67.67 ± 13.27 kg). Following familiarization sessions, postural control was evaluated using one-leg and both-leg quiet-stance positions by measuring postural sway with a Tekscan HR Mat™ in anterior–posterior and medial–lateral directions. Later, 1:1, 2:2 and 3:3 SSGs were performed at two-day intervals and the technical variables specified for each game were analyzed. A Spearman’s rank-order correlation analysis demonstrated the relationship between postural control and soccer-specific technical variables in 1:1 (r-values ranging from 0.582 to 0.776), 2:2 (rvalues ranging from 0.511 to 0.740) and 3:3 (r-values ranging from 0.502 to 0.834) SSGs. In addition, a Wilcoxon signed rank test revealed differences between SSGs in terms of several variables. The results of the study showed that higher postural control levels are among the important variables that affect success in the performance of technical skills under rival pressure and suddenly changing conditions. Therefore, it is recommended that in addition to its use for injury prevention purposes, balance training should be conducted to improve branch-specific technical skills and to increase the levels of their successful performance in a game. PMID:28149410
The Importance of Postural Control in Relation to Technical Abilities in Small-Sided Soccer Games.
Edis, Çağlar; Vural, Faik; Vurgun, Hikmet
2016-12-01
Making assessments regarding postural control and balance is very important for injury prevention in soccer. However, there has been no study that has associated postural control variables with branch-specific technical properties in a game. The aim of the present study was to determine the relationships between variables designating postural control levels and technical performance variables in different (1:1, 2:2 and 3:3) small-sided games (SSGs). Sixteen trained male amateur soccer players volunteered to take part in the study (age 17.2 ± 1.02 years, body height 176.25 ± 0.07 m, body mass 67.67 ± 13.27 kg). Following familiarization sessions, postural control was evaluated using one-leg and both-leg quiet-stance positions by measuring postural sway with a Tekscan HR Mat™ in anterior-posterior and medial-lateral directions. Later, 1:1, 2:2 and 3:3 SSGs were performed at two-day intervals and the technical variables specified for each game were analyzed. A Spearman's rank-order correlation analysis demonstrated the relationship between postural control and soccer-specific technical variables in 1:1 (r-values ranging from 0.582 to 0.776), 2:2 (rvalues ranging from 0.511 to 0.740) and 3:3 (r-values ranging from 0.502 to 0.834) SSGs. In addition, a Wilcoxon signed rank test revealed differences between SSGs in terms of several variables. The results of the study showed that higher postural control levels are among the important variables that affect success in the performance of technical skills under rival pressure and suddenly changing conditions. Therefore, it is recommended that in addition to its use for injury prevention purposes, balance training should be conducted to improve branch-specific technical skills and to increase the levels of their successful performance in a game.
McKeon, Patrick O; Hertel, Jay
2008-01-01
To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Balance training can be used prophylactically or after an acute ankle sprain in an effort to reduce future ankle sprains, but current evidence is insufficient to assess this effect in patients with chronic ankle instability.
High, Carleigh M; McHugh, Hannah F; Mills, Stephen C; Amano, Shinichi; Freund, Jane E; Vallabhajosula, Srikant
2018-06-01
Aging and Parkinson's disease are often associated with impaired postural control. Providing extrinsic feedback via vibrotactile sensation could supplement intrinsic feedback to maintain postural control. We investigated the postural control response to vibrotactile feedback provided at the trunk during challenging stance conditions in older adults at high fall risk and individuals with Parkinson's disease compared to healthy older adults. Nine older adults at high fall risk, 9 persons with Parkinson's disease and 10 healthy older adults performed 30s quiet standing on a force platform under five challenging stance conditions with eyes open/closed and standing on firm/foam surface with feet together, each with and without vibrotactile feedback. During vibrotactile feedback trials, feedback was provided when participants swayed >10% over the center of their base of support. Participants were instructed vibrations would be in response to their movement. Magnitude of postural sway was estimated using center of pressure path length, velocity, and sway area. Dynamics of individuals' postural control was evaluated using detrended fluctuation analysis. Results showed that vibrotactile feedback induced a change in postural control dynamics among persons with Parkinson's disease when standing with intact intrinsic visual input and altered intrinsic somatosensory input, but there was no change in sway magnitude. However, use of vibrotactile feedback did not significantly alter dynamics of postural control in older adults with high risk of falling or reduce the magnitude of sway. Considering the effects of vibrotactile feedback were dependent on the population and stance condition, designing an optimal therapeutic regimen for balance training should be carefully considered and be specific to a target population. Furthermore, our results suggest that explicit instructions on how to respond to the vibrotactile feedback could affect training outcome. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Reaching while standing in microgravity: a new postural solution to oversimplify movement control.
Casellato, Claudia; Tagliabue, Michele; Pedrocchi, Alessandra; Papaxanthis, Charalambos; Ferrigno, Giancarlo; Pozzo, Thierry
2012-01-01
Many studies showed that both arm movements and postural control are characterized by strong invariants. Besides, when a movement requires simultaneous control of the hand trajectory and balance maintenance, these two movement components are highly coordinated. It is well known that the focal and postural invariants are individually tightly linked to gravity, much less is known about the role of gravity in their coordination. It is not clear whether the effect of gravity on different movement components is such as to keep a strong movement-posture coordination even in different gravitational conditions or whether gravitational information is necessary for maintaining motor synergism. We thus set out to analyze the movements of eleven standing subjects reaching for a target in front of them beyond arm's length in normal conditions and in microgravity. The results showed that subjects quickly adapted to microgravity and were able to successfully accomplish the task. In contrast to the hand trajectory, the postural strategy was strongly affected by microgravity, so to become incompatible with normo-gravity balance constraints. The distinct effects of gravity on the focal and postural components determined a significant decrease in their reciprocal coordination. This finding suggests that movement-posture coupling is affected by gravity, and thus, it does not represent a unique hardwired and invariant mode of control. Additional kinematic and dynamic analyses suggest that the new motor strategy corresponds to a global oversimplification of movement control, fulfilling the mechanical and sensory constraints of the microgravity environment.
Bucci, Maria Pia; Seassau, Magali; Larger, Sandrine; Bui-Quoc, Emmanuel; Gerard, Christophe-Loic
2014-06-01
We compared the effect of oculomotor tasks on postural sway in two groups of ADHD children with and without methylphenidate (MPH) treatment against a group of control age-matched children. Fourteen MPH-untreated ADHD children, fourteen MPH-treated ADHD children and a group of control children participated to the study. Eye movements were recorded using a video-oculography system and postural sway measured with a force platform simultaneously. Children performed fixation, pursuits, pro- and anti-saccades. We analyzed the number of saccades during fixation, the number of catch-up saccades during pursuits, the latency of pro- and anti-saccades; the occurrence of errors in the anti-saccade task and the surface and mean velocity of the center of pressure (CoP). During the postural task, the quality of fixation was significantly worse in both groups of ADHD children with respect to control children; in contrast, the number of catch-up saccades during pursuits, the latency of pro-/anti-saccades and the rate of errors in the anti-saccade task did not differ in the three groups of children. The surface of the CoP in MPH-treated children was similar to that of control children, while MPH-untreated children showed larger postural sway. When performing any saccades, the surface of the CoP improved with respect to fixation or pursuits tasks. This study provides evidence of poor postural control in ADHD children, probably due to cerebellar deficiencies. Our study is also the first to show an improvement on postural sway in ADHD children performing saccadic eye movements. Copyright © 2014 Elsevier Ltd. All rights reserved.
Components of Standing Postural Control Evaluated in Pediatric Balance Measures: A Scoping Review.
Sibley, Kathryn M; Beauchamp, Marla K; Van Ooteghem, Karen; Paterson, Marie; Wittmeier, Kristy D
2017-10-01
To identify measures of standing balance validated in pediatric populations, and to determine the components of postural control captured in each tool. Electronic searches of MEDLINE, Embase, and CINAHL databases using key word combinations of postural balance/equilibrium, psychometrics/reproducibility of results/predictive value of tests, and child/pediatrics; gray literature; and hand searches. Inclusion criteria were measures with a stated objective to assess balance, with pediatric (≤18y) populations, with at least 1 psychometric evaluation, with at least 1 standing task, with a standardized protocol and evaluation criteria, and published in English. Two reviewers independently identified studies for inclusion. There were 21 measures included. Two reviewers extracted descriptive characteristics, and 2 investigators independently coded components of balance in each measure using a systems perspective for postural control, an established framework for balance in pediatric populations. Components of balance evaluated in measures were underlying motor systems (100% of measures), anticipatory postural control (72%), static stability (62%), sensory integration (52%), dynamic stability (48%), functional stability limits (24%), cognitive influences (24%), verticality (9%), and reactive postural control (0%). Assessing children's balance with valid and comprehensive measures is important for ensuring development of safe mobility and independence with functional tasks. Balance measures validated in pediatric populations to date do not comprehensively assess standing postural control and omit some key components for safe mobility and independence. Existing balance measures, that have been validated in adult populations and address some of the existing gaps in pediatric measures, warrant consideration for validation in children. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Body posture modulates action perception.
Zimmermann, Marius; Toni, Ivan; de Lange, Floris P
2013-04-03
Recent studies have highlighted cognitive and neural similarities between planning and perceiving actions. Given that action planning involves a simulation of potential action plans that depends on the actor's body posture, we reasoned that perceiving actions may also be influenced by one's body posture. Here, we test whether and how this influence occurs by measuring behavioral and cerebral (fMRI) responses in human participants predicting goals of observed actions, while manipulating postural congruency between their own body posture and postures of the observed agents. Behaviorally, predicting action goals is facilitated when the body posture of the observer matches the posture achieved by the observed agent at the end of his action (action's goal posture). Cerebrally, this perceptual postural congruency effect modulates activity in a portion of the left intraparietal sulcus that has previously been shown to be involved in updating neural representations of one's own limb posture during action planning. This intraparietal area showed stronger responses when the goal posture of the observed action did not match the current body posture of the observer. These results add two novel elements to the notion that perceiving actions relies on the same predictive mechanism as planning actions. First, the predictions implemented by this mechanism are based on the current physical configuration of the body. Second, during both action planning and action observation, these predictions pertain to the goal state of the action.
de Groot, Maartje H; van der Jagt-Willems, Hanna C; van Campen, Jos P C M; Lems, Willem F; Beijnen, Jos H; Lamoth, Claudine J C
2014-02-01
A flexed posture (FP) is characterized by protrusion of the head and an increased thoracic kyphosis (TK), which may be caused by osteoporotic vertebral fractures (VFs). These impairments may affect motor function, and consequently increase the risk of falling and fractures. The aim of the current study was therefore to examine postural control during walking in elderly patients with FP, and to investigate the relationship with geriatric phenomena that may cause FP, such as increased TK, VFs, frailty, polypharmacy and cognitive impairments. Fifty-six elderly patients (aged 80 ± 5.2 years; 70% female) walked 160 m at self-selected speed while trunk accelerations were recorded. Walking speed, mean stride time and coefficient of variation (CV) of stride time were recorded. In addition, postural control during walking was quantified by time-dependent variability measures derived from the theory of stochastic dynamics, indicating smoothness, degree of predictability, and local stability of trunk acceleration patterns. Twenty-five patients (45%) had FP and demonstrated a more variable and less structured gait pattern, and a more irregular trunk acceleration pattern than patients with normal posture. FP was significantly associated with an increased TK, but not with other geriatric phenomena. An increased TK may bring the body's centre of mass forward, which requires correcting responses, and reduces the ability to respond on perturbation, which was reflected by higher variation in the gait pattern in FP-patients. Impairments in postural control during walking are a major risk factor for falling: the results indicate that patients with FP have impaired postural control during walking and might therefore be at increased risk of falling. Copyright © 2013 Elsevier B.V. All rights reserved.
Development of adaptive sensorimotor control in infant sitting posture.
Chen, Li-Chiou; Jeka, John; Clark, Jane E
2016-03-01
A reliable and adaptive relationship between action and perception is necessary for postural control. Our understanding of how this adaptive sensorimotor control develops during infancy is very limited. This study examines the dynamic visual-postural relationship during early development. Twenty healthy infants were divided into 4 developmental groups (each n=5): sitting onset, standing alone, walking onset, and 1-year post-walking. During the experiment, the infant sat independently in a virtual moving-room in which anterior-posterior oscillations of visual motion were presented using a sum-of-sines technique with five input frequencies (from 0.12 to 1.24 Hz). Infants were tested in five conditions that varied in the amplitude of visual motion (from 0 to 8.64 cm). Gain and phase responses of infants' postural sway were analyzed. Our results showed that infants, from a few months post-sitting to 1 year post-walking, were able to control their sitting posture in response to various frequency and amplitude properties of the visual motion. Infants showed an adult-like inverted-U pattern for the frequency response to visual inputs with the highest gain at 0.52 and 0.76 Hz. As the visual motion amplitude increased, the gain response decreased. For the phase response, an adult-like frequency-dependent pattern was observed in all amplitude conditions for the experienced walkers. Newly sitting infants, however, showed variable postural behavior and did not systemically respond to the visual stimulus. Our results suggest that visual-postural entrainment and sensory re-weighting are fundamental processes that are present after a few months post sitting. Sensorimotor refinement during early postural development may result from the interactions of improved self-motion control and enhanced perceptual abilities. Copyright © 2016 Elsevier B.V. All rights reserved.
Pérez-de la Cruz, S
One of the consequences of poor postural control in children with cerebral palsy is hip dislocation. This is due to the lack of weight-bearing in the sitting and standing positions. Orthotic aids can be used to prevent onset and/or progression. The aim of this study is to analyse the effectiveness of positioning systems in achieving postural control in patients with cerebral palsy, and discuss these findings with an emphasis on what may be of interest in the field of neurology. We selected a total of 18 articles on interventions in cerebral palsy addressing posture and maintenance of ideal postures to prevent deformities and related problems. The main therapeutic approaches employed combinations of botulinum toxin and orthoses, which reduced the incidence of hip dislocation although these results were not significant. On the other hand, using positioning systems in 3 different positions decreases use of botulinum toxin and surgery in children under 5 years old. The drawback is that these systems are very uncomfortable. Postural control systems helps control hip deformities in children with cerebral palsy. However, these systems must be used for prolonged periods of time before their effects can be observed. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
ERIC Educational Resources Information Center
Rigoldi, Chiara; Cimolin, Veronica; Camerota, Filippo; Celletti, Claudia; Albertini, Giorgio; Mainardi, Luca; Galli, Manuela
2013-01-01
Ligament laxity in Ehlers-Danlos syndrome hypermobility type (EDS-HT) patients can influence the intrinsic information about posture and movement and can have a negative effect on the appropriateness of postural reactions. Several measures have been proposed in literature to describe the planar migration of CoP over the base of support, and the…
A Method for the Control of Multigrasp Myoelectric Prosthetic Hands
Dalley, Skyler Ashton; Varol, Huseyin Atakan; Goldfarb, Michael
2012-01-01
This paper presents the design and preliminary experimental validation of a multigrasp myoelectric controller. The described method enables direct and proportional control of multigrasp prosthetic hand motion among nine characteristic postures using two surface electromyography electrodes. To assess the efficacy of the control method, five nonamputee subjects utilized the multigrasp myoelectric controller to command the motion of a virtual prosthesis between random sequences of target hand postures in a series of experimental trials. For comparison, the same subjects also utilized a data glove, worn on their native hand, to command the motion of the virtual prosthesis for similar sequences of target postures during each trial. The time required to transition from posture to posture and the percentage of correctly completed transitions were evaluated to characterize the ability to control the virtual prosthesis using each method. The average overall transition times across all subjects were found to be 1.49 and 0.81 s for the multigrasp myoelectric controller and the native hand, respectively. The average transition completion rates for both were found to be the same (99.2%). Supplemental videos demonstrate the virtual prosthesis experiments, as well as a preliminary hardware implementation. PMID:22180515
Huang, Cheng-Ya; Chang, Gwo-Ching; Tsai, Yi-Ying; Hwang, Ing-Shiou
2016-01-01
Increase in postural-demand resources does not necessarily degrade a concurrent motor task, according to the adaptive resource-sharing hypothesis of postural-suprapostural dual-tasking. This study investigated how brain networks are organized to optimize a suprapostural motor task when the postural load increases and shifts postural control into a less automatic process. Fourteen volunteers executed a designated force-matching task from a level surface (a relative automatic process in posture) and from a stabilometer board while maintaining balance at a target angle (a relatively controlled process in posture). Task performance of the postural and suprapostural tasks, synchronization likelihood (SL) of scalp EEG, and graph-theoretical metrics were assessed. Behavioral results showed that the accuracy and reaction time of force-matching from a stabilometer board were not affected, despite a significant increase in postural sway. However, force-matching in the stabilometer condition showed greater local and global efficiencies of the brain networks than force-matching in the level-surface condition. Force-matching from a stabilometer board was also associated with greater frontal cluster coefficients, greater mean SL of the frontal and sensorimotor areas, and smaller mean SL of the parietal-occipital cortex than force-matching from a level surface. The contrast of supra-threshold links in the upper alpha and beta bands between the two stance conditions validated load-induced facilitation of inter-regional connections between the frontal and sensorimotor areas, but that contrast also indicated connection suppression between the right frontal-temporal and the parietal-occipital areas for the stabilometer stance condition. In conclusion, an increase in stance difficulty alters the neurocognitive processes in executing a postural-suprapostural task. Suprapostural performance is not degraded by increase in postural load, due to (1) increased effectiveness of information transfer, (2) an anterior shift of processing resources toward frontal executive function, and (3) cortical dissociation of control hubs in the parietal-occipital cortex for neural economy. PMID:27594830
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Shih, Ching-Tien; Chu, Chiung-Ling
2010-01-01
The latest researches adopted software technology turning the Nintendo Wii Balance Board into a high performance change of standing posture (CSP) detector, and assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture). This study extends Wii Balance Board…
Cognitive tasks promote automatization of postural control in young and older adults.
Potvin-Desrochers, Alexandra; Richer, Natalie; Lajoie, Yves
2017-09-01
Researchers looking at the effects of performing a concurrent cognitive task on postural control in young and older adults using traditional center-of-pressure measures and complexity measures found discordant results. Results of experiments showing improvements of stability have suggested the use of strategies such as automatization of postural control or stiffening strategy. This experiment aimed to confirm in healthy young and older adults that performing a cognitive task while standing leads to improvements that are due to automaticity of sway by using sample entropy. Twenty-one young adults and twenty-five older adults were asked to stand on a force platform while performing a cognitive task. There were four cognitive tasks: simple reaction time, go/no-go reaction time, equation and occurrence of a digit in a number sequence. Results demonstrated decreased sway area and variability as well as increased sample entropy for both groups when performing a cognitive task. Results suggest that performing a concurrent cognitive task promotes the adoption of an automatic postural control in young and older adults as evidenced by an increased postural stability and postural sway complexity. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, Kyeongjin; Lee, Yong Woo
2017-09-01
[Purpose] This study was conducted to investigate the effects of ankle control balance training (ACBT) on postural balance and gait ability in community-dwelling older adults. [Subjects and Methods] Fifty-four subjects were randomly divided into two groups, with 27 subjects in the ACBT group and 27 subjects in the control group. Subjects in the ACBT group received ACBT for 60 minutes, twice per week for 4 weeks, and all subjects had undergone fall prevention education for 60 minutes, once per week for 4 weeks. The main outcome measures, including the Berg balance scale; the functional reach test and one leg stance test for postural balance; and the timed up-and-go test and 10-meter walking test for gait ability, were assessed at baseline and after 4 weeks of training. [Results] The postural balance and gait ability in the ACBT group improved significantly compared to those in the control group, except BBS. [Conclusion] The results of this study showed improved postural balance and gait abilities after ACBT and that ACBT is a feasible method for improving postural balance and gait ability in community-dwelling older adults.
Lee, Kyeongjin; Lee, Yong Woo
2017-01-01
[Purpose] This study was conducted to investigate the effects of ankle control balance training (ACBT) on postural balance and gait ability in community-dwelling older adults. [Subjects and Methods] Fifty-four subjects were randomly divided into two groups, with 27 subjects in the ACBT group and 27 subjects in the control group. Subjects in the ACBT group received ACBT for 60 minutes, twice per week for 4 weeks, and all subjects had undergone fall prevention education for 60 minutes, once per week for 4 weeks. The main outcome measures, including the Berg balance scale; the functional reach test and one leg stance test for postural balance; and the timed up-and-go test and 10-meter walking test for gait ability, were assessed at baseline and after 4 weeks of training. [Results] The postural balance and gait ability in the ACBT group improved significantly compared to those in the control group, except BBS. [Conclusion] The results of this study showed improved postural balance and gait abilities after ACBT and that ACBT is a feasible method for improving postural balance and gait ability in community-dwelling older adults. PMID:28931994
Effects of visual motion consistent or inconsistent with gravity on postural sway.
Balestrucci, Priscilla; Daprati, Elena; Lacquaniti, Francesco; Maffei, Vincenzo
2017-07-01
Vision plays an important role in postural control, and visual perception of the gravity-defined vertical helps maintaining upright stance. In addition, the influence of the gravity field on objects' motion is known to provide a reference for motor and non-motor behavior. However, the role of dynamic visual cues related to gravity in the control of postural balance has been little investigated. In order to understand whether visual cues about gravitational acceleration are relevant for postural control, we assessed the relation between postural sway and visual motion congruent or incongruent with gravity acceleration. Postural sway of 44 healthy volunteers was recorded by means of force platforms while they watched virtual targets moving in different directions and with different accelerations. Small but significant differences emerged in sway parameters with respect to the characteristics of target motion. Namely, for vertically accelerated targets, gravitational motion (GM) was associated with smaller oscillations of the center of pressure than anti-GM. The present findings support the hypothesis that not only static, but also dynamic visual cues about direction and magnitude of the gravitational field are relevant for balance control during upright stance.
Postural sway and regional cerebellar volume in adults with attention-deficit/hyperactivity disorder
Hove, Michael J.; Zeffiro, Thomas A.; Biederman, Joseph; Li, Zhi; Schmahmann, Jeremy; Valera, Eve M.
2015-01-01
Objective Motor abnormalities, including impaired balance and increased postural sway, are commonly reported in children with ADHD, but have yet to be investigated in adults with ADHD. Furthermore, although these abnormalities are thought to stem from cerebellar deficits, evidence for an association between the cerebellum and these motor deficits has yet to be provided for either adults or children with ADHD. Method In this study, we measured postural sway in adults with ADHD and controls, examining the relationship between sway and regional cerebellar gray matter volume. Thirty-two ADHD and 28 control participants completed various standing-posture tasks on a Wii balance board. Results Postural sway was significantly higher for the ADHD group compared to the healthy controls. Higher sway was positively associated with regional gray matter volume in the right posterior cerebellum (lobule VIII/IX). Conclusion These findings show that sway abnormalities commonly reported in children with ADHD are also present in adults, and for the first time show a relationship between postural control atypicalities and the cerebellum in this group. Our findings extend the literature on motor abnormalities in ADHD and contribute to our knowledge of their neural substrate. PMID:26106567
Computerized dynamic posturography: the influence of platform stability on postural control.
Palm, Hans-Georg; Lang, Patricia; Strobel, Johannes; Riesner, Hans-Joachim; Friemert, Benedikt
2014-01-01
Postural stability can be quantified using posturography systems, which allow different foot platform stability settings to be selected. It is unclear, however, how platform stability and postural control are mathematically correlated. Twenty subjects performed tests on the Biodex Stability System at all 13 stability levels. Overall stability index, medial-lateral stability index, and anterior-posterior stability index scores were calculated, and data were analyzed using analysis of variance and linear regression analysis. A decrease in platform stability from the static level to the second least stable level was associated with a linear decrease in postural control. The overall stability index scores were 1.5 ± 0.8 degrees (static), 2.2 ± 0.9 degrees (level 8), and 3.6 ± 1.7 degrees (level 2). The slope of the regression lines was 0.17 for the men and 0.10 for the women. A linear correlation was demonstrated between platform stability and postural control. The influence of stability levels seems to be almost twice as high in men as in women.
The Design of Hand Gestures for Human-Computer Interaction: Lessons from Sign Language Interpreters.
Rempel, David; Camilleri, Matt J; Lee, David L
2015-10-01
The design and selection of 3D modeled hand gestures for human-computer interaction should follow principles of natural language combined with the need to optimize gesture contrast and recognition. The selection should also consider the discomfort and fatigue associated with distinct hand postures and motions, especially for common commands. Sign language interpreters have extensive and unique experience forming hand gestures and many suffer from hand pain while gesturing. Professional sign language interpreters (N=24) rated discomfort for hand gestures associated with 47 characters and words and 33 hand postures. Clear associations of discomfort with hand postures were identified. In a nominal logistic regression model, high discomfort was associated with gestures requiring a flexed wrist, discordant adjacent fingers, or extended fingers. These and other findings should be considered in the design of hand gestures to optimize the relationship between human cognitive and physical processes and computer gesture recognition systems for human-computer input.
Clinical Implications From an Exploratory Study of Postural Management of Breech Presentation
Founds, Sandra A.
2013-01-01
The results from an exploratory study of the effectiveness of maternal knee-chest posture for producing cephalic version of breech presentation are shown. Methods are briefly described and clinical implications are presented. Among 25 women, fewer who performed the maternal knee-chest postural intervention experienced fetal cephalic version than women in the control group who did nothing to influence breech presentation. Despite limitations of the underpowered findings, trends in the data may indicate that parity and gestational age were potentially relevant covariates of version. Postural management is not an evidence-based practice. This exploratory study indicates that maternal knee-chest posture may work opposite to the expected direction, but the small sample size precludes generalizations about efficacy of knee-chest postural management. At least one adequately powered trial that controls for parity and gestational age is needed to determine whether knee-chest postural management results in no effect, a small, or small to moderate clinically significant effect. PMID:16814225
Pociask, Fredrick D; DiZazzo-Miller, Rosanne; Goldberg, Allon; Adamo, Diane E
2016-01-01
Postural control requires the integration of sensorimotor information to maintain balance and to properly position and orient the body in response to external stimuli. Age-related declines in peripheral and central sensory and motor function contribute to postural instability and falls. This study investigated the contribution of head position, standing surface, and vision on postural sway in 26 community-dwelling older adults. Participants were asked to maintain a stable posture under conditions that varied standing surface, head position, and the availability of visual information. Significant main and interaction effects were found for all three factors. Findings from this study suggest that postural sway responses require the integration of available sources of sensory information. These results have important implications for fall risks in older adults and suggest that when standing with the head extended and eyes closed, older adults may place themselves at risk for postural disequilibrium and loss of balance. Copyright © 2016 by the American Occupational Therapy Association, Inc.
Warm-up Optimizes Postural Control but Requires Some Minutes of Recovery.
Paillard, Thierry; Kadri, Mohamed Abdelhafid; Nouar, Merbouha Boulahbel; Noé, Frederic
2018-05-02
Paillard, T, Kadri, MA, Nouar, MB, and Noé, F. Warm-up optimizes postural control but requires some minutes of recovery. J Strength Cond Res XX(X): 000-000, 2018-The aim was to compare monopedal postural control between the dominant leg (D-Leg) and the nondominant leg (ND-Leg) in pre- and post-warm-up conditions. Thirty healthy male sports science students were evaluated before and after a warm-up exercise (12 minutes of pedaling with an incremental effort on a cycle ergometer with a controlled workload). Monopodal postural control was assessed for the D- and ND-Legs before and immediately, 2, 5, 10, and 15 minutes after the warm-up exercise, using a force platform and calculating the displacement velocity of the center of foot pressure on the mediolateral (COPML velocity) and anteroposterior (COPAP velocity) axes. No significant difference was observed between the D-Leg and ND-Leg for both COPML and COPAP velocity in all the periods. In comparison with pre-warm-up, COPML decreased after 15-minute and 10-minute recovery periods for the D-Leg and the ND-Leg, respectively (p < 0.05), whereas COPAP decreased after 10-minute and 15-minute recovery periods (p < 0.001; p < 0.01, respectively) for the D-Leg, and after a 10-minute recovery period for the ND-Leg (p < 0.001). The warm-up optimized monopedal postural control but did not make it possible to distinguish a difference between the D-Leg and the ND-Leg. Some minutes of recovery are required between the end of the whole-body warm-up exercise and the beginning of the postural test to optimize postural control. The optimal duration of recovery turns out to be about 10-15 minutes.
NASA Technical Reports Server (NTRS)
1997-01-01
Findings published in the NASA Anthropometric Source Book by Johnson Space Center helped BodyBilt, Inc. to fashion controlled comfort chairs that lessen the harmful effects of gravity on seated workers. Crew members living aboard NASA's Skylab noted that in space the human posture differs from the normal posture caused by the tug of one gravity. There has been an alarming increase in back pain and muscle fatigue in workers, along with a dramatic escalation in repetitive stress injuries. BodyBilt's ergonomically-correct line of office chairs are targeted for the average worker that sits for prolonged periods, be it in the classroom or boardroom. Their roster of national clients lists such organizations as IBM, Microsoft, Texas Instruments, Hewlett-Packard, Eastman-Kodak, Boeing, Motorola, and Walt Disney Studios.
2013-01-01
Background In therapeutic settings, patients with shoulder pain often exhibit deficient coordinative abilities in their trunk and lower extremities. The aim of the study was to investigate 1) if there is a connection between shoulder pain and deficits in balance ability and postural stability, 2) if pain intensity is related to balance ability and postural stability, and 3) if there is a connection between body mass index (BMI) and balance ability and postural stability. Methods In this case–control study, patients (n = 40) with pathological shoulder pain (> 4 months) were matched with a healthy controls (n = 40) and were compared with regard to their balance ability and postural stability. Outcome parameters were postural stability, balance ability and symmetry index which were measured using the S3-Check system. In addition, the influence of shoulder pain intensity and BMI on the outcome parameters was analysed. Results Patients with shoulder pain showed significantly worse results in measurements of postural stability right/left (p < 0.01) and front/back (p < 0.01) as well as balance ability right/left (p = 0.01) and front/back (p < 0.01) compared to healthy controls. There were no significant group differences with regard to symmetry index. However, there was a significant (p < 0.01) symmetry shift towards the affected side within the shoulder pain group. There was no correlation between pain intensity and measurements of balance ability or postural stability. Likewise, no correlation between BMI and deficiencies in balance ability and postural stability was established. Conclusions Patients with pathological shoulder pain (> 4 months) have deficiencies in balance ability and postural stability; however the underlying mechanisms for this remain unclear. Neither pain intensity nor BMI influenced the outcome parameters. Patients with shoulder pain shift their weight to the affected side. Further research is needed to determine if balance training can improve rehabilitation results in patients with shoulder pathologies. PMID:24088342
Richard, Aliénor; Van Hamme, Angèle; Drevelle, Xavier; Golmard, Jean-Louis; Meunier, Sabine; Welter, Marie-Laure
2017-09-01
Several brain structures including the brainstem, the cerebellum and the frontal cortico-basal ganglia network, with the primary and premotor areas have been shown to participate in the functional organization of gait initiation and postural control in humans, but their respective roles remain poorly understood. The aim of this study was to better understand the role of the supplementary motor area (SMA) and posterior cerebellum in the gait initiation process. Gait initiation parameters were recorded in 22 controls both before and after continuous theta burst transcranial stimulation (cTBS) of the SMA and cerebellum, and were compared to sham stimulation, using a randomized double-blind design study. The two phases of gait initiation process were analyzed: anticipatory postural adjustments (APAs) and execution, with recordings of soleus and tibialis anterior muscles. Functional inhibition of the SMA led to a shortened APA phase duration with advanced and increased muscle activity; during execution, it also advanced muscle co-activation and decreased the duration of stance soleus activity. Cerebellar functional inhibition did not influence the APA phase duration and amplitude but increased muscle co-activation, it decreased execution duration and showed a trend to increase velocity, with increased swing soleus muscle duration and activity. The results suggest that the SMA contributes to both the timing and amplitude of the APAs with no influence on step execution and the posterior cerebellum in the coupling between the APAs and execution phases and leg muscle activity pattern during gait initiation. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Polskaia, Nadia; Richer, Natalie; Dionne, Eliane; Lajoie, Yves
2015-02-01
Research has demonstrated clear advantages of using an external focus of attention in postural control tasks, presumably since it allows a more automatic control of posture to emerge. However, the influence of cognitive tasks on postural stability has produced discordant results. This study aimed to compare the effects of an internal focus of attention, an external focus of attention and a continuous cognitive task on postural control. Twenty healthy participants (21.4±2.6 years) were recruited for this study. They were asked to stand quietly on a force platform with their feet together in three different attentional focus conditions: an internal focus condition (minimizing movements of the hips), an external focus condition (minimizing movements of markers placed on the hips) and a cognitive task condition (silently counting the total number of times a single digit was verbalized in a 3-digit sequence comprised of 30 numbers). Results demonstrated improved stability while performing the cognitive task as opposed to the internal and external focus conditions, as evidenced by a reduction in sway area, sway variability in the anterior-posterior (AP) and medial-lateral (ML) directions, and mean velocity (ML only). Results suggest that the use of a continuous cognitive task permits attention to be withdrawn from the postural task, thereby facilitating a more automatic control of posture. Copyright © 2014 Elsevier B.V. All rights reserved.
Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.
Deng, Li; Wang, Guohua; Chen, Bo
2015-01-01
In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.
Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP
Wang, Guohua; Chen, Bo
2015-01-01
In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency. PMID:26448740
NASA Astrophysics Data System (ADS)
Aleksandrov, V. V.; Reyes-Romero, M.; Sidorenko, G. Yu.; Temoltzi-Auila, R.
2010-04-01
We consider the problem of choosing a test perturbation of a movable foundation of a single-link inverted pendulum so as to test a vestibular prosthesis prototype located at the top of this pendulum in an extreme situation. The obtained results permit concluding that the information transmitted from otolithic organs of the human vestibular system to muscles of the locomotor apparatus is very important and improves the quality of stabilization of the human vertical posture preventing the possible fall.
Hart, Raphael; Ballaz, Laurent; Robert, Maxime; Pouliot, Annie; D'Arcy, Sylvie; Raison, Maxime; Lemay, Martin
2014-08-01
Children with a neuromuscular disease are prone to early muscular fatigue. The objective of the present study was to evaluate the effects of fatigue induced by a walking exercise on the strength, postural control, and gait of children with a neuromuscular disease. Maximal isometric knee strength (extension and flexion), quiet standing postural control, and gait were evaluated in 12 children (8.8 [1.4] yrs) with a neuromuscular disease before and after a walking exercise. The participants were asked to stop walking when they considered themselves "very fatigued." After the exercise-induced fatigue, a significant increase in range of motion in pelvis obliquity, hip abduction and adduction, and ankle flexion and extension during gait was reported along with an increase in stride length variability. Fatigue also reduced the knee flexor strength and had a detrimental effect on postural control. Fatigue affects the strength, postural control, and gait of children with a neuromuscular disease and could notably increase the risks of falling and the occurrence of serious injuries.
The Control of Posture in Newly Standing Infants is Task Dependent
ERIC Educational Resources Information Center
Claxton, Laura J.; Melzer, Dawn K.; Ryu, Joong Hyun; Haddad, Jeffrey M.
2012-01-01
The postural sway patterns of newly standing infants were compared under two conditions: standing while holding a toy and standing while not holding a toy. Infants exhibited a lower magnitude of postural sway and more complex sway patterns when holding the toy. These changes suggest that infants adapt postural sway in a manner that facilitates…
The Role of Postural Support in Young Adults' Control of Stationary Kicking
ERIC Educational Resources Information Center
Sidaway, Ben; Bouchard, Matthew; Chasse, Julie; Dunn, Jonathan; Govoni, Andrea; McPherson, Breanne; Roy, Katherine; Anderson, David I.
2017-01-01
Purpose: The requirement for postural stability during the performance of motor skills has been clearly demonstrated in infants, but the necessity for such a postural substrate is not well documented in adults. The present study investigated the role of postural stability during a ballistic ball-kicking task in adults by providing varying degrees…
Evaluation of posture and pain in persons with benign joint hypermobility syndrome.
Booshanam, Divya S; Cherian, Binu; Joseph, Charles Premkumar A R; Mathew, John; Thomas, Raji
2011-12-01
The objective of the present study is to compare and quantify the postural differences and joint pain distribution between subjects with benign joint hypermobility syndrome (BJHS) and the normal population. This observational, non-randomized, and controlled study was conducted at Rheumatology and Physical Medicine and Rehabilitation Medicine Departments of a tertiary care teaching hospital. Subjects comprise 35 persons with diagnosis of BJHS, and the control group was matched for age and sex. Reedco's Posture score (RPS) and visual analogue scale (VAS) were the outcome measures. The subjects were assessed for pain in ten major joints and rated on a VAS. A standard posture assessment was conducted using the Reedco's Posture score. The same procedure was executed for an age- and sex-matched control group. Mean RPS for the BJHS group was 55.29 ± 8.15 and for the normal group it was 67 ± 11.94. The most common postural deviances in subjects with BJHS were identified in the following areas of head, hip (Sagittal plane), upper back, trunk, and lower back (Coronal plane). Intensity of pain was found to be more in BJHS persons than that of the normal persons, and the knee joints were the most affected. The present study compared and quantified the postural abnormalities and the pain in BJHS persons. The need for postural re-education and specific assessment and training for the most affected joints are discussed. There is a significant difference in posture between subjects with BJHS and the normal population. BJHS persons need special attention to their posture re-education during physiotherapy sessions to reduce long-term detrimental effects on the musculoskeletal system.
Cervical vertebral realignment when voluntarily adopting a protective neck posture.
Newell, Robyn S; Siegmund, Gunter P; Blouin, Jean-Sébastien; Street, John; Cripton, Peter A
2014-07-01
In vivo human volunteer study of the intervertebral postural changes and muscle activity levels while tensing the neck muscles. To determine if actively tensing the neck muscles changes the posture of the cervical spine and, because axial impact neck injury often occurs while inverted, whether these changes exist both upright and upside down. Rollover accidents are dynamic and complex events in which head contacts with the vehicle interior can cause catastrophic neck injuries. Computational modeling has suggested that active neck muscles may increase the risk of cervical spine fracture in a rollover crash. Cadaver testing has also demonstrated that overall neck alignment and curvature are key to understanding and preventing catastrophic neck injuries. Although muscle activity and neck posture affects the resulting injury, there are currently no in vivo data describing how tensing the neck muscles influences intervertebral posture. Eleven human subjects (6 females, 5 males) actively tensed their neck muscles while seated upright and inverted. Vertebral alignment was measured using fluoroscopy and muscle activity was recorded using surface and indwelling electrodes in 8 neck muscles. On average, tensed muscles increased cervical spine curvature and anterior motion of the cervical vertebrae relative to the torso. These changes, which were magnified by inversion, indicate that cervical intervertebral posture differs considerably between the relaxed and tensed states. Active muscle contraction can change the vertebral alignment in upright and inverted postures. This change in posture may alter the load path and injury mechanics during an axial head impact and may help explain the disparity between the neck injuries observed in real-world rollover accidents and ex vivo cadaver experiments. N/A.
Can smartwatches replace smartphones for posture tracking?
Mortazavi, Bobak; Nemati, Ebrahim; VanderWall, Kristina; Flores-Rodriguez, Hector G; Cai, Jun Yu Jacinta; Lucier, Jessica; Naeim, Arash; Sarrafzadeh, Majid
2015-10-22
This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch's ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches' ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed.
Principal components analysis based control of a multi-DoF underactuated prosthetic hand.
Matrone, Giulia C; Cipriani, Christian; Secco, Emanuele L; Magenes, Giovanni; Carrozza, Maria Chiara
2010-04-23
Functionality, controllability and cosmetics are the key issues to be addressed in order to accomplish a successful functional substitution of the human hand by means of a prosthesis. Not only the prosthesis should duplicate the human hand in shape, functionality, sensorization, perception and sense of body-belonging, but it should also be controlled as the natural one, in the most intuitive and undemanding way. At present, prosthetic hands are controlled by means of non-invasive interfaces based on electromyography (EMG). Driving a multi degrees of freedom (DoF) hand for achieving hand dexterity implies to selectively modulate many different EMG signals in order to make each joint move independently, and this could require significant cognitive effort to the user. A Principal Components Analysis (PCA) based algorithm is used to drive a 16 DoFs underactuated prosthetic hand prototype (called CyberHand) with a two dimensional control input, in order to perform the three prehensile forms mostly used in Activities of Daily Living (ADLs). Such Principal Components set has been derived directly from the artificial hand by collecting its sensory data while performing 50 different grasps, and subsequently used for control. Trials have shown that two independent input signals can be successfully used to control the posture of a real robotic hand and that correct grasps (in terms of involved fingers, stability and posture) may be achieved. This work demonstrates the effectiveness of a bio-inspired system successfully conjugating the advantages of an underactuated, anthropomorphic hand with a PCA-based control strategy, and opens up promising possibilities for the development of an intuitively controllable hand prosthesis.
DTN routing in body sensor networks with dynamic postural partitioning.
Quwaider, Muhannad; Biswas, Subir
2010-11-01
This paper presents novel store-and-forward packet routing algorithms for Wireless Body Area Networks ( WBAN ) with frequent postural partitioning. A prototype WBAN has been constructed for experimentally characterizing on-body topology disconnections in the presence of ultra short range radio links, unpredictable RF attenuation, and human postural mobility. On-body DTN routing protocols are then developed using a stochastic link cost formulation, capturing multi-scale topological localities in human postural movements. Performance of the proposed protocols are evaluated experimentally and via simulation, and are compared with a number of existing single-copy DTN routing protocols and an on-body packet flooding mechanism that serves as a performance benchmark with delay lower-bound. It is shown that via multi-scale modeling of the spatio-temporal locality of on-body link disconnection patterns, the proposed algorithms can provide better routing performance compared to a number of existing probabilistic, opportunistic, and utility-based DTN routing protocols in the literature.
Cross-correlation between EMG and center of gravity during quiet stance: theory and simulations.
Kohn, André Fabio
2005-11-01
Several signal processing tools have been employed in the experimental study of the postural control system in humans. Among them, the cross-correlation function has been used to analyze the time relationship between signals such as the electromyogram and the horizontal projection of the center of gravity. The common finding is that the electromyogram precedes the biomechanical signal, a result that has been interpreted in different ways, for example, the existence of feedforward control or the preponderance of a velocity feedback. It is shown here, analytically and by simulation, that the cross-correlation function is dependent in a complicated way on system parameters and on noise spectra. Results similar to those found experimentally, e.g., electromyogram preceding the biomechanical signal may be obtained in a postural control model without any feedforward control and without any velocity feedback. Therefore, correct interpretations of experimentally obtained cross-correlation functions may require additional information about the system. The results extend to other biomedical applications where two signals from a closed loop system are cross-correlated.
Electro-tactile stimulation of the posterior neck induces body anteropulsion during upright stance.
De Nunzio, A M; Yavuz, U S; Martinez-Valdes, E; Farina, D; Falla, D
2018-05-01
Sensory information conveyed along afferent fibers from muscle and joint proprioceptors play an important role in the control of posture and gait in humans. In particular, proprioceptive information from the neck is fundamental in supplying the central nervous system with information about the orientation and movement of the head relative to the rest of the body. The previous studies have confirmed that proprioceptive afferences originating from the neck region, evoked via muscle vibration, lead to strong body-orienting effects during static conditions (e.g., leaning of the body forwards or backwards, depending on location of vibration). However, it is not yet certain in humans, whether the somatosensory receptors located in the deep skin (cutaneous mechanoreceptors) have a substantive contribution to postural control, as vibratory stimulation encompasses the receptive field of all the somatosensory receptors from the skin to the muscles. The aim of this study was to investigate the postural effect of cutaneous mechanoreceptor afferences using electro-tactile stimulation applied to the neck. Ten healthy volunteers (8M, 2F) were evaluated. The average position of their centre of foot pressure (CoP) was acquired before, during, and after a subtle electro-tactile stimulation over their posterior neck (mean ± SD = 5.1 ± 2.3 mA at 100 Hz-140% of the perception threshold) during upright stance with their eyes closed. The electro-tactile stimulation led to a body-orienting effect with the subjects consistently leaning forward. An average shift of the CoP of 12.1 ± 11.9 mm (mean ± SD) was reported, which significantly (p < 0.05) differed from its average position under a control condition (no stimulation). These results indicate that cutaneous mechanoreceptive inflow from the neck is integrated to control stance. The findings are relevant for the exploitation of electro-tactile stimulation for rehabilitation interventions where induced anteropulsion of the body is desired.
Assessment of postural asymmetry in mild to moderate Parkinson's disease.
Geurts, A C H; Boonstra, T A; Voermans, N C; Diender, M G; Weerdesteyn, V; Bloem, B R
2011-01-01
Asymmetry of symptoms of Parkinson's disease is clinically most evident for appendicular impairments. For axial impairments such as freezing of gait, asymmetry is less obvious. To date, asymmetries in balance control in PD patients have seldom been studied. Therefore, in this study we investigated whether postural control can be asymmetrically affected in mild to moderate PD patients. Seventeen PD patients were instructed to stand as still and symmetrically as possible on a dual force-plate during two trials. Dynamic postural asymmetry was assessed by comparing the centre-of-pressure velocities between both legs. Results showed that four patients (24%) had dynamic postural asymmetry, even after correcting for weight-bearing asymmetry. Hence, this study suggests that postural control can be asymmetrical in early PD. However, future studies should investigate the prevalence of dynamic postural asymmetry, in a larger group of PD patients. It should also be further investigated whether this approach can be used as a tool to support the initial diagnosis or monitor disease progression, or as an outcome measure for interventions aimed at improving balance in PD. Copyright © 2010 Elsevier B.V. All rights reserved.
How performing a repetitive one-legged stance modifies two-legged postural control.
Burdet, Cyril; Vuillerme, Nicolas; Rougier, Patrice R
2011-10-01
The proprioceptive cues in the control of movement is recognized as playing a major role in postural control. However, little is known about its possible increased contribution to postural control consecutive to repetitive muscular activations. To test this, the short-term effects induced by a 1-legged exercise on 2-legged postural control with the eyes closed were assessed in healthy subjects. The center-of-pressure (CP) displacements obtained using a force platform were split into 2 elementary movements: center-of-gravity vertical projection (CGv) and the difference (CP - CGv). These movements assessed the net postural performance and the level of neuromuscular activity, respectively, and were processed afterward (a) through variances, mean velocity, and the average surface covered by the trajectories and (b) a fractional Brownian motion (fBm) modeling. The latter provides further information about how much the subject controls the movements and the spatiotemporal relation between the successive control mechanisms. No difference was found using the classical parameters. In contrast, fBm parameters showed statistically significant changes in postural control after 1-legged exercises: The spatial and temporal coordinates of the transition points for the CG movements along the anteroposterior axis are decreased. Because the body movement control does not rely on visual or vestibular cues, this ability to trigger the corrective process of the CG movements more quickly in the postexercise condition and once a more reduced distance has been covered emphasizes how prior muscular activation improves body movement detection. As a general rule, these data show that the motor systems control body motions better after repetitive stimulation of the sensory cues. These insights should be of interest in physical activities based on a precise muscular length control.
Yaguchi, Chie; Fujiwara, Katsuo; Kiyota, Naoe
2017-12-22
Activation timings of postural muscles of lower legs and prediction of postural disturbance were investigated in young and older adults during bilateral arm flexion in a self-timing task and an oddball task with different probabilities of target presentation. Arm flexion was started from a standing posture with hands suspended 10 cm below the horizontal level in front of the body, in which postural control focused on the ankles is important. Fourteen young and 14 older adults raised the arms in response to the target sound signal. Three task conditions were used: 15 and 45% probabilities of the target in the oddball task and self-timing. Analysis items were activation timing of postural muscles (erector spinae, biceps femoris, and gastrocnemius) with respect to the anterior deltoid (AD), and latency and amplitude of the P300 component of event-related brain potential. For young adults, all postural muscles were activated significantly earlier than AD under each condition, and time of preceding gastrocnemius activation was significantly longer in the order of the self-timing, 45 and 15% conditions. P300 latency was significantly shorter, and P300 amplitude was significantly smaller under the 45% condition than under the 15% condition. For older adults, although all postural muscles, including gastrocnemius, were activated significantly earlier than AD in the self-timing condition, only activation timing of gastrocnemius was not significantly earlier than that of AD in oddball tasks, regardless of target probability. No significant differences were found between 15 and 45% conditions in onset times of all postural muscles, and latency and amplitude of P300. These results suggest that during arm movement, young adults can achieve sufficient postural preparation in proportion to the probability of target presentation in the oddball task. Older adults can achieve postural control using ankle joints in the self-timing task. However, in the oddball task, older adults experience difficulty predicting the timing of target presentation, which could be related to deteriorated cognitive function, resulting in reduced use of the ankle joints for postural control.
A dynamic model of the human postural control system
NASA Technical Reports Server (NTRS)
Hill, J. C.
1972-01-01
A digital simulation of the pitch axis dynamics of a stick man of figures is described. Difficulties encountered in linearizing the equations of motion are discussed; the conclusion reached is that a completely linear simulation is of such restricted validity that only a nonlinear simulation is of any practical use. Typical simulation results obtained from the full nonlinear model are presented.
A dynamic model of the human postural control system.
NASA Technical Reports Server (NTRS)
Hill, J. C.
1971-01-01
Description of a digital simulation of the pitch axis dynamics of a stick man. The difficulties encountered in linearizing the equations of motion are discussed; the conclusion reached is that a completely linear simulation is of such restricted validity that only a nonlinear simulation is of any practical use. Typical simulation results obtained from the full nonlinear model are illustrated.
The dentist's operating posture - ergonomic aspects.
Pîrvu, C; Pătraşcu, I; Pîrvu, D; Ionescu, C
2014-06-15
The practice of dentistry involves laborious high finesse dental preparations, precision and control in executions that require a particular attention, concentration and patience of the dentist and finally the dentist's physical and mental resistance. The optimal therapeutic approach and the success of practice involve special working conditions for the dentist and his team in an ergonomic environment. The meaning of the posture in ergonomics is the manner in which different parts of the body are located and thus the reports are established between them in order to allow a special task execution. This article discusses the posture adopted by dentists when they work, beginning with the balanced posture and going to different variants of posture. The ideal posture of a dentist gives him, on the one hand the optimal working conditions (access, visibility and control in the mouth) and on the other hand, physical and psychological comfort throughout the execution of the clinical acts. Although the theme of dentist posture is treated with great care and often presented in the undergraduate courses and the continuing education courses on ergonomics in dentistry, many dentists do not know the subject well enough nor the theoretical issues and therefore nor the practical applicability. The risk and perspective of the musculoskeletal disorders related to unbalanced postures should determine the dentists take postural corrective actions and compensation measures in order to limit the negative effects of working in a bad posture.
Nawroth, Christian; von Borell, Eberhard; Langbein, Jan
2015-01-01
Recently, comparative research on the mechanisms and species-specific adaptive values of attributing attentive states and using communicative cues has gained increased interest, particularly in non-human primates, birds, and dogs. Here, we investigate these phenomena in a farm animal species, the dwarf goat (Capra aegagrus hircus). In the first experiment, we investigated the effects of different human head and body orientations, as well as human experimenter presence/absence, on the behaviour of goats in a food-anticipating paradigm. Over a 30-s interval, the experimenter engaged in one of four different postures or behaviours (head and body towards the subject-'Control', head to the side, head and body away from the subject, or leaving the room) before delivering a reward. We found that the level of subjects' active anticipatory behaviour was highest in the control condition and decreased with a decreasing level of attention paid to the subject by the experimenter. Additionally, goats 'stared' (i.e. stood alert) at the experimental set-up for significantly more time when the experimenter was present but paid less attention to the subject ('Head' and 'Back' condition) than in the 'Control' and 'Out' conditions. In a second experiment, the experimenter provided different human-given cues that indicated the location of a hidden food reward in a two-way object choice task. Goats were able to use both 'Touch' and 'Point' cues to infer the correct location of the reward but did not perform above the level expected by chance in the 'Head only' condition. We conclude that goats are able to differentiate among different body postures of a human, including head orientation; however, despite their success at using multiple physical human cues, they fail to spontaneously use human head direction as a cue in a food-related context.
Rajachandrakumar, Roshanth; Fraser, Julia E; Schinkel-Ivy, Alison; Inness, Elizabeth L; Biasin, Lou; Brunton, Karen; McIlroy, William E; Mansfield, Avril
2017-02-01
Anticipatory postural adjustments, executed prior to gait initiation, help preserve lateral stability when stepping. Atypical patterns of anticipatory activity prior to gait initiation may occur in individuals with unilateral impairment (e.g., stroke). This study aimed to determine the prevalence, correlates, and consequences of atypical anticipatory postural adjustment patterns prior to gait initiation in a sub-acute stroke population. Forty independently-ambulatory individuals with sub-acute stroke stood on two force plates and initiated gait at a self-selected speed. Medio-lateral centre of pressure displacement was calculated and used to define anticipatory postural adjustments (shift in medio-lateral centre of pressure >10mm from baseline). Stroke severity, motor recovery, and functional balance and mobility status were also obtained. Three patterns were identified: single (typical), absent (atypical), and multiple (atypical) anticipatory postural adjustments. Thirty-five percent of trials had atypical anticipatory postural adjustments (absent and multiple). Frequency of absent anticipatory postural adjustments was negatively correlated with walking speed. Multiple anticipatory postural adjustments were more prevalent when leading with the non-paretic than the paretic limb. Trials with multiple anticipatory postural adjustments had longer duration of anticipatory postural adjustment and time to foot-off, and shorter unloading time than trials with single anticipatory postural adjustments. A high prevalence of atypical anticipatory control prior to gait initiation was found in individuals with stroke. Temporal differences were identified with multiple anticipatory postural adjustments, indicating altered gait initiation. These findings provide insight into postural control during gait initiation in individuals with sub-acute stroke, and may inform interventions to improve ambulation in this population. Copyright © 2016 Elsevier B.V. All rights reserved.
Chiropractic biophysics technique: a linear algebra approach to posture in chiropractic.
Harrison, D D; Janik, T J; Harrison, G R; Troyanovich, S; Harrison, D E; Harrison, S O
1996-10-01
This paper discusses linear algebra as applied to human posture in chiropractic, specifically chiropractic biophysics technique (CBP). Rotations, reflections and translations are geometric functions studied in vector spaces in linear algebra. These mathematical functions are termed rigid body transformations and are applied to segmental spinal movement in the literature. Review of the literature indicates that these linear algebra concepts have been used to describe vertebral motion. However, these rigid body movers are presented here as applying to the global postural movements of the head, thoracic cage and pelvis. The unique inverse functions of rotations, reflections and translations provide a theoretical basis for making postural corrections in neutral static resting posture. Chiropractic biophysics technique (CBP) uses these concepts in examination procedures, manual spinal manipulation, instrument assisted spinal manipulation, postural exercises, extension traction and clinical outcome measures.
The effect of body postures on the distribution of air gap thickness and contact area.
Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M
2017-02-01
The heat and mass transfer in clothing is predominantly dependent on the thickness of air layer and the magnitude of contact area between the body and the garment. The air gap thickness and magnitude of the contact area can be affected by the posture of the human body. Therefore, in this study, the distribution of the air gap and the contact area were investigated for different body postures of a flexible manikin. In addition, the effect of the garment fit (regular and loose) and style (t-shirts, sweatpants, jacket and trousers) were analysed for the interaction between the body postures and the garment properties. A flexible manikin was scanned using a three-dimensional (3D) body scanning technique, and the scans were post-processed in dedicated software. The body posture had a strong effect on the air gap thickness and the contact area for regions where the garment had a certain distance from the body. Furthermore, a mathematical model was proposed to estimate the possible heat transfer coefficient for the observed air layers and their change with posture. The outcome of this study can be used to improve the design of the protective and functional garments and predict their effect on the human body.
Dong, Rui-Chun; Guo, Li-Xin
2017-11-01
The aim of this study is to model the computational model of seated whole human body including skeleton, muscle, viscera, ligament, intervertebral disc, and skin to predict effect of the factors (sitting postures, muscle and skin, buttocks, viscera, arms, gravity, and boundary conditions) on the biodynamic characteristics of spine. Two finite element models of seated whole body and a large number of finite element models of different ligamentous motion segments were developed and validated. Static, modal, and transient dynamic analyses were performed. The predicted vertical resonant frequency of seated body model was in the range of vertical natural frequency of 4 to 7 Hz. Muscle, buttocks, viscera, and the boundary conditions of buttocks have influence on the vertical resonant frequency of spine. Muscle played a very important role in biodynamic response of spine. Compared with the vertical posture, the posture of lean forward or backward led to an increase in stress on anterior or lateral posterior of lumbar intervertebral discs. This indicated that keeping correct posture could reduce the injury of vibration on lumbar intervertebral disc under whole-body vibration. The driving posture not only reduced the load of spine but also increased the resonant frequency of spine. Copyright © 2017 John Wiley & Sons, Ltd.
[Neuronal control of posture and locomotion in decerebrated and spinalized animals].
Musienko, P E; Gorskiĭ, O V; Kilimnik, V A; Kozlovskaia, I B; Courtine, G; Edgerton, V R; Gerasimenko, Iu P
2013-03-01
We have found that the brainstem-spinal cord circuitry of decerebrated cats actively maintain the equilibrium during standing, walking and imposed mechanical perturbations similar to that observed in intact animals. The corrective hindlimb motor responses during standing included redistribution of the extensor activity ipsilateral and contralateral to perturbation. The postural corrections in walking cats were due to considerable modification of EMG pattern in the limbs as well as changing of the swing-stance phases of the step cycle and ground reaction forces depending of perturbation side. Thus the basic mechanisms for balance control of decerebrated animals in these two forms of motor behavior are different. Balance-related adjustments relied entirely on the integration of somatosensory information arising from the moving hindquarters because of the suppression of vestibular, visual, and head-neck-trunk sensory input. We propose that the somatosensory input from the hindquarters in concert with the lumbosacral spinal circuitry can control the dynamics of the hindquarters sufficient to sustain balance. We found that, after isolation from the brainstem or forebrain, lumbosacral circuits receiving tonic epidural electrical stimulation can effectively control equilibrium during standing and stepping. Detailed analyses of the relationships among muscle activity, trunk kinematics, and limb kinetics indicate that spinal motor systems utilize a combination of feedback and feedforward strategies to maintain dynamic equilibrium during walking. The unexpected ability of spinal circuitries to exert efficient postural control in the presence of epidural electrical stimulation in decerebrated and spinal cats have significant implications for the potential of humans with a severe spinal cord injury to regain a significant level of functional standing and walking capacities.
Role of sensory information in the control of postural orientation in Parkinson's disease.
Vaugoyeau, Marianne; Azulay, Jean-Philippe
2010-02-15
Clinical findings and experimental studies both in parkinsonian patients and on animal provide evidence that the control of the axial orientation is markedly impaired in Parkinson's disease (stooped posture, Camptocormia, Pisa syndrome). Nevertheless the postural orientation component in Parkinson's disease has been poorly investigated. One study reports that Parkinsonian patients present a major impairment of the postural orientation component in relation with a proprioceptive impairment. On the basis of these results, the visual dependence observed in Parkinsonian patients is re-defined as an adaptive strategy partly compensating for the impaired proprioception.
MacRae, Catharine Siân; Critchley, Duncan; Lewis, Jeremy S; Shortland, Adam
2018-01-01
Differences in postural control and gait have been identified between people with and without chronic low back pain (CLBP); however, many previous studies present data from small samples, or have used methodologies with questionable reliability. This study, employing robust methodology, hypothesised that there would be a difference in postural control, and spatiotemporal parameters of gait in people with CLBP compared with asymptomatic individuals. This cross-sectional case-control study age-matched and gender-matched 16 CLBP and 16 asymptomatic participants. Participants were assessed barefoot (1) standing, over three 40 s trials, under four posture challenging conditions (2) during gait. Primary outcome was postural stability (assessed by root mean squared error of centre of pressure (CoP) displacement (CoP RMSEAP ) and mean CoP velocity (CoP VELAP ), both in the anteroposterior direction); gait outcomes were hip range of movement and peak moments, walking speed, cadence and stride length, assessed using force plates and a motion analysis system. There were no differences between groups in CoP RMSEAP (P=0.26), or CoP VELAP (P=0.60) for any standing condition. During gait, no differences were observed between groups for spatiotemporal parameters, maximum, minimum and total ranges of hip movement, or peak hip flexor or extensor moments in the sagittal plane. In contrast to previous research, this study suggests that people with mild to moderate CLBP present with similar standing postural control, and parameters of gait to asymptomatic individuals. Treatments directed at influencing postural stability (eg, standing on a wobble board) or specific parameters of gait may be an unnecessary addition to a treatment programme.
Sibley, Kathryn M; Beauchamp, Marla K; Van Ooteghem, Karen; Straus, Sharon E; Jaglal, Susan B
2015-01-01
To identify components of postural control included in standardized balance measures for adult populations. Electronic searches of MEDLINE, EMBASE, and CINAHL databases using keyword combinations of postural balance/equilibrium, psychometrics/reproducibility of results/predictive value of tests/validation studies, instrument construction/instrument validation, geriatric assessment/disability evaluation, gray literature, and hand searches. Inclusion criteria were measures with a stated objective to assess balance, adult populations (18y and older), at least 1 psychometric evaluation, 1 standing task, a standardized protocol and evaluation criteria, and published in English. Two reviewers independently identified studies for inclusion. Sixty-six measures were included. A research assistant extracted descriptive characteristics and 2 reviewers independently coded components of balance in each measure using the Systems Framework for Postural Control, a widely recognized model of balance. Components of balance evaluated in these measures were underlying motor systems (100% of measures), anticipatory postural control (71%), dynamic stability (67%), static stability (64%), sensory integration (48%), functional stability limits (27%), reactive postural control (23%), cognitive influences (17%), and verticality (8%). Thirty-four measures evaluated 3 or fewer components of balance, and 1 measure-the Balance Evaluation Systems Test-evaluated all components of balance. Several standardized balance measures provide only partial information on postural control and omit important components of balance related to avoiding falls. As such, the choice of measure(s) may limit the overall interpretation of an individual's balance ability. Continued work is necessary to increase the implementation of comprehensive balance assessment in research and practice. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
The Rim and the Ancient Mariner: The Nautical Horizon Affects Postural Sway in Older Adults
Wade, Michael G.; Stergiou, Nick
2016-01-01
On land, the spatial magnitude of postural sway (i.e., the amount of sway) tends to be greater when participants look at the horizon than when they look at nearby targets. By contrast, on ships at sea, the spatial magnitude of postural sway in young adults has been greater when looking at nearby targets and less when looking at the horizon. Healthy aging is associated with changes in the movement patterns of the standing body sway, and these changes typically are interpreted in terms of age-related declines in the ability to control posture. To further elucidate the mechanisms associated with these changes we investigated control of posture in a setting that poses substantial postural challenges; standing on a ship at sea. In particular, we explored postural sway on a ship at sea when older adults looked at the horizon or at nearby targets. We evaluated the kinematics of the center of pressure in terms of spatial magnitude (i.e., the amount of sway) and multifractality (a measure of temporal dynamics). We found that looking at the horizon significantly affected the multifractality of standing body, but did not systematically influence the spatial magnitude of sway. We discuss the results in terms of age-related changes in the perception and control of dynamic body orientation. PMID:27973576
Characteristics of hand tremor and postural sway in patients with fetal-type Minamata disease.
Iwata, Toyoto; Takaoka, Shigeru; Sakamoto, Mineshi; Maeda, Eri; Nakamura, Masaaki; Liu, Xiao-Jie; Murata, Katsuyuki
2016-01-01
About forty certified patients aged around 50 years old existed as living witnesses to fetal-type Minamata disease (methylmercury poisoning due to in utero exposure) in Minamata, Japan in 2006. Computerized hand tremor and postural sway tests with spectral analysis were conducted for 24 of them and in matched control subjects to examine the pathophysiological feature of neuromotor function. The tremor intensities of the patients with fetal-type Minamata disease were significantly larger than those of the 67 controls at every frequency band for both hands. In the patients, proportions for intensity at 1-6 Hz of both hands were larger, but those of the intensity at 6-10 Hz were smaller compared with the controls. The center frequency of a tremor was significantly lower in the patients than in the controls. Only eight males of the 24 patients were examined to evaluate postural sway because of extremely low scores in activities of daily living in the remaining. Most of the postural sway parameters obtained with eyes open and closed were significantly larger in the patients than in the male controls. Likewise, Romberg quotients of postural sway in anterior-posterior direction were significantly higher in the patients. In conclusion, the patients with fetal-type Minamata disease of our study showed a larger tremor of low frequency at less than 6 Hz and postural instability. Spectral analyses of computerized hand tremor and postural sway are suggested to be useful for assessing the pathophysiological change, related to a lesion of the cerebellum, resulting from prenatal methylmercury exposure.
Hassan, B; Mockett, S; Doherty, M
2001-01-01
OBJECTIVES—To investigate whether subjects with knee osteoarthritis (OA) have reduced static postural control, knee proprioceptive acuity, and maximal voluntary contraction (MVC) of the quadriceps compared with normal controls, and to determine possible independent predictors of static postural sway. METHODS—77 subjects with symptomatic and radiographic knee OA (58 women, 19 men; mean age 63.4 years, range 36-82) and 63 controls with asymptomatic and clinically normal knees (45 women, 18 men; mean age 63 years, range 46-85) underwent assessment of static postural sway. 108 subjects (59 patients, 49 controls) also underwent assessment of knee proprioceptive activity and MVC (including calculation of quadriceps activation). In patients with knee OA knee pain, stiffness, and functional disability were assessed using the WOMAC Index. The height (m) and weight (kg) of all subjects was assessed. RESULTS—Compared with controls, patients with knee OA were heavier (mean difference 15.3 kg, p<0.001), had increased postural lateral sway (controls: median 2.3, interquartile (IQ) range 1.8-2.9; patients: median 4.7, IQ range 1.9-4.7, p<0.001), reduced proprioceptive acuity (controls: mean 7.9, 95% CI 6.9 to 8.9; patients: mean 12.0, 95% CI 10.5 to 13.6, p<0.001), weaker quadriceps strength (controls: mean 22.5, 95% CI 19.9 to 24.6; patients: mean 14.7, 95% CI 12.5 to 16.9, p<0.001), and less percentage activation of quadriceps (controls: mean 87.4, 95% CI 80.7 to 94.2; patients: mean 66.0, 95% CI 58.8 to 73.2, p<0.001). The significant predictors of postural sway were knee pain and the ratio of MVC/body weight. CONCLUSIONS—Compared with age and sex matched controls, subjects with symptomatic knee OA have quadriceps weakness, reduced knee proprioception, and increased postural sway. Pain and muscle strength may particularly influence postural sway. The interaction between physiological, structural, and functional abnormalities in knee OA deserves further study. PMID:11350851
Terada, Masafumi; Kosik, Kyle; Johnson, Nathan; Gribble, Phillip
2018-02-01
The current study aimed to examine postural control performance during a single-leg balance task in elderly individuals with and without a previous history of lateral ankle sprain (LAS). Eighteen adults with a previous history of LAS (mean age = 66 years old) and 12 healthy controls (mean age = 65 years old) were included in the study. Participants performed three trials of a single-leg balance task during an eyes-opened condition for 20-s. Center of pressure (COP) trajectories in the anteroposterior (AP) and mediolateral (ML) directions were collected with a force plate. The following postural control measures were calculated in the AP and ML directions: 1) Sample Entropy (SampEn); 2) Approximate Entropy (ApEn); 3) mean of Time-to-Boundary minima (mean TTB); and 4) COP velocity (COPV). Older-age participants with a history LAS exhibited lower ApEn-AP, SampEn-AP, and SampEn-ML values compared to healthy controls (p < 0.05). The information gained from this investigation indicates more rigid postural control patterns, less adaptability, and more difficulty maintaining COP during a single-leg balance task in adults with a previous history of LAS. Our data suggest that there is a need to consider history of musculoskeletal injury when evaluating factors for postural control and fall risk in the elderly. Future investigations are needed to assess the effect of LAS on age-related declines in postural control and discern associations between potential risk factors of fall-related injuries and LAS in an elderly population. Copyright © 2017 Elsevier B.V. All rights reserved.
INFLUENCE OF INJURY ON DYNAMIC POSTURAL CONTROL IN RUNNERS
Klusendorf, Anna; Kernozek, Thomas
2016-01-01
ABSTRACT Background Injury has been linked with altered postural control in active populations. The association between running injury and dynamic postural control has not been examined. Hypothesis/Purpose The purpose of this study was to examine dynamic postural control in injured and uninjured runners using the Star Excursion Balance Test (SEBT), Time to Stabilization (TTS) of ground reaction forces following a single-leg landing, and postural stability indices reflecting the fluctuations in GRFs during single-leg landing and stabilization tasks (forward and lateral hop). It was hypothesized that dynamic postural control differences would exist between runners with a history of injury that interrupted training for ≥7 days (INJ) when compared to runners without injury (CON). Design Case-control study Methods Twenty-two INJ (14 F, 8 M; 23.7 ± 2.1 y; 22.3 ± 2.8 kg/m2; 29.5 ± 16.3 mi/wk) currently running > 50% pre-injury mileage without pain were compared with twenty-two matched CON (14F, 8M; 22.7 ± 1.2 y; 22.7 ± 2.7 kg/m2; 31.2 ± 19.6 mi/wk). INJ group was stratified by site of injury into two groups (Hip/Thigh/Knee and Lower Leg/Ankle/Foot) for secondary analysis. Leg length-normalized anterior, posterolateral, and posteromedial reach distances on the SEBT, medial/lateral and anterior/posterior ground reaction force TTS, directional postural stability indices, and a composite dynamic postural stability index (DPSI), were assessed using mixed model ANOVA (α=0.05) and effect sizes (d). Results No group X direction interaction or group differences were observed for the SEBT (p=0.51, 0.71) or TTS (p=0.83, 0.72) measures. A group X direction interaction was found for postural stability indices during the forward landing task (p<0.01). Both Hip/Thigh/Knee and Lower leg/Ankle/Foot INJ groups demonstrated a greater vertical postural stability index (VPSI) (p=0.01 for both, d=0.80, 0.95) and DPSI (p=0.01, 0.02, d=0.75, 0.93) when compared to CON suggesting impaired balance control. A group X direction interaction was also found for postural stability indices during the lateral landing task (p=0.03). Only the Hip/Thigh/Knee INJ runners displayed a greater VPSI (p=0.01, d=0.91) and DPSI (p=0.017, d=0.89) when compared to CON. Conclusions When compared to CON, INJ runners demonstrated impaired dynamic control of vertical forces when performing the single leg landing and stabilization tasks. Clinicians should consider addressing dynamic control of vertical loads through functional tasks during the rehabilitation of running injury. Level of Evidence Level 3 PMID:27274423
Creative Dance Practice Improves Postural Control in a Child With Cerebral Palsy.
Stribling, Kate; Christy, Jennifer
2017-10-01
To investigate the effect of creative dance instruction on postural control and balance in an 11-year-old with spastic triplegic cerebral palsy, Gross Motor Function Classification Scale level II. We conducted 1-hour dance interventions twice weekly for 8 weeks, with a focus on somatosensory awareness and movement in all planes of motion. Computerized dynamic posturography using the SMART Balance Master/EquiTest (NeuroCom) was used to assess postural control and balance reactions before the first class and following the final class. Gains in standing stability, balance recovery, directional control, and endpoint excursion of movement were found. Participation in creative dance lessons appears to improve somatosensory effectiveness and postural control in a child with cerebral palsy. Dance is a fun way to improve balance and coordination. These interventions could be easily implemented into programs for children with cerebral palsy.
ERIC Educational Resources Information Center
Memari, Amir Hossein; Ghanouni, Parisa; Gharibzadeh, Shahriar; Eghlidi, Jandark; Ziaee, Vahid; Moshayedi, Pouria
2013-01-01
Postural control is a fundamental building block of each child's daily activities. The aim of this study was to compare patterns of postural sway in children with autism spectrum disorder (ASD) with typically developing children (TD). We recruited 21 schoolchildren diagnosed with ASD aged 9-14 and 30 TD pupils aged 8-15. Postural sway parameters…
Song, Kyeongtak; Kang, Tae Kyu; Wikstrom, Erik A; Jun, Hyung-Pil; Lee, Sae Yong
2017-10-01
The purpose of this study was to determine how reduced plantar cutaneous sensation influences static postural control in individuals with and without CAI. A case-control study design. Twenty-six individuals with self-reported CAI and 26 matched healthy controls participated in this study. The plantar aspect of the participants' foot was then submersed in ice water (0°C) for 10min to reduce plantar sensation. Before and after the cooling procedure, plantar cutaneous sensation thresholds and single leg balance with eyes open and closed were assessed. Significantly, higher scores were observed in both groups after ice water submersion (p<0.001) indicating a significant reduction in the plantar cutaneous sensitivity after the cooling procedure. In single limb balance with eyes open, there were significant intervention main effects for the TTB ML mean (p<0.001), TTB AP mean (p=0.035) and TTB ML SD (p=0.021); indicating postural control improvement in both groups post-cooling. In single limb balance with eyes closed, Group×Intervention interactions were observed for the TTB AP mean (p=0.003) and TTB AP SD (p=0.017); indicating postural control deficits in CAI group post-cooling, but no changes in the control group. The main finding of this study was that reduced plantar cutaneous sensation induced by an ice submersion procedure caused eyes closed postural control impairments in those with CAI but not healthy controls. The present investigation demonstrated that the ability to dynamically reweight among sensory inputs to maintain postural stability appears to be diminished in CAI patients compared to healthy controls. Copyright © 2016. Published by Elsevier Ltd.
Children with autism spectrum disorder are skilled at reading emotion body language.
Peterson, Candida C; Slaughter, Virginia; Brownell, Celia
2015-11-01
Autism is commonly believed to impair the ability to perceive emotions, yet empirical evidence is mixed. Because face processing may be difficult for those with autism spectrum disorder (ASD), we developed a novel test of recognizing emotion via static body postures (Body-Emotion test) and evaluated it with children aged 5 to 12 years in two studies. In Study 1, 34 children with ASD and 41 typically developing (TD) controls matched for age and verbal intelligence (VIQ [verbal IQ]) were tested on (a) our new Body-Emotion test, (b) a widely used test of emotion recognition using photos of eyes as stimuli (Baron-Cohen et al.'s "Reading Mind in the Eyes: Child" or RMEC [Journal of Developmental and Learning Disorders, 2001, Vol. 5, pp. 47-78]), (c) a well-validated theory of mind (ToM) battery, and (d) a teacher-rated empathy scale. In Study 2 (33 children with ASD and 31 TD controls), the RMEC test was simplified to the six basic human emotions. Results of both studies showed that children with ASD performed as well as their TD peers on the Body-Emotion test. Yet TD children outperformed the ASD group on ToM and on both the standard RMEC test and the simplified version. VIQ was not related to perceiving emotions via either body posture or eyes for either group. However, recognizing emotions from body posture was correlated with ToM, especially for children with ASD. Finally, reading emotions from body posture was easier than reading emotions from eyes for both groups. Copyright © 2015 Elsevier Inc. All rights reserved.
Peigneux, P; Salmon, E; van der Linden, M; Garraux, G; Aerts, J; Delfiore, G; Degueldre, C; Luxen, A; Orban, G; Franck, G
2000-06-01
Humans, like numerous other species, strongly rely on the observation of gestures of other individuals in their everyday life. It is hypothesized that the visual processing of human gestures is sustained by a specific functional architecture, even at an early prelexical cognitive stage, different from that required for the processing of other visual entities. In the present PET study, the neural basis of visual gesture analysis was investigated with functional neuroimaging of brain activity during naming and orientation tasks performed on pictures of either static gestures (upper-limb postures) or tridimensional objects. To prevent automatic object-related cerebral activation during the visual processing of postures, only intransitive postures were selected, i. e., symbolic or meaningless postures which do not imply the handling of objects. Conversely, only intransitive objects which cannot be handled were selected to prevent gesture-related activation during their visual processing. Results clearly demonstrate a significant functional segregation between the processing of static intransitive postures and the processing of intransitive tridimensional objects. Visual processing of objects elicited mainly occipital and fusiform gyrus activity, while visual processing of postures strongly activated the lateral occipitotemporal junction, encroaching upon area MT/V5, involved in motion analysis. These findings suggest that the lateral occipitotemporal junction, working in association with area MT/V5, plays a prominent role in the high-level perceptual analysis of gesture, namely the construction of its visual representation, available for subsequent recognition or imitation. Copyright 2000 Academic Press.
Emergence of postural patterns as a function of vision and translation frequency
NASA Technical Reports Server (NTRS)
Buchanan, J. J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)
1999-01-01
Emergence of postural patterns as a function of vision and translation frequency. We examined the frequency characteristics of human postural coordination and the role of visual information in this coordination. Eight healthy adults maintained balance in stance during sinusoidal support surface translations (12 cm peak to peak) in the anterior-posterior direction at six different frequencies. Changes in kinematic and dynamic measures revealed that both sensory and biomechanical constraints limit postural coordination patterns as a function of translation frequency. At slow frequencies (0.1 and 0.25 Hz), subjects ride the platform (with the eyes open or closed). For fast frequencies (1.0 and 1.25 Hz) with the eyes open, subjects fix their head and upper trunk in space. With the eyes closed, large-amplitude, slow-sway motion of the head and trunk occurred for fast frequencies above 0.5 Hz. Visual information stabilized posture by reducing the variability of the head's position in space and the position of the center of mass (CoM) within the support surface defined by the feet for all but the slowest translation frequencies. When subjects rode the platform, there was little oscillatory joint motion, with muscle activity limited mostly to the ankles. To support the head fixed in space and slow-sway postural patterns, subjects produced stable interjoint hip and ankle joint coordination patterns. This increase in joint motion of the lower body dissipated the energy input by fast translation frequencies and facilitated the control of upper body motion. CoM amplitude decreased with increasing translation frequency, whereas the center of pressure amplitude increased with increasing translation frequency. Our results suggest that visual information was important to maintaining a fixed position of the head and trunk in space, whereas proprioceptive information was sufficient to produce stable coordinative patterns between the support surface and legs. The CNS organizes postural patterns in this balance task as a function of available sensory information, biomechanical constraints, and translation frequency.
Human Energy Expenditure and Postural Coordination on the Mechanical Horse.
Baillet, Héloïse; Thouvarecq, Régis; Vérin, Eric; Tourny, Claire; Benguigui, Nicolas; Komar, John; Leroy, David
2017-01-01
The authors investigated and compared the energy expenditure and postural coordination of two groups of healthy subjects on a mechanical horse at 4 increasing oscillation frequencies. Energy expenditure was assessed from the oxygen consumption, respiratory quotient, and heart rate values, and postural coordination was characterized by relative phase computations between subjects (elbow, head, trunk) and horse. The results showed that the postural coordination of the riders was better adapted (i.e., maintenance of in-phase and antiphase) than that of the nonriders, but the energy expenditure remains the same. Likewise, we observed an energy system shifting only for nonriders (from aerobic to lactic anaerobic mode). Finally, cross-correlations showed a link between energy expenditure and postural coordination in the riders (i.e., effectiveness).
Differences in intermittent postural control between normal-weight and obese children.
Villarrasa-Sapiña, Israel; García-Massó, Xavier; Serra-Añó, Pilar; Garcia-Lucerga, Consolación; Gonzalez, Luis-Millán; Lurbe, Empar
2016-09-01
The main objective of this study was to determine differences in postural control between obese and non-obese children. The study design was cross-sectional, prospective, between-subjects. Postural control variables were obtained from a group of obese children and a normal-weight control group under two different postural conditions: bipedal standing position with eyes open and bipedal standing with eyes closed. Variables were obtained for each balance condition using time domain and sway-density plot analysis of the center of pressure signals acquired by means of a force plate. Pairwise comparisons revealed significant differences between obese and normal-weight children in mean velocity in antero-posterior and medio-lateral directions, ellipse area and mean distance with both eyes open and eyes closed. Normal-weight subjects obtained lower values in all these variables than obese subjects. Furthermore, there were differences between both groups in mean peaks with eyes open and in mean time with eyes closed. Alterations were detected in the intermittent postural control in obese children. According to the results obtained, active anticipatory control produces higher center of pressure displacement responses in obese children and the periods during which balance is maintained by passive control and reflex mechanisms are of shorter duration. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Hong-Yun; Zheng, Jie-Jiao; Zhang, Jian; Cai, Ye-Hua; Hua, Ying-Hui; Chen, Shi-Yi
2016-04-01
Lateral ankle sprain is the most common injury. A previous study demonstrated that patients with mechanical ankle instability suffered deficits in postural control, indicating that structural damage of the lateral ankle ligaments may produce a balance deficit. The purpose of this study was to confirm that lateral ligaments reconstruction could improve postural control in patients with mechanical ankle instability. A total of 15 patients were included in the study. Each patient had a history of an ankle sprain with persistent symptoms of ankle instability and a positive anterior drawer test and had been treated nonoperatively for at least 3 months. All patients were diagnosed with lateral ankle ligaments tear by ultrasonography and magnetic resonance imaging. They underwent arthroscopic debridement and open lateral ankle ligaments reconstruction with a modified Broström procedure. One day before and 6 months after the operation, all of the participants underwent single-limb postural sway tests. The anterior drawer test and the American Orthopedic Foot and Ankle Society scale score were used to evaluate the clinical results in these patients. At 6 months after the operation, with the patients' eyes closed, there was significantly decreased postural sway in the anteroposterior direction, the circumferential area, and the total path length on the operated ankles compared with those measurements before the operation. With eyes open, however, no difference was found in postural sway before and after the operation. Postural control was improved by reconstructing the lateral ligaments. IV.
The effect of aging on anticipatory postural control
Kanekar, Neeta; Aruin, Alexander S.
2014-01-01
The aim of the study was to investigate the differences in anticipatory (APAs) postural adjustments between young and older adults and its effect on subsequent control of posture. Ten healthy older adults and thirteen healthy young adults were exposed to predictable external perturbations using the pendulum-impact paradigm. EMG activity of the trunk and leg muscles, the center of pressure (COP), and center of mass (COM) displacements in the anterior-posterior (AP) direction were recorded and analyzed during the anticipatory and compensatory (CPAs) phases of postural control. The effect of aging was seen as delayed anticipatory muscle activity and larger compensatory muscle responses in older adults as compared to young adults. Moreover, in spite of such larger reactive responses, older adults were still more unstable, exhibiting larger COP and COM peak displacements after the perturbation than young adults when exposed to similar postural disturbances. Nonetheless, while APAs are impaired in older adults, the ability to recruit muscles anticipatorily is largely preserved, however, due to their smaller magnitudes and delayed onsets, it is likely that their effectiveness in reducing the magnitude of CPAs is smaller. The outcome of the study lends support towards investigating the ways of improving anticipatory postural control in people with balance impairments due to aging or neurological disorders. PMID:24449006
Mandibular deviations in TMD and non-TMD groups related to eye dominance and head posture.
Pradham, N S; White, G E; Mehta, N; Forgione, A
2001-01-01
This study was designed to determine whether eye-dominance affects head posture (rotation) and in turn, whether head posture is associated with mandibular frenum midline deviation, in both TMJ and control subjects. Eye dominance was determined using three tests: Porta, Hole, Point tests. Natural head posture was evaluated using the Arthrodial protractor. Mandibular frenum deviation was recorded as left, right or no deviation. Fifty female subjects were included in the study, 25 TMJ patients attending the Gelb Craniomandibular Pain Center and 25 non-TMJ control subjects. The findings indicate that eye dominance and direction of head rotation are strongly associated in both TMJ and control subjects. Further, in TMJ subjects mandibular deviation occurred in greater frequency than in controls and tends to occur in the contra lateral direction of head rotation.
Gomes, Matheus M; Reis, Júlia G; Carvalho, Regiane L; Tanaka, Erika H; Hyppolito, Miguel A; Abreu, Daniela C C
2015-01-01
muscle strength and power are two factors affecting balance. The impact of muscle strength and power on postural control has not been fully explored among different age strata over sixty. the aim of the present study was to assess the muscle strength and power of elderly women in different age groups and determine their correlation with postural control. eighty women were divided into four groups: the young 18-30 age group (n=20); the 60-64 age group (n=20); the 65-69 age group (n=20); and the 70-74 age group (n=20). The participants underwent maximum strength (one repetition maximum or 1-RM) and muscle power tests to assess the knee extensor and flexor muscles at 40%, 70%, and 90% 1-RM intensity. The time required by participants to recover their balance after disturbing their base of support was also assessed. the elderly women in the 60-64, 65-69, and 70-74 age groups exhibited similar muscle strength, power, and postural control (p>0.05); however, these values were lower than those of the young group (p<0.05) as expected. There was a correlation between muscle strength and power and the postural control performance (p<0.05). despite the age difference, elderly women aged 60 to 74 years exhibited similar abilities to generate strength and power with their lower limbs, and this ability could be one factor that explains the similar postural control shown by these women.
Akizuki, Kazunori; Ohashi, Yukari
2014-12-01
The influence of attention on postural control and the relationship between attention and falling has been reported in previous studies. Although a dual-task procedure is commonly used to measure attentional demand, such procedures are affected by allocation policy, which is a mental strategy to divide attention between simultaneous tasks. Therefore, we examined the effectiveness of salivary α-amylase, which is a physiological method for measuring attentional demand during postural control. Sixteen healthy participants performed a postural-control task using the Balance System, which is a device that can be calibrated to a specific stability level ("Level 1 = least stable" to "Level 8 = most stable"). Levels 1, 2, and 3 were used for this study. Dependent variables measured were overall stability index, which represents the variance of platform displacement in degrees from a horizontal plane; probe reaction time, which was measured using a sound stimulator and recorder; and salivary α-amylase, which was measured using a portable salivary amylase analyzer. As stability level of the test task decreased, both stability index and probe reaction time significantly increased. In addition, we identified a positive moderate correlation between probe reaction time and salivary α-amylase. Our results suggest that salivary α-amylase and probe reaction time reflect the change in attentional demands during a postural-control task and that salivary α-amylase may be an effective tool for evaluating attentional demands during postural control because it is noninvasive and simple to perform.
[Effects of Surgically Treated Pelvic Ring and Acetabular Fractures on Postural Control].
Lang, P; Schnegelberger, A; Riesner, H-J; Stuby, F; Friemert, B; Palm, H-G
2016-04-01
The aim of surgical treatment of pelvic ring and acetabular fractures is to allow rapid mobilisation of patients in order to restore stance and gait stability (postural control), as this significantly correlates with a positive outcome. The regulation of postural stability is mainly controlled by transmission of proprioceptive stimuli. In addition, the pelvis serves as a connection between the legs and the spine and thus is also of great importance for mechanical stabilisation. It remains unclear whether surgical treatment of pelvic ring and acetabular fractures affects the regulation of postural control. Therefore, the aim of this study was to examine the impact of surgically treated pelvic ring and acetabular fractures on postural stability by means of computerised dynamic posturography (CDP) after a mean of 35 months and to compare the results with a healthy control group. A retrospective case control study of 38 patients with surgically treated pelvic ring and acetabular fractures and 38 healthy volunteers was carried out using CDP. The average time of follow-up was 35 (12-78) months. The most important outcome parameter in this investigation was the overall stability index (OSI). Hip joint mobility, the health-related quality of life (SF-12) and pain were supplementary outcome parameters. It was found that surgically treated pelvic ring and acetabular fractures had no influence on postural stability. The OSI was 2.1 ° in the patient group and 1.9 ° in the control group. There was no significant difference between the groups in hip joint mobility. A total of 52 % of patients showed no or only mild pain. Mean health-related quality of life was the same as in the total population. Surgically treated pelvic ring and acetabular fractures do not lead to deterioration in postural control in the mid term. This is of high prognostic importance for rapid mobilisation of the patients. Therefore no increase in the risk of falling is expected after successfully treatment of fractures. Georg Thieme Verlag KG Stuttgart · New York.
Evaluation of Postural Control in Patients with Glaucoma Using a Virtual Reality Environment.
Diniz-Filho, Alberto; Boer, Erwin R; Gracitelli, Carolina P B; Abe, Ricardo Y; van Driel, Nienke; Yang, Zhiyong; Medeiros, Felipe A
2015-06-01
To evaluate postural control using a dynamic virtual reality environment and the relationship between postural metrics and history of falls in patients with glaucoma. Cross-sectional study. The study involved 42 patients with glaucoma with repeatable visual field defects on standard automated perimetry (SAP) and 38 control healthy subjects. Patients underwent evaluation of postural stability by a force platform during presentation of static and dynamic visual stimuli on stereoscopic head-mounted goggles. The dynamic visual stimuli presented rotational and translational ecologically valid peripheral background perturbations. Postural stability was also tested in a completely dark field to assess somatosensory and vestibular contributions to postural control. History of falls was evaluated by a standard questionnaire. Torque moments around the center of foot pressure on the force platform were measured, and the standard deviations of the torque moments (STD) were calculated as a measurement of postural stability and reported in Newton meters (Nm). The association with history of falls was investigated using Poisson regression models. Age, gender, body mass index, severity of visual field defect, best-corrected visual acuity, and STD on dark field condition were included as confounding factors. Patients with glaucoma had larger overall STD than controls during both translational (5.12 ± 2.39 Nm vs. 3.85 ± 1.82 Nm, respectively; P = 0.005) and rotational stimuli (5.60 ± 3.82 Nm vs. 3.93 ± 2.07 Nm, respectively; P = 0.022). Postural metrics obtained during dynamic visual stimuli performed better in explaining history of falls compared with those obtained in static and dark field condition. In the multivariable model, STD values in the mediolateral direction during translational stimulus were significantly associated with a history of falls in patients with glaucoma (incidence rate ratio, 1.85; 95% confidence interval, 1.30-2.63; P = 0.001). The study presented and validated a novel paradigm for evaluation of balance control in patients with glaucoma on the basis of the assessment of postural reactivity to dynamic visual stimuli using a virtual reality environment. The newly developed metrics were associated with a history of falls and may help to provide a better understanding of balance control in patients with glaucoma. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Evaluation of Postural Control in Glaucoma Patients Using a Virtual 1 Reality Environment
Diniz-Filho, Alberto; Boer, Erwin R.; Gracitelli, Carolina P. B.; Abe, Ricardo Y.; van Driel, Nienke; Yang, Zhiyong; Medeiros, Felipe A.
2015-01-01
Purpose To evaluate postural control using a dynamic virtual reality environment and the relationship between postural metrics and history of falls in glaucoma patients. Design Cross-sectional study. Participants The study involved 42 glaucoma patients with repeatable visual field defects on standard automated perimetry (SAP) and 38 control healthy subjects. Methods Patients underwent evaluation of postural stability by a force platform during presentation of static and dynamic visual stimuli on stereoscopic head-mounted goggles. The dynamic visual stimuli presented rotational and translational ecologically valid peripheral background perturbations. Postural stability was also tested in a completely dark field to assess somatosensory and vestibular contributions to postural control. History of falls was evaluated by a standard questionnaire. Main Outcome Measures Torque moments around the center of foot pressure on the force platform were measured and the standard deviations (STD) of these torque moments were calculated as a measurement of postural stability and reported in Newton meter (Nm). The association with history of falls was investigated using Poisson regression models. Age, gender, body mass index, severity of visual field defect, best-corrected visual acuity, and STD on dark field condition were included as confounding factors. Results Glaucoma patients had larger overall STD than controls during both translational (5.12 ± 2.39 Nm vs. 3.85 ± 1.82 Nm, respectively; P = 0.005) as well as rotational stimuli (5.60 ± 3.82 Nm vs. 3.93 ± 2.07 Nm, respectively; P = 0.022). Postural metrics obtained during dynamic visual stimuli performed better in explaining history of falls compared to those obtained in static and dark field condition. In the multivariable model, STD values in the mediolateral direction during translational stimulus were significantly associated with history of falls in glaucoma patients (incidence-rate ratio = 1.85; 95% CI: 1.30 – 2.63; P = 0.001). Conclusions The study presented and validated a novel paradigm for evaluation of balance control in glaucoma patients based on the assessment of postural reactivity to dynamic visual stimuli using a virtual reality environment. The newly developed metrics were associated with history of falls and may help to provide a better understanding of balance control in glaucoma patients. PMID:25892017
NASA Technical Reports Server (NTRS)
Kenyon, R. V.; Young, L. R.
1986-01-01
The four science crewmembers of Spacelab-1 were tested for postural control before and after a 10 day mission in weightlessness. Previous reports have shown changes in astronaut postural behavior following a return to earth's 1-g field. This study was designed to identify changes in EMG latency and amplitudes that might explain the instabilities observed post-flight. Erect posture was tested having the subject stand on a pneumatically driven posture platform which pitched rapidly and unexpectedly about the ankles causing dorsi- and plantarflexion. Electromyographic (EMG) activity from the tibialis anterior and the gastrocnemius-soleus muscles was measured during eyes open and eyes closed trials. The early (pre 500 ms) EMG response characteristics (latency, amplitude) in response to a disturbance in the posture of the subject were apparently unchanged by the 10 days of weightlessness. However, the late (post 500 ms) response showed higher amplitudes than was found pre-flight. General postural control was quantitatively measured pre- and post-flight by a 'sharpened Romberg Rails test'. This test showed decrements in standing stability with eyes closed for several days post-flight.
The Relationship Between the Stomatognathic System and Body Posture
Cuccia, Antonino; Caradonna, Carola
2009-01-01
In recent years, many researchers have investigated the various factors that can influence body posture: mood states, anxiety, head and neck positions, oral functions (respiration, swallowing), oculomotor and visual systems, and the inner ear. Recent studies indicate a role for trigeminal afferents on body posture, but this has not yet been demonstrated conclusively. The present study aims to review the papers that have shown a relationship between the stomatognathic system and body posture. These studies suggest that tension in the stomatognathic system can contribute to impaired neural control of posture. Numerous anatomical connections between the stomatognathic system’s proprioceptive inputs and nervous structures are implicated in posture (cerebellum, vestibular and oculomotor nuclei, superior colliculus). If the proprioceptive information of the stomatognathic system is inaccurate, then head control and body position may be affected. In addition, the present review discusses the role the myofascial system plays in posture. If confirmed by further research, these considerations can improve our understanding and treatment of muscular-skeletal disorders that are associated with temporomandibular joint disorders, occlusal changes, and tooth loss. PMID:19142553
Haid, Thomas H.; Doix, Aude-Clémence M.; Nigg, Benno M.; Federolf, Peter A.
2018-01-01
Optimal feedback control theory suggests that control of movement is focused on movement dimensions that are important for the task's success. The current study tested the hypotheses that age effects would emerge in the control of only specific movement components and that these components would be linked to the task relevance. Fifty healthy volunteers, 25 young and 25 older adults, performed a 80s-tandem stance while their postural movements were recorded using a standard motion capture system. The postural movements were decomposed by a principal component analysis into one-dimensional movement components, PMk, whose control was assessed through two variables, Nk and σk, which characterized the tightness and the regularity of the neuro-muscular control, respectively. The older volunteers showed less tight and more irregular control in PM2 (N2: −9.2%, p = 0.007; σ2: +14.3.0%, p = 0.017) but tighter control in PM8 and PM9 (N8: +4.7%, p = 0.020; N9: +2.5%, p = 0.043; σ9: −8.8%, p = 0.025). These results suggest that aging effects alter the postural control system not as a whole, but emerge in specific, task relevant components. The findings of the current study thus support the hypothesis that the minimal intervention principle, as described in the context of optimal feedback control (OFC), may be relevant when assessing aging effects on postural control. PMID:29459826
Sensorimotor integration in human postural control
NASA Technical Reports Server (NTRS)
Peterka, R. J.
2002-01-01
It is generally accepted that human bipedal upright stance is achieved by feedback mechanisms that generate an appropriate corrective torque based on body-sway motion detected primarily by visual, vestibular, and proprioceptive sensory systems. Because orientation information from the various senses is not always available (eyes closed) or accurate (compliant support surface), the postural control system must somehow adjust to maintain stance in a wide variety of environmental conditions. This is the sensorimotor integration problem that we investigated by evoking anterior-posterior (AP) body sway using pseudorandom rotation of the visual surround and/or support surface (amplitudes 0.5-8 degrees ) in both normal subjects and subjects with severe bilateral vestibular loss (VL). AP rotation of body center-of-mass (COM) was measured in response to six conditions offering different combinations of available sensory information. Stimulus-response data were analyzed using spectral analysis to compute transfer functions and coherence functions over a frequency range from 0.017 to 2.23 Hz. Stimulus-response data were quite linear for any given condition and amplitude. However, overall behavior in normal subjects was nonlinear because gain decreased and phase functions sometimes changed with increasing stimulus amplitude. "Sensory channel reweighting" could account for this nonlinear behavior with subjects showing increasing reliance on vestibular cues as stimulus amplitudes increased. VL subjects could not perform this reweighting, and their stimulus-response behavior remained quite linear. Transfer function curve fits based on a simple feedback control model provided estimates of postural stiffness, damping, and feedback time delay. There were only small changes in these parameters with increasing visual stimulus amplitude. However, stiffness increased as much as 60% with increasing support surface amplitude. To maintain postural stability and avoid resonant behavior, an increase in stiffness should be accompanied by a corresponding increase in damping. Increased damping was achieved primarily by decreasing the apparent time delay of feedback control rather than by changing the damping coefficient (i.e., corrective torque related to body-sway velocity). In normal subjects, stiffness and damping were highly correlated with body mass and moment of inertia, with stiffness always about 1/3 larger than necessary to resist the destabilizing torque due to gravity. The stiffness parameter in some VL subjects was larger compared with normal subjects, suggesting that they may use increased stiffness to help compensate for their loss. Overall results show that the simple act of standing quietly depends on a remarkably complex sensorimotor control system.
Improving Dual-Task Control With a Posture-Second Strategy in Early-Stage Parkinson Disease.
Huang, Cheng-Ya; Chen, Yu-An; Hwang, Ing-Shiou; Wu, Ruey-Meei
2018-03-31
To examine the task prioritization effects on postural-suprapostural dual-task performance in patients with early-stage Parkinson disease (PD) without clinically observed postural symptoms. Cross-sectional study. Participants performed a force-matching task while standing on a mobile platform, and were instructed to focus their attention on either the postural task (posture-first strategy) or the force-matching task (posture-second strategy). University research laboratory. Individuals (N=16) with early-stage PD who had no clinically observed postural symptoms. Not applicable. Dual-task change (DTC; percent change between single-task and dual-task performance) of posture error, posture approximate entropy (ApEn), force error, and reaction time (RT). Positive DTC values indicate higher postural error, posture ApEn, force error, and force RT during dual-task conditions compared with single-task conditions. Compared with the posture-first strategy, the posture-second strategy was associated with smaller DTC of posture error and force error, and greater DTC of posture ApEn. In contrast, greater DTC of force RT was observed under the posture-second strategy. Contrary to typical recommendations, our results suggest that the posture-second strategy may be an effective dual-task strategy in patients with early-stage PD who have no clinically observed postural symptoms in order to reduce the negative effect of dual tasking on performance and facilitate postural automaticity. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Sullivan, Edith V; Rose, Jessica; Pfefferbaum, Adolf
2010-03-01
Excessive sway during quiet standing is a common sequela of chronic alcoholism even with prolonged sobriety. Whether alcoholic men and women who have remained abstinent from alcohol for weeks to months differ from each other in the degree of residual postural instability and biomechanical control mechanisms has not been directly tested. We used a force platform to characterize center-of-pressure biomechanical features of postural sway, with and without stabilizing conditions from touch, vision, and stance, in 34 alcoholic men, 15 alcoholic women, 22 control men, and 29 control women. Groups were matched in age (49.4 years), general intelligence, socioeconomic status, and handedness. Each alcoholic group was sober for an average of 75 days. Analysis of postural sway when using all 3 stabilizing conditions versus none revealed diagnosis and sex differences in ability to balance. Alcoholics had significantly longer sway paths, especially in the anterior-posterior direction, than controls when maintaining erect posture without balance aids. With stabilizing conditions the sway paths of all groups shortened significantly, especially those of alcoholic men, who demonstrated a 3.1-fold improvement in sway path difference between the easiest and most challenging conditions; the remaining 3 groups, each showed a approximately 2.4-fold improvement. Application of a mechanical model to partition sway paths into open-loop and closed-loop postural control systems revealed that the sway paths of the alcoholic men but not alcoholic women were characterized by greater short-term (open-loop) diffusion coefficients without aids, often associated with muscle stiffening response. With stabilizing factors, all 4 groups showed similar long-term (closed loop) postural control. Correlations between cognitive abilities and closed-loop sway indices were more robust in alcoholic men than alcoholic women. Reduction in sway and closed-loop activity during quiet standing with stabilizing factors shows some differential expression in men and women with histories of alcohol dependence. Nonetheless, enduring deficits in postural instability of both alcoholic men and alcoholic women suggest persisting liability for falling.
McKeon, Patrick O; Hertel, Jay
2008-01-01
Objective: To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? Data Sources: PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Study Selection: Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. Data Extraction: We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Data Synthesis: Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Conclusions: Balance training can be used prophylactically or after an acute ankle sprain in an effort to reduce future ankle sprains, but current evidence is insufficient to assess this effect in patients with chronic ankle instability. PMID:18523567
Abbasi, Soheila; Rojhani-Shirazi, Zahra; Shokri, Esmaeil; García-Muro San José, Francisco
2018-04-01
The aim of this study was to investigate the possible alterations in postural control during upright standing in subjects with non-specific chronic low back pain and the effect of Kinesio taping on the postural control. Twenty subjects with non-specific chronic low back pain and twenty healthy subjects participated in this study. The center of pressure excursion was evaluated before the intervention for both groups, and immediately after intervention for the low back pain group. Independent sample t-test, Mann-Whitney test and repeated measure ANOVA were used for the statistical analysis of the data. There were significant differences in the center of pressure excursion between the low back pain group versus the healthy group. The results of the ANOVA demonstrated a statistically significant difference in the mean COP displacement and velocity before Kinesio Taping, immediately after, and 24 h after in the low back pain group. There are poor postural control mechanisms in subjects with non-specific chronic low back pain. Kinesio taping seems to change postural control immediately and have lasting effects until the day after. Copyright © 2017 Elsevier Ltd. All rights reserved.
Support surface related changes in feedforward and feedback control of standing posture
Mohapatra, Sambit; Kukkar, Komal K.; Aruin, Alexander S.
2013-01-01
The aim of the study was to investigate the effect of different support surfaces on feedforward and feedback components of postural control. Nine healthy subjects were exposed to external perturbations applied to their shoulders while standing on a rigid platform, foam, and wobble board with eyes open or closed. Electrical activity of nine trunk and leg muscles and displacements of the center of pressure were recorded and analyzed during the time frames typical of feedforward and feedback postural adjustments. Feedforward control of posture was characterized by earlier activation of anterior muscles when the subjects stood on foam compared to a wobble board or a firm surface. In addition, the magnitude of feedforward muscle activity was the largest when the foam was used. During the feedback control, anterior muscles were activated prior to posterior muscles irrespective of the nature of surface. Moreover, the largest muscle activity was seen when the supporting surface was foam. Maximum CoP displacement occurred when subjects were standing on a rigid surface. Altering support surface affects both feedforward and feedback components of postural control. This information should be taken into consideration in planning rehabilitation interventions geared towards improvement of balance. PMID:24268589
Lahr, Juliana; Pereira, Marcelo Pinto; Pelicioni, Paulo Henrique Silva; De Morais, Luana Carolina; Gobbi, Lilian Teresa Bucken
2015-12-01
This study assesses the association between disease onset side (dominant or non-dominant) and vision on postural control of Parkinson's disease patients. Patient volunteers composed two groups, according to the onset side affected: Dominant group (n=9; M age=66.1 yr., SD=7.2; 6 women, 3 men) and Non-dominant group (n=9; M age=67.4 yr., SD=6.4; 6 women, 3 men). The groups' postural control was assessed by posturography during quiet upright stance in two conditions, Eyes open and Eyes closed. Two-way analyses of variance (ANOVAs; group×condition) with repeated measures for the second factor assessed the differences associated with affected hemibody and vision on postural control. Analyses indicated that patients with the dominant side affected also presented significantly greater variation in center of pressure than those with the non-dominant side affected, mainly in the Eyes closed condition. The results demonstrate a higher reliance on vision in the dominant side, possibly to compensate somatosensory system impairments. These results also highlight the importance of analyzing the hemibody affected by the disease when postural control is assessed in this population.
Support surface related changes in feedforward and feedback control of standing posture.
Mohapatra, Sambit; Kukkar, Komal K; Aruin, Alexander S
2014-02-01
The aim of the study was to investigate the effect of different support surfaces on feedforward and feedback components of postural control. Nine healthy subjects were exposed to external perturbations applied to their shoulders while standing on a rigid platform, foam, and wobble board with eyes open or closed. Electrical activity of nine trunk and leg muscles and displacements of the center of pressure were recorded and analyzed during the time frames typical of feedforward and feedback postural adjustments. Feedforward control of posture was characterized by earlier activation of anterior muscles when the subjects stood on foam compared to a wobble board or a firm surface. In addition, the magnitude of feedforward muscle activity was the largest when the foam was used. During the feedback control, anterior muscles were activated prior to posterior muscles irrespective of the nature of surface. Moreover, the largest muscle activity was seen when the supporting surface was foam. Maximum CoP displacement occurred when subjects were standing on a rigid surface. Altering support surface affects both feedforward and feedback components of postural control. This information should be taken into consideration in planning rehabilitation interventions geared towards improvement of balance. Copyright © 2013 Elsevier Ltd. All rights reserved.