Science.gov

Sample records for human pulmonary smooth

  1. SIRT1 is required for mitochondrial biogenesis reprogramming in hypoxic human pulmonary arteriolar smooth muscle cells.

    PubMed

    Li, Pengyun; Liu, Yan; Burns, Nana; Zhao, Ke-Seng; Song, Rui

    2017-03-22

    Although recent studies have reported that mitochondria are putative oxygen sensors underlying hypoxic pulmonary vasoconstriction, little is known concerning the sirtuin 1 (SIRT1)-mediated mitochondrial biogenesis regulatory program in pulmonary arteriolar smooth muscle cells (PASMCs) during hypoxia/reoxygenation (H/R). We investigated the epigenetic regulatory mechanism of mitochondrial biogenesis and function in human PASMCs during H/R. Human PASMCs were exposed to hypoxia of 24-48 h and reoxygenation of 24-48 h. The expression of SIRT1 was reduced in a time-dependent manner. Mitochondrial transcription factor A (TFAM) expression was increased during hypoxia and decreased during reoxygenation, while the release of TFAM was increased in a time-dependent manner. Lentiviral overexpression of SIRT1 preserved SIRT3 deacetylase activity in human PASMCs exposed to H/R. Knockdown of PGC-1α suppressed the effect of SIRT1 on SIRT3 activity. Knockdown of SIRT3 abrogated SIRT1-mediated deacetylation of cyclophilin D (CyPD). Notably, knockdown of SIRT3 or PGC-1α suppressed the incremental effect of SIRT1 on mitochondrial TFAM, mitochondrial DNA (mtDNA) content and cellular ATP levels. Importantly, polydatin restored SIRT1 levels in human PASMCs exposed to H/R. Knockdown of SIRT1 suppressed the effect of polydatin on mitochondrial TFAM, mtDNA content and cellular ATP levels. In conclusion, SIRT1 expression is decreased in human PASMCs during H/R. TFAM expression in mitochondria is reduced and the release of TFAM is increased by H/R. PGC-1α/SIRT3/CyPD mediates the protective effect of SIRT1 on expression and release of TFAM and mitochondrial biogenesis and function. Polydatin improves mitochondrial biogenesis and function by enhancing SIRT1 expression in hypoxic human PASMCs.

  2. Pharmacological evidence for a novel cysteinyl-leukotriene receptor subtype in human pulmonary artery smooth muscle

    PubMed Central

    Walch, Laurence; Norel, Xavier; Bäck, Magnus; Gascard, Jean-Pierre; Dahlén, Sven-Erik; Brink, Charles

    2002-01-01

    To characterize the cysteinyl-leukotriene receptors (CysLT receptors) in isolated human pulmonary arteries, ring preparations were contracted with leukotriene C4 (LTC4) and leukotriene D4 (LTD4) in either the absence or presence of the selective CysLT1 receptor antagonists, ICI 198615, MK 571 or the dual CysLT1/CysLT2 receptor antagonist, BAY u9773. Since the contractions induced by the cysteinyl-leukotrienes (cysLTs) in intact preparations failed to attain a plateau response over the concentration range studied, the endothelium was removed and the tissue treated continuously with indomethacin (Rubbed+INDO). In these latter preparations, the pEC50 for LTC4 and LTD4 were not significantly different (7.61±0.07, n=20 and 7.96±0.09, n=22, respectively). However, the LTC4 and LTD4 contractions were markedly potentiated when compared with data from intact tissues. Leukotriene E4 (LTE4) did not contract human isolated pulmonary arterial preparations. In addition, treatment of preparations with LTE4 (1 μM; 30 min) did not modify either the LTC4 or LTD4 contractions. Treatment of preparations with the S-conjugated glutathione (S-hexyl-GSH; 100 μM, 30 min), an inhibitor of the metabolism of LTC4 to LTD4, did not modify LTC4 contractions. The pEC50 values for LTC4 were significantly reduced by treatment of the preparations with either ICI 198615, MK 571 or BAY u9773 and the pKB values were: 7.20, 7.02 and 6.26, respectively. In contrast, these antagonists did not modify the LTD4 pEC50 values. These findings suggest the presence of two CysLT receptors on human pulmonary arterial vascular smooth muscle. A CysLT1 receptor with a low affinity for CysLT1 antagonists and a novel CysLT receptor subtype, both responsible for vasoconstriction. Activation of this latter receptor by LTC4 and LTD4 induced a contractile response which was resistant to the selective CysLT1 antagonists (ICI 198615 and MK 571) as well as the non-selective (CysLT1/CysLT2) antagonist, BAY u9773. PMID

  3. Assays for in vitro monitoring of human airway smooth muscle (ASM) and human pulmonary arterial vascular smooth muscle (VSM) cell migration.

    PubMed

    Goncharova, Elena A; Goncharov, Dmitry A; Krymskaya, Vera P

    2006-01-01

    Migration of human pulmonary vascular smooth muscle (VSM) cells contributes to vascular remodeling in pulmonary arterial hypertension and atherosclerosis. Evidence also indicates that, in part, migration of airway smooth muscle (ASM) cells may contribute to airway remodeling associated with asthma. Here we describe migration of VSM and ASM cells in vitro using Transwell or Boyden chamber assays. Because dissecting signaling mechanisms regulating cell migration requires molecular approaches, our protocol also describes how to assess migration of transfected VSM and ASM cells. Transwell or Boyden chamber assays can be completed in approximately 8 h and include plating of serum-deprived VSM or ASM cell suspension on membrane precoated with collagen, migration of cells toward chemotactic gradient and visual (Transwell) or digital (Boyden chamber) analysis of membrane. Although the Transwell assay is easy, the Boyden chamber assay requires hands-on experience; however, both assays are reliable cell-based approaches providing valuable information on how chemotactic and inflammatory factors modulate VSM and ASM migration.

  4. Iptakalim influences the proliferation and apoptosis of human pulmonary artery smooth muscle cells

    PubMed Central

    LI, QINGLIN; YAN, XIAOPEI; KONG, HUI; XIE, WEIPING; WANG, HONG

    2016-01-01

    The aim of the present study was to determine the effect of an ATP-sensitive K+ (KATP) channel opener iptakalim (IPT) on the proliferation and apoptosis of human pulmonary artery smooth muscle cells (HPASMCs), and examine the potential value of IPT to hypoxic pulmonary hypertension (HPH) at a cellular level. HPASMCs were divided into the control, ET-1, ET-1+IPT and ET-1+IPT+glibenclamide (GLI) groups. GLI was administered 30 min prior to ET-1 and IPT. The 4 groups were incubated with corresponding reagents for 24 h. Cell viability was evaluated using a CCK-8 assay, cell proliferation by 5-ethynyl-2′-deoxyuridine (EdU) incorporation assay, and cell apoptosis via the expression of apoptosis-related proteins, i.e., Bcl-2-associated X protein (Bax) and B-cell lymphoma 2 (Bcl-2) using western blotting. We incubated HPASMCs with varying concentrations of ET-1 for 24, 48 and 72 h, and found that cell survival rate was increased in a dose-dependent manner (P<0.05) rather than in a time-dependent manner (P>0.05). After co-incubation of HPASMCs with varying concentrations of IPT and ET-1 for 24 h, the cell survival rate was decreased in a dose-dependent manner. The cell survival rate in the IPT+ET-1 group was significantly lower than that in the ET-1 group (P<0.05). The cell viability (P<0.05) and proliferation (P<0.05) in the ET-1 group were higher than those in the control group, and the expression of Bax/Bcl-2 was lower than the control group (P<0.05). The cell viability (P<0.05) and proliferation (P<0.05) in the ET-1+IPT group were lower than those in the ET-1 group, and the expression of Bax/Bcl-2 was higher than that in the ET-1 group (P<0.05). The cell viability (P<0.05) and proliferation (P<0.05) in the ET-1+IPT+GLI group were higher than those in the ET-1+IPT group, and the expression of Bax/Bcl-2 was lower than that in the ET-1+IPT group (P<0.05). In conclusion, IPT inhibited ET-1-induced HPASMC proliferation and promoted cell apoptosis. Thus, it may play an

  5. Lipocalin-2 Promotes Endoplasmic Reticulum Stress and Proliferation by Augmenting Intracellular Iron in Human Pulmonary Arterial Smooth Muscle Cells

    PubMed Central

    Wang, Guoliang; Liu, Shenghua; Wang, Li; Meng, Liukun; Cui, Chuanjue; Zhang, Hao; Hu, Shengshou; Ma, Ning; Wei, Yingjie

    2017-01-01

    Endoplasmic reticulum (ER) stress, a feature of many conditions associated with pulmonary hypertension (PH), is increasingly recognized as a common response to promote proliferation in the walls of pulmonary arteries. Increased expression of Lipocalin-2 in PH led us to test the hypothesis that Lipocalin-2, a protein known to sequester iron and regulate it intracellularly, might facilitate the ER stress and proliferation in pulmonary arterial smooth muscle cells (PASMCs). In this study, we observed greatly increased Lcn2 expression accompanied with increased ATF6 cleavage in a standard rat model of pulmonary hypertension induced by monocrotaline. In cultured human PASMCs, Lcn2 significantly promoted ER stress (determined by augmented cleavage and nuclear localization of ATF6, up-regulated transcription of GRP78 and NOGO, increased expression of SOD2, and mild augmented mitochondrial membrane potential) and proliferation (assessed by Ki67 staining and BrdU incorporation). Lcn2 promoted ER stress accompanied with augmented intracellular iron levels in human PASMCs. Treatment human PASMCs with FeSO4 induced the similar ER stress and proliferation response and iron chelator (deferoxamine) abrogated the ER stress and proliferation induced by Lcn2 in cultured human PASMCs. In conclusion, Lcn2 significantly promoted human PASMC ER stress and proliferation by augmenting intracellular iron. The up-regulation of Lcn2 probably involved in the pathogenesis and progression of PH. PMID:28255266

  6. Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension.

    PubMed

    Perros, F; Dorfmüller, P; Souza, R; Durand-Gasselin, I; Godot, V; Capel, F; Adnot, S; Eddahibi, S; Mazmanian, M; Fadel, E; Hervé, P; Simonneau, G; Emilie, D; Humbert, M

    2007-05-01

    Pulmonary hypertension is characterised by a progressive increase in pulmonary arterial resistance due to endothelial and smooth muscle cell proliferation resulting in chronic obstruction of small pulmonary arteries. There is evidence that inflammatory mechanisms may contribute to the pathogenesis of human and experimental pulmonary hypertension. The aim of the study was to address the role of fractalkine (CX3CL1) in the inflammatory responses and pulmonary vascular remodelling of a monocrotaline-induced pulmonary hypertension model. The expression of CX3CL1 and its receptor CX3CR1 was studied in monocrotaline-induced pulmonary hypertension by means of immunohistochemistry and quantitative reverse-transcription PCR on laser-captured microdissected pulmonary arteries. It was demonstrated that CX3CL1 was expressed by inflammatory cells surrounding pulmonary arterial lesions and that smooth muscle cells from these vessels had increased CX3CR1 expression. It was then shown that cultured rat pulmonary artery smooth muscle cells expressed CX3CR1 and that CX3CL1 induced proliferation but not migration of these cells. In conclusion, the current authors proposed that fractalkine may act as a growth factor for pulmonary artery smooth muscle cells. Chemokines may thus play a role in pulmonary artery remodelling.

  7. Activation of the phosphatidylinositol 3-kinase/Akt pathway is involved in lipocalin-2-promoted human pulmonary artery smooth muscle cell proliferation.

    PubMed

    Wang, Guoliang; Ma, Ning; Meng, Liukun; Wei, Yingjie; Gui, Jingang

    2015-12-01

    Over-activated PI3K/Akt signaling, a pathway strongly related to cancer survival and proliferation, has been reported recently to be involved in pulmonary artery smooth muscle cell apoptosis and proliferation in pulmonary hypertension (PH). In this study, we observed greatly increased lipocalin-2 (Lcn2) expression accompanied with over-activated PI3K/Akt signaling in a standard rat model of PH induced by monocrotaline. In view of the close relationship between Lcn2 and PI3K/Akt pathway, we hypothesized that the up-regulated Lcn2 might be a trigger of over-activated PI3K/Akt signaling in PH. Our results showed that Lcn2 significantly activated the PI3K/Akt pathway (determined by augmented Akt phosphorylation and up-regulated Mdm2) and significantly promoted proliferation (assessed by Ki67 staining) in cultured human pulmonary artery smooth muscle cells. Furthermore, we demonstrated that inhibition of Akt phosphorylation (LY294002) abrogated the Lcn2-promoted proliferation in cultured human pulmonary artery smooth muscle cells. In conclusion, Lcn2 significantly promoted human pulmonary artery smooth muscle cell proliferation by activating PI3K/Akt pathway. Further study on the role and mechanism of Lcn2 will help explore novel therapeutic strategies based on attenuating over-activated PI3K/Akt signaling in PH.

  8. Resveratrol prevents hypoxia-induced arginase II expression and proliferation of human pulmonary artery smooth muscle cells via Akt-dependent signaling.

    PubMed

    Chen, Bernadette; Xue, Jianjing; Meng, Xiaomei; Slutzky, Jessica L; Calvert, Andrea E; Chicoine, Louis G

    2014-08-15

    Pulmonary artery smooth muscle cell (PASMC) proliferation plays a fundamental role in the vascular remodeling seen in pulmonary hypertensive diseases associated with hypoxia. Arginase II, an enzyme regulating the first step in polyamine and proline synthesis, has been shown to play a critical role in hypoxia-induced proliferation of human PASMC (hPASMC). In addition, there is evidence that patients with pulmonary hypertension have elevated levels of arginase in the vascular wall. Resveratrol, a natural polyphenol found in red wine and grape skins, has diverse biochemical and physiological actions including antiproliferative properties. Furthermore, resveratrol has been shown to attenuate right ventricular and pulmonary artery remodeling, both pathological components of pulmonary hypertension. The present studies tested the hypothesis that resveratrol would prevent hypoxia-induced pulmonary artery smooth muscle cell proliferation by inhibiting hypoxia-induced arginase II expression. Our data indicate that hypoxia-induced hPASMC proliferation is abrogated following treatment with resveratrol. In addition, the hypoxic induction of arginase II was directly attenuated by resveratrol treatment. Furthermore, we found that the inhibitory effect of resveratrol on arginase II in hPASMC was mediated through the PI3K-Akt signaling pathway. Supporting these in vitro findings, resveratrol normalized right ventricular hypertrophy in an in vivo neonatal rat model of chronic hypoxia-induced pulmonary hypertension. These novel data support the notion that resveratrol may be a potential therapeutic agent in pulmonary hypertension by preventing PASMC arginase II induction and proliferation.

  9. Role of platelet-derived growth factor-BB (PDGF-BB) in human pulmonary artery smooth muscle cell proliferation.

    PubMed

    Zhao, Yan; Lv, Wentao; Piao, Hongying; Chu, Xiaojie; Wang, Hao

    2014-08-01

    Pulmonary arterial hypertension (PAH) is a vascular remodeling disease characterized by enhanced proliferation of pulmonary artery smooth muscle cells (PASMCs) and suppressed apoptosis. Platelet-derived growth factor (PDGF) is a potent mitogen involved in cell proliferation and migration. PDGF-BB induces the proliferation and migration of PASMCs and has been proposed to be a key mediator in the progression of PAH. Previous studies have shown that PDGF and its receptor are substantially elevated in lung tissues and PASMCs isolated from patients and animals with PAH, but the underlying mechanisms are still poorly manifested. MAP kinases, including extracellular signal-regulated kinase1/2 (ERK1/2), c-Jun NH2-terminal kinase1/2 (JNK1/2), and p38 are the key intracellular signals for stimuli-induced cell proliferation, survival, and apoptosis. Therefore, the purpose of this study is to determine whether PDGF-BB on cell proliferation process is mediated through the MAP kinases pathway in human PASMCs (HPASMCs). Our results showed PDGF-BB-induced proliferating cell nuclear antigen (PCNA), Cyclin A and Cyclin E expression in a concentration-dependent manner. The expression levels of phosphorylated JNK (p-JNK) was upregulated with 20 ng/ml PDGF-BB treatment, while PDGF-BB could not increase phosphorylated ERK1/2 (p-ERK1/2) and p-38 (p-p38) expression. The effects of PDGF-BB on cell proliferation and survival were weakened after the administration of antagonist of the JNK pathway or si-JNK. In addition, PDGF-BB protected against the loss of mitochondrial membrane potentials evoked by serum deprivation (SD) in a JNK-dependent manner. These results suggest that PDGF-BB promotes HPASMCs proliferation and survival, which is likely to be mediated via the JNK pathway.

  10. Agonistic Anti-PDGF Receptor Autoantibodies from Patients with Systemic Sclerosis Impact Human Pulmonary Artery Smooth Muscle Cells Function In Vitro

    PubMed Central

    Svegliati, Silvia; Amico, Donatella; Spadoni, Tatiana; Fischetti, Colomba; Finke, Doreen; Moroncini, Gianluca; Paolini, Chiara; Tonnini, Cecilia; Grieco, Antonella; Rovinelli, Marina; Gabrielli, Armando

    2017-01-01

    One of the earliest events in the pathogenesis of systemic sclerosis (SSc) is microvasculature damage with intimal hyperplasia and accumulation of cells expressing PDGF receptor. Stimulatory autoantibodies targeting PDGF receptor have been detected in SSc patients and demonstrated to induce fibrosis in vivo and convert in vitro normal fibroblasts into SSc-like cells. Since there is no evidence of the role of anti-PDGF receptor autoantibodies in the pathogenesis of SSc vascular lesions, we investigated the biologic effect of agonistic anti-PDGF receptor autoantibodies from SSc patients on human pulmonary artery smooth muscle cells and the signaling pathways involved. The synthetic (proliferation, migration, and type I collagen gene α1 chain expression) and contractile (smooth muscle-myosin heavy chain and smooth muscle-calponin expression) profiles of human pulmonary artery smooth muscle cells were assessed in vitro after incubation with SSc anti-PDGF receptors stimulatory autoantibodies. The role of reactive oxygen species, NOX isoforms, and mammalian target of rapamycin (mTOR) was investigated. Human pulmonary artery smooth muscle cells acquired a synthetic phenotype characterized by higher growth rate, migratory activity, gene expression of type I collagen α1 chain, and less expression of markers characteristic of the contractile phenotype such as smooth muscle-myosin heavy chain and smooth muscle-calponin when stimulated with PDGF and autoantibodies against PDGF receptor, but not with normal IgG. This phenotypic profile is mediated by increased generation of reactive oxygen species and expression of NOX4 and mTORC1. Our data indicate that agonistic anti-PDGF receptor autoantibodies may contribute to the pathogenesis of SSc intimal hyperplasia. PMID:28228756

  11. Agonistic Anti-PDGF Receptor Autoantibodies from Patients with Systemic Sclerosis Impact Human Pulmonary Artery Smooth Muscle Cells Function In Vitro.

    PubMed

    Svegliati, Silvia; Amico, Donatella; Spadoni, Tatiana; Fischetti, Colomba; Finke, Doreen; Moroncini, Gianluca; Paolini, Chiara; Tonnini, Cecilia; Grieco, Antonella; Rovinelli, Marina; Gabrielli, Armando

    2017-01-01

    One of the earliest events in the pathogenesis of systemic sclerosis (SSc) is microvasculature damage with intimal hyperplasia and accumulation of cells expressing PDGF receptor. Stimulatory autoantibodies targeting PDGF receptor have been detected in SSc patients and demonstrated to induce fibrosis in vivo and convert in vitro normal fibroblasts into SSc-like cells. Since there is no evidence of the role of anti-PDGF receptor autoantibodies in the pathogenesis of SSc vascular lesions, we investigated the biologic effect of agonistic anti-PDGF receptor autoantibodies from SSc patients on human pulmonary artery smooth muscle cells and the signaling pathways involved. The synthetic (proliferation, migration, and type I collagen gene α1 chain expression) and contractile (smooth muscle-myosin heavy chain and smooth muscle-calponin expression) profiles of human pulmonary artery smooth muscle cells were assessed in vitro after incubation with SSc anti-PDGF receptors stimulatory autoantibodies. The role of reactive oxygen species, NOX isoforms, and mammalian target of rapamycin (mTOR) was investigated. Human pulmonary artery smooth muscle cells acquired a synthetic phenotype characterized by higher growth rate, migratory activity, gene expression of type I collagen α1 chain, and less expression of markers characteristic of the contractile phenotype such as smooth muscle-myosin heavy chain and smooth muscle-calponin when stimulated with PDGF and autoantibodies against PDGF receptor, but not with normal IgG. This phenotypic profile is mediated by increased generation of reactive oxygen species and expression of NOX4 and mTORC1. Our data indicate that agonistic anti-PDGF receptor autoantibodies may contribute to the pathogenesis of SSc intimal hyperplasia.

  12. Airway epithelial-derived factor relaxes pulmonary vascular smooth muscle.

    PubMed

    Farah, Omar R; Li, Dongge; McIntyre, Brendan A S; Pan, Jingyi; Belik, Jaques

    2009-01-01

    The factors controlling the pulmonary vascular resistance under physiological conditions are poorly understood. We have previously reported on an apparent cross talk between the airway and adjacent pulmonary arterial bed where a factor likely derived from the bronchial epithelial cells reduced the magnitude of agonist-stimulated force in the vascular smooth muscle. The main purpose of this investigation was to evaluate whether bronchial epithelial cells release a pulmonary arterial smooth muscle relaxant factor. Conditioned media from SPOC-1 or BEAS-2B, a rat- and a human-derived bronchial epithelial cell line, respectively, were utilized. This media significantly relaxed precontracted adult but not fetal pulmonary arterial muscle in an oxygen tension-dependent manner. This response was mediated via soluble guanylate cyclase, involving AKT/PI3-kinase and neuronal nitric oxide synthase. Airway epithelial cell-conditioned media increased AKT phosphorylation in pulmonary smooth muscle cells (SMC) and reduced intracellular calcium change following ATP stimulation to a significantly greater extent than observed for bronchial SMC. The present data strongly support the evidence for bronchial epithelial cells releasing a stable and soluble factor capable of inducing pulmonary arterial SMC relaxation. We speculate that under physiological conditions, the maintenance of a low pulmonary vascular resistance, postnatally, is in part modulated by the airway epithelium.

  13. Chronic exposure to fibrin and fibrinogen differentially regulates intracellular Ca2+ in human pulmonary arterial smooth muscle and endothelial cells.

    PubMed

    Firth, Amy L; Yau, Jocelyn; White, Amanda; Chiles, Peter G; Marsh, James J; Morris, Timothy A; Yuan, Jason X-J

    2009-06-01

    Acute pulmonary embolism occurs in more than half a million people a year in the United States. Chronic thromboembolic pulmonary hypertension (CTEPH) develops in approximately 4% of these patients due to unresolved thromboemboli. CTEPH is thus a relatively common, progressive, and potentially fatal disease. One currently proposed theory for the poor resolution advocates that modification of fibrinogen in CTEPH patients causes resistance of emboli to fibrinolysis. The current study investigated the regulation of cytosolic Ca(2+) ([Ca(2+)](cyt)), central to the control of cell migration, proliferation, and contraction, by chronic exposure of pulmonary artery smooth muscle (PASMC) and endothelial (PAEC) cells to fibrinogen and fibrin. Basal [Ca(2+)](cyt) was substantially elevated in PAEC after culture on fibrinogen, fibrin, and thrombin and in PASMC on fibrinogen and fibrin. In PAEC, fibrinogen significantly decreased the peak [Ca(2+)](cyt) transient (P <0.001) without a change in the transient peak width (at 50% of the peak height). This response was independent of effects on the proteinase-activated receptor (PAR) 1. Furthermore, chronic exposure to thrombin, an activator of PAR, significantly reduced the peak agonist-induced Ca(2+) release in PAEC, but increased it in PASMC. The recovery rate of the agonist-induced [Ca(2+)](cyt) transients decelerated in PASMC chronically exposed to fibrin; a small increase of the peak Ca(2+) was also observed. Substantial augmentation of PASMC (but not PAEC) proliferation was observed in response to chronic fibrin exposure. In conclusion, chronic exposure to fibrinogen, fibrin, and thrombin caused differential changes in [Ca(2+)](cyt) in PAEC and PASMC. Such changes in [Ca(2+)](cyt) may contribute to vascular changes in patients who have CTEPH where the pulmonary vasculature is persistently exposed to thromboemboli.

  14. Chronic exposure to fibrin and fibrinogen differentially regulates intracellular Ca2+ in human pulmonary arterial smooth muscle and endothelial cells

    PubMed Central

    Firth, Amy L.; Yau, Jocelyn; White, Amanda; Chiles, Peter G.; Marsh, James J.; Morris, Timothy A.; Yuan, Jason X.-J.

    2009-01-01

    Acute pulmonary embolism occurs in more than half a million people a year in the United States. Chronic thromboembolic pulmonary hypertension (CTEPH) develops in ∼4% of these patients due to unresolved thromboemboli. CTEPH is thus a relatively common, progressive, and potentially fatal disease. One currently proposed theory for the poor resolution advocates that modification of fibrinogen in CTEPH patients causes resistance of emboli to fibrinolysis. The current study investigated the regulation of cytosolic Ca2+ ([Ca2+]cyt), central to the control of cell migration, proliferation, and contraction, by chronic exposure of pulmonary artery smooth muscle (PASMC) and endothelial (PAEC) cells to fibrinogen and fibrin. Basal [Ca2+]cyt was substantially elevated in PAEC after culture on fibrinogen, fibrin, and thrombin and in PASMC on fibrinogen and fibrin. In PAEC, fibrinogen significantly decreased the peak [Ca2+]cyt transient (P <0.001) without a change in the transient peak width (at 50% of the peak height). This response was independent of effects on the proteinase-activated receptor (PAR) 1. Furthermore, chronic exposure to thrombin, an activator of PAR, significantly reduced the peak agonist-induced Ca2+ release in PAEC, but increased it in PASMC. The recovery rate of the agonist-induced [Ca2+]cyt transients decelerated in PASMC chronically exposed to fibrin; a small increase of the peak Ca2+ was also observed. Substantial augmentation of PASMC (but not PAEC) proliferation was observed in response to chronic fibrin exposure. In conclusion, chronic exposure to fibrinogen, fibrin, and thrombin caused differential changes in [Ca2+]cyt in PAEC and PASMC. Such changes in [Ca2+]cyt may contribute to vascular changes in patients who have CTEPH where the pulmonary vasculature is persistently exposed to thromboemboli. PMID:19363122

  15. Deletion of STAT5a/b in Vascular Smooth Muscle Abrogates the Male Bias in Hypoxic Pulmonary Hypertension in Mice: Implications in the Human Disease

    PubMed Central

    Yang, Yang-Ming; Yuan, Huijuan; Edwards, John G; Skayian, Yester; Ochani, Kanta; Miller, Edmund J; Sehgal, Pravin B

    2014-01-01

    Chronic hypoxia typically elicits pulmonary hypertension (PH) in mice with a male-dominant phenotype. There is an opposite-sex bias in human PH, with a higher prevalence in women, but greater survival (the “estrogen paradox”). We investigated the involvement of the STAT5a/b species, previously established to mediate sexual dimorphism in other contexts, in the sex bias in PH. Mice with heterozygous or homozygous deletions of the STAT5a/b locus in vascular smooth muscle cells (SMCs) were generated in crosses between STAT5a/bfl/fl and transgelin (SM22α)-Cre+/+ parents. Wild-type (wt ) males subjected to chronic hypoxia showed significant PH and pulmonary arterial remodeling, with wt females showing minimal changes (a male-dominant phenotype). However, in conditional STAT5+/− or STAT5−/− mice, hypoxic females showed the severest manifestations of PH (a female-dominant phenotype). Immunofluorescence studies on human lung sections showed that obliterative pulmonary arterial lesions in patients with idiopathic pulmonary arterial hypertension (IPAH) or hereditary pulmonary arterial hypertension (HPAH), both male and female, overall had reduced STAT5a/b, reduced PY-STAT5 and reduced endoplasmic reticulum (ER) GTPase atlastin-3 (ATL3). Studies of SMCs and endothelial cell (EC) lines derived from vessels isolated from lungs of male and female IPAH patients and controls revealed instances of coordinate reductions in STAT5a, STAT5b and ATL3 in IPAH-derived cells, including SMCs and ECs from the same patient. Taken together, these data provide the first definitive evidence for a contribution of STAT5a/b to the sex bias in PH in the hypoxic mouse and implicate reduced STAT5 in the pathogenesis of the human disease. PMID:25470773

  16. Carvedilol inhibits proliferation of cultured pulmonary artery smooth muscle cells of patients with idiopathic pulmonary arterial hypertension.

    PubMed

    Fujio, Hideki; Nakamura, Kazufumi; Matsubara, Hiromi; Kusano, Kengo Fukushima; Miyaji, Katsumasa; Nagase, Satoshi; Ikeda, Tetsuya; Ogawa, Aiko; Ohta-Ogo, Keiko; Miura, Daiji; Miura, Aya; Miyazaki, Masahiro; Date, Hiroshi; Ohe, Tohru

    2006-02-01

    Idiopathic pulmonary arterial hypertension (IPAH) is associated with proliferation of smooth muscle cells (SMCs) in small pulmonary arteries. Inhibition of proliferation of pulmonary artery smooth muscle cells (PASMCs) may be an effective treatment of patients with idiopathic pulmonary arterial hypertension. Recent studies have shown that carvedilol, an alpha- and beta-blocker with antioxidant and calcium channel blocking properties, inhibits the proliferation of cultured normal human pulmonary artery smooth muscle cells. In this study, we tested the hypothesis that carvedilol has antiproliferative effects on pulmonary artery smooth muscle cells of patients with idiopathic pulmonary arterial hypertension. Pulmonary artery smooth muscle cells from six idiopathic pulmonary arterial hypertension patients who had undergone lung transplantation were cultured. To determine cell proliferation, H-thymidine incorporation was measured. Platelet-derived growth factor-induced proliferation of IPAH-PASMCs was significantly greater than that of normal control pulmonary artery smooth muscle cells. Carvedilol (0.1 microM to 10 microM) inhibited the proliferation of idiopathic pulmonary arterial hypertension-pulmonary artery smooth muscle cells in a concentration-dependent manner. Prazosin (an alpha-blocker) and N-acetyl L cysteine (an antioxidant agent) (0.1 microM to 10 microM) did not inhibit their proliferation, but the high concentration of propranolol (a beta-blocker) and nifedipine (a calcium channel blocker) (10 microM) inhibited the proliferation. The combination of propranolol and nifedipine inhibited the proliferation but only at a high concentration (10 microM) combination. Cell cycle analysis revealed that carvedilol (10 microM) significantly decreased the number of cells in S and G2/M phases. These results indicate that carvedilol inhibits the exaggerated proliferation of pulmonary artery smooth muscle cells of patients with idiopathic pulmonary arterial hypertension

  17. Targeting receptor tyrosine kinases and their downstream signaling with cell-penetrating peptides in human pulmonary artery smooth muscle and endothelial cells.

    PubMed

    Yu, Jun; Rupasinghe, Chamila; Wilson, Jamie L; Taylor, Linda; Rahimi, Nader; Mierke, Dale; Polgar, Peter

    2015-05-01

    Cell-penetrating peptide (CPP) intracellular delivery of receptor signaling motifs provides an opportunity to regulate specific receptor tyrosine kinase signal transductions. We targeted tyrosine residues Y740 and Y751 of the PDGF receptor β (PDGFRβ) and Y1175 of the VEGF receptor 2 (VEGFR2). The Y740 and Y751 motifs activated ERK and Akt, while the Y1175 motif activated ERK. Targeting either Y740 or Y751 of the PDGFRβ in human pulmonary artery smooth muscle cells (HPASMC) effectively inhibited PDGF activation of ERK or Akt. Interfering with the Y751 region of the PDGFRβ proved more effective than targeting the Y740 region. The phosphorylation of Y751 of the CPP and the length and exact sequence of the mimicking peptide proved crucial. On the other hand, in human pulmonary artery endothelial cell phosphorylation of the VEGFR2 Y1175 CPP was not a determinant in blockage of ERK activation. Likewise, the length of the peptide mimic was not crucial with a very small sequence containing the Y1175 remaining effective. Physiologic proof of concept for the effectiveness of the CPP was confirmed by blockage of HPASMC migration in response to PDGF following culture injury. Thus targeted blockage of tyrosine kinase receptor signaling can be very effective.

  18. BK channels in rat and human pulmonary smooth muscle cells are BKα-β1 functional complexes lacking the oxygen-sensitive stress axis regulated exon insert

    PubMed Central

    Detweiler, Neil D.; Song, Li; McClenahan, Samantha J.; Versluis, Rachel J.; Kharade, Sujay V.; Kurten, Richard C.; Rhee, Sung W.

    2016-01-01

    Abstract A loss of K+ efflux in pulmonary arterial smooth muscle cells (PASMCs) contributes to abnormal vasoconstriction and PASMC proliferation during pulmonary hypertension (PH). Activation of high-conductance Ca2+-activated (BK) channels represents a therapeutic strategy to restore K+ efflux to the affected PASMCs. However, the properties of BK channels in PASMCs—including sensitivity to BK channel openers (BKCOs)—are poorly defined. The goal of this study was to compare the properties of BK channels between PASMCs of normoxic (N) and chronic hypoxic (CH) rats and then explore key findings in human PASMCs. Polymerase chain reaction results revealed that 94.3% of transcripts encoding BKα pore proteins in PASMCs from N rats represent splice variants lacking the stress axis regulated exon insert, which confers oxygen sensitivity. Subsequent patch-clamp recordings from inside-out (I-O) patches confirmed a dense population of BK channels insensitive to hypoxia. The BK channels were highly activated by intracellular Ca2+ and the BKCO lithocholate; these responses require BKα-β1 subunit coupling. PASMCs of CH rats with established PH exhibited a profound overabundance of the dominant oxygen-insensitive BKα variant. Importantly, human BK (hBK) channels in PASMCs from human donor lungs also represented the oxygen-insensitive BKα variant activated by BKCOs. The hBK channels showed significantly enhanced Ca2+ sensitivity compared with rat BK channels. We conclude that rat BK and hBK channels in PASMCs are oxygen-insensitive BKα-β1 complexes highly sensitive to Ca2+ and the BKCO lithocholate. BK channels are overexpressed in PASMCs of a rat model of PH and may provide an abundant target for BKCOs designed to restore K+ efflux. PMID:28090300

  19. Effect of hypoxia and Beraprost sodium on human pulmonary arterial smooth muscle cell proliferation: the role of p27kip1

    PubMed Central

    Kadowaki, Maiko; Mizuno, Shiro; Demura, Yoshiki; Ameshima, Shingo; Miyamori, Isamu; Ishizaki, Takeshi

    2007-01-01

    Background Hypoxia induces the proliferation of pulmonary arterial smooth muscle cell (PASMC) in vivo and in vitro, and prostacyclin analogues are thought to inhibit the growth of PASMC. Previous studies suggest that p27kip1, a kind of cyclin-dependent kinase inhibitor, play an important role in the smooth muscle cell proliferation. However, the mechanism of hypoxia and the subcellular interactions between p27kip1 and prostacyclin analogues in human pulmonary arterial smooth muscle cell (HPASMC) are not fully understood. Methods We investigated the role of p27kip1 in the ability of Beraprost sodium (BPS; a stable prostacyclin analogue) to inhibit the proliferation of HPASMC during hypoxia. To clarify the biological effects of hypoxic air exposure and BPS on HPASMC, the cells were cultured in a hypoxic chamber under various oxygen concentrations (0.1–21%). Thereafter, DNA synthesis was measured as bromodeoxyuridine (BrdU) incorporation, the cell cycle was analyzed by flow cytometry with propidium iodide staining. The p27kip1 mRNA and protein expression and it's stability was measured by real-time RT-PCR and Western blotting. Further, we assessed the role of p27kip1 in HPASMC proliferation using p27kip1 gene knockdown using small interfering RNA (siRNA) transfection. Results Although severe hypoxia (0.1% oxygen) suppressed the proliferation of serum-stimulated HPASMC, moderate hypoxia (2% oxygen) enhanced proliferation in accordance with enhanced p27kip1 protein degradation, whereas BPS suppressed HPASMC proliferation under both hypoxic and normoxic conditions by suppressing p27kip1 degradation with intracellular cAMP-elevation. The 8-bromo-cyclic adenosine monophosphate (8-Br-cAMP), a cAMP analogue, had similar action as BPS in the regulation of p27kip1. Moderate hypoxia did not affect the stability of p27kip1 protein expression, but PDGF, known as major hypoxia-induced growth factors, significantly decreased p27kip1 protein stability. We also demonstrated that

  20. The sGC activator inhibits the proliferation and migration, promotes the apoptosis of human pulmonary arterial smooth muscle cells via the up regulation of plasminogen activator inhibitor-2

    SciTech Connect

    Zhang, Shuai; Zou, Lihui; Yang, Ting; Yang, Yuanhua; Zhai, Zhenguo; Xiao, Fei; Wang, Chen

    2015-03-15

    Background: Different types of pulmonary hypertension (PH) share the same process of pulmonary vascular remodeling, the molecular mechanism of which is not entirely clarified by far. The abnormal biological behaviors of pulmonary arterial smooth muscle cells (PASMCs) play an important role in this process. Objectives: We investigated the regulation of plasminogen activator inhibitor-2 (PAI-2) by the sGC activator, and explored the effect of PAI-2 on PASMCs proliferation, apoptosis and migration. Methods: After the transfection with PAI-2 overexpression vector and specific siRNAs or treatment with BAY 41-2272 (an activator of sGC), the mRNA and protein levels of PAI-2 in cultured human PASMCs were detected, and the proliferation, apoptosis and migration of PASMCs were investigated. Results: BAY 41-2272 up regulated the endogenous PAI-2 in PASMCs, on the mRNA and protein level. In PAI-2 overexpression group, the proliferation and migration of PASMCs were inhibited significantly, and the apoptosis of PASMCs was increased. In contrast, PAI-2 knockdown with siRNA increased PASMCs proliferation and migration, inhibited the apoptosis. Conclusions: PAI-2 overexpression inhibits the proliferation and migration and promotes the apoptosis of human PASMCs. Therefore, sGC activator might alleviate or reverse vascular remodeling in PH through the up-regulation of PAI-2. - Highlights: • sGC activator BAY41-2272 up regulated PAI-2 in PASMCs, on the mRNA and protein level. • PAI-2 overexpression inhibits the proliferation and migration of human PASMCs. • PAI-2 overexpression promotes the apoptosis of human PASMCs. • sGC activator might alleviate the vascular remodeling in pulmonary hypertension.

  1. CCN1 suppresses pulmonary vascular smooth muscle contraction in response to hypoxia.

    PubMed

    Lee, Seon-Jin; Zhang, Meng; Hu, Kebin; Lin, Ling; Zhang, Duo; Jin, Yang

    2015-12-01

    Pulmonary vasoconstriction and increased vascular resistance are common features in pulmonary hypertension (PH). One of the contributing factors in the development of pulmonary vasoconstriction is increased pulmonary artery smooth muscle cell (PASMC) contraction. Here we report that CCN1, an extracellular matrix molecule, suppressed PASMC contraction in response to hypoxia. CCN1 (Cyr61), discovered in past decade, belongs to the Cyr61-CTGF-Nov (CCN) family. It carries a variety of cellular functions, including angiogenesis and cell adhesion, death, and proliferation. Hypoxia robustly upregulated the expression of CCN1 in the pulmonary vessels and lung parenchyma. Given that CCN1 is a secreted protein and functions in a paracine manner, we examined the potential effects of CCN1 on the adjacent smooth muscle cells. Interestingly, bioactive recombinant CCN1 significantly suppressed hypoxia-induced contraction in human PASMCs in vitro. Consistently, in the in vivo functional studies, administration of bioactive CCN1 protein significantly decreased right ventricular pressure in three different PH animal models. Mechanistically, protein kinase A-pathway inhibitors abolished the effects of CCN1 in suppressing PASMC contraction. Furthermore, CCN1-inhibited smooth muscle contraction was independent of the known vasodilators, such as nitric oxide. Taken together, our studies indicated a novel cellular function of CCN1, potentially regulating the pathogenesis of PH.

  2. MURC deficiency in smooth muscle attenuates pulmonary hypertension

    PubMed Central

    Nakanishi, Naohiko; Ogata, Takehiro; Naito, Daisuke; Miyagawa, Kotaro; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Kasahara, Takeru; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2016-01-01

    Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertension (PH) accompanied by reduced ROCK activity in the lung. Conditional knockout mice lacking Murc in smooth muscle also resist hypoxia-induced PH. MURC regulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through Rho/ROCK signalling. Cav1 suppresses RhoA activity in PASMCs, which is reversed by MURC. MURC binds to Cav1 and inhibits the association of Cav1 with the active form of Gα13, resulting in the facilitated association of the active form of Gα13 with p115RhoGEF. These results reveal that MURC has a function in the development of PH through modulating Rho/ROCK signalling. PMID:27546070

  3. Involvement of the bone morphogenetic protein system in endothelin- and aldosterone-induced cell proliferation of pulmonary arterial smooth muscle cells isolated from human patients with pulmonary arterial hypertension.

    PubMed

    Yamanaka, Ryutaro; Otsuka, Fumio; Nakamura, Kazufumi; Yamashita, Misuzu; Otani, Hiroyuki; Takeda, Masaya; Matsumoto, Yoshinori; Kusano, Kengo F; Ito, Hiroshi; Makino, Hirofumi

    2010-05-01

    Recent genetic studies have uncovered a link between familial and idiopathic pulmonary arterial hypertension (PAH) and germline mutations in the bone morphogenetic protein type-II receptor (BMPRII). The pathology of PAH is characterized by remodeling of the pulmonary arteries due to pulmonary artery smooth muscle cell (PASMC) hyperproliferation. Although increased endothelial injury and impaired suppression of PASMC proliferation are both critical for the cellular pathogenesis of PAH, a detailed molecular mechanism underlying PAH has yet to be elucidated. In the present study, we investigated the roles of the BMP system and other vasoactive factors associated with PAH (including endothelin (ET), angiotensin II (Ang II) and aldosterone) in the mitotic actions of PASMCs isolated from idiopathic and secondary PAH lungs. ET1 and aldosterone stimulated PASMC proliferation of idiopathic PAH more effectively than secondary PAH, whereas Ang II and ET3 failed to activate mitosis in either of the PASMC cell type. The effects of ET1 and aldosterone were blocked by bosentan, an ET type-A/B receptor (ETA/BR) antagonist, and eplerenone, a selective mineralocorticoid receptor (MR) blocker, respectively. Among the BMP ligands examined, BMP-2 and BMP-7, but not BMP-4 or BMP-6, significantly increased cell mitosis in both PASMC cell types. Notably, ET1- and aldosterone-induced mitosis and mitogen-activated protein kinase phosphorylation were significantly increased in the presence of BMP-2 and BMP-7 in PASMCs isolated from idiopathic PAH, although additive effects were not observed in PASMCs isolated from secondary PAH. Inhibition of extracellular signal-regulated kinase 1 (ERK1)/ERK2 signaling suppressed basal-, ET1- and aldosterone-induced PASMC mitosis more potently than that of stress-activated protein kinase/c-Jun NH2-terminal kinase inhibition. Given the fact that BMP-2 and BMP-7 upregulated ETA/BR and MR expression and that BMP-2 decreased 11betaHSD2 (11beta

  4. Exogenous spermine inhibits the proliferation of human pulmonary artery smooth muscle cells caused by chemically-induced hypoxia via the suppression of the ERK1/2- and PI3K/AKT-associated pathways

    PubMed Central

    WEI, CAN; LI, HONG-ZHU; WANG, YUE-HONG; PENG, XUE; SHAO, HONG-JIANG; LI, HONG-XIA; BAI, SHU-ZHI; LU, XIAO-XIAO; WU, LING-YUN; WANG, RUI; XU, CHANG-QING

    2016-01-01

    Pulmonary vascular remodeling is a significant pathological feature of hypoxia-induced pulmonary hypertension (HPH), while pulmonary artery smooth muscle cell (PASMC) proliferation plays a leading role in pulmonary vascular remodeling. Spermine (Sp), a polyamine, plays a critical role in periodic cell proliferation and apoptosis. The present study was conducted to observe the association between hypoxia-induced PASMC proliferation and polyamine metabolism, and to explore the effects of exogenous Sp on PASMC poliferation and the related mechanisms. In the present study, PASMCs were cultured with cobalt chloride (CoCl2) to establish a hypoxia model, and Sp at various final concentrations (0.1, 1, 10 and 100 µM) was added to the medium of PASMCs 40 min prior to the induction of hypoxia. Cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell counting kit-8 assay and 5-bromo-2′-deoxyuridine (BrdU) incorporation assay. Cell cycle progression was determined by flow cytometry, and the protein expression levels of spermidine/spermine N1-acetyltransferase (SSAT; the key enzyme in the terminal degradation of polyamine), ornithine decar boxylase (ODC; the key enzyme of polyamine biosynthesis), cyclin D1 and p27 were measured by western blot analysis. The results revealed that the proliferation of the PASMCs cultured with CoCl2 at 50 µM for 24 h markedly increased. The expression of ODC was decreased and the expression of SSAT was increased in the cells under hypoxic conditions. Exogenous Sp at concentrations of 1 and 10 µM significantly inhibited hypoxia induced PASMC proliferation, leading to cell cycle arrest at the G1/G0 phase. In addition, Sp decreased cyclin D1 expression, increased p27 expression, and suppressed the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT); however, the above-metioned parameters were not markedly

  5. Arginase II is a target of miR-17-5p and regulates miR-17-5p expression in human pulmonary artery smooth muscle cells.

    PubMed

    Jin, Youpeng; Jin, Yi; Chen, Bernadette; Tipple, Trent E; Nelin, Leif D

    2014-07-15

    Vascular remodeling and smooth muscle cell proliferation are hallmark pathogenic features of pulmonary artery hypertension. MicroRNAs, endogenously expressed small noncoding RNAs, regulate gene expression at the posttranscriptional level. It has previously been shown that miR-17 overexpression in cultured human pulmonary artery smooth muscle cell (hPASMC) resulted in increased viable cell number. Previously, we have found that arginase II promotes hypoxia-induced proliferation in hPASMC. Therefore, we hypothesized that miR-17 would be upregulated by hypoxia in hPASMC and would result in greater arginase II expression. We found that levels of miR-17-5p and arginase II were significantly greater in cultured hPASMC exposed to 1% O2 for 48 h than in hPASMC exposed to 21% O2 for 48 h. Furthermore, inhibiting miR-17-5p expression decreased hypoxia-induced arginase II protein levels in hPASMC. Conversely, overexpressing miR-17-5p resulted in greater arginase II protein levels. Somewhat surprisingly, arginase II inhibition was associated with lower miR-17-5p expression in both normoxic and hypoxic hPASMC, whereas overexpressing arginase II resulted in greater miR-17-5p expression in hPASMC. These findings suggest that hypoxia-induced arginase II expression is not only regulated by miR-17-5p but also that there is a feedback loop between arginase II and miR-17-5p in hPASMC. We also found that the arginase II-mediated regulation of miR-17-5p was independent of either p53 or c-myc. We also found that l-arginine, the substrate for arginase II, and l-ornithine, the amino acid product of arginase II, were not involved in the regulation of miR-17-5p expression.

  6. Proteomic analysis of vascular smooth muscle cells in physiological condition and in pulmonary arterial hypertension: Toward contractile versus synthetic phenotypes.

    PubMed

    Régent, Alexis; Ly, Kim Heang; Lofek, Sébastien; Clary, Guilhem; Tamby, Mathieu; Tamas, Nicolas; Federici, Christian; Broussard, Cédric; Chafey, Philippe; Liaudet-Coopman, Emmanuelle; Humbert, Marc; Perros, Frédéric; Mouthon, Luc

    2016-10-01

    Vascular smooth muscle cells (VSMCs) are highly specialized cells that regulate vascular tone and participate in vessel remodeling in physiological and pathological conditions. It is unclear why certain vascular pathologies involve one type of vessel and spare others. Our objective was to compare the proteomes of normal human VSMC from aorta (human aortic smooth muscle cells, HAoSMC), umbilical artery (human umbilical artery smooth muscle cells, HUASMC), pulmonary artery (HPASMC), or pulmonary artery VSMC from patients with pulmonary arterial hypertension (PAH-SMC). Proteomes of VSMC were compared by 2D DIGE and MS. Only 19 proteins were differentially expressed between HAoSMC and HPASMC while 132 and 124 were differentially expressed between HUASMC and HAoSMC or HPASMC, respectively (fold change 1.5≤ or -1.5≥, p < 0.05). As much as 336 proteins were differentially expressed between HPASMC and PAH-SMC (fold change 1.5≤ or -1.5≥, p < 0.05). HUASMC expressed increased amount of α-smooth muscle actin compared to either HPASMC or HAoSMC (although not statistically significant). In addition, PAH-SMC expressed decreased amount of smooth muscle myosin heavy chain and proliferation rate was increased compared to HPASMC thus supporting that PAH-SMC have a more synthetic phenotype. Analysis with Ingenuity identified paxillin and (embryonic lethal, abnormal vision, drosophila) like 1 (ELAVL1) as molecules linked with a lot of proteins differentially expressed between HPASMC and PAH-SMC. There was a trend toward reduced proliferation of PAH-SMC with paxillin-si-RNA and increased proliferation with ELAVL1-siRNA. Thus, VSMCs have very diverse protein content depending on their origin and this is in link with phenotypic differentiation. Paxillin targeting may be a promising treatment of PAH. ELAVL1 also participate in the regulation of PAH-SMC proliferation.

  7. Calcium homeostasis and sensitization in pulmonary arterial smooth muscle.

    PubMed

    Jernigan, Nikki L; Resta, Thomas C

    2014-04-01

    The pulmonary circulation is a low-pressure, low-resistance vascular bed with little to no resting tone under normal conditions. An increase in the [Ca(2+) ]i in PASMCs is an important determinant of contraction, migration, and proliferation. Both Ca(2+) influx through plasma membrane Ca(2+) channels and Ca(2+) release from the SR contribute to a rise in [Ca(2+) ]i . Additionally important in the pulmonary circulation are several kinase-mediated signaling pathways that act to increase the sensitivity of the contractile apparatus to [Ca(2+) ]i . Similarly, cytoskeletal processes resulting in dynamic remodeling of the actin cytoskeleton can further contribute to contractility in the pulmonary circulation. In addition to endocrine, paracrine, and autocrine factors, alveolar hypoxia is an important stimulus for pulmonary vasoconstriction. However, prolonged hypoxia is a critical pathological stimulus associated with the development of pulmonary hypertension and cor pulmonale. In this review, we will discuss recent advances in our understanding of how Ca(2+) homeostasis and sensitization regulate PASMC contractility under both physiological and pathophysiological conditions.

  8. Hypoxia Does neither Stimulate Pulmonary Artery Endothelial Cell Proliferation in Mice and Rats with Pulmonary Hypertension and Vascular Remodeling nor in Human Pulmonary Artery Endothelial Cells

    PubMed Central

    Yu, Lunyin; Hales, Charles A.

    2011-01-01

    Background Hypoxia results in pulmonary hypertension and vascular remodeling due to induction of pulmonary artery cell proliferation. Besides pulmonary artery smooth muscle cells, pulmonary artery endothelial cells (PAECs) are also involved in the development of pulmonary hypertension, but the effect of hypoxia on PAEC proliferation has not been completely understood. Methods We investigated PAEC proliferation in mice and rats with hypoxia-induced pulmonary hypertension and vascular remodeling as well as in human PAECs under hypoxia. Results and Conclusion We did not find significant PAEC proliferation in chronically hypoxic rats or mice. There was a slight decrease in proliferation in mice and rats with pulmonary hypertension and vascular remodeling. We also did not find significant human PAEC proliferation and cell cycle progression under different levels of oxygen (1, 2, 3, 5 and 10%) for one day, although the same conditions of hypoxia induced significant proliferation and cell cycle progression in pulmonary artery smooth muscle cells and pulmonary artery fibroblasts. Exposure to hypoxia for 7 days also did not increase PAEC proliferation. These results demonstrated that hypoxia alone is not a stimulus to PAEC proliferation in vivo and in vitro. The present study provides a novel role for PAECs in hypoxia-induced pulmonary hypertension and vascular remodeling. PMID:21691120

  9. Carvacrol induces the apoptosis of pulmonary artery smooth muscle cells under hypoxia.

    PubMed

    Zhang, Qianlong; Fan, Kai; Wang, Peng; Yu, Juan; Liu, Ruxia; Qi, Hanping; Sun, Hongli; Cao, Yonggang

    2016-01-05

    The abnormal apoptosis of pulmonary artery smooth muscle cells (PASMCs) is an important pathophysiological process in pulmonary vascular remodeling and pulmonary arterial hypertension (PAH). Carvacrol, an essential oil compound from oregano and thyme, has displayed antimicrobial, antitumor, and antioxidant properties. Although carvacrol has pro-apoptosis properties in tumor cells, the underlying mechanisms of carvacrol in PASMC apoptosis remain unclear. Thus, in this study, we aim to investigate the role of carvacrol in pulmonary vascular remodeling and PASMC apoptosis in hypoxia. Right Ventricular Hypertrophy Measurements and pulmonary pathomorphology data show that the ratio of the heart weight/tibia length (HW/TL), the right ventricle/left ventricle plus septum (RV/LV+S) and the medial width of the pulmonary artery increased in chronic hypoxia and were reversed by carvacrol treatment under hypoxia. Additionally, carvacrol inhibited PASMC viability, attenuated oxidative stress, induced mitochondria membrane depolarization, increased the percentage of apoptotic cells, suppressed Bcl-2 expression, decreased procaspase-3 expression, promoted caspase-3 activation, and inhibited the ERK1/2 and PI3K/Akt pathway. Taken together, these findings suggest that carvacrol attenuates the pulmonary vascular remodeling and promotes PASMC apoptosis by acting on, at least in part, the intrinsic apoptotic pathway. This process might provide us new insight into the development of hypoxic pulmonary hypertension.

  10. Phospholipase D signaling in serotonin-induced mitogenesis of pulmonary artery smooth muscle cells.

    PubMed

    Liu, Y; Fanburg, B L

    2008-09-01

    We have previously reported the participation of mitogen-activated protein, Rho, and phosphoinositide-3 (PI3) kinases in separate pathways in serotonin (5-HT)-induced proliferation of pulmonary artery smooth muscle cells (SMCs). In this study, we investigated the possible participation of phospholipase D (PLD) and phosphatidic acid (PA) in this growth process. 5-HT stimulated a time-dependent increase in [(3)H]phosphatidylbutanol and PA generation. Exposure of SMCs to 1-butanol or overexpression of an inactive mutant of human PLD1R898R blocked 5-HT-induced proliferation. Furthermore, 1-butanol inhibited 5-HT activation of S6K1 and S6 protein, downstream effectors of mammalian target of rapamycin (mTOR), by 80 and 72%, respectively, and partially blocked activation of extracellular signal-regulated kinase (ERK) by 30% but had no effect on other associated signaling pathways. Exogenous PA caused cellular proliferation and revitalized cyclin D1 expression by 5-HT of the 1-butanol-treated cells. PA also reproduced activations by 5-HT of mTOR, S6K1, and ERK. Transfection with inactive human PLD1 reduced 5-HT-induced activation of S6K1 by approximately 50%. Inhibition of 5-HT receptor 2A (R 2A) with ketaserin blocked PLD activation by 5-HT. Inhibition with PI3-kinase inhibitor failed to block either activation of PLD by 5-HT or PA-dependent S6K1 phosphorylation. Taken together, these results indicate that ligation of the 5-HTR 2A by 5-HT initiates PLD activation in SMCs, and that its product, PA, is an early signaling molecule in 5-HT-induced pulmonary artery SMC proliferation. Signaling by PA produces its downstream effects primarily through the mTOR/S6K1 pathway and to a lesser extent through the ERK pathway. Hydrolysis of cell membrane lipid may be important in vascular effects of 5-HT.

  11. Immortalization of primary human smooth muscle cells.

    PubMed Central

    Perez-Reyes, N; Halbert, C L; Smith, P P; Benditt, E P; McDougall, J K

    1992-01-01

    Primary human aortic and myometrial smooth muscle cells (SMCs) were immortalized using an amphotropic recombinant retroviral construct containing the E6 and E7 open reading frames (ORFs) of human papillomavirus type 16. The SMCs expressing the E6/E7 ORFs have considerably elevated growth rates when compared with nonimmortalized control cells and show no signs of senescence with long-term passage. The first SMC line derived in this study has been maintained in continuous tissue culture for greater than 1 year (greater than 180 population doublings). The immortalized SMCs have decreased cell size and decreased content of muscle-specific alpha-actin filaments as determined by indirect immunofluorescence. Southern blot analysis has demonstrated the stable integration of the E6/E7 ORFs in the retrovirally infected cells, and radioimmunoprecipitation has confirmed the continued expression of the E6 and E7 genes. Cytogenetic studies of the SMC lines have revealed essentially diploid populations except for the myometrial clonal line, which became aneuploid at late passage (greater than 125 doublings). These cell lines were not tumorigenic in nude mice. Images PMID:1311088

  12. Insulin-like growth factor I stimulates elastin synthesis by bovine pulmonary arterial smooth muscle cells.

    PubMed

    Badesch, D B; Lee, P D; Parks, W C; Stenmark, K R

    1989-04-14

    Insulin-like growth factor I stimulates mitogenesis in smooth muscle cells, and upregulates elastin synthesis in embryonic aortic tissue. Increased smooth muscle elastin synthesis may play an important role in vascular remodeling in chronic pulmonary hypertension. Therefore, we studied the effect of IGF-I on elastin and total protein synthesis by pulmonary arterial smooth muscle cells in vitro. Tropoelastin synthesis was measured by enzyme immunoassay, and total protein synthesis was measured by [3H]-leucine incorporation. In addition, the steady-state levels of tropoelastin mRNA were determined by slot blot hybridization. Incubation of confluent cultures with various concentrations of IGF-I resulted in a dose-dependent stimulation of elastin synthesis, with a 2.4-fold increase over control levels at 1000 ng/ml of IGF. The increase in elastin synthesis was reflected by a stimulation of the steady-state levels of tropoelastin mRNA. We conclude that IGF-I has potent elastogenic effects on vascular smooth muscle cells, and speculate that it may contribute to vascular wall remodeling in chronic hypertension.

  13. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension.

    PubMed

    Aghamohammadzadeh, Reza; Zhang, Ying-Yi; Stephens, Thomas E; Arons, Elena; Zaman, Paula; Polach, Kevin J; Matar, Majed; Yung, Lai-Ming; Yu, Paul B; Bowman, Frederick P; Opotowsky, Alexander R; Waxman, Aaron B; Loscalzo, Joseph; Leopold, Jane A; Maron, Bradley A

    2016-07-01

    Activation of the mammalian target of rapamycin complex 1 (mTORC1) subunit Raptor induces cell growth and is a downstream target of Akt. Elevated levels of aldosterone activate Akt, and, in pulmonary arterial hypertension (PAH), correlate with pulmonary arteriole thickening, which suggests that mTORC1 regulation by aldosterone may mediate adverse pulmonary vascular remodeling. We hypothesized that aldosterone-Raptor signaling induces abnormal pulmonary artery smooth muscle cell (PASMC) survival patterns to promote PAH. Remodeled pulmonary arterioles from SU-5416/hypoxia-PAH rats and monocrotaline-PAH rats with hyperaldosteronism expressed increased levels of the Raptor target, p70S6K, which provided a basis for investigating aldosterone-Raptor signaling in human PASMCs. Aldosterone (10(-9) to 10(-7) M) increased Akt/mTOR/Raptor to activate p70S6K and increase proliferation, viability, and apoptosis resistance in PASMCs. In PASMCs transfected with Raptor-small interfering RNA or treated with spironolactone/eplerenone, aldosterone or pulmonary arterial plasma from patients with PAH failed to increase p70S6K activation or to induce cell survival in vitro Optimal inhibition of pulmonary arteriole Raptor was achieved by treatment with Staramine-monomethoxy polyethylene glycol that was formulated with Raptor-small interfering RNA plus spironolactone in vivo, which decreased arteriole muscularization and pulmonary hypertension in 2 experimental animal models of PAH in vivo Up-regulation of mTORC1 by aldosterone is a critical pathobiologic mechanism that controls PASMC survival to promote hypertrophic vascular remodeling and PAH.-Aghamohammadzadeh, R., Zhang, Y.-Y., Stephens, T. E., Arons, E., Zaman, P., Polach, K. J., Matar, M., Yung, L.-M., Yu, P. B., Bowman, F. P., Opotowsky, A. R., Waxman, A. B., Loscalzo, J., Leopold, J. A., Maron, B. A. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth

  14. Transdifferentiation of pulmonary arteriolar endothelial cells into smooth muscle-like cells regulated by myocardin involved in hypoxia-induced pulmonary vascular remodelling

    PubMed Central

    Zhu, Pengcheng; Huang, Lei; Ge, Xiaona; Yan, Fei; Wu, Renliang; Ao, Qilin

    2006-01-01

    Myocardin gene has been identified as a master regulator of smooth muscle cell differentiation. Smooth muscle cells play a critical role in the pathogenesis of hypoxia-induced pulmonary hypertension (PH) and pulmonary vascular remodelling (PVR). The purpose of this study was to investigate the change of myocardin gene expression in the pulmonary vessels of hypoxia-induced PH affected by Sildenafil treatment and the involvement of endothelial cells transdifferentiation into smooth muscle cells in the process of hypoxia-induced PH and PVR. Myocardin and relative markers were investigated in animal models and cultured endothelial cells. Mean pulmonary artery pressure (mPAP) was measured. Immunohistochemistry and immunofluorescence were used to show the expression of smooth muscle α-actin (SMA), in situ hybridization (ISH) and reverse transcription polymerase chain reaction (RT-PCR) were performed respectively to detect the myocardin and SMA expression at mRNA levels. Small interfering RNA (siRNA) induced suppression of myocardin in cultured cells. We confirmed that hypoxia induced the PH and PVR in rats. Sildenafil could attenuate the hypoxia-induced PH. We found that myocardin mRNA expression is upregulated significantly in the hypoxic pulmonary vessels and cultured cells but downregulated in PH with Sildenafil treatment. The porcine pulmonary artery endothelial cells (PAECs) transdifferentiate into smooth muscle-like cells in hypoxic culture while the transdifferentiation did not occur when SiRNA of myocardin was applied. Our results suggest that myocardin gene, as a marker of smooth muscle cell differentiation, was expressed in the pulmonary vessels in hypoxia-induced PH rats, which could be downregulated by Sildenafil treatment, as well as in hypoxic cultured endothelial cells. Hypoxia induced the transdifferentiation of endothelial cells of vessels into smooth muscle-like cells which was regulated by myocardin. PMID:17222214

  15. IL-22 activates oxidant signaling in pulmonary vascular smooth muscle cells.

    PubMed

    Bansal, Geetanjali; Das, Dividutta; Hsieh, Cheng-Ying; Wang, Yi-Hsuan; Gilmore, Brent A; Wong, Chi-Ming; Suzuki, Yuichiro J

    2013-12-01

    Reactive oxygen species (ROS) mediate cell-signaling processes in response to various ligands and play important roles in the pathogenesis of cardiovascular diseases. The present study reports that interleukin-22 (IL-22) elicits signal transduction in vascular smooth muscle cells (SMCs) through a ROS-dependent mechanism. We find that pulmonary artery SMCs express IL-22 receptor alpha 1 and that IL-22 activates STAT3 through this receptor. IL-22-induced signaling is found to be mediated by NADPH oxidase, as indicated by the observations that the inhibition and siRNA knock-down of this enzyme inhibit IL-22 signaling. IL-22 triggers the oxidative modifications of proteins through protein carbonylation and protein glutathionylation. Mass spectrometry identified some proteins that are carbonylated in response to IL-22 stimulation, including α-enolase, heat shock cognate 71kDa protein, mitochondrial 60kDa heat shock protein, and cytoplasmic 2 actin and determined that α-tubulin is glutathionylated. Protein glutathionylation and STAT3 phosphorylation are enhanced by the siRNA knock-down of glutaredoxin, while IL-22-mediated STAT3 phosphorylation is suppressed by knocking down thioredoxin interacting protein, an inhibitor of thioredoxin. IL-22 is also found to promote the growth of SMCs via NADPH oxidase. In rats, pulmonary hypertension is found to be associated with increased smooth muscle IL-22 expression. These results show that IL-22 promotes the growth of pulmonary vascular SMCs via a signaling mechanism that involves NADPH oxidase-dependent oxidation.

  16. [Primary culture and functional identification of distal pulmonary artery smooth muscle cells in mice].

    PubMed

    Li, M C; Chen, Y Q; Zhang, C T; Jiang, Q; Lu, W J; Wang, J

    2017-02-12

    Objective: To establish a method of isolation and primary culture of mice distal pulmonary artery smooth muscle cells (PASMCs) and identify the functional properties. Methods: PASMCs were harvested from the distal pulmonary artery (PA) tissue of mice by enzymatic digestion of collagenaseⅠand papain; and the growth characteristics were observed under inverted microscope and identified by Immunofluorescence technique. Effects on the intracellular calcium ion concentration of distal PASMCs were detected by Fura-2-AM fluorescent probe tracer under a fluorescence microscope in Krebs solution containing clopiazonic acid (CPA) and nifedipin (Nif). Results: PASMCs density reached approximately to 80% in a typical valley-peak-like shape after 6 days. Cell α-smooth muscle actin (α-SMA) immunofluorescence identified that 95% of the cultured cells were PASMCs. More than 95% PASMCs responded well to calcium-potassium Krebs solution (potassium ion concentration of 60 mmol/L) and showed a rapid increase in basal [Ca(2+) ](i) after 1 minute's perfusion (Δ[Ca(2+) ](i)>50), which demonstrated that the voltage-dependent calcium channels (VDCC) of distal PASMCs were in good function; after the perfusion of calcium Krebs, calcium-free/calcium-Krebs containing CPA and Nif, distal PASMCs showed two typical peaks, indicated the full function of store-operated calcium channel (SOCC) in distal PASMCs. Conclusion: This experiment successfully established a stable and reliable mice distal PASMCs model and the study of pulmonary vascular diseases could benefit from its higher purity and better functional condition.

  17. Toward therapeutic pulmonary alveolar regeneration in humans.

    PubMed

    Massaro, Donald; Massaro, Gloria Decarlo

    2006-11-01

    In humans, age results in loss of pulmonary alveoli; menopause accelerates loss of diffusing capacity, an index of alveolar surface area; and disease (e.g., chronic obstructive pulmonary disease) results in loss of alveoli. Thus, an important goal for investigators is to generate knowledge that allows induction of pulmonary alveolar regeneration in humans. Our enthusiasm for this goal and our assessment of its feasibility are based on work in several laboratories over the last decade that has disproved the notion that pulmonary alveoli are incapable of regeneration, and on the growing evidence that signals that regulate programs of alveolar turnover (loss and regeneration) are conserved from rodents to humans. We review animal models of alveolar loss and regeneration and their conservation during evolution, and hence their relevance to humans.

  18. Pulmonary neuroendocrine cells, airway innervation, and smooth muscle are altered in Cftr null mice.

    PubMed

    Pan, Jie; Luk, Catherine; Kent, Geraldine; Cutz, Ernest; Yeger, Herman

    2006-09-01

    The amine- and peptide-producing pulmonary neuroendocrine cells (PNEC) are widely distributed within the airway mucosa of mammalian lung as solitary cells and innervated clusters, neuroepithelial bodies (NEB), which function as airway O2 sensors. These cells express Cftr and hence could play a role in the pathophysiology of cystic fibrosis (CF) lung disease. We performed confocal microscopy and morphometric analysis on lung sections from Cftr-/- (null), Cftr+/+, and Cftr+/- (control) mice at developmental stages E20, P5, P9, and P30 to determine the distribution, frequency, and innervation of PNEC/NEB, innervation and cell mass of airway smooth muscle, and neuromuscular junctions using synaptic vesicle protein 2, smooth muscle actin, and synaptophysin markers, respectively. The mean number of PNEC/NEB in Cftr-/- mice was significantly reduced compared with control mice at E20, whereas comparable or increased numbers were observed postnatally. NEB cells in Cftr null mice showed a significant reduction in intracorpuscular nerve endings compared with control mice, which is consistent with an intrinsic abnormality of the PNEC system. The airways of Cftr-/- mice showed reduced density (approximately 20-30%) of smooth muscle innervation, decreased mean airway smooth muscle mass (approximately 35%), and reduced density (approximately 20%) of nerve endings compared with control mice. We conclude that the airways of Cftr-/- mice exhibit heretofore unappreciated structural alterations affecting cellular and neural components of the PNEC system and airway smooth muscle and its innervation resulting in blunted O2 sensing and reduced airway tonus. Cftr could play a role in the development of the PNEC system, lung innervation, and airway smooth muscle.

  19. Vasoconstrictor effect of endothelin-1 on hypertensive pulmonary arterial smooth muscle involves Rho-kinase and protein kinase C.

    PubMed

    Barman, Scott A

    2007-08-01

    Although one of the common characteristics of pulmonary hypertension is abnormal sustained vasoconstriction, the signaling pathways that mediate this heightened pulmonary vascular response are still not well defined. Protein kinase C (PKC) and Rho-kinase are regulators of smooth muscle contraction induced by G protein-coupled receptor agonists including endothelin-1 (ET-1), which has been implicated as a signaling pathway in pulmonary hypertension. Toward this end, it was hypothesized that both Rho-kinase and PKC mediate the pulmonary vascular response to ET-1 in hypertensive pulmonary arterial smooth muscle, and therefore, the purpose of this study was to determine the role of PKC and Rho-kinase signaling in ET-1-induced vasoconstriction in both normotensive (Sprague-Dawley) and hypertensive (Fawn-Hooded) rat pulmonary arterial smooth muscle. Results indicate that ET-1 caused greater vasoconstriction in hypertensive pulmonary arteries compared with the normal vessels, and treatment with the PKC antagonists chelerythrine, rottlerin, and Gö 6983 inhibited the vasoconstrictor response to ET-1 in the hypertensive vessels. In addition, the specific Rho-kinase inhibitor Y-27632 significantly attenuated the effect of ET-1 in both normotensive and hypertensive phenotypes, with greater inhibition occurring in the hypertensive arteries. Furthermore, Western blot analysis revealed that ET-1 increased RhoA expression in both normotensive and hypertensive pulmonary arteries, with expression being greater in the hypertensive state. These results suggest that both PKC and Rho/Rho-kinase mediate the heightened pulmonary vascular response to ET-1 in hypertensive pulmonary arterial smooth muscle.

  20. Loss of smooth muscle cell hypoxia inducible factor-1α underlies increased vascular contractility in pulmonary hypertension.

    PubMed

    Barnes, Elizabeth A; Chen, Chih-Hsin; Sedan, Oshra; Cornfield, David N

    2017-02-01

    Pulmonary arterial hypertension (PAH) is an often fatal disease with limited treatment options. Whereas current data support the notion that, in pulmonary artery endothelial cells (PAECs), expression of transcription factor hypoxia inducible factor-1α (HIF-1α) is increased, the role of HIF-1α in pulmonary artery smooth muscle cells (PASMCs) remains controversial. This study investigates the hypothesis that, in PASMCs from patients with PAH, decreases in HIF-1α expression and activity underlie augmented pulmonary vascular contractility. PASMCs and tissues were isolated from nonhypertensive control patients and patients with PAH. Compared with controls, HIF-1α and Kv1.5 protein expression were decreased in PAH smooth muscle cells (primary culture). Myosin light chain (MLC) phosphorylation and MLC kinase (MLCK) activity-major determinants of vascular tone-were increased in patients with PAH. Cofactors involved in prolyl hydroxylase domain activity were increased in PAH smooth muscle cells. Functionally, PASMC contractility was inversely correlated with HIF-1α activity. In PASMCs derived from patients with PAH, HIF-1α expression is decreased, and MLCK activity, MLC phosphorylation, and cell contraction are increased. We conclude that compromised PASMC HIF-1α expression may contribute to the increased tone that characterizes pulmonary hypertension.-Barnes, E. A., Chen, C.-H., Sedan, O., Cornfield, D. N. Loss of smooth muscle cell hypoxia inducible factor-1α underlies increased vascular contractility in pulmonary hypertension.

  1. PDGF induces SphK1 expression via Egr-1 to promote pulmonary artery smooth muscle cell proliferation.

    PubMed

    Sysol, Justin R; Natarajan, Viswanathan; Machado, Roberto F

    2016-06-01

    Pulmonary arterial hypertension (PAH) is a progressive, life-threatening disease for which there is currently no curative treatment available. Pathologic changes in this disease involve remodeling of the pulmonary vasculature, including marked proliferation of pulmonary artery smooth muscle cells (PASMCs). Recently, the bioactive lipid sphingosine-1-phosphate (S1P) and its activating kinase, sphingosine kinase 1 (SphK1), have been shown to be upregulated in PAH and promote PASMC proliferation. The mechanisms regulating the transcriptional upregulation of SphK1 in PASMCs are unknown. In this study, we investigated the role of platelet-derived growth factor (PDGF), a PAH-relevant stimuli associated with enhanced PASMC proliferation, on SphK1 expression regulation. In human PASMCs (hPASMCs), PDGF significantly increased SphK1 mRNA and protein expression and induced cell proliferation. Selective inhibition of SphK1 attenuated PDGF-induced hPASMC proliferation. In silico promoter analysis for SphK1 identified several binding sites for early growth response protein 1 (Egr-1), a PDGF-associated transcription factor. Luciferase assays demonstrated that PDGF activates the SphK1 promoter in hPASMCs, and truncation of the 5'-promoter reduced PDGF-induced SphK1 expression. Stimulation of hPASMCs with PDGF induced Egr-1 protein expression, and direct binding of Egr-1 to the SphK1 promoter was confirmed by chromatin immunoprecipitation analysis. Inhibition of ERK signaling prevented induction of Egr-1 by PDGF. Silencing of Egr-1 attenuated PDGF-induced SphK1 expression and hPASMC proliferation. These studies demonstrate that SphK1 is regulated by PDGF in hPASMCs via the transcription factor Egr-1, promoting cell proliferation. This novel mechanism of SphK1 regulation may be a therapeutic target in pulmonary vascular remodeling in PAH.

  2. Pulmonary oedema following exercise in humans.

    PubMed

    Hodges, Alastair N H; Mayo, John R; McKenzie, Donald C

    2006-01-01

    Pulmonary physiologists have documented many transient changes in the lung and the respiratory system during and following exercise, including the incomplete oxygen saturation of arterial blood in some subjects, possibly due to transient pulmonary oedema. The large increase in pulmonary arterial pressure during exercise, leading to either increased pulmonary capillary leakage and/or pulmonary capillary stress failure, is likely to be responsible for any increase in extravascular lung water during exercise. The purpose of this article is to summarise the studies to date that have specifically examined lung water following exercise. A limited number of studies have been completed with the specific purpose of identifying pulmonary oedema following exercise or a similar intervention. Of these, approximately 50% have observed a positive change and the remaining have provided results that are either inconclusive or show no change in extravascular lung water. While it is difficult to draw a firm conclusion from these studies, we believe that pulmonary oedema does occur in some humans following exercise. As such, this is a phenomenon of significance to pulmonary and exercise physiologists. This possibility warrants further study in the area with more precise measurement tools than has previously been undertaken.

  3. Comparative capacitative calcium entry mechanisms in canine pulmonary and renal arterial smooth muscle cells

    PubMed Central

    Wilson, Sean M; Mason, Helen S; Smith, Gregory D; Nicholson, Neil; Johnston, Louise; Janiak, Robert; Hume, Joseph R

    2002-01-01

    Experiments were performed to determine whether capacitative Ca2+ entry (CCE) can be activated in canine pulmonary and renal arterial smooth muscle cells (ASMCs) and whether activation of CCE parallels the different functional structure of the sarcoplasmic reticulum (SR) in these two cell types. The cytosolic [Ca2+] was measured by imaging fura-2-loaded individual cells. Increases in the cytosolic [Ca2+] due to store depletion in pulmonary ASMCs required simultaneous depletion of both the inositol 1,4,5-trisphosphate (InsP3)- and ryanodine (RY)-sensitive SR Ca2+ stores. In contrast, the cytosolic [Ca2+] rises in renal ASMCs occurred when the SR stores were depleted through either the InsP3 or RY pathways. The increase in the cytosolic [Ca2+] due to store depletion in both pulmonary and renal ASMCs was present in cells that were voltage clamped and was abolished when cells were perfused with a Ca2+-free bathing solution. Rapid quenching of the fura-2 signal by 100 μM Mn2+ following SR store depletion indicated that extracellular Ca2+ entry increased in both cell types and also verified that activation of CCE in pulmonary ASMCs required the simultaneous depletion of the InsP3- and RY-sensitive SR Ca2+ stores, while CCE could be activated in renal ASMCs by the depletion of either of the InsP3- or RY-sensitive SR stores. Store depletion Ca2+ entry in both pulmonary and renal ASMCs was strongly inhibited by Ni2+ (0.1–10 mM), slightly inhibited by Cd2+ (200–500 μM), but was not significantly affected by the voltage-gated Ca2+ channel (VGCC) blocker nisoldipine (10 μM). The non-selective cation channel blocker Gd3+ (100 μM) inhibited a portion of the Ca2+ entry in 6 of 18 renal but not pulmonary ASMCs. These results provide evidence that SR Ca2+ store depletion activates CCE in parallel with the organization of intracellular Ca2+ stores in canine pulmonary and renal ASMCs. PMID:12231648

  4. Periostin mediates cigarette smoke extract-induced proliferation and migration in pulmonary arterial smooth muscle cells.

    PubMed

    Wang, Xiao-Dong; Li, Fang; Ma, Dong-Bo; Deng, Xiang; Zhang, Hui; Gao, Jia; Hao, Li; Liu, Dan-Dan; Wang, Jing

    2016-10-01

    Cigarette smoking is an important risk factor for pulmonary arterial hypertension (PAH). Pulmonary arterial smooth muscle cells (PASMCs) play a critical role in the pathogenesis of PAH-associated arterial remodeling. This study was done to explore the expression and biological roles of periostin in PASMCs following exposure to cigarette smoke extract (CSE). PASMCs were exposed to different concentrations of CSE and tested for gene expression and reactive oxygen species (ROS) production. PASMCs were incubated with recombinant periostin protein or transfected with small interfering RNA targeting periostin before CSE exposure and then examined for cell proliferation and migration. Compared to control cells, exposure to CSE led to a significant upregulation of periostin. Pretreatment with 5mM N-acetyl-l-cysteine (an inhibitor of ROS formation) or 10μM U0126 (an inhibitor of ERK1/2) significantly prevented the induction of periostin in CSE-treated PASMCs. The addition of recombinant periostin protein significantly enhanced the proliferation and migration of PASMCs. In contrast, knockdown of endogenous periostin counteracted the proliferation and migration of PASMCs induced by CSE treatment. In conclusion, CSE induces the expression of periostin in PASMCs via promotion of ROS and activation of ERK1/2. Periostin mediates the effects of CSE on PASMC proliferation and migration. These findings warrant further exploration of the roles of periostin in cigarette smoking-associated pulmonary arterial remodeling.

  5. Molecular and functional significance of Ca2+-activated Cl− channels in pulmonary arterial smooth muscle

    PubMed Central

    Forrest, Abigail S.; Ayon, Ramon J.; Wiwchar, Michael; Angermann, Jeff E.; Pritchard, Harry A. T.; Singer, Cherie A.; Valencik, Maria L.; Britton, Fiona; Greenwood, Iain A.

    2015-01-01

    Abstract Increased peripheral resistance of small distal pulmonary arteries is a hallmark signature of pulmonary hypertension (PH) and is believed to be the consequence of enhanced vasoconstriction to agonists, thickening of the arterial wall due to remodeling, and increased thrombosis. The elevation in arterial tone in PH is attributable, at least in part, to smooth muscle cells of PH patients being more depolarized and displaying higher intracellular Ca2+ levels than cells from normal subjects. It is now clear that downregulation of voltage-dependent K+ channels (e.g., Kv1.5) and increased expression and activity of voltage-dependent (Cav1.2) and voltage-independent (e.g., canonical and vanilloid transient receptor potential [TRPC and TRPV]) Ca2+ channels play an important role in the functional remodeling of pulmonary arteries in PH. This review focuses on an anion-permeable channel that is now considered a novel excitatory mechanism in the systemic and pulmonary circulations. It is permeable to Cl− and is activated by a rise in intracellular Ca2+ concentration (Ca2+-activated Cl− channel, or CaCC). The first section outlines the biophysical and pharmacological properties of the channel and ends with a description of the molecular candidate genes postulated to encode for CaCCs, with particular emphasis on the bestrophin and the newly discovered TMEM16 and anoctamin families of genes. The second section provides a review of the various sources of Ca2+ activating CaCCs, which include stimulation by mobilization from intracellular Ca2+ stores and Ca2+ entry through voltage-dependent and voltage-independent Ca2+ channels. The third and final section summarizes recent findings that suggest a potentially important role for CaCCs and the gene TMEM16A in PH. PMID:26064450

  6. STARS knockout attenuates hypoxia-induced pulmonary arterial hypertension by suppressing pulmonary arterial smooth muscle cell proliferation.

    PubMed

    Shi, Zhaoling; Wu, Huajie; Luo, Jianfeng; Sun, Xin

    2017-03-01

    STARS (STriated muscle Activator of Rho Signaling) is a sarcomeric protein, which expressed early in cardiac development and involved in pathological remodeling. Abundant evidence indicated that STARS could regulate cell proliferation, but it's exact function remains unclear. In this study, we aimed to investigate the role of STARS in the proliferation of pulmonary arterial smooth muscle cells (PASMC) and the potential effect on the progression of pulmonary arterial hypertension (PAH). In this study, we established a PAH mouse model through chronic hypoxia exposure as reflected by the increased RVSP and RVHI. Western blot and RT-qPCR detected the increased STARS protein and mRNA levels in PAH mice. Next, we cultured the primary PASMC from PAH mice. After STARS overexpression in PASMC, STARS, SRF and Egr-1 were up-regulated significantly. The MTT assay revealed an increase in cell proliferation. Flow cytometry showed a marked inhibition of cell apoptosis. However, STARS silence in PASMC exerted opposite effects with STARS overexpression. SRF siRNA transfection blocked the effects of STARS overexpression in PASMC. In order to further confirm the role of STARS in PAH mice in vivo, we exposed STARS knockout mice to hypoxia and found lower RVSP and RVHI in knockout mice as compared with controls. Our results not only suggest that STARS plays a crucial role in the development of PAH by increasing the proliferation of PASMC through activation of the SRF/Egr-1 pathway, but also provides a new mechanism for hypoxia-induced PAH. In addition, STARS may represent a potential treatment target.

  7. Proliferation of pulmonary artery smooth muscle cells in the development of ascites syndrome in broilers induced by low ambient temperature.

    PubMed

    Wang, J; Qiao, J; Zhao, L H; Li, K; Wang, H; Xu, T; Tian, Y; Gao, M; Wang, X

    2007-12-01

    Pulmonary vascular remodelling, mainly characterized by arterial medial thickening, is an important pathological feature of broiler ascites syndrome (AS). Since vascular smooth muscle cells (VSMC) form the major cellular component of arterial medial layer, we speculate that VSMC proliferation is one of the causes of pulmonary arterial medial thickening in ascitic broilers. Hence, the present study was designed to investigate the role of VSMC proliferation in pulmonary vascular remodelling in development of AS induced by low ambient temperature. Broilers in control group (22 +/- 1.5 degrees C) and low temperature group (11 +/- 2 degrees C) were sampled every week at 15-50 days of age. Proliferative indexes of VSMC in pulmonary arteries were assessed with proliferating cell nuclear antigen, and the relative medial thickness (RMT) and relative wall area (RWA), as indexes of pulmonary vascular remodelling, were examined by computer-image analysing system. The results showed that the high incidence (18.75%) of AS was induced by low temperature, and a significantly increased VSMC proliferation was observed in pulmonary arteries in the low temperature group at 22-50 days of age (P < 0.05). In addition, RMT and RWA in pulmonary arteries were significantly elevated in the low temperature group from 36 days of age (P < 0.05), indicating that pulmonary vascular remodelling occurred following VSMC proliferation in AS. Our data suggest that proliferation of VSMC may facilitate pulmonary vascular remodelling and have a pivotal role in AS induced by low ambient temperature.

  8. Membrane properties of smooth muscle cells in pulmonary arteries of the rat.

    PubMed

    Suzuki, H; Twarog, B M

    1982-05-01

    Electrical properties of the membrane of smooth muscle cells in the rat main pulmonary artery (MPA) and a small pulmonary artery (SPA) were compared. MPA and SPA differed in several important respects, suggesting characteristic quantitative and qualitative differences in membrane properties. 1) Resting membrane potentials were similar in both (MPA 52.2 +/- 1.3 mV; SPA 51.5 +/- 1.7 mV). The cells displayed no spontaneous electrical activity. The muscle layers in both MPA and SPA showed cablelike properties; a graded local response to outward current pulses was observed, but no action potentials were evoked. 2) Tetraethylammonium chloride (TEA, 1-5 mM) depolarized, increased membrane resistance, and suppressed rectification in MPA. TEA strongly depolarized SPA and contraction ensued. 3) The maximum membrane depolarization produced by a 10-fold increase in extracellular [K+] was 48 mV in MPA and 47 mV in SPA. In K+-free solution gradual depolarization was observed in SPA, but the membrane potential in MPA was not modified. Restoration of K+-containing solution produced equivalent hyperpolarization in both tissues, indicating a similar degree of stimulation of electrogenic Na+-K+ pumping. 4) A Na+-deficient solution did not affect the membrane potential in MPA but depolarized SPA.

  9. [Electrophysiology and calcium signalling in human bronchial smooth muscle].

    PubMed

    Marthan, R; Hyvelin, J M; Roux, E; Savineau, J P

    1999-01-01

    Recently, cells isolated from airways have been used to characterize precisely the electrophysiological properties of this smooth muscle and to describe the changes in cytosolic calcium concentration ([Ca2+]i) occurring upon agonist stimulation. Although most studies have produced consistent results in terms of types of ion channel and pathways of calcium signalling implicated in the mechanical activity of airways, there are differences according to (i) the site along the bronchial tree (trachea vs. bronchi); (ii) the proliferating status of the cells (freshly isolated vs. cultured) and (iii) the species (human vs. animals). With regard to the electrophysiological properties of airway smooth muscle, the contribution to [Ca2+]i rise of Ca2+ influx through L-type voltage-dependent calcium channels depends on the balance between depolarization related to non-specific cation channel and/or chloride channel activation and hyperpolarization related to activation of a variety of potassium channels. Most of the above-mentioned channels appear to be controlled, directly or indirectly, by agonists in human bronchial smooth muscle. With regard to calcium signalling, the pattern of agonist-induced [Ca2+]i responses, the so-called [Ca2+]i oscillations, has been observed recently in freshly isolated airway smooth muscle cells. The role and the calcium sources involved in these oscillations in human bronchial smooth muscle are currently being investigated.

  10. Inhibitory action of relaxin on human cervical smooth muscle.

    PubMed

    Norström, A; Bryman, I; Wiqvist, N; Sahni, S; Lindblom, B

    1984-09-01

    The influence of purified porcine relaxin on contractility of human cervical smooth muscle was investigated in vitro. Strips of cervical tissue were obtained by needle biopsy from pregnant and nonpregnant women and were mounted in a superfused organ chamber for isometric measurement of contractile activity. Relaxin (0.005-25 micrograms/ml) inhibited the spontaneous contractions in cervical strips from 18% of nonpregnant, 68% of early pregnant, and in 100% of term pregnant women. These results indicate that relaxin has an inhibitory action on cervical smooth muscle and that this effect is more constantly detected as pregnancy proceeds.

  11. Rat alveolar myofibroblasts acquire alpha-smooth muscle actin expression during bleomycin-induced pulmonary fibrosis.

    PubMed Central

    Vyalov, S. L.; Gabbiani, G.; Kapanci, Y.

    1993-01-01

    The majority of fibroblasts in alveolar septa are characterized by the presence of cytoplasmic bundles of microfilaments that contain cytoplasmic actin isoforms; these cells have been named contractile interstitial cells or V-type myofibroblasts. In the rat, they express desmin as intermediate filament protein. In this study, we explored the possibility that modulation and replication of such septal fibroblasts result in the appearance of alpha-smooth muscle (alpha-SM) actin-positive myofibroblasts, typical of lung fibrosis. Experimental pulmonary fibrosis was produced by a unique intratracheal instillation of bleomycin to 28 rats. Eight additional rats used as controls received the equivalent volume of saline. Paraffin and frozen sections of lungs were examined at days 1, 3, 5 and 7 after treatment. Microfilaments and intermediate filaments were stained using antibodies against total actin, alpha-SM actin, desmin, vimentin, keratin, and SM myosin. Electron microscopic labeling of desmin and alpha-SM actin using immunogold technique was done on Lowicryl K4M resin-embedded specimens. alpha-SM actin appeared in desmin-positive alveolar fibroblasts as early as 24 hours after intratracheal bleomycin instillation; the modulation of alpha-SM actin in these cells was preceded by a lymphomonocytic infiltration of alveolar septa. Twenty-four hours to 3 days after bleomycin administration, a proliferation of alveolar myofibroblasts occurred. Fibrosis with laying down of collagen fibers took place after the above mentioned cellular modifications. Our results support the view that septal fibroblastic cells can modulate into typical alpha-SM actin-containing myofibroblasts during experimental bleomycin-induced pulmonary fibrosis. In such a modulation a possible role of cytokines, particularly of transforming growth factor-beta, is considered. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14

  12. Neutrophil Elastase Is Produced by Pulmonary Artery Smooth Muscle Cells and Is Linked to Neointimal Lesions

    PubMed Central

    Kim, Yu-Mee; Haghighat, Leila; Spiekerkoetter, Edda; Sawada, Hirofumi; Alvira, Cristina M.; Wang, Lingli; Acharya, Swati; Rodriguez-Colon, Gabriela; Orton, Andrew; Zhao, Mingming; Rabinovitch, Marlene

    2011-01-01

    Previously, we reported that murine gammaherpesvirus-68 (M1-MHV-68) induces pulmonary artery (PA) neointimal lesions in S100A4-overexpressing, but not in wild-type (C57), mice. Lesions were associated with heightened lung elastase activity and PA elastin degradation. We now investigate a direct relationship between elastase and PA neointimal lesions, the nature and source of the enzyme, and its presence in clinical disease. We found an association exists between the percentage of PAs with neointimal lesions and elastin fragmentation in S100A4 mice 6 months after viral infection. Confocal microscopy documented the heightened susceptibility of S100A4 versus C57 PA elastin to degradation by elastase. A transient increase in lung elastase activity occurs in S100A4 mice, 7 days after M1-MHV-68, unrelated to inflammation or viral load and before neointimal lesions. Administration of recombinant elafin, an elastase-specific inhibitor, ameliorates early increases in serine elastase and attenuates later development of neointimal lesions. Neutrophils are the source of elevated elastase (NE) in the S100A4 lung, and NE mRNA and protein levels are greater in PA smooth muscle cells (SMC) from S100A4 mice than from C57 mice. Furthermore, elevated NE is observed in cultured PA SMC from idiopathic PA hypertension versus that in control lungs and localizes to neointimal lesions. Thus, PA SMC produce NE, and heightened production and activity of NE is linked to experimental and clinical pulmonary vascular disease. PMID:21763677

  13. Calcium release by noradrenaline from central sarcoplasmic reticulum in rabbit main pulmonary artery smooth muscle.

    PubMed Central

    Kowarski, D; Shuman, H; Somlyo, A P; Somlyo, A V

    1985-01-01

    The subcellular composition of relaxed and noradrenaline-contracted rabbit main pulmonary artery smooth muscle cells was measured by electron probe X-ray microanalysis of cryosections of rapidly frozen tissue. Some of the preparations were made permeable with saponin and exposed to a known free Ca ion concentration, rapidly frozen, freeze-substituted, and also analysed by electron probe X-ray microanalysis. 98% of intracellular K could be replaced by Rb. This was done to remove the K peak that partially overlaps the Ca peak in the X-ray spectra. The final [Rb]i plus residual [K]i was not significantly different from the [K]i of normal tissue. The [Ca]i in Rb-containing tissue was not significantly different from the [Ca]i in normal, K-containing tissue. Non-mitochondrial micro-regions containing high [Ca] (up to 33 mmol/kg dry wt.) were found at sites 200 nm or more away from the plasma membrane. These micro-regions also contained high [P]. We consider the identification of these regions containing high [Ca] as sarcoplasmic reticulum (s.r.), validated by: (a) conventional electron micrographs that show no other structures in main pulmonary artery smooth muscle in sufficient quantity and location to account for the frequency of these regions, (b) the previous localization of strontium, a functional calcium analogue, in the central s.r. in these smooth muscles (Somlyo & Somlyo, 1971 a), (c) the present demonstration that the central s.r. in this tissue can accumulate large amounts of calcium oxalate. The proportion of regions containing high [Ca] (greater than 12.0 mmol/kg dry wt.) was significantly higher in relaxed (35 of 330 measurements) than in the contracted (14 of 337) tissues (P less than 0.005), or 26 of 34 vs. 6 of 31 high [Ca] measurements in regions identified as s.r. through their high phosphorus content (P less than 0.006). This difference is thought to represent Ca release from the central s.r. There was no significant difference (P greater than 0

  14. Leukotriene receptors on human pulmonary vascular endothelium.

    PubMed

    Ortiz, J L; Gorenne, I; Cortijo, J; Seller, A; Labat, C; Sarria, B; Abram, T S; Gardiner, P J; Morcillo, E; Brink, C

    1995-08-01

    1. Cysteinyl-leukotrienes cause contractions and/or relaxations of human isolated pulmonary vascular preparations. Although, the localization and nature of the receptors through which these effects are mediated have not been fully characterized, some effects are indirect and not mediated via the well-described LT1 receptor. 2. In human pulmonary veins (HPV) with an intact endothelium, leukotriene D4 (LTD4) induced contraction above basal tone. This response was observed at lower concentrations of LTD4 in the presence of nitric oxide synthase inhibitor N omega-nitro-L-arginine (L-NOARG). Contractions (in the absence and presence of L-NOARG) were partially blocked by the LT1 antagonists (MK 571 and ICI 198615). 3. LTD4 relaxed HPV previously contracted with noradrenaline. This relaxation was potentiated by LT1 antagonists, but was abolished by removal of the endothelium. LTD4 also relaxed human pulmonary arteries (HPA) precontracted with noradrenaline but this effect was not modified by LT1 antagonists. 4. The results suggest that contraction of endothelium-intact HPV by LTD4 is partially mediated via LT1 receptors. Further, in endothelium-intact HPV, this contraction was opposed by a relaxation induced by LTD4, dependent on the release of nitric oxide, which was mediated, at least in part, via a non-LT1 receptor. In addition, LTD4 relaxation on contracted HPA was not mediated by LT1 receptors. 5. The mechanical effects of LTD4 on human pulmonary vasculature are complex and involve both direct and indirect mechanisms mediated via at least two types of cysteinyl-leukotriene receptors.

  15. Role of Na+-K+ ATPase in cyclic GMP-mediated relaxation of canine pulmonary artery smooth muscle cells

    PubMed Central

    Tamaoki, J; Tagaya, E; Nishimura, K; Isono, K; Nagai, A

    1997-01-01

    Sodium-potassium adenosine triphosphatase (Na+-K+ ATPase) plays a role in the regulation of vascular tone, but contribution of this enzyme to nitrovasodilator-induced pulmonary vasodilatation remains uncertain. We thus studied the interaction between guanosine 3′:5′-cyclic monophosphate (cyclic GMP) and Na+-K+ ATPase in smooth muscle cells isolated from canine pulmonary artery. To assess the contractile properties, changes in smooth muscle cell length were determined microscopically. Application of potassium chloride (KCl) shortened the cell length, an effect which was reduced by sodium nitroprusside and 8-bromo-cyclic GMP in a concentration-dependent manner. Pretreatment of cells with the cyclic GMP-dependent kinase inhibitor KT 5823 (2 μM) abolished the effects of sodium nitroprusside and 8-bromo-cyclic GMP. Ouabain (0.3 μM) did not alter the KCl-induced muscle shortening, but inhibited the relaxant responses to sodium nitroprusside and 8-bromo-cyclic GMP. Incubation of smooth muscle cells with sodium nitroprusside concentration-dependently increased intracellular cyclic GMP levels and ouabain-sensitive 86Rb uptake, and these values were significantly correlated. In the presence of KT 5823, sodium nitroprusside increased cyclic GMP levels but did not alter ouabain-sensitive 86Rb uptake. These results suggest that there is a link between accumulation of intracellular cyclic GMP and activation of sarcolemmal Na+-K+ ATPase in pulmonary artery smooth muscle cells and that this link may be involved in the sodium nitroprusside-induced pulmonary vasodilatation. PMID:9298536

  16. Hypoxia promotes cell proliferation by modulating E2F1 in chicken pulmonary arterial smooth muscle cells

    PubMed Central

    2013-01-01

    In this study, we sought to investigate the expression of the transcription factor E2F1 in chicken pulmonary arterial smooth muscle cells upon hypoxia exposure, as well as the role that E2F1 played in the regulation of cell proliferation. Isolated chicken pulmonary arterial smooth muscle cells were subjected to hypoxia or normoxia for indicated time points. Cell viability, DNA synthesis, cell cycle profile, and expression of E2F1 were analyzed. The results showed that hypoxia promoted cell proliferation and DNA synthesis which was accompanied by an increased S phase entry and upregulation of E2F1 at mRNA and protein levels. Using siRNA technology, we demonstrated that gene inactivation of endogenous E2F1 abolished hypoxia-induced cell proliferation, DNA synthesis, and S phase entry compared with negative siRNA transfected cells. These results suggest that hypoxia-induced proliferation is mediated by inducing E2F1 in chicken pulmonary arterial smooth muscle cells. PMID:23902684

  17. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease

    PubMed Central

    Wiegman, Coen H.; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J.; Russell, Kirsty E.; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J.; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P.; Kirkham, Paul A.; Chung, Kian Fan; Adcock, Ian M.; Brightling, Christopher E.; Davies, Donna E.; Finch, Donna K.; Fisher, Andrew J.; Gaw, Alasdair; Knox, Alan J.; Mayer, Ruth J.; Polkey, Michael; Salmon, Michael; Singh, David

    2015-01-01

    Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell

  18. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    PubMed

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion.

  19. Reactive oxygen species and RhoA signaling in vascular smooth muscle: role in chronic hypoxia-induced pulmonary hypertension.

    PubMed

    Resta, Thomas C; Broughton, Brad R S; Jernigan, Nikki L

    2010-01-01

    Increases in myofilament Ca2+ sensitivity resulting from stimulation of RhoA and Rho kinase represent a primary mechanism of vasoconstriction and associated pulmonary hypertension resulting from chronic hypoxia (CH). This chapter summarizes recent advances in the understanding of RhoA/Rho kinase signaling mechanisms in pulmonary vascular smooth muscle (VSM) that increase the sensitivity of the contractile apparatus to Ca2+ and contribute to vasoconstriction in this setting. Such advances include the discovery of myogenic tone in small pulmonary arteries from CH rats that contributes to vasoconstriction through a mechanism inherent to the VSM, dependent on Rho kinase-induced Ca2+ sensitization but independent of L-type voltage-gated Ca2+ channels. Additional studies have revealed an important contribution of superoxide anion (O2-)-induced RhoA activation to both receptor-mediated and membrane depolarization-induced myofilament Ca2+ sensitization in hypertensive pulmonary arteries. Xanthine oxidase and NADPH oxidase isoforms are potential sources of O2- that mediate RhoA-dependent vasoconstriction and associated pulmonary hypertension.

  20. Transdifferentiation of human endothelial progenitors into smooth muscle cells.

    PubMed

    Ji, HaYeun; Atchison, Leigh; Chen, Zaozao; Chakraborty, Syandan; Jung, Youngmee; Truskey, George A; Christoforou, Nicolas; Leong, Kam W

    2016-04-01

    Access to smooth muscle cells (SMC) would create opportunities for tissue engineering, drug testing, and disease modeling. Herein we report the direct conversion of human endothelial progenitor cells (EPC) to induced smooth muscle cells (iSMC) by induced expression of MYOCD. The EPC undergo a cytoskeletal rearrangement resembling that of mesenchymal cells within 3 days post initiation of MYOCD expression. By day 7, the reprogrammed cells show upregulation of smooth muscle markers ACTA2, MYH11, and TAGLN by qRT-PCR and ACTA2 and MYH11 expression by immunofluorescence. By two weeks, they resemble umbilical artery SMC in microarray gene expression analysis. The iSMC, in contrast to EPC control, show calcium transients in response to phenylephrine stimulation and a contractility an order of magnitude higher than that of EPC as determined by traction force microscopy. Tissue-engineered blood vessels constructed using iSMC show functionality with respect to flow- and drug-mediated vasodilation and vasoconstriction.

  1. Muscarinic receptor subtypes in human and rat colon smooth muscle.

    PubMed

    Gómez, A; Martos, F; Bellido, I; Marquez, E; Garcia, A J; Pavia, J; Sanchez de la Cuesta, F

    1992-06-09

    Muscarinic receptor subtypes in human and rat colon smooth muscle homogenates were characterized with [3H]N-methylscopolamine ([3H]NMS) by ligand binding studies. [3H]NMS saturation experiments show the existence of a homogeneous population of non-interacting binding sites with similar affinity (KD values of 1.38 +/- 0.20 nM in human colon smooth muscle and 1.48 +/- 0.47 nM in rat colon smooth muscle) and with Hill slopes close to unity in both samples of tissue. However, a significant (P less than 0.01) increase in muscarinic receptor density (Bmax) is found in human colon (29.9 +/- 2.9 fmol/mg protein) compared with rat colon (17.2 +/- 1.5 fmol/mg protein). Inhibition of [3H]NMS binding by non-labelled compounds shows the following order in human colon: atropine greater than AF-DX 116 greater than pirenzepine. Whereas in rat colon the rank order obtained is atropine greater than pirenzepine greater than AF-DX 116. Atropine and pirenzepine bind to a homogeneous population of binding sites, although pirenzepine shows higher affinity to bind to the sites present in rat colon (Ki = 1.08 +/- 0.08 microM) than those in human colon (Ki = 1.74 +/- 0.02 microM) (P less than 0.05). Similarly, IC50 values obtained in AF-DX 116 competition experiments were significantly different (P less than 0.01) in human colon (IC50 = 1.69 +/- 0.37 microM) than in rat colon (IC50 = 3.78 +/- 0.75 microM). Unlike atropine and pirenzepine, the inhibition of [3H]NMS binding by AF-DX 116 did not yield a simple mass-action binding curve (nH less than 1, P less than 0.01) suggesting the presence of more than one subtype of muscarinic receptor in both species. Computer analysis of these curves with a two binding site model suggests the presence of two populations of receptor. The apparent Ki1 value for the high affinity binding site is 0.49 +/- 0.07 microM for human colon smooth muscle and 0.33 +/- 0.05 microM for rat colon smooth muscle. The apparent Ki2 for the low affinity binding site is 8

  2. Effects of lubiprostone on human uterine smooth muscle cells.

    PubMed

    Cuppoletti, John; Malinowska, Danuta H; Chakrabarti, Jayati; Ueno, Ryuji

    2008-06-01

    Lubiprostone, a bicyclic fatty acid derivative and member of a new class of compounds called prostones, locally activates ClC-2 Cl(-) channels without activation of prostaglandin receptors. The present study was specifically designed to test and compare lubiprostone and prostaglandin effects at the cellular level using human uterine smooth muscle cells. Effects on [Ca(2+)](i), membrane potential and [cAMP](i) in human uterine smooth muscle cells were measured. 10 nM lubiprostone significantly decreased [Ca(2+)](i) from 188 to 27 nM, which was unaffected by 100 nM SC-51322, a prostaglandin EP receptor antagonist. In contrast 10nM PGE(2) and PGE(1) both increased [Ca(2+)](i) 3-5-fold which was blocked by SC-51322. Similarly, lubiprostone and prostaglandins had opposite/different effects on membrane potential and [cAMP](i). Lubiprostone caused SC-51322-insensitive membrane hyperpolarization and no effect on [cAMP](i). PGE(2) and PGE(1) both caused SC-51322-sensitive membrane depolarization and increased [cAMP](i). Lubiprostone has fundamentally different cellular effects from prostaglandins that are not mediated by EP receptors.

  3. Sildenafil inhibits chronically hypoxic upregulation of canonical transient receptor potential expression in rat pulmonary arterial smooth muscle

    PubMed Central

    Lu, Wenju; Zhang, Dandan; Peng, Gongyong; Li, Bing; Zhong, Nanshan

    2010-01-01

    In pulmonary arterial smooth muscle cells (PASMCs), Ca2+ influx through store-operated Ca2+ channels thought to be composed of canonical transient receptor potential (TRPC) proteins is an important determinant of intracellular free calcium concentration ([Ca2+]i) and pulmonary vascular tone. Sildenafil, a type V phosphodiesterase inhibitor that increases cellular cGMP, is recently identified as a promising agent for treatment of pulmonary hypertension. We previously demonstrated that chronic hypoxia elevated basal [Ca2+]i in PASMCs due in large part to enhanced store-operated Ca2+ entry (SOCE); moreover, ex vivo exposure to prolonged hypoxia (4% O2 for 60 h) upregulated TRPC1 and TRPC6 expression in PASMCs. We examined the effect of sildenafil on basal [Ca2+]i, SOCE, and the expression of TRPC in PASMCs under prolonged hypoxia exposure. We also examined the effect of sildenafil on TRPC1 and TRPC6 expression in pulmonary arterial smooth muscle (PA) from rats that developed chronically hypoxic pulmonary hypertension (CHPH). Compared with vehicle control, treatment with sildenafil (300 nM) inhibited prolonged hypoxia induced increases of 1) basal [Ca2+]i, 2) SOCE, and 3) mRNA and protein expression of TRPC in PASMCs. Moreover, sildenafil (50 mg · kg−1 · day−1) inhibited mRNA and protein expression of TRPC1 and TRPC6 in PA from chronically hypoxic (10% O2 for 21 days) rats, which was associated with decreased right ventricular pressure and right ventricular hypertrophy. Furthermore, we found, in PASMCs exposed to prolonged hypoxia, that knockdown of TRPC1 or TRPC6 by their specific small interference RNA attenuated the hypoxic increases of SOCE and basal [Ca2+]i, suggesting a cause and effect link between increases of TRPC1 and TRPC6 expression and the hypoxic increases of SOCE and basal [Ca2+]i. These results suggest that sildenafil may alter basal [Ca2+]i in PASMCs by decreasing SOCE through downregulation of TRPC1 and TRPC6 expression, thereby contributing to

  4. Neurophysiology and Neuroanatomy of Smooth Pursuit in Humans

    ERIC Educational Resources Information Center

    Lencer, Rebekka; Trillenberg, Peter

    2008-01-01

    Smooth pursuit eye movements enable us to focus our eyes on moving objects by utilizing well-established mechanisms of visual motion processing, sensorimotor transformation and cognition. Novel smooth pursuit tasks and quantitative measurement techniques can help unravel the different smooth pursuit components and complex neural systems involved…

  5. Inhibitory effects of simvastatin on platelet-derived growth factor signaling in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension.

    PubMed

    Ikeda, Tetsuya; Nakamura, Kazufumi; Akagi, Satoshi; Kusano, Kengo Fukushima; Matsubara, Hiromi; Fujio, Hideki; Ogawa, Aiko; Miura, Aya; Miura, Daiji; Oto, Takahiro; Yamanaka, Ryutaro; Otsuka, Fumio; Date, Hiroshi; Ohe, Tohru; Ito, Hiroshi

    2010-01-01

    Idiopathic pulmonary arterial hypertension (IPAH) is a progressive disease characterized by inappropriate increase of pulmonary artery smooth muscle cells (PASMCs) leading to occlusion of pulmonary arterioles. Inhibition of platelet-derived growth factor (PDGF) signaling is starting to garner attention as a targeted therapy for IPAH. We assessed the inhibitory effects of simvastatin, a 3-hydroxy-3-methylglutanyl coenzyme A reductase inhibitor, on PDGF-induced proliferation and migration of PASMCs obtained from 6 patients with IPAH who underwent lung transplantation. PDGF stimulation caused a significantly higher growth rate of PASMCs from patients with IPAH than that of normal control PASMCs as assessed by (3)H-thymidine incorporation. Simvastatin (0.1 micromol/L) significantly inhibited PDGF-induced cell proliferation of PASMCs from patients with IPAH but did not inhibit proliferation of normal control cells at the same concentration. Western blot analysis revealed that simvastatin significantly increased the expression of cell cycle inhibitor p27. PDGF significantly increased the migration distance of IPAH-PASMCs compared with that of normal PASMCs, and simvastatin (1 micromol/L) significantly inhibited PDGF-induced migration. Immunofluorescence staining revealed that simvastatin (1 micromol/L) inhibited translocation of Rho A from the cytoplasm to membrane and disorganized actin fibers in PASMCs from patients with IPAH. In conclusion, simvastatin had inhibitory effects on inappropriate PDGF signaling in PASMCs from patients with IPAH.

  6. Altered expression of nuclear and cytoplasmic histone H1 in pulmonary artery and pulmonary artery smooth muscle cells in patients with IPAH

    PubMed Central

    Talati, Megha; Seeley, Erin; Ihida-Stansbury, Kaori; Delisser, Horace; McDonald, Hayes; Ye, Fei; Zhang, Xueqiong; Shyr, Yu; Caprioli, Richard; Meyrick, Barbara

    2012-01-01

    The pathogenesis of idiopathic pulmonary hypertension is poorly understood. This paper utilized histology-based Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI MS) to identify as-yet unknown proteins that may be associated with the structural changes in the pulmonary arterial walls of patients with IPAH. The technology identified significant increases in two fragments of histone H1 in the IPAH cases compared to controls. This finding was further examined using immunofluorescence techniques applied to sections from IPAH and control pulmonary arteries. In addition, cultured pulmonary artery smooth muscle cells (PASMCs) were utilized for Western analysis of histone H1 and importin β and importin 7, immunoprecipitation and assessment of nucleosomal repeat length (NRL). Immunofluorescence techniques revealed that nuclear expression of histone H1 was decreased and the chromatin was less compact in the IPAH cases than in the controls; furthermore, some cases showed a marked increase in cytoplasmic histone H1 expression. Using nuclear and cytoplasmic fractions of cultured PASMCs, we confirmed the reduction in histone H1 in the nucleus and an increase in the cytoplasm in IPAH cells compared to controls. Immunoprecipitation demonstrated a decreased association of histone H1 with importin β while importin 7 was unchanged in the IPAH cells compared to controls. The assessment of NRL revealed that the distance between nucleosomes was increased by ~20 bp in IPAH compared to controls. We conclude that at least two factors contribute to the reduction in nuclear histone H1—fragmentation of the protein and decreased import of histone H1 into the nucleus by importins. We further suggest that the decreased nuclear H1 contributes the less compact nucleosomal pattern in IPAH and this, in turn, contributes to the increase in NRL. PMID:23130102

  7. Properties of a novel K+ current that is active at resting potential in rabbit pulmonary artery smooth muscle cells.

    PubMed Central

    Evans, A M; Osipenko, O N; Gurney, A M

    1996-01-01

    1. An outward current (IK(N)) was identified in rabbit pulmonary artery myocytes, which persisted after Ca(2+)-activated and ATP-sensitive K+ currents were blocked by TEA (10 mM) and glibenclamide (10 microM), respectively, and after A-like (IK(A)) and delayed rectifer (IK(V)) K+ currents were inactivated by clamping the cell at 0 mV for 10 min. It was found in smooth muscle cells at all levels of the pulmonary arterial tree. 2. The relationship between the reversal potential of IK(N) and the extracellular K+ concentration ([K+]o) was close to that expected for a K(+)-selective channel. Deviation from Nernstian behaviour at low [K+)o could be accounted for by the presence of an accompanying leakage current. 3. IK(N) is voltage gated. It has a low threshold for activation, between -80 and -65 mV, and activates slowly without delay. Activation follows an exponential time course with a time constant of 1.6 s at -60 mV. Deactivation is an order of magnitude faster than activation, with a time constant of 107 ms at -60 mV. 4. IK(N) showed a similar sensitivity to 4-aminopyridine as IK(A) and IK(V), with 49% inhibition at 10 mM. The current was not blocked by microM quinine, which did inhibit IK(A) and IK(V), by 51 and 47%, respectively. 5. Activation of IK(N) was detected at potentials close to the resting membrane potential of pulmonary artery smooth muscle cells, under physiological conditions. Thus it is likely to contribute to the resting membrane potential of these cells. PMID:8910225

  8. 8,9-Epoxyeicosatrienoic acid analog protects pulmonary artery smooth muscle cells from apoptosis via ROCK pathway

    SciTech Connect

    Ma, Jun; Zhang, Lei; Li, Shanshan; Liu, Shulin; Ma, Cui; Li, Weiyang; Falck, J.R.; Manthati, Vijay L.; Reddy, D. Sudarshan; Medhora, Meetha; Jacobs, Elizabeth R.; Zhu, Daling

    2010-08-15

    Epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid (AA) catalyzed by cytochrome P450 (CYP), have many essential biologic roles in the cardiovascular system including inhibition of apoptosis in cardiomyocytes. In the present study, we tested the potential of 8,9-EET and derivatives to protect pulmonary artery smooth muscle cells (PASMCs) from starvation induced apoptosis. We found 8,9-epoxy-eicos-11(Z)-enoic acid (8,9-EET analog (214)), but not 8,9-EET, increased cell viability, decreased activation of caspase-3 and caspase-9, and decreased TUNEL-positive cells or nuclear condensation induced by serum deprivation (SD) in PASMCs. These effects were reversed after blocking the Rho-kinase (ROCK) pathway with Y-27632 or HA-1077. Therefore, 8,9-EET analog (214) protects PASMC from serum deprivation-induced apoptosis, mediated at least in part via the ROCK pathway. Serum deprivation of PASMCs resulted in mitochondrial membrane depolarization, decreased expression of Bcl-2 and enhanced expression of Bax, all effects were reversed by 8,9-EET analog (214) in a ROCK dependent manner. Because 8,9-EET and not the 8,9-EET analog (214) protects pulmonary artery endothelial cells (PAECs), these observations suggest the potential to differentially promote apoptosis or survival with 8,9-EET or analogs in pulmonary arteries.

  9. Statins inhibit pulmonary artery smooth muscle cell proliferation by upregulation of HO-1 and p21WAF1.

    PubMed

    Li, Manxiang; Liu, Yuan; Shi, Hongyang; Zhang, Yonghong; Wang, Guizuo; Xu, Jing; Lu, Jiamei; Zhang, Dexin; Xie, Xinming; Han, Dong; Wu, Yuanyuan; Li, Shaojun

    2012-10-01

    Simvastatin is a 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor, which has been shown to ameliorate the development of pulmonary hypertension in animal model by suppression of pulmonary artery smooth muscle cells (PASMCs) proliferation, yet its underlying molecular mechanisms are not completely understood. In this study, we show that simvastatin dose-dependently inhibited serotonin-stimulated PASMCs proliferation. This was accompanied with the parallel induction of heme oxyganase-1 (HO-1) and upregulation of p21(WAF1). More importantly, we found that Tin-protoporphyrin (SnPP), a selective inhibitor of HO-1, could block the effect of simvastatin on inhibition of cell proliferation in response to serotonin and abolish simvastatin-induced p21(WAF1) expression. The inhibitive effect of simvastatin on cell proliferation was also significantly suppressed by silencing p21(WAF1) with siRNA transfection. The extent of effect of SnPP on inhibition of cell proliferation was similar to that of lack of p21(WAF1) by siRNA transfection. Taken together, our study suggests that simvastatin inhibits PASMCs proliferation by sequential upregulation of HO-1 and p21(WAF1) to benefit pulmonary hypertension.

  10. Activation of AMPK inhibits PDGF-induced pulmonary arterial smooth muscle cells proliferation and its potential mechanisms.

    PubMed

    Song, Yang; Wu, Yuanyuan; Su, Xiaofan; Zhu, Yanting; Liu, Lu; Pan, Yilin; Zhu, Bo; Yang, Lan; Gao, Li; Li, Manxiang

    2016-05-01

    The aims of the present study were to examine signaling mechanisms for PDGF-induced pulmonary arterial smooth muscle cells (PASMC) proliferation and to determine the effect of AMPK activation on PDGF-induced PASMC proliferation and its underlying mechanisms. PDGF activated PI3K/Akt/mTOR signaling pathway, and this in turn up-regulated Skp2 and consequently reduced p27 leading to PASMC proliferation. Prior incubation of PASMC with metformin induced a dramatic AMPK activation and significantly blocked PDGF-induced cell proliferation. PASMC lacking AMPKα2 were resistant to the inhibitory effect of metformin on PDGF-induced cell proliferation. Metformin did not affect Akt activation but blocked mTOR phosphorylation in response to PDGF; these were accompanied by the reversion of Skp2 up-regulation and p27 reduction. Our study suggests that the activation of AMPK negatively regulates mTOR activity to suppress PASMC proliferation and therefore has a potential value in the prevention and treatment of pulmonary hypertension by negatively modulating pulmonary vascular remodeling.

  11. 8,9-Epoxyeicosatrienoic acid analog protects pulmonary artery smooth muscle cells from apoptosis via ROCK pathway

    PubMed Central

    Ma, Jun; Zhang, Lei; Li, Shanshan; Liu, Shulin; Ma, Cui; Li, Weiyang; Falck, J.R.; Manthati, Vijay L.; Reddy, D. Sudarshan; Medhora, Meetha; Jacobs, Elizabeth R.; Zhu, Daling

    2010-01-01

    Epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid (AA) catalyzed by cytochrome P450 (CYP), have many essential biologic roles in the cardiovascular system including inhibition of apoptosis in cardiomyocytes. In the present study, we tested the potential of 8,9-EET and derivatives to protect pulmonary artery smooth muscle cells (PASMCs) from starvation induced apoptosis. We found 8,9-epoxy-eicos-11(Z)-enoic acid (8,9-EET analog(214)), but not 8,9-EET, increased cell viability, decreased activation of caspase-3 and caspase-9, and decreased TUNEL-positive cells or nuclear condensation induced by serum deprivation (SD) in PASMCs. These effects were reversed after blocking the Rho-kinase (ROCK) pathway with Y-27632 or HA-1077. Therefore, 8,9-EET analog(214) protects PASMC from serum deprivation-induced apoptosis, mediated at least in part via the ROCK pathway. Serum deprivation of PASMCs resulted in mitochondrial membrane depolarization, decreased expression of Bcl-2 and enhanced expression of Bax, all effects were reversed by 8,9-EET analog(214) in a ROCK dependent manner. Because 8,9-EET and not the 8,9-EET analog(214) protects pulmonary artery endothelial cells (PAECs), these observations suggest the potential to differentially promote apoptosis or survival with 8,9-EET or analogs in pulmonary arteries. PMID:20493836

  12. NO Hyperpolarizes Pulmonary Artery Smooth Muscle Cells and Decreases the Intracellular Ca2+ Concentration by Activating Voltage-Gated K+ Channels

    NASA Astrophysics Data System (ADS)

    Yuan, Xiao-Jian; Tod, Mary L.; Rubin, Lewis J.; Blaustein, Mordecai P.

    1996-09-01

    NO causes pulmonary vasodilation in patients with pulmonary hypertension. In pulmonary arterial smooth muscle cells, the activity of voltage-gated K+ (KV) channels controls resting membrane potential. In turn, membrane potential is an important regulator of the intracellular free calcium concentration ([Ca2+]i) and pulmonary vascular tone. We used patch clamp methods to determine whether the NO-induced pulmonary vasodilation is mediated by activation of KV channels. Quantitative fluorescence microscopy was employed to test the effect of NO on the depolarization-induced rise in [Ca2+]i. Blockade of KV channels by 4-aminopyridine (5 mM) depolarized pulmonary artery myocytes to threshold for initiation of Ca2+ action potentials, and thereby increased [Ca2+]i. NO (≈ 3 μ M) and the NO-generating compound sodium nitroprusside (5-10 μ M) opened KV channels in rat pulmonary artery smooth muscle cells. The enhanced K+ currents then hyperpolarized the cells, and blocked Ca2+-dependent action potentials, thereby preventing the evoked increases in [Ca2+]i. Nitroprusside also increased the probability of KV channel opening in excised, outside-out membrane patches. This raises the possibility that NO may act either directly on the channel protein or on a closely associated molecule rather than via soluble guanylate cyclase. In isolated pulmonary arteries, 4-aminopyridine significantly inhibited NO-induced relaxation. We conclude that NO promotes the opening of KV channels in pulmonary arterial smooth muscle cells. The resulting membrane hyperpolarization, which lowers [Ca2+]i, is apparently one of the mechanisms by which NO induces pulmonary vasodilation.

  13. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration.

    PubMed

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping; Wang, Hong

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (KATP) channels have been identified in ASMCs. Mount evidence has suggested that KATP channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K(+) channels triggers K(+) efflux, which leading to membrane hyperpolarization, preventing Ca(2+)entry through closing voltage-operated Ca(2+) channels. Intracellular Ca(2+) is the most important regulator of muscle contraction, cell proliferation and migration. K(+) efflux decreases Ca(2+) influx, which consequently influences ASMCs proliferation and migration. As a KATP channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2'-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca(2+)/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective KATP channel antagonist. These findings provide a strong evidence to support that Ipt antagonize the proliferating and migrating effects of PDGF-BB on

  14. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    SciTech Connect

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping Wang, Hong

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  15. Mesenchymal stem cell-conditioned media suppresses inflammation-associated overproliferation of pulmonary artery smooth muscle cells in a rat model of pulmonary hypertension

    PubMed Central

    LIU, JUNFENG; HAN, ZHIBO; HAN, ZHONGCHAO; HE, ZHIXU

    2016-01-01

    Inflammation-associated overproliferation of pulmonary artery smooth muscle cells (PASMCs) is considered to be involved in the pathogenesis of pulmonary hypertension (PH). The administration of mesenchymal stem cell-conditioned media (MSC-CM) has displayed benefits in the treatment of PH, however, the exact mechanism has yet to be elucidated. The present study aimed to determine whether MSC-CM is able to suppress overproliferation of PASMCs in PH via immunoregulation. By the administration of MSC-CM to monocrotaline (MCT)-induced PH rats, and the development of an in vitro co-culture system comprised of PASMCs and activated T cells, the therapeutic effects of MSC-CM on PH, and the changes in the expression of correlated factors, including TNF-α, calcineurin (CaN) and nuclear factor of activated T cells (NFAT), were assessed. Immunohistochemical staining results indicated that MSC-CM was able to significantly suppress the production of TNF-α in MCT-induced PH and co-culture systems; and reverse transcription-quantitative polymerase chain reaction results showed significant downregulation of the expression of CaN and NFATc2 in PASMCs (P<0.01). Furthermore, MSC-CM was able to significantly suppress CaN activity and NFATc2 activation (P<0.01), thus inhibiting the overproliferation of PASMCs. Finally, MSC-CM improved abnormalities in hemodynamics and pulmonary histology in MCT-induced PH. In conclusion, the findings of the current study suggest that administration of MSC-CM has the potential to suppress inflammation-associated overproliferation of PASMCs due to its immunosuppressive effects in PH and, thus, may serve as a beneficial therapeutic strategy. PMID:26893632

  16. BMP type II receptor deficiency confers resistance to growth inhibition by TGF-β in pulmonary artery smooth muscle cells: role of proinflammatory cytokines.

    PubMed

    Davies, Rachel J; Holmes, Alan M; Deighton, John; Long, Lu; Yang, Xudong; Barker, Lucy; Walker, Christoph; Budd, David C; Upton, Paul D; Morrell, Nicholas W

    2012-03-15

    Mutations in the bone morphogenetic protein (BMP) type II receptor (BMPR-II) underlie most cases of heritable pulmonary arterial hypertension (HPAH) and a significant proportion of sporadic cases. Pulmonary artery smooth muscle cells (PASMCs) from patients with pulmonary arterial hypertension (PAH) not only exhibit attenuated growth suppression by BMPs, but an abnormal mitogenic response to transforming growth factor (TGF)-β1. We sought to define the mechanism underlying this loss of the antiproliferative effects of TGF-β1 in BMPR-II-deficient PASMCs. The effect of TGF-β1 on PASMC proliferation was characterized in three different models of BMPR-II dysfunction: 1) HPAH PASMCs, 2) Bmpr2(+/-) mouse PASMCs, and 3) control human PASMCs transfected with BMPR-II small interfering RNA. BMPR-II reduction consistently conferred insensitivity to growth inhibition by TGF-β1. This was not associated with altered canonical TGF-β1/Smad signaling but was associated with a secreted factor. Microarray analysis revealed that the transcriptional responses to TGF-β1 differed between control and HPAH PASMCs, particularly regarding genes associated with interleukins and inflammation. HPAH PASMCs exhibited enhanced IL-6 and IL-8 induction by TGF-β1, an effect reversed by NF-κB inhibition. Moreover, neutralizing antibodies to IL-6 or IL-8 restored the antiproliferative effect of TGF-β1 in HPAH PASMCs. This study establishes that BMPR-II deficiency leads to failed growth suppression by TGF-β1 in PASMCs. This effect is Smad-independent but is associated with inappropriately altered NF-κB signaling and enhanced induction of IL-6 and IL-8 expression. Our study provides a rationale to test anti-interleukin therapies as an intervention to neutralize this inappropriate response and restore the antiproliferative response to TGF-β1.

  17. BMP type II receptor deficiency confers resistance to growth inhibition by TGF-β in pulmonary artery smooth muscle cells: role of proinflammatory cytokines

    PubMed Central

    Davies, Rachel J.; Holmes, Alan M.; Deighton, John; Long, Lu; Yang, Xudong; Barker, Lucy; Walker, Christoph; Budd, David C.; Upton, Paul D.

    2012-01-01

    Mutations in the bone morphogenetic protein (BMP) type II receptor (BMPR-II) underlie most cases of heritable pulmonary arterial hypertension (HPAH) and a significant proportion of sporadic cases. Pulmonary artery smooth muscle cells (PASMCs) from patients with pulmonary arterial hypertension (PAH) not only exhibit attenuated growth suppression by BMPs, but an abnormal mitogenic response to transforming growth factor (TGF)-β1. We sought to define the mechanism underlying this loss of the antiproliferative effects of TGF-β1 in BMPR-II-deficient PASMCs. The effect of TGF-β1 on PASMC proliferation was characterized in three different models of BMPR-II dysfunction: 1) HPAH PASMCs, 2) Bmpr2+/− mouse PASMCs, and 3) control human PASMCs transfected with BMPR-II small interfering RNA. BMPR-II reduction consistently conferred insensitivity to growth inhibition by TGF-β1. This was not associated with altered canonical TGF-β1/Smad signaling but was associated with a secreted factor. Microarray analysis revealed that the transcriptional responses to TGF-β1 differed between control and HPAH PASMCs, particularly regarding genes associated with interleukins and inflammation. HPAH PASMCs exhibited enhanced IL-6 and IL-8 induction by TGF-β1, an effect reversed by NF-κB inhibition. Moreover, neutralizing antibodies to IL-6 or IL-8 restored the antiproliferative effect of TGF-β1 in HPAH PASMCs. This study establishes that BMPR-II deficiency leads to failed growth suppression by TGF-β1 in PASMCs. This effect is Smad-independent but is associated with inappropriately altered NF-κB signaling and enhanced induction of IL-6 and IL-8 expression. Our study provides a rationale to test anti-interleukin therapies as an intervention to neutralize this inappropriate response and restore the antiproliferative response to TGF-β1. PMID:22227206

  18. [Pulmonary complications in children with human immunodeficiency virus infection].

    PubMed

    Brockmann V, Pablo; Viviani S, Támara; Peña D, Anamaría

    2007-08-01

    Pulmonary complications in children infected by human immunodeficiency virus (HIV) are common and may be the first manifestation of acquired immunodeficiency syndrome (AIDS). The aim of our study was to review pulmonary diseases and complications in pediatric patients with HIV infection in a large tertiary hospital in Santiago, Chile. We performed a retrospective, descriptive analysis of 17 patients with HIV infection controlled at the Hospital Dr. Sótero del Rio. Respiratory complications/diseases were: overall pneumonia (n: 14), recurrent pneumonia (n: 10), citomegalovirus associated pneumonia (n: 4), Pneumocystis jiroveci associated pneumonia (n: 1) pulmonary tuberculosis (n: 1), lymphoid interstitial pneumonia (n: 3) and chronic pulmonary disease (n: 7). Microorganisms isolated were mostly atypical and frequently associated with severe and chronic pulmonary damage. A high degree of suspicion is required to detect atypical microorganisms promptly, in order to rapidly implement pathogen targeted therapy that could potentially decrease the possibility of sequelae.

  19. Hemoglobin induced cell trauma indirectly influences endothelial TLR9 activity resulting in pulmonary vascular smooth muscle cell activation

    PubMed Central

    Loomis, Zoe; Eigenberger, Paul; Redinius, Katherine; Lisk, Christina; Karoor, Vijaya; Nozik-Grayck, Eva; Ferguson, Scott K.; Hassell, Kathryn; Nuss, Rachelle; Stenmark, Kurt; Buehler, Paul; Irwin, David C.

    2017-01-01

    It is now well established that both inherited and acquired forms of hemolytic disease can promote pulmonary vascular disease consequent of free hemoglobin (Hb) induced NO scavenging, elevations in reactive oxygen species and lipid peroxidation. It has recently been reported that oxidative stress can activate NFkB through a toll-like receptor 9 (TLR9) mediated pathway; further, TLR9 can be activated by either nuclear or mitochondrial DNA liberated by stress induced cellular trauma. We hypothesis that Hb induced lipid peroxidation and subsequent endothelial cell trauma is linked to TLR9 activation, resulting in IL-6 mediated pulmonary smooth muscle cell proliferation. We examined the effects of Hb on rat pulmonary artery endothelial and smooth muscle cells (rPAEC and rPASMC, respectively), and then utilized TLR9 and IL6 inhibitors, as well as the Hb and heme binding proteins (haptoglobin (Hp) and hemopexin (Hpx), respectively) to further elucidate the aforementioned mediators. Further, we explored the effects of Hb in vivo utilizing endothelial cell (EC) specific myeloid differentiation primary response gene-88 (MyD88) and TLR9 null mice. Our data show that oxidized Hb induces lipid peroxidation, cellular toxicity (5.5 ± 1.7 fold; p≤0.04), increased TLR9 activation (60%; p = 0.01), and up regulated IL6 expression (1.75±0.3 fold; p = 0.04) in rPAEC. Rat PASMC exhibited a more proliferative state (13 ± 1%; p = 0.01) when co-cultured with Hb activated rPAEC. These effects were attenuated with the sequestration of Hb or heme by Hp and Hpx as well as with TLR9 an IL-6 inhibition. Moreover, in both EC-MyD88 and TLR9 null mice Hb-infusion resulted in less lung IL-6 expression compared to WT cohorts. These results demonstrate that Hb-induced lipid peroxidation can initiate a modest TLR9 mediated inflammatory response, subsequently generating an activated SMC phenotype. PMID:28152051

  20. Effects of cigarette smoke extract on human airway smooth muscle cells in COPD.

    PubMed

    Chen, Ling; Ge, Qi; Tjin, Gavin; Alkhouri, Hatem; Deng, Linghong; Brandsma, Corry-Anke; Adcock, Ian; Timens, Wim; Postma, Dirkje; Burgess, Janette K; Black, Judith L; Oliver, Brian G G

    2014-09-01

    We hypothesised that the response to cigarette smoke in airway smooth muscle (ASM) cells from smokers with chronic obstructive pulmonary disease (COPD) would be intrinsically different from smokers without COPD, producing greater pro-inflammatory mediators and factors relating to airway remodelling. ASM cells were obtained from smokers with or without COPD, and then stimulated with cigarette smoke extract (CSE) or transforming growth factor-β1. The production of chemokines and matrix metalloproteinases (MMPs) were measured by ELISA, and the deposition of collagens by extracellular matrix ELISA. The effects of CSE on cell attachment and wound healing were measured by toluidine blue attachment and cell tracker green wound healing assays. CSE increased the release of CXCL8 and CXCL1 from human ASM cells, and cells from smokers with COPD produced more CSE-induced CXCL1. The production of MMP-1, -3 and -10, and the deposition of collagen VIII alpha 1 (COL8A1) were increased by CSE, especially in the COPD group which had higher production of MMP-1 and deposition of COL8A1. CSE decreased ASM cell attachment and wound healing in the COPD group only. ASM cells from smokers with COPD were more sensitive to CSE stimulation, which may explain, in part, why some smokers develop COPD.

  1. Lymphatic Stomata in the Adult Human Pulmonary Ligament

    PubMed Central

    Miura, Masahiro; Iobe, Hiroaki; Kudo, Tomoo; Shimazu, Yoshihito; Aoba, Takaaki; Okudela, Koji; Nagahama, Kiyotaka; Sakamaki, Kentaro; Yoshida, Maki; Nagao, Toshitaka; Nakaya, Takeo; Kurata, Atsushi; Ohtani, Osamu

    2015-01-01

    Abstract Background: Lymphatic stomata are small lymphatic openings in the serosal membrane that communicate with the serosal cavity. Although these stomata have primarily been studied in experimental mammals, little is known concerning the presence and properties of lymphatic stomata in the adult human pleura. Thus, adult human pleurae were examined for the presence or absence of lymphatic stomata. Methods and Results: A total of 26 pulmonary ligaments (13 left and 13 right) were obtained from 15 adult human autopsy cases and examined using electron and light microscopy. The microscopic studies revealed the presence of apertures fringed with D2-40-positive, CD31-positive, and cytokeratin-negative endothelial cells directly communicating with submesothelial lymphatics in all of the pulmonary ligaments. The apertures' sizes and densities varied from case to case according to the serial tissue section. The medians of these aperture sizes ranged from 2.25 to 8.75 μm in the left pulmonary ligaments and from 2.50 to 12.50 μm in the right pulmonary ligaments. The densities of the apertures ranged from 2 to 9 per mm2 in the left pulmonary ligaments and from 2 to 18 per mm2 in the right pulmonary ligaments. However, no significant differences were found regarding the aperture size (p=0.359) and density (p=0.438) between the left and the right pulmonary ligaments. Conclusions: Our study revealed that apertures exhibit structural adequacy as lymphatic stomata on the surface of the pulmonary ligament, thereby providing evidence that lymphatic stomata are present in the adult human pleura. PMID:25526320

  2. Primary pulmonary hypertension associated with human immunodeficiency virus infection.

    PubMed Central

    Golpe, R.; Fernandez-Infante, B.; Fernandez-Rozas, S.

    1998-01-01

    Several cardiorespiratory diseases can complicate human immunodeficiency virus infection. Primary pulmonary hypertension is a rare clinical disorder which carries a bad prognosis. More than 90 cases of HIV-associated primary pulmonary hypertension have been reported to date. Although its pathogenesis remains unknown, some evidence suggests a possible role for the virus itself in its development. Genetic susceptibility may also be implicated. The clinical and histopathologic features of this entity do not differ from those of classic primary pulmonary hypertension. The diagnosis requires a high degree of clinical suspicion and a careful evaluation to rule out causes of secondary pulmonary hypertension. In addition to supportive measures, anticoagulation and vasodilators have been used to treat this disorder, although sufficient data regarding long-term results with these therapies are lacking. PMID:9799910

  3. Primary pulmonary hypertension associated with human immunodeficiency virus infection.

    PubMed

    Golpe, R; Fernandez-Infante, B; Fernandez-Rozas, S

    1998-07-01

    Several cardiorespiratory diseases can complicate human immunodeficiency virus infection. Primary pulmonary hypertension is a rare clinical disorder which carries a bad prognosis. More than 90 cases of HIV-associated primary pulmonary hypertension have been reported to date. Although its pathogenesis remains unknown, some evidence suggests a possible role for the virus itself in its development. Genetic susceptibility may also be implicated. The clinical and histopathologic features of this entity do not differ from those of classic primary pulmonary hypertension. The diagnosis requires a high degree of clinical suspicion and a careful evaluation to rule out causes of secondary pulmonary hypertension. In addition to supportive measures, anticoagulation and vasodilators have been used to treat this disorder, although sufficient data regarding long-term results with these therapies are lacking.

  4. Important role of PLC-γ1 in hypoxic increase in intracellular calcium in pulmonary arterial smooth muscle cells.

    PubMed

    Yadav, Vishal R; Song, Tengyao; Joseph, Leroy; Mei, Lin; Zheng, Yun-Min; Wang, Yong-Xiao

    2013-02-01

    An increase in intracellular calcium concentration ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMCs) induces hypoxic cellular responses in the lungs; however, the underlying molecular mechanisms remain incompletely understood. We report, for the first time, that acute hypoxia significantly enhances phospholipase C (PLC) activity in mouse resistance pulmonary arteries (PAs), but not in mesenteric arteries. Western blot analysis and immunofluorescence staining reveal the expression of PLC-γ1 protein in PAs and PASMCs, respectively. The activity of PLC-γ1 is also augmented in PASMCs following hypoxia. Lentiviral shRNA-mediated gene knockdown of mitochondrial complex III Rieske iron-sulfur protein (RISP) to inhibit reactive oxygen species (ROS) production prevents hypoxia from increasing PLC-γ1 activity in PASMCs. Myxothiazol, a mitochondrial complex III inhibitor, reduces the hypoxic response as well. The PLC inhibitor U73122, but not its inactive analog U73433, attenuates the hypoxic vasoconstriction in PAs and hypoxic increase in [Ca(2+)](i) in PASMCs. PLC-γ1 knockdown suppresses its protein expression and the hypoxic increase in [Ca(2+)](i). Hypoxia remarkably increases inositol 1,4,5-trisphosphate (IP(3)) production, which is blocked by U73122. The IP(3) receptor (IP(3)R) antagonist 2-aminoethoxydiphenyl borate (2-APB) or xestospongin-C inhibits the hypoxic increase in [Ca(2+)](i). PLC-γ1 knockdown or U73122 reduces H(2)O(2)-induced increase in [Ca(2+)](i) in PASMCs and contraction in PAs. 2-APB and xestospongin-C produce similar inhibitory effects. In conclusion, our findings provide novel evidence that hypoxia activates PLC-γ1 by increasing RISP-dependent mitochondrial ROS production in the complex III, which causes IP(3) production, IP(3)R opening, and Ca(2+) release, playing an important role in hypoxic Ca(2+) and contractile responses in PASMCs.

  5. The Cl− channel blocker niflumic acid releases Ca2+ from an intracellular store in rat pulmonary artery smooth muscle cells

    PubMed Central

    Cruickshank, Stuart F; Baxter, Lynne M; Drummond, Robert M

    2003-01-01

    The effect of the Cl− channel blockers niflumic acid (NFA), 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), and anthracene-9-carboxylic acid (A-9-C), on Ca2+ signalling in rat pulmonary artery smooth muscle cells was examined. Intracellular Ca2+ concentration ([Ca2+]i) was monitored with either fura-2 or fluo-4, and caffeine was used to activate the ryanodine receptor, thereby releasing Ca2+ from the sarcoplasmic reticulum (SR). NFA and NPPB significantly increased basal [Ca2+]i and attenuated the caffeine-induced increase in [Ca2+]i. These Cl− channel blockers also increased the half-time (t1/2) to peak for the caffeine-induced [Ca2+]i transient, and slowed the removal of Ca2+ from the cytosol following application of caffeine. Since DIDS and A-9-C were found to adversely affect fura-2 fluorescence, fluo-4 was used to monitor intracellular Ca2+ in studies involving these Cl− channel blockers. Both DIDS and A-9-C increased basal fluo-4 fluorescence, indicating an increase in intracellular Ca2+, and while DIDS had no significant effect on the t1/2 to peak for the caffeine-induced Ca2+ transient, it was significantly increased by A-9-C. In the absence of extracellular Ca2+, NFA significantly increased basal [Ca2+]i, suggesting that the release of Ca2+ from an intracellular store was responsible for the observed effect. Depleting the SR with the combination of caffeine and cyclopiazonic acid prevented the increase in basal [Ca2+]i induced by NFA. Additionally, incubating the cells with ryanodine also prevented the increase in basal [Ca2+]i induced by NFA. These data show that Cl− channel blockers have marked effects on Ca2+ signalling in pulmonary artery smooth muscle cells. Furthermore, examination of the NFA-induced increase in [Ca2+]i indicates that it is likely due to Ca2+ release from an intracellular store, most probably the SR. PMID:14623766

  6. The Cl(-) channel blocker niflumic acid releases Ca(2+) from an intracellular store in rat pulmonary artery smooth muscle cells.

    PubMed

    Cruickshank, Stuart F; Baxter, Lynne M; Drummond, Robert M

    2003-12-01

    The effect of the Cl- channel blockers niflumic acid (NFA), 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), and anthracene-9-carboxylic acid (A-9-C), on Ca2+ signalling in rat pulmonary artery smooth muscle cells was examined. Intracellular Ca2+ concentration ([Ca2+]i) was monitored with either fura-2 or fluo-4, and caffeine was used to activate the ryanodine receptor, thereby releasing Ca2+ from the sarcoplasmic reticulum (SR). NFA and NPPB significantly increased basal [Ca2+]i and attenuated the caffeine-induced increase in [Ca2+]i. These Cl- channel blockers also increased the half-time (t1/2) to peak for the caffeine-induced [Ca2+]i transient, and slowed the removal of Ca2+ from the cytosol following application of caffeine. Since DIDS and A-9-C were found to adversely affect fura-2 fluorescence, fluo-4 was used to monitor intracellular Ca2+ in studies involving these Cl- channel blockers. Both DIDS and A-9-C increased basal fluo-4 fluorescence, indicating an increase in intracellular Ca2+, and while DIDS had no significant effect on the t1/2 to peak for the caffeine-induced Ca2+ transient, it was significantly increased by A-9-C. In the absence of extracellular Ca2+, NFA significantly increased basal [Ca2+]i, suggesting that the release of Ca2+ from an intracellular store was responsible for the observed effect. Depleting the SR with the combination of caffeine and cyclopiazonic acid prevented the increase in basal [Ca2+]i induced by NFA. Additionally, incubating the cells with ryanodine also prevented the increase in basal [Ca2+]i induced by NFA. These data show that Cl- channel blockers have marked effects on Ca2+ signalling in pulmonary artery smooth muscle cells. Furthermore, examination of the NFA-induced increase in [Ca2+]i indicates that it is likely due to Ca2+ release from an intracellular store, most probably the SR.

  7. Ligand-Independent Activation of Platelet-Derived Growth Factor Receptor β during Human Immunodeficiency Virus-Transactivator of Transcription and Cocaine-Mediated Smooth Muscle Hyperplasia.

    PubMed

    Dalvi, Pranjali N; Gupta, Vijayalaxmi G; Griffin, Brooke R; O'Brien-Ladner, Amy; Dhillon, Navneet K

    2015-09-01

    Our previous study supports an additive effect of cocaine to human immunodeficiency virus infection in the development of pulmonary arteriopathy through enhancement of proliferation of pulmonary smooth muscle cells (SMCs), while also suggesting involvement of platelet-derived growth factor receptor (PDGFR) activation in the absence of further increase in PDGF-BB ligand. Redox-related signaling pathways have been shown to regulate tyrosine kinase receptors independent of ligand binding, so we hypothesized that simultaneous treatment of SMCs with transactivator of transcription (Tat) and cocaine may be able to indirectly activate PDGFR through modulation of reactive oxygen species (ROS) without the need for PDGF binding. We found that blocking the binding of ligand using suramin or monoclonal IMC-3G3 antibody significantly reduced ligand-induced autophosphorylation of Y1009 without affecting ligand-independent transphosphorylation of Y934 residue on PDGFRβ in human pulmonary arterial SMCs treated with both cocaine and Tat. Combined treatment of human pulmonary arterial SMCs with cocaine and Tat resulted in augmented production of superoxide radicals and hydrogen peroxide when compared with either treatment alone. Inhibition of this ROS generation prevented cocaine- and Tat-mediated Src activation and transphosphorylation of PDGFRβ at Y934 without any changes in phosphorylation of Y1009, in addition to attenuation of smooth muscle hyperplasia. Furthermore, pretreatment with an Src inhibitor, PP2, also suppressed cocaine- and Tat-mediated enhanced Y934 phosphorylation and smooth muscle proliferation. Finally, we report total abrogation of cocaine- and Tat-mediated synergistic increase in cell proliferation on inhibition of both ligand-dependent and ROS/Src-mediated ligand-independent phosphorylation of PDGFRβ.

  8. Caffeine inhibits InsP3 responses and capacitative calcium entry in canine pulmonary arterial smooth muscle cells.

    PubMed

    Hume, Joseph R; McAllister, Claire E; Wilson, Sean M

    2009-01-01

    Caffeine is a well described and characterized ryanodine receptor (RyR) activator. Previous evidence from independent research studies also indicate caffeine inhibits InsP3 receptor functionality, which is important to activation of capacitative Ca2+ entry (CCE) in some cell types. In addition, RyR activation elicits excitatory-coupled Ca2+ entry (ECCE) in skeletal muscle myotubes. Recent studies by our group show that canine pulmonary arterial smooth muscle cells (PASMCs) have functional InsP3 receptors as well as RyRs, and that CCE is dependent on InsP3 receptor activity. The potential for caffeine to activate ECCE as well as inhibit InsP3 receptor function and CCE was examined using fura-2 fluorescent imaging in canine PASMCs. The data show caffeine causes transient as well as sustained cytosolic Ca2+ increases, though this is not due to CCE or ECCE activity as evidenced by a lack of an increase in Mn2+ quench of fura-2. The experiments also show caffeine reversibly inhibits 5-HT elicited-InsP3 mediated Ca2+ responses with an IC50 of 6.87x10(-4) M and 10 mM caffeine fully inhibits CCE. These studies provide the first evidence that caffeine is an inhibitor of InsP3 generated Ca2+ signals and CCE in PASMCs.

  9. Voltage-gated sodium channel expressed in cultured human smooth muscle cells: involvement of SCN9A.

    PubMed

    Jo, Taisuke; Nagata, Taiji; Iida, Haruko; Imuta, Hiroyuki; Iwasawa, Kuniaki; Ma, Ji; Hara, Kei; Omata, Masao; Nagai, Ryozo; Takizawa, Hajime; Nagase, Takahide; Nakajima, Toshiaki

    2004-06-04

    Voltage-gated Na(+) channel (I(Na)) is expressed under culture conditions in human smooth muscle cells (hSMCs) such as coronary myocytes. The aim of this study is to clarify the physiological, pharmacological and molecular characteristics of I(Na) expressed in cultured hSMCs obtained from bronchus, main pulmonary and coronary artery. I(Na), was recorded in these hSMCs and inhibited by tetrodotoxin (TTX) with an IC(50) value of approximately 10 nM. Reverse transcriptase/polymerase chain reaction (RT-PCR) analysis of mRNA showed the prominent expression of transcripts for SCN9A, which was consistent with the results of real-time quantitative RT-PCR. These results provide novel evidence that TTX-sensitive Na(+) channel expressed in cultured hSMCs is mainly composed of Na(v)1.7.

  10. [Pulmonary arterial hypertension associated to human immunodeficiency virus].

    PubMed

    Sandoval-Gutiérrez, José Luis; Santos-Martínez, Luis Efren; Rodríguez-Silverio, Juan; Baranda-Tovar, Francisco Martín; Rivera-Rosales, Rosa María; Flores-Murrieta, Francisco Javier

    2015-01-01

    From the advent of the highly effective antiretroviral treatment, the life expectancy of patients with human immunodeficiency virus has increased significantly. At present, the causes of death are non-infectious complications. Between them, the pulmonary arterial hypertension has a special importance. It is important early detection to establish the therapeutic, with the objective of preventing a fatal outcome to future.

  11. Identification of human pulmonary alkaline phosphatase isoenzymes.

    PubMed

    Capelli, A; Cerutti, C G; Lusuardi, M; Donner, C F

    1997-04-01

    An increase of alkaline phosphatase (ALP) activity has been observed in the bronchoalveolar lavage fluid (BALF) of patients affected by pulmonary fibrosis in chronic interstitial lung disorders. To characterize the ALP isoenzymes in such cases, we used gel filtration, agarose gel electrophoresis, heat and amino acid inhibition assays, wheat-germ agglutinin (WGA) precipitation, and an immunoassay specific for the bone-isoform of ALP. Only one anodic band representing a high-molecular-weight isoform of ALP (Mr approximately 2,000 kDa) was observed on electrophoresis of BALF. The inhibition assay results were consistent for a tissue-nonspecific isoenzyme sensitive to a temperature of 56 degrees C (71.9 +/- 2.5% inhibition) and to homoarginine (65.7 +/- 1.9%), and resistant to L-phenylalanine and L-leucine. Less than 13% of ALP activity was heat-stable. After incubation of BALF specimens with glycosyl-phosphatidylinositol-phospholipase D plus Nonidet P-40, or with phosphatidylinositol-phospholipase C alone, an electrophoretic cathodic band (Mr approximately 220 kDa) appeared near the bone band of a standard serum. With the WGA assay, 84.4 +/- 3.3% of ALP precipitated and the band disappeared. After immunoassay for the bone isoform, a mean of less than 5% enzyme activity was measured. We conclude that the ALP found in BALF is a pulmonary isoform of a tissue nonspecific isoenzyme.

  12. Suppression of Akt1 phosphorylation by adenoviral transfer of the PTEN gene inhibits hypoxia-induced proliferation of rat pulmonary arterial smooth muscle cells

    SciTech Connect

    Luo, Chunxia; Yi, Bin; Bai, Li; Xia, Yongzhi; Wang, Guansong; Qian, Guisheng; Feng, Hua

    2010-07-02

    Recent findings identify the role of proliferation of pulmonary artery smooth muscle cells (PASMCs) in pulmonary vascular remodeling. Phosphoinositide 3 kinase (PI3K) and serine/threonine kinase (Akt) proteins are expressed in vascular smooth muscle cells. In addition, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been identified as a negative regulator of cytokine signaling that inhibits the PI3K-Akt pathway. However, little is known about the role of PTEN/Akt signaling in hypoxia-associated vascular remodeling. In this study, we found that hypoxia-induced the expression of Akt1 mRNA and phosphorylated protein by at least twofold in rat PASMCs. Phospho-PTEN significantly decreased in the nuclei of PASMCs after hypoxic stimulation. After forcing over-expression of PTEN by adenovirus-mediated PTEN (Ad-PTEN) transfection, the expression of phospho-Akt1 was significantly suppressed in PASMCs at all time-points measured. Additionally, we showed here that hypoxia increased proliferation of PASMCs by nearly twofold and over-expression of PTEN significantly inhibited hypoxia-induced PASMCs proliferation. These findings suggest that phospho-PTEN loss in the nuclei of PASMCs under hypoxic conditions may be the major cause of aberrant activation of Akt1 and may, therefore, play an important role in hypoxia-associated pulmonary arterial remodeling. Finally, the fact that transfection with Ad-PTEN inhibits the phosphorylation of Akt1 in PASMCs suggests a potential therapeutic effect on hypoxia-associated pulmonary arterial remodeling.

  13. Hypoxic Pulmonary Vasoconstriction in Humans: Tale or Myth

    PubMed Central

    Hussain, A.; Suleiman, M.S.; George, S.J.; Loubani, M.; Morice, A.

    2017-01-01

    Hypoxic Pulmonary vasoconstriction (HPV) describes the physiological adaptive process of lungs to preserves systemic oxygenation. It has clinical implications in the development of pulmonary hypertension which impacts on outcomes of patients undergoing cardiothoracic surgery. This review examines both acute and chronic hypoxic vasoconstriction focusing on the distinct clinical implications and highlights the role of calcium and mitochondria in acute versus the role of reactive oxygen species and Rho GTPases in chronic HPV. Furthermore it identifies gaps of knowledge and need for further research in humans to clearly define this phenomenon and the underlying mechanism. PMID:28217180

  14. Human insulin microcrystals with lactose carriers for pulmonary delivery.

    PubMed

    Lim, Se-Hwan; Park, Hye Won; Shin, Chang-Hoon; Kwon, Jai-Hyun; Kim, Chan-Wha

    2009-12-01

    Dry powder formulations for pulmonary delivery are attractive because many issues of solubility and stability can be minimized. Human insulin microcrystals with lactose carriers were produced for pulmonary delivery. The average particle diameter was 2.3 microm, with a narrow, monodispersed size distribution. The percentages of high molecular weight proteins (%HMWPs), other insulin-related compounds (%OIRCs), and A-21 desamido insulin (%D(es)) were very low throughout the microcrystal preparation process. Administration of the microcrystal powder by intratracheal insufflation significantly reduced the blood glucose levels of Sprague-Dawley rats. The percent minimum reductions of the blood glucose concentration (%MRBG) produced by the insulin microcrystal powder and by an insulin solution reached 40.4% and 33.4% of the initial glucose levels respectively, and their bioavailability relative to subcutaneous injection (F) was 15% and 10% respectively. These results confirm that the insulin microcrystal powder prepared is suitable for pulmonary delivery in an effective dosage form.

  15. SREBP inhibits VEGF expression in human smooth muscle cells

    SciTech Connect

    Motoyama, Koka; Fukumoto, Shinya . E-mail: sfukumoto@med.osaka-cu.ac.jp; Koyama, Hidenori; Emoto, Masanori; Shimano, Hitoshi; Maemura, Koji; Nishizawa, Yoshiki

    2006-03-31

    Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate expression of genes encoding enzymes for lipid biosynthesis. SREBPs are activated by HMG-CoA reductase inhibitors (statins). Statins have been also reported to suppress vascular endothelial growth factor (VEGF) expression in vascular smooth muscle cells (VSMCs). Therefore, we hypothesized that SREBPs are involved in statin-mediated regulation of VEGF production in VSMCs. SREBP1 was robustly expressed, and was activated by atorvastatin in VSMCs, as demonstrated by increased levels of the mature nuclear form of SREBP1, and increased promoter activities of a reporter containing sterol regulatory elements by atorvastatin. Moreover, overexpression of SREBP1a dose-dependently suppressed VEGF promoter activity. Site-specific mutation or deletion of the proximal Sp1 sites reduced the inhibitory effects of SREBP1a on VEGF promoter activity. These data demonstrated that SREBP1, activated by atorvastatin, suppressed VEGF expression through the indirect interaction with the proximal tandem Sp1 sites in VSMCs.

  16. Cross-talk between p(38)MAPK and G iα in regulating cPLA 2 activity by ET-1 in pulmonary smooth muscle cells.

    PubMed

    Chakraborti, Sajal; Chowdhury, Animesh; Chakraborti, Tapati

    2015-02-01

    Endothelin-1 (ET-1) is known as the most potent vasoconstrictor yet described. Infusion of ET-1 into isolated rabbit lung has been shown to cause pulmonary vasoconstriction with the involvement of arachidonic acid metabolites. Given the potency of arachidonic acid metabolites, the activity of phospholipase A2 must be tightly regulated. Herein, we determined the mechanisms by which ET-1 stimulates cPLA2 activity during ET-1 stimulation of bovine pulmonary artery smooth muscle cells. We demonstrated that (i) treatment of bovine pulmonary artery smooth muscle cells with ET-1 stimulates cPLA2 activity in the cell membrane; (ii) ET-1 caused increase in O 2 (·-) production occurs via NADPH oxidase-dependent mechanism; (iii) ET-1-stimulated NADPH oxidase activity is markedly prevented upon pretreatment with PKC-ζ inhibitor, indicating that PKC-ζ plays a prominent role in this scenario; (iv) ET-1-induced NADPH oxidase-derived O 2 (·-) stimulates an aprotinin sensitive protease activity due to prominent increase in [Ca(2+)]i; (v) the aprotinin sensitive protease plays a pivotal role in activating PKC-α, which in turn phosphorylates p(38)MAPK and subsequently Giα leading to the activation of cPLA2. Taken together, we suggest that cross-talk between p(38)MAPK and Giα with the involvement of PKC-ζ, NADPH oxidase-derived O 2 (·-) , [Ca(2+)]i, aprotinin-sensitive protease and PKC-α play a pivotal role for full activation of cPLA2 during ET-1 stimulation of pulmonary artery smooth muscle cells.

  17. Vascular Remodeling in Pulmonary Hypertension

    PubMed Central

    Shimoda, Larissa A; Laurie, Steven S.

    2013-01-01

    Pulmonary hypertension is a complex, progressive condition arising from a variety of genetic and pathogenic causes. Patients present with a spectrum of histologic and pathophysiological features, likely reflecting the diversity in underlying pathogenesis. It is widely recognized that structural alterations in the vascular wall contribute to all forms of pulmonary hypertension. Features characteristic of the remodeled vasculature in patients with pulmonary hypertension include increased stiffening of the elastic proximal pulmonary arteries, thickening of the intimal and/or medial layer of muscular arteries, development of vaso-occlusive lesions and the appearance of cells expressing smooth muscle specific markers in normally non-muscular small diameter vessels, resulting from proliferation and migration of pulmonary arterial smooth muscle cells and cellular trans-differentiation. The development of several animal models of pulmonary hypertension has provided the means to explore the mechanistic underpinnings of pulmonary vascular remodeling, although none of the experimental models currently used entirely replicates the pulmonary arterial hypertension observed in patients. Herein, we provide an overview of the histological abnormalities observed in humans with pulmonary hypertension and in preclinical models and discuss insights gained regarding several key signaling pathways contributing to the remodeling process. In particular, we will focus on the roles of ion homeostasis, endothelin-1, serotonin, bone morphogenetic proteins, Rho kinase and hypoxia-inducible factor 1 in pulmonary arterial smooth muscle and endothelial cells, highlighting areas of cross-talk between these pathways and potentials for therapeutic targeting. PMID:23334338

  18. Ranolazine inhibits voltage-gated mechanosensitive sodium channels in human colon circular smooth muscle cells.

    PubMed

    Neshatian, Leila; Strege, Peter R; Rhee, Poong-Lyul; Kraichely, Robert E; Mazzone, Amelia; Bernard, Cheryl E; Cima, Robert R; Larson, David W; Dozois, Eric J; Kline, Crystal F; Mohler, Peter J; Beyder, Arthur; Farrugia, Gianrico

    2015-09-15

    Human jejunum smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs) express the SCN5A-encoded voltage-gated, mechanosensitive sodium channel NaV1.5. NaV1.5 contributes to small bowel excitability, and NaV1.5 inhibitor ranolazine produces constipation by an unknown mechanism. We aimed to determine the presence and molecular identity of Na(+) current in the human colon smooth muscle and to examine the effects of ranolazine on Na(+) current, mechanosensitivity, and smooth muscle contractility. Inward currents were recorded by whole cell voltage clamp from freshly dissociated human colon SMCs at rest and with shear stress. SCN5A mRNA and NaV1.5 protein were examined by RT-PCR and Western blots, respectively. Ascending human colon strip contractility was examined in a muscle bath preparation. SCN5A mRNA and NaV1.5 protein were identified in human colon circular muscle. Freshly dissociated human colon SMCs had Na(+) currents (-1.36 ± 0.36 pA/pF), shear stress increased Na(+) peaks by 17.8 ± 1.8% and accelerated the time to peak activation by 0.7 ± 0.3 ms. Ranolazine (50 μM) blocked peak Na(+) current by 43.2 ± 9.3% and inhibited shear sensitivity by 25.2 ± 3.2%. In human ascending colon strips, ranolazine decreased resting tension (31%), reduced the frequency of spontaneous events (68%), and decreased the response to smooth muscle electrical field stimulation (61%). In conclusion, SCN5A-encoded NaV1.5 is found in human colonic circular smooth muscle. Ranolazine blocks both peak amplitude and mechanosensitivity of Na(+) current in human colon SMCs and decreases contractility of human colon muscle strips. Our data provide a likely mechanistic explanation for constipation induced by ranolazine.

  19. Smooth muscle in the wall of the developing human urinary bladder and urethra.

    PubMed Central

    Gilpin, S A; Gosling, J A

    1983-01-01

    A series of human fetal and neonatal specimens ranging in age from the second month of intrauterine development to 4 1/2 years after birth has been examined using histological and histochemical techniques. In both sexes histologically differentiated smooth muscle cells were evident in the bladder wall from the 52 mm crown-rump length stage onwards--urethral smooth muscle was not distinguishable until 119 mm crown-rump length. In addition to relatively late differentiation, urethral smooth muscle was histochemically distinct from the urinary bladder detrusor muscle. Sex differences in the arrangement and innervation of smooth muscle in the proximal urethra have also been observed, and these findings lend support to the presence of a pre-prostatic urethra sphincter. It seems likely that this sphincter acts principally to prevent reflux of ejaculate into the bladder during seminal emission. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:6654742

  20. Pulmonary ultrastructure of the late aspects of human paraquat poisoning.

    PubMed Central

    Dearden, L. C.; Fairshter, R. D.; McRae, D. M.; Smith, W. R.; Glauser, F. L.; Wilson, A. F.

    1978-01-01

    The pulmonary ultrastructure of the late aspects of a case of human paraquat poisoning is investigated and compared with normal human pulmonary ultrastructure. Alveoli in the paraquat patient are numerically reduced in comparison to the control. They are filled with edematous proteinaceous plasma-like fluid containing erythrocytes, macrophages, leukocytes, fibroblast-like cells, platelets, and fibrin. These alveoli are lined by granular pneumocytes. Interstitial areas in the paraquat patient are greatly expanded and there are no alveolar septums. Interstitial areas contain proteinaceous plasma-like material, collagen, fibrin, platelets, mature fibroblasts, plasma cells, many leukocytes, numerous erythrocytes, and capillaries. Capillary permeability seems to be enhanced in the paraquat patient either by vesicles forming transendothelial channels or pores or by disruption of endothelial cells. Images Figure 1 Figure 2 Figures 3-7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:213978

  1. Human pulmonary dirofilariasis coexisting with intercostal neurilemmoma: a case report and literature review.

    PubMed

    Li, Chia-Ying; Chang, Yih-Leong; Lee, Yung-Chie

    2013-10-01

    Human pulmonary dirofilariasis (HPD) is a rare zoonotic infection caused by Dirofilaria immitis. Dogs are the definite hosts and humans are infected occasionally via a vector, generally a mosquito. Most thoracic neurilemmoma arise in the mediastinum and fewer tumors originate peripherally from the intercostal nerves. Most patients with HPD or thoracic neurilemmoma are asymptomatic and these diseases are often discovered incidentally. We present a 53-year-old female who was found to have a pulmonary nodule and a chest wall nodule during a routine health examination. She underwent a video-assisted thoracoscopic surgery (VATS) with partial lung resection and local excision of the chest wall. The pathological examination revealed a coiled, degenerating Dirofilariasis immitis worm surrounded by granulomatous inflammation with caseous necrosis and a neurilemmoma composed of S-100 protein immunoreactive but smooth muscle actin negative spindle cells. Because these diseases are self-limiting and make further treatment unnecessary, video-assisted thoracoscopic surgery (VATS) is considered preferable and less invasive for definitive diagnosis and management.

  2. The Na+/H+ exchanger contributes to increased smooth muscle proliferation and migration in a rat model of pulmonary arterial hypertension.

    PubMed

    Huetsch, John C; Jiang, Haiyang; Larrain, Carolina; Shimoda, Larissa A

    2016-03-01

    Increased muscularity of small pulmonary vessels, involving enhanced proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), is a key component of the vascular remodeling underlying the development of pulmonary hypertension (PH). Stimuli such as growth factors and hypoxia induce PASMC alkalinization, proliferation, and migration through upregulation of the Na(+)/H(+) exchanger (NHE), inhibition of which prevents the development of hypoxia-induced vascular remodeling and PH. We wanted to explore whether NHE was also necessary for pathologic PASMC proliferation and migration in a model of pulmonary arterial hypertension (PAH), a severe form of PH not associated with persistent hypoxia. PASMCs were isolated from rats exposed to SU5416-hypoxia (SuHx) followed by return to normoxia and from vehicle controls. We measured resting intracellular pH (pHi) and NHE activity using the pH-sensitive fluorescent dye BCECF-AM. PASMC proliferation and migration were assessed using BrdU incorporation and transwell filters, respectively. NHE activity was increased in SuHx PASMCs, although resting pHi was unchanged. SuHx PASMCs also exhibited increased proliferation and migration relative to controls, which was attenuated in the setting of pharmacologic inhibition of NHE. Our findings suggest that increased NHE activity contributes to pathologic PASMC function in the SuHx model of PAH, although this effect does not appear to be mediated by global changes in pHi homeostasis.

  3. Primary pulmonary hypertension, Castleman's disease and human herpesvirus-8.

    PubMed

    Bull, T M; Cool, C D; Serls, A E; Rai, P R; Parr, J; Neid, J M; Geraci, M W; Campbell, T B; Voelkel, N F; Badesch, D B

    2003-09-01

    Primary pulmonary hypertension (PPH) and Castleman's disease (CD) are rare conditions infrequently encountered in clinical practice. In this paper, two patients diagnosed with both of these diseases are reported. The authors speculate that rather than being a chance occurrence, these conditions are linked by a common angio-proliferative mechanism. Therefore, an association between infection with the human herpesvirus-8 and the diseases of PPH and CD was sought. Evidence of human herpesvirus-8 infection was found in the lung tissue and, specifically, in the plexiform lesions from one of the patients.

  4. Prostanoid EP1- and TP-receptors involved in the contraction of human pulmonary veins

    PubMed Central

    Walch, Laurence; de Montpreville, Vincent; Brink, Charles; Norel, Xavier

    2001-01-01

    To characterize the prostanoid receptors (TP, FP, EP1 and/or EP3) involved in the vasoconstriction of human pulmonary veins, isolated venous preparations were challenged with different prostanoid-receptor agonists in the absence or presence of selective antagonists. The stable thromboxane A2 mimetic, U46619, was a potent constrictor agonist on human pulmonary veins (pEC50=8.60±0.11 and Emax=4.61±0.46 g; n=15). The affinity values for two selective TP-antagonists (BAY u3405 and GR32191B) versus U46619 were BAY u3405: pA2=8.94±0.23 (n=3) and GR32191B: apparent pKB=8.25±0.34 (n=3), respectively. These results are consistent with the involvement of TP-receptor in the U46619 induced contractions. The two EP1-/EP3- agonists (17-phenyl-PGE2 and sulprostone) induced contraction of human pumonary veins (pEC50=8.56±0.18; Emax=0.56±0.24 g; n=5 and pEC50=7.65±0.13; Emax=1.10±0.12 g; n=14, respectively). The potency ranking for these agonists: 17-phenyl-PGE2>sulprostone suggests the involvement of an EP1-receptor rather than EP3. In addition, the contractions induced by sulprostone, 17-phenyl-PGE2 and the IP-/EP1- agonist (iloprost) were blocked by the DP-/EP1-/EP2-receptor antagonist (AH6809) as well as by the EP1 antagonist (SC19220). PGF2α induced small contractions which were blocked by AH6809 while fluprostenol was ineffective. These results indicate that FP-receptors are not implicated in the contraction of human pulmonary veins. These data suggest that the contractions induced by prostanoids involved TP- and EP1-receptors in human pulmonary venous smooth muscle. PMID:11739243

  5. Model emulates human smooth pursuit system producing zero-latency target tracking.

    PubMed

    Bahill, A T; McDonald, J D

    1983-01-01

    Humans can overcome the 150 ms time delay of the smooth pursuit eye movement system and track smoothly moving visual targets with zero-latency. Our target-selective adaptive control model can also overcome an inherent time delay and produce zero-latency tracking. No other model or man-made system can do this. Our model is physically realizable and physiologically realistic. The technique used in our model should be useful for analyzing other time-delay systems, such as man-machine systems and robots.

  6. [Vascular smooth muscle cells from human umbilical artery undergo osteoblast differentiation and calcification in vitro].

    PubMed

    Guo, Yong Ping; Sun, Ming Shu; Qian, Jia Qi; Ni, Zhao Hui

    2008-04-01

    To research if the vascular smooth muscle cells (VSMCs) from human umbilical artery undergo osteoblast differentiation spontaneously in vitro. The growth curve of vascular smooth muscle cells from human umbilical artery was obtained by MTT method. The course of multicell nodule formation spontaneously by VSMCs was observed morphologically. The apoptosis of VSMCs in the nodules was detected by Hoechst 33258 and TUNEL methods respectively. The expression of alkaline phosphotase in the nodules was detected by immunohistochemical method. And the calcification was studied with transmission electron microscope and by alizarin red S respectively. We found that the umbilical artery smooth muscle cells confluenced after 7 days of passage and exhibited typical "hill and valley" pattern under light microscope. The cells grew into aggregation and formed nodules at the "hill" region with culture-time prolongation. After 4-5 weeks culture, these nodules built up and calcified spontaneously. We also found alkaline phosphotase expression and apoptosis of VSMCs in these nodules at the same time. We conclude that the vascular smooth muscle cells from human umbilical artery just like from aortic artery can undergo osteoblast differentiation spontaneously in vitro, and apoptosis participate this procedure probably.

  7. Smooth versus Textured Surfaces: Feature-Based Category Selectivity in Human Visual Cortex

    PubMed Central

    Tootell, Roger

    2016-01-01

    Abstract In fMRI studies, human lateral occipital (LO) cortex is thought to respond selectively to images of objects, compared with nonobjects. However, it remains unresolved whether all objects evoke equivalent levels of activity in LO, and, if not, which image features produce stronger activation. Here, we used an unbiased parametric texture model to predict preferred versus nonpreferred stimuli in LO. Observation and psychophysical results showed that predicted preferred stimuli (both objects and nonobjects) had smooth (rather than textured) surfaces. These predictions were confirmed using fMRI, for objects and nonobjects. Similar preferences were also found in the fusiform face area (FFA). Consistent with this: (1) FFA and LO responded more strongly to nonfreckled (smooth) faces, compared with otherwise identical freckled (textured) faces; and (2) strong functional connections were found between LO and FFA. Thus, LO and FFA may be part of an information-processing stream distinguished by feature-based category selectivity (smooth > textured). PMID:27699206

  8. A critical role for p130Cas in the progression of pulmonary hypertension in humans and rodents

    PubMed Central

    Tu, Ly; De Man, Frances; Girerd, Barbara; Huertas, Alice; Chaumais, Marie-Camille; Lecerf, Florence; François, Charlène; Perros, Frédéric; Dorfmüller, Peter; Fadel, Elie; Montani, David; Eddahibi, Saadia; Humbert, Marc; Guignabert, Christophe

    2012-01-01

    Rationale Pulmonary arterial hypertension (PAH) is a progressive and fatal disease characterized by pulmonary arterial muscularization due to excessive pulmonary vascular cell proliferation and migration, a phenotype dependent upon growth factors and activation of receptor tyrosine kinases (RTKs). p130Cas is an adaptor protein involved in several cellular signaling pathways that control cell migration, proliferation and survival. Objectives We hypothesized that in experimental and human PAH p130Cas signaling is over-activated, thereby facilitating the intracellular transmission of signal induced by fibroblast growth factor (FGF)-2, epidermal growth factor (EGF), and platelet-derived growth factor (PDGF). Measurements and Main Results In PAH patients, levels of p130Cas protein and/or activity are higher in the serum, in walls of distal pulmonary arteries, in cultured smooth muscle (PA-SMCs) and pulmonary endothelial cells (P-ECs) than controls. These abnormalities in the p130Cas signaling were also found to be in the chronically hypoxic mice and monocrotaline-injected rats as models of human PAH. We next obtained evidence for convergence and amplification of the growth-stimulating effect of EGF, FGF2 and PDGF signaling pathways via p130Cas signaling pathway. Finally, we found that daily treatment with each of the EGF-R inhibitor gefitinib, the FGF-R inhibitor dovitinib and the PDGF-R inhibitor imatinib started 2 weeks after a subcutaneous monocrotaline injection substantially attenuate the abnormal increase in p130cas and ERK1/2 activation and regress established PH. Conclusions Our findings demonstrate that p130Cas signaling plays a critical role in experimental and iPAH by modulating pulmonary vascular cell migration, proliferation and by acting as an amplifier of RTKs downstream signals. PMID:22798315

  9. Characterization of optimal resting tension in human pulmonary arteries

    PubMed Central

    Hussain, Azar; Bennett, Robert T; Chaudhry, Mubarak A; Qadri, Syed S; Cowen, Mike; Morice, Alyn H; Loubani, Mahmoud

    2016-01-01

    AIM To determine the optimum resting tension (ORT) for in vitro human pulmonary artery (PA) ring preparations. METHODS Pulmonary arteries were dissected from disease free sections of the resected lung in the operating theatre and tissue samples were directly sent to the laboratory in Krebs-Henseleit solution (Krebs). The pulmonary arteries were then cut into 2 mm long rings. PA rings were mounted in 25 mL organ baths or 8 mL myograph chambers containing Krebs compound (37 °C, bubbled with 21% O2: 5% CO2) to measure changes in isometric tension. The resting tension was set at 1-gram force (gf) with vessels being left static to equilibrate for duration of one hour. Baseline contractile reactions to 40 mmol/L KCl were obtained from a resting tension of 1 gf. Contractile reactions to 40 mmol/L KCl were then obtained from stepwise increases in resting tension (1.2, 1.4, 1.6, 1.8 and 2.0 gf). RESULTS Twenty PA rings of internal diameter between 2-4 mm were prepared from 4 patients. In human PA rings incrementing the tension during rest stance by 0.6 gf, up to 1.6 gf significantly augmented the 40 mmol/L KCl stimulated tension. Further enhancement of active tension by 0.4 gf, up to 2.0 gf mitigate the 40 mmol/L KCl stimulated reaction. Both Myograph and the organ bath demonstrated identical conclusions, supporting that the radial optimal resting tension for human PA ring was 1.61 g. CONCLUSION The radial optimal resting tension in our experiment is 1.61 gf (15.78 mN) for human PA rings. PMID:27721938

  10. Influence of micropattern width on differentiation of human mesenchymal stem cells to vascular smooth muscle cells.

    PubMed

    Nakamoto, Tomoko; Wang, Xinlong; Kawazoe, Naoki; Chen, Guoping

    2014-10-01

    In recent years, various approaches have been taken to generate functional muscle tissue by tissue engineering. However, in vitro methods to generate smooth muscle with physiologically aligned structure remains limited. In order to mimic the in vivo highly organized structure of smooth muscle cells, we used micropatterning technology for engineering parallel aligned cells. In this study, a gradient micropattern of different width of cell-adhesive polystyrene stripes (5, 10, 20, 40, 60, 80, 100, 200, 400, 600, 800 and 1000μm) was prepared and the effects of micropattern width on human mesenchymal stem cells (hMSCs) orientation, morphology and smooth muscle cell differentiation were investigated. The width of micropattern stripes showed obvious effect on cell orientation, morphology and smooth muscle cell differentiation. The cells showed higher degree of orientation when the micropattern stripes became narrower. Higher expression of calponin and smooth muscle actin was observed among the narrow micropatterns ranging from 200μm to 20μm, compared to the non-patterned area and wide micropattern areas which showed similar levels of expression.

  11. Smooth muscle in the annulus fibrosus of the tympanic membrane in bats, rodents, insectivores, and humans.

    PubMed

    Henson, M M; Madden, V J; Rask-Andersen, H; Henson, O W

    2005-02-01

    The annulus fibrosus and its attachment to the bony tympanic ring were studied in a series of mammals. In the pallid bat, Antrozous pallidus, there is an extensive plexus of large interconnected blood sinuses in the part of the annulus that borders the tympanic bone. The spaces between the sinuses are packed with smooth muscle cells. Most of the cells have a predominately radial orientation; they extend from the bony tympanic sulcus to a dense collagenous matrix (apical zone) where radially oriented fibers of the pars tensa are confluent with the annulus. The muscles and vessels constitute a myovascular zone. A structurally similar myovascular zone is also present in the European hedgehog. In rodents, the annulus lacks the large interconnected blood sinuses but many small vessels are present. Smooth muscle is concentrated in the broad area of attachment of the annulus to the tympanic bone. In the gerbil, smooth muscle seems to be concentrated in the central part of the width of the annulus where it is attached to bone and radiates toward the tympanic membrane. In humans collections of radially oriented smooth muscle cells were found in several locations. The smooth muscle in all species studied appears to form a rim of contractile elements for the pars tensa. This arrangement suggests a role in controlling blood flow and/or creating and maintaining tension on the tympanic membrane.

  12. Pulmonary Tuberculosis in Humanized Mice Infected with HIV-1

    PubMed Central

    Nusbaum, Rebecca J.; Calderon, Veronica E.; Huante, Matthew B.; Sutjita, Putri; Vijayakumar, Sudhamathi; Lancaster, Katrina L.; Hunter, Robert L.; Actor, Jeffrey K.; Cirillo, Jeffrey D.; Aronson, Judith; Gelman, Benjamin B.; Lisinicchia, Joshua G.; Valbuena, Gustavo; Endsley, Janice J.

    2016-01-01

    Co-infection with HIV increases the morbidity and mortality associated with tuberculosis due to multiple factors including a poorly understood microbial synergy. We developed a novel small animal model of co-infection in the humanized mouse to investigate how HIV infection disrupts pulmonary containment of Mtb. Following dual infection, HIV-infected cells were localized to sites of Mtb-driven inflammation and mycobacterial replication in the lung. Consistent with disease in human subjects, we observed increased mycobacterial burden, loss of granuloma structure, and increased progression of TB disease, due to HIV co-infection. Importantly, we observed an HIV-dependent pro-inflammatory cytokine signature (IL-1β, IL-6, TNFα, and IL-8), neutrophil accumulation, and greater lung pathology in the Mtb-co-infected lung. These results suggest that in the early stages of acute co-infection in the humanized mouse, infection with HIV exacerbates the pro-inflammatory response to pulmonary Mtb, leading to poorly formed granulomas, more severe lung pathology, and increased mycobacterial burden and dissemination. PMID:26908312

  13. Pulmonary Tuberculosis in Humanized Mice Infected with HIV-1.

    PubMed

    Nusbaum, Rebecca J; Calderon, Veronica E; Huante, Matthew B; Sutjita, Putri; Vijayakumar, Sudhamathi; Lancaster, Katrina L; Hunter, Robert L; Actor, Jeffrey K; Cirillo, Jeffrey D; Aronson, Judith; Gelman, Benjamin B; Lisinicchia, Joshua G; Valbuena, Gustavo; Endsley, Janice J

    2016-02-24

    Co-infection with HIV increases the morbidity and mortality associated with tuberculosis due to multiple factors including a poorly understood microbial synergy. We developed a novel small animal model of co-infection in the humanized mouse to investigate how HIV infection disrupts pulmonary containment of Mtb. Following dual infection, HIV-infected cells were localized to sites of Mtb-driven inflammation and mycobacterial replication in the lung. Consistent with disease in human subjects, we observed increased mycobacterial burden, loss of granuloma structure, and increased progression of TB disease, due to HIV co-infection. Importantly, we observed an HIV-dependent pro-inflammatory cytokine signature (IL-1β, IL-6, TNFα, and IL-8), neutrophil accumulation, and greater lung pathology in the Mtb-co-infected lung. These results suggest that in the early stages of acute co-infection in the humanized mouse, infection with HIV exacerbates the pro-inflammatory response to pulmonary Mtb, leading to poorly formed granulomas, more severe lung pathology, and increased mycobacterial burden and dissemination.

  14. Biliverdin reductase/bilirubin mediates the anti-apoptotic effect of hypoxia in pulmonary arterial smooth muscle cells through ERK1/2 pathway

    SciTech Connect

    Song, Shasha; Wang, Shuang; Ma, Jun; Yao, Lan; Xing, Hao; Zhang, Lei; Liao, Lin; Zhu, Daling

    2013-08-01

    Inhibition of pulmonary arterial smooth muscle cell (PASMC) apoptosis induced by hypoxia plays an important role in pulmonary arterial remodeling leading to aggravate hypoxic pulmonary arterial hypertension. However, the mechanisms of hypoxia acting on PASMC apoptosis remain exclusive. Biliverdin reductase (BVR) has many essential biologic roles in physiological and pathological processes. Nevertheless, it is unclear whether the hypoxia-induced inhibition on PASMC apoptosis is mediated by BVR. In the present work, we found BVR majorly localized in PASMCs and was up-regulated in levels of protein and mRNA by hypoxia. Then we studied the contribution of BVR to anti-apoptotic response of hypoxia in PASMCs. Our results showed that siBVR, blocking generation of bilirubin, reversed the effect of hypoxia on enhancing cell survival and apoptotic protein (Bcl-2, procasepase-9, procasepase-3) expression, preventing nuclear shrinkage, DNA fragmentation and mitochondrial depolarization in starved PASMCs, which were recovered by exogenous bilirubin. Moreover, the inhibitory effect of bilirubin on PASMC apoptosis under hypoxic condition was blocked by the inhibitor of ERK1/2 pathway. Taken together, our data indicate that BVR contributes to the inhibitory process of hypoxia on PASMC apoptosis, which is mediated by bilirubin through ERK1/2 pathway. Highlights: • BVR expresses in PASMC and is up-regulated by hypoxia in protein and mRNA levels. • BVR/bilirubin contribute to the inhibitive process of hypoxia on PASMC apoptosis. • Bilirubin protects PASMC from apoptosis under hypoxia via ERK1/2 pathway.

  15. Tachyphylaxis to beta-adrenoceptor agonists in human bronchial smooth muscle: studies in vitro.

    PubMed Central

    Davis, C; Conolly, M E

    1980-01-01

    In studies on human isolated peripheral airway smooth muscle; 1 A concentration dependent beta-adrenoceptor tachyphylaxis was observed to isoprenaline. 2 Cross desensitization to other beta-adrenoceptor agonists was demonstrated. 3 The desensitization was reversible with time. Hydrocortisone appeared to accelerate the recovery from the desensitized state. Low concentration isoprenaline (10(-9) mol l-1) prevented recovery whereas cyclohexamide 1.8 x 10(-4) mol l-1 had no noticeable effect on recovery. Continued occupancy of the receptor appears to prevent recovery. The recovery from the desensitized state does not apparently require synthesis of new proteins. 4 Bronchial wall cyclic AMP response to isoprenaline was attenuated after isoprenaline induced desensitization whereas total phosphodiesterase activity of bronchial wall was not altered by desensitization. Thus by exclusion the adenylate cyclase receptor complex may be altered in human peripheral airway smooth muscle beta-adrenoceptor tachyphylaxis. PMID:6108126

  16. Human immunodeficiency virus, herpes virus infections, and pulmonary vascular disease

    PubMed Central

    Flores, Sonia C.; Almodovar, Sharilyn

    2013-01-01

    The following state-of-the-art seminar was delivered as part of the Aspen Lung Conference on Pulmonary Hypertension and Vascular Diseases held in Aspen, Colorado in June 2012. This paper will summarize the lecture and present results from a nonhuman primate model of infection with Simian (Human) Immunodeficiency Virus - nef chimeric virions as well as the idea that polymorphisms in the HIV-1 nef gene may be driving the immune response that results in exuberant inflammation and aberrant endothelial cell (EC) function. We will present data gathered from primary HIV nef isolates where we tested the biological consequences of these polymorphisms and how their presence in human populations may predict patients at risk for developing this disease. In this article, we also discuss how a dysregulated immune system, in conjunction with a viral infection, could contribute to pulmonary arterial hypertension (PAH). Both autoimmune diseases and some viruses are associated with defects in the immune system, primarily in the function of regulatory T cells. These T-cell defects may be a common pathway in the formation of plexiform lesions. Regardless of the route by which viruses may lead to PAH, it is important to recognize their role in this rare disease. PMID:23662195

  17. Effect of miR-23a on anoxia-induced phenotypic transformation of smooth muscle cells of rat pulmonary arteries and regulatory mechanism

    PubMed Central

    Yan, Li; Gao, Haixiang; Li, Chunzhi; Han, Xiaowen; Qi, Xiaoyong

    2017-01-01

    We investigated the possible implication of miR-23a in anoxia-induced phenotypic transformation of the pulmonary arterial smooth muscle and studied the mechanism of upregulation of miR-23a expression in anoxia. The collagenase digestion method was used for preparing rat primary pulmonary artery smooth muscle cell (PASMC) culture. SM-MHC, SM-α-actin, calponin-1 and SM22α protein expression levels were evaluated using western blot analysis after the ASMCs were subjected to anoxia treatment (3% O2). Transfection with miR-23a mimics were conducted when PASMCs were under normoxia and anoxia conditions. EdU staining was used to detect the proliferative activity of PASMCs. Cells were transfected with HIF-1α specific siRNA under anoxia condition. RT-qPCR was used to detect miR-23a expression in PASMCs. Chromatin immunoprecipitation method was employed to verify the binding sites of HIF-1α. The dual-luciferase reporter gene was used to study the role of HIF-1 and its binding sites. Rat hypoxic pulmonary hypertension models were established to study the expression of miR-23a using RT-qPCR method and to verify the expression of miR-23a in the arteriole of the rat pulmonary. Our results showed that compared with normoxia condition, under anoxia condition (3% O2), the expression levels of the contractile phenotype marker proteins decreased significantly after 24 and 48 h. The positive rate of the EdU staining increased significantly and the expression of miR-23a increased. Transfection with miR-23a-mimic downregulated the expression of contractile marker proteins and improved the positive rate of the EdU staining under normoxia. Anoxia and transfection with HIF-1α enhanced the activity of the wild-type Luc-miR-23a-1 (WT) reporter gene. We concluded that miR-23a participated in the anoxia-induced phenotypic transformation of PASMCs. Increased expression of miR-23a under anoxia may primarily be due to miR-23a-1 and miR-23a-3 upregulation. The anoxia-induced upregulation of

  18. Macrophages and smooth muscle cells express lipoprotein lipase in human and rabbit atherosclerotic lesions.

    PubMed Central

    Ylä-Herttuala, S; Lipton, B A; Rosenfeld, M E; Goldberg, I J; Steinberg, D; Witztum, J L

    1991-01-01

    Lipoprotein lipase (LPL; EC 3.1.1.34) may promote atherogenesis by producing remnant lipoproteins on the endothelial surface and by acting on lipoproteins in the artery wall. In vitro, smooth muscle cells and macrophages synthesize LPL, but in human carotid lesions only a few smooth muscle cells were reported to contain LPL protein. Endothelial cells do not synthesize LPL in vitro, but in normal arteries intense immunostaining for LPL is present on the endothelium. We used Northern blot analysis, in situ hybridization, and immunocytochemistry of human and rabbit arteries to determine cellular distribution and the site of the synthesis of LPL in atherosclerotic lesions. Northern blot analysis showed that LPL mRNA was detectable in macrophage-derived foam cells isolated from arterial lesions of "ballooned" cholesterol-fed rabbits. In situ hybridization studies of atherosclerotic lesions with an antisense riboprobe showed a strong hybridization signal for LPL mRNA in some, but not all, lesion macrophages, which were mostly located in the subendothelial and edge areas of the lesions. Also, some smooth muscle cells in lesion areas also expressed LPL mRNA. Immunocytochemistry of frozen sections of rabbit lesions with a monoclonal antibody to human milk LPL showed intense staining for LPL protein in macrophage-rich intimal lesions. The results suggest that lesion macrophages and macrophage-derived foam cells express LPL mRNA and protein. Some smooth muscle cells in the lesion areas also synthesize LPL. These data are consistent with an important role for LPL in atherogenesis. Images PMID:1719546

  19. Long-term expression of human adenosine deaminase in vascular smooth muscle cells of rats: A model for gene therapy

    SciTech Connect

    Lynch, C.M.; Miller, A.D. ); Clowes, M.M.; Osborne, W.R.A.; Clowes, A.W. )

    1992-02-01

    Gene transfer into vascular smooth muscle cells in animals was examined by using recombinant retroviral vectors containing an Escherichia coli {beta}-galactosidase gene or a human adenosine deaminase gene. Direct gene transfer by infusion of virus into rat carotid arteries was not observed. However, gene transfer by infection of smooth muscle cells in culture and seeding of the transduced cells onto arteries that had been denuded of endothelial cells was successful. Potentially therapeutic levels of human adenosine deaminase activity were detected over 6 months of observation, indicating the utility of vascular smooth muscle cells for gene therapy in humans.

  20. Comparison of human bronchiolar smooth muscle responsiveness in vitro with histological signs of inflammation.

    PubMed Central

    de Jongste, J C; Mons, H; Van Strik, R; Bonta, I L; Kerrebijn, K F

    1987-01-01

    A study was carried out to test the hypothesis that chronic inflammation is associated with increased sensitivity or contractility of human airway smooth muscle. Bronchiolar strips from 30 patients, 12 of whom had chronic bronchitis, were examined in the organ bath for their responses to histamine, methacholine, and leukotriene (LT) C4. The same airways were also studied histologically and small airway disease was quantified by subjective grading of the degree of inflammatory cell infiltration, smooth muscle hypertrophy, fibrosis, and goblet cell hyperplasia. The degree of small airway disease varied widely among patients both with and without chronic bronchitis. Multiple regression analysis failed to show increased sensitivity (-log EC50) to histamine, methacholine, or LTC4 in relation to small airway disease. In contrast, the only significant correlations found were between a decreased -log EC50 to histamine and methacholine and an increased small airway disease score. Contractile responses (Tmax) to histamine and methacholine in peripheral airways tended to be higher in patients with chronic bronchitis than in those without. Tmax was not related to small airway disease scores. These results suggest that chronic airway inflammation does not cause in vitro hyperresponsiveness of human small airway smooth muscle. Images PMID:3321543

  1. [High altitude pulmonary edema. An experiment of nature to study the underlying mechanisms of hypoxic pulmonary hypertension and pulmonary edema in humans].

    PubMed

    Schwab, Marcos; Jayet, Pierre-Yves; Allemann, Yves; Sartori, Claudio; Scherrer, Urs

    2007-01-01

    High altitude constitutes an exciting natural laboratory for medical research. Over the past decade, it has become clear that the results of high-altitude research may have important implications not only for the understanding of diseases in the millions of people living permanently at high altitude, but also for the treatment of hypoxemia-related disease states in patients living at low altitude. High-altitude pulmonary edema (HAPE) is a life-threatening condition occurring in predisposed, but otherwise healthy subjects, and, therefore, allows to study underlying mechanisms of pulmonary edema in humans, in the absence of confounding factors. Over the past decade, evidence has accumulated that HAPE results from the conjunction of two major defects, augmented alveolar fluid flooding resulting from exaggerated hypoxic pulmonary hypertension, and impaired alveolar fluid clearance related to defective respiratory transepithelial sodium transport. Here, after a brief presentation of the clinical features of HAPE, we review this novel concept. We provide experimental evidence for the novel concept that impaired pulmonary endothelial and epithelial nitric oxide synthesis and/or bioavailability may represent the central underlying defect predisposing to exaggerated hypoxic pulmonary vasoconstriction and alveolar fluid flooding. We demonstrate that exaggerated pulmonary hypertension, while possibly a condition sine qua non, may not be sufficient to cause HAPE, and how defective alveolar fluid clearance may represent a second important pathogenic mechanism. Finally, we outline how this insight gained from studies in HAPE may be translated into the management of hypoxemia related disease states in general.

  2. Duration of pulmonary function adaptation to ozone in humans

    SciTech Connect

    Kulle, T.J.; Sauder, L.R.; Kerr, H.D.; Farrell, B.P.; Bermel, M.S.; Smith, D.M.

    1982-11-01

    The duration of pulmonary function adaptation subsequent to cessation of a 5-day repeated ozone (O/sub 3/) exposure was studied in 24 nonsmoking human subjects. A three-week, 3 hr/day study ws conducted. The subjects received filtered air on Week 1 and 0.4 ppm O/sub 3/ on Week 2. During Week 3, 13 subjects were re-exposed to O/sub 3/ on Friday and 11 were re-exposed to O/sub 3/ on Tuesday. Spirometric measurements (FVC and FEV/sub 1/) and bronchial reactivity to methacholine showed adapation within 2-3 days of the repeated daily exposures (Week 2). Although the duration of adaptation seen with bronchial reactivity appears longer than 7-days, the FVC and FEV/sub 1/ clearly demonstrated complete loss of adaptation by 7 days, with a trend toward significance by 4 days. We concluded, therefore, the loss of ozone adaptation in pulmonary function is a gradual phenomenon lasting less than 7 days following cessation of repeated daily exposures.

  3. Altered Expression of Human Smooth Muscle Myosin Phosphatase Targeting (MYPT) Isovariants with Pregnancy and Labor

    PubMed Central

    Taggart, Julie; Robson, Stephen; Taggart, Michael

    2016-01-01

    Background Myosin light-chain phosphatase is a trimeric protein that hydrolyses phosphorylated myosin II light chains (MYLII) to cause relaxation in smooth muscle cells including those of the uterus. A major component of the phosphatase is the myosin targeting subunit (MYPT), which directs a catalytic subunit to dephosphorylate MYLII. There are 5 main MYPT family members (MYPT1 (PPP1R12A), MYPT2 (PPP1R12B), MYPT3 (PPP1R16A), myosin binding subunit 85 MBS85 (PPP1R12C) and TIMAP (TGF-beta-inhibited membrane-associated protein (PPP1R16B)). Nitric oxide (NO)-mediated smooth muscle relaxation has in part been attributed to activation of the phosphatase by PKG binding to a leucine zipper (LZ) dimerization domain located at the carboxyl-terminus of PPP1R12A. In animal studies, alternative splicing of PPP1R12A can lead to the inclusion of a 31-nucleotide exonic segment that generates a LZ negative (LZ-) isovariant rendering the phosphatase less sensitive to NO vasodilators and alterations in PPP1R12ALZ- and LZ+ expression have been linked to phenotypic changes in smooth muscle function. Moreover, PPP1R12B and PPP1R12C, but not PPP1R16A or PPP1R16B, have the potential for LZ+/LZ- alternative splicing. Yet, by comparison to animal studies, the information on human MYPT genomic sequences/mRNA expressions is scant. As uterine smooth muscle undergoes substantial remodeling during pregnancy we were interested in establishing the patterns of expression of human MYPT isovariants during this process and also following labor onset as this could have important implications for determining successful pregnancy outcome. Objectives We used cross-species genome alignment, to infer putative human sequences not available in the public domain, and isovariant-specific quantitative PCR, to analyse the expression of mRNA encoding putative LZ+ and LZ- forms of PPP1R12A, PPP1R12B and PPP1R12C as well as canonical PPP1R16A and PPP1R16B genes in human uterine smooth muscle from non

  4. Isolation of vascular smooth muscle antigen-reactive CD4(+)αβTh1 clones that induce pulmonary vasculitis in MRL/Mp-Fas(+/+) mice.

    PubMed

    Fujita, Yoshimasa; Fujii, Takao; Shimizu, Hironori; Sato, Tomomi; Nakamura, Takuji; Iwao, Haruka; Nakajima, Akio; Miki, Miyuki; Sakai, Tomoyuki; Kawanami, Takafumi; Tanaka, Masao; Masaki, Yasufumi; Fukushima, Toshihiro; Okazaki, Toshiro; Umehara, Hisanori; Mimori, Tsuneyo

    2016-05-01

    Here, we established CD4(+)αβTh1 clones specific for rat vascular smooth muscle antigen (VSMAg) that induced vasculitis lesions in the lungs of MRL/Mp-Fas(+/+) mice following adoptive transfer. Six different T cell clones, MV1b1 (Vβ1), MV1b4 (Vβ4), MV1b8.3 (Vβ8.3), MV1b61 (Vβ6), MV1b62 (Vβ6), and MV1b63 (Vβ6), were isolated from the MV1 T cell line from the regional lymph nodes of immunized MRL/Mp-Fas(+/+) mice; the three (Vβ6) clones had unique CDR3 amino acid sequences. Following stimulation with VSMAg-pulsed antigen presenting cells, MV1b61 and MV1b62 failed to secrete interferon-γ and tumor necrosis factor-α, although the other four clones secreted high levels of both cytokines. In adoptive transfer experiments, MV1b61 and MV1b62 did not induce organ involvement including pulmonary vasculitis. In contrast, MV1b1, MV1b4, MV1b8.3, and MV1b63 induced perivascular mononuclear cell infiltration in pulmonary small arteries. These clones may provide useful tools for investigating the underlying mechanisms of vasculitis syndromes and for developing therapeutic strategies.

  5. Knockdown of AMPKα2 Promotes Pulmonary Arterial Smooth Muscle Cells Proliferation via mTOR/Skp2/p27(Kip1) Signaling Pathway.

    PubMed

    Ke, Rui; Liu, Lu; Zhu, Yanting; Li, Shaojun; Xie, Xinming; Li, Fangwei; Song, Yang; Yang, Lan; Gao, Li; Li, Manxiang

    2016-05-31

    It has been shown that activation of adenosine monophosphate-activated protein kinase (AMPK) suppresses proliferation of a variety of tumor cells as well as nonmalignant cells. In this study, we used post-transcriptional gene silencing with small interfering RNA (siRNA) to specifically examine the effect of AMPK on pulmonary arterial smooth muscle cells (PASMCs) proliferation and to further elucidate its underlying molecular mechanisms. Our results showed that knockdown of AMPKα2 promoted primary cultured PASMCs proliferation; this was accompanied with the elevation of phosphorylation of mammalian target of rapamycin (mTOR) and S-phase kinase-associated protein 2 (Skp2) protein level and reduction of p27(Kip1). Importantly, prior silencing of mTOR with siRNA abolished AMPKα2 knockdown-induced Skp2 upregulation, p27(Kip1) reduction as well as PASMCs proliferation. Furthermore, pre-depletion of Skp2 by siRNA also eliminated p27(Kip1) downregulation and PASMCs proliferation caused by AMPKα2 knockdown. Taken together, our study indicates that AMPKα2 isoform plays an important role in regulation of PASMCs proliferation by modulating mTOR/Skp2/p27(Kip1) axis, and suggests that activation of AMPKα2 might have potential value in the prevention and treatment of pulmonary arterial hypertension.

  6. Knockdown of AMPKα2 Promotes Pulmonary Arterial Smooth Muscle Cells Proliferation via mTOR/Skp2/p27Kip1 Signaling Pathway

    PubMed Central

    Ke, Rui; Liu, Lu; Zhu, Yanting; Li, Shaojun; Xie, Xinming; Li, Fangwei; Song, Yang; Yang, Lan; Gao, Li; Li, Manxiang

    2016-01-01

    It has been shown that activation of adenosine monophosphate-activated protein kinase (AMPK) suppresses proliferation of a variety of tumor cells as well as nonmalignant cells. In this study, we used post-transcriptional gene silencing with small interfering RNA (siRNA) to specifically examine the effect of AMPK on pulmonary arterial smooth muscle cells (PASMCs) proliferation and to further elucidate its underlying molecular mechanisms. Our results showed that knockdown of AMPKα2 promoted primary cultured PASMCs proliferation; this was accompanied with the elevation of phosphorylation of mammalian target of rapamycin (mTOR) and S-phase kinase-associated protein 2 (Skp2) protein level and reduction of p27Kip1. Importantly, prior silencing of mTOR with siRNA abolished AMPKα2 knockdown-induced Skp2 upregulation, p27Kip1 reduction as well as PASMCs proliferation. Furthermore, pre-depletion of Skp2 by siRNA also eliminated p27Kip1 downregulation and PASMCs proliferation caused by AMPKα2 knockdown. Taken together, our study indicates that AMPKα2 isoform plays an important role in regulation of PASMCs proliferation by modulating mTOR/Skp2/p27Kip1 axis, and suggests that activation of AMPKα2 might have potential value in the prevention and treatment of pulmonary arterial hypertension. PMID:27258250

  7. Subacute hypoxia suppresses Kv3.4 channel expression and whole-cell K+ currents through endogenous 15-hydroxyeicosatetraenoic acid in pulmonary arterial smooth muscle cells.

    PubMed

    Guo, Lei; Tang, Xiaobo; Tian, Hua; Liu, Ye; Wang, Zhigang; Wu, Hong; Wang, Jing; Guo, Sholi; Zhu, Daling

    2008-06-10

    We have previously reported that subacute hypoxia activates lung 15-lipoxygenase (15-LOX), which catalyzes arachidonic acid to produce 15-HETE, leading to constriction of neonatal rabbit pulmonary arteries. Subacute hypoxia suppresses Kv3.4 channel expression and results in an inhibition of whole-cell K(+) currents (I(K)). Although the Kv channel inhibition is likely to be mediated through 15-HETE, direct evidence is still lacking. To reveal the role of the 15-LOX/15-HETE pathway in the hypoxia-induced down-regulation of Kv3.4 channel expression and inhibition of I(K), we performed studies using 15-LOX blockers, whole-cell patch-clamp, semi-quantitative PCR, ELISA and Western blot analysis. We found that Kv3.4 channel expression at the mRNA and protein levels was greatly up-regulated in pulmonary arterial smooth muscle cells after blockade of 15-LOX by CDC or NDGA. The 15-LOX blockade also partially restored I(K). In comparison, 15-HETE had a stronger effect than 12-HETE on the expression of Kv3.4 channels. 5-HETE had no noticeable effect on Kv3.4 channel expression. These data indicate that the 15-LOX pathway via its metabolite, 15-HETE, seems to play a role in the down-regulation of Kv3.4 expression and I(K) inhibition after subacute hypoxia.

  8. Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells.

    PubMed

    Iyer, Dharini; Gambardella, Laure; Bernard, William G; Serrano, Felipe; Mascetti, Victoria L; Pedersen, Roger A; Talasila, Amarnath; Sinha, Sanjay

    2015-04-15

    The epicardium has emerged as a multipotent cardiovascular progenitor source with therapeutic potential for coronary smooth muscle cell, cardiac fibroblast (CF) and cardiomyocyte regeneration, owing to its fundamental role in heart development and its potential ability to initiate myocardial repair in injured adult tissues. Here, we describe a chemically defined method for generating epicardium and epicardium-derived smooth muscle cells (EPI-SMCs) and CFs from human pluripotent stem cells (HPSCs) through an intermediate lateral plate mesoderm (LM) stage. HPSCs were initially differentiated to LM in the presence of FGF2 and high levels of BMP4. The LM was robustly differentiated to an epicardial lineage by activation of WNT, BMP and retinoic acid signalling pathways. HPSC-derived epicardium displayed enhanced expression of epithelial- and epicardium-specific markers, exhibited morphological features comparable with human foetal epicardial explants and engrafted in the subepicardial space in vivo. The in vitro-derived epicardial cells underwent an epithelial-to-mesenchymal transition when treated with PDGF-BB and TGFβ1, resulting in vascular SMCs that displayed contractile ability in response to vasoconstrictors. Furthermore, the EPI-SMCs displayed low density lipoprotein uptake and effective lowering of lipoprotein levels upon treatment with statins, similar to primary human coronary artery SMCs. Cumulatively, these findings suggest that HPSC-derived epicardium and EPI-SMCs could serve as important tools for studying human cardiogenesis, and as a platform for vascular disease modelling and drug screening.

  9. Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells

    PubMed Central

    Iyer, Dharini; Gambardella, Laure; Bernard, William G.; Serrano, Felipe; Mascetti, Victoria L.; Pedersen, Roger A.; Talasila, Amarnath; Sinha, Sanjay

    2015-01-01

    The epicardium has emerged as a multipotent cardiovascular progenitor source with therapeutic potential for coronary smooth muscle cell, cardiac fibroblast (CF) and cardiomyocyte regeneration, owing to its fundamental role in heart development and its potential ability to initiate myocardial repair in injured adult tissues. Here, we describe a chemically defined method for generating epicardium and epicardium-derived smooth muscle cells (EPI-SMCs) and CFs from human pluripotent stem cells (HPSCs) through an intermediate lateral plate mesoderm (LM) stage. HPSCs were initially differentiated to LM in the presence of FGF2 and high levels of BMP4. The LM was robustly differentiated to an epicardial lineage by activation of WNT, BMP and retinoic acid signalling pathways. HPSC-derived epicardium displayed enhanced expression of epithelial- and epicardium-specific markers, exhibited morphological features comparable with human foetal epicardial explants and engrafted in the subepicardial space in vivo. The in vitro-derived epicardial cells underwent an epithelial-to-mesenchymal transition when treated with PDGF-BB and TGFβ1, resulting in vascular SMCs that displayed contractile ability in response to vasoconstrictors. Furthermore, the EPI-SMCs displayed low density lipoprotein uptake and effective lowering of lipoprotein levels upon treatment with statins, similar to primary human coronary artery SMCs. Cumulatively, these findings suggest that HPSC-derived epicardium and EPI-SMCs could serve as important tools for studying human cardiogenesis, and as a platform for vascular disease modelling and drug screening. PMID:25813541

  10. Sodium tanshinone IIA sulfonate inhibits hypoxia-induced enhancement of SOCE in pulmonary arterial smooth muscle cells via the PKG-PPAR-γ signaling axis.

    PubMed

    Jiang, Qian; Lu, Wenju; Yang, Kai; Hadadi, Cyrus; Fu, Xin; Chen, Yuqin; Yun, Xin; Zhang, Jie; Li, Meichan; Xu, Lei; Tang, Haiyang; Yuan, Jason X-J; Wang, Jian; Sun, Dejun

    2016-07-01

    Our laboratory previously showed that sodium tanshinone IIA sulfonate (STS) inhibited store-operated Ca(2+) entry (SOCE) through store-operated Ca(2+) channels (SOCC) via downregulating the expression of transient receptor potential canonical proteins (TRPC), which contribute to the formation of SOCC (Wang J, Jiang Q, Wan L, Yang K, Zhang Y, Chen Y, Wang E, Lai N, Zhao L, Jiang H, Sun Y, Zhong N, Ran P, Lu W. Am J Respir Cell Mol Biol 48: 125-134, 2013). The detailed molecular mechanisms by which STS inhibits SOCE and downregulates TRPC, however, remain largely unknown. We have previously shown that, under hypoxic conditions, inhibition of protein kinase G (PKG) and peroxisome proliferator-activated receptor-γ (PPAR-γ) signaling axis results in the upregulation of TRPC (Wang J, Yang K, Xu L, Zhang Y, Lai N, Jiang H, Zhang Y, Zhong N, Ran P, Lu W. Am J Respir Cell Mol Biol 49: 231-240, 2013). This suggests that strategies targeting the restoration of this signaling pathway may be an effective treatment strategy for pulmonary hypertension. In this study, our results demonstrated that STS treatment can effectively prevent the hypoxia-mediated inhibition of the PKG-PPAR-γ signaling axis in rat distal pulmonary arterial smooth muscle cells (PASMCs) and distal pulmonary arteries. These effects of STS treatment were blocked by pharmacological inhibition or specific small interfering RNA knockdown of either PKG or PPAR-γ. Moreover, targeted PPAR-γ agonist markedly enhanced the beneficial effects of STS. These results comprehensively suggest that STS treatment can prevent hypoxia-mediated increases in intracellular calcium homeostasis and cell proliferation, by targeting and restoring the hypoxia-inhibited PKG-PPAR-γ signaling pathway in PASMCs.

  11. Capsaicin-induced Ca(2+) signaling is enhanced via upregulated TRPV1 channels in pulmonary artery smooth muscle cells from patients with idiopathic PAH.

    PubMed

    Song, Shanshan; Ayon, Ramon J; Yamamura, Aya; Yamamura, Hisao; Dash, Swetaleena; Babicheva, Aleksandra; Tang, Haiyang; Sun, Xutong; Cordery, Arlette G; Khalpey, Zain; Black, Stephen M; Desai, Ankit A; Rischard, Franz; McDermott, Kimberly M; Garcia, Joe G N; Makino, Ayako; Yuan, Jason X-J

    2017-03-01

    Capsaicin is an active component of chili pepper and a pain relief drug. Capsaicin can activate transient receptor potential vanilloid 1 (TRPV1) channels to increase cytosolic Ca(2+) concentration ([Ca(2+)]cyt). A rise in [Ca(2+)]cyt in pulmonary artery smooth muscle cells (PASMCs) is an important stimulus for pulmonary vasoconstriction and vascular remodeling. In this study, we observed that a capsaicin-induced increase in [Ca(2+)]cyt was significantly enhanced in PASMCs from patients with idiopathic pulmonary arterial hypertension (IPAH) compared with normal PASMCs from healthy donors. In addition, the protein expression level of TRPV1 in IPAH PASMCs was greater than in normal PASMCs. Increasing the temperature from 23 to 43°C, or decreasing the extracellular pH value from 7.4 to 5.9 enhanced capsaicin-induced increases in [Ca(2+)]cyt; the acidity (pH 5.9)- and heat (43°C)-mediated enhancement of capsaicin-induced [Ca(2+)]cyt increases were greater in IPAH PASMCs than in normal PASMCs. Decreasing the extracellular osmotic pressure from 310 to 200 mOsmol/l also increased [Ca(2+)]cyt, and the hypo-osmolarity-induced rise in [Ca(2+)]cyt was greater in IPAH PASMCs than in healthy PASMCs. Inhibition of TRPV1 (with 5'-IRTX or capsazepine) or knockdown of TRPV1 (with short hairpin RNA) attenuated capsaicin-, acidity-, and osmotic stretch-mediated [Ca(2+)]cyt increases in IPAH PASMCs. Capsaicin induced phosphorylation of CREB by raising [Ca(2+)]cyt, and capsaicin-induced CREB phosphorylation were significantly enhanced in IPAH PASMCs compared with normal PASMCs. Pharmacological inhibition and knockdown of TRPV1 attenuated IPAH PASMC proliferation. Taken together, the capsaicin-mediated [Ca(2+)]cyt increase due to upregulated TRPV1 may be a critical pathogenic mechanism that contributes to augmented Ca(2+) influx and excessive PASMC proliferation in patients with IPAH.

  12. Heparin fragments inhibit human vascular smooth muscle cell proliferation in vitro

    SciTech Connect

    Selden, S.C.; Johnson, W.V.; Maciag, T.

    1986-03-01

    The authors have examined the effect of heparin on human abdominal aortic smooth muscle cell growth. Cell proliferation was inhibited by more than 90% at a concentration of 20 ..mu..g/ml in a 12 day growth assay using heparin from Sigma, Upjohn or Calbiochem. Additionally, 200 ..mu..g/ml Upjohn heparin inhibits /sup 3/H-thymidine incorporation by 50% in short term assays using serum or purified platelet-derived growth factor (25-100ng/ml) to initiate the cell cycle. Homogeneous size classes of heparin fragments were prepared by nitrous acid cleavage and BioGel P-10 filtration chromatography. Deca-, octa-, hexa-, tetra-, and di-saccharides inhibited proliferation by 90% at concentrations of 280, 320, 260, 180 and 100 ..mu..g/ml, respectively, in a 12 day growth assay. These data confirm the work of Castellot et.al. and extend the range of inhibitory fragments down to the tetra- and di-saccharide size. These data suggest, therefore, that di-saccharide subunit of heparin is sufficient to inhibit vascular smooth muscle cell proliferation. The authors are now examining the role of the anhydromannose moiety on the reducing end of the nitrous acid generated fragments as a possible mediator of heparin-induced inhibition of vascular smooth muscle cell proliferation.

  13. Matrix metalloproteinase expression and activity in human airway smooth muscle cells

    PubMed Central

    Elshaw, Shona R; Henderson, Neil; Knox, Alan J; Watson, Susan A; Buttle, David J; Johnson, Simon R

    2004-01-01

    Airway remodelling is a feature of chronic asthma comprising smooth muscle hypertrophy and deposition of extracellular matrix (ECM) proteins. Matrix metalloproteinases (MMPs) breakdown ECM, are involved in tissue remodelling and have been implicated in airway remodelling. Although mesenchymal cells are an important source of MMPs, little data are available on airway smooth muscle (ASM) derived MMPs. We therefore investigated MMP and tissue inhibitor of metalloproteinase (TIMP) production and activity in human ASM cells.MMPs and TIMPs were examined using quantitative real-time RT–PCR, Western blotting, zymography and a quench fluorescence (QF) assay of total MMP activity.The most abundant MMPs were pro-MMP-2, pro- MMP-3, active MMP-3 and MT1-MMP. TIMP-1 and TIMP-2 expression was low in cell lysates but high in conditioned medium. High TIMP secretion was confirmed by the ability of ASM-conditioned medium to inhibit recombinant MMP-2 in a QF assay. Thrombin increased MMP activity by activation of pro-MMP-2 independent of the conventional smooth muscle thrombin receptors PAR 1 and 4.In conclusion, ASM cells express pro-MMP-2, pro and active MMP-3, MMP-9 and MT1-MMP. Unstimulated cells secrete excess TIMP 1 and 2, preventing proteolytic activity. MMP-2 can be activated by thrombin which may contribute to airway remodelling. PMID:15265805

  14. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (P<0.01). A 50% increase in FGF-2 content versus control (P<0.01) was found in the pericellular fraction (extracted by heparin treatment). Furthermore, a significant decrease in FGF-2 was detected in the cell lysate, indicating that FGF-2 was released from inside the cell. Cell permeability studies with fluorescent dextran were performed to examine whether transient membrane disruption caused FGF-2 release. Flow cytometry detected a 50% increase in mean fluorescence of cells exposed to 25 dyne/cm(2) versus control cells. This indicates that the observed FGF-2 release from human aortic smooth muscle cells is likely due to transient membrane disruption on initiation of flow.

  15. Applying cybernetic technology to diagnose human pulmonary sounds.

    PubMed

    Chen, Mei-Yung; Chou, Cheng-Han

    2014-06-01

    Chest auscultation is a crucial and efficient method for diagnosing lung disease; however, it is a subjective process that relies on physician experience and the ability to differentiate between various sound patterns. Because the physiological signals composed of heart sounds and pulmonary sounds (PSs) are greater than 120 Hz and the human ear is not sensitive to low frequencies, successfully making diagnostic classifications is difficult. To solve this problem, we constructed various PS recognition systems for classifying six PS classes: vesicular breath sounds, bronchial breath sounds, tracheal breath sounds, crackles, wheezes, and stridor sounds. First, we used a piezoelectric microphone and data acquisition card to acquire PS signals and perform signal preprocessing. A wavelet transform was used for feature extraction, and the PS signals were decomposed into frequency subbands. Using a statistical method, we extracted 17 features that were used as the input vectors of a neural network. We proposed a 2-stage classifier combined with a back-propagation (BP) neural network and learning vector quantization (LVQ) neural network, which improves classification accuracy by using a haploid neural network. The receiver operating characteristic (ROC) curve verifies the high performance level of the neural network. To expand traditional auscultation methods, we constructed various PS diagnostic systems that can correctly classify the six common PSs. The proposed device overcomes the lack of human sensitivity to low-frequency sounds and various PS waves, characteristic values, and a spectral analysis charts are provided to elucidate the design of the human-machine interface.

  16. An electrophysiological study of the smooth muscle of the human colon.

    PubMed Central

    Kirk, D.

    1981-01-01

    Electrical recordings were made in vitro from preparations of human colonic smooth muscle from surgically resected specimens. The behaviour of the taenia consisted of regular spike action potentials based on a slow wave rhythm (22 +/- 5 c.p.m.), with tetanic contractions of the muscle. The actions of cholinergic drugs were studied and experiments performed to investigate the mechanism of the action potentials. The circular muscle produced clusters of spikes with solitary contractions. The differences between the two muscle layers may be of relevance to understanding the colonic electromyogram as recorded in vivo. PMID:7294682

  17. Remeshed smoothed particle hydrodynamics simulation of the mechanical behavior of human organs.

    PubMed

    Hieber, Simone E; Walther, Jens H; Koumoutsakos, Petros

    2004-01-01

    In computer aided surgery the accurate simulation of the mechanical behavior of human organs is essential for the development of surgical simulators. In this paper we introduce particle based simulations of two different human organ materials modeled as linear viscoelastic solids. The constitutive equations for the material behavior are discretized using a particle approach based on the Smoothed Particle Hydrodynamics (SPH) method while the body surface is tracked using level sets. A key aspect of this approach is its flexibility which allows the simulation of complex time varying topologies with large deformations. The accuracy of the original formulation is significantly enhanced by using a particle reinitialization technique resulting in remeshed Smoothed Particle Hydrodynamics (rSPH). The mechanical parameters of the systems used in the simulations are derived from experimental measurements on human cadaver organs. We compare the mechanical behavior of liver- and kidney-like materials based on the dynamic simulations of a tensile test case. Moreover, we present a particle based reconstruction of the liver topology and its strain distribution under a small local load. Finally, we demonstrate a unified formulation of fluid structure interaction based on particle methods.

  18. Copper dependence of angioproliferation in pulmonary arterial hypertension in rats and humans.

    PubMed

    Bogaard, Harm J; Mizuno, Shiro; Guignabert, Christophe; Al Hussaini, Aysar A; Farkas, Daniela; Ruiter, Gerrina; Kraskauskas, Donatas; Fadel, Elie; Allegood, Jeremy C; Humbert, Marc; Vonk Noordegraaf, Anton; Spiegel, Sarah; Farkas, Laszlo; Voelkel, Norbert F

    2012-05-01

    Obliteration of the vascular lumen by endothelial cell growth is a hallmark of many forms of severe pulmonary arterial hypertension. Copper plays a significant role in the control of endothelial cell proliferation in cancer and wound-healing. We sought to determine whether angioproliferation in rats with experimental pulmonary arterial hypertension and pulmonary microvascular endothelial cell proliferation in humans depend on the proangiogenic action of copper. A copper-depleted diet prevented, and copper chelation with tetrathiomolybdate reversed, the development of severe experimental pulmonary arterial hypertension. The copper chelation-induced reopening of obliterated vessels was caused by caspase-independent apoptosis, reduced vessel wall cell proliferation, and a normalization of vessel wall structure. No evidence was found for a role of super oxide-1 inhibition or lysyl-oxidase-1 inhibition in the reversal of angioproliferation. Tetrathiomolybdate inhibited the proliferation of human pulmonary microvascular endothelial cells, isolated from explanted lungs from control subjects and patients with pulmonary arterial hypertension. These data suggest that the inhibition of endothelial cell proliferation by a copper-restricting strategy could be explored as a new therapeutic approach in pulmonary arterial hypertension. It remains to be determined, however, whether potential toxicity to the right ventricle is offset by the beneficial pulmonary vascular effects of antiangiogenic treatment in patients with pulmonary arterial hypertension.

  19. Prostanoid receptors mediating contraction in rat, macaque and human bladder smooth muscle in vitro.

    PubMed

    Root, James A; Davey, Dorren A; Af Forselles, Kerry J

    2015-12-15

    Selective prostaglandin EP1 antagonists have been suggested for the treatment of bladder dysfunction. This study assessed the contractile prostanoid receptor subtypes in human and non-human bladder in vitro. Classical tissue bath studies were conducted using bladder strips exposed to prostanoid agonists and antagonists. Prostaglandin E2 (PGE2) contracted rat, macaque and human bladder smooth muscle strips (pEC50 7.91±0.06 (n=7), 6.40±0.13 (n=7), and 6.07±0.11 (n=5), respectively). The EP1 receptor antagonist, PF2907617 (300nM), caused a rightward shift of the PGE2 concentration-response curve in the rat bladder only (pKB 8.40±0.15, n=3). PGE2 responses in rat and macaque bladders, but not human, were antagonised by the EP3 antagonist CJ24979 (1µM). Sulprostone, a mixed EP1/EP3/FP receptor agonist, induced potent contractions of rat bladder muscle (pEC50 7.94±0.31, n=6). The FP receptor agonist, prostaglandin F2α (PGF2α), induced bladder contraction in all species tested, but with a lower potency in rat. The selective FP receptor agonist latanoprost caused potent contractions of macaque and human bladder strips only. SQ29548, a selective TP antagonist, and GW848687X, a mixed EP1/TP antagonist caused rightward shifts of the concentration-response curves to the selective TP agonist, U46619 (pKB estimates 8.53±0.07 and 7.56±0.06, n=3, respectively). Responses to U46619 were absent in rat preparations. These data suggest significant species differences exist in bladder contractile prostanoid receptor subtypes. We conclude that the EP1 subtype does not represent the best approach to the clinical treatment of bladder disorders targeting inhibition of smooth muscle contraction.

  20. The 5-hydroxytryptamine transporter is functional in human coronary artery smooth muscle cells proliferation and is regulated by Interleukin-1 beta

    PubMed Central

    Wang, Qing-Jie; Wang, Dong; Tang, Cheng-Chun

    2015-01-01

    Abnormal human coronary artery smooth muscle cells (hCASMCs) proliferation and migration are key factors in coronary artery restenosis after percutaneous coronary intervention. Platelets release 5-hydroxytryptamine (5-HT), which is a strong mitogen for pulmonary artery smooth muscle cells proliferation and migration. Here, we investigated the effects of 5-HT and role of 5-HT transporter (5-HTT) on hCASMCs proliferation and migration. The 5-HT (10-6-10-5 mol/l) significantly increased hCASMCs proliferation and migration, and these effects were inhibited by fluoxetine (10-5 mol/l) and citalopram (10-6 mol/l), two 5-HTT blocker. Overexpression in hCASMCs enhanced 5-HT induced cells proliferation and migration. The 5-HTT and interleukin-1 beta (IL-1β) expression were increased in rat balloon injury carotid arteries. Treatment with IL-1β (10 ng/ml, 3d) upregulates 5-HTT expression in hCASMCs and increased 5-HT induced currents in Human Embryonic Kidney 293-5-HTT cells. PMID:26221231

  1. Real-time imaging of ATP release induced by mechanical stretch in human airway smooth muscle cells.

    PubMed

    Takahara, Norihiro; Ito, Satoru; Furuya, Kishio; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-12-01

    Airway smooth muscle (ASM) cells within the airway walls are continually exposed to mechanical stimuli, and exhibit various functions in response to these mechanical stresses. ATP acts as an extracellular mediator in the airway. Moreover, extracellular ATP is considered to play an important role in the pathophysiology of asthma and chronic obstructive pulmonary disease. However, it is not known whether ASM cells are cellular sources of ATP secretion in the airway. We therefore investigated whether mechanical stretch induces ATP release from ASM cells. Mechanical stretch was applied to primary human ASM cells cultured on a silicone chamber coated with type I collagen using a stretching apparatus. Concentrations of ATP in cell culture supernatants measured by luciferin-luciferase bioluminescence were significantly elevated by cyclic stretch (12 and 20% strain). We further visualized the stretch-induced ATP release from the cells in real time using a luminescence imaging system, while acquiring differential interference contrast cell images with infrared optics. Immediately after a single uniaxial stretch for 1 second, strong ATP signals were produced by a certain population of cells and spread to surrounding spaces. The cyclic stretch-induced ATP release was significantly reduced by inhibitors of Ca(2+)-dependent vesicular exocytosis, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester, monensin, N-ethylmaleimide, and bafilomycin. In contrast, the stretch-induced ATP release was not inhibited by a hemichannel blocker, carbenoxolone, or blockade of transient receptor potential vanilloid 4 by short interfering RNA transfection or ruthenium red. These findings reveal a novel property of ASM cells: mechanically induced ATP release may be a cellular source of ATP in the airway.

  2. Expression of smooth muscle-specific proteins in myoepithelium and stromal myofibroblasts of normal and malignant human breast tissue.

    PubMed Central

    Lazard, D; Sastre, X; Frid, M G; Glukhova, M A; Thiery, J P; Koteliansky, V E

    1993-01-01

    The expression of several differentiation markers in normal human mammary gland myoepithelium and in certain stromal fibroblasts ("myofibroblasts") associated with breast carcinomas was studied by immunofluorescence microscopy of frozen sections. Several antibodies to smooth muscle-specific proteins (smooth muscle alpha-actin, smooth muscle myosin heavy chains, calponin, alpha 1-integrin, and high molecular weight caldesmon) and to epithelial-specific proteins (cytokeratins, E-cadherin, and desmoplakin) were used to show that myoepithelial cells concomitantly express epithelial and smooth muscle markers whereas adjacent luminal cells express only epithelial markers. The same antibodies were used to establish that stromal myofibroblasts exhibit smooth muscle phenotypic properties characterized by the expression of all the smooth muscle markers examined except for high molecular weight caldesmon. In addition, both myoepithelium and myofibroblasts show a significant degree of heterogeneity in smooth muscle protein expression. Thus, myoepithelial cells and stromal myofibroblasts are epithelial and mesenchymal cells, respectively, which coordinately express a set of smooth muscle markers while maintaining their specific original features. The dual nature of myoepithelial cells and the phenotypic transition of fibroblasts to myofibroblasts are examples of the plasticity of the differentiated cell phenotype. Images PMID:8430113

  3. Regulatory mechanism of human vascular smooth muscle cell phenotypic transformation induced by NELIN

    PubMed Central

    PEI, CHANGAN; QIN, SHIYONG; WANG, MINGHAI; ZHANG, SHUGUANG

    2015-01-01

    Vascular disorders, including hypertension, atherosclerosis and restenosis, arise from dysregulation of vascular smooth muscle cell (VSMC) differentiation, which can be controlled by regulatory factors. The present study investigated the regulatory mechanism of the phenotypic transformation of human VSMCs by NELIN in order to evaluate its potential as a preventive and therapeutic of vascular disorders. An in vitro model of NELIN-overexpressing VSMCs was prepared by transfection with a lentiviral (LV) vector (NELIN-VSMCs) and NELIN was slienced using an a lentiviral vector with small interfering (si)RNA in another group (LV-NELIN-siRNA-VSMCs). The effects of NELIN overexpression or knockdown on the phenotypic transformation of human VSMCs were observed, and its regulatory mechanism was studied. Compared with the control group, cells in the NELIN-VSMCs group presented a contractile phenotype with a significant increase of NELIN mRNA, NELIN protein, smooth muscle (SM)α-actin and total Ras homolog gene family member A (RhoA) protein expression. The intra-nuclear translocation of SMα-actin-serum response factor (SMα-actin-SRF) occurred in these cells simultaneously. Following exposure to Rho kinsase inhibitor Y-27632, SRF and SMα-actin expression decreased. However, cells in the LV-NELIN-siRNA-VSMCs group presented a synthetic phenotype, and the expression of NELIN mRNA, NELIN protein, SMα-actin protein and total RhoA protein was decreased. The occurrence of SRF extra-nuclear translocation was observed. In conclusion, the present study suggested that NELIN was able to activate regulatory factors of SMα-actin, RhoA and SRF successively in human VSMCs cultured in vitro. Furthermore, NELIN-induced phenotypic transformation of human VSMCs was regulated via the RhoA/SRF signaling pathway. The results of the present study provide a foundation for the use of NELIN in preventive and therapeutic treatment of vascular remodeling diseases, including varicosity and

  4. Mechanism by which nuclear factor-kappa beta (NF-kB) regulates ovine fetal pulmonary vascular smooth muscle cell proliferation.

    PubMed

    Ogbozor, Uchenna D; Opene, Michael; Renteria, Lissette S; McBride, Shaemion; Ibe, Basil O

    2015-09-01

    Platelet activating factor (PAF) modulates ovine fetal pulmonary hemodynamic. PAF acts through its receptors (PAFR) in pulmonary vascular smooth muscle cells (PVSMC) to phosphorylate and induce nuclear translocation of NF-kB p65 leading to PVSMC proliferation. However, the interaction of NF-kB p65 and PAF in the nuclear domain to effect PVSMC cell growth is not clearly defined. We used siRNA-dependent translation initiation arrest to study a mechanism by which NF-kB p65 regulates PAF stimulation of PVSMC proliferation. Our hypotheses are: (a) PAF induces NF-kB p65 DNA binding and (b) NF-kB p65 siRNA attenuates PAF stimulation of PVSMC proliferation. For DNA binding, cells were fed 10 nM PAF with and without PAFR antagonists WEB 2170, CV 3988 or BN 52021 and incubated for 12 h. DNA binding was measured by specific ELISA. For NF-kB p65 siRNA effect, starved cells transfected with the siRNA were incubated for 24 h with and without 10 nM PAF. Cell proliferation was measured by DNA synthesis while expression of NF-kB p65 and PAFR protein was measured by Western blotting. In both studies, the effect of 10% FBS alone was used as the positive control. In general, PAF stimulated DNA binding which was inhibited by PAFR antagonists. siRNAs to NF-kB p65 and PAFR significantly attenuated cell proliferation compared to 10% FBS and PAF effect. Inclusion of PAF in siRNA-treated cells did not reverse inhibitory effect of NF-kB p65 siRNA on DNA synthesis. PAFR expression was inhibited in siRNA-treated cells. These data show that PAF-stimulation of PVSMC proliferation occurs via a PAFR-NF-kB p65 linked pathway.

  5. MEF2C-MYOCD and Leiomodin1 Suppression by miRNA-214 Promotes Smooth Muscle Cell Phenotype Switching in Pulmonary Arterial Hypertension

    PubMed Central

    Sahoo, Sanghamitra; Meijles, Daniel N.; Al Ghouleh, Imad; Tandon, Manuj; Cifuentes-Pagano, Eugenia; Sembrat, John; Rojas, Mauricio; Goncharova, Elena; Pagano, Patrick J.

    2016-01-01

    Background Vascular hyperproliferative disorders are characterized by excessive smooth muscle cell (SMC) proliferation leading to vessel remodeling and occlusion. In pulmonary arterial hypertension (PAH), SMC phenotype switching from a terminally differentiated contractile to synthetic state is gaining traction as our understanding of the disease progression improves. While maintenance of SMC contractile phenotype is reportedly orchestrated by a MEF2C-myocardin (MYOCD) interplay, little is known regarding molecular control at this nexus. Moreover, the burgeoning interest in microRNAs (miRs) provides the basis for exploring their modulation of MEF2C-MYOCD signaling, and in turn, a pro-proliferative, synthetic SMC phenotype. We hypothesized that suppression of SMC contractile phenotype in pulmonary hypertension is mediated by miR-214 via repression of the MEF2C-MYOCD-leiomodin1 (LMOD1) signaling axis. Methods and Results In SMCs isolated from a PAH patient cohort and commercially obtained hPASMCs exposed to hypoxia, miR-214 expression was monitored by qRT-PCR. miR-214 was upregulated in PAH- vs. control subject hPASMCs as well as in commercially obtained hPASMCs exposed to hypoxia. These increases in miR-214 were paralleled by MEF2C, MYOCD and SMC contractile protein downregulation. Of these, LMOD1 and MEF2C were directly targeted by the miR. Mir-214 overexpression mimicked the PAH profile, downregulating MEF2C and LMOD1. AntagomiR-214 abrogated hypoxia-induced suppression of the contractile phenotype and its attendant proliferation. Anti-miR-214 also restored PAH-PASMCs to a contractile phenotype seen during vascular homeostasis. Conclusions Our findings illustrate a key role for miR-214 in modulation of MEF2C-MYOCD-LMOD1 signaling and suggest that an antagonist of miR-214 could mitigate SMC phenotype changes and proliferation in vascular hyperproliferative disorders including PAH. PMID:27144530

  6. Estrogen effects on human airway smooth muscle involve cAMP and protein kinase A.

    PubMed

    Townsend, Elizabeth A; Sathish, Venkatachalem; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S

    2012-11-15

    Clinically observed differences in airway reactivity and asthma exacerbations in women at different life stages suggest a role for sex steroids in modulating airway function although their targets and mechanisms of action are still being explored. We have previously shown that clinically relevant concentrations of exogenous estrogen acutely decrease intracellular calcium ([Ca(2+)](i)) in human airway smooth muscle (ASM), thereby facilitating bronchodilation. In this study, we hypothesized that estrogens modulate cyclic nucleotide regulation, resulting in decreased [Ca(2+)](i) in human ASM. In Fura-2-loaded human ASM cells, 1 nM 17β-estradiol (E(2)) potentiated the inhibitory effect of the β-adrenoceptor (β-AR) agonist isoproterenol (ISO; 100 nM) on histamine-mediated Ca(2+) entry. Inhibition of protein kinase A (PKA) activity (KT5720; 100 nM) attenuated E(2) effects on [Ca(2+)](i). Acute treatment with E(2) increased cAMP levels in ASM cells comparable to that of ISO (100 pM). In acetylcholine-contracted airways from female guinea pigs or female humans, E(2) potentiated ISO-induced relaxation. These novel data suggest that, in human ASM, physiologically relevant concentrations of estrogens act via estrogen receptors (ERs) and the cAMP pathway to nongenomically reduce [Ca(2+)](i), thus promoting bronchodilation. Activation of ERs may be a novel adjunct therapeutic avenue in reactive airway diseases in combination with established cAMP-activating therapies such as β(2)-agonists.

  7. Bioengineering functional human sphincteric and non-sphincteric gastrointestinal smooth muscle constructs.

    PubMed

    Rego, Stephen L; Zakhem, Elie; Orlando, Giuseppe; Bitar, Khalil N

    2016-04-15

    Digestion and motility of luminal content through the gastrointestinal (GI) tract are achieved by cooperation between distinct cell types. Much of the 3 dimensional (3D) in vitro modeling used to study the GI physiology and disease focus solely on epithelial cells and not smooth muscle cells (SMCs). SMCs of the gut function either to propel and mix luminal contents (phasic; non-sphincteric) or to act as barriers to prevent the movement of luminal materials (tonic; sphincteric). Motility disorders including pyloric stenosis and chronic intestinal pseudoobstruction (CIPO) affect sphincteric and non-sphincteric SMCs, respectively. Bioengineering offers a useful tool to develop functional GI tissue mimics that possess similar characteristics to native tissue. The objective of this study was to bioengineer 3D human pyloric sphincter and small intestinal (SI) constructs in vitro that recapitulate the contractile phenotypes of sphincteric and non-sphincteric human GI SMCs. Bioengineered 3D human pylorus and circular SI SMC constructs were developed and displayed a contractile phenotype. Constructs composed of human pylorus SMCs displayed tonic SMC characteristics, including generation of basal tone, at higher levels than SI SMC constructs which is similar to what is seen in native tissue. Both constructs contracted in response to potassium chloride (KCl) and acetylcholine (ACh) and relaxed in response to vasoactive intestinal peptide (VIP). These studies provide the first bioengineered human pylorus constructs that maintain a sphincteric phenotype. These bioengineered constructs provide appropriate models to study motility disorders of the gut or replacement tissues for various GI organs.

  8. Human Regional Pulmonary Gas Exchange with Xenon Polarization Transfer (XTC)

    NASA Astrophysics Data System (ADS)

    Muradian, Iga; Butler, James; Hrovat, Mirko; Topulos, George; Hersman, Elizabeth; Ruset, Iulian; Covrig, Silviu; Frederick, Eric; Ketel, Stephen; Hersman, F. W.; Patz, Samuel

    2007-03-01

    Xenon Transfer Contrast (XTC) is an existing imaging method (Ruppert et al, Magn Reson Med, 51:676-687, 2004) that measures the fraction F of ^129Xe magnetization that diffuses from alveolar gas spaces to septal parenchymal tissue in lungs in a specified exchange time. As previously implemented, XTC is a 2-breath method and has been demonstrated in anesthetized animals. To use XTC in humans and to avoid issues associated with obtaining identical gas volumes on subsequent breath-hold experiments as well as precise image registration in post-processing, a single breath XTC method was developed that acquires three consecutive gradient echo images in an 8s acquisition. We report here initial measurements of the mean and variance of F for 5 normal healthy subjects as well as 7 asymptomatic smokers. The experiments were performed at two lung volumes (˜45 and 65% of TLC). We found that both the mean and variance of F increased with smoking history. In comparison, standard pulmonary function tests such as DLCO FEV1 showed no correlation with smoking history.

  9. Insulin-like growth factor I and protein kinase C activation stimulate pulmonary artery smooth muscle cell proliferation through separate but synergistic pathways.

    PubMed

    Dempsey, E C; Stenmark, K R; McMurtry, I F; O'Brien, R F; Voelkel, N F; Badesch, D B

    1990-07-01

    Smooth muscle cell (SMC) hyperplasia is an important component of vascular remodeling in chronic hypoxic pulmonary hypertension. The mechanisms underlying SMC proliferation in the remodeling process are poorly understood, but may involve insulin-like growth factor I (IGF-I). This study investigates the potential proliferative effects of IGF-I on SMC cultured from the pulmonary arteries (PA) of neonatal calves. We hypothesized that IGF-I stimulates PA SMC proliferation through a protein kinase C (PKC)-independent pathway, but that PKC activation would augment this proliferative response. Incorporation of 3H-thymidine was used as an index of cellular proliferation, and was correlated with subsequent changes in cell counts. Under serum-free conditions, IGF-I (100 ng/ml) induced a 6-fold increase in thymidine incorporation by quiescent PA SMC. This stimulation was not blocked by dihydrosphingosine, an inhibitor of PKC activation. Phorbol myristate acetate (PMA) (1 nM), a membrane-permeable PKC activator, induced a 12-fold increase in thymidine incorporation which was 70% inhibited by dihydrosphingosine. Co-incubation with IGF-I and PMA caused a 60-fold increase in thymidine incorporation, which was 30% inhibited by dihydrosphingosine. This synergistic increase in thymidine incorporation was associated with a subsequent significant increase in cell number. PKC-downregulated cells (1,000 nM PMA x 30 hr) proliferated in response to IGF-I but not PMA, and did not demonstrate synergism with the combination of IGF-I and PMA. The threshold concentrations of IGF-I and PMA for synergism were approximately 1 ng/ml and 1 pM, respectively. We conclude that IGF-I stimulates neonatal PA SMC proliferation via a PKC-independent pathway, and that trace amounts of PKC activators are capable of synergistically augmenting this response. We speculate that the synergistic stimulation of SMC proliferation by IGF-I and PKC activators may play an important role in hypertensive pulmonary

  10. Differentiation of Human Induced-Pluripotent Stem Cells into Smooth-Muscle Cells: Two Novel Protocols

    PubMed Central

    Yang, Libang; Geng, Zhaohui; Nickel, Thomas; Johnson, Caitlin; Gao, Lin; Dutton, James; Hou, Cody; Zhang, Jianyi

    2016-01-01

    Conventional protocols for differentiating human induced-pluripotent stem cells (hiPSCs) into smooth-muscle cells (SMCs) can be inefficient and generally fail to yield cells with a specific SMC phenotype (i.e., contractile or synthetic SMCs). Here, we present two novel hiPSC-SMC differentiation protocols that yield SMCs with predominantly contractile or synthetic phenotypes. Flow cytometry analyses of smooth-muscle actin (SMA) expression indicated that ~45% of the cells obtained with each protocol assumed an SMC phenotype, and that the populations could be purified to ~95% via metabolic selection. Assessments of cellular mRNA and/or protein levels indicated that SMA, myosin heavy chain II, collagen 1, calponin, transgelin, connexin 43, and vimentin expression in the SMCs obtained via the Contractile SMC protocol and in SMCs differentiated via a traditional protocol were similar, while SMCs produced via the Sythetic SMC protocol expressed less calponin, more collagen 1, and more connexin 43. Differences were also observed in functional assessments of the two SMC populations: the two-dimensional surface area of Contractile SMCs declined more extensively (to 12% versus 44% of original size) in response to carbachol treatment, while quantification of cell migration and proliferation were greater in Synthetic SMCs. Collectively, these data demonstrate that our novel differentiation protocols can efficiently generate SMCs from hiPSCs. PMID:26771193

  11. Alpha-smooth muscle actin expression and structure integrity in chondrogenesis of human mesenchymal stem cells.

    PubMed

    Hung, Shih-Chieh; Kuo, Pei-Yin; Chang, Ching-Fang; Chen, Tain-Hsiung; Ho, Larry Low-Tone

    2006-06-01

    The expression of alpha-smooth muscle actin (SMA) by human mesenchymal stem cells (hMSCs) during chondrogenesis was investigated by the use of pellet culture. Undifferentiated hMSCs expressed low but detectable amounts of SMA and the addition of transforming growth factor beta1 (TGF-beta1) to the culture medium increased SMA expression in a dose-dependent manner. Differentiation in pellet culture was rapidly induced in the presence of TGF-beta1 and was accompanied by the development of annular layers at the surface of the pellet. These peripheral layers lacked expression of glycosaminoglycan and type II collagen during early differentiation. Progress in differentiation increased the synthesis of glycosaminoglycan and type II collagen and the expression of SMA in these layers. Double-staining for type II collagen and SMA by immunofluorescence demonstrated the differentiation of hMSCs into cells positive for these two proteins. The addition of cytochalasin D, a potent inhibitor of the polymerization of actin microfilaments, caused damage to the structural integrity and surface smoothness of the chondrogenic pellets. The SMA-positive cells in the peripheral layers of the chondrogenic pellets mimic those within the superficial layer of articular cartilage and are speculated to play a major role in cartilage development and maintenance.

  12. Receptor-based differences in human aortic smooth muscle cell membrane stiffness

    NASA Technical Reports Server (NTRS)

    Huang, H.; Kamm, R. D.; So, P. T.; Lee, R. T.

    2001-01-01

    Cells respond to mechanical stimuli with diverse molecular responses. The nature of the sensory mechanism involved in mechanotransduction is not known, but integrins may play an important role. The integrins are linked to both the cytoskeleton and extracellular matrix, suggesting that probing cells via integrins should yield different mechanical properties than probing cells via non-cytoskeleton-associated receptors. To test the hypothesis that the mechanical properties of a cell are dependent on the receptor on which the stress is applied, human aortic smooth muscle cells were plated, and magnetic beads, targeted either to the integrins via fibronectin or to the transferrin receptor by use of an IgG antibody, were attached to the cell surface. The resistance of the cell to deformation ("stiffness") was estimated by oscillating the magnetic beads at 1 Hz by use of single-pole magnetic tweezers at 2 different magnitudes. The ratio of bead displacements at different magnitudes was used to explore the mechanical properties of the cells. Cells stressed via the integrins required approximately 10-fold more force to obtain the same bead displacements as the cells stressed via the transferrin receptors. Cells stressed via integrins showed stiffening behavior as the force was increased, whereas this stiffening was significantly less for cells stressed via the transferrin receptor (P<0.001). Mechanical characteristics of vascular smooth muscle cells depend on the receptor by which the stress is applied, with integrin-based linkages demonstrating cell-stiffening behavior.

  13. Intracellular Ca(2+) remodeling during the phenotypic journey of human coronary smooth muscle cells.

    PubMed

    Muñoz, Eva; Hernández-Morales, Miriam; Sobradillo, Diego; Rocher, Asunción; Núñez, Lucía; Villalobos, Carlos

    2013-11-01

    Vascular smooth muscle cells undergo phenotypic switches after damage which may contribute to proliferative disorders of the vessel wall. This process has been related to remodeling of Ca(2+) channels. We have tested the ability of cultured human coronary artery smooth muscle cells (hCASMCs) to return from a proliferative to a quiescent behavior and the contribution of intracellular Ca(2+) remodeling to the process. We found that cultured, early passage hCASMCs showed a high proliferation rate, sustained increases in cytosolic [Ca(2+)] in response to angiotensin II, residual voltage-operated Ca(2+) entry, increased Stim1 and enhanced store-operated currents. Non-steroidal anti-inflammatory drugs inhibited store-operated Ca(2+) entry and abolished cell proliferation in a mitochondria-dependent manner. After a few passages, hCASMCs turned to a quiescent phenotype characterized by lack of proliferation, oscillatory Ca(2+) response to angiotensin II, increased Ca(2+) store content, enhanced voltage-operated Ca(2+) entry and Cav1.2 expression, and decreases in Stim1, store-operated current and store-operated Ca(2+) entry. We conclude that proliferating hCASMCs return to quiescence and this switch is associated to a remodeling of Ca(2+) channels and their control by subcellular organelles, thus providing a window of opportunity for targeting phenotype-specific Ca(2+) channels involved in proliferation.

  14. Co-cultivation of human aortic smooth muscle cells with epicardial adipocytes affects their proliferation rate.

    PubMed

    Ždychová, J; Čejková, S; Králová Lesná, I; Králová, A; Malušková, J; Janoušek, L; Kazdová, L

    2014-01-01

    The abnormal proliferation of vascular smooth muscle cells (VSMC) is thought to play a role in the pathogenesis of atherosclerosis. Adipocytes produce several bioactive paracrine substances that can affect the growth and migration of VSMCs. Our study focuses on the direct effect of the bioactive substances in conditioned media (CM) that was obtained by incubation with primary adipocyte-derived cell lines, including cell lines derived from both preadipocytes and from more mature cells, on the proliferation rate of human aortic smooth muscle cells (HAoSMCs). We used a Luminex assay to measure the adipokine content of the CM and showed that there was a higher concentration of monocyte chemoattractant protein-1 in renal preadipocyte-CM compared with the HAoSMC control (p<0.5). The addition of both renal preadipocyte- and epicardial adipocyte- CM resulted in the elevated production of vascular endothelial growth factor compared with the control HASoSMC CM (p<0.001). The adiponectin content in renal adipocyte-CM was increased compared to all the remaining adipocyte-CM (p<0.01). Moreover, the results showed a higher proliferation rate of HAoSMCs after co-culture with epicardial adipocyte-CM compared to the HAoSMC control (p<0.05). These results suggest that bioactive substances produced by adipocytes have a stimulatory effect on the proliferation of VSMCs.

  15. Smooth enlargement of human standing sway by instability due to weak reaction floor and noise

    PubMed Central

    Funato, Tetsuro; Aoi, Shinya; Tomita, Nozomi; Tsuchiya, Kazuo

    2016-01-01

    Human quiet standing is accompanied by body sway. The amplitude of this body sway is known to be larger than would be predicted from simple noise effects, and sway characteristics are changed by neurological disorders. This large sway is thought to arise from nonlinear control with prolonged periods of no control (intermittent control), and a nonlinear control system of this kind has been predicted to exhibit bifurcation. The presence of stability-dependent transition enables dynamic reaction that depends on the stability of the environment, and can explain the change in sway characteristics that accompanies some neurological disorders. This research analyses the characteristics of a system model that induces transition, and discusses whether human standing reflects such a mechanism. In mathematical analysis of system models, (intermittent control-like) nonlinear control with integral control is shown to exhibit Hopf bifurcation. Moreover, from the analytical solution of the system model with noise, noise is shown to work to smooth the enlargement of sway around the bifurcation point. This solution is compared with measured human standing sway on floors with different stabilities. By quantitatively comparing the control parameters between human observation and model prediction, enlargement of sway is shown to appear as predicted by the model analysis. PMID:26909186

  16. Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells

    PubMed Central

    Brun, Juliane; Lutz, Katrin A.; Neumayer, Katharina M. H.; Klein, Gerd; Seeger, Tanja; Uynuk-Ool, Tatiana; Wörgötter, Katharina; Schmid, Sandra; Kraushaar, Udo; Guenther, Elke; Rolauffs, Bernd; Aicher, Wilhelm K.; Hart, Melanie L.

    2015-01-01

    The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1–2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel

  17. MiR-328 targeting PIM-1 inhibits proliferation and migration of pulmonary arterial smooth muscle cells in PDGFBB signaling pathway

    PubMed Central

    Qian, Zhengjiang; Zhang, Limin; Chen, Jidong; Li, Yanjiao; Kang, Kang; Qu, Junle; Wang, Zhiwei; Zhai, Yujia; Li, Li; Gou, Deming

    2016-01-01

    MicroRNAs (miRNAs) have been recognized to mediate PDGF-induced cell dysregulation, but their exact functions remain to be elucidated. By using a sensitive S-Poly(T) Plus qRT-PCR method, the expression profiling of 1,078 miRNAs were investigated in pulmonary artery smooth muscle cells (PASMCs) with or without PDGFBB stimulation. MiR-328 was found as a prominent down-regulated miRNA, displaying a specific dose- and time-dependent downregulation upon PDGFBB exposure. Functional analyses revealed that miR-328 could inhibit PASMCs proliferation and migration both with and without PDGFBB treatment. The Ser/Thr-protein kinase-1 (PIM-1) was identified as a direct target of miR-328, and functionally confirmed by a rescue experiment. In addition, the decrease of miR-328 by PDGFBB might be due to the increased expression of DNA methylation transferase 1 (DNMT1) and DNA methylation. Finally, serum miR-328 level was downregulated in PAH patients associated with congenital heart disease (CHD- PAH). Overall, this study provides critical insight into fundamental regulatory mechanism of miR-328 in PDGFBB-activited PASMCs via targeting PIM- 1, and implies the potential of serum miR-328 level as a circulating biomarker for CHD- PAH diagnosis. PMID:27448984

  18. Glycosaminoglycans and Glucose Prevent Apoptosis in 4-Methylumbelliferone-treated Human Aortic Smooth Muscle Cells*

    PubMed Central

    Vigetti, Davide; Rizzi, Manuela; Moretto, Paola; Deleonibus, Sara; Dreyfuss, Jonathan M.; Karousou, Evgenia; Viola, Manuela; Clerici, Moira; Hascall, Vincent C.; Ramoni, Marco F.; De Luca, Giancarlo; Passi, Alberto

    2011-01-01

    Smooth muscle cells (SMCs) have a pivotal role in cardiovascular diseases and are responsible for hyaluronan (HA) deposition in thickening vessel walls. HA regulates SMC proliferation, migration, and inflammation, which accelerates neointima formation. We used the HA synthesis inhibitor 4-methylumbelliferone (4-MU) to reduce HA production in human aortic SMCs and found a significant increase of apoptotic cells. Interestingly, the exogenous addition of HA together with 4-MU reduced apoptosis. A similar anti-apoptotic effect was observed also by adding other glycosaminoglycans and glucose to 4-MU-treated cells. Furthermore, the anti-apoptotic effect of HA was mediated by Toll-like receptor 4, CD44, and PI3K but not by ERK1/2. PMID:21768115

  19. Glycosaminoglycans and glucose prevent apoptosis in 4-methylumbelliferone-treated human aortic smooth muscle cells.

    PubMed

    Vigetti, Davide; Rizzi, Manuela; Moretto, Paola; Deleonibus, Sara; Dreyfuss, Jonathan M; Karousou, Evgenia; Viola, Manuela; Clerici, Moira; Hascall, Vincent C; Ramoni, Marco F; De Luca, Giancarlo; Passi, Alberto

    2011-10-07

    Smooth muscle cells (SMCs) have a pivotal role in cardiovascular diseases and are responsible for hyaluronan (HA) deposition in thickening vessel walls. HA regulates SMC proliferation, migration, and inflammation, which accelerates neointima formation. We used the HA synthesis inhibitor 4-methylumbelliferone (4-MU) to reduce HA production in human aortic SMCs and found a significant increase of apoptotic cells. Interestingly, the exogenous addition of HA together with 4-MU reduced apoptosis. A similar anti-apoptotic effect was observed also by adding other glycosaminoglycans and glucose to 4-MU-treated cells. Furthermore, the anti-apoptotic effect of HA was mediated by Toll-like receptor 4, CD44, and PI3K but not by ERK1/2.

  20. Smooth-muscle-like cells derived from human embryonic stem cells support and augment cord-like structures in vitro.

    PubMed

    Vo, Elaine; Hanjaya-Putra, Donny; Zha, Yuanting; Kusuma, Sravanti; Gerecht, Sharon

    2010-06-01

    Engineering vascularized tissue is crucial for its successful implantation, survival, and integration with the host tissue. Vascular smooth muscle cells (v-SMCs) provide physical support to the vasculature and aid in maintaining endothelial viability. In this study, we show an efficient derivation of v-SMCs from human embryonic stem cells (hESCs), and demonstrate their functionality and ability to support the vasculature in vitro. Human ESCs were differentiated in monolayers and supplemented with platelet-derived growth factor-BB (PDGF-BB) and transforming growth factor-beta 1 (TGF-beta1). Human ESC-derived smooth-muscle-like cells (SMLCs) were found to highly express specific smooth muscle cell (SMC) markers--including alpha-smooth muscle actin, calponin, SM22, and smooth muscle myosin heavy chain--to produce and secrete fibronectin and collagen, and to contract in response to carbachol. In vitro tubulogenesis assays revealed that these hESC-derived SMLCs interacted with human endothelial progenitor cell (EPCs) to form longer and thicker cord-like structures in vitro. We have demonstrated a simple protocol for the efficient derivation of highly purified SMLCs from hESCs. These in vitro functional SMLCs interacted with EPCs to support and augment capillary-like structures (CLSs), demonstrating the potential of hESCs as a cell source for therapeutic vascular tissue engineering.

  1. Effect of dexamethasone on voltage-gated Na+ channel in cultured human bronchial smooth muscle cells.

    PubMed

    Nakajima, Toshiaki; Jo, Taisuke; Meguro, Kentaro; Oonuma, Hitoshi; Ma, Ji; Kubota, Nami; Imuta, Hiroyuki; Takano, Haruhito; Iida, Haruko; Nagase, Takahide; Nagata, Taiji

    2008-06-06

    Voltage-gated Na(+) channel (I(Na)) encoded by SCN9A mRNA is expressed in cultured human bronchial smooth muscle cells. We investigated the effects of dexamethasone on I(Na), by using whole-cell voltage clamp techniques, reverse transcriptase/polymerase chain reaction (RT-PCR), and quantitative real-time RT-PCR. Acute application of dexamethasone (10(-6) M) did not affect I(Na). However, the percentage of the cells with I(Na) was significantly less in cells pretreated with dexamethasone for 48 h, and the current-density of I(Na) adjusted by cell capacitance in cells with I(Na) was also decreased in cells treated with dexamethasone. RT-PCR analysis showed that alpha and beta subunits mRNA of I(Na) mainly consisted of SCN9A and SCN1beta, respectively. Treatment with dexamethasone for 24-48 h inhibited the expression of SCN9A mRNA. The inhibitory effect of dexamethasone was concentration-dependent, and was observed at a concentration higher than 0.1 nM. The effect of dexamethasone on SCN9A mRNA was not blocked by spironolactone, but inhibited by mifepristone. The inhibitory effects of dexamethasone on SCN9A mRNA could not be explained by the changes of the stabilization of mRNA measured by using actinomycin D. These results suggest that dexamethasone inhibited I(Na) encoded by SCN9A mRNA in cultured human bronchial smooth muscle cells by inhibiting the transcription via the glucocorticoid receptor.

  2. Oxidized low density lipoprotein (LDL) affects hyaluronan synthesis in human aortic smooth muscle cells.

    PubMed

    Viola, Manuela; Bartolini, Barbara; Vigetti, Davide; Karousou, Evgenia; Moretto, Paola; Deleonibus, Sara; Sawamura, Tatsuya; Wight, Thomas N; Hascall, Vincent C; De Luca, Giancarlo; Passi, Alberto

    2013-10-11

    Thickening of the vessel in response to high low density lipoprotein(s) (LDL) levels is a hallmark of atherosclerosis, characterized by increased hyaluronan (HA) deposition in the neointima. Human native LDL trapped within the arterial wall undergoes modifications such as oxidation (oxLDL). The aim of our study is to elucidate the link between internalization of oxLDL and HA production in vitro, using human aortic smooth muscle cells. LDL were used at an effective protein concentration of 20-50 μg/ml, which allowed 80% cell viability. HA content in the medium of untreated cells was 28.9 ± 3.7 nmol HA-disaccharide/cell and increased after oxLDL treatment to 53.9 ± 5.6. OxLDL treatments doubled the transcripts of HA synthase HAS2 and HAS3. Accumulated HA stimulated migration of aortic smooth muscle cells and monocyte adhesiveness to extracellular matrix. The effects induced by oxLDL were inhibited by blocking LOX-1 scavenger receptor with a specific antibody (10 μg/ml). The cholesterol moiety of LDL has an important role in HA accumulation because cholesterol-free oxLDL failed to induce HA synthesis. Nevertheless, cholesterol-free oxLDL and unmodified cholesterol (20 μg/ml) induce only HAS3 transcription, whereas 22,oxysterol affects both HAS2 and HAS3. Moreover, HA deposition was associated with higher expression of endoplasmic reticulum stress markers (CHOP and GRP78). Our data suggest that HA synthesis can be induced in response to specific oxidized sterol-related species delivered through oxLDL.

  3. Effects of menthol on circular smooth muscle of human colon: analysis of the mechanism of action.

    PubMed

    Amato, Antonella; Liotta, Rosa; Mulè, Flavia

    2014-10-05

    Menthol is the major constituent of peppermint oil, an herbal preparation commonly used to treat nausea, spasms during colonoscopy and irritable bowel disease. The mechanism responsible for its spasmolytic action remains unclear. The aims of this study were to investigate the effects induced by menthol on the human distal colon mechanical activity in vitro and to analyze the mechanism of action. The spontaneous or evoked-contractions of the circular smooth muscle were recorded using vertical organ bath. Menthol (0.1 mM-30 mM) reduced, in a concentration-dependent manner, the amplitude of the spontaneous contractions without affecting the frequency and the resting basal tone. The inhibitory effect was not affected by 5-benzyloxytryptamine (1 μM), a transient receptor potential-melastatin8 channel antagonist, or tetrodotoxin (1 μM), a neural blocker, or 1H-[1,2,4] oxadiazolo [4,3-a]quinoxalin-1-one (10 µM), inhibitor of nitric oxide (NO)-sensitive soluble guanylyl cyclase, or tetraethylammonium (10 mM), a blocker of potassium (K+)-channels. On the contrary, nifedipine (3 nM), a voltage-activated L-type Ca2+ channel blocker, significantly reduced the inhibitory menthol actions. Menthol also reduced in a concentration-dependent manner the contractile responses caused by exogenous application of Ca2+ (75-375 μM) in a Ca2+-free solution, or induced by potassium chloride (KCl; 40 mM). Moreover menthol (1-3 mM) strongly reduced the electrical field stimulation (EFS)-evoked atropine-sensitive contractions and the carbachol-contractile responses. The present results suggest that menthol induces spasmolytic effects in human colon circular muscle inhibiting directly the gastrointestinal smooth muscle contractility, through the block of Ca2+ influx through sarcolemma L-type Ca2+ channels.

  4. Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells.

    PubMed

    Berntsen, P; Park, C Y; Rothen-Rutishauser, B; Tsuda, A; Sager, T M; Molina, R M; Donaghey, T C; Alencar, A M; Kasahara, D I; Ericsson, T; Millet, E J; Swenson, J; Tschumperlin, D J; Butler, J P; Brain, J D; Fredberg, J J; Gehr, P; Zhou, E H

    2010-06-06

    The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 microm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 microm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 microM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases.

  5. Downregulation of microRNA-637 Increases Risk of Hypoxia-Induced Pulmonary Hypertension by Modulating Expression of Cyclin Dependent Kinase 6 (CDK6) in Pulmonary Smooth Muscle Cells

    PubMed Central

    Sang, Hai-yan; Jin, Ying-li; Zhang, Wen-qi; Chen, Li-bo

    2016-01-01

    Background The objective of this study was to investigate the molecular mechanism by which miR-637 interferes with the expression of CDK6, which contributes to the development of pulmonary hypertension (PH) with chronic obstructive pulmonary disease (COPD). Material/Methods We used an online miRNA database to identify CDK6 as a virtual target of miR-637, and validated the hypothesis using luciferase assay. Furthermore, we transfected SMCs with miR-637 mimics and inhibitor, and expression of CDK6 was determined using Western blot and real-time PCR. Results In this study, we identified CDK6 as a target of miR-637 in smooth muscle cells (SMCs), and determined the expression of miR-637 in SMCs from PH patients with COPD and normal controls. We also identified the exact miR-637 binding site in the 3′UTR of CDK6 by using a luciferase reporter system. The mRNA and protein expression levels of CDK6 in SMCs from PH patients with COPD were clearly upregulated compared with the normal controls. Cells exposed to hypoxia also showed notably increased CKD6 mRNA and protein expression levels, and when treated with miR-637 or CDK6 siRNA, this increase in CKD6 expression was clearly attenuated. Additionally, cell viability and cell cycle analysis showed that hypoxia markedly increased viability of SMCs by causing an accumulation in S phase, which was relieved by the introduction of miR-637 or CDK6 siRNA. Conclusions Our study proved that the CDK6 gene is a target of miR-637, and demonstrated the regulatory association between miR-637 and CDK6, suggesting a possible therapeutic target for PH, especially in patients with COPD. PMID:27794186

  6. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells.

    PubMed

    Eoh, Joon H; Shen, Nian; Burke, Jacqueline A; Hinderer, Svenja; Xia, Zhiyong; Schenke-Layland, Katja; Gerecht, Sharon

    2017-04-01

    Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (l-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue. We evaluated the effects of pulsatile flow on cellular organization as well as elastin expression and assembly in the engineered tissue compared to a static control through immunohistochemistry, gene expression and functionality assays. We show that culturing under pulsatile flow resulted in organized and functional hiPSC derived smooth muscle tissue. Immunohistochemistry analysis revealed hiPSC-smooth muscle tissue with robust, well-organized cells and elastic fibers and the supporting microfibril proteins necessary for elastic fiber assembly. Through qRT-PCR analysis, we found significantly increased expression of elastin, fibronectin, and collagen I, indicating the synthesis of necessary extracellular matrix components. Functionality assays revealed that hiPSC-smooth muscle tissue cultured in the bioreactor had an increased calcium signaling and contraction in response to a cholinergic agonist, significantly higher mature elastin content and improved mechanical properties in comparison to the static control. The findings presented here detail an effective approach to engineering elastic human vascular smooth muscle tissue with the functionality necessary for tissue engineering and regenerative medicine applications.

  7. Identification of G-Protein-Coupled Receptors (GPCRs) in Pulmonary Artery Smooth Muscle Cells as Novel Therapeutic Targets

    DTIC Science & Technology

    2015-10-01

    the search for the endogenous ligand. Br J Pharmacol, in press. Amisten S, Neville M, Hawkes R, Persaud SJ, Karpe F, and Salehi A (2015) An atlas of G...protein coupled receptor expression and function in human subcutaneous adipose tissue. Pharmacol Ther 146:61–93. Amisten S, Salehi A, Rorsman P

  8. Expression and function of K(V)2-containing channels in human urinary bladder smooth muscle.

    PubMed

    Hristov, Kiril L; Chen, Muyan; Afeli, Serge A Y; Cheng, Qiuping; Rovner, Eric S; Petkov, Georgi V

    2012-06-01

    The functional role of the voltage-gated K(+) (K(V)) channels in human detrusor smooth muscle (DSM) is largely unexplored. Here, we provide molecular, electrophysiological, and functional evidence for the expression of K(V)2.1, K(V)2.2, and the electrically silent K(V)9.3 subunits in human DSM. Stromatoxin-1 (ScTx1), a selective inhibitor of K(V)2.1, K(V)2.2, and K(V)4.2 homotetrameric channels and of K(V)2.1/9.3 heterotetrameric channels, was used to examine the role of these channels in human DSM function. Human DSM tissues were obtained during open bladder surgeries from patients without a history of overactive bladder. Freshly isolated human DSM cells were studied using RT-PCR, immunocytochemistry, live-cell Ca(2+) imaging, and the perforated whole cell patch-clamp technique. Isometric DSM tension recordings of human DSM isolated strips were conducted using tissue baths. RT-PCR experiments showed mRNA expression of K(V)2.1, K(V)2.2, and K(V)9.3 (but not K(V)4.2) channel subunits in human isolated DSM cells. K(V)2.1 and K(V)2.2 protein expression was confirmed by Western blot analysis and immunocytochemistry. Perforated whole cell patch-clamp experiments revealed that ScTx1 (100 nM) inhibited the amplitude of the voltage step-induced K(V) current in freshly isolated human DSM cells. ScTx1 (100 nM) significantly increased the intracellular Ca(2+) level in DSM cells. In human DSM isolated strips, ScTx1 (100 nM) increased the spontaneous phasic contraction amplitude and muscle force, and enhanced the amplitude of the electrical field stimulation-induced contractions within the range of 3.5-30 Hz stimulation frequencies. These findings reveal that ScTx1-sensitive K(V)2-containing channels are key regulators of human DSM excitability and contractility and may represent new targets for pharmacological or genetic intervention for bladder dysfunction.

  9. Transforming growth factor type beta specifically stimulates synthesis of proteoglycan in human adult arterial smooth muscle cells.

    PubMed Central

    Chen, J K; Hoshi, H; McKeehan, W L

    1987-01-01

    Myo-intimal proteoglycan metabolism is thought to be important in blood vessel homeostasis, blood clotting, atherogenesis, and atherosclerosis. Human platelet-derived transforming growth factor type beta (TGF-beta) specifically stimulated synthesis of at least two types of chondroitin sulfate proteoglycans in nonproliferating human adult arterial smooth muscle cells in culture. Stimulation of smooth muscle cell proteoglycan synthesis by smooth muscle cell growth promoters (epidermal growth factor, platelet-derived growth factor, and heparin-binding growth factors) was less than 20% of that elicited by TGF-beta. TGF-beta neither significantly stimulated proliferation of quiescent smooth muscle cells nor inhibited proliferating cells. The extent of TGF-beta stimulation of smooth muscle cell proteoglycan synthesis was similar in both nonproliferating and growth-stimulated cells. TGF-beta, which is a reversible inhibitor of endothelial cell proliferation, had no comparable effect on endothelial cell proteoglycan synthesis. These results are consistent with the hypothesis that TGF-beta is a cell-type-specific regulator of proteoglycan synthesis in human blood vessels and may contribute to the myo-intimal accumulation of proteoglycan in atherosclerotic lesions. Images PMID:3474655

  10. Lipopolysaccharide and Interleukin 1 Augment the Effects of Hypoxia and Inflammation in Human Pulmonary Arterial Tissue

    NASA Astrophysics Data System (ADS)

    Ziesche, Rolf; Petkov, Venzeslav; Williams, John; Zakeri, Schaker M.; Mosgoller, Wilhelm; Knofler, Martin; Block, Lutz H.

    1996-10-01

    The combined effects of hypoxia and interleukin 1, lipopolysaccharide, or tumor necrosis factor α on the expression of genes encoding endothelial constitutive and inducible nitric oxide synthases, endothelin 1, interleukin 6, and interleukin 8 were investigated in human primary pulmonary endothelial cells and whole pulmonary artery organoid cultures. Hypoxia decreased the expression of constitutive endothelial nitric oxide synthase (NOS-3) mRNA and NOS-3 protein as compared with normoxic conditions. The inhibition of expression of NOS-3 corresponded with a reduced production of NO. A combination of hypoxia with bacterial lipopolysaccharide, interleukin 1β , or tumor necrosis factor α augmented both effects. In contrast, the combination of hypoxia and the inflammatory mediators superinduced the expression of endothelin 1, interleukin 6, and interleukin 8. Here, we have shown that inflammatory mediators aggravate the effect of hypoxia on the down-regulation of NOS-3 and increase the expression of proinflammatory cytokines in human pulmonary endothelial cells and whole pulmonary artery organoid cultures.

  11. Smoking and Female Sex: Independent Predictors of Human Vascular Smooth Muscle Cells Stiffening

    PubMed Central

    Dinardo, Carla Luana; Santos, Hadassa Campos; Vaquero, André Ramos; Martelini, André Ricardo; Dallan, Luis Alberto Oliveira; Alencar, Adriano Mesquita; Krieger, José Eduardo; Pereira, Alexandre Costa

    2015-01-01

    Aims Recent evidence shows the rigidity of vascular smooth muscle cells (VSMC) contributes to vascular mechanics. Arterial rigidity is an independent cardiovascular risk factor whose associated modifications in VSMC viscoelasticity have never been investigated. This study’s objective was to evaluate if the arterial rigidity risk factors aging, African ancestry, female sex, smoking and diabetes mellitus are associated with VMSC stiffening in an experimental model using a human derived vascular smooth muscle primary cell line repository. Methods Eighty patients subjected to coronary artery bypass surgery were enrolled. VSMCs were extracted from internal thoracic artery fragments and mechanically evaluated using Optical Magnetic Twisting Cytometry assay. The obtained mechanical variables were correlated with the clinical variables: age, gender, African ancestry, smoking and diabetes mellitus. Results The mechanical variables Gr, G’r and G”r had a normal distribution, demonstrating an inter-individual variability of VSMC viscoelasticity, which has never been reported before. Female sex and smoking were independently associated with VSMC stiffening: Gr (apparent cell stiffness) p = 0.022 and p = 0.018, R2 0.164; G’r (elastic modulus) p = 0.019 and p = 0.009, R2 0.184 and G”r (dissipative modulus) p = 0.011 and p = 0.66, R2 0.141. Conclusion Female sex and smoking are independent predictors of VSMC stiffening. This pro-rigidity effect represents an important element for understanding the vascular rigidity observed in post-menopausal females and smokers, as well as a potential therapeutic target to be explored in the future. There is a significant inter-individual variation of VSMC viscoelasticity, which is slightly modulated by clinical variables and probably relies on molecular factors. PMID:26661469

  12. Sildenafil as treatment for Human Immunodeficiency Virus-related pulmonary hypertension in a child.

    PubMed

    Wong, Abdul Rahim; Rasool, Aida Hanum G; Abidin, Nik Zainal; Noor, Abdul Rahmand; Quah, Ban Seng

    2006-03-01

    Human Immunodeficiency Virus (HIV)-related pulmonary hypertension is a relatively rare disease that can affect HIV sufferers. This is almost always associated with a poor outcome and death. An 18 month-old girl, probably the youngest on record, was diagnosed to have pulmonary hypertension (PHT) and retrospectively found to have HIV infection. Sildenafil was used to control her PHT and she remains alive even after 2 years.

  13. Contrasting effects of ascorbate and iron on the pulmonary vascular response to hypoxia in humans.

    PubMed

    Talbot, Nick P; Croft, Quentin P; Curtis, M Kate; Turner, Brandon E; Dorrington, Keith L; Robbins, Peter A; Smith, Thomas G

    2014-12-01

    Hypoxia causes an increase in pulmonary artery pressure. Gene expression controlled by the hypoxia-inducible factor (HIF) family of transcription factors plays an important role in the underlying pulmonary vascular responses. The hydroxylase enzymes that regulate HIF are highly sensitive to varying iron availability, and iron status modifies the pulmonary vascular response to hypoxia, possibly through its effects on HIF. Ascorbate (vitamin C) affects HIF hydroxylation in a similar manner to iron and may therefore have similar pulmonary effects. This study investigated the possible contribution of ascorbate availability to hypoxic pulmonary vasoconstriction in humans. Seven healthy volunteers undertook a randomized, controlled, double-blind, crossover protocol which studied the effects of high-dose intravenous ascorbic acid (total 6 g) on the pulmonary vascular response to 5 h of sustained hypoxia. Systolic pulmonary artery pressure (SPAP) was assessed during hypoxia by Doppler echocardiography. Results were compared with corresponding data from a similar study investigating the effect of intravenous iron, in which SPAP was measured in seven healthy volunteers during 8 h of sustained hypoxia. Consistent with other studies, iron supplementation profoundly inhibited hypoxic pulmonary vasoconstriction (P < 0.001). In contrast, supraphysiological supplementation of ascorbate did not affect the increase in pulmonary artery pressure induced by several hours of hypoxia (P = 0.61). We conclude that ascorbate does not interact with hypoxia and the pulmonary circulation in the same manner as iron. Whether the effects of iron are HIF-mediated remains unknown, and the extent to which ascorbate contributes to HIF hydroxylation in vivo is also unclear.

  14. Inhibition of hypoxia-induced proliferation of pulmonary arterial smooth muscle cells by a mTOR siRNA-loaded cyclodextrin nanovector.

    PubMed

    Liu, Xueping; Wang, Guansong; You, Zaichun; Qian, Pin; Chen, Huaping; Dou, Yin; Wei, Zhenghua; Chen, Yan; Mao, Chengde; Zhang, Jianxiang

    2014-05-01

    The proliferation of pulmonary arterial smooth muscle cells (PASMCs) is a key pathophysiological component of vascular remodeling in pulmonary arterial hypertension (PAH), an intractable disease, for which pharmacotherapy is limited and only slight improvement in survival outcomes have achieved over the past few decades. RNA interference provides a highly promising strategy to the treatment of this chronic lung disease, while efficient delivery of small interfering RNA (siRNA) remains a key challenge for the development of clinically acceptable siRNA therapeutics. With the aim to construct useful nanomedicines, the mammalian target of rapamycin (mTOR) siRNA was loaded into hybrid nanoparticles based on low molecular weight (Mw) polyethylenimine (PEI) and a pH-responsive cyclodextrin material (Ac-aCD) or poly(lactic-co-glycolic acid) (PLGA). This hybrid nanoplatform gave rise to desirable siRNA loading, and the payload release could be modulated by the hydrolysis characteristics of carrier materials. Fluorescence observation and flow cytometry quantification suggested that both Ac-aCD and PLGA nanovectors (NVs) may enter PASMCs under either normoxia or hypoxia conditions as well as in the presence of serum, with uptake and transfection efficiency significantly higher than those of cationic vectors such as PEI with Mw of 25 kDa (PEI25k) and Lipofectamine 2000 (Lipo 2k). Hybrid Ac-aCD or PLGA NV containing siRNA remarkably inhibited proliferation and activated apoptosis of hypoxic PASMCs, largely resulting from effective suppression of mTOR signaling as evidenced by significantly lowered expression of mTOR mRNA and phosphorylated protein. Moreover, these hybrid nanomedicines were more effective than commonly used cationic vectors like PEI25k and Lipo 2k, with respect to cell growth inhibition, apoptosis activation, and expression attenuation of mTOR mRNA and protein. Therefore, mTOR siRNA nanomedicines based on hybrid Ac-aCD or PLGA NV may be promising therapeutics

  15. Nitric oxide production by cultured human aortic smooth muscle cells: stimulation by fluid flow

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Tilton, R. G.; Eskin, S. G.; McIntire, L. V.

    1998-01-01

    This study demonstrated that exposure of cultured human aortic smooth muscle cells (SMC) to fluid flow resulted in nitric oxide (NO) production, monitored by nitrite and guanosine 3',5'-cyclic monophosphate production. A rapid burst in nitrite production rate was followed by a more gradual increase throughout the period of flow exposure. Neither the initial burst nor the prolonged nitrite production was dependent on the level of shear stress in the range of 1.1-25 dyn/cm2. Repeated exposure to shear stress after a 30-min static period restimulated nitrite production similar to the initial burst. Ca(2+)-calmodulin antagonists blocked the initial burst in nitrite release. An inhibitor of nitric oxide synthase (NOS) blocked nitrite production, indicating that changes in nitrite reflect NO production. Treatment with dexamethasone or cycloheximide had no effect on nitrite production. Monoclonal antibodies directed against the inducible and endothelial NOS isoforms showed no immunoreactivity on Western blots, whereas monoclonal antibodies directed against the neuronal NOS gave specific products. These findings suggest that human aortic SMC express a constitutive neuronal NOS isoform, the enzymatic activity of which is modulated by flow.

  16. Dihydrotestosterone alters cyclooxygenase-2 levels in human coronary artery smooth muscle cells

    PubMed Central

    Osterlund, Kristen L.; Handa, Robert J.

    2010-01-01

    Both protective and nonprotective effects of androgens on the cardiovascular system have been reported. Our previous studies show that the potent androgen receptor (AR) agonist dihydrotestosterone (DHT) increases levels of the vascular inflammatory mediator cyclooxygenase (COX)-2 in rodent cerebral arteries independent of an inflammatory stimulus. Little is known about the effects of androgens on inflammation in human vascular tissues. Therefore, we tested the hypothesis that DHT alters COX-2 levels in the absence and presence of induced inflammation in primary human coronary artery smooth muscle cells (HCASMC). Furthermore, we tested the ancillary hypothesis that DHT's effects on COX-2 levels are AR-dependent. Cells were treated with DHT (10 nM) or vehicle for 6 h in the presence or absence of LPS or IL-1β. Similar to previous observations in rodent arteries, in HCASMC, DHT alone increased COX-2 levels compared with vehicle. This effect of DHT was attenuated in the presence of the AR antagonist bicalutamide. Conversely, in the presence of LPS or IL-1β, increases in COX-2 were attenuated by cotreatment with DHT. Bicalutamide did not affect this response, suggesting that DHT-induced decreases in COX-2 levels occur independent of AR stimulation. Thus we conclude that DHT differentially influences COX-2 levels under physiological and pathophysiological conditions in HCASMC. This effect of DHT on COX-2 involves AR-dependent and- independent mechanisms, depending on the physiological state of the cell. PMID:20103743

  17. Monocyte-expressed urokinase regulates human vascular smooth muscle cell migration in a coculture model.

    PubMed

    Kusch, Angelika; Tkachuk, Sergey; Lutter, Steffen; Haller, Hermann; Dietz, Rainer; Lipp, Martin; Dumler, Inna

    2002-01-01

    Interactions of vascular smooth muscle cells (VSMC) with monocytes recruited to the arterial wall at a site of injury, with resultant modulation of VSMC growth and migration, are central to the development of vascular intimal thickening. Urokinase-type plasminogen activator (uPA) expressed by monocytes is a potent chemotactic factor for VSMC and might serve for the acceleration of vascular remodeling. In this report, we demonstrate that coculture of human VSMC with freshly isolated peripheral blood-derived human monocytes results in significant VSMC migration that increases during the coculture period. Accordingly, VSMC adhesion was inhibited with similar kinetics. VSMC proliferation, however, was not affected and remained at the same basal level during the whole period of coculture. The increase of VSMC migration in coculture was equivalent to the uPA-induced migration of monocultured VSMC and was blocked by addition into coculture of soluble uPAR (suPAR). Analysis of uPA and uPAR expression in cocultured cells demonstrated that monocytes are a major source of uPA, whose expression increases in coculture five-fold, whereas VSMC display an increased expression of cell surface-associated uPAR. These findings indicate that upregulated uPA production by monocytes following vascular injury acts most likely as an endogenous activator of VSMC migration contributing to the remodeling of vessel walls.

  18. Interaction between human monocytes and vascular smooth muscle cells induces vascular endothelial growth factor expression.

    PubMed

    Hojo, Y; Ikeda, U; Maeda, Y; Takahashi, M; Takizawa, T; Okada, M; Funayama, H; Shimada, K

    2000-05-01

    The objective of this study was to investigate whether synthesis of vascular endothelial growth factor (VEGF), a major mitogen for vascular endothelial cells, was induced by a cell-to-cell interaction between monocytes and vascular smooth muscle cells (VSMCs). Human VSMCs and THP-1 cells (human monocytoid cell) were cocultured. VEGF levels in the coculture medium were determined by enzyme-linked immunosorbent assay. Northern blot analysis of VEGF mRNA was performed using a specific cDNA probe. Immunohistochemistry was performed to determine which types of cell produce VEGF. Adding THP-1 cells to VSMCs for 24 h increased VEGF levels of the culture media, 8- and 10-fold relative to those of THP-1 cells and VSMCs alone, respectively. Northern blot analysis showed that VEGF mRNA expression was induced in the cocultured cells and peaked after 12 h. Immunohistochemistry disclosed that both types of cell in the coculture produced VEGF. Separate coculture experiments revealed that both direct contact and a soluble factor(s) contributed to VEGF production. Neutralizing anti-interleukin (IL)-6 antibody inhibited VEGF production by the coculture of THP-1 cells and VSMCs. A cell-to-cell interaction between monocytes and VSMCs induced VEGF synthesis in both types of cell. An IL-6 mediated mechanism is at least partially involved in VEGF production by the cocultures. Local VEGF production induced by a monocyte-VSMC interaction may play an important role in atherosclerosis and vascular remodeling.

  19. Monocyte prostaglandins inhibit procollagen secretion by human vascular smooth muscle cells: implications for plaque stability.

    PubMed

    Fitzsimmons, C; Proudfoot, D; Bowyer, D E

    1999-02-01

    Extracellular matrix remodelling occurs during atherosclerosis dictating the structure of the plaque and thus the resistance to rupture. Monocytes and macrophages are believed to play a role in this remodelling. In the present study, filter-separated co-culture has been used to study the effect of monocytes on procollagen turnover by human vascular smooth muscle cells (VSMC). In this system, freshly isolated human peripheral blood monocytes inhibited procollagen secretion from VSMC without affecting either degradation of procollagen, or DNA synthesis by the VSMC. Insertion of a 12 kDa dialysis membrane between the two cell types and treatment with indomethacin showed that the inhibitory factor was of low molecular weight and was cyclooxygenase-dependent. Pre-incubation of each cell type with indomethacin demonstrated that monocyte, but not VSMC cyclooxygenase was required. Thus, the inhibitory effect on procollagen secretion was due, most likely, to monocyte prostaglandins. Neither inhibition of thromboxane synthetase, nor blocking IL-1 activity, reduced the inhibitory activity. Addition of prostaglandins PGE1, PGE2 and PGF2alpha to VSMC cultures caused a reduction in procollagen secretion which was equivalent to, but was not additive with, the maximal effect achieved by monocytes. Monocytes and macrophages are a major source of prostaglandins and these molecules are likely to play an important role in collagen turnover within lesions.

  20. Olfactory Receptors Modulate Physiological Processes in Human Airway Smooth Muscle Cells

    PubMed Central

    Kalbe, Benjamin; Knobloch, Jürgen; Schulz, Viola M.; Wecker, Christine; Schlimm, Marian; Scholz, Paul; Jansen, Fabian; Stoelben, Erich; Philippou, Stathis; Hecker, Erich; Lübbert, Hermann; Koch, Andrea; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs) significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms, and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs) OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca2+ increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases. PMID:27540365

  1. Glycosylated human oxyhaemoglobin activates nuclear factor-κB and activator protein-1 in cultured human aortic smooth muscle

    PubMed Central

    Peiró, Concepción; Matesanz, Nuria; Nevado, Julián; Lafuente, Nuria; Cercas, Elena; Azcutia, Verónica; Vallejo, Susana; Rodríguez-Mañas, Leocadio; Sánchez-Ferrer, Carlos F

    2003-01-01

    Diabetic vessels undergo structural changes that are linked to a high incidence of cardiovascular diseases. Reactive oxygen species (ROS) mediate cell signalling in the vasculature, where they can promote cell growth and activate redox-regulated transcription factors, like activator protein-1 (AP-1) or nuclear factor-κB (NF-κB), which are involved in remodelling and inflammation processes. Amadori adducts, formed through nonenzymatic glycosylation, can contribute to ROS formation in diabetes. In this study, we analysed whether Amadori-modified human oxyhaemoglobin, glycosylated at either normal (N-Hb) or elevated (E-Hb) levels, can induce cell growth and activate AP-1 and NF-κB in cultured human aortic smooth muscle cells (HASMC). E-Hb (1 nM–1 μM), but not N-Hb, promoted a concentration-dependent increase in cell size from nanomolar concentrations, although it failed to stimulate HASMC proliferation. At 10 nM, E-Hb stimulated both AP-1 and NF-κB activity, as assessed by transient transfection, electromobility shift assays or immunofluorescence staining. The effects of E-Hb resembled those of the proinflammatory cytokine tumour necrosis factor-α (TNF-α). E-Hb enhanced intracellular superoxide anions content and its effects on HASMC were abolished by different ROS scavengers. In conclusion, E-Hb stimulates growth and activates AP-1 and NF-κB in human vascular smooth muscle by redox-sensitive pathways, thus suggesting a possible direct role for Amadori adducts in diabetic vasculopathy. PMID:14504138

  2. TRPC3 regulates release of brain-derived neurotrophic factor from human airway smooth muscle.

    PubMed

    Vohra, Pawan K; Thompson, Michael A; Sathish, Venkatachalem; Kiel, Alexander; Jerde, Calvin; Pabelick, Christina M; Singh, Brij B; Prakash, Y S

    2013-12-01

    Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca(2+) signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca(2+) entry (SOCE; including in ASM) and secretion of factors such as cytokines. In human ASM, we tested the hypothesis that TRPC3 regulates BDNF secretion. At baseline, intracellular BDNF was present, and BDNF secretion was detectable by enzyme linked immunosorbent assay (ELISA) of cell supernatants or by real-time fluorescence imaging of cells transfected with GFP-BDNF vector. Exposure to the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) (20ng/ml, 48h) or a mixture of allergens (ovalbumin, house dust mite, Alternaria, and Aspergillus extracts) significantly enhanced BDNF secretion and increased TRPC3 expression. TRPC3 knockdown (siRNA or inhibitor Pyr3; 10μM) blunted BDNF secretion, and prevented inflammation effects. Chelation of extracellular Ca(2+) (EGTA; 1mM) or intracellular Ca(2+) (BAPTA; 5μM) significantly reduced secreted BDNF, as did the knockdown of SOCE proteins STIM1 and Orai1 or plasma membrane caveolin-1. Functionally, secreted BDNF had autocrine effects suggested by phosphorylation of high-affinity tropomyosin-related kinase TrkB receptor, prevented by chelating extracellular BDNF with chimeric TrkB-Fc. These data emphasize the role of TRPC3 and Ca(2+) influx in the regulation of BDNF secretion by human ASM and the enhancing effects of inflammation. Given the BDNF effects on Ca(2+) and cell proliferation, BDNF secretion may contribute to altered airway structure and function in diseases such as asthma.

  3. A rare case of human pulmonary dirofilariasis with a growing pulmonary nodule after migrating infiltration shadows, mimicking primary lung carcinoma

    PubMed Central

    Haro, Akira; Tamiya, Sadafumi; Nagashima, Akira

    2016-01-01

    Introduction Pulmonary dirofilariasis is a rare pulmonary parasitic infection by the nematode Dirofilaria immitis. It is characterized by an asymptomatic pulmonary nodule usually seen on chest X-ray. The differential diagnosis of pulmonary dirofilariasis includes other pulmonary diseases, primary lung carcinoma and metastatic lung tumor. Case presentation Pulmonary dirofilariasis was diagnosed in a woman who presented with interstitial pneumonia. Growth of the pulmonary nodule was detected subsequent to hemoptysis. The histological diagnosis was made based on a wedge resection performed under video-associated thoracic surgery (VATS). Conclusion Pulmonary dirofilariasis often varies in its clinical course. The diagnosis is best made using wedge resection under VATS. PMID:27015012

  4. Regional pulmonary perfusion following human heart-lung transplantation

    SciTech Connect

    Lisbona, R.; Hakim, T.S.; Dean, G.W.; Langleben, D.; Guerraty, A.; Levy, R.D. )

    1989-08-01

    Ventilation and perfusion scans were obtained in six subjects who had undergone heart-lung transplantation with consequent denervation of the cardiopulmonary axis. Two of the subjects had developed obliterative bronchiolitis, which is believed to be a form of chronic rejection. Their pulmonary function tests demonstrated airflow obstruction and their scintigraphic studies were abnormal. In the remaining four subjects without obstructive airways disease, ventilation and planar perfusion scans were normal. Single photon emission computed tomography imaging of pulmonary perfusion in these patients revealed a layered distribution of blood flow indistinguishable from that of normal individuals. It is concluded that neurogenic mechanisms have little influence on the pattern of local pulmonary blood flow at rest.

  5. Tumor necrosis factor gene expression in human vascular intimal smooth muscle cells detected by in situ hybridization.

    PubMed Central

    Barath, P.; Fishbein, M. C.; Cao, J.; Berenson, J.; Helfant, R. H.; Forrester, J. S.

    1990-01-01

    We used immunohistochemistry to detect tumor necrosis factor (TNF) and in situ hybridization to detect TNF messenger RNA (mRNA) in the intimal mesenchymal-appearing cells and in the medial smooth muscle cells of human atherosclerotic arteries. Medial smooth muscle cells showed localization of immunoreactive TNF on the cell surface and did not express TNF mRNA. Conversely, in intimal mesenchymal-appearing cells, TNF was localized in the cytoplasm and TNF mRNA was expressed by in situ hybridization. Thus 89% of intimal cells were immunohistochemically positive for TNF, 96% of them were positive by in situ hybridization, and 76% were positive for the smooth muscle cell marker, HHF35. Our results suggest that intimal mesenchymal-appearing cells are mostly, but not exclusively, derived from smooth muscle cells. These cells express TNF, whereas the medial smooth muscle cells in the atherosclerotic human arteries do not. The expression of TNF by these mesenchymal-appearing cells may have implications regarding the evolution of the atherosclerotic plaque. Images Figure 1 to Figure 4 Figure 3 PMID:1698022

  6. Pulmonary surfactant mitigates silver nanoparticle toxicity in human alveolar type-I-like epithelial cells.

    PubMed

    Sweeney, Sinbad; Leo, Bey Fen; Chen, Shu; Abraham-Thomas, Nisha; Thorley, Andrew J; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng Jim; Shaffer, Milo S P; Chung, Kian Fan; Ryan, Mary P; Porter, Alexandra E; Tetley, Teresa D

    2016-09-01

    Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles. In this study, we evaluated the toxicity of AgNPs on human alveolar type-I-like epithelial (TT1) cells in the absence and presence of Curosurf(®) (a natural pulmonary surfactant substitute), hypothesising that the pulmonary surfactant would act to modify toxicity. We demonstrated that 20nm citrate-capped AgNPs induce toxicity in human alveolar type I-like epithelial cells and, in agreement with our hypothesis, that pulmonary surfactant acts to mitigate this toxicity, possibly through reducing AgNP dissolution into cytotoxic Ag(+) ions. For example, IL-6 and IL-8 release by TT1 cells significantly increased 10.7- and 35-fold, respectively (P<0.01), 24h after treatment with 25μg/ml AgNPs. In contrast, following pre-incubation of AgNPs with Curosurf(®), this effect was almost completely abolished. We further determined that the mechanism of this toxicity is likely associated with Ag(+) ion release and lysosomal disruption, but not with increased reactive oxygen species generation. This study provides a critical understanding of the toxicity of AgNPs in target human alveolar type-I-like epithelial cells and the role of pulmonary surfactant in mitigating this toxicity. The observations reported have important implications for the manufacture and application of AgNPs, in particular for applications involving use of aerosolised AgNPs.

  7. Thrombin potently stimulates cytokine production in human vascular smooth muscle cells but not in mononuclear phagocytes.

    PubMed

    Kranzhöfer, R; Clinton, S K; Ishii, K; Coughlin, S R; Fenton, J W; Libby, P

    1996-08-01

    Thrombosis frequently occurs during atherogenesis and in response to vascular injury. Accumulating evidence supports a role for inflammation in the same situation. The present study therefore sought links between thrombosis and inflammation by determining whether thrombin, which is present in active form at sites of thrombosis, can elicit inflammatory functions of human monocytes and vascular smooth muscle cells (SMCs), two major constituents of advanced atheroma. Human alpha-thrombin (EC50, approximately equal to 500 pmol/L) potently induced interleukin (IL)-6 release from SMCs. The tethered-ligand thrombin receptor appeared to mediate this effect. Furthermore, alpha-thrombin also rapidly increased levels of mRNA encoding IL-6 and monocyte chemotactic protein-1 (MCP-1) in SMCs. In contrast, only alpha-thrombin concentrations of > or = 100 nmol/L could stimulate release of IL-6 or tumor necrosis factor-alpha (TNF alpha) in peripheral blood monocytes or monocyte-derived macrophages. Lipid loading of macrophages did not augment thrombin responsiveness. Likewise, only alpha-thrombin concentrations of > or = 100 nmol/L increased levels of IL-6, IL-1 beta, MCP-1, or TNF alpha mRNA in monocytes. Differential responses of SMCs and monocytes to thrombin extended to early agonist-mediated increases in [Ca2+]i. SMCs and endothelial cells, but not monocytes, contained abundant mRNA encoding the thrombin receptor and displayed cell surface thrombin receptor expression detected with a novel monoclonal antibody. Thus, the level of thrombin receptors appeared to account for the differential thrombin susceptibility of SMCs and monocytes. These data suggest that SMCs may be more sensitive than monocytes/macrophages to thrombin activation in human atheroma. Cytokines produced by thrombin-activated SMCs may contribute to ongoing inflammation in atheroma complicated by thrombosis or subjected to angioplasty.

  8. Spatial and temporal traction response in human airway smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Tolic-Norrelykke, Iva Marija; Butler, James P.; Chen, Jianxin; Wang, Ning

    2002-01-01

    Tractions that cells exert on their substrates are essential in cell spreading, migration, and contraction. These tractions can be determined by plating the cells on a flexible gel and measuring the deformation of the gel by using fluorescent beads embedded just below the surface of the gel. In this article we describe the image correlation method (ICM) optimized for determining the displacement field of the gel under a contracting cell. For the calculation of the traction field from the displacement field we use the recently developed method of Fourier transform traction cytometry (FTTC). The ICM and FTTC methods are applied to human airway smooth muscle cells during stimulation with the contractile agonist histamine or the relaxing agonist isoproterenol. The overall intensity of the cell contraction (the median traction magnitude, the energy transferred from the cell to the gel, and the net contractile moment) increased after activation with histamine, and decreased after treatment with isoproterenol. Cells exhibited regional differences in the time course of traction during the treatment. Both temporal evolution and magnitude of traction increase induced by histamine varied markedly among different cell protrusions, whereas the nuclear region showed the smallest response. These results suggest that intracellular mediators of cell adhesion and contraction respond to contractile stimuli with different rates and intensities in different regions of the cell.

  9. Vitamin D attenuates cytokine-induced remodeling in human fetal airway smooth muscle cells.

    PubMed

    Britt, Rodney D; Faksh, Arij; Vogel, Elizabeth R; Thompson, Michael A; Chu, Vivian; Pandya, Hitesh C; Amrani, Yassine; Martin, Richard J; Pabelick, Christina M; Prakash, Y S

    2015-06-01

    Asthma in the pediatric population remains a significant contributor to morbidity and increasing healthcare costs. Vitamin D3 insufficiency and deficiency have been associated with development of asthma. Recent studies in models of adult airway diseases suggest that the bioactive Vitamin D3 metabolite, calcitriol (1,25-dihydroxyvitamin D3 ; 1,25(OH)2 D3 ), modulates responses to inflammation; however, this concept has not been explored in developing airways in the context of pediatric asthma. We used human fetal airway smooth muscle (ASM) cells as a model of the early postnatal airway to explore how calcitriol modulates remodeling induced by pro-inflammatory cytokines. Cells were pre-treated with calcitriol and then exposed to TNFα or TGFβ for up to 72 h. Matrix metalloproteinase (MMP) activity, production of extracellular matrix (ECM), and cell proliferation were assessed. Calcitriol attenuated TNFα enhancement of MMP-9 expression and activity. Additionally, calcitriol attenuated TNFα and TGFβ-induced collagen III expression and deposition, and separately, inhibited proliferation of fetal ASM cells induced by either inflammatory mediator. Analysis of signaling pathways suggested that calcitriol effects in fetal ASM involve ERK signaling, but not other major inflammatory pathways. Overall, our data demonstrate that calcitriol can blunt multiple effects of TNFα and TGFβ in developing airway, and point to a potentially novel approach to alleviating structural changes in inflammatory airway diseases of childhood.

  10. On the Visual Input Driving Human Smooth-Pursuit Eye Movements

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Beutter, Brent R.; Lorenceau, Jean

    1996-01-01

    Current computational models of smooth-pursuit eye movements assume that the primary visual input is local retinal-image motion (often referred to as retinal slip). However, we show that humans can pursue object motion with considerable accuracy, even in the presence of conflicting local image motion. This finding indicates that the visual cortical area(s) controlling pursuit must be able to perform a spatio-temporal integration of local image motion into a signal related to object motion. We also provide evidence that the object-motion signal that drives pursuit is related to the signal that supports perception. We conclude that current models of pursuit should be modified to include a visual input that encodes perceived object motion and not merely retinal image motion. Finally, our findings suggest that the measurement of eye movements can be used to monitor visual perception, with particular value in applied settings as this non-intrusive approach would not require interrupting ongoing work or training.

  11. Coherent anti-Stokes Raman scattering microscopy of human smooth muscle cells in bioengineered tissue scaffolds

    NASA Astrophysics Data System (ADS)

    Brackmann, Christian; Esguerra, Maricris; Olausson, Daniel; Delbro, Dick; Krettek, Alexandra; Gatenholm, Paul; Enejder, Annika

    2011-02-01

    The integration of living, human smooth muscle cells in biosynthesized cellulose scaffolds was monitored by nonlinear microscopy toward contractile artificial blood vessels. Combined coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy was applied for studies of the cell interaction with the biopolymer network. CARS microscopy probing CH2-groups at 2845 cm-1 permitted three-dimensional imaging of the cells with high contrast for lipid-rich intracellular structures. SHG microscopy visualized the fibers of the cellulose scaffold, together with a small signal obtained from the cytoplasmic myosin of the muscle cells. From the overlay images we conclude a close interaction between cells and cellulose fibers. We followed the cell migration into the three-dimensional structure, illustrating that while the cells submerge into the scaffold they extrude filopodia on top of the surface. A comparison between compact and porous scaffolds reveals a migration depth of <10 μm for the former, whereas the porous type shows cells further submerged into the cellulose. Thus, the scaffold architecture determines the degree of cell integration. We conclude that the unique ability of nonlinear microscopy to visualize the three-dimensional composition of living, soft matter makes it an ideal instrument within tissue engineering.

  12. Cigarette smoke-induced mitochondrial fragmentation and dysfunction in human airway smooth muscle

    PubMed Central

    Aravamudan, Bharathi; Kiel, Alexander; Freeman, Michelle; Delmotte, Philippe; Thompson, Michael; Vassallo, Robert; Sieck, Gary C.; Pabelick, Christina M.

    2014-01-01

    The balance between mitochondrial fission and fusion is crucial for mitochondria to perform its normal cellular functions. We hypothesized that cigarette smoke (CS) disrupts this balance and enhances mitochondrial dysfunction in the airway. In nonasthmatic human airway smooth muscle (ASM) cells, CS extract (CSE) induced mitochondrial fragmentation and damages their networked morphology in a concentration-dependent fashion, via increased expression of mitochondrial fission protein dynamin-related protein 1 (Drp1) and decreased fusion protein mitofusin (Mfn) 2. CSE effects on Drp1 vs. Mfn2 and mitochondrial network morphology involved reactive oxygen species (ROS), activation of extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), protein kinase C (PKC) and proteasome pathways, as well as transcriptional regulation via factors such as NF-κB and nuclear erythroid 2-related factor 2. Inhibiting Drp1 prevented CSE effects on mitochondrial networks and ROS generation, whereas blocking Mfn2 had the opposite, detrimental effect. In ASM from asmatic patients, mitochondria exhibited substantial morphological defects at baseline and showed increased Drp1 but decreased Mfn2 expression, with exacerbating effects of CSE. Overall, these results highlight the importance of mitochondrial networks and their regulation in the context of cellular changes induced by insults such as inflammation (as in asthma) or CS. Altered mitochondrial fission/fusion proteins have a further potential to influence parameters such as ROS and cell proliferation and apoptosis relevant to airway diseases. PMID:24610934

  13. Transcriptional profiling of human smooth muscle cells infected with gingipain and fimbriae mutants of Porphyromonas gingivalis

    PubMed Central

    Zhang, Boxi; Sirsjö, Allan; Khalaf, Hazem; Bengtsson, Torbjörn

    2016-01-01

    Porphyromonas gingivalis (P. gingivalis) is considered to be involved in the development of atherosclerosis. However, the role of different virulence factors produced by P. gingivalis in this process is still uncertain. The aim of this study was to investigate the transcriptional profiling of human aortic smooth muscle cells (AoSMCs) infected with wild type, gingipain mutants or fimbriae mutants of P. gingivalis. AoSMCs were exposed to wild type (W50 and 381), gingipain mutants (E8 and K1A), or fimbriae mutants (DPG-3 and KRX-178) of P. gingivalis. We observed that wild type P. gingivalis changes the expression of a considerable larger number of genes in AoSMCs compare to gingipain and fimbriae mutants, respectively. The results from pathway analysis revealed that the common differentially expressed genes for AoSMCs infected by 3 different wild type P. gingivalis strains were enriched in pathways of cancer, cytokine-cytokine receptor interaction, regulation of the actin cytoskeleton, focal adhesion, and MAPK signaling pathway. Disease ontology analysis showed that various strains of P. gingivalis were associated with different disease profilings. Our results suggest that gingipains and fimbriae, especially arginine-specific gingipain, produced by P. gingivalis play important roles in the association between periodontitis and other inflammatory diseases, including atherosclerosis. PMID:26907358

  14. Human discrimination of visual direction of motion with and without smooth pursuit eye movements

    NASA Technical Reports Server (NTRS)

    Krukowski, Anton E.; Pirog, Kathleen A.; Beutter, Brent R.; Brooks, Kevin R.; Stone, Leland S.

    2003-01-01

    It has long been known that ocular pursuit of a moving target has a major influence on its perceived speed (Aubert, 1886; Fleischl, 1882). However, little is known about the effect of smooth pursuit on the perception of target direction. Here we compare the precision of human visual-direction judgments under two oculomotor conditions (pursuit vs. fixation). We also examine the impact of stimulus duration (200 ms vs. 800 ms) and absolute direction (cardinal vs. oblique). Our main finding is that direction discrimination thresholds in the fixation and pursuit conditions are indistinguishable. Furthermore, the two oculomotor conditions showed oblique effects of similar magnitudes. These data suggest that the neural direction signals supporting perception are the same with or without pursuit, despite remarkably different retinal stimulation. During fixation, the stimulus information is restricted to large, purely peripheral retinal motion, while during steady-state pursuit, the stimulus information consists of small, unreliable foveal retinal motion and a large efference-copy signal. A parsimonious explanation of our findings is that the signal limiting the precision of direction judgments is a neural estimate of target motion in head-centered (or world-centered) coordinates (i.e., a combined retinal and eye motion signal) as found in the medial superior temporal area (MST), and not simply an estimate of retinal motion as found in the middle temporal area (MT).

  15. Therapeutic Targeting of CC Ligand 21 or CC Chemokine Receptor 7 Abrogates Pulmonary Fibrosis Induced by the Adoptive Transfer of Human Pulmonary Fibroblasts to Immunodeficient Mice

    PubMed Central

    Pierce, Elizabeth M.; Carpenter, Kristin; Jakubzick, Claudia; Kunkel, Steven L.; Flaherty, Kevin R.; Martinez, Fernando J.; Hogaboam, Cory M.

    2007-01-01

    Idiopathic interstitial pneumonias (IIPs) are a collection of pulmonary fibrotic diseases of unknown etiopathogenesis. CC chemokine receptor 7 (CCR7) is expressed in IIP biopsies and primary fibroblast lines, but its role in pulmonary fibrosis was not previously examined. To study the in vivo role of CCR7 in a novel model of pulmonary fibrosis, 1.0 × 106 primary fibroblasts grown from idiopathic pulmonary fibrosis/usual interstitial pneumonia, nonspecific interstitial pneumonia, or histologically normal biopsies were injected intravenously into C.B-17 severe combined immunodeficiency (SCID)/beige (bg) mice. At days 35 and 63 after idiopathic pulmonary fibrosis/usual interstitial pneumonia fibroblast injection, patchy interstitial fibrosis and increased hydroxyproline were present in the lungs of immunodeficient mice. Adoptively transferred nonspecific interstitial pneumonia fibroblasts caused a more diffuse interstitial fibrosis and increased hydroxyproline levels at both times, but injected normal human fibroblasts did not induce interstitial remodeling changes in C.B-17SCID/bg mice. Systemic therapeutic immunoneutralization of either human CCR7 or CC ligand 21, its ligand, significantly attenuated the pulmonary fibrosis in groups of C.B-17SCID/bg mice that received either type of IIP fibroblasts. Thus, the present study demonstrates that pulmonary fibrosis is initiated by the intravenous introduction of primary human fibroblast lines into immunodeficient mice, and this fibrotic response is dependent on the interaction between CC ligand 21 and CCR7. PMID:17392156

  16. Inhibition of human arterial smooth muscle cell growth by human monocyte/macrophages: a co-culture study.

    PubMed

    Proudfoot, D; Fitzsimmons, C; Torzewski, J; Bowyer, D E

    1999-07-01

    Monocyte/macrophages produce a variety of substances which may influence the function of smooth muscle cells (SMC). During atherogenesis, macrophages are thought to modulate SMC migration, proliferation and synthesis of extracellular matrix. Such modulation is the balance between stimulatory and inhibitory influences. Thus, for example, our earlier studies have shown that macrophages not only secrete mitogens, but also produce small molecular weight inhibitors of SMC proliferation. In the present study, we have used a co-culture system in which human monocyte/macrophages were separated from human arterial SMC (hSMC) by a filter with the optional addition of a 12 kDa cut-off dialysis membrane, in order to assess their effect on hSMC growth. We have found that human peripheral blood-derived monocytes produced a substance of < 12 kDa that inhibited hSMC growth in the co-culture system. The monocyte-derived factor causing this effect was completely blocked by indomethacin, indicating that growth-inhibitory factors produced by the monocytes were cyclooxygenase products. We have shown that PGE1 and PGE2 inhibit hSMC growth, making them likely candidates for the effector molecules released from monocytes in our co-culture system.

  17. The human uterine smooth muscle S-nitrosoproteome fingerprint in pregnancy, labor, and preterm labor

    PubMed Central

    Ulrich, Craig; Quilici, David R.; Schlauch, Karen A.

    2013-01-01

    Molecular mechanisms involved in uterine quiescence during gestation and those responsible for induction of labor at term are incompletely known. More than 10% of babies born worldwide are premature and 1,000,000 die annually. Preterm labor results in preterm delivery in 50% of cases in the United States explaining 75% of fetal morbidity and mortality. There is no Food and Drug Administration-approved treatment to prevent preterm delivery. Nitric oxide-mediated relaxation of human uterine smooth muscle is independent of global elevation of cGMP following activation of soluble guanylyl cyclase. S-nitrosation is a likely mechanism to explain cGMP-independent relaxation to nitric oxide and may reveal S-nitrosated proteins as new therapeutic targets for the treatment of preterm labor. Employing S-nitrosoglutathione as an nitric oxide donor, we identified 110 proteins that are S-nitrosated in 1 or more states of human pregnancy. Using area under the curve of extracted ion chromatograms as well as normalized spectral counts to quantify relative expression levels for 62 of these proteins, we show that 26 proteins demonstrate statistically significant S-nitrosation differences in myometrium from spontaneously laboring preterm patients compared with nonlaboring patients. We identified proteins that were up-S-nitrosated as well as proteins that were down-S-nitrosated in preterm laboring tissues. Identification and relative quantification of the S-nitrosoproteome provide a fingerprint of proteins that can form the basis of hypothesis-directed efforts to understand the regulation of uterine contraction-relaxation and the development of new treatment for preterm labor. PMID:23948706

  18. BKCa channel regulates calcium oscillations induced by alpha-2-macroglobulin in human myometrial smooth muscle cells

    PubMed Central

    Wakle-Prabagaran, Monali; Lorca, Ramón A.; Ma, Xiaofeng; Stamnes, Susan J.; Amazu, Chinwendu; Hsiao, Jordy J.; Hyrc, Krzysztof L.; Wright, Michael E.; England, Sarah K.

    2016-01-01

    The large-conductance, voltage-gated, calcium (Ca2+)-activated potassium channel (BKCa) plays an important role in regulating Ca2+ signaling and is implicated in the maintenance of uterine quiescence during pregnancy. We used immunopurification and mass spectrometry to identify proteins that interact with BKCa in myometrium samples from term pregnant (≥37 wk gestation) women. From this screen, we identified alpha-2-macroglobulin (α2M). We then used immunoprecipitation followed by immunoblot and the proximity ligation assay to confirm the interaction between BKCa and both α2M and its receptor, low-density lipoprotein receptor-related protein 1 (LRP1), in cultured primary human myometrial smooth muscle cells (hMSMCs). Single-channel electrophysiological recordings in the cell-attached configuration demonstrated that activated α2M (α2M*) increased the open probability of BKCa in an oscillatory pattern in hMSMCs. Furthermore, α2M* caused intracellular levels of Ca2+ to oscillate in oxytocin-primed hMSMCs. The initiation of oscillations required an interaction between α2M* and LRP1. By using Ca2+-free medium and inhibitors of various Ca2+ signaling pathways, we demonstrated that the oscillations required entry of extracellular Ca2+ through store-operated Ca2+ channels. Finally, we found that the specific BKCa blocker paxilline inhibited the oscillations, whereas the channel opener NS11021 increased the rate of these oscillations. These data demonstrate that α2M* and LRP1 modulate the BKCa channel in human myometrium and that BKCa and its immunomodulatory interacting partners regulate Ca2+ dynamics in hMSMCs during pregnancy. PMID:27044074

  19. Human Embryonic Stem Cell Derived Vascular Progenitor Cells Capable of Endothelial and Smooth Muscle Cell Function

    PubMed Central

    Hill, Katherine L; Obrtlikova, Petra; Alvarez, Diego F; King, Judy A; Keirstead, Susan A; Allred, Jeremy R; Kaufman, Dan S

    2010-01-01

    OBJECTIVE Previous studies have demonstrated development of endothelial cells (ECs) and smooth muscle cells (SMCs) as separate cell lineages derived from human embryonic stem cells (hESCs). We demonstrate CD34+ cells isolated from differentiated hESCs function as vascular progenitor cells capable of producing both ECs and SMCs. These studies better define the developmental origin and reveal the relationship between these two cell types, as well as provide a more complete biological characterization. MATERIALS AND METHODS hESCs are co-cultured on M2-10B4 stromal cells or Wnt1 expressing M2-10B4 for 13–15 days to generate a CD34+ cell population. These cells are isolated using a magnetic antibody separation kit and cultured on fibronectin coated dishes in EC medium. To induce SMC differentiation, culture medium is changed and a morphological and phenotypic change occurs within 24–48 hours. RESULTS CD34+ vascular progenitor cells give rise to ECs and SMCs. The two populations express respective cell specific transcripts and proteins, exhibit intracellular calcium in response to various agonists, and form robust tube-like structures when co-cultured in Matrigel. Human umbilical vein endothelial cells (HUVEC) cultured under SMC conditions do not exhibit a change in phenotype or genotype. Wnt1 overexpressing stromal cells produced an increased number of progenitor cells. CONCLUSIONS The ability to generate large numbers of ECs and SMCs from a single vascular progenitor cell population is promising for therapeutic use to treat a variety of diseased and ischemic conditions. The step-wise differentiation outlined here is an efficient, reproducible method with potential for large scale cultures suitable for clinical applications. PMID:20067819

  20. Heterogeneity of smooth muscle cells in atheromatous plaque of human aorta.

    PubMed Central

    Babaev, V. R.; Bobryshev, Y. V.; Stenina, O. V.; Tararak, E. M.; Gabbiani, G.

    1990-01-01

    This study was undertaken to investigate the expression of cytoskeletal proteins and the ultrastructure of cells in normal intima and atheromatous plaque of human aorta. It has been established, using double-labeling immunofluorescence, that smooth muscle cells (SMC) in normal aortic intima contain myosin, vimentin, and alpha-actin but do not react with antibodies against desmin. In contrast, 7 of 28 atherosclerotic plaques contained many cells expressing desmin in addition to the other cytoskeletal proteins characteristic of normal intima SMC. These cells were localized predominantly in the plaque cap and had the ultrastructural features of modulated SMC, ie, well-developed endoplasmic reticulum and Golgi apparatus. Besides, some cells in the 13 atherosclerotic plaques proved to be myosin, alpha actin, and desmin negative but contained vimentin and actin as revealed by fluorescent phalloidin. These cells were found in the immediate proximity of atheromatous material and reacted with a monoclonal antibody specific to SMC surface protein (11G10) but not with monoclonal anti-muscle actin (HHF35) and anti-macrophage (HAM56) antibodies. Electron microscopy of this plaque zone revealed that the cytoplasm of these cells was filled with rough endoplasmic reticulum and a developed Golgi complex. At the same time, a certain proportion of cells in this region retained morphologic features of differentiated SMC such as the presence of a basal lamina and myofilament bundles. The revealed peculiarities of cytoskeletal protein expression and the ultrastructure of cells in human aortic atherosclerotic plaques may be explained by a phenotypic modulation of vascular SMC. Images Figure 4 Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 PMID:2190471

  1. Lipoprotein(a) Promotes Smooth Muscle Cell Proliferation and Dedifferentiation in Atherosclerotic Lesions of Human Apo(a) Transgenic Rabbits

    PubMed Central

    Ichikawa, Tomonaga; Unoki, Hiroyuki; Sun, Huijun; Shimoyamada, Hiroaki; Marcovina, Santica; Shikama, Hisataka; Watanabe, Teruo; Fan, Jianglin

    2002-01-01

    Elevated plasma lipoprotein(a) [Lp(a)] levels constitute an independent risk factor for the development of atherosclerosis. However, the mechanism underlying Lp(a) atherogenicity is unclear. Recently, we demonstrated that Lp(a) may potentially be proatherogenic in transgenic rabbits expressing human apolipoprotein(a) [apo(a)]. In this study, we further investigated atherosclerotic lesions of transgenic rabbits by morphometry and immunohistochemistry. On a cholesterol diet, human apo(a) transgenic rabbits had more extensive atherosclerotic lesions of the aorta, carotid artery, iliac artery, and coronary artery than did nontransgenic littermate rabbits as defined by increased intimal lesion area. Enhanced lesion development in transgenic rabbits was characterized by increased accumulation of smooth muscle cells, that was often associated with the Lp(a) deposition. To explore the possibility that Lp(a) may be involved in the smooth-muscle cell phenotypic modulation, we stained the lesions using a panel of monoclonal antibodies against smooth-muscle myosin heavy-chain isoforms (SM1, SM2, and SMemb) and basic transcriptional element binding protein-2 (BTEB2). We found that a large number of smooth muscle cells located in the apo(a)-containing areas of transgenic rabbits were positive for SMemb and BTEB2, suggesting that these smooth muscle cells were either immature or in the state of activation. In addition, transgenic rabbits showed delayed fibrinolytic activity accompanied by increased plasma plasminogen activator inhibitor-1. We conclude that Lp(a) may enhance the lesion development by mediating smooth muscle cell proliferation and dedifferentiation possibly because of impaired fibrinolytic activity. PMID:11786416

  2. TREK-1 currents in smooth muscle cells from pregnant human myometrium.

    PubMed

    Heyman, Nathanael S; Cowles, Chad L; Barnett, Scott D; Wu, Yi-Ying; Cullison, Charles; Singer, Cherie A; Leblanc, Normand; Buxton, Iain L O

    2013-09-15

    The mechanisms governing maintenance of quiescence during pregnancy remain largely unknown. The current study characterizes a stretch-activated, tetraethylammonium-insensitive K(+) current in smooth muscle cells isolated from pregnant human myometrium. This study hypothesizes that these K(+) currents can be attributed to TREK-1 and that upregulation of this channel during pregnancy assists with the maintenance of a negative cell membrane potential, conceivably contributing to uterine quiescence until full term. The results of this study demonstrate that, in pregnant human myometrial cells, outward currents at 80 mV increased from 4.8 ± 1.5 to 19.4 ± 7.5 pA/pF and from 3.0 ± 0.8 to 11.8 ± 2.7 pA/pF with application of arachidonic acid (AA) and NaHCO3, respectively, causing intracellular acidification. Similarly, outward currents were inhibited following application of 10 μM fluphenazine by 51.2 ± 9.8% after activation by AA and by 73.9 ± 4.2% after activation by NaHCO3. In human embryonic kidney (HEK-293) cells stably expressing TREK-1, outward currents at 80 mV increased from 91.0 ± 23.8 to 247.5 ± 73.3 pA/pF and from 34.8 ± 8.9 to 218.6 ± 45.0 pA/pF with application of AA and NaHCO3, respectively. Correspondingly, outward currents were inhibited 89.5 ± 2.3% by 10 μM fluphenazine following activation by AA and by 91.6 ± 3.4% following activation by NaHCO3. Moreover, currents in human myometrial cells were activated by stretch and were reduced by transfection with small interfering RNA or extracellular acidification. Understanding gestational regulation of expression and gating of TREK-1 channels could be important in determining appropriate maintenance of uterine quiescence during pregnancy.

  3. Early Transcriptomic Response to LDL and oxLDL in Human Vascular Smooth Muscle Cells

    PubMed Central

    Damián-Zamacona, Salvador; Toledo-Ibelles, Paola; Ibarra-Abundis, Mabel Z.; Uribe-Figueroa, Laura; Hernández-Lemus, Enrique; Macedo-Alcibia, Karla Paola; Delgado–Coello, Blanca; Mas-Oliva, Jaime; Reyes-Grajeda, Juan Pablo

    2016-01-01

    Background Although nowadays it is well known that the human transcriptome can importantly vary according to external or environmental condition, the reflection of this concept when studying oxidative stress and its direct relationship with gene expression profiling during the process of atherogenesis has not been thoroughly achieved. Objective The ability to analyze genome-wide gene expression through transcriptomics has shown that the genome responds dynamically to diverse stimuli. Here, we describe the transcriptome of human vascular smooth muscle cells (hVSMC) stimulated by native and oxidized low-density lipoprotein (nLDL and oxLDL respectively), with the aim of assessing the early molecular changes that induce a response in this cell type resulting in a transcriptomic transformation. This expression has been demonstrated in atherosclerotic plaques in vivo and in vitro, particularly in the light of the oxidative modification hypothesis of atherosclerosis. Approach and Results Total RNA was isolated with TRIzol reagent (Life Technologies) and quality estimated using an Agilent 2100 bioanalyzer. The transcriptome of hVSMC under different experimental conditions (1,5 and 24 hours for nLDL and oxLDL) was obtained using the GeneChip Human Gene 1.0 ST (Affymetrix) designed to measure gene expression of 28,869 well-annotated genes. A fixed fold-change cut-off corresponding to ± 2 was used to identify genes exhibiting the most significant variation and statistical significance (P< 0.05), and 8 genes validated by qPCR using Taqman probes. Conclusions 10 molecular processes were significantly affected in hVSMC: Apoptosis and cell cycle, extracellular matrix remodeling, DNA repair, cholesterol efflux, cGMP biosynthesis, endocytic mechanisms, calcium homeostasis, redox balance, membrane trafficking and finally, the immune response to inflammation. The evidence we present supporting the hypothesis for the involvement of oxidative modification of several processes and

  4. Expression of myosin isoforms in the smooth muscle of human corpus cavernosum.

    PubMed

    Koi, P T; Milhoua, P M; Monrose, V; Melman, A; DiSanto, M E

    2007-01-01

    The molecular interaction between smooth muscle (SM) myosin and actin in the corpus cavernosum (CC) determines the erectile state of the penis. A key mechanism regulating this interaction and subsequent development and maintenance of force is alternative splicing of SM myosin heavy chain (MHC) and 17 kDa essential SM myosin light chain (MLC) pre-mRNAs. Our aim was to examine the relative SM myosin isoform composition in human CC. Tissue samples were obtained from 18 patients with erectile dysfunction (ED), Peyronie's disease, or both. One specimen was obtained during a transgender operation. Patients then were stratified according to presence of diabetes mellitus, hypertension, ED, or Peyronie's disease, as well as failure of phosphodiesterase-5 (PDE5) inhibitors and history of previous pelvic or penile surgeries, radiation, or both. Our results revealed that all human CC samples expressed only the SM-A isoform. There was a predominance of SM2 isoform mRNA relative to SM1 across all samples, with a mean of 63.8%, which correlated with protein analysis by gel electrophoresis. A statistically significant difference was found between patients who had undergone previous pelvic surgery, radiation, or both and those who did not. The ratio of LC(17b) to LC(17a) was approximately 1:1 for all patients, with a mean of 48.9% LC(17b). Statistical difference was seen in the relative ratio of LC(17b) to LC(17a) among the group who failed conservative therapy with PDE5 inhibitors compared with all others. In conclusion, we determined the SM myosin isoform composition of human CC and present for the first time differences in relative myosin isoform expression among patients with several risk factors contributing to their cause of ED. Our data reflect the fact that alternative splicing events in the MHC and 17 kDa MLC pre-mRNA may be a possible molecular mechanism involved in the altered contractility of the CCSM in patients with ED.

  5. Active macrophage-associated TGF-beta co-localizes with type I procollagen gene expression in atherosclerotic human pulmonary arteries.

    PubMed Central

    Bahadori, L.; Milder, J.; Gold, L.; Botney, M.

    1995-01-01

    Vascular remodeling in adult atherosclerotic pulmonary arteries is characterized by discrete areas of neointimal smooth muscle cell extracellular matrix gene expression in close proximity to non-foamy macrophages, suggesting regulation by local macrophage-associated factors. The purpose of these studies was to begin addressing the role of putative macrophage-associated factors such as transforming growth factor-beta (TGF-beta), by determining the spatial relationship between TGF-beta and neointimal matrix gene expression in human atherosclerotic pulmonary arteries. For example, the participation of TGF-beta in vascular remodeling could be inferred by its colocalization with non-foamy macrophages in areas of active matrix synthesis. In situ hybridization and immunohistochemistry demonstrated focal neointimal procollagen gene expression in close association with non-foamy but not foamy macrophages. Immunohistochemistry with isoform-specific anti-TGF-beta antibodies demonstrated all three isoforms of TGF-beta associated with non-foamy macrophages, but foamy macrophages were not immunoreactive. Neointimal and medial smooth muscle cells stained lightly. In contrast, intense TGF-beta immunoreactivity was also associated with medial smooth muscle cells in normal nonremodeling vessels. Immunohistochemistry with antibodies specific for latent TGF-beta was similar to immunohistochemistry for mature TGF-beta in both remodeling and nonremodeling vessels. Finally, using an antibody specific for active TGF-beta 1, immunoreactivity was only seen in non-foamy neointimal macrophages but not in foamy macrophages or medial smooth muscle cells from hypertensive or normal vessels. These observations suggest non-foamy macrophages may participate in modulating matrix gene expression in atherosclerotic remodeling via a TGF-beta-dependent mechanism. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7747808

  6. Calcium Phosphate Crystals from Uremic Serum Promote Osteogenic Differentiation in Human Aortic Smooth Muscle Cells.

    PubMed

    Liu, Yaorong; Zhang, Lin; Ni, Zhaohui; Qian, Jiaqi; Fang, Wei

    2016-11-01

    Recent study demonstrated that calcium phosphate (CaP) crystals isolated from high phosphate medium were a key contributor to arterial calcification. The present study further investigated the effects of CaP crystals induced by uremic serum on calcification of human aortic smooth muscle cells. This may provide a new insight for the development of uremic cardiovascular calcification. We tested the effects of uremic serum or normal serum on cell calcification. Calcification was visualized by staining and calcium deposition quantified. Expression of various bone-calcifying genes was detected by real-time PCR, and protein levels were quantified by western blotting or enzyme-linked immunosorbent assays. Pyrophosphate was used to investigate the effects of CaP crystals' inhibition. Finally, CaP crystals were separated from uremic serum to determine its specific pro-calcification effects. Uremic serum incubation resulted in progressively increased calcification staining and increased calcium deposition in HASMCs after 4, 8 and 12 days (P vs 0 day <0.001 for all). Compared to cells incubated in control serum, uremic serum significantly induced the mRNA expression of bone morphogenetic factor-2, osteopontin and RUNX2, and increased their protein levels as well (P < 0.05 for all). Inhibition of CaP crystals with pyrophosphate incubation prevented calcium deposition and bone-calcifying gene over-expression increased by uremic serum. CaP crystals, rather than the rest of uremic serum, were responsible for these effects. Uremic serum accelerates arterial calcification by mediating osteogenic differentiation. This effect might be mainly attributed to the CaP crystal content.

  7. Soluble guanylate cyclase modulators blunt hyperoxia effects on calcium responses of developing human airway smooth muscle.

    PubMed

    Britt, Rodney D; Thompson, Michael A; Kuipers, Ine; Stewart, Alecia; Vogel, Elizabeth R; Thu, James; Martin, Richard J; Pabelick, Christina M; Prakash, Y S

    2015-09-15

    Exposure to moderate hyperoxia in prematurity contributes to subsequent airway dysfunction and increases the risk of developing recurrent wheeze and asthma. The nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic GMP (cGMP) axis modulates airway tone by regulating airway smooth muscle (ASM) intracellular Ca(2+) ([Ca(2+)]i) and contractility. However, the effects of hyperoxia on this axis in the context of Ca(2+)/contractility are not known. In developing human ASM, we explored the effects of novel drugs that activate sGC independent of NO on alleviating hyperoxia (50% oxygen)-induced enhancement of Ca(2+) responses to bronchoconstrictor agonists. Treatment with BAY 41-2272 (sGC stimulator) and BAY 60-2770 (sGC activator) increased cGMP levels during exposure to 50% O2. Although 50% O2 did not alter sGCα1 or sGCβ1 expression, BAY 60-2770 did increase sGCβ1 expression. BAY 41-2272 and BAY 60-2770 blunted Ca(2+) responses to histamine in cells exposed to 50% O2. The effects of BAY 41-2272 and BAY 60-2770 were reversed by protein kinase G inhibition. These novel data demonstrate that BAY 41-2272 and BAY 60-2770 stimulate production of cGMP and blunt hyperoxia-induced increases in Ca(2+) responses in developing ASM. Accordingly, sGC stimulators/activators may be a useful therapeutic strategy in improving bronchodilation in preterm infants.

  8. Experimental evidence and mathematical modeling of thermal effects on human colonic smooth muscle contractility.

    PubMed

    Altomare, A; Gizzi, A; Guarino, M P L; Loppini, A; Cocca, S; Dipaola, M; Alloni, R; Cicala, M; Filippi, S

    2014-07-01

    It has been shown, in animal models, that gastrointestinal tract (GIT) motility is influenced by temperature; nevertheless, the basic mechanism governing thermal GIT smooth muscle responses has not been fully investigated. Studies based on physiologically tuned mathematical models have predicted that thermal inhomogeneity may induce an electrochemical destabilization of peristaltic activity. In the present study, the effect of thermal cooling on human colonic muscle strip (HCMS) contractility was studied. HCMSs were obtained from disease-free margins of resected segments for cancer. After removal of the mucosa and serosa layers, strips were mounted in separate chambers. After 30 min, spontaneous contractions developed, which were measured using force displacement transducers. Temperature was changed every hour (37, 34, and 31°C). The effect of cooling was analyzed on mean contractile activity, oscillation amplitude, frequency, and contraction to ACh (10(-5) M). At 37°C, HCMSs developed a stable phasic contraction (~0.02 Hz) with a significant ACh-elicited mean contractile response (31% and 22% compared with baseline in the circular and longitudinal axis, respectively). At a lower bath temperature, higher mean contractile amplitude was observed, and it increased in the presence of ACh (78% and 43% higher than the basal tone in the circular and longitudinal axis, respectively, at 31°C). A simplified thermochemomechanical model was tuned on experimental data characterizing the stress state coupling the intracellular Ca(2+) concentration to tissue temperature. In conclusion, acute thermal cooling affects colonic muscular function. Further studies are needed to establish the exact mechanisms involved to better understand clinical consequences of hypothermia on intestinal contractile activity.

  9. Keratose Hydrogels Promote Vascular Smooth Muscle Differentiation from C-kit Positive Human Cardiac Stem Cells.

    PubMed

    Ledford, Benjamin T; Simmons, Jamelle; Chen, Miao; Fan, Huimin; Barron, Catherine; Liu, Zhongmin; Van Dyke, Mark; He, Jia-Qiang

    2017-03-28

    Stem cell-based therapies have demonstrated great potential for the treatment of cardiac diseases, e.g., myocardial infarction; however, low cell viability, low retention/engraftment, and uncontrollable in vivo differentiation after transplantation are still major limitations, which lead low therapeutic efficiency. Biomaterials provide a promising solution to overcome these issues due to their biocompatibility, biodegradability, low/non-immunogenicity, and low/non-cytotoxicity. The present study aims to investigate the impacts of Keratose (KOS) hydrogel biomaterial on cellular viability, proliferation, and differentiation of c-kit+ human cardiac stem cells (hCSCs). Briefly, hCSCs were cultured on both KOS hydrogel-coated dishes and regular tissue culture dishes (Blank control). Cell viability, stemness, proliferation, cellular morphology, and cardiac lineage differentiation were compared between KOS hydrogel and the Blank control at different time points. We found that KOS hydrogel is effective in maintaining hCSCs without any observable toxic effects, although cell size and proliferation rate appeared smaller on the KOS hydrogel compared to the Blank control. To our surprise, KOS hydrogel significantly promoted vascular smooth muscle cell (VSMC) differentiation (~72%), while on the Blank control dishes, most of the hCSCs (~78%) became cardiomyocytes. Further, we also observed "endothelial cell tube-like" microstructures formed by differentiated VSMCs only on KOS hydrogel, suggesting a potential capability of the hCSC-derived VSMCs for in vitro angiogenesis. To the best of our knowledge, this is the first report to discover the preferred differentiation of hCSCs toward VSMCs on KOS hydrogel. The underlying mechanism remains unknown. This innovative methodology may offer a new approach to generate a robust number of VSMCs simply by culturing hCSCs on KOS hydrogel, and the resulting VSMCs may be used in animal studies and clinical trials in

  10. Sex-specific pharmacological modulation of autophagic process in human umbilical artery smooth muscle cells.

    PubMed

    Campesi, Ilaria; Occhioni, Stefano; Capobianco, Giampiero; Fois, Marco; Montella, Andrea; Dessole, Salvatore; Franconi, Flavia

    2016-11-01

    Sex has largely been neglected in cell studies. Therefore, we investigated the occurrence of sexual dimorphism in human umbilical artery smooth muscle cells (HUASMCs). In particular, we investigated the existence of sex differences in basal and in drug-induced autophagy, a process involved in cardiovascular diseases. HUASMCs were isolated from healthy and normal weight male and female newborns (MHUASMCs and FHUASMCs, respectively). Expression of the primary molecules involved in the autophagic process [beclin-1 and microtubule-associated protein 1 light chain 3 (LC3)], and PmTOR were detected using western blotting in basal conditions, after serum starvation, rapamycin and verapamil treatments. The level of constitutive autophagy, measured as the LC3II/I ratio, was similar in male and female HUASMCs in the basal condition. Serum starvation promoted autophagy in both cell types, but the increase was more pronounced in FHUASMCs, while 250nM rapamycin induced autophagy only in female cells. Moreover, the level of verapamil-induced autophagy was not different between the two sexes. Notably, in the basal condition, Beclin-1 was more elevated in MHUASMCs than in FHUASMCs, and the difference disappeared after serum starvation and exposure to rapamycin. After exposure to verapamil, the differences in Beclin-1 increased, with more elevated expression levels in female cells. PmTor did not differ in basal conditions, but it was significantly down-regulated by starvation only in FHUASMCs and by rapamycin both in male and female cells. Finally, a strong negative correlation was observed between the newborn's weight and basal autophagy in female cells and between the newborn's weight and the LC3II/I ratio in male verapamil-treated cells. These results indicate that sex-differences begin in utero, are parameter-specific and drug specific suggesting that HUASMCs are a suitable model for the screening of drugs and to study the influence of sex. The sex differences in the autophagy

  11. Concerted upregulation of CLP36 and smooth muscle actin protein expression in human endometrium during decidualization.

    PubMed

    Miehe, Ulrich; Neumaier-Wagner, Peruka; Kadyrov, Mamed; Goyal, Pankaj; Alfer, Joachim; Rath, Werner; Huppertz, Berthold

    2005-01-01

    The human endometrium prepares for implantation of the blastocyst by reorganization of its whole cellular network. Endometrial stroma cells change their phenotype starting around the 23rd day of the menstrual cycle. These predecidual stroma cells first appear next to spiral arteries, and after implantation these cells further differentiate into decidual stroma cells. The phenotypical changes in these cells during decidualization are characterized by distinct changes in the actin filaments and filament-related proteins such as alpha-actinin. The carboxy-terminal LIM domain protein with a molecular weight of 36 kDa (CLP36) is a cytoskeletal component that has been shown to associate with contractile actin filaments and to bind to alpha-actinin supporting a role for CLP36 in cytoskeletal reorganization and signal transduction by binding to signaling proteins. The expression patterns of CLP36, alpha-actinin and actin were studied in endometrial stroma cells from different stages of the menstrual cycle and in decidual stroma cells from the 6th week of gestation until the end of pregnancy. During the menstrual cycle, CLP36 is only expressed in the luminal and glandular epithelium but not in endometrial stroma cells. During decidualization and throughout pregnancy, a parallel upregulation of CLP36 and smooth muscle actin, an early marker of decidualization in the baboon, was observed in endometrial decidual cells. Since both proteins maintain a high expression level throughout pregnancy, a role of both proteins is suggested in the stabilization of the cytoskeleton of these cells that come into close contact with invading trophoblast cells.

  12. Regional differences of energetics, mechanics, and kinetics of myosin cross-bridge in human ureter smooth muscle.

    PubMed

    Vargiu, Romina; Perinu, Anna; Tintrup, Frank; Broccia, Francesca; Lisa, Antonello De

    2015-01-01

    This study provides information about baseline mechanical properties of the entire muscle and the molecular contractile mechanism in human ureter smooth muscle and proposed to investigate if changes in mechanical motor performance in different regions of isolated human ureter are attributable to differences in myosin crossbridge interactions. Classic mechanical, contraction and energetic parameters derived from the tension-velocity relationship were studied in ureteral smooth muscle strips oriented longitudinally and circularly from abdominal and pelvic human ureter parts. By applying of Huxley's mathematical model we calculated the total working crossbridge number per mm(2) (Ψ), elementary force per single crossbridge (Π0), duration of maximum rate constant of crossbridge attachment 1/f1 and detachment 1/g2 and peak mechanical efficiency (Eff.max). Abdominal longitudinal smooth muscle strips exhibited significantly higher maximum isometric tension and faster maximum unloaded shortening velocity compared to pelvic ones. Contractile differences were associated with significantly higher crossbridge number per mm(2). Abdominal longitudinal muscle strips showed a lower duration of maximum rate constant of crossbridge attachment and detachment and higher peak mechanical efficiency than pelvic ones. Such data suggest that the abdominal human ureter showed better mechanical motor performance mainly related to a higher crossbridge number and crossbridge kinetics differences. Such results were more evident in the longitudinal rather than in the circular layer.

  13. Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms.

    PubMed Central

    López-Candales, A.; Holmes, D. R.; Liao, S.; Scott, M. J.; Wickline, S. A.; Thompson, R. W.

    1997-01-01

    Abdominal aortic aneurysms (AAAs) are characterized by structural deterioration of the aortic wall leading to progressive aortic dilatation and eventual rupture. The histopathological changes in AAAs are particularly evident within the elastic media, which is normally dominated by vascular smooth muscle cells (SMCs). To determine whether a decrease in vascular SMCs contributes to medial degeneration, we measured SMC density in 21 normal and pathological human abdominal aortic tissue specimens using immunohistochemistry for alpha-SMC actin and direct cell counts (medial SMCs per high-power field (HPF)). Medial SMC density was not significantly different between normal aorta (n = 5; 199.5 +/- 14.9 SMCs/HPF) and atherosclerotic occlusive disease (n = 6; 176.4 +/- 13.9 SMCs/HPF), but it was reduced by 74% in AAA (n = 10; 50.9 +/- 6.1 SMCs/HPF; P < 0.01 versus normal aorta). Light and electron microscopy revealed no evidence of overt cellular necrosis, but SMCs in AAAs exhibited ultrastructural changes consistent with apoptosis. Using in situ end-labeling (ISEL) of fragmented DNA to detect apoptotic cells, up to 30% of aortic wall cells were ISEL positive in AAAs. By double-labeling techniques, many of these cells were alpha-actin-positive SMCs distributed throughout the degenerative media. In contrast, ISEL-positive cells were observed only within the intimal plaque in atherosclerotic occlusive disease. The amount of p53 protein detected by immunoblotting was increased nearly fourfold in AAA compared with normal aorta and atherosclerotic occlusive disease (P < 0.01), and immunoreactive p53 was localized to lymphocytes and residual SMCs in the aneurysm wall. Using reverse transcription polymerase chain reaction assays a substantial amount of p53 mRNA expression was observed in AAAs. These results demonstrate that medial SMC density is significantly decreased in human AAA tissues associated with evidence of SMC apoptosis and increased production of p53, a potential

  14. Human smooth muscle autoantibody. Its identification as antiactin antibody and a study of its binding to "nonmuscular" cells.

    PubMed

    Gabbiani, G; Ryan, G B; Lamelin, J P; Vassalli, P; Majno, G; Bouvier, C A; Cruchaud, A; Lüscher, E F

    1973-09-01

    When human serum containing smooth muscle autoantibodies (SMA) is incubated with extracts containing thrombosthenin (the contractile material of platelets) or thrombosthenin-A (the actin-like moiety of thrombosthenin), it loses its ability to bind to smooth muscle. Such binding is also diminished when SMA serum is incubated with lysed platelets; this effect is not seen if the SMA serum is incubated with intact platelets. The incubation of other autoantibodies (such as antimitochondrial or antinuclear antibodies) with thrombosthenin does not affect their binding to the specific antigens. It appears that SMA is directed against the actin fraction of thrombosthenin-ie, SMA is an antiactin antibody. Hence the name of antiactin autoantibody (AAA) seems more appropriate than smooth muscle autoantibody (SMA). A study of the distribution of antiactin autoantibody binding in rat, rabbit and man shows that several "nonmuscular" structures contain actin under normal conditions; these include megakaryocytes and platelets, normal rat hepatocytes, the brush borders of renal tubules, the periphery of epithelial cells of the intestine, polymorphs and lymphocytes in lymph nodes (but not thymic cortical lymphocytes). In addition, certain cell types (such as granulation tissue fibroblasts, cultivated fibroblasts, hepatocytes or regenerating liver and epidermal cells growing over a skin wound) can reversibly acquire a massive network of actin-containing microfilaments resembling those in smooth muscle.

  15. Human motion perception and smooth eye movements show similar directional biases for elongated apertures

    NASA Technical Reports Server (NTRS)

    Beutter, B. R.; Stone, L. S.

    1998-01-01

    Although numerous studies have examined the relationship between smooth-pursuit eye movements and motion perception, it remains unresolved whether a common motion-processing system subserves both perception and pursuit. To address this question, we simultaneously recorded perceptual direction judgments and the concomitant smooth eye-movement response to a plaid stimulus that we have previously shown generates systematic perceptual errors. We measured the perceptual direction biases psychophysically and the smooth eye-movement direction biases using two methods (standard averaging and oculometric analysis). We found that the perceptual and oculomotor biases were nearly identical, suggesting that pursuit and perception share a critical motion processing stage, perhaps in area MT or MST of extrastriate visual cortex.

  16. Human Motion Perception and Smooth Eye Movements Show Similar Directional Biases for Elongated Apertures

    NASA Technical Reports Server (NTRS)

    Beutter, Brent R.; Stone, Leland S.

    1997-01-01

    Although numerous studies have examined the relationship between smooth-pursuit eye movements and motion perception, it remains unresolved whether a common motion-processing system subserves both perception and pursuit. To address this question, we simultaneously recorded perceptual direction judgments and the concomitant smooth eye movement response to a plaid stimulus that we have previously shown generates systematic perceptual errors. We measured the perceptual direction biases psychophysically and the smooth eye-movement direction biases using two methods (standard averaging and oculometric analysis). We found that the perceptual and oculomotor biases were nearly identical suggesting that pursuit and perception share a critical motion processing stage, perhaps in area MT or MST of extrastriate visual cortex.

  17. LTB4 activates pulmonary artery adventitial fibroblasts in pulmonary hypertension

    PubMed Central

    Jiang, Xinguo; Tamosiuniene, Rasa; Sung, Yon K.; Shuffle, Eric M.; Tu, Allen B.; Valenzuela, Antonia; Jiang, Shirley; Zamanian, Roham T.; Fiorentino, David F.; Voelkel, Norbert F.; Peters-Golden, Marc; Stenmark, Kurt R.; Chung, Lorinda; Rabinovitch, Marlene; Nicolls, Mark R.

    2015-01-01

    A recent study demonstrated a significant role for leukotriene B4 (LTB4) causing pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). LTB4 was found to directly injure luminal endothelial cells and promote growth of the smooth muscle cell layer of pulmonary arterioles. The purpose of the current study was to determine the effects of LTB4 on the pulmonary adventitial layer, largely composed of fibroblasts. Here, we demonstrate that LTB4 enhanced human pulmonary artery adventitial fibroblast (HPAAF) proliferation, migration and differentiation in a dose-dependent manner through its cognate G-protein coupled receptor, BLT1. LTB4 activated HPAAF by up-regulating p38 MAPK as well as Nox4 signaling pathways. In an autoimmune model of PH, inhibition of these pathways blocked perivascular inflammation, decreased Nox4 expression, reduced reactive oxygen species production, reversed arteriolar adventitial fibroblast activation and attenuated PH development. This study uncovers a novel mechanism by which LTB4 further promotes PAH pathogenesis, beyond its established effects on endothelial and smooth muscle cells, by activating adventitial fibroblasts. PMID:26558820

  18. Phosphodiesterase 5 inhibitors augment UT-15C-stimulated ATP release from erythrocytes of humans with pulmonary arterial hypertension.

    PubMed

    Bowles, Elizabeth A; Moody, Gina N; Yeragunta, Yashaswini; Stephenson, Alan H; Ellsworth, Mary L; Sprague, Randy S

    2015-01-01

    Both prostacyclin analogs and phosphodiesterase 5 (PDE5) inhibitors are effective treatments for pulmonary arterial hypertension (PAH). In addition to direct effects on vascular smooth muscle, prostacyclin analogs increase cAMP levels and ATP release from healthy human erythrocytes. We hypothesized that UT-15C, an orally available form of the prostacyclin analog, treprostinil, would stimulate ATP release from erythrocytes of humans with PAH and that this release would be augmented by PDE5 inhibitors. Erythrocytes were isolated and the effect of UT-15C on cAMP levels and ATP release were measured in the presence and absence of the PDE5 inhibitors, zaprinast or tadalafil. In addition, the ability of a soluble guanylyl cyclase inhibitor to prevent the effects of tadalafil was determined. Erythrocytes of healthy humans and humans with PAH respond to UT-15C with increases in cAMP levels and ATP release. In both groups, UT-15C-induced ATP release was potentiated by zaprinast and tadalafil. The effect of tadalafil was prevented by pre-treatment with an inhibitor of soluble guanylyl cyclase in healthy human erythrocytes. Importantly, UT-15C-induced ATP release was greater in PAH erythrocytes than in healthy human erythrocytes in both the presence and the absence of PDE5 inhibitors. The finding that prostacyclin analogs and PDE5 inhibitors work synergistically to enhance release of the potent vasodilator ATP from PAH erythrocytes provides a new rationale for the co-administration of these drugs in this disease. Moreover, these results suggest that the erythrocyte is a novel target for future drug development for the treatment of PAH.

  19. Increased responsiveness of human pulmonary arteries in patients with positive bronchodilator response.

    PubMed Central

    Cases, E.; Vila, J. M.; Medina, P.; Aldasoro, M.; Segarra, G.; Lluch, S.

    1996-01-01

    1. The effects of noradrenaline, endothelin-1, acetylcholine and sodium nitroprusside were studied in isolated pulmonary arteries obtained from 14 patients undergoing lobectomy for lung carcinoma. Seven patients had shown increased response to a bronchodilator test prior to operation. In the remaining patients (control) the bronchodilator test was negative. 2. Artery rings from patients with a positive bronchodilator response showed greater contraction to noradrenaline (pD2 = 6.44 +/- 0.1; Emax = 93 +/- 9% of response to 100 mM KCl) and endothelin-1 (pD2 = 8.92 +/- 0.1; Emax = 130 +/- 16%) than the rings from control patients (pD2 = 6.04 +/- 0.08; Emax = 56 +/- 8% for noradrenaline; pD2 = 8.29 +/- 0.1; Emax = 78 +/- 10% for endothelin-1). There was no significant difference in the contractile responses to 100 mM KCl between arteries from either group of patients. 3. Arterial rings from patients with a positive bronchodilator test achieved 96 +/- 3% of maximal relaxation in response to acetylcholine, whereas rings from control patients achieved a maximal relaxation of 72 +/- 5%. Rings from both the controls and the patients with a positive bronchodilator test achieved complete relaxation in response to sodium nitroprusside but pD2 values were significantly higher in patients with a positive bronchodilator test. 4. Removal of endothelium or treatment with NG-nitro-L-arginine methyl ester of artery rings from both the control and the patients with a positive bronchodilator test reduced the relaxation to acetylcholine (P < 0.05) but did not modify relaxation to sodium nitroprusside. 5. It is concluded that responsiveness of pulmonary arterial smooth muscle to dilator and constrictor agents is increased in patients showing reversibility of airway constriction. Thus hyperresponsiveness of airway smooth muscle may be associated with a similar phenomenon in the surrounding vascular smooth muscle. PMID:8968540

  20. Differential effects of blinks on horizontal saccade and smooth pursuit initiation in humans.

    PubMed

    Rambold, Holger; El Baz, Ieman; Helmchen, Christoph

    2004-06-01

    Blinks executed during eye movements affect kinetic eye movement parameters, e.g., peak velocity of saccades is decreased, their duration is increased, but their amplitude is not altered. This effect is mainly explained by the decreased activity of premotor neurons in the brainstem: omni-pause neurons (OPN) in the nucleus raphe interpositus. Previous studies examined the immediate effect of blinks directly on eye movements but not their effect when they are elicited several hundred milliseconds before the eye movements. In order to address this question we tested blinks elicited before the target onset of saccades and pursuit and compared the results to the gap effect: if a fixation light is extinguished for several hundred milliseconds, the reaction time (latency) for subsequent saccades or smooth pursuit eye movements is decreased. Monocular eye and lid movements were recorded in nine healthy subjects using the scleral search-coil system. Laser stimuli were front-projected onto a tangent screen in front of the subjects. Horizontal step-ramp smooth pursuit of 20 deg/s was elicited in one session, or 5 deg horizontal visually guided saccades in another experimental session. In one-third of the trials (smooth pursuit or saccades) the fixation light was extinguished for 200 ms before stimulus onset (gap condition), and in another third of the trials reflexive blinks were elicited by a short airpuff before the stimulus onset (blink condition). The last third of the trials served as controls (control condition). Stimulus direction and the three conditions were randomized for saccades and smooth pursuit separately. The latency of the step-ramp smooth pursuit in the blink condition was found to be decreased by 10 ms, which was less than in the gap condition (38 ms). However, the initial acceleration and steady-state velocity of smooth pursuit did not differ in the three conditions. In contrast, the latency of the saccades in the gap condition was decreased by 39 ms, but

  1. Free Fatty Acid Palmitate Impairs the Vitality and Function of Cultured Human Bladder Smooth Muscle Cells

    PubMed Central

    Oberbach, Andreas; Schlichting, Nadine; Heinrich, Marco; Till, Holger; Stolzenburg, Jens-Uwe; Neuhaus, Jochen

    2012-01-01

    Background Incidence of urinary tract infections is elevated in patients with diabetes mellitus. Those patients show increased levels of the saturated free fatty acid palmitate. As recently shown metabolic alterations induced by palmitate include production and secretion of the pro-inflammatory cytokine interleukine-6 (IL-6) in cultured human bladder smooth muscle cells (hBSMC). Here we studied the influence of palmitate on vital cell properties, for example, regulation of cell proliferation, mitochondrial enzyme activity and antioxidant capacity in hBSMC, and analyzed the involvement of major cytokine signaling pathways. Methodology/Principal Findings HBSMC cultures were set up from bladder tissue of patients undergoing cystectomy and stimulated with palmitate. We analyzed cell proliferation, mitochondrial enzyme activity, and antioxidant capacity by ELISA and confocal immunofluorescence. In signal transduction inhibition experiments we evaluated the involvement of NF-κB, JAK/STAT, MEK1, PI3K, and JNK in major cytokine signaling pathway regulation. We found: (i) palmitate decreased cell proliferation, increased mitochondrial enzyme activity and antioxidant capacity; (ii) direct inhibition of cytokine receptor by AG490 even more strongly suppressed cell proliferation in palmitate-stimulated cells, while counteracting palmitate-induced increase of antioxidant capacity; (iii) in contrast knockdown of the STAT3 inhibitor SOCS3 increased cell proliferation and antioxidant capacity; (iv) further downstream JAK/STAT3 signaling cascade the inhibition of PI3K or JNK enhanced palmitate induced suppression of cell proliferation; (v) increase of mitochondrial enzyme activity by palmitate was enhanced by inhibition of PI3K but counteracted by inhibition of MEK1. Conclusions/Significance Saturated free fatty acids (e.g., palmitate) cause massive alterations in vital cell functions of cultured hBSMC involving distinct major cytokine signaling pathways. Thereby, certain

  2. The purinergic component of human bladder smooth muscle cells’ proliferation and contraction under physiological stretch

    SciTech Connect

    Wazir, Romel; Luo, De-Yi; Tian, Ye; Yue, Xuan; Li, Hong; Wang, Kun-Jie

    2013-07-26

    Highlights: •Stretch induces proliferation and contraction. •Optimum applied stretch in vitro is 5% and 10% equibiaxial stretching respectively. •Expression of P2X1 and P2X2 is upregulated after application of stretch. •P2X2 is possibly more susceptible to stretch related changes. •Purinoceptors functioning may explain conditions with atropine resistance. -- Abstract: Objective: To investigate whether cyclic stretch induces proliferation and contraction of human smooth muscle cells (HBSMCs), mediated by P2X purinoceptor 1 and 2 and the signal transduction mechanisms of this process. Methods: HBSMCs were seeded on silicone membrane and stretched under varying parameters; (equibiaxial elongation: 2.5%, 5%, 10%, 15%, 20%, 25%), (Frequency: 0.05 Hz, 0.1 Hz, 0.2 Hz, 0.5 Hz, 1 Hz). 5-Bromo-2-deoxyuridine assay was employed for proliferative studies. Contractility of the cells was determined using collagen gel contraction assay. After optimal physiological stretch was established; P2X1 and P2X2 were analyzed by real time polymerase chain reaction and Western Blot. Specificity of purinoceptors was maintained by employing specific inhibitors; (NF023 for P2X1, and A317491for P2X2), in some experiments. Results: Optimum proliferation and contractility were observed at 5% and 10% equibiaxial stretching respectively, applied at a frequency of 0.1 Hz; At 5% stretch, proliferation increased from 0.837 ± 0.026 (control) to 1.462 ± 0.023%, p < 0.05. Mean contraction at 10% stretching increased from 31.7 ± 2.3%, (control) to 78.28 ±1.45%, p < 0.05. Expression of P2X1 and P2X2 was upregulated after application of stretch. Inhibition had effects on proliferation (1.232 ± 0.051, p < 0.05 NF023) and (1.302 ± 0.021, p < 0.05 A314791) while contractility was markedly reduced (68.24 ± 2.31, p < 0.05 NF023) and (73.2 ± 2.87, p < 0.05 A314791). These findings shows that mechanical stretch can promote magnitude-dependent proliferative and contractile modulation of HBSMCs in

  3. Integration of proteomic and transcriptomic profiles identifies a novel PDGF-MYC network in human smooth muscle cells

    PubMed Central

    2014-01-01

    Background Platelet-derived growth factor-BB (PDGF-BB) has been implicated in the proliferation, migration and synthetic activities of smooth muscle cells that characterize physiologic and pathologic tissue remodeling in hollow organs. However, neither the molecular basis of PDGFR-regulated signaling webs, nor the extent to which specific components within these networks could be exploited for therapeutic benefit has been fully elucidated. Results Expression profiling and quantitative proteomics analysis of PDGF-treated primary human bladder smooth muscle cells identified 1,695 genes and 241 proteins as differentially expressed versus non-treated cells. Analysis of gene expression data revealed MYC, JUN, EGR1, MYB, RUNX1, as the transcription factors most significantly networked with up-regulated genes. Forty targets were significantly altered at both the mRNA and protein levels. Proliferation, migration and angiogenesis were the biological processes most significantly associated with this signature, and MYC was the most highly networked master regulator. Alterations in master regulators and gene targets were validated in PDGF-stimulated smooth muscle cells in vitro and in a model of bladder injury in vivo. Pharmacologic inhibition of MYC and JUN confirmed their role in SMC proliferation and migration. Network analysis identified the diaphanous-related formin 3 as a novel PDGF target regulated by MYC and JUN, which was necessary for PDGF-stimulated lamellipodium formation. Conclusions These findings provide the first systems-level analysis of the PDGF-regulated transcriptome and proteome in normal smooth muscle cells. The analyses revealed an extensive cohort of PDGF-dependent biological processes and connected key transcriptional effectors to their regulation, significantly expanding current knowledge of PDGF-stimulated signaling cascades. These observations also implicate MYC as a novel target for pharmacological intervention in fibroproliferative expansion of

  4. Evidence for a M1 muscarinic receptor on the endothelium of human pulmonary veins

    PubMed Central

    Walch, Laurence; Gascard, Jean-Pierre; Dulmet, Elisabeth; Brink, Charles; Norel, Xavier

    2000-01-01

    To characterize the muscarinic receptors on human pulmonary veins associated with the acetylcholine (ACh)-induced relaxation, isolated venous and arterial preparations were pre-contracted with noradrenaline (10 μM) and were subsequently challenged with ACh in the absence or presence of selective muscarinic antagonists.ACh relaxed venous preparations derived from human lung with a pD2 value of 5.82±0.09 (n=16). In venous preparations where the endothelium had been removed, the ACh relaxations were abolished (n=4). ACh relaxed arterial preparations with a pD2 value of 7.06±0.14 (n=5).Atropine (1 μM), the non selective antagonist for muscarinic receptors, inhibited ACh-induced relaxations in human pulmonary veins. The affinity value (pKB value) for atropine was: 8.64±0.10 (n=5). The selective muscarinic antagonists (darifenacin (M3), himbacine (M2,M4), methoctramine (M2) and pFHHSiD (M1,M3)) also inhibited ACh-induced relaxations in venous preparations. The pKB values obtained for these antagonists were not those predicted for the involvement of M2–5 receptors in the ACh-induced relaxation in human pulmonary veins.The pKB value for darifenacin (1 μM) was significantly greater in human pulmonary arterial (8.63±0.14) than in venous (7.41±0.20) preparations derived from three lung samples.In human pulmonary veins, the pKB values for pirenzepine (0.5 and 1 μM), a selective antagonist for M1 receptors, were: 7.89±0.24 (n=7) and 8.18±0.22 (n=5), respectively. In the venous preparations, the pKB values derived from the functional studies with all the different muscarinic antagonists used were correlated (r=0.89; P=0.04; slope=0.78) with the affinity values (pKi values) previously published for human cloned m1 receptors in CHO cells.These results suggest that the relaxations induced by ACh are due to the activation of M1 receptors on endothelial cells in isolated human pulmonary veins. PMID:10781000

  5. Oxytocin receptors expressed and coupled to Ca2+ signalling in a human vascular smooth muscle cell line.

    PubMed

    Yazawa, H; Hirasawa, A; Horie, K; Saita, Y; Iida, E; Honda, K; Tsujimoto, G

    1996-03-01

    1. In a human vascular smooth muscle cell line (HVSMC), binding experiments with [3H]-arginine8-vasopressin (AVP) have shown the existence of a homogeneous population of binding sites with affinity (Kd value) of 0.65 nM and a maximum number of binding sites (Bmax) of 122 fmol mg-1 protein. 2. Nonlabelled compounds compete for [3H]-AVP binding in the HVSMC membrane with an order of potency of oxytocin > lyspressin > or = AVP > Thr4, Gly7-oxytocin > (beta-mercapto-beta-beta-cyclopentamethylenepropionyl-O-Me Tyr2, Arg8) vasopressin > desmopressin > OPC21268 > OPC31260. This order was markedly different from that observed in rat vascular smooth muscle cells (A10), a well-established V1A receptor system. 3. In HVSMC both oxytocin and AVP increased inositol 1,4,5-trisphosphate (IP3) production and [Ca2+]i response, but the efficacy of the responses was greater for oxytocin than AVP. 4. Reverse transcription-polymerase chain reaction (RT-PCR) assay detected only oxytocin receptor but not V1A or V2 receptors in HVSMC, whereas only V1A receptors were found in A10 cells. 5. In conclusion, in HVSMC only oxytocin receptors are expressed among the vasopressin receptor family, and they coupled to phosphatidyl inositol (PI) turnover/Ca2+ signalling. This unexpected observation should provide new insight into the functional role of the oxytocin receptor in a human vascular smooth muscle cell line.

  6. H2 Receptor-Mediated Relaxation of Circular Smooth Muscle in Human Gastric Corpus: the Role of Nitric Oxide (NO).

    PubMed

    Lee, Sang Eok; Kim, Dae Hoon; Kim, Young Chul; Han, Joung-Ho; Choi, Woong; Kim, Chan Hyung; Jeong, Hye Won; Park, Seon-Mee; Yun, Sei Jin; Choi, Song-Yi; Sung, Rohyun; Kim, Young Ho; Yoo, Ra Young; Sun, Park Hee; Kim, Heon; Song, Young-Jin; Xu, Wen-Xie; Yun, Hyo-Yung; Lee, Sang Jin

    2014-10-01

    This study was designed to examine the effects of histamine on gastric motility and its specific receptor in the circular smooth muscle of the human gastric corpus. Histamine mainly produced tonic relaxation in a concentration-dependent and reversible manner, although histamine enhanced contractility in a minor portion of tissues tested. Histamine-induced tonic relaxation was nerve-insensitive because pretreatment with nerve blockers cocktail (NBC) did not inhibit relaxation. Additionally, K(+) channel blockers, such as tetraethylammonium (TEA), apamin (APA), and glibenclamide (Glib), had no effect. However, N(G)-nitro-L-arginine methyl ester (L-NAME) and 1H-(1,2,4)oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), did inhibit histamine-induced tonic relaxation. In particular, histamine-induced tonic relaxation was converted to tonic contraction by pretreatment with L-NAME. Ranitidine, the H2 receptor blocker, inhibited histamine-induced tonic relaxation. These findings suggest that histamine produced relaxation in circular smooth muscle of human gastric smooth muscle through H2 receptor and NO/sGC pathways.

  7. Role of protein kinase C in phospholemman mediated regulation of α₂β₁ isozyme of Na⁺/K⁺-ATPase in caveolae of pulmonary artery smooth muscle cells.

    PubMed

    Dey, Kuntal; Roy, Soumitra; Ghosh, Biswarup; Chakraborti, Sajal

    2012-04-01

    We have recently reported that α(2)β(1) and α(1)β(1) isozymes of Na(+)/K(+)-ATPase (NKA) are localized in the caveolae whereas only the α(1)β(1) isozyme of NKA is localized in the non-caveolae fraction of pulmonary artery smooth muscle cell membrane. It is well known that different isoforms of NKA are regulated differentially by PKA and PKC, but the mechanism is not known in the caveolae of pulmonary artery smooth muscle cells. Herein, we examined whether this regulation occurs through phospholemman (PLM) in the caveolae. Our results suggest that PKC mediated phosphorylation of PLM occurs only when it is associated with the α(2) isoform of NKA, whereas phosphorylation of PLM by PKA occurs when it is associated with the α(1) isoform of NKA. To investigate the mechanism of regulation of α(2) isoform of NKA by PKC-mediated phosphorylation of PLM, we have purified PLM from the caveolae and reconstituted into the liposomes. Our result revealed that (i) in the reconstituted liposomes phosphorylated PLM (PKC mediated) stimulate NKA activity, which appears to be due to an increase in the turnover number of the enzyme; (ii) phosphorylated PLM did not change the affinity of the pump for Na(+); and (iii) even after phosphorylation by PKC, PLM still remains associated with the α(2) isoform of NKA.

  8. Scanning electron microscopic examination of human pulmonary capillaries using a latex replication method.

    PubMed

    Kendall, M W; Eissmann, E

    1980-03-01

    The human pulmonary microvasculature from the apical bronchopulmonary segment was studied by scanning electron microscopy using latex replicas. The latex replica was composed of a blend of vinyl chloride latexes using a plasticized vinyl chloride copolymer with a vinyl chloride copolymer. The polymerized latex produced a cast of the pulmonary arterial vascular tree, including the capillary patterns, which freely anastomose, thereby draining blood into pulmonary veinules and veins. The latex was injected via a gravity flow system modified from its earlier application in Guinea pig lungs. The apparently normal lungs from two recently deceased humans (dead for 5-6 hours and held in refrigeration) were perfused with heparinized Ringer's solution and subsequently injected with latex. The resulting latex casts of the capillaries revealed a three-dimensional network arranged in irregular vascular rings or ovals. This pattern was most conspicuous in deep and intermediate bronchopulmonary segmental areas. However, the subpleural capillaries produced casts that often terminated blindly, as observed with stereo SEm, suggesting that these vessels may tend to form thrombi more easily as compared with capillaries from other regions of the lung alveoli. The pulmonary arteriolar replicas contained indentations representing endothelial cell nuclei, and the capillary replicas projected oval evaginations that may represent discrete loci or capillary mural attenuations.

  9. BMP4 Inhibits PDGF-Induced Proliferation and Collagen Synthesis via PKA-Mediated Inhibition of Calpain-2 in Pulmonary Artery Smooth Muscle Cells.

    PubMed

    Cai, PengCheng; Kovacs, Laszlo; Dong, Sam; Wu, Guangyu; Su, Yunchao

    2017-02-24

    In the present study, we investigated the effect of bone morphogenetic protein 4 (BMP4) on PDGF-induced proliferation and collagen synthesis in PASMCs. Normal human PASMCs were incubated with and without PDGF-BB in the absence and presence of BMP4 for 0.5 to 24 h. Then the protein levels of collagen-I, p-Smad2/3, p-Smad1/5, and intracellular active TGFβ1, calpain activity and cell proliferation were measured. The results showed that BMP4 induced an increase in p-Smad1/5 but had no effect on the protein levels of collagen-I, p-Smad2/3, and intracellular active TGFβ1, and calpain activity in PASMCs. Nevertheless, BMP4 attenuated increases in proliferation and protein levels of collagen-I, p-Smad2/3, and intracellular active TGFβ1, and calpain activity in PDGF-BB-treated PASMCs. Moreover, BMP4 increased PKA activity and inhibition of PKA prevented the inhibitory effects of BMP4 on PDGF-BB-induced calpain activation in normal PASMCs. PKA activator forskolin recapitulated the suppressive effect of BMP4 on PDGF-induced calpain activation. Further, BMP4 prevented PDGF-induced decrease in calpain-2 phosphorylation at serine 369 in normal PASMCs. Finally, BMP4 did not attenuate PDGF-induced increases in proliferation, collagen-I protein levels, and calpain activation, and did not induce PKA activation and did not prevent PDGF-induced decrease in calpain-2 phosphorylation at serine 369 in PASMCs from IPAH patients. These data demonstrate that BMP4 inhibits PDGF-induced proliferation and collagen synthesis via PKA-mediated inhibition of calpain-2 in normal PASMCs. The inhibitory effects of BMP4 on PDGF-induced proliferation, collagen synthesis and calpain-2 activation are impaired in PASMCs from PAH patients, which may contribute to pulmonary vascular remodeling in PAH.

  10. Determinants of ventilation and pulmonary artery pressure during early acclimatization to hypoxia in humans.

    PubMed

    Fatemian, Marzieh; Herigstad, Mari; Croft, Quentin P P; Formenti, Federico; Cardenas, Rosa; Wheeler, Carly; Smith, Thomas G; Friedmannova, Maria; Dorrington, Keith L; Robbins, Peter A

    2016-03-01

    Pulmonary ventilation and pulmonary arterial pressure both rise progressively during the first few hours of human acclimatization to hypoxia. These responses are highly variable between individuals, but the origin of this variability is unknown. Here, we sought to determine whether the variabilities between different measures of response to sustained hypoxia were related, which would suggest a common source of variability. Eighty volunteers individually underwent an 8-h isocapnic exposure to hypoxia (end-tidal P(O2)=55 Torr) in a purpose-built chamber. Measurements of ventilation and pulmonary artery systolic pressure (PASP) assessed by Doppler echocardiography were made during the exposure. Before and after the exposure, measurements were made of the ventilatory sensitivities to acute isocapnic hypoxia (G(pO2)) and hyperoxic hypercapnia, the latter divided into peripheral (G(pCO2)) and central (G(cCO2)) components. Substantial acclimatization was observed in both ventilation and PASP, the latter being 40% greater in women than men. No correlation was found between the magnitudes of pulmonary ventilatory and pulmonary vascular responses. For G(pO2), G(pCO2) and G(cC O2), but not the sensitivity of PASP to acute hypoxia, the magnitude of the increase during acclimatization was proportional to the pre-acclimatization value. Additionally, the change in G(pO2) during acclimatization to hypoxia correlated well with most other measures of ventilatory acclimatization. Of the initial measurements prior to sustained hypoxia, only G(pCO2) predicted the subsequent rise in ventilation and change in G(pO2) during acclimatization. We conclude that the magnitudes of the ventilatory and pulmonary vascular responses to sustained hypoxia are predominantly determined by different factors and that the initial G(pCO2) is a modest predictor of ventilatory acclimatization.

  11. Pulmonary hypertension

    MedlinePlus

    Pulmonary arterial hypertension; Sporadic primary pulmonary hypertension; Familial primary pulmonary hypertension; Idiopathic pulmonary arterial hypertension; Primary pulmonary hypertension; PPH; Secondary pulmonary ...

  12. Cell-to-cell contact of human monocytes with infected arterial smooth-muscle cells enhances growth of Chlamydia pneumoniae.

    PubMed

    Puolakkainen, Mirja; Campbell, Lee Ann; Lin, Tsun-Mei; Richards, Theresa; Patton, Dorothy L; Kuo, Cho-Chou

    2003-02-01

    Chlamydia pneumoniae can infect arterial cells. It has been shown that coculture of human monocytes (U937) and endothelial cells promotes infection of C. pneumoniae in endothelial cells and that the enhancement was mediated by a soluble factor (insulin-like growth factor 2) secreted by monocytes. In this study, it is shown that coculture of monocytes with C. pneumoniae enhances infection of C. pneumoniae in arterial smooth-muscle cells 5.3-fold at a monocyte-to-smooth-muscle cell ratio of 5. However, unlike endothelial cells, no enhancement was observed if monocytes were placed in cell culture inserts or if conditioned medium from monocyte cultures was used, which suggests that cell-to-cell contact is critical. The addition of mannose 6-phosphate or octyl glucoside, a nonionic detergent containing a sugar group, to cocultures inhibited the enhancement. These findings suggest that the monocyte-smooth-muscle cell interaction may be mediated by mannose 6-phosphate receptors present on monocytes.

  13. Human coronary artery smooth muscle cell response to a novel PLA textile/fibrin gel composite scaffold.

    PubMed

    Gundy, Sarah; Manning, Grainne; O'Connell, Enda; Ellä, Ville; Harwoko, Marvi Sri; Rochev, Yuri; Smith, Terry; Barron, Valerie

    2008-11-01

    Previous studies have demonstrated the potential of fibrin as a cell carrier for cardiovascular tissue engineering applications. Unfortunately, fibrin exhibits poor mechanical properties. One method of addressing this issue is to incorporate a textile in fibrin to provide structural support. However, it is first necessary to develop a deeper understanding of the effect of the textile on cell response. In this study, the cytotoxicity of a polylactic acid (PLA) warp-knit textile was assessed with human coronary artery smooth muscle cells (HCASMC). Subsequently, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was employed to examine the gene expression of HCASMC embedded in fibrin with and without the textile. Five genes were examined over a 3-week period: smooth muscle alpha-actin (SMalphaA), myosin heavy chain 11 smooth muscle (SM1/SM2), calponin, myosin heavy chain 10 non-muscle (SMemb) and collagen. Additionally, a microarray analysis was performed to examine a wider range of genes. The knitting process did not adversely affect the cell response; there was no dramatic change in cell number or metabolic rate compared to the negative control. After 3 weeks, there was no significant difference in gene expression, except for a slight decrease of 10% in SMemb in the fibrin with textile. After 3 weeks, there were no obvious cytotoxic effects observed as a result of the knitting process and the gene expression profile did not appear to be altered in the presence of the mesh in the fibrin gel.

  14. Plasma Metabolomics in Human Pulmonary Tuberculosis Disease: A Pilot Study

    PubMed Central

    Frediani, Jennifer K.; Jones, Dean P.; Tukvadze, Nestan; Uppal, Karan; Sanikidze, Eka; Kipiani, Maia; Tran, ViLinh T.; Hebbar, Gautam; Walker, Douglas I.; Kempker, Russell R.; Kurani, Shaheen S.; Colas, Romain A.; Dalli, Jesmond; Tangpricha, Vin; Serhan, Charles N.; Blumberg, Henry M.; Ziegler, Thomas R.

    2014-01-01

    We aimed to characterize metabolites during tuberculosis (TB) disease and identify new pathophysiologic pathways involved in infection as well as biomarkers of TB onset, progression and resolution. Such data may inform development of new anti-tuberculosis drugs. Plasma samples from adults with newly diagnosed pulmonary TB disease and their matched, asymptomatic, sputum culture-negative household contacts were analyzed using liquid chromatography high-resolution mass spectrometry (LC-MS) to identify metabolites. Statistical and bioinformatics methods were used to select accurate mass/charge (m/z) ions that were significantly different between the two groups at a false discovery rate (FDR) of q<0.05. Two-way hierarchical cluster analysis (HCA) was used to identify clusters of ions contributing to separation of cases and controls, and metabolomics databases were used to match these ions to known metabolites. Identity of specific D-series resolvins, glutamate and Mycobacterium tuberculosis (Mtb)-derived trehalose-6-mycolate was confirmed using LC-MS/MS analysis. Over 23,000 metabolites were detected in untargeted metabolomic analysis and 61 metabolites were significantly different between the two groups. HCA revealed 8 metabolite clusters containing metabolites largely upregulated in patients with TB disease, including anti-TB drugs, glutamate, choline derivatives, Mycobacterium tuberculosis-derived cell wall glycolipids (trehalose-6-mycolate and phosphatidylinositol) and pro-resolving lipid mediators of inflammation, known to stimulate resolution, efferocytosis and microbial killing. The resolvins were confirmed to be RvD1, aspirin-triggered RvD1, and RvD2. This study shows that high-resolution metabolomic analysis can differentiate patients with active TB disease from their asymptomatic household contacts. Specific metabolites upregulated in the plasma of patients with active TB disease, including Mtb-derived glycolipids and resolvins, have potential as biomarkers

  15. Metformin Reverses Development of Pulmonary Hypertension via Aromatase Inhibition.

    PubMed

    Dean, Afshan; Nilsen, Margaret; Loughlin, Lynn; Salt, Ian P; MacLean, Margaret R

    2016-08-01

    Females are more susceptible to pulmonary arterial hypertension than males, although the reasons remain unclear. The hypoglycemic drug, metformin, is reported to have multiple actions, including the inhibition of aromatase and stimulation of AMP-activated protein kinase. Inhibition of aromatase using anastrazole is protective in experimental pulmonary hypertension but whether metformin attenuates pulmonary hypertension through this mechanism remains unknown. We investigated whether metformin affected aromatase activity and if it could reduce the development of pulmonary hypertension in the sugen 5416/hypoxic rat model. We also investigated its influence on proliferation in human pulmonary arterial smooth muscle cells. Metformin reversed right ventricular systolic pressure, right ventricular hypertrophy, and decreased pulmonary vascular remodeling in the rat. Furthermore, metformin increased rat lung AMP-activated protein kinase signaling, decreased lung and circulating estrogen levels, levels of aromatase, the estrogen metabolizing enzyme; cytochrome P450 1B1 and its transcription factor; the aryl hydrocarbon receptor. In human pulmonary arterial smooth muscle cells, metformin decreased proliferation and decreased estrogen synthesis by decreasing aromatase activity through the PII promoter site of Cyp19a1 Thus, we report for the first time that metformin can reverse pulmonary hypertension through inhibition of aromatase and estrogen synthesis in a manner likely to be mediated by AMP-activated protein kinase.

  16. Theophylline prevents NAD{sup +} depletion via PARP-1 inhibition in human pulmonary epithelial cells

    SciTech Connect

    Moonen, Harald J.J. . E-mail: h.moonen@grat.unimaas.nl; Geraets, Liesbeth; Vaarhorst, Anika; Bast, Aalt; Wouters, Emiel F.M.; Hageman, Geja J.

    2005-12-30

    Oxidative DNA damage, as occurs during exacerbations in chronic obstructive pulmonary disease (COPD), highly activates the nuclear enzyme poly(ADP-ribose)polymerase-1 (PARP-1). This can lead to cellular depletion of its substrate NAD{sup +}, resulting in an energy crisis and ultimately in cell death. Inhibition of PARP-1 results in preservation of the intracellular NAD{sup +} pool, and of NAD{sup +}-dependent cellular processes. In this study, PARP-1 activation by hydrogen peroxide decreased intracellular NAD{sup +} levels in human pulmonary epithelial cells, which was found to be prevented in a dose-dependent manner by theophylline, a widely used compound in the treatment of COPD. This enzyme inhibition by theophylline was confirmed in an ELISA using purified human PARP-1 and was found to be competitive by nature. These findings provide new mechanistic insights into the therapeutic effect of theophylline in oxidative stress-induced lung pathologies.

  17. Interactions between heart rate variability and pulmonary gas exchange efficiency in humans.

    PubMed

    Sin, Peter Y W; Webber, Matthew R; Galletly, Duncan C; Ainslie, Philip N; Brown, Stephen J; Willie, Chris K; Sasse, Alexander; Larsen, Peter D; Tzeng, Yu-Chieh

    2010-07-01

    The respiratory component of heart rate variability (respiratory sinus arrhythmia, RSA) has been associated with improved pulmonary gas exchange efficiency in humans via the apparent clustering and scattering of heart beats in time with the inspiratory and expiratory phases of alveolar ventilation, respectively. However, since human RSA causes only marginal redistribution of heart beats to inspiration, we tested the hypothesis that any association between RSA amplitude and pulmonary gas exchange efficiency may be indirect. In 11 patients with fixed-rate cardiac pacemakers and 10 healthy control subjects, we recorded R-R intervals, respiratory flow, end-tidal gas tension and the ventilatory equivalents for carbon dioxide and oxygen during 'fast' (0.25 Hz) and 'slow' paced breathing (0.10 Hz). Mean heart rate, mean arterial blood pressure, mean arterial pressure fluctuations, tidal volume, end-tidal CO(2), and were similar between pacemaker and control groups in both the fast and slow breathing conditions. Although pacemaker patients had no RSA and slow breathing was associated with a 2.5-fold RSA amplitude increase in control subjects (39 +/- 21 versus 97 +/- 45 ms, P < 0.001), comparable (main effect for breathing frequency, F(1,19) = 76.54, P < 0.001) and reductions (main effect for breathing frequency, F(1,19) = 23.90, P < 0.001) were observed for both cohorts during slow breathing. In addition, the degree of (r = 0.36, P = 0.32) and reductions (r = 0.29, P = 0.43) from fast to slow breathing were not correlated to the degree of associated RSA amplitude enhancements in control subjects. These findings suggest that the association between RSA amplitude and pulmonary gas exchange efficiency during variable-frequency paced breathing observed in prior human work is not contingent on RSA being present. Therefore, whether RSA serves an intrinsic physiological function in optimizing pulmonary gas exchange efficiency in humans requires further experimental validation.

  18. Vagal nerve activity contributes to improve the efficiency of pulmonary gas exchange in hypoxic humans.

    PubMed

    Ito, Shoji; Sasano, Hiroshi; Sasano, Nobuko; Hayano, Junichiro; Fisher, Joseph A; Katsuya, Hirotada

    2006-09-01

    The aim of this study was to test our hypothesis that both phasic cardiac vagal activity and tonic pulmonary vagal activity, estimated as respiratory sinus arrhythmia (RSA) and anatomical dead space volume, respectively, contribute to improve the efficiency of pulmonary gas exchange in humans. We examined the effect of blocking vagal nerve activity with atropine on pulmonary gas exchange. Ten healthy volunteers inhaled hypoxic gas with constant tidal volume and respiratory frequency through a respiratory circuit with a respiratory analyser. Arterial partial pressure of O(2) (P(aO(2))) and arterial oxygen saturation (S(pO(2))) were measured, and alveolar-to-arterial P(O(2)) difference (D(A-aO(2))) was calculated. Anatomical dead space (V(D,an)), alveolar dead space (V(D,alv)) and the ratio of physiological dead space to tidal volume (V(D,phys)/V(T)) were measured. Electrocardiogram was recorded, and the amplitude of R-R interval variability in the high-frequency component (RRIHF) was utilized as an index of RSA magnitude. These parameters of pulmonary function were measured before and after administration of atropine (0.02 mg kg(-1)). Decreased RRIHF (P < 0.01) was accompanied by decreases in P(aO(2)) and S(pO(2)) (P < 0.05 and P < 0.01, respectively) and an increase in D(A-aO(2)) (P < 0.05). Anatomical dead space, V(D,alv) and V(D,phys)/V(T) increased (P < 0.01, P < 0.05 and P < 0.01, respectively) after atropine administration. The blockade of the vagal nerve with atropine resulted in an increase in V(D,an) and V(D,alv) and a deterioration of pulmonary oxygenation, accompanied by attenuation of RSA. Our findings suggest that both phasic cardiac and tonic pulmonary vagal nerve activity contribute to improve the efficiency of pulmonary gas exchange in hypoxic conscious humans.

  19. Doppler echo evaluation of pulmonary venous-left atrial pressure gradients: human and numerical model studies

    NASA Technical Reports Server (NTRS)

    Firstenberg, M. S.; Greenberg, N. L.; Smedira, N. G.; Prior, D. L.; Scalia, G. M.; Thomas, J. D.; Garcia, M. J.

    2000-01-01

    The simplified Bernoulli equation relates fluid convective energy derived from flow velocities to a pressure gradient and is commonly used in clinical echocardiography to determine pressure differences across stenotic orifices. Its application to pulmonary venous flow has not been described in humans. Twelve patients undergoing cardiac surgery had simultaneous high-fidelity pulmonary venous and left atrial pressure measurements and pulmonary venous pulsed Doppler echocardiography performed. Convective gradients for the systolic (S), diastolic (D), and atrial reversal (AR) phases of pulmonary venous flow were determined using the simplified Bernoulli equation and correlated with measured actual pressure differences. A linear relationship was observed between the convective (y) and actual (x) pressure differences for the S (y = 0.23x + 0.0074, r = 0.82) and D (y = 0.22x + 0.092, r = 0.81) waves, but not for the AR wave (y = 0. 030x + 0.13, r = 0.10). Numerical modeling resulted in similar slopes for the S (y = 0.200x - 0.127, r = 0.97), D (y = 0.247x - 0. 354, r = 0.99), and AR (y = 0.087x - 0.083, r = 0.96) waves. Consistent with numerical modeling, the convective term strongly correlates with but significantly underestimates actual gradient because of large inertial forces.

  20. Effect of all-trans retinoic acids (ATRA) on the expression of α-smooth muscle actin (α-SMA) in the lung tissues of rats with pulmonary arterial hypertension (PAH).

    PubMed

    Xin, Y; Lv, J-Q; Wang, Y-Z; Zhang, J; Zhang, X

    2015-11-13

    The effect of all-trans retinoic acid (ATRA) on the expression of α-smooth muscle actin (α-SMA) in rats with pulmonary arterial hypertension (PAH) was studied, and the mechanism of the effect of ATRA on PAH was proposed. Thirty male SD rats were randomly divided into normal control, monocrotaline (MCT) model, and ATRA [30 mg/(kg.day)]intervention groups (N = 10 each). The mean pulmonary arterial pressure was recorded. Right ventricular hypertrophy index (RVHI) was calculated (weight of right ventricle: total weight of left ventricle and interventricular septum). The percentages of wall thickness of pulmonary arteriole (WT) to external diameter of artery (WT%) and vascular wall area (WA) to total vascular area (WA%) were determined. Real-time fluorescence-based quantitative PCR and western blot analyses were employed to detect the α-SMA mRNA and protein expressions. The mean pulmonary arterial pressure, RVHI, WT%, and WA% were all obviously higher in the model group than in the control and intervention groups. The values of these indicators in the intervention group were also higher than those in the control group (P < 0.01). The mRNA and protein expression levels of α-SMA were significantly higher in the lung tissue of model rats than those in the control and intervention groups. However, the intervention group showed no statistically significant differences in α-SMA mRNA and protein expression levels compared to the control (P < 0.05). ATRA inhibited the α-SMA mRNA and protein expressionin the lung tissues of rats with MCT-induced PAH, and could be used to treat PAH.

  1. NFATc3 and VIP in Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease.

    PubMed

    Szema, Anthony M; Forsyth, Edward; Ying, Benjamin; Hamidi, Sayyed A; Chen, John J; Hwang, Sonya; Li, Jonathan C; Sabatini Dwyer, Debra; Ramiro-Diaz, Juan M; Giermakowska, Wieslawa; Gonzalez Bosc, Laura V

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) are both debilitating lung diseases which can lead to hypoxemia and pulmonary hypertension (PH). Nuclear Factor of Activated T-cells (NFAT) is a transcription factor implicated in the etiology of vascular remodeling in hypoxic PH. We have previously shown that mice lacking the ability to generate Vasoactive Intestinal Peptide (VIP) develop spontaneous PH, pulmonary arterial remodeling and lung inflammation. Inhibition of NFAT attenuated PH in these mice suggesting a connection between NFAT and VIP. To test the hypotheses that: 1) VIP inhibits NFAT isoform c3 (NFATc3) activity in pulmonary vascular smooth muscle cells; 2) lung NFATc3 activation is associated with disease severity in IPF and COPD patients, and 3) VIP and NFATc3 expression correlate in lung tissue from IPF and COPD patients. NFAT activity was determined in isolated pulmonary arteries from NFAT-luciferase reporter mice. The % of nuclei with NFAT nuclear accumulation was determined in primary human pulmonary artery smooth muscle cell (PASMC) cultures; in lung airway epithelia and smooth muscle and pulmonary endothelia and smooth muscle from IPF and COPD patients; and in PASMC from mouse lung sections by fluorescence microscopy. Both NFAT and VIP mRNA levels were measured in lungs from IPF and COPD patients. Empirical strategies applied to test hypotheses regarding VIP, NFATc3 expression and activity, and disease type and severity. This study shows a significant negative correlation between NFAT isoform c3 protein expression levels in PASMC, activity of NFATc3 in pulmonary endothelial cells, expression and activity of NFATc3 in bronchial epithelial cells and lung function in IPF patients, supporting the concept that NFATc3 is activated in the early stages of IPF. We further show that there is a significant positive correlation between NFATc3 mRNA expression and VIP RNA expression only in lungs from IPF patients. In

  2. NFATc3 and VIP in Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease

    PubMed Central

    Szema, Anthony M.; Forsyth, Edward; Ying, Benjamin; Hamidi, Sayyed A.; Chen, John J.; Hwang, Sonya; Li, Jonathan C.; Sabatini Dwyer, Debra; Ramiro-Diaz, Juan M.; Giermakowska, Wieslawa; Gonzalez Bosc, Laura V.

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) are both debilitating lung diseases which can lead to hypoxemia and pulmonary hypertension (PH). Nuclear Factor of Activated T-cells (NFAT) is a transcription factor implicated in the etiology of vascular remodeling in hypoxic PH. We have previously shown that mice lacking the ability to generate Vasoactive Intestinal Peptide (VIP) develop spontaneous PH, pulmonary arterial remodeling and lung inflammation. Inhibition of NFAT attenuated PH in these mice suggesting a connection between NFAT and VIP. To test the hypotheses that: 1) VIP inhibits NFAT isoform c3 (NFATc3) activity in pulmonary vascular smooth muscle cells; 2) lung NFATc3 activation is associated with disease severity in IPF and COPD patients, and 3) VIP and NFATc3 expression correlate in lung tissue from IPF and COPD patients. NFAT activity was determined in isolated pulmonary arteries from NFAT-luciferase reporter mice. The % of nuclei with NFAT nuclear accumulation was determined in primary human pulmonary artery smooth muscle cell (PASMC) cultures; in lung airway epithelia and smooth muscle and pulmonary endothelia and smooth muscle from IPF and COPD patients; and in PASMC from mouse lung sections by fluorescence microscopy. Both NFAT and VIP mRNA levels were measured in lungs from IPF and COPD patients. Empirical strategies applied to test hypotheses regarding VIP, NFATc3 expression and activity, and disease type and severity. This study shows a significant negative correlation between NFAT isoform c3 protein expression levels in PASMC, activity of NFATc3 in pulmonary endothelial cells, expression and activity of NFATc3 in bronchial epithelial cells and lung function in IPF patients, supporting the concept that NFATc3 is activated in the early stages of IPF. We further show that there is a significant positive correlation between NFATc3 mRNA expression and VIP RNA expression only in lungs from IPF patients. In

  3. The role of K⁺ conductances in regulating membrane excitability in human gastric corpus smooth muscle.

    PubMed

    Lee, Ji Yeon; Ko, Eun-Ju; Ahn, Ki Duck; Kim, Sung; Rhee, Poong-Lyul

    2015-04-01

    Changes in resting membrane potential (RMP) regulate membrane excitability. K(+) conductance(s) are one of the main factors in regulating RMP. The functional role of K(+) conductances has not been studied the in human gastric corpus smooth muscles (HGCS). To examine the role of K(+) channels in regulation of RMP in HGCS we employed microelectrode recordings, patch-clamp, and molecular approaches. Tetraethylammonium and charybdotoxin did not affect the RMP, suggesting that BK channels are not involved in regulating RMP. Apamin, a selective small conductance Ca(2+)-activated K(+) channel (SK) blocker, did not show a significant effect on the membrane excitability. 4-Aminopyridine, a Kv channel blocker, caused depolarization and increased the duration of slow wave potentials. 4-Aminopyridine also inhibited a delayed rectifying K(+) current in isolated smooth muscle cells. End-product RT-PCR gel detected Kv1.2 and Kv1.5 in human gastric corpus muscles. Glibenclamide, an ATP-sensitive K(+) channel (KATP) blocker, did not induce depolarization, but nicorandil, a KATP opener, hyperpolarized HGCS, suggesting that KATP are expressed but not basally activated. Kir6.2 transcript, a pore-forming subunit of KATP was expressed in HGCS. A low concentration of Ba(2+), a Kir blocker, induced strong depolarization. Interestingly, Ba(2+)-sensitive currents were minimally expressed in isolated smooth muscle cells under whole-cell patch configuration. KCNJ2 (Kir2.1) transcript was expressed in HGCS. Unique K(+) conductances regulate the RMP in HGCS. Delayed and inwardly rectifying K(+) channels are the main candidates in regulating membrane excitability in HGCS. With the development of cell dispersion techniques of interstitial cells, the cell-specific functional significance will require further analysis.

  4. PKC-DEPENDENT REGULATION OF Kv7.5 CHANNELS BY THE BRONCHOCONSTRICTOR HISTAMINE IN HUMAN AIRWAY SMOOTH MUSCLE CELLS.

    PubMed

    Haick, Jennifer M; Brueggemann, Lioubov I; Cribbs, Leanne L; Denning, Mitchell F; Schwartz, Jeffrey; Byron, Kenneth L

    2017-03-10

    Kv7 potassium channels have recently been found to be expressed and functionally important for relaxation of airway smooth muscle. Previous research suggests that native Kv7 currents are inhibited following treatment of freshly isolated airway smooth muscle cells with bronchoconstrictor agonists, and in intact airways inhibition of Kv7 channels is sufficient to induce bronchiolar constriction. However, the mechanism by which Kv7 currents are inhibited by bronchoconstrictor agonists has yet to be elucidated. In the present study, native Kv7 currents in cultured human trachealis smooth muscle cells (HTSMCs) were observed to be inhibited upon treatment with histamine; inhibition of Kv7 currents was associated with membrane depolarization and an increase in cytosolic Ca2+ ([Ca2+]cyt). The latter response was inhibited by verapamil, a blocker of L-type voltage sensitive Ca2+ channels (VSCCs). Protein kinase C (PKC) has been implicated as a mediator of bronchoconstrictor actions, though the targets of PKC are not clearly established. We found that histamine treatment significantly and dose-dependently suppressed currents through overexpressed wild-type human Kv7.5 (hKv7.5) channels in cultured HTSMCs, and this effect was inhibited by the PKC inhibitor Ro-31-8220 (3 µM). The PKC-dependent suppression of hKv7.5 currents corresponded with a PKC-dependent increase in hKv7.5 channel phosphorylation. Knocking down or inhibiting PKCα, or mutating hKv7.5 serine 441 to alanine, abolished the inhibitory effects of histamine on hKv7.5 currents. These findings provide the first evidence linking PKC activation to suppression of Kv7 currents, membrane depolarization, and Ca2+ influx via L-type VSCCs as a mechanism for histamine-induced bronchoconstriction.

  5. Pulmonary veins in the normal lung and pulmonary hypertension due to left heart disease.

    PubMed

    Hunt, James M; Bethea, Brian; Liu, Xiang; Gandjeva, Aneta; Mammen, Pradeep P A; Stacher, Elvira; Gandjeva, Marina R; Parish, Elisabeth; Perez, Mario; Smith, Lynelle; Graham, Brian B; Kuebler, Wolfgang M; Tuder, Rubin M

    2013-11-15

    Despite the importance of pulmonary veins in normal lung physiology and the pathobiology of pulmonary hypertension with left heart disease (PH-LHD), pulmonary veins remain largely understudied. Difficult to identify histologically, lung venous endothelium or smooth muscle cells display no unique characteristic functional and structural markers that distinguish them from pulmonary arteries. To address these challenges, we undertook a search for unique molecular markers in pulmonary veins. In addition, we addressed the expression pattern of a candidate molecular marker and analyzed the structural pattern of vascular remodeling of pulmonary veins in a rodent model of PH-LHD and in lung tissue of patients with PH-LHD obtained at time of placement on a left ventricular assist device. We detected urokinase plasminogen activator receptor (uPAR) expression preferentially in normal pulmonary veins of mice, rats, and human lungs. Expression of uPAR remained elevated in pulmonary veins of rats with PH-LHD; however, we also detected induction of uPAR expression in remodeled pulmonary arteries. These findings were validated in lungs of patients with PH-LHD. In selected patients with sequential lung biopsy at the time of removal of the left ventricular assist device, we present early data suggesting improvement in pulmonary hemodynamics and venous remodeling, indicating potential regression of venous remodeling in response to assist device treatment. Our data indicate that remodeling of pulmonary veins is an integral part of PH-LHD and that pulmonary veins share some key features present in remodeled yet not normotensive pulmonary arteries.

  6. Rodent models of pulmonary hypertension: harmonisation with the world health organisation's categorisation of human PH.

    PubMed

    Ryan, J; Bloch, K; Archer, S L

    2011-08-01

    The WHO classification of pulmonary hypertension (PH) recognises five distinct groups, all sharing a mean, resting, pulmonary artery pressure (PAP) > 25 mmHg. The aetiology of PH varies by group (1-pulmonary vascular disease, 2-high left heart filling pressures, 3-hypoxia, 4-unresolved pulmonary embolism and 5-miscellaneous). Inclusion in a group reflects shared histological, haemodynamic and pathophysiological features and has therapeutic implications. Advantages of using rodent models to understand the pathophysiology of human PH and to test experimental therapies include the economy, safety and mechanistic certainty they provide. As rodent models are meant to reflect human PH, they should be categorised by a parallel PH classification and limitations in achieving this ideal recognised. Challenges with rodent models include: accurate phenotypic characterisation (haemodynamics, histology and imaging), species and strain variations in the natural history of PH, and poor fidelity to the relevant human PH group. Rat models of group 1 PH include: monocrotaline (± pneumonectomy), chronic hypoxia + SU-5416 (a VEGF receptor inhibitor) and the fawn-hooded rat (FHR). Mouse models of group 1 PH include: transgenic mice overexpressing the serotonin transporter or dominant-negative mutants of bone morphogenetic protein receptor-2. Group 1 PH is also created by infecting S100A4/Mts1 mice with γ-herpesvirus. The histological features of group 1 PH, but not PH itself, are induced by exposure to Schistosoma mansoni or Stachybotrys chartarum. Group 3 PH is modelled by exposure of rats or mice to chronic hypoxia. Rodent models of groups 2, 4 and 5 PH are needed. Comprehensive haemodynamic, histological and molecular phenotyping, coupled with categorisation into WHO PH groups, enhances the utility of rodent models.

  7. Defect of hepatocyte growth factor production by fibroblasts in human pulmonary emphysema.

    PubMed

    Plantier, Laurent; Marchand-Adam, Sylvain; Marchal-Sommé, Joëlle; Lesèche, Guy; Fournier, Michel; Dehoux, Monique; Aubier, Michel; Crestani, Bruno

    2005-04-01

    Pulmonary emphysema results from an excessive degradation of lung parenchyma associated with a failure of alveolar repair. Secretion by pulmonary fibroblasts of hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) is crucial to an effective epithelial repair after lung injury. We hypothesized that abnormal HGF or KGF secretion by pulmonary fibroblasts could play a role in the development of emphysema. We measured in vitro production of HGF and KGF by human fibroblasts cultured from emphysematous and normal lung samples. HGF and KGF production was quantified at basal state and after stimulation. Intracellular content of HGF was lower in emphysema (1.52 pg/mug, range of 0.15-7.40 pg/mug) than in control fibroblasts (14.16 pg/mug, range of 2.50-47.62 pg/mug; P = 0.047). HGF production by emphysema fibroblasts (19.3 pg/mug protein, range of 10.4-39.2 pg/mug) was lower than that of controls at baseline (57.5 pg/mug, range of 20.4-116 pg/mug; P = 0.019) and after stimulation with interleukin-1beta or prostaglandin E(2). Neither retinoic acids (all-trans and 9-cis) nor N-acetylcysteine could reverse this abnormality. KGF production by emphysema fibroblasts (5.3 pg/mug, range of 2.2-9.3 pg/mug) was similar to that of controls at baseline (2.6 pg/mug, range of 1-6.1 pg/mug; P = 0.14) but could not be stimulated with interleukin-1beta. A decreased secretion of HGF by pulmonary fibroblasts could contribute to the insufficient alveolar repair in pulmonary emphysema.

  8. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells

    SciTech Connect

    Cushing, S.D.; Berliner, J.A.; Valente, A.J.; Territo, M.C.; Navab, M.; Parhami, F.; Gerrity, R.; Schwartz, C.J.; Fogelman, A.M.

    1990-07-01

    After exposure to low density lipoprotein (LDL) that had been minimally modified by oxidation (MM-LDL), human endothelial cells (EC) and smooth muscle cells (SMC) cultured separately or together produced 2- to 3-fold more monocyte chemotactic activity than did control cells or cells exposed to freshly isolated LDL. This increase in monocyte chemotactic activity was paralleled by increases in mRNA levels for a monocyte chemotactic protein 1 (MCP-1) that is constitutively produced by the human glioma U-105MG cell line. Antibody that had been prepared against cultured baboon smooth muscle cell chemotactic factor (anti-SMCF) did not inhibit monocyte migration induced by the potent bacterial chemotactic factor f-Met-Leu-Phe. However, anti-SMCF completely inhibited the monocyte chemotactic activity found in the media of U-105MG cells, EC, and SMC before and after exposure to MM-LDL. Moreover, monocyte migration into the subendothelial space of a coculture of EC and SMC that had been exposed to MM-LDL was completely inhibited by anti-SMCF. Anti-SMCF specifically immunoprecipitated 10-kDa and 12.5-kDa proteins from EC. Incorporation of (35S)methionine into the immunoprecipitated proteins paralleled the monocyte chemotactic activity found in the medium of MM-LDL stimulated EC and the levels of MCP-1 mRNA found in the EC. We conclude that SMCF is in fact MCP-1 and MCP-1 is induced by MM-LDL.

  9. The Impact of Vitamin D on Asthmatic Human Airway Smooth Muscle

    PubMed Central

    Hall, Sannette C.; Fischer, Kimberly D.; Agrawal, Devendra K.

    2016-01-01

    Asthma is a chronic heterogeneous disorder, which involves airway inflammation, airway hyperresponsiveness (AHR) and airway remodeling. The airway smooth muscle (ASM) bundle regulates the broncho-motor tone and plays a critical role in AHR as well as orchestrating inflammation. Vitamin D deficiency has been linked to increased severity and exacerbations of symptoms in asthmatic patients. It has been shown to modulate both immune and structural cells, including ASM cells, in inflammatory diseases. Given that current asthma therapies have not been successful in reversing airway remodeling, vitamin D supplementation as a potential therapeutic option has gained a great deal of attention. Here, we highlight the potential immunomodulatory properties of vitamin D in regulating ASM function and airway inflammation in bronchial asthma. PMID:26634624

  10. Fused pulmonary lobes is a rat model of human Fraser syndrome

    SciTech Connect

    Kiyozumi, Daiji; Nakano, Itsuko; Takahashi, Ken L.; Hojo, Hitoshi; Aoyama, Hiroaki; Sekiguchi, Kiyotoshi

    2011-07-29

    Highlights: {yields} Fused pulmonary lobes (fpl) mutant rats exhibit similar phenotypes to Fraser syndrome. {yields} The fpl gene harbors a nonsense mutation in Fraser syndrome-associated gene Frem2. {yields} Fpl mutant is defined as a first model of human Fraser syndrome in rats. -- Abstract: Fused pulmonary lobes (fpl) is a mutant gene that is inherited in an autosomal recessive manner and causes various developmental defects, including fusion of pulmonary lobes, and eyelid and digit anomalies in rats. Since these developmental defects closely resemble those observed in patients with Fraser syndrome, a recessive multiorgan disorder, and its model animals, we investigated whether the abnormal phenotypes observed in fpl/fpl mutant rats are attributable to a genetic disorder similar to Fraser syndrome. At the epidermal basement membrane in fpl/fpl mutant neonates, the expression of QBRICK, a basement membrane protein whose expression is attenuated in Fraser syndrome model mice, was greatly diminished compared with control littermates. Quantitative RT-PCR analyses of Fraser syndrome-related genes revealed that Frem2 transcripts were markedly diminished in QBRICK-negative embryos. Genomic DNA sequencing of the fpl/fpl mutant identified a nonsense mutation that introduced a stop codon at serine 2005 in Frem2. These findings indicate that the fpl mutant is a rat model of human Fraser syndrome.

  11. Hantavirus antibodies in rodents and human cases with pulmonary syndrome, Rio Negro, Argentina.

    PubMed

    Larrieu, Edmundo; Cantoni, Gustavo; Herrero, Eduardo; Pérez, Alicia; Talmon, Gabriel; Vázquez, Gabriela; Arellano, Odila; Padula, Paula

    2008-01-01

    In Río Negro Province, Argentina, human cases of hantavirus pulmonary syndrome (HPS) appeared in the region of subantarctic forests. The Andes virus (ANDV) has been identified in the region both in Oligoryzomys longicaudatus rodents and in humans, with the main transmission being from rodents to humans but also showing the possibility of human to human transmission. Between 1996 and 2004, in 40 campaigns, 29.960 night-traps for capturing live rodents were set up. Blood samples were obtained from the rodents and processed using enzyme immunoassay with recombinant antigens made from ANDV. A total of 1767 rodents were captured, with a capture success of 5.9% and an antibody prevalence of 2.1%. Important differences were observed among the species captured from Andes and Steppe regions. Seropositive Oligoryzomys longicaudatus, Abrotrix olivaceus, Abrotrix xanhtothinus and Loxodontomus microtus were captured. During the 1993-2004 period, 40 HPS cases were registered.

  12. Specific high-affinity binding of high density lipoproteins to cultured human skin fibroblasts and arterial smooth muscle cells.

    PubMed

    Biesbroeck, R; Oram, J F; Albers, J J; Bierman, E L

    1983-03-01

    Binding of human high density lipoproteins (HDL, d = 1.063-1.21) to cultured human fibroblasts and human arterial smooth muscle cells was studied using HDL subjected to heparin-agarose affinity chromatography to remove apoprotein (apo) E and B. Saturation curves for binding of apo E-free 125I-HDL showed at least two components: low-affinity nonsaturable binding and high-affinity binding that saturated at approximately 20 micrograms HDL protein/ml. Scatchard analysis of high-affinity binding of apo E-free 125I-HDL to normal fibroblasts yielded plots that were significantly linear, indicative of a single class of binding sites. Saturation curves for binding of both 125I-HDL3 (d = 1.125-1.21) and apo E-free 125I-HDL to low density lipoprotein (LDL) receptor-negative fibroblasts also showed high-affinity binding that yielded linear Scatchard plots. On a total protein basis, HDL2 (d = 1.063-1.10), HDL3 and very high density lipoproteins (VHDL, d = 1.21-1.25) competed as effectively as apo E-free HDL for binding of apo E-free 125I-HDL to normal fibroblasts. Also, HDL2, HDL3, and VHDL competed similarly for binding of 125I-HDL3 to LDL receptor-negative fibroblasts. In contrast, LDL was a weak competitor for HDL binding. These results indicate that both human fibroblasts and arterial smooth muscle cells possess specific high affinity HDL binding sites. As indicated by enhanced LDL binding and degradation and increased sterol synthesis, apo E-free HDL3 promoted cholesterol efflux from fibroblasts. These effects also saturated at HDL3 concentrations of 20 micrograms/ml, suggesting that promotion of cholesterol efflux by HDL is mediated by binding to the high-affinity cell surface sites.

  13. Determinants of ventilation and pulmonary artery pressure during early acclimatization to hypoxia in humans

    PubMed Central

    Fatemian, Marzieh; Herigstad, Mari; Croft, Quentin P. P.; Formenti, Federico; Cardenas, Rosa; Wheeler, Carly; Smith, Thomas G.; Friedmannova, Maria; Dorrington, Keith L.

    2015-01-01

    Key points Lung ventilation and pulmonary artery pressure rise progressively in response to 8 h of hypoxia, changes described as ‘acclimatization to hypoxia’. Acclimatization responses differ markedly between humans for unknown reasons.We explored whether the magnitudes of the ventilatory and vascular responses were related, and whether the degree of acclimatization could be predicted by acute measurements of ventilatory and vascular sensitivities.In 80 healthy human volunteers measurements of acclimatization were made before, during, and after a sustained exposure to 8 h of isocapnic hypoxia.No correlation was found between measures of ventilatory and pulmonary vascular acclimatization.The ventilatory chemoreflex sensitivities to acute hypoxia and hypercapnia all increased in proportion to their pre‐acclimatization values following 8 h of hypoxia. The peripheral (rapid) chemoreflex sensitivity to CO2, measured before sustained hypoxia against a background of hyperoxia, was a modest predictor of ventilatory acclimatization to hypoxia. This finding has relevance to predicting human acclimatization to the hypoxia of altitude. Abstract Pulmonary ventilation and pulmonary arterial pressure both rise progressively during the first few hours of human acclimatization to hypoxia. These responses are highly variable between individuals, but the origin of this variability is unknown. Here, we sought to determine whether the variabilities between different measures of response to sustained hypoxia were related, which would suggest a common source of variability. Eighty volunteers individually underwent an 8‐h isocapnic exposure to hypoxia (end‐tidal P O2=55 Torr) in a purpose‐built chamber. Measurements of ventilation and pulmonary artery systolic pressure (PASP) assessed by Doppler echocardiography were made during the exposure. Before and after the exposure, measurements were made of the ventilatory sensitivities to acute isocapnic hypoxia (GpO2) and

  14. Human Recombinant Apyrase Therapy Protects Against Canine Pulmonary Ischemia-Reperfusion Injury

    PubMed Central

    Ibrahim, Mohsen; Wang, Xingan; Puyo, Carlos A.; Montecalvo, Alessandro; Huang, Howard J.; Hachem, Ramsey R.; Andreetti, Claudio; Menna, Cecilia; Chen, Ridong; Krupnick, Alexander S.; Kreisel, Daniel; Rendina, Erino A.; Gelman, Andrew E.

    2014-01-01

    INTRODUCTION There is accumulating evidence that extracellular adenosine triphosphate (eATP) promotes many of the underlying mechanisms that exacerbate acute lung injury. However, much of this data is from inbred rodent models indicating the need for further investigation in higher vertebrates to better establish clinical relevance. To this end we evaluated a human recombinant apyrase therapy in a canine warm pulmonary ischemia-reperfusion injury (IRI) model and measured eATP levels in human lung recipients with or without primary lung allograft dysfunction (PGD). METHODS Warm ischemia was induced for 90 minutes in the left lung of 14 mongrel dogs. Seven minutes after reperfusion, the apyrase APT102 (1 mg/kg, N=7) or saline vehicle (N=7) was injected into the pulmonary artery. Arterial blood gases were obtained every 30 minutes up to 180 minutes after reperfusion. Bronchioalveolar lavage fluid (BALF) was analyzed for eATP concentration, cellularity and inflammatory mediator accumulation. Thirty bilateral human lung transplant recipients were graded for immediate early PGD and assessed for BALF eATP levels. RESULTS APT102-treated dogs had progressively better lung function and less pulmonary edema over the 3-hour reperfusion period when compared to vehicle-treated controls. Protection from IRI was observed with lower BALF eATP levels, fewer airway leukocytes and blunted inflammatory mediator expression. Additionally, human lung recipients with moderate to severe PGD had significantly higher eATP levels when compared to recipients without this injury. CONCLUSIONS Extracellular ATP accumulates in acutely injured canine and human lungs. Strategies that target eATP reduction may help protect lung recipients from IRI. PMID:25455749

  15. Deduced amino acid sequence of human pulmonary surfactant proteolipid: SPL(pVal)

    SciTech Connect

    Whitsett, J.A.; Glasser, S.W.; Korfhagen, T.R.; Weaver, T.E.; Clark, J.; Pilot-Matias, T.; Meuth, J.; Fox, J.L.

    1987-05-01

    Hydrophobic, proteolipid-like protein of Mr 6500 was isolated from ether/ethanol extracts of human, canine and bovine pulmonary surfactant. Amino acid composition of the protein demonstrated a remarkable abundance of hydrophobic residues, particularly valine and leucine. The N-terminal amino acid sequence of the human protein was determined: N-Leu-Ile-Pro-Cys-Cys-Pro-Val-Asn-Leu-Lys-Arg-Leu-Leu-Ile-Val4... An oligonucleotide probe was used to screen an adult human lung cDNA library and resulted in detection of cDNA clones with predicted amino acid sequence with close identity to the N-terminal amino acid sequence of the human peptide. SPL(pVal) was found within the reading frame of a larger peptide. SPL(pVal) results from proteolytic processing of a larger preprotein. Northern blot analysis detected in a single 1.0 kilobase SPL(pVal) RNA which was less abundant in fetal than in adult lung. Mixtures of purified canine and bovine SPL(pVal) and synthetic phospholipids display properties of rapid adsorption and surface tension lowering activity characteristic of surfactant. Human SPL(pVal) is a pulmonary surfactant proteolipid which may therefore be useful in combination with phospholipids and/or other surfactant proteins for the treatment of surfactant deficiency such as hyaline membrane disease in newborn infants.

  16. Human bronchial smooth muscle cells express adenylyl cyclase isoforms 2, 4, and 6 in distinct membrane microdomains.

    PubMed

    Bogard, Amy S; Xu, Congfeng; Ostrom, Rennolds S

    2011-04-01

    Adenylyl cyclases (AC) are important regulators of airway smooth muscle function, because β-adrenergic receptor (AR) agonists stimulate AC activity and increase airway diameter. We assessed expression of AC isoforms in human bronchial smooth muscle cells (hBSMC). Reverse transcriptase-polymerase chain reaction and immunoblot analyses detected expression of AC2, AC4, and AC6. Forskolin-stimulated AC activity in membranes from hBSMC displayed Ca(2+)-inhibited and G(βγ)-stimulated AC activity, consistent with expression of AC6, AC2, and AC4. Isoproterenol-stimulated AC activity was inhibited by Ca(2+) but unaltered by G(βγ), whereas butaprost-stimulated AC activity was stimulated by G(βγ) but unaffected by Ca(2+) addition. Using sucrose density centrifugation to isolate lipid raft fractions, we found that only AC6 localized in lipid raft fractions, whereas AC2 and AC4 localized in nonraft fractions. Immunoisolation of caveolae using caveolin-1 antibodies yielded Ca(2+)-inhibited AC activity (consistent with AC6 expression), whereas the nonprecipitated material displayed G(βγ)-stimulated AC activity (consistent with expression of AC2 and/or AC4). Overexpression of AC6 enhanced cAMP production in response to isoproterenol and beraprost but did not increase responses to prostaglandin E(2) or butaprost. β(2)AR, but not prostanoid EP(2) or EP(4) receptors, colocalized with AC5/6 in lipid raft fractions. Thus, particular G protein-coupled receptors couple to discreet AC isoforms based, in part, on their colocalization in membrane microdomains. These different cAMP signaling compartments in airway smooth muscle cells are responsive to different hormones and neurotransmitters and can be regulated by different coincident signals such as Ca(2+) and G(βγ).

  17. Novel effect of 2-aminoethoxydiphenylborate through inhibition of calcium sensitization induced by Rho kinase activation in human detrusor smooth muscle.

    PubMed

    Shahab, Nouval; Kajioka, Shunichi; Takahashi, Ryosuke; Hayashi, Maya; Nakayama, Shinsuke; Sakamoto, Kazuyuki; Takeda, Masahiro; Masuda, Noriyuki; Naito, Seiji

    2013-05-15

    Since the introduction of 2-aminoethoxydiphenylborate (2-APB) as a membrane permeable modulator of inositol (1,4,5)-trisphosphate receptors, subsequent studies have revealed additional actions of this chemical on multiple Ca(2+)-permeable ionic channels in the plasma membrane. However, no reports have yet examined 2-APB as a modulator targeting contractile machinery in smooth muscle, independent of Ca(2+) mobilization, namely Ca(2+) sensitization. Here, we assessed whether or not 2-APB affects intracellular signaling pathways of Ca(2+) sensitization for contraction using α-toxin permeabilized human detrusor smooth muscle. Although contractions were induced by application of Ca(2+)-containing bath solutions, 2-APB had little effect on contractions induced by 1 µM Ca(2+) alone but significantly reversed the carbachol-induced augmentation of Ca(2+)-induced contraction in the presence of guanosine triphosphate (carbachol-induced Ca(2+) sensitization). The rho kinase inhibitor Y-27632 and protein kinase C inhibitor GF-109203X also reversed the carbachol-mediated Ca(2+) sensitization. Additional application of 2-APB caused a small but significant further attenuation of the contraction in the presence of GF-109203X but not in the presence of Y-27632. Like carbachol, the rho kinase activator; sphingosylphosphorylcholine, protein kinase C activator; phorbol 12,13 dibutyrate, and myosin light chain phosphatase inhibitor; calyculin-A all induced Ca(2+) sensitization. However, the inhibitory activity of 2-APB was limited with sphingosylphosphorylcholine-induced Ca(2+) sensitization. This study revealed a novel inhibitory effect of 2-APB on smooth muscle contractility through inhibition of the rho kinase pathway.

  18. G-Protein-Coupled Receptor 35 Mediates Human Saphenous Vein Vascular Smooth Muscle Cell Migration and Endothelial Cell Proliferation

    PubMed Central

    McCallum, Jennifer E.; Mackenzie, Amanda E.; Divorty, Nina; Clarke, Carolyn; Delles, Christian; Milligan, Graeme; Nicklin, Stuart A.

    2016-01-01

    Vascular smooth muscle cell (VSMC) migration and proliferation is central to neointima formation in vein graft failure following coronary artery bypass. However, there are currently no pharmacological interventions that prevent vein graft failure through intimal occlusion. It is hence a therapeutic target. Here, we investigated the contribution of GPR35 to human VSMC and endothelial cell (EC) migration, using a scratch-wound assay, and also the contribution to proliferation, using MTS and BrdU assays, in in vitro models using recently characterized human GPR35 ortholog-selective small-molecule agonists and antagonists. Real-time PCR studies showed GPR35 to be robustly expressed in human VSMCs and ECs. Stimulation of GPR35, with either the human-selective agonist pamoic acid or the reference agonist zaprinast, promoted VSMC migration in the scratch-wound assay. These effects were blocked by coincubation with either of the human GPR35-specific antagonists, CID-2745687 or ML-145. These GPR35-mediated effects were produced by inducing alterations in the actin cytoskeleton via the Rho A/Rho kinase signaling axis. Additionally, the agonist ligands stimulated a proliferative response in ECs. These studies highlight the potential that small molecules that stimulate or block GPR35 activity can modulate vascular proliferation and migration. These data propose GPR35 as a translational therapeutic target in vascular remodeling. PMID:27064272

  19. Low level CO2 effects on pulmonary function in humans

    NASA Technical Reports Server (NTRS)

    Sexton, J.; Mueller, K.; Elliott, A.; Gerzer, D.; Strohl, K. P.; West, J. B. (Principal Investigator)

    1998-01-01

    The purpose of the study was to determine whether chamber exposure to low levels of CO2 results in functional alterations in gas mixing and closing volume in humans. Four healthy volunteer subjects were exposed to 0.7% CO2 and to 1.2% CO2. Spirometry, lung volumes, single breath nitrogen washout, diffusing capacity for carbon monoxide (DLCO) by two methods, and cardiac output were measured in triplicate. Values were obtained over two non-consecutive days during the training period (control) and on days 2 or 3, 4, 6, 10, 13, and 23 of exposure to each CO2 level. Measurements were made during the same time of day. There was one day of testing after exposure, while still in the chamber but off carbon dioxide. The order of testing, up until measurements of DLCO and cardiac output, were randomized to avoid presentation effects. The consistent findings were a reduction in diffusing capacity for carbon monoxide and a fall in cardiac output, occurring to a similar degree with both exposures. For the group as a whole, there was no indication of major effects on spirometry, lung volumes, gas mixing or dead space. We conclude that small changes may occur in the function of distal gas exchanging units; however, these effects were not associated with any adverse health effects. The likelihood of pathophysiologic changes in lung function or structure with 0.7 or 1.2% CO2 exposure for this period of time, is therefore, low.

  20. Air Pollution by Hydrothermal Volcanism and Human Pulmonary Function.

    PubMed

    Linhares, Diana; Ventura Garcia, Patrícia; Viveiros, Fátima; Ferreira, Teresa; dos Santos Rodrigues, Armindo

    2015-01-01

    The aim of this study was to assess whether chronic exposure to volcanogenic air pollution by hydrothermal soil diffuse degassing is associated with respiratory defects in humans. This study was carried in the archipelago of the Azores, an area with active volcanism located in the Atlantic Ocean where Eurasian, African, and American lithospheric plates meet. A cross-sectional study was performed on a study group of 146 individuals inhabiting an area where volcanic activity is marked by active fumarolic fields and soil degassing (hydrothermal area) and a reference group of 359 individuals inhabiting an area without these secondary manifestations of volcanism (nonhydrothermal area). Odds ratio (OR) and 95% confidence intervals (CIs) were adjusted for age, gender, fatigue, asthma, and smoking. The OR for restrictive defects and for exacerbation of obstructive defects (COPD) in the hydrothermal area was 4.4 (95% CI 1.78-10.69) and 3.2 (95% CI 1.82-5.58), respectively. Increased prevalence of restrictions and all COPD severity ranks (mild, moderate, and severe) was observed in the population from the hydrothermal area. These findings may assist health officials in advising and keeping up with these populations to prevent and minimize the risk of respiratory diseases.

  1. Air Pollution by Hydrothermal Volcanism and Human Pulmonary Function

    PubMed Central

    Linhares, Diana; Garcia, Patrícia Ventura; Viveiros, Fátima; Ferreira, Teresa; Rodrigues, Armindo dos Santos

    2015-01-01

    The aim of this study was to assess whether chronic exposure to volcanogenic air pollution by hydrothermal soil diffuse degassing is associated with respiratory defects in humans. This study was carried in the archipelago of the Azores, an area with active volcanism located in the Atlantic Ocean where Eurasian, African, and American lithospheric plates meet. A cross-sectional study was performed on a study group of 146 individuals inhabiting an area where volcanic activity is marked by active fumarolic fields and soil degassing (hydrothermal area) and a reference group of 359 individuals inhabiting an area without these secondary manifestations of volcanism (nonhydrothermal area). Odds ratio (OR) and 95% confidence intervals (CIs) were adjusted for age, gender, fatigue, asthma, and smoking. The OR for restrictive defects and for exacerbation of obstructive defects (COPD) in the hydrothermal area was 4.4 (95% CI 1.78–10.69) and 3.2 (95% CI 1.82–5.58), respectively. Increased prevalence of restrictions and all COPD severity ranks (mild, moderate, and severe) was observed in the population from the hydrothermal area. These findings may assist health officials in advising and keeping up with these populations to prevent and minimize the risk of respiratory diseases. PMID:26301247

  2. WISP1 overexpression promotes proliferation and migration of human vascular smooth muscle cells via AKT signaling pathway.

    PubMed

    Lu, Shun; Liu, Hao; Lu, Lihe; Wan, Heng; Lin, Zhiqi; Qian, Kai; Yao, Xingxing; Chen, Qing; Liu, Wenjun; Yan, Jianyun; Liu, Zhengjun

    2016-10-05

    Proliferation and migration of vascular smooth muscle cells (VSMCs) play crucial roles in the development of vascular restenosis. Our previous study showed that CCN4, namely Wnt1 inducible signaling pathway protein 1 (WISP1), significantly promotes proliferation and migration of rat VSMCs, but its mechanism remains unclear. This study aims to investigate whether and how WISP1 stimulates proliferation and migration of human VSMCs. Western blot analysis showed that FBS treatment increased WISP1 protein levels in human VSMCs in a dose-dependent manner. Overexpression of WISP1 using adenovirus encoding WISP1 (AD-WISP1) significantly increased proliferation rate of human VSMCs by 2.98-fold compared with empty virus (EV)-transfected cells, shown by EdU incorporation assay. Additionally, Scratch-induced wound healing assay revealed that adenovirus-mediated overexpression of WISP1 significantly increased cell migration compared with EV-transfected cells from 6h (4.56±1.14% vs. 11.23±2.25%, P<0.05) to 48h (25.25±5.51% vs. 97.54±13.12%, P<0.01) after injury. Transwell Migration Assay confirmed that WISP1 overexpression significantly promoted human VSMC migration by 2.25-fold compared with EV. Furthermore, WISP1 overexpression stimulated Akt signaling activation in human VSMCs. Blockage of Akt signaling by Akt inhibitor AZD5363 or PI3K inhibitor LY294002, led to an inhibitory effect of WISP1-induced proliferation and migration in human VSMCs. Moreover, we found that WISP1 overexpression stimulated GSK3α/β phosphorylation, and increased expression of cyclin D1 and MMP9 in human VSMCs, and this effect was abolished by AZD5363. Collectively, we demonstrated that Akt signaling pathway mediates WISP1-induced migration and proliferation of human VSMCs, suggesting that WISP1 may act as a novel potential therapeutic target for vascular restenosis.

  3. Oncostatin M Promotes Osteoblastic Differentiation of Human Vascular Smooth Muscle Cells Through JAK3-STAT3 Pathway.

    PubMed

    Kakutani, Yoshinori; Shioi, Atsushi; Shoji, Tetsuo; Okazaki, Hirokazu; Koyama, Hidenori; Emoto, Masanori; Inaba, Masaaki

    2015-07-01

    Vascular calcification is a clinically significant component of atherosclerosis and arises from chronic vascular inflammation. Oncostatin M (OSM) derived from plaque macrophages may contribute to the development of atherosclerotic calcification. Here, we investigated the stimulatory effects of OSM on osteoblastic differentiation of human vascular smooth muscle cells (HVSMC) derived from various arteries including umbilical artery, aorta, and coronary artery and its signaling pathway. Osteoblastic differentiation was induced by exposure of HVSMC to osteogenic differentiation medium (ODM) (10% fetal bovine serum, 0.1 μM dexamethasone, 10 mM β-glycerophosphate and 50 μg/ml ascorbic acid 2-phosphate in Dulbecco's modified Eagle's medium [DMEM]). OSM significantly increased alkaline phosphate (ALP) activity and matrix mineralization in HVSMC from all sources. Osteoblast marker genes such as ALP and Runx2 were also up-regulated by OSM in these cells. OSM treatment induced activation of STAT3 in HVSMC from umbilical artery as evidenced by immunoblot. Moreover, not only a JAK3 inhibitor, WHI-P154, but also knockdown of JAK3 by siRNA prevented the OSM-induced ALP activity and matrix mineralization in umbilical artery HVSMC. On the other hand, silencing of STAT3 almost completely suppressed OSM-induced ALP expression and matrix mineralization in HVSMC from all sources. These data suggest that OSM promotes osteoblastic differentiation of vascular smooth muscle cells through JAK3/STAT3 pathway and may contribute to the development of atherosclerotic calcification.

  4. Chrysin inhibits human airway smooth muscle cells proliferation through the extracellular signal-regulated kinase 1/2 signaling pathway.

    PubMed

    Yao, Jing; Zhang, Yun-Shi; Feng, Gan-Zhu; Du, Qiang

    2015-11-01

    Asthma is a chronic airway inflammatory disease characterized by an increased mass of airway smooth muscle (ASM). Chrysin (5,7-dihydroxyflavone), a natural flavonoid, has been shown to exert multiple biological activities, including anti-inflammatory, anti-proliferative and anti-oxidant effects, as well as the potency to ameliorate asthma in animal models. The objective of the present study was to identify the underlying mechanism of the therapeutic effects of chrysin. The impact of chrysin on basal and platelet-derived growth factor (PDGF)-induced proliferation and apoptosis of human airway smooth muscle cells (HASMCs) was investigated. Furthermore, the activation of the extracellular signal-regulated protein kinase (ERK) signaling pathway was evaluated in HASMCs. The results revealed that chrysin significantly inhibited basal as well as PDGF-induced HASMC proliferation, most likely through the suppression of ERK1/2 phosphorylation. However, chrysin did not significantly reduce PDGF-induced apoptosis of HASMCs. The present study indicated that chrysin may be a promising medication for controlling airway remodeling and clinical manifestations of asthma.

  5. A novel inhibitory effect of oxazol-5-one compounds on ROCKII signaling in human coronary artery vascular smooth muscle cells

    PubMed Central

    Al-Ghabkari, Abdulhameed; Deng, Jing-Ti; McDonald, Paul C.; Dedhar, Shoukat; Alshehri, Mana; Walsh, Michael P.; MacDonald, Justin A.

    2016-01-01

    The selectivity of (4Z)-2-(4-chloro-3-nitrophenyl)-4-(pyridin-3-ylmethylidene)-1,3-oxazol-5-one (DI) for zipper-interacting protein kinase (ZIPK) was previously described by in silico computational modeling, screening a large panel of kinases, and determining the inhibition efficacy. Our assessment of DI revealed another target, the Rho-associated coiled-coil-containing protein kinase 2 (ROCKII). In vitro studies showed DI to be a competitive inhibitor of ROCKII (Ki, 132 nM with respect to ATP). This finding was supported by in silico molecular surface docking of DI with the ROCKII ATP-binding pocket. Time course analysis of myosin regulatory light chain (LC20) phosphorylation catalyzed by ROCKII in vitro revealed a significant decrease upon treatment with DI. ROCKII signaling was investigated in situ in human coronary artery vascular smooth muscle cells (CASMCs). ROCKII down-regulation using siRNA revealed several potential substrates involved in smooth muscle contraction (e.g., LC20, Par-4, MYPT1) and actin cytoskeletal dynamics (cofilin). The application of DI to CASMCs attenuated LC20, Par-4, LIMK, and cofilin phosphorylations. Notably, cofilin phosphorylation was not significantly decreased with a novel ZIPK selective inhibitor (HS-38). In addition, CASMCs treated with DI underwent cytoskeletal changes that were associated with diminution of cofilin phosphorylation. We conclude that DI is not selective for ZIPK and is a potent inhibitor of ROCKII. PMID:27573465

  6. The anti-ageing hormone klotho induces Nrf2-mediated antioxidant defences in human aortic smooth muscle cells.

    PubMed

    Maltese, Giuseppe; Psefteli, Paraskevi-Maria; Rizzo, Benedetta; Srivastava, Salil; Gnudi, Luigi; Mann, Giovanni E; Siow, Richard C M

    2017-03-01

    Vascular ageing in conditions such as atherosclerosis, diabetes and chronic kidney disease, is associated with the activation of the renin angiotensin system (RAS) and diminished expression of antioxidant defences mediated by the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). The anti-ageing hormone klotho promotes longevity and protects against cardiovascular and renal diseases. Klotho has been shown to activate Nrf2 and attenuate oxidative damage in neuronal cells, however, the mechanisms by which it protects against vascular smooth muscle cell VSMC dysfunction elicited by Angiotensin II (AngII) remain to be elucidated. AngII contributes to vascular ageing and atherogenesis by enhancing VSMC oxidative stress, senescence and apoptosis. This study demonstrates that soluble klotho (1 nM, 24 hrs) significantly induces expression of Nrf2 and the antioxidant enzymes haeme oxygenase (HO-1) and peroxiredoxin-1 (Prx-1) and enhances glutathione levels in human aortic smooth muscle cells (HASMC). Silencing of Nrf2 attenuated the induction of HO-1 and Prx-1 expression by soluble klotho. Furthermore, soluble klotho protected against AngII-mediated HASMC apoptosis and senescence via activation of Nrf2. Thus, our findings highlight a novel Nrf2-mediated mechanism underlying the protective actions of soluble klotho in HAMSC. Targeting klotho may thus represent a therapeutic strategy against VSMC dysfunction and cardiovascular ageing.

  7. Tyk2 mediates effects of urokinase on human vascular smooth muscle cell growth

    SciTech Connect

    Patecki, Margret; Schaewen, Markus von; Tkachuk, Sergey; Jerke, Uwe; Dietz, Rainer; Dumler, Inna; Kusch, Angelika . E-mail: angelika.kusch@charite.de

    2007-08-03

    The urokinase (uPA)/uPA receptor (uPAR) system plays a role in the response of the vessel wall to injury, presumably by modulating vascular smooth muscle cell (VSMC) functional behaviour. The Jak/Stat signaling pathway has been implicated to mediate the uPA/uPAR-directed cell migration and proliferation in VSMC. We have therefore investigated the underlying molecular mechanisms, which remained not completely understood. In particular, we aimed at identification of the kinase involved in the signaling cascade leading to Stat1 phosphorylation by uPA and its impact on VSMC growth. We performed expression in VSMC of kinase-deficient mutant forms of the Janus kinases Jak1 and Tyk2 and used different cell culture models imitating the response to vascular injury. We provide evidence that Tyk2, but not Jak1, mediates uPA-induced Stat1 phosphorylation and VSMC growth inhibition and suggest a novel function for Tyk2 as an important modulator of the uPA-directed VSMC functional behaviour at the place of injury.

  8. Biphasic responses of human vascular smooth muscle cells to magnesium ion

    PubMed Central

    Ma, Jun; Zhao, Nan; Zhu, Donghui

    2016-01-01

    Magnesium-based alloys are promising in biodegradable cardiovascular stent applications. The degradation products of magnesium stents may have significant impacts on the surrounding vascular cells. However, knowledge on the interactions between magnesium ion and vascular cells at the molecular and cellular levels is still largely missing. Vascular smooth muscle cell (SMC) plays an important role in the pathogenesis of restenosis and wound healing after stent implantation. This study evaluated the short-term effects of extracellular magnesium ion (Mg2+) on the cellular behaviors of SMCs. Cellular responses to Mg2+ were biphasic and in a concentration-dependent manner. Low concentrations (10 mM) of Mg2+ increased cell viability, cell proliferation rate, cell adhesion, cell spreading, cell migration rate, and actin expression. In contrast, higher concentrations (40–60 mM) of Mg2+ had deleterious effects on cells. Gene expression analysis revealed that Mg2+ altered the expressions of genes mostly related to cell adhesion, cell injury, angiogenesis, inflammation, coagulation, and cell growth. Finding from this study provides some valuable information on SMC responses toward magnesium ions at the cellular and molecular levels, and guidance for future controlled release of magnesium from the stent material. PMID:26402437

  9. Biphasic responses of human vascular smooth muscle cells to magnesium ion.

    PubMed

    Ma, Jun; Zhao, Nan; Zhu, Donghui

    2016-02-01

    Magnesium-based alloys are promising in biodegradable cardiovascular stent applications. The degradation products of magnesium stents may have significant impacts on the surrounding vascular cells. However, knowledge on the interactions between magnesium ion and vascular cells at the molecular and cellular levels is still largely missing. Vascular smooth muscle cell (SMC) plays an important role in the pathogenesis of restenosis and wound healing after stent implantation. This study evaluated the short-term effects of extracellular magnesium ion (Mg(2+)) on the cellular behaviors of SMCs. Cellular responses to Mg(2+) were biphasic and in a concentration-dependent manner. Low concentrations (10 mM) of Mg(2+) increased cell viability, cell proliferation rate, cell adhesion, cell spreading, cell migration rate, and actin expression. In contrast, higher concentrations (40-60 mM) of Mg(2+) had deleterious effects on cells. Gene expression analysis revealed that Mg(2+) altered the expressions of genes mostly related to cell adhesion, cell injury, angiogenesis, inflammation, coagulation, and cell growth. Finding from this study provides some valuable information on SMC responses toward magnesium ions at the cellular and molecular levels, and guidance for future controlled release of magnesium from the stent material.

  10. Tyk2 mediates effects of urokinase on human vascular smooth muscle cell growth.

    PubMed

    Patecki, Margret; von Schaewen, Markus; Tkachuk, Sergey; Jerke, Uwe; Dietz, Rainer; Dumler, Inna; Kusch, Angelika

    2007-08-03

    The urokinase (uPA)/uPA receptor (uPAR) system plays a role in the response of the vessel wall to injury, presumably by modulating vascular smooth muscle cell (VSMC) functional behaviour. The Jak/Stat signaling pathway has been implicated to mediate the uPA/uPAR-directed cell migration and proliferation in VSMC. We have therefore investigated the underlying molecular mechanisms, which remained not completely understood. In particular, we aimed at identification of the kinase involved in the signaling cascade leading to Stat1 phosphorylation by uPA and its impact on VSMC growth. We performed expression in VSMC of kinase-deficient mutant forms of the Janus kinases Jak1 and Tyk2 and used different cell culture models imitating the response to vascular injury. We provide evidence that Tyk2, but not Jak1, mediates uPA-induced Stat1 phosphorylation and VSMC growth inhibition and suggest a novel function for Tyk2 as an important modulator of the uPA-directed VSMC functional behaviour at the place of injury.

  11. TRPC1/TRPC3 channels mediate lysophosphatidylcholine-induced apoptosis in cultured human coronary artery smooth muscles cells

    PubMed Central

    Wang, Yuan; Wang, Yan; Li, Gui-Rong

    2016-01-01

    The earlier study showed that lysophosphatidylcholine (lysoPC) induced apoptosis in human coronary artery smooth muscle cells (SMCs); however, the related molecular mechanisms are not fully understood. The present study investigated how lysoPC induces apoptosis in cultured human coronary artery SMCs using cell viability assay, flow cytometry, confocal microscopy, and molecular biological approaches. We found that lysoPC reduced cell viability in human coronary artery SMCs by eliciting a remarkable Ca2+ influx. The effect was antagonized by La3+, SKF-96365, or Pyr3 as well as by silencing TRPC1 or TRPC3. Co-immunoprecipitation revealed that TRPC1 and TRPC3 had protein-protein interaction. Silencing TRPC1 or TRPC3 countered the lysoPC-induced increase of Ca2+ influx and apoptosis, and the pro-apoptotic proteins Bax and cleaved caspase-3 and decrease of the anti-apoptotic protein Bcl-2 and the survival kinase pAkt. These results demonstrate the novel information that TRPC1/TRPC3 channels mediate lysoPC-induced Ca2+ influx and apoptosis via activating the pro-apoptotic proteins Bax and cleaved caspase-3 and inhibiting the anti-apoptotic protein Bcl-2 and the survival kinase pAkt in human coronary artery SMCs, which implies that TRPC1/TRC3 channels may be the therapeutic target of lysoPC-induced disorders such as atherosclerosis. PMID:27472391

  12. NOX4 downregulation leads to senescence of human vascular smooth muscle cells

    PubMed Central

    Przybylska, Dorota; Janiszewska, Dorota; Goździk, Aleksandra; Bielak-Zmijewska, Anna; Sunderland, Piotr; Sikora, Ewa; Mosieniak, Grażyna

    2016-01-01

    Senescence is a stress response characterized by an irreversible growth arrest and alterations in certain cell functions. It is believed that both double-strand DNA breaks (DSB) and increased ROS level are the main culprit of senescence. Excessive ROS production is also particularly important in the development of a number of cardiovascular disorders. In this context the involvement of professional ROS-producing enzymes, NADPH oxidases (NOX), was postulated. In contrary to the common knowledge, we have shown that not only increased ROS production but also diminished ROS level could be involved in the induction of senescence. Accordingly, our studies revealed that stress-induced premature senescence (SIPS) of vascular smooth muscle cells (VSMCs) induced by doxorubicin or H2O2, correlates with increased level of DSB and ROS. On the other hand, both SIPS and replicative senescence were accompanied by diminished expression of NOX4. Moreover, inhibition of NOX activity or decrease of NOX4 expression led to permanent growth arrest of VSMCs and secretion of interleukins and VEGF. Interestingly, cells undergoing senescence due to NOX4 depletion neither acquired DSB nor activated DNA damage response. Instead, transient induction of the p27, upregulation of HIF-1alpha, decreased expression of cyclin D1 and hypophosphorylated Rb was observed. Our results showed that lowering the level of ROS-producing enzyme - NOX4 oxidase below physiological level leads to cellular senescence of VSMCs which is correlated with secretion of pro-inflammatory cytokines. Thus the use of specific NOX4 inhibitors for pharmacotherapy of vascular diseases should be carefully considered. PMID:27655718

  13. Differential responsiveness to contractile agents of isolated smooth muscle cells from human colons as a function of age and inflammation.

    PubMed

    Boyer, J C; Guitton, C; Pignodel, C; Cuq, P; Moussu, P; Pouderoux, P; Christen, M O; Balmes, J L; Bali, J P

    1997-11-01

    To study the involvement of age and inflammation in motor colonic activity in man, contractile responses to CCK, carbachol, and KCl of isolated colonic smooth muscle cells (SMC) from normal and inflamed human colons were evaluated; the incidence of sex and smoking on contraction was also analyzed. Contractile responses to the three agonists were significantly lower in tissues with a low degree of inflammation than in tissues with high level of inflammation or normal tissues. This reduction in cell responsiveness appears to be nonspecific and nonreceptor mediated. A positive correlation of the contractile responses to the three stimulants with the age of patients was observed. In contrast, no association was found between sex, smoking, and cell contraction. In conclusion, contractions of SMC due to CCK, carbachol, and KCl were significantly modified during life; inflammation of the colon led to a loss of SMC responsiveness.

  14. Intracellular pH changes in human aortic smooth muscle cells in response to fluid shear stress

    NASA Technical Reports Server (NTRS)

    Stamatas, G. N.; Patrick, C. W. Jr; McIntire, L. V.

    1997-01-01

    The smooth muscle cell (SMC) layers of human arteries may be exposed to blood flow after endothelium denudation, for example, following balloon angioplasty treatment. These SMCs are also constantly subjected to pressure driven transmural fluid flow. Flow-induced shear stress can alter SMC growth and metabolism. Signal transduction mechanisms involved in these flow effects on SMCs are still poorly understood. In this work, the hypothesis that shear stress alters the intracellular pH (pHi) of SMC is examined. When exposed to venous and arterial levels of shear stress, human aortic smooth muscle cells (hASMC) undergo alkalinization. The alkalinization plateau persisted even after 20 min of cell exposure to flow. Addition of amiloride (10 micromoles) or its 5-(N-ethyl-N-isopropyl) analog (EIPA, 10 micromoles), both Na+/H+ exchanger inhibitors, attenuated intracellular alkalinization, suggesting the involvement of the Na+/H+ exchanger in this response. The same concentrations of these inhibitors did not show an effect on pHi of hASMCs in static culture. 4-Acetamido-4'-isothio-cyanatostilbene-2,2'-disulfonic acid (SITS, 1 mM), a Cl-/HCO3- exchange inhibitor, affected the pHi of hASMCs both in static and flow conditions. Our results suggest that flow may perturb the Na+/H+ exchanger leading to an alkalinization of hASMCs, a different response from the flow-induced acidification seen with endothelial cells at the same levels of shear stress. Understanding the flow-induced signal transduction pathways in the vascular cells is of great importance in the tissue engineering of vascular grafts. In the case of SMCs, the involvement of pHi changes in nitric oxide production and proliferation regulation highlights further the significance of such studies.

  15. Human vascular smooth muscle cells have at least two distinct PDGF receptors and can secrete PDGF-AA

    SciTech Connect

    Hosang, M.; Rouge, M. )

    1989-01-01

    Platelet-derived growth factor (PDGF), a potent mitogen and chemoattractant for smooth muscle cells and fibroblasts in culture, is believed to play an important role in the formation of proliferative lesions of arterio-sclerosis. PDGF appears as three different dimeric isoforms: AA, AB, and BB. These were recently found to bind to two different receptors, the A/B receptor (which binds all three isoforms) and the B receptor (which binds only PDGF-BB). To find out whether these receptors exhibit functional differences, we have monitored the binding and mitogenic activities of PDGF-AA and -BB in human umbilical vein smooth muscle cells (HSMCs), human dermal fibroblasts (HFs), and Swiss mouse 3T3 cells. With each cell type, there was a good correlation between the maximal levels of DNA synthesis achieved by these isoforms and the numbers of the appropriate receptor present on the cell surface: HMSCs, which have at least 32,000 B receptors but only 8,000 A/B receptors, responded well to PDGF-BB but responded poorly to PDGF-AA; whereas Swiss 3T3 cells, which have about equal numbers of B and A/B receptors (70,000 and 90,000, respectively), responded equally well to both isoforms. PDGF-AB was a more efficacious mitogen of HSMCs and HFs than was PDGF-AA and inhibited (125I)-PDGF-BB binding to HSMCs more effectively than PDGF-AA. This indicates that there may exist a third PDGF receptor type to which PDGF-BB and -AB but not PDGF-AA can bind.

  16. Differential gene expression profiling of human adipose stem cells differentiating into smooth muscle-like cells by TGFβ1/BMP4.

    PubMed

    Elçin, Ayşe Eser; Parmaksiz, Mahmut; Dogan, Arin; Seker, Sukran; Durkut, Serap; Dalva, Klara; Elçin, Yaşar Murat

    2017-03-15

    Regenerative repair of the vascular system is challenging from the perspectives of translational medicine and tissue engineering. There are fundamental hurdles in front of creating bioartificial arteries, which involve recaputilation of the three-layered structure under laboratory settings. Obtaining and maintaining smooth muscle characteristics is an important limitation, as the transdifferentiated cells fail to display mature phenotype. This study aims to shed light on the smooth muscle differentiation of human adipose stem cells (hASCs). To this end, we first acquired hASCs from lipoaspirate samples. Upon characterization, the cells were induced to differentiate into smooth muscle (SM)-like cells using a variety of inducer combinations. Among all, TGFβ1/BMP4 combination had the highest differentiation efficiency, based on immunohistochemical analyses. hSM-like cell samples were compared to hASCs and to the positive control, human coronary artery-smooth muscle cells (hCA-SMCs) through gene transcription profiling. Microarray findings revealed the activation of gene groups that function in smooth muscle differentiation, signaling pathways, extracellular modeling and cell proliferation. Our results underline the effectiveness of the growth factors and suggest some potential variables for detecting the SM-like cell characteristics. Evidence in transcriptome level was used to evaluate the TGFβ1/BMP4 combination as a previously unexplored effector for the smooth muscle differentiation of adipose stem cells.

  17. Effects of ginsenoside on large-conductance K(Ca) channels in human corporal smooth muscle cells.

    PubMed

    Sung, H H; Chae, M R; So, I; Jeon, J-H; Park, J K; Lee, S W

    2011-01-01

    Ginseng was known to be an effective natural product that enhances penile erection. However, the precise biological function and mechanisms of action of ginseng with regard to erectile function remain unknown. The principal objective of this study was to identify ginsenoside (principal molecular ingredients of ginseng)-induced activation of large-conductance K(Ca) channel in human corporal smooth muscle cells, and to determine ginseng's mechanism of action on penile erection. Electrophysiological studies using cultured human corporal smooth muscle cells were conducted. We evaluated the effects of total ginsenosides (TGS) and ginsenoside Rg3 on large-conductance K(Ca) channel by determining whole-cell currents and single-channel activities. There was an increase in outward current dependent on TGS concentration (at +60 mV, 1 μg ml(-1); 168.3±59.3%, n=6, P<0.05, 10 μg ml(-1); 173.2±36.8%, n=4, P<0.05, 50 μg ml(-1); 295.3±62.3%, n=19, P<0.001, 100 μg ml(-1); and 462.3±97.1%, n=5, P<0.001) and Rg3 concentration (at +60 mV, 1 μM (0.78 μg ml(-1)); 222.8±64.8%, n=11, P<0.0001, 10 μM; 672.6±137.1%, n=10, P<0.0001, 50 μM; and 1713.3±234.7%, n=15, P<0.001) in the solution that was blocked completely by tetraethylammonium (TEA). Channel opening in cell-attached mode and channel activity in the inside-out membrane patches was also increased significantly by 50 μg of TGS or 10 μM of Rg3. The results of this study suggested that the activation of large-conductance K(Ca) channels by ginsenoside could be one mechanism of ginsenoside-induced relaxation in corporal smooth muscle.

  18. Novel treatment strategies for smooth muscle disorders: Targeting Kv7 potassium channels.

    PubMed

    Haick, Jennifer M; Byron, Kenneth L

    2016-09-01

    Smooth muscle cells provide crucial contractile functions in visceral, vascular, and lung tissues. The contractile state of smooth muscle is largely determined by their electrical excitability, which is in turn influenced by the activity of potassium channels. The activity of potassium channels sustains smooth muscle cell membrane hyperpolarization, reducing cellular excitability and thereby promoting smooth muscle relaxation. Research over the past decade has indicated an important role for Kv7 (KCNQ) voltage-gated potassium channels in the regulation of the excitability of smooth muscle cells. Expression of multiple Kv7 channel subtypes has been demonstrated in smooth muscle cells from viscera (gastrointestinal, bladder, myometrial), from the systemic and pulmonary vasculature, and from the airways of the lung, from multiple species, including humans. A number of clinically used drugs, some of which were developed to target Kv7 channels in other tissues, have been found to exert robust effects on smooth muscle Kv7 channels. Functional studies have indicated that Kv7 channel activators and inhibitors have the ability to relax and contact smooth muscle preparations, respectively, suggesting a wide range of novel applications for the pharmacological tool set. This review summarizes recent findings regarding the physiological functions of Kv7 channels in smooth muscle, and highlights potential therapeutic applications based on pharmacological targeting of smooth muscle Kv7 channels throughout the body.

  19. Mycophenolate mofetil attenuates pulmonary arterial hypertension in rats

    SciTech Connect

    Suzuki, Chihiro; Takahashi, Masafumi . E-mail: masafumi@sch.md.shinshu-u.ac.jp; Morimoto, Hajime; Izawa, Atsushi; Ise, Hirohiko; Hongo, Minoru; Hoshikawa, Yasushi; Ito, Takayuki; Miyashita, Hiroshi; Kobayashi, Eiji; Shimada, Kazuyuki; Ikeda, Uichi

    2006-10-20

    Pulmonary arterial hypertension (PAH) is characterized by abnormal proliferation of smooth muscle cells (SMCs), leading to occlusion of pulmonary arterioles, right ventricular (RV) hypertrophy, and death. We investigated whether mycophenolate mofetil (MMF), a potent immunosuppresssant, prevents the development of monocrotaline (MCT)-induced PAH in rats. MMF effectively decreased RV systolic pressure and RV hypertrophy, and reduced the medial thickness of pulmonary arteries. MMF significantly inhibited the number of proliferating cell nuclear antigen (PCNA)-positive cells, infiltration of macrophages, and expression of P-selectin and interleukin-6 on the endothelium of pulmonary arteries. The infiltration of T cells and mast cells was not affected by MMF. In vitro experiments revealed that mycophenolic acid (MPA), an active metabolite of MMF, dose-dependently inhibited proliferation of human pulmonary arterial SMCs. MMF attenuated the development of PAH through its anti-inflammatory and anti-proliferative properties. These findings provide new insight into the potential role of immunosuppressants in the treatment of PAH.

  20. Developmental Origins of Hypoxic Pulmonary Hypertension and Systemic Vascular Dysfunction: Evidence from Humans.

    PubMed

    Sartori, Claudio; Rimoldi, Stefano F; Duplain, Hervé; Stuber, Thomas; Garcin, Sophie; Rexhaj, Emrush; Allemann, Yves; Scherrer, Urs

    2016-01-01

    Epidemiological studies have shown an association between pathologic events occurring during fetal/perinatal life and the development of cardiovascular and metabolic disease in adulthood. These observations have led to the so-called developmental origin of adult disease hypothesis. More recently, evidence has been provided that the pulmonary circulation is also an important target for the developmental programming of adult disease in both experimental animal models and in humans. Here we will review this evidence and provide insight into mechanisms that may play a pathogenic role.

  1. Histopathological Analogies in Chronic Pulmonary Lesions between Cattle and Humans: Basis for an Alternative Animal Model

    PubMed Central

    Ramírez-Romero, Rafael; Nevárez-Garza, Alicia M.; Rodríguez-Tovar, Luis E.; Wong-González, Alfredo; Ledezma-Torres, Rogelio A.; Hernández-Vidal, Gustavo

    2012-01-01

    Most of the natural cases of pneumonia in feedlot cattle are characterized by a longer clinical course due to chronic lung lesions. Microscopically, these lesions include interstitial fibroplasia, bronchitis, bronchiectasis, bronchiolitis obliterans, and epithelial metaplasia of the airways. Herein, the aim was to review, under a medical perspective, the pathologic mechanisms operating in these chronic pneumonic lesions in calves. Based on the similarities of these changes to those reported in bronchiolitis obliterans/organising pneumonia (BO/OP) and chronic obstructive pulmonary disease (COPD) in human beings, calves are proposed as an alternative animal model. PMID:22629176

  2. Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells

    PubMed Central

    Tabet, Lyes; Bussy, Cyrill; Amara, Nadia; Setyan, Ari; Grodet, Alain; Rossi, Michel J.; Pairon, Jean-Claude; Boczkowski, Jorge; Lanone, Sophie

    2009-01-01

    The aim of this study was to evaluate adverse effects of multi-walled carbon nanotubes (MWCNT) produced for industrial purposes, on the human epithelial cell line A549. MWCNT were dispersed in dipalmitoyl lecithin (DPL), a component of pulmonary surfactant, and the effects of dispersion in DPL were compared to those in 2 other media: ethanol (EtOH) and phosphate buffer saline (PBS). Effects of MWCNT were also compared to those of 2 asbestos fibers (chrysotile and crocidolite) and carbon black (CB) nanoparticles, not only in A549 cells, but also on mesothelial cells (MeT5A human cell line), used as an asbestos-sensitive cell type. MWCNT formed agglomerates on top of both cell lines (surface area 15–35 μm2), that were significantly larger and more numerous in PBS than in EtOH and DPL. Whatever the dispersion media, incubation with 100 μg/ml MWCNT induced a similar decrease in metabolic activity without changing cell membrane permeability or apoptosis. Neither MWCNT cellular internalization nor oxidative stress were observed. In contrast, asbestos fibers penetrated into the cells, decreased metabolic activity but not cell membrane permeability and increased apoptosis, without decreasing cell number. CB was internalized without any adverse effects. In conclusion, this study demonstrates that MWCNT produced for industrial purposes exert adverse effects without being internalized by human epithelial and mesothelial pulmonary cell lines. PMID:19034795

  3. Proliferating or interleukin 1-activated human vascular smooth muscle cells secrete copious interleukin 6.

    PubMed Central

    Loppnow, H; Libby, P

    1990-01-01

    The cells that make up blood vessel walls appear to participate actively in local immune and inflammatory responses, as well as in certain vascular diseases. We tested here whether smooth muscle cells (SMC) can produce the important inflammatory mediator IL6. Unstimulated SMC in vitro elaborated 5 X 10(3) pg recIL6/24h (i.e., biological activity equivalent to 5 X 10(3) pg recombinant IL6 (recIL6), as determined in B9-assay with a recIL6 standard). Several pathophysiologically relevant factors augmented IL6 release from SMC including 10 micrograms LPS/ml (10(4) pg recIL6), 10 ng tumor necrosis factor/ml (4 X 10(4) pg recIL6), and most notably 10 ng IL1/ml (greater than or equal to 3.2 X 10(5) pg recIL6). Production of IL6 activity corresponded to IL6 mRNA accumulation and de novo synthesis. SMC released newly synthesized IL6 rapidly, as little metabolically labeled material remained cell-associated. In supernatants of IL1-stimulated SMC, IL6 accounted for as much as 4% of the secreted proteins. In normal vessels SMC seldom divide, but SMC proliferation can occur in hypertension or during atherogenesis. We therefore tested the relationship between IL6 production and SMC proliferation in response to platelet-derived growth factor (PDGF) in vitro. Quiescent SMC released scant IL6 activity, whereas PDGF (1-100 ng/ml) produced concentration-dependent and coordinate enhancement of SMC proliferation and IL6 release (linear regression of growth vs. IL6 release yielded r greater than 0.9). IL6 itself neither stimulated nor inhibited SMC growth or IL6 production. Intact medial strips studied in short-term organoid culture produced large quantities of IL6, similar to the results obtained with cultured SMC. These findings illustrate a new function of vascular SMC by which these cells might participate in local immunoregulation and in the pathogenesis of various important vascular diseases as well as in inflammatory responses generally. Images PMID:2312724

  4. Animal Models of Pulmonary Hypertension: Matching Disease Mechanisms to Etiology of the Human Disease

    PubMed Central

    Colvin, Kelley L.; Yeager, Michael E.

    2015-01-01

    Recently a great deal of progress has been made in our understanding of pulmonary hypertension (PH). Research from the past 30 years has resulted in newer treatments that provide symptomatic improvements and delayed disease progression. Unfortunately, the cure for patients with this lethal syndrome remains stubbornly elusive. With the relative explosion of scientific literature regarding PH, confusion has arisen regarding animal models of the disease and their correlation to the human condition. This short review uniquely focuses on the clear and present need to better correlate mechanistic insights from existing and emerging animal models of PH to specific etiologies and histopathologies of human PH. A better understanding of the pathologic processes in various animal models and how they relate to the human disease should accelerate the development of newer and more efficacious therapies. PMID:25705569

  5. LC/MS/MS data analysis of the human uterine smooth muscle S-nitrosoproteome fingerprint in pregnancy, labor, and preterm labor

    PubMed Central

    Ulrich, Craig C.; Quilici, David R.; Schlauch, Karen A.; Burkin, Heather R.; Buxton, Iain L.O.

    2015-01-01

    The data described in this article is the subject of an article in the American Journal of Physiology: Cell Physiology, titled “The Human Uterine Smooth Muscle S-nitrosoproteome Fingerprint in Pregnancy, Labor, and Preterm Labor” (doi:10.1152/ajpcell.00198.2013) (Ulrich et al., 2013) [1]. The data described is a large scale mass spectrometry data set that defines the human uterine smooth muscle S-nitrosoproteome differences among laboring, non-laboring, preterm laboring tissue after treatment with S-nitrosoglutathione. PMID:26322325

  6. Methionine enhances the contractile activity of human colon circular smooth muscle in vitro.

    PubMed

    Choe, Eun Kyung; Moon, Jung Sun; Park, Kyu Joo

    2012-07-01

    Effective drug to manage constipation has been unsatisfactory. We sought to determine whether methionine has effect on the human colon. Human colon tissues were obtained from the specimens of colon resection. Microelectrode recording was performed and contractile activity of muscle strips and the propagation of the contractions in the colon segment were measured. At 10 µM, methionine depolarized the resting membrane potential (RMP) of circular muscle (CM) cells. In the CM strip, methionine increased the amplitude and area under the curve (AUC) of contractions. In the whole segment of colon, methionine increased the amplitude and AUC of the high amplitude contractions in the CM. These effects on contraction were maximal at 10 µM and were not observed in longitudinal muscles in both the strip and the colon segment. Methionine reversed the effects of pretreatment with sodium nitroprusside, tetrodotoxin and N(w)-oxide-L-arginine, resulting in depolarization of the RMP, and increased amplitude and AUC of contractions in the muscle strip. Methionine treatment affected the wave pattern of the colon segment by evoking small sized amplitude contractions superimposed on preexisting wave patterns. Our results indicate that a compound mimicking methionine may provide prokinetic functions in the human colon.

  7. Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds.

    PubMed

    Wang, Yongyu; Hu, Jiang; Jiao, Jiao; Liu, Zhongning; Zhou, Zhou; Zhao, Chao; Chang, Lung-Ji; Chen, Y Eugene; Ma, Peter X; Yang, Bo

    2014-10-01

    Tissue-engineered blood vessels (TEBVs) are promising in the replacement of diseased vascular tissues. However, it remains a great challenge to obtain a sufficient number of functional smooth muscle cells (SMCs) in a clinical setting to construct patient-specific TEBVs. In addition, it is critical to develop a scaffold to accommodate these cells and retain their functional phenotype for the regeneration of TEBVs. In this study, human induced pluripotent stem cells (iPSCs) were established from primary human aortic fibroblasts, and characterized with the pluripotency markers expression and cells' capabilities to differentiate into all three germ layer cells. A highly efficient method was then developed to induce these human iPSCs into proliferative SMCs. After multiple times of expansion, the expanded SMCs retained the potential to be induced into the functional contractile phenotype of mature SMCs, which was characterized by the contractile response to carbachol treatment, up-regulation of specific collagen genes under transforming growth factor β1 treatment, and up-regulation of specific matrix metalloproteinase genes under cytokine stimulation. We also developed an advanced macroporous and nanofibrous (NF) poly(l-lactic acid) (PLLA) scaffold with suitable pore size and interpore connectivity to seed these human iPSC-derived SMCs and maintain their differentiated phenotype. Subcutaneous implantation of the SMC-scaffold construct in nude mice demonstrated vascular tissue formation, with robust collagenous matrix deposition inside the scaffold and the maintenance of differentiated SMC phenotype. Taken together, this study established an exciting approach towards the construction of patient-specific TEBVs. We established patient-specific human iPSCs, derived proliferative SMCs for expansion, turned on their mature contractile SMC phenotype, and developed an advanced scaffold for these cells to regenerate vascular tissue in vivo.

  8. H2S relaxes isolated human airway smooth muscle cells via the sarcolemmal K(ATP) channel.

    PubMed

    Fitzgerald, Robert; DeSantiago, Breann; Lee, Danielle Y; Yang, Guangdong; Kim, Jae Yeon; Foster, D Brian; Chan-Li, Yee; Horton, Maureen R; Panettieri, Reynold A; Wang, Rui; An, Steven S

    2014-03-28

    Here we explored the impact of hydrogen sulfide (H2S) on biophysical properties of the primary human airway smooth muscle (ASM)-the end effector of acute airway narrowing in asthma. Using magnetic twisting cytometry (MTC), we measured dynamic changes in the stiffness of isolated ASM, at the single-cell level, in response to varying doses of GYY4137 (1-10mM). GYY4137 slowly released appreciable levels of H2S in the range of 10-275 μM, and H2S released was long lived. In isolated human ASM cells, GYY4137 acutely decreased stiffness (i.e. an indicator of the single-cell relaxation) in a dose-dependent fashion, and stiffness decreases were sustained in culture for 24h. Human ASM cells showed protein expressions of cystathionine-γ-lyase (CSE; a H2S synthesizing enzyme) and ATP-sensitive potassium (KATP) channels. The KATP channel opener pinacidil effectively relaxed isolated ASM cells. In addition, pinacidil-induced ASM relaxation was completely inhibited by the treatment of cells with the KATP channel blocker glibenclamide. Glibenclamide also markedly attenuated GYY4137-mediated relaxation of isolated human ASM cells. Taken together, our findings demonstrate that H2S causes the relaxation of human ASM and implicate as well the role for sarcolemmal KATP channels. Finally, given that ASM cells express intrinsic enzymatic machinery of generating H2S, we suggest thereby this class of gasotransmitter can be further exploited for potential therapy against obstructive lung disease.

  9. High glucose induces cell death of cultured human aortic smooth muscle cells through the formation of hydrogen peroxide

    PubMed Central

    Peiró, Concepción; Lafuente, Nuria; Matesanz, Nuria; Cercas, Elena; Llergo, José L; Vallejo, Susana; Rodríguez-Mañas, Leocadio; Sánchez-Ferrer, Carlos F

    2001-01-01

    Alterations of the vessel structure, which is mainly determined by smooth muscle cells through cell growth and/or cell death mechanisms, are characteristic of diabetes complications. We analysed the influence of high glucose (22 mM) on cultured human aortic smooth muscle cell growth and death, as hyperglycaemia is considered one of the main factors involved in diabetic vasculopathy. Growth curves were performed over 96 h in medium containing 0.5% foetal calf serum. Cell number increased by 2–4 fold over the culture period in the presence of 5.5 mM (low) glucose, while a 20% reduction in final cell number was observed with high glucose. Under serum-free conditions, cell number remained constant in low glucose cultures, but a 40% decrease was observed in high glucose cultures, suggesting that high glucose may induce increased cell death rather than reduced proliferation. Reduced final cell number induced by high glucose was also observed after stimulation with 5 or 10% foetal calf serum. The possible participation of oxidative stress was investigated by co-incubating high glucose with different reactive oxygen species scavengers. Only catalase reversed the effect of high glucose. Intracellular H2O2 content, visualized with 2′,7′-dichlorofluorescein and quantified by flow cytometry, was increased after high glucose treatment. To investigate the cell death mechanism induced by high glucose, apoptosis and necrosis were quantified. No differences were observed regarding the apoptotic index between low and high glucose cultures, but lactate dehydrogenase activity was increased in high glucose cultures. In conclusion, high glucose promotes necrotic cell death through H2O2 formation, which may participate in the development of diabetic vasculopathy. PMID:11487505

  10. 2-Methoxycinnamaldehyde inhibits the TNF-α-induced proliferation and migration of human aortic smooth muscle cells.

    PubMed

    Jin, Young-Hee; Kim, Soo-A

    2017-01-01

    The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) is a crucial event in the development of atherosclerosis, and tumor necrosis factor-α (TNF-α) is actively involved in this process by enhancing the proliferation and migration of VSMCs. 2-Methoxycinnamaldehyde (MCA) is a natural compound of Cinnamomum cassia. Although 2-hydroxycinnamaldehyde (HCA), another compound from Cinnamomum cassia, has been widely studied with regard to its antitumor activity, MCA has not attracted researchers' interest due to its mild toxic effects on cancer cells and its mechanisms of action remain unknown. In this study, we examined the effects of MCA on the TNF-α-induced proliferation and migration of human aortic smooth muscle cells (HASMCs). As shown by our results, MCA inhibited TNF-α-induced cell proliferation by reducing the levels of cyclin D1, cyclin D3, CDK4 and CDK6, and increasing the levels of the cyclin-dependent kinase inhibitors, p21 and p27, without resulting in cellular cytotoxicity. Furthermore, MCA decreased the level of secreted matrix metalloproteinase (MMP)-9 by inhibiting MMP-9 transcription. Unexpectedly, MCA did not affect the TNF-α-induced levels of mitogen-activated protein kinases (MAPKs). However, by showing that MCA potently inhibited the degradation of IκBα and the subsequent nuclear translocation of nuclear factor-κB (NF-κB), we demonstrated that MCA exerts its effects through the NF-κB signaling pathway. MCA also effectively inhibited platelet-derived growth factor (PDGF)-induced HASMC migration. Taken together, these observations suggest that MCA has the potential for use as an anti-atherosclerotic agent.

  11. Regulation of oxytocin receptor responsiveness by G protein-coupled receptor kinase 6 in human myometrial smooth muscle.

    PubMed

    Willets, Jonathon M; Brighton, Paul J; Mistry, Rajendra; Morris, Gavin E; Konje, Justin C; Challiss, R A John

    2009-08-01

    Oxytocin plays an important role in the progression, timing, and modulation of uterine contraction during labor and is widely used as an uterotonic agent. We investigated the mechanisms regulating oxytocin receptor (OTR) signaling in human primary myometrial smooth muscle cells and the ULTR cell-line. Oxytocin produced concentration-dependent increases in both total [(3)H]inositol phosphate accumulation and intracellular Ca(2+) concentration ([Ca(2+)](i)); however, responses were greater and more reproducible in the ULTR cell line. Assessment of phospholipase C activity in single cells revealed that the OTR desensitizes rapidly (within 5 min) in the presence of oxytocin (100 nm). To characterize OTR desensitization further, cells were stimulated with a maximally effective concentration of oxytocin (100 nm, 30 sec) followed by a variable washout period and a second identical application of oxytocin. This brief exposure to oxytocin caused a marked decrease (>70%) in OTR responsiveness to rechallenge and was fully reversed by increasing the time period between agonist challenges. To assess involvement of G protein-coupled receptor kinases (GRKs) in OTR desensitization, cells were transfected with small interfering RNAs to cause specific > or =75% knockdown of GRKs 2, 3, 5, or 6. In both primary myometrial and ULTR cells, knockdown of GRK6 largely prevented oxytocin-induced OTR desensitization; in contrast, selective depletion of GRKs 2, 3, or 5 was without effect. These data indicate that GRK6 recruitment is a cardinal effector of OTR responsiveness and provide mechanistic insight into the likely in vivo regulation of OTR signaling in uterine smooth muscle.

  12. Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis.

    PubMed

    Ong, Catherine W M; Elkington, Paul T; Brilha, Sara; Ugarte-Gil, Cesar; Tome-Esteban, Maite T; Tezera, Liku B; Pabisiak, Przemyslaw J; Moores, Rachel C; Sathyamoorthy, Tarangini; Patel, Vimal; Gilman, Robert H; Porter, Joanna C; Friedland, Jon S

    2015-05-01

    Pulmonary cavities, the hallmark of tuberculosis (TB), are characterized by high mycobacterial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB immunopathology and their influx are associated with poor outcomes. We investigated neutrophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived NF-kB-dependent matrix metalloproteinase-8 (MMP-8) secretion was up-regulated in TB and caused matrix destruction both in vitro and in respiratory samples of TB patients. Collagen destruction induced by TB infection was abolished by doxycycline, a licensed MMP inhibitor. Neutrophil extracellular traps (NETs) contain MMP-8 and are increased in samples from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and sputum MMP-8 concentrations reflected TB radiological and clinical disease severity. AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neutrophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei. These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathology of TB and is a potential target for host-directed therapy in this infectious disease.

  13. The tyrosine phosphatase SHP-2 controls urokinase-dependent signaling and functions in human vascular smooth muscle cells

    SciTech Connect

    Kiyan, Julia Haller, Hermann; Dumler, Inna

    2009-04-01

    The urokinase (uPA)/urokinase receptor (uPAR) multifunctional system is an important mediator of functional behaviour of human vascular smooth muscle cells (VSMC). uPAR associates with platelet-derived growth factor receptor {beta} (PDGFR-{beta}), which serves as a transmembrane adaptor for uPAR in VSMC, to transduce intracellular signaling and initiate functional changes. The precise and rapid propagation of these signaling cascades demands both strict and flexible regulatory mechanisms that remain unexplored. We provide evidence that the tyrosine phosphatase SHP-2 mediates these processes. uPA regulated SHP-2 phosphorylation, catalytic activity, and its co-localization and association with the PDGFR-{beta}. Active PDGFR-{beta} was required for the uPA-induced SHP-2 phosphorylation. uPAR-directed STAT1 pathway was disturbed in cells expressing SHP-2 inactive mutant. Both, cell proliferation and migration were impaired in VSMC with downregulated SHP-2. Elucidating the underlying mechanisms, we found that uPA induced SHP-2 recruitment to lipid rafts. Disruption of rafts abolished uPA-related control of SHP-2 phosphorylation, its association with PDGFR-{beta} and finally the VSMC functional responses. Our results demonstrate that SHP-2 plays an important role in uPA-directed signaling and functional control of human VSMC and suggest that this phosphatase might contribute to the pathogenesis of the uPA-related vascular remodeling.

  14. LOX-1, a bridge between GLP-1R and mitochondrial ROS generation in human vascular smooth muscle cells.

    PubMed

    Dai, Yao; Mercanti, Federico; Dai, Dongsheng; Wang, Xianwei; Ding, Zufeng; Pothineni, Naga Venkata; Mehta, Jawahar L

    2013-07-19

    A growing body of evidence indicates that glucagon-like peptide-1 (GLP-1) agonists or dipeptidyl peptidase-4 (DPP-4) inhibitors play an important role in modulating oxidant stress in vascular beds. However, the underlying mechanism of this process remains unclear. In recent studies, we observed an increase in GLP-1 receptor (GLP-1R) expression in the aorta of LOX-1 knock-out mice. Since LOX-1 is a pivotal regulator of reactive oxygen species (ROS), we conducted studies to identify relationship between LOX-1, ROS and GLP-1 agonism or DPP-4 antagonism. We observed a sustained decrease in GLP-1R expression in human vascular smooth muscle cells (VSMCs) treated with ox-LDL. When VSMCs were treated with different concentration of liraglutide (a GLP-1 agonist) or NVPDPP728 (a DPP-4 inhibitor), expression of ROS decreased compared with ox-LDL alone treatment. To further prove that LOX-1 plays a pivotal role in ROS and GLP-1R expression, we treated VSMCs with LOX-1 antibody or transfected cells with human LOX-1 cDNA. The inhibitory effect of ox-LDL on GLP-1R expression was reversed with anti-LOX-1 antibody treatment, while the inhibitory effect of liraglutide and NVPDPP728 on ROS generation was attenuated when cells were transfected with LOX-1 cDNA. Our results suggest that LOX-1 may play a bridging role in GLP-1 activation and ROS interaction.

  15. CD38 and airway hyper-responsiveness: studies on human airway smooth muscle cells and mouse models.

    PubMed

    Guedes, Alonso G P; Deshpande, Deepak A; Dileepan, Mythili; Walseth, Timothy F; Panettieri, Reynold A; Subramanian, Subbaya; Kannan, Mathur S

    2015-02-01

    Asthma is an inflammatory disease in which altered calcium regulation, contractility, and airway smooth muscle (ASM) proliferation contribute to airway hyper-responsiveness and airway wall remodeling. The enzymatic activity of CD38, a cell-surface protein expressed in human ASM cells, generates calcium mobilizing second messenger molecules such as cyclic ADP-ribose. CD38 expression in human ASM cells is augmented by cytokines (e.g., TNF-α) that requires the activation of MAP kinases and the transcription factors, NF-κB and AP-1, and is post-transcriptionally regulated by miR-140-3p and miR-708 by binding to 3' Untranslated Region of CD38 as well as by modulating the activation of signaling mechanisms involved in its regulation. Mice deficient in Cd38 exhibit reduced airway responsiveness to inhaled methacholine relative to the response in wild-type mice. Intranasal challenge of Cd38-deficient mice with TNF-α or IL-13, or the environmental fungus Alternaria alternata, causes significantly attenuated methacholine responsiveness compared with wild-type mice, with comparable airway inflammation. Reciprocal bone marrow transfer studies revealed partial restoration of airway hyper-responsiveness to inhaled methacholine in the Cd38-deficient mice. These studies provide evidence for CD38 involvement in the development of airway hyper-responsiveness; a hallmark feature of asthma. Future studies aimed at drug discovery and delivery targeting CD38 expression and (or) activity are warranted.

  16. In vitro photodynamic therapy with chlorin e6 leads to apoptosis of human vascular smooth muscle cells.

    PubMed

    Wawrzyńska, Magdalena; Kałas, Wojciech; Biały, Dariusz; Zioło, Ewa; Arkowski, Jacek; Mazurek, Walentyna; Strzadała, Leon

    2010-02-01

    Percutaneous coronary intervention has become the most common and widely implemented method of heart revascularization. However, the development of restenosis remains the major limitation of this method. Photodynamic therapy (PDT) recently emerged as a new and promising method for the prevention of arterial restenosis. Here the efficacy of chlorin e6 in PDT was investigated in vitro using human vascular smooth muscle cells (TG/HA-VSMCs) as one of the cell types crucial in the development of restenosis. PDT-induced cell death was studied on many levels,including annexin V staining, measurement of the generation reactive oxygen species (ROS) and caspase-3 activity,and assessment of changes in mitochondrial membrane potential and fragmentation of DNA. Photosensitization of TG/HA-VSMCs with a 170 lM of chlorin e6 and subsequent illumination with the light of a 672-nm diode laser(2 J/cm2) resulted in the generation of ROS, a decrease in cell membrane polarization, caspase-3 activation, as well as DNA fragmentation. Interestingly, the latter two apoptotic events could not be observed in photosensitized and illuminated NIH3T3 fibroblasts, suggesting different outcomes of the model of PDT in various types of cells. The results obtained with human VSMCs show that chlorin e6 may be useful in the PDT of aerial restenosis, but its efficacy still needs to be established in an animal model.

  17. Location of smooth-muscle myosin and tropomyosin binding sites in the C-terminal 288 residues of human caldesmon.

    PubMed Central

    Huber, P A; Fraser, I D; Marston, S B

    1995-01-01

    We have produced nine recombinant fragments, H1 to H9, from a human cDNA that codes for the C-terminal 288 residues of caldesmon. The fragment H1, encompassing the 288 residues, is equivalent to domains 3 and 4 of caldesmon (amino acids 506-793 in human, 476-737 in the chicken gizzard sequence). It has been shown [Huber, Redwood, Avent, Tanner and Marston (1993) J. Muscle Res. Cell Motil. 14, 385-391] to bind to actin, Ca(2+)-calmodulin, tropomyosin and myosin. The fragments, H2 to H9, differ in length between 60 and 176 residues and cover the whole of domains 3 and 4 with many of the fragments overlapping. We have characterized the myosin and tropomyosin binding of these fragments. The binding of both tropomyosin and myosin is highly dependent on salt concentration, indicating the ionic nature of these interactions. The location of the myosin binding is an extended region encompassing the junction of domains 3/4 and domain 4a (residues 622-714, human; 566-657, chicken gizzard). Tropomyosin binds in a smaller region within domain 4a of caldesmon (residues 663-714, human; 606-657 chicken gizzard). We confirmed predictions based on sequence similarities of a tropomyosin binding site in domain 3 of caldesmon; however, this site bound to skeletal-muscle tropomyosin and had little affinity for the smooth-muscle tropomyosin isoform. None of the protein fragments H2-H9 retained the affinity of the parent fragment H1 for either myosin or tropomyosin. This indicates the need for several interaction sites scattered over an extended region to attain higher affinity. The regions interacting with caldesmon in both tropomyosin and myosin are coiled-coil structures. This is probably the reason for their shared interaction sites on caldesmon and their similar natures of binding. Images Figure 1 Figure 2 Figure 9 PMID:8526878

  18. The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis.

    PubMed

    Williamson, James D; Sadofsky, Laura R; Hart, Simon P

    2015-03-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown etiology, for which there is no curative pharmacological therapy. Bleomycin, an anti-neoplastic agent that causes lung fibrosis in human patients has been used extensively in rodent models to mimic IPF. In this review, we compare the pathogenesis and histological features of human IPF and bleomycin-induced pulmonary fibrosis (BPF) induced in rodents by intratracheal delivery. We discuss the current understanding of IPF and BPF disease development, from the contribution of alveolar epithelial cells and inflammation to the role of fibroblasts and cytokines, and draw conclusions about what we have learned from the intratracheal bleomycin model of lung fibrosis.

  19. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells

    SciTech Connect

    Petri, Marcelo H.; Tellier, Céline; Michiels, Carine; Ellertsen, Ingvill; Dogné, Jean-Michel; Bäck, Magnus

    2013-11-15

    Highlights: •EV-077 reduced TNF-α induced inflammation in endothelial cells. •The thromboxane mimetic U69915 enhanced vascular smooth muscle cell proliferation. •EV-077 inhibited smooth muscle cell proliferation. -- Abstract: The prothrombotic mediator thromboxane A{sub 2} is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy.

  20. Massive Pulmonary Embolism: Treatment with Thrombus Fragmentation and Local Fibrinolysis with Recombinant Human-Tissue Plasminogen Activator

    SciTech Connect

    Stock, Klaus Wilhelm; Jacob, Augustinus Ludwig; Schnabel, Karl Jakob; Bongartz, Georg; Steinbrich, Wolfgang

    1997-09-15

    Purpose: To report the results of thrombus fragmentation in combination with local fibrinolysis using recombinant human-tissue plasminogen activator (rtPA) in patients with massive pulmonary embolism. Methods: Five patients with massive pulmonary embolism were treated with thrombus fragmentation followed by intrapulmonary injection of rtPA. Clot fragmentation was performed with a guidewire, angiographic catheter, and balloon catheter. Three patients had undergone recent surgery; one of them received a reduced dosage of rtPA. Results: All patients survived and showed clinical improvement with a resultant significant (p < 0.05) decrease in the pulmonary blood pressure (mean systolic pulmonary blood pressure before treatment, 49 mmHg; 4 hr after treatment, 28 mmHg). Angiographic follow-up in three patients revealed a decrease in thrombus material and an increase in pulmonary perfusion. Two patients developed retroperitoneal hematomas requiring transfusion. Conclusion: Clot fragmentation and local fibrinolysis with rtPA was an effective therapy for massive pulmonary embolism. Bleeding at the puncture site was a frequent complication.

  1. Expression and proliferation profiles of PKC, JNK and p38MAPK in physiologically stretched human bladder smooth muscle cells

    SciTech Connect

    Wazir, Romel; Luo, De-Yi; Dai, Yi; Yue, Xuan; Tian, Ye; Wang, Kun-Jie

    2013-08-30

    Highlights: •Stretch induces proliferation in human bladder smooth muscle cells (HBSMC). •5% Equibiaxial elongation produces maximum proliferation. •Physiologic stretch decreases apoptotic cell death. •PKC is involved in functional modulation of bladder. •JNK and p38 are not involved in proliferating HBSMC. -- Abstract: Objective: To determine protein kinase C (PKC), c-Jun NH2-Terminal Kinase (JNK) and P38 mitogen-activated protein kinases (p38MAPK) expression levels and effects of their respective inhibitors on proliferation of human bladder smooth muscle cells (HBSMCs) when physiologically stretched in vitro. Materials and methods: HBSMCs were grown on silicone membrane and stretch was applied under varying conditions; (equibiaxial elongation: 2.5%, 5%, 10%, 15%, 20%, 25%), (frequency: 0.05, 0.1, 0.2, 0.5, 1 Hz). Optimal physiological stretch was established by assessing proliferation with 5-Bromo-2-deoxyuridine (BrdU) assay and flow cytometry. PKC, JNK and p38 expression levels were analyzed by Western blot. Specificity was maintained by employing specific inhibitors; (GF109203X for PKC, SP600125 for JNK and SB203580 for p38MAPK), in some experiments. Results: Optimum proliferation was observed at 5% equibiaxial stretch (BrdU: 0.837 ± 0.026 (control) to 1.462 ± 0.023)%, (P < 0.05) and apoptotic cell death rate decreased from 16.4 ± 0.21% (control) to 4.5 ± 0.13% (P < 0.05) applied at 0.1 Hz. Expression of PKC was upregulated with slight increase in JNK and no change in p38MAPK after application of stretch. Inhibition had effects on proliferation (1.075 ± 0.024, P < 0.05 GF109203X); (1.418 ± 0.021, P > 0.05 SP600125) and (1.461 ± 0.01, P > 0.05 SB203580). These findings show that mechanical stretch can promote magnitude-dependent proliferative modulation through PKC and possibly JNK but not via p38MAPK in hBSMCs.

  2. Effect of an antisense oligodeoxynucleotide to endothelin-converting enzyme-1c (ECE-1c) on ECE-1c mRNA, ECE-1 protein and endothelin-1 synthesis in bovine pulmonary artery smooth muscle cells.

    PubMed

    Barker, S; Khan, N Q; Wood, E G; Corder, R

    2001-02-01

    Endothelin-1 (ET-1) is secreted from endothelial and vascular smooth muscle cells (VSMC) after intracellular hydrolysis of big ET-1 by endothelin converting enzyme (ECE). The metallopeptidase called ECE-1 is widely thought to be the physiological ECE, but unequivocal evidence of this role has yet to be provided. Endothelial cells express four isoforms of ECE-1 (ECE-1a, ECE-1b, ECE-1c, and ECE-1d), but the identity of ECE-1 isoforms expressed in VSMC is less clear. Here, we describe the characterization of ECE-1 isoforms in bovine pulmonary artery smooth muscle cells (BPASMC) and the effect on ET-1 synthesis of an antisense oligodeoxynucleotide (ODN) to ECE-1c. Reverse transcriptase-polymerase chain reaction (RT-PCR) evaluation of total RNA from BPASMC showed that ECE-1a and ECE-1d were not expressed. Sequencing of cloned ECE-1 cDNA products and semiquantitative RT-PCR demonstrated that ECE-1b and ECE-1c were expressed in BPASMC, with ECE-1c being the predominant isoform. Basal release of ET-1 from BPASMC was low. Treatment for 24 h with tumor necrosis factor-alpha (TNFalpha) stimulated ET-1 production by up to 10-fold with parallel increases in levels of preproET-1 mRNA. Levels of ECE-1c mRNA were also raised after TNFalpha, whereas amounts of ECE-1b mRNA were decreased significantly. Treatment of BPASMC with a phosphorothioate antisense ODN to ECE-1c caused a marked reduction in ECE-1c mRNA levels and ECE-1 protein levels. However, basal and TNFalpha-stimulated ET-1 release were largely unaffected by the ECE-1c antisense ODN despite the inhibition of ECE-1c synthesis. Hence, an endopeptidase distinct from ECE-1 is mainly responsible big ET-1 processing in BPASMC.

  3. A role for the CXCL12 receptor, CXCR7, in the pathogenesis of human pulmonary vascular disease.

    PubMed

    Costello, Christine M; McCullagh, Brian; Howell, Katherine; Sands, Michelle; Belperio, John A; Keane, Michael P; Gaine, Sean; McLoughlin, Paul

    2012-06-01

    Given the critical role that endothelial cell dysfunction plays in the pathogenesis of pulmonary hypertensive diseases, we set out to establish if CXCR7, a receptor for the pro-angiogenic ligand CXCL12, is expressed in the vasculature of human lung diseases and examine its role in mediating CXCL12-induced responses in primary pulmonary human microvascular endothelial cells. Receptor and ligand expression was examined in control and explanted human hypertensive lungs, in human plasma and in hypoxic rodent lungs, by ELISA and immunohistochemical studies. Functional in vitro experiments examined the role of CXCR7 in CXCL12-induced lung microvascular endothelial cell proliferation, migration, and wound regeneration and repair. CXCR7 is elevated in the endothelium of explanted human hypertensive lungs and circulating CXCL12 concentrations are significantly elevated in disease. We demonstrate that alveolar hypoxia similar to that found in lung disease increases CXCR7 expression in the pulmonary endothelium. Furthermore, CXCR7 is the receptor through which endothelial cell regeneration and repair, and proliferation, is mediated, whereas signalling via CXCR4 is essential for chemotactic cell migration. Our findings demonstrate that CXCR7 has a critical but previously unrecognised role to play in endothelial cell proliferation, suggesting that CXCR7-mediated signalling may be functionally important in pulmonary vascular diseases.

  4. Fused pulmonary lobes is a rat model of human Fraser syndrome.

    PubMed

    Kiyozumi, Daiji; Nakano, Itsuko; Takahashi, Ken L; Hojo, Hitoshi; Aoyama, Hiroaki; Sekiguchi, Kiyotoshi

    2011-07-29

    Fused pulmonary lobes (fpl) is a mutant gene that is inherited in an autosomal recessive manner and causes various developmental defects, including fusion of pulmonary lobes, and eyelid and digit anomalies in rats. Since these developmental defects closely resemble those observed in patients with Fraser syndrome, a recessive multiorgan disorder, and its model animals, we investigated whether the abnormal phenotypes observed in fpl/fpl mutant rats are attributable to a genetic disorder similar to Fraser syndrome. At the epidermal basement membrane in fpl/fpl mutant neonates, the expression of QBRICK, a basement membrane protein whose expression is attenuated in Fraser syndrome model mice, was greatly diminished compared with control littermates. Quantitative RT-PCR analyses of Fraser syndrome-related genes revealed that Frem2 transcripts were markedly diminished in QBRICK-negative embryos. Genomic DNA sequencing of the fpl/fpl mutant identified a nonsense mutation that introduced a stop codon at serine 2005 in Frem2. These findings indicate that the fpl mutant is a rat model of human Fraser syndrome.

  5. Human pulmonary artery endothelial cells in the model of mucopolysaccharidosis VI present a prohypertensive phenotype

    PubMed Central

    Golda, Adam; Jurecka, Agnieszka; Gajda, Karolina; Tylki-Szymańska, Anna; Lalik, Anna

    2015-01-01

    Background Mucopolysaccharidosis type VI (MPS VI) is an autosomal recessive lysosomal disorder caused by a deficient activity of N-acetylgalactosamine-4-sulfatase (ARSB). Pulmonary hypertension (PH) occurs in MPS VI patients and is a marker of bad prognosis. Malfunction of endothelium, which regulates vascular tonus and stimulates angiogenesis, can contribute to the occurrence of PH in MPS VI. Aim The aim of the study was to establish a human MPS VI cellular model of pulmonary artery endothelial cells (HPAECs) and evaluate how it affects factors that may trigger PH such as proliferation, apoptosis, expression of endothelial nitric oxide synthase (eNOS), natriuretic peptide type C (NPPC), and vascular endothelial growth factor A (VEGFA). Results Increasing concentrations of dermatan sulfate (DS) reduce the viability of the cells in both ARSB deficiency and controls, but hardly influence apoptosis. The expression of eNOS in HPAECs is reduced up to two thirds in the presence of DS. NPPC shows a biphasic expression reaction with an increase at 50 μg/mL DS and reduction at 0 and 100 μg/mL DS. The expression of VEGFA decreases with increasing DS concentrations and absence of elastin, and increases with increasing DS in the presence of elastin. Conclusion Our data suggest that MPS VI endothelium presents a prohypertensive phenotype due to the reduction of endothelium's proliferation ability and expression of vasorelaxing factors. PMID:26937388

  6. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis

    PubMed Central

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-01-01

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment. PMID:26576741

  7. Predicting pulmonary fibrosis in humans after exposure to multi-walled carbon nanotubes (MWCNTs).

    PubMed

    Sharma, Monita; Nikota, Jake; Halappanavar, Sabina; Castranova, Vincent; Rothen-Rutishauser, Barbara; Clippinger, Amy J

    2016-07-01

    The increased production and use of multi-walled carbon nanotubes (MWCNTs) in a diverse array of consumer, medical, and industrial applications have raised concerns about potential human exposure to these materials in the workplace and ambient environments. Inhalation is a primary route of exposure to MWCNTs, and the existing data indicate that they are potentially hazardous to human health. While a 90-day rodent inhalation test (e.g., OECD Test No. 413: subchronic inhalation toxicity: 90-day study or EPA Health Effects Test Guidelines OPPTS 870.3465 90-day inhalation toxicity) is recommended by the U.S. Environmental Protection Agency Office of Pollution Prevention and Toxics for MWCNTs (and other CNTs) if they are to be commercially produced (Godwin et al. in ACS Nano 9:3409-3417, 2015), this test is time and cost-intensive and subject to scientific and ethical concerns. As a result, there has been much interest in transitioning away from studies on animals and moving toward human-based in vitro and in silico models. However, given the multiple mechanisms of toxicity associated with subchronic exposure to inhaled MWCNTs, a battery of non-animal tests will likely be needed to evaluate the key endpoints assessed by the 90-day rodent study. Pulmonary fibrosis is an important adverse outcome related to inhalation exposure to MWCNTs and one that the non-animal approach should be able to assess. This review summarizes the state-of-the-science regarding in vivo and in vitro toxicological methods for predicting MWCNT-induced pulmonary fibrosis.

  8. Smooth Sailing.

    ERIC Educational Resources Information Center

    Price, Beverley; Pincott, Maxine; Rebman, Ashley; Northcutt, Jen; Barsanti, Amy; Silkunas, Betty; Brighton, Susan K.; Reitz, David; Winkler, Maureen

    1999-01-01

    Presents discipline tips from several teachers to keep classrooms running smoothly all year. Some of the suggestions include the following: a bear-cave warning system, peer mediation, a motivational mystery, problem students acting as the teacher's assistant, a positive-behavior-reward chain, a hallway scavenger hunt (to ensure quiet passage…

  9. Effective combination of hydrostatic pressure and aligned nanofibrous scaffolds on human bladder smooth muscle cells: implication for bladder tissue engineering.

    PubMed

    Ahvaz, Hana Hanaee; Soleimani, Masoud; Mobasheri, Hamid; Bakhshandeh, Behnaz; Shakhssalim, Naser; Soudi, Sara; Hafizi, Maryam; Vasei, Mohammad; Dodel, Masumeh

    2012-09-01

    Bladder tissue engineering has been the focus of many studies due to its highly therapeutic potential. In this regard many aspects such as biochemical and biomechanical factors need to be studied extensively. Mechanical stimulations such as hydrostatic pressure and topology of the matrices are critical features which affect the normal functions of cells involved in bladder regeneration. In this study, hydrostatic pressure (10 cm H(2)O) and stretch forces were exerted on human bladder smooth muscle cells (hBSMCs) seeded on aligned nanofibrous polycaprolactone/PLLA scaffolds, and the alterations in gene and protein expressions were studied. The gene transcription patterns for collagen type I, III, IV, elastin, α-SMA, calponin and caldesmon were monitored on days 3 and 5 quantitatively. Changes in the expressions of α-SMA, desmin, collagen type I and III were quantified by Enzyme-linked immuno-sorbent assay. The scaffolds were characterized using scanning electron microscope, contact angle measurement and tensile testing. The positive effect of mechanical forces on the functional improvement of the engineered tissue was supported by translational down-regulation of α-SMA and VWF, up-regulation of desmin and improvement of collagen type III:I ratio. Altogether, our study reveals that proper hydrostatic pressure in combination with appropriate surface stimulation on hBSMCs causes a tissue-specific phenotype that needs to be considered in bladder tissue engineering.

  10. TLR4-NOX4-AP-1 signaling mediates lipopolysaccharide-induced CXCR6 expression in human aortic smooth muscle cells

    SciTech Connect

    Patel, Devang N.; Bailey, Steven R.; Gresham, John K.; Schuchman, David B.; Shelhamer, James H.; Goldstein, Barry J.; Foxwell, Brian M.; Stemerman, Michael B.; Maranchie, Jodi K.; Valente, Anthony J.; Mummidi, Srinivas; Chandrasekar, Bysani . E-mail: chandraseka@uthscsa.edu

    2006-09-08

    CXCL16 is a transmembrane non-ELR CXC chemokine that signals via CXCR6 to induce aortic smooth muscle cell (ASMC) proliferation. While bacterial lipopolysaccharide (LPS) has been shown to stimulate CXCL16 expression in SMC, its effects on CXCR6 are not known. Here, we demonstrate that LPS upregulates CXCR6 mRNA, protein, and surface expression in human ASMC. Inhibition of TLR4 with neutralizing antibodies or specific siRNA interference blocked LPS-mediated CXCR6 expression. LPS stimulated both AP-1 (c-Fos, c-Jun) and NF-{kappa}B (p50 and p65) activation, but only inhibition of AP-1 attenuated LPS-induced CXCR6 expression. Using dominant negative expression vectors and siRNA interference, we demonstrate that LPS induces AP-1 activation via MyD88, TRAF6, ERK1/2, and JNK signaling pathways. Furthermore, the flavoprotein inhibitor diphenyleniodonium chloride significantly attenuated LPS-mediated AP-1-dependent CXCR6 expression, as did inhibition of NOX4 NADPH oxidase by siRNA. Finally, CXCR6 knockdown inhibited CXCL16-induced ASMC proliferation. These results demonstrate that LPS-TLR4-NOX4-AP-1 signaling can induce CXCR6 expression in ASMC, and suggest that the CXCL16-CXCR6 axis may be an important proinflammatory pathway in the pathogenesis of atherosclerosis.

  11. Meclofenamic Acid for Inhibition of Human Vascular Smooth Muscle Cell Proliferation and Migration: An In Vitro Study

    SciTech Connect

    Schober, Wolfgang; Kehlbach, Rainer; Gebert, Regina; Wiskirchen, Jakub; Rodegerdts, Enno; Claussen, Claus D.; Duda, Stephan H.

    2002-01-15

    Purpose: The aim of the study was to examine the effects of meclofenamic acid on proliferation, clonogenic activity,migratory ability, cell cycle distribution and p44/42 MAPK (mitogen activated protein kinase) expression in serum-stimulated human aortic smooth muscle cells (haSMCs). Methods: haSMCs were treated with meclofenamic acid in three different concentrations (10mM, 100 mM, 200 mM) for 4 days. Then meclofenamic acid-free culture medium was supplemented until day 20. Growth kinetics were assessed. Cell cycle analysis was performed by flow cytometry.Clonogenic activity was evaluated with colony formation assays.Migratory ability was investigated by stimulation with platelet-derived growth factor (PDGF-BB) in 24-well plates with 8 mm pores membrane inserts. p44/42 MAPK was detected by Western blot technique. Results: Meclofenamic acid inhibited the proliferation,clonogenic activity and migratory ability of haSMCs in a dose-dependent manner. Cell cycle analysis revealed a G2/M-phase block. The p44/42MAPK was significantly reduced. Conclusion: Meclofenamic acid inhibits the proliferation and migration of haSMCs. If a sufficient dose of meclofenamic acid can be applied systemically or by local drug delivery it could be a valuable substance to prevent restenosis after angioplasty.

  12. 12S-lipoxygenase protein associates with {alpha}-actin fibers in human umbilical artery vascular smooth muscle cells

    SciTech Connect

    Weisinger, Gary . E-mail: gary_w@tasmc.health.gov.il; Limor, Rona; Marcus-Perlman, Yonit; Knoll, Esther; Kohen, Fortune; Schinder, Vera; Firer, Michael; Stern, Naftali

    2007-05-11

    The current study sets out to characterize the intracellular localization of the platelet-type 12S-lipoxygenase (12-LO), an enzyme involved in angiotensin-II induced signaling in vascular smooth muscle cells (VSMC). Immunohistochemical analysis of VSMC in vitro or human umbilical arteries in vivo showed a clear cytoplasmic localization. On immunogold electron microscopy, 12-LO was found primarily associated with cytoplasmic VSMC muscle fibrils. Upon angiotensin-II treatment of cultured VSMC, immunoprecipitated 12-LO was found bound to {alpha}-actin, a component of the cytoplasmic myofilaments. 12-LO/{alpha}-actin binding was blocked by VSMC pretreatment with the 12-LO inhibitors, baicalien or esculetine and the protein synthesis inhibitor, cycloheximide. Moreover, the binding of 12-LO to {alpha}-actin was not associated with 12-LO serine or tyrosine phosphorylation. These observations suggest a previously unrecognized angiotensin-II dependent protein interaction in VSMC through which 12-LO protein may be trafficked, for yet undiscovered purposes towards the much more abundantly expressed cytoskeletal protein {alpha}-actin.

  13. Regulation of proliferation and gene expression in cultured human aortic smooth muscle cells by resveratrol and standardized grape extracts

    SciTech Connect

    Wang Zhirong; Chen Yan; Labinskyy, Nazar; Hsieh Tzechen; Ungvari, Zoltan; Wu, Joseph M. . E-mail: Joseph_Wu@nymc.edu

    2006-07-21

    Epidemiologic studies suggest that low to moderate consumption of red wine is inversely associated with the risk of coronary heart disease; the protection is in part attributed to grape-derived polyphenols, notably trans-resveratrol, present in red wine. It is not clear whether the cardioprotective effects of resveratrol can be reproduced by standardized grape extracts (SGE). In the present studies, we determined, using cultured human aortic smooth muscle cells (HASMC), growth and specific gene responses to resveratrol and SGE provided by the California Table Grape Commission. Suppression of HASMC proliferation by resveratrol was accompanied by a dose-dependent increase in the expression of tumor suppressor gene p53 and heat shock protein HSP27. Using resveratrol affinity chromatography and biochemical fractionation procedures, we showed by immunoblot analysis that treatment of HASMC with resveratrol increased the expression of quinone reductase I and II, and also altered their subcellular distribution. Growth of HASMC was significantly inhibited by 70% ethanolic SGE; however, gene expression patterns in various cellular compartments elicited in response to SGE were substantially different from those observed in resveratrol-treated cells. Further, SGE also differed from resveratrol in not being able to induce relaxation of rat carotid arterial rings. These results indicate that distinct mechanisms are involved in the regulation of HASMC growth and gene expression by SGE and resveratrol.

  14. Cyclic mechanical strain-induced proliferation and migration of human airway smooth muscle cells: role of EMMPRIN and MMPs.

    PubMed

    Hasaneen, Nadia A; Zucker, Stanley; Cao, Jian; Chiarelli, Christian; Panettieri, Reynold A; Foda, Hussein D

    2005-09-01

    Airway smooth muscle (ASM) proliferation and migration are major components of airway remodeling in asthma. Asthmatic airways are exposed to mechanical strain, which contributes to their remodeling. Matrix metalloproteinase (MMP) plays an important role in remodeling. In the present study, we examined if the mechanical strain of human ASM (HASM) cells contributes to their proliferation and migration and the role of MMPs in this process. HASM were exposed to mechanical strain using the FlexCell system. HASM cell proliferation, migration and MMP release, activation, and expression were assessed. Our results show that cyclic strain increased the proliferation and migration of HASM; cyclic strain increased release and activation of MMP-1, -2, and -3 and membrane type 1-MMP; MMP release was preceded by an increase in extracellular MMP inducer; Prinomastat [a MMP inhibitor (MMPI)] significantly decreased cyclic strain-induced proliferation and migration of HASM; and the strain-induced increase in the release of MMPs was accompanied by an increase in tenascin-C release. In conclusion, cyclic mechanical strain plays an important role in HASM cell proliferation and migration. This increase in proliferation and migration is through an increase in MMP release and activation. Pharmacological MMPIs should be considered in the pursuit of therapeutic options for airway remodeling in asthma.

  15. Modulation of alpha smooth muscle actin and desmin expression in perisinusoidal cells of normal and diseased human livers.

    PubMed Central

    Schmitt-Gräff, A.; Krüger, S.; Bochard, F.; Gabbiani, G.; Denk, H.

    1991-01-01

    It has been suggested that perisinusoidal liver cells (PSC) play a pivotal role in the pathogenesis of fibrocontractive changes. Using light and electron microscopic immunolocalization techniques, a series of 207 normal and pathologic human liver specimens were evaluated for the expression of alpha smooth muscle (SM) actin and desmin in this and other nonparenchymal cell types. In normal adult liver tissue, PSCs were practically devoid of desmin and exceptionally stained for alpha-SM actin, whereas this actin isoform frequently was encountered in PSCs from the embryonic to the adolescent period. A broad spectrum of pathologic conditions was accompanied by the presence of alpha-SM actin containing PSCs; these were detected preferentially in periportal or perivenular zones according to the predominant location of the underlying hepatocellular damage. The occurrence of this PSC phenotype generally was associated with fibrogenesis and was in some cases detected earlier than overt collagen accumulation. Fibrous bands subdividing liver tissue in cirrhosis and focal nodular hyperplasia, as well as desmoplastic reaction to malignant tumors, contained alpha-SM actin-rich cells admixed with variable proportions of cells coexpressing desmin. In end stages, this population was less numerous than in active fibrotic or cirrhotic processes. Using immunogold electron microscopy, alpha-SM actin was localized in microfilament bundles of typical PSCs. Our results are compatible with the assumption that the appearance of alpha-SM actin and desmin-expressing myofibroblasts results at least in part from a phenotypic modulation of PSCs. Images Figure 1 Figure 2 PMID:2024709

  16. Sensory versus motor loci for integration of multiple motion signals in smooth pursuit eye movements and human motion perception.

    PubMed

    Niu, Yu-Qiong; Lisberger, Stephen G

    2011-08-01

    We have investigated how visual motion signals are integrated for smooth pursuit eye movements by measuring the initiation of pursuit in monkeys for pairs of moving stimuli of the same or differing luminance. The initiation of pursuit for pairs of stimuli of the same luminance could be accounted for as a vector average of the responses to the two stimuli singly. When stimuli comprised two superimposed patches of moving dot textures, the brighter stimulus suppressed the inputs from the dimmer stimulus, so that the initiation of pursuit became winner-take-all when the luminance ratio of the two stimuli was 8 or greater. The dominance of the brighter stimulus could be not attributed to either the latency difference or the ratio of the eye accelerations for the bright and dim stimuli presented singly. When stimuli comprised either spot targets or two patches of dots moving across separate locations in the visual field, the brighter stimulus had a much weaker suppressive influence; the initiation of pursuit could be accounted for by nearly equal vector averaging of the responses to the two stimuli singly. The suppressive effects of the brighter stimulus also appeared in human perceptual judgments, but again only for superimposed stimuli. We conclude that one locus of the interaction of two moving visual stimuli is shared by perception and action and resides in local inhibitory connections in the visual cortex. A second locus resides deeper in sensory-motor processing and may be more closely related to action selection than to stimulus selection.

  17. HSP70 increases extracellular matrix production by human vascular smooth muscle through TGF-β1 up-regulation.

    PubMed

    González-Ramos, Marta; Calleros, Laura; López-Ongil, Susana; Raoch, Viviana; Griera, Mercedes; Rodríguez-Puyol, Manuel; de Frutos, Sergio; Rodríguez-Puyol, Diego

    2013-02-01

    The circulating levels of heat shock proteins (HSP) are increased in cardiovascular diseases; however, the implication of this for the fibrotic process typical of such diseases remains unclear. HSP70 can interact with the vascular smooth muscle cells (SMC), the major producer of extracellular matrix (ECM) proteins, through the Toll-like receptors 4 (TLR4). The transforming growth factor type-β1 (TGF-β1) is a well known vascular pro-fibrotic cytokine that is regulated in part by AP-1-dependent transcriptional mechanisms. We hypothesized that extracellular HSP70 could interact with SMCs, inducing TGF-β1 synthesis and subsequent changes in the vascular ECM. We demonstrate that extracellular HSP70 binds to human aorta SMC TLR4, which up-regulates the AP-1-dependent transcriptional activity of the TGF-β1 promoter. This is achieved through the mitogen activated protein kinases JNK and ERK, as demonstrated by the use of specific blockers and the knockdown of TLR4 with specific small interfering RNAs. The TGF-β1 upregulation increase the expression of the ECM proteins type I collagen and fibronectin. This novel observation may elucidate the mechanisms by which HSP70 contributes in the inflammation and fibrosis present in atherosclerosis and other fibrosis-related diseases.

  18. Paraquat induces epithelial-mesenchymal transition-like cellular response resulting in fibrogenesis and the prevention of apoptosis in human pulmonary epithelial cells.

    PubMed

    Yamada, Atsushi; Aki, Toshihiko; Unuma, Kana; Funakoshi, Takeshi; Uemura, Koichi

    2015-01-01

    The aim of this study is to investigate the molecular mechanisms underlying delayed progressive pulmonary fibrosis, a characteristic of subacute paraquat (PQ) poisoning. Epithelial-mesenchymal transition (EMT) has been proposed as a cause of organ fibrosis, and transforming growth factor-β (TGF-β) is suggested to be a powerful mediator of EMT. We thus examined the possibility that EMT is involved in pulmonary fibrosis during PQ poisoning using A549 human alveolar epithelial cells in vitro. The cells were treated with various concentrations of PQ (0-500 μM) for 2-12 days. Short-term (2 days) high-dose (>100 μM) treatments with PQ induced cell death accompanied by the activation of caspase9 as well as a decrease in E-cadherin (an epithelial cell marker), suggesting apoptotic cell death with the features of anoikis (cell death due to the loss of cell-cell adhesion). In contrast, long-term (6-12 days) low-dose (30 μM) treatments with PQ resulted in a transformation into spindle-shaped mesenchymal-like cells with a decrease of E-cadherin as well as an increase of α-smooth muscle actin (α-SMA). The mesenchymal-like cells also secreted the extracellular matrix (ECM) protein fibronectin into the culture medium. The administration of a TGF-β1 receptor antagonist, SB431542, almost completely attenuated the mesenchymal transformation as well as fibronectin secretion, suggesting a crucial role of TGF-β1 in EMT-like cellular response and subsequent fibrogenesis. It is noteworthy that despite the suppression of EMT-fibrogenesis, apoptotic death was observed in cells treated with PQ+SB431542. EMT-like cellular response and subsequent fibrogenesis were also observed in normal human bronchial epithelial (NHBE) cells exposed to PQ in a TGF-β1-dependent manner. Taken together, our experimental model reflects well the etiology of PQ poisoning in human and shows the involvement of EMT-like cellular response in both fibrogenesis and resistance to cell death during subacute PQ

  19. Sodium leak channel, non-selective contributes to the leak current in human myometrial smooth muscle cells from pregnant women

    PubMed Central

    Reinl, Erin L.; Cabeza, Rafael; Gregory, Ismail A.; Cahill, Alison G.; England, Sarah K.

    2015-01-01

    Uterine contractions are tightly regulated by the electrical activity of myometrial smooth muscle cells (MSMCs). These cells require a depolarizing current to initiate Ca2+ influx and induce contraction. Cationic leak channels, which permit a steady flow of cations into a cell, are known to cause membrane depolarization in many tissue types. Previously, a Gd3+-sensitive, Na+-dependent leak current was identified in the rat myometrium, but the presence of such a current in human MSMCs and the specific ion channel conducting this current was unknown. Here, we report the presence of a Na+-dependent leak current in human myometrium and demonstrate that the Na+-leak channel, NALCN, contributes to this current. We performed whole-cell voltage-clamp on fresh and cultured MSMCs from uterine biopsies of term, non-laboring women and isolated the leak currents by using Ca2+ and K+ channel blockers in the bath solution. Ohmic leak currents were identified in freshly isolated and cultured MSMCs with normalized conductances of 14.6 pS/pF and 10.0 pS/pF, respectively. The myometrial leak current was significantly reduced (P < 0.01) by treating cells with 10 μM Gd3+ or by superfusing the cells with a Na+-free extracellular solution. Reverse transcriptase PCR and immunoblot analysis of uterine biopsies from term, non-laboring women revealed NALCN messenger RNA and protein expression in the myometrium. Notably, ∼90% knockdown of NALCN protein expression with lentivirus-delivered shRNA reduced the Gd3+-sensitive leak current density by 42% (P < 0.05). Our results reveal that NALCN, in part, generates the leak current in MSMCs and provide the basis for future research assessing NALCN as a potential molecular target for modulating uterine excitability. PMID:26134120

  20. Sodium leak channel, non-selective contributes to the leak current in human myometrial smooth muscle cells from pregnant women.

    PubMed

    Reinl, Erin L; Cabeza, Rafael; Gregory, Ismail A; Cahill, Alison G; England, Sarah K

    2015-10-01

    Uterine contractions are tightly regulated by the electrical activity of myometrial smooth muscle cells (MSMCs). These cells require a depolarizing current to initiate Ca(2+) influx and induce contraction. Cationic leak channels, which permit a steady flow of cations into a cell, are known to cause membrane depolarization in many tissue types. Previously, a Gd(3+)-sensitive, Na(+)-dependent leak current was identified in the rat myometrium, but the presence of such a current in human MSMCs and the specific ion channel conducting this current was unknown. Here, we report the presence of a Na(+)-dependent leak current in human myometrium and demonstrate that the Na(+)-leak channel, NALCN, contributes to this current. We performed whole-cell voltage-clamp on fresh and cultured MSMCs from uterine biopsies of term, non-laboring women and isolated the leak currents by using Ca(2+) and K(+) channel blockers in the bath solution. Ohmic leak currents were identified in freshly isolated and cultured MSMCs with normalized conductances of 14.6 pS/pF and 10.0 pS/pF, respectively. The myometrial leak current was significantly reduced (P < 0.01) by treating cells with 10 μM Gd(3+) or by superfusing the cells with a Na(+)-free extracellular solution. Reverse transcriptase PCR and immunoblot analysis of uterine biopsies from term, non-laboring women revealed NALCN messenger RNA and protein expression in the myometrium. Notably, ∼90% knockdown of NALCN protein expression with lentivirus-delivered shRNA reduced the Gd(3+)-sensitive leak current density by 42% (P < 0.05). Our results reveal that NALCN, in part, generates the leak current in MSMCs and provide the basis for future research assessing NALCN as a potential molecular target for modulating uterine excitability.

  1. Comparative proteome analysis of Tumor necrosis factor α-stimulated human Vascular Smooth Muscle Cells in response to melittin

    PubMed Central

    2013-01-01

    Background Bee venom has been used to relieve pain and to treat inflammatory diseases, including rheumatoid arthritis, in humans. To better understand the mechanisms of the anti-inflammatory and anti-atherosclerosis effect of bee venom, gel electrophoresis and mass spectrometry were used to identify proteins whose expression was altered in human Vascular Smooth Muscle Cells (hVSMCs) stimulated by tumor necrosis factor alpha after 12 h in the presence of melittin. Results To obtain valuable insights into the anti-inflammatory and anti-atherosclerosis mechanisms of melittin, two-dimensional (2-D) gel electrophoresis and MALDI-TOF/TOF were used. The proteome study, we showed 33 significant proteins that were differentially expressed in the cells treated with tumor necrosis factor alpha and melittin. Thirteen proteins were significantly increased in the cells treated with tumor necrosis factor alpha, and those proteins were reduced in the cells treated with melittin. Five of the proteins that showed increased expression in the cells treated with tumor necrosis factor alpha are involved in cell migration, including calreticulin, an essential factor of development that plays a role in transcription regulation. The proteins involved in cell migration were reduced in the melittin treated cells. The observed changes in the expression of GRP75, prohibitin, and a select group of other proteins were validated with reverse transcribed-PCR. It was confirmed that the observed change in the protein levels reflected a change in the genes level. In addition, the phosphorylation of EGFR and ERK was validated by analyzing the protein pathway. Conclusion Taken together, these data established that the expression of some proteins was significantly changed by melittin treatment in tumor necrosis factor alpha stimulated the cells and provided insights into the mechanism of the melittin function for its potential use as an anti-inflammatory agent. PMID:23651618

  2. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis.

    PubMed

    De Groote, F; De Laet, T; Jonkers, I; De Schutter, J

    2008-12-05

    We developed a Kalman smoothing algorithm to improve estimates of joint kinematics from measured marker trajectories during motion analysis. Kalman smoothing estimates are based on complete marker trajectories. This is an improvement over other techniques, such as the global optimisation method (GOM), Kalman filtering, and local marker estimation (LME), where the estimate at each time instant is only based on part of the marker trajectories. We applied GOM, Kalman filtering, LME, and Kalman smoothing to marker trajectories from both simulated and experimental gait motion, to estimate the joint kinematics of a ten segment biomechanical model, with 21 degrees of freedom. Three simulated marker trajectories were studied: without errors, with instrumental errors, and with soft tissue artefacts (STA). Two modelling errors were studied: increased thigh length and hip centre dislocation. We calculated estimation errors from the known joint kinematics in the simulation study. Compared with other techniques, Kalman smoothing reduced the estimation errors for the joint positions, by more than 50% for the simulated marker trajectories without errors and with instrumental errors. Compared with GOM, Kalman smoothing reduced the estimation errors for the joint moments by more than 35%. Compared with Kalman filtering and LME, Kalman smoothing reduced the estimation errors for the joint accelerations by at least 50%. Our simulation results show that the use of Kalman smoothing substantially improves the estimates of joint kinematics and kinetics compared with previously proposed techniques (GOM, Kalman filtering, and LME) for both simulated, with and without modelling errors, and experimentally measured gait motion.

  3. Impairment of cell cycle progression by sterigmatocystin in human pulmonary cells in vitro.

    PubMed

    Huang, Shujuan; Wang, Juan; Xing, Lingxiao; Shen, Haitao; Yan, Xia; Wang, Junling; Zhang, Xianghong

    2014-04-01

    Sterigmatocystin (ST) is a carcinogenic mycotoxin that is commonly found in human food, animal feed and in the indoor environment. Although the correlation between ST exposure and lung cancer has been widely reported in many studies, the cytotoxicity of ST on human pulmonary cells is not yet fully understood. In the current study, we found that ST could induce DNA double-strand breaks in a human immortalized bronchial epithelial cell line (BEAS-2B cells) and a human lung cancer cell line (A549 cells). In addition, the effects of ST on cell cycle arrest were complex and dependent on the tested ST concentration and cell type. Low concentrations of ST arrested cells in the G2/M phase in BEAS-2B cells and in the S phase in A549 cells, while at high concentration both cells lines were arrested in S and G2/M phases. Furthermore, we observed that the modulation of cyclins and CDK expression showed concomitant changes with cell cycle arrest upon ST exposure in BEAS-2B and A549 cells. In conclusion, ST induced DNA damage and affected key proteins involved in cell cycle regulation to trigger genomic instability, which may be a potential mechanism underlying the developmental basis of lung carcinogenesis.

  4. A comparison of vasodilation mode among selexipag (NS-304; [2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide]), its active metabolite MRE-269 and various prostacyclin receptor agonists in rat, porcine and human pulmonary arteries.

    PubMed

    Fuchikami, Chiaki; Murakami, Kohji; Tajima, Koyuki; Homan, Junko; Kosugi, Keiji; Kuramoto, Kazuya; Oka, Michiko; Kuwano, Keiichi

    2017-01-15

    Selexipag (NS-304; [2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N- (methylsulfonyl)acetamide]) is a novel, orally available non-prostanoid prostacyclin receptor (IP receptor) agonist that has recently been approved for the treatment of pulmonary arterial hypertension (PAH). We examined the effect of the active metabolite of selexipag, MRE-269, and IP receptor agonists that are currently available as PAH therapeutic drugs on the relaxation of rat, porcine and human pulmonary artery. cAMP formation in human pulmonary artery smooth muscle cells was induced by all test compounds (MRE-269, epoprostenol, iloprost, treprostinil and beraprost sodium) and suppressed by IP receptor antagonists (CAY10441 and 2-[4-(1H-indol-4-yloxymethyl)-benzyloxycarbonylamino]-3-phenyl-propionic acid). MRE-269 induced endothelium-independent vasodilation of rat extralobar pulmonary artery (EPA). In contrast, endothelial denudation or the addition of a nitric oxide synthase inhibitor markedly attenuated the vasodilation of EPA induced by epoprostenol, treprostinil and beraprost sodium but not iloprost. The vasorelaxant effects of MRE-269 on rat small intralobar pulmonary artery (SIPA) and EPA were the same, while the other IP receptor agonists induced less vasodilation in SIPA than in EPA. Furthermore, a prostaglandin E receptor 3 antagonist enhanced the vasodilation induced by all IP receptor agonists tested except MRE-269. We also investigated the relaxation induced by IP receptor agonists in pulmonary arteries from non-rodent species and found similar vasodilation modes in porcine and human as in rat preparations. These results suggest that MRE-269, in contrast to other IP receptor agonists, works as a selective IP receptor agonist, thus leading to pronounced vasorelaxation of rat, porcine and human pulmonary artery.

  5. Pulmonary inflation reflex: its lack of physiological significance in coronary circulation of humans.

    PubMed

    Wilson, R F; Marcus, M L; White, C W

    1988-10-01

    In awake dogs, voluntary deep inspiration results in a marked, reflex-mediated increase in coronary blood flow. To study this reflex in humans, we subselectively measured coronary blood flow velocity (CBFV) with a 3-F coronary Doppler catheter in 12 subjects with angiographically normal coronary arteries. In each subject, intracoronary papaverine increased CBFV to 4.8 +/- 0.2 X resting CBFV and reduced coronary resistance to 0.20 +/- 0.01 X resting coronary resistance, demonstrating normal vasodilator reserve in the vessel under study. Valsalva maneuver reduced CBFV to 0.67 +/- 0.09 X resting CBFV and increased coronary resistance to 1.37 +/- 0.20 X resting coronary resistance (P less than 0.05 vs. control). Maximum voluntary inspiration, however, did not significantly change CBFV (peak response 1.03 +/- 0.05 X resting CBFV) or coronary resistance (0.96 +/- 0.04 X resting). To determine whether augmentation of resting alpha-adrenergic tone would potentiate the reflex, eight patients performed a sustained 33% maximal handgrip for 2 min. Maximal deep inspiration during handgrip failed to result in any significant change in CBFV or coronary resistance. These studies demonstrate that the canine pulmonary inflation reflex has little or no physiological significance in the coronary circulation of conscious humans. Additionally, these data suggest that the magnitude of reflex control of the coronary circulation may vary considerably between dogs and humans.

  6. Secreted Protein Acidic and Rich in Cysteine Modulates Molecular Arterial Homeostasis of Human Arterial Smooth Muscle Cells In Vitro.

    PubMed

    Ye, Geng-Fan; Zhu, Shao-Wei; Zhu, Shu-Gan; Li, Feng; Wang, Yun-Yan

    2016-12-01

    Secreted protein acidic and rich in cysteine (SPARC) is widely expressed in the vascular smooth muscle cells (VSMCs) of human intracranial aneurysms (IAs), but the effect and underlying mechanism of SPARC on VSMCs during the formation and progression of IAs needs to be probed. Human umbilical arterial smooth muscle cells (HUASMCs) were treated with a gradient concentrations of SPARC in vitro for different time. Cell counting kit-8 (CCK-8) assay, cell cycle, and cell apoptosis were used to investigate the effect of SPARC on HUASMCs. After exposure to 2 and 4 μg/ml SPARC, cell viability were 89.3 ± 2.00 %, and 87.57 ± 2.17 % (P < 0.05 vs. control), respectively. Induced by 2 μg/ml SPARC, the proportion of cells in G0/G1 phase was 74.77 ± 1.33 % (P < 0.05 vs. control), and the early and late apoptosis ratio were 7.38 ± 1.25 % and 4.86 ± 0.81 % (P < 0.01 vs. control), respectively. After exposure to 2 μg/ml SPARC for 2, 6, 12, 24, and 48 h, Western blot analysis showed that the protein level of p21 was upregulated significantly at 2-12 h (P < 0.05 vs. control), while the expression of p53 remained stable within 48 h. The expression of Bax protein increased markedly and peaked at 24 (P < 0.01 vs. control), while Bcl2 protein decreased significantly at 48 h (P < 0.01 vs. control). Cleaved caspase3 was also upregulated dramatically and peaked at 24 h (P < 0.05 vs. control). The protein level of MMP2 increased significantly and peaked at 24 h (P < 0.01 vs. control), while TIMP2 remained stable and even reduced at 48 h (P < 0.05 vs. control). Taken together, SPARC could arrest HUASMCs in G0/G1 phase by overexpression of p21 and induce mitochondria-mediated apoptosis in vitro, which could result in the decreased cell viability. Besides, SPARC might also lead to the activation of MMP2 instead of MMP9. These results indicated SPARC could reduce the self-repair capability and increase injury of media layer and internal elastic

  7. Eptifibatide and abciximab inhibit insulin-induced focal adhesion formation and proliferative responses in human aortic smooth muscle cells

    PubMed Central

    Pathak, Alokkumar; Zhao, Renyi; Huang, Jianhua; Stouffer, George A

    2008-01-01

    Background The use of abciximab (c7E3 Fab) or eptifibatide improves clinical outcomes in diabetics undergoing percutaneous coronary intervention. These β3 integrin inhibitors antagonize fibrinogen binding to αIIbβ3 integrins on platelets and ligand binding to αvβ3 integrins on vascular cells. αvβ3 integrins influence responses to insulin in various cell types but effects in human aortic smooth muscle cells (HASMC) are unknown. Results and discussion Insulin elicited a dose-dependent proliferative response in HASMC. Pretreatment with m7E3 (an anti-β3 integrin monoclonal antibody from which abciximab is derived), c7E3 or LM609 inhibited proliferative responses to insulin by 81%, 59% and 28%, respectively. Eptifibatide or cyclic RGD peptides completely abolished insulin-induced proliferation whereas tirofiban, which binds αIIbβ3 but not αvβ3, had no effect. Insulin-induced increases in c-Jun NH2-terminal kinase-1 (JNK1) activity were partially inhibited by m7E3 and eptifibatide whereas antagonism of αvβ3 integrins had no effect on insulin-induced increases in extracellular signal-regulated kinase (ERK) activity. Insulin stimulated a rapid increase in the number of vinculin-containing focal adhesions per cell and treatment with m7E3, c7E3 or eptifibatide inhibited insulin-induced increases in focal adhesions by 100%, 74% and 73%, respectively. Conclusion These results demonstrate that αvβ3 antagonists inhibit signaling, focal adhesion formation and proliferation of insulin-treated HASMC. PMID:19108709

  8. Effects of high density lipoprotein subfractions on cholesterol homeostasis in human fibroblasts and arterial smooth muscle cells.

    PubMed

    Oram, J F

    1983-01-01

    Ultracentrifugally isolated high density lipoprotein (HDL) particles of d greater than 1.125 g/ml promote net transport of cholesterol from cultured cells. Consequently, when cultured human fibroblasts and arterial smooth muscle cells were incubated with HDL3 (d = 1.125-1.21 g/ml) and "very high" density lipoprotein (VHDL, d = 1.21-1.25 g/ml), low density lipoprotein (LDL) receptor activity was induced and the rate of LDL degradation by the cells was increased. Enhancement of LDL degradation by HDL3 and VHDL was sustained over incubation periods of 5 days at medium LDL concentrations greater than needed to saturate the LDL receptors. Even during these long-term incubations with LDL, HDL3 and VHDL caused marked reductions in cellular cholesterol content. Thus, an increase in the rate of cholesterol transport from cells may lead to a steady-state decrease in cellular cholesterol content and a sustained increase in the rate of clearance of LDL from the extracellular fluid. In contrast to the effects of HDL3 and VHDL, the major subclasses of HDL2 (HDL2b, d = 1.063-1.100 g/ml; HDL2a, d = 1.100-1.125 g/ml) did not promote net cholesterol transport from cells. Moreover, by apparent direct blockage of the effects that HDL3 and VHDL had on cholesterol transport, HDL2 reversed the increased rate of LDL degradation induced by HDL3 and VHDL. These results suggest that the relative proportion of HDL subfractions in the extracellular fluid may be an important determinant of both the rate of cholesterol transport from cells and the rate of receptor-mediated catabolism of LDL.

  9. Tissue factor expression in human arterial smooth muscle cells. TF is present in three cellular pools after growth factor stimulation.

    PubMed Central

    Schecter, A D; Giesen, P L; Taby, O; Rosenfield, C L; Rossikhina, M; Fyfe, B S; Kohtz, D S; Fallon, J T; Nemerson, Y; Taubman, M B

    1997-01-01

    Tissue factor (TF) is a transmembrane glycoprotein that initiates the coagulation cascade. Because of the potential role of TF in mediating arterial thrombosis, we have examined its expression in human aortic and coronary artery smooth muscle cells (SMC). TF mRNA and protein were induced in SMC by a variety of growth agonists. Exposure to PDGF AA or BB for 30 min provided all of the necessary signals for induction of TF mRNA and protein. This result was consistent with nuclear runoff analyses, demonstrating that PDGF-induced TF transcription occurred within 30 min. A newly developed assay involving binding of digoxigenin-labeled FVIIa (DigVIIa) and digoxigenin-labeled Factor X (DigX) was used to localize cellular TF. By light and confocal microscopy, prominent TF staining was seen in the perinuclear cytoplasm beginning 2 h after agonist treatment and persisting for 10-12 h. Surface TF activity, measured on SMC monolayers under flow conditions, increased transiently, peaking 4-6 h after agonist stimulation and returning to baseline within 16 h. Peak surface TF activity was only approximately 20% of total TF activity measured in cell lysates. Surface TF-blocking experiments demonstrated that the remaining TF was found as encrypted surface TF, and also in an intracellular pool. The relatively short-lived surface expression of TF may be critical for limiting the thrombotic potential of intact SMC exposed to growth factor stimulation. In contrast, the encrypted surface and intracellular pools may provide a rich source of TF under conditions associated with SMC damage, such as during atherosclerotic plaque rupture or balloon arterial injury. PMID:9410905

  10. Induction of ANGPTL4 expression in human airway smooth muscle cells by PMA through activation of PKC and MAPK pathways.

    PubMed

    Stapleton, Cliona M; Joo, Joung Hyuck; Kim, Yong-Sik; Liao, Grace; Panettieri, Reynold A; Jetten, Anton M

    2010-02-15

    In this study, we demonstrate that protein kinase C (PKC) activators, including phorbol-12-myristate-13-acetate (PMA), 1,2-dioctanoyl-sn-glycerol (DOG), and platelet-derived growth factor alpha are potent inducers of angiopoietin-like protein 4 (ANGPTL4) expression in several normal lung cell types and carcinoma cell lines. In human airway smooth muscle (HASM) cells induction of ANGPTL4 expression is observed as early as 2 h after the addition of PMA. PMA also increases the level of ANGPTL4 protein released in the medium. PKC inhibitors Ro31-8820 and Gö6983 greatly inhibit the induction of ANGPTL4 mRNA by PMA suggesting that this up-regulation involves activation of PKC. Knockdown of several PKCs by corresponding siRNAs suggest a role for PKCalpha. PMA does not activate MAPK p38 and p38 inhibitors have little effect on the induction of ANGPTL4 indicating that p38 is not involved in the regulation of ANGPTL4 by PMA. In contrast, treatment of HASM by PMA induces phosphorylation and activation of Ra, MEK1/2, ERK1/2, JNK, Elk-1, and c-Jun. The Ras inhibitor manumycin A, the MEK1/2 inhibitor U0126, and the JNK inhibitor SP600125, greatly reduce the increase in ANGPTL4 expression by PMA. Knockdown of MEK1/2 and JNK1/2 expression by corresponding siRNAs inhibits the induction of ANGPTL4. Our observations suggest that the induction of ANGPTL4 by PMA in HASM involves the activation of PKC, ERK, and JNK pathways. This induction may play a role in tissue remodeling during lung injury and be implicated in several lung pathologies.

  11. Intracellular Acid-extruding regulators and the effect of lipopolysaccharide in cultured human renal artery smooth muscle cells.

    PubMed

    Loh, Shih-Hurng; Lee, Chung-Yi; Tsai, Yi-Ting; Shih, Shou-Jou; Chen, Li-Wei; Cheng, Tzu-Hurng; Chang, Chung-Yi; Tsai, Chein-Sung

    2014-01-01

    Homeostasis of the intracellular pH (pHi) in mammalian cells plays a pivotal role in maintaining cell function. Thus far, the housekeeping Na(+)-H(+) exchanger (NHE) and the Na(+)-HCO3(-) co-transporter (NBC) have been confirmed in many mammalian cells as major acid extruders. However, the role of acid-extruding regulators in human renal artery smooth muscle cells (HRASMCs) remains unclear. It has been demonstrated that lipopolysaccharide (LPS)-induced vascular occlusion is associated with the apoptosis, activating calpain and increased [Ca(2+)]i that are related to NHE1 activity in endothelia cells. This study determines the acid-extruding mechanisms and the effect of LPS on the resting pHi and active acid extruders in cultured HRASMCs. The mechanism of pHi recovery from intracellular acidosis (induced by NH4Cl-prepulse) is determined using BCECF-fluorescence in cultured HRASMCs. It is seen that (a) the resting pHi is 7.19 ± 0.03 and 7.10 ± 0.02 for HEPES- and CO2/HCO3(-)- buffered solution, respectively; (b) apart from the housekeeping NHE1, another Na(+)-coupled HCO3(-) transporter i.e. NBC, functionally co-exists to achieve acid-equivalent extrusion; (c) three different isoforms of NBC: NBCn1 (SLC4A7; electroneutral), NBCe1 (SLC4A4; electrogenic) and NBCe2 (SLC4A5), are detected in protein/mRNA level; and (d) pHi and NHE protein expression/activity are significantly increased by LPS, in both a dose- and time- dependent manner, but NBCs protein expression is not. In conclusion, it is demonstrated, for the first time, that four pHi acid-extruding regulators: NHE1, NBCn1, NBCe1 and NBCe2, co-exist in cultured HRASMCs. LPS also increases cellular growth, pHi and NHE in a dose- and time-dependent manner.

  12. Functional expression of smooth muscle-specific ion channels in TGF-β1-treated human adipose-derived mesenchymal stem cells

    PubMed Central

    Park, Won Sun; Heo, Soon Chul; Jeon, Eun Su; Hong, Da Hye; Son, Youn Kyoung; Ko, Jae-Hong; Kim, Hyoung Kyu; Lee, Sun Young; Kim, Jae Ho

    2013-01-01

    Human adipose tissue-derived mesenchymal stem cells (hASCs) have the power to differentiate into various cell types including chondrocytes, osteocytes, adipocytes, neurons, cardiomyocytes, and smooth muscle cells. We characterized the functional expression of ion channels after transforming growth factor-β1 (TGF-β1)-induced differentiation of hASCs, providing insights into the differentiation of vascular smooth muscle cells. The treatment of hASCs with TGF-β1 dramatically increased the contraction of a collagen-gel lattice and the expression levels of specific genes for smooth muscle including α-smooth muscle actin, calponin, smooth mucle-myosin heavy chain, smoothelin-B, myocardin, and h-caldesmon. We observed Ca2+, big-conductance Ca2+-activated K+ (BKCa), and voltage-dependent K+ (Kv) currents in TGF-β1-induced, differentiated hASCs and not in undifferentiated hASCs. The currents share the characteristics of vascular smooth muscle cells (SMCs). RT-PCR and Western blotting revealed that the L-type (Cav1.2) and T-type (Cav3.1, 3.2, and 3.3), known to be expressed in vascular SMCs, dramatically increased along with the Cavβ1 and Cavβ3 subtypes in TGF-β1-induced, differentiated hASCs. Although the expression-level changes of the β-subtype BKCa channels varied, the major α-subtype BKCa channel (KCa1.1) clearly increased in the TGF-β1-induced, differentiated hASCs. Most of the Kv subtypes, also known to be expressed in vascular SMCs, dramatically increased in the TGF-β1-induced, differentiated hASCs. Our results suggest that TGF-β1 induces the increased expression of vascular SMC-like ion channels and the differentiation of hASCs into contractile vascular SMCs. PMID:23761629

  13. Functional expression of smooth muscle-specific ion channels in TGF-β(1)-treated human adipose-derived mesenchymal stem cells.

    PubMed

    Park, Won Sun; Heo, Soon Chul; Jeon, Eun Su; Hong, Da Hye; Son, Youn Kyoung; Ko, Jae-Hong; Kim, Hyoung Kyu; Lee, Sun Young; Kim, Jae Ho; Han, Jin

    2013-08-15

    Human adipose tissue-derived mesenchymal stem cells (hASCs) have the power to differentiate into various cell types including chondrocytes, osteocytes, adipocytes, neurons, cardiomyocytes, and smooth muscle cells. We characterized the functional expression of ion channels after transforming growth factor-β1 (TGF-β1)-induced differentiation of hASCs, providing insights into the differentiation of vascular smooth muscle cells. The treatment of hASCs with TGF-β1 dramatically increased the contraction of a collagen-gel lattice and the expression levels of specific genes for smooth muscle including α-smooth muscle actin, calponin, smooth mucle-myosin heavy chain, smoothelin-B, myocardin, and h-caldesmon. We observed Ca(2+), big-conductance Ca(2+)-activated K(+) (BKCa), and voltage-dependent K(+) (Kv) currents in TGF-β1-induced, differentiated hASCs and not in undifferentiated hASCs. The currents share the characteristics of vascular smooth muscle cells (SMCs). RT-PCR and Western blotting revealed that the L-type (Cav1.2) and T-type (Cav3.1, 3.2, and 3.3), known to be expressed in vascular SMCs, dramatically increased along with the Cavβ1 and Cavβ3 subtypes in TGF-β1-induced, differentiated hASCs. Although the expression-level changes of the β-subtype BKCa channels varied, the major α-subtype BKCa channel (KCa1.1) clearly increased in the TGF-β1-induced, differentiated hASCs. Most of the Kv subtypes, also known to be expressed in vascular SMCs, dramatically increased in the TGF-β1-induced, differentiated hASCs. Our results suggest that TGF-β1 induces the increased expression of vascular SMC-like ion channels and the differentiation of hASCs into contractile vascular SMCs.

  14. Inflammatory Responses in Blood Samples of Human Immunodeficiency Virus-Infected Patients with Pulmonary Infections

    PubMed Central

    Benito, Natividad; Moreno, Asunción; Filella, Xavier; Miró, José M.; González, Julià; Pumarola, Tomás; Valls, María Eugenia; Luna, Montserrat; García, Felipe; Rañó, Ana; Torres, Antoni; Gatell, José M.

    2004-01-01

    We analyzed the characteristics of the inflammatory response occurring in blood during pulmonary infections in human immunodeficiency virus (HIV)-infected patients. A prospective study of consecutive hospital admissions of HIV-infected patients with new-onset radiologic pulmonary infiltrates was carried out in a tertiary university hospital from April 1998 to May 2001. Plasma cyclic AMP receptor protein (CRP), interleukin 1β (IL-1β), IL-6, IL-8, IL-10, and tumor necrosis factor alpha (TNF-α) levels were determined at the time of admission and 4, 5, and 6 days later. Patients were included in a protocol addressed to study etiology and outcome of disease. A total of 249 episodes of infection were included, with the main diagnoses being bacterial pneumonia (BP) (118 episodes), Pneumocystis carinii pneumonia (PCP) (41 episodes), and mycobacteriosis (36 episodes). For these three patient groups, at the time of admission the median CRP and cytokine levels were as follows: CRP, 10.2, 3.8 and 5 mg/dl, respectively (P = 0.0001); IL-8, 19, 3, and 2.9 pg/ml (P = 0.045); and TNF-α, 46.4, 44, and 75 pg/ml, respectively (P = 0.029). There were no significant differences in levels of IL-1β, IL-6, or IL-10 among the patient groups. A total of 23 patients died. At the time of admission, HIV-infected patients with BP had higher plasma CRP and IL-8 levels than did PCP and mycobacteriosis patients. TNF-α levels were higher in patients with mycobacteriosis. An elevated IL-8 level (>61 pg/ml) at the time of admission was an independent factor associated with higher mortality (odds ratio, 12; 95% confidence interval, 1.2 to 235.5). PMID:15138189

  15. MCPIP1 mediates silica-induced cell migration in human pulmonary fibroblasts.

    PubMed

    Liu, Haijun; Dai, Xiaoniu; Cheng, Yusi; Fang, Shencun; Zhang, Yingming; Wang, Xingang; Zhang, Wei; Liao, Hong; Yao, Honghong; Chao, Jie

    2016-01-15

    Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO2). Phagocytosis of SiO2 in the lungs initiates an inflammatory cascade that results in fibroblast proliferation and migration followed by fibrosis. According to previous data from our laboratory, monocyte chemotactic protein-1 (MCP-1) plays a critical role in fibroblast proliferation and migration in conventional two-dimensional (2D) monolayer cultures. The present study aimed to explore the downstream cascade of MCP-1 in both 2D and three-dimensional (3D) cell culture models of silicosis. Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following: 1) SiO2 treatment induces expression of MCP-1-induced protein (MCPIP1) in a time- and dose-dependent manner in both 2D and 3D cultures; 2) the MAPK and phosphatidylinositol-3-kinase (PI3K)/Akt pathways are involved in SiO2-induced MCPIP1 expression; and 3) MCPIP1 induction mediates the SiO2-induced increase in cell migration in both 2D and 3D cultures. The effect of MCP-1 in silicosis occurs mainly through MCPIP1, which, in turn, mediates the observed SiO2-induced increase in pulmonary fibroblast migration. However, the time frame for MCPIP1 induction differed between 2D and 3D cultures, indicating that, compared with conventional 2D cell culture systems, 3D culture may be useful for analyses of fibroblast physiology under conditions that more closely resemble in vivo environments. Our study determined the link between fibroblast-derived MCPIP1 and SiO2-induced cell migration, and this finding provides novel evidence of the potential of MCPIP1 in the development of novel therapeutic strategies for silicosis.

  16. In vitro growth of human urinary tract smooth muscle cells on laminin and collagen type I-coated membranes under static and dynamic conditions.

    PubMed

    Hubschmid, Ulrich; Leong-Morgenthaler, Phaik-Mooi; Basset-Dardare, Aurelia; Ruault, Sylvie; Frey, Peter

    2005-01-01

    This study investigates in vitro growth of human urinary tract smooth muscle cells under static conditions and mechanical stimulation. The cells were cultured on collagen type I- and laminin-coated silicon membranes. Using a Flexcell device for mechanical stimulation, a cyclic strain of 0-20% was applied in a strain-stress-time model (stretch, 104 min relaxation, 15 s), imitating physiological bladder filling and voiding. Cell proliferation and alpha-actin, calponin, and caldesmon phenotype marker expression were analyzed. Nonstretched cells showed significant better growth on laminin during the first 8 days, thereafter becoming comparable to cells grown on collagen type I. Cyclic strain significantly reduced cell growth on both surfaces; however, better growth was observed on laminin. Neither the type of surface nor mechanical stimulation influenced the expression pattern of phenotype markers; alpha-actin was predominantly expressed. Coating with the extracellular matrix protein laminin improved in vitro growth of human urinary tract smooth muscle cells.

  17. P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate

    PubMed Central

    Wang, Yiming; Gratzke, Christian; Tamalunas, Alexander; Wiemer, Nicolas; Ciotkowska, Anna; Rutz, Beata; Waidelich, Raphaela; Strittmatter, Frank; Liu, Chunxiao; Stief, Christian G.; Hennenberg, Martin

    2016-01-01

    Prostate smooth muscle tone and hyperplastic growth are involved in the pathophysiology and treatment of male lower urinary tract symptoms (LUTS). Available drugs are characterized by limited efficacy. Patients’ adherence is particularly low to combination therapies of 5α-reductase inhibitors and α1-adrenoceptor antagonists, which are supposed to target contraction and growth simultaneously. Consequently, molecular etiology of benign prostatic hyperplasia (BPH) and new compounds interfering with smooth muscle contraction or growth in the prostate are of high interest. Here, we studied effects of p21-activated kinase (PAK) inhibitors (FRAX486, IPA3) in hyperplastic human prostate tissues, and in stromal cells (WPMY-1). In hyperplastic prostate tissues, PAK1, -2, -4, and -6 may be constitutively expressed in catecholaminergic neurons, while PAK1 was detected in smooth muscle and WPMY-1 cells. Neurogenic contractions of prostate strips by electric field stimulation were significantly inhibited by high concentrations of FRAX486 (30 μM) or IPA3 (300 μM), while noradrenaline- and phenylephrine-induced contractions were not affected. FRAX486 (30 μM) inhibited endothelin-1- and -2-induced contractions. In WPMY-1 cells, FRAX486 or IPA3 (24 h) induced concentration-dependent (1–10 μM) degeneration of actin filaments. This was paralleled by attenuation of proliferation rate, being observed from 1 to 10 μM FRAX486 or IPA3. Cytotoxicity of FRAX486 and IPA3 in WPMY-1 cells was time- and concentration-dependent. Stimulation of WPMY-1 cells with endothelin-1 or dihydrotestosterone, but not noradrenaline induced PAK phosphorylation, indicating PAK activation by endothelin-1. Thus, PAK inhibitors may inhibit neurogenic and endothelin-induced smooth muscle contractions in the hyperplastic human prostate, and growth of stromal cells. Targeting prostate smooth muscle contraction and stromal growth at once by a single compound is principally possible, at least under

  18. Variations in Alveolar Partial Pressure for Carbon Dioxide and Oxygen Have Additive Not Synergistic Acute Effects on Human Pulmonary Vasoconstriction

    PubMed Central

    Croft, Quentin P. P.; Formenti, Federico; Talbot, Nick P.; Lunn, Daniel; Robbins, Peter A.; Dorrington, Keith L.

    2013-01-01

    The human pulmonary vasculature constricts in response to hypercapnia and hypoxia, with important consequences for homeostasis and adaptation. One function of these responses is to direct blood flow away from poorly-ventilated regions of the lung. In humans it is not known whether the stimuli of hypercapnia and hypoxia constrict the pulmonary blood vessels independently of each other or whether they act synergistically, such that the combination of hypercapnia and hypoxia is more effective than the sum of the responses to each stimulus on its own. We independently controlled the alveolar partial pressures of carbon dioxide (Paco2) and oxygen (Pao2) to examine their possible interaction on human pulmonary vasoconstriction. Nine volunteers each experienced sixteen possible combinations of four levels of Paco2 (+6, +1, −4 and −9 mmHg, relative to baseline) with four levels of Pao2 (175, 100, 75 and 50 mmHg). During each of these sixteen protocols Doppler echocardiography was used to evaluate cardiac output and systolic tricuspid pressure gradient, an index of pulmonary vasoconstriction. The degree of constriction varied linearly with both Paco2 and the calculated haemoglobin oxygen desaturation (1-So2). Mixed effects modelling delivered coefficients defining the interdependence of cardiac output, systolic tricuspid pressure gradient, ventilation, Paco2 and So2. No interaction was observed in the effects on pulmonary vasoconstriction of carbon dioxide and oxygen (p>0.64). Direct effects of the alveolar gases on systolic tricuspid pressure gradient greatly exceeded indirect effects arising from concurrent changes in cardiac output. PMID:23935847

  19. Developmental Reprogramming in Mesenchymal Stromal Cells of Human Subjects with Idiopathic Pulmonary Fibrosis

    PubMed Central

    Chanda, Diptiman; Kurundkar, Ashish; Rangarajan, Sunad; Locy, Morgan; Bernard, Karen; Sharma, Nirmal S.; Logsdon, Naomi J.; Liu, Hui; Crossman, David K.; Horowitz, Jeffrey C.; De Langhe, Stijn; Thannickal, Victor J.

    2016-01-01

    Cellular plasticity and de-differentiation are hallmarks of tissue/organ regenerative capacity in diverse species. Despite a more restricted capacity for regeneration, humans with age-related chronic diseases, such as cancer and fibrosis, show evidence of a recapitulation of developmental gene programs. We have previously identified a resident population of mesenchymal stromal cells (MSCs) in the terminal airways-alveoli by bronchoalveolar lavage (BAL) of human adult lungs. In this study, we characterized MSCs from BAL of patients with stable and progressive idiopathic pulmonary fibrosis (IPF), defined as <5% and ≥10% decline, respectively, in forced vital capacity over the preceding 6-month period. Gene expression profiles of MSCs from IPF subjects with progressive disease were enriched for genes regulating lung development. Most notably, genes regulating early tissue patterning and branching morphogenesis were differentially regulated. Network interactive modeling of a set of these genes indicated central roles for TGF-β and SHH signaling. Importantly, fibroblast growth factor-10 (FGF-10) was markedly suppressed in IPF subjects with progressive disease, and both TGF-β1 and SHH signaling were identified as critical mediators of this effect in MSCs. These findings support the concept of developmental gene re-activation in IPF, and FGF-10 deficiency as a potentially critical factor in disease progression. PMID:27869174

  20. Pulmonary Surfactant Phosphatidylglycerol Inhibits Mycoplasma pneumoniae-stimulated Eicosanoid Production from Human and Mouse Macrophages*

    PubMed Central

    Kandasamy, Pitchaimani; Zarini, Simona; Chan, Edward D.; Leslie, Christina C.; Murphy, Robert C.; Voelker, Dennis R.

    2011-01-01

    Mycoplasma pneumoniae is a human pathogen causing respiratory infections that are also associated with serious exacerbations of chronic lung diseases. Membranes and lipoproteins from M. pneumoniae induced a 4-fold increase in arachidonic acid (AA) release from RAW264.7 and a 2-fold increase in AA release from primary human alveolar macrophages. The bacterial lipoprotein mimic and TLR2/1 agonist Pam3Cys and the TLR2/6 agonist MALP-2 produced effects similar to those elicited by M. pneumoniae in macrophages by inducing the phosphorylation of p38MAPK and p44/42ERK1/2 MAP kinases and cyclooxygenase-2 (COX-2) expression. M. pneumoniae induced the generation of prostaglandins PGD2 and PGE2 from RAW264.7 cells and thromboxane B2 (TXB2) from human alveolar macrophages. Anti-TLR2 antibody completely abolished M. pneumoniae-induced AA release and TNFα secretion from RAW264.7 cells and human alveolar macrophages. Disruption of the phosphorylation of p44/42ERK1/2 or inactivation of cytosolic phospholipase A2α (cPLA2α) completely inhibited M. pneumoniae-induced AA release from macrophages. The minor pulmonary surfactant phospholipid, palmitoyl-oleoyl-phosphatidylglycerol (POPG), antagonized the proinflammatory actions of M. pneumoniae, Pam3Cys, and MALP-2 by reducing the production of AA metabolites from macrophages. The effect of POPG was specific, insofar as saturated PG, and saturated and unsaturated phosphatidylcholines did not have significant effect on M. pneumoniae-induced AA release. Collectively, these data demonstrate that M. pneumoniae stimulates the production of eicosanoids from macrophages through TLR2, and POPG suppresses this pathogen-induced response. PMID:21205826

  1. Cross-talk between NADPH oxidase-PKCα-p(38)MAPK and NF-κB-MT1MMP in activating proMMP-2 by ET-1 in pulmonary artery smooth muscle cells.

    PubMed

    Sarkar, Jaganmay; Chowdhury, Animesh; Chakraborti, Tapati; Chakraborti, Sajal

    2016-04-01

    Treatment of bovine pulmonary artery smooth muscle cells with endothelin-1 (ET-1) caused an increase in the expression and activation of proMMP-2 in the cells. The present study was undertaken to determine the underlying mechanisms involved in this scenario. We demonstrated that (i) pretreatment with NADPH oxidase inhibitor, apocynin; PKC-α inhibitor, Go6976; p(38)MAPK inhibitor SB203580 and NF-κB inhibitor, Bay11-7082 inhibited the expression and activation of proMMP-2 induced by ET-1; (ii) ET-1 treatment to the cells stimulated NADPH oxidase and PKCα activity, p(38)MAPK phosphorylation as well as NF-κB activation by translocation of NF-κBp65 subunit from cytosol to the nucleus, and subsequently by increasing its DNA-binding activity; (iii) ET-1 increases MT1-MMP expression, which was inhibited upon pretreatment with apocynin, Go6976, SB293580, and Bay 11-7082; (iv) ET-1 treatment to the cells downregulated TIMP-2 level. Although apocynin and Go6976 pretreatment reversed ET-1 effect on TIMP-2 level, yet pretreatment of the cells with SB203580 and Bay 11-7082 did not show any discernible change in TIMP-2 level by ET-1. Overall, our results suggest that ET-1-induced activation of proMMP-2 is mediated via cross-talk between NADPH oxidase-PKCα-p(38)MAPK and NFκB-MT1MMP signaling pathways along with a marked decrease in TIMP-2 expression in the cells.

  2. Comparison of smooth pursuit and combined eye-head tracking in human subjects with deficient labyrinthine function

    NASA Technical Reports Server (NTRS)

    Leigh, R. J.; Thurston, S. E.; Sharpe, J. A.; Ranalli, P. J.; Hamid, M. A.

    1987-01-01

    The effects of deficient labyrinthine function on smooth visual tracking with the eyes and head were investigated, using ten patients with bilateral peripheral vestibular disease and ten normal controls. Active, combined eye-head tracking (EHT) was significantly better in patients than smooth pursuit with the eyes alone, whereas normal subjects pursued equally well in both cases. Compensatory eye movements during active head rotation in darkness were always less in patients than in normal subjects. These data were used to examine current hypotheses that postulate central cancellation of the vestibulo-ocular reflex (VOR) during EHT. A model that proposes summation of an integral smooth pursuit command and VOR/compensatory eye movements is consistent with the findings. Observation of passive EHT (visual fixation of a head-fixed target during en bloc rotation) appears to indicate that in this mode parametric gain changes contribute to modulation of the VOR.

  3. Prostacyclin release and receptor activation: differential control of human pulmonary venous and arterial tone

    PubMed Central

    Norel, Xavier; Walch, Laurence; Gascard, Jean-Pierre; Montpreville, Vincent de; Brink, Charles

    2004-01-01

    In human pulmonary vascular preparations, precontracted arteries were more sensitive to the relaxant effect of acetylcholine (ACh) than veins (pD2 values: 7.25±0.08 (n=23) and 5.92±0.09 (n=25), respectively). Therefore, the role of prostacyclin (PGI2) was explored to examine whether this mediator may be responsible for the difference in relaxation. In the presence of the cyclooxygenase (COX) inhibitor, indomethacin (INDO), the ACh relaxations were reduced in arteries but not in veins. On the contrary, an inhibitor (L-NOARG) of the nitric oxide synthase blocked preferentially the relaxation in veins. A greater release of 6-keto-PGF1α, the stable metabolite of PGI2, was observed in arterial preparations than in venous preparations when stimulated with either ACh or arachidonic acid (AA). Exogenous PGI2 produced a reduced relaxant effect in the precontracted vein when compared with the artery. In the presence of the EP1-receptor antagonist AH6809, the PGI2 relaxation of veins was similar to arteries. In veins, AA (0.1 mM) produced a biphasic response, namely, a contraction peak (0.4–0.5 g) followed by a relaxation. These contractions in venous preparations were abolished either in the absence of endothelium or in the presence of INDO or an EP1-receptor antagonist (AH6809, SC19220). In the arterial preparations AA induced only relaxations. In both vascular preparations, COX-1 but not the COX-2 protein was detected in microsomal preparations derived from homogenized tissues or freshly isolated endothelial cells. The differential vasorelaxations induced by ACh may be explained, in part, by a more pronounced production and release of PGI2 in human pulmonary arteries than in the veins. In addition, while PGI2 induced relaxation by activation of IP-receptors in both types of vessels, a PGI2 constrictor effect was responsible for masking the relaxation in the veins by activation of the EP1-receptor. PMID:15172959

  4. Nicotinamide Adenine Dinucleotide Phosphate Oxidase–Mediated Redox Signaling and Vascular Remodeling by 16α-Hydroxyestrone in Human Pulmonary Artery Cells

    PubMed Central

    Hood, Katie Y.; Montezano, Augusto C.; Harvey, Adam P.; Nilsen, Margaret; MacLean, Margaret R.

    2016-01-01

    Estrogen and oxidative stress have been implicated in pulmonary arterial hypertension (PAH). Mechanisms linking these systems are elusive. We hypothesized that estrogen metabolite, 16α-hydroxyestrone (16αOHE1), stimulates nicotinamide adenine dinucleotide phosphate oxidase (Nox)–induced reactive oxygen species (ROS) generation and proliferative responses in human pulmonary artery smooth muscle cells (hPASMCs) and that in PAH aberrant growth signaling promotes vascular remodeling. The pathophysiological significance of estrogen–Nox–dependent processes was studied in female Nox1−/− and Nox4−/− mice with PAH. PASMCs from control subjects (control hPASMCs) and PAH patients (PAH-hPASMCs) were exposed to estrogen and 16αOHE1 in the presence/absence of inhibitors of Nox, cytochrome P450 1B1, and estrogen receptors. Estrogen, through estrogen receptor-α, increased Nox-derived ROS and redox-sensitive growth in hPASMCs, with greater effects in PAH-hPASMCs versus control hPASMCs. Estrogen effects were inhibited by cytochrome P450 1B1 blockade. 16αOHE1 stimulated transient ROS production in hPASMCs, with sustained responses in PAH-hPASMCs. Basal expression of Nox1/Nox4 was potentiated in PAH-hPASMCs. In hPASMCs, 16αOHE1 increased Nox1 expression, stimulated irreversible oxidation of protein tyrosine phosphatases, decreased nuclear factor erythroid–related factor 2 activity and expression of nuclear factor erythroid–related factor 2–regulated antioxidant genes, and promoted proliferation. This was further amplified in PAH-hPASMCs. Nox1−/− but not Nox4−/− mice were protected against PAH and vascular remodeling. Our findings demonstrate that in PAH-hPASMCs, 16αOHE1 stimulates redox-sensitive cell growth primarily through Nox1. Supporting this, in vivo studies exhibited protection against pulmonary hypertension and remodeling in Nox1−/− mice. This study provides new insights through Nox1/ROS and nuclear factor erythroid–related factor 2

  5. Adenosine Attenuates Human Coronary Artery Smooth Muscle Cell Proliferation by Inhibiting Multiple Signaling Pathways That Converge on Cyclin D.

    PubMed

    Dubey, Raghvendra K; Fingerle, Jürgen; Gillespie, Delbert G; Mi, Zaichuan; Rosselli, Marinella; Imthurn, Bruno; Jackson, Edwin K

    2015-12-01

    The goal of this study was to determine whether and how adenosine affects the proliferation of human coronary artery smooth muscle cells (HCASMCs). In HCASMCs, 2-chloroadenosine (stable adenosine analogue), but not N(6)-cyclopentyladenosine, CGS21680, or N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide, inhibited HCASMC proliferation (A2B receptor profile). 2-Chloroadenosine increased cAMP, reduced phosphorylation (activation) of ERK and Akt (protein kinases known to increase cyclin D expression and activity, respectively), and reduced levels of cyclin D1 (cyclin that promotes cell-cycle progression in G1). Moreover, 2-chloroadenosine inhibited expression of S-phase kinase-associated protein-2 (Skp2; promotes proteolysis of p27(Kip1)) and upregulated levels of p27(Kip1) (cell-cycle regulator that impairs cyclin D function). 2-Chloroadenosine also inhibited signaling downstream of cyclin D, including hyperphosphorylation of retinoblastoma protein and expression of cyclin A (S phase cyclin). Knockdown of A2B receptors prevented the effects of 2-chloroadenosine on ERK1/2, Akt, Skp2, p27(Kip1), cyclin D1, cyclin A, and proliferation. Likewise, inhibition of adenylyl cyclase and protein kinase A abrogated 2-chloroadenosine's inhibitory effects on Skp2 and stimulatory effects on p27(Kip1) and rescued HCASMCs from 2-chloroadenosine-mediated inhibition. Knockdown of p27(Kip1) also reversed the inhibitory effects of 2-chloroadenosine on HCASMC proliferation. In vivo, peri-arterial (rat carotid artery) 2-chloroadenosine (20 μmol/L for 7 days) downregulated vascular expression of Skp2, upregulated vascular expression of p27(Kip1), and reduced neointima hyperplasia by 71% (P<0.05; neointimal thickness: control, 37 424±18 371 pixels; treated, 10 352±2824 pixels). In conclusion, the adenosine/A2B receptor/cAMP/protein kinase A axis inhibits HCASMC proliferation by blocking multiple signaling pathways (ERK1/2, Akt, and Skp2) that converge at cyclin D, a key G1 cyclin

  6. Loss of LMOD1 impairs smooth muscle cytocontractility and causes megacystis microcolon intestinal hypoperistalsis syndrome in humans and mice

    PubMed Central

    Halim, Danny; Wilson, Michael P.; Oliver, Daniel; Brosens, Erwin; Verheij, Joke B. G. M.; Han, Yu; Nanda, Vivek; Lyu, Qing; Doukas, Michael; Stoop, Hans; Brouwer, Rutger W. W.; van IJcken, Wilfred F. J.; Slivano, Orazio J.; Burns, Alan J.; Christie, Christine K.; de Mesy Bentley, Karen L.; Brooks, Alice S.; Tibboel, Dick; Xu, Suowen; Jin, Zheng Gen; Djuwantono, Tono; Yan, Wei; Alves, Maria M.; Hofstra, Robert M. W.; Miano, Joseph M.

    2017-01-01

    Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a congenital visceral myopathy characterized by severe dilation of the urinary bladder and defective intestinal motility. The genetic basis of MMIHS has been ascribed to spontaneous and autosomal dominant mutations in actin gamma 2 (ACTG2), a smooth muscle contractile gene. However, evidence suggesting a recessive origin of the disease also exists. Using combined homozygosity mapping and whole exome sequencing, a genetically isolated family was found to carry a premature termination codon in Leiomodin1 (LMOD1), a gene preferentially expressed in vascular and visceral smooth muscle cells. Parents heterozygous for the mutation exhibited no abnormalities, but a child homozygous for the premature termination codon displayed symptoms consistent with MMIHS. We used CRISPR-Cas9 (CRISPR-associated protein) genome editing of Lmod1 to generate a similar premature termination codon. Mice homozygous for the mutation showed loss of LMOD1 protein and pathology consistent with MMIHS, including late gestation expansion of the bladder, hydronephrosis, and rapid demise after parturition. Loss of LMOD1 resulted in a reduction of filamentous actin, elongated cytoskeletal dense bodies, and impaired intestinal smooth muscle contractility. These results define LMOD1 as a disease gene for MMIHS and suggest its role in establishing normal smooth muscle cytoskeletal–contractile coupling. PMID:28292896

  7. Loss of LMOD1 impairs smooth muscle cytocontractility and causes megacystis microcolon intestinal hypoperistalsis syndrome in humans and mice.

    PubMed

    Halim, Danny; Wilson, Michael P; Oliver, Daniel; Brosens, Erwin; Verheij, Joke B G M; Han, Yu; Nanda, Vivek; Lyu, Qing; Doukas, Michael; Stoop, Hans; Brouwer, Rutger W W; van IJcken, Wilfred F J; Slivano, Orazio J; Burns, Alan J; Christie, Christine K; de Mesy Bentley, Karen L; Brooks, Alice S; Tibboel, Dick; Xu, Suowen; Jin, Zheng Gen; Djuwantono, Tono; Yan, Wei; Alves, Maria M; Hofstra, Robert M W; Miano, Joseph M

    2017-03-28

    Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a congenital visceral myopathy characterized by severe dilation of the urinary bladder and defective intestinal motility. The genetic basis of MMIHS has been ascribed to spontaneous and autosomal dominant mutations in actin gamma 2 (ACTG2), a smooth muscle contractile gene. However, evidence suggesting a recessive origin of the disease also exists. Using combined homozygosity mapping and whole exome sequencing, a genetically isolated family was found to carry a premature termination codon in Leiomodin1 (LMOD1), a gene preferentially expressed in vascular and visceral smooth muscle cells. Parents heterozygous for the mutation exhibited no abnormalities, but a child homozygous for the premature termination codon displayed symptoms consistent with MMIHS. We used CRISPR-Cas9 (CRISPR-associated protein) genome editing of Lmod1 to generate a similar premature termination codon. Mice homozygous for the mutation showed loss of LMOD1 protein and pathology consistent with MMIHS, including late gestation expansion of the bladder, hydronephrosis, and rapid demise after parturition. Loss of LMOD1 resulted in a reduction of filamentous actin, elongated cytoskeletal dense bodies, and impaired intestinal smooth muscle contractility. These results define LMOD1 as a disease gene for MMIHS and suggest its role in establishing normal smooth muscle cytoskeletal-contractile coupling.

  8. Human papillomavirus type 16 DNA detected in pulmonary metastases from a penile squamous cell carcinoma: a case study.

    PubMed

    Lorenzon, Laura; Benevolo, Maria; Visca, Paolo; Venturo, Irene; Filippetti, Massimo; Piro, Francesca Romana; Rollo, Francesca; Vocaturo, Amina

    2013-02-01

    This report describe the case of a patient presenting with pulmonary metastases from a penile cancer, where the presence of the human papillomavirus (HPV) type 16 DNA both in the primary tumor and in the distant metastases confirmed the spreading of the disease, ruling out a possible primary lung squamous cell carcinoma. Indeed, according to the findings, the HPV genotyping test might help in the identification of metastatic disease from anogenital malignancies or other HPV-related cancers.

  9. Pulmonary edema

    MedlinePlus

    ... congestion; Lung water; Pulmonary congestion; Heart failure - pulmonary edema ... Pulmonary edema is often caused by congestive heart failure . When the heart is not able to pump efficiently, blood ...

  10. Pulmonary surfactant: hydrophobic nature of the mucosal surface of the human amnion.

    PubMed

    Cotton, D B; Hills, B A

    1984-04-01

    The contact angle has been measured for a drop of saline placed upon the rinsed mucosal surface of the amnion in eleven human placental membranes obtained from normal births at full term. The contact angle averaged 70 degrees, indicating a hydrophobic surface comparable with graphite (86 degrees), polyethylene (94 degrees) or oxyntic tissue (85 degrees) which is also exposed to endogenous surface-active phospholipids in vivo. By comparison, four pre-term placentas with an average gestation period of 29.5 weeks gave a mean contact angle of 32 degrees, indicating that hydrophobicity of the placenta increases with maturity (41 weeks) and might well be imparted by adsorbed surfactants present in amniotic fluid and known to render other surfaces hydrophobic. Since the mucosal epithelium of the amnion is exposed to the same surfactants in the same physical state as the fetal alveolar wall, the above results imply that this surface may also be hydrophobic, as indicated in the adult lung by other studies. The concept of surfactant directly adsorbed to the pulmonary tissue surfaces is discussed in connexion with its possible functional advantages in 'de-watering' the lung at birth, maintaining homeostasis by water repellency , releasing airway surfaces and lymph ducts glued by protein and lubricating tissue respiratory movement.

  11. Lipopolysaccharide Induces Human Pulmonary Micro-Vascular Endothelial Apoptosis via the YAP Signaling Pathway

    PubMed Central

    Yi, Lei; Huang, Xiaoqin; Guo, Feng; Zhou, Zengding; Chang, Mengling; Tang, Jiajun; Huan, Jingning

    2016-01-01

    Gram-negative bacterial lipopolysaccharide (LPS) induces a pathologic increase in lung vascular leakage under septic conditions. LPS-induced human pulmonary micro-vascular endothelial cell (HPMEC) apoptosis launches and aggravates micro-vascular hyper-permeability and acute lung injury (ALI). Previous studies show that the activation of intrinsic apoptotic pathway is vital for LPS-induced EC apoptosis. Yes-associated protein (YAP) has been reported to positively regulate intrinsic apoptotic pathway in tumor cells apoptosis. However, the potential role of YAP protein in LPS-induced HPMEC apoptosis has not been determined. In this study, we found that LPS-induced activation and nuclear accumulation of YAP accelerated HPMECs apoptosis. LPS-induced YAP translocation from cytoplasm to nucleus by the increased phosphorylation on Y357 resulted in the interaction between YAP and transcription factor P73. Furthermore, inhibition of YAP by small interfering RNA (siRNA) not only suppressed the LPS-induced HPMEC apoptosis but also regulated P73-mediated up-regulation of BAX and down-regulation of BCL-2. Taken together, our results demonstrated that activation of the YAP/P73/(BAX and BCL-2)/caspase-3 signaling pathway played a critical role in LPS-induced HPMEC apoptosis. Inhibition of the YAP might be a potential therapeutic strategy for lung injury under sepsis. PMID:27807512

  12. Differences in pulmonary responses of rats, other animals, and humans to chronic inhalation of silica and other particles

    SciTech Connect

    Mauderly, J.L.

    1993-12-31

    The pulmonary carcinogenicity of quartz in rats supports the plausibility of silica-induced lung cancer in humans. However, pulmonary responses of rats to dusts differ from those of other rodents, and may differ from those of humans. Dust-exposed rats have a greater propensity than mice or hamsters for epithelial hyperplasia, metaplasia, and fibrosis. Lung tumors occur in rats, but not mice or hamsters, treated with quartz, or exposed chronically to several other dusts. There are few opportunities for directly comparing the susceptibilities of rats and humans to dust-induced lung tumors. Because of the uncertain human responses to silica and many other particles, the negative human lung cancer response to coal dust may provide the best opportunity to calibrate responses of rats against those of humans. Historical dust lung burdens in coal miners were in the range of those associated with carcinogenicity in rats exposed to several dusts, but the carcinogenicity of coal dust in rats is unknown. The usefulness of tumor data from rats for predicting human lung cancer risk from inhaled silica and other dusts remains uncertain.

  13. Transcriptome Analysis and Gene Identification in the Pulmonary Artery of Broilers with Ascites Syndrome

    PubMed Central

    Xiao, Qingyang; Guo, Xiaoquan; Zhuang, Yu; Zhang, Caiying; Wang, Tiancheng; Lin, Huayuan; Song, Yalu; Hu, Guoliang; Liu, Ping

    2016-01-01

    Background Pulmonary arterial hypertension, also known as Ascites syndrome (AS), remains a clinically challenging disease with a large impact on both humans and broiler chickens. Pulmonary arterial remodeling presents a key step in the development of AS. The precise molecular mechanism of pulmonary artery remodeling regulating AS progression remains unclear. Methodology/Principal Findings We obtained pulmonary arteries from two positive AS and two normal broilers for RNA sequencing (RNA-seq) analysis and pathological observation. RNA-seq analysis revealed a total of 895 significantly differentially expressed genes (DEGs) with 437 up-regulated and 458 down-regulated genes, which were significantly enriched to 12 GO (Gene Ontology) terms and 4 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways (Padj<0.05) regulating pulmonary artery remodeling and consequently occurrence of AS. These GO terms and pathways include ribosome, Jak-STAT and NOD-like receptor signaling pathways which regulate pulmonary artery remodeling through vascular smooth cell proliferation, inflammation and vascular smooth cell proliferation together. Some notable DEGs within these pathways included downregulation of genes like RPL 5, 7, 8, 9, 14; upregulation of genes such as IL-6, K60, STAT3, STAT5 Pim1 and SOCS3; IKKα, IkB, P38, five cytokines IL-6, IL8, IL-1β, IL-18, and MIP-1β. Six important regulators of pulmonary artery vascular remodeling and construction like CYP1B1, ALDH7A1, MYLK, CAMK4, BMP7 and INOS were upregulated in the pulmonary artery of AS broilers. The pathology results showed that the pulmonary artery had remodeled and become thicker in the disease group. Conclusions/Significance Our present data suggested some specific components of the complex molecular circuitry regulating pulmonary arterial remodeling underlying AS progression in broilers. We revealed some valuable candidate genes and pathways that involved in pulmonary artery remodeling further contributing to the AS

  14. [Hantavirus in human and rodent population in an endemic area for hantavirus pulmonary syndrome in Argentina].

    PubMed

    Sosa-Estani, Sergio; Martínez, Valeria P; González Della Valle, Marcelo; Edelstein, Alexis; Miguel, Sergio; Padula, Paula J; Cacase, María L; Segura, Elsa L

    2002-01-01

    This paper analyzed the prevalence and distribution of serological reactivity to hantavirus (antibody against ANDES virus) of human population exposed to hantavirus and rodents trapped in the studied area. This study was developed in Salta (Orán and San Martín Departments), area with the highest incidence for Hantavirus Pulmonary Syndrome (HPS) in Argentina. In December 1997, 453 healthy people were studied by serology and 39 rodents by serology and PCR. The studied individuals were distributed as: 145 farm inhabitants (FI), 212 people living in the same dwelling with healthy individuals (controls) (Cco), 87 people living in the same dwelling with persons undergoing SPH in 1997 (cases) (Cca). Moreover, 19 physicians and nurses who cared for patients with SPH in 1997 were also studied. The prevalence of hantavirus infection among the studied population was 6.3%. The prevalence was 10.3% among FI, 6.9% among Cca and 3.3% among Cco (p < 0.02). There was no serological reactivity among PS. The prevalence in 39 trapped rodents was 10.2%, with infection only for Oligoryzomys chacoensis, O. flavescens and Akodon varius species. The prevalence of human cases with asymptomatic infection in Salta is higher than in other regions of the country, and we are presenting a hypothesis to explain these differences. The analyzed data suggest that in this region up to the time this study was performed, there would not have been person to person transmission of hantavirus. The transmission would be from rodent contact exclusively and mainly in ongoing deforestation areas and domestic habitat surrounding rural dwellings.

  15. Up-Regulation and Profibrotic Role of Osteopontin in Human Idiopathic Pulmonary Fibrosis

    PubMed Central

    2005-01-01

    Background Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disorder characterized by fibroproliferation and excessive accumulation of extracellular matrix in the lung. Methods and Findings Using oligonucleotide arrays, we identified osteopontin as one of the genes that significantly distinguishes IPF from normal lungs. Osteopontin was localized to alveolar epithelial cells in IPF lungs and was also significantly elevated in bronchoalveolar lavage from IPF patients. To study the fibrosis-relevant effects of osteopontin we stimulated primary human lung fibroblasts and alveolar epithelial cells (A549) with recombinant osteopontin. Osteopontin induced a significant increase of migration and proliferation in both fibroblasts and epithelial cells. Epithelial growth was inhibited by the pentapeptide Gly-Arg-Gly-Asp-Ser (GRGDS) and antibody to CD44, while fibroproliferation was inhibited by GRGDS and antibody to αvβ3 integrin. Fibroblast and epithelial cell migration were inhibited by GRGDS, anti-CD44, and anti-αvβ3. In fibroblasts, osteopontin up-regulated tissue inhibitor of metalloprotease-1 and type I collagen, and down-regulated matrix metalloprotease-1 (MMP-1) expression, while in A549 cells it caused up-regulation of MMP-7. In human IPF lungs, osteopontin colocalized with MMP-7 in alveolar epithelial cells, and application of weakest link statistical models to microarray data suggested a significant interaction between osteopontin and MMP-7. Conclusions Our results provide a potential mechanism by which osteopontin secreted from the alveolar epithelium may exert a profibrotic effect in IPF lungs and highlight osteopontin as a potential target for therapeutic intervention in this incurable disease. PMID:16128620

  16. Arginase inhibitor attenuates pulmonary artery hypertension induced by hypoxia.

    PubMed

    Chu, YanBiao; XiangLi, XiaoYing; Niu, Hu; Wang, HongChao; Jia, PingDong; Gong, WenBin; Wu, DaWei; Qin, WeiDong; Xing, ChunYan

    2016-01-01

    Hypoxia-induced pulmonary arterial hypertension (HPAH) is a refractory disease characterized by increased proliferation of pulmonary vascular smooth cells and progressive pulmonary vascular remodeling. The level of nitric oxide (NO), a potential therapeutic vasodilator, is low in PAH patients. L-arginine can be converted to either beneficial NO by nitric oxide synthases or to harmful urea by arginase. In the present study, we aimed to investigate whether an arginase inhibitor, S-(2-boronoethyl)-L-cysteine ameliorates HPAH in vivo and vitro. In a HPAH mouse model, we assessed right ventricle systolic pressure (RVSP) by an invasive method, and found that RSVP was elevated under hypoxia, but was attenuated upon arginase inhibition. Human pulmonary artery smooth muscle cells (HPASMCs) were cultured under hypoxic conditions, and their proliferative capacity was determined by cell counting and flow cytometry. The levels of cyclin D1, p27, p-Akt, and p-ERK were detected by RT-PCR or Western blot analysis. Compared to hypoxia group, arginase inhibitor inhibited HPASMCs proliferation and reduced the levels of cyclin D1, p-Akt, p-ERK, while increasing p27 level. Moreover, in mouse models, compared to control group, hypoxia increased cyclin D1 expression but reduced p27 expression, while arginase inhibitor reversed the effects of hypoxia. Taken together, these results suggest that arginase plays an important role in increased proliferation of HPASMCs induced by hypoxia and it is a potential therapeutic target for the treatment of pulmonary hypertensive disorders.

  17. The PDZ protein TIP-1 facilitates cell migration and pulmonary metastasis of human invasive breast cancer cells in athymic mice

    SciTech Connect

    Han, Miaojun; Wang, Hailun; Zhang, Hua-Tang; Han, Zhaozhong

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer This study has revealed novel oncogenic functions of TIP-1 in human invasive breast cancer. Black-Right-Pointing-Pointer Elevated TIP-1 expression levels in human breast cancers correlate to the disease prognosis. Black-Right-Pointing-Pointer TIP-1 knockdown suppressed the cell migration and pulmonary metastasis of human breast cancer cells. Black-Right-Pointing-Pointer TIP-1 knockdown suppressed the expression and functionality of motility-related genes. -- Abstract: Tax-interacting protein 1 (TIP-1, also known as Tax1bp3) inhibited proliferation of colon cancer cells through antagonizing the transcriptional activity of beta-catenin. However, in this study, elevated TIP-1 expression levels were detected in human invasive breast cancers. Studies with two human invasive breast cancer cell lines indicated that RNAi-mediated TIP-1 knockdown suppressed the cell adhesion, proliferation, migration and invasion in vitro, and inhibited tumor growth in mammary fat pads and pulmonary metastasis in athymic mice. Biochemical studies showed that TIP-1 knockdown had moderate and differential effects on the beta-catenin-regulated gene expression, but remarkably down regulated the genes for cell adhesion and motility in breast cancer cells. The decreased expression of integrins and paxillin was accompanied with reduced cell adhesion and focal adhesion formation on fibronectin-coated surface. In conclusion, this study revealed a novel oncogenic function of TIP-1 suggesting that TIP-1 holds potential as a prognostic biomarker and a therapeutic target in the treatment of human invasive breast cancers.

  18. Pulmonary Inflammatory Responses To Acute Meteorite Dust Exposures - Implications For Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Harrington, A. D.; McCubbin, F. M.; Kaur, J.; Smirnov, A.; Galdanes, K.; Schoonen, M. A. A.; Chen, L. C.; Tsirka, S. E.; Gordon, T.

    2017-01-01

    The previous manned missions to the Moon represent milestones of human ingenuity, perseverance, and intellectual curiosity. However, one of the major ongoing concerns is the array of hazards associated with lunar surface dust. Not only did the dust cause mechanical and structural integrity issues with the suits, the dust 'storm' generated upon reentrance into the crew cabin caused "lunar hay fever" and "almost blindness" (Figure 1). It was further reported that the allergic response to the dust worsened with each exposure. The lack of gravity exacerbated the exposure, requiring the astronauts to wear their helmet within the module in order to avoid breathing the irritating particles. Due to the prevalence of these high exposures, the Human Research Roadmap developed by NASA identifies the Risk of Adverse Health and Performance Effects of Celestial Dust Exposure as an area of concern. Extended human exploration will further increase the probability of inadvertent and repeated exposures to celestial dusts. Going forward, hazard assessments of celestial dusts will be determined through sample return efforts prior to astronaut deployment. Studies on the lunar highland regolith indicate that the dust is not only respirable but also reactive, and previous studies concluded that it is moderately toxic; generating a greater response than titanium oxide but a lower response than quartz. The presence of reactive oxygen species (ROS) on the surface of the dust has been implicated. However, there is actually little data related to physicochemical characteristics of particulates and pulmonary toxicity, especially as it relates to celestial dust exposure. As a direct response to this deficit, the present study evaluates the role of a particulate's innate geochemical features (e.g., bulk chemistry, internal composition, morphology, size, and reactivity) in generating adverse toxicological responses in vitro and in vivo. This highly interdisciplinary study evaluates the relative

  19. The effect of urapidil, an alpha-1 adrenoceptor antagonist and a 5-HT1A agonist, on the vascular tone of the porcine coronary and pulmonary arteries, the rat aorta and the human pulmonary artery.

    PubMed

    Bopp, Claire; Auger, Cyril; Diemunsch, Pierre; Schini-Kerth, Valérie

    2016-05-15

    Urapidil (Eupressyl(®)) an antihypertensive drug acting as an α1 antagonist and a 5-HT1A agonist, may be of special interest in the treatment of hypertension associated with preeclamptic toxaemia and hypoxia-induced pulmonary arterial vasoconstriction. However, the effect of urapidil on vascular tone has been poorly investigated. Vascular reactivity was evaluated using pulmonary and coronary arteries from 36 pigs, aortae from 22 rats and 9 human pulmonary artery samples suspended in organ chambers. Concentration-relaxation curves either to urapidil, 5-HT, or the 5-HT1A receptor agonist 8-OH-DPAT were constructed after pre-contraction of rings. Pig pulmonary and coronary artery rings were contracted with U46619, a thromboxane mimetic, rat aortic rings with either endothelin-1 or phenylephrine, and human pulmonary artery rings with U46619 or phenylephrine. Urapidil markedly inhibited phenylephrine-induced contractions in rat aortic rings with and without endothelium with a more pronounced effect observed in rings without endothelium. Both 5-HT and 8-OH-DPAT failed to induce relaxation in rat aortic rings with an intact endothelium. 5-HT, but not urapidil and 8-OH-DPAT, induced a concentration-dependent relaxation in the porcine coronary and pulmonary artery rings with an intact endothelium (P<0.05). 5-HT and phenylephrine but not urapidil caused concentration-dependent contractions in human pulmonary artery rings. The present findings, while confirming that urapidil is a potent inhibitor of α1-adrenoceptor-induced contraction, do not support the role of 5-HT1A receptor activation in the control of the vascular tone of the different types of arteries tested in response to urapidil. In addition, they indicate that urapidil seems to preferentially target arteries with endothelial dysfunction.

  20. Human Pulmonary Microvascular Endothelial Cells Support Productive Replication of Highly Pathogenic Avian Influenza Viruses: Possible Involvement in the Pathogenesis of Human H5N1 Virus Infection

    PubMed Central

    Zeng, Hui; Pappas, Claudia; Belser, Jessica A.; Houser, Katherine V.; Zhong, Weiming; Wadford, Debra A.; Stevens, Troy; Balczon, Ron; Katz, Jacqueline M.

    2012-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses continue to cause sporadic human infections with a high fatality rate. Respiratory failure due to acute respiratory distress syndrome (ARDS) is a complication among hospitalized patients. Since progressive pulmonary endothelial damage is the hallmark of ARDS, we investigated host responses following HPAI virus infection of human pulmonary microvascular endothelial cells. Evaluation of these cells for the presence of receptors preferred by influenza virus demonstrated that avian-like (α2-3-linked) receptors were more abundant than human-like (α2-6-linked) receptors. To test the permissiveness of pulmonary endothelial cells to virus infection, we compared the replication of selected seasonal, pandemic (2009 H1N1 and 1918), and potentially pandemic (H5N1) influenza virus strains. We observed that these cells support productive replication only of HPAI H5N1 viruses, which preferentially enter through and are released from the apical surface of polarized human endothelial monolayers. Furthermore, A/Thailand/16/2004 and A/Vietnam/1203/2004 (VN/1203) H5N1 viruses, which exhibit heightened virulence in mammalian models, replicated to higher titers than less virulent H5N1 strains. VN/1203 infection caused a significant decrease in endothelial cell proliferation compared to other subtype viruses. VN/1203 virus was also found to be a potent inducer of cytokines and adhesion molecules known to regulate inflammation during acute lung injury. Deletion of the H5 hemagglutinin (HA) multibasic cleavage site did not affect virus infectivity but resulted in decreased virus replication in endothelial cells. Our results highlight remarkable tropism and infectivity of the H5N1 viruses for human pulmonary endothelial cells, resulting in the potent induction of host inflammatory responses. PMID:22072765

  1. Pulmonary embolus

    MedlinePlus

    ... clot - lung; Embolus; Tumor embolus; Embolism - pulmonary; DVT-pulmonary embolism; Thrombosis - pulmonary embolism ... Main symptoms of a pulmonary embolism include chest pain that may be any of the following: Under the breastbone or on one side Sharp or stabbing ...

  2. Targeting Interleukin-13 with Tralokinumab Attenuates Lung Fibrosis and Epithelial Damage in a Humanized SCID Idiopathic Pulmonary Fibrosis Model

    PubMed Central

    Zhang, Huilan; Oak, Sameer R.; Coelho, Ana Lucia; Herath, Athula; Flaherty, Kevin R.; Lee, Joyce; Bell, Matt; Knight, Darryl A.; Martinez, Fernando J.; Sleeman, Matthew A.; Herzog, Erica L.; Hogaboam, Cory M.

    2014-01-01

    The aberrant fibrotic and repair responses in the lung are major hallmarks of idiopathic pulmonary fibrosis (IPF). Numerous antifibrotic strategies have been used in the clinic with limited success, raising the possibility that an effective therapeutic strategy in this disease must inhibit fibrosis and promote appropriate lung repair mechanisms. IL-13 represents an attractive target in IPF, but its disease association and mechanism of action remains unknown. In the present study, an overexpression of IL-13 and IL-13 pathway markers was associated with IPF, particularly a rapidly progressive form of this disease. Targeting IL-13 in a humanized experimental model of pulmonary fibrosis using tralokinumab (CAT354) was found to therapeutically block aberrant lung remodeling in this model. However, targeting IL-13 was also found to promote lung repair and to restore epithelial integrity. Thus, targeting IL-13 inhibits fibrotic processes and enhances repair processes in the lung. PMID:24325475

  3. Decreased Neprilysin and Pulmonary Vascular Remodeling in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Wick, Marilee J.; Buesing, Erica J.; Wehling, Carol A.; Loomis, Zoe L.; Cool, Carlyne D.; Zamora, Martin R.; Miller, York E.; Colgan, Sean P.; Hersh, Louis B.; Voelkel, Norbert F.; Dempsey, Edward C.

    2011-01-01

    Rationale: Studies with genetically engineered mice showed that decreased expression of the transmembrane peptidase neprilysin (NEP) increases susceptibility to hypoxic pulmonary vascular remodeling and hypertension; in hypoxic wild-type mice, expression is decreased early in distal pulmonary arteries, where prominent vascular remodeling occurs. Therefore, in humans with smoke- and hypoxia-induced vascular remodeling, as in chronic obstructive pulmonary disease (COPD), pulmonary activity/expression of NEP may likewise be decreased. Objectives: To test whether NEP activity and expression are reduced in COPD lungs and pulmonary arterial smooth muscle cells (SMCs) exposed to cigarette smoke extract or hypoxia and begin to investigate mechanisms involved. Methods: Control and advanced COPD lung lysates (n = 13–14) were analyzed for NEP activity and protein and mRNA expression. As a control, dipeptidyl peptidase IV activity was analyzed. Lung sections were assessed for vascular remodeling and oxidant damage. Human pulmonary arterial SMCs were exposed to cigarette smoke extract, hypoxia, or H2O2, and incubated with antioxidants or lysosomal/proteasomal inhibitors. Measurements and Main Results: COPD lungs demonstrated areas of vascular rarification, distal muscularization, and variable intimal and prominent medial/adventitial thickening. NEP activity was reduced by 76%; NEP protein expression was decreased in alveolar walls and distal vessels; mRNA expression was also decreased. In SMCs exposed to cigarette smoke extract, hypoxia, and H2O2, NEP activity and expression were also reduced. Reactive oxygen species inactivated NEP activity; NEP protein degradation appeared to be substantially induced. Conclusions: Mechanisms responsible for reduced NEP activity and protein expression include oxidative reactions and protein degradation. Maintaining or increasing lung NEP may protect against pulmonary vascular remodeling in response to chronic smoke and hypoxia. PMID:20813891

  4. Involvement of matrix metalloproteinase-2 in medial hypertrophy of pulmonary arterioles in broiler chickens with pulmonary arterial hypertension.

    PubMed

    Tan, Xun; Chai, Juan; Bi, Shi-Cheng; Li, Jun-Jun; Li, Wen-Wen; Zhou, Ji-Yong

    2012-08-01

    Medial hypertrophy of pulmonary arterioles during pulmonary arterial hypertension (PAH) in humans is associated with enhanced proliferation of smooth muscle cells (SMCs). Elevated matrix metalloproteinase (MMP)-2 has been found in pulmonary artery SMCs (PA-SMCs) in humans with idiopathic PAH, leading to the hypothesis that MMP-2 contributes to the proliferation and migration of vascular SMCs in the pathogenesis of PAH. Rapidly growing meat-type (broiler) chickens provide a model of spontaneous PAH. The present study was conducted to determine whether MMP-2 is involved in the medial hypertrophy of pulmonary arterioles in this model. Cultured PA-SMCs from normal birds were used to evaluate the effect of MMPs on cell proliferation. Gelatin zymography showed that endothelin (ET)-1-induced proliferation of PA-SMCs was concomitant with increased pro- and active MMP-2 production. Reverse transcription PCR demonstrated upregulation of MMP-2 mRNA. However, PA-SMC proliferation was inhibited by the MMP inhibitors doxycycline and cis-9-octadecenoyl-N-hydroxylamide. In vivo experiments revealed a significant increase of MMP-2 expression in hypertrophied pulmonary arterioles of PAH broiler chickens, which was positively correlated with wall thickness and medial hypertrophy. MMP-2 may contribute to medial hypertrophy in pulmonary arterioles during PAH in broiler chickens by enhancing the proliferation of vascular SMCs.

  5. Robust pulmonary lobe segmentation against incomplete fissures

    NASA Astrophysics Data System (ADS)

    Gu, Suicheng; Zheng, Qingfeng; Siegfried, Jill; Pu, Jiantao

    2012-03-01

    As important anatomical landmarks of the human lung, accurate lobe segmentation may be useful for characterizing specific lung diseases (e.g., inflammatory, granulomatous, and neoplastic diseases). A number of investigations showed that pulmonary fissures were often incomplete in image depiction, thereby leading to the computerized identification of individual lobes a challenging task. Our purpose is to develop a fully automated algorithm for accurate identification of individual lobes regardless of the integrity of pulmonary fissures. The underlying idea of the developed lobe segmentation scheme is to use piecewise planes to approximate the detected fissures. After a rotation and a global smoothing, a number of small planes were fitted using local fissures points. The local surfaces are finally combined for lobe segmentation using a quadratic B-spline weighting strategy to assure that the segmentation is smooth. The performance of the developed scheme was assessed by comparing with a manually created reference standard on a dataset of 30 lung CT examinations. These examinations covered a number of lung diseases and were selected from a large chronic obstructive pulmonary disease (COPD) dataset. The results indicate that our scheme of lobe segmentation is efficient and accurate against incomplete fissures.

  6. Ca2+ signals evoked by histamine H1 receptors are attenuated by activation of prostaglandin EP2 and EP4 receptors in human aortic smooth muscle cells

    PubMed Central

    Pantazaka, Evangelia; Taylor, Emily J A; Bernard, William G; Taylor, Colin W

    2013-01-01

    Background and Purpose Histamine and prostaglandin E2 (PGE2), directly and via their effects on other cells, regulate the behaviour of vascular smooth muscle (VSM), but their effects on human VSM are incompletely resolved. Experimental Approach The effects of PGE2 on histamine-evoked changes in intracellular free Ca2+ concentration ([Ca2+]i) and adenylyl cyclase activity were measured in populations of cultured human aortic smooth muscle cells (ASMCs). Selective ligands of histamine and EP receptors were used to identify the receptors that mediate the responses. Key Results Histamine, via H1 receptors, stimulates an increase in [Ca2+]i that is entirely mediated by activation of inositol 1,4,5-trisphosphate receptors. Selective stimulation of EP2 or EP4 receptors attenuates histamine-evoked Ca2+ signals, but the effects of PGE2 on both Ca2+ signals and AC activity are largely mediated by EP2 receptors. Conclusions and Implications Two important inflammatory mediators, histamine via H1 receptors and PGE2 acting largely via EP2 receptors, exert opposing effects on [Ca2+]i in human ASMCs. PMID:23638853

  7. Genome sequencing of idiopathic pulmonary fibrosis in conjunction with a medical school human anatomy course.

    PubMed

    Kumar, Akash; Dougherty, Max; Findlay, Gregory M; Geisheker, Madeleine; Klein, Jason; Lazar, John; Machkovech, Heather; Resnick, Jesse; Resnick, Rebecca; Salter, Alexander I; Talebi-Liasi, Faezeh; Arakawa, Christopher; Baudin, Jacob; Bogaard, Andrew; Salesky, Rebecca; Zhou, Qian; Smith, Kelly; Clark, John I; Shendure, Jay; Horwitz, Marshall S

    2014-01-01

    Even in cases where there is no obvious family history of disease, genome sequencing may contribute to clinical diagnosis and management. Clinical application of the genome has not yet become routine, however, in part because physicians are still learning how best to utilize such information. As an educational research exercise performed in conjunction with our medical school human anatomy course, we explored the potential utility of determining the whole genome sequence of a patient who had died following a clinical diagnosis of idiopathic pulmonary fibrosis (IPF). Medical students performed dissection and whole genome sequencing of the cadaver. Gross and microscopic findings were more consistent with the fibrosing variant of nonspecific interstitial pneumonia (NSIP), as opposed to IPF per se. Variants in genes causing Mendelian disorders predisposing to IPF were not detected. However, whole genome sequencing identified several common variants associated with IPF, including a single nucleotide polymorphism (SNP), rs35705950, located in the promoter region of the gene encoding mucin glycoprotein MUC5B. The MUC5B promoter polymorphism was recently found to markedly elevate risk for IPF, though a particular association with NSIP has not been previously reported, nor has its contribution to disease risk previously been evaluated in the genome-wide context of all genetic variants. We did not identify additional predicted functional variants in a region of linkage disequilibrium (LD) adjacent to MUC5B, nor did we discover other likely risk-contributing variants elsewhere in the genome. Whole genome sequencing thus corroborates the association of rs35705950 with MUC5B dysregulation and interstitial lung disease. This novel exercise additionally served a unique mission in bridging clinical and basic science education.

  8. Hyperosmolarity attenuates TNFα–mediated pro-inflammatory activation of human pulmonary microvascular endothelial cells

    PubMed Central

    Banerjee, Anirban; Moore, Ernest E.; McLaughlin, Nathan J.; Lee, Luis; Jones, Wilbert L.; Johnson, Jeffrey L.; Nydam, Trevor L.; Silliman, Christopher C.

    2013-01-01

    Firm neutrophil (PMN)-endothelial (EC) adhesion is crucial to the PMN-mediated hyperinflammation observed in acute lung injury. Hypertonic saline (HTS) used for resuscitation of hemorrhagic shock has been associated with a decreased incidence of PMN-mediated lung injury/acute respiratory distress syndrome. We hypothesize that physiologically accessible hypertonic incubation (170mM vs. 140mM, osmolarity ranging from 360-300 mOsm/L) inhibits pro-inflammatory activation of human pulmonary microvascular endothelial cells (HMVECs). Pro-inflammatory activation of HMVECs was investigated in response to TNFα including IL-8 release, ICAM-1 surface expression, PMN adhesion, and signaling mechanisms under both isotonic (control) and hypertonic conditions. Hyperosmolarity alone had no effect on either basal IL-8 release or ICAM-1 surface expression, but did lead to concentration-dependent decreases in TNFα–induced IL-8 release, ICAM-1 surface expression, and PMN:HMVEC adhesion. Conversely, HTS activated p38 mitogen-activated protein kinase (MAPK) and enhanced TNFα activation of p38 MAPK. Despite this basal activation, hyperosmolar incubation attenuated TNFα stimulated IL-8 release and ICAM-1 surface expression and subsequent PMN adherence, while p38 MAPK inhibition did not further influence the effects of hyperosmolar conditions on ICAM-1 surface expression. In addition, TNFα induced NF-kB DNA binding, but HTS conditions attenuated this by 31% (p<0.01). In conclusion, HTS reduces PMN:HMVEC adhesion as well as TNFα-induced pro-inflammatory activation of primary HMVECs via attenuation of NF-kB signaling. PMID:23364439

  9. Quercus suber cork extract displays a tensor and smoothing effect on human skin: an in vivo study.

    PubMed

    Coquet, C; Bauza, E; Oberto, G; Berghi, A; Farnet, A M; Ferré, E; Peyronel, D; Dal Farra, C; Domloge, N

    2005-01-01

    Recently, it has become indispensable for anti-aging active ingredients to provide a visible and immediate smoothing antiwrinkle effect. In Quercus suber, suberin is the most important structural component of cork cell walls. Studies have shown that suberin is made up mostly of hydroxycarboxylic acids and that it is endowed with many special mechanical and chemical properties that evoke a possible smoothing effect on the surface of the skin. Therefore, we were interested in investigating the effect of this cork extract on the skin's surface in a double-blind clinical study. The study was conducted in 15 healthy volunteers, aged 22 to 52 years. The volunteers applied a gel formula with 3% of cork extract, or placebo gel, on each forearm. Skin surface roughness was evaluated visually by pictures and by silicone replicas 1 and 2 h after application, followed by statistical analysis using the matched-pairs McNemar statistical test. McNemar analysis of the pictures revealed that application of cork extract on the skin resulted in a highly significant reduction of roughness 1 h after application. This effect was observed in 73.3% of volunteers. Two hours after cork extract application, a highly significant improvement of skin roughness was found in 78.6% of volunteers. Moreover, silicone replica treatment confirmed significant improvement in average of roughness at 2 h. These results demonstrate that cork extract provides a remarkable and highly significant tensor and smoothing effect on the skin, which could be of great use in anti-aging skin care products.

  10. Resistin-Like Molecule-β in Scleroderma-Associated Pulmonary Hypertension

    PubMed Central

    Angelini, Daniel J.; Su, Qingning; Yamaji-Kegan, Kazuyo; Fan, Chunling; Teng, Xingwu; Hassoun, Paul M.; Yang, Stephen C.; Champion, Hunter C.; Tuder, Rubin M.; Johns, Roger A.

    2009-01-01

    Scleroderma is a systemic, mixed connective tissue disease that can impact the lungs through pulmonary fibrosis, vascular remodeling, and the development of pulmonary hypertension and right heart failure. Currently, little is known about the molecular mechanisms that drive this condition, but we have recently identified a novel gene product that is up-regulated in a murine model of hypoxia-induced pulmonary hypertension. This molecule, known as hypoxia-induced mitogenic factor (HIMF), is a member of the newly described resistin gene family. We have demonstrated that HIMF has mitogenic, angiogenic, vasoconstrictive, inflammatory, and chemokine-like properties, all of which are associated with vascular remodeling in the lung. Here, we demonstrate that the human homolog of HIMF, resistin-like molecule (RELM)-β, is expressed in the lung tissue of patients with scleroderma-associated pulmonary hypertension and is up-regulated compared with normal control subjects. Immunofluorescence colocalization revealed that RELM-β is expressed in the endothelium and vascular smooth muscle of remodeled vessels, as well as in plexiform lesions, macrophages, T cells, and myofibroblast-like cells. We also show that addition of recombinant RELM-β induces proliferation and activation of ERK1/2 in primary cultured human pulmonary endothelial and smooth muscle cells. These results suggest that RELM-β may be involved in the development of scleroderma-associated pulmonary hypertension. PMID:19251945

  11. TASK-1 potassium channel is not critically involved in mediating hypoxic pulmonary vasoconstriction of murine intra-pulmonary arteries

    PubMed Central

    Murtaza, Ghulam; Mermer, Petra; Goldenberg, Anna; Pfeil, Uwe; Paddenberg, Renate; Weissmann, Nobert; Lochnit, Guenter; Kummer, Wolfgang

    2017-01-01

    The two-pore domain potassium channel KCNK3 (TASK-1) is expressed in rat and human pulmonary artery smooth muscle cells. There, it is associated with hypoxia-induced signalling, and its dysfunction is linked to pathogenesis of human pulmonary hypertension. We here aimed to determine its role in hypoxic pulmonary vasoconstriction (HPV) in the mouse, and hence the suitability of this model for further mechanistic investigations, using appropriate inhibitors and TASK-1 knockout (KO) mice. RT-PCR revealed expression of TASK-1 mRNA in murine lungs and pre-acinar pulmonary arteries. Protein localization by immunohistochemistry and western blot was unreliable since all antibodies produced labelling also in TASK-1 KO organs/tissues. HPV was investigated by videomorphometric analysis of intra- (inner diameter: 25–40 μm) and pre-acinar pulmonary arteries (inner diameter: 41–60 μm). HPV persisted in TASK-1 KO intra-acinar arteries. Pre-acinar arteries developed initial HPV, but the response faded earlier (after 30 min) in KO vessels. This HPV pattern was grossly mimicked by the TASK-1 inhibitor anandamide in wild-type vessels. Hypoxia-provoked rise in pulmonary arterial pressure (PAP) in isolated ventilated lungs was affected neither by TASK-1 gene deficiency nor by the TASK-1 inhibitor A293. TASK-1 is dispensable for initiating HPV of murine intra-pulmonary arteries, but participates in sustained HPV specifically in pre-acinar arteries. This does not translate into abnormal rise in PAP. While there is compelling evidence that TASK-1 is involved in the pathogenesis of pulmonary arterial hypertension in humans, the mouse does not appear to serve as a suitable model to study the underlying molecular mechanisms. PMID:28301582

  12. Detection of small human cerebral cortical lesions with MRI under different levels of Gaussian smoothing: applications in epilepsy

    NASA Astrophysics Data System (ADS)

    Cantor-Rivera, Diego; Goubran, Maged; Kraguljac, Alan; Bartha, Robert; Peters, Terry

    2010-03-01

    The main objective of this study was to assess the effect of smoothing filter selection in Voxel-Based Morphometry studies on structural T1-weighted magnetic resonance images. Gaussian filters of 4 mm, 8 mm or 10 mm Full Width at High Maximum are commonly used, based on the assumption that the filter size should be at least twice the voxel size to obtain robust statistical results. The hypothesis of the presented work was that the selection of the smoothing filter influenced the detectability of small lesions in the brain. Mesial Temporal Sclerosis associated to Epilepsy was used as the case to demonstrate this effect. Twenty T1-weighted MRIs from the BrainWeb database were selected. A small phantom lesion was placed in the amygdala, hippocampus, or parahippocampal gyrus of ten of the images. Subsequently the images were registered to the ICBM/MNI space. After grey matter segmentation, a T-test was carried out to compare each image containing a phantom lesion with the rest of the images in the set. For each lesion the T-test was repeated with different Gaussian filter sizes. Voxel-Based Morphometry detected some of the phantom lesions. Of the three parameters considered: location,size, and intensity; it was shown that location is the dominant factor for the detection of the lesions.

  13. Preferential metabolism of N-nitrosodiethylamine by two cell lines derived from human pulmonary adenocarcinomas

    SciTech Connect

    Falzon, M.; McMahon, J.B.; Gazdar, A.F.; Schuller, H.M.

    1986-01-01

    Diethylnitrosamine (DEN), in common with other nitrosamines, is a carcinogenic agent which produces tumors in a wide variety of tissues in experimental animals. The pulmonary Clara cell is a major target of N-nitrosamine-induced carcinogenesis in hamsters and rats. DEN is believed to require metabolic activation to elicit its carcinogenic effects. The metabolism of (/sup 14/C)DEN was studied in two cell lines derived from human lung adenocarcinomas and two cell lines derived from human small cell lung cancers by monitoring /sup 14/CO/sub 2/ production and covalent binding of radiolabel from (/sup 14/C)DEN to the cell protein and DNA fractions. (/sup 14/C)DEN was metabolized by adenocarcinoma-derived NCI-H322 (with Clara cell features) and NCI-H358 (with features of alveolar type II cells) but not by NCI-H69 and NCI-H128 (derived from small cell carcinoma). Metabolism was markedly inhibited by heat denaturation of the cell protein. (/sup 14/C)DEN metabolism by NCI-H322 was greatly decreased when the incubation was carried out under anaerobic conditions and in the presence of a carbon monoxide enriched atmosphere. These results suggested the involvement of the cytochrome P-450-dependent monooxygenase enzyme system. Metabolism by NCI-H358 was also decreased in the absence of oxygen or presence of carbon monoxide although the effects were relatively small compared with the results with NCI-H322. On the other hand, aspirin or indomethacin, which are inhibitors of the fatty acid cyclooxygenase component of prostaglandin endoperoxide synthetase, preferentially inhibited (/sup 14/C)DEN metabolism by NIC-H358. There were little or no effects of these inhibitors on the metabolism of DEN in NCI-H322. The data suggest that DEN metabolism in different lung cell types may be carried out by different enzyme systems which in turn may contribute to the selective effect of DEN in the lung.

  14. Effects of Buscopan on human gastrointestinal smooth muscle activity in an ex vivo model: Are there any differences for various sections?

    PubMed

    Zhang, Lei; Song, Jun; Bai, Tao; Lu, Xiaoming; Yang, Guanghai; Qian, Wei; Wang, Ruiyun; Hou, Xiaohua

    2016-06-05

    Hyoscine butylbromide (Buscopan ®) is clinically used as an anticholinergic antispasmodic for the treatment of abdominal cramping or visceral pain associated with cramps. However, the spasmolytic efficacy on contractile activity of human gastrointestinal smooth muscle from various sections remains unclear. We aimed to investigate the potentially selective actions of Buscopan on different bowel segments, as well as muscular layers and contractile states. Human smooth muscle tissues of the esophagus, gastric corpus and antrum, jejunum, ileum and colon were obtained. Isometric measurements of circular and longitudinal muscle strips were performed to determine effects of Buscopan on spontaneous activity and induced-contractions by 30mM KCl, 10μM bethanechol and electrical field stimulation (EFS). Buscopan concentration-dependently (10(-9)-10(-5)M) inhibited smooth muscle activity, particularly in spasticity evoked by bethanechol and EFS but not high K(+). The inhibiting effects were mainly responsible for the antagonism on muscarinic M2 and M3 receptors (IC50 values: 3.1×10(-5)M vs. 0.9×10(-5)M). The sensitivity toward Buscopan revealed a tendency of increasing from the esophagus, gastric corpus and antrum to the colon, jejunum and ileum. There was a reversed gradient of mRNA and protein expression of muscarinic M2 and M3 receptors from the blocking effects of Buscopan, which could be ascribed to the fact that a higher concentration of Buscopan was needed to antagonize the spastic contraction to reach the equipotent inhibitory rate in the region with higher muscarinic receptor activity. The findings of different inhibitory effectiveness on various parts of the gastrointestinal tract provide a potential guideline for the clinical application.

  15. The removal of cholesterol from aortic smooth muscle cells in culture and Landschutz ascites cells by fractions of human high-density apolipoprotein.

    PubMed

    Stein, Y; Glangeaud, M C; Fainaru, M; Stein, O

    1975-01-24

    Ascites cells were labeled by intraperitoneal injection of [3H]cholesterol and aortic smooth muscle cells by addition of [3H]cholesterol to the serum component of the culture medium. The release of cholesterol from cells into a serum-free medium supplemented with the various "acceptors" was studied using ascites cells in suspension and aortic smooth muscle cells in a multilayer culture. Unfractionated human high-density apolipoprotein was somewhat more effective in the removal of labeled cellular free cholesterol, in both cell types, than apolipoprotein derived from rat high-density lipoprotein. Following separation of human high-density apolipoprotein into four fractions by Sephadex chromatography, the effect of each fraction on the removal of cellular cholesterol from ascites cells was studied. The individual fractions had a lower capacity for cholesterol removal than the original unfractionated high-density apolipoprotein and the lowest activity was detected in Fraction II which comprised 75% of the total apolipoprotein. The effectiveness to remove cholesterol could be restored to all the fractions, as well as enhanced, by addition of sonicated suspensions of lecithin or sphingomyelin, which by themselves promoted a more limited removal of cellular cholesterol. Negatively stained preparations of mixtures of the four fractions and sonicated dispersion of lecithin were shown to consist of vesicles and discs of various sizes. Addition of the apolipoprotein fractions (especially Fractions II and IV) to sonicated dispersion of sphingomyelin resulted in a pronounced formation of discs which showed a high tendency towards stack formation. Mixtures of Fraction II and lecithin or sphingomyelin were effective in the release of cellular cholesterol from multilayers of aortic smooth muscle cells in culture. These results show the feasibility of net removal of cholesterol from cells which grow in a form resembling a tissue and thus provide a model to study the role of

  16. Time-course of ventilation, arterial and pulmonary CO(2) tension during CO (2) increase in humans.

    PubMed

    Satoh, Toru; Okada, Yasumasa; Hara, Yasushi; Sakamaki, Fumio; Kyotani, Shingo; Tomita, Takeshi; Nagaya, Noritoshi; Nakanishi, Norifumi

    2012-01-01

    A change of ventilation (VE), PaCO( 2 ) (arterial CO( 2 ) tension) and PvCO( 2 ) (pulmonary arterial CO( 2 ) tension) with time was not evaluated precisely during exercise or CO( 2 ) rebreathing in humans. In this study, changes of these variables with time were fitted to exponential curves {y = Exp ( x/ T + A ) + k} and compared. When exercise pulmonary hemodynamics was examined in 15 cardiac patients to decide therapies, we asked the patients to undergo CO( 2 ) rebreathing using air with supplementation of consumed O( 2 ). Arterial and pulmonary blood was drawn every minute. During exercise, T was 28.2 ± 8.4 and 26.8 ± 12.4, and A was 0.80 ± 0.50 and 0.50 ± 0.90 in VE and PvCO( 2 ), respectively, with no statistical differences. During CO( 2 ) rebreathing, T was 18.6 ± 5.8, 41.8 ± 38.0 and 21.6 ± 9.7 and A was 0.39 ± 0.67, 1.64 ± 1.35 and 0.17 ± 0.83 in VE, PaCO( 2 ) and PvCO( 2 ), respectively, with statistical difference of PaCO( 2 ) from other variables, suggesting that VE and PvCO( 2 ) showed same mode of change according to time but PaCO( 2 ) did not.

  17. Epigenetic modulation of the protein kinase A RIIα (PRKAR2A) gene by histone deacetylases 1 and 2 in human smooth muscle cells.

    PubMed

    Karolczak-Bayatti, Magdalena; Loughney, Andrew D; Robson, Stephen C; Europe-Finner, G Nicholas

    2011-01-01

    Recently we reported that the expression of the protein kinase A (PKA) regulatory subunit RIIα is dynamically regulated in human smooth muscle cells of the uterus. We showed that expression levels of mRNA/protein were substantially increased during pregnancy and decreased upon labour, changes that were mirrored by particulate type II PKA activity. This implied an important role for RIIα in maintaining uterine quiescence during pregnancy. Consequently the purpose of the present study was to identify potential mechanisms by which expression of the RIIα gene was regulated in this tissue. We indicate here that the three SpI-III (GC) binding domains within the proximal promoter region of the human RIIα gene may play important roles in modulating expression of the gene in human myometrial cells. We show that all three GC binding domains are involved in binding Sp1, Sp3, histone deacetylase (HDACs) 1/2 and RbAp48 transcriptional complexes. The functional significance of these binding domains was further analysed employing in vitro luciferase reporter assays with full-length/truncated RIIα promoter constructs. Importantly we show that treatment of primary human myometrial cell cultures with the general class I/II HDAC inhibitor trichostatin A results in an increase in mRNA/protein levels. Moreover the increase in mRNA levels appeared to be preceded by an increase in aH3, PolIIa, Sp3 and HDAC 2 binding to the three SpI-III (GC) binding sites within the RIIα promoter. These results enable us to provide a model whereby RIIα expression is epigenetically regulated in human myometrial smooth muscle cells by histone deacetylase(s) activity within the GC-rich proximal promoter region of the gene.

  18. Grainyhead-like 2 (GRHL2) distribution reveals novel pathophysiological differences between human idiopathic pulmonary fibrosis and mouse models of pulmonary fibrosis

    PubMed Central

    Mahavadi, Poornima; Sasikumar, Satish; Cushing, Leah; Hyland, Tessa; Rosser, Ann E.; Riccardi, Daniela; Lu, Jining; Kalin, Tanya V.; Kalinichenko, Vladimir V.; Guenther, Andreas; Ramirez, Maria I.; Pardo, Annie; Selman, Moisés; Warburton, David

    2013-01-01

    Chronic injury of alveolar lung epithelium leads to epithelial disintegrity in idiopathic pulmonary fibrosis (IPF). We had reported earlier that Grhl2, a transcriptional factor, maintains alveolar epithelial cell integrity by directly regulating components of adherens and tight junctions and thus hypothesized an important role of GRHL2 in pathogenesis of IPF. Comparison of GRHL2 distribution at different stages of human lung development showed its abundance in developing lung epithelium and in adult lung epithelium. However, GRHL2 is detected in normal human lung mesenchyme only at early fetal stage (week 9). Similar mesenchymal reexpression of GRHL2 was also observed in IPF. Immunofluorescence analysis in serial sections from three IPF patients revealed at least two subsets of alveolar epithelial cells (AEC), based on differential GRHL2 expression and the converse fluorescence intensities for epithelial vs. mesenchymal markers. Grhl2 was not detected in mesenchyme in intraperitoneal bleomycin-induced injury as well as in spontaneously occurring fibrosis in double-mutant HPS1 and HPS2 mice, whereas in contrast in a radiation-induced fibrosis model, with forced Forkhead box M1 (Foxm1) expression, an overlap of Grhl2 with a mesenchymal marker was observed in fibrotic regions. Grhl2's role in alveolar epithelial cell plasticity was confirmed by altered Grhl2 gene expression analysis in IPF and further validated by in vitro manipulation of its expression in alveolar epithelial cell lines. Our findings reveal important pathophysiological differences between human IPF and specific mouse models of fibrosis and support a crucial role of GRHL2 in epithelial activation in lung fibrosis and perhaps also in epithelial plasticity. PMID:24375798

  19. Possible role of WT1 in a human fetus with evolving bronchial atresia, pulmonary malformation and renal agenesis.

    PubMed

    Loo, Christine K C; Algar, Elizabeth M; Payton, Diane J; Perry-Keene, Joanna; Pereira, Tamara N; Ramm, Grant A

    2012-01-01

    The association of peripheral bronchial atresia and congenital pulmonary airway malformation (CPAM) has recently been recognised, but the pathology of the lesions evolving together has not been described. We present autopsy findings in a 20 week fetus showing areas of peripheral bronchial destruction and airway malformation consistent with developing CPAM in the right lung supporting a causal relationship between these lesions. This fetus also had congenital heart defect, bilateral renal agenesis and syndactyly. We identified another fetus from our autopsy files, with bilateral renal agenesis, similar right sided pulmonary malformation and cardiac defects. Similar bilateral renal agenesis and defects of the heart and lungs are found in wt1(-/-) mice and we have investigated the expression of WT1 in these fetuses. We hypothesise that the cardiac, liver, renal and possibly lung lesions in these two cases may arise due to mesenchymal defects consequent to WT1 misexpression and discuss evidence for this from the scientific literature. We used immunoperoxidase stains to analyse WT1 expression in autopsy hepatic tissue in both fetuses. We also investigated the expression of α-smooth muscle actin (α-SMA), a marker of activated hepatic stellate cells/myofibroblasts, and desmin in hepatic mesenchyme and compare these findings with control fetuses, without congenital malformations. We found reduced WT1 expression in hepatic mesothelium in both fetuses with malformations. There was also increased expression of α-SMA in liver perisinusoidal cells, as seen in the wt1(-/-) mouse model. We therefore propose that abnormality of WT1 signalling may be an underlying factor, as WT1 is expressed in coelomic lining cells from which mesenchyme is derived in many organs.

  20. Transcriptional repression of Caveolin-1 (CAV1) gene expression by GATA-6 in bladder smooth muscle hypertrophy in mice and human beings.

    PubMed

    Boopathi, Ettickan; Gomes, Cristiano Mendes; Goldfarb, Robert; John, Mary; Srinivasan, Vittala Gopal; Alanzi, Jaber; Malkowicz, S Bruce; Kathuria, Hasmeena; Zderic, Stephen A; Wein, Alan J; Chacko, Samuel

    2011-05-01

    Hypertrophy occurs in urinary bladder wall smooth muscle (BSM) in men with partial bladder outlet obstruction (PBOO) caused by benign prostatic hyperplasia (BPH) and in animal models of PBOO. Hypertrophied BSM from the rabbit model exhibits down-regulation of caveolin-1, a structural and functional protein of caveolae that function as signaling platforms to mediate interaction between receptor proteins and adaptor and effector molecules to regulate signal generation, amplification, and diversification. Caveolin-1 expression is diminished in PBOO-induced BSM hypertrophy in mice and in men with BPH. The proximal promoter of the human and mouse caveolin-1 (CAV1) gene was characterized, and it was observed that the transcription factor GATA-6 binds this promoter, causing reduced expression of caveolin-1. Furthermore, caveolin-1 expression levels inversely correlate with the abundance of GATA-6 in BSM hypertrophy in mice and human beings. Silencing of GATA6 gene expression up-regulates caveolin-1 expression, whereas overexpression of GATA-6 protein sustains the transcriptional repression of caveolin-1 in bladder smooth muscle cells. Together, these data suggest that GATA-6 acts as a transcriptional repressor of CAV1 gene expression in PBOO-induced BSM hypertrophy in men and mice. GATA-6-induced transcriptional repression represents a new regulatory mechanism of CAV1 gene expression in pathologic BSM, and may serve as a target for new therapy for BPH-induced bladder dysfunction in aging men.

  1. miR-503 inhibits platelet-derived growth factor-induced human aortic vascular smooth muscle cell proliferation and migration through targeting the insulin receptor.

    PubMed

    Bi, Rui; Ding, Fangbao; He, Yi; Jiang, Lianyong; Jiang, Zhaolei; Mei, Ju; Liu, Hao

    2016-12-01

    Abnormal proliferation and migration of vascular smooth muscle cells (VSMC) is a common feature of disease progression in atherosclerosis. Here, we investigated the potential role of miR-503 in platelet-derived growth factor (PDGF)-induced proliferation and migration of human aortic smooth muscle cells and the underlying mechanisms of action. miR-503 expression was significantly downregulated in a dose- and time-dependent manner following PDGF treatment. Introduction of miR-503 mimics into cultured SMCs significantly attenuated cell proliferation and migration induced by PDGF. Bioinformatics analyses revealed that the insulin receptor (INSR) is a target candidate of miR-503. miR-503 suppressed luciferase activity driven by a vector containing the 3'-untranslated region of INSR in a sequence-specific manner. Downregulation of INSR appeared critical for miR-503-mediated inhibitory effects on PDGF-induced cell proliferation and migration in human aortic SMCs. Based on the collective data, we suggest a novel role of miR-503 as a regulator of VSMC proliferation and migration through modulating INSR.

  2. Transforming growth factor-β evokes Ca2+ waves and enhances gene expression in human pulmonary fibroblasts.

    PubMed

    Mukherjee, Subhendu; Kolb, Martin R J; Duan, Fuqin; Janssen, Luke J

    2012-06-01

    Fibroblasts maintain the structural framework of animal tissue by synthesizing extracellular matrix molecules. Chronic lung diseases are characterized in part by changes in fibroblast numbers, properties, and more. Fibroblasts respond to a variety of growth factors, cytokines, and proinflammatory mediators. However, the signaling mechanisms behind these responses have not been fully explored. We sought to determine the role of Ca(2+) waves in transforming growth factor-β (TGF-β)-mediated gene expression in human pulmonary fibroblasts. Primary human pulmonary fibroblasts were cultured and treated with TGF-β and different blockers under various conditions. Cells were then loaded with the Ca(2+) indicator dye Oregon green, and Ca(2+) waves were monitored by confocal [Ca(2+)](i) fluorimetry. Real-time PCR was used to probe gene expression. TGF-β (1 nM) evoked recurring Ca(2+) waves. A 30-minute pretreatment of SD 208, a TGF-β receptor-1 kinase inhibitor, prevented Ca(2+) waves from being evoked by TGF-β. The removal of external Ca(2+) completely occluded TGF-β-evoked Ca(2+) waves. Cyclopiazonic acid, an inhibitor of the internal Ca(2+) pump, evoked a relatively slowly developing rise in Ca(2+) waves compared with the rapid changes evoked by TGF-β, but the baseline fluorescence was increased. Ryanodine (10(-5) M) also blocked TGF-β-mediated Ca(2+) wave activity. Real-time PCR showed that TGF-β rapidly and dramatically increased the gene expression of collagen A1 and fibronectin. This increase was blocked by ryanodine treatment and cyclopiazonic acid. We conclude that, in human pulmonary fibroblasts, TGF-β acts on ryanodine-sensitive channels, leading to Ca(2+) wave activity, which in turn amplifies extracellular matrix gene expression.

  3. A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects.

    PubMed

    Zhang, Jinqiu; Lian, Qizhou; Zhu, Guili; Zhou, Fan; Sui, Lin; Tan, Cindy; Mutalif, Rafidah Abdul; Navasankari, Raju; Zhang, Yuelin; Tse, Hung-Fat; Stewart, Colin L; Colman, Alan

    2011-01-07

    The segmental premature aging disease Hutchinson-Gilford Progeria syndrome (HGPS) is caused by a truncated and farnesylated form of Lamin A called progerin. HGPS affects mesenchymal lineages, including the skeletal system, dermis, and vascular smooth muscle (VSMC). To understand the underlying molecular pathology of HGPS, we derived induced pluripotent stem cells (iPSCs) from HGPS dermal fibroblasts. The iPSCs were differentiated into neural progenitors, endothelial cells, fibroblasts, VSMCs, and mesenchymal stem cells (MSCs). Progerin levels were highest in MSCs, VSMCs, and fibroblasts, in that order, with these lineages displaying increased DNA damage, nuclear abnormalities, and HGPS-VSMC accumulating numerous calponin-staining inclusion bodies. Both HGPS-MSC and -VSMC viability was compromised by stress and hypoxia in vitro and in vivo (MSC). Because MSCs reside in low oxygen niches in vivo, we propose that, in HGPS, this causes additional depletion of the MSC pool responsible for replacing differentiated cells lost to progerin toxicity.

  4. Blockade of Ets-1 attenuates epidermal growth factor-dependent collagen loss in human carotid plaque smooth muscle cells.

    PubMed

    Rao, Velidi H; Rai, Vikrant; Stoupa, Samantha; Agrawal, Devendra K

    2015-09-15

    Although degradation of extracellular matrix by matrix metalloproteinases (MMPs) is thought to be involved in symptomatic (S) carotid plaques in atherosclerosis, the mechanisms of MMP expression are poorly understood. Here, we demonstrate that collagen loss in vascular smooth vessel cells (VSMCs) isolated from S plaques was induced by epidermal growth factor (EGF) through the activation of p38-MAPK and JNK-MAPK pathways. Inhibitors of p38-MAPK and JNK-MAPK signaling pathways downregulated the expression of MMP-1 and MMP-9. In addition, we examined whether v-ets erythroblastosis virus E26 oncogene homologue 1 (Ets-1), an important regulator of different genes, is involved in destabilizing S plaques in patients with carotid stenosis. We demonstrate that EGF induces Ets-1 expression and decreases interstitial and basement membrane collagen in vascular smooth muscle cells (VSMCs) from patients with carotid stenosis. Increased expression of MMP-1 and -9 and decreased collagen mRNA transcripts were also found in Ets-1-overexpressed VSMCs. Transfection with both dominant-negative form of Ets-1 and small interfering RNA blocked EGF-induced MMP-1 and -9 expressions and increased the mRNA transcripts for collagen I (α1) and collagen III (α1) in S compared with asymptomatic (AS) carotid plaques. Inhibitors of p38-MAPK (SB202190) and JNK-MAPK (SP600125) signaling pathways decreased the expression of Ets-1, MMP-1, and MMP-9 and increased collagen type I and III expression in EGF-treated VSMCs. This study provides a mechanistic insight into the role of Ets-1 in the plaque destabilization in patients with carotid stenosis involving p38-MAPK and JNK signaling pathways.

  5. Mesenchymal stromal cells reverse hypoxia-mediated suppression of α-smooth muscle actin expression in human dermal fibroblasts

    SciTech Connect

    Faulknor, Renea A.; Olekson, Melissa A.; Nativ, Nir I.; Ghodbane, Mehdi; Gray, Andrea J.; Berthiaume, François

    2015-02-27

    During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived soluble factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. (SB431542), an inhibitor of transforming growth factor-β{sub 1} (TGF-β{sub 1})-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-β{sub 1} at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-β{sub 1} is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia. - Highlights: • Fibroblasts were cultured in collagen lattices (FPCLs) as model contracting wounds. • Hypoxia decreased FPCL contraction and fibroblast α-smooth muscle actin expression. • Mesenchymal stromal cells (MSCs) restored function of hypoxic fibroblasts. • MSCs regulate fibroblast function mainly via secreted transforming growth factor-β{sub 1}.

  6. The Flavonoid Quercetin Reverses Pulmonary Hypertension in Rats

    PubMed Central

    Moreno, Enrique; Moral-Sanz, Javier; Barreira, Bianca; Galindo, Pilar; Pandolfi, Rachele; Jimenez, Rosario; Moreno, Laura; Cogolludo, Angel; Duarte, Juan; Perez-Vizcaino, Francisco

    2014-01-01

    Quercetin is a dietary flavonoid which exerts vasodilator, antiplatelet and antiproliferative effects and reduces blood pressure, oxidative status and end-organ damage in humans and animal models of systemic hypertension. We hypothesized that oral quercetin treatment might be protective in a rat model of pulmonary arterial hypertension. Three weeks after injection of monocrotaline, quercetin (10 mg/kg/d per os) or vehicle was administered for 10 days to adult Wistar rats. Quercetin significantly reduced mortality. In surviving animals, quercetin decreased pulmonary arterial pressure, right ventricular hypertrophy and muscularization of small pulmonary arteries. Classic biomarkers of pulmonary arterial hypertension such as the downregulated expression of lung BMPR2, Kv1.5, Kv2.1, upregulated survivin, endothelial dysfunction and hyperresponsiveness to 5-HT were unaffected by quercetin. Quercetin significantly restored the decrease in Kv currents, the upregulation of 5-HT2A receptors and reduced the Akt and S6 phosphorylation. In vitro, quercetin induced pulmonary artery vasodilator effects, inhibited pulmonary artery smooth muscle cell proliferation and induced apoptosis. In conclusion, quercetin is partially protective in this rat model of PAH. It delayed mortality by lowering PAP, RVH and vascular remodeling. Quercetin exerted effective vasodilator effects in isolated PA, inhibited cell proliferation and induced apoptosis in PASMCs. These effects were associated with decreased 5-HT2A receptor expression and Akt and S6 phosphorylation and partially restored Kv currents. Therefore, quercetin could be useful in the treatment of PAH. PMID:25460361

  7. MicroRNA-26b attenuates monocrotaline-induced pulmonary vascular remodeling via targeting connective tissue growth factor (CTGF) and cyclin D1 (CCND1)

    PubMed Central

    Zhou, Sijing; Li, Min; Sun, Li; Xu, Xuan; Fei, Guanghe

    2016-01-01

    MicroRNAs are involved in the control of cell growth, and deregulated pulmonary artery smooth muscle cell proliferation plays an essential role in the development of pulmonary hypertension. The objective of this study was to identify differentially expressed microRNA(s) and explore its therapeutic role in treatment of the disease. MicroRNA expression profile analysis showed microRNA-26b was differentially expressed in pulmonary artery smooth muscle cells harvested from monocrotaline-treated rats, and we validated microRNA-26b targets, in vitro and in vivo, CTGF and CCND1, both of which have been shown, in our previous work, to be involved in the pathogenesis of pulmonary hypertension. In vivo experiments demonstrated monocrotaline-induced pulmonary artery remodeling could be almost completely abolished by administration of microRNA-26b, while CTGF or CCND1 shRNA significantly, but only partially, attenuated the remodeling by silencing the designed target. Additionally, exogenous expression of the microRNA-26b substantially downregulated CTGF and CCND1 in human pulmonary artery smooth muscle cells. MicroRNA-26b might be a potent therapeutic tool to treat pulmonary hypertension. PMID:27322082

  8. Microrna-26b attenuates monocrotaline-induced pulmonary vascular remodeling via targeting connective tissue growth factor (CTGF) and cyclin D1 (CCND1).

    PubMed

    Wang, Ran; Ding, Xing; Zhou, Sijing; Li, Min; Sun, Li; Xu, Xuan; Fei, Guanghe

    2016-11-08

    MicroRNAs are involved in the control of cell growth, and deregulated pulmonary artery smooth muscle cell proliferation plays an essential role in the development of pulmonary hypertension. The objective of this study was to identify differentially expressed microRNA(s) and explore its therapeutic role in treatment of the disease. MicroRNA expression profile analysis showed microRNA-26b was differentially expressed in pulmonary artery smooth muscle cells harvested from monocrotaline-treated rats, and we validated microRNA-26b targets, in vitro and in vivo, CTGF and CCND1, both of which have been shown, in our previous work, to be involved in the pathogenesis of pulmonary hypertension. In vivo experiments demonstrated monocrotaline-induced pulmonary artery remodeling could be almost completely abolished by administration of microRNA-26b, while CTGF or CCND1 shRNA significantly, but only partially, attenuated the remodeling by silencing the designed target. Additionally, exogenous expression of the microRNA-26b substantially downregulated CTGF and CCND1 in human pulmonary artery smooth muscle cells. MicroRNA-26b might be a potent therapeutic tool to treat pulmonary hypertension.

  9. SERCA2a controls the mode of agonist-induced intracellular Ca2+ signal, transcription factor NFAT and proliferation in human vascular smooth muscle cells

    PubMed Central

    Bobe, Regis; Hadri, Lahouaria; Lopez, Jose J.; Sassi, Yassine; Atassi, Fabrice; Karakikes, Ioannis; Liang, Lifan; Limon, Isabelle; Lompré, Anne-Marie; Hatem, Stephane N.; Hajjar, Roger J.; Lipskaia, Larissa

    2011-01-01

    In blood vessels, tone is maintained by agonist-induced cytosolic Ca2+ oscillations of quiescent/contractile vascular smooth muscle cells (VSMCs). However, in synthetic/proliferative VSMCs, Gq/phosphoinositide receptor-coupled agonists trigger a steady-state increase in cytosolic Ca2+ followed by a Store Operated Calcium Entry (SOCE) which translates into activation of the proliferation-associated transcription factor NFAT. Here, we report that in human coronary artery smooth muscle cells (hCASMCs), the sarco/endoplasmic reticulum calcium ATPase type 2a (SERCA2a) expressed in the contractile form of the hCASMCs, controls the nature of the agonist-induced Ca2+ transient and the resulting down-stream signaling pathway. Indeed, restoring SERCA2a expression by gene transfer in synthetic hCASMCs 1) increased Ca2+ storage capacity; 2) modified agonist-induced IP3R Ca2+ release from steady-state to oscillatory mode (the frequency of agonist-induced IP3R Ca2+ signal was 11.66 ± 1.40/100 sec in SERCA2a-expressing cells (n=39) vs 1.37 ± 0.20/100 sec in control cell (n=45), p<0.01); 3) suppressed SOCE by preventing interactions between SR calcium sensor STIM1 and pore forming unit ORAI1; 4) inhibited calcium regulated transcription factor NFAT and its down-stream physiological function such as proliferation and migration. This study provides evidence for the first time that oscillatory and steady-state patterns of Ca2+ transients have different effects on calcium-dependent physiological functions in smooth muscle cells. PMID:21195084

  10. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice

    SciTech Connect

    Korfhagen, T.R.; Glasser, S.W.; Wert, S.E.; Bruno, M.D.; Daugherty, C.C.; McNeish, J.D.; Stock, J.L.; Potter, S.S.; Whitsett, J.A. )

    1990-08-01

    Pulmonary surfactant is produced in late gestation by developing type II epithelial cells lining the alveolar epithelium of the lung. Lack of surfactant at birth is associated with respiratory distress syndrome in premature infants. Surfactant protein C (SP-C) is a highly hydrophobic peptide isolated from pulmonary tissue that enhances the biophysical activity of surfactant phospholipids. Like surfactant phospholipid, SP-C is produced by epithelial cells in the distal respiratory epithelium, and its expression increases during the latter part of gestation. A chimeric gene containing 3.6 kilobases of the promoter and 5{prime}-flanking sequences of the human SP-C gene was used to express diphtheria toxin A. The SP-C-diphtheria toxin A fusion gene was injected into fertilized mouse eggs to produce transgenic mice. Affected mice developed respiratory failure in the immediate postnatal period. Morphologic analysis of lungs from affected pups showed variable but severe cellular injury confined to pulmonary tissues. Ultrastructural changes consistent with cell death and injury were prominent in the distal respiratory epithelium. Proximal components of the tracheobronchial tree were not severely affected. Transgenic animals were of normal size at birth, and structural abnormalities were not detected in nonpulmonary tissues. Lung-specific diphtheria toxin A expression controlled by the human SP-C gene injured type II epithelial cells and caused extensive necrosis of the distal respiratory epithelium. The absence of type I epithelial cells in the most severely affected transgenic animals supports the concept that developing type II cells serve as precursors to type I epithelial cells.

  11. Human Adipose-derived Mesenchymal Stem Cells Attenuate Early Stage of Bleomycin Induced Pulmonary Fibrosis: Comparison with Pirfenidone

    PubMed Central

    Reddy, Manoj; Fonseca, Lyle; Gowda, Shashank; Chougule, Basavraj; Hari, Aarya; Totey, Satish

    2016-01-01

    Background and Objectives Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, invariably fatal fibrotic lung disease with no lasting option for therapy. Mesenchymal stem cells (MSCs) could be a promising modality for the treatment of IPF. Aim of the study was to investigate improvement in survivability and anti-fibrotic efficacy of human adipose-derived mesenchymal stem cells (AD-MSCs) in comparison with pirfenidone in the bleomycin-induced pulmonary fibrosis model. Methods Human AD-MSCs were administered intravenously on day 3, 6 and 9 after an intra-tracheal challenge with bleomycin, whereas, pirfenidone was given orally in drinking water at the rate of 100 mg/kg body weight three times a day daily from day 3 onward. AD-MSCs were labelled with PKH-67 before administration to detect engraftment. Disease severity and improvement was assessed and compared between sham control and vehicle control groups using Kaplan-Meier survival analysis, biochemical and molecular analysis, histopathology and high resolution computed tomography (HRCT) parameters at the end of study. Results Results demonstrated that AD-MSCs significantly increase survivability; reduce organ weight and collagen deposition better than pirfenidone group. Histological analyses and HRCT of the lung revealed that AD-MSCs afforded protection against bleomycin induced fibrosis and protect architecture of the lung. Gene expression analysis revealed that AD-MSCs potently suppressed pro-fibrotic genes induced by bleomycin. More importantly, AD-MSCs were found to inhibit pro-inflammatory related transcripts. Conclusions Our results provided direct evidence that AD-MSC-mediated immunomodulation and anti-fibrotic effect in the lungs resulted in marked protection in pulmonary fibrosis, but at an early stage of disease. PMID:27871152

  12. Follistatin-like 1 protects against hypoxia-induced pulmonary hypertension in mice

    PubMed Central

    Zhang, Wei; Wang, Wang; Liu, Jie; Li, Jinna; Wang, Juan; Zhang, Yunxia; Zhang, Zhifei; Liu, Yafei; Jin, Yankun; Li, Jifeng; Cao, Jie; Wang, Chen; Ning, Wen; Wang, Jun

    2017-01-01

    Pulmonary hypertension (PH) remains a life-limiting disease characterized by pulmonary vascular remodelling due to aberrant proliferation and migration of pulmonary artery smooth muscle cells (PASMCs), thus leading to raised pulmonary arterial pressure and right ventricular hypertrophy. Secreted glycoprotein follistatin-like 1 (FSTL1) has been reported to ameliorate tissue remodelling in cardiovascular injuries. However, the role of FSTL1 in deranged pulmonary arteries remains elusive. We found that there were higher serum levels of FSTL1 in patients with PH related to chronic obstructive pulmonary diseases (COPD) and in mice model of hypoxia-induced PH (HPH). Haploinsufficiency of Fstl1 in mice contributed to an exacerbated HPH, as demonstrated by increased right ventricular systolic pressure, pulmonary arterial muscularization and right ventricular hypertrophy index. Conversely, FSTL1 administration attenuated HPH. In cultured human PASMCs, hypoxia-promoted cellular viability, DNA synthesis and migration were suppressed by exogenous FSTL1 but enhanced by small interfering RNA targeting FSTL1. Additionally, FSTL1 inhibited the proliferation and migration of PASMCs via extracellular regulated kinase (ERK) signal pathway. All these findings indicate that FSTL1 imposed a protective modulation on pulmonary vascular remodelling, thereby suggesting its role in the regulation of HPH. PMID:28361925

  13. Human airway smooth muscle cells secrete amphiregulin via bradykinin/COX-2/PGE2, inducing COX-2, CXCL8, and VEGF expression in airway epithelial cells

    PubMed Central

    Knox, Alan J.

    2015-01-01

    Human airway smooth muscle cells (HASMC) contribute to asthma pathophysiology through an increased smooth muscle mass and elevated cytokine/chemokine output. Little is known about how HASMC and the airway epithelium interact to regulate chronic airway inflammation and remodeling. Amphiregulin is a member of the family of epidermal growth factor receptor (EGFR) agonists with cell growth and proinflammatory roles and increased expression in the lungs of asthma patients. Here we show that bradykinin (BK) stimulation of HASMC increases amphiregulin secretion in a mechanism dependent on BK-induced COX-2 expression, increased PGE2 output, and the stimulation of HASMC EP2 and EP4 receptors. Conditioned medium from BK treated HASMC induced CXCL8, VEGF, and COX-2 mRNA and protein accumulation in airway epithelial cells, which were blocked by anti-amphiregulin antibodies and amphiregulin siRNA, suggesting a paracrine effect of HASMC-derived amphiregulin on airway epithelial cells. Consistent with this, recombinant amphiregulin induced CXCL8, VEGF, and COX-2 in airway epithelial cells. Finally, we found that conditioned media from amphiregulin-stimulated airway epithelial cells induced amphiregulin expression in HASMC and that this was dependent on airway epithelial cell COX-2 activity. Our study provides evidence of a dynamic axis of interaction between HASMC and epithelial cells that amplifies CXCL8, VEGF, COX-2, and amphiregulin production. PMID:26047642

  14. Wogonin suppresses TNF-{alpha}-induced MMP-9 expression by blocking the NF-{kappa}B activation via MAPK signaling pathways in human aortic smooth muscle cells

    SciTech Connect

    Lee, Syng-Ook; Jeong, Yun-Jeong; Yu, Mi Hee; Lee, Ji-Won; Hwangbo, Mi Hyang; Kim, Cheorl-Ho; Lee, In-Seon . E-mail: inseon@kmu.ac.kr

    2006-12-08

    Matrix metalloproteinase-9 (MMP-9) plays a major role in the pathogenesis of atherosclerosis and restenosis by regulating both migration and proliferation of vascular smooth muscle cells (VSMC) after an arterial injury. In this study, we examined the inhibitory effect of three major flavonoids in Scutellariae Radix, baicalin, baicalein, and wogonin, on TNF-{alpha}-induced MMP-9 expression in human aortic smooth muscle cells (HASMC). Wogonin, but not baicalin and baicalein, significantly and selectively suppressed TNF-{alpha}-induced MMP-9 expression in HASMC. Reporter gene, electrophoretic mobility shift, and Western blotting assays showed that wogonin inhibits MMP-9 gene transcriptional activity by blocking the activation of NF-{kappa}B via MAPK signaling pathways. Moreover, the Matrigel migration assay showed that wogonin reduced TNF-{alpha}-induced HASMC migration. These results suggest that wogonin effectively suppresses TNF-{alpha}-induced HASMC migration through the selective inhibition of MMP-9 expression and represents a potential agent for the prevention of vascular disorders related to the migration of VSMC.

  15. Stretching human mesenchymal stromal cells on stiffness-customized collagen type I generates a smooth muscle marker profile without growth factor addition

    NASA Astrophysics Data System (ADS)

    Rothdiener, Miriam; Hegemann, Miriam; Uynuk-Ool, Tatiana; Walters, Brandan; Papugy, Piruntha; Nguyen, Phong; Claus, Valentin; Seeger, Tanja; Stoeckle, Ulrich; Boehme, Karen A.; Aicher, Wilhelm K.; Stegemann, Jan P.; Hart, Melanie L.; Kurz, Bodo; Klein, Gerd; Rolauffs, Bernd

    2016-10-01

    Using matrix elasticity and cyclic stretch have been investigated for inducing mesenchymal stromal cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage but not in combination. We hypothesized that combining lineage-specific stiffness with cyclic stretch would result in a significantly increased expression of SMC markers, compared to non-stretched controls. First, we generated dense collagen type I sheets by mechanically compressing collagen hydrogels. Atomic force microscopy revealed a nanoscale stiffness range known to support myogenic differentiation. Further characterization revealed viscoelasticity and stable biomechanical properties under cyclic stretch with >99% viable adherent human MSC. MSCs on collagen sheets demonstrated a significantly increased mRNA but not protein expression of SMC markers, compared to on culture flasks. However, cyclic stretch of MSCs on collagen sheets significantly increased both mRNA and protein expression of α-smooth muscle actin, transgelin, and calponin versus plastic and non-stretched sheets. Thus, lineage-specific stiffness and cyclic stretch can be applied together for inducing MSC differentiation towards SMCs without the addition of recombinant growth factors or other soluble factors. This represents a novel stimulation method for modulating the phenotype of MSCs towards SMCs that could easily be incorporated into currently available methodologies to obtain a more targeted control of MSC phenotype.

  16. Stretching human mesenchymal stromal cells on stiffness-customized collagen type I generates a smooth muscle marker profile without growth factor addition

    PubMed Central

    Rothdiener, Miriam; Hegemann, Miriam; Uynuk-Ool, Tatiana; Walters, Brandan; Papugy, Piruntha; Nguyen, Phong; Claus, Valentin; Seeger, Tanja; Stoeckle, Ulrich; Boehme, Karen A.; Aicher, Wilhelm K.; Stegemann, Jan P.; Hart, Melanie L.; Kurz, Bodo; Klein, Gerd; Rolauffs, Bernd

    2016-01-01

    Using matrix elasticity and cyclic stretch have been investigated for inducing mesenchymal stromal cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage but not in combination. We hypothesized that combining lineage-specific stiffness with cyclic stretch would result in a significantly increased expression of SMC markers, compared to non-stretched controls. First, we generated dense collagen type I sheets by mechanically compressing collagen hydrogels. Atomic force microscopy revealed a nanoscale stiffness range known to support myogenic differentiation. Further characterization revealed viscoelasticity and stable biomechanical properties under cyclic stretch with >99% viable adherent human MSC. MSCs on collagen sheets demonstrated a significantly increased mRNA but not protein expression of SMC markers, compared to on culture flasks. However, cyclic stretch of MSCs on collagen sheets significantly increased both mRNA and protein expression of α-smooth muscle actin, transgelin, and calponin versus plastic and non-stretched sheets. Thus, lineage-specific stiffness and cyclic stretch can be applied together for inducing MSC differentiation towards SMCs without the addition of recombinant growth factors or other soluble factors. This represents a novel stimulation method for modulating the phenotype of MSCs towards SMCs that could easily be incorporated into currently available methodologies to obtain a more targeted control of MSC phenotype. PMID:27775041

  17. Bioengineered Human and Allogeneic Pulmonary Valve Conduits Chronically Implanted Orthotopically in Baboons: Hemodynamic Performance and Immunological Consequences

    PubMed Central

    Hopkins, Richard A.; Bert, Arthur A.; Hilbert, Stephen L.; Quinn, Rachael W.; Brasky, Kathleen M.; Drake, William B.; Lofland, Gary K.

    2012-01-01

    Objective This study assesses in a baboon model the hemodynamics and HLA immunogenicity of chronically implanted bioengineered (decellularized with collagen conditioning treatments) human and baboon heart valve scaffolds. Methods Fourteen baboons underwent pulmonary valve replacement, eight with decellularized and conditioned (bioengineered) pulmonary valves derived from either allogeneic (N=3) or xenogeneic (human) (N=5) hearts; for comparison, six baboons received clinically relevant reference cryopreserved or porcine valved conduits. Panel reactive serum antibodies (HLA Class I&II), complement fixing antibodies (C1q binding), and C-reactive protein titers were measured serially until elective sacrifice at 10 or 26 weeks. Serial transesophageal echocardiograms (TEE) measured valve function and geometry. Differences were analyzed with Kruskal-Wallis and Wilcoxon Rank Sum. P≤ 0.05 significant. Results All animals survived and thrived, exhibiting excellent immediate implanted valve function by TEE. Over time, reference valves developed smaller indexed effective orifice areas, EOAI=0.84(1.22) cm2/m2 median (range) while all bioengineered valves remained normal, EOAI=2.45 (1.35) cm2/m2; P=0.005. None of the bioengineered valves developed elevated peak transvalvular gradients, 5.5(6.0) versus 12.5(23.0) mmHg, P=0.003. Cryopreserved valves provoked the most intense antibody responses. Two of five human bioengineered and two of three baboon bioengineered valves did not provoke any Class I antibodies. Bioengineered human (but not baboon) scaffolds provoked Class II antibodies. C1q+ antibodies developed in four recipients. Conclusions Valve dysfunction correlated with markers for more intense inflammatory provocation. The tested bioengineering methods reduced antigenicity of both human and baboon valves. Bioengineered replacement valves from both species were hemodynamically equivalent to native valves. PMID:22841171

  18. Effect of lobe pumping on human albumin: development of a lobe pump simulator using smoothed particle hydrodynamics.

    PubMed

    Gomme, Peter T; Prakash, Mahesh; Hunt, Ben; Stokes, Nick; Cleary, Paul; Tatford, Owen C; Bertolini, Joseph

    2006-02-01

    Using SPH (smoothed particle hydrodynamics), the motion of a lobe pump under load was simulated in order to predict the level of shear stress experienced by a protein solution. By varying the gap size between the lobes and pump housing, variations in pump efficiency and shear stress were determined. The simulations indicated that pump shear was dependent on gap size, with shear stress levels (0-40 Pa) correlating with those estimated in previous albumin-pumping studies. As gap size increased, the number of fluid particles experiencing low shear (<10 Pa) increased, whereas those experiencing high shear (>20 Pa) showed a decreasing trend. The pump efficiency, however, decreased with gap size, requiring more lobe revolutions to pass a unit volume. Taken together, these observations indicate that lobe pumps operated with increased gaps between the rotors and the housing result in larger number of particles within the fluid experiencing shear stresses. Moreover, the simulations indicate that it is best to use larger lobe pumps operated at high efficiency to transfer protein-containing solutions.

  19. Effects of integrin α5β1 on the proliferation and migration of human aortic vascular smooth muscle cells

    PubMed Central

    SONG, YAN; QIN, XIAOYU; WANG, HANJIE; MIAO, RENYING; ZHANG, YONGGAN; MIAO, CHAOFENG; WANG, ZIFAN

    2016-01-01

    Integrin (ITG) α5β1 is a dominant fibronectin receptor that is abundantly expressed on the surface of vascular smooth muscle cells (VSMCs). However, the association between integrin α5β1 and the proliferation and migration of VSMCs has yet to be elucidated. The aim of the present study was to characterize the roles of ITGα5 and ITGβ1 in the proliferation and migration of VSMCs, and to determine the effects of ITGα5β1 on integrin-linked kinase (ILK) and focal adhesion kinase (FAK) mRNA expression. Lentiviral expression vectors as well as RNA interference vectors of ITGα5 and ITGβ1 were successfully constructed and transfected into VSMCs to obtain ITGα5- and ITGβ1-overexpressing or -silenced cells, respectively. Cell cycle distribution, proliferation and migration were analyzed in the transfected VSMCs in order to clarify the roles of ITGβ1 and ITGα5 in the proliferation and migration of VSMCs. ITGβ1 was markedly associated with the proliferation and migration of VSMCs, and FAK was shown to be involved in the signaling pathways of ITGβ1. ITGα5 did not exert any effects on VSMCs. The results of the present study may provide a possible therapeutic target for the prevention and treatment of early vascular disease associated with VSMCs. PMID:26648324

  20. Effects of integrin α5β1 on the proliferation and migration of human aortic vascular smooth muscle cells.

    PubMed

    Song, Yan; Qin, Xiaoyu; Wang, Hanjie; Miao, Renying; Zhang, Yonggan; Miao, Chaofeng; Wang, Zifan

    2016-02-01

    Integrin (ITG) α5β1 is a dominant fibronectin receptor that is abundantly expressed on the surface of vascular smooth muscle cells (VSMCs). However, the association between integrin α5β1 and the proliferation and migration of VSMCs has yet to be elucidated. The aim of the present study was to characterize the roles of ITGα5 and ITGβ1 in the proliferation and migration of VSMCs, and to determine the effects of ITGα5β1 on integrin-linked kinase (ILK) and focal adhesion kinase (FAK) mRNA expression. Lentiviral expression vectors as well as RNA interference vectors of ITGα5 and ITGβ1 were successfully constructed and transfected into VSMCs to obtain ITGα5‑ and ITGβ1‑overexpressing or -silenced cells, respectively. Cell cycle distribution, proliferation and migration were analyzed in the transfected VSMCs in order to clarify the roles of ITGβ1 and ITGα5 in the proliferation and migration of VSMCs. ITGβ1 was markedly associated with the proliferation and migration of VSMCs, and FAK was shown to be involved in the signaling pathways of ITGβ1. ITGα5 did not exert any effects on VSMCs. The results of the present study may provide a possible therapeutic target for the prevention and treatment of early vascular disease associated with VSMCs.

  1. Embryological outcomes in cycles with human oocytes containing large tubular smooth endoplasmic reticulum clusters after conventional in vitro fertilization.

    PubMed

    Itoi, Fumiaki; Asano, Yukiko; Shimizu, Masashi; Honnma, Hiroyuki; Murata, Yasutaka

    2016-01-01

    There have been no studies analyzing the effect of large aggregates of tubular smooth endoplasmic reticulum (aSERT) after conventional in vitro fertilization (cIVF). The aim of this study was to investigate whether aSERT can be identified after cIVF and the association between the embryological outcomes of oocytes in cycles with aSERT. This is a retrospective study examining embryological data from cIVF cycles showing the presence of aSERT in oocytes 5-6 h after cIVF. To evaluate embryo quality, cIVF cycles with at least one aSERT-metaphase II (MII) oocyte observed (cycles with aSERT) were compared to cycles with normal-MII oocytes (control cycles). Among the 4098 MII oocytes observed in 579 cycles, aSERT was detected in 100 MII oocytes in 51 cycles (8.8%). The fertilization rate, the rate of embryo development on day 3 and day 5-6 did not significantly differ between cycles with aSERT and control group. However, aSERT-MII oocytes had lower rates for both blastocysts and good quality blastocysts (p < 0.05). aSERT can be detected in the cytoplasm by removing the cumulus cell 5 h after cIVF. However, aSERT-MII oocytes do not affect other normal-MII oocytes in cycles with aSERT.

  2. Clinical outcomes after IVF or ICSI using human blastocysts derived from oocytes containing aggregates of smooth endoplasmic reticulum.

    PubMed

    Itoi, Fumiaki; Asano, Yukiko; Shimizu, Masashi; Nagai, Rika; Saitou, Kanako; Honnma, Hiroyuki; Murata, Yasutaka

    2017-01-25

    In this study the clinical and neo-natal outcomes after transfer of blastocysts derived from oocytes containing aggregates of smooth endoplasmic reticulum (SER) were compared between IVF and intracytoplasmic sperm injection (ICSI) cycles. Clinical and neo-natal outcomes of blastocysts in cycles with at least one SER metaphase II oocyte (SER + MII; SER + cycles) did not significantly differ between the two insemination methods. When SER + MII were cultured to day 5/6, fertilization, embryo cleavage and blastocyst rates were not significantly different between IVF and ICSI cycles. In vitrified-warmed blastocyst transfer cycles, the clinical pregnancy rates from SER + MII in IVF and ICSI did not significantly differ. In this study, 52 blastocysts (27 IVF and 25 ICSI) derived from SER + MII were transferred, yielding 15 newborns (5 IVF and 10 ICSI) and no malformations. Moreover, 300 blastocysts (175 IVF and 125 ICSI) derived from SER-MII were transferred, yielding 55 newborns (24 IVF and 31 ICSI cycles). Thus, blastocysts derived from SER + cycles exhibited an acceptable ongoing pregnancy rate after IVF (n = 125) or ICSI (n = 117) cycles. In conclusion, blastocysts from SER + MII in both IVF and ICSI cycles yield adequate ongoing pregnancy rates with neo-natal outcomes that do not differ from SER-MII.

  3. Human metapneumovirus infection activates the TSLP pathway that drives excessive pulmonary inflammation and viral replication in mice.

    PubMed

    Lay, Margarita K; Céspedes, Pablo F; Palavecino, Christian E; León, Miguel A; Díaz, Rodrigo A; Salazar, Francisco J; Méndez, Gonzalo P; Bueno, Susan M; Kalergis, Alexis M

    2015-06-01

    Human metapneumovirus (hMPV) is a leading cause of acute respiratory tract infections in children and the elderly. The mechanism by which this virus triggers an inflammatory response still remains unknown. Here, we evaluated whether the thymic stromal lymphopoietin (TSLP) pathway contributes to lung inflammation upon hMPV infection. We found that hMPV infection promotes TSLP expression both in human airway epithelial cells and in the mouse lung. hMPV infection induced lung infiltration of OX40L(+) CD11b(+) DCs. Mice lacking the TSLP receptor deficient mice (tslpr(-/-) ) showed reduced lung inflammation and hMPV replication. These mice displayed a decreased number of neutrophils as well a reduction in levels of thymus and activation-regulated chemokine/CCL17, IL-5, IL-13, and TNF-α in the airways upon hMPV infection. Furthermore, a higher frequency of CD4(+) and CD8(+) T cells was found in tslpr(-/-) mice compared to WT mice, which could contribute to controlling viral spread. Depletion of neutrophils in WT and tslpr(-/-) mice decreased inflammation and hMPV replication. Remarkably, blockage of TSLP or OX40L with specific Abs reduced lung inflammation and viral replication following hMPV challenge in mice. Altogether, these results suggest that activation of the TSLP pathway is pivotal in the development of pulmonary pathology and pulmonary hMPV replication.

  4. Pulmonary angiography

    MedlinePlus

    ... Pulmonary arteriography; Pulmonary angiogram; Angiogram of the lungs Images Pulmonary arteries References Jackson JE, Meaney JFM. Angiography. ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  5. Pulmonary Rehabilitation

    MedlinePlus

    ... Topics Bronchitis COPD Cystic Fibrosis Idiopathic Pulmonary Fibrosis Sarcoidosis Send a link to NHLBI to someone by ... people who have COPD (chronic obstructive pulmonary disease), sarcoidosis (sar-koy-DOE-sis), idiopathic pulmonary fibrosis , or ...

  6. Pulmonary Kaposi's sarcoma as the initial presentation of human immunodeficiency virus infection

    PubMed Central

    Imran, Tasnim F.; Al-Khateeb, Ziyaad; Jung, Jin; Peters, Stephen; Dever, Lisa L.

    2014-01-01

    Kaposi's sarcoma (KS) usually presents in HIV-infected patients with cutaneous lesions that may advance to extensive visceral disease. There have been only a few documented cases in which the initial presentation of Kaposi's sarcoma involved the bronchopulmonary system. We describe a newly diagnosed patient who presented with pulmonary KS as his initial presentation of the disease. Our report is intended to increase clinicians’ awareness that pulmonary Kaposi's sarcoma should be considered in HIV-infected patients who present with respiratory symptoms, even if they do not manifest the typical mucocutaneous manifestations of KS or have low CD4 counts. Early diagnosis and therapy are essential in improving outcomes as this condition carries a high mortality. PMID:26839780

  7. Pulmonary Kaposi's sarcoma as the initial presentation of human immunodeficiency virus infection.

    PubMed

    Imran, Tasnim F; Al-Khateeb, Ziyaad; Jung, Jin; Peters, Stephen; Dever, Lisa L

    2014-01-01

    Kaposi's sarcoma (KS) usually presents in HIV-infected patients with cutaneous lesions that may advance to extensive visceral disease. There have been only a few documented cases in which the initial presentation of Kaposi's sarcoma involved the bronchopulmonary system. We describe a newly diagnosed patient who presented with pulmonary KS as his initial presentation of the disease. Our report is intended to increase clinicians' awareness that pulmonary Kaposi's sarcoma should be considered in HIV-infected patients who present with respiratory symptoms, even if they do not manifest the typical mucocutaneous manifestations of KS or have low CD4 counts. Early diagnosis and therapy are essential in improving outcomes as this condition carries a high mortality.

  8. Elevation of iron storage in humans attenuates the pulmonary vascular response to hypoxia.

    PubMed

    Bart, Nicole K; Curtis, M Kate; Cheng, Hung-Yuan; Hungerford, Sara L; McLaren, Ross; Petousi, Nayia; Dorrington, Keith L; Robbins, Peter A

    2016-08-01

    Sustained hypoxia over several hours induces a progressive rise in pulmonary artery systolic pressure (PASP). Administration of intravenous iron immediately prior to the hypoxia exposure abrogates this effect, suggesting that manipulation of iron stores may modify hypoxia-induced pulmonary hypertension. Iron (ferric carboxymaltose) administered intravenously has a plasma half-life of 7-12 h. Thus any therapeutic use of intravenous iron would require its effect on PASP to persist long after the iron-sugar complex has been cleared from the blood. To examine this, we studied PASP during sustained (6 h) hypoxia on 4 separate days (days 0, 1, 8, and 43) in 22 participants. On day 0, the rise in PASP with hypoxia was well matched between the iron and saline groups. On day 1, each participant received either 1 g of ferric carboxymaltose or saline in a double-blind manner. After administration of intravenous iron, the rise in PASP with hypoxia was attenuated by ∼50%, and this response remained suppressed on both days 8 and 43 (P < 0.001). Following administration of intravenous iron, values for ferritin concentration, transferrin saturation, and hepcidin concentration rose significantly (P < 0.001, P < 0.005, and P < 0.001, respectively), and values for transferrin concentration fell significantly (P < 0.001). These changes remained significant at day 43 We conclude that the attenuation of the pulmonary vascular response to hypoxia by elevation of iron stores persists long after the artificial iron-sugar complex has been eliminated from the blood. The persistence of this effect suggests that intravenous iron may be of benefit in some forms of pulmonary hypertension.

  9. Exercise-induced interstitial pulmonary edema at sea-level in young and old healthy humans

    PubMed Central

    Taylor, Bryan J.; Carlson, Alex R.; Miller, Andrew D.; Johnson, Bruce D.

    2014-01-01

    We asked whether aged adults are more susceptible to exercise-induced pulmonary edema relative to younger individuals. Lung diffusing capacity for carbon monoxide (DLCO), alveolar-capillary membrane conductance (Dm) and pulmonary-capillary blood volume (Vc) were measured before and after exhaustive discontinuous incremental exercise in 10 young (YNG; 27±3 yr) and 10 old (OLD; 69±5 yr) males. In YNG subjects, Dm increased (11±7%, P=0.031), Vc decreased (−10±9%, P=0.01) and DLCO was unchanged (30.5±4.1 vs. 29.7±2.9 ml/min/mmHg, P=0.44) pre- to post-exercise. In OLD subjects, DLCO and Dm increased (11±14%, P=0.042; 16±14%, P=0.025) but Vc was unchanged (58±23 vs. 56±23 ml, P=0.570) pre- to post-exercise. Group-mean Dm/Vc was greater after vs. before exercise in the YNG and OLD subjects. However, Dm/Vc was lower post-exercise in 2 of the 10 YNG (−7±4%) and 2 of the 10 OLD subjects (−10±5%). These data suggest that exercise decreases interstitial lung fluid in most YNG and OLD subjects, with a small number exhibiting evidence for exercise-induced pulmonary edema. PMID:24200644

  10. Multi-walled carbon nanotube length as a critical determinant of bioreactivity with primary human pulmonary alveolar cells

    PubMed Central

    Sweeney, Sinbad; Berhanu, Deborah; Misra, Superb K.; Thorley, Andrew J.; Valsami-Jones, Eugenia; Tetley, Teresa D.

    2015-01-01

    Multiwalled carbon nanotube (MWCNT) length is suggested to critically determine their pulmonary toxicity. This stems from in vitro and in vivo rodent studies and in vitro human studies using cell lines (typically cancerous). There is little data using primary human lung cells. We addressed this knowledge gap, using highly relevant, primary human alveolar cell models exposed to precisely synthesized and thoroughly characterized MWCNTs. In this work, transformed human alveolar type-I-like epithelial cells (TT1), primary human alveolar type-II epithelial cells (ATII) and alveolar macrophages (AM) were treated with increasing concentrations of MWCNTs before measuring cytotoxicity, inflammatory mediator release and MAP kinase signalling. Strikingly, we observed that short MWCNTs (~0.6 µm in length) induced significantly greater responses from the epithelial cells, whilst AM were particularly susceptible to long MWCNTs (~20 µm). These differences in the pattern of mediator release were associated with alternative profiles of JNK, p38 and ERK1/2 MAP kinase signal transduction within each cell type. This study, using highly relevant target human alveolar cells and well defined and characterized MWCNTs, shows marked cellular responses to the MWCNTs that vary according to the target cell type, as well as the aspect ratio of the MWCNT. PMID:25780270

  11. Eradication of Human Hepatic and Pulmonary Melanoma Metastases in SCID Mice by Antibody--Interleukin 2 Fusion Proteins

    NASA Astrophysics Data System (ADS)

    Becker, Jurgen C.; Pancook, James D.; Gillies, Stephen D.; Mendelsohn, John; Reisfeld, Ralph A.

    1996-04-01

    Antibody--cytokine fusion proteins combine the unique targeting ability of antibodies with the multifunctional activity of cytokines. Here, we demonstrate the therapeutic efficacy of such constructs for the treatment of hepatic and pulmonary metastases of different melanoma cell lines. Two antibody--interleukin 2 (IL-2) fusion proteins, ch225-IL2 and ch14.18-IL2, constructed by fusion of a synthetic sequence coding for human IL-2 to the carboxyl end of the Cγ 1 gene of the corresponding antibodies, were tested for their therapeutic efficacy against xenografted human melanoma in vivo. Tumorspecific fusion proteins completely inhibited the growth of hepatic and pulmonary metastases in C.B-17 scid/scid mice previously reconstituted with human lymphokine-activated killer cells, whereas treatment with combinations of the corresponding antibodies plus recombinant IL-2 only reduced the tumor load. Even when treatment with fusion proteins was delayed up to 8 days after inoculation of tumor cells, it still resulted in complete eradication of micrometastases that were established at that time point. Selection of tumor cell lines expressing or lacking the targeted antigen of the administered fusion protein proved the specificity of the observed antitumor effect. Biodistribution analysis demonstrated that the tumorspecific fusion protein accumulated not only in subcutaneous tumors but also in lungs and livers affected with micrometastases. Survival times of animals treated with the fusion protein were more than doubled as compared to those treated with the combination of the corresponding antibody plus IL-2. Our data demonstrate that an immunotherapeutic approach using cytokines targeted by antibodies to tumor sites has potent effects against disseminated human melanoma.

  12. Effect of Phospholipid Transfer Protein on Cigarette Smoke Extract-Induced IL-8 Production in Human Pulmonary Epithelial Cells.

    PubMed

    Li, Youlun; Yu, Xiuying; Fu, Xiaofeng; Wu, Fengping; Zou, Linlin; Chen, Yuhan; Chen, Yajuan

    2016-12-01

    To investigate the effect of phospholipid transfer protein (PLTP) on the cigarette smoke extract (CSE)-induced production of interleukin-8 (IL-8) in human pulmonary epithelial cells, male Wistar rats were exposed to air and cigarette smoke (n = 10/exposure) for 6 h/day on three consecutive days. Their lungs were sectioned and bronchoalveolar lavage fluid (BALF) examined. The expression of PLTP and IL-8 in the lung was detected immunohistochemically. Lung injury was accompanied by the upregulation of PLTP and IL-8 in the CSE-exposed rat model, and the number of white blood cells in the BALF was significantly increased compared with those of the controls. Both neutrophils and macrophages were clearly increased. Human alveolar epithelial cells (A549) and human bronchial epithelial cells (HBECs) were treated with different concentrations of CSE for various times. The cells were also transfected with small interfering RNA directed against PLTP, and U0126, an inhibitor of the ERK1/2 pathway, was administered before CSE exposure. The expression of PLTP and IL-8 mRNAs and PLTP, IL-8, total ERK, and phosphorylated ERK proteins was analyzed. The expression of IL-8 and phosphorylated ERK was significantly increased in A549 cells and HBECs after CSE stimulation, and CSE upregulated the expression of PLTP in A549 cells. In contrast, CSE inhibited the expression of PLTP in HBECs. The CSE-induced expression of IL-8 and p-ERK was significantly increased by the knockdown of PLTP. Therefore, PLTP may regulate CSE-induced IL-8 expression via the ERK1/2 signaling pathway in human pulmonary epithelial cells.

  13. cDNA and deduced amino acid sequence of human pulmonary surfactant-associated proteolipid SPL(Phe)

    SciTech Connect

    Glasser, S.W.; Korfhagen, T.R.; Weaver, T.; Pilot-Matias, T.; Fox, J.L.; Whitsett, J.A.

    1987-06-01

    Hydrophobic surfactant-associated protein of M/sub r/ 6000-14,000 was isolated from either/ethanol or chloroform/methanol extracts of mammalian pulmonary surfactant. Automated Edman degradation in a gas-phase sequencer showed the major N-terminus of the human low molecular weight protein to be Phe-Pro-Ile-Pro-Leu-Pro-Try-Cys-Trp-Leu-Cys-Arg-Ala-Leu-. Because of the N-terminal phenylalanine, the surfactant protein was designated SPL(Phe). Antiserum generated against hydrophobic surfactant protein(s) from bovine pulmonary surfactant recognized protein of M/sub r/ 6000-14,000 in immunoblot analysis and was used to screen a lambdagt11 expression library constructed from adult human lung poly(A)/sup +/ RNA. This resulted in identification of a 1.4-kilobase cDNA clone that was shown to encode the N-terminus of the surfactant polypeptide SPL(Phe) (Phe-Pro-Ile-Pro-Leu-Pro-) within an open reading frame for a larger protein. Expression of a fused ..beta..-galactosidase-SPL (Phe) gene in Escherichia coli yielded an immunoreactive M/sub r/ 34,000 fusion peptide. Hybrid-arrested translation with the cDNA and immunoprecipitation of (/sup 35/S)methionine-labeled in vitro translation products of human poly(A)/sup +/ RNA with a surfactant polyclonal antibody resulted in identification of a M/sub r/ 40,000 precursor protein. Blot hybridization analysis of electrophoretically fractionated RNA from human lung detected a 2.0-kilobase RNA that was more abundant in adult lung than in fetal lung. These proteins, and specifically SPL(Phe), may therefore be useful for synthesis of replacement surfactants for treatment of hyaline membrane disease in newborn infants or of other surfactant-deficient states.

  14. Cue-dependent memory-based smooth-pursuit in normal human subjects: importance of extra-retinal mechanisms for initial pursuit.

    PubMed

    Ito, Norie; Barnes, Graham R; Fukushima, Junko; Fukushima, Kikuro; Warabi, Tateo

    2013-08-01

    Using a cue-dependent memory-based smooth-pursuit task previously applied to monkeys, we examined the effects of visual motion-memory on smooth-pursuit eye movements in normal human subjects and compared the results with those of the trained monkeys. These results were also compared with those during simple ramp-pursuit that did not require visual motion-memory. During memory-based pursuit, all subjects exhibited virtually no errors in either pursuit-direction or go/no-go selection. Tracking eye movements of humans and monkeys were similar in the two tasks, but tracking eye movements were different between the two tasks; latencies of the pursuit and corrective saccades were prolonged, initial pursuit eye velocity and acceleration were lower, peak velocities were lower, and time to reach peak velocities lengthened during memory-based pursuit. These characteristics were similar to anticipatory pursuit initiated by extra-retinal components during the initial extinction task of Barnes and Collins (J Neurophysiol 100:1135-1146, 2008b). We suggest that the differences between the two tasks reflect differences between the contribution of extra-retinal and retinal components. This interpretation is supported by two further studies: (1) during popping out of the correct spot to enhance retinal image-motion inputs during memory-based pursuit, pursuit eye velocities approached those during simple ramp-pursuit, and (2) during initial blanking of spot motion during memory-based pursuit, pursuit components appeared in the correct direction. Our results showed the importance of extra-retinal mechanisms for initial pursuit during memory-based pursuit, which include priming effects and extra-retinal drive components. Comparison with monkey studies on neuronal responses and model analysis suggested possible pathways for the extra-retinal mechanisms.

  15. Induction of bone-type alkaline phosphatase in human vascular smooth muscle cells: roles of tumor necrosis factor-alpha and oncostatin M derived from macrophages.

    PubMed

    Shioi, Atsushi; Katagi, Miwako; Okuno, Yasuhisa; Mori, Katsuhito; Jono, Shuichi; Koyama, Hidenori; Nishizawa, Yoshiki

    2002-07-12

    Inflammatory cells such as macrophages and T lymphocytes play an important role in vascular calcification associated with atherosclerosis and cardiac valvular disease. In particular, macrophages activated with cytokines derived from T lymphocytes such as interferon-gamma (IFN-gamma) may contribute to the development of vascular calcification. Moreover, we have shown the stimulatory effect of 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3) on in vitro calcification through increasing the expression of alkaline phosphatase (ALP), an ectoenzyme indispensable for bone mineralization, in vascular smooth muscle cells. Therefore, we hypothesized that macrophages may induce calcifying phenotype, especially the expression of ALP in human vascular smooth muscle cells (HVSMCs) in the presence of IFN-gamma and 1,25(OH)2D3. To test this hypothesis, we used cocultures of HVSMCs with human monocytic cell line (THP-1) or peripheral blood monocytes (PBMCs) in the presence of IFN-gamma and 1,25(OH)2D3. THP-1 cells or PBMCs induced ALP activity and its gene expression in HVSMCs and the cells with high expression of ALP calcified their extracellular matrix by the addition of beta-glycerophosphate. Thermostability and immunoassay showed that ALP induced in HVSMCs was bone-specific enzyme. We further identified tumor necrosis factor-alpha (TNF-alpha) and oncostatin M (OSM) as major factors inducing ALP in HVSMCs in the culture supernatants of THP-1 cells. TNF-alpha and OSM, only when applied together, increased ALP activities and in vitro calcification in HVSMCs in the presence of IFN-gamma and 1,25(OH)2D3. These results suggest that macrophages may contribute to the development of vascular calcification through producing various inflammatory mediators, especially TNF-alpha and OSM.

  16. Human fibroblast growth factor 1 gene expression in vascular smooth muscle cells is modulated via an alternate promoter in response to serum and phorbol ester.

    PubMed Central

    Chotani, M A; Payson, R A; Winkles, J A; Chiu, I M

    1995-01-01

    We have previously isolated the human FGF-1 gene in order to elucidate the molecular basis of its gene expression. The gene spans over 100 kbp and encodes multiple transcripts expressed in a tissue- and cell-specific manner. Two variants of FGF-1 mRNA (designated FGF-1.A and 1.B), which differ in their 5' untranslated region, were identified in our laboratory. Recently, two novel variants of FGF-1 mRNA (designated FGF-1.C and 1.D) have been isolated. In this study we used RNase protection assays to demonstrate expression of FGF-1.D mRNA in human fibroblasts and vascular smooth muscle cells and to show that promoter 1D has multiple transcription start sites. A single-strand nuclease-sensitive region has also been identified in the promoter 1D region that may have implications in chromatin conformation and transcriptional regulation of this promoter. Using Northern blot hybridization analyses, a previous study demonstrated a significant increase of FGF-1 mRNA levels in cultured saphenous vein smooth muscle cells in response to serum and phorbol ester. Here we confirm these results by RNase protection analysis and show that FGF-1.C mRNA is significantly increased in response to these stimuli. RNase protection assays indicate that promoter 1C has one major start site. The phorbol ester effect suggests that a protein kinase C-dependent signalling pathway may be involved in this phenomenon. Our results point to a dual promoter usage of the FGF-1 gene in vascular smooth muscle cells. Thus, normal growing cells primarily utilize promoter 1D. In contrast, quiescent cells, when exposed to serum or phorbol ester, utilize a different FGF-1 promoter, namely promoter 1C. Overall, these phenomena suggest mechanisms for increased production of FGF-1 that may play a role in inflammatory settings, wound healing, tissue repair, and neovascularization events and processes via autocrine and paracrine mechanisms. Our findings suggest that different FGF-1 promoters may respond to

  17. Recapitulation of developing artery muscularization in pulmonary hypertension.

    PubMed

    Sheikh, Abdul Q; Lighthouse, Janet K; Greif, Daniel M

    2014-03-13

    Excess smooth muscle accumulation is a key component of many vascular disorders, including atherosclerosis, restenosis, and pulmonary artery hypertension, but the underlying cell biological processes are not well defined. In pulmonary artery hypertension, reduced pulmonary artery compliance is a strong independent predictor of mortality, and pathological distal arteriole muscularization contributes to this reduced compliance. We recently demonstrated that embryonic pulmonary artery wall morphogenesis consists of discrete developmentally regulated steps. In contrast, poor understanding of distal arteriole muscularization in pulmonary artery hypertension severely limits existing therapies that aim to dilate the pulmonary vasculature but have modest clinical benefit and do not prevent hypermuscularization. Here, we show that most pathological distal arteriole smooth muscle cells, but not alveolar myofibroblasts, derive from pre-existing smooth muscle. Furthermore, the program of distal arteriole muscularization encompasses smooth muscle cell dedifferentiation, distal migration, proliferation, and then redifferentiation, thereby recapitulating many facets of arterial wall development.

  18. MicroRNA-31 controls phenotypic modulation of human vascular smooth muscle cells by regulating its target gene cellular repressor of E1A-stimulated genes

    SciTech Connect

    Wang, Jie; Yan, Cheng-Hui; Li, Yang; Xu, Kai; Tian, Xiao-Xiang; Peng, Cheng-Fei; Tao, Jie; Sun, Ming-Yu; Han, Ya-Ling

    2013-05-01

    Phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a critical role in the pathogenesis of a variety of proliferative vascular diseases. The cellular repressor of E1A-stimulated genes (CREG) has been shown to play an important role in phenotypic modulation of VSMCs. However, the mechanism regulating CREG upstream signaling remains unclear. MicroRNAs (miRNAs) have recently been found to play a critical role in cell differentiation via target-gene regulation. This study aimed to identify a miRNA that binds directly to CREG, and may thus be involved in CREG-mediated VSMC phenotypic modulation. Computational analysis indicated that miR-31 bound to the CREG mRNA 3′ untranslated region (3′-UTR). miR-31 was upregulated in quiescent differentiated VSMCs and downregulated in proliferative cells stimulated by platelet-derived growth factor and serum starvation, demonstrating a negative relationship with the VSMC differentiation marker genes, smooth muscle α-actin, calponin and CREG. Using gain-of-function and loss-of-function approaches, CREG and VSMC differentiation marker gene expression levels were shown to be suppressed by a miR-31 mimic, but increased by a miR-31 inhibitor at both protein and mRNA levels. Notably, miR-31 overexpression or inhibition affected luciferase expression driven by the CREG 3′-UTR containing the miR-31 binding site. Furthermore, miR-31-mediated VSMC phenotypic modulation was inhibited in CREG-knockdown human VSMCs. We also determined miR-31 levels in the serum of patients with coronary artery disease (CAD), with or without in stent restenosis and in healthy controls. miR-31 levels were higher in the serum of CAD patients with restenosis compared to CAD patients without restenosis and in healthy controls. In summary, these data demonstrate that miR-31 not only directly binds to its target gene CREG and modulates the VSMC phenotype through this interaction, but also can be an important biomarker in diseases involving VSMC

  19. [Pulmonary strongyloidiasis].

    PubMed

    Lozada, Heiler; Daza, Jorge E

    2016-10-01

    Strongyloidiasis is an infection caused by the parasite Strongyloides stercoralis, which can be asymptomatic and means a high morbidity and mortality in immunocompromised hosts, severe malnutrition and coinfection with HTLV-1 virus. The parasite has the potential to produce and multiply internal autoinfection in humans, thus an hyperinfection can be developed. A case of pulmonary infection by this parasite is presented in this study, infection which advanced into a respiratory failure and required mechanical ventilation and hemodynamic support in an intensive care unit. The standard treatment combined with ivermectin and albendazole was provided, achieving an appropriate response.

  20. Assessing the utility of autofluorescence-based pulmonary optical endomicroscopy to predict the malignant potential of solitary pulmonary nodules in humans

    NASA Astrophysics Data System (ADS)

    Seth, Sohan; Akram, Ahsan R.; McCool, Paul; Westerfeld, Jody; Wilson, David; McLaughlin, Stephen; Dhaliwal, Kevin; Williams, Christopher K. I.

    2016-08-01

    Solitary pulmonary nodules are common, often incidental findings on chest CT scans. The investigation of pulmonary nodules is time-consuming and often leads to protracted follow-up with ongoing radiological surveillance, however, clinical calculators that assess the risk of the nodule being malignant exist to help in the stratification of patients. Furthermore recent advances in interventional pulmonology include the ability to both navigate to nodules and also to perform autofluorescence endomicroscopy. In this study we assessed the efficacy of incorporating additional information from label-free fibre-based optical endomicrosopy of the nodule on assessing risk of malignancy. Using image analysis and machine learning approaches, we find that this information does not yield any gain in predictive performance in a cohort of patients. Further advances with pulmonary endomicroscopy will require the addition of molecular tracers to improve information from this procedure.

  1. Assessing the utility of autofluorescence-based pulmonary optical endomicroscopy to predict the malignant potential of solitary pulmonary nodules in humans

    PubMed Central

    Seth, Sohan; Akram, Ahsan R.; McCool, Paul; Westerfeld, Jody; Wilson, David; McLaughlin, Stephen; Dhaliwal, Kevin; Williams, Christopher K. I.

    2016-01-01

    Solitary pulmonary nodules are common, often incidental findings on chest CT scans. The investigation of pulmonary nodules is time-consuming and often leads to protracted follow-up with ongoing radiological surveillance, however, clinical calculators that assess the risk of the nodule being malignant exist to help in the stratification of patients. Furthermore recent advances in interventional pulmonology include the ability to both navigate to nodules and also to perform autofluorescence endomicroscopy. In this study we assessed the efficacy of incorporating additional information from label-free fibre-based optical endomicrosopy of the nodule on assessing risk of malignancy. Using image analysis and machine learning approaches, we find that this information does not yield any gain in predictive performance in a cohort of patients. Further advances with pulmonary endomicroscopy will require the addition of molecular tracers to improve information from this procedure. PMID:27550539

  2. The Evaluation of a Pulmonary Display to Detect Adverse Respiratory Events Using High Resolution Human Simulator

    PubMed Central

    Wachter, S. Blake; Johnson, Ken; Albert, Robert; Syroid, Noah; Drews, Frank; Westenskow, Dwayne

    2006-01-01

    Objective Authors developed a picture-graphics display for pulmonary function to present typical respiratory data used in perioperative and intensive care environments. The display utilizes color, shape and emergent alerting to highlight abnormal pulmonary physiology. The display serves as an adjunct to traditional operating room displays and monitors. Design To evaluate the prototype, nineteen clinician volunteers each managed four adverse respiratory events and one normal event using a high-resolution patient simulator which included the new displays (intervention subjects) and traditional displays (control subjects). Between-group comparisons included (i) time to diagnosis and treatment for each adverse respiratory event; (ii) the number of unnecessary treatments during the normal scenario; and (iii) self-reported workload estimates while managing study events. Measurements Two expert anesthesiologists reviewed video-taped transcriptions of the volunteers to determine time to treat and time to diagnosis. Time values were then compared between groups using a Mann-Whitney-U Test. Estimated workload for both groups was assessed using the NASA-TLX and compared between groups using an ANOVA. P-values < 0.05 were considered significant. Results Clinician volunteers detected and treated obstructed endotracheal tubes and intrinsic PEEP problems faster with graphical rather than conventional displays (p < 0.05). During the normal scenario simulation, 3 clinicians using the graphical display, and 5 clinicians using the conventional display gave unnecessary treatments. Clinician-volunteers reported significantly lower subjective workloads using the graphical display for the obstructed endotracheal tube scenario (p < 0.001) and the intrinsic PEEP scenario (p < 0.03). Conclusion Authors conclude that the graphical pulmonary display may serve as a useful adjunct to traditional displays in identifying adverse respiratory events. PMID:16929038

  3. Human Immunodeficiency Virus nef signature sequences are associated with pulmonary hypertension.

    PubMed

    Almodovar, Sharilyn; Knight, Rob; Allshouse, Amanda A; Roemer, Sarah; Lozupone, Catherine; McDonald, Daniel; Widmann, Jeremy; Voelkel, Norbert F; Shelton, Robert J; Suarez, Edu B; Hammer, Kenneth W; Goujard, Cecile; Petrosillo, Nicola; Simonneau, Gerald; Hsue, Priscilla Y; Humbert, Marc; Flores, Sonia C

    2012-06-01

    Severe pulmonary hypertension (PH) associated with vascular remodeling is a long-term complication of HIV infection (HIV-PH) affecting 1/200 infected individuals vs. 1/200,000 frequency in the uninfected population. Factors accounting for increased PH susceptibility in HIV-infected individuals are unknown. Rhesus macaques infected with chimeric SHIVnef virions but not with SIV display PH-like pulmonary vascular remodeling suggesting that HIV-Nef is associated with PH; these monkeys showed changes in nef sequences that correlated with pathogenesis after passage in vivo. We further examined whether HIV-nef alleles in HIV-PH subjects have signature sequences associated with the disease phenotype. We evaluated specimens from participants with and without HIV-PH from European Registries and validated results with samples collected as part of the Lung-HIV Studies in San Francisco. We found that 10 polymorphisms in nef were overrepresented in blood cells or lung tissue specimens from European HIV-PH individuals but significantly less frequent in HIV-infected individuals without PH. These polymorphisms mapped to known functional domains in Nef. In the validation cohort, 7/10 polymorphisms in the HIV-nef gene were confirmed; these polymorphisms arose independently from viral load, CD4(+) T cell counts, length of infection, and antiretroviral therapy status. Two out of 10 polymorphisms were previously reported in macaques with PH-like pulmonary vascular remodeling. Cloned recombinant Nef proteins from clinical samples down-regulated CD4, suggesting that these primary isolates are functional. This study offers new insights into the association between Nef polymorphisms in functional domains and the HIV-PH phenotype. The utility of these polymorphisms as predictors of PH should be examined in a larger population.

  4. [Pulmonary hypertension in patients infected with human immunodeficiency virus: current situation].

    PubMed

    Soto-Abánades, Clara Itzíar; Alcolea-Batres, Sergio; Ríos-Blanco, Juan José

    2013-01-01

    The increase in survival that has been achieved with the new treatments in the era of highly active antiretroviral therapy, has enabled clinicians and researchers to analyze issues that emerge in the long term in patients with HIV infection. Although the majority of cardiovascular complications have been widely described, the pathogenesis of pulmonary arterial hypertension is still poorly understood, and is one of the more complex and feared complications as it worsens the prognosis and quality of life of these patients This article reviews newer aspects related to the aetiology, symptoms, diagnosis and treatment of this disease.

  5. Different muscarinic receptor subtypes modulate proliferation of primary human detrusor smooth muscle cells via Akt/PI3K and map kinases.

    PubMed

    Arrighi, Nicola; Bodei, Serena; Zani, Danilo; Michel, Martin C; Simeone, Claudio; Cosciani Cunico, Sergio; Spano, Pierfranco; Sigala, Sandra

    2013-08-01

    While acetylcholine (ACh) and muscarinic receptors in the bladder are mainly known for their role in the regulation of smooth muscle contractility, in other tissues they are involved in tissue remodelling and promote cell growth and proliferation. In the present study we have used primary cultures of human detrusor smooth muscle cells (HDSMCs), in order to investigate the role of muscarinic receptors in HDSMC proliferation. Samples were obtained as discarded tissue from men >65 years undergoing radical cystectomy for bladder cancer and cut in pieces that were either immediately frozen or placed in culture medium for the cell culture establishment. HDSMCs were isolated from samples, propagated and maintained in culture. [(3)H]-QNB radioligand binding on biopsies revealed the presence of muscarinic receptors, with a Kd of 0.10±0.02nM and a Bmax of 72.8±0.1fmol/mg protein. The relative expression of muscarinic receptor subtypes, based on Q-RT-PCR, was similar in biopsies and HDSMC with a rank order of M2≥M3>M1>M4>M5. The cholinergic agonist carbachol (CCh, 1-100μM) concentration-dependently increased [(3)H]-thymidine incorporation (up to 46±4%). This was concentration-dependently inhibited by the general muscarinic receptor antagonist atropine and by subtype-preferring antagonists with an order of potency of darifenacin >4-DAMP>AF-DX 116. The CCh-induced cell proliferation was blocked by selective PI-3 kinase and ERK activation inhibitors, strongly suggesting that these intracellular pathways mediate, at least in part, the muscarinic receptor-mediated cell proliferation. This work shows that M2 and M3 receptors can mediate not only HDSM contraction but also proliferation; they may also contribute bladder remodelling including detrusor hypertrophy.

  6. Efficacy and Safety of Immuno-Magnetically Sorted Smooth Muscle Progenitor Cells Derived from Human-Induced Pluripotent Stem Cells for Restoring Urethral Sphincter Function.

    PubMed

    Li, Yanhui; Green, Morgaine; Wen, Yan; Wei, Yi; Wani, Prachi; Wang, Zhe; Reijo Pera, Renee; Chen, Bertha

    2017-04-01

    Human-induced pluripotent stem cells (hiPSCs)-based cell therapy holds promise for treating stress urinary incontinence (SUI). However, safety concerns, especially tumorgenic potential of residual undifferentiated cells in hiPSC derivatives, are major barriers for its clinical translation. An efficient, fast and clinical-scale strategy for purifying committed cells is also required. Our previous studies demonstrated the regenerative effects of hiPSC-derived smooth muscle progenitor cells (pSMCs) on the injured urethral sphincter in SUI, but the differentiation protocol required fluorescence-activated cell sorting (FACS) which is not practical for autologous clinical applications. In this study, we examined the efficacy and safety of hiPSC-derived pSMC populations sorted by FDA-approved magnetic-activated cell sorting (MACS) using cell-surface marker CD34 for restoring urethral sphincter function. Although the heterogeneity of MACS-sorted pSMCs was higher than that of FACS-sorted pSMCs, the percentage of undifferentiated cells dramatically decreased after directed differentiation in vitro. In vivo studies demonstrated long-term cell integration and no tumor formation of MACS-sorted pSMCs after transplantation. Furthermore, transplantation of MACS-sorted pSMCs into immunodeficient SUI rats was comparable to transplantation with FACS-sorted pSMCs for restoration of the extracellular matrix metabolism and function of the urethral sphincter. In summary, purification of hiPSC derivatives using MACS sorting for CD34 expression represent an efficient approach for production of clinical-scale pSMCs for autologous stem cell therapy for regeneration of smooth muscle tissues. Stem Cells Translational Medicine 2017;6:1158-1167.

  7. Anti-atherogenic effect of trivalent chromium-loaded CPMV nanoparticles in human aortic smooth muscle cells under hyperglycemic conditions in vitro

    NASA Astrophysics Data System (ADS)

    Ganguly, Rituparna; Wen, Amy M.; Myer, Ashley B.; Czech, Tori; Sahu, Soumyadip; Steinmetz, Nicole F.; Raman, Priya

    2016-03-01

    Atherosclerosis, a major macrovascular complication associated with diabetes, poses a tremendous burden on national health care expenditure. Despite extensive efforts, cost-effective remedies are unknown. Therapies for atherosclerosis are challenged by a lack of targeted drug delivery approaches. Toward this goal, we turn to a biology-derived drug delivery system utilizing nanoparticles formed by the plant virus, Cowpea mosaic virus (CPMV). The aim herein is to investigate the anti-atherogenic potential of the beneficial mineral nutrient, trivalent chromium, loaded CPMV nanoparticles in human aortic smooth muscle cells (HASMC) under hyperglycemic conditions. A non-covalent loading protocol is established yielding CrCl3-loaded CPMV (CPMV-Cr) carrying 2000 drug molecules per particle. Using immunofluorescence microscopy, we show that CPMV-Cr is readily taken up by HASMC in vitro. In glucose (25 mM)-stimulated cells, 100 nM CPMV-Cr inhibits HASMC proliferation concomitant to attenuated proliferating cell nuclear antigen (PCNA, proliferation marker) expression. This is accompanied by attenuation in high glucose-induced phospho-p38 and pAkt expression. Moreover, CPMV-Cr inhibits the expression of pro-inflammatory cytokines, transforming growth factor-β (TGF-β) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), in glucose-stimulated HASMCs. Finally glucose-stimulated lipid uptake is remarkably abrogated by CPMV-Cr, revealed by Oil Red O staining. Together, these data provide key cellular evidence for an atheroprotective effect of CPMV-Cr in vascular smooth muscle cells (VSMC) under hyperglycemic conditions that may promote novel therapeutic ventures for diabetic atherosclerosis.

  8. The Angiotensin-(1-7)/Mas Axis Counteracts Angiotensin II-Dependent and -Independent Pro-inflammatory Signaling in Human Vascular Smooth Muscle Cells.

    PubMed

    Villalobos, Laura A; San Hipólito-Luengo, Álvaro; Ramos-González, Mariella; Cercas, Elena; Vallejo, Susana; Romero, Alejandra; Romacho, Tania; Carraro, Raffaele; Sánchez-Ferrer, Carlos F; Peiró, Concepción

    2016-01-01

    Background and Aims: Targeting inflammation is nowadays considered as a challenging pharmacological strategy to prevent or delay the development of vascular diseases. Angiotensin-(1-7) is a member of the renin-angiotensin system (RAS) that binds Mas receptors and has gained growing attention in the last years as a regulator of vascular homeostasis. Here, we explored the capacity of Ang-(1-7) to counteract human aortic smooth muscle cell (HASMC) inflammation triggered by RAS-dependent and -independent stimuli, such as Ang II or interleukin (IL)-1β. Methods and Results: In cultured HASMC, the expression of inducible nitric oxide synthase (iNOS) and the release of nitric oxide were stimulated by both Ang II and IL-1β, as determined by Western blot and indirect immunofluorescence or the Griess method, respectively. iNOS induction was inhibited by Ang-(1-7) in a concentration-dependent manner. This effect was equally blocked by two different Mas receptor antagonists, A779 and D-Pro(7)-Ang-(1-7), suggesting the participation of a unique Mas receptor subtype. Using pharmacological inhibitors, the induction of iNOS was proven to rely on the consecutive upstream activation of NADPH oxidase and nuclear factor (NF)-κB. Indeed, Ang-(1-7) markedly inhibited the activation of the NADPH oxidase and subsequently of NF-κB, as determined by lucigenin-derived chemiluminescence and electromobility shift assay, respectively. Conclusion: Ang-(1-7) can act as a counter-regulator of the inflammation of vascular smooth muscle cells triggered by Ang II, but also by other stimuli beyond the RAS. Activating or mimicking the Ang-(1-7)/Mas axis may represent a pharmacological opportunity to attenuate the pro-inflammatory environment that promotes and sustains the development of vascular diseases.

  9. The Angiotensin-(1-7)/Mas Axis Counteracts Angiotensin II-Dependent and -Independent Pro-inflammatory Signaling in Human Vascular Smooth Muscle Cells

    PubMed Central

    Villalobos, Laura A.; San Hipólito-Luengo, Álvaro; Ramos-González, Mariella; Cercas, Elena; Vallejo, Susana; Romero, Alejandra; Romacho, Tania; Carraro, Raffaele; Sánchez-Ferrer, Carlos F.; Peiró, Concepción

    2016-01-01

    Background and Aims: Targeting inflammation is nowadays considered as a challenging pharmacological strategy to prevent or delay the development of vascular diseases. Angiotensin-(1-7) is a member of the renin-angiotensin system (RAS) that binds Mas receptors and has gained growing attention in the last years as a regulator of vascular homeostasis. Here, we explored the capacity of Ang-(1-7) to counteract human aortic smooth muscle cell (HASMC) inflammation triggered by RAS-dependent and -independent stimuli, such as Ang II or interleukin (IL)-1β. Methods and Results: In cultured HASMC, the expression of inducible nitric oxide synthase (iNOS) and the release of nitric oxide were stimulated by both Ang II and IL-1β, as determined by Western blot and indirect immunofluorescence or the Griess method, respectively. iNOS induction was inhibited by Ang-(1-7) in a concentration-dependent manner. This effect was equally blocked by two different Mas receptor antagonists, A779 and D-Pro7-Ang-(1-7), suggesting the participation of a unique Mas receptor subtype. Using pharmacological inhibitors, the induction of iNOS was proven to rely on the consecutive upstream activation of NADPH oxidase and nuclear factor (NF)-κB. Indeed, Ang-(1-7) markedly inhibited the activation of the NADPH oxidase and subsequently of NF-κB, as determined by lucigenin-derived chemiluminescence and electromobility shift assay, respectively. Conclusion: Ang-(1-7) can act as a counter-regulator of the inflammation of vascular smooth muscle cells triggered by Ang II, but also by other stimuli beyond the RAS. Activating or mimicking the Ang-(1-7)/Mas axis may represent a pharmacological opportunity to attenuate the pro-inflammatory environment that promotes and sustains the development of vascular diseases. PMID:28018220

  10. Effects of ethanol on the tonicity of corporal tissue and the intracellular Ca2+ concentration of human corporal smooth muscle cells

    PubMed Central

    Kam, Sung Chul; Chae, Mee Ree; Kim, Ji Young; Choo, Seol Ho; Han, Deok Hyun; Lee, Sung Won

    2010-01-01

    Heavy alcohol consumption is associated with an increased risk of erectile dysfunction (ED); however, the acute effects of ethanol (EtOH) on penile tissue are not fully understood. We sought to investigate the effects of EtOH on corporal tissue tonicity, as well as the intracellular Ca2+ concentration ([Ca2+]i) and potassium channel activity of corporal smooth muscle. Strips of corpus cavernosum (CC) from rabbits were mounted in organ baths for isometric tension studies. Electrical field stimulation (EFS) was applied to strips precontracted with 10 μmol L−1 phenylephrine as a control. EtOH was then added to the organ bath and incubated before EFS. The [Ca2+]i levels were monitored by the ratio of fura-2 fluorescence intensities using the fura-2 loading method. Single-channel and whole-cell currents were recorded by the conventional patch-clamp technique in short-term cultured smooth muscle cells from human CC tissue. The corpus cavernosal relaxant response of EFS was decreased in proportion to the concentration of EtOH. EtOH induced a sustained increase in [Ca2+]i in a dose-dependent manner, Extracellular application of EtOH significantly increased whole-cell K+ currents in a concentration-dependent manner (P < 0.05). EtOH also increased the open probability in cell-attached patches; however, in inside-out patches, the application of EtOH to the intracellular aspect of the patches induced slight inhibition of Ca2+-activated potassium channel (KCa) activity. EtOH caused a dose-dependent increase in cavernosal tension by alterations to [Ca2+]i. Although EtOH did not affect KCa channels directly, it increased the channel activity by increasing [Ca2+]i. The increased corpus cavernosal tone caused by EtOH might be one of the mechanisms of ED after heavy drinking. PMID:20852651

  11. Sulfur dioxide and ammonium sulfate effects on pulmonary function and bronchial reactivity in human subjects.

    PubMed

    Kulle, T J; Sauder, L R; Shanty, F; Kerr, H D; Farrell, B P; Miller, W R; Milman, J H

    1984-03-01

    The effect of exposures to 1 ppm sulfur dioxide (SO2) and 500 micrograms/m3 respirable ammonium sulfate [(NH4)2SO4] was studied in 20 nonsmoking subjects to determine if a response can be measured at these atmospheric levels and if the response is additive or synergistic. Four-hour separate and combined exposures were employed. Each subject acted as his or her own control and performed two light-to-moderate exercise stints (612 kg-m/min) for 15 minutes on each day's confinement in the environmental chamber. Pulmonary function tests (body plethysmography and spirometry) and bronchial reactivity to methacholine were performed to assess the response of these exposures. No significant changes in pulmonary function or bronchial reactivity were observed in the individual exposures [(NH4)2SO4 or SO2], the combined exposure [(NH4)2SO4 and SO2], or 24 hours post-exposure. This study design and the observed results did not demonstrate any readily apparent risk to healthy subjects with these exposures. Since no significant changes were measured, it was not possible to conclude if these two pollutants in combination produce an additive or synergistic response.

  12. CFTR and sphingolipids mediate hypoxic pulmonary vasoconstriction

    PubMed Central

    Tabeling, Christoph; Yu, Hanpo; Wang, Liming; Ranke, Hannes; Goldenberg, Neil M.; Zabini, Diana; Noe, Elena; Krauszman, Adrienn; Gutbier, Birgitt; Yin, Jun; Schaefer, Michael; Arenz, Christoph; Hocke, Andreas C.; Suttorp, Norbert; Proia, Richard L.; Witzenrath, Martin; Kuebler, Wolfgang M.

    2015-01-01

    Hypoxic pulmonary vasoconstriction (HPV) optimizes pulmonary ventilation-perfusion matching in regional hypoxia, but promotes pulmonary hypertension in global hypoxia. Ventilation-perfusion mismatch is a major cause of hypoxemia in cystic fibrosis. We hypothesized that cystic fibrosis transmembrane conductance regulator (CFTR) may be critical in HPV, potentially by modulating the response to sphingolipids as mediators of HPV. HPV and ventilation-perfusion mismatch were analyzed in isolated mouse lungs or in vivo. Ca2+ mobilization and transient receptor potential canonical 6 (TRPC6) translocation were studied in human pulmonary (PASMCs) or coronary (CASMCs) artery smooth muscle cells. CFTR inhibition or deficiency diminished HPV and aggravated ventilation-perfusion mismatch. In PASMCs, hypoxia caused CFTR to interact with TRPC6, whereas CFTR inhibition attenuated hypoxia-induced TRPC6 translocation to caveolae and Ca2+ mobilization. Ca2+ mobilization by sphingosine-1-phosphate (S1P) was also attenuated by CFTR inhibition in PASMCs, but amplified in CASMCs. Inhibition of neutral sphingomyelinase (nSMase) blocked HPV, whereas exogenous nSMase caused TRPC6 translocation and vasoconstriction that were blocked by CFTR inhibition. nSMase- and hypoxia-induced vasoconstriction, yet not TRPC6 translocation, were blocked by inhibition or deficiency of sphingosine kinase 1 (SphK1) or antagonism of S1P receptors 2 and 4 (S1P2/4). S1P and nSMase had synergistic effects on pulmonary vasoconstriction that involved TRPC6, phospholipase C, and rho kinase. Our findings demonstrate a central role of CFTR and sphingolipids in HPV. Upon hypoxia, nSMase triggers TRPC6 translocation, which requires its interaction with CFTR. Concomitant SphK1-dependent formation of S1P and activation of S1P2/4 result in phospholipase C-mediated TRPC6 and rho kinase activation, which conjointly trigger vasoconstriction. PMID:25829545