Science.gov

Sample records for human pulmonary smooth

  1. Serum can overcome contact inhibition in confluent human pulmonary artery smooth muscle cells.

    PubMed

    Solodushko, Victor; Khader, Heba A; Fouty, Brian W

    2013-01-01

    Pulmonary artery endothelial cells (PAEC) in an intact vessel are continually exposed to serum, but unless injured, do not proliferate, constrained by confluence. In contrast, pulmonary artery smooth muscle cells (PASMC) attain, and maintain, confluence in the presence of minimal serum, protected from serum's stimulatory effects except when the endothelial barrier becomes more permeable. We hypothesized therefore, that confluent PASMC may be less constrained by contact inhibition in the presence of serum than PAEC and tested this idea by exposing confluent non-transformed human PAEC and PASMC to media containing increasing concentrations of fetal bovine serum (FBS) and determining cell growth over 7 days. PAEC that had attained confluence in low serum did not proliferate even when exposed to 5% serum, the highest concentration tested. In contrast, PASMC that attained confluence in low serum did proliferate once serum levels were increased, an effect that was dose dependent. Consistent with this observation, PASMC had more BrdU incorporation and a greater percentage of cells in S phase in 5% compared to 0.2% FBS, whereas no such difference was seen in PAEC. These results suggest that confluent human PAEC are resistant to the stimulatory effects of serum, whereas confluent PASMC can proliferate when serum levels are increased, an effect mediated in part by differences in phosphoinositide 3-kinase activation. This observation may be relevant to understanding the PASMC hyperplasia observed in humans and animals with pulmonary hypertension in which changes in endothelial permeability due to hypoxia or injury expose the underlying smooth muscle to serum.

  2. Iptakalim influences the proliferation and apoptosis of human pulmonary artery smooth muscle cells.

    PubMed

    Li, Qinglin; Yan, Xiaopei; Kong, Hui; Xie, Weiping; Wang, Hong

    2016-07-01

    The aim of the present study was to determine the effect of an ATP-sensitive K+ (KATP) channel opener iptakalim (IPT) on the proliferation and apoptosis of human pulmonary artery smooth muscle cells (HPASMCs), and examine the potential value of IPT to hypoxic pulmonary hyper-tension (HPH) at a cellular level. HPASMCs were divided into the control, ET-1, ET-1+IPT and ET-1+IPT+glibenclamide (GLI) groups. GLI was administered 30 min prior to ET-1 and IPT. The 4 groups were incubated with corresponding reagents for 24 h. Cell viability was evaluated using a CCK-8 assay, cell proliferation by 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, and cell apoptosis via the expression of apoptosis-related proteins, i.e., Bcl-2-associated X protein (Bax) and B-cell lymphoma 2 (Bcl-2) using western blotting. We incubated HPASMCs with varying concentrations of ET-1 for 24, 48 and 72 h, and found that cell survival rate was increased in a dose-dependent manner (P<0.05) rather than in a time-dependent manner (P>0.05). After co-incubation of HPASMCs with varying concentrations of IPT and ET-1 for 24 h, the cell survival rate was decreased in a dose-dependent manner. The cell survival rate in the IPT+ET-1 group was significantly lower than that in the ET-1 group (P<0.05). The cell viability (P<0.05) and proliferation (P<0.05) in the ET-1 group were higher than those in the control group, and the expression of Bax/Bcl-2 was lower than the control group (P<0.05). The cell viability (P<0.05) and proliferation (P<0.05) in the ET-1+IPT group were lower than those in the ET-1 group, and the expression of Bax/Bcl-2 was higher than that in the ET-1 group (P<0.05). The cell viability (P<0.05) and proliferation (P<0.05) in the ET-1+IPT+GLI group were higher than those in the ET-1+IPT group, and the expression of Bax/Bcl-2 was lower than that in the ET-1+IPT group (P<0.05). In conclusion, IPT inhibited ET-1‑induced HPASMC proliferation and promoted cell apoptosis. Thus, it may

  3. Selective biological response of human pulmonary microvascular endothelial cells and human pulmonary artery smooth muscle cells on cold-plasma-modified polyester vascular prostheses.

    PubMed

    Blanchemain, N; Aguilar, M R; Chai, F; Jimenez, M; Jean-Baptiste, E; El-Achari, A; Martel, B; Hildebrand, H F; Roman, J San

    2011-12-01

    The aim of this work was to improve the hemocompatibility and the selectivity according to cells of non-woven poly(ethylene terephthalate) (PET) membranes. Non-woven PET membranes were modified by a combined plasma-chemical process. The surface of these materials was pre-activated by cold-plasma treatment and poly(acrylic acid) (PAA) was grafted by the in situ free radical polymerization of acrylic acid (AA). The extent of this reaction and the number of carboxylic groups incorporated were evaluated by colorimetric titration using toluidine blue O. All samples were characterized by SEM, AFM and thermogravimetric analysis, and the mechanical properties of the PAA grafted sample were determined. A selective cell response was observed when human pulmonary artery smooth muscle cells (HPASMC) or human pulmonary micro vascular endothelial cells (HPMEC) were seeded on the modified surfaces. HPASMC proliferation decreased about 60%, while HPMEC proliferation was just reduced about 10%. PAA grafted samples did not present hemolytic activity and the platelet adhesion decreased about 28% on PAA grafted surfaces. PMID:22002636

  4. Assays for in vitro monitoring of proliferation of human airway smooth muscle (ASM) and human pulmonary arterial vascular smooth muscle (VSM) cells.

    PubMed

    Goncharova, Elena A; Lim, Poay; Goncharov, Dmitry A; Eszterhas, Andrew; Panettieri, Reynold A; Krymskaya, Vera P

    2006-01-01

    Vascular and airway remodeling, which are characterized by airway smooth muscle (ASM) and pulmonary arterial vascular smooth muscle (VSM) proliferation, contribute to the pathology of asthma, pulmonary hypertension, restenosis and atherosclerosis. To evaluate the proliferation of VSM and ASM cells in response to mitogens, we perform a [3H]thymidine incorporation assay. The proliferation protocol takes approximately 48 h and includes stimulating cells synchronized in G0/G1 phase of the cell cycle with agonists, labeling cells with [3H]thymidine and examining levels of [3H]thymidine incorporation by scintillation counting. Although using radiolabeled [3H]thymidine incorporation is a limitation, the greatest benefit of the assay is providing reliable and statistically significant data. PMID:17406550

  5. Novel sphingosine-containing analogues selectively inhibit sphingosine kinase (SK) isozymes, induce SK1 proteasomal degradation and reduce DNA synthesis in human pulmonary arterial smooth muscle cells

    PubMed Central

    Byun, Hoe-Sup; Pyne, Susan; MacRitchie, Neil; Pyne, Nigel J.

    2013-01-01

    Sphingosine 1-phosphate (S1P) is involved in hyper-proliferative diseases such as cancer and pulmonary arterial hypertension. We have synthesized inhibitors that are selective for the two isoforms of sphingosine kinase (SK1 and SK2) that catalyze the synthesis of S1P. A thiourea adduct of sphinganine (F02) is selective for SK2 whereas the 1-deoxysphinganines 55-21 and 77-7 are selective for SK1. (2S,3R)-1-Deoxysphinganine (55-21) induced the proteasomal degradation of SK1 in human pulmonary arterial smooth muscle cells and inhibited DNA synthesis, while the more potent SK1 inhibitors PF-543 and VPC96091 failed to inhibit DNA synthesis. These findings indicate that moderate potency inhibitors such as 55-21 are likely to have utility in unraveling the functions of SK1 in inflammatory and hyperproliferative disorders. PMID:24396570

  6. Deletion of STAT5a/b in Vascular Smooth Muscle Abrogates the Male Bias in Hypoxic Pulmonary Hypertension in Mice: Implications in the Human Disease

    PubMed Central

    Yang, Yang-Ming; Yuan, Huijuan; Edwards, John G; Skayian, Yester; Ochani, Kanta; Miller, Edmund J; Sehgal, Pravin B

    2014-01-01

    Chronic hypoxia typically elicits pulmonary hypertension (PH) in mice with a male-dominant phenotype. There is an opposite-sex bias in human PH, with a higher prevalence in women, but greater survival (the “estrogen paradox”). We investigated the involvement of the STAT5a/b species, previously established to mediate sexual dimorphism in other contexts, in the sex bias in PH. Mice with heterozygous or homozygous deletions of the STAT5a/b locus in vascular smooth muscle cells (SMCs) were generated in crosses between STAT5a/bfl/fl and transgelin (SM22α)-Cre+/+ parents. Wild-type (wt ) males subjected to chronic hypoxia showed significant PH and pulmonary arterial remodeling, with wt females showing minimal changes (a male-dominant phenotype). However, in conditional STAT5+/− or STAT5−/− mice, hypoxic females showed the severest manifestations of PH (a female-dominant phenotype). Immunofluorescence studies on human lung sections showed that obliterative pulmonary arterial lesions in patients with idiopathic pulmonary arterial hypertension (IPAH) or hereditary pulmonary arterial hypertension (HPAH), both male and female, overall had reduced STAT5a/b, reduced PY-STAT5 and reduced endoplasmic reticulum (ER) GTPase atlastin-3 (ATL3). Studies of SMCs and endothelial cell (EC) lines derived from vessels isolated from lungs of male and female IPAH patients and controls revealed instances of coordinate reductions in STAT5a, STAT5b and ATL3 in IPAH-derived cells, including SMCs and ECs from the same patient. Taken together, these data provide the first definitive evidence for a contribution of STAT5a/b to the sex bias in PH in the hypoxic mouse and implicate reduced STAT5 in the pathogenesis of the human disease. PMID:25470773

  7. Upregulated miR-17 Regulates Hypoxia-Mediated Human Pulmonary Artery Smooth Muscle Cell Proliferation and Apoptosis by Targeting Mitofusin 2

    PubMed Central

    Lu, Zheng; Li, Sujun; Zhao, Shunxin; Fa, Xianen

    2016-01-01

    Background Pulmonary arterial hypertension (PAH) is a fatal disease characterized by impaired regulation of pulmonary artery vascular growth and remodeling. Aberrant expression of miR-17 has been shown to be involved in the pathogenesis of PAH, but its underlying molecular mechanism has not been elucidated. Material/Methods Mitofusin 2 (MFN2) expression was determined by qRT-PCR. The protein expression levels of MFN2, proliferating cell nuclear antigen (PCNA), and pro-apoptotic protein cleaved Caspase-3 were measured using Western blot analysis. Cell proliferation and apoptosis were assessed by CellTiter-Glo reagent and flow cytometry, respectively. Caspase-3/7 activity was measured using an Apo-ONE Homogeneous Caspase-3/7 assay kit. The regulation of miR-17 on MFN2 expression was assessed using luciferase reporter assay system. Results miR-17 expression was upregulated in human pulmonary artery smooth muscle cells (hPASMCs) treated with hypoxia and lung tissues of PAH patients. Inhibition of miR-17 suppressed hypoxia-induced proliferation and promoted apoptosis in hPASMCs. miR-17 inhibited MFN2 expression by binding to its 3′-UTR. Decreased cell viability and increased apoptosis and Caspase-3 activity were observed in the anti-miR-17 + siNC group compared with the anti-miR-NC + siNC group. The expression of cleaved Caspase-3 was upregulated and the expression of PCNA was downregulated in the anti-miR-17 + siNC group. Moreover, these alterations were attenuated by knockdown of MFN2. Conclusions miR-17 regulates proliferation and apoptosis in hPASMCs through MFN2 modulation. We found that miR-17 acts as a potential regulator of proliferation and apoptosis of hPASMCs, and that it might be developed as a promising new strategy for the treatment of PAH. PMID:27640178

  8. Upregulated miR-17 Regulates Hypoxia-Mediated Human Pulmonary Artery Smooth Muscle Cell Proliferation and Apoptosis by Targeting Mitofusin 2.

    PubMed

    Lu, Zheng; Li, Sujun; Zhao, Shunxin; Fa, Xianen

    2016-01-01

    BACKGROUND Pulmonary arterial hypertension (PAH) is a fatal disease characterized by impaired regulation of pulmonary artery vascular growth and remodeling. Aberrant expression of miR-17 has been shown to be involved in the pathogenesis of PAH, but its underlying molecular mechanism has not been elucidated. MATERIAL AND METHODS Mitofusin 2 (MFN2) expression was determined by qRT-PCR. The protein expression levels of MFN2, proliferating cell nuclear antigen (PCNA), and pro-apoptotic protein cleaved Caspase-3 were measured using Western blot analysis. Cell proliferation and apoptosis were assessed by CellTiter-Glo reagent and flow cytometry, respectively. Caspase-3/7 activity was measured using an Apo-ONE Homogeneous Caspase-3/7 assay kit. The regulation of miR-17 on MFN2 expression was assessed using luciferase reporter assay system. RESULTS miR-17 expression was upregulated in human pulmonary artery smooth muscle cells (hPASMCs) treated with hypoxia and lung tissues of PAH patients. Inhibition of miR-17 suppressed hypoxia-induced proliferation and promoted apoptosis in hPASMCs. miR-17 inhibited MFN2 expression by binding to its 3'-UTR. Decreased cell viability and increased apoptosis and Caspase-3 activity were observed in the anti-miR-17 + siNC group compared with the anti-miR-NC + siNC group. The expression of cleaved Caspase-3 was upregulated and the expression of PCNA was downregulated in the anti-miR-17 + siNC group. Moreover, these alterations were attenuated by knockdown of MFN2. CONCLUSIONS miR-17 regulates proliferation and apoptosis in hPASMCs through MFN2 modulation. We found that miR-17 acts as a potential regulator of proliferation and apoptosis of hPASMCs, and that it might be developed as a promising new strategy for the treatment of PAH. PMID:27640178

  9. Serotonin induces pulmonary artery smooth muscle cell migration

    PubMed Central

    Day, Regina M.; Agyeman, Abena S.; Segel, Michael J.; Chévere, Rubén D.; Angelosanto, Jill M.; Suzuki, Yuichiro J.; Fanburg, Barry L.

    2007-01-01

    The chronic phase of pulmonary arterial hypertension (PAH) is associated with vascular remodeling, especially thickening of the smooth muscle layer of large pulmonary arteries and muscularization of small pulmonary vessels, which normally have no associated smooth muscle. Serotonin (5-hydroxytryptamine, 5-HT) has been shown to induce proliferation and hypertrophy of pulmonary artery smooth muscle cells (PASMC), and may be important for in vivo pulmonary vascular remodeling. Here, we show that 5-HT stimulates migration of pulmonary artery PASMC. Treatment with 5-HT for 16 h increased migration of PASMC up to four-fold as monitored in a modified Boyden chamber assay. Increased migratory responses were associated with cellular morphological changes and reorganization of the actin cytoskeleton. 5-HT-induced alterations in morphology were previously shown in our laboratory to require cAMP [Lee SL, Fanburg BL. Serotonin produces a configurational change of cultured smooth muscle cells that is associated with elevation of intracellular cAMP. J Cell Phys 1992;150(2):396–405], and the 5-HT4 receptor was pharmacologically determined to be the primary activator of cAMP in bovine PASMC [Becker BN, Gettys TW, Middleton JP, Olsen CL, Albers FJ, Lee SL, et al. 8-Hydroxy-2-(di-n-propylamino)tetralin-responsive 5-hydroxytryptamine4-like receptor expressed in bovine pulmonary artery smooth muscle cells. Mol Pharmacol 1992;42(5):817–25]. We examined the role of the 5-HT4 receptor and cAMP in 5-HT-induced bovine PASMC migration. PASMC express 5-HT4 receptor mRNA, and a 5-HT4 receptor antagonist and a cAMP antagonist completely blocked 5-HT-induced cellular migration. Consistent with our previous report that a cAMP-dependent Cl− channel is required for 5-HT-induced morphological changes in PASMC, phenylanthranilic acid, a Cl− channel blocker, inhibited actin cytoskeletal reorganization and migration produced by 5-HT. We conclude that 5-HT stimulates PASMC migration and

  10. The sGC activator inhibits the proliferation and migration, promotes the apoptosis of human pulmonary arterial smooth muscle cells via the up regulation of plasminogen activator inhibitor-2

    SciTech Connect

    Zhang, Shuai; Zou, Lihui; Yang, Ting; Yang, Yuanhua; Zhai, Zhenguo; Xiao, Fei; Wang, Chen

    2015-03-15

    Background: Different types of pulmonary hypertension (PH) share the same process of pulmonary vascular remodeling, the molecular mechanism of which is not entirely clarified by far. The abnormal biological behaviors of pulmonary arterial smooth muscle cells (PASMCs) play an important role in this process. Objectives: We investigated the regulation of plasminogen activator inhibitor-2 (PAI-2) by the sGC activator, and explored the effect of PAI-2 on PASMCs proliferation, apoptosis and migration. Methods: After the transfection with PAI-2 overexpression vector and specific siRNAs or treatment with BAY 41-2272 (an activator of sGC), the mRNA and protein levels of PAI-2 in cultured human PASMCs were detected, and the proliferation, apoptosis and migration of PASMCs were investigated. Results: BAY 41-2272 up regulated the endogenous PAI-2 in PASMCs, on the mRNA and protein level. In PAI-2 overexpression group, the proliferation and migration of PASMCs were inhibited significantly, and the apoptosis of PASMCs was increased. In contrast, PAI-2 knockdown with siRNA increased PASMCs proliferation and migration, inhibited the apoptosis. Conclusions: PAI-2 overexpression inhibits the proliferation and migration and promotes the apoptosis of human PASMCs. Therefore, sGC activator might alleviate or reverse vascular remodeling in PH through the up-regulation of PAI-2. - Highlights: • sGC activator BAY41-2272 up regulated PAI-2 in PASMCs, on the mRNA and protein level. • PAI-2 overexpression inhibits the proliferation and migration of human PASMCs. • PAI-2 overexpression promotes the apoptosis of human PASMCs. • sGC activator might alleviate the vascular remodeling in pulmonary hypertension.

  11. Pulmonary artery smooth muscle cell endothelin-1 expression modulates the pulmonary vascular response to chronic hypoxia

    PubMed Central

    Kim, Francis Y.; Barnes, Elizabeth A.; Ying, Lihua; Chen, Chihhsin; Lee, Lori; Alvira, Cristina M.

    2014-01-01

    Endothelin-1 (ET-1) increases pulmonary vascular tone through direct effects on pulmonary artery smooth muscle cells (PASMC) via membrane-bound ET-1 receptors. Circulating ET-1 contributes to vascular remodeling by promoting SMC proliferation and migration and inhibiting SMC apoptosis. Although endothelial cells (EC) are the primary source of ET-1, whether ET-1 produced by SMC modulates pulmonary vascular tone is unknown. Using transgenic mice created by crossbreeding SM22α-Cre mice with ET-1 flox/flox mice to selectively delete ET-1 in SMC, we tested the hypothesis that PASMC ET-1 gene expression modulates the pulmonary vascular response to hypoxia. ET-1 gene deletion and selective activity of SM22α promoter-driven Cre recombinase were confirmed. Functional assays were performed under normoxic (21% O2) or hypoxic (5% O2) conditions using murine PASMC obtained from ET-1+/+ and ET-1−/− mic and in human PASMC (hPASMC) after silencing of ET-1 using siRNA. Under baseline conditions, there was no difference in right ventricular systolic pressure (RVSP) between SM22α-ET-1−/− and SM22α-ET-1+/+ (control) littermates. After exposure to hypoxia (10% O2, 21–24 days), RVSP was and vascular remodeling were less in SM22α-ET-1−/− mice compared with control littermates (P < 0.01). Loss of ET-1 decreased PASMC proliferation and migration and increased apoptosis under normoxic and hypoxic conditions. Exposure to selective ET-1 receptor antagonists had no effect on either the hypoxia-induced hPASMC proliferative or migratory response. SMC-specific ET-1 deletion attenuates hypoxia-induced increases in pulmonary vascular tone and structural remodeling. The observation that loss of ET-1 inhibited SMC proliferation, survival, and migration represents evidence that ET-1 derived from SMC plays a previously undescribed role in modulating the response of the pulmonary circulation to hypoxia. Thus PASMC ET-1 may modulate vascular tone independently of ET-1 produced by EC

  12. Adaptive response of pulmonary arterial smooth muscle to length change.

    PubMed

    Syyong, Harley; Cheung, Christine; Solomon, Dennis; Seow, Chun Y; Kuo, Kuo H

    2008-04-01

    Hypervasoconstriction is associated with pulmonary hypertension and dysfunction of the pulmonary arterial smooth muscle (PASM) is implicated. However, relatively little is known about the mechanical properties of PASM. Recent advances in our understanding of plastic adaptation in smooth muscle may shed light on the disease mechanism. In this study, we determined whether PASM is capable of adapting to length changes (especially shortening) and regain its contractile force. We examined the time course of length adaptation in PASM in response to step changes in length and to length oscillations mimicking the periodic stretches due to pulsatile arterial pressure. Rings from sheep pulmonary artery were mounted on myograph and stimulated using electrical field stimulation (12-16 s, 20 V, 60 Hz). The length-force relationship was determined at L(ref) to 0.6 L(ref), where L(ref) was a reference length close to the in situ length of PASM. The response to length oscillations was determined at L(ref), after the muscle was subjected to length oscillation of various amplitudes for 200 s at 1.5 Hz. Release (or stretch) of resting PASM from L(ref) to 0.6 (and vice versa) was followed by a significant force recovery (73 and 63%, respectively), characteristic of length adaptation. All recoveries of force followed a monoexponential time course. Length oscillations with amplitudes ranging from 5 to 20% L(ref) caused no significant change in force generation in subsequent contractions. It is concluded that, like many smooth muscles, PASM possesses substantial capability to adapt to changes in length. Under pathological conditions, this could contribute to hypervasoconstriction in pulmonary hypertension. PMID:18218913

  13. MURC deficiency in smooth muscle attenuates pulmonary hypertension

    PubMed Central

    Nakanishi, Naohiko; Ogata, Takehiro; Naito, Daisuke; Miyagawa, Kotaro; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Kasahara, Takeru; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2016-01-01

    Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertension (PH) accompanied by reduced ROCK activity in the lung. Conditional knockout mice lacking Murc in smooth muscle also resist hypoxia-induced PH. MURC regulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through Rho/ROCK signalling. Cav1 suppresses RhoA activity in PASMCs, which is reversed by MURC. MURC binds to Cav1 and inhibits the association of Cav1 with the active form of Gα13, resulting in the facilitated association of the active form of Gα13 with p115RhoGEF. These results reveal that MURC has a function in the development of PH through modulating Rho/ROCK signalling. PMID:27546070

  14. Exogenous spermine inhibits the proliferation of human pulmonary artery smooth muscle cells caused by chemically-induced hypoxia via the suppression of the ERK1/2- and PI3K/AKT-associated pathways

    PubMed Central

    WEI, CAN; LI, HONG-ZHU; WANG, YUE-HONG; PENG, XUE; SHAO, HONG-JIANG; LI, HONG-XIA; BAI, SHU-ZHI; LU, XIAO-XIAO; WU, LING-YUN; WANG, RUI; XU, CHANG-QING

    2016-01-01

    Pulmonary vascular remodeling is a significant pathological feature of hypoxia-induced pulmonary hypertension (HPH), while pulmonary artery smooth muscle cell (PASMC) proliferation plays a leading role in pulmonary vascular remodeling. Spermine (Sp), a polyamine, plays a critical role in periodic cell proliferation and apoptosis. The present study was conducted to observe the association between hypoxia-induced PASMC proliferation and polyamine metabolism, and to explore the effects of exogenous Sp on PASMC poliferation and the related mechanisms. In the present study, PASMCs were cultured with cobalt chloride (CoCl2) to establish a hypoxia model, and Sp at various final concentrations (0.1, 1, 10 and 100 µM) was added to the medium of PASMCs 40 min prior to the induction of hypoxia. Cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell counting kit-8 assay and 5-bromo-2′-deoxyuridine (BrdU) incorporation assay. Cell cycle progression was determined by flow cytometry, and the protein expression levels of spermidine/spermine N1-acetyltransferase (SSAT; the key enzyme in the terminal degradation of polyamine), ornithine decar boxylase (ODC; the key enzyme of polyamine biosynthesis), cyclin D1 and p27 were measured by western blot analysis. The results revealed that the proliferation of the PASMCs cultured with CoCl2 at 50 µM for 24 h markedly increased. The expression of ODC was decreased and the expression of SSAT was increased in the cells under hypoxic conditions. Exogenous Sp at concentrations of 1 and 10 µM significantly inhibited hypoxia induced PASMC proliferation, leading to cell cycle arrest at the G1/G0 phase. In addition, Sp decreased cyclin D1 expression, increased p27 expression, and suppressed the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT); however, the above-metioned parameters were not markedly

  15. DNA Microarray and Signal Transduction Analysis in Pulmonary Artery Smooth Muscle Cells From Heritable and Idiopathic Pulmonary Arterial Hypertension Subjects

    PubMed Central

    Yu, Jun; Wilson, Jamie; Taylor, Linda; Polgar, Peter

    2015-01-01

    Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular smooth muscle contraction and proliferation. Here, we analyze genome-wide mRNA expression in human pulmonary arterial smooth muscle cells (HPASMC) isolated from three control, three hereditary (HPAH), and three idiopathic PAH (IPAH) subjects using the Affymetrix Human Gene ST 1.0 chip. The microarray analysis reveals the expression of 537 genes in HPAH and 1024 genes in IPAH changed compared with control HPASMC. Among those genes, 227 genes show similar directionality of expression in both HPAH and IPAH HPASMC. Ingenuity™ Pathway Analysis (IPA) suggests that many of those genes are involved in cellular growth/proliferation and cell cycle regulation and that signaling pathways such as the mitotic activators, polo-like kinases, ATM signaling are activated under PAH conditions. Furthermore, the analysis demonstrates downregulated mRNA expression of certain vasoactive receptors such as bradykinin receptor B2 (BKB2R). Using real time PCR, we verified the downregulated BKB2R expression in the PAH cells. Bradykinin-stimulated calcium influx is also decreased in PAH PASMC. IPA also identified transcriptional factors such p53 and Rb as downregulated, and FoxM1 and Myc as upregulated in both HPAH and IPAH HPASMC. The decreased level of phospho-p53 in PAH cells was confirmed with a phospho-protein array; and we experimentally show a dysregulated proliferation of both HPAH and IPAH PASMC. Together, the microarray experiments and bioinformatics analysis highlight an aberrant proliferation and cell cycle regulation in HPASMC from PAH subjects. These newly identified pathways may provide new targets for the treatment of both hereditary and idiopathic PAH. PMID:25290246

  16. Cyclic Stretch Affects Pulmonary Endothelial Cell Control of Pulmonary Smooth Muscle Cell Growth

    PubMed Central

    Ochoa, Cristhiaan D.; Baker, Haven; Hasak, Stephen; Matyal, Robina; Salam, Aleya; Hales, Charles A.; Hancock, William; Quinn, Deborah A.

    2008-01-01

    Endothelial cells are subjected to mechanical forces in the form of cyclic stretch resulting from blood pulsatility. Pulmonary artery endothelial cells (PAECs) produce factors that stimulate and inhibit pulmonary artery smooth muscle cell (PASMC) growth. We hypothesized that PAECs exposed to cyclic stretch secrete proteins that inhibit PASMC growth. Media from PAECs exposed to cyclic stretch significantly inhibited PASMC growth in a time-dependent manner. Lyophilized material isolated from stretched PAEC-conditioned media significantly inhibited PASMC growth in a dose-dependent manner. This inhibition was reversed by trypsin inactivation, which is consistent with the relevant factor being a protein(s). To identify proteins that inhibited cell growth in conditioned media from stretched PAECs, we used proteomic techniques and found that thrombospondin (TSP)-1, a natural antiangiogenic factor, was up-regulated by stretch. In vitro, exogenous TSP-1 inhibited PASMC growth. TSP-1–blocking antibodies reversed conditioned media–induced inhibition of PASMC growth. Cyclic stretched PAECs secrete protein(s) that inhibit PASMC proliferation. TSP-1 may be, at least in part, responsible for this inhibition. The complete identification and understanding of the secreted proteome of stretched PAECs may lead to new insights into the pathophysiology of pulmonary vascular remodeling. PMID:18314539

  17. Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis: pharmacotherapeutic implications

    PubMed Central

    Burg, E D; Remillard, C V; Yuan, J X-J

    2008-01-01

    Maintaining the proper balance between cell apoptosis and proliferation is required for normal tissue homeostasis; when this balance is disrupted, disease such as pulmonary arterial hypertension (PAH) can result. Activity of K+ channels plays a major role in regulating the pulmonary artery smooth muscle cell (PASMC) population in the pulmonary vasculature, as they are involved in cell apoptosis, survival and proliferation. PASMCs from PAH patients demonstrate many cellular abnormalities linked to K+ channels, including decreased K+ current, downregulated expression of various K+ channels, and inhibited apoptosis. K+ is the major intracellular cation, and the K+ current is a major determinant of cell volume. Apoptotic volume decrease (AVD), an early hallmark and prerequisite of programmed cell death, is characterized by K+ and Cl− efflux. In addition to its role in AVD, cytosolic K+ can be inhibitory toward endogenous caspases and nucleases and can suppress mitochondrial cytochrome c release. In PASMC, K+ channel activation accelerates AVD and enhances apoptosis, while K+ channel inhibition decelerates AVD and inhibits apoptosis. Finally, inhibition of K+ channels, by increasing cytosolic [Ca2+] as a result of membrane depolarization-mediated opening of voltage-dependent Ca2+ channels, leads to PASMC contraction and proliferation. The goals of this review are twofold: (1) to elucidate the role of K+ ions and K+ channels in the proliferation and apoptosis of PASMC, with an emphasis on abnormal cell growth in human and animal models of PAH, and (2) to elaborate upon the targeting of K+ flux pathways for pharmacological treatment of pulmonary vascular disease. PMID:18084317

  18. Pulmonary artery smooth muscle hypertrophy: roles of glycogen synthase kinase-3β and p70 ribosomal S6 kinase

    PubMed Central

    Deng, Huan; Hershenson, Marc B.; Lei, Jing; Anyanwu, Anuli C.; Pinsky, David J.

    2010-01-01

    Increased medial arterial thickness is a structural change in pulmonary arterial hypertension (PAH). The role of smooth muscle hypertrophy in this process has not been well studied. Bone morphogenetic proteins (BMPs), transforming growth factor (TGF)-β1, serotonin (or 5-hydroxytryptamine; 5-HT), and endothelin (ET)-1 have been implicated in PAH pathogenesis. We examined the effect of these mediators on human pulmonary artery smooth muscle cell size, contractile protein expression, and contractile function, as well on the roles of glycogen synthase kinase (GSK)-3β and p70 ribosomal S6 kinase (p70S6K), two proteins involved in translational control, in this process. Unlike epidermal growth factor, BMP-4, TGF-β1, 5-HT, and ET-1 each increased smooth muscle cell size, contractile protein expression, fractional cell shortening, and GSK-3β phosphorylation. GSK-3β inhibition by lithium or SB-216763 increased cell size, protein synthesis, and contractile protein expression. Expression of a non-phosphorylatable GSK-3β mutant blocked BMP-4-, TGF-β1-, 5-HT-, and ET-1-induced cell size enlargement, suggesting that GSK-3β phosphorylation is required and sufficient for cellular hypertrophy. However, BMP-4, TGF-β1, 5-HT, and ET-1 stimulation was accompanied by an increase in serum response factor transcriptional activation but not eIF2 phosphorylation, suggesting that GSK-3β-mediated hypertrophy occurs via transcriptional, not translational, control. Finally, BMP-4, TGF-β1, 5-HT, and ET-1 treatment induced phosphorylation of p70S6K and ribosomal protein S6, and siRNAs against p70S6K and S6 blocked the hypertrophic response. We conclude that mediators implicated in the pathogenesis of PAH induce pulmonary arterial smooth muscle hypertrophy. Identification of the signaling pathways regulating vascular smooth muscle hypertrophy may define new therapeutic targets for PAH. PMID:20190034

  19. Physiological functions of transient receptor potential channels in pulmonary arterial smooth muscle cells.

    PubMed

    Yang, Xiao-Ru; Lin, Mo-Jun; Sham, James S K

    2010-01-01

    The transient receptor potential (TRP) gene superfamily, which consists of 7 subfamilies with at least 28 mammalian homologues, is known to encode a wide variety of cation channels with diverse biophysical properties, activation mechanisms, and physiological functions. Recent studies have identified multiple TRP channel subtypes, belonging to the canonical (TRPC), melastatin-related (TRPM), and vanilloid-related (TRPV) subfamilies, in pulmonary arterial smooth muscle cells (PASMCs). They operate as specific Ca(2+) pathways responsive to stimuli, including Ca(2+) store depletion, receptor activation, reactive oxygen species, growth factors, and mechanical stress. Increasing evidence suggests that these channels play crucial roles in agonist-induced pulmonary vasoconstriction, hypoxic pulmonary vasoconstriction, smooth muscle cell proliferation, vascular remodeling, and pulmonary arterial hypertension. This chapter highlighted and discussed these putative physiological functions of TRP channels in pulmonary vasculatures. Since Ca(2+) ions regulate many cellular processes via specific Ca(2+) signals, future investigations of these novel channels will likely uncover more important regulatory mechanisms of pulmonary vascular functions in health and in disease states. PMID:20204726

  20. Carvacrol induces the apoptosis of pulmonary artery smooth muscle cells under hypoxia.

    PubMed

    Zhang, Qianlong; Fan, Kai; Wang, Peng; Yu, Juan; Liu, Ruxia; Qi, Hanping; Sun, Hongli; Cao, Yonggang

    2016-01-01

    The abnormal apoptosis of pulmonary artery smooth muscle cells (PASMCs) is an important pathophysiological process in pulmonary vascular remodeling and pulmonary arterial hypertension (PAH). Carvacrol, an essential oil compound from oregano and thyme, has displayed antimicrobial, antitumor, and antioxidant properties. Although carvacrol has pro-apoptosis properties in tumor cells, the underlying mechanisms of carvacrol in PASMC apoptosis remain unclear. Thus, in this study, we aim to investigate the role of carvacrol in pulmonary vascular remodeling and PASMC apoptosis in hypoxia. Right Ventricular Hypertrophy Measurements and pulmonary pathomorphology data show that the ratio of the heart weight/tibia length (HW/TL), the right ventricle/left ventricle plus septum (RV/LV+S) and the medial width of the pulmonary artery increased in chronic hypoxia and were reversed by carvacrol treatment under hypoxia. Additionally, carvacrol inhibited PASMC viability, attenuated oxidative stress, induced mitochondria membrane depolarization, increased the percentage of apoptotic cells, suppressed Bcl-2 expression, decreased procaspase-3 expression, promoted caspase-3 activation, and inhibited the ERK1/2 and PI3K/Akt pathway. Taken together, these findings suggest that carvacrol attenuates the pulmonary vascular remodeling and promotes PASMC apoptosis by acting on, at least in part, the intrinsic apoptotic pathway. This process might provide us new insight into the development of hypoxic pulmonary hypertension. PMID:26607464

  1. Phospholipase D signaling in serotonin-induced mitogenesis of pulmonary artery smooth muscle cells.

    PubMed

    Liu, Y; Fanburg, B L

    2008-09-01

    We have previously reported the participation of mitogen-activated protein, Rho, and phosphoinositide-3 (PI3) kinases in separate pathways in serotonin (5-HT)-induced proliferation of pulmonary artery smooth muscle cells (SMCs). In this study, we investigated the possible participation of phospholipase D (PLD) and phosphatidic acid (PA) in this growth process. 5-HT stimulated a time-dependent increase in [(3)H]phosphatidylbutanol and PA generation. Exposure of SMCs to 1-butanol or overexpression of an inactive mutant of human PLD1R898R blocked 5-HT-induced proliferation. Furthermore, 1-butanol inhibited 5-HT activation of S6K1 and S6 protein, downstream effectors of mammalian target of rapamycin (mTOR), by 80 and 72%, respectively, and partially blocked activation of extracellular signal-regulated kinase (ERK) by 30% but had no effect on other associated signaling pathways. Exogenous PA caused cellular proliferation and revitalized cyclin D1 expression by 5-HT of the 1-butanol-treated cells. PA also reproduced activations by 5-HT of mTOR, S6K1, and ERK. Transfection with inactive human PLD1 reduced 5-HT-induced activation of S6K1 by approximately 50%. Inhibition of 5-HT receptor 2A (R 2A) with ketaserin blocked PLD activation by 5-HT. Inhibition with PI3-kinase inhibitor failed to block either activation of PLD by 5-HT or PA-dependent S6K1 phosphorylation. Taken together, these results indicate that ligation of the 5-HTR 2A by 5-HT initiates PLD activation in SMCs, and that its product, PA, is an early signaling molecule in 5-HT-induced pulmonary artery SMC proliferation. Signaling by PA produces its downstream effects primarily through the mTOR/S6K1 pathway and to a lesser extent through the ERK pathway. Hydrolysis of cell membrane lipid may be important in vascular effects of 5-HT. PMID:18621911

  2. Phospholipase D signaling in serotonin-induced mitogenesis of pulmonary artery smooth muscle cells.

    PubMed

    Liu, Y; Fanburg, B L

    2008-09-01

    We have previously reported the participation of mitogen-activated protein, Rho, and phosphoinositide-3 (PI3) kinases in separate pathways in serotonin (5-HT)-induced proliferation of pulmonary artery smooth muscle cells (SMCs). In this study, we investigated the possible participation of phospholipase D (PLD) and phosphatidic acid (PA) in this growth process. 5-HT stimulated a time-dependent increase in [(3)H]phosphatidylbutanol and PA generation. Exposure of SMCs to 1-butanol or overexpression of an inactive mutant of human PLD1R898R blocked 5-HT-induced proliferation. Furthermore, 1-butanol inhibited 5-HT activation of S6K1 and S6 protein, downstream effectors of mammalian target of rapamycin (mTOR), by 80 and 72%, respectively, and partially blocked activation of extracellular signal-regulated kinase (ERK) by 30% but had no effect on other associated signaling pathways. Exogenous PA caused cellular proliferation and revitalized cyclin D1 expression by 5-HT of the 1-butanol-treated cells. PA also reproduced activations by 5-HT of mTOR, S6K1, and ERK. Transfection with inactive human PLD1 reduced 5-HT-induced activation of S6K1 by approximately 50%. Inhibition of 5-HT receptor 2A (R 2A) with ketaserin blocked PLD activation by 5-HT. Inhibition with PI3-kinase inhibitor failed to block either activation of PLD by 5-HT or PA-dependent S6K1 phosphorylation. Taken together, these results indicate that ligation of the 5-HTR 2A by 5-HT initiates PLD activation in SMCs, and that its product, PA, is an early signaling molecule in 5-HT-induced pulmonary artery SMC proliferation. Signaling by PA produces its downstream effects primarily through the mTOR/S6K1 pathway and to a lesser extent through the ERK pathway. Hydrolysis of cell membrane lipid may be important in vascular effects of 5-HT.

  3. Glycogen Synthase Kinase 3beta Contributes to Proliferation of Arterial Smooth Muscle Cells in Pulmonary Hypertension

    PubMed Central

    Tian, Xia; Ghofrani, Hossein Ardeschir; Weissmann, Norbert; Sedding, Daniel; Kashour, Tarek; Seeger, Werner; Grimminger, Friedrich; Pullamsetti, Soni Savai

    2011-01-01

    Rationale Pulmonary arterial hypertension (PAH) is a rare progressive pulmonary vascular disorder associated with vascular remodeling and right heart failure. Vascular remodeling involves numerous signaling cascades governing pulmonary arterial smooth muscle cell (PASMC) proliferation, migration and differentiation. Glycogen synthase kinase 3beta (GSK3ß) is a serine/threonine kinase and can act as a downstream regulatory switch for numerous signaling pathways. Hence, we hypothesized that GSK3ß plays a crucial role in pulmonary vascular remodeling. Methods All experiments were done with lung tissue or isolated PASMCs in a well-established monocrotaline (MCT)-induced PAH rat model. The mRNA expression of Wnt ligands (Wnt1, Wnt3a, Wnt5a), upstream Wnt signaling regulator genes (Frizzled Receptors 1, 2 and secreted Frizzled related protein sFRP-1) and canonical Wnt intracellular effectors (GSK3ß, Axin1) were assessed by real-time polymerase chain reaction and protein levels of GSK3ß, phospho-GSK3ß (ser 9) by western blotting and localization by immunohistochemistry. The role of GSK3ß in PASMCs proliferation was assessed by overexpression of wild-type GSK3ß (WT) and constitutively active GSK3ß S9A by [3H]-thymidine incorporation assay. Results Increased levels of total and phosphorylated GSK3ß (inhibitory phosphorylation) were observed in lungs and PASMCs isolated from MCT-induced PAH rats compared to controls. Further, stimulation of MCT-PASMCs with growth factors induced GSK3ß inactivation. Most importantly, treatment with the PDGFR inhibitor, Imatinib, attenuated PDGF-BB and FCS induced GSK3ß phosphorylation. Increased expression of GSK3ß observed in lungs and PASMC isolated from MCT-induced PAH rats was confirmed to be clinically relevant as the same observation was identified in human iPAH lung explants. Overexpression of GSK3ß significantly increased MCT-PASMCs proliferation by regulating ERK phosphorylation. Constitutive activation of GSK3ß (GSK3

  4. Sex Affects Bone Morphogenetic Protein Type II Receptor Signaling in Pulmonary Artery Smooth Muscle Cells

    PubMed Central

    Mair, Kirsty M.; Yang, Xu Dong; Long, Lu; White, Kevin; Wallace, Emma; Ewart, Marie-Ann; Docherty, Craig K.; Morrell, Nicholas W.

    2015-01-01

    Rationale: Major pulmonary arterial hypertension (PAH) registries report a greater incidence of PAH in women; mutations in the bone morphogenic protein type II receptor (BMPR-II) occur in approximately 80% of patients with heritable PAH (hPAH). Objectives: We addressed the hypothesis that women may be predisposed to PAH due to normally reduced basal BMPR-II signaling in human pulmonary artery smooth muscle cells (hPASMCs). Methods: We examined the BMPR-II signaling pathway in hPASMCs derived from men and women with no underlying cardiovascular disease (non-PAH hPASMCs). We also determined the development of pulmonary hypertension in male and female mice deficient in Smad1. Measurements and Main Results: Platelet-derived growth factor, estrogen, and serotonin induced proliferation only in non-PAH female hPASMCs. Female non-PAH hPASMCs exhibited reduced messenger RNA and protein expression of BMPR-II, the signaling intermediary Smad1, and the downstream genes, inhibitors of DNA binding proteins, Id1 and Id3. Induction of phospho-Smad1/5/8 and Id protein by BMP4 was also reduced in female hPASMCs. BMP4 induced proliferation in female, but not male, hPASMCs. However, small interfering RNA silencing of Smad1 invoked proliferative responses to BMP4 in male hPASMCs. In male hPASMCs, estrogen decreased messenger RNA and protein expression of Id genes. The estrogen metabolite 4-hydroxyestradiol decreased phospho-Smad1/5/8 and Id expression in female hPASMCs while increasing these in males commensurate with a decreased proliferative effect in male hPASMCs. Female Smad1+/− mice developed pulmonary hypertension (reversed by ovariectomy). Conclusions: We conclude that estrogen-driven suppression of BMPR-II signaling in non-PAH hPASMCs derived from women contributes to a pro-proliferative phenotype in hPASMCs that may predispose women to PAH. PMID:25608111

  5. EDNRA variants associate with smooth muscle mRNA levels, cell proliferation rates, and cystic fibrosis pulmonary disease severity

    PubMed Central

    Darrah, Rebecca; McKone, Edward; O'Connor, Clare; Rodgers, Christine; Genatossio, Alan; McNamara, Sharon; Gibson, Ronald; Stuart Elborn, J.; Ennis, Madeleine; Gallagher, Charles G.; Kalsheker, Noor; Aitken, Moira; Wiese, Dawn; Dunn, John; Smith, Paul; Pace, Rhonda; Londono, Douglas; Goddard, Katrina A. B.; Knowles, Michael R.

    2010-01-01

    Airway inflammation and pulmonary disease are heterogeneous phenotypes in cystic fibrosis (CF) patients, even among patients with the same cystic fibrosis transmembrane conductance regulator (CFTR) genotype. Endothelin, a proinflammatory peptide and smooth muscle agonist, is increased in CF airways, potentially contributing to the pulmonary phenotype. Four cohorts of CF patients were screened for variants in endothelin pathway genes to determine whether any of these variants associated with pulmonary function. An initial cohort of 808 CF patients homozygous for the common CF mutation, ΔF508, showed significant association for polymorphisms in the endothelin receptor A gene, EDNRA (P = 0.04), but not in the related endothelin genes (EDN1, EDN2, EDN3, or EDNRB) or NOS1, NOS2A, or NOS3. Variants within EDNRA were examined in three additional cohorts of CF patients, 238 patients from Seattle, WA, 303 from Ireland and the U.K., and 228 from Cleveland, OH, for a total of 1,577 CF patients. The three additional groups each demonstrated a significant association between EDNRA 3′-untranslated region (UTR) variant rs5335 and pulmonary function (P = 0.002). At the molecular level, single nucleotide primer extension assays suggest that the effect of the variants is quantitative. EDNRA mRNA levels from cultured primary tracheal smooth muscle cells are greater for the allele that appears to be deleterious to lung function than for the protective allele, suggesting a mechanism by which increased receptor function is harmful to the CF airway. Finally, cell proliferation studies using human airway smooth muscle cells demonstrated that cells homozygous for the deleterious allele proliferate at a faster rate than those homozygous for the protective allele. PMID:20028935

  6. Immortalization of primary human smooth muscle cells.

    PubMed Central

    Perez-Reyes, N; Halbert, C L; Smith, P P; Benditt, E P; McDougall, J K

    1992-01-01

    Primary human aortic and myometrial smooth muscle cells (SMCs) were immortalized using an amphotropic recombinant retroviral construct containing the E6 and E7 open reading frames (ORFs) of human papillomavirus type 16. The SMCs expressing the E6/E7 ORFs have considerably elevated growth rates when compared with nonimmortalized control cells and show no signs of senescence with long-term passage. The first SMC line derived in this study has been maintained in continuous tissue culture for greater than 1 year (greater than 180 population doublings). The immortalized SMCs have decreased cell size and decreased content of muscle-specific alpha-actin filaments as determined by indirect immunofluorescence. Southern blot analysis has demonstrated the stable integration of the E6/E7 ORFs in the retrovirally infected cells, and radioimmunoprecipitation has confirmed the continued expression of the E6 and E7 genes. Cytogenetic studies of the SMC lines have revealed essentially diploid populations except for the myometrial clonal line, which became aneuploid at late passage (greater than 125 doublings). These cell lines were not tumorigenic in nude mice. Images PMID:1311088

  7. Identification of functionally segregated sarcoplasmic reticulum calcium stores in pulmonary arterial smooth muscle.

    PubMed

    Clark, Jill H; Kinnear, Nicholas P; Kalujnaia, Svetlana; Cramb, Gordon; Fleischer, Sidney; Jeyakumar, Loice H; Wuytack, Frank; Evans, A Mark

    2010-04-30

    In pulmonary arterial smooth muscle, Ca(2+) release from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) may induce constriction and dilation in a manner that is not mutually exclusive. We show here that the targeting of different sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases (SERCA) and RyR subtypes to discrete SR regions explains this paradox. Western blots identified protein bands for SERCA2a and SERCA2b, whereas immunofluorescence labeling of isolated pulmonary arterial smooth muscle cells revealed striking differences in the spatial distribution of SERCA2a and SERCA2b and RyR1, RyR2, and RyR3, respectively. Almost all SERCA2a and RyR3 labeling was restricted to a region within 1.5 microm of the nucleus. In marked contrast, SERCA2b labeling was primarily found within 1.5 microm of the plasma membrane, where labeling for RyR1 was maximal. The majority of labeling for RyR2 lay in between these two regions of the cell. Application of the vasoconstrictor endothelin-1 induced global Ca(2+) waves in pulmonary arterial smooth muscle cells, which were markedly attenuated upon depletion of SR Ca(2+) stores by preincubation of cells with the SERCA inhibitor thapsigargin but remained unaffected after preincubation of cells with a second SERCA antagonist, cyclopiazonic acid. We conclude that functionally segregated SR Ca(2+) stores exist within pulmonary arterial smooth muscle cells. One sits proximal to the plasma membrane, receives Ca(2+) via SERCA2b, and likely releases Ca(2+) via RyR1 to mediate vasodilation. The other is located centrally, receives Ca(2+) via SERCA2a, and likely releases Ca(2+) via RyR3 and RyR2 to initiate vasoconstriction.

  8. Pulmonary surfactant in the airway physiology: a direct relaxing effect on the smooth muscle.

    PubMed

    Calkovska, A; Uhliarova, B; Joskova, M; Franova, S; Kolomaznik, M; Calkovsky, V; Smolarova, S

    2015-04-01

    Beside alveoli, surface active material plays an important role in the airway physiology. In the upper airways it primarily serves in local defense. Lower airway surfactant stabilizes peripheral airways, provides the transport and defense, has barrier and anti-edematous functions, and possesses direct relaxant effect on the smooth muscle. We tested in vitro the effect of two surfactant preparations Curosurf® and Alveofact® on the precontracted smooth muscle of intra- and extra-pulmonary airways. Relaxation was more pronounced for lung tissue strip containing bronchial smooth muscle as the primary site of surfactant effect. The study does not confirm the participation of ATP-dependent potassium channels and cAMP-regulated epithelial chloride channels known as CFTR chloride channels, or nitric oxide involvement in contractile response of smooth muscle to surfactant.By controlling wall thickness and airway diameter, pulmonary surfactant is an important component of airway physiology. Thus, surfactant dysfunction may be included in pathophysiology of asthma, COPD, or other diseases with bronchial obstruction.

  9. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension.

    PubMed

    Aghamohammadzadeh, Reza; Zhang, Ying-Yi; Stephens, Thomas E; Arons, Elena; Zaman, Paula; Polach, Kevin J; Matar, Majed; Yung, Lai-Ming; Yu, Paul B; Bowman, Frederick P; Opotowsky, Alexander R; Waxman, Aaron B; Loscalzo, Joseph; Leopold, Jane A; Maron, Bradley A

    2016-07-01

    Activation of the mammalian target of rapamycin complex 1 (mTORC1) subunit Raptor induces cell growth and is a downstream target of Akt. Elevated levels of aldosterone activate Akt, and, in pulmonary arterial hypertension (PAH), correlate with pulmonary arteriole thickening, which suggests that mTORC1 regulation by aldosterone may mediate adverse pulmonary vascular remodeling. We hypothesized that aldosterone-Raptor signaling induces abnormal pulmonary artery smooth muscle cell (PASMC) survival patterns to promote PAH. Remodeled pulmonary arterioles from SU-5416/hypoxia-PAH rats and monocrotaline-PAH rats with hyperaldosteronism expressed increased levels of the Raptor target, p70S6K, which provided a basis for investigating aldosterone-Raptor signaling in human PASMCs. Aldosterone (10(-9) to 10(-7) M) increased Akt/mTOR/Raptor to activate p70S6K and increase proliferation, viability, and apoptosis resistance in PASMCs. In PASMCs transfected with Raptor-small interfering RNA or treated with spironolactone/eplerenone, aldosterone or pulmonary arterial plasma from patients with PAH failed to increase p70S6K activation or to induce cell survival in vitro Optimal inhibition of pulmonary arteriole Raptor was achieved by treatment with Staramine-monomethoxy polyethylene glycol that was formulated with Raptor-small interfering RNA plus spironolactone in vivo, which decreased arteriole muscularization and pulmonary hypertension in 2 experimental animal models of PAH in vivo Up-regulation of mTORC1 by aldosterone is a critical pathobiologic mechanism that controls PASMC survival to promote hypertrophic vascular remodeling and PAH.-Aghamohammadzadeh, R., Zhang, Y.-Y., Stephens, T. E., Arons, E., Zaman, P., Polach, K. J., Matar, M., Yung, L.-M., Yu, P. B., Bowman, F. P., Opotowsky, A. R., Waxman, A. B., Loscalzo, J., Leopold, J. A., Maron, B. A. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth

  10. Lipopolysaccharide potentiates endothelin-1-induced proliferation of pulmonary arterial smooth muscle cells by upregulating TRPC channels.

    PubMed

    Jiang, Hong-Ni; Zeng, Bo; Chen, Gui-Lan; Lai, Bin; Lu, Shao-Hua; Qu, Jie-Ming

    2016-08-01

    Lipopolysaccharide (LPS) and endothelin-1 (ET-1) are critical pathogenic factors in sepsis-induced pulmonary hypertension; however it is unknown whether they have a coordinated action in the pathogenesis of this disease. Here we found that although LPS did not change the contractility of rat pulmonary arterial smooth muscle cells (PASMCs) in response to ET-1, it significantly promoted ET-1-induced PASMC proliferation. Measurement of ET-1-evoked Ca(2+) transients in PASMCs showed that LPS dramatically enhanced Ca(2+) influx mediated by transient receptor potential canonical (TRPC) channels. LPS did not directly activate TRPC channels, instead it selectively upregulated the expression of TRPC3 and TRPC4 in pulmonary arteries. Small interfering RNA (siRNA) and chemical blockers against TRPC channels abolished LPS-induced PASMC proliferation. LPS-induced cell proliferation and TRPC expression was mediated by the Ca(2+)-dependent calcineurin/NFAT signaling pathway. We suggest that blocking TRPC channels could be an effective strategy in controlling pulmonary arterial remodeling after endotoxin exposure. PMID:27470334

  11. PDGF induces SphK1 expression via Egr-1 to promote pulmonary artery smooth muscle cell proliferation.

    PubMed

    Sysol, Justin R; Natarajan, Viswanathan; Machado, Roberto F

    2016-06-01

    Pulmonary arterial hypertension (PAH) is a progressive, life-threatening disease for which there is currently no curative treatment available. Pathologic changes in this disease involve remodeling of the pulmonary vasculature, including marked proliferation of pulmonary artery smooth muscle cells (PASMCs). Recently, the bioactive lipid sphingosine-1-phosphate (S1P) and its activating kinase, sphingosine kinase 1 (SphK1), have been shown to be upregulated in PAH and promote PASMC proliferation. The mechanisms regulating the transcriptional upregulation of SphK1 in PASMCs are unknown. In this study, we investigated the role of platelet-derived growth factor (PDGF), a PAH-relevant stimuli associated with enhanced PASMC proliferation, on SphK1 expression regulation. In human PASMCs (hPASMCs), PDGF significantly increased SphK1 mRNA and protein expression and induced cell proliferation. Selective inhibition of SphK1 attenuated PDGF-induced hPASMC proliferation. In silico promoter analysis for SphK1 identified several binding sites for early growth response protein 1 (Egr-1), a PDGF-associated transcription factor. Luciferase assays demonstrated that PDGF activates the SphK1 promoter in hPASMCs, and truncation of the 5'-promoter reduced PDGF-induced SphK1 expression. Stimulation of hPASMCs with PDGF induced Egr-1 protein expression, and direct binding of Egr-1 to the SphK1 promoter was confirmed by chromatin immunoprecipitation analysis. Inhibition of ERK signaling prevented induction of Egr-1 by PDGF. Silencing of Egr-1 attenuated PDGF-induced SphK1 expression and hPASMC proliferation. These studies demonstrate that SphK1 is regulated by PDGF in hPASMCs via the transcription factor Egr-1, promoting cell proliferation. This novel mechanism of SphK1 regulation may be a therapeutic target in pulmonary vascular remodeling in PAH. PMID:27099350

  12. Profiling the role of mammalian target of rapamycin in the vascular smooth muscle metabolome in pulmonary arterial hypertension

    PubMed Central

    Kudryashova, Tatiana V.; Goncharov, Dmitry A.; Pena, Andressa; Ihida-Stansbury, Kaori; DeLisser, Horace; Kawut, Steven M.

    2015-01-01

    Abstract Increased proliferation and resistance to apoptosis of pulmonary arterial vascular smooth muscle cells (PAVSMCs), coupled with metabolic reprogramming, are key components of pulmonary vascular remodeling, a major and currently irreversible pathophysiological feature of pulmonary arterial hypertension (PAH). We recently reported that activation of mammalian target of rapamycin (mTOR) plays a key role in increased energy generation and maintenance of the proliferative, apoptosis-resistant PAVSMC phenotype in human PAH, but the downstream effects of mTOR activation on PAH PAVSMC metabolism are not clear. Using liquid and gas chromatography–based mass spectrometry, we performed pilot metabolomic profiling of human microvascular PAVSMCs from idiopathic-PAH subjects before and after treatment with the selective adenosine triphosphate–competitive mTOR inhibitor PP242 and from nondiseased lungs. We have shown that PAH PAVSMCs have a distinct metabolomic signature of altered metabolites—components of fatty acid synthesis, deficiency of sugars, amino sugars, and nucleotide sugars—intermediates of protein and lipid glycosylation, and downregulation of key biochemicals involved in glutathione and nicotinamide adenine dinucleotide (NAD) metabolism. We also report that mTOR inhibition attenuated or reversed the majority of the PAH-specific abnormalities in lipogenesis, glycosylation, glutathione, and NAD metabolism without affecting altered polyunsaturated fatty acid metabolism. Collectively, our data demonstrate a critical role of mTOR in major PAH PAVSMC metabolic abnormalities and suggest the existence of de novo lipid synthesis in PAVSMCs in human PAH that may represent a new, important component of disease pathogenesis worthy of future investigation. PMID:26697174

  13. Complex I dysfunction underlies the glycolytic switch in pulmonary hypertensive smooth muscle cells.

    PubMed

    Rafikov, Ruslan; Sun, Xutong; Rafikova, Olga; Meadows, Mary Louise; Desai, Ankit A; Khalpey, Zain; Yuan, Jason X-J; Fineman, Jeffrey R; Black, Stephen M

    2015-12-01

    ATP is essential for cellular function and is usually produced through oxidative phosphorylation. However, mitochondrial dysfunction is now being recognized as an important contributing factor in the development cardiovascular diseases, such as pulmonary hypertension (PH). In PH there is a metabolic change from oxidative phosphorylation to mainly glycolysis for energy production. However, the mechanisms underlying this glycolytic switch are only poorly understood. In particular the role of the respiratory Complexes in the mitochondrial dysfunction associated with PH is unresolved and was the focus of our investigations. We report that smooth muscle cells isolated from the pulmonary vessels of rats with PH (PH-PASMC), induced by a single injection of monocrotaline, have attenuated mitochondrial function and enhanced glycolysis. Further, utilizing a novel live cell assay, we were able to demonstrate that the mitochondrial dysfunction in PH-PASMC correlates with deficiencies in the activities of Complexes I-III. Further, we observed that there was an increase in mitochondrial reactive oxygen species generation and mitochondrial membrane potential in the PASMC isolated from rats with PH. We further found that the defect in Complex I activity was due to a loss of Complex I assembly, although the assembly of Complexes II and III were both maintained. Thus, we conclude that loss of Complex I assembly may be involved in the switch of energy metabolism in smooth muscle cells to glycolysis and that maintaining Complex I activity may be a potential therapeutic target for the treatment of PH. PMID:26298201

  14. Human pulmonary dirofilariasis masquerading as a mass.

    PubMed

    Jacob, Sheba; Parameswaran, Ashok; Santosham, Rajan; Santosham, Rajiv

    2016-09-01

    Pulmonary dirofilariasis, caused by Dirofilaria immitis, rarely affects humans and is usually asymptomatic, but may present as chest pain, cough, hemoptysis, wheezing, low-grade fever, and malaise. The dead and dying worms obstruct branches of the pulmonary artery, causing infarction and a granulomatous reaction. Coin lesions are apparent on radiography, raising concern of malignancy. Complete surgical excision is the treatment of choice and an anthelmintic can be administered if residual lesions are present or the patient is from an endemic area. We present two cases of pulmonary dirofilariasis presenting as coin lesions in the lung, which were clinically suggestive of malignancy. PMID:27432058

  15. miR-143 Activation Regulates Smooth Muscle and Endothelial Cell Crosstalk in Pulmonary Arterial Hypertension

    PubMed Central

    Stevens, Hannah; Lu, Ruifang; Caudrillier, Axelle; McBride, Martin; McClure, John D; Grant, Jenny; Thomas, Matthew; Frid, Maria; Stenmark, Kurt; White, Kevin; Seto, Anita G.; Morrell, Nicholas W.; Bradshaw, Angela C; MacLean, Margaret R.; Baker, Andrew H.

    2015-01-01

    Rationale The pathogenesis of PAH remains unclear. The four microRNAs representing the miR-143 and miR-145 stem loops are genomically clustered. Objective To elucidate the transcriptional regulation of the miR-143/145 cluster, and the role of miR-143 in PAH. Methods and Results We identified the promoter region that regulates miR-143/145 miRNA expression in pulmonary artery smooth muscle cells (PASMCs). We mapped PAH-related signalling pathways, including estrogens receptor (ER), liver X factor/retinoic X receptor (LXR/RXR), TGF-β (Smads), and hypoxia (HRE) that regulated levels of all pri-miR stem loop transcription and resulting miRNA expression. We observed that miR-143-3p is selectively upregulated compared to miR-143-5p during PASMC migration. Modulation of miR-143 in PASMCs significantly altered cell migration and apoptosis. In addition, we found high abundance of miR-143-3p in PASMCs-derived exosomes. Using assays with pulmonary arterial endothelial cells (PAECs) we demonstrated a paracrine pro-migratory and pro-angiogenic effect of miR-143-3p enriched exosomes from PASMC. Quantitative PCR and in situ hybridisation showed elevated expression of miR-143 in calf models of PAH as well as in samples from PAH patients. Moreover, in contrast to our previous findings that had not supported a therapeutic role in vivo, we now demonstrate a protective role for miR-143 in experimental PH in vivo in miR-143−/− and antimiR143-3p-treated mice exposed to chronic hypoxia in both preventative and reversal settings. Conclusions miR-143-3p modulated both cellular and exosome-mediated responses in pulmonary vascular cells, while inhibition of miR-143-3p blocked experimental PH. Taken together these findings confirm an important role for the miR-143/145 cluster in PAH pathobiology. PMID:26311719

  16. Nitric oxide decreases stability of mRNAs encoding soluble guanylate cyclase subunits in rat pulmonary artery smooth muscle cells.

    PubMed Central

    Filippov, G; Bloch, D B; Bloch, K D

    1997-01-01

    Nitric oxide stimulates soluble guanylate cyclase (sGC) to convert GTP to the intracellular second messenger cGMP. In rat pulmonary artery smooth muscle cells, sGC is an obligate heterodimer composed of alpha1 and beta1 subunits. We investigated the effect of NO donor compounds on sGC subunit gene expression in rat pulmonary artery smooth muscle cells. Sodium nitroprusside and S-nitroso-glutathione decreased sGC subunit mRNA and protein levels, as well as sGC enzyme activity. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an sGC inhibitor, blocked the effect of sodium nitroprusside on sGC subunit gene expression, whereas 8-bromo cGMP decreased subunit mRNA levels, demonstrating that NO-mediated decrease in sGC subunit mRNA levels is cGMP-dependent. sGC subunit mRNA levels decreased more rapidly in rat pulmonary artery smooth muscle cells exposed to NO than in cells exposed to actinomycin D, suggesting that NO decreases sGC subunit mRNA stability. Actinomycin D and cycloheximide blocked the ability of NO to decrease sGC subunit mRNA levels. These results demonstrate that NO decreases sGC subunit mRNA stability via a transcription- and translation-dependent mechanism. PMID:9259594

  17. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    PubMed

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion.

  18. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease

    PubMed Central

    Wiegman, Coen H.; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J.; Russell, Kirsty E.; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J.; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P.; Kirkham, Paul A.; Chung, Kian Fan; Adcock, Ian M.; Brightling, Christopher E.; Davies, Donna E.; Finch, Donna K.; Fisher, Andrew J.; Gaw, Alasdair; Knox, Alan J.; Mayer, Ruth J.; Polkey, Michael; Salmon, Michael; Singh, David

    2015-01-01

    Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell

  19. Transdifferentiation of human endothelial progenitors into smooth muscle cells.

    PubMed

    Ji, HaYeun; Atchison, Leigh; Chen, Zaozao; Chakraborty, Syandan; Jung, Youngmee; Truskey, George A; Christoforou, Nicolas; Leong, Kam W

    2016-04-01

    Access to smooth muscle cells (SMC) would create opportunities for tissue engineering, drug testing, and disease modeling. Herein we report the direct conversion of human endothelial progenitor cells (EPC) to induced smooth muscle cells (iSMC) by induced expression of MYOCD. The EPC undergo a cytoskeletal rearrangement resembling that of mesenchymal cells within 3 days post initiation of MYOCD expression. By day 7, the reprogrammed cells show upregulation of smooth muscle markers ACTA2, MYH11, and TAGLN by qRT-PCR and ACTA2 and MYH11 expression by immunofluorescence. By two weeks, they resemble umbilical artery SMC in microarray gene expression analysis. The iSMC, in contrast to EPC control, show calcium transients in response to phenylephrine stimulation and a contractility an order of magnitude higher than that of EPC as determined by traction force microscopy. Tissue-engineered blood vessels constructed using iSMC show functionality with respect to flow- and drug-mediated vasodilation and vasoconstriction. PMID:26874281

  20. Calcium oscillations in human mesenteric vascular smooth muscle.

    PubMed

    Navarro-Dorado, Jorge; Garcia-Alonso, Mauricio; van Breemen, Cornelis; Tejerina, Teresa; Fameli, Nicola

    2014-02-28

    Phenylephrine (PE)-induced oscillatory fluctuations in intracellular Ca(2+) concentration ([Ca(2+)]i) of vascular smooth muscle have been observed in many blood vessels isolated from a wide variety of mammals. Paradoxically, until recently similar observations in humans have proven elusive. In this study, we report for the first time observations of adrenergically-stimulated [Ca(2+)]i oscillations in human mesenteric artery smooth muscle. In arterial segments preloaded with Fluo-4 AM and mounted on a myograph on the stage of a confocal microscope, we observed PE-induced oscillations in [Ca(2+)]i, which initiated and maintained vasoconstriction. These oscillations present some variability, possibly due to compromised health of the tissue. This view is corroborated by our ultrastructural analysis of the cells, in which we found only (5 ± 2)% plasma membrane-sarcoplasmic reticulum apposition, markedly less than measured in healthy tissue from laboratory animals. We also partially characterized the oscillations by using the inhibitory drugs 2-aminoethoxydiphenyl borate (2-APB), cyclopiazonic acid (CPA) and nifedipine. After PE contraction, all drugs provoked relaxation of the vessel segments, sometimes only partial, and reduced or inhibited oscillations, except CPA, which rarely caused relaxation. These preliminary results point to a potential involvement of the sarcoplasmic reticulum Ca(2+) and inositol 1,4,5-trisphosphate receptor (IP3R) in the maintenance of the Ca(2+) oscillations observed in human blood vessels. PMID:24508261

  1. Inhibitory effect of Bailing capsule on hypoxia-induced proliferation of rat pulmonary arterial smooth muscle cells

    PubMed Central

    Li, Xiaohui; Peng, Kejun; Zhou, Yutian; Deng, Fengmei; Ma, Jiao

    2016-01-01

    Objectives: To investigated the effects of Bailing capsule on hypoxia-induced proliferation of pulmonary arterial smooth muscle cells (PASMCs). Methods: This prospective study was performed at the Central Laboratory, Chengdu Medical College, Chengdu, China between April 2012 and November 2014. Ten healthy adult male Wistar rats were administrated with gastric perfusion of Bailing capsule to obtain serum containing the tested drugs. Proliferation of pulmonary arterial smooth muscle cells proliferation was measured using cell counting kit-8 assay. Production of reactive oxygen species (ROS) in rat PASMCs was determined through a fluorometric assay, whereas production of endothelin-1 (ET-1) was detected by ELISA and quantitative real-time PCR (qRT-PCR). Expression of proliferating cell nuclear antigen (PCNA), c-fos, and c-jun in PASMCs was also determined using immunohistochemistry staining and qRT-PCR. Results: We observed that the medicated serum obviously inhibited hypoxia-induced cell proliferation in a concentration-dependent manner. Moreover, the medicated serum significantly reduced hypoxia-induced production of ROS and ET-1, as well as expression of PCNA, c-fos, and c-jun, in PASMCs. Conclusion: Results demonstrated that Bailing capsule can inhibit hypoxia-induced PASMC proliferation possibly by suppressing ET-1 and ROS production and by inhibiting expression of PCNA, c-fos, and c-jun. These results suggest that Bailing possess antiproliferative property, which is probably one of the underlying mechanisms of Bailing capsule for the clinical treatment of chronic obstructive pulmonary disease. PMID:27146611

  2. Slow receptor dissociation kinetics differentiate macitentan from other endothelin receptor antagonists in pulmonary arterial smooth muscle cells.

    PubMed

    Gatfield, John; Mueller Grandjean, Celia; Sasse, Thomas; Clozel, Martine; Nayler, Oliver

    2012-01-01

    Two endothelin receptor antagonists (ERAs), bosentan and ambrisentan, are currently approved for the treatment of pulmonary arterial hypertension (PAH), a devastating disease involving an activated endothelin system and aberrant contraction and proliferation of pulmonary arterial smooth muscle cells (PASMC). The novel ERA macitentan has recently concluded testing in a Phase III morbidity/mortality clinical trial in PAH patients. Since the association and dissociation rates of G protein-coupled receptor antagonists can influence their pharmacological activity in vivo, we used human PASMC to characterize inhibitory potency and receptor inhibition kinetics of macitentan, ambrisentan and bosentan using calcium release and inositol-1-phosphate (IP(1)) assays. In calcium release assays macitentan, ambrisentan and bosentan were highly potent ERAs with K(b) values of 0.14 nM, 0.12 nM and 1.1 nM, respectively. Macitentan, but not ambrisentan and bosentan, displayed slow apparent receptor association kinetics as evidenced by increased antagonistic potency upon prolongation of antagonist pre-incubation times. In compound washout experiments, macitentan displayed a significantly lower receptor dissociation rate and longer receptor occupancy half-life (ROt(1/2)) compared to bosentan and ambrisentan (ROt(1/2):17 minutes versus 70 seconds and 40 seconds, respectively). Because of its lower dissociation rate macitentan behaved as an insurmountable antagonist in calcium release and IP(1) assays, and unlike bosentan and ambrisentan it blocked endothelin receptor activation across a wide range of endothelin-1 (ET-1) concentrations. However, prolongation of the ET-1 stimulation time beyond ROt(1/2) rendered macitentan a surmountable antagonist, revealing its competitive binding mode. Bosentan and ambrisentan behaved as surmountable antagonists irrespective of the assay duration and they lacked inhibitory activity at high ET-1 concentrations. Thus, macitentan is a competitive ERA with

  3. Isolation of human umbilical arterial smooth muscle cells (HUASMC).

    PubMed

    Ribeiro, Maximiano P; Relvas, Ricardo; Chiquita, Samuel; Correia, Ilídio J

    2010-07-03

    The human umbilical cord (UC) is a biological sample that can be easily obtained just after birth. This biological sample is, most of the time, discarded and their collection does not imply any added risk to the newborn or mother s health. Moreover no ethical concerns are raised. The UC is composed by one vein and two arteries from which both endothelial cells (ECs) and smooth muscle cells (SMCs), two of the main cellular components of blood vessels, can be isolated. In this project the SMCs were obtained after enzymatic treatment of the UC arteries accordingly the experimental procedure previously described by Jaffe et al. After cell isolation they were kept in t-flash with DMEM-F12 supplemented with 5% of fetal bovine serum and were cultured for several passages. Cells maintained their morphological and other phenotypic characteristics in the different generations. The aim of this study was to isolate smooth muscle cells in order to use them as models for future assays with constrictor drugs, isolate and structurally characterize L-type calcium channels, to study cellular and molecular aspects of the vascular function and to use them in tissue engineering.

  4. Neurophysiology and Neuroanatomy of Smooth Pursuit in Humans

    ERIC Educational Resources Information Center

    Lencer, Rebekka; Trillenberg, Peter

    2008-01-01

    Smooth pursuit eye movements enable us to focus our eyes on moving objects by utilizing well-established mechanisms of visual motion processing, sensorimotor transformation and cognition. Novel smooth pursuit tasks and quantitative measurement techniques can help unravel the different smooth pursuit components and complex neural systems involved…

  5. Vascular impedance analysis in human pulmonary circulation.

    PubMed

    Zhou, Qinlian; Gao, Jian; Huang, Wei; Yen, Michael

    2006-01-01

    Vascular impedance is determined by morphometry and mechanical properties of the vascular system, as well as the rheology of the blood. The interactions between all these factors are complicated and difficult to investigate solely by experiments. A mathematical model representing the entire system of human pulmonary circulation was constructed based on experimentally measured morphometric and elasticity data of the vessels. The model consisted of 16 orders of arteries and 15 orders of veins. The pulmonary arteries and veins were considered as elastic tubes and their impedance was calculated based on Womersley's theory. The flow in capillaries was described by the "sheet-flow" theory. The model yielded an impedance modulus spectrum that fell steeply from a high value at 0 Hz to a minimum around 1.5 Hz. At about 4 Hz, it reached a second high and then oscillated around a relatively small value at higher frequencies. Characteristic impedance was 27.9 dyn-sec/cm5. Influence of variations in vessel geometry and elasticity on impedance spectra was analyzed. Simulation results showed good agreement with experimental measurements. PMID:16817653

  6. A critical role of nicotinamide phosphoribosyltransferase in human telomerase reverse transcriptase induction by resveratrol in aortic smooth muscle cells.

    PubMed

    Huang, Peixin; Riordan, Sean M; Heruth, Daniel P; Grigoryev, Dmitry N; Zhang, Li Qin; Ye, Shui Qing

    2015-05-10

    Aging is the predominant risk factor for cardiovascular diseases and contributes to a considerably more severe outcome in patients with acute myocardial infarction. Resveratrol, a polyphenol found in red wine, is a caloric restriction mimetic with potential anti-aging properties which has emerged as a beneficial nutraceutical for patients with cardiovascular disease. Although resveratrol is widely consumed as a nutritional supplement, its mechanism of action remains to be elucidated fully. Here, we report that resveratrol activates human nicotinamide phosphoribosyltransferase (NAMPT), SIRT4 and telomerase reverse transcriptase (hTERT) in human aortic smooth muscle cells. Similar observations were obtained in resveratrol treated C57BL/6J mouse heart and liver tissues. Resverotrol can also augment telomerase activity in both human pulmonary microvascular endothelial cells and A549 cells. Blocking NAMPT and SIRT4 expression prevents induction of hTERT in human aortic smooth muscle cells while overexpression of NAMPT elevates the telomerase activity induced by resveratrol in A549 cells. Together, these results identify a NAMPT-SIRT4-hTERT axis as a novel mechanism by which resveratrol may affect the anti-aging process in human aortic smooth muscle cells, mouse hearts and other cells. These findings enrich our understanding of the positive effects of resveratrol in human cardiovascular diseases.

  7. Platelet-activating factor induces ovine fetal pulmonary venous smooth muscle cell proliferation: role of epidermal growth factor receptor transactivation.

    PubMed

    Zhou, Weilin; Ibe, Basil O; Raj, J Usha

    2007-06-01

    We have previously reported that platelet-activating factor (PAF) is present in very high levels in the ovine fetal lung and circulation and that PAF serves as an important physiological vasoconstrictor of the pulmonary circulation in utero. However, it is not known whether PAF stimulates pulmonary vascular smooth muscle cell (SMC) proliferation. In this study, we used ovine fetal pulmonary venous SMCs as our model system to study the effects and mechanisms of action of PAF on SMC proliferation. We found that PAF induced SMC proliferation in a dose-dependent manner. PAF also stimulated activation of both ERK and p38 but not c-Jun NH(2) terminal kinase (JNK) mitogen-activated protein (MAP) kinase pathways. PAF (10 nM) induced phosphorylation of epidermal growth factor receptor (EGFR). Specific inhibition of EGFR by AG-1478 and by the expression of a dominant-negative EGFR mutant in SMCs attenuated PAF-stimulated cell proliferation. Inhibition of heparin-binding EGF-like growth factor (HB-EGF) release by CRM-197 and inhibition of matrix metalloproteinases (MMP) by GM-6001 abolished PAF-induced MAP kinase activation and cell proliferation. Increased alkaline phosphatase (AP) activity after PAF treatment in AP-HB-EGF fusion construct-transfected SMCs indicated that PAF induced the release of HB-EGF within 1 min. Gelatin zymography data showed that PAF stimulated MMP-2 activity and MMP-9 activity within 1 min. These results suggest that PAF promotes pulmonary vascular SMC proliferation via transactivation of EGFR through MMP activation and HB-EGF, resulting in p38 and ERK activation and that EGFR transactivation is essential for the mitogenic effect of PAF in pulmonary venous SMC. PMID:17322418

  8. Endothelin converting enzyme (ECE) activity in human vascular smooth muscle

    PubMed Central

    Maguire, Janet J; Johnson, Christopher M; Mockridge, James W; Davenport, Anthony P

    1997-01-01

    We have characterized the human smooth muscle endothelin converting enzyme (ECE) present in the media of the endothelium-denuded human umbilical vein preparation. Endothelin-1 (ET-1) and ET-2 were potent constrictors of umbilical vein with EC50 values of 9.2 nM and 29.6 nM, respectively. ET-1 was at least 30 times more potent than ET-3 suggesting the presence of constrictor ETA receptors. Little or no response was obtained to the ETB-selective agonist sarafotoxin 6c. These data suggest that endothelin-mediated vasoconstriction is via ETA receptors in this preparation. Autoradiographical visualization of endothelin receptors with subtype selective ligands confirmed the predominance of the ETA receptor in the media of umbilical vein. High density of binding was obtained with the ETA selective [125I]-PD151242, with much lower levels detected with the ETB selective [125I]-BQ3020. Big ET-1 (EC50=42.7 nM) and big ET-2(1-38) (EC50=99.0 nM) were less potent than ET-1 and ET-2, respectively. Big ET-2(1-38) was more potent than its isoform big ET-2(1-37) with concentration–response curves to big ET-2(1-37) incomplete at 300 nM. No response was obtained to big ET-3 at concentrations up to 700 nM. The C-terminal fragments, big ET-1(22-38) and big ET-2(22-38) were inactive. Responses to ET-1 were unaffected by either the neutral endopeptidase (NEP) inhibitor thiorphan (10−5 M) or by the dual NEP/ECE inhibitor phosphoramidon (10−5 M). Big ET-1 was also unaffected by thiorphan but antagonized in a concentration-dependent manner by phosphoramidon (10−5 M and 10−4 M). Addition of all four big endothelin peptides to human umbilical vein preparations resulted in detectable amounts of ET-IR in the bathing medium. Therefore, although big ET-3 was functionally inactive this reflects the low potency of ET-3 at the ETA receptor rather than the lack of ability of this smooth muscle ECE to convert big ET-3 to ET-3. To conclude we have demonstrated the presence

  9. Properties of a novel K+ current that is active at resting potential in rabbit pulmonary artery smooth muscle cells.

    PubMed Central

    Evans, A M; Osipenko, O N; Gurney, A M

    1996-01-01

    1. An outward current (IK(N)) was identified in rabbit pulmonary artery myocytes, which persisted after Ca(2+)-activated and ATP-sensitive K+ currents were blocked by TEA (10 mM) and glibenclamide (10 microM), respectively, and after A-like (IK(A)) and delayed rectifer (IK(V)) K+ currents were inactivated by clamping the cell at 0 mV for 10 min. It was found in smooth muscle cells at all levels of the pulmonary arterial tree. 2. The relationship between the reversal potential of IK(N) and the extracellular K+ concentration ([K+]o) was close to that expected for a K(+)-selective channel. Deviation from Nernstian behaviour at low [K+)o could be accounted for by the presence of an accompanying leakage current. 3. IK(N) is voltage gated. It has a low threshold for activation, between -80 and -65 mV, and activates slowly without delay. Activation follows an exponential time course with a time constant of 1.6 s at -60 mV. Deactivation is an order of magnitude faster than activation, with a time constant of 107 ms at -60 mV. 4. IK(N) showed a similar sensitivity to 4-aminopyridine as IK(A) and IK(V), with 49% inhibition at 10 mM. The current was not blocked by microM quinine, which did inhibit IK(A) and IK(V), by 51 and 47%, respectively. 5. Activation of IK(N) was detected at potentials close to the resting membrane potential of pulmonary artery smooth muscle cells, under physiological conditions. Thus it is likely to contribute to the resting membrane potential of these cells. PMID:8910225

  10. 8,9-Epoxyeicosatrienoic acid analog protects pulmonary artery smooth muscle cells from apoptosis via ROCK pathway

    SciTech Connect

    Ma, Jun; Zhang, Lei; Li, Shanshan; Liu, Shulin; Ma, Cui; Li, Weiyang; Falck, J.R.; Manthati, Vijay L.; Reddy, D. Sudarshan; Medhora, Meetha; Jacobs, Elizabeth R.; Zhu, Daling

    2010-08-15

    Epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid (AA) catalyzed by cytochrome P450 (CYP), have many essential biologic roles in the cardiovascular system including inhibition of apoptosis in cardiomyocytes. In the present study, we tested the potential of 8,9-EET and derivatives to protect pulmonary artery smooth muscle cells (PASMCs) from starvation induced apoptosis. We found 8,9-epoxy-eicos-11(Z)-enoic acid (8,9-EET analog (214)), but not 8,9-EET, increased cell viability, decreased activation of caspase-3 and caspase-9, and decreased TUNEL-positive cells or nuclear condensation induced by serum deprivation (SD) in PASMCs. These effects were reversed after blocking the Rho-kinase (ROCK) pathway with Y-27632 or HA-1077. Therefore, 8,9-EET analog (214) protects PASMC from serum deprivation-induced apoptosis, mediated at least in part via the ROCK pathway. Serum deprivation of PASMCs resulted in mitochondrial membrane depolarization, decreased expression of Bcl-2 and enhanced expression of Bax, all effects were reversed by 8,9-EET analog (214) in a ROCK dependent manner. Because 8,9-EET and not the 8,9-EET analog (214) protects pulmonary artery endothelial cells (PAECs), these observations suggest the potential to differentially promote apoptosis or survival with 8,9-EET or analogs in pulmonary arteries.

  11. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    SciTech Connect

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping Wang, Hong

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  12. Role of ROS signaling in differential hypoxic Ca2+ and contractile responses in pulmonary and systemic vascular smooth muscle cells

    PubMed Central

    Wang, Yong-Xiao; Zheng, Yun-Min

    2010-01-01

    Hypoxia causes a large increase in [Ca2+]i and attendant contraction in pulmonary artery smooth muscle cells (PASMCs), but not in systemic artery SMCs. The different responses meet the respective functional needs in these two distinct vascular myocytes; however, the underlying molecular mechanisms are not well known. We and other investigators have provided extensive evidence to reveal that voltage-dependent K+ (KV) channels, canonical transient receptor potential (TRPC) channels, ryanodine receptor Ca2+ release channels (RyRs), cyclic adenosine diphosphate-ribose, FK506 binding protein 12.6, protein kinase C, NADPH oxidase and reactive oxygen species (ROS) are the essential effectors and signaling intermediates in the hypoxic increase in [Ca2+]i in PASMCs and HPV, but they may not primarily underlie the diverse cellular responses in pulmonary and systemic vascular myocytes. Hypoxia significantly increases mitochondrial ROS generation in PASMCs, which can induce intracellular Ca2+ release by opening RyRs, and may also cause extracellular Ca2+ influx by inhibiting KV channels and activating TRPC channels, leading to a large increase in [Ca2+]i in PASMCs and HPV. In contrast, hypoxia has no or a minor effect on mitochondrial ROS generation in systemic SMCs, thereby causing no change or a negligible increase in [Ca2+]i and contraction. Further preliminary work indicates that Rieske iron–sulfur protein in the mitochondrial complex III may perhaps serve as a key initial molecular determinant for the hypoxic increase in [Ca2+]i in PASMCs and HPV, suggesting its potential important role in different cellular changes to respond to hypoxic stimulation in pulmonary and systemic artery myocytes. All these findings have greatly improved our understanding of the molecular processes for the differential hypoxic Ca2+ and contractile responses in vascular SMCs from distinct pulmonary and systemic circulation systems. PMID:20713188

  13. Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells

    PubMed Central

    Rodríguez, Larissa V.; Alfonso, Zeni; Zhang, Rong; Leung, Joanne; Wu, Benjamin; Ignarro, Louis J.

    2006-01-01

    Smooth muscle is a major component of human tissues and is essential for the normal function of a multitude of organs including the intestine, urinary tract and the vascular system. The use of stem cells for cell-based tissue engineering and regeneration strategies represents a promising alternative for smooth muscle repair. For such strategies to succeed, a reliable source of smooth muscle precursor cells must be identified. Adipose tissue provides an abundant source of multipotent cells. In this study, the capacity of processed lipoaspirate (PLA) and adipose-derived stem cells to differentiate into phenotypic and functional smooth muscle cells was evaluated. To induce differentiation, PLA cells were cultured in smooth muscle differentiation medium. Smooth muscle differentiation of PLA cells induced genetic expression of all smooth muscle markers and further confirmed by increased protein expression of smooth muscle cell-specific α actin (ASMA), calponin, caldesmon, SM22, myosin heavy chain (MHC), and smoothelin. Clonal studies of adipose derived multipotent cells demonstrated differentiation of these cells into smooth muscle cells in addition to trilineage differentiation capacity. Importantly, smooth muscle-differentiated cells, but not their precursors, exhibit the functional ability to contract and relax in direct response to pharmacologic agents. In conclusion, adipose-derived cells have the potential to differentiate into functional smooth muscle cells and, thus, adipose tissue can be a useful source of cells for treatment of injured tissues where smooth muscle plays an important role. PMID:16880387

  14. INTERACTIONS BETWEEN CALCIUM AND REACTIVE OXYGEN SPECIES IN PULMONARY ARTERIAL SMOOTH MUSCLE RESPONSES TO HYPOXIA

    PubMed Central

    Shimoda, Larissa A.; Undem, Clark

    2010-01-01

    In contrast to the systemic vasculature, where hypoxia causes vasodilation, pulmonary arteries constrict in response to hypoxia. The mechanisms underlying this unique response have been the subject of investigation for over 50 years, and still remain a topic of great debate. Over the last 20 years, there has emerged a general consensus that both increases in intracellular calcium concentration and changes in reactive oxygen species (ROS) generation play key roles in the pulmonary vascular response to hypoxia. Controversy exists, however, regarding whether ROS increase or decrease during hypoxia, the source of ROS, and the mechanisms by which changes in ROS might impact intracellular calcium, and vice versa. This review will discuss the mechanisms regulating [Ca2+]i and ROS in PASMCs, and the interaction between ROS and Ca2+ signaling during exposure to acute hypoxia. PMID:20801238

  15. Effects of hesperetin on platelet-derived growth factor-BB-induced pulmonary artery smooth muscle cell proliferation.

    PubMed

    Wei, Li; Deng, Wei; Cheng, Zhihong; Guo, Haipeng; Wang, Shihong; Zhang, Xiao; He, Yiyu; Tang, Qizhu

    2016-01-01

    Hesperetin is a natural flavonoid, which has been reported to exert various biological activities and positive health effects on mammalian cells. The present study aimed to investigate the effects of hesperetin on the proliferation of primary cultured rat pulmonary artery smooth muscle cells (PASMCs), and to elucidate the possible underlying molecular mechanisms. The results of the present study indicated that hesperetin was able to inhibit the proliferation and DNA synthesis of platelet‑derived growth factor‑BB (PDGF‑BB)‑induced PASMCs in a dose‑ and time‑dependent manner, without exerting cell cytotoxicity. In addition, hesperetin blocked the progression of the cell cycle from G0/G1 to S phase, which was correlated with the decreased mRNA expression levels of cyclin D1, cyclin E, cyclin‑dependent kinase (CDK)2 and CDK4, and the increased mRNA expression levels of p27. Furthermore, the anti‑proliferative effects of hesperetin were associated with suppression of the AKT/glycogen synthase kinase (GSK)3β and p38 signaling pathway, but were not associated with the extracellular signal‑regulated kinases 1/2 and c‑Jun N‑terminal kinases signaling pathways. These results suggested that hesperetin may inhibit PDGFa‑BB‑induced PASMC proliferation via the AKT/GSK3β signaling pathway, and that it may possess therapeutic potential for the treatment of pulmonary vascular remodeling diseases.

  16. Primary pulmonary hypertension associated with human immunodeficiency virus infection.

    PubMed Central

    Golpe, R.; Fernandez-Infante, B.; Fernandez-Rozas, S.

    1998-01-01

    Several cardiorespiratory diseases can complicate human immunodeficiency virus infection. Primary pulmonary hypertension is a rare clinical disorder which carries a bad prognosis. More than 90 cases of HIV-associated primary pulmonary hypertension have been reported to date. Although its pathogenesis remains unknown, some evidence suggests a possible role for the virus itself in its development. Genetic susceptibility may also be implicated. The clinical and histopathologic features of this entity do not differ from those of classic primary pulmonary hypertension. The diagnosis requires a high degree of clinical suspicion and a careful evaluation to rule out causes of secondary pulmonary hypertension. In addition to supportive measures, anticoagulation and vasodilators have been used to treat this disorder, although sufficient data regarding long-term results with these therapies are lacking. PMID:9799910

  17. Important role of PLC-γ1 in hypoxic increase in intracellular calcium in pulmonary arterial smooth muscle cells.

    PubMed

    Yadav, Vishal R; Song, Tengyao; Joseph, Leroy; Mei, Lin; Zheng, Yun-Min; Wang, Yong-Xiao

    2013-02-01

    An increase in intracellular calcium concentration ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMCs) induces hypoxic cellular responses in the lungs; however, the underlying molecular mechanisms remain incompletely understood. We report, for the first time, that acute hypoxia significantly enhances phospholipase C (PLC) activity in mouse resistance pulmonary arteries (PAs), but not in mesenteric arteries. Western blot analysis and immunofluorescence staining reveal the expression of PLC-γ1 protein in PAs and PASMCs, respectively. The activity of PLC-γ1 is also augmented in PASMCs following hypoxia. Lentiviral shRNA-mediated gene knockdown of mitochondrial complex III Rieske iron-sulfur protein (RISP) to inhibit reactive oxygen species (ROS) production prevents hypoxia from increasing PLC-γ1 activity in PASMCs. Myxothiazol, a mitochondrial complex III inhibitor, reduces the hypoxic response as well. The PLC inhibitor U73122, but not its inactive analog U73433, attenuates the hypoxic vasoconstriction in PAs and hypoxic increase in [Ca(2+)](i) in PASMCs. PLC-γ1 knockdown suppresses its protein expression and the hypoxic increase in [Ca(2+)](i). Hypoxia remarkably increases inositol 1,4,5-trisphosphate (IP(3)) production, which is blocked by U73122. The IP(3) receptor (IP(3)R) antagonist 2-aminoethoxydiphenyl borate (2-APB) or xestospongin-C inhibits the hypoxic increase in [Ca(2+)](i). PLC-γ1 knockdown or U73122 reduces H(2)O(2)-induced increase in [Ca(2+)](i) in PASMCs and contraction in PAs. 2-APB and xestospongin-C produce similar inhibitory effects. In conclusion, our findings provide novel evidence that hypoxia activates PLC-γ1 by increasing RISP-dependent mitochondrial ROS production in the complex III, which causes IP(3) production, IP(3)R opening, and Ca(2+) release, playing an important role in hypoxic Ca(2+) and contractile responses in PASMCs.

  18. Heparin inhibits pulmonary artery smooth muscle cell proliferation through guanine nucleotide exchange factor-H1/RhoA/Rho kinase/p27.

    PubMed

    Yu, Lunyin; Quinn, Deborah A; Garg, Hari G; Hales, Charles A

    2011-04-01

    Ras homolog gene family member A (RhoA) through Rho kinase kinase (ROCK), one of its downstream effectors, regulates a wide range of cell physiological functions, including vascular smooth muscle cell (SMC) proliferation, by degrading cyclin-dependent kinase inhibitor, p27. Our previous studies found that heparin inhibition of pulmonary artery SMC (PASMC) proliferation and pulmonary hypertension was dependent on p27 up-regulation. To investigate whether ROCK, a regulator of p27, is involved in regulation of heparin inhibition of PASMC proliferation, we analyzed ROCK expression in the lungs from mice and from human PASMCs exposed to hypoxia, and investigated the effect of ROCK expression in vitro by RhoA cDNA transfection. We also investigated the effect of guanine nucleotide exchange factor (GEF)-H1, an upstream regulator of RhoA, on heparin inhibition of PASMC proliferation by GEF-H1 cDNA transfection. We found that: (1) hypoxia increased ROCK expression in mice and PASMCs; (2) overexpression of RhoA diminished the inhibitory effect of heparin on PASMC proliferation and down-regulated p27 expression; and (3) overexpression of GEF-H1 negated heparin inhibition of PASMC proliferation, which was accompanied by increased GTP-RhoA and decreased p27. This study demonstrates that the RhoA/ROCK pathway plays an important role in heparin inhibition on PASMC proliferation, and reveals that heparin inhibits PASMC proliferation through GEF-H1/RhoA/ROCK/p27 signaling pathway, by down-regulating GEF-H1, RhoA, and ROCK, and then up-regulating p27.

  19. Ligand-Independent Activation of Platelet-Derived Growth Factor Receptor β during Human Immunodeficiency Virus-Transactivator of Transcription and Cocaine-Mediated Smooth Muscle Hyperplasia.

    PubMed

    Dalvi, Pranjali N; Gupta, Vijayalaxmi G; Griffin, Brooke R; O'Brien-Ladner, Amy; Dhillon, Navneet K

    2015-09-01

    Our previous study supports an additive effect of cocaine to human immunodeficiency virus infection in the development of pulmonary arteriopathy through enhancement of proliferation of pulmonary smooth muscle cells (SMCs), while also suggesting involvement of platelet-derived growth factor receptor (PDGFR) activation in the absence of further increase in PDGF-BB ligand. Redox-related signaling pathways have been shown to regulate tyrosine kinase receptors independent of ligand binding, so we hypothesized that simultaneous treatment of SMCs with transactivator of transcription (Tat) and cocaine may be able to indirectly activate PDGFR through modulation of reactive oxygen species (ROS) without the need for PDGF binding. We found that blocking the binding of ligand using suramin or monoclonal IMC-3G3 antibody significantly reduced ligand-induced autophosphorylation of Y1009 without affecting ligand-independent transphosphorylation of Y934 residue on PDGFRβ in human pulmonary arterial SMCs treated with both cocaine and Tat. Combined treatment of human pulmonary arterial SMCs with cocaine and Tat resulted in augmented production of superoxide radicals and hydrogen peroxide when compared with either treatment alone. Inhibition of this ROS generation prevented cocaine- and Tat-mediated Src activation and transphosphorylation of PDGFRβ at Y934 without any changes in phosphorylation of Y1009, in addition to attenuation of smooth muscle hyperplasia. Furthermore, pretreatment with an Src inhibitor, PP2, also suppressed cocaine- and Tat-mediated enhanced Y934 phosphorylation and smooth muscle proliferation. Finally, we report total abrogation of cocaine- and Tat-mediated synergistic increase in cell proliferation on inhibition of both ligand-dependent and ROS/Src-mediated ligand-independent phosphorylation of PDGFRβ.

  20. Smooth Things: The Rockefeller Commission's Report on the Humanities.

    ERIC Educational Resources Information Center

    Topf, Mel A.

    1981-01-01

    Notes the lack of definition of the term "humanities" and the four-part litany that comprises the usual rhetoric of humanities advocates. Considers the Rockefeller Commission report on the humanities in light of the nondefinition, the four-part litany, and the fragmentation of any argument espousing "more attention to the humanities." (RL)

  1. [Pulmonary arterial hypertension associated to human immunodeficiency virus].

    PubMed

    Sandoval-Gutiérrez, José Luis; Santos-Martínez, Luis Efren; Rodríguez-Silverio, Juan; Baranda-Tovar, Francisco Martín; Rivera-Rosales, Rosa María; Flores-Murrieta, Francisco Javier

    2015-01-01

    From the advent of the highly effective antiretroviral treatment, the life expectancy of patients with human immunodeficiency virus has increased significantly. At present, the causes of death are non-infectious complications. Between them, the pulmonary arterial hypertension has a special importance. It is important early detection to establish the therapeutic, with the objective of preventing a fatal outcome to future. PMID:25577549

  2. [Pulmonary arterial hypertension associated to human immunodeficiency virus].

    PubMed

    Sandoval-Gutiérrez, José Luis; Santos-Martínez, Luis Efren; Rodríguez-Silverio, Juan; Baranda-Tovar, Francisco Martín; Rivera-Rosales, Rosa María; Flores-Murrieta, Francisco Javier

    2015-01-01

    From the advent of the highly effective antiretroviral treatment, the life expectancy of patients with human immunodeficiency virus has increased significantly. At present, the causes of death are non-infectious complications. Between them, the pulmonary arterial hypertension has a special importance. It is important early detection to establish the therapeutic, with the objective of preventing a fatal outcome to future.

  3. Sirtuin 3 deficiency is associated with inhibited mitochondrial function and pulmonary arterial hypertension in rodents and humans.

    PubMed

    Paulin, Roxane; Dromparis, Peter; Sutendra, Gopinath; Gurtu, Vikram; Zervopoulos, Sotirios; Bowers, Lyndsay; Haromy, Alois; Webster, Linda; Provencher, Steeve; Bonnet, Sebastien; Michelakis, Evangelos D

    2014-11-01

    Suppression of mitochondrial function promoting proliferation and apoptosis suppression has been described in the pulmonary arteries and extrapulmonary tissues in pulmonary arterial hypertension (PAH), but the cause of this metabolic remodeling is unknown. Mice lacking sirtuin 3 (SIRT3), a mitochondrial deacetylase, have increased acetylation and inhibition of many mitochondrial enzymes and complexes, suppressing mitochondrial function. Sirt3KO mice develop spontaneous PAH, exhibiting previously described molecular features of PAH pulmonary artery smooth muscle cells (PASMC). In human PAH PASMC and rats with PAH, SIRT3 is downregulated, and its normalization with adenovirus gene therapy reverses the disease phenotype. A loss-of-function SIRT3 polymorphism, linked to metabolic syndrome, is associated with PAH in an unbiased cohort of 162 patients and controls. If confirmed in large patient cohorts, these findings may facilitate biomarker and therapeutic discovery programs in PAH.

  4. Suppression of Akt1 phosphorylation by adenoviral transfer of the PTEN gene inhibits hypoxia-induced proliferation of rat pulmonary arterial smooth muscle cells

    SciTech Connect

    Luo, Chunxia; Yi, Bin; Bai, Li; Xia, Yongzhi; Wang, Guansong; Qian, Guisheng; Feng, Hua

    2010-07-02

    Recent findings identify the role of proliferation of pulmonary artery smooth muscle cells (PASMCs) in pulmonary vascular remodeling. Phosphoinositide 3 kinase (PI3K) and serine/threonine kinase (Akt) proteins are expressed in vascular smooth muscle cells. In addition, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been identified as a negative regulator of cytokine signaling that inhibits the PI3K-Akt pathway. However, little is known about the role of PTEN/Akt signaling in hypoxia-associated vascular remodeling. In this study, we found that hypoxia-induced the expression of Akt1 mRNA and phosphorylated protein by at least twofold in rat PASMCs. Phospho-PTEN significantly decreased in the nuclei of PASMCs after hypoxic stimulation. After forcing over-expression of PTEN by adenovirus-mediated PTEN (Ad-PTEN) transfection, the expression of phospho-Akt1 was significantly suppressed in PASMCs at all time-points measured. Additionally, we showed here that hypoxia increased proliferation of PASMCs by nearly twofold and over-expression of PTEN significantly inhibited hypoxia-induced PASMCs proliferation. These findings suggest that phospho-PTEN loss in the nuclei of PASMCs under hypoxic conditions may be the major cause of aberrant activation of Akt1 and may, therefore, play an important role in hypoxia-associated pulmonary arterial remodeling. Finally, the fact that transfection with Ad-PTEN inhibits the phosphorylation of Akt1 in PASMCs suggests a potential therapeutic effect on hypoxia-associated pulmonary arterial remodeling.

  5. SREBP inhibits VEGF expression in human smooth muscle cells

    SciTech Connect

    Motoyama, Koka; Fukumoto, Shinya . E-mail: sfukumoto@med.osaka-cu.ac.jp; Koyama, Hidenori; Emoto, Masanori; Shimano, Hitoshi; Maemura, Koji; Nishizawa, Yoshiki

    2006-03-31

    Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate expression of genes encoding enzymes for lipid biosynthesis. SREBPs are activated by HMG-CoA reductase inhibitors (statins). Statins have been also reported to suppress vascular endothelial growth factor (VEGF) expression in vascular smooth muscle cells (VSMCs). Therefore, we hypothesized that SREBPs are involved in statin-mediated regulation of VEGF production in VSMCs. SREBP1 was robustly expressed, and was activated by atorvastatin in VSMCs, as demonstrated by increased levels of the mature nuclear form of SREBP1, and increased promoter activities of a reporter containing sterol regulatory elements by atorvastatin. Moreover, overexpression of SREBP1a dose-dependently suppressed VEGF promoter activity. Site-specific mutation or deletion of the proximal Sp1 sites reduced the inhibitory effects of SREBP1a on VEGF promoter activity. These data demonstrated that SREBP1, activated by atorvastatin, suppressed VEGF expression through the indirect interaction with the proximal tandem Sp1 sites in VSMCs.

  6. PICK1/calcineurin suppress ASIC1-mediated Ca2+ entry in rat pulmonary arterial smooth muscle cells.

    PubMed

    Herbert, Lindsay M; Nitta, Carlos H; Yellowhair, Tracylyn R; Browning, Carly; Gonzalez Bosc, Laura V; Resta, Thomas C; Jernigan, Nikki L

    2016-03-01

    Acid-sensing ion channel 1 (ASIC1) contributes to Ca(2+) influx and contraction in pulmonary arterial smooth muscle cells (PASMC). ASIC1 binds the PDZ (PSD-95/Dlg/ZO-1) domain of the protein interacting with C kinase 1 (PICK1), and this interaction is important for the subcellular localization and/or activity of ASIC1. Therefore, we first hypothesized that PICK1 facilitates ASIC1-dependent Ca(2+) influx in PASMC by promoting plasma membrane localization. Using Duolink to determine protein-protein interactions and a biotinylation assay to assess membrane localization, we demonstrated that the PICK1 PDZ domain inhibitor FSC231 diminished the colocalization of PICK1 and ASIC1 but did not limit ASIC1 plasma membrane localization. Although stimulation of store-operated Ca(2+) entry (SOCE) greatly enhanced colocalization between ASIC1 and PICK1, both FSC231 and shRNA knockdown of PICK1 largely augmented SOCE. These data suggest PICK1 imparts a basal inhibitory effect on ASIC1 Ca(2+) entry in PASMC and led to an alternative hypothesis that PICK1 facilitates the interaction between ASIC1 and negative intracellular modulators, namely PKC and/or the calcium-calmodulin-activated phosphatase calcineurin. FSC231 limited PKC-mediated inhibition of SOCE, supporting a potential role for PICK1 in this response. Additionally, we found PICK1 inhibits ASIC1-mediated SOCE through an effect of calcineurin to dephosphorylate the channel. Furthermore, it appears PICK1/calcineurin-mediated regulation of SOCE opposes PKA phosphorylation and activation of ASIC1. Together our data suggest PKA and PICK1/calcineurin differentially regulate ASIC1-mediated SOCE and these modulatory complexes are important in determining downstream Ca(2+) signaling. PMID:26702130

  7. Ranolazine inhibits voltage-gated mechanosensitive sodium channels in human colon circular smooth muscle cells.

    PubMed

    Neshatian, Leila; Strege, Peter R; Rhee, Poong-Lyul; Kraichely, Robert E; Mazzone, Amelia; Bernard, Cheryl E; Cima, Robert R; Larson, David W; Dozois, Eric J; Kline, Crystal F; Mohler, Peter J; Beyder, Arthur; Farrugia, Gianrico

    2015-09-15

    Human jejunum smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs) express the SCN5A-encoded voltage-gated, mechanosensitive sodium channel NaV1.5. NaV1.5 contributes to small bowel excitability, and NaV1.5 inhibitor ranolazine produces constipation by an unknown mechanism. We aimed to determine the presence and molecular identity of Na(+) current in the human colon smooth muscle and to examine the effects of ranolazine on Na(+) current, mechanosensitivity, and smooth muscle contractility. Inward currents were recorded by whole cell voltage clamp from freshly dissociated human colon SMCs at rest and with shear stress. SCN5A mRNA and NaV1.5 protein were examined by RT-PCR and Western blots, respectively. Ascending human colon strip contractility was examined in a muscle bath preparation. SCN5A mRNA and NaV1.5 protein were identified in human colon circular muscle. Freshly dissociated human colon SMCs had Na(+) currents (-1.36 ± 0.36 pA/pF), shear stress increased Na(+) peaks by 17.8 ± 1.8% and accelerated the time to peak activation by 0.7 ± 0.3 ms. Ranolazine (50 μM) blocked peak Na(+) current by 43.2 ± 9.3% and inhibited shear sensitivity by 25.2 ± 3.2%. In human ascending colon strips, ranolazine decreased resting tension (31%), reduced the frequency of spontaneous events (68%), and decreased the response to smooth muscle electrical field stimulation (61%). In conclusion, SCN5A-encoded NaV1.5 is found in human colonic circular smooth muscle. Ranolazine blocks both peak amplitude and mechanosensitivity of Na(+) current in human colon SMCs and decreases contractility of human colon muscle strips. Our data provide a likely mechanistic explanation for constipation induced by ranolazine. PMID:26185330

  8. Ranolazine inhibits voltage-gated mechanosensitive sodium channels in human colon circular smooth muscle cells.

    PubMed

    Neshatian, Leila; Strege, Peter R; Rhee, Poong-Lyul; Kraichely, Robert E; Mazzone, Amelia; Bernard, Cheryl E; Cima, Robert R; Larson, David W; Dozois, Eric J; Kline, Crystal F; Mohler, Peter J; Beyder, Arthur; Farrugia, Gianrico

    2015-09-15

    Human jejunum smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs) express the SCN5A-encoded voltage-gated, mechanosensitive sodium channel NaV1.5. NaV1.5 contributes to small bowel excitability, and NaV1.5 inhibitor ranolazine produces constipation by an unknown mechanism. We aimed to determine the presence and molecular identity of Na(+) current in the human colon smooth muscle and to examine the effects of ranolazine on Na(+) current, mechanosensitivity, and smooth muscle contractility. Inward currents were recorded by whole cell voltage clamp from freshly dissociated human colon SMCs at rest and with shear stress. SCN5A mRNA and NaV1.5 protein were examined by RT-PCR and Western blots, respectively. Ascending human colon strip contractility was examined in a muscle bath preparation. SCN5A mRNA and NaV1.5 protein were identified in human colon circular muscle. Freshly dissociated human colon SMCs had Na(+) currents (-1.36 ± 0.36 pA/pF), shear stress increased Na(+) peaks by 17.8 ± 1.8% and accelerated the time to peak activation by 0.7 ± 0.3 ms. Ranolazine (50 μM) blocked peak Na(+) current by 43.2 ± 9.3% and inhibited shear sensitivity by 25.2 ± 3.2%. In human ascending colon strips, ranolazine decreased resting tension (31%), reduced the frequency of spontaneous events (68%), and decreased the response to smooth muscle electrical field stimulation (61%). In conclusion, SCN5A-encoded NaV1.5 is found in human colonic circular smooth muscle. Ranolazine blocks both peak amplitude and mechanosensitivity of Na(+) current in human colon SMCs and decreases contractility of human colon muscle strips. Our data provide a likely mechanistic explanation for constipation induced by ranolazine.

  9. Cross-talk between p(38)MAPK and G iα in regulating cPLA 2 activity by ET-1 in pulmonary smooth muscle cells.

    PubMed

    Chakraborti, Sajal; Chowdhury, Animesh; Chakraborti, Tapati

    2015-02-01

    Endothelin-1 (ET-1) is known as the most potent vasoconstrictor yet described. Infusion of ET-1 into isolated rabbit lung has been shown to cause pulmonary vasoconstriction with the involvement of arachidonic acid metabolites. Given the potency of arachidonic acid metabolites, the activity of phospholipase A2 must be tightly regulated. Herein, we determined the mechanisms by which ET-1 stimulates cPLA2 activity during ET-1 stimulation of bovine pulmonary artery smooth muscle cells. We demonstrated that (i) treatment of bovine pulmonary artery smooth muscle cells with ET-1 stimulates cPLA2 activity in the cell membrane; (ii) ET-1 caused increase in O 2 (·-) production occurs via NADPH oxidase-dependent mechanism; (iii) ET-1-stimulated NADPH oxidase activity is markedly prevented upon pretreatment with PKC-ζ inhibitor, indicating that PKC-ζ plays a prominent role in this scenario; (iv) ET-1-induced NADPH oxidase-derived O 2 (·-) stimulates an aprotinin sensitive protease activity due to prominent increase in [Ca(2+)]i; (v) the aprotinin sensitive protease plays a pivotal role in activating PKC-α, which in turn phosphorylates p(38)MAPK and subsequently Giα leading to the activation of cPLA2. Taken together, we suggest that cross-talk between p(38)MAPK and Giα with the involvement of PKC-ζ, NADPH oxidase-derived O 2 (·-) , [Ca(2+)]i, aprotinin-sensitive protease and PKC-α play a pivotal role for full activation of cPLA2 during ET-1 stimulation of pulmonary artery smooth muscle cells.

  10. Smooth muscle in the wall of the developing human urinary bladder and urethra.

    PubMed Central

    Gilpin, S A; Gosling, J A

    1983-01-01

    A series of human fetal and neonatal specimens ranging in age from the second month of intrauterine development to 4 1/2 years after birth has been examined using histological and histochemical techniques. In both sexes histologically differentiated smooth muscle cells were evident in the bladder wall from the 52 mm crown-rump length stage onwards--urethral smooth muscle was not distinguishable until 119 mm crown-rump length. In addition to relatively late differentiation, urethral smooth muscle was histochemically distinct from the urinary bladder detrusor muscle. Sex differences in the arrangement and innervation of smooth muscle in the proximal urethra have also been observed, and these findings lend support to the presence of a pre-prostatic urethra sphincter. It seems likely that this sphincter acts principally to prevent reflux of ejaculate into the bladder during seminal emission. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:6654742

  11. Vascular Remodeling in Pulmonary Hypertension

    PubMed Central

    Shimoda, Larissa A; Laurie, Steven S.

    2013-01-01

    Pulmonary hypertension is a complex, progressive condition arising from a variety of genetic and pathogenic causes. Patients present with a spectrum of histologic and pathophysiological features, likely reflecting the diversity in underlying pathogenesis. It is widely recognized that structural alterations in the vascular wall contribute to all forms of pulmonary hypertension. Features characteristic of the remodeled vasculature in patients with pulmonary hypertension include increased stiffening of the elastic proximal pulmonary arteries, thickening of the intimal and/or medial layer of muscular arteries, development of vaso-occlusive lesions and the appearance of cells expressing smooth muscle specific markers in normally non-muscular small diameter vessels, resulting from proliferation and migration of pulmonary arterial smooth muscle cells and cellular trans-differentiation. The development of several animal models of pulmonary hypertension has provided the means to explore the mechanistic underpinnings of pulmonary vascular remodeling, although none of the experimental models currently used entirely replicates the pulmonary arterial hypertension observed in patients. Herein, we provide an overview of the histological abnormalities observed in humans with pulmonary hypertension and in preclinical models and discuss insights gained regarding several key signaling pathways contributing to the remodeling process. In particular, we will focus on the roles of ion homeostasis, endothelin-1, serotonin, bone morphogenetic proteins, Rho kinase and hypoxia-inducible factor 1 in pulmonary arterial smooth muscle and endothelial cells, highlighting areas of cross-talk between these pathways and potentials for therapeutic targeting. PMID:23334338

  12. Characterization of human aortic smooth muscle cells expressing HPV16 E6 and E7 open reading frames.

    PubMed Central

    Conroy, S. C.; Hart, C. E.; Perez-Reyes, N.; Giachelli, C. M.; Schwartz, S. M.; McDougall, J. K.

    1995-01-01

    A comparative study of human papillomavirus type 16 E6E7-transfected and normal human aortic smooth muscle cells by morphological, electron microscopic, immunofluorescent, and biochemical analyses demonstrated that the E6E7-expressing cells retained much of the phenotype of normal aortic smooth muscle cells, including expression of smooth muscle markers and appropriate growth responses to PDGF and heparin. These cells differed from normal vascular smooth muscle cells in that they had slightly altered morphology and a higher growth rate that was not due to an autocrine response to secreted PDGF, and they contained more polyribosomes than normal smooth muscle cells. Images Figure 2 Figure 4 Figure 5 PMID:7677186

  13. Peroxisome proliferator-activated receptor γ attenuates serotonin-induced pulmonary artery smooth muscle cell proliferation and apoptosis inhibition involving ERK1/2 pathway.

    PubMed

    Han, Xinyuan; Chen, Chunyan; Cheng, Gong; Liang, Lei; Yao, Xiaowei; Yang, Guang; You, Penghua; Shou, Xiling

    2015-07-01

    Serotonin (5-HT) has been shown to be involved in pulmonary vascular remodeling in pulmonary arterial hypertension (PAH) by inducing pulmonary artery smooth muscle cells (PASMCs) proliferation and inhibiting PASMC apoptosis. Peroxisome proliferator-activated receptor γ (PPARγ) plays a crucial role in regulating proliferation and apoptosis of many cell types. Moreover, recently, loss of PPARγ has also been reported to be associated with the development of PAH. The present study is aimed to assess whether PPARγ is involved in 5-HT induced PASMC proliferation and apoptosis inhibition and the possible mechanism. We found that 5-HT could induce PASMC proliferation and inhibit PASMC apoptosis in a dose-dependent manner. Furthermore, we found that 5-HT negatively regulated PPARγ expression and gene promoter activity in PASMCs and 5-HT induced PASMC proliferation and apoptosis resistance could be abolished by PPARγ agonists and enhanced by PPARγ inhibitor. In addition, we found that extracellular signal-regulated kinase (ERK) signaling pathway mediated the 5-HT-induced inhibition of PPARγ expression. Our results might provide novel insights into the mechanisms for the pro-remodeling action of 5-HT in pulmonary vasculature.

  14. The Na+/H+ exchanger contributes to increased smooth muscle proliferation and migration in a rat model of pulmonary arterial hypertension.

    PubMed

    Huetsch, John C; Jiang, Haiyang; Larrain, Carolina; Shimoda, Larissa A

    2016-03-01

    Increased muscularity of small pulmonary vessels, involving enhanced proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), is a key component of the vascular remodeling underlying the development of pulmonary hypertension (PH). Stimuli such as growth factors and hypoxia induce PASMC alkalinization, proliferation, and migration through upregulation of the Na(+)/H(+) exchanger (NHE), inhibition of which prevents the development of hypoxia-induced vascular remodeling and PH. We wanted to explore whether NHE was also necessary for pathologic PASMC proliferation and migration in a model of pulmonary arterial hypertension (PAH), a severe form of PH not associated with persistent hypoxia. PASMCs were isolated from rats exposed to SU5416-hypoxia (SuHx) followed by return to normoxia and from vehicle controls. We measured resting intracellular pH (pHi) and NHE activity using the pH-sensitive fluorescent dye BCECF-AM. PASMC proliferation and migration were assessed using BrdU incorporation and transwell filters, respectively. NHE activity was increased in SuHx PASMCs, although resting pHi was unchanged. SuHx PASMCs also exhibited increased proliferation and migration relative to controls, which was attenuated in the setting of pharmacologic inhibition of NHE. Our findings suggest that increased NHE activity contributes to pathologic PASMC function in the SuHx model of PAH, although this effect does not appear to be mediated by global changes in pHi homeostasis.

  15. Model emulates human smooth pursuit system producing zero-latency target tracking.

    PubMed

    Bahill, A T; McDonald, J D

    1983-01-01

    Humans can overcome the 150 ms time delay of the smooth pursuit eye movement system and track smoothly moving visual targets with zero-latency. Our target-selective adaptive control model can also overcome an inherent time delay and produce zero-latency tracking. No other model or man-made system can do this. Our model is physically realizable and physiologically realistic. The technique used in our model should be useful for analyzing other time-delay systems, such as man-machine systems and robots.

  16. Endothelin B receptors on human endothelial and smooth-muscle cells show equivalent binding pharmacology.

    PubMed

    Flynn, M A; Haleen, S J; Welch, K M; Cheng, X M; Reynolds, E E

    1998-07-01

    We have described the pharmacologic profiles of endothelin B receptors in human endothelial cells and vascular and nonvascular smooth-muscle cells. First, by amplifying endothelin B receptor numbers through the use of phosphoramidon and intact cell-binding techniques, we demonstrated the presence of these receptors in human umbilical vein endothelial cells (100% endothelin B receptors), human aortic smooth-muscle cells (22% endothelin B, 78% endothelin A receptors), and human bronchial smooth-muscle cells (55% endothelin B, 45% endothelin A receptors) by using [125I]-endothelin-1 radioligand binding. The typical binding profiles of the endothelin B receptors were established through competition binding curve analysis with endothelin-1, endothelin-3, sarafotoxin 6c, and the endothelin A receptor-selective antagonist BQ-123. In the presence of BQ-123, a diverse group of antagonists, including PD 142893, BQ-788, SB 209670, and Ro 47-0203, were used to probe for binding differences indicative of multiple endothelin B-receptor subtypes. The results indicate a rank order of potency for the antagonists of BQ-788 > SB 209670 > PD 142893 > Ro 47-0203 for each cell line, and that between any of these human cell lines, measurements of [125I]-endothelin-1-binding antagonism for each of the four test compounds differed by less than twofold. Although this study cannot discount the possibility of more than one endothelin B-receptor subtype in humans, it does indicate that these tissues express receptors that show equivalent binding pharmacology. PMID:9676729

  17. Smooth versus Textured Surfaces: Feature-Based Category Selectivity in Human Visual Cortex

    PubMed Central

    Tootell, Roger

    2016-01-01

    Abstract In fMRI studies, human lateral occipital (LO) cortex is thought to respond selectively to images of objects, compared with nonobjects. However, it remains unresolved whether all objects evoke equivalent levels of activity in LO, and, if not, which image features produce stronger activation. Here, we used an unbiased parametric texture model to predict preferred versus nonpreferred stimuli in LO. Observation and psychophysical results showed that predicted preferred stimuli (both objects and nonobjects) had smooth (rather than textured) surfaces. These predictions were confirmed using fMRI, for objects and nonobjects. Similar preferences were also found in the fusiform face area (FFA). Consistent with this: (1) FFA and LO responded more strongly to nonfreckled (smooth) faces, compared with otherwise identical freckled (textured) faces; and (2) strong functional connections were found between LO and FFA. Thus, LO and FFA may be part of an information-processing stream distinguished by feature-based category selectivity (smooth > textured).

  18. Smooth versus Textured Surfaces: Feature-Based Category Selectivity in Human Visual Cortex

    PubMed Central

    Tootell, Roger

    2016-01-01

    Abstract In fMRI studies, human lateral occipital (LO) cortex is thought to respond selectively to images of objects, compared with nonobjects. However, it remains unresolved whether all objects evoke equivalent levels of activity in LO, and, if not, which image features produce stronger activation. Here, we used an unbiased parametric texture model to predict preferred versus nonpreferred stimuli in LO. Observation and psychophysical results showed that predicted preferred stimuli (both objects and nonobjects) had smooth (rather than textured) surfaces. These predictions were confirmed using fMRI, for objects and nonobjects. Similar preferences were also found in the fusiform face area (FFA). Consistent with this: (1) FFA and LO responded more strongly to nonfreckled (smooth) faces, compared with otherwise identical freckled (textured) faces; and (2) strong functional connections were found between LO and FFA. Thus, LO and FFA may be part of an information-processing stream distinguished by feature-based category selectivity (smooth > textured). PMID:27699206

  19. BMP-2 gene expression and effects on human vascular smooth muscle cells.

    PubMed

    Willette, R N; Gu, J L; Lysko, P G; Anderson, K M; Minehart, H; Yue, T

    1999-01-01

    Bone morphogenetic proteins (BMPs) and their serine/threonine kinase receptors have been identified in atherosclerotic arteries and vascular smooth muscle cells, respectively. Thus, BMPs (the largest subfamily of the TGF-beta superfamily) have been implicated in the pathogenesis of atherosclerosis. However, the origins of BMP biosynthesis and the functional roles of BMP in blood vessels are unclear. The present study explored BMP-2 gene expression in various human blood vessels and vascular cell types. Functional in vitro studies were also performed to determine the effects of recombinant human BMP-2 on migration (transwell assay) and proliferation ([3H]-thymidine incorporation) of human aortic vascular smooth muscle cells (HASMC). RT-PCR experiments revealed BMP-2 gene expression in normal and atherosclerotic human arteries as well as cultured human aortic and coronary vascular smooth muscle cells, human umbilical vein endothelial cells (HUVECs) and human macrophages. In cellular migration studies, incubation with BMP-2 produced efficacious (smooth muscle cell response to vascular injury. PMID:10213907

  20. Characterization of optimal resting tension in human pulmonary arteries

    PubMed Central

    Hussain, Azar; Bennett, Robert T; Chaudhry, Mubarak A; Qadri, Syed S; Cowen, Mike; Morice, Alyn H; Loubani, Mahmoud

    2016-01-01

    AIM To determine the optimum resting tension (ORT) for in vitro human pulmonary artery (PA) ring preparations. METHODS Pulmonary arteries were dissected from disease free sections of the resected lung in the operating theatre and tissue samples were directly sent to the laboratory in Krebs-Henseleit solution (Krebs). The pulmonary arteries were then cut into 2 mm long rings. PA rings were mounted in 25 mL organ baths or 8 mL myograph chambers containing Krebs compound (37 °C, bubbled with 21% O2: 5% CO2) to measure changes in isometric tension. The resting tension was set at 1-gram force (gf) with vessels being left static to equilibrate for duration of one hour. Baseline contractile reactions to 40 mmol/L KCl were obtained from a resting tension of 1 gf. Contractile reactions to 40 mmol/L KCl were then obtained from stepwise increases in resting tension (1.2, 1.4, 1.6, 1.8 and 2.0 gf). RESULTS Twenty PA rings of internal diameter between 2-4 mm were prepared from 4 patients. In human PA rings incrementing the tension during rest stance by 0.6 gf, up to 1.6 gf significantly augmented the 40 mmol/L KCl stimulated tension. Further enhancement of active tension by 0.4 gf, up to 2.0 gf mitigate the 40 mmol/L KCl stimulated reaction. Both Myograph and the organ bath demonstrated identical conclusions, supporting that the radial optimal resting tension for human PA ring was 1.61 g. CONCLUSION The radial optimal resting tension in our experiment is 1.61 gf (15.78 mN) for human PA rings. PMID:27721938

  1. Notch3 signaling promotes the development of pulmonary arterial hypertension.

    PubMed

    Li, Xiaodong; Zhang, Xiaoxue; Leathers, Robin; Makino, Ayako; Huang, Chengqun; Parsa, Pouria; Macias, Jesus; Yuan, Jason X-J; Jamieson, Stuart W; Thistlethwaite, Patricia A

    2009-11-01

    Notch receptor signaling is implicated in controlling smooth muscle cell proliferation and in maintaining smooth muscle cells in an undifferentiated state. Pulmonary arterial hypertension is characterized by excessive vascular resistance, smooth muscle cell proliferation in small pulmonary arteries, leading to elevation of pulmonary vascular resistance, right ventricular failure and death. Here we show that human pulmonary hypertension is characterized by overexpression of NOTCH3 in small pulmonary artery smooth muscle cells and that the severity of disease in humans and rodents correlates with the amount of NOTCH3 protein in the lung. We further show that mice with homozygous deletion of Notch3 do not develop pulmonary hypertension in response to hypoxic stimulation and that pulmonary hypertension can be successfully treated in mice by administration of N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a gamma-secretase inhibitor that blocks activation of Notch3 in smooth muscle cells. We show a mechanistic link from NOTCH3 receptor signaling through the Hairy and enhancer of Split-5 (HES-5) protein to smooth muscle cell proliferation and a shift to an undifferentiated smooth muscle cell phenotype. These results suggest that the NOTCH3-HES-5 signaling pathway is crucial for the development of pulmonary arterial hypertension and provide a target pathway for therapeutic intervention. PMID:19855400

  2. The existence of a highly tetrodotoxin sensitive Na channel in freshly dispersed smooth muscle cells of the rabbit main pulmonary artery.

    PubMed

    Okabe, K; Kitamura, K; Kuriyama, H

    1988-04-01

    To characterize the inward current recorded from single smooth muscle cells of the rabbit main pulmonary artery, a voltage clamp procedure using patch pipettes filled with high Cs solution to inhibit K currents was employed. Under superfusion with normal physiological salt solution, application of a command potential to -10 mV from the holding potential of -80 mV elicited an inward current comprising fast and slow components. In Ca-free solution containing 2.5 mM Mn and 134 mM Na, the major part of the slow inwart current (Islow) ceased, but a transient fast inward current (Ifast) remained. A reduction in the Na concentration in the bath solution inhibited the amplitude of Ifast. Both nicardipine (30 nM) and diltiazem (1-10 microM) inhibited Islow but had no effect on Ifast. Application of tetrodotoxin (greater than 1 nM) in Ca free solution inhibited the amplitude of Ifast in a dose-dependent manner with a dissociation constant of 8.7 nM. Chloramine-T (0.3 mM) increased the peak amplitude and reduced the rate of decay of Ifast and completely inhibited Islow. These results suggest that the inward curent generated in the smooth muscle cells of the rabbit main pulmonary artery is associated with activation of a voltage-dependent Ca channel and a tetrodotoxin-sensitive Na channel. PMID:2456516

  3. Fasudil hydrochloride hydrate, a Rho-kinase inhibitor, suppresses 5-hydroxytryptamine-induced pulmonary artery smooth muscle cell proliferation via JNK and ERK1/2 pathway.

    PubMed

    Chen, Xue-Yan; Dun, Jie-Ning; Miao, Qing-Feng; Zhang, Yong-Jian

    2009-01-01

    Excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) plays a critical role in the development of pulmonary artery hypertension, and inhibition of PASMC proliferation has been shown to be beneficial to patients with this disease. Recent studies indicate that Rho/ROCK is critically involved in the proliferation of smooth muscle cells. However, the signal transduction of Rho/ROCK and its downstream signaling are not fully understood. In the present study, we investigated the antiproliferation effect of fasudil hydrochloride hydrate, a Rho-kinase inhibitor, on rat PASMC proliferation, and the possible relation of Rho/ROCK to ERK, JNK pathways. The results indicate that fasudil effectively inhibited 5-HT-induced PASMC proliferation, as evaluated by MTT assay and protein expression of proliferating cell nuclear antigen. Flow cytometry analysis showed that fasudil markedly blocked 5-HT-induced cell-cycle progression by arresting the cells in the G(0)/G(1) phase. Consistently, 5-HT-induced ROCK-1 mRNA expression and MYPT-1 phosphorylation were markedly suppressed by fasudil. In addition, fasudil significantly decreased 5-HT-induced JNK activation, ERK translocation to the nucleus and subsequent c-fos and c-jun expression. Taken together, these results indicate that Rho/ROCK is essential for PASMC proliferation produced by 5-HT. Fasudil effectively suppressed 5-HT-induced PASMC proliferation and cell-cycle progression, which was associated with inhibition of JNK activation, ERK translocation to nucleus and subsequent c-fos and c-jun expression.

  4. OUABAIN- AND MARINOBUFAGENIN-INDUCED PROLIFERATION OF HUMAN UMBILICAL VEIN SMOOTH MUSCLE CELLS AND A RAT VASCULAR SMOOTH MUSCLE CELL LINE, A7R5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the growth-promoting effects of 2 sodium pump-selective cardiotonic steroids, ouabain and marinobufagenin, on cultured cells from vascular smooth muscle (VSMCs) from human umbilical vein and a rat VSMC line, A7r5. Both ouabain and marinobufagenin activated proliferation of these cells in...

  5. GM-CSF production from human airway smooth muscle cells is potentiated by human serum.

    PubMed Central

    Sukkar, M B; Hughes, J M; Johnson, P R; Armour, C L

    2000-01-01

    Recent evidence suggests that airway smooth muscle cells (ASMC) actively participate in the airway inflammatory process in asthma. Interleukin-1beta (IL-1beta) and tumour necrosis factor-alpha (TNF-alpha) induce ASMC to release inflammatory mediators in vitro. ASMC mediator release in vivo, however, may be influenced by features of the allergic asthmatic phenotype. We determined whether; (1) allergic asthmatic serum (AAS) modulates ASMC mediator release in response to IL-1beta and TNF-alpha, and (2) IL-1beta/TNF-alpha prime ASMC to release mediators in response to AAS. IL-5 and GM-CSF were quantified by ELISA in culture supernatants of; (1) ASMC pre-incubated with either AAS, nonallergic non-asthmatic serum (NAS) or Monomed (a serum substitute) and subsequently stimulated with IL-1beta and TNF-alpha and (2) ASMC stimulated with IL-1beta/TNF-alpha and subsequently exposed to either AAS, NAS or Monomed. IL-1beta and TNF-alpha induced GM-CSF release in ASMC pre-incubated with AAS was not greater than that in ASMC pre-incubated with NAS or Monomed. IL-1beta and TNF-alpha, however, primed ASMC to release GM-CSF in response to human serum. GM-CSF production following IL-1beta/TNF-alpha and serum exposure (AAS or NAS) was significantly greater than that following IL-1beta/TNF-alpha and Monomed exposure or IL-1beta/TNF-alpha exposure only. Whilst the potentiating effects of human serum were not specific to allergic asthma, these findings suggest that the secretory capacity of ASMC may be up-regulated during exacerbations of asthma, where there is evidence of vascular leakage. PMID:11132773

  6. Pulmonary Tuberculosis in Humanized Mice Infected with HIV-1

    PubMed Central

    Nusbaum, Rebecca J.; Calderon, Veronica E.; Huante, Matthew B.; Sutjita, Putri; Vijayakumar, Sudhamathi; Lancaster, Katrina L.; Hunter, Robert L.; Actor, Jeffrey K.; Cirillo, Jeffrey D.; Aronson, Judith; Gelman, Benjamin B.; Lisinicchia, Joshua G.; Valbuena, Gustavo; Endsley, Janice J.

    2016-01-01

    Co-infection with HIV increases the morbidity and mortality associated with tuberculosis due to multiple factors including a poorly understood microbial synergy. We developed a novel small animal model of co-infection in the humanized mouse to investigate how HIV infection disrupts pulmonary containment of Mtb. Following dual infection, HIV-infected cells were localized to sites of Mtb-driven inflammation and mycobacterial replication in the lung. Consistent with disease in human subjects, we observed increased mycobacterial burden, loss of granuloma structure, and increased progression of TB disease, due to HIV co-infection. Importantly, we observed an HIV-dependent pro-inflammatory cytokine signature (IL-1β, IL-6, TNFα, and IL-8), neutrophil accumulation, and greater lung pathology in the Mtb-co-infected lung. These results suggest that in the early stages of acute co-infection in the humanized mouse, infection with HIV exacerbates the pro-inflammatory response to pulmonary Mtb, leading to poorly formed granulomas, more severe lung pathology, and increased mycobacterial burden and dissemination. PMID:26908312

  7. Biliverdin reductase/bilirubin mediates the anti-apoptotic effect of hypoxia in pulmonary arterial smooth muscle cells through ERK1/2 pathway

    SciTech Connect

    Song, Shasha; Wang, Shuang; Ma, Jun; Yao, Lan; Xing, Hao; Zhang, Lei; Liao, Lin; Zhu, Daling

    2013-08-01

    Inhibition of pulmonary arterial smooth muscle cell (PASMC) apoptosis induced by hypoxia plays an important role in pulmonary arterial remodeling leading to aggravate hypoxic pulmonary arterial hypertension. However, the mechanisms of hypoxia acting on PASMC apoptosis remain exclusive. Biliverdin reductase (BVR) has many essential biologic roles in physiological and pathological processes. Nevertheless, it is unclear whether the hypoxia-induced inhibition on PASMC apoptosis is mediated by BVR. In the present work, we found BVR majorly localized in PASMCs and was up-regulated in levels of protein and mRNA by hypoxia. Then we studied the contribution of BVR to anti-apoptotic response of hypoxia in PASMCs. Our results showed that siBVR, blocking generation of bilirubin, reversed the effect of hypoxia on enhancing cell survival and apoptotic protein (Bcl-2, procasepase-9, procasepase-3) expression, preventing nuclear shrinkage, DNA fragmentation and mitochondrial depolarization in starved PASMCs, which were recovered by exogenous bilirubin. Moreover, the inhibitory effect of bilirubin on PASMC apoptosis under hypoxic condition was blocked by the inhibitor of ERK1/2 pathway. Taken together, our data indicate that BVR contributes to the inhibitory process of hypoxia on PASMC apoptosis, which is mediated by bilirubin through ERK1/2 pathway. Highlights: • BVR expresses in PASMC and is up-regulated by hypoxia in protein and mRNA levels. • BVR/bilirubin contribute to the inhibitive process of hypoxia on PASMC apoptosis. • Bilirubin protects PASMC from apoptosis under hypoxia via ERK1/2 pathway.

  8. Human Hemorrhagic Pulmonary Leptospirosis: Pathological Findings and Pathophysiological Correlations

    PubMed Central

    De Brito, Thales; Aiello, Vera Demarchi; da Silva, Luis Fernando Ferraz; Gonçalves da Silva, Ana Maria; Ferreira da Silva, Wellington Luiz; Castelli, Jussara Bianchi; Seguro, Antonio Carlos

    2013-01-01

    Background Leptospirosis is a re-emerging zoonosis with protean clinical manifestations. Recently, the importance of pulmonary hemorrhage as a lethal complication of this disease has been recognized. In the present study, five human necropsies of leptospirosis (Weil‘s syndrome) with extensive pulmonary manifestations were analysed, and the antibodies expressed in blood vessels and cells involved in ion and water transport were used, seeking to better understand the pathophysiology of the lung injury associated with this disease. Principal Findings Prominent vascular damage was present in the lung microcirculation, with decreased CD34 and preserved aquaporin 1 expression. At the periphery and even inside the extensive areas of edema and intraalveolar hemorrhage, enlarged, apparently hypertrophic type I pneumocytes (PI) were detected and interpreted as a non-specific attempt of clearence of the intraalveolar fluid, in which ionic transport, particularly of sodium, plays a predominant role, as suggested by the apparently increased ENaC and aquaporin 5 expression. Connexin 43 was present in most pneumocytes, and in the cytoplasm of the more preserved endothelial cells. The number of type II pneumocytes (PII) was slightly decreased when compared to normal lungs and those of patients with septicemia from other causes, a fact that may contribute to the progressively low PI count, resulting in deficient restoration after damage to the alveolar epithelial integrity and, consequently, a poor outcome of the pulmonary edema and hemorrhage. Conclusions Pathogenesis of lung injury in human leptospirosis was discussed, and the possibility of primary non-inflammatory vascular damage was considered, so far of undefinite etiopathogenesis, as the initial pathological manifestation of the disease. PMID:23951234

  9. Human immunodeficiency virus, herpes virus infections, and pulmonary vascular disease

    PubMed Central

    Flores, Sonia C.; Almodovar, Sharilyn

    2013-01-01

    The following state-of-the-art seminar was delivered as part of the Aspen Lung Conference on Pulmonary Hypertension and Vascular Diseases held in Aspen, Colorado in June 2012. This paper will summarize the lecture and present results from a nonhuman primate model of infection with Simian (Human) Immunodeficiency Virus - nef chimeric virions as well as the idea that polymorphisms in the HIV-1 nef gene may be driving the immune response that results in exuberant inflammation and aberrant endothelial cell (EC) function. We will present data gathered from primary HIV nef isolates where we tested the biological consequences of these polymorphisms and how their presence in human populations may predict patients at risk for developing this disease. In this article, we also discuss how a dysregulated immune system, in conjunction with a viral infection, could contribute to pulmonary arterial hypertension (PAH). Both autoimmune diseases and some viruses are associated with defects in the immune system, primarily in the function of regulatory T cells. These T-cell defects may be a common pathway in the formation of plexiform lesions. Regardless of the route by which viruses may lead to PAH, it is important to recognize their role in this rare disease. PMID:23662195

  10. Long-Term Expression of Human Adenosine Deaminase in Vascular Smooth Muscle Cells of Rats: A Model for Gene Therapy

    NASA Astrophysics Data System (ADS)

    Lynch, Carmel M.; Clowes, Monika M.; Osborne, William R. A.; Clowes, Alexander W.; Dusty Miller, A.

    1992-02-01

    Gene transfer into vascular smooth muscle cells in animals was examined by using recombinant retroviral vectors containing an Escherichia coli β-galactosidase gene or a human adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) gene. Direct gene transfer by infusion of virus into rat carotid arteries was not observed. However, gene transfer by infection of smooth muscle cells in culture and seeding of the transduced cells onto arteries that had been denuded of endothelial cells was successful. Potentially therapeutic levels of human adenosine deaminase activity were detected over 6 months of observation, indicating the utility of vascular smooth muscle cells for gene therapy in humans.

  11. Smooth Muscle Precursor Cells Derived from Human Pluripotent Stem Cells for Treatment of Stress Urinary Incontinence

    PubMed Central

    Wang, Zhe; Li, Yan Hui; Wei, Yi; Green, Morgaine; Wani, Prachi; Zhang, Pengbo; Pera, Renee Reijo; Chen, Bertha

    2016-01-01

    There is great interest in using stem cells (SC) to regenerate a deficient urethral sphincter in patients with urinary incontinence. The smooth muscle component of the sphincter is a significant contributor to sphincter function. However, current translational efforts for sphincter muscle restoration focus only on skeletal muscle regeneration because they rely on adult mesenchymal SC as cell source. These adult SC do not yield sufficient smooth muscle cells (SMCs) for transplantation. We may be able to overcome this limitation by using pluripotent stem cell (PSC) to derive SMCs. Hence, we sought to investigate whether smooth muscle precursor cells (pSMCs) derived from human PSCs can restore urethral function in an animal model generated by surgical urethrolysis and ovariectomy. Rats were divided into four groups: control (no intervention), sham saline (surgery + saline injection), bladder SMC (surgery + human bladder SMC injection), and treatment (surgery + pSMC injection, which includes human embryonic stem cell (hESC) H9-derived pSMC, episomal reprogrammed induced pluripotent stem cells (iPSCs)-derived pSMC, or viral reprogrammed iPSC-derived pSMC). pSMCs (2 × 106 cells/rat) were injected periurethrally 3 weeks postsurgery. Leak point pressure (LPP) and baseline external urethral sphincter electromyography were measured 5 weeks postinjection. Both iPSC-derived pSMC treatment groups showed significantly higher LPP compared to the sham saline group, consistent with restoration of urethral sphincter function. While the difference between the H9-derived pSMC treatment and sham saline group was not significant, it did show a trend toward restoration of the LPP to the level of intact controls. Our data indicate that pSMCs derived from human PSCs (hESC and iPSC) can restore sphincter function. PMID:26785911

  12. Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells.

    PubMed

    Iyer, Dharini; Gambardella, Laure; Bernard, William G; Serrano, Felipe; Mascetti, Victoria L; Pedersen, Roger A; Talasila, Amarnath; Sinha, Sanjay

    2015-04-15

    The epicardium has emerged as a multipotent cardiovascular progenitor source with therapeutic potential for coronary smooth muscle cell, cardiac fibroblast (CF) and cardiomyocyte regeneration, owing to its fundamental role in heart development and its potential ability to initiate myocardial repair in injured adult tissues. Here, we describe a chemically defined method for generating epicardium and epicardium-derived smooth muscle cells (EPI-SMCs) and CFs from human pluripotent stem cells (HPSCs) through an intermediate lateral plate mesoderm (LM) stage. HPSCs were initially differentiated to LM in the presence of FGF2 and high levels of BMP4. The LM was robustly differentiated to an epicardial lineage by activation of WNT, BMP and retinoic acid signalling pathways. HPSC-derived epicardium displayed enhanced expression of epithelial- and epicardium-specific markers, exhibited morphological features comparable with human foetal epicardial explants and engrafted in the subepicardial space in vivo. The in vitro-derived epicardial cells underwent an epithelial-to-mesenchymal transition when treated with PDGF-BB and TGFβ1, resulting in vascular SMCs that displayed contractile ability in response to vasoconstrictors. Furthermore, the EPI-SMCs displayed low density lipoprotein uptake and effective lowering of lipoprotein levels upon treatment with statins, similar to primary human coronary artery SMCs. Cumulatively, these findings suggest that HPSC-derived epicardium and EPI-SMCs could serve as important tools for studying human cardiogenesis, and as a platform for vascular disease modelling and drug screening.

  13. Transforming growth factor-beta1 upregulation triggers pulmonary artery smooth muscle cell proliferation and apoptosis imbalance in rats with hypoxic pulmonary hypertension via the PTEN/AKT pathways.

    PubMed

    Liu, Yun; Cao, Yonggang; Sun, Shuyang; Zhu, Jinquan; Gao, Shan; Pang, Jie; Zhu, Daling; Sun, Zengxian

    2016-08-01

    Transforming growth factor-beta1 (TGFβ1) and Phosphatase and Tensin homolog deleted on chromosome ten (PTEN) are involved in the regulation of proliferation, differentiation, migration and apoptosis of various cell types. In previous studies, we have shown that TGFβ1 and PTEN play an important role in the progression of pulmonary vascular remodeling induced by pulmonary artery smooth muscle cells (PASMCs). However, the mechanisms involved in the activation of PASMCs between TGFβ1 and PTEN pathways remain unknown. We found that pulmonary vascular walls in hypoxic pulmonary arterial hypertension (PAH) rats were thicker than the vessels from normal rats in vivo. Substantially higher levels of TGFβ1 and significant loss of PTEN expression were observed in the lungs of PAH rats when compared with normoxia. Meanwhile, AKT, a downstream proliferative signaling protein of the PTEN antagonist PI3K, was markedly activated in the lungs of PAH rats. In vitro studies using PASMCs showed that TGFβ1 increased cell proliferation in PTEN-dependent manner. Moreover, we found that TGFβ1 enhanced cell survival, up-regulated the expression of Bcl-2 and procaspase-3, decreased the number of TUNEL-positive cells and caspase-3 expression in PASMCs under serum-deprived (SD) condition via PI3K/AKT pathway. The results further establish that TGFβ1 promoted PAH by decreasing PTEN expression and increasing PI3K/AKT activation in the lung. In conclusion, TGFβ1 mediated PTEN inactivation and resistance to apoptosis seems to be key mediators of lung vascular remodeling associated with PAH. These findings further clarify molecular mechanisms that support targeting PTEN/AKT signaling pathway to attenuate pathogenic derangements in PAH.

  14. Chlorogenic acid inhibits hypoxia-induced pulmonary artery smooth muscle cells proliferation via c-Src and Shc/Grb2/ERK2 signaling pathway.

    PubMed

    Li, Qun-Yi; Zhu, Ying-Feng; Zhang, Meng; Chen, Li; Zhang, Zhen; Du, Yong-Li; Ren, Guo-Qiang; Tang, Jian-Min; Zhong, Ming-Kang; Shi, Xiao-Jin

    2015-03-15

    Chlorogenic acid (CGA), abundant in coffee and particular fruits, can modulate hypertension and vascular dysfunction. Hypoxia-induced pulmonary artery smooth muscle cells (PASMCs) proliferation has been tightly linked to vascular remodeling in pulmonary arterial hypertension (PAH). Thus, the present study was designed to investigate the effect of CGA on hypoxia-induced proliferation in cultured rat PASMCs. The data showed that CGA potently inhibited PASMCs proliferation and DNA synthesis induced by hypoxia. These inhibitory effects were associated with G1 cell cycle arrest and down-regulation of cell cycle proteins. Treatment with CGA reduced hypoxia-induced hypoxia inducible factor 1α (HIF-1α) expression and trans-activation. Furthermore, hypoxia-evoked c-Src phosphorylation was inhibited by CGA. In vitro ELISA-based tyrosine kinase assay indicated that CGA was a direct inhibitor of c-Src. Moreover, CGA attenuated physical co-association of c-Src/Shc/Grb2 and ERK2 phosphorylation in PASMCs. These results suggest that CGA inhibits hypoxia-induced proliferation in PASMCs via regulating c-Src-mediated signaling pathway. In vivo investigation showed that chronic CGA treatment inhibits monocrotaline-induced PAH in rats. These findings presented here highlight the possible therapeutic use of CGA in hypoxia-related PAH. PMID:25666384

  15. Knockdown of AMPKα2 Promotes Pulmonary Arterial Smooth Muscle Cells Proliferation via mTOR/Skp2/p27Kip1 Signaling Pathway

    PubMed Central

    Ke, Rui; Liu, Lu; Zhu, Yanting; Li, Shaojun; Xie, Xinming; Li, Fangwei; Song, Yang; Yang, Lan; Gao, Li; Li, Manxiang

    2016-01-01

    It has been shown that activation of adenosine monophosphate-activated protein kinase (AMPK) suppresses proliferation of a variety of tumor cells as well as nonmalignant cells. In this study, we used post-transcriptional gene silencing with small interfering RNA (siRNA) to specifically examine the effect of AMPK on pulmonary arterial smooth muscle cells (PASMCs) proliferation and to further elucidate its underlying molecular mechanisms. Our results showed that knockdown of AMPKα2 promoted primary cultured PASMCs proliferation; this was accompanied with the elevation of phosphorylation of mammalian target of rapamycin (mTOR) and S-phase kinase-associated protein 2 (Skp2) protein level and reduction of p27Kip1. Importantly, prior silencing of mTOR with siRNA abolished AMPKα2 knockdown-induced Skp2 upregulation, p27Kip1 reduction as well as PASMCs proliferation. Furthermore, pre-depletion of Skp2 by siRNA also eliminated p27Kip1 downregulation and PASMCs proliferation caused by AMPKα2 knockdown. Taken together, our study indicates that AMPKα2 isoform plays an important role in regulation of PASMCs proliferation by modulating mTOR/Skp2/p27Kip1 axis, and suggests that activation of AMPKα2 might have potential value in the prevention and treatment of pulmonary arterial hypertension. PMID:27258250

  16. Pulmonary capillary recruitment in response to hypoxia in healthy humans: a possible role for hypoxic pulmonary venoconstriction?

    PubMed Central

    Taylor, Bryan J.; Kjaergaard, Jesper; Snyder, Eric M.; Olson, Thomas P.; Johnson, Bruce D.

    2011-01-01

    We examined mechanisms by which hypoxia may elicit pulmonary capillary recruitment in humans. On separate occasions, twenty-five healthy adults underwent exposure to intravenous saline infusion (30 ml/kg ~15min) or 17-h normobaric hypoxia (FiO2=12.5%). Cardiac output (Q̇) and pulmonary capillary blood volume (Vc) were measured before and after saline infusion and hypoxic-exposure by a rebreathing method. Pulmonary artery systolic pressure (sPpa) and left ventricular (LV) diastolic function were assessed before and after hypoxic-exposure via echocardiography. Saline infusion increased Q̇ and Vc (P<0.05) with no change in Vc/Q̇ (P=0.97). Hypoxic-exposure increased Vc (P<0.01) despite no change in Q̇ (P=0.25), increased sPpa (P<0.01), and impaired LV relaxation. Multiple regression suggested that ~37% of the hypoxia-mediated increase in Vc was attributable to alterations in Q̇, sPpa and LV diastolic function. In conclusion, hypoxia-induced pulmonary capillary recruitment in humans is only partly accounted for by changes in Q̇, sPpa and LV diastolic function. We speculate that hypoxic pulmonary venoconstriction may play a role in such recruitment. PMID:21513822

  17. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (P<0.01). A 50% increase in FGF-2 content versus control (P<0.01) was found in the pericellular fraction (extracted by heparin treatment). Furthermore, a significant decrease in FGF-2 was detected in the cell lysate, indicating that FGF-2 was released from inside the cell. Cell permeability studies with fluorescent dextran were performed to examine whether transient membrane disruption caused FGF-2 release. Flow cytometry detected a 50% increase in mean fluorescence of cells exposed to 25 dyne/cm(2) versus control cells. This indicates that the observed FGF-2 release from human aortic smooth muscle cells is likely due to transient membrane disruption on initiation of flow.

  18. [The structure and mechanical properties of the human pulmonary trunk and its valves].

    PubMed

    Antipas, D B; Milovanova, Z P; Zavalishin, N N

    1993-01-01

    The histological structure and mechanical properties of the pulmonary trunk and its valves were studied in 35 complexes of the pulmonary artery of man. The valvular apparatus of the pulmonary trunk is formed by anatomical elements with different morphological structures. In it there are elements which might be considered from standpoints of biomechanics as membranous (pulmonary trunk, sinuses, cusps) and shaft (fibrous ring, commissural shafts, arcuate crests) elements, the commissural shafts representing a combination of structures forming a closed spatial inter-related construction--a natural elastic framework of the pulmonary trunk root and the sheath elements are morphologically interrelated and fixed on this framework. The mechanical properties of these shaft elements are formed not only at the expense of inclusion of other formations in their structure but also at the expense of changes in the density of distribution and spatial orientation of main carrier structures of sheath elements attached to them. So, the strength and rigidity of the fibrous ring were associated not only with the presence of collagenous fibers and chondroid tissue n it, but also with the regular arrangement of collagenous fibers coming to it from the sinus. Similarly, the strength of arcuate crests was in many respects dependent on dense arrangement of longitudinally oriented smooth muscles. The amount of smooth muscles in the pulmonary trunk was 1.3 and 2 times higher than that of collagenous and elastic structures which allows the pulmonary trunk of man to be referred to arteries of muscular or mixed type. It points to the necessity to take into account the influence of muscle tone on mechanical behavior of the pulmonary trunk under physiological exercise. PMID:7889164

  19. Applying cybernetic technology to diagnose human pulmonary sounds.

    PubMed

    Chen, Mei-Yung; Chou, Cheng-Han

    2014-06-01

    Chest auscultation is a crucial and efficient method for diagnosing lung disease; however, it is a subjective process that relies on physician experience and the ability to differentiate between various sound patterns. Because the physiological signals composed of heart sounds and pulmonary sounds (PSs) are greater than 120 Hz and the human ear is not sensitive to low frequencies, successfully making diagnostic classifications is difficult. To solve this problem, we constructed various PS recognition systems for classifying six PS classes: vesicular breath sounds, bronchial breath sounds, tracheal breath sounds, crackles, wheezes, and stridor sounds. First, we used a piezoelectric microphone and data acquisition card to acquire PS signals and perform signal preprocessing. A wavelet transform was used for feature extraction, and the PS signals were decomposed into frequency subbands. Using a statistical method, we extracted 17 features that were used as the input vectors of a neural network. We proposed a 2-stage classifier combined with a back-propagation (BP) neural network and learning vector quantization (LVQ) neural network, which improves classification accuracy by using a haploid neural network. The receiver operating characteristic (ROC) curve verifies the high performance level of the neural network. To expand traditional auscultation methods, we constructed various PS diagnostic systems that can correctly classify the six common PSs. The proposed device overcomes the lack of human sensitivity to low-frequency sounds and various PS waves, characteristic values, and a spectral analysis charts are provided to elucidate the design of the human-machine interface.

  20. The role of K+ conductances in regulating membrane excitability in human gastric corpus smooth muscle

    PubMed Central

    Lee, Ji Yeon; Ko, Eun-ju; Ahn, Ki Duck; Kim, Sung

    2015-01-01

    Changes in resting membrane potential (RMP) regulate membrane excitability. K+ conductance(s) are one of the main factors in regulating RMP. The functional role of K+ conductances has not been studied the in human gastric corpus smooth muscles (HGCS). To examine the role of K+ channels in regulation of RMP in HGCS we employed microelectrode recordings, patch-clamp, and molecular approaches. Tetraethylammonium and charybdotoxin did not affect the RMP, suggesting that BK channels are not involved in regulating RMP. Apamin, a selective small conductance Ca2+-activated K+ channel (SK) blocker, did not show a significant effect on the membrane excitability. 4-Aminopyridine, a Kv channel blocker, caused depolarization and increased the duration of slow wave potentials. 4-Aminopyridine also inhibited a delayed rectifying K+ current in isolated smooth muscle cells. End-product RT-PCR gel detected Kv1.2 and Kv1.5 in human gastric corpus muscles. Glibenclamide, an ATP-sensitive K+ channel (KATP) blocker, did not induce depolarization, but nicorandil, a KATP opener, hyperpolarized HGCS, suggesting that KATP are expressed but not basally activated. Kir6.2 transcript, a pore-forming subunit of KATP was expressed in HGCS. A low concentration of Ba2+, a Kir blocker, induced strong depolarization. Interestingly, Ba2+-sensitive currents were minimally expressed in isolated smooth muscle cells under whole-cell patch configuration. KCNJ2 (Kir2.1) transcript was expressed in HGCS. Unique K+ conductances regulate the RMP in HGCS. Delayed and inwardly rectifying K+ channels are the main candidates in regulating membrane excitability in HGCS. With the development of cell dispersion techniques of interstitial cells, the cell-specific functional significance will require further analysis. PMID:25591864

  1. Prostanoid receptors mediating contraction in rat, macaque and human bladder smooth muscle in vitro.

    PubMed

    Root, James A; Davey, Dorren A; Af Forselles, Kerry J

    2015-12-15

    Selective prostaglandin EP1 antagonists have been suggested for the treatment of bladder dysfunction. This study assessed the contractile prostanoid receptor subtypes in human and non-human bladder in vitro. Classical tissue bath studies were conducted using bladder strips exposed to prostanoid agonists and antagonists. Prostaglandin E2 (PGE2) contracted rat, macaque and human bladder smooth muscle strips (pEC50 7.91±0.06 (n=7), 6.40±0.13 (n=7), and 6.07±0.11 (n=5), respectively). The EP1 receptor antagonist, PF2907617 (300nM), caused a rightward shift of the PGE2 concentration-response curve in the rat bladder only (pKB 8.40±0.15, n=3). PGE2 responses in rat and macaque bladders, but not human, were antagonised by the EP3 antagonist CJ24979 (1µM). Sulprostone, a mixed EP1/EP3/FP receptor agonist, induced potent contractions of rat bladder muscle (pEC50 7.94±0.31, n=6). The FP receptor agonist, prostaglandin F2α (PGF2α), induced bladder contraction in all species tested, but with a lower potency in rat. The selective FP receptor agonist latanoprost caused potent contractions of macaque and human bladder strips only. SQ29548, a selective TP antagonist, and GW848687X, a mixed EP1/TP antagonist caused rightward shifts of the concentration-response curves to the selective TP agonist, U46619 (pKB estimates 8.53±0.07 and 7.56±0.06, n=3, respectively). Responses to U46619 were absent in rat preparations. These data suggest significant species differences exist in bladder contractile prostanoid receptor subtypes. We conclude that the EP1 subtype does not represent the best approach to the clinical treatment of bladder disorders targeting inhibition of smooth muscle contraction.

  2. Proteomic network analysis of human uterine smooth muscle in pregnancy, labor, and preterm labor

    PubMed Central

    Ulrich, Craig; Quilici, David R.; Schlauch, Karen A.; Buxton, Iain L. O.

    2015-01-01

    The molecular mechanisms involved in human uterine quiescence during gestation and the induction of labor at term or preterm are not completely known. Preterm delivery is associated with major morbidity and mortality and current efforts to prevent delivery until term are largely ineffective. Identification and semi-quantification of proteomic changes in uterine smooth muscle during pregnancy will allow for targeted research into how quiescence is maintained and what changes are associated with induction of labor. Examining preterm labor in this context will provide potential therapeutic targets for the management of preterm labor. We have recently performed two dimensional liquid chromatography coupled with tandem mass spectrometry on myometrial proteins isolated from pregnant patients in labor, pregnant patients not in labor, and pregnant patients in labor preterm. Using a conservative false discovery rate of 1% we have identified 2132 protein groups using this method and semi-quantitative spectral counting shows 201 proteins that have disparate levels of expression in preterm laboring samples. To our knowledge this is the first large scale proteomic study examining human uterine smooth muscle and this initial work has provided a target list for future experiments that can address how changing protein levels are involved in the induction of labor at term and preterm. PMID:26413312

  3. Role of Rho kinase and Na+/H+ exchange in hypoxia-induced pulmonary arterial smooth muscle cell proliferation and migration.

    PubMed

    Walker, Jasmine; Undem, Clark; Yun, Xin; Lade, Julie; Jiang, Haiyang; Shimoda, Larissa A

    2016-03-01

    Abnormal proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) are hallmark characteristics of vascular remodeling in pulmonary hypertension induced by chronic hypoxia. In this study, we investigated the role of the Na(+)/H(+)exchanger (NHE) and alterations in intracellularpH(pHi) homeostasis in meditating increased proliferation and migration inPASMCs isolated from resistance-sized pulmonary arteries from chronically hypoxic rats or from normoxic rats that were exposed to hypoxia ex vivo (1% or 4% O2, 24-96 h). We found thatPASMCs exposed to either in vivo or ex vivo hypoxia exhibited greater proliferative and migratory capacity, elevated pHi, and enhancedNHEactivity. TheNHEinhibitor, ethyl isopropyl amiloride (EIPA), normalized pHiin hypoxicPASMCs and reduced migration by 73% and 45% in cells exposed to in vivo and in vitro hypoxia, respectively. Similarly,EIPAreduced proliferation by 97% and 78% in cells exposed to in vivo and in vitro hypoxia, respectively. We previously demonstrated thatNHEisoform 1 (NHE1) is the predominant isoform expressed inPASMCs. The development of hypoxia-induced pulmonary hypertension and alterations inPASMC pHihomeostasis were prevented in mice deficient forNHE1. We found that short-term (24 h) ex vivo hypoxic exposure did not alter the expression ofNHE1, so we tested the role of Rho kinase (ROCK) as a possible means of increasingNHEactivity. In the presence of theROCKinhibitor, Y-27632, we found that pHiandNHEactivity were normalized and migration and proliferation were reduced inPASMCs exposed to either in vivo (by 68% for migration and 22% for proliferation) or ex vivo (by 43% for migration and 17% for proliferation) hypoxia. From these results, we conclude that during hypoxia, activation ofROCKenhancesNHEactivity and promotesPASMCmigration and proliferation.

  4. Copper Dependence of Angioproliferation in Pulmonary Arterial Hypertension in Rats and Humans

    PubMed Central

    Mizuno, Shiro; Guignabert, Christophe; Al Hussaini, Aysar A.; Farkas, Daniela; Ruiter, Gerrina; Kraskauskas, Donatas; Fadel, Elie; Allegood, Jeremy C.; Humbert, Marc; Noordegraaf, Anton Vonk; Spiegel, Sarah; Farkas, Laszlo; Voelkel, Norbert F.

    2012-01-01

    Obliteration of the vascular lumen by endothelial cell growth is a hallmark of many forms of severe pulmonary arterial hypertension. Copper plays a significant role in the control of endothelial cell proliferation in cancer and wound-healing. We sought to determine whether angioproliferation in rats with experimental pulmonary arterial hypertension and pulmonary microvascular endothelial cell proliferation in humans depend on the proangiogenic action of copper. A copper-depleted diet prevented, and copper chelation with tetrathiomolybdate reversed, the development of severe experimental pulmonary arterial hypertension. The copper chelation–induced reopening of obliterated vessels was caused by caspase-independent apoptosis, reduced vessel wall cell proliferation, and a normalization of vessel wall structure. No evidence was found for a role of super oxide–1 inhibition or lysyl–oxidase–1 inhibition in the reversal of angioproliferation. Tetrathiomolybdate inhibited the proliferation of human pulmonary microvascular endothelial cells, isolated from explanted lungs from control subjects and patients with pulmonary arterial hypertension. These data suggest that the inhibition of endothelial cell proliferation by a copper-restricting strategy could be explored as a new therapeutic approach in pulmonary arterial hypertension. It remains to be determined, however, whether potential toxicity to the right ventricle is offset by the beneficial pulmonary vascular effects of antiangiogenic treatment in patients with pulmonary arterial hypertension. PMID:22162909

  5. Embryonic origins of human vascular smooth muscle cells: implications for in vitro modeling and clinical application.

    PubMed

    Sinha, Sanjay; Iyer, Dharini; Granata, Alessandra

    2014-06-01

    Vascular smooth muscle cells (SMCs) arise from multiple origins during development, raising the possibility that differences in embryological origins between SMCs could contribute to site-specific localization of vascular diseases. In this review, we first examine the developmental pathways and embryological origins of vascular SMCs and then discuss in vitro strategies for deriving SMCs from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). We then review in detail the potential for vascular disease modeling using iPSC-derived SMCs and consider the pathological implications of heterogeneous embryonic origins. Finally, we touch upon the role of human ESC-derived SMCs in therapeutic revascularization and the challenges remaining before regenerative medicine using ESC- or iPSC-derived cells comes of age.

  6. Immunophenotyping of macrophages in human pulmonary tuberculosis and sarcoidosis

    PubMed Central

    Stanton, Lee-Anne; Fenhalls, Gael; Lucas, Andrew; Gough, Peter; Greaves, David R; Mahoney, James A; Helden, Paul Van; Gordon, Siamon

    2003-01-01

    Classic studies of tuberculosis (TB) revealed morphologic evidence of considerable heterogeneity of macrophages (MØs), but the functional significance of this heterogeneity remains unknown. We have used newly available specific antibodies for selected membrane and secretory molecules to examine the phenotype of MØs in situ in a range of South African patients with TB, compared with sarcoidosis. Patients were human immunodeficiency virus-negative adults and children, and the examined biopsy specimens included lung and lymph nodes. Mature pulmonary MØs (alveolar, interstitial, epithelioid and multinucleated giant cells) selectively expressed scavenger receptor type A and a novel carboxypeptidase-like antigen called carboxypeptidase-related vitellogenin-like MØ molecule (CPVL). CPVL did not display enhanced expression in sarcoidosis, vs. TB patients, as observed with angiotensin-converting enzyme (ACE), a related molecule. Immunocytochemical studies with surfactant proteins (SP)-A and -D showed that type II alveolar cells expressed these collectins, as did MØs, possibly after binding of secreted proteins. Studies with an antibody specific for the C-terminus of fractalkine, a tethered CX3C chemokine, confirmed synthesis of this molecule by bronchiolar epithelial cells and occasional endothelial cells. These studies provide new marker antigens and extend previous studies on MØ differentiation, activation and local interactions in chronic human granulomatous inflammation in the lung. PMID:14748748

  7. Bioengineering functional human sphincteric and non-sphincteric gastrointestinal smooth muscle constructs.

    PubMed

    Rego, Stephen L; Zakhem, Elie; Orlando, Giuseppe; Bitar, Khalil N

    2016-04-15

    Digestion and motility of luminal content through the gastrointestinal (GI) tract are achieved by cooperation between distinct cell types. Much of the 3 dimensional (3D) in vitro modeling used to study the GI physiology and disease focus solely on epithelial cells and not smooth muscle cells (SMCs). SMCs of the gut function either to propel and mix luminal contents (phasic; non-sphincteric) or to act as barriers to prevent the movement of luminal materials (tonic; sphincteric). Motility disorders including pyloric stenosis and chronic intestinal pseudoobstruction (CIPO) affect sphincteric and non-sphincteric SMCs, respectively. Bioengineering offers a useful tool to develop functional GI tissue mimics that possess similar characteristics to native tissue. The objective of this study was to bioengineer 3D human pyloric sphincter and small intestinal (SI) constructs in vitro that recapitulate the contractile phenotypes of sphincteric and non-sphincteric human GI SMCs. Bioengineered 3D human pylorus and circular SI SMC constructs were developed and displayed a contractile phenotype. Constructs composed of human pylorus SMCs displayed tonic SMC characteristics, including generation of basal tone, at higher levels than SI SMC constructs which is similar to what is seen in native tissue. Both constructs contracted in response to potassium chloride (KCl) and acetylcholine (ACh) and relaxed in response to vasoactive intestinal peptide (VIP). These studies provide the first bioengineered human pylorus constructs that maintain a sphincteric phenotype. These bioengineered constructs provide appropriate models to study motility disorders of the gut or replacement tissues for various GI organs. PMID:26314281

  8. Estrogen effects on human airway smooth muscle involve cAMP and protein kinase A.

    PubMed

    Townsend, Elizabeth A; Sathish, Venkatachalem; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S

    2012-11-15

    Clinically observed differences in airway reactivity and asthma exacerbations in women at different life stages suggest a role for sex steroids in modulating airway function although their targets and mechanisms of action are still being explored. We have previously shown that clinically relevant concentrations of exogenous estrogen acutely decrease intracellular calcium ([Ca(2+)](i)) in human airway smooth muscle (ASM), thereby facilitating bronchodilation. In this study, we hypothesized that estrogens modulate cyclic nucleotide regulation, resulting in decreased [Ca(2+)](i) in human ASM. In Fura-2-loaded human ASM cells, 1 nM 17β-estradiol (E(2)) potentiated the inhibitory effect of the β-adrenoceptor (β-AR) agonist isoproterenol (ISO; 100 nM) on histamine-mediated Ca(2+) entry. Inhibition of protein kinase A (PKA) activity (KT5720; 100 nM) attenuated E(2) effects on [Ca(2+)](i). Acute treatment with E(2) increased cAMP levels in ASM cells comparable to that of ISO (100 pM). In acetylcholine-contracted airways from female guinea pigs or female humans, E(2) potentiated ISO-induced relaxation. These novel data suggest that, in human ASM, physiologically relevant concentrations of estrogens act via estrogen receptors (ERs) and the cAMP pathway to nongenomically reduce [Ca(2+)](i), thus promoting bronchodilation. Activation of ERs may be a novel adjunct therapeutic avenue in reactive airway diseases in combination with established cAMP-activating therapies such as β(2)-agonists.

  9. A study of magnesium deficiency in human and experimental pulmonary hypertension.

    PubMed

    Chaumais, Marie-Camille; Lecerf, Florence; Fattal, Soly; Savale, Laurent; Günther, Sven; Huertas, Alice; Montani, David; Perros, Frederic; Humbert, Marc; German-Fattal, Michèle

    2012-03-01

    Pulmonary hypertension (PH) is defined as an increase in mean pulmonary arterial pressure above 25 mmHg. Pulmonary vasoconstriction, cellular proliferation, inflammation, and oxidative stress are involved in the pathophysiology of PH. Since hypomagnesemia was reported to promote endothelial cell dysfunction leading to inflammation and oxidative stress, we investigated the potential involvement of magnesium (Mg) deficiency in experimental and human PH. Our results indicate that Mg deficiency has no impact on hypoxia-induced PH development or severity, and that no reduction in Mg plasma concentration was observed in patients with severe pulmonary arterial hypertension. Thus, hypomagnesemia does not appear to play a role in the pathophysiology of experimental and human pulmonary hypertension. PMID:22433438

  10. High-density collagen gel tubes as a matrix for primary human bladder smooth muscle cells.

    PubMed

    Micol, Lionel A; Ananta, Michael; Engelhardt, Eva-Maria; Mudera, Vivek C; Brown, Robert A; Hubbell, Jeffrey A; Frey, Peter

    2011-02-01

    Tissue-engineered grafts for the urinary tract are being investigated for the potential treatment of several urologic diseases. These grafts, predominantly tubular-shaped, usually require in vitro culture prior to implantation to allow cell engraftment on initially cell-free scaffolds. We have developed a method to produce tubular-shaped collagen scaffolds based on plastic compression. Our approach produces a ready cell-seeded graft that does not need further in vitro culture prior to implantation. The tubular collagen scaffolds were in particular investigated for their structural, mechanical and biological properties. The resulting construct showed an especially high collagen density, and was characterized by favorable mechanical properties assessed by axial extension and radial dilation. Young modulus in particular was greater than non-compressed collagen tubes. Seeding densities affected proliferation rate of primary human bladder smooth muscle cells. An optimal seeding density of 10(6) cells per construct resulted in a 25-fold increase in Alamar blue-based fluorescence after 2 wk in culture. These high-density collagen gel tubes, ready seeded with smooth muscle cells could be further seeded with urothelial cells, drastically shortening the production time of graft for urinary tract regeneration.

  11. Differentiation of Human Induced-Pluripotent Stem Cells into Smooth-Muscle Cells: Two Novel Protocols.

    PubMed

    Yang, Libang; Geng, Zhaohui; Nickel, Thomas; Johnson, Caitlin; Gao, Lin; Dutton, James; Hou, Cody; Zhang, Jianyi

    2016-01-01

    Conventional protocols for differentiating human induced-pluripotent stem cells (hiPSCs) into smooth-muscle cells (SMCs) can be inefficient and generally fail to yield cells with a specific SMC phenotype (i.e., contractile or synthetic SMCs). Here, we present two novel hiPSC-SMC differentiation protocols that yield SMCs with predominantly contractile or synthetic phenotypes. Flow cytometry analyses of smooth-muscle actin (SMA) expression indicated that ~45% of the cells obtained with each protocol assumed an SMC phenotype, and that the populations could be purified to ~95% via metabolic selection. Assessments of cellular mRNA and/or protein levels indicated that SMA, myosin heavy chain II, collagen 1, calponin, transgelin, connexin 43, and vimentin expression in the SMCs obtained via the Contractile SMC protocol and in SMCs differentiated via a traditional protocol were similar, while SMCs produced via the Sythetic SMC protocol expressed less calponin, more collagen 1, and more connexin 43. Differences were also observed in functional assessments of the two SMC populations: the two-dimensional surface area of Contractile SMCs declined more extensively (to 12% versus 44% of original size) in response to carbachol treatment, while quantification of cell migration and proliferation were greater in Synthetic SMCs. Collectively, these data demonstrate that our novel differentiation protocols can efficiently generate SMCs from hiPSCs. PMID:26771193

  12. Regulation of actin dynamics by WNT-5A: implications for human airway smooth muscle contraction

    PubMed Central

    Koopmans, Tim; Kumawat, Kuldeep; Halayko, Andrew J; Gosens, Reinoud

    2016-01-01

    A defining feature of asthma is airway hyperresponsiveness (AHR), which underlies the exaggerated bronchoconstriction response of asthmatics. The role of the airway smooth muscle (ASM) in AHR has garnered increasing interest over the years, but how asthmatic ASM differs from healthy ASM is still an active topic of debate. WNT-5A is increasingly expressed in asthmatic ASM and has been linked with Th2-high asthma. Due to its link with calcium and cytoskeletal remodelling, we propose that WNT-5A may modulate ASM contractility. We demonstrated that WNT-5A can increase maximum isometric tension in bovine tracheal smooth muscle strips. In addition, we show that WNT-5A is preferentially expressed in contractile human airway myocytes compared to proliferative cells, suggesting an active role in maintaining contractility. Furthermore, WNT-5A treatment drives actin polymerisation, but has no effect on intracellular calcium flux. Next, we demonstrated that WNT-5A directly regulates TGF-β1-induced expression of α-SMA via ROCK-mediated actin polymerization. These findings suggest that WNT-5A modulates fundamental mechanisms that affect ASM contraction and thus may be of relevance for AHR in asthma. PMID:27468699

  13. Receptor-based differences in human aortic smooth muscle cell membrane stiffness

    NASA Technical Reports Server (NTRS)

    Huang, H.; Kamm, R. D.; So, P. T.; Lee, R. T.

    2001-01-01

    Cells respond to mechanical stimuli with diverse molecular responses. The nature of the sensory mechanism involved in mechanotransduction is not known, but integrins may play an important role. The integrins are linked to both the cytoskeleton and extracellular matrix, suggesting that probing cells via integrins should yield different mechanical properties than probing cells via non-cytoskeleton-associated receptors. To test the hypothesis that the mechanical properties of a cell are dependent on the receptor on which the stress is applied, human aortic smooth muscle cells were plated, and magnetic beads, targeted either to the integrins via fibronectin or to the transferrin receptor by use of an IgG antibody, were attached to the cell surface. The resistance of the cell to deformation ("stiffness") was estimated by oscillating the magnetic beads at 1 Hz by use of single-pole magnetic tweezers at 2 different magnitudes. The ratio of bead displacements at different magnitudes was used to explore the mechanical properties of the cells. Cells stressed via the integrins required approximately 10-fold more force to obtain the same bead displacements as the cells stressed via the transferrin receptors. Cells stressed via integrins showed stiffening behavior as the force was increased, whereas this stiffening was significantly less for cells stressed via the transferrin receptor (P<0.001). Mechanical characteristics of vascular smooth muscle cells depend on the receptor by which the stress is applied, with integrin-based linkages demonstrating cell-stiffening behavior.

  14. Intracellular Ca(2+) remodeling during the phenotypic journey of human coronary smooth muscle cells.

    PubMed

    Muñoz, Eva; Hernández-Morales, Miriam; Sobradillo, Diego; Rocher, Asunción; Núñez, Lucía; Villalobos, Carlos

    2013-11-01

    Vascular smooth muscle cells undergo phenotypic switches after damage which may contribute to proliferative disorders of the vessel wall. This process has been related to remodeling of Ca(2+) channels. We have tested the ability of cultured human coronary artery smooth muscle cells (hCASMCs) to return from a proliferative to a quiescent behavior and the contribution of intracellular Ca(2+) remodeling to the process. We found that cultured, early passage hCASMCs showed a high proliferation rate, sustained increases in cytosolic [Ca(2+)] in response to angiotensin II, residual voltage-operated Ca(2+) entry, increased Stim1 and enhanced store-operated currents. Non-steroidal anti-inflammatory drugs inhibited store-operated Ca(2+) entry and abolished cell proliferation in a mitochondria-dependent manner. After a few passages, hCASMCs turned to a quiescent phenotype characterized by lack of proliferation, oscillatory Ca(2+) response to angiotensin II, increased Ca(2+) store content, enhanced voltage-operated Ca(2+) entry and Cav1.2 expression, and decreases in Stim1, store-operated current and store-operated Ca(2+) entry. We conclude that proliferating hCASMCs return to quiescence and this switch is associated to a remodeling of Ca(2+) channels and their control by subcellular organelles, thus providing a window of opportunity for targeting phenotype-specific Ca(2+) channels involved in proliferation. PMID:24079969

  15. Intracellular Ca(2+) remodeling during the phenotypic journey of human coronary smooth muscle cells.

    PubMed

    Muñoz, Eva; Hernández-Morales, Miriam; Sobradillo, Diego; Rocher, Asunción; Núñez, Lucía; Villalobos, Carlos

    2013-11-01

    Vascular smooth muscle cells undergo phenotypic switches after damage which may contribute to proliferative disorders of the vessel wall. This process has been related to remodeling of Ca(2+) channels. We have tested the ability of cultured human coronary artery smooth muscle cells (hCASMCs) to return from a proliferative to a quiescent behavior and the contribution of intracellular Ca(2+) remodeling to the process. We found that cultured, early passage hCASMCs showed a high proliferation rate, sustained increases in cytosolic [Ca(2+)] in response to angiotensin II, residual voltage-operated Ca(2+) entry, increased Stim1 and enhanced store-operated currents. Non-steroidal anti-inflammatory drugs inhibited store-operated Ca(2+) entry and abolished cell proliferation in a mitochondria-dependent manner. After a few passages, hCASMCs turned to a quiescent phenotype characterized by lack of proliferation, oscillatory Ca(2+) response to angiotensin II, increased Ca(2+) store content, enhanced voltage-operated Ca(2+) entry and Cav1.2 expression, and decreases in Stim1, store-operated current and store-operated Ca(2+) entry. We conclude that proliferating hCASMCs return to quiescence and this switch is associated to a remodeling of Ca(2+) channels and their control by subcellular organelles, thus providing a window of opportunity for targeting phenotype-specific Ca(2+) channels involved in proliferation.

  16. The physcial properties of human pulmonary arteries and veins.

    PubMed

    Banks, J; Booth, F V; MacKay, E H; Rajagopalan, B; Lee, G D

    1978-11-01

    1. We have studied the extensibility of circumferential strips of main pulmonary artery and large pulmonary veins obtained at post mortem from patients of all ages, dying from conditions other than heart and lung disease. 2. The vessel strips were submitted to increasing loads in a tension balance. The pulmonary arteries were found to be readily extensible. This extensibility became less with increasing age. The pulmonary veins were virtually inextensible at all ages. 3. It is postulated that the large extraparenchymal pulmonary veins have a capacitative role in supplying blood from the lungs to the left atrium. This may be accomplished by their collapsible nature, as they have little capability of distension. PMID:720001

  17. MEF2C-MYOCD and Leiomodin1 Suppression by miRNA-214 Promotes Smooth Muscle Cell Phenotype Switching in Pulmonary Arterial Hypertension

    PubMed Central

    Sahoo, Sanghamitra; Meijles, Daniel N.; Al Ghouleh, Imad; Tandon, Manuj; Cifuentes-Pagano, Eugenia; Sembrat, John; Rojas, Mauricio; Goncharova, Elena; Pagano, Patrick J.

    2016-01-01

    Background Vascular hyperproliferative disorders are characterized by excessive smooth muscle cell (SMC) proliferation leading to vessel remodeling and occlusion. In pulmonary arterial hypertension (PAH), SMC phenotype switching from a terminally differentiated contractile to synthetic state is gaining traction as our understanding of the disease progression improves. While maintenance of SMC contractile phenotype is reportedly orchestrated by a MEF2C-myocardin (MYOCD) interplay, little is known regarding molecular control at this nexus. Moreover, the burgeoning interest in microRNAs (miRs) provides the basis for exploring their modulation of MEF2C-MYOCD signaling, and in turn, a pro-proliferative, synthetic SMC phenotype. We hypothesized that suppression of SMC contractile phenotype in pulmonary hypertension is mediated by miR-214 via repression of the MEF2C-MYOCD-leiomodin1 (LMOD1) signaling axis. Methods and Results In SMCs isolated from a PAH patient cohort and commercially obtained hPASMCs exposed to hypoxia, miR-214 expression was monitored by qRT-PCR. miR-214 was upregulated in PAH- vs. control subject hPASMCs as well as in commercially obtained hPASMCs exposed to hypoxia. These increases in miR-214 were paralleled by MEF2C, MYOCD and SMC contractile protein downregulation. Of these, LMOD1 and MEF2C were directly targeted by the miR. Mir-214 overexpression mimicked the PAH profile, downregulating MEF2C and LMOD1. AntagomiR-214 abrogated hypoxia-induced suppression of the contractile phenotype and its attendant proliferation. Anti-miR-214 also restored PAH-PASMCs to a contractile phenotype seen during vascular homeostasis. Conclusions Our findings illustrate a key role for miR-214 in modulation of MEF2C-MYOCD-LMOD1 signaling and suggest that an antagonist of miR-214 could mitigate SMC phenotype changes and proliferation in vascular hyperproliferative disorders including PAH. PMID:27144530

  18. Mechanism by which nuclear factor-kappa beta (NF-kB) regulates ovine fetal pulmonary vascular smooth muscle cell proliferation.

    PubMed

    Ogbozor, Uchenna D; Opene, Michael; Renteria, Lissette S; McBride, Shaemion; Ibe, Basil O

    2015-09-01

    Platelet activating factor (PAF) modulates ovine fetal pulmonary hemodynamic. PAF acts through its receptors (PAFR) in pulmonary vascular smooth muscle cells (PVSMC) to phosphorylate and induce nuclear translocation of NF-kB p65 leading to PVSMC proliferation. However, the interaction of NF-kB p65 and PAF in the nuclear domain to effect PVSMC cell growth is not clearly defined. We used siRNA-dependent translation initiation arrest to study a mechanism by which NF-kB p65 regulates PAF stimulation of PVSMC proliferation. Our hypotheses are: (a) PAF induces NF-kB p65 DNA binding and (b) NF-kB p65 siRNA attenuates PAF stimulation of PVSMC proliferation. For DNA binding, cells were fed 10 nM PAF with and without PAFR antagonists WEB 2170, CV 3988 or BN 52021 and incubated for 12 h. DNA binding was measured by specific ELISA. For NF-kB p65 siRNA effect, starved cells transfected with the siRNA were incubated for 24 h with and without 10 nM PAF. Cell proliferation was measured by DNA synthesis while expression of NF-kB p65 and PAFR protein was measured by Western blotting. In both studies, the effect of 10% FBS alone was used as the positive control. In general, PAF stimulated DNA binding which was inhibited by PAFR antagonists. siRNAs to NF-kB p65 and PAFR significantly attenuated cell proliferation compared to 10% FBS and PAF effect. Inclusion of PAF in siRNA-treated cells did not reverse inhibitory effect of NF-kB p65 siRNA on DNA synthesis. PAFR expression was inhibited in siRNA-treated cells. These data show that PAF-stimulation of PVSMC proliferation occurs via a PAFR-NF-kB p65 linked pathway.

  19. Smooth enlargement of human standing sway by instability due to weak reaction floor and noise

    PubMed Central

    Funato, Tetsuro; Aoi, Shinya; Tomita, Nozomi; Tsuchiya, Kazuo

    2016-01-01

    Human quiet standing is accompanied by body sway. The amplitude of this body sway is known to be larger than would be predicted from simple noise effects, and sway characteristics are changed by neurological disorders. This large sway is thought to arise from nonlinear control with prolonged periods of no control (intermittent control), and a nonlinear control system of this kind has been predicted to exhibit bifurcation. The presence of stability-dependent transition enables dynamic reaction that depends on the stability of the environment, and can explain the change in sway characteristics that accompanies some neurological disorders. This research analyses the characteristics of a system model that induces transition, and discusses whether human standing reflects such a mechanism. In mathematical analysis of system models, (intermittent control-like) nonlinear control with integral control is shown to exhibit Hopf bifurcation. Moreover, from the analytical solution of the system model with noise, noise is shown to work to smooth the enlargement of sway around the bifurcation point. This solution is compared with measured human standing sway on floors with different stabilities. By quantitatively comparing the control parameters between human observation and model prediction, enlargement of sway is shown to appear as predicted by the model analysis. PMID:26909186

  20. Human Regional Pulmonary Gas Exchange with Xenon Polarization Transfer (XTC)

    NASA Astrophysics Data System (ADS)

    Muradian, Iga; Butler, James; Hrovat, Mirko; Topulos, George; Hersman, Elizabeth; Ruset, Iulian; Covrig, Silviu; Frederick, Eric; Ketel, Stephen; Hersman, F. W.; Patz, Samuel

    2007-03-01

    Xenon Transfer Contrast (XTC) is an existing imaging method (Ruppert et al, Magn Reson Med, 51:676-687, 2004) that measures the fraction F of ^129Xe magnetization that diffuses from alveolar gas spaces to septal parenchymal tissue in lungs in a specified exchange time. As previously implemented, XTC is a 2-breath method and has been demonstrated in anesthetized animals. To use XTC in humans and to avoid issues associated with obtaining identical gas volumes on subsequent breath-hold experiments as well as precise image registration in post-processing, a single breath XTC method was developed that acquires three consecutive gradient echo images in an 8s acquisition. We report here initial measurements of the mean and variance of F for 5 normal healthy subjects as well as 7 asymptomatic smokers. The experiments were performed at two lung volumes (˜45 and 65% of TLC). We found that both the mean and variance of F increased with smoking history. In comparison, standard pulmonary function tests such as DLCO FEV1 showed no correlation with smoking history.

  1. Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells

    PubMed Central

    Brun, Juliane; Lutz, Katrin A.; Neumayer, Katharina M. H.; Klein, Gerd; Seeger, Tanja; Uynuk-Ool, Tatiana; Wörgötter, Katharina; Schmid, Sandra; Kraushaar, Udo; Guenther, Elke; Rolauffs, Bernd; Aicher, Wilhelm K.; Hart, Melanie L.

    2015-01-01

    The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1–2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel

  2. Oxidized low density lipoprotein (LDL) affects hyaluronan synthesis in human aortic smooth muscle cells.

    PubMed

    Viola, Manuela; Bartolini, Barbara; Vigetti, Davide; Karousou, Evgenia; Moretto, Paola; Deleonibus, Sara; Sawamura, Tatsuya; Wight, Thomas N; Hascall, Vincent C; De Luca, Giancarlo; Passi, Alberto

    2013-10-11

    Thickening of the vessel in response to high low density lipoprotein(s) (LDL) levels is a hallmark of atherosclerosis, characterized by increased hyaluronan (HA) deposition in the neointima. Human native LDL trapped within the arterial wall undergoes modifications such as oxidation (oxLDL). The aim of our study is to elucidate the link between internalization of oxLDL and HA production in vitro, using human aortic smooth muscle cells. LDL were used at an effective protein concentration of 20-50 μg/ml, which allowed 80% cell viability. HA content in the medium of untreated cells was 28.9 ± 3.7 nmol HA-disaccharide/cell and increased after oxLDL treatment to 53.9 ± 5.6. OxLDL treatments doubled the transcripts of HA synthase HAS2 and HAS3. Accumulated HA stimulated migration of aortic smooth muscle cells and monocyte adhesiveness to extracellular matrix. The effects induced by oxLDL were inhibited by blocking LOX-1 scavenger receptor with a specific antibody (10 μg/ml). The cholesterol moiety of LDL has an important role in HA accumulation because cholesterol-free oxLDL failed to induce HA synthesis. Nevertheless, cholesterol-free oxLDL and unmodified cholesterol (20 μg/ml) induce only HAS3 transcription, whereas 22,oxysterol affects both HAS2 and HAS3. Moreover, HA deposition was associated with higher expression of endoplasmic reticulum stress markers (CHOP and GRP78). Our data suggest that HA synthesis can be induced in response to specific oxidized sterol-related species delivered through oxLDL.

  3. Oxidized Low Density Lipoprotein (LDL) Affects Hyaluronan Synthesis in Human Aortic Smooth Muscle Cells*

    PubMed Central

    Viola, Manuela; Bartolini, Barbara; Vigetti, Davide; Karousou, Evgenia; Moretto, Paola; Deleonibus, Sara; Sawamura, Tatsuya; Wight, Thomas N.; Hascall, Vincent C.; De Luca, Giancarlo; Passi, Alberto

    2013-01-01

    Thickening of the vessel in response to high low density lipoprotein(s) (LDL) levels is a hallmark of atherosclerosis, characterized by increased hyaluronan (HA) deposition in the neointima. Human native LDL trapped within the arterial wall undergoes modifications such as oxidation (oxLDL). The aim of our study is to elucidate the link between internalization of oxLDL and HA production in vitro, using human aortic smooth muscle cells. LDL were used at an effective protein concentration of 20–50 μg/ml, which allowed 80% cell viability. HA content in the medium of untreated cells was 28.9 ± 3.7 nmol HA-disaccharide/cell and increased after oxLDL treatment to 53.9 ± 5.6. OxLDL treatments doubled the transcripts of HA synthase HAS2 and HAS3. Accumulated HA stimulated migration of aortic smooth muscle cells and monocyte adhesiveness to extracellular matrix. The effects induced by oxLDL were inhibited by blocking LOX-1 scavenger receptor with a specific antibody (10 μg/ml). The cholesterol moiety of LDL has an important role in HA accumulation because cholesterol-free oxLDL failed to induce HA synthesis. Nevertheless, cholesterol-free oxLDL and unmodified cholesterol (20 μg/ml) induce only HAS3 transcription, whereas 22,oxysterol affects both HAS2 and HAS3. Moreover, HA deposition was associated with higher expression of endoplasmic reticulum stress markers (CHOP and GRP78). Our data suggest that HA synthesis can be induced in response to specific oxidized sterol-related species delivered through oxLDL. PMID:23979132

  4. Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells

    PubMed Central

    Berntsen, P.; Park, C. Y.; Rothen-Rutishauser, B.; Tsuda, A.; Sager, T. M.; Molina, R. M.; Donaghey, T. C.; Alencar, A. M.; Kasahara, D. I.; Ericsson, T.; Millet, E. J.; Swenson, J.; Tschumperlin, D. J.; Butler, J. P.; Brain, J. D.; Fredberg, J. J.; Gehr, P.; Zhou, E. H.

    2010-01-01

    The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40–100 nm and less than 44 μm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 μm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 μM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases. PMID:20356875

  5. Smooth-muscle-like cells derived from human embryonic stem cells support and augment cord-like structures in vitro.

    PubMed

    Vo, Elaine; Hanjaya-Putra, Donny; Zha, Yuanting; Kusuma, Sravanti; Gerecht, Sharon

    2010-06-01

    Engineering vascularized tissue is crucial for its successful implantation, survival, and integration with the host tissue. Vascular smooth muscle cells (v-SMCs) provide physical support to the vasculature and aid in maintaining endothelial viability. In this study, we show an efficient derivation of v-SMCs from human embryonic stem cells (hESCs), and demonstrate their functionality and ability to support the vasculature in vitro. Human ESCs were differentiated in monolayers and supplemented with platelet-derived growth factor-BB (PDGF-BB) and transforming growth factor-beta 1 (TGF-beta1). Human ESC-derived smooth-muscle-like cells (SMLCs) were found to highly express specific smooth muscle cell (SMC) markers--including alpha-smooth muscle actin, calponin, SM22, and smooth muscle myosin heavy chain--to produce and secrete fibronectin and collagen, and to contract in response to carbachol. In vitro tubulogenesis assays revealed that these hESC-derived SMLCs interacted with human endothelial progenitor cell (EPCs) to form longer and thicker cord-like structures in vitro. We have demonstrated a simple protocol for the efficient derivation of highly purified SMLCs from hESCs. These in vitro functional SMLCs interacted with EPCs to support and augment capillary-like structures (CLSs), demonstrating the potential of hESCs as a cell source for therapeutic vascular tissue engineering.

  6. Hypoxia induces voltage-gated K+ (Kv) channel expression in pulmonary arterial smooth muscle cells through hypoxia-inducible factor-1 (HIF-1)

    PubMed Central

    Dong, Qian; Zhao, Ning; Xia, Cheng-kun; Du, Li-li; Fu, Xiao-xing; Du, Yi-mei

    2012-01-01

    Hypoxia-inducible factor-1 (HIF-1) regulates the expression of hypoxia-inducible genes by binding erythropoietin (EPO) enhancer fragments. Of these genes, HIF-1 upregulates voltage-gated K+1.2 channels (Kv1.2) in rat PC12 cells. Whether HIF-1 regulates hypoxia-induced Kv channel expression in cultured pulmonary artery smooth muscle cells (PASMCs), however, has not been determined. In this study, we investigated the effects of hypoxia on the expression of Kv1.2 Kv1.5, Kv2.1, and Kv9.3 channels in PASMCs and examined the direct role of HIF-1 by transfecting either wild type or mutant EPO enhancer fragments. Our results showed that 18 h exposure to hypoxia significantly increased the expression of Kv1.2, Kv1.5, Kv2.1, and Kv9.3; and this hypoxia-induced upregulation was completely inhibited after transfection with the wild type but not mutant EPO enhancer fragment. These results indicate that HIF-1 regulates hypoxia-stimulated induction of Kv1.2, Kv1.5, Kv2.1, and Kv9.3 channels in cultured PASMCs. PMID:22938542

  7. Expression and function of K(V)2-containing channels in human urinary bladder smooth muscle.

    PubMed

    Hristov, Kiril L; Chen, Muyan; Afeli, Serge A Y; Cheng, Qiuping; Rovner, Eric S; Petkov, Georgi V

    2012-06-01

    The functional role of the voltage-gated K(+) (K(V)) channels in human detrusor smooth muscle (DSM) is largely unexplored. Here, we provide molecular, electrophysiological, and functional evidence for the expression of K(V)2.1, K(V)2.2, and the electrically silent K(V)9.3 subunits in human DSM. Stromatoxin-1 (ScTx1), a selective inhibitor of K(V)2.1, K(V)2.2, and K(V)4.2 homotetrameric channels and of K(V)2.1/9.3 heterotetrameric channels, was used to examine the role of these channels in human DSM function. Human DSM tissues were obtained during open bladder surgeries from patients without a history of overactive bladder. Freshly isolated human DSM cells were studied using RT-PCR, immunocytochemistry, live-cell Ca(2+) imaging, and the perforated whole cell patch-clamp technique. Isometric DSM tension recordings of human DSM isolated strips were conducted using tissue baths. RT-PCR experiments showed mRNA expression of K(V)2.1, K(V)2.2, and K(V)9.3 (but not K(V)4.2) channel subunits in human isolated DSM cells. K(V)2.1 and K(V)2.2 protein expression was confirmed by Western blot analysis and immunocytochemistry. Perforated whole cell patch-clamp experiments revealed that ScTx1 (100 nM) inhibited the amplitude of the voltage step-induced K(V) current in freshly isolated human DSM cells. ScTx1 (100 nM) significantly increased the intracellular Ca(2+) level in DSM cells. In human DSM isolated strips, ScTx1 (100 nM) increased the spontaneous phasic contraction amplitude and muscle force, and enhanced the amplitude of the electrical field stimulation-induced contractions within the range of 3.5-30 Hz stimulation frequencies. These findings reveal that ScTx1-sensitive K(V)2-containing channels are key regulators of human DSM excitability and contractility and may represent new targets for pharmacological or genetic intervention for bladder dysfunction.

  8. P2 receptor expression profiles in human vascular smooth muscle and endothelial cells.

    PubMed

    Wang, Lingwei; Karlsson, Lena; Moses, Sara; Hultgårdh-Nilsson, Anna; Andersson, Maria; Borna, Catharina; Gudbjartsson, Tomas; Jern, Sverker; Erlinge, David

    2002-12-01

    P2 receptors mediate the actions of the extracellular nucleotides ATP, ADP, UTP, and UDP, regulating several physiologic responses including cardiac function, vascular tone, smooth muscle cell (SMC) proliferation, platelet aggregation, and the release of endothelial factors. P2 receptor characterization has been hampered by the lack of selective antagonists. The aim of the current study was to investigate the mRNA and protein expression of P2X and P2Y receptors in human SMC and in endothelial cells (EC). Smooth muscle cells were obtained from human mammary artery and EC from human umbilical vein. Using real-time PCR, the authors established quantitative mRNA assays. Protein expression was studied using Western blotting with recently developed antibodies. The P2X1 receptor was highly specific for human SMC, while the P2X4 was the highest expressed receptor in EC. The P2Y2 receptor was present in both SMC and EC. UTP-mediated effects in these cells are likely to be mediated by P2Y2 and not P2Y4 receptors since the latter had considerably lower expression. The P2Y6 receptor was expressed in both SMC and EC. The P2Y1 and surprisingly the P2Y11 receptors were the most abundantly expressed P2Y receptors in the endothelium. Overall, Western blotting confirmed the mRNA findings in most aspects, and most interestingly, indicated oligomerization of the P2Y1 receptor that may be important for its function. In conclusion, P2X1, P2Y2, and P2Y6 are the most expressed P2 receptors in SMC and are thus probably mediating the contractile and mitogenic actions of extracellular nucleotides. The P2X4, P2Y11, P2Y1, and P2Y2 are the most expressed P2 receptors in EC, and are most likely mediating release of nitric oxide, endothelium-dependent hyperpolarizing factor (EDHF), and t-PA induced by extracellular nucleotides. These findings will help to direct future cardiovascular drug development against the large P2 receptor family.

  9. Transforming growth factor type beta specifically stimulates synthesis of proteoglycan in human adult arterial smooth muscle cells.

    PubMed Central

    Chen, J K; Hoshi, H; McKeehan, W L

    1987-01-01

    Myo-intimal proteoglycan metabolism is thought to be important in blood vessel homeostasis, blood clotting, atherogenesis, and atherosclerosis. Human platelet-derived transforming growth factor type beta (TGF-beta) specifically stimulated synthesis of at least two types of chondroitin sulfate proteoglycans in nonproliferating human adult arterial smooth muscle cells in culture. Stimulation of smooth muscle cell proteoglycan synthesis by smooth muscle cell growth promoters (epidermal growth factor, platelet-derived growth factor, and heparin-binding growth factors) was less than 20% of that elicited by TGF-beta. TGF-beta neither significantly stimulated proliferation of quiescent smooth muscle cells nor inhibited proliferating cells. The extent of TGF-beta stimulation of smooth muscle cell proteoglycan synthesis was similar in both nonproliferating and growth-stimulated cells. TGF-beta, which is a reversible inhibitor of endothelial cell proliferation, had no comparable effect on endothelial cell proteoglycan synthesis. These results are consistent with the hypothesis that TGF-beta is a cell-type-specific regulator of proteoglycan synthesis in human blood vessels and may contribute to the myo-intimal accumulation of proteoglycan in atherosclerotic lesions. Images PMID:3474655

  10. Olfactory Receptors Modulate Physiological Processes in Human Airway Smooth Muscle Cells

    PubMed Central

    Kalbe, Benjamin; Knobloch, Jürgen; Schulz, Viola M.; Wecker, Christine; Schlimm, Marian; Scholz, Paul; Jansen, Fabian; Stoelben, Erich; Philippou, Stathis; Hecker, Erich; Lübbert, Hermann; Koch, Andrea; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs) significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms, and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs) OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca2+ increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases. PMID:27540365

  11. Nitric oxide production by cultured human aortic smooth muscle cells: stimulation by fluid flow

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Tilton, R. G.; Eskin, S. G.; McIntire, L. V.

    1998-01-01

    This study demonstrated that exposure of cultured human aortic smooth muscle cells (SMC) to fluid flow resulted in nitric oxide (NO) production, monitored by nitrite and guanosine 3',5'-cyclic monophosphate production. A rapid burst in nitrite production rate was followed by a more gradual increase throughout the period of flow exposure. Neither the initial burst nor the prolonged nitrite production was dependent on the level of shear stress in the range of 1.1-25 dyn/cm2. Repeated exposure to shear stress after a 30-min static period restimulated nitrite production similar to the initial burst. Ca(2+)-calmodulin antagonists blocked the initial burst in nitrite release. An inhibitor of nitric oxide synthase (NOS) blocked nitrite production, indicating that changes in nitrite reflect NO production. Treatment with dexamethasone or cycloheximide had no effect on nitrite production. Monoclonal antibodies directed against the inducible and endothelial NOS isoforms showed no immunoreactivity on Western blots, whereas monoclonal antibodies directed against the neuronal NOS gave specific products. These findings suggest that human aortic SMC express a constitutive neuronal NOS isoform, the enzymatic activity of which is modulated by flow.

  12. Iron chelation inhibits the development of pulmonary vascular remodeling.

    PubMed

    Wong, Chi-Ming; Preston, Ioana R; Hill, Nicholas S; Suzuki, Yuichiro J

    2012-11-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of pulmonary hypertension. Because iron is an important regulator of ROS biology, this study examined the effects of iron chelation on the development of pulmonary vascular remodeling. The administration of an iron chelator, deferoxamine, to rats prevented chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling. Various iron chelators inhibited the growth of cultured pulmonary artery smooth muscle cells. Protein carbonylation, an important iron-dependent biological event, was promoted in association with pulmonary vascular remodeling and cell growth. A proteomic approach identified that Rho GDP-dissociation inhibitor (a negative regulator of RhoA) is carbonylated. In human plasma, the protein carbonyl content was significantly higher in patients with idiopathic pulmonary arterial hypertension than in healthy controls. These results suggest that iron plays an important role in the ROS-dependent mechanism underlying the development of pulmonary hypertension.

  13. Iron chelation inhibits the development of pulmonary vascular remodeling

    PubMed Central

    Wong, Chi-Ming; Preston, Ioana R.; Hill, Nicholas S.; Suzuki, Yuichiro J.

    2012-01-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of pulmonary hypertension. Since iron is an important regulator of ROS biology, the present study examined the effect of iron chelation on the development of pulmonary vascular remodeling. The administration of an iron chelator, deferoxamine, to rats prevented chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling. Various iron chelators inhibited growth of cultured pulmonary artery smooth muscle cells. Protein carbonylation, an important iron-dependent biological event, was promoted in association with pulmonary vascular remodeling and cell growth. A proteomic approach identified that Rho GDP-dissociation inhibitor (a negative regulator of RhoA) is carbonylated. In human plasma, the protein carbonyl content was significantly higher in patients with idiopathic pulmonary arterial hypertension than in healthy controls. These results suggest that iron plays an important role in the ROS-dependent mechanism underlying the development of pulmonary hypertension. PMID:22974762

  14. Lipopolysaccharide and Interleukin 1 Augment the Effects of Hypoxia and Inflammation in Human Pulmonary Arterial Tissue

    NASA Astrophysics Data System (ADS)

    Ziesche, Rolf; Petkov, Venzeslav; Williams, John; Zakeri, Schaker M.; Mosgoller, Wilhelm; Knofler, Martin; Block, Lutz H.

    1996-10-01

    The combined effects of hypoxia and interleukin 1, lipopolysaccharide, or tumor necrosis factor α on the expression of genes encoding endothelial constitutive and inducible nitric oxide synthases, endothelin 1, interleukin 6, and interleukin 8 were investigated in human primary pulmonary endothelial cells and whole pulmonary artery organoid cultures. Hypoxia decreased the expression of constitutive endothelial nitric oxide synthase (NOS-3) mRNA and NOS-3 protein as compared with normoxic conditions. The inhibition of expression of NOS-3 corresponded with a reduced production of NO. A combination of hypoxia with bacterial lipopolysaccharide, interleukin 1β , or tumor necrosis factor α augmented both effects. In contrast, the combination of hypoxia and the inflammatory mediators superinduced the expression of endothelin 1, interleukin 6, and interleukin 8. Here, we have shown that inflammatory mediators aggravate the effect of hypoxia on the down-regulation of NOS-3 and increase the expression of proinflammatory cytokines in human pulmonary endothelial cells and whole pulmonary artery organoid cultures.

  15. Pulmonary vascular disease in mice xenografted with human BM progenitors from patients with pulmonary arterial hypertension

    PubMed Central

    Farha, Samar; Lichtin, Alan; Graham, Brian; George, Deepa; Aldred, Micheala; Hazen, Stanley L.; Loyd, James; Tuder, Rubin

    2012-01-01

    Hematopoietic myeloid progenitors released into the circulation are able to promote vascular remodeling through endothelium activation and injury. Endothelial injury is central to the development of pulmonary arterial hypertension (PAH), a proliferative vasculopathy of the pulmonary circulation, but the origin of vascular injury is unknown. In the present study, mice transplanted with BM-derived CD133+ progenitor cells from patients with PAH, but not from healthy controls, exhibited morbidity and/or death due to features of PAH: in situ thrombi and endothelial injury, angioproliferative remodeling, and right ventricular hypertrophy and failure. Myeloid progenitors from patients with heritable and/or idiopathic PAH all produced disease in xenografted mice. Analyses of hematopoietic transcription factors and colony formation revealed underlying abnormalities of progenitors that skewed differentiation toward the myeloid-erythroid lineage. The results of the present study suggest a causal role for hematopoietic stem cell abnormalities in vascular injury, right ventricular hypertrophy, and morbidity associated with PAH. PMID:22745307

  16. Doxazosin inhibits retinoblastoma protein phosphorylation and G(1)-->S transition in human coronary smooth muscle cells.

    PubMed

    Kintscher, U; Wakino, S; Kim, S; Jackson, S M; Fleck, E; Hsueh, W A; Law, R E

    2000-05-01

    Previous studies have demonstrated that the alpha(1)-adrenergic receptor antagonist doxazosin (Dox) inhibits multiple mitogenic signaling pathways in human vascular smooth muscle cells. This broad antiproliferative activity of Dox occurs through a novel mechanism unrelated to its blocking the alpha(1)-adrenergic receptor. Flow cytometry demonstrated that Dox prevents mitogen-induced G(1)-->S progression of human coronary artery smooth muscle cells (CASMCs) in a dose-dependent manner, with a maximal reduction of S-phase transition by 88+/-10.5% in 20 ng/mL platelet-derived growth factor and 1 micromol/L insulin (P+I)-stimulated cells (P<0.01 for 10 micromol/L Dox versus P+I alone) and 52+/-18.7% for 10% FBS-induced mitogenesis (P<0.05 for 10 micromol/L Dox versus 10% FBS alone). Inhibition of G(1) exit by Dox was accompanied by a significant blockade of retinoblastoma protein (Rb) phosphorylation. Hypophosphorylated Rb sequesters the E2F transcription factor, leading to G(1) arrest. Adenoviral overexpression of E2F-1 stimulated quiescent CASMCs to progress through G(1) and enter the S phase. E2F-mediated G(1) exit was not affected by Dox, suggesting that it targets events upstream from Rb hyperphosphorylation. Downregulation of the cyclin-dependent kinase inhibitory protein p27 is important for maximal activation of G(1) cyclin/cyclin-dependent kinase holoenzymes to overcome the cell cycle inhibitory activity of Rb. In Western blot analysis, p27 levels decreased after mitogenic stimulation (after P+I, 43+/-1.8% of quiescent cells [P<0.01 versus quiescent cells]; after 10% FBS, 55+/-7.7% of quiescent cells [P<0. 05 versus quiescent cells]), whereas the addition of Dox (10 micromol/L) markedly attenuated its downregulation (after P+I, 90+/-8.3% of quiescent cells [P<0.05 versus P+I alone]; after 10% FBS, 78+/-8.3% of quiescent cells [P<0.05 versus 10% FBS alone]). Furthermore, Dox inhibited cyclin A expression, an E2F regulated gene that is essential for cell cycle

  17. Regional pulmonary perfusion following human heart-lung transplantation

    SciTech Connect

    Lisbona, R.; Hakim, T.S.; Dean, G.W.; Langleben, D.; Guerraty, A.; Levy, R.D. )

    1989-08-01

    Ventilation and perfusion scans were obtained in six subjects who had undergone heart-lung transplantation with consequent denervation of the cardiopulmonary axis. Two of the subjects had developed obliterative bronchiolitis, which is believed to be a form of chronic rejection. Their pulmonary function tests demonstrated airflow obstruction and their scintigraphic studies were abnormal. In the remaining four subjects without obstructive airways disease, ventilation and planar perfusion scans were normal. Single photon emission computed tomography imaging of pulmonary perfusion in these patients revealed a layered distribution of blood flow indistinguishable from that of normal individuals. It is concluded that neurogenic mechanisms have little influence on the pattern of local pulmonary blood flow at rest.

  18. BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells.

    PubMed

    Li, Xianwu; Yang, Hsueh-Ying; Giachelli, Cecilia M

    2008-08-01

    Vascular calcification is associated with increased risk of cardiovascular events that are the most common cause of death in patients with end-stage renal disease. Clinical and experimental studies indicate that hyperphosphatemia is a risk factor for vascular calcification and cardiovascular mortality in these patients. Our previous studies demonstrated that phosphate transport through the type III sodium-dependent phosphate cotransporter, Pit-1, was necessary for phosphate-induced calcification and osteochondrogenic phenotypic change in cultured human smooth muscle cells (SMC). BMP-2 is a potent osteogenic protein required for osteoblast differentiation and bone formation that has been implicated in vascular calcification. In the present study, we have examined the effects of BMP-2 on human SMC calcification in vitro. We found that treatment of SMC with BMP-2 enhanced elevated phosphate-induced calcification, but did not induce calcification under normal phosphate conditions. mRNAs for BMP receptors, including ALK2, ALK3, ALK6, BMPR-II, ActR-IIA and ActR-IIB were all detected in human SMCs. Mechanistically, BMP-2 dose-dependently stimulated phosphate uptake in SMC (200 ng/ml BMP-2 vs. vehicle: 13.94 vs. 7.09 nmol/30 min/mg protein, respectively). Real-time PCR and Western blot revealed the upregulation of Pit-1 mRNA and protein levels, respectively, by BMP-2. More importantly, inhibition of phosphate uptake by a competitive inhibitor of sodium-dependent phosphate cotransport, phosphonoformic acid, abrogated BMP-2-induced calcification. These results indicate that phosphate transport via Pit-1 is crucial in BMP-2-regulated SMC calcification. In addition, BMP-2-induced Runx2 and inhibited SM22 expression, indicating that it promotes osteogenic phenotype transition in these cells. Thus, BMP-2 may promote vascular calcification via increased phosphate uptake and induction of osteogenic phenotype modulation in SMC. PMID:18179800

  19. Sex Steroids Influence Brain-Derived Neurotropic Factor Secretion From Human Airway Smooth Muscle Cells.

    PubMed

    Wang, Sheng-Yu; Freeman, Michelle R; Sathish, Venkatachalem; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S

    2016-07-01

    Brain derived neurotropic factor (BDNF) is emerging as an important player in airway inflammation, remodeling, and hyperreactivity. Separately, there is increasing evidence that sex hormones contribute to pathophysiology in the lung. BDNF and sex steroid signaling are thought to be intricately linked in the brain. There is currently little information on BDNF and sex steroid interactions in the airway but is relevant to understanding growth factor signaling in the context of asthma in men versus women. In this study, we assessed the effect of sex steroids on BDNF expression and secretion in human airway smooth muscle (ASM). Human ASM was treated with estrogen (E2 ) or testosterone (T, 10 nM each) and intracellular BDNF and secreted BDNF measured. E2 and T significantly reduced secretion of BDNF; effects prevented by estrogen and androgen receptor inhibitor, ICI 182,780 (1 μM), and flutamide (10 μM), respectively. Interestingly, no significant changes were observed in intracellular BDNF mRNA or protein expression. High affinity BDNF receptor, TrkB, was not altered by E2 or T. E2 (but not T) significantly increased intracellular cyclic AMP levels. Notably, Epac1 and Epac2 expression were significantly reduced by E2 and T. Furthermore, SNARE complex protein SNAP25 was decreased. Overall, these novel data suggest that physiologically relevant concentrations of E2 or T inhibit BDNF secretion in human ASM, suggesting a potential interaction of sex steroids with BDNF in the airway that is different from brain. The relevance of sex steroid-BDNF interactions may lie in their overall contribution to airway diseases such as asthma. PMID:26566264

  20. Gax regulates human vascular smooth muscle cell phenotypic modulation and vascular remodeling

    PubMed Central

    Zheng, Hui; Hu, Zhenlei; Zhai, Xinming; Wang, Yongyi; Liu, Jidong; Wang, Weijun; Xue, Song

    2016-01-01

    Abnormal phenotypic modulation of vascular smooth muscle cells (VSMCs) is a hallmark of cardiovascular diseases such as atherosclerosis, hypertension and restenosis after angioplasty. Transcription factors have emerged as critical regulators for VSMCs function, and recently we verified inhibiting transcription factor Gax was important for controlling VSMCs proliferation and migration. This study aimed to determine its role in phenotypic modulation of VSMCs. Western blot revealed that overexpression of Gax increased expression of VSMCs differentiation marker genes such as calponin and SM-MHC 11. Then, Gax overexpression potently suppressed proliferation and migration of VSMCs with or without platelet-derived growth factor-induced-BB (PDGF-BB) stimuli whereas Gax silencing inhibited these processes. Furthermore, cDNA array analysis indicated that Rap1A gene was the downstream target of Gax in human VSMCs. And overexpression of Gax significantly inhibited expression of Rap1A in VSMCs with or without PDGF-BB stimuli. Moreover, overexpression of Rap1A decreased expression of VSMCs differentiation marker genes and increased proliferation and migration of VSMCs with or without PDGF-BB stimuli. Finally, Gax overexpression significantly inhibited the neointimal formation in carotid artery injury of mouse models, specifically through maintaining VSMCs contractile phenotype by decreasing Rap1A expression. In conclusion, these results indicated that Gax was a regulator of human VSMCs phenotypic modulation by targeting Rap1A gene, which suggested that targeting Gax or its downstream targets in human VSMCs may provide an attractive approach for the prevention and treatment of cardiovascular diseases. PMID:27508012

  1. Cigarette smoke and α,β-unsaturated aldehydes elicit VEGF release through the p38 MAPK pathway in human airway smooth muscle cells and lung fibroblasts

    PubMed Central

    Volpi, Giorgia; Facchinetti, Fabrizio; Moretto, Nadia; Civelli, Maurizio; Patacchini, Riccardo

    2011-01-01

    BACKGROUND AND PURPOSE Vascular endothelial growth factor (VEGF) is an angiogenic factor known to be elevated in the sputum of asymptomatic smokers as well as smokers with bronchitis type of chronic obstructive pulmonary disease. The aim of this study was to investigate whether acute exposure to cigarette smoke extract altered VEGF production in lung parenchymal cells. EXPERIMENTAL APPROACH We exposed human airway smooth muscle cells (ASMC), normal human lung fibroblasts (NHLF) and small airways epithelial cells (SAEC) to aqueous cigarette smoke extract (CSE) in order to investigate the effect of cigarette smoke on VEGF expression and release. KEY RESULTS Vascular endothelial growth factor release was elevated by sub-toxic concentrations of CSE in both ASMC and NHLF, but not in SAEC. CSE-evoked VEGF release was mimicked by its component acrolein at concentrations (10–100 µM) found in CSE, and prevented by the antioxidant and α,β-unsaturated aldehyde scavenger, N-acetylcysteine (NAC). Both CSE and acrolein (30 µM) induced VEGF mRNA expression in ASMC cultures, suggesting an effect at transcriptional level. Crotonaldehyde and 4-hydroxy-2-nonenal, an endogenous α,β-unsaturated aldehyde, stimulated VEGF release, as did H2O2. CSE-evoked VEGF release was accompanied by rapid and lasting phosphorylation of p38 MAPK (mitogen-activated protein kinase), which was abolished by NAC and mimicked by acrolein. Both CSE- and acrolein-evoked VEGF release were blocked by selective inhibition of p38 MAPK signalling. CONCLUSIONS AND IMPLICATIONS α,β-Unsaturated aldehydes and possibly reactive oxygen species contained in cigarette smoke stimulate VEGF expression and release from pulmonary cells through p38 MAPK signalling. PMID:21306579

  2. Spatial differences of cellular origins and in vivo hypoxia modify contractile properties of pulmonary artery smooth muscle cells: lessons for arterial tissue engineering.

    PubMed

    Hall, S M; Soueid, A; Smith, T; Brown, R A; Haworth, S G; Mudera, V

    2007-01-01

    Tissue engineering of functional arteries is challenging. Within the pulmonary artery wall, smooth muscle cells (PASMCs) have site-specific developmental and functional phenotypes, reflecting differing contractile roles. The force generated by PASMCs isolated from the inner 25% and outer 50% of the media of intrapulmonary elastic arteries from five normal and eight chronically hypoxic (hypertensive) 14 day-old piglets was quantified in a three-dimensional (3D) collagen construct, using a culture force monitor. Outer medial PASMCs from normal piglets exerted more force (528 +/- 50 dynes) than those of hypoxic piglets (177 +/- 42 dynes; p < 0.01). Force generation by inner medial PASMCs from normal and hypoxic piglets was similar (349 +/- 35 and 239 +/- 60 dynes). In response to agonist (thromboxane) stimulation, all PASMCs from normal and hypoxic piglets contracted, but the increase in force generated by outer and inner hypoxic PASMCs (ranges 13-72 and 14-56 dynes) was less than by normal PASMCs (ranges 27-154 and 34-159 dynes, respectively; p < 0.05 for both). All hypoxic PASMCs were unresponsive to antagonist (sodium nitroprusside) stimulation, all normal PASMCs relaxed (range - 87 to - 494 dynes). Myosin heavy chain expression by both hypoxic PASMC phenotypes was less than normal (p < 0.05 for both), as was the activity of focal adhesion kinase, regulating contraction, in hypoxic inner PASMCs (p < 0.01). Chronic hypoxia resulted in the development of abnormal PASMC phenotypes, which in collagen constructs exhibited a reduction in contractile force and reactivity to agonists. Characterization of the mechanical response of spatially distinct cells and modification of their behaviour by hypoxia is critical for successful tissue engineering of major blood vessels. PMID:18038419

  3. Human discrimination of visual direction of motion with and without smooth pursuit eye movements

    NASA Technical Reports Server (NTRS)

    Krukowski, Anton E.; Pirog, Kathleen A.; Beutter, Brent R.; Brooks, Kevin R.; Stone, Leland S.

    2003-01-01

    It has long been known that ocular pursuit of a moving target has a major influence on its perceived speed (Aubert, 1886; Fleischl, 1882). However, little is known about the effect of smooth pursuit on the perception of target direction. Here we compare the precision of human visual-direction judgments under two oculomotor conditions (pursuit vs. fixation). We also examine the impact of stimulus duration (200 ms vs. 800 ms) and absolute direction (cardinal vs. oblique). Our main finding is that direction discrimination thresholds in the fixation and pursuit conditions are indistinguishable. Furthermore, the two oculomotor conditions showed oblique effects of similar magnitudes. These data suggest that the neural direction signals supporting perception are the same with or without pursuit, despite remarkably different retinal stimulation. During fixation, the stimulus information is restricted to large, purely peripheral retinal motion, while during steady-state pursuit, the stimulus information consists of small, unreliable foveal retinal motion and a large efference-copy signal. A parsimonious explanation of our findings is that the signal limiting the precision of direction judgments is a neural estimate of target motion in head-centered (or world-centered) coordinates (i.e., a combined retinal and eye motion signal) as found in the medial superior temporal area (MST), and not simply an estimate of retinal motion as found in the middle temporal area (MT).

  4. Cigarette smoke-induced mitochondrial fragmentation and dysfunction in human airway smooth muscle.

    PubMed

    Aravamudan, Bharathi; Kiel, Alexander; Freeman, Michelle; Delmotte, Philippe; Thompson, Michael; Vassallo, Robert; Sieck, Gary C; Pabelick, Christina M; Prakash, Y S

    2014-05-01

    The balance between mitochondrial fission and fusion is crucial for mitochondria to perform its normal cellular functions. We hypothesized that cigarette smoke (CS) disrupts this balance and enhances mitochondrial dysfunction in the airway. In nonasthmatic human airway smooth muscle (ASM) cells, CS extract (CSE) induced mitochondrial fragmentation and damages their networked morphology in a concentration-dependent fashion, via increased expression of mitochondrial fission protein dynamin-related protein 1 (Drp1) and decreased fusion protein mitofusin (Mfn) 2. CSE effects on Drp1 vs. Mfn2 and mitochondrial network morphology involved reactive oxygen species (ROS), activation of extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), protein kinase C (PKC) and proteasome pathways, as well as transcriptional regulation via factors such as NF-κB and nuclear erythroid 2-related factor 2. Inhibiting Drp1 prevented CSE effects on mitochondrial networks and ROS generation, whereas blocking Mfn2 had the opposite, detrimental effect. In ASM from asmatic patients, mitochondria exhibited substantial morphological defects at baseline and showed increased Drp1 but decreased Mfn2 expression, with exacerbating effects of CSE. Overall, these results highlight the importance of mitochondrial networks and their regulation in the context of cellular changes induced by insults such as inflammation (as in asthma) or CS. Altered mitochondrial fission/fusion proteins have a further potential to influence parameters such as ROS and cell proliferation and apoptosis relevant to airway diseases. PMID:24610934

  5. Spatial and temporal traction response in human airway smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Tolic-Norrelykke, Iva Marija; Butler, James P.; Chen, Jianxin; Wang, Ning

    2002-01-01

    Tractions that cells exert on their substrates are essential in cell spreading, migration, and contraction. These tractions can be determined by plating the cells on a flexible gel and measuring the deformation of the gel by using fluorescent beads embedded just below the surface of the gel. In this article we describe the image correlation method (ICM) optimized for determining the displacement field of the gel under a contracting cell. For the calculation of the traction field from the displacement field we use the recently developed method of Fourier transform traction cytometry (FTTC). The ICM and FTTC methods are applied to human airway smooth muscle cells during stimulation with the contractile agonist histamine or the relaxing agonist isoproterenol. The overall intensity of the cell contraction (the median traction magnitude, the energy transferred from the cell to the gel, and the net contractile moment) increased after activation with histamine, and decreased after treatment with isoproterenol. Cells exhibited regional differences in the time course of traction during the treatment. Both temporal evolution and magnitude of traction increase induced by histamine varied markedly among different cell protrusions, whereas the nuclear region showed the smallest response. These results suggest that intracellular mediators of cell adhesion and contraction respond to contractile stimuli with different rates and intensities in different regions of the cell.

  6. Transcriptional profiling of human smooth muscle cells infected with gingipain and fimbriae mutants of Porphyromonas gingivalis

    PubMed Central

    Zhang, Boxi; Sirsjö, Allan; Khalaf, Hazem; Bengtsson, Torbjörn

    2016-01-01

    Porphyromonas gingivalis (P. gingivalis) is considered to be involved in the development of atherosclerosis. However, the role of different virulence factors produced by P. gingivalis in this process is still uncertain. The aim of this study was to investigate the transcriptional profiling of human aortic smooth muscle cells (AoSMCs) infected with wild type, gingipain mutants or fimbriae mutants of P. gingivalis. AoSMCs were exposed to wild type (W50 and 381), gingipain mutants (E8 and K1A), or fimbriae mutants (DPG-3 and KRX-178) of P. gingivalis. We observed that wild type P. gingivalis changes the expression of a considerable larger number of genes in AoSMCs compare to gingipain and fimbriae mutants, respectively. The results from pathway analysis revealed that the common differentially expressed genes for AoSMCs infected by 3 different wild type P. gingivalis strains were enriched in pathways of cancer, cytokine-cytokine receptor interaction, regulation of the actin cytoskeleton, focal adhesion, and MAPK signaling pathway. Disease ontology analysis showed that various strains of P. gingivalis were associated with different disease profilings. Our results suggest that gingipains and fimbriae, especially arginine-specific gingipain, produced by P. gingivalis play important roles in the association between periodontitis and other inflammatory diseases, including atherosclerosis. PMID:26907358

  7. On the Visual Input Driving Human Smooth-Pursuit Eye Movements

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Beutter, Brent R.; Lorenceau, Jean

    1996-01-01

    Current computational models of smooth-pursuit eye movements assume that the primary visual input is local retinal-image motion (often referred to as retinal slip). However, we show that humans can pursue object motion with considerable accuracy, even in the presence of conflicting local image motion. This finding indicates that the visual cortical area(s) controlling pursuit must be able to perform a spatio-temporal integration of local image motion into a signal related to object motion. We also provide evidence that the object-motion signal that drives pursuit is related to the signal that supports perception. We conclude that current models of pursuit should be modified to include a visual input that encodes perceived object motion and not merely retinal image motion. Finally, our findings suggest that the measurement of eye movements can be used to monitor visual perception, with particular value in applied settings as this non-intrusive approach would not require interrupting ongoing work or training.

  8. Vitamin D attenuates cytokine-induced remodeling in human fetal airway smooth muscle cells.

    PubMed

    Britt, Rodney D; Faksh, Arij; Vogel, Elizabeth R; Thompson, Michael A; Chu, Vivian; Pandya, Hitesh C; Amrani, Yassine; Martin, Richard J; Pabelick, Christina M; Prakash, Y S

    2015-06-01

    Asthma in the pediatric population remains a significant contributor to morbidity and increasing healthcare costs. Vitamin D3 insufficiency and deficiency have been associated with development of asthma. Recent studies in models of adult airway diseases suggest that the bioactive Vitamin D3 metabolite, calcitriol (1,25-dihydroxyvitamin D3 ; 1,25(OH)2 D3 ), modulates responses to inflammation; however, this concept has not been explored in developing airways in the context of pediatric asthma. We used human fetal airway smooth muscle (ASM) cells as a model of the early postnatal airway to explore how calcitriol modulates remodeling induced by pro-inflammatory cytokines. Cells were pre-treated with calcitriol and then exposed to TNFα or TGFβ for up to 72 h. Matrix metalloproteinase (MMP) activity, production of extracellular matrix (ECM), and cell proliferation were assessed. Calcitriol attenuated TNFα enhancement of MMP-9 expression and activity. Additionally, calcitriol attenuated TNFα and TGFβ-induced collagen III expression and deposition, and separately, inhibited proliferation of fetal ASM cells induced by either inflammatory mediator. Analysis of signaling pathways suggested that calcitriol effects in fetal ASM involve ERK signaling, but not other major inflammatory pathways. Overall, our data demonstrate that calcitriol can blunt multiple effects of TNFα and TGFβ in developing airway, and point to a potentially novel approach to alleviating structural changes in inflammatory airway diseases of childhood. PMID:25204635

  9. Endothelin receptors and their cellular signal transduction mechanism in human cultured prostatic smooth muscle cells.

    PubMed

    Saita, Y; Koizumi, T; Yazawa, H; Morita, T; Takenaka, T; Honda, K

    1997-06-01

    1. Endothelin (ET) receptors, and their cellular signal transduction mechanism, were characterized in a primary culture of human prostatic smooth muscle cells (HP cell). 2. [125I]-ET-1 and [125I]-ET-3 binding studies revealed that both ETA and ETB receptors were present in the HP cells, and the ratio of ETA to ETB receptors was 1.4:1. 3. Analysis of ET receptor mRNA by reverse transcription-polymerase chain reaction also demonstrated that HP cells express both ETA and ETB receptors. 4. ET-1 and ET-3 increased intracellular free Ca2+ concentration ([Ca2+]i) in the HP cells in a concentration-dependent manner. Use of subtype selective antagonists BQ-123 and BQ-788, indicated that both ETA and ETB receptors were coupled to an increase in [Ca2+]i. 5. Pretreatment of the cells with pertussis toxin resulted in a significant but partial attenuation of the [Ca2+]i increase mediated through the ETA and ETB receptors. However, sensitivity to pertussis toxin (PTX) was significantly different between them. 6. In conclusion, HP cells possess ETA and ETB receptors. Further, these two endothelin receptor subtypes evoke an increase in [Ca2+]i possibly via the action of different GTP-binding proteins. PMID:9208135

  10. Endothelin receptors and their cellular signal transduction mechanism in human cultured prostatic smooth muscle cells

    PubMed Central

    Saita, Yuji; Koizumi, Tomonobu; Yazawa, Hidenori; Morita, Takashi; Takenaka, Toichi; Honda, Kazuo

    1997-01-01

    Endothelin (ET) receptors, and their cellular signal transduction mechanism, were characterized in a primary culture of human prostatic smooth muscle cells (HP cell). [125I]-ET-1 and [125I]-ET-3 binding studies revealed that both ETA and ETB receptors were present in the HP cells, and the ratio of ETA to ETB receptors was 1.4:1. Analysis of ET receptor mRNA by reverse transcription-polymerase chain reaction also demonstrated that HP cells express both ETA and ETB receptors. ET-1 and ET-3 increased intracellular free Ca2+ concentration ([Ca2+]i) in the HP cells in a concentration-dependent manner. Use of subtype selective antagonists BQ-123 and BQ-788, indicated that both ETA and ETB receptors were coupled to an increase in [Ca2+]i. Pretreatment of the cells with pertussis toxin resulted in a significant but partial attenuation of the [Ca2+]i increase mediated through the ETA and ETB receptors. However, sensitivity to pertussis toxin (PTX) was significantly different between them. In conclusion, HP cells possess ETA and ETB receptors. Further, these two endothelin receptor subtypes evoke an increase in [Ca2+]i possibly via the action of different GTP-binding proteins. PMID:9208135

  11. Diversity of Potassium Channels in Human Umbilical Artery Smooth Muscle Cells

    PubMed Central

    Martín, Pedro; Rebolledo, Alejandro; Palomo, Ana Rocio Roldán; Moncada, Melisa; Piccinini, Luciano

    2014-01-01

    Through their control of cell membrane potential, potassium (K+) channels are among the best known regulators of vascular tone. This article discusses the expression and function of K+ channels in human umbilical artery smooth muscle cells (HUASMCs). We review the bibliographic reports and also present single-channel data recorded in freshly isolated cells. Electrophysiological properties of big conductance, voltage- and Ca2+-sensitive K+ channel and voltage-dependent K+ channels are clearly established in this vessel, where they are involved in contractile state regulation. Their role in the maintenance of membrane potential is an important control mechanism in the determination of the vessel diameter. Additionally, small conductance Ca2+-sensitive K+ channels, 2-pore domains K+ channels and inward rectifier K+ channels also appear to be present in HUASMCs, while intermediate conductance Ca2+-sensitive K+ channels and ATP-sensitive K+ channels could not be identified. In both cases, additional investigation is necessary to reach conclusive evidence of their expression and/or functional role in HUASMCs. Finally, we discuss the role of K+ channels in pregnancy-related pathologies like gestational diabetes and preeclampsia. PMID:24084522

  12. Pulmonary surfactant mitigates silver nanoparticle toxicity in human alveolar type-I-like epithelial cells.

    PubMed

    Sweeney, Sinbad; Leo, Bey Fen; Chen, Shu; Abraham-Thomas, Nisha; Thorley, Andrew J; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng Jim; Shaffer, Milo S P; Chung, Kian Fan; Ryan, Mary P; Porter, Alexandra E; Tetley, Teresa D

    2016-09-01

    Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles. In this study, we evaluated the toxicity of AgNPs on human alveolar type-I-like epithelial (TT1) cells in the absence and presence of Curosurf(®) (a natural pulmonary surfactant substitute), hypothesising that the pulmonary surfactant would act to modify toxicity. We demonstrated that 20nm citrate-capped AgNPs induce toxicity in human alveolar type I-like epithelial cells and, in agreement with our hypothesis, that pulmonary surfactant acts to mitigate this toxicity, possibly through reducing AgNP dissolution into cytotoxic Ag(+) ions. For example, IL-6 and IL-8 release by TT1 cells significantly increased 10.7- and 35-fold, respectively (P<0.01), 24h after treatment with 25μg/ml AgNPs. In contrast, following pre-incubation of AgNPs with Curosurf(®), this effect was almost completely abolished. We further determined that the mechanism of this toxicity is likely associated with Ag(+) ion release and lysosomal disruption, but not with increased reactive oxygen species generation. This study provides a critical understanding of the toxicity of AgNPs in target human alveolar type-I-like epithelial cells and the role of pulmonary surfactant in mitigating this toxicity. The observations reported have important implications for the manufacture and application of AgNPs, in particular for applications involving use of aerosolised AgNPs.

  13. Birth weight and characteristics of endothelial and smooth muscle cell cultures from human umbilical cord vessels

    PubMed Central

    Martín de Llano, José Javier; Fuertes, Graciela; Torró, Isabel; García Vicent, Consuelo; Fayos, José Luis; Lurbe, Empar

    2009-01-01

    Background Low birth weight has been related to an increased risk for developing high blood pressure in adult life. The molecular and cellular analysis of umbilical cord artery and vein may provide information about the early vascular characteristics of an individual. We have assessed several phenotype characteristics of the four vascular cell types derived from human umbilical cords of newborns with different birth weight. Further follow-up studies could show the association of those vascular properties with infancy and adulthood blood pressure. Methods Endothelial and smooth muscle cell cultures were obtained from umbilical cords from two groups of newborns of birth weight less than 2.8 kg or higher than 3.5 kg. The expression of specific endothelial cell markers (von Willebrand factor, CD31, and the binding and internalization of acetylated low-density lipoprotein) and the smooth muscle cell specific α-actin have been evaluated. Cell culture viability, proliferation kinetic, growth fraction (expression of Ki67) and percentage of senescent cells (detection of β-galactosidase activity at pH 6.0) have been determined. Endothelial cell projection area was determined by morphometric analysis of cell cultures after CD31 immunodetection. Results The highest variation was found in cell density at the confluence of endothelial cell cultures derived from umbilical cord arteries (66,789 ± 5,093 cells/cm2 vs. 45,630 ± 11,927 cells/cm2, p < 0.05). Morphometric analysis indicated that the projection area of the artery endothelial cells (1,161 ± 198 and 1,544 ± 472 μm2, p < 0.05), but not those derived from the vein from individuals with a birth weight lower than 2.8 kg was lower than that of cells from individuals with a birth weight higher than 3.5 kg. Conclusion The analysis of umbilical cord artery endothelial cells, which demonstrated differences in cell size related to birth weight, can provide hints about the cellular and molecular links between lower birth

  14. BKCa channel regulates calcium oscillations induced by alpha-2-macroglobulin in human myometrial smooth muscle cells.

    PubMed

    Wakle-Prabagaran, Monali; Lorca, Ramón A; Ma, Xiaofeng; Stamnes, Susan J; Amazu, Chinwendu; Hsiao, Jordy J; Karch, Celeste M; Hyrc, Krzysztof L; Wright, Michael E; England, Sarah K

    2016-04-19

    The large-conductance, voltage-gated, calcium (Ca(2+))-activated potassium channel (BKCa) plays an important role in regulating Ca(2+)signaling and is implicated in the maintenance of uterine quiescence during pregnancy. We used immunopurification and mass spectrometry to identify proteins that interact with BKCain myometrium samples from term pregnant (≥37 wk gestation) women. From this screen, we identified alpha-2-macroglobulin (α2M). We then used immunoprecipitation followed by immunoblot and the proximity ligation assay to confirm the interaction between BKCaand both α2M and its receptor, low-density lipoprotein receptor-related protein 1 (LRP1), in cultured primary human myometrial smooth muscle cells (hMSMCs). Single-channel electrophysiological recordings in the cell-attached configuration demonstrated that activated α2M (α2M*) increased the open probability of BKCain an oscillatory pattern in hMSMCs. Furthermore, α2M* caused intracellular levels of Ca(2+)to oscillate in oxytocin-primed hMSMCs. The initiation of oscillations required an interaction between α2M* and LRP1. By using Ca(2+)-free medium and inhibitors of various Ca(2+)signaling pathways, we demonstrated that the oscillations required entry of extracellular Ca(2+)through store-operated Ca(2+)channels. Finally, we found that the specific BKCablocker paxilline inhibited the oscillations, whereas the channel opener NS11021 increased the rate of these oscillations. These data demonstrate that α2M* and LRP1 modulate the BKCachannel in human myometrium and that BKCaand its immunomodulatory interacting partners regulate Ca(2+)dynamics in hMSMCs during pregnancy. PMID:27044074

  15. Human cortical areas involved in sustaining perceptual stability during smooth pursuit eye movements.

    PubMed

    Trenner, Maja U; Fahle, Manfred; Fasold, Oliver; Heekeren, Hauke R; Villringer, Arno; Wenzel, Rüdiger

    2008-03-01

    Because both, eye movements and object movements induce an image motion on the retina, eye movements must be compensated to allow a coherent and stable perception of our surroundings. The inferential theory of perception postulates that retinal image motion is compared with an internal reference signal related to eye movements. This mechanism allows to distinguish between the potential sources producing retinal image motion. Referring to this theory, we investigated referential calculation during smooth pursuit eye movements (SPEM) in humans using event-related functional magnetic resonance imaging (fMRI). The blood oxygenation level dependent (BOLD) response related to SPEM in front of a stable background was measured for different parametric steps of preceding motion stimuli and therefore assumed for different states of the referential system. To achieve optimally accurate anatomy and more detectable fMRI signal changes in group analysis, we applied cortex-based statistics both to all brain volumes and to defined regions of interest. Our analysis revealed that the activity in a temporal region as well as the posterior parietal cortex (PPC) depended on the velocity of the preceding stimuli. Previous single-cell recordings in monkeys demonstrated that the visual posterior sylvian area (VPS) is relevant for perceptual stability. The activation apparent in our study thus may represent a human analogue of this area. The PPC is known as being strongly related to goal-directed eye movements. In conclusion, temporal and parietal cortical areas may be involved in referential calculation and thereby in sustaining visual perceptual stability during eye movements. PMID:17415782

  16. Bidirectional counter-regulation of human lung mast cell and airway smooth muscle β2-adrenoceptors

    PubMed Central

    Newby, Chris; Amrani, Yassine; Bradding, Peter

    2015-01-01

    Human lung mast cells (HLMCs) play a central role in asthma pathogenesis through their relocation to the airway smooth muscle (ASM) bundles. β2 adrenoceptor (β2-AR)-agonists are used to relieve bronchoconstriction in asthma, but may reduce asthma control, particularly when used as monotherapy. We hypothesised that HLMC and human ASM cell (HASMC) responsiveness to β2-AR agonists would be attenuated when HLMCs are in contact with HASMCs. Cells were cultured in the presence of the short-acting β2-agonist albuterol, and the long-acting β2-agonists formoterol and olodaterol. Constitutive and FcεRI-dependent HLMC histamine release, HASMC contraction, and β2-AR phosphorylation at tyrosine 350 (Tyr350) were assessed. Constitutive HLMC histamine release was increased in HLMC-HASMC co-culture and this was enhanced by β2-AR agonists. Inhibition of FcεRI-dependent HLMC mediator release by β2-agonists was greatly reduced in HLMC-HASMC co-culture. These effects were reversed by neutralisation of stem cell factor (SCF) or cell adhesion molecule 1 (CADM1). β2-AR agonists did not prevent HASMC contraction when HLMCs were present, but this was reversed by fluticasone. β2-AR phosphorylation at Tyr350 occurred within 5 minutes in both HLMCs and HASMCs when the cells were co-cultured, and was inhibited by neutralising SCF or CADM1. HLMC interactions with HASMCs via CADM1 and Kit inhibit the potentially beneficial effects of β2-AR agonists on these cells via phosphorylation of the β2-AR. These results may explain the potentially adverse effects of β2-ARs agonists when used for asthma therapy. Targeting SCF and CADM1 may enhance β2-AR efficacy, particularly in corticosteroid-resistant patients. PMID:26608913

  17. Human airway smooth muscle maintain in situ cell orientation and phenotype when cultured on aligned electrospun scaffolds

    PubMed Central

    Morris, G. E.; Bridge, J. C.; Eltboli, O. M. I.; Lewis, M. P.; Knox, A. J.; Aylott, J. W.; Brightling, C. E.; Ghaemmaghami, A. M.

    2014-01-01

    Human airway smooth muscle (HASM) contraction plays a central role in regulating airway resistance in both healthy and asthmatic bronchioles. In vitro studies that investigate the intricate mechanisms that regulate this contractile process are predominantly conducted on tissue culture plastic, a rigid, 2D geometry, unlike the 3D microenvironment smooth muscle cells are exposed to in situ. It is increasingly apparent that cellular characteristics and responses are altered between cells cultured on 2D substrates compared with 3D topographies. Electrospinning is an attractive method to produce 3D topographies for cell culturing as the fibers produced have dimensions within the nanometer range, similar to cells' natural environment. We have developed an electrospun scaffold using the nondegradable, nontoxic, polymer polyethylene terephthalate (PET) composed of uniaxially orientated nanofibers and have evaluated this topography's effect on HASM cell adhesion, alignment, and morphology. The fibers orientation provided contact guidance enabling the formation of fully aligned sheets of smooth muscle. Moreover, smooth muscle cells cultured on the scaffold present an elongated cell phenotype with altered contractile protein levels and distribution. HASM cells cultured on this scaffold responded to the bronchoconstrictor bradykinin. The platform presented provides a novel in vitro model that promotes airway smooth muscle cell development toward a more in vivo-like phenotype while providing topological cues to ensure full cell alignment. PMID:24793171

  18. Early Transcriptomic Response to LDL and oxLDL in Human Vascular Smooth Muscle Cells

    PubMed Central

    Damián-Zamacona, Salvador; Toledo-Ibelles, Paola; Ibarra-Abundis, Mabel Z.; Uribe-Figueroa, Laura; Hernández-Lemus, Enrique; Macedo-Alcibia, Karla Paola; Delgado–Coello, Blanca; Mas-Oliva, Jaime; Reyes-Grajeda, Juan Pablo

    2016-01-01

    Background Although nowadays it is well known that the human transcriptome can importantly vary according to external or environmental condition, the reflection of this concept when studying oxidative stress and its direct relationship with gene expression profiling during the process of atherogenesis has not been thoroughly achieved. Objective The ability to analyze genome-wide gene expression through transcriptomics has shown that the genome responds dynamically to diverse stimuli. Here, we describe the transcriptome of human vascular smooth muscle cells (hVSMC) stimulated by native and oxidized low-density lipoprotein (nLDL and oxLDL respectively), with the aim of assessing the early molecular changes that induce a response in this cell type resulting in a transcriptomic transformation. This expression has been demonstrated in atherosclerotic plaques in vivo and in vitro, particularly in the light of the oxidative modification hypothesis of atherosclerosis. Approach and Results Total RNA was isolated with TRIzol reagent (Life Technologies) and quality estimated using an Agilent 2100 bioanalyzer. The transcriptome of hVSMC under different experimental conditions (1,5 and 24 hours for nLDL and oxLDL) was obtained using the GeneChip Human Gene 1.0 ST (Affymetrix) designed to measure gene expression of 28,869 well-annotated genes. A fixed fold-change cut-off corresponding to ± 2 was used to identify genes exhibiting the most significant variation and statistical significance (P< 0.05), and 8 genes validated by qPCR using Taqman probes. Conclusions 10 molecular processes were significantly affected in hVSMC: Apoptosis and cell cycle, extracellular matrix remodeling, DNA repair, cholesterol efflux, cGMP biosynthesis, endocytic mechanisms, calcium homeostasis, redox balance, membrane trafficking and finally, the immune response to inflammation. The evidence we present supporting the hypothesis for the involvement of oxidative modification of several processes and

  19. C/EBP transcription factors regulate NADPH oxidase in human aortic smooth muscle cells.

    PubMed

    Manea, Simona-Adriana; Todirita, Andra; Raicu, Monica; Manea, Adrian

    2014-07-01

    In atherosclerosis, oxidative stress-induced vascular smooth muscle cells (SMCs) dysfunction is partially mediated by up-regulated NADPH oxidase (Nox); the mechanisms of enzyme regulation are not entirely defined. CCAAT/enhancer-binding proteins (C/EBP) regulate cellular proliferation and differentiation, and the expression of many inflammatory and immune genes. We aimed at elucidating the role of C/EBP in the regulation of Nox in SMCs exposed to pro-inflammatory conditions. Human aortic SMCs were treated with interferon-γ (IFN-γ) for up to 24 hrs. Lucigenin-enhanced chemiluminescence, real-time PCR, Western blot, promoter-luciferase reporter analysis and chromatin immunoprecipitation assays were employed to investigate Nox regulation. IFN-γ dose-dependently induced Nox activity and expression, nuclear translocation and up-regulation of C/EBPα, C/EBPβ and C/EBPδ protein expression levels. Silencing of C/EBPα, C/EBPβ or C/EBPδ reduced significantly but differentially the IFN-γ-induced up-regulation of Nox activity, gene and protein expression. In silico analysis indicated the existence of typical C/EBP sites within Nox1, Nox4 and Nox5 promoters. Transient overexpression of C/EBPα, C/EBPβ or C/EBPδ enhanced the luciferase level directed by the promoters of the Nox subtypes. Chromatin immunoprecipitation demonstrated the physical interaction of C/EBPα, C/EBPβ and C/EBPδ proteins with the Nox1/4/5 promoters. C/EBP transcription factors are important regulators of Nox enzymes in IFN-γ-exposed SMCs. Activation of C/EBP may induce excessive Nox-derived reactive oxygen species formation, further contributing to SMCs dysfunction and atherosclerotic plaque development. Pharmacological targeting of C/EBP-related signalling pathways may be used to counteract the adverse effects of oxidative stress. PMID:24797079

  20. IL-17A mediates a selective gene expression profile in asthmatic human airway smooth muscle cells.

    PubMed

    Dragon, Stéphane; Hirst, Stuart J; Lee, Tak H; Gounni, Abdelilah S

    2014-06-01

    Airway smooth muscle (ASM) cells are thought to contribute to the pathogenesis of allergic asthma by orchestrating and perpetuating airway inflammation and remodeling responses. In this study, we evaluated the IL-17RA signal transduction and gene expression profile in ASM cells from subjects with mild asthma and healthy individuals. Human primary ASM cells were treated with IL-17A and probed by the Affymetrix GeneChip array, and gene targets were validated by real-time quantitative RT-PCR. Genomic analysis underlined the proinflammatory nature of IL-17A, as multiple NF-κB regulatory factors and chemokines were induced in ASM cells. Transcriptional regulators consisting of primary response genes were overrepresented and displayed dynamic expression profiles. IL-17A poorly enhanced IL-1β or IL-22 gene responses in ASM cells from both subjects with mild asthma and healthy donors. Interestingly, protein modifications to the NF-κB regulatory network were not observed after IL-17A stimulation, although oscillations in IκBε expression were detected. ASM cells from subjects with mild asthma up-regulated more genes with greater overall variability in response to IL-17A than from healthy donors. Finally, in response to IL-17A, ASM cells displayed rapid activation of the extracellular signal-regulated kinase/ribosomal S6 kinase signaling pathway and increased nuclear levels of phosphorylated extracellular signal-regulated kinase. Taken together, our results suggest that IL-17A mediated modest gene expression response, which, in cooperation with the NF-κB signaling network, may regulate the gene expression profile in ASM cells.

  1. Characterisation of K+ channels in human fetoplacental vascular smooth muscle cells.

    PubMed

    Brereton, Melissa F; Wareing, Mark; Jones, Rebecca L; Greenwood, Susan L

    2013-01-01

    Adequate blood flow through placental chorionic plate resistance arteries (CPAs) is necessary for oxygen and nutrient transfer to the fetus and a successful pregnancy. In non-placental vascular smooth muscle cells (SMCs), K(+) channels regulate contraction, vascular tone and blood flow. Previous studies showed that K(+) channel modulators alter CPA tone, but did not distinguish between effects on K(+) channels in endothelial cells and SMCs. In this study, we developed a preparation of freshly isolated CPASMCs of normal pregnancy and investigated K(+) channel expression and function. CPASMCs were isolated from normal human term placentas using enzymatic digestion. Purity and phenotype was confirmed with immunocytochemistry. Whole-cell patch clamp was used to assess K(+) channel currents, and mRNA and protein expression was determined in intact CPAs and isolated SMCs with RT-PCR and immunostaining. Isolated SMCs expressed α-actin but not CD31, a marker of endothelial cells. CPASMCs and intact CPAs expressed h-caldesmon and non-muscle myosin heavy chain-2; phenotypic markers of contractile and synthetic SMCs respectively. Whole-cell currents were inhibited by 4-AP, TEA, charybdotoxin and iberiotoxin implicating functional K(v) and BK(Ca) channels. 1-EBIO enhanced whole cell currents which were abolished by TRAM-34 and reduced by apamin indicating activation of IK(Ca) and SK(Ca) respectively. BK(Ca), IK(Ca) and SK(Ca)3 mRNA and/or protein were expressed in CPASMCs and intact CPAs. This study provides the first direct evidence for functional K(v), BK(Ca,) IK(Ca) and SK(Ca) channels in CPASMCs. These cells display a mixed phenotype implicating a dual role for CPASMCs in controlling both fetoplacental vascular resistance and vasculogenesis. PMID:23437391

  2. Marker profile for the evaluation of human umbilical artery smooth muscle cell quality obtained by different isolation and culture methods.

    PubMed

    Mazza, G; Roßmanith, E; Lang-Olip, I; Pfeiffer, D

    2016-08-01

    Even though umbilical cord arteries are a common source of vascular smooth muscle cells, the lack of reliable marker profiles have not facilitated the isolation of human umbilical artery smooth muscle cells (HUASMC). For accurate characterization of HUASMC and cells in their environment, the expression of smooth muscle and mesenchymal markers was analyzed in umbilical cord tissue sections. The resulting marker profile was then used to evaluate the quality of HUASMC isolation and culture methods. HUASMC and perivascular-Wharton's jelly stromal cells (pv-WJSC) showed positive staining for α-smooth muscle actin (α-SMA), smooth muscle myosin heavy chain (SM-MHC), desmin, vimentin and CD90. Anti-CD10 stained only pv-WJSC. Consequently, HUASMC could be characterized as α-SMA+ , SM-MHC+ , CD10- cells, which are additionally negative for endothelial markers (CD31 and CD34). Enzymatic isolation provided primary HUASMC batches with 90-99 % purity, yet, under standard culture conditions, contaminant CD10+ cells rapidly constituted more than 80 % of the total cell population. Contamination was mainly due to the poor adhesion of HUASMC to cell culture plates, regardless of the different protein coatings (fibronectin, collagen I or gelatin). HUASMC showed strong attachment and long-term viability only in 3D matrices. The explant isolation method achieved cultures with only 13-40 % purity with considerable contamination by CD10+ cells. CD10+ cells showed spindle-like morphology and up-regulated expression of α-SMA and SM-MHC upon culture in smooth muscle differentiation medium. Considering the high contamination risk of HUASMC cultures by CD10+ neighboring cells and their phenotypic similarities, precise characterization is mandatory to avoid misleading results.

  3. Human pulmonary vascular and venous compliances are reduced before and during left-sided heart failure.

    PubMed

    Hirakawa, S; Suzuki, T; Gotoh, K; Ito, H; Tanaka, T; Ohsumi, Y; Yagi, Y; Terashima, Y; Fujiwara, H; Nagashima, K

    1995-01-01

    Human pulmonary vascular and venous compliances were measured in 41 patients with or without left-sided heart failure. Two methods were used. Method 1 was based on analysis of pulmonary capillary wedge (PCW) pressure tracings according to Cv,PCW = (SF/100)(0.075PCW + 0.90)SV/[(v - d)PCW + 1], where Cv,PCW is compliance of pulmonary venous system, SF is systolic fraction of pulmonary venous flow [related to pulmonary capillary wedge pressure (PCW) as SF = 82 - 2.01PCW], (v - d)PCW is pulse pressure in PCW position, and SV is stroke volume. The (0.075PCW + 0.90) term equals k", i.e., systolic run-off ratio. Method 2 was used to measure to pulmonary vascular volume-pressure (V-P) relationship and pulmonary vascular compliance (Cvasc) and is based on measurement of pulmonary blood volume (PBV) and its increase with passive elevation of the legs to calculate Cvasc. Assuming the proportion of blood entering pulmonary venous system (in increase of PBV) during passive leg elevation to be 0.8, pulmonary venous compliance (Cv,PBV) was calculated as Cv,PBV = 0.8Cvasc. Cv,PCW correlated fairly closely with Cv,PBV (r = 0.81, coefficient of variation = 31%). This fair agreement between two independent methods suggests strongly that both methods may be valid, although other interpretations are possible. Cv,PCW, Cvasc, and Cv,PBV decreased going from New York Heart Association class I to classes II and III. When PBV was plotted vs. PCW, average V-P line for class II patients was flatter and shifted downward to the right compared with that for class I. This suggests pulmonary vasoconstriction as well as other factors. Average V-P line for class III patients is flatter but not displaced compared with that for class II. Another previously reported series of 50 patients, most of whom had ischemic heart disease, are included in this study. PMID:7713833

  4. Human motion perception and smooth eye movements show similar directional biases for elongated apertures

    NASA Technical Reports Server (NTRS)

    Beutter, B. R.; Stone, L. S.

    1998-01-01

    Although numerous studies have examined the relationship between smooth-pursuit eye movements and motion perception, it remains unresolved whether a common motion-processing system subserves both perception and pursuit. To address this question, we simultaneously recorded perceptual direction judgments and the concomitant smooth eye-movement response to a plaid stimulus that we have previously shown generates systematic perceptual errors. We measured the perceptual direction biases psychophysically and the smooth eye-movement direction biases using two methods (standard averaging and oculometric analysis). We found that the perceptual and oculomotor biases were nearly identical, suggesting that pursuit and perception share a critical motion processing stage, perhaps in area MT or MST of extrastriate visual cortex.

  5. Human Motion Perception and Smooth Eye Movements Show Similar Directional Biases for Elongated Apertures

    NASA Technical Reports Server (NTRS)

    Beutter, Brent R.; Stone, Leland S.

    1997-01-01

    Although numerous studies have examined the relationship between smooth-pursuit eye movements and motion perception, it remains unresolved whether a common motion-processing system subserves both perception and pursuit. To address this question, we simultaneously recorded perceptual direction judgments and the concomitant smooth eye movement response to a plaid stimulus that we have previously shown generates systematic perceptual errors. We measured the perceptual direction biases psychophysically and the smooth eye-movement direction biases using two methods (standard averaging and oculometric analysis). We found that the perceptual and oculomotor biases were nearly identical suggesting that pursuit and perception share a critical motion processing stage, perhaps in area MT or MST of extrastriate visual cortex.

  6. First Human Case of Pulmonary Fungal Ball Due to a Perenniporia Species (a Basidiomycete)

    PubMed Central

    Agarwal, Kshitij; Kathuria, Shallu; Singh, Pradeep Kumar; Roy, P.; Gaur, S. N.; Rodrigues, Anderson M.; de Hoog, G. S.; Meis, Jacques F.

    2012-01-01

    Perenniporia species are basidiomycetes, resupinate shelf fungi responsible for white rot decay of wood. Here, we report for the first time an intracavitary pulmonary fungal ball due to a species of Perenniporia that has not been recognized so far as a human pathogen. The fungus was identified by sequencing of the partial ribosomal operon of a culture from a clinical specimen. PMID:22895039

  7. Dextromethorphan Mediated Bitter Taste Receptor Activation in the Pulmonary Circuit Causes Vasoconstriction

    PubMed Central

    Upadhyaya, Jasbir D.; Chakraborty, Raja; Pydi, Sai P.; Bhullar, Rajinder P.; Dakshinamurti, Shyamala; Chelikani, Prashen

    2014-01-01

    Activation of bitter taste receptors (T2Rs) in human airway smooth muscle cells leads to muscle relaxation and bronchodilation. This finding led to our hypothesis that T2Rs are expressed in human pulmonary artery smooth muscle cells and might be involved in regulating the vascular tone. RT-PCR was performed to reveal the expression of T2Rs in human pulmonary artery smooth muscle cells. Of the 25 T2Rs, 21 were expressed in these cells. Functional characterization was done by calcium imaging after stimulating the cells with different bitter agonists. Increased calcium responses were observed with most of the agonists, the largest increase seen for dextromethorphan. Previously in site-directed mutational studies, we have characterized the response of T2R1 to dextromethorphan, therefore, T2R1 was selected for further analysis in this study. Knockdown with T2R1 specific shRNA decreased mRNA levels, protein levels and dextromethorphan-induced calcium responses in pulmonary artery smooth muscle cells by up to 50%. To analyze if T2Rs are involved in regulating the pulmonary vascular tone, ex vivo studies using pulmonary arterial and airway rings were pursued. Myographic studies using porcine pulmonary arterial and airway rings showed that stimulation with dextromethorphan led to contraction of the pulmonary arterial and relaxation of the airway rings. This study shows that dextromethorphan, acting through T2R1, causes vasoconstrictor responses in the pulmonary circuit and relaxation in the airways. PMID:25340739

  8. Dextromethorphan mediated bitter taste receptor activation in the pulmonary circuit causes vasoconstriction.

    PubMed

    Upadhyaya, Jasbir D; Singh, Nisha; Sikarwar, Anurag S; Chakraborty, Raja; Pydi, Sai P; Bhullar, Rajinder P; Dakshinamurti, Shyamala; Chelikani, Prashen

    2014-01-01

    Activation of bitter taste receptors (T2Rs) in human airway smooth muscle cells leads to muscle relaxation and bronchodilation. This finding led to our hypothesis that T2Rs are expressed in human pulmonary artery smooth muscle cells and might be involved in regulating the vascular tone. RT-PCR was performed to reveal the expression of T2Rs in human pulmonary artery smooth muscle cells. Of the 25 T2Rs, 21 were expressed in these cells. Functional characterization was done by calcium imaging after stimulating the cells with different bitter agonists. Increased calcium responses were observed with most of the agonists, the largest increase seen for dextromethorphan. Previously in site-directed mutational studies, we have characterized the response of T2R1 to dextromethorphan, therefore, T2R1 was selected for further analysis in this study. Knockdown with T2R1 specific shRNA decreased mRNA levels, protein levels and dextromethorphan-induced calcium responses in pulmonary artery smooth muscle cells by up to 50%. To analyze if T2Rs are involved in regulating the pulmonary vascular tone, ex vivo studies using pulmonary arterial and airway rings were pursued. Myographic studies using porcine pulmonary arterial and airway rings showed that stimulation with dextromethorphan led to contraction of the pulmonary arterial and relaxation of the airway rings. This study shows that dextromethorphan, acting through T2R1, causes vasoconstrictor responses in the pulmonary circuit and relaxation in the airways. PMID:25340739

  9. The purinergic component of human bladder smooth muscle cells’ proliferation and contraction under physiological stretch

    SciTech Connect

    Wazir, Romel; Luo, De-Yi; Tian, Ye; Yue, Xuan; Li, Hong; Wang, Kun-Jie

    2013-07-26

    Highlights: •Stretch induces proliferation and contraction. •Optimum applied stretch in vitro is 5% and 10% equibiaxial stretching respectively. •Expression of P2X1 and P2X2 is upregulated after application of stretch. •P2X2 is possibly more susceptible to stretch related changes. •Purinoceptors functioning may explain conditions with atropine resistance. -- Abstract: Objective: To investigate whether cyclic stretch induces proliferation and contraction of human smooth muscle cells (HBSMCs), mediated by P2X purinoceptor 1 and 2 and the signal transduction mechanisms of this process. Methods: HBSMCs were seeded on silicone membrane and stretched under varying parameters; (equibiaxial elongation: 2.5%, 5%, 10%, 15%, 20%, 25%), (Frequency: 0.05 Hz, 0.1 Hz, 0.2 Hz, 0.5 Hz, 1 Hz). 5-Bromo-2-deoxyuridine assay was employed for proliferative studies. Contractility of the cells was determined using collagen gel contraction assay. After optimal physiological stretch was established; P2X1 and P2X2 were analyzed by real time polymerase chain reaction and Western Blot. Specificity of purinoceptors was maintained by employing specific inhibitors; (NF023 for P2X1, and A317491for P2X2), in some experiments. Results: Optimum proliferation and contractility were observed at 5% and 10% equibiaxial stretching respectively, applied at a frequency of 0.1 Hz; At 5% stretch, proliferation increased from 0.837 ± 0.026 (control) to 1.462 ± 0.023%, p < 0.05. Mean contraction at 10% stretching increased from 31.7 ± 2.3%, (control) to 78.28 ±1.45%, p < 0.05. Expression of P2X1 and P2X2 was upregulated after application of stretch. Inhibition had effects on proliferation (1.232 ± 0.051, p < 0.05 NF023) and (1.302 ± 0.021, p < 0.05 A314791) while contractility was markedly reduced (68.24 ± 2.31, p < 0.05 NF023) and (73.2 ± 2.87, p < 0.05 A314791). These findings shows that mechanical stretch can promote magnitude-dependent proliferative and contractile modulation of HBSMCs in

  10. Phosphodiesterase 5 inhibitors augment UT-15C-stimulated ATP release from erythrocytes of humans with pulmonary arterial hypertension

    PubMed Central

    Bowles, Elizabeth A; Moody, Gina N; Yeragunta, Yashaswini; Stephenson, Alan H; Ellsworth, Mary L

    2015-01-01

    Both prostacyclin analogs and phosphodiesterase 5 (PDE5) inhibitors are effective treatments for pulmonary arterial hypertension (PAH). In addition to direct effects on vascular smooth muscle, prostacyclin analogs increase cAMP levels and ATP release from healthy human erythrocytes. We hypothesized that UT-15C, an orally available form of the prostacyclin analog, treprostinil, would stimulate ATP release from erythrocytes of humans with PAH and that this release would be augmented by PDE5 inhibitors. Erythrocytes were isolated and the effect of UT-15C on cAMP levels and ATP release were measured in the presence and absence of the PDE5 inhibitors, zaprinast or tadalafil. In addition, the ability of a soluble guanylyl cyclase inhibitor to prevent the effects of tadalafil was determined. Erythrocytes of healthy humans and humans with PAH respond to UT-15C with increases in cAMP levels and ATP release. In both groups, UT-15C-induced ATP release was potentiated by zaprinast and tadalafil. The effect of tadalafil was prevented by pre-treatment with an inhibitor of soluble guanylyl cyclase in healthy human erythrocytes. Importantly, UT-15C-induced ATP release was greater in PAH erythrocytes than in healthy human erythrocytes in both the presence and the absence of PDE5 inhibitors. The finding that prostacyclin analogs and PDE5 inhibitors work synergistically to enhance release of the potent vasodilator ATP from PAH erythrocytes provides a new rationale for the co-administration of these drugs in this disease. Moreover, these results suggest that the erythrocyte is a novel target for future drug development for the treatment of PAH. PMID:25125498

  11. H2 Receptor-Mediated Relaxation of Circular Smooth Muscle in Human Gastric Corpus: the Role of Nitric Oxide (NO).

    PubMed

    Lee, Sang Eok; Kim, Dae Hoon; Kim, Young Chul; Han, Joung-Ho; Choi, Woong; Kim, Chan Hyung; Jeong, Hye Won; Park, Seon-Mee; Yun, Sei Jin; Choi, Song-Yi; Sung, Rohyun; Kim, Young Ho; Yoo, Ra Young; Sun, Park Hee; Kim, Heon; Song, Young-Jin; Xu, Wen-Xie; Yun, Hyo-Yung; Lee, Sang Jin

    2014-10-01

    This study was designed to examine the effects of histamine on gastric motility and its specific receptor in the circular smooth muscle of the human gastric corpus. Histamine mainly produced tonic relaxation in a concentration-dependent and reversible manner, although histamine enhanced contractility in a minor portion of tissues tested. Histamine-induced tonic relaxation was nerve-insensitive because pretreatment with nerve blockers cocktail (NBC) did not inhibit relaxation. Additionally, K(+) channel blockers, such as tetraethylammonium (TEA), apamin (APA), and glibenclamide (Glib), had no effect. However, N(G)-nitro-L-arginine methyl ester (L-NAME) and 1H-(1,2,4)oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), did inhibit histamine-induced tonic relaxation. In particular, histamine-induced tonic relaxation was converted to tonic contraction by pretreatment with L-NAME. Ranitidine, the H2 receptor blocker, inhibited histamine-induced tonic relaxation. These findings suggest that histamine produced relaxation in circular smooth muscle of human gastric smooth muscle through H2 receptor and NO/sGC pathways.

  12. H2 Receptor-Mediated Relaxation of Circular Smooth Muscle in Human Gastric Corpus: the Role of Nitric Oxide (NO)

    PubMed Central

    Lee, Sang Eok; Kim, Dae Hoon; Han, Joung-Ho; Choi, Woong; Kim, Chan Hyung; Jeong, Hye Won; Park, Seon-Mee; Yun, Sei Jin; Choi, Song-Yi; Sung, Rohyun; Kim, Young Ho; Yoo, Ra Young; Sun, Park Hee; Kim, Heon; Song, Young-Jin; Xu, Wen-Xie; Lee, Sang Jin

    2014-01-01

    This study was designed to examine the effects of histamine on gastric motility and its specific receptor in the circular smooth muscle of the human gastric corpus. Histamine mainly produced tonic relaxation in a concentration-dependent and reversible manner, although histamine enhanced contractility in a minor portion of tissues tested. Histamine-induced tonic relaxation was nerve-insensitive because pretreatment with nerve blockers cocktail (NBC) did not inhibit relaxation. Additionally, K+ channel blockers, such as tetraethylammonium (TEA), apamin (APA), and glibenclamide (Glib), had no effect. However, NG-nitro-L-arginine methyl ester (L-NAME) and 1H-(1,2,4)oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), did inhibit histamine-induced tonic relaxation. In particular, histamine-induced tonic relaxation was converted to tonic contraction by pretreatment with L-NAME. Ranitidine, the H2 receptor blocker, inhibited histamine-induced tonic relaxation. These findings suggest that histamine produced relaxation in circular smooth muscle of human gastric smooth muscle through H2 receptor and NO/sGC pathways. PMID:25352763

  13. H2 Receptor-Mediated Relaxation of Circular Smooth Muscle in Human Gastric Corpus: the Role of Nitric Oxide (NO).

    PubMed

    Lee, Sang Eok; Kim, Dae Hoon; Kim, Young Chul; Han, Joung-Ho; Choi, Woong; Kim, Chan Hyung; Jeong, Hye Won; Park, Seon-Mee; Yun, Sei Jin; Choi, Song-Yi; Sung, Rohyun; Kim, Young Ho; Yoo, Ra Young; Sun, Park Hee; Kim, Heon; Song, Young-Jin; Xu, Wen-Xie; Yun, Hyo-Yung; Lee, Sang Jin

    2014-10-01

    This study was designed to examine the effects of histamine on gastric motility and its specific receptor in the circular smooth muscle of the human gastric corpus. Histamine mainly produced tonic relaxation in a concentration-dependent and reversible manner, although histamine enhanced contractility in a minor portion of tissues tested. Histamine-induced tonic relaxation was nerve-insensitive because pretreatment with nerve blockers cocktail (NBC) did not inhibit relaxation. Additionally, K(+) channel blockers, such as tetraethylammonium (TEA), apamin (APA), and glibenclamide (Glib), had no effect. However, N(G)-nitro-L-arginine methyl ester (L-NAME) and 1H-(1,2,4)oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), did inhibit histamine-induced tonic relaxation. In particular, histamine-induced tonic relaxation was converted to tonic contraction by pretreatment with L-NAME. Ranitidine, the H2 receptor blocker, inhibited histamine-induced tonic relaxation. These findings suggest that histamine produced relaxation in circular smooth muscle of human gastric smooth muscle through H2 receptor and NO/sGC pathways. PMID:25352763

  14. In vitro effect of medicinal plants used to treat erectile dysfunction on smooth muscle relaxation and human sperm.

    PubMed

    Rakuambo, N C; Meyer, J J M; Hussein, A; Huyser, C; Mdlalose, S P; Raidani, T G

    2006-04-21

    Chloroform and ethanol extracts of root bark of Securidaca longepedunculata, Wrightia natalensis and Rhoicissus tridentata were investigated for their in vitro activity on the contraction of corpus cavernosal smooth muscle of white New Zealand rabbits. Some of the extracts of these plants relaxed the corpus cavernosal smooth muscle at low concentrations. The highest activity was obtained from Securidaca longepedunculata chloroform extracts at a concentration of 13.0 mg/ml, which induced 66.6% relaxation. Viagra was used as a positive control in this study. Extracts of Securidaca longepedunculata added to human spermatozoa affected certain sperm parameters negatively at 6.5 mg/ml and higher whilst there was no effect at 1.0 mg/ml. PMID:16309865

  15. Role of protein kinase C in phospholemman mediated regulation of α₂β₁ isozyme of Na⁺/K⁺-ATPase in caveolae of pulmonary artery smooth muscle cells.

    PubMed

    Dey, Kuntal; Roy, Soumitra; Ghosh, Biswarup; Chakraborti, Sajal

    2012-04-01

    We have recently reported that α(2)β(1) and α(1)β(1) isozymes of Na(+)/K(+)-ATPase (NKA) are localized in the caveolae whereas only the α(1)β(1) isozyme of NKA is localized in the non-caveolae fraction of pulmonary artery smooth muscle cell membrane. It is well known that different isoforms of NKA are regulated differentially by PKA and PKC, but the mechanism is not known in the caveolae of pulmonary artery smooth muscle cells. Herein, we examined whether this regulation occurs through phospholemman (PLM) in the caveolae. Our results suggest that PKC mediated phosphorylation of PLM occurs only when it is associated with the α(2) isoform of NKA, whereas phosphorylation of PLM by PKA occurs when it is associated with the α(1) isoform of NKA. To investigate the mechanism of regulation of α(2) isoform of NKA by PKC-mediated phosphorylation of PLM, we have purified PLM from the caveolae and reconstituted into the liposomes. Our result revealed that (i) in the reconstituted liposomes phosphorylated PLM (PKC mediated) stimulate NKA activity, which appears to be due to an increase in the turnover number of the enzyme; (ii) phosphorylated PLM did not change the affinity of the pump for Na(+); and (iii) even after phosphorylation by PKC, PLM still remains associated with the α(2) isoform of NKA.

  16. Bone morphogenetic protein-2 activates NADPH oxidase to increase endoplasmic reticulum stress and human coronary artery smooth muscle cell calcification.

    PubMed

    Liberman, Marcel; Johnson, Rebecca C; Handy, Diane E; Loscalzo, Joseph; Leopold, Jane A

    2011-09-30

    Bone morphogenetic protein-2 (BMP-2) increases oxidant stress and endoplasmic reticulum (ER) stress to stimulate differentiation of osteoblasts; however, the role of these signaling pathways in the transition of smooth muscle cells to a calcifying osteoblast-like phenotype remains incompletely characterized. We, therefore, treated human coronary artery smooth muscle cells (HCSMC) with BMP-2 (100ng/mL) and found an increase in NADPH oxidase activity and oxidant stress that occurred via activation of the bone morphogenetic protein receptor 2 and Smad 1 signaling. BMP-2-mediated oxidant stress also increased endoplasmic reticulum (ER) stress demonstrated by increased expression of GRP78, phospho-IRE1α, and the transcription factor XBP1. Analysis of a 1kb segment of the Runx2 promoter revealed an XBP1 binding site; electrophoretic mobility shift and chromatin immunoprecipitation assays demonstrated that XBP1 bound to the Runx2 promoter at this site in BMP-2-treated HCSMC. Inhibition of oxidant stress or ER stress decreased Runx2 expression, intracellular calcium deposition, and mineralization of BMP-2-treated HCSMC. Thus, in HCSMC, BMP-2 increases oxidant stress and ER stress to increase Runx2 expression and promote vascular smooth muscle cell calcification.

  17. Hyperphosphatemia induces cellular senescence in human aorta smooth muscle cells through integrin linked kinase (ILK) up-regulation.

    PubMed

    Troyano, Nuria; Nogal, María Del; Mora, Inés; Diaz-Naves, Manuel; Lopez-Carrillo, Natalia; Sosa, Patricia; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruiz-Torres, María P

    2015-12-01

    Aging is conditioned by genetic and environmental factors. Hyperphosphatemia is related to some pathologies, affecting to vascular cells behavior. This work analyze whether high concentration of extracellular phosphate induces vascular smooth muscle cells senescence, exploring the intracellular mechanisms and highlighting the in vivo relevance of this phenomenon. Human aortic smooth muscle cells treated with β-Glycerophosphate (BGP, 10mM) suffered cellular senescence by increasing p53, p21 and p16 expression and the senescence associated β-galactosidase activity. In parallel, BGP induced ILK overexpression, dependent on the IGF-1 receptor activation, and oxidative stress. Down-regulating ILK expression prevented BGP-induced senescence and oxidative stress. Aortic rings from young rats treated with 10mM BGP for 48h, showed increased p53, p16 and ILK expression and SA-β-gal activity. Seven/eight nephrectomized rats feeding a hyperphosphatemic diet and fifteenth- month old mice showed hyperphosphatemia and aortic ILK, p53 and p16 expression. In conclusion, we demonstrated that high extracellular concentration of phosphate induced senescence in cultured smooth muscle through the activation of IGF-1 receptor and ILK overexpression and provided solid evidences for the in vivo relevance of these results since aged animals showed high levels of serum phosphate linked to increased expression of ILK and senescence genes.

  18. Determinants of ventilation and pulmonary artery pressure during early acclimatization to hypoxia in humans.

    PubMed

    Fatemian, Marzieh; Herigstad, Mari; Croft, Quentin P P; Formenti, Federico; Cardenas, Rosa; Wheeler, Carly; Smith, Thomas G; Friedmannova, Maria; Dorrington, Keith L; Robbins, Peter A

    2016-03-01

    Pulmonary ventilation and pulmonary arterial pressure both rise progressively during the first few hours of human acclimatization to hypoxia. These responses are highly variable between individuals, but the origin of this variability is unknown. Here, we sought to determine whether the variabilities between different measures of response to sustained hypoxia were related, which would suggest a common source of variability. Eighty volunteers individually underwent an 8-h isocapnic exposure to hypoxia (end-tidal P(O2)=55 Torr) in a purpose-built chamber. Measurements of ventilation and pulmonary artery systolic pressure (PASP) assessed by Doppler echocardiography were made during the exposure. Before and after the exposure, measurements were made of the ventilatory sensitivities to acute isocapnic hypoxia (G(pO2)) and hyperoxic hypercapnia, the latter divided into peripheral (G(pCO2)) and central (G(cCO2)) components. Substantial acclimatization was observed in both ventilation and PASP, the latter being 40% greater in women than men. No correlation was found between the magnitudes of pulmonary ventilatory and pulmonary vascular responses. For G(pO2), G(pCO2) and G(cC O2), but not the sensitivity of PASP to acute hypoxia, the magnitude of the increase during acclimatization was proportional to the pre-acclimatization value. Additionally, the change in G(pO2) during acclimatization to hypoxia correlated well with most other measures of ventilatory acclimatization. Of the initial measurements prior to sustained hypoxia, only G(pCO2) predicted the subsequent rise in ventilation and change in G(pO2) during acclimatization. We conclude that the magnitudes of the ventilatory and pulmonary vascular responses to sustained hypoxia are predominantly determined by different factors and that the initial G(pCO2) is a modest predictor of ventilatory acclimatization.

  19. Extracellular Nucleotides Can Induce Chemokine (C-C motif) Ligand 2 Expression in Human Vascular Smooth Muscle Cells

    PubMed Central

    Kim, Jeung-Il; Kim, Hye-Young; Kim, Sun-Mi; Lee, Sae-A; Son, Yong-Hae; Eo, Seong-Kug; Rhim, Byung-Yong

    2011-01-01

    To understand the roles of purinergic receptors and cellular molecules below the receptors in the vascular inflammatory response, we determined if extracellular nucleotides up-regulated chemokine expression in vascular smooth muscle cells (VSMCs). Human aortic smooth muscle cells (AoSMCs) abundantly express P2Y1, P2Y6, and P2Y11 receptors, which all respond to extracellular nucleotides. Exposure of human AoSMCs to NAD+, an agonist of the human P2Y11 receptor, and NADP+ as well as ATP, an agonist for P2Y1 and P2Y11 receptors, caused increase in chemokine (C-C motif) ligand 2 gene (CCL2) transcript and CCL2 release; however, UPT did not affect CCL2 expression. CCL2 release by NAD+ and NADP+ was inhibited by a concentration dependent manner by suramin, an antagonist of P2-purinergic receptors. NAD+ and NADP+ activated protein kinase C and enhanced phosphorylation of mitogen-activated protein kinases and Akt. NAD+- and NADP+-mediated CCL2 release was significantly attenuated by SP6001250, U0126, LY294002, Akt inhibitor IV, RO318220, GF109203X, and diphenyleneiodium chloride. These results indicate that extracellular nucleotides can promote the proinflammatory VSMC phenotype by up-regulating CCL2 expression, and that multiple cellular elements, including phosphatidylinositol 3-kinase, Akt, protein kinase C, and mitogen-activated protein kinases, are involved in that process. PMID:21461238

  20. Plasma metabolomics in human pulmonary tuberculosis disease: a pilot study.

    PubMed

    Frediani, Jennifer K; Jones, Dean P; Tukvadze, Nestan; Uppal, Karan; Sanikidze, Eka; Kipiani, Maia; Tran, ViLinh T; Hebbar, Gautam; Walker, Douglas I; Kempker, Russell R; Kurani, Shaheen S; Colas, Romain A; Dalli, Jesmond; Tangpricha, Vin; Serhan, Charles N; Blumberg, Henry M; Ziegler, Thomas R

    2014-01-01

    We aimed to characterize metabolites during tuberculosis (TB) disease and identify new pathophysiologic pathways involved in infection as well as biomarkers of TB onset, progression and resolution. Such data may inform development of new anti-tuberculosis drugs. Plasma samples from adults with newly diagnosed pulmonary TB disease and their matched, asymptomatic, sputum culture-negative household contacts were analyzed using liquid chromatography high-resolution mass spectrometry (LC-MS) to identify metabolites. Statistical and bioinformatics methods were used to select accurate mass/charge (m/z) ions that were significantly different between the two groups at a false discovery rate (FDR) of q<0.05. Two-way hierarchical cluster analysis (HCA) was used to identify clusters of ions contributing to separation of cases and controls, and metabolomics databases were used to match these ions to known metabolites. Identity of specific D-series resolvins, glutamate and Mycobacterium tuberculosis (Mtb)-derived trehalose-6-mycolate was confirmed using LC-MS/MS analysis. Over 23,000 metabolites were detected in untargeted metabolomic analysis and 61 metabolites were significantly different between the two groups. HCA revealed 8 metabolite clusters containing metabolites largely upregulated in patients with TB disease, including anti-TB drugs, glutamate, choline derivatives, Mycobacterium tuberculosis-derived cell wall glycolipids (trehalose-6-mycolate and phosphatidylinositol) and pro-resolving lipid mediators of inflammation, known to stimulate resolution, efferocytosis and microbial killing. The resolvins were confirmed to be RvD1, aspirin-triggered RvD1, and RvD2. This study shows that high-resolution metabolomic analysis can differentiate patients with active TB disease from their asymptomatic household contacts. Specific metabolites upregulated in the plasma of patients with active TB disease, including Mtb-derived glycolipids and resolvins, have potential as biomarkers

  1. Expression of WNT5A in Idiopathic Pulmonary Fibrosis and Its Control by TGF-β and WNT7B in Human Lung Fibroblasts.

    PubMed

    Newman, Donna R; Sills, W Shane; Hanrahan, Katherine; Ziegler, Amanda; Tidd, Kathleen McGinnis; Cook, Elizabeth; Sannes, Philip L

    2016-02-01

    The wingless (Wnt) family of signaling ligands contributes significantly to lung development and is highly expressed in patients with usual interstitial pneumonia (UIP). We sought to define the cellular distribution of Wnt5A in the lung tissue of patients with idiopathic pulmonary fibrosis (IPF) and the signaling ligands that control its expression in human lung fibroblasts and IPF myofibroblasts. Tissue sections from 40 patients diagnosed with IPF or UIP were probed for the immunolocalization of Wnt5A. Further, isolated lung fibroblasts from normal or IPF human lungs, adenovirally transduced for the overexpression or silencing of Wnt7B or treated with TGF-β1 or its inhibitor, were analyzed for Wnt5A protein expression. Wnt5A was expressed in IPF lungs by airway and alveolar epithelium, smooth muscle cells, endothelium, and myofibroblasts of fibroblastic foci and throughout the interstitium. Forced overexpression of Wnt7B with or without TGF-β1 treatment significantly increased Wnt5A protein expression in normal human smooth muscle cells and fibroblasts but not in IPF myofibroblasts where Wnt5A was already highly expressed. The results demonstrate a wide distribution of Wnt5A expression in cells of the IPF lung and reveal that it is significantly increased by Wnt7B and TGF-β1, which, in combination, could represent key signaling pathways that modulate the pathogenesis of IPF.

  2. Provocation of pulmonary vascular endothelial injury in rabbits by human recombinant interleukin-1 beta.

    PubMed Central

    Goldblum, S E; Yoneda, K; Cohen, D A; McClain, C J

    1988-01-01

    Interleukin-1 (IL-1) mediates components of the acute-phase response, stimulates granulocyte metabolism, and induces endothelial cell surface changes. We studied the effects of human recombinant IL-1 beta (rIL-1 beta) or rIL-1 alpha on circulating granulocytes, their sequestration within the pulmonary microvasculature, pulmonary edema formation, and changes in pulmonary vascular permeability to 125I-labeled albumin. rIL-1 beta administration induced significant (P less than 0.03) but transient granulocytopenia followed by significant (P less than 0.04) neutrophilia and significant (P less than 0.04) pulmonary leukostasis compared with saline-infused rabbits. Rabbits preinfused with 125I-labeled rabbit serum albumin and administered saline, rIL-1 beta, or rIL-1 alpha were sacrificed, and lung wet/dry weight ratios and bronchoalveolar lavage fluid and plasma 125I activities determined. Both rIL-1 beta and rIL-1 alpha increased lung wet/dry weight ratios (P less than 0.025 and P less than 0.01, respectively) compared with saline controls. rIL-1 beta increased bronchoalveolar lavage fluid/plasma 125I radioactivity ratios (P less than 0.025). Electron microscopic analysis of lung sections obtained from rIL-1 beta-infused animals demonstrated endothelial injury, perivascular edema, and extravasation of an ultrastructural permeability tracer. The observation that human rIL-1 can evoke acute pulmonary vascular endothelial injury and lung edema in rabbits supports the hypothesis that IL-1 may play a role in the pathogenesis of the adult respiratory distress syndrome. Images PMID:3261716

  3. Theophylline prevents NAD{sup +} depletion via PARP-1 inhibition in human pulmonary epithelial cells

    SciTech Connect

    Moonen, Harald J.J. . E-mail: h.moonen@grat.unimaas.nl; Geraets, Liesbeth; Vaarhorst, Anika; Bast, Aalt; Wouters, Emiel F.M.; Hageman, Geja J.

    2005-12-30

    Oxidative DNA damage, as occurs during exacerbations in chronic obstructive pulmonary disease (COPD), highly activates the nuclear enzyme poly(ADP-ribose)polymerase-1 (PARP-1). This can lead to cellular depletion of its substrate NAD{sup +}, resulting in an energy crisis and ultimately in cell death. Inhibition of PARP-1 results in preservation of the intracellular NAD{sup +} pool, and of NAD{sup +}-dependent cellular processes. In this study, PARP-1 activation by hydrogen peroxide decreased intracellular NAD{sup +} levels in human pulmonary epithelial cells, which was found to be prevented in a dose-dependent manner by theophylline, a widely used compound in the treatment of COPD. This enzyme inhibition by theophylline was confirmed in an ELISA using purified human PARP-1 and was found to be competitive by nature. These findings provide new mechanistic insights into the therapeutic effect of theophylline in oxidative stress-induced lung pathologies.

  4. Pulmonary Hypertension

    PubMed Central

    Newman, John H.

    2005-01-01

    The modern era in cardiopulmonary medicine began in the 1940s, when Cournand and Richards pioneered right-heart catheterization. Until that time, no direct measurement of central vascular pressure had been performed in humans. Right-heart catheterization ignited an explosion of insights into function and dysfunction of the pulmonary circulation, cardiac performance, ventilation–perfusion relationships, lung–heart interactions, valvular function, and congenital heart disease. It marked the beginnings of angiocardiography with its diagnostic implications for diseases of the left heart and peripheral circulation. Pulmonary hypertension was discovered to be the consequence of a large variety of diseases that either raised pressure downstream of the pulmonary capillaries, induced vasoconstriction, increased blood flow to the lung, or obstructed the pulmonary vessels, either by embolism or in situ fibrosis. Hypoxic vasoconstriction was found to be a major cause of acute and chronic pulmonary hypertension, and surprising vasoreactivity of the pulmonary vascular bed was discovered to be present in many cases of severe pulmonary hypertension, initially in mitral stenosis. Diseases as disparate as scleroderma, cystic fibrosis, kyphoscoliosis, sleep apnea, and sickle cell disease were found to have shared consequences in the pulmonary circulation. Some of the achievements of Cournand and Richards and their scientific descendents are discussed in this article, including success in the diagnosis and treatment of idiopathic pulmonary arterial hypertension, chronic thromboembolic pulmonary hypertension, and management of hypoxic pulmonary hypertension. PMID:15994464

  5. Human mesenchymal stem cells attenuate pulmonary hypertension induced by prenatal lipopolysaccharide treatment in rats.

    PubMed

    Chou, Hsiu-Chu; Lin, Willie; Chen, Chung-Ming

    2016-10-01

    Intra-amniotic injection of lipopolysaccharide (LPS) induces pulmonary hypertension in newborn rats. This study was designed to test whether human mesenchymal stem cells (MSCs) reduce pulmonary hypertension and alleviate cardiac hypertrophy in prenatal LPS-treated rats. Pregnant Sprague-Dawley rats were injected intraperitoneally with LPS (0.5 mg/kg per day) or untreated on gestational days 20 and 21. Human MSCs (3×10(5) cells and 1×10(6) cells) in 0.03 mL of normal saline (NS) were transplanted intratracheally on postnatal day 5. Four study groups were considered: normal, LPS+NS, LPS+MSCs (3×10(5) cells), and LPS+MSCs (1×10(6) cells). On postnatal day 14, lung and heart tissues were collected for measuring the arterial medial wall thickness (MWT) and β-myosin heavy chain (β-MHC) level as markers of pulmonary hypertension and cardiac hypertrophy, respectively. The LPS+NS group exhibited a significantly higher right ventricle (RV)/[left ventricle (LV)+ interventricular septum (IVS)] thickness ratio and MWT, a greater cardiomyocyte width, a greater number of cardiomyocyte nuclei per squared millimeter, and higher β-MHC expression than those observed in the normal group. Human MSC transplantation (3×10(5) cells and 1×10(6) cells) in LPS-treated rats reduced MWT and the RV/(LV+IVS) thickness ratio to normal levels. This improvement in right ventricular hypertrophy was accompanied by a decrease in toll-like receptor 4 (TLR4), nuclear factor-κB, and tumor necrosis factor-α expression in the heart. Intratracheal human MSCs transplantation can attenuate pulmonary hypertension and right ventricular hypertrophy in prenatal LPS-treated rats; this attenuation may be associated with suppression of TLR4 expression via paracrine pathways. PMID:27273502

  6. The role of K⁺ conductances in regulating membrane excitability in human gastric corpus smooth muscle.

    PubMed

    Lee, Ji Yeon; Ko, Eun-Ju; Ahn, Ki Duck; Kim, Sung; Rhee, Poong-Lyul

    2015-04-01

    Changes in resting membrane potential (RMP) regulate membrane excitability. K(+) conductance(s) are one of the main factors in regulating RMP. The functional role of K(+) conductances has not been studied the in human gastric corpus smooth muscles (HGCS). To examine the role of K(+) channels in regulation of RMP in HGCS we employed microelectrode recordings, patch-clamp, and molecular approaches. Tetraethylammonium and charybdotoxin did not affect the RMP, suggesting that BK channels are not involved in regulating RMP. Apamin, a selective small conductance Ca(2+)-activated K(+) channel (SK) blocker, did not show a significant effect on the membrane excitability. 4-Aminopyridine, a Kv channel blocker, caused depolarization and increased the duration of slow wave potentials. 4-Aminopyridine also inhibited a delayed rectifying K(+) current in isolated smooth muscle cells. End-product RT-PCR gel detected Kv1.2 and Kv1.5 in human gastric corpus muscles. Glibenclamide, an ATP-sensitive K(+) channel (KATP) blocker, did not induce depolarization, but nicorandil, a KATP opener, hyperpolarized HGCS, suggesting that KATP are expressed but not basally activated. Kir6.2 transcript, a pore-forming subunit of KATP was expressed in HGCS. A low concentration of Ba(2+), a Kir blocker, induced strong depolarization. Interestingly, Ba(2+)-sensitive currents were minimally expressed in isolated smooth muscle cells under whole-cell patch configuration. KCNJ2 (Kir2.1) transcript was expressed in HGCS. Unique K(+) conductances regulate the RMP in HGCS. Delayed and inwardly rectifying K(+) channels are the main candidates in regulating membrane excitability in HGCS. With the development of cell dispersion techniques of interstitial cells, the cell-specific functional significance will require further analysis.

  7. Functional expression of γ-amino butyric acid transporter 2 in human and guinea pig airway epithelium and smooth muscle.

    PubMed

    Zaidi, Sarah; Gallos, George; Yim, Peter D; Xu, Dingbang; Sonett, Joshua R; Panettieri, Reynold A; Gerthoffer, William; Emala, Charles W

    2011-08-01

    γ-Amino butyric acid (GABA) is a primary inhibitory neurotransmitter in the central nervous system, and is classically released by fusion of synaptic vesicles with the plasma membrane or by egress via GABA transporters (GATs). Recently, a GABAergic system comprised of GABA(A) and GABA(B) receptors has been identified on airway epithelial and smooth muscle cells that regulate mucus secretion and contractile tone of airway smooth muscle (ASM). In addition, the enzyme that synthesizes GABA, glutamic acid decarboxylase, has been identified in airway epithelial cells; however, the mechanism(s) by which this synthesized GABA is released from epithelial intracellular stores is unknown. We questioned whether any of the four known isoforms of GATs are functionally expressed in ASM or epithelial cells. We detected mRNA and protein expression of GAT2 and -4, and isoforms of glutamic acid decarboxylase in native and cultured human ASM and epithelial cells. In contrast, mRNA encoding vesicular GAT (VGAT), the neuronal GABA transporter, was not detected. Functional inhibition of (3)H-GABA uptake was demonstrated using GAT2 and GAT4/betaine-GABA transporter 1 (BGT1) inhibitors in both human ASM and epithelial cells. These results demonstrate that two isoforms of GATs, but not VGAT, are expressed in both airway epithelial and smooth muscle cells. They also provide a mechanism by which locally synthesized GABA can be released from these cells into the airway to activate GABA(A) channels and GABA(B) receptors, with subsequent autocrine and/or paracrine signaling effects on airway epithelium and ASM. PMID:21057105

  8. Doppler echo evaluation of pulmonary venous-left atrial pressure gradients: human and numerical model studies

    NASA Technical Reports Server (NTRS)

    Firstenberg, M. S.; Greenberg, N. L.; Smedira, N. G.; Prior, D. L.; Scalia, G. M.; Thomas, J. D.; Garcia, M. J.

    2000-01-01

    The simplified Bernoulli equation relates fluid convective energy derived from flow velocities to a pressure gradient and is commonly used in clinical echocardiography to determine pressure differences across stenotic orifices. Its application to pulmonary venous flow has not been described in humans. Twelve patients undergoing cardiac surgery had simultaneous high-fidelity pulmonary venous and left atrial pressure measurements and pulmonary venous pulsed Doppler echocardiography performed. Convective gradients for the systolic (S), diastolic (D), and atrial reversal (AR) phases of pulmonary venous flow were determined using the simplified Bernoulli equation and correlated with measured actual pressure differences. A linear relationship was observed between the convective (y) and actual (x) pressure differences for the S (y = 0.23x + 0.0074, r = 0.82) and D (y = 0.22x + 0.092, r = 0.81) waves, but not for the AR wave (y = 0. 030x + 0.13, r = 0.10). Numerical modeling resulted in similar slopes for the S (y = 0.200x - 0.127, r = 0.97), D (y = 0.247x - 0. 354, r = 0.99), and AR (y = 0.087x - 0.083, r = 0.96) waves. Consistent with numerical modeling, the convective term strongly correlates with but significantly underestimates actual gradient because of large inertial forces.

  9. Effects of combined progesterone and 17β-estradiol treatment on the transcriptome of cultured human myometrial smooth muscle cells.

    PubMed

    Chandran, Sreenath; Cairns, Michael T; O'Brien, Margaret; O'Connell, Enda; Mashayekhi, Kaveh; Smith, Terry J

    2016-01-01

    A transcriptomic analysis of cultured human uterine smooth muscle cells (hUtSMCs) was performed to examine gene expression profiles in smooth muscle in an environment containing the two major steroid hormones that regulate the human myometrium in physiological states associated with estrous, pregnancy, labor, and pathophysiological states such as leiomyoma and endometrial cancer. hUtSMCs were treated with progesterone (P4) and 17β-estradiol (E2) individually and in combination, in the presence and absence of RU486 (mifepristone). Transcription of many genes was modulated in the presence of P4 or E2 alone, but almost six times more genes were transcriptionally modulated in the presence of the P4/E2 hormone combination. In total 796 annotated genes were significantly differentially expressed in the presence of both P4 and E2 relative to their expression in untreated cells. Functional withdrawal of P4 by addition of RU486 effectively reversed almost all transcriptional changes caused by P4/E2 treatment. Gene ontology analysis of differentially expressed genes revealed a strong association between P4/E2 treatment and downregulated expression of genes involved in cell communication, signal transduction, channel activity, inflammatory response, and differentiation. Upregulated processes included cell survival, gene transcription, steroid hormone biosynthesis, muscle development, insulin receptor signaling, and cell growth.

  10. Effects of beta 2-adrenoceptor agonists on anti-IgE-induced contraction and smooth muscle reactivity in human airways.

    PubMed Central

    Gorenne, I; Labat, C; Norel, X; De Montpreville, V; Guillet, M C; Cavero, I; Brink, C

    1995-01-01

    1. The beta 2-adrenoceptor agonists, salbutamol, salmeterol and RP 58802 relaxed basal tone of human isolated bronchial smooth muscle. Salmeterol- and RP 58802-induced relaxations persisted for more than 4 h when the medium was constantly renewed after treatment. 2. Salbutamol, salmeterol and RP 58802 reversed histamine-induced contractions in human airways (pD2 values: 6.15 +/- 0.21, 6.00 +/- 0.19 and 6.56 +/- 0.12, respectively). 3. Anti-IgE-induced contractions were significantly inhibited immediately after pretreatment of preparations with beta 2-adrenoceptor agonists (10 microM). However, when tissues were treated with beta 2-agonists and then washed for a period of 4 h, salmeterol was the only agonist which significantly inhibited the anti-IgE response. 4. Histamine response curves were shifted to the right immediately after pretreatment of tissues with the beta 2-adrenoceptor agonists (10 microM; 20 min), but maximal contractions were not affected. After a 4 h washing period, the histamine curves were not significantly different from controls. Concentration-effect curves to acetylcholine (ACh) or leukotriene C4 (LTC4) were not significantly modified after beta 2-agonist pretreatment. 5. These results suggest that beta 2-adrenoceptor agonists may prevent anti-IgE-induced contraction by inhibition of mediator release rather than alterations of those mechanisms involved in airway smooth muscle contraction. PMID:7780648

  11. Pulmonary Veno-Occlusive Disease: A Newly Recognized Cause of Severe Pulmonary Hypertension in Dogs.

    PubMed

    Williams, K; Andrie, K; Cartoceti, A; French, S; Goldsmith, D; Jennings, S; Priestnall, S L; Wilson, D; Jutkowitz, A

    2016-07-01

    Pulmonary hypertension is a well-known though poorly characterized disease in veterinary medicine. In humans, pulmonary veno-occlusive disease (PVOD) is a rare cause of severe pulmonary hypertension with a mean survival time of 2 years without lung transplantation. Eleven adult dogs (5 males, 6 females; median age 10.5 years, representing various breeds) were examined following the development of severe respiratory signs. Lungs of affected animals were evaluated morphologically and with immunohistochemistry for alpha smooth muscle actin, desmin, CD31, CD3, CD20, and CD204. All dogs had pulmonary lesions consistent with PVOD, consisting of occlusive remodeling of small- to medium-sized pulmonary veins, foci of pulmonary capillary hemangiomatosis (PCH), and accumulation of hemosiderophages; 6 of 11 dogs had substantial pulmonary arterial medial and intimal thickening. Ultrastructural examination and immunohistochemistry showed that smooth muscle cells contributed to the venous occlusion. Increased expression of CD31 was evident in regions of PCH indicating increased numbers of endothelial cells in these foci. Spindle cells strongly expressing alpha smooth muscle actin and desmin co-localized with foci of PCH; similar cells were present but less intensely labeled elsewhere in non-PCH alveoli. B cells and macrophages, detected by immunohistochemistry, were not co-localized with the venous lesions of canine PVOD; small numbers of CD3-positive T cells were occasionally in and around the wall of remodeled veins. These findings indicate a condition in dogs with clinically severe respiratory disease and pathologic features resembling human PVOD, including foci of pulmonary venous remodeling and PCH.

  12. Vascular smooth muscle cell differentiation from human stem/progenitor cells.

    PubMed

    Steinbach, Sarah K; Husain, Mansoor

    2016-05-15

    Transplantation of vascular smooth muscle cells (VSMCs) is a promising cellular therapy to promote angiogenesis and wound healing. However, VSMCs are derived from diverse embryonic sources which may influence their role in the development of vascular disease and in its therapeutic modulation. Despite progress in understanding the mechanisms of VSMC differentiation, there remains a shortage of robust methods for generating lineage-specific VSMCs from pluripotent and adult stem/progenitor cells in serum-free conditions. Here we describe a method for differentiating pluripotent stem cells, such as embryonic and induced pluripotent stem cells, as well as skin-derived precursors, into lateral plate-derived VSMCs including 'coronary-like' VSMCs and neural crest-derived VSMC, respectively. We believe this approach will have broad applications in modeling origin-specific disease vulnerability and in developing personalized cell-based vascular grafts for regenerative medicine. PMID:26678794

  13. Effects of silver and gold nanoparticles of different sizes in human pulmonary fibroblasts.

    PubMed

    Ávalos, Alicia; Haza, Ana Isabel; Mateo, Diego; Morales, Paloma

    2015-01-01

    Silver and gold nanoparticles (Ag-AuNPs) are currently some of the most manufactured nanomaterials. Accordingly, the hazards associated with human exposure to Ag-AuNPs should be investigated to facilitate the risk assessment process. In particular, because pulmonary exposure to Ag-AuNPs occurs during handling of these nanoparticles, it is necessary to evaluate the toxic response in pulmonary cells. The aim of this study was to evaluate the in vitro mechanisms of toxicity of different sizes of silver (4.7 and 42 nm) and gold nanoparticles (30, 50 and 90 nm) in human pulmonary fibroblasts (HPF). The toxicity was evaluated by observing cell viability and oxidative stress parameters. Data showed that AgNPs-induced cytotoxicity was size-dependent, whereas the AuNPs of the three sizes showed similar cytotoxicity. Silver nanoparticles of 4.7 nm were much more toxic than the large silver nanoparticles and the AuNPs. However, the pre-treatment with the antioxidant, N-acetyl-L-cysteine, protected HPF cells against treatment with Ag-AuNPs. The oxidative stress parameters revealed significant increase in reactive oxygen species levels, depletion of glutathione level and slight, but not statistically significant inactivation of superoxide dismutase, suggesting generation of oxidative stress. Hence, care has to be taken while processing and formulating the Ag-AuNPs till their final finished product.

  14. Fused pulmonary lobes is a rat model of human Fraser syndrome

    SciTech Connect

    Kiyozumi, Daiji; Nakano, Itsuko; Takahashi, Ken L.; Hojo, Hitoshi; Aoyama, Hiroaki; Sekiguchi, Kiyotoshi

    2011-07-29

    Highlights: {yields} Fused pulmonary lobes (fpl) mutant rats exhibit similar phenotypes to Fraser syndrome. {yields} The fpl gene harbors a nonsense mutation in Fraser syndrome-associated gene Frem2. {yields} Fpl mutant is defined as a first model of human Fraser syndrome in rats. -- Abstract: Fused pulmonary lobes (fpl) is a mutant gene that is inherited in an autosomal recessive manner and causes various developmental defects, including fusion of pulmonary lobes, and eyelid and digit anomalies in rats. Since these developmental defects closely resemble those observed in patients with Fraser syndrome, a recessive multiorgan disorder, and its model animals, we investigated whether the abnormal phenotypes observed in fpl/fpl mutant rats are attributable to a genetic disorder similar to Fraser syndrome. At the epidermal basement membrane in fpl/fpl mutant neonates, the expression of QBRICK, a basement membrane protein whose expression is attenuated in Fraser syndrome model mice, was greatly diminished compared with control littermates. Quantitative RT-PCR analyses of Fraser syndrome-related genes revealed that Frem2 transcripts were markedly diminished in QBRICK-negative embryos. Genomic DNA sequencing of the fpl/fpl mutant identified a nonsense mutation that introduced a stop codon at serine 2005 in Frem2. These findings indicate that the fpl mutant is a rat model of human Fraser syndrome.

  15. G-Protein-Coupled Receptor 35 Mediates Human Saphenous Vein Vascular Smooth Muscle Cell Migration and Endothelial Cell Proliferation

    PubMed Central

    McCallum, Jennifer E.; Mackenzie, Amanda E.; Divorty, Nina; Clarke, Carolyn; Delles, Christian; Milligan, Graeme; Nicklin, Stuart A.

    2016-01-01

    Vascular smooth muscle cell (VSMC) migration and proliferation is central to neointima formation in vein graft failure following coronary artery bypass. However, there are currently no pharmacological interventions that prevent vein graft failure through intimal occlusion. It is hence a therapeutic target. Here, we investigated the contribution of GPR35 to human VSMC and endothelial cell (EC) migration, using a scratch-wound assay, and also the contribution to proliferation, using MTS and BrdU assays, in in vitro models using recently characterized human GPR35 ortholog-selective small-molecule agonists and antagonists. Real-time PCR studies showed GPR35 to be robustly expressed in human VSMCs and ECs. Stimulation of GPR35, with either the human-selective agonist pamoic acid or the reference agonist zaprinast, promoted VSMC migration in the scratch-wound assay. These effects were blocked by coincubation with either of the human GPR35-specific antagonists, CID-2745687 or ML-145. These GPR35-mediated effects were produced by inducing alterations in the actin cytoskeleton via the Rho A/Rho kinase signaling axis. Additionally, the agonist ligands stimulated a proliferative response in ECs. These studies highlight the potential that small molecules that stimulate or block GPR35 activity can modulate vascular proliferation and migration. These data propose GPR35 as a translational therapeutic target in vascular remodeling. PMID:27064272

  16. Biomonitoring of nickel and chromium in human pulmonary tissue.

    PubMed

    Raithel, H J; Schaller, K H; Kraus, T; Lehnert, G

    1993-01-01

    Nickel (Ni) and chromium (Cr) and some of its compounds may be able to induce cancer in the lungs as well as in the nose and paranasal sinuses after occupational exposure. Latency periods amount to 20 years and more. Therefore objective exposure data are not available in the most cases and expert evaluation of the causal connection is often difficult. Recent investigations have shown, that Ni and Cr can cumulate in human lung tissue after occupational exposure. For the evaluation of "normal" Ni- and Cr-values a total of 495 human lung tissue samples of 30 occupationally non-exposed persons were analysed by AAS including ZEEMAN-compensation after wet oxidative digestion. Additional samples of 10 deceased persons who have been occupationally exposed to nickel in previous times by nickel-refining and welding, especially flame spraying have been investigated. The median Ni- and Cr- concentrations in the lungs of the non-exposed persons ranged between 20-40 resp. 133-277 ng/g (wet weight). In nickel refinery workers Ni- concentrations were found which exceeded the normal range about 1,000. In welders, especially flame sprayers, also values more than 100 times higher could be analysed for Ni and Cr. Partially these concentrations were found years after the end of the inhalative exposure. PMID:8406925

  17. Human Pulmonary Surfactant Protein SP-A1 Provides Maximal Efficiency of Lung Interfacial Films.

    PubMed

    Lopez-Rodriguez, Elena; Pascual, Alicia; Arroyo, Raquel; Floros, Joanna; Perez-Gil, Jesus

    2016-08-01

    Pulmonary surfactant is a lipoprotein complex that reduces surface tension to prevent alveolar collapse and contributes to the protection of the respiratory surface from the entry of pathogens. Surfactant protein A (SP-A) is a hydrophilic glycoprotein of the collectin family, and its main function is related to host defense. However, previous studies have shown that SP-A also aids in the formation and biophysical properties of pulmonary surfactant films at the air-water interface. Humans, unlike rodents, have two genes, SFTPA1 and SFTPA2. The encoded proteins, SP-A1 and SP-A2, differ quantitatively or qualitatively in function. It has been shown that both gene products are necessary for tubular myelin formation, an extracellular structural form of lung surfactant. The goal of this study was to investigate potential differences in the biophysical properties of surfactants containing human SP-A1, SP-A2, or both. For this purpose, we have studied for the first time, to our knowledge, the biophysical properties of pulmonary surfactant from individual humanized transgenic mice expressing human SP-A1, SP-A2, or both SP-A1 and SP-A2, in the captive bubble surfactometer. We observed that pulmonary surfactant containing SP-A1 reaches lower surface tension after postexpansion interfacial adsorption than surfactants containing no SP-A or only SP-A2. Under interfacial compression-expansion cycling conditions, surfactant films containing SP-A1 also performed better, particularly with respect to the reorganization of the films that takes place during compression. On the other hand, addition of recombinant SP-A1 to a surfactant preparation reconstituted from the hydrophobic fraction of a porcine surfactant made it more resistant to inhibition by serum than the addition of equivalent amounts of SP-A2. We conclude that the presence of SP-A1 allows pulmonary surfactant to adopt a particularly favorable structure with optimal biophysical properties.

  18. Human Pulmonary Surfactant Protein SP-A1 Provides Maximal Efficiency of Lung Interfacial Films.

    PubMed

    Lopez-Rodriguez, Elena; Pascual, Alicia; Arroyo, Raquel; Floros, Joanna; Perez-Gil, Jesus

    2016-08-01

    Pulmonary surfactant is a lipoprotein complex that reduces surface tension to prevent alveolar collapse and contributes to the protection of the respiratory surface from the entry of pathogens. Surfactant protein A (SP-A) is a hydrophilic glycoprotein of the collectin family, and its main function is related to host defense. However, previous studies have shown that SP-A also aids in the formation and biophysical properties of pulmonary surfactant films at the air-water interface. Humans, unlike rodents, have two genes, SFTPA1 and SFTPA2. The encoded proteins, SP-A1 and SP-A2, differ quantitatively or qualitatively in function. It has been shown that both gene products are necessary for tubular myelin formation, an extracellular structural form of lung surfactant. The goal of this study was to investigate potential differences in the biophysical properties of surfactants containing human SP-A1, SP-A2, or both. For this purpose, we have studied for the first time, to our knowledge, the biophysical properties of pulmonary surfactant from individual humanized transgenic mice expressing human SP-A1, SP-A2, or both SP-A1 and SP-A2, in the captive bubble surfactometer. We observed that pulmonary surfactant containing SP-A1 reaches lower surface tension after postexpansion interfacial adsorption than surfactants containing no SP-A or only SP-A2. Under interfacial compression-expansion cycling conditions, surfactant films containing SP-A1 also performed better, particularly with respect to the reorganization of the films that takes place during compression. On the other hand, addition of recombinant SP-A1 to a surfactant preparation reconstituted from the hydrophobic fraction of a porcine surfactant made it more resistant to inhibition by serum than the addition of equivalent amounts of SP-A2. We conclude that the presence of SP-A1 allows pulmonary surfactant to adopt a particularly favorable structure with optimal biophysical properties. PMID:27508436

  19. Deduced amino acid sequence of human pulmonary surfactant proteolipid: SPL(pVal)

    SciTech Connect

    Whitsett, J.A.; Glasser, S.W.; Korfhagen, T.R.; Weaver, T.E.; Clark, J.; Pilot-Matias, T.; Meuth, J.; Fox, J.L.

    1987-05-01

    Hydrophobic, proteolipid-like protein of Mr 6500 was isolated from ether/ethanol extracts of human, canine and bovine pulmonary surfactant. Amino acid composition of the protein demonstrated a remarkable abundance of hydrophobic residues, particularly valine and leucine. The N-terminal amino acid sequence of the human protein was determined: N-Leu-Ile-Pro-Cys-Cys-Pro-Val-Asn-Leu-Lys-Arg-Leu-Leu-Ile-Val4... An oligonucleotide probe was used to screen an adult human lung cDNA library and resulted in detection of cDNA clones with predicted amino acid sequence with close identity to the N-terminal amino acid sequence of the human peptide. SPL(pVal) was found within the reading frame of a larger peptide. SPL(pVal) results from proteolytic processing of a larger preprotein. Northern blot analysis detected in a single 1.0 kilobase SPL(pVal) RNA which was less abundant in fetal than in adult lung. Mixtures of purified canine and bovine SPL(pVal) and synthetic phospholipids display properties of rapid adsorption and surface tension lowering activity characteristic of surfactant. Human SPL(pVal) is a pulmonary surfactant proteolipid which may therefore be useful in combination with phospholipids and/or other surfactant proteins for the treatment of surfactant deficiency such as hyaline membrane disease in newborn infants.

  20. Biphasic responses of human vascular smooth muscle cells to magnesium ion.

    PubMed

    Ma, Jun; Zhao, Nan; Zhu, Donghui

    2016-02-01

    Magnesium-based alloys are promising in biodegradable cardiovascular stent applications. The degradation products of magnesium stents may have significant impacts on the surrounding vascular cells. However, knowledge on the interactions between magnesium ion and vascular cells at the molecular and cellular levels is still largely missing. Vascular smooth muscle cell (SMC) plays an important role in the pathogenesis of restenosis and wound healing after stent implantation. This study evaluated the short-term effects of extracellular magnesium ion (Mg(2+)) on the cellular behaviors of SMCs. Cellular responses to Mg(2+) were biphasic and in a concentration-dependent manner. Low concentrations (10 mM) of Mg(2+) increased cell viability, cell proliferation rate, cell adhesion, cell spreading, cell migration rate, and actin expression. In contrast, higher concentrations (40-60 mM) of Mg(2+) had deleterious effects on cells. Gene expression analysis revealed that Mg(2+) altered the expressions of genes mostly related to cell adhesion, cell injury, angiogenesis, inflammation, coagulation, and cell growth. Finding from this study provides some valuable information on SMC responses toward magnesium ions at the cellular and molecular levels, and guidance for future controlled release of magnesium from the stent material.

  1. Tyk2 mediates effects of urokinase on human vascular smooth muscle cell growth

    SciTech Connect

    Patecki, Margret; Schaewen, Markus von; Tkachuk, Sergey; Jerke, Uwe; Dietz, Rainer; Dumler, Inna; Kusch, Angelika . E-mail: angelika.kusch@charite.de

    2007-08-03

    The urokinase (uPA)/uPA receptor (uPAR) system plays a role in the response of the vessel wall to injury, presumably by modulating vascular smooth muscle cell (VSMC) functional behaviour. The Jak/Stat signaling pathway has been implicated to mediate the uPA/uPAR-directed cell migration and proliferation in VSMC. We have therefore investigated the underlying molecular mechanisms, which remained not completely understood. In particular, we aimed at identification of the kinase involved in the signaling cascade leading to Stat1 phosphorylation by uPA and its impact on VSMC growth. We performed expression in VSMC of kinase-deficient mutant forms of the Janus kinases Jak1 and Tyk2 and used different cell culture models imitating the response to vascular injury. We provide evidence that Tyk2, but not Jak1, mediates uPA-induced Stat1 phosphorylation and VSMC growth inhibition and suggest a novel function for Tyk2 as an important modulator of the uPA-directed VSMC functional behaviour at the place of injury.

  2. WISP1 overexpression promotes proliferation and migration of human vascular smooth muscle cells via AKT signaling pathway.

    PubMed

    Lu, Shun; Liu, Hao; Lu, Lihe; Wan, Heng; Lin, Zhiqi; Qian, Kai; Yao, Xingxing; Chen, Qing; Liu, Wenjun; Yan, Jianyun; Liu, Zhengjun

    2016-10-01

    Proliferation and migration of vascular smooth muscle cells (VSMCs) play crucial roles in the development of vascular restenosis. Our previous study showed that CCN4, namely Wnt1 inducible signaling pathway protein 1 (WISP1), significantly promotes proliferation and migration of rat VSMCs, but its mechanism remains unclear. This study aims to investigate whether and how WISP1 stimulates proliferation and migration of human VSMCs. Western blot analysis showed that FBS treatment increased WISP1 protein levels in human VSMCs in a dose-dependent manner. Overexpression of WISP1 using adenovirus encoding WISP1 (AD-WISP1) significantly increased proliferation rate of human VSMCs by 2.98-fold compared with empty virus (EV)-transfected cells, shown by EdU incorporation assay. Additionally, Scratch-induced wound healing assay revealed that adenovirus-mediated overexpression of WISP1 significantly increased cell migration compared with EV-transfected cells from 6h (4.56±1.14% vs. 11.23±2.25%, P<0.05) to 48h (25.25±5.51% vs. 97.54±13.12%, P<0.01) after injury. Transwell Migration Assay confirmed that WISP1 overexpression significantly promoted human VSMC migration by 2.25-fold compared with EV. Furthermore, WISP1 overexpression stimulated Akt signaling activation in human VSMCs. Blockage of Akt signaling by Akt inhibitor AZD5363 or PI3K inhibitor LY294002, led to an inhibitory effect of WISP1-induced proliferation and migration in human VSMCs. Moreover, we found that WISP1 overexpression stimulated GSK3α/β phosphorylation, and increased expression of cyclin D1 and MMP9 in human VSMCs, and this effect was abolished by AZD5363. Collectively, we demonstrated that Akt signaling pathway mediates WISP1-induced migration and proliferation of human VSMCs, suggesting that WISP1 may act as a novel potential therapeutic target for vascular restenosis.

  3. Influence of recombinant human erythropoietin treatment on pulmonary O2 uptake kinetics during exercise in humans

    PubMed Central

    Wilkerson, Daryl P; Rittweger, Jörn; Berger, Nicolas JA; Naish, Patrick F; Jones, Andrew M

    2005-01-01

    We hypothesized that 4 weeks of recombinant human erythropoietin (RhEPO) treatment would result in a significant increase in haemoglobin concentration ([Hb]) and arterial blood O2-carrying capacity and that this would (1) increase peak pulmonary oxygen uptake V˙O2 during ramp incremental exercise, and (2) speed V˙O2 kinetics during ‘severe’-, but not ‘moderate’- or ‘heavy’-intensity, step exercise. Fifteen subjects (mean ±s.d. age 25 ± 4 years) were randomly assigned to either an experimental group which received a weekly subcutaneous injection of RhEPO (150 IU kg−1; n = 8), or a control group (CON) which received a weekly subcutaneous injection of sterile saline (10 ml; n = 7) as a placebo, for four weeks. The subjects and the principal researchers were both blind with respect to the group assignment. Before and after the intervention period, all subjects completed a ramp test for determination of the gas exchange threshold (GET) and V˙O2,peak, and a number of identical ‘step’ transitions from ‘unloaded’ cycling to work rates requiring 80% GET (moderate), 70% of the difference between the GET and V˙O2,peak (heavy), and 105% V˙O2,peak (severe) as determined from the initial ramp test. Pulmonary gas exchange was measured breath-by-breath. There were no significant differences between the RhEPO and CON groups for any of the measurements of interest ([Hb], V˙O2,peak V˙O2 kinetics) before the intervention. Four weeks of RhEPO treatment resulted in a 7% increase both in [Hb] (from 15.8 ± 1.0 to 16.9 ± 0.7 g dl−1; P < 0.01) and V˙O2,peak (from 47.5 ± 4.2 to 50.8 ± 10.7 ml kg−1·min−1; P < 0.05), with no significant change in CON. RhEPO had no significant effect on V˙O2 kinetics for moderate (Phase II time constant, from 28 ± 8 to 28 ± 7 s), heavy (from 37 ± 12 to 35 ± 11 s), or severe (from 33 ± 15 to 35 ± 15 s) step exercise. Our results indicate that enhancing blood O2-carrying capacity and thus the potential for muscle

  4. A novel inhibitory effect of oxazol-5-one compounds on ROCKII signaling in human coronary artery vascular smooth muscle cells

    PubMed Central

    Al-Ghabkari, Abdulhameed; Deng, Jing-Ti; McDonald, Paul C.; Dedhar, Shoukat; Alshehri, Mana; Walsh, Michael P.; MacDonald, Justin A.

    2016-01-01

    The selectivity of (4Z)-2-(4-chloro-3-nitrophenyl)-4-(pyridin-3-ylmethylidene)-1,3-oxazol-5-one (DI) for zipper-interacting protein kinase (ZIPK) was previously described by in silico computational modeling, screening a large panel of kinases, and determining the inhibition efficacy. Our assessment of DI revealed another target, the Rho-associated coiled-coil-containing protein kinase 2 (ROCKII). In vitro studies showed DI to be a competitive inhibitor of ROCKII (Ki, 132 nM with respect to ATP). This finding was supported by in silico molecular surface docking of DI with the ROCKII ATP-binding pocket. Time course analysis of myosin regulatory light chain (LC20) phosphorylation catalyzed by ROCKII in vitro revealed a significant decrease upon treatment with DI. ROCKII signaling was investigated in situ in human coronary artery vascular smooth muscle cells (CASMCs). ROCKII down-regulation using siRNA revealed several potential substrates involved in smooth muscle contraction (e.g., LC20, Par-4, MYPT1) and actin cytoskeletal dynamics (cofilin). The application of DI to CASMCs attenuated LC20, Par-4, LIMK, and cofilin phosphorylations. Notably, cofilin phosphorylation was not significantly decreased with a novel ZIPK selective inhibitor (HS-38). In addition, CASMCs treated with DI underwent cytoskeletal changes that were associated with diminution of cofilin phosphorylation. We conclude that DI is not selective for ZIPK and is a potent inhibitor of ROCKII. PMID:27573465

  5. A novel inhibitory effect of oxazol-5-one compounds on ROCKII signaling in human coronary artery vascular smooth muscle cells.

    PubMed

    Al-Ghabkari, Abdulhameed; Deng, Jing-Ti; McDonald, Paul C; Dedhar, Shoukat; Alshehri, Mana; Walsh, Michael P; MacDonald, Justin A

    2016-01-01

    The selectivity of (4Z)-2-(4-chloro-3-nitrophenyl)-4-(pyridin-3-ylmethylidene)-1,3-oxazol-5-one (DI) for zipper-interacting protein kinase (ZIPK) was previously described by in silico computational modeling, screening a large panel of kinases, and determining the inhibition efficacy. Our assessment of DI revealed another target, the Rho-associated coiled-coil-containing protein kinase 2 (ROCKII). In vitro studies showed DI to be a competitive inhibitor of ROCKII (Ki, 132 nM with respect to ATP). This finding was supported by in silico molecular surface docking of DI with the ROCKII ATP-binding pocket. Time course analysis of myosin regulatory light chain (LC20) phosphorylation catalyzed by ROCKII in vitro revealed a significant decrease upon treatment with DI. ROCKII signaling was investigated in situ in human coronary artery vascular smooth muscle cells (CASMCs). ROCKII down-regulation using siRNA revealed several potential substrates involved in smooth muscle contraction (e.g., LC20, Par-4, MYPT1) and actin cytoskeletal dynamics (cofilin). The application of DI to CASMCs attenuated LC20, Par-4, LIMK, and cofilin phosphorylations. Notably, cofilin phosphorylation was not significantly decreased with a novel ZIPK selective inhibitor (HS-38). In addition, CASMCs treated with DI underwent cytoskeletal changes that were associated with diminution of cofilin phosphorylation. We conclude that DI is not selective for ZIPK and is a potent inhibitor of ROCKII. PMID:27573465

  6. Application of State-Space Smoothing to fMRI Data for Calculation of Lagged Transinformation between Human Brain Activations

    NASA Astrophysics Data System (ADS)

    Watanabe, Jobu

    2009-09-01

    Mutual information can be given a directional sense by introducing a time lag in one of the variables. In an author's previous study, to investigate the network dynamics of human brain regions, lagged transinformation (LTI) was introduced using time delayed mutual information. The LTI makes it possible to quantify the time course of dynamic information transfer between regions in the temporal domain. The LTI was applied to functional magnetic resonance imaging (fMRI) data involved in neural processing of the transformation and comparison from three-dimensional (3D) visual information to a two-dimensional (2D) location to calculate directed information flows between the activated brain regions. In the present study, for more precise estimation of LTI, Kalman filter smoothing was applied to the same fMRI data. Because the smoothing method exploits the full length of the time series data for the estimation, its application increases the precision. Large information flows were found from the bilateral prefrontal cortices to the parietal cortices. The results suggest that information of the 3D images stored as working memory was retrieved and transferred from the prefrontal cortices to the parietal cortices for comparison with information of the 2D images.

  7. Low level CO2 effects on pulmonary function in humans

    NASA Technical Reports Server (NTRS)

    Sexton, J.; Mueller, K.; Elliott, A.; Gerzer, D.; Strohl, K. P.; West, J. B. (Principal Investigator)

    1998-01-01

    The purpose of the study was to determine whether chamber exposure to low levels of CO2 results in functional alterations in gas mixing and closing volume in humans. Four healthy volunteer subjects were exposed to 0.7% CO2 and to 1.2% CO2. Spirometry, lung volumes, single breath nitrogen washout, diffusing capacity for carbon monoxide (DLCO) by two methods, and cardiac output were measured in triplicate. Values were obtained over two non-consecutive days during the training period (control) and on days 2 or 3, 4, 6, 10, 13, and 23 of exposure to each CO2 level. Measurements were made during the same time of day. There was one day of testing after exposure, while still in the chamber but off carbon dioxide. The order of testing, up until measurements of DLCO and cardiac output, were randomized to avoid presentation effects. The consistent findings were a reduction in diffusing capacity for carbon monoxide and a fall in cardiac output, occurring to a similar degree with both exposures. For the group as a whole, there was no indication of major effects on spirometry, lung volumes, gas mixing or dead space. We conclude that small changes may occur in the function of distal gas exchanging units; however, these effects were not associated with any adverse health effects. The likelihood of pathophysiologic changes in lung function or structure with 0.7 or 1.2% CO2 exposure for this period of time, is therefore, low.

  8. Air Pollution by Hydrothermal Volcanism and Human Pulmonary Function

    PubMed Central

    Linhares, Diana; Garcia, Patrícia Ventura; Viveiros, Fátima; Ferreira, Teresa; Rodrigues, Armindo dos Santos

    2015-01-01

    The aim of this study was to assess whether chronic exposure to volcanogenic air pollution by hydrothermal soil diffuse degassing is associated with respiratory defects in humans. This study was carried in the archipelago of the Azores, an area with active volcanism located in the Atlantic Ocean where Eurasian, African, and American lithospheric plates meet. A cross-sectional study was performed on a study group of 146 individuals inhabiting an area where volcanic activity is marked by active fumarolic fields and soil degassing (hydrothermal area) and a reference group of 359 individuals inhabiting an area without these secondary manifestations of volcanism (nonhydrothermal area). Odds ratio (OR) and 95% confidence intervals (CIs) were adjusted for age, gender, fatigue, asthma, and smoking. The OR for restrictive defects and for exacerbation of obstructive defects (COPD) in the hydrothermal area was 4.4 (95% CI 1.78–10.69) and 3.2 (95% CI 1.82–5.58), respectively. Increased prevalence of restrictions and all COPD severity ranks (mild, moderate, and severe) was observed in the population from the hydrothermal area. These findings may assist health officials in advising and keeping up with these populations to prevent and minimize the risk of respiratory diseases. PMID:26301247

  9. Air Pollution by Hydrothermal Volcanism and Human Pulmonary Function.

    PubMed

    Linhares, Diana; Ventura Garcia, Patrícia; Viveiros, Fátima; Ferreira, Teresa; dos Santos Rodrigues, Armindo

    2015-01-01

    The aim of this study was to assess whether chronic exposure to volcanogenic air pollution by hydrothermal soil diffuse degassing is associated with respiratory defects in humans. This study was carried in the archipelago of the Azores, an area with active volcanism located in the Atlantic Ocean where Eurasian, African, and American lithospheric plates meet. A cross-sectional study was performed on a study group of 146 individuals inhabiting an area where volcanic activity is marked by active fumarolic fields and soil degassing (hydrothermal area) and a reference group of 359 individuals inhabiting an area without these secondary manifestations of volcanism (nonhydrothermal area). Odds ratio (OR) and 95% confidence intervals (CIs) were adjusted for age, gender, fatigue, asthma, and smoking. The OR for restrictive defects and for exacerbation of obstructive defects (COPD) in the hydrothermal area was 4.4 (95% CI 1.78-10.69) and 3.2 (95% CI 1.82-5.58), respectively. Increased prevalence of restrictions and all COPD severity ranks (mild, moderate, and severe) was observed in the population from the hydrothermal area. These findings may assist health officials in advising and keeping up with these populations to prevent and minimize the risk of respiratory diseases.

  10. Isolation and partial cloning of ryanodine-sensitive Ca2+ release channel protein isoforms from human myometrial smooth muscle.

    PubMed

    Lynn, S; Morgan, J M; Lamb, H K; Meissner, G; Gillespie, J I

    1995-09-18

    Partial cDNAs of the ryanodine receptor were cloned using PCR analysis from reverse transcribed total and mRNA, extracted from freshly isolated pregnant, non-pregnant, and cultured human myometrial smooth muscle. The identity of these clones was confirmed by nucleotide sequencing of the fragments and indicate the expression of both the skeletal and brain ryanodine receptor isoforms in these preparations. In freshly isolated non-pregnant myometrial tissue, membrane fractions displaying specific [3H]ryanodine binding activities were isolated using density gradient centrifugation. SDS-PAGE of the sucrose gradient fractions indicated the specific comigration of a polypeptide with a molecular mass of approximately 544 kDa with the ryanodine binding activity.

  11. Tungstate-Targeting of BKαβ1 Channels Tunes ERK Phosphorylation and Cell Proliferation in Human Vascular Smooth Muscle

    PubMed Central

    Fernández-Mariño, Ana Isabel; Cidad, Pilar; Zafra, Delia; Nocito, Laura; Domínguez, Jorge; Oliván-Viguera, Aida; Köhler, Ralf; López-López, José R.; Pérez-García, María Teresa; Valverde, Miguel Ángel; Guinovart, Joan J.; Fernández-Fernández, José M.

    2015-01-01

    Despite the substantial knowledge on the antidiabetic, antiobesity and antihypertensive actions of tungstate, information on its primary target/s is scarce. Tungstate activates both the ERK1/2 pathway and the vascular voltage- and Ca2+-dependent large-conductance BKαβ1 potassium channel, which modulates vascular smooth muscle cell (VSMC) proliferation and function, respectively. Here, we have assessed the possible involvement of BKαβ1 channels in the tungstate-induced ERK phosphorylation and its relevance for VSMC proliferation. Western blot analysis in HEK cell lines showed that expression of vascular BKαβ1 channels potentiates the tungstate-induced ERK1/2 phosphorylation in a Gi/o protein-dependent manner. Tungstate activated BKαβ1 channels upstream of G proteins as channel activation was not altered by the inhibition of G proteins with GDPβS or pertussis toxin. Moreover, analysis of Gi/o protein activation measuring the FRET among heterologously expressed Gi protein subunits suggested that tungstate-targeting of BKαβ1 channels promotes G protein activation. Single channel recordings on VSMCs from wild-type and β1-knockout mice indicated that the presence of the regulatory β1 subunit was essential for the tungstate-mediated activation of BK channels in VSMCs. Moreover, the specific BK channel blocker iberiotoxin lowered tungstate-induced ERK phosphorylation by 55% and partially reverted (by 51%) the tungstate-produced reduction of platelet-derived growth factor (PDGF)-induced proliferation in human VSMCs. Our observations indicate that tungstate-targeting of BKαβ1 channels promotes activation of PTX-sensitive Gi proteins to enhance the tungstate-induced phosphorylation of ERK, and inhibits PDGF-stimulated cell proliferation in human vascular smooth muscle. PMID:25659150

  12. Intracellular pH changes in human aortic smooth muscle cells in response to fluid shear stress

    NASA Technical Reports Server (NTRS)

    Stamatas, G. N.; Patrick, C. W. Jr; McIntire, L. V.

    1997-01-01

    The smooth muscle cell (SMC) layers of human arteries may be exposed to blood flow after endothelium denudation, for example, following balloon angioplasty treatment. These SMCs are also constantly subjected to pressure driven transmural fluid flow. Flow-induced shear stress can alter SMC growth and metabolism. Signal transduction mechanisms involved in these flow effects on SMCs are still poorly understood. In this work, the hypothesis that shear stress alters the intracellular pH (pHi) of SMC is examined. When exposed to venous and arterial levels of shear stress, human aortic smooth muscle cells (hASMC) undergo alkalinization. The alkalinization plateau persisted even after 20 min of cell exposure to flow. Addition of amiloride (10 micromoles) or its 5-(N-ethyl-N-isopropyl) analog (EIPA, 10 micromoles), both Na+/H+ exchanger inhibitors, attenuated intracellular alkalinization, suggesting the involvement of the Na+/H+ exchanger in this response. The same concentrations of these inhibitors did not show an effect on pHi of hASMCs in static culture. 4-Acetamido-4'-isothio-cyanatostilbene-2,2'-disulfonic acid (SITS, 1 mM), a Cl-/HCO3- exchange inhibitor, affected the pHi of hASMCs both in static and flow conditions. Our results suggest that flow may perturb the Na+/H+ exchanger leading to an alkalinization of hASMCs, a different response from the flow-induced acidification seen with endothelial cells at the same levels of shear stress. Understanding the flow-induced signal transduction pathways in the vascular cells is of great importance in the tissue engineering of vascular grafts. In the case of SMCs, the involvement of pHi changes in nitric oxide production and proliferation regulation highlights further the significance of such studies.

  13. Primary pulmonary leiomyoma.

    PubMed

    Wu, Peng; Venkatachalam, Jonathen; Lee, Victor Kwan Min; Tan, Sze Khen

    2016-05-01

    Leiomyoma is a smooth muscle neoplasm that commonly occurs in the genitourinary system and the gastrointestinal tract of the body. Primary pulmonary leiomyoma is rarely reported in literature. We report a rare case of primary pulmonary leiomyoma of a 55-year-old male patient presenting with symptoms of cough for six months. PMID:27516882

  14. Altered Expression of Bone Morphogenetic Protein Accessory Proteins in Murine and Human Pulmonary Fibrosis.

    PubMed

    Murphy, Noelle; Gaynor, Katherine U; Rowan, Simon C; Walsh, Sinead M; Fabre, Aurelie; Boylan, John; Keane, Michael P; McLoughlin, Paul

    2016-03-01

    Idiopathic pulmonary fibrosis is a chronic, progressive fibrotic disease with a poor prognosis. The balance between transforming growth factor β1 and bone morphogenetic protein (BMP) signaling plays an important role in tissue homeostasis, and alterations can result in pulmonary fibrosis. We hypothesized that multiple BMP accessory proteins may be responsible for maintaining this balance in the lung. Using the bleomycin mouse model for fibrosis, we examined an array of BMP accessory proteins for changes in mRNA expression. We report significant increases in mRNA expression of gremlin 1, noggin, follistatin, and follistatin-like 1 (Fstl1), and significant decreases in mRNA expression of chordin, kielin/chordin-like protein, nephroblastoma overexpressed gene, and BMP and activin membrane-bound inhibitor (BAMBI). Protein expression studies demonstrated increased levels of noggin, BAMBI, and FSTL1 in the lungs of bleomycin-treated mice and in the lungs of idiopathic pulmonary fibrosis patients. Furthermore, we demonstrated that transforming growth factor β stimulation resulted in increased expression of noggin, BAMBI, and FSTL1 in human small airway epithelial cells. These results provide the first evidence that multiple BMP accessory proteins are altered in fibrosis and may play a role in promoting fibrotic injury.

  15. Long-term effects of acupuncture treatment on airway smooth muscle in a rat model of smoke-induced chronic obstructive pulmonary disease

    PubMed Central

    Li, Jia; Wu, Song; Tang, Hongtu; Huang, Wei; Wang, Lushan; Zhou, Huanjiao; Zhou, Miao; Wang, Hua; Li, Jing

    2016-01-01

    Background Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases. It is a chronic inflammatory process characterised by airway obstruction and progressive lung inflammation, associated with difficulty breathing and insensitivity to corticosteroid therapy. Although there is some preliminary evidence to suggest a beneficial effect of acupuncture on COPD, its mechanism of action has not been investigated. Our aim was to examine the anti-inflammatory effects of acupuncture in a rat model of COPD induced by exposure to cigarette smoke (CS). Methods Sixty Sprague–Dawley rats were exposed to the smoke of 15 cigarettes for 1 h/day, 6 days/week for 3 months to induce COPD and treated with acupuncture at BL13 (Feishu), BL23 (Shenshu) and Dingchuan (COPD+Acupuncture, n=15), sham acupuncture (COPD+Sham, n=15) or left untreated (n=15). Exposed rats were compared with controls not exposed to CS (control, n=15). Pulmonary function was measured, and tumour necrosis factor-α (TNF-α) and interleukin-8 (IL-8) levels were determined in bronchoalveolar lavage fluid by ELISA. Histone deacetylase 2 (HDAC2) protein and mRNA expression were examined in lung tissue and in bronchus. Results Acupuncture treatment appeared to protect pulmonary function and reduce the COPD-induced inflammatory response by decreasing cell inflammation and the production of TNF-α and IL-8. Acupuncture also enhanced HDAC2 mRNA and protein expression, suggesting a possible direct effect on protein structure through post-translational modifications. Conclusions Our results suggest that acupuncture regulates inflammatory cytokines and contributes to lung protection in a rat model of smoke-induced COPD by modulating HDAC2. PMID:26345700

  16. Responses of cultured smooth muscle cells from human nonatherosclerotic arteries and primary stenosing lesions after photoradiation: Implications for photodynamic therapy of vascular stenoses

    SciTech Connect

    Dartsch, P.C.; Ischinger, T.; Betz, E. )

    1990-06-01

    Cultured smooth muscle cells from human nonatherosclerotic arteries and from primary stenosing lesions were labeled with dihematoporphyrinester and ether, a photosensitizing probe used mainly for the detection and photodynamic therapy of tumors. After labeling for 24 h, cells were irradiated with ultraviolet light (wavelength 365 nm, energy densities ranging from 30 to 1,200 mJ/cm{sup 2}). Twenty-four hours after photoradiation, 80% of smooth muscle cells from nonatherosclerotic arteries and only 20% of smooth muscle cells from atherosclerotic plaques were viable and still adherent. Moreover, dynamic cell and cytoskeletal alterations in response to irradiation are described. The differential sensitivity of smooth muscle cells from nonatherosclerotic arteries and from atherosclerotic plaques provides evidence that a photodynamic treatment might be a valuable therapeutic approach to vascular stenosis.

  17. Novel treatment strategies for smooth muscle disorders: Targeting Kv7 potassium channels.

    PubMed

    Haick, Jennifer M; Byron, Kenneth L

    2016-09-01

    Smooth muscle cells provide crucial contractile functions in visceral, vascular, and lung tissues. The contractile state of smooth muscle is largely determined by their electrical excitability, which is in turn influenced by the activity of potassium channels. The activity of potassium channels sustains smooth muscle cell membrane hyperpolarization, reducing cellular excitability and thereby promoting smooth muscle relaxation. Research over the past decade has indicated an important role for Kv7 (KCNQ) voltage-gated potassium channels in the regulation of the excitability of smooth muscle cells. Expression of multiple Kv7 channel subtypes has been demonstrated in smooth muscle cells from viscera (gastrointestinal, bladder, myometrial), from the systemic and pulmonary vasculature, and from the airways of the lung, from multiple species, including humans. A number of clinically used drugs, some of which were developed to target Kv7 channels in other tissues, have been found to exert robust effects on smooth muscle Kv7 channels. Functional studies have indicated that Kv7 channel activators and inhibitors have the ability to relax and contact smooth muscle preparations, respectively, suggesting a wide range of novel applications for the pharmacological tool set. This review summarizes recent findings regarding the physiological functions of Kv7 channels in smooth muscle, and highlights potential therapeutic applications based on pharmacological targeting of smooth muscle Kv7 channels throughout the body.

  18. In vitro elastogenesis: instructing human vascular smooth muscle cells to generate an elastic fiber-containing extracellular matrix scaffold.

    PubMed

    Hinderer, Svenja; Shena, Nian; Ringuette, Léa-Jeanne; Hansmann, Jan; Reinhardt, Dieter P; Brucker, Sara Y; Davis, Elaine C; Schenke-Layland, Katja

    2015-06-01

    Elastic fibers are essential for the proper function of organs including cardiovascular tissues such as heart valves and blood vessels. Although (tropo)elastin production in a tissue-engineered construct has previously been described, the assembly to functional elastic fibers in vitro using human cells has been highly challenging. In the present study, we seeded primary isolated human vascular smooth muscle cells (VSMCs) onto 3D electrospun scaffolds and exposed them to defined laminar shear stress using a customized bioreactor system. Increased elastin expression followed by elastin deposition onto the electrospun scaffolds, as well as on newly formed fibers, was observed after six days. Most interestingly, we identified the successful deposition of elastogenesis-associated proteins, including fibrillin-1 and -2, fibulin-4 and -5, fibronectin, elastin microfibril interface located protein 1 (EMILIN-1) and lysyl oxidase (LOX) within our engineered constructs. Ultrastructural analyses revealed a developing extracellular matrix (ECM) similar to native human fetal tissue, which is composed of collagens, microfibrils and elastin. To conclude, the combination of a novel dynamic flow bioreactor and an electrospun hybrid polymer scaffold allowed the production and assembly of an elastic fiber-containing ECM. PMID:25784676

  19. LC/MS/MS data analysis of the human uterine smooth muscle S-nitrosoproteome fingerprint in pregnancy, labor, and preterm labor

    PubMed Central

    Ulrich, Craig C.; Quilici, David R.; Schlauch, Karen A.; Burkin, Heather R.; Buxton, Iain L.O.

    2015-01-01

    The data described in this article is the subject of an article in the American Journal of Physiology: Cell Physiology, titled “The Human Uterine Smooth Muscle S-nitrosoproteome Fingerprint in Pregnancy, Labor, and Preterm Labor” (doi:10.1152/ajpcell.00198.2013) (Ulrich et al., 2013) [1]. The data described is a large scale mass spectrometry data set that defines the human uterine smooth muscle S-nitrosoproteome differences among laboring, non-laboring, preterm laboring tissue after treatment with S-nitrosoglutathione. PMID:26322325

  20. Pulmonary toxoplasmosis in human immunodeficiency virus-infected patients in the era of antiretroviral therapy

    PubMed Central

    Velásquez, Jorge N; Ledesma, Bibiana A; Nigro, Monica G; Vittar, Natalia; Rueda, Nestor; De Carolis, Luis; Figueiras, Olga; Carnevale, Silvana; Corti, Marcelo

    2016-01-01

    Toxoplasmosis is a severe opportunistic infection in patients infected with the human immunodeficiency virus (HIV). The lung is a major site of infection after the central nervous system. In this report we described two cases of pneumonia due to Toxoplasma gondii infection in HIV patients with antiretroviral therapy. Clinical and radiological abnormalities are not specific. Pulmonary toxoplasmosis should be considered in HIV-infected patients with late stage of HIV, CD4 count less than 100 cells/µl and a poor adherence to HAART. PMID:26933317

  1. Pulmonary toxoplasmosis in human immunodeficiency virus-infected patients in the era of antiretroviral therapy.

    PubMed

    Velásquez, Jorge N; Ledesma, Bibiana A; Nigro, Monica G; Vittar, Natalia; Rueda, Nestor; De Carolis, Luis; Figueiras, Olga; Carnevale, Silvana; Corti, Marcelo

    2016-01-01

    Toxoplasmosis is a severe opportunistic infection in patients infected with the human immunodeficiency virus (HIV). The lung is a major site of infection after the central nervous system. In this report we described two cases of pneumonia due to Toxoplasma gondii infection in HIV patients with antiretroviral therapy. Clinical and radiological abnormalities are not specific. Pulmonary toxoplasmosis should be considered in HIV-infected patients with late stage of HIV, CD4 count less than 100 cells/µl and a poor adherence to HAART.

  2. Histopathological Analogies in Chronic Pulmonary Lesions between Cattle and Humans: Basis for an Alternative Animal Model

    PubMed Central

    Ramírez-Romero, Rafael; Nevárez-Garza, Alicia M.; Rodríguez-Tovar, Luis E.; Wong-González, Alfredo; Ledezma-Torres, Rogelio A.; Hernández-Vidal, Gustavo

    2012-01-01

    Most of the natural cases of pneumonia in feedlot cattle are characterized by a longer clinical course due to chronic lung lesions. Microscopically, these lesions include interstitial fibroplasia, bronchitis, bronchiectasis, bronchiolitis obliterans, and epithelial metaplasia of the airways. Herein, the aim was to review, under a medical perspective, the pathologic mechanisms operating in these chronic pneumonic lesions in calves. Based on the similarities of these changes to those reported in bronchiolitis obliterans/organising pneumonia (BO/OP) and chronic obstructive pulmonary disease (COPD) in human beings, calves are proposed as an alternative animal model. PMID:22629176

  3. [Pulmonary cystic disease may be a rare complication to recurrent respiratory human papilloma virus infection].

    PubMed

    Laurberg, Peter Thaysen; Weinreich, Ulla M Øller

    2014-12-01

    A 19-year-old woman with a history of juvenile laryngeal papillomatosis (JLP), treated since childhood with multiple resections, was admitted with symptoms of pneumonia. A chest X-ray and CAT-scan revealed multiple lung cysts and a bronchoalveolar lavage detected human papilloma virus 11. The patient responded well to antibiotics. A body plethysmography showed small lung volumes and low diffusion capacity for carbon monoxide, but normal volume diffusion capacity divided by alveolar volume. Pulmonary cystic disease should be considered when patients with JLP have symptoms of pneumonia.

  4. Pulmonary toxoplasmosis in human immunodeficiency virus-infected patients in the era of antiretroviral therapy.

    PubMed

    Velásquez, Jorge N; Ledesma, Bibiana A; Nigro, Monica G; Vittar, Natalia; Rueda, Nestor; De Carolis, Luis; Figueiras, Olga; Carnevale, Silvana; Corti, Marcelo

    2016-01-01

    Toxoplasmosis is a severe opportunistic infection in patients infected with the human immunodeficiency virus (HIV). The lung is a major site of infection after the central nervous system. In this report we described two cases of pneumonia due to Toxoplasma gondii infection in HIV patients with antiretroviral therapy. Clinical and radiological abnormalities are not specific. Pulmonary toxoplasmosis should be considered in HIV-infected patients with late stage of HIV, CD4 count less than 100 cells/µl and a poor adherence to HAART. PMID:26933317

  5. Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds.

    PubMed

    Wang, Yongyu; Hu, Jiang; Jiao, Jiao; Liu, Zhongning; Zhou, Zhou; Zhao, Chao; Chang, Lung-Ji; Chen, Y Eugene; Ma, Peter X; Yang, Bo

    2014-10-01

    Tissue-engineered blood vessels (TEBVs) are promising in the replacement of diseased vascular tissues. However, it remains a great challenge to obtain a sufficient number of functional smooth muscle cells (SMCs) in a clinical setting to construct patient-specific TEBVs. In addition, it is critical to develop a scaffold to accommodate these cells and retain their functional phenotype for the regeneration of TEBVs. In this study, human induced pluripotent stem cells (iPSCs) were established from primary human aortic fibroblasts, and characterized with the pluripotency markers expression and cells' capabilities to differentiate into all three germ layer cells. A highly efficient method was then developed to induce these human iPSCs into proliferative SMCs. After multiple times of expansion, the expanded SMCs retained the potential to be induced into the functional contractile phenotype of mature SMCs, which was characterized by the contractile response to carbachol treatment, up-regulation of specific collagen genes under transforming growth factor β1 treatment, and up-regulation of specific matrix metalloproteinase genes under cytokine stimulation. We also developed an advanced macroporous and nanofibrous (NF) poly(l-lactic acid) (PLLA) scaffold with suitable pore size and interpore connectivity to seed these human iPSC-derived SMCs and maintain their differentiated phenotype. Subcutaneous implantation of the SMC-scaffold construct in nude mice demonstrated vascular tissue formation, with robust collagenous matrix deposition inside the scaffold and the maintenance of differentiated SMC phenotype. Taken together, this study established an exciting approach towards the construction of patient-specific TEBVs. We established patient-specific human iPSCs, derived proliferative SMCs for expansion, turned on their mature contractile SMC phenotype, and developed an advanced scaffold for these cells to regenerate vascular tissue in vivo.

  6. Mycophenolate mofetil attenuates pulmonary arterial hypertension in rats

    SciTech Connect

    Suzuki, Chihiro; Takahashi, Masafumi . E-mail: masafumi@sch.md.shinshu-u.ac.jp; Morimoto, Hajime; Izawa, Atsushi; Ise, Hirohiko; Hongo, Minoru; Hoshikawa, Yasushi; Ito, Takayuki; Miyashita, Hiroshi; Kobayashi, Eiji; Shimada, Kazuyuki; Ikeda, Uichi

    2006-10-20

    Pulmonary arterial hypertension (PAH) is characterized by abnormal proliferation of smooth muscle cells (SMCs), leading to occlusion of pulmonary arterioles, right ventricular (RV) hypertrophy, and death. We investigated whether mycophenolate mofetil (MMF), a potent immunosuppresssant, prevents the development of monocrotaline (MCT)-induced PAH in rats. MMF effectively decreased RV systolic pressure and RV hypertrophy, and reduced the medial thickness of pulmonary arteries. MMF significantly inhibited the number of proliferating cell nuclear antigen (PCNA)-positive cells, infiltration of macrophages, and expression of P-selectin and interleukin-6 on the endothelium of pulmonary arteries. The infiltration of T cells and mast cells was not affected by MMF. In vitro experiments revealed that mycophenolic acid (MPA), an active metabolite of MMF, dose-dependently inhibited proliferation of human pulmonary arterial SMCs. MMF attenuated the development of PAH through its anti-inflammatory and anti-proliferative properties. These findings provide new insight into the potential role of immunosuppressants in the treatment of PAH.

  7. High glucose induces cell death of cultured human aortic smooth muscle cells through the formation of hydrogen peroxide

    PubMed Central

    Peiró, Concepción; Lafuente, Nuria; Matesanz, Nuria; Cercas, Elena; Llergo, José L; Vallejo, Susana; Rodríguez-Mañas, Leocadio; Sánchez-Ferrer, Carlos F

    2001-01-01

    Alterations of the vessel structure, which is mainly determined by smooth muscle cells through cell growth and/or cell death mechanisms, are characteristic of diabetes complications. We analysed the influence of high glucose (22 mM) on cultured human aortic smooth muscle cell growth and death, as hyperglycaemia is considered one of the main factors involved in diabetic vasculopathy. Growth curves were performed over 96 h in medium containing 0.5% foetal calf serum. Cell number increased by 2–4 fold over the culture period in the presence of 5.5 mM (low) glucose, while a 20% reduction in final cell number was observed with high glucose. Under serum-free conditions, cell number remained constant in low glucose cultures, but a 40% decrease was observed in high glucose cultures, suggesting that high glucose may induce increased cell death rather than reduced proliferation. Reduced final cell number induced by high glucose was also observed after stimulation with 5 or 10% foetal calf serum. The possible participation of oxidative stress was investigated by co-incubating high glucose with different reactive oxygen species scavengers. Only catalase reversed the effect of high glucose. Intracellular H2O2 content, visualized with 2′,7′-dichlorofluorescein and quantified by flow cytometry, was increased after high glucose treatment. To investigate the cell death mechanism induced by high glucose, apoptosis and necrosis were quantified. No differences were observed regarding the apoptotic index between low and high glucose cultures, but lactate dehydrogenase activity was increased in high glucose cultures. In conclusion, high glucose promotes necrotic cell death through H2O2 formation, which may participate in the development of diabetic vasculopathy. PMID:11487505

  8. Biomechanical strain induces elastin and collagen production in human pluripotent stem cell-derived vascular smooth muscle cells

    PubMed Central

    Wanjare, Maureen; Agarwal, Nayan

    2015-01-01

    Blood vessels are subjected to numerous biomechanical forces that work harmoniously but, when unbalanced because of vascular smooth muscle cell (vSMC) dysfunction, can trigger a wide range of ailments such as cerebrovascular, peripheral artery, and coronary artery diseases. Human pluripotent stem cells (hPSCs) serve as useful therapeutic tools that may help provide insight on the effect that such biomechanical stimuli have on vSMC function and differentiation. In this study, we aimed to examine the effect of biomechanical strain on vSMCs derived from hPSCs. The effects of two types of tensile strain on hPSC-vSMC derivatives at different stages of differentiation were examined. The derivatives included smooth muscle-like cells (SMLCs), mature SMLCs, and contractile vSMCs. All vSMC derivatives aligned perpendicularly to the direction of cyclic uniaxial strain. Serum deprivation and short-term uniaxial strain had a synergistic effect in enhancing collagen type I, fibronectin, and elastin gene expression. Furthermore, long-term uniaxial strain deterred collagen type III gene expression, whereas long-term circumferential strain upregulated both collagen type III and elastin gene expression. Finally, long-term uniaxial strain downregulated extracellular matrix (ECM) expression in more mature vSMC derivatives while upregulating elastin in less mature vSMC derivatives. Overall, our findings suggest that in vitro application of both cyclic uniaxial and circumferential tensile strain on hPSC-vSMC derivatives induces cell alignment and affects ECM gene expression. Therefore, mechanical stimulation of hPSC-vSMC derivatives using tensile strain may be important in modulating the phenotype and thus the function of vSMCs in tissue-engineered vessels. PMID:26108668

  9. Biomechanical strain induces elastin and collagen production in human pluripotent stem cell-derived vascular smooth muscle cells

    PubMed Central

    Wanjare, Maureen; Agarwal, Nayan

    2015-01-01

    Blood vessels are subjected to numerous biomechanical forces that work harmoniously but, when unbalanced because of vascular smooth muscle cell (vSMC) dysfunction, can trigger a wide range of ailments such as cerebrovascular, peripheral artery, and coronary artery diseases. Human pluripotent stem cells (hPSCs) serve as useful therapeutic tools that may help provide insight on the effect that such biomechanical stimuli have on vSMC function and differentiation. In this study, we aimed to examine the effect of biomechanical strain on vSMCs derived from hPSCs. The effects of two types of tensile strain on hPSC-vSMC derivatives at different stages of differentiation were examined. The derivatives included smooth muscle-like cells (SMLCs), mature SMLCs, and contractile vSMCs. All vSMC derivatives aligned perpendicularly to the direction of cyclic uniaxial strain. Serum deprivation and short-term uniaxial strain had a synergistic effect in enhancing collagen type I, fibronectin, and elastin gene expression. Furthermore, long-term uniaxial strain deterred collagen type III gene expression, whereas long-term circumferential strain upregulated both collagen type III and elastin gene expression. Finally, long-term uniaxial strain downregulated extracellular matrix (ECM) expression in more mature vSMC derivatives while upregulating elastin in less mature vSMC derivatives. Overall, our findings suggest that in vitro application of both cyclic uniaxial and circumferential tensile strain on hPSC-vSMC derivatives induces cell alignment and affects ECM gene expression. Therefore, mechanical stimulation of hPSC-vSMC derivatives using tensile strain may be important in modulating the phenotype and thus the function of vSMCs in tissue-engineered vessels. PMID:26108668

  10. Respiratory Syncytial Virus (RSV) Pulmonary Infection in Humanized Mice Induces Human Anti-RSV Immune Responses and Pathology

    PubMed Central

    Sharma, Anurag; Wu, Wenzhu; Sung, Biin; Huang, Jing; Tsao, Tiffany; Li, Xiangming; Gomi, Rika; Tsuji, Moriya

    2016-01-01

    ABSTRACT Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract disease, which causes high rates of morbidity and mortality in infants and the elderly. Models of human RSV pulmonary disease are needed to better understand RSV pathogenesis and to assess the efficacy of RSV vaccines. We assessed the RSV-specific human innate, humoral, and cellular immune responses in humanized mice (mice with a human immune system [HIS mice]) with functional human CD4+ T and B cells. These mice were generated by introduction of HLA class II genes, various human cytokines, and human B cell activation factor into immunodeficient NOD scid gamma (NSG) mice by the use of an adeno-associated virus vector, followed by engraftment of human hematopoietic stem cells. During the first 3 days of infection, HIS mice lost more weight and cleared RSV faster than NSG mice. Human chemokine (C-C motif) ligand 3 (CCL3) and human interleukin-1β (IL-1β) expression was detected in the RSV-infected HIS mice. The pathological features induced by RSV infection in HIS mice included peribronchiolar inflammation, neutrophil predominance in the bronchioalveolar lavage fluid, and enhanced airway mucus production. Human anti-RSV IgG and RSV-neutralizing antibodies were detected in serum and human anti-RSV mucosal IgA was detected in bronchioalveolar lavage fluid for up to 6 weeks. RSV infection induced an RSV-specific human gamma interferon response in HIS mouse splenocytes. These results indicate that human immune cells can induce features of RSV lung disease, including mucus hyperplasia, in murine lungs and that HIS mice can be used to elicit human anti-RSV humoral and cellular immunity. IMPORTANCE Infections with respiratory syncytial virus (RSV) are common and can cause severe lung disease in infants and the elderly. The lack of a suitable animal model with disease features similar to those in humans has hampered efforts to predict the efficacy of novel anti-RSV therapies and

  11. Human pulmonary acinar aplasia: reduction of transforming growth factor-beta ligands and receptors.

    PubMed

    Chen, M F; Gray, K D; Prentice, M A; Mariano, J M; Jakowlew, S B

    1999-07-01

    Pulmonary hypoplasia has been found in the human neonatal autopsy population and has been attributed to an alteration in epithelial-mesenchymal interactions during development of the lung. Pulmonary acinar aplasia is a very rare and severe form of pulmonary hypoplasia. The transforming growth factor-betas (TGF-beta) are multifunctional regulatory peptides that are secreted by a variety of normal and malignant cells and are expressed in developing organs including the lung; their tissue distribution patterns have possible significance for signaling roles in many epithelial-mesenchymal interactions. Here, we report our examination of TGF-beta in the lungs of a term female infant diagnosed with pulmonary acinar aplasia whose autopsy revealed extremely hypoplastic lungs with complete absence of alveolar ducts and alveoli. Immunohistochemical and in situ hybridization analyses were used to localize and measure the proteins and mRNA, respectively, for TGF-beta1, TGF-beta2, TGF-beta3, and TGF-beta type I and type II receptors (TGF-beta RI and RII) in formalin-fixed and paraffin-embedded sections of these hypoplastic lungs and normal lungs. Immunostaining for TGF-beta1, TGF-beta2, and TGF-beta RI and RII was significantly lower in the bronchial epithelium and muscle of the hypoplastic lungs than in normal lungs, whereas no difference was detected in staining for other proteins including Clara cell 10-kD protein, adrenomedullin, hepatocyte growth factor/scatter factor, and hepatocyte growth factor receptor/Met in the hypoplastic and normal lungs or in the liver and kidneys of this infant compared with normal liver and kidney. In addition, in situ hybridization showed that TGF-beta1 and TGF-beta RI transcripts were considerably reduced in the bronchial epithelium of the hypoplastic lung compared with normal lung. These results show that there is a selective reduction of TGF-beta in pulmonary acinar aplasia and suggest that the signaling action of TGF-beta in epithelial

  12. A comparison of human smooth muscle and mesenchymal stem cells as potential cell sources for tissue-engineered vascular patches.

    PubMed

    Williams, Corin; Xie, Angela W; Emani, Sirisha; Yamato, Masayuki; Okano, Teruo; Emani, Sitaram M; Wong, Joyce Y

    2012-05-01

    In pediatric patients requiring vascular reconstruction, the development of a cell-based tissue-engineered vascular patch (TEVP) has great potential to overcome current issues with nonliving graft materials. Determining the optimal cell source is especially critical to TEVP success. In this study, we compared the ability of human aortic smooth muscle cells (HuAoSMCs) and human mesenchymal stem cells (hMSCs) to form cell sheets on thermoresponsive poly(N-isopropylacrylamide) (PIPAAm) substrates. hMSCs treated with transforming growth factor beta 1 (TGFβ1) and ascorbic acid (AA) had higher expression of SMC-specific proteins compared to HuAoSMCs. hMSCs also had larger cell area and grew to confluence more quickly on PIPAAm than did HuAoSMCs. hMSCs typically formed cell sheets in 2-3 weeks and had greater wet tissue weight and collagen content compared with HuAoSMC sheets, which generally required growth for up to 5 weeks. Assays for calcification and alkaline phosphatase activity revealed that the osteogenic potential of TGFβ1+AA-treated hMSCs was low; however, Alcian Blue staining suggested high chondrogenic behavior of TGFβ1+AA-treated hMSCs. Although hMSCs are promising for cell-based TEVPs in their ability to form robust tissue with significant extracellular matrix content, improved control over hMSC behavior will be required for long-term TEVP success.

  13. Integrase-Deficient Lentiviral Vectors Mediate Efficient Gene Transfer to Human Vascular Smooth Muscle Cells with Minimal Genotoxic Risk

    PubMed Central

    Chick, Helen E.; Nowrouzi, Ali; Fronza, Raffaele; McDonald, Robert A.; Kane, Nicole M.; Alba, Raul; Delles, Christian; Sessa, William C.; Schmidt, Manfred; Thrasher, Adrian J.

    2012-01-01

    Abstract We have previously shown that injury-induced neointima formation was rescued by adenoviral-Nogo-B gene delivery. Integrase-competent lentiviral vectors (ICLV) are efficient at gene delivery to vascular cells but present a risk of insertional mutagenesis. Conversely, integrase-deficient lentiviral vectors (IDLV) offer additional benefits through reduced mutagenesis risk, but this has not been evaluated in the context of vascular gene transfer. Here, we have investigated the performance and genetic safety of both counterparts in primary human vascular smooth muscle cells (VSMC) and compared gene transfer efficiency and assessed the genotoxic potential of ICLVs and IDLVs based on their integration frequency and insertional profile in the human genome. Expression of enhanced green fluorescent protein (eGFP) mediated by IDLVs (IDLV-eGFP) demonstrated efficient transgene expression in VSMCs. IDLV gene transfer of Nogo-B mediated efficient overexpression of Nogo-B in VSMCs, leading to phenotypic effects on VSMC migration and proliferation, similar to its ICLV version and unlike its eGFP control and uninfected VSMCs. Large-scale integration site analyses in VSMCs indicated that IDLV-mediated gene transfer gave rise to a very low frequency of genomic integration compared to ICLVs, revealing a close-to-random genomic distribution in VSMCs. This study demonstrates for the first time the potential of IDLVs for safe and efficient vascular gene transfer. PMID:22931362

  14. Human cytomegalovirus increases modified low density lipoprotein uptake and scavenger receptor mRNA expression in vascular smooth muscle cells.

    PubMed Central

    Zhou, Y F; Guetta, E; Yu, Z X; Finkel, T; Epstein, S E

    1996-01-01

    Evidence suggests a possible role for human cytomegalovirus (HCMV) in the development of arteriosclerosis. One of the earliest events in plaque formation is the accumulation of lipid-laden foam cells, derived from macrophages and smooth muscle cells (SMCs). The lipid accumulation that occurs depends upon the uptake of oxidized LDL (Ox-LDL), a process in which the scavenger receptor (SR) has been postulated to play an important role. We therefore examined the effects of HCMV on this process. We demonstrate that HCMV infection of human SMCs increases modified LDL uptake and stimulates class A SR gene (SR-A) mRNA expression. In addition, infection of rat SMCs with HCMV, which causes immediate early gene expression (IE72/IE84), but no early or late HCMV gene products and no cytopathic effects, also increases SMC uptake of Ox-LDL and acetylated LDL, with either effect blocked by an excess of either cold Ox-LDL or acetylated-LDL, and by fucoidin, an SR competitor. Cotransfection of an IE72, but not an IE84, expression plasmid and a plasmid containing a Class A SR promoter/reporter gene construct enhances SR promoter activity. Since increased Ox-LDL uptake is believed to play an important role in arteriosclerosis, these results provide a link between HCMV infection and arteriosclerotic plaque formation. PMID:8903333

  15. Artichoke, cynarin and cyanidin downregulate the expression of inducible nitric oxide synthase in human coronary smooth muscle cells.

    PubMed

    Xia, Ning; Pautz, Andrea; Wollscheid, Ursula; Reifenberg, Gisela; Förstermann, Ulrich; Li, Huige

    2014-01-01

    Artichoke (Cynara scolymus L.) is one of the world's oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS) in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC). Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1-100 µg/mL, 6 h or 24 h). Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside) led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials. PMID:24662080

  16. Long-chain acyl-CoA synthetase 4 modulates prostaglandin E2 release from human arterial smooth muscle cells

    PubMed Central

    Golej, Deidre L.; Askari, Bardia; Kramer, Farah; Barnhart, Shelley; Vivekanandan-Giri, Anuradha; Pennathur, Subramaniam; Bornfeldt, Karin E.

    2011-01-01

    Long-chain acyl-CoA synthetases (ACSLs) catalyze the thioesterification of long-chain FAs into their acyl-CoA derivatives. Purified ACSL4 is an arachidonic acid (20:4)-preferring ACSL isoform, and ACSL4 is therefore a probable regulator of lipid mediator production in intact cells. Eicosanoids play important roles in vascular homeostasis and disease, yet the role of ACSL4 in vascular cells is largely unknown. In the present study, the ACSL4 splice variant expressed in human arterial smooth muscle cells (SMCs) was identified as variant 1. To investigate the function of ACSL4 in SMCs, ACSL4 variant 1 was overexpressed, knocked-down by small interfering RNA, or its enzymatic activity acutely inhibited in these cells. Overexpression of ACSL4 resulted in a markedly increased synthesis of arachidonoyl-CoA, increased 20:4 incorporation into phosphatidylethanolamine, phosphatidylinositol, and triacylglycerol, and reduced cellular levels of unesterified 20:4. Accordingly, secretion of prostaglandin E2 (PGE2) was blunted in ACSL4-overexpressing SMCs compared with controls. Conversely, acute pharmacological inhibition of ACSL4 activity resulted in increased release of PGE2. However, long-term downregulation of ACSL4 resulted in markedly reduced PGE2 secretion. Thus, ACSL4 modulates PGE2 release from human SMCs. ACSL4 may regulate a number of processes dependent on the release of arachidonic acid-derived lipid mediators in the arterial wall. PMID:21242590

  17. The tyrosine phosphatase SHP-2 controls urokinase-dependent signaling and functions in human vascular smooth muscle cells

    SciTech Connect

    Kiyan, Julia Haller, Hermann; Dumler, Inna

    2009-04-01

    The urokinase (uPA)/urokinase receptor (uPAR) multifunctional system is an important mediator of functional behaviour of human vascular smooth muscle cells (VSMC). uPAR associates with platelet-derived growth factor receptor {beta} (PDGFR-{beta}), which serves as a transmembrane adaptor for uPAR in VSMC, to transduce intracellular signaling and initiate functional changes. The precise and rapid propagation of these signaling cascades demands both strict and flexible regulatory mechanisms that remain unexplored. We provide evidence that the tyrosine phosphatase SHP-2 mediates these processes. uPA regulated SHP-2 phosphorylation, catalytic activity, and its co-localization and association with the PDGFR-{beta}. Active PDGFR-{beta} was required for the uPA-induced SHP-2 phosphorylation. uPAR-directed STAT1 pathway was disturbed in cells expressing SHP-2 inactive mutant. Both, cell proliferation and migration were impaired in VSMC with downregulated SHP-2. Elucidating the underlying mechanisms, we found that uPA induced SHP-2 recruitment to lipid rafts. Disruption of rafts abolished uPA-related control of SHP-2 phosphorylation, its association with PDGFR-{beta} and finally the VSMC functional responses. Our results demonstrate that SHP-2 plays an important role in uPA-directed signaling and functional control of human VSMC and suggest that this phosphatase might contribute to the pathogenesis of the uPA-related vascular remodeling.

  18. Artichoke, cynarin and cyanidin downregulate the expression of inducible nitric oxide synthase in human coronary smooth muscle cells.

    PubMed

    Xia, Ning; Pautz, Andrea; Wollscheid, Ursula; Reifenberg, Gisela; Förstermann, Ulrich; Li, Huige

    2014-03-24

    Artichoke (Cynara scolymus L.) is one of the world's oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS) in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC). Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1-100 µg/mL, 6 h or 24 h). Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside) led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.

  19. Mitophagy acts as a safeguard mechanism against human vascular smooth muscle cell apoptosis induced by atherogenic lipids.

    PubMed

    Swiader, Audrey; Nahapetyan, Hripsime; Faccini, Julien; D'Angelo, Romina; Mucher, Elodie; Elbaz, Meyer; Boya, Patricia; Vindis, Cécile

    2016-05-17

    Mitophagy is a critical cellular process that selectively targets damaged mitochondria for autophagosomal degradation both under baseline conditions and in response to stress preventing oxidative damage and cell death. Recent studies have linked alterations in mitochondria function and reduced autophagy with the development of age-related pathologies. However, the significance of mitochondrial autophagy in vessel wall in response to atherogenic lipid stressors is not known. In the present study, we investigated the role of mitophagy on human vascular smooth muscle cells (VSMC) apoptosis induced by oxidized low-density lipoproteins (LDL). We reported for the first time that the engulfment of defective mitochondria by autophagosomes occurred in human VSMC in response to oxidized LDL. The molecular mechanism mediating mitophagy in human VSMC involved dynamin-related protein 1 (Drp1)-mediated mitochondrial fission, accumulation of PTEN-induced putative kinase 1 (PINK1) and the recruitment of the E3 ubiquitin ligase Parkin to mitochondria. Likewise, we found increased voltage-dependent anion channel 1 (VDAC1) and mitofusin 2 (Mnf2) mitochondrial proteins ubiquitination and LC3 association to mitochondria. Using flow cytometry in the presence of lysosomal inhibitors, we showed that PINK1 and Parkin silencing impaired mitophagy flux and enhanced oxidized LDL-induced VSMC apoptosis. In addition, overexpression of PINK1 and Parkin were protective by limiting cell death. Moreover, reduced Bax levels found in VSMC-overexpressing Parkin indicated cross talk among mitophagy and mitochondrial apoptotic signalling pathways. Altogether these data demonstrate that mitophagy is a safeguard mechanism against human VSMC apoptosis induced by atherogenic stressors and highlight mitophagy as a potential target to stabilize atherosclerotic plaque. PMID:27119505

  20. Mitophagy acts as a safeguard mechanism against human vascular smooth muscle cell apoptosis induced by atherogenic lipids

    PubMed Central

    Swiader, Audrey; Nahapetyan, Hripsime; Faccini, Julien; D'Angelo, Romina; Mucher, Elodie; Elbaz, Meyer; Boya, Patricia; Vindis, Cécile

    2016-01-01

    Mitophagy is a critical cellular process that selectively targets damaged mitochondria for autophagosomal degradation both under baseline conditions and in response to stress preventing oxidative damage and cell death. Recent studies have linked alterations in mitochondria function and reduced autophagy with the development of age-related pathologies. However, the significance of mitochondrial autophagy in vessel wall in response to atherogenic lipid stressors is not known. In the present study, we investigated the role of mitophagy on human vascular smooth muscle cells (VSMC) apoptosis induced by oxidized low-density lipoproteins (LDL). We reported for the first time that the engulfment of defective mitochondria by autophagosomes occurred in human VSMC in response to oxidized LDL. The molecular mechanism mediating mitophagy in human VSMC involved dynamin-related protein 1 (Drp1)-mediated mitochondrial fission, accumulation of PTEN-induced putative kinase 1 (PINK1) and the recruitment of the E3 ubiquitin ligase Parkin to mitochondria. Likewise, we found increased voltage-dependent anion channel 1 (VDAC1) and mitofusin 2 (Mnf2) mitochondrial proteins ubiquitination and LC3 association to mitochondria. Using flow cytometry in the presence of lysosomal inhibitors, we showed that PINK1 and Parkin silencing impaired mitophagy flux and enhanced oxidized LDL-induced VSMC apoptosis. In addition, overexpression of PINK1 and Parkin were protective by limiting cell death. Moreover, reduced Bax levels found in VSMC-overexpressing Parkin indicated cross talk among mitophagy and mitochondrial apoptotic signalling pathways. Altogether these data demonstrate that mitophagy is a safeguard mechanism against human VSMC apoptosis induced by atherogenic stressors and highlight mitophagy as a potential target to stabilize atherosclerotic plaque. PMID:27119505

  1. 2-Arachidonylglyceryl ether and abnormal cannabidiol-induced vascular smooth muscle relaxation in rabbit pulmonary arteries via receptor-pertussis toxin sensitive G proteins-ERK1/2 signaling.

    PubMed

    Su, Judy Y; Vo, Anhkiet C

    2007-03-22

    The receptor(s) used by cannabinoids to relax vascular smooth muscle is unknown. Here, we investigated the effects of 2-arachidonylglyceryl ether (2-AG ether), a metabolically stable endocannabinoid, and abnormal cannabidiol (abn-CBD) on relaxation of permeabilized pulmonary arterial strips monitored with force, and on extracellular signal-regulated mitogen-activated protein kinases (ERK1/2) phosphorylation in permeabilized vascular smooth muscle cells using immunoblotting. We found that 2-AG ether and abn-CBD caused relaxation and increased phosphorylation of ERK1/2. 2-AG ether effects were completely abolished by N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), and N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716A), and partially blocked by (-)-1.3-dimethoxy-2-(3-3,4-trans-p-menthadien-(1,8)-yl)-orcinol (O-1918). In contrast, abn-CBD effects were completely abolished by O-1918, and only partially blocked by AM251, and SR141716A. Both 2-AG ether and abn-CBD effects were partially blocked by pertussis toxin, an inhibitor of Gi/o proteins. PD98059, an inhibitor of mitogen activated protein kinase kinase (MEK), completely abolished the relaxation, but only partially blocked the increased phosphorylation of ERK1/2 by 2-AG ether. In contrast, abn-CBD-induced relaxation was partially blocked and the increased phosphorylation of ERK1/2 was abolished by PD98059. These findings suggest that 2-AG ether and abn-CBD-induced vascular smooth muscle relaxation are mediated by the cannabinoid CB1 receptor, and the abn-CBD receptor, respectively, and are modulated by cross-talk between the receptors. These responses occur mainly by coupling to pertussis toxin sensitive G proteins, but also, in part independent of these G proteins, which have been classically thought to initiate MEK/ERK1/2 signaling to relax vascular smooth muscle.

  2. Loss of adipose triglyceride lipase is associated with human cancer and induces mouse pulmonary neoplasia.

    PubMed

    Al-Zoughbi, Wael; Pichler, Martin; Gorkiewicz, Gregor; Guertl-Lackner, Barbara; Haybaeck, Johannes; Jahn, Stephan W; Lackner, Carolin; Liegl-Atzwanger, Bernadette; Popper, Helmut; Schauer, Silvia; Nusshold, Elisa; Kindt, Alida S D; Trajanoski, Zlatko; Speicher, Michael R; Haemmerle, Guenther; Zimmermann, Robert; Zechner, Rudolf; Vesely, Paul W; Hoefler, Gerald

    2016-06-01

    Metabolic reprogramming is a hallmark of cancer. Understanding cancer metabolism is instrumental to devise innovative therapeutic approaches. Anabolic metabolism, including the induction of lipogenic enzymes, is a key feature of proliferating cells. Here, we report a novel tumor suppressive function for adipose triglyceride lipase (ATGL), the rate limiting enzyme in the triglyceride hydrolysis cascade.In immunohistochemical analysis, non-small cell lung cancers, pancreatic adenocarcinoma as well as leiomyosarcoma showed significantly reduced levels of ATGL protein compared to corresponding normal tissues. The ATGL gene was frequently deleted in various forms of cancers. Low levels of ATGL mRNA correlated with significantly reduced survival in patients with ovarian, breast, gastric and non-small cell lung cancers. Remarkably, pulmonary neoplasia including invasive adenocarcinoma developed spontaneously in mice lacking ATGL pointing to an important role for this lipase in controlling tumor development.Loss of ATGL, as detected in several forms of human cancer, induces spontaneous development of pulmonary neoplasia in a mouse model. Our results, therefore, suggest a novel tumor suppressor function for ATGL and contribute to the understanding of cancer metabolism. We propose to evaluate loss of ATGL protein expression for the diagnosis of malignant tumors. Finally, modulation of the lipolytic pathway may represent a novel therapeutic approach in the treatment of human cancer.

  3. Loss of adipose triglyceride lipase is associated with human cancer and induces mouse pulmonary neoplasia

    PubMed Central

    Al-Zoughbi, Wael; Pichler, Martin; Gorkiewicz, Gregor; Guertl-Lackner, Barbara; Haybaeck, Johannes; Jahn, Stephan W.; Lackner, Carolin; Liegl-Atzwanger, Bernadette; Popper, Helmut; Schauer, Silvia; Nusshold, Elisa; Kindt, Alida S. D.; Trajanoski, Zlatko; Speicher, Michael R.; Haemmerle, Guenther; Zimmermann, Robert; Zechner, Rudolf; Vesely, Paul W.; Hoefler, Gerald

    2016-01-01

    Metabolic reprogramming is a hallmark of cancer. Understanding cancer metabolism is instrumental to devise innovative therapeutic approaches. Anabolic metabolism, including the induction of lipogenic enzymes, is a key feature of proliferating cells. Here, we report a novel tumor suppressive function for adipose triglyceride lipase (ATGL), the rate limiting enzyme in the triglyceride hydrolysis cascade. In immunohistochemical analysis, non-small cell lung cancers, pancreatic adenocarcinoma as well as leiomyosarcoma showed significantly reduced levels of ATGL protein compared to corresponding normal tissues. The ATGL gene was frequently deleted in various forms of cancers. Low levels of ATGL mRNA correlated with significantly reduced survival in patients with ovarian, breast, gastric and non-small cell lung cancers. Remarkably, pulmonary neoplasia including invasive adenocarcinoma developed spontaneously in mice lacking ATGL pointing to an important role for this lipase in controlling tumor development. Loss of ATGL, as detected in several forms of human cancer, induces spontaneous development of pulmonary neoplasia in a mouse model. Our results, therefore, suggest a novel tumor suppressor function for ATGL and contribute to the understanding of cancer metabolism. We propose to evaluate loss of ATGL protein expression for the diagnosis of malignant tumors. Finally, modulation of the lipolytic pathway may represent a novel therapeutic approach in the treatment of human cancer. PMID:27213586

  4. Injury of the human diaphragm associated with exertion and chronic obstructive pulmonary disease.

    PubMed

    Orozco-Levi, M; Lloreta, J; Minguella, J; Serrano, S; Broquetas, J M; Gea, J

    2001-11-01

    Injury of the diaphragm may have clinical relevance having been reported in cases of sudden infant death syndrome or fatal asthma. However, examination of diaphragm injury after acute inspiratory loading has not been reported. The purpose of this study was to determine whether an acute inspiratory overload induces injury of the human diaphragm and to determine if diaphragm from chronic obstructive pulmonary disease (COPD) is more susceptible to injury. Eighteen patients with COPD and 11 control patients with normal pulmonary function (62 +/- 10 yr) undergoing thoracotomy or laparotomy were studied. A threshold inspiratory loading test was performed prior to surgery in a subset of seven patients with COPD and five control patients. Samples of the costal diaphragm were obtained during surgery and processed for electron microscopy analysis. Signs of sarcomere disruption were found in all diaphragm samples. The range of values of sarcomere disruption was wide (density: 2-45 abnormal areas/100 microm(2); area fractions: 1.3-17.3%), significantly higher in diaphragm from patients with COPD (p < 0.05) and with the greatest injury after inspiratory loading. We conclude that sarcomere disruption is common in the human diaphragm, is more evident in patients with COPD, and is higher after inspiratory loading, especially in the diaphragm of those with COPD. PMID:11719318

  5. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells

    SciTech Connect

    Petri, Marcelo H.; Tellier, Céline; Michiels, Carine; Ellertsen, Ingvill; Dogné, Jean-Michel; Bäck, Magnus

    2013-11-15

    Highlights: •EV-077 reduced TNF-α induced inflammation in endothelial cells. •The thromboxane mimetic U69915 enhanced vascular smooth muscle cell proliferation. •EV-077 inhibited smooth muscle cell proliferation. -- Abstract: The prothrombotic mediator thromboxane A{sub 2} is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy.

  6. Expression and proliferation profiles of PKC, JNK and p38MAPK in physiologically stretched human bladder smooth muscle cells

    SciTech Connect

    Wazir, Romel; Luo, De-Yi; Dai, Yi; Yue, Xuan; Tian, Ye; Wang, Kun-Jie

    2013-08-30

    Highlights: •Stretch induces proliferation in human bladder smooth muscle cells (HBSMC). •5% Equibiaxial elongation produces maximum proliferation. •Physiologic stretch decreases apoptotic cell death. •PKC is involved in functional modulation of bladder. •JNK and p38 are not involved in proliferating HBSMC. -- Abstract: Objective: To determine protein kinase C (PKC), c-Jun NH2-Terminal Kinase (JNK) and P38 mitogen-activated protein kinases (p38MAPK) expression levels and effects of their respective inhibitors on proliferation of human bladder smooth muscle cells (HBSMCs) when physiologically stretched in vitro. Materials and methods: HBSMCs were grown on silicone membrane and stretch was applied under varying conditions; (equibiaxial elongation: 2.5%, 5%, 10%, 15%, 20%, 25%), (frequency: 0.05, 0.1, 0.2, 0.5, 1 Hz). Optimal physiological stretch was established by assessing proliferation with 5-Bromo-2-deoxyuridine (BrdU) assay and flow cytometry. PKC, JNK and p38 expression levels were analyzed by Western blot. Specificity was maintained by employing specific inhibitors; (GF109203X for PKC, SP600125 for JNK and SB203580 for p38MAPK), in some experiments. Results: Optimum proliferation was observed at 5% equibiaxial stretch (BrdU: 0.837 ± 0.026 (control) to 1.462 ± 0.023)%, (P < 0.05) and apoptotic cell death rate decreased from 16.4 ± 0.21% (control) to 4.5 ± 0.13% (P < 0.05) applied at 0.1 Hz. Expression of PKC was upregulated with slight increase in JNK and no change in p38MAPK after application of stretch. Inhibition had effects on proliferation (1.075 ± 0.024, P < 0.05 GF109203X); (1.418 ± 0.021, P > 0.05 SP600125) and (1.461 ± 0.01, P > 0.05 SB203580). These findings show that mechanical stretch can promote magnitude-dependent proliferative modulation through PKC and possibly JNK but not via p38MAPK in hBSMCs.

  7. Minimization of Retinal Slip Cannot Explain Human Smooth-Pursuit Eye Movements

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Beutter, Brent R.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    Existing models assume that pursuit attempts a direct minimization of retinal image motion or "slip" (e.g. Robinson et al., 1986; Krauzlis & Weisberger, 1989). Using occluded line-figure stimuli, we have previously shown that humans can accurately pursue stimuli for which perfect tracking does not zero retinal slip (Neurologic ARCO). These findings are inconsistent with the standard control strategy of matching eye motion to a target-motion signal reconstructed by adding retinal slip and eye motion, but consistent with a visual front-end which estimates target motion via a global spatio-temporal integration for pursuit and perception. Another possible explanation is that pursuit simply attempts to minimize slip perpendicular to the segments (and neglects parallel "sliding" motion). To resolve this, 4 observers (3 naive) were asked to pursue the center of 2 types of stimuli with identical velocity-space descriptions and matched motion energy. The line-figure "diamond" stimulus was viewed through 2 invisible 3 deg-wide vertical apertures (38 cd/m2 equal to background) such that only the sinusoidal motion of 4 oblique line segments (44 cd/m2 was visible. The "cross" was identical except that the segments exchanged positions. Two trajectories (8's and infinity's) with 4 possible initial directions were randomly interleaved (1.25 cycles, 2.5s period, Ax = Ay = 1.4 deg). In 91% of trials, the diamond appeared rigid. Correspondingly, pursuit was vigorous (mean Again: 0.74) with a V/H aspect ratio approx. 1 (mean: 0.9). Despite a valid rigid solution, the cross however appeared rigid in 8% of trials. Correspondingly, pursuit was weaker (mean Hgain: 0.38) with an incorrect aspect ratio (mean: 1.5). If pursuit were just minimizing perpendicular slip, performance would be the same in both conditions.

  8. Effects of nitrogen dioxide exposure on pulmonary function and airway reactivity in normal humans.

    PubMed

    Frampton, M W; Morrow, P E; Cox, C; Gibb, F R; Speers, D M; Utell, M J

    1991-03-01

    Nitrogen dioxide (NO2) is a product of combustion that has become recognized as a significant component of indoor air in some homes. Despite extensive study, it remains unresolved whether exposures to low levels of NO2 affect airway function or reactivity. These studies were designed to assess effects of various levels and patterns of NO2 exposure on pulmonary function and airway reactivity in normal humans. Normal volunteers screened for the absence of airway hyperreactivity were exposed for 3 h in an environmental chamber to purified air or NO2, separated by at least 2 wk, according to three protocols: (1) continuous 0.60 ppm NO2, (2) baseline 0.05 ppm NO2 with intermittent peaks of 2.0 ppm, and (3) continuous 1.5 ppm NO2. Subjects exercised for 10 min of each 30 min at a level sufficient to result in a minute ventilation near 40 L/min. Pulmonary function was measured before, during, and after exposure. Airway reactivity to increasing doses of carbachol was assessed 30 min after exposure. NO2 did not directly alter pulmonary function in any of the exposure protocols. In addition, airway reactivity was not altered by continuous exposure to 0.60 ppm or intermittent peaks of 2.0 ppm NO2. In contrast, continuous exposure to 1.5 ppm NO2 resulted in a greater fall in FVC and FEV1 in response to carbachol than after exposure to air (percent decrease in FVC: 1.5% after air, 3.9% after NO2, p less than 0.01). We conclude that for subjects without airway hyperreactivity, exposure to 1.5 ppm NO2 for 3 h increases airway reactivity, whereas repeated 15-min exposures to 2.0 ppm NO2 do not alter airway reactivity. PMID:2001061

  9. Modulation of cGMP by human HO-1 retrovirus gene transfer in pulmonary microvessel endothelial cells.

    PubMed

    Abraham, Nader G; Quan, Shuo; Mieyal, Paul A; Yang, Liming; Burke-Wolin, Theresa; Mingone, Christopher J; Goodman, Alvin I; Nasjletti, Alberto; Wolin, Michael S

    2002-11-01

    Carbon monoxide (CO) stimulates guanylate cyclase (GC) and increases guanosine 3',5'-cyclic monophosphate (cGMP) levels. We transfected rat-lung pulmonary endothelial cells with a retrovirus-mediated human heme oxygenase (hHO)-1 gene. Pulmonary cells that expressed hHO-1 exhibited a fourfold increase in HO activity associated with decreases in the steady-state levels of heme and cGMP without changes in soluble GC (sGC) and endothelial nitric oxide synthase (NOS) proteins or basal nitrite production. Heme elicited significant increases in CO production and intracellular cGMP levels in both pulmonary endothelial and pulmonary hHO-1-expressing cells. N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS, significantly decreased cGMP levels in heme-treated pulmonary endothelial cells but not heme-treated hHO-1-expressing cells. In the presence of exogenous heme, CO and cGMP levels in hHO-1-expressing cells exceeded the corresponding levels in pulmonary endothelial cells. Acute exposure of endothelial cells to SnCl2, which is an inducer of HO-1, increased cGMP levels, whereas chronic exposure decreased heme and cGMP levels. These results indicate that prolonged overexpression of HO-1 ultimately decreases sGC activity by limiting the availability of cellular heme. Heme activates sGC and enhances cGMP levels via a mechanism that is largely insensitive to NOS inhibition.

  10. Interferon-induced, antiviral human MxA protein localizes to a distinct subcompartment of the smooth endoplasmic reticulum.

    PubMed

    Stertz, Silke; Reichelt, Mike; Krijnse-Locker, Jacomine; Mackenzie, Jason; Simpson, Jeremy C; Haller, Otto; Kochs, Georg

    2006-09-01

    Human MxA protein belongs to the superfamily of dynamin-like large GTPases that are involved in intracellular membrane trafficking. MxA is induced by interferons-alpha/beta (IFN-alpha/beta) and is a key component of the antiviral response against RNA viruses. Here, we show that MxA localizes to membranes that are positive for specific markers of the smooth endoplasmic reticulum, such as Syntaxin17, but is excluded from other membrane compartments. Overexpression of MxA leads to a characteristic reorganization of the associated membranes. Interestingly, Hook3, mannose-6-phosphate receptor, and Lamp-1, which normally accumulate in cis- Golgi, endosomes, and lysosomes, respectively, also colocalized with MxA, indicating that these markers were redistributed to the MxA-positive compartment. Functional assays, however, did not show any effect of MxA on endocytosis or the secretory pathway. The present results demonstrate that MxA is an IFN-induced antiviral effector protein that resembles the constitutively expressed large GTPase family members in its capacity to localize to and reorganize intracellular membranes.

  11. 12S-lipoxygenase protein associates with {alpha}-actin fibers in human umbilical artery vascular smooth muscle cells

    SciTech Connect

    Weisinger, Gary . E-mail: gary_w@tasmc.health.gov.il; Limor, Rona; Marcus-Perlman, Yonit; Knoll, Esther; Kohen, Fortune; Schinder, Vera; Firer, Michael; Stern, Naftali

    2007-05-11

    The current study sets out to characterize the intracellular localization of the platelet-type 12S-lipoxygenase (12-LO), an enzyme involved in angiotensin-II induced signaling in vascular smooth muscle cells (VSMC). Immunohistochemical analysis of VSMC in vitro or human umbilical arteries in vivo showed a clear cytoplasmic localization. On immunogold electron microscopy, 12-LO was found primarily associated with cytoplasmic VSMC muscle fibrils. Upon angiotensin-II treatment of cultured VSMC, immunoprecipitated 12-LO was found bound to {alpha}-actin, a component of the cytoplasmic myofilaments. 12-LO/{alpha}-actin binding was blocked by VSMC pretreatment with the 12-LO inhibitors, baicalien or esculetine and the protein synthesis inhibitor, cycloheximide. Moreover, the binding of 12-LO to {alpha}-actin was not associated with 12-LO serine or tyrosine phosphorylation. These observations suggest a previously unrecognized angiotensin-II dependent protein interaction in VSMC through which 12-LO protein may be trafficked, for yet undiscovered purposes towards the much more abundantly expressed cytoskeletal protein {alpha}-actin.

  12. Doxazosin inhibits proliferation and migration of human vascular smooth-muscle cells independent of alpha1-adrenergic receptor antagonism.

    PubMed

    Hu, Z W; Shi, X Y; Hoffman, B B

    1998-06-01

    Proliferation and migration of vascular smooth-muscle cells (VSMCs), stimulated by a variety of growth factors, play a critical role in the pathogenesis of vascular diseases. We found unexpectedly that doxazosin, an alpha1-adrenergic-receptor antagonist, inhibits serum-stimulated proliferation of cultured human VSMCs. Subsequent experiments systematically investigated inhibitory effects of doxazosin on mitogenesis stimulated in VSMCs by platelet-derived growth factor (PDGF), epidermal growth factor, and G protein-coupled receptor agonists thrombin and angiotensin II. Doxazosin attenuated the stimulation of DNA synthesis for each of these ligands with median inhibitory concentrations (IC50s) from 0.3 to 1 microM. PDGF-AB (1 nM) increased cell number; doxazosin inhibited this response by 70-80%. Prazosin, a related alpha1-receptor antagonist, had similar but less potent effects on inhibiting mitogenesis in these cells. Doxazosin and prazosin inhibited PDGF-AB-stimulated and insulin-like growth factor (IGF-I)-stimulated migration of VSMCs by approximately 40-50%. These effects of doxazosin were likely unrelated to alpha1-receptor blockade because pretreatment of cells with phenoxybenzamine, an irreversible alpha1 antagonist, did not change the capacity of doxazosin to inhibit of PDGF-stimulated mitogenesis. Also, doxazosin inhibited PDGF-stimulated DNA synthesis in NIH 3T3 cells, which do not express alpha1 receptors. These results suggest that doxazosin is a potent inhibitor of VSMC proliferation and migration through a mechanism unrelated to alpha1-receptor antagonism.

  13. HSP70 increases extracellular matrix production by human vascular smooth muscle through TGF-β1 up-regulation.

    PubMed

    González-Ramos, Marta; Calleros, Laura; López-Ongil, Susana; Raoch, Viviana; Griera, Mercedes; Rodríguez-Puyol, Manuel; de Frutos, Sergio; Rodríguez-Puyol, Diego

    2013-02-01

    The circulating levels of heat shock proteins (HSP) are increased in cardiovascular diseases; however, the implication of this for the fibrotic process typical of such diseases remains unclear. HSP70 can interact with the vascular smooth muscle cells (SMC), the major producer of extracellular matrix (ECM) proteins, through the Toll-like receptors 4 (TLR4). The transforming growth factor type-β1 (TGF-β1) is a well known vascular pro-fibrotic cytokine that is regulated in part by AP-1-dependent transcriptional mechanisms. We hypothesized that extracellular HSP70 could interact with SMCs, inducing TGF-β1 synthesis and subsequent changes in the vascular ECM. We demonstrate that extracellular HSP70 binds to human aorta SMC TLR4, which up-regulates the AP-1-dependent transcriptional activity of the TGF-β1 promoter. This is achieved through the mitogen activated protein kinases JNK and ERK, as demonstrated by the use of specific blockers and the knockdown of TLR4 with specific small interfering RNAs. The TGF-β1 upregulation increase the expression of the ECM proteins type I collagen and fibronectin. This novel observation may elucidate the mechanisms by which HSP70 contributes in the inflammation and fibrosis present in atherosclerosis and other fibrosis-related diseases.

  14. HSP70 increases extracellular matrix production by human vascular smooth muscle through TGF-β1 up-regulation.

    PubMed

    González-Ramos, Marta; Calleros, Laura; López-Ongil, Susana; Raoch, Viviana; Griera, Mercedes; Rodríguez-Puyol, Manuel; de Frutos, Sergio; Rodríguez-Puyol, Diego

    2013-02-01

    The circulating levels of heat shock proteins (HSP) are increased in cardiovascular diseases; however, the implication of this for the fibrotic process typical of such diseases remains unclear. HSP70 can interact with the vascular smooth muscle cells (SMC), the major producer of extracellular matrix (ECM) proteins, through the Toll-like receptors 4 (TLR4). The transforming growth factor type-β1 (TGF-β1) is a well known vascular pro-fibrotic cytokine that is regulated in part by AP-1-dependent transcriptional mechanisms. We hypothesized that extracellular HSP70 could interact with SMCs, inducing TGF-β1 synthesis and subsequent changes in the vascular ECM. We demonstrate that extracellular HSP70 binds to human aorta SMC TLR4, which up-regulates the AP-1-dependent transcriptional activity of the TGF-β1 promoter. This is achieved through the mitogen activated protein kinases JNK and ERK, as demonstrated by the use of specific blockers and the knockdown of TLR4 with specific small interfering RNAs. The TGF-β1 upregulation increase the expression of the ECM proteins type I collagen and fibronectin. This novel observation may elucidate the mechanisms by which HSP70 contributes in the inflammation and fibrosis present in atherosclerosis and other fibrosis-related diseases. PMID:23084979

  15. Cooperation of endothelial and smooth muscle cells derived from human induced pluripotent stem cells enhances neovascularization in dermal wounds.

    PubMed

    Kim, Koung Li; Song, Sun-Hwa; Choi, Kyu-Sil; Suh, Wonhee

    2013-11-01

    Human induced pluripotent stem cells (hiPSCs) are generated through the reprogramming of somatic cells into an embryonic stem cell-like state, such that vascular cells differentiated from hiPSCs might be a suitable autologous cell source for vascular regeneration. The goal of this study was to assess whether cotransplantation of endothelial cells (ECs) and smooth muscle cells (SMCs) differentiated from hiPSCs could promote neovascularization and tissue repair in a murine dermal wound model. hiPSCs were differentiated into ECs and SMCs; the differentiated cells displayed cell-specific surface markers. Compared to primary somatic cells, ECs and SMCs, which were differentiated from hiPSCs, strongly cooperated to enhance in vitro tubular network formation. In vivo gel assays in athymic nude mice showed that the coimplantation of differentiated ECs and SMCs significantly increased vascularization, unlike that observed in the case of implantation of differentiated ECs alone. In a murine full-thickness wound model, when compared with the transplantation of primary somatic cells or phosphate-buffered saline, cotransplantation of differentiated ECs and SMCs markedly enhanced neovascularization in injured tissues and accelerated wound healing. These results demonstrate that cotransplantation of hiPSC-derived ECs and SMCs may be feasible as a new autologous cell therapy for neovascularization and tissue repair.

  16. Regulation of proliferation and gene expression in cultured human aortic smooth muscle cells by resveratrol and standardized grape extracts

    SciTech Connect

    Wang Zhirong; Chen Yan; Labinskyy, Nazar; Hsieh Tzechen; Ungvari, Zoltan; Wu, Joseph M. . E-mail: Joseph_Wu@nymc.edu

    2006-07-21

    Epidemiologic studies suggest that low to moderate consumption of red wine is inversely associated with the risk of coronary heart disease; the protection is in part attributed to grape-derived polyphenols, notably trans-resveratrol, present in red wine. It is not clear whether the cardioprotective effects of resveratrol can be reproduced by standardized grape extracts (SGE). In the present studies, we determined, using cultured human aortic smooth muscle cells (HASMC), growth and specific gene responses to resveratrol and SGE provided by the California Table Grape Commission. Suppression of HASMC proliferation by resveratrol was accompanied by a dose-dependent increase in the expression of tumor suppressor gene p53 and heat shock protein HSP27. Using resveratrol affinity chromatography and biochemical fractionation procedures, we showed by immunoblot analysis that treatment of HASMC with resveratrol increased the expression of quinone reductase I and II, and also altered their subcellular distribution. Growth of HASMC was significantly inhibited by 70% ethanolic SGE; however, gene expression patterns in various cellular compartments elicited in response to SGE were substantially different from those observed in resveratrol-treated cells. Further, SGE also differed from resveratrol in not being able to induce relaxation of rat carotid arterial rings. These results indicate that distinct mechanisms are involved in the regulation of HASMC growth and gene expression by SGE and resveratrol.

  17. Immune interferon inhibits proliferation and induces 2'-5'-oligoadenylate synthetase gene expression in human vascular smooth muscle cells.

    PubMed Central

    Warner, S J; Friedman, G B; Libby, P

    1989-01-01

    Proliferation of vascular smooth muscle cells (SMC) contributes to formation of the complicated human atherosclerotic plaque. These lesions also contain macrophages, known to secrete SMC mitogens, and T lymphocytes. Many of the SMC in the lesions express class II major histocompatibility antigens, an indication that activated T cells secrete immune IFN-gamma locally in the plaque. We therefore studied the effect of IFN-gamma on the proliferation of cultured SMC derived from adult human blood vessels. IFN-gamma (1,000 U/ml) reduced [3H]thymidine (TdR) incorporation into DNA by SMC stimulated with the well-defined mitogens IL 1 (from 15.3 +/- 0.7 to 6.2 +/- 0.7 dpm X 10(-3)/24 h) or platelet-derived growth factor (PDGF) (from 18.5 +/- 1.0 to 7.3 +/- 0.7 dpm X 10(-3)/24 h). Kinetic and nuclear labeling studies indicated that this effect of IFN-gamma was not due to altered thymidine transport or specific radioactivity of TdR in the cell. In longer term experiments (4-16 d) IFN-gamma prevented net DNA accumulation by SMC cultures stimulated by PDGF. IFN-gamma also delayed (from 30 to 60 min) the time to peak level of c-fos RNA in IL 1-treated SMC. It is unlikely that cytotoxicity caused these effects of IFN-gamma, as the inhibition of growth was reversible and we detected no cell death in SMC cultures exposed to this cytokine. Activation of 2'-5' oligoadenylate synthetase gene expression may mediate certain antiproliferative and antiviral effects of interferons. Both IFN-gamma and type I IFNs (IFN-alpha or IFN-beta) induced 2'-5' oligoadenylate synthetase mRNA and enzyme activity in SMC cultures, but with concentration dependence and time course that may not account for all of IFN-gamma's cytostatic effect on SMC. The accumulation of SMC in human atherosclerotic lesions is a long-term process that must involve altered balance between growth stimulatory and inhibitory factors. The cytostatic effect of IFN-gamma on human SMC demonstrated here may influence this balance

  18. Smooth Sailing.

    ERIC Educational Resources Information Center

    Price, Beverley; Pincott, Maxine; Rebman, Ashley; Northcutt, Jen; Barsanti, Amy; Silkunas, Betty; Brighton, Susan K.; Reitz, David; Winkler, Maureen

    1999-01-01

    Presents discipline tips from several teachers to keep classrooms running smoothly all year. Some of the suggestions include the following: a bear-cave warning system, peer mediation, a motivational mystery, problem students acting as the teacher's assistant, a positive-behavior-reward chain, a hallway scavenger hunt (to ensure quiet passage…

  19. Dissociation between systemic and pulmonary anti‐inflammatory effects of dexamethasone in humans

    PubMed Central

    Bartko, Johann; Stiebellehner, Leopold; Derhaschnig, Ulla; Schoergenhofer, Christian; Schwameis, Michael; Prosch, Helmut

    2016-01-01

    Aims The local pulmonary inflammatory response has a different temporal and qualitative profile compared with the systemic inflammatory response. Although glucocorticoids substantially downregulate the systemic release of acute‐phase mediators, it is not clear whether they have comparable inhibitory effects in the human lung compartment. Therefore, we compared the anti‐inflammatory effects of a pure glucocorticoid agonist, dexamethasone, on bronchoalveolar lavage and blood cytokine concentrations in response to bronchially instilled endotoxin. Methods In this randomized, double‐blind and placebo‐controlled trial, 24 volunteers received dexamethasone or placebo and had endotoxin instilled into a lung segment and saline instilled into a contralateral segment, followed by bronchoalveolar lavage. Results Bronchially instilled endotoxin induced a local and systemic inflammatory response. Dexamethasone strongly blunted the systemic interleukin (IL) 6 and C‐reactive protein release. In sharp contrast, dexamethasone left the local release of acute‐phase mediators in the lungs virtually unchanged: bronchoalveolar lavage levels of IL‐6 were only 18% lower and levels of IL‐8 were even higher with dexamethasone compared with placebo, although the differences between treatments were not statistically significant (P = 0.07 and P = 0.08, respectively). However, dexamethasone had inhibitory effects on pulmonary protein extravasation and neutrophil migration. Conclusions The present study demonstrated a remarkable dissociation between the systemic anti‐inflammatory effects of glucocorticoids and its protective effects on capillary leak on the one hand and surprisingly low anti‐inflammatory effects in the lungs on the other. PMID:26647918

  20. Indomethacin pretreatment reduces ozone-induced pulmonary function decrements in human subjects

    SciTech Connect

    Schelegle, E.S.; Adams, W.C.; Siefkin, A.D.

    1987-12-01

    We studied whether O/sub 3/-induced pulmonary function decrements could be inhibited by the prostaglandin synthetase inhibitor, indomethacin, in healthy human subjects. Fourteen college-age males completed six 1-h exposure protocols consisting of no drug, placebo, and indomethacin (Indocin SR 75 mg every 12 h for 5 days) pretreatments, with filtered air and O/sub 3/ (0.35 ppm) exposures within each pretreatment. Pretreatments were delivered weekly in random order in a double-blind fashion. Ozone and filtered air exposures, separated by 72 h, were delivered in random order in a single-blind fashion. Exposures consisted of 1-h exercise on a bicycle ergometer with work loads set to elicit a mean minute ventilation of 60 L/min. Statistical analysis revealed significant (p less than 0.05) across pretreatment effects for FVC and FEV1, with no drug versus indomethacin and placebo versus indomethacin comparisons being significant. These findings suggest that cyclooxygenase products of arachidonic acid, which are sensitive to indomethacin inhibition, play a prominent role in the development of pulmonary function decrements consequent to acute O/sub 3/ exposure.

  1. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    PubMed

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-01-01

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment. PMID:26576741

  2. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    PubMed

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-11-18

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment.

  3. Effects of hydralazine on the pulmonary vasculature and respiratory control in humans.

    PubMed

    Liu, Chun; Balanos, George M; Fatemian, Marzieh; Smith, Thomas G; Dorrington, Keith L; Robbins, Peter A

    2008-01-01

    This study sought: (1) to clarify the effects of hydralazine on both the pulmonary vasculature and respiratory control in euoxia and hypoxia in healthy humans; and (2) to determine whether hydralazine alters the expression of genes regulated by hypoxia-inducible factor 1 (HIF-1). Ten volunteers participated in two 2 day protocols. Hydralazine (25 mg) or placebo was administered at 1 pm and 11 pm on the first day, and at 1 pm on the second day. In the mornings and afternoons of both days, we measured plasma vascular endothelial growth factor (VEGF) and erythropoietin (EPO) concentrations (both HIF-1-regulated gene products), systemic arterial blood pressure, and changes in heart rate, cardiac output, maximal systolic pressure difference across the tricuspid valve (delta Pmax) and ventilation in response to 20 min of isocapnic hypoxia. Recent hydralazine: (1) decreased diastolic blood pressure; (2) increased heart rate and cardiac output in euoxia and hypoxia whilst having no effect on delta Pmax; and (3) increased the ventilatory sensitivity to hypoxia. Hydralazine had no effect on plasma EPO or VEGF concentration. We conclude that hydralazine increases the sensitivity of the ventilatory response to hypoxia, but lacks any effect on the pulmonary vasculature at the dose studied. It did not affect the expression of HIF-1-regulated genes.

  4. Sodium leak channel, non-selective contributes to the leak current in human myometrial smooth muscle cells from pregnant women.

    PubMed

    Reinl, Erin L; Cabeza, Rafael; Gregory, Ismail A; Cahill, Alison G; England, Sarah K

    2015-10-01

    Uterine contractions are tightly regulated by the electrical activity of myometrial smooth muscle cells (MSMCs). These cells require a depolarizing current to initiate Ca(2+) influx and induce contraction. Cationic leak channels, which permit a steady flow of cations into a cell, are known to cause membrane depolarization in many tissue types. Previously, a Gd(3+)-sensitive, Na(+)-dependent leak current was identified in the rat myometrium, but the presence of such a current in human MSMCs and the specific ion channel conducting this current was unknown. Here, we report the presence of a Na(+)-dependent leak current in human myometrium and demonstrate that the Na(+)-leak channel, NALCN, contributes to this current. We performed whole-cell voltage-clamp on fresh and cultured MSMCs from uterine biopsies of term, non-laboring women and isolated the leak currents by using Ca(2+) and K(+) channel blockers in the bath solution. Ohmic leak currents were identified in freshly isolated and cultured MSMCs with normalized conductances of 14.6 pS/pF and 10.0 pS/pF, respectively. The myometrial leak current was significantly reduced (P < 0.01) by treating cells with 10 μM Gd(3+) or by superfusing the cells with a Na(+)-free extracellular solution. Reverse transcriptase PCR and immunoblot analysis of uterine biopsies from term, non-laboring women revealed NALCN messenger RNA and protein expression in the myometrium. Notably, ∼90% knockdown of NALCN protein expression with lentivirus-delivered shRNA reduced the Gd(3+)-sensitive leak current density by 42% (P < 0.05). Our results reveal that NALCN, in part, generates the leak current in MSMCs and provide the basis for future research assessing NALCN as a potential molecular target for modulating uterine excitability.

  5. Positive regulation of NADPH oxidase 5 by proinflammatory-related mechanisms in human aortic smooth muscle cells.

    PubMed

    Manea, Adrian; Manea, Simona A; Florea, Irina C; Luca, Catalina M; Raicu, Monica

    2012-05-01

    NADPH oxidase Nox5 subtype expression is significantly increased in vascular smooth muscle cells (SMCs) underlying fibro-lipid atherosclerotic lesions. The mechanisms that up-regulate Nox5 are not understood. Consequently, we characterized the promoter of the human Nox5 gene and investigated the role of various proinflammatory transcription factors in the regulation of Nox5 in human aortic SMCs. The Nox5 promoter was cloned in the pGL3 basic reporter vector. Functional analysis was done employing 5' deletion mutants to identify the sequences necessary to effect high levels of expression in SMCs. Transcriptional initiation site was detected by rapid amplification of the 5'-cDNA ends. In silico analysis indicated the existence of typical NF-kB, AP-1, and STAT1/STAT3 sites. Transient overexpression of p65/NF-kB, c-Jun/AP-1, or STAT1/STAT3 increased significantly the Nox5 promoter activity. Chromatin immunoprecipitation demonstrated the physical interaction of c-Jun/AP-1 and STAT1/STAT3 proteins with the Nox5 promoter. Lucigenin-enhanced chemiluminescence, real-time PCR, and Western blot assays showed that pharmacological inhibition and the silencing of p65/NF-kB, c-Jun/AP-1, or STAT1/STAT3 reduced significantly the interferon γ-induced Ca(2+)-dependent Nox activity and Nox5 expression. Up-regulated Nox5 correlated with increases in intracellular Ca(2+), an essential condition for Nox5 activity. NF-kB, AP-1, and STAT1/STAT3 are important regulators of Nox5 in SMCs by either direct or indirect mechanisms. Overexpressed Nox5 may generate free radicals in excess, further contributing to SMCs dysfunction in atherosclerosis. PMID:22348975

  6. Sodium leak channel, non-selective contributes to the leak current in human myometrial smooth muscle cells from pregnant women

    PubMed Central

    Reinl, Erin L.; Cabeza, Rafael; Gregory, Ismail A.; Cahill, Alison G.; England, Sarah K.

    2015-01-01

    Uterine contractions are tightly regulated by the electrical activity of myometrial smooth muscle cells (MSMCs). These cells require a depolarizing current to initiate Ca2+ influx and induce contraction. Cationic leak channels, which permit a steady flow of cations into a cell, are known to cause membrane depolarization in many tissue types. Previously, a Gd3+-sensitive, Na+-dependent leak current was identified in the rat myometrium, but the presence of such a current in human MSMCs and the specific ion channel conducting this current was unknown. Here, we report the presence of a Na+-dependent leak current in human myometrium and demonstrate that the Na+-leak channel, NALCN, contributes to this current. We performed whole-cell voltage-clamp on fresh and cultured MSMCs from uterine biopsies of term, non-laboring women and isolated the leak currents by using Ca2+ and K+ channel blockers in the bath solution. Ohmic leak currents were identified in freshly isolated and cultured MSMCs with normalized conductances of 14.6 pS/pF and 10.0 pS/pF, respectively. The myometrial leak current was significantly reduced (P < 0.01) by treating cells with 10 μM Gd3+ or by superfusing the cells with a Na+-free extracellular solution. Reverse transcriptase PCR and immunoblot analysis of uterine biopsies from term, non-laboring women revealed NALCN messenger RNA and protein expression in the myometrium. Notably, ∼90% knockdown of NALCN protein expression with lentivirus-delivered shRNA reduced the Gd3+-sensitive leak current density by 42% (P < 0.05). Our results reveal that NALCN, in part, generates the leak current in MSMCs and provide the basis for future research assessing NALCN as a potential molecular target for modulating uterine excitability. PMID:26134120

  7. Effect of irreversibly glycated LDL in human vascular smooth muscle cells: lipid loading, oxidative and inflammatory stress

    PubMed Central

    Sima, Anca V; Botez, Gabriela M; Stancu, Camelia S; Manea, Adrian; Raicu, Monica; Simionescu, Maya

    2010-01-01

    Abstract The major complication of diabetes is accelerated atherosclerosis, the progression of which entails complex interactions between the modified low-density lipoproteins (LDL) and the cells of the arterial wall. Advanced glycation end product-modified-LDL (AGE-LDL) that occurs at high rate in diabetes contributes to diabetic atherosclerosis, but the underlying mechanisms are not fully understood. The aim of this study was to assess the direct effect of AGE-LDL on human vascular smooth muscle cells (hSMC) dysfunction. Cultured hSMC incubated (24 hrs) with human AGE-LDL, native LDL (nLDL) or oxidized LDL (oxLDL) were subjected to: (i) quantification of the expression of the receptors for modified LDL and AGE proteins (LRP1, CD36, RAGE) and estimation of lipid loading, (ii) determination of NADPH oxidase activity and reactive oxygen species (ROS) production and (iii) evaluation of the expression of monocyte chemoattractant protein-1 (MCP-1). The results show that exposure of hSMC to AGE-LDL (compared to nLDL) induced: (a) increased NADPH oxidase activity (30%) and ROS production (28%) by up-regulation of NOX1, NOX4, p22phox and p67phox expression, (b) accumulation of intracellular cholesteryl esters, (c) enhanced gene expression of LRP1 (160%) and CD36 (35%), and protein expression of LRP1, CD36 and RAGE, (d) increased MCP-1 gene expression (160%) and protein secretion (300%) and (e) augmented cell proliferation (30%). In conclusion, AGE-LDL activates hSMC (increasing CD36, LRP1, RAGE), inducing a pro-oxidant state (activation of NADPHox), lipid accumulation and a pro-inflammatory state (expression of MCP-1). These results may partly explain the contribution of AGE-LDL and hSMC to the accelerated atherosclerosis in diabetes. PMID:19818091

  8. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis.

    PubMed

    De Groote, F; De Laet, T; Jonkers, I; De Schutter, J

    2008-12-01

    We developed a Kalman smoothing algorithm to improve estimates of joint kinematics from measured marker trajectories during motion analysis. Kalman smoothing estimates are based on complete marker trajectories. This is an improvement over other techniques, such as the global optimisation method (GOM), Kalman filtering, and local marker estimation (LME), where the estimate at each time instant is only based on part of the marker trajectories. We applied GOM, Kalman filtering, LME, and Kalman smoothing to marker trajectories from both simulated and experimental gait motion, to estimate the joint kinematics of a ten segment biomechanical model, with 21 degrees of freedom. Three simulated marker trajectories were studied: without errors, with instrumental errors, and with soft tissue artefacts (STA). Two modelling errors were studied: increased thigh length and hip centre dislocation. We calculated estimation errors from the known joint kinematics in the simulation study. Compared with other techniques, Kalman smoothing reduced the estimation errors for the joint positions, by more than 50% for the simulated marker trajectories without errors and with instrumental errors. Compared with GOM, Kalman smoothing reduced the estimation errors for the joint moments by more than 35%. Compared with Kalman filtering and LME, Kalman smoothing reduced the estimation errors for the joint accelerations by at least 50%. Our simulation results show that the use of Kalman smoothing substantially improves the estimates of joint kinematics and kinetics compared with previously proposed techniques (GOM, Kalman filtering, and LME) for both simulated, with and without modelling errors, and experimentally measured gait motion.

  9. Transforming growth factor. beta. sub 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis

    SciTech Connect

    Broekelmann, T.J.; Limper, A.H.; McDonald, J.A. ); Colby, T.V. )

    1991-08-01

    Idiopathic pulmonary fibrosis is an inexorably fatal disorder characterized by connective tissue deposition within the terminal air spaces resulting in loss of lung function and eventual respiratory failure. Previously, the authors demonstrated that foci of activated fibroblasts expressing high levels of fibronectin, procollagen, and smooth muscle actin and thus resembling those found in healing wounds are responsible for the connective tissue deposition and scarring in idiopathic pulmonary fibrosis. Using in situ hybridization and immunohistochemistry, they now demonstrate the presence of transforming growth factor {beta}{sub 1} (TGF-{beta}{sub 1}), a potent profibrotic cytokine, in the foci containing these activated fibroblasts. These results suggest that matrix-associated TGF-{beta}{sub 1} may serve as a stimulus for the persistent expression of connective tissue genes. One potential source of the TGF-{beta}{sub 1} is the alveolar macrophage, and they demonstrate the expression of abundant TGF-{beta}{sub 1} mRNA in alveolar macrophages in lung tissue from patients with idiopathic pulmonary fibrosis.

  10. Regional pulmonary blood flow measurement in humans with electron beam computed tomography

    SciTech Connect

    Holt, W.W.; Konhilas, J.; Wolfkiel, C.

    1995-12-31

    Electron beam computed tomography (EBCT) is a potentially useful modality to quantitate regional pulmonary flow (RPF) with minimal invasiveness, in part because it has good spatial and temporal resolution. The present studies used a single compartment model of indicator transport and EBCT to measure regional tissue flow in the lungs of human subjects. The model postulates that flow is proportional to maximal enhancement and assumes complete tissue accumulation of indicator before significant indicator washout (WO). EBCT flow studies were retrospectively analyzed with respect to regional pulmonary flow (RPF) in 10 adult patients who had undergone clinically indicated or research cardiovascular studies. Time density curves from the left atrial (LA) cavity and one-third segments of left (LL) and right (RL) lungs (A: anterior, M: middle and P: posterior segments) were used to calculate RPF. Washout was determined as the percent of the LA curve at the time of peak parenchymal opacification using gamma curve fits to both tissue data and the LA curve data. Mean {+-} standard deviation RPF in ml/min/ml was 0.8 {+-} 0.4, 1.1 {+-} 0.4 and 1.3 {+-} 0.4 for A, M and P respectively for one-third regions in the left lung. Similar results were found in the right lung. No difference in RPF was found when images were measured either by including the largest of visible parenchymal vessels or when such vessels were excluded. Flow in A of LL and RL was less than that in M or P. Average WO was about 10%, with a range of 0--41% of the LA curve area. There was no significant difference between one-third segment WO using pairwise comparison on the left and right sides when tested separately. RPF values were greater in the posterior vs anterior regions of these supine patients. In conclusion, EBCT can detect gravity related flow differences in the human lung. EBCT has potential for clinical assessment of absolute regional pulmonary flow determination in animals and man.

  11. Pulmonary delivery of an aerosolized recombinant human butyrylcholinesterase pretreatment protects against aerosolized paraoxon in macaques.

    PubMed

    Rosenberg, Yvonne J; Laube, Beth; Mao, Lingjun; Jiang, Xiaoming; Hernandez-Abanto, Segundo; Lee, Keunmyoung D; Adams, Robert

    2013-03-25

    Butyrylcholinesterase (BChE) is the leading pretreatment candidate against exposure to organophosphates (OPs), which pose an ever increasing public and military health. Since respiratory failure is the primary cause of death following acute OP poisoning, an inhaled BChE therapeutic could prove highly efficacious in preventing acute toxicity as well as the associated delayed neuropathy. To address this, studies have been performed in mice and macaques using Chinese Hamster Ovary cells (CHO)-derived recombinant (r) BChE delivered by the pulmonary route, to examine whether the deposition of both macaque (Ma) and human (Hu) rBChE administered as aerosols (aer) favored the creation and retention of an efficient protective "pulmonary bioshield" that could scavenge incoming (inhaled) OPs in situ thereby preventing entry into the circulation and inhibition of plasma BChE and AChE on red blood cells (RBC-AChE) and in cholinergic synapses. In contrast to parenteral delivery of rBChE, which currently requires posttranslational modification for good plasma stability, an unmodified aer-rBChE pretreatment given 1-40 h prior to >1 LD50 of aer-paraoxon (Px) was able to prevent inhibition of circulating cholinesterase in a dose-dependent manner. These studies are the first to show protection by rBChE against a pesticide such as paraoxon when delivered directly into the lung and bode well for the use of a non-invasive and consumer friendly method of rHuBChE delivery as a human treatment to counteract OP toxicity. PMID:23178380

  12. Pleiotropic Effects of Bitter Taste Receptors on [Ca2+]i Mobilization, Hyperpolarization, and Relaxation of Human Airway Smooth Muscle Cells.

    PubMed

    Camoretti-Mercado, Blanca; Pauer, Susan H; Yong, Hwan Mee; Smith, Dan'elle C; Deshpande, Deepak A; An, Steven S; Liggett, Stephen B

    2015-01-01

    Asthma is characterized by airway inflammation and airflow obstruction from human airway smooth muscle (HASM) constriction due to increased local bronchoconstrictive substances. We have recently found bitter taste receptors (TAS2Rs) on HASM, which increase [Ca2+]i and relax the muscle. We report here that some, but not all, TAS2R agonists decrease [Ca2+]i and relax HASM contracted by G-protein coupled receptors (GPCRs) that stimulate [Ca2+]i. This suggests both a second pathway by which TAS2Rs relax, and, a heterogeneity of the response phenotype. We utilized eight TAS2R agonists and five procontractile GPCR agonists in cultured HASM cells. We find that heterogeneity in the inhibitory response hinges on which procontractile GPCR is activated. For example, chloroquine inhibits [Ca2+]i increases from histamine, but failed to inhibit [Ca2+]i increases from endothelin-1. Conversely, aristolochic acid inhibited [Ca2+]i increases from endothelin-1 but not histamine. Other dichotomous responses were found when [Ca2+]i was stimulated by bradykinin, angiotensin, and acetylcholine. There was no association between [Ca2+]i inhibition and TAS2R subtype, nor whether [Ca2+]i was increased by Gq- or Gi-coupled GPCRs. Selected studies revealed a correlation between [Ca2+]i inhibition and HASM cell-membrane hyperpolarization. To demonstrate physiologic correlates, ferromagnetic beads were attached to HASM cells and cell stiffness measured by magnetic twisting cytometry. Consistent with the [Ca2+]i inhibition results, chloroquine abolished the cell stiffening response (contraction) evoked by histamine but not by endothelin-1, while aristolochic acid inhibited cell stiffening from endothelin-1, but not from histamine. In studies using intact human bronchi, these same differential responses were found. Those TAS2R agonists that decreased [Ca2+]i, promoted hyperpolarization, and decreased HASM stiffness, caused relaxation of human airways. Thus TAS2Rs relax HASM in two ways: a low

  13. Nitric Oxide Stimulates Matrix Synthesis and Deposition by Adult Human Aortic Smooth Muscle Cells Within Three-Dimensional Cocultures

    PubMed Central

    Simmers, Phillip; Gishto, Arsela; Vyavahare, Narendra

    2015-01-01

    Vascular diseases are characterized by the over-proliferation and migration of aortic smooth muscle cells (SMCs), and degradation of extracellular matrix (ECM) within the vessel wall, leading to compromise in cell–cell and cell–matrix signaling pathways. Tissue engineering approaches to regulate SMC over-proliferation and enhance healthy ECM synthesis showed promise, but resulted in low crosslinking efficiency. Here, we report the benefits of exogenous nitric oxide (NO) cues, delivered from S-Nitrosoglutathione (GSNO), to cell proliferation and matrix deposition by adult human aortic SMCs (HA-SMCs) within three-dimensional (3D) biomimetic cocultures. A coculture platform with two adjacent, permeable 3D culture chambers was developed to enable paracrine signaling between vascular cells. HA-SMCs were cultured in these chambers within collagen hydrogels, either alone or in the presence of human aortic endothelial cells (HA-ECs) cocultures, and exogenously supplemented with varying GSNO dosages (0–100 nM) for 21 days. Results showed that EC cocultures stimulated SMC proliferation within GSNO-free cultures. With increasing GSNO concentration, HA-SMC proliferation decreased in the presence or absence of EC cocultures, while HA-EC proliferation increased. GSNO (100 nM) significantly enhanced the protein amounts synthesized by HA-SMCs, in the presence or absence of EC cocultures, while lower dosages (1–10 nM) offered marginal benefits. Multi-fold increases in the synthesis and deposition of elastin, glycosaminoglycans, hyaluronic acid, and lysyl oxidase crosslinking enzyme (LOX) were noted at higher GSNO dosages, and coculturing with ECs significantly furthered these trends. Similar increases in TIMP-1 and MMP-9 levels were noted within cocultures with increasing GSNO dosages. Such increases in matrix synthesis correlated with NO-stimulated increases in endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) expression within EC

  14. Featured Article: Temporal responses of human endothelial and smooth muscle cells exposed to uniaxial cyclic tensile strain

    PubMed Central

    Greiner, Alexandra M; Biela, Sarah A; Chen, Hao; Spatz, Joachim P

    2015-01-01

    The physiology of vascular cells depends on stimulating mechanical forces caused by pulsatile flow. Thus, mechano-transduction processes and responses of primary human endothelial cells (ECs) and smooth muscle cells (SMCs) have been studied to reveal cell-type specific differences which may contribute to vascular tissue integrity. Here, we investigate the dynamic reorientation response of ECs and SMCs cultured on elastic membranes over a range of stretch frequencies from 0.01 to 1 Hz. ECs and SMCs show different cell shape adaptation responses (reorientation) dependent on the frequency. ECs reveal a specific threshold frequency (0.01 Hz) below which no responses is detectable while the threshold frequency for SMCs could not be determined and is speculated to be above 1 Hz. Interestingly, the reorganization of the actin cytoskeleton and focal adhesions system, as well as changes in the focal adhesion area, can be observed for both cell types and is dependent on the frequency. RhoA and Rac1 activities are increased for ECs but not for SMCs upon application of a uniaxial cyclic tensile strain. Analysis of membrane protrusions revealed that the spatial protrusion activity of ECs and SMCs is independent of the application of a uniaxial cyclic tensile strain of 1 Hz while the total number of protrusions is increased for ECs only. Our study indicates differences in the reorientation response and the reaction times of the two cell types in dependence of the stretching frequency, with matching data for actin cytoskeleton, focal adhesion realignment, RhoA/Rac1 activities, and membrane protrusion activity. These are promising results which may allow cell-type specific activation of vascular cells by frequency-selective mechanical stretching. This specific activation of different vascular cell types might be helpful in improving strategies in regenerative medicine. PMID:25687334

  15. Lubrication and load-bearing properties of human salivary pellicles adsorbed ex vivo on molecularly smooth substrata.

    PubMed

    Harvey, Neale M; Yakubov, Gleb E; Stokes, Jason R; Klein, Jacob

    2012-01-01

    In a series of Surface Force Balance experiments, material from human whole saliva was adsorbed to molecularly smooth mica substrata (to form an 'adsorbed salivary film'). Measurements were taken of normal (load bearing, F (n)) and shear (frictional, F (s)*) forces between two interacting surfaces. One investigation involved a salivary film formed by overnight adsorption from undiluted, centrifuged saliva, with the adsorbed film rinsed with pure water before measurement. Measurements were taken under pure water and 70 mM NaNO(3). In a second investigation, a film was formed from and measured under a solution of 7% filtered saliva in 10 mM NaNO(3). F (n) results for both systems showed purely repulsive layers, with an uncompressed thickness of 35-70 nm for the diluted saliva investigation and, prior to the application of shear, 11 nm for the rinsed system. F (s)* was essentially proportional to F (n) for all systems and independent of shear speed (in the range 100-2000 nm s(-1)), with coefficients of friction μ ≈ 0.24 and μ ≈ 0.46 for the unrinsed and rinsed systems, respectively. All properties of the rinsed system remained similar when the pure water measurement environment was changed to 70 mM NaNO(3). For all systems studied, shear gave rise to an approximately threefold increase in the range of normal forces, attributed to the ploughing up of adsorbed material during shear to form debris that stood proud of the adsorbed layer. The results provide a microscopic demonstration of the wear process for a salivary film under shear and may be of particular interest for understanding the implications for in vivo oral lubrication under conditions such as rinsing of the mouth cavity. The work is interpreted in light of earlier studies that showed a structural collapse and increase in friction for an adsorbed salivary film in an environment of low ionic strength.

  16. Histamine induces activation of protein kinase D that mediates tissue factor expression and activity in human aortic smooth muscle cells.

    PubMed

    Hao, Feng; Wu, Daniel Dongwei; Xu, Xuemin; Cui, Mei-Zhen

    2012-12-01

    Histamine, an inflammatory mediator, has been shown to influence the pathogenesis of vascular wall cells. However, the molecular basis of its influence is not well understood. Our data reveal that histamine markedly induces protein kinase D (PKD) activation in human aortic smooth muscle cells. PKD belongs to a family of serine/threonine protein kinases, and its function in vascular disease is largely unknown. Our data show that histamine-induced PKD phosphorylation is dependent on the activation of histamine receptor 1 and protein kinase C (PKC). To determine the role of PKD in the histamine pathway, we employed a small-interfering RNA approach to downregulate PKD expression and found that PKD1 and PKD2 are key mediators for expression of tissue factor (TF), which is the key initiator of blood coagulation and is important for thrombosis. Our results show that PKD2 predominantly mediates histamine-induced TF expression via the p38 mitogen-activated protein kinase (MAPK) pathway, whereas PKD1 mediates histamine-induced TF expression through a p38 MAPK-independent pathway. We demonstrate that histamine induces TF expression via the PKC-dependent PKD activation. Our data provide the first evidence that PKD is a new component in histamine signaling in live cells and that PKD has a novel function in the histamine signaling pathway leading to gene expression, as evidenced by TF expression. Importantly, our data reveal a regulatory link from histamine to PKD and TF, providing new insights into the mechanisms of coagulation and the development of atherothrombosis.

  17. Fetuin-A and Albumin Alter Cytotoxic Effects of Calcium Phosphate Nanoparticles on Human Vascular Smooth Muscle Cells

    PubMed Central

    Dautova, Yana; Kozlova, Diana; Skepper, Jeremy N.; Epple, Matthias; Bootman, Martin D.; Proudfoot, Diane

    2014-01-01

    Calcification is a detrimental process in vascular ageing and in diseases such as atherosclerosis and arthritis. In particular, small calcium phosphate (CaP) crystal deposits are associated with inflammation and atherosclerotic plaque de-stabilisation. We previously reported that CaP particles caused human vascular smooth muscle cell (VSMC) death and that serum reduced the toxic effects of the particles. Here, we found that the serum proteins fetuin-A and albumin (≥1 µM) reduced intracellular Ca2+ elevations and cell death in VSMCs in response to CaP particles. In addition, CaP particles functionalised with fetuin-A, but not albumin, were less toxic than naked CaP particles. Electron microscopic studies revealed that CaP particles were internalised in different ways; via macropinocytosis, membrane invagination or plasma membrane damage, which occurred within 10 minutes of exposure to particles. However, cell death did not occur until approximately 30 minutes, suggesting that plasma membrane repair and survival mechanisms were activated. In the presence of fetuin-A, CaP particle-induced damage was inhibited and CaP/plasma membrane interactions and particle uptake were delayed. Fetuin-A also reduced dissolution of CaP particles under acidic conditions, which may contribute to its cytoprotective effects after CaP particle exposure to VSMCs. These studies are particularly relevant to the calcification observed in blood vessels in patients with kidney disease, where circulating levels of fetuin-A and albumin are low, and in pathological situations where CaP crystal formation outweighs calcification-inhibitory mechanisms. PMID:24849210

  18. Analysis of Schwalbe’s Line (Limbal Smooth Zone) by Scanning Electron Microscopy and Optical Coherence Tomography in Human Eye Bank Eyes

    PubMed Central

    Breazzano, Mark P; Fikhman, Michael; Abraham, Jerrold L; Barker-Griffith, Ann E

    2013-01-01

    Purpose Implantation of intraocular devices may become critical as they decrease in size in the future. Therefore, it is desirable to evaluate the relationship between radial location and Schwalbe’s line (smooth zone) by examining its width with scanning electron microscopy (SEM) and to correlate this with observations by optical coherence tomography (OCT). Methods Full corneoscleral rings were obtained from twenty-six formalin-fixed human phakic donor eyes. SEM of each eye yielded a complete montage of the smooth zone, from which the area was measured, and width was determined in each quadrant. In three different eyes, time domain anterior segment OCT (Visante, Carl Zeiss Meditec Inc., Dublin, CA, USA) and spectral domain OCT (Cirrus 4.0, Carl Zeiss Meditec Inc., Dublin, CA, USA) were used to further characterize Schwalbe’s line. Results The overall smooth zone width was 79±22 µm, (n=15) ranging from 43 to 115 µm. The superior quadrant (103±8 µm, n=19), demonstrated significantly wider smooth zone than both the nasal (71±5 µm, n=19, P<0.001), and inferior (64±5 µm, n=18, P<0.0001) quadrants but not the temporal quadrant (81±7 µm, n=17, P>0.05). SEM findings of the smooth zone were correlated with visualization of Schwalbe’s line by Cirrus and Visante OCT imaging. Conclusion The smooth zone appears widest superiorly and thinnest inferonasally, suggesting that as glaucoma surgical devices become smaller, their placement could be argeted clinically by using OCT with preference to the superior quadrant, to minimize damage to the corneal endothelium. PMID:23825707

  19. Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles.

    PubMed

    Devine, C E; Somlyo, A V; Somlyo, A P

    1972-03-01

    The sarcoplasmic reticulum (SR) was studied in the smooth muscles of rabbit main pulmonary artery, mesenteric vein, aorta, mesenteric artery, taenia coli, guinea pig mesenteric artery, and human uterus, and correlated with contractions of the smooth muscles in Ca-free media. SR volumes were determined in main pulmonary artery (5.1%), aorta (5%), portal-anterior mesenteric vein (2.2%), taenia coli (2%), and mesenteric artery (1.8%): because of tangentially sectioned membranes these estimates are subject to a correction factor of up to +50% of the values measured. Smooth muscles that contained a relatively large volume of SR maintained significant contractile responses to drugs in the virtual absence of extracellular calcium at room temperatures, while smooth muscles that had less SR did not. The unequal maximal contractions of main pulmonary artery elicited by different drugs were also observed in Ca-free, high potassium-depolarizing solution, indicating that they were secondary to some mechanism independent of changes in membrane potential or calcium influx. Longitudinal tubules of SR run between and are fenestrated about groups of surface vesicles separated from each other by intervening dense bodies. Extracellular markers (ferritin and lanthanum) entered the surface vesicles, but not the SR. The peripheral SR formed couplings with the surface membrane: the two membranes were separated by gaps of approximately 10 nm traversed by electron-opaque connections suggestive of a periodicity of approximately 20-25 nm. These couplings are considered to be the probable sites of electromechanical coupling in twitch smooth muscles. Close contacts between the SR and the surface vesicles may have a similar function, or represent sites of calcium extrusion. The presence of both thick and thin myofilaments and of rough SR in smooth muscles supports the dual, contractile and morphogenetic, function of smooth muscle.

  20. P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate

    PubMed Central

    Wang, Yiming; Gratzke, Christian; Tamalunas, Alexander; Wiemer, Nicolas; Ciotkowska, Anna; Rutz, Beata; Waidelich, Raphaela; Strittmatter, Frank; Liu, Chunxiao; Stief, Christian G.; Hennenberg, Martin

    2016-01-01

    Prostate smooth muscle tone and hyperplastic growth are involved in the pathophysiology and treatment of male lower urinary tract symptoms (LUTS). Available drugs are characterized by limited efficacy. Patients’ adherence is particularly low to combination therapies of 5α-reductase inhibitors and α1-adrenoceptor antagonists, which are supposed to target contraction and growth simultaneously. Consequently, molecular etiology of benign prostatic hyperplasia (BPH) and new compounds interfering with smooth muscle contraction or growth in the prostate are of high interest. Here, we studied effects of p21-activated kinase (PAK) inhibitors (FRAX486, IPA3) in hyperplastic human prostate tissues, and in stromal cells (WPMY-1). In hyperplastic prostate tissues, PAK1, -2, -4, and -6 may be constitutively expressed in catecholaminergic neurons, while PAK1 was detected in smooth muscle and WPMY-1 cells. Neurogenic contractions of prostate strips by electric field stimulation were significantly inhibited by high concentrations of FRAX486 (30 μM) or IPA3 (300 μM), while noradrenaline- and phenylephrine-induced contractions were not affected. FRAX486 (30 μM) inhibited endothelin-1- and -2-induced contractions. In WPMY-1 cells, FRAX486 or IPA3 (24 h) induced concentration-dependent (1–10 μM) degeneration of actin filaments. This was paralleled by attenuation of proliferation rate, being observed from 1 to 10 μM FRAX486 or IPA3. Cytotoxicity of FRAX486 and IPA3 in WPMY-1 cells was time- and concentration-dependent. Stimulation of WPMY-1 cells with endothelin-1 or dihydrotestosterone, but not noradrenaline induced PAK phosphorylation, indicating PAK activation by endothelin-1. Thus, PAK inhibitors may inhibit neurogenic and endothelin-induced smooth muscle contractions in the hyperplastic human prostate, and growth of stromal cells. Targeting prostate smooth muscle contraction and stromal growth at once by a single compound is principally possible, at least under

  1. A Novel Genomic Signature with Translational Significance for Human Idiopathic Pulmonary Fibrosis

    PubMed Central

    Tedrow, John; de Bernard, Simon; Birker-Robaczewska, Magdalena; Gibson, Kevin F.; Guardela, Brenda Juan; Hess, Patrick; Klenk, Axel; Lindell, Kathleen O.; Poirey, Sylvie; Renault, Bérengère; Rey, Markus; Weber, Edgar; Nayler, Oliver; Kaminski, Naftali

    2015-01-01

    The bleomycin-induced rodent lung fibrosis model is commonly used to study mechanisms of lung fibrosis and to test potential therapeutic interventions, despite the well recognized dissimilarities to human idiopathic pulmonary fibrosis (IPF). Therefore, in this study, we sought to identify genomic commonalities between the gene expression profiles from 100 IPF lungs and 108 control lungs that were obtained from the Lung Tissue Research Consortium, and rat lungs harvested at Days 3, 7, 14, 21, 28, 42, and 56 after bleomycin instillation. Surprisingly, the highest gene expression similarity between bleomycin-treated rat and IPF lungs was observed at Day 7. At this point of maximal rat–human commonality, we identified a novel set of 12 disease-relevant translational gene markers (C6, CTHRC1, CTSE, FHL2, GAL, GREM1, LCN2, MMP7, NELL1, PCSK1, PLA2G2A, and SLC2A5) that was able to separate almost all patients with IPF from control subjects in our cohort and in two additional IPF/control cohorts (GSE10667 and GSE24206). Furthermore, in combination with diffusing capacity of carbon monoxide measurements, four members of the translational gene marker set contributed to stratify patients with IPF according to disease severity. Significantly, pirfenidone attenuated the expression change of one (CTHRC1) translational gene marker in the bleomycin-induced lung fibrosis model, in transforming growth factor-β1–treated primary human lung fibroblasts and transforming growth factor-β1–treated human epithelial A549 cells. Our results suggest that a strategy focused on rodent model–human disease commonalities may identify genes that could be used to predict the pharmacological impact of therapeutic interventions, and thus facilitate the development of novel treatments for this devastating lung disease. PMID:25029475

  2. Pulmonary effects of inhaled zinc oxide in human subjects, guinea pigs, rats, and rabbits

    SciTech Connect

    Gordon, T.; Chen, L.C.; Fine, J.M.; Schlesinger, R.B.; Su, W.Y.; Kimmel, T.A.; Amdur, M.O. )

    1992-08-01

    Occupational exposure to freshly formed zinc oxide (ZnO) particles (less than 1.0 micron aerodynamic diameter) produces a well-characterized response known as metal fume fever. An 8-hr threshold limit value (TLV) of 5 mg/m3 has been established to prevent adverse health effects because of exposure to ZnO fumes. Because animal toxicity studies have demonstrated pulmonary effects near the current TLV, the present study examined the time course and dose-response of the pulmonary injury produced by inhaled ZnO in guinea pigs, rats, rabbits, and human volunteers. The test animals were exposed to 0, 2.5, or 5.0 mg/m3 ZnO for up to 3 hr and their lungs lavaged. Both the lavage fluid and recovered cells were examined for evidence of inflammation or altered cell function. The lavage fluid from guinea pigs and rats exposed to 5 mg/m3 had significant increases in total cells, lactate dehydrogenase, beta-glucuronidase, and protein content. These changes were greatest 24 hr after exposure. Guinea pig alveolar macrophage function was depressed as evidenced by in vitro phagocytosis of opsonized latex beads. Significant changes in lavage fluid parameters were also observed in guinea pigs and rats exposed to 2.5 mg/m3 ZnO. In contrast, rabbits showed no increase in biochemical or cellular parameters following a 2-hr exposure to 5 mg/m3 ZnO. Differences in total lung burden of ZnO, as determined in additional animals by atomic absorption spectroscopy, appeared to account for the observed differences in species responses. Although the lungs of guinea pigs and rats retained approximately 20% and 12% of the inhaled dose, respectively, rabbits retained only 5%.

  3. Comparison of smooth pursuit and combined eye-head tracking in human subjects with deficient labyrinthine function

    NASA Technical Reports Server (NTRS)

    Leigh, R. J.; Thurston, S. E.; Sharpe, J. A.; Ranalli, P. J.; Hamid, M. A.

    1987-01-01

    The effects of deficient labyrinthine function on smooth visual tracking with the eyes and head were investigated, using ten patients with bilateral peripheral vestibular disease and ten normal controls. Active, combined eye-head tracking (EHT) was significantly better in patients than smooth pursuit with the eyes alone, whereas normal subjects pursued equally well in both cases. Compensatory eye movements during active head rotation in darkness were always less in patients than in normal subjects. These data were used to examine current hypotheses that postulate central cancellation of the vestibulo-ocular reflex (VOR) during EHT. A model that proposes summation of an integral smooth pursuit command and VOR/compensatory eye movements is consistent with the findings. Observation of passive EHT (visual fixation of a head-fixed target during en bloc rotation) appears to indicate that in this mode parametric gain changes contribute to modulation of the VOR.

  4. Oestrogen receptor alpha in pulmonary hypertension

    PubMed Central

    Wright, Audrey F.; Ewart, Marie-Ann; Mair, Kirsty; Nilsen, Margaret; Dempsie, Yvonne; Loughlin, Lynn; Maclean, Margaret R.

    2015-01-01

    Aims Pulmonary arterial hypertension (PAH) occurs more frequently in women with mutations in bone morphogenetic protein receptor type 2 (BMPR2) and dysfunctional BMPR2 signalling underpinning heritable PAH. We have previously shown that serotonin can uncover a pulmonary hypertensive phenotype in BMPR2+/− mice and that oestrogen can increase serotinergic signalling in human pulmonary arterial smooth muscle cells (hPASMCs). Hence, here we wished to characterize the expression of oestrogen receptors (ERs) in male and female human pulmonary arteries and have examined the influence of oestrogen and serotonin on BMPR2 and ERα expression. Methods and results By immunohistochemistry, we showed that ERα, ERβ, and G-protein-coupled receptors are expressed in human pulmonary arteries localizing mainly to the smooth muscle layer which also expresses the serotonin transporter (SERT). Protein expression of ERα protein was higher in female PAH patient hPASMCs compared with male and serotonin also increased the expression of ERα. 17β-estradiol induced proliferation of hPASMCs via ERα activation and this engaged mitogen-activated protein kinase and Akt signalling. Female mice over-expressing SERT (SERT+ mice) develop PH and the ERα antagonist MPP attenuated the development of PH in normoxic and hypoxic female SERT+ mice. The therapeutic effects of MPP were accompanied by increased expression of BMPR2 in mouse lung. Conclusion ERα is highly expressed in female hPASMCs from PAH patients and mediates oestrogen-induced proliferation of hPASMCs via mitogen-activated protein kinase and Akt signalling. Serotonin can increase ERα expression in hPASMCs and antagonism of ERα reverses serotonin-dependent PH in the mouse and increases BMPR2 expression. PMID:25765937

  5. Live Attenuated Francisella novicida Vaccine Protects against Francisella tularensis Pulmonary Challenge in Rats and Non-human Primates

    PubMed Central

    Chu, Ping; Cunningham, Aimee L.; Yu, Jieh-Juen; Nguyen, Jesse Q.; Barker, Jeffrey R.; Lyons, C. Rick; Wilder, Julie; Valderas, Michelle; Sherwood, Robert L.; Arulanandam, Bernard P.; Klose, Karl E.

    2014-01-01

    Francisella tularensis causes the disease tularemia. Human pulmonary exposure to the most virulent form, F. tularensis subsp. tularensis (Ftt), leads to high morbidity and mortality, resulting in this bacterium being classified as a potential biothreat agent. However, a closely-related species, F. novicida, is avirulent in healthy humans. No tularemia vaccine is currently approved for human use. We demonstrate that a single dose vaccine of a live attenuated F. novicida strain (Fn iglD) protects against subsequent pulmonary challenge with Ftt using two different animal models, Fischer 344 rats and cynomolgus macaques (NHP). The Fn iglD vaccine showed protective efficacy in rats, as did a Ftt iglD vaccine, suggesting no disadvantage to utilizing the low human virulent Francisella species to induce protective immunity. Comparison of specific antibody profiles in vaccinated rat and NHP sera by proteome array identified a core set of immunodominant antigens in vaccinated animals. This is the first report of a defined live attenuated vaccine that demonstrates efficacy against pulmonary tularemia in a NHP, and indicates that the low human virulence F. novicida functions as an effective tularemia vaccine platform. PMID:25340543

  6. Pharmacokinetics and immunogenicity of a recombinant human butyrylcholinesterase bioscavenger in macaques following intravenous and pulmonary delivery.

    PubMed

    Rosenberg, Yvonne J; Adams, Robert J; Hernandez-Abanto, Segundo; Jiang, Xiaoming; Sun, Wei; Mao, Lingjun; Lee, K David

    2015-12-01

    Recombinant (r) and native butyrylcholinesterse (BChE) are potent bioscavengers of organophosphates (OPs) such as nerve agents and pesticides and are undergoing development as antidotal treatments for OP-induced toxicity. Because of the lethal properties of such agents, regulatory approval will require extensive testing under the Animal Rule. However, human (Hu) glycoprotein biologicals, such as BChE, present a challenge for assessing immunogenicity and efficacy in heterologous animal models since any immune responses to the small species differences in amino acids or glycans between the host and biologic may alter pharmacodynamics and preclude accurate efficacy testing; possibly underestimating their potential protective value in humans. To establish accurate pharmacokinetic and efficacy data, an homologous animal model has been developed in which native and PEGylated forms of CHO-derived rMaBChE were multiply injected into homologous macaques with no induction of antibody. These now serve as controls for assessing the pharmacokinetics and immunogenicity in macaques of multiple administrations of PEGylated and unmodified human rBChE (rHuBChE) by both intravenous (IV) and pulmonary routes. The results indicate that, except for maximal concentration (Cmax), the pharmacokinetic parameters following IV injection with heterologous PEG-rHuBChE were greatly reduced even after the first injection compared with homologous PEG-rMaBChE. Anti-HuBChE antibody responses were induced in all monkeys after the second and third administrations regardless of the route of delivery; impacting rates of clearance and usually resulting in reduced endogenous MaBChE activity. These data highlight the difficulties inherent in assessing pharmacokinetics and immunogenicity in animal models, but bode well for the efficacy and safety of rHuBChE pretreatments in homologous humans. PMID:26415620

  7. Cross-talk between NADPH oxidase-PKCα-p(38)MAPK and NF-κB-MT1MMP in activating proMMP-2 by ET-1 in pulmonary artery smooth muscle cells.

    PubMed

    Sarkar, Jaganmay; Chowdhury, Animesh; Chakraborti, Tapati; Chakraborti, Sajal

    2016-04-01

    Treatment of bovine pulmonary artery smooth muscle cells with endothelin-1 (ET-1) caused an increase in the expression and activation of proMMP-2 in the cells. The present study was undertaken to determine the underlying mechanisms involved in this scenario. We demonstrated that (i) pretreatment with NADPH oxidase inhibitor, apocynin; PKC-α inhibitor, Go6976; p(38)MAPK inhibitor SB203580 and NF-κB inhibitor, Bay11-7082 inhibited the expression and activation of proMMP-2 induced by ET-1; (ii) ET-1 treatment to the cells stimulated NADPH oxidase and PKCα activity, p(38)MAPK phosphorylation as well as NF-κB activation by translocation of NF-κBp65 subunit from cytosol to the nucleus, and subsequently by increasing its DNA-binding activity; (iii) ET-1 increases MT1-MMP expression, which was inhibited upon pretreatment with apocynin, Go6976, SB293580, and Bay 11-7082; (iv) ET-1 treatment to the cells downregulated TIMP-2 level. Although apocynin and Go6976 pretreatment reversed ET-1 effect on TIMP-2 level, yet pretreatment of the cells with SB203580 and Bay 11-7082 did not show any discernible change in TIMP-2 level by ET-1. Overall, our results suggest that ET-1-induced activation of proMMP-2 is mediated via cross-talk between NADPH oxidase-PKCα-p(38)MAPK and NFκB-MT1MMP signaling pathways along with a marked decrease in TIMP-2 expression in the cells. PMID:26910780

  8. Cross-talk between NADPH oxidase-PKCα-p(38)MAPK and NF-κB-MT1MMP in activating proMMP-2 by ET-1 in pulmonary artery smooth muscle cells.

    PubMed

    Sarkar, Jaganmay; Chowdhury, Animesh; Chakraborti, Tapati; Chakraborti, Sajal

    2016-04-01

    Treatment of bovine pulmonary artery smooth muscle cells with endothelin-1 (ET-1) caused an increase in the expression and activation of proMMP-2 in the cells. The present study was undertaken to determine the underlying mechanisms involved in this scenario. We demonstrated that (i) pretreatment with NADPH oxidase inhibitor, apocynin; PKC-α inhibitor, Go6976; p(38)MAPK inhibitor SB203580 and NF-κB inhibitor, Bay11-7082 inhibited the expression and activation of proMMP-2 induced by ET-1; (ii) ET-1 treatment to the cells stimulated NADPH oxidase and PKCα activity, p(38)MAPK phosphorylation as well as NF-κB activation by translocation of NF-κBp65 subunit from cytosol to the nucleus, and subsequently by increasing its DNA-binding activity; (iii) ET-1 increases MT1-MMP expression, which was inhibited upon pretreatment with apocynin, Go6976, SB293580, and Bay 11-7082; (iv) ET-1 treatment to the cells downregulated TIMP-2 level. Although apocynin and Go6976 pretreatment reversed ET-1 effect on TIMP-2 level, yet pretreatment of the cells with SB203580 and Bay 11-7082 did not show any discernible change in TIMP-2 level by ET-1. Overall, our results suggest that ET-1-induced activation of proMMP-2 is mediated via cross-talk between NADPH oxidase-PKCα-p(38)MAPK and NFκB-MT1MMP signaling pathways along with a marked decrease in TIMP-2 expression in the cells.

  9. Modulation of vascular human endothelial and rat smooth muscle cell growth by a fucosylated chondroitin sulfate from echinoderm.

    PubMed

    Tapon-Bretaudière, J; Drouet, B; Matou, S; Mourão, P A; Bros, A; Letourneur, D; Fischer, A M

    2000-08-01

    Fucosylated chondroitin sulfate is a glycosaminoglycan extracted from the sea cucumber Ludwigothurea grisea. This polysaccharide has the same structure as a mammalian chondroitin sulfate but some of the glucuronic acid residues display sulfated fucose branches. Anticoagulant and antithrombotic properties of fucosylated chondroitin sulfate have already been described. In order to further investigate its potential therapeutic use as an antithrombotic agent, we studied its effect on vascular smooth muscle cell (SMC) proliferation and endothelial cell proliferation, migration and Tissue Factor Pathway Inhibitor (TFPI) release. The experiments were performed on SMC from rat thoracic aorta and on human umbilical vein endothelial cell (HUVEC) in culture with or without added fibroblast growth factors (FGF-1 and FGF-2). Our results showed that: (i) fucosylated chondroitin sulfate had a strong inhibitory effect on SMC proliferation (IC50 =10 +/- 5 microg/ml) and (ii) no effect on HUVEC proliferation and migration assays, in the absence of exogenous FGF, while heparin had inhibitory effects; (iii) fucosylated chondroitin sulfate (10 microg/ml) enhanced FGF-1 and FGF-2 induced HUVEC proliferation by 45% (145.4 +/- 7.2%) and 27% (126.9 +/- 4.2%), respectively; (iv) on FGF-induced HUVEC migration, fucosylated chondroitin sulfate (10 microg/ml) had a strong enhancing effect with FGF-1, +122% (222.2 +/- 15.8%), three times higher than that of heparin, and a lower enhancing effect with FGF-2, +43% (142.7 +/- 4.6%), whereas heparin had no effect; (v) fucosylated chondroitin sulfate stimulated TFPI release, mainly on the free form. +98% (198.2 +/- 25%). In addition, the structural features of the polysaccharide associated with its biological activity were resolved using chemically modified fucosylated chondroitin sulfates. Sulfated fucose branches groups are essential to the potentiating effect of the polysaccharide on HUVEC proliferation and migration. Surprisingly, removal of

  10. Soluble DPP4 induces inflammation and proliferation of human smooth muscle cells via protease-activated receptor 2.

    PubMed

    Wronkowitz, Nina; Görgens, Sven W; Romacho, Tania; Villalobos, Laura A; Sánchez-Ferrer, Carlos F; Peiró, Concepción; Sell, Henrike; Eckel, Jürgen

    2014-09-01

    DPP4 is an ubiquitously expressed cell-surface protease that is shedded to the circulation as soluble DPP4 (sDPP4). We recently identified sDPP4 as a novel adipokine potentially linking obesity to the metabolic syndrome. The aim of this study was to investigate direct effects of sDPP4 on human vascular smooth muscle cells (hVSMCs) and to identify responsible signaling pathways. Using physiological concentrations of sDPP4, we could observe a concentration-dependent activation of ERK1/2 (3-fold) after 6h, which remained stable for up to 24h. Additionally, sDPP4 treatment induced a 1.5-fold phosphorylation of the NF-κB subunit p65. In accordance with sDPP4-induced stress and inflammatory signaling, sDPP4 also stimulates hVSMC proliferation. Furthermore we could observe an increased expression and secretion of pro-inflammatory cytokines like interleukin (IL)-6, IL-8 and MCP-1 (2.5-, 2.4- and 1.5-fold, respectively) by the sDPP4 treatment. All direct effects of sDPP4 on signaling, proliferation and inflammation could completely be prevented by DPP4 inhibition. Bioinformatic analysis and signaling signature induced by sDPP4 suggest that sDPP4 might be an agonist for PAR2. After the silencing of PAR2, the sDPP4-induced ERK activation as well as the proliferation was totally abolished. Additionally, the sDPP4-induced upregulation of IL-6 and IL-8 could completely be prevented by the PAR2 silencing. In conclusion, we show for the first time that sDPP4 directly activates the MAPK and NF-κB signaling cascade involving PAR2 and resulting in the induction of inflammation and proliferation of hVSMC. Thus, our in vitro data might extend the current view of sDPP4 action and shed light on cardiovascular effects of DPP4-inhibitors. PMID:24928308

  11. TNFα and IFNγ Synergistically Enhance Transcriptional Activation of CXCL10 in Human Airway Smooth Muscle Cells via STAT-1, NF-κB, and the Transcriptional Coactivator CREB-binding Protein

    PubMed Central

    Clarke, Deborah L.; Clifford, Rachel L.; Jindarat, Sarawut; Proud, David; Pang, Linhua; Belvisi, Maria; Knox, Alan J.

    2010-01-01

    Asthmatic airway smooth muscle (ASM) expresses interferon-γ-inducible protein-10 (CXCL10), a chemokine known to mediate mast cell migration into ASM bundles that has been reported in the airways of asthmatic patients. CXCL10 is elevated in patients suffering from viral exacerbations of asthma and in patients with chronic obstructive pulmonary disease (COPD), diseases in which corticosteroids are largely ineffective. IFNγ and TNFα synergistically induce CXCL10 release from human ASM cells in a steroid-insensitive manner, via an as yet undefined mechanism. We report that TNFα activates the classical NF-κB (nuclear factor κB) pathway, whereas IFNγ activates JAK2/STAT-1α and that inhibition of the JAK/STAT pathway is more effective in abrogating CXCL10 release than the steroid fluticasone. The synergy observed with TNFα and IFNγ together, however, did not lie at the level of NF-κB activation, STAT-1α phosphorylation, or in vivo binding of these transcription factors to the CXCL10 promoter. Stimulation of human ASM cells with TNFα and IFNγ induced histone H4 but not histone H3 acetylation at the CXCL10 promoter, although no synergism was observed when both cytokines were combined. We show, however, that TNFα and IFNγ exert a synergistic effect on the recruitment of CREB-binding protein (CBP) to the CXCL10, which is accompanied by increased RNA polymerase II. Our results provide evidence that synergism between TNFα and IFNγ lies at the level of coactivator recruitment in human ASM and suggest that inhibition of JAK/STAT signaling may be of therapeutic benefit in steroid-resistant airway disease. PMID:20833730

  12. TNFα and IFNγ synergistically enhance transcriptional activation of CXCL10 in human airway smooth muscle cells via STAT-1, NF-κB, and the transcriptional coactivator CREB-binding protein.

    PubMed

    Clarke, Deborah L; Clifford, Rachel L; Jindarat, Sarawut; Proud, David; Pang, Linhua; Belvisi, Maria; Knox, Alan J

    2010-09-17

    Asthmatic airway smooth muscle (ASM) expresses interferon-γ-inducible protein-10 (CXCL10), a chemokine known to mediate mast cell migration into ASM bundles that has been reported in the airways of asthmatic patients. CXCL10 is elevated in patients suffering from viral exacerbations of asthma and in patients with chronic obstructive pulmonary disease (COPD), diseases in which corticosteroids are largely ineffective. IFNγ and TNFα synergistically induce CXCL10 release from human ASM cells in a steroid-insensitive manner, via an as yet undefined mechanism. We report that TNFα activates the classical NF-κB (nuclear factor κB) pathway, whereas IFNγ activates JAK2/STAT-1α and that inhibition of the JAK/STAT pathway is more effective in abrogating CXCL10 release than the steroid fluticasone. The synergy observed with TNFα and IFNγ together, however, did not lie at the level of NF-κB activation, STAT-1α phosphorylation, or in vivo binding of these transcription factors to the CXCL10 promoter. Stimulation of human ASM cells with TNFα and IFNγ induced histone H4 but not histone H3 acetylation at the CXCL10 promoter, although no synergism was observed when both cytokines were combined. We show, however, that TNFα and IFNγ exert a synergistic effect on the recruitment of CREB-binding protein (CBP) to the CXCL10, which is accompanied by increased RNA polymerase II. Our results provide evidence that synergism between TNFα and IFNγ lies at the level of coactivator recruitment in human ASM and suggest that inhibition of JAK/STAT signaling may be of therapeutic benefit in steroid-resistant airway disease.

  13. Potent contractile actions of prostanoid EP3-receptor agonists on human isolated pulmonary artery.

    PubMed

    Qian, Y M; Jones, R L; Chan, K M; Stock, A I; Ho, J K

    1994-10-01

    1. In 13 of 15 experiments, prostaglandin E2 (PGE2) and sulprostone (a prostanoid EP1/EP3-receptor agonist) contracted isolated rings of human pulmonary artery at low concentrations (> or = 5 and > or = 0.5 nM respectively). Tissue was obtained from patients undergoing surgery mainly for carcinoma of the lung. Characterization of the receptors involved was complicated by loss of sensitivity to the contractile PGE action over the experimental period. In contrast, contractile responses to KCl, phenylephrine and the specific thromboxane (TP-) receptor agonist, U-46619, did not decrease with time. 2. The relative contractile potencies for seven PGE analogues, measured during the first few hours after setting up the preparations, were as follows: sulprostone > misoprostol = gemeprost > or = PGE2 > or = GR 63799X > 17-phenyl-omega-trinor PGE2 > or = 11-deoxy PGE1. This ranking indicates that an EP3-receptor is involved. 3. The contractile action of sulprostone was not blocked by the TP-receptor antagonists, EP 169 and GR 32191, and the EP1-receptor antagonist, AH 6809. 4. In two experiments, PGE2 (50 nM) reduced basal tone and sulprostone was a weak contractile agent. Phenylephrine-induced tone was also inhibited by PGE2 (EC50 = 5-20 nM), 11-deoxy PGE1 and butaprost (a selective EP2-receptor agonist); the latter prostanoids were about 2 and 4 times less potent than PGE2 respectively. Interactions with phenylephrine were different in experiments where PGE2 alone was contractile: PGE2 induced contraction superimposed on the phenylephrine response and 11-deoxy PGE1 induced either further contraction or had no effect. Butaprost produced relaxation at high concentrations;this may not be an EP2 action since preparations were highly sensitive to relaxant actions of prostacyclin (IP-) receptor agonists (cicaprost and TEI-9063).5 The study has shown that in the majority of experiments on the human isolated pulmonary artery,the contractile EP3 system outweighed the relaxant EP2

  14. Regional pulmonary blood flow measurement in humans with electron-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Holt, William W.; Konhilas, John; Wolfkiel, Christopher J.

    1995-05-01

    Electron beam computed tomography (EBCT) is a potentially useful modality to quantitate regional pulmonary flow (RPF) with minimal invasiveness, in part because it has good spatial and temporal resolution. The present studies used a single compartment model of indicator transport and EBCT to measure regional tissue flow in the lungs of human subjects. The model postulates that flow is proportional to maximal enhancement and assumes complete tissue accumulation of indicator before significant indicator washout (WO). EBCT flow studies were retrospectively analyzed with respect to RPF in 10 adult patients who had undergone clinically indicated or research cardiovascular studies. Time density curves from the left atrial (LA) cavity and one-third segments of left (LL) and right (RL) lungs (A: anterior, M: middle, and P: posterior segments) were used to calculate RPF. Washout was determined as the percent of the LA curve at the time of peak parenchymal opacification using gamma curve fits to both tissue data and the LA curve data. Mean +/- standard deviation RPF in ml/min/ml was 0.8 +/- 0.4, 1.1 +/- 0.4, and 1.3 +/- 0.4 for A, M, and P respectively for one-third regions in the left lung. Similar results were found in the right lung. No difference in RPF was found when images were measured either by including the largest of visible parenchymal vessels or when such vessels were excluded. Flow in A of LL and RL was less than that in M or P. Average WO was about 10%, with a range of 0-41% of the LA curve area. There was no significant difference between one-third segment WO using pairwise comparison on the left and right sides when tested separately. RPF values were greater in the posterior vs anterior regions of these supine patients. In conclusion, EBCT can detect gravity related flow differences in the human lung. EBCT has potential for clinical assessment of absolute regional pulmonary flow determination in animals and man.

  15. Nicotinamide Adenine Dinucleotide Phosphate Oxidase–Mediated Redox Signaling and Vascular Remodeling by 16α-Hydroxyestrone in Human Pulmonary Artery Cells

    PubMed Central

    Hood, Katie Y.; Montezano, Augusto C.; Harvey, Adam P.; Nilsen, Margaret; MacLean, Margaret R.

    2016-01-01

    Estrogen and oxidative stress have been implicated in pulmonary arterial hypertension (PAH). Mechanisms linking these systems are elusive. We hypothesized that estrogen metabolite, 16α-hydroxyestrone (16αOHE1), stimulates nicotinamide adenine dinucleotide phosphate oxidase (Nox)–induced reactive oxygen species (ROS) generation and proliferative responses in human pulmonary artery smooth muscle cells (hPASMCs) and that in PAH aberrant growth signaling promotes vascular remodeling. The pathophysiological significance of estrogen–Nox–dependent processes was studied in female Nox1−/− and Nox4−/− mice with PAH. PASMCs from control subjects (control hPASMCs) and PAH patients (PAH-hPASMCs) were exposed to estrogen and 16αOHE1 in the presence/absence of inhibitors of Nox, cytochrome P450 1B1, and estrogen receptors. Estrogen, through estrogen receptor-α, increased Nox-derived ROS and redox-sensitive growth in hPASMCs, with greater effects in PAH-hPASMCs versus control hPASMCs. Estrogen effects were inhibited by cytochrome P450 1B1 blockade. 16αOHE1 stimulated transient ROS production in hPASMCs, with sustained responses in PAH-hPASMCs. Basal expression of Nox1/Nox4 was potentiated in PAH-hPASMCs. In hPASMCs, 16αOHE1 increased Nox1 expression, stimulated irreversible oxidation of protein tyrosine phosphatases, decreased nuclear factor erythroid–related factor 2 activity and expression of nuclear factor erythroid–related factor 2–regulated antioxidant genes, and promoted proliferation. This was further amplified in PAH-hPASMCs. Nox1−/− but not Nox4−/− mice were protected against PAH and vascular remodeling. Our findings demonstrate that in PAH-hPASMCs, 16αOHE1 stimulates redox-sensitive cell growth primarily through Nox1. Supporting this, in vivo studies exhibited protection against pulmonary hypertension and remodeling in Nox1−/− mice. This study provides new insights through Nox1/ROS and nuclear factor erythroid–related factor 2

  16. Diversity of potassium channels in human umbilical artery smooth muscle cells: a review of their roles in human umbilical artery contraction.

    PubMed

    Martín, Pedro; Rebolledo, Alejandro; Palomo, Ana Rocio Roldán; Moncada, Melisa; Piccinini, Luciano; Milesi, Verónica

    2014-04-01

    Through their control of cell membrane potential, potassium (K(+)) channels are among the best known regulators of vascular tone. This article discusses the expression and function of K(+) channels in human umbilical artery smooth muscle cells (HUASMCs). We review the bibliographic reports and also present single-channel data recorded in freshly isolated cells. Electrophysiological properties of big conductance, voltage- and Ca(2+)-sensitive K(+) channel and voltage-dependent K(+) channels are clearly established in this vessel, where they are involved in contractile state regulation. Their role in the maintenance of membrane potential is an important control mechanism in the determination of the vessel diameter. Additionally, small conductance Ca(2+)-sensitive K(+) channels, 2-pore domains K(+) channels and inward rectifier K(+) channels also appear to be present in HUASMCs, while intermediate conductance Ca(2+)-sensitive K(+) channels and ATP-sensitive K(+) channels could not be identified. In both cases, additional investigation is necessary to reach conclusive evidence of their expression and/or functional role in HUASMCs. Finally, we discuss the role of K(+) channels in pregnancy-related pathologies like gestational diabetes and preeclampsia.

  17. Comparative immunohistochemical analysis of the expression of cytokeratins, vimentin and alpha-smooth muscle actin in human foetal mesonephros and metanephros.

    PubMed

    Magro, G; Perris, R; Romeo, R; Marcello, M; Lopes, M; Vasquez, E; Grasso, S

    2001-04-01

    The human mesonephros is currently regarded as a simplified version of the foetal metanephros, primarily due to the close morphological resemblance between these two structures. The aim of the present study was to define whether human mesonephric and foetal metanephric nephrons share immunophenotypical traits in their corresponding structures (glomeruli, proximal and distal tubules). For this purpose we first investigated immunohistochemically the overall expression and topographical distribution of cytokeratins 7, 8, 18, 19, and 20, vimentin and alpha-smooth muscle actin in mature mesonephric nephrons and compared the results with those obtained in maturing-stage foetal metanephric nephrons. No expression of cytokeratins 7 and 20 was found. Cytokeratins 8, 18, and 19 and vimentin showed a restricted and basically coincident expression along the different components of both mesonephric and metanephric nephrons. These findings indicate that the intermediate filament protein profile of human mature mesonephric nephrons closely recapitulates that observed in developing metanephros and thereby strengthens the concept that human mesonephros, a transient ontogenic structure, is largely similar to the foetal metanephros. The sole difference between human mesonephros and foetal metanephros was the divergent expression of alpha-smooth muscle actin. This protein exhibited an increasingly accentuated mesangial expression paralleling the morphological maturation of metanephric glomerulus, whereas it was absent from the mesonephric one. This would suggest that the mesangial cells in these two renal structures have a different function during the foetal life.

  18. Nox2/ROS-dependent human antigen R translocation contributes to TNF-α-induced SOCS-3 expression in human tracheal smooth muscle cells.

    PubMed

    Hsu, Chih-Kai; Lee, I-Ta; Lin, Chih-Chung; Hsiao, Li-Der; Yang, Chuen-Mao

    2014-03-15

    Elevated levels of TNF-α have been detected in the airway fluids, which may induce upregulation of inflammatory proteins. Suppressors of cytokine signaling (SOCS)-3 proteins can be induced by various cytokines and negatively regulated inflammatory responses. Although TNF-α has been shown to induce SOCS-3 expression, the mechanisms underlying TNF-α-induced SOCS-3 expression in human tracheal smooth muscle cells (HTSMCs) remain unclear. Here, we showed that TNF-α induced SOCS-3 expression, which was inhibited by pretreatment with the inhibitor of transcription level (actinomycin D), translation level (cycloheximide), JNK1/2 (SP600125), MEK1/2 (U0126), NADPH oxidase (Nox; apocynin and diphenyleneiodonium chloride), or reactive oxygen species (ROS; N-acetyl-l-cysteine) and transfection with siRNA of JNK1, p47(phox), p42, Nox2, or human antigen R (HuR). In addition, TNF-α-stimulated JNK1/2 and p42/p44 MAPK phosphorylation, Nox activation, and ROS generation were inhibited by pretreatment with U0126 or SP600125 and transfection with siRNA of JNK1 or p42. We further showed that TNF-α markedly induced HuR protein expression and translocation from the nucleus to the cytosol, which could stabilize SOCS-3 mRNA. Moreover, TNF-α-enhanced HuR translocation was reduced by transfection with siRNA of p42, JNK1, or p47(phox). These results suggested that TNF-α induces SOCS-3 protein expression and mRNA stabilization via a TNFR1/JNK1/2, p42/p44 MAPK/Nox2/ROS-dependent HuR signaling in HTSMCs. Lipopolysaccharide (LPS) has been shown to play a key role in inflammation via induction of adhesion molecules and then causes airway and lung injury. Moreover, we also demonstrated that overexpression of SOCS-3 protects against LPS-induced adhesion molecules expression and airway inflammation.

  19. Lipopolysaccharide Induces Human Pulmonary Micro-Vascular Endothelial Apoptosis via the YAP Signaling Pathway

    PubMed Central

    Yi, Lei; Huang, Xiaoqin; Guo, Feng; Zhou, Zengding; Chang, Mengling; Tang, Jiajun; Huan, Jingning

    2016-01-01

    Gram-negative bacterial lipopolysaccharide (LPS) induces a pathologic increase in lung vascular leakage under septic conditions. LPS-induced human pulmonary micro-vascular endothelial cell (HPMEC) apoptosis launches and aggravates micro-vascular hyper-permeability and acute lung injury (ALI). Previous studies show that the activation of intrinsic apoptotic pathway is vital for LPS-induced EC apoptosis. Yes-associated protein (YAP) has been reported to positively regulate intrinsic apoptotic pathway in tumor cells apoptosis. However, the potential role of YAP protein in LPS-induced HPMEC apoptosis has not been determined. In this study, we found that LPS-induced activation and nuclear accumulation of YAP accelerated HPMECs apoptosis. LPS-induced YAP translocation from cytoplasm to nucleus by the increased phosphorylation on Y357 resulted in the interaction between YAP and transcription factor P73. Furthermore, inhibition of YAP by small interfering RNA (siRNA) not only suppressed the LPS-induced HPMEC apoptosis but also regulated P73-mediated up-regulation of BAX and down-regulation of BCL-2. Taken together, our results demonstrated that activation of the YAP/P73/(BAX and BCL-2)/caspase-3 signaling pathway played a critical role in LPS-induced HPMEC apoptosis. Inhibition of the YAP might be a potential therapeutic strategy for lung injury under sepsis. PMID:27807512

  20. Recombinant human pentraxin-2 therapy in patients with idiopathic pulmonary fibrosis: safety, pharmacokinetics and exploratory efficacy.

    PubMed

    van den Blink, Bernt; Dillingh, Marlous R; Ginns, Leo C; Morrison, Lake D; Moerland, Matthijs; Wijsenbeek, Marlies; Trehu, Elizabeth G; Bartholmai, Brian J; Burggraaf, Jacobus

    2016-03-01

    Abnormal fibrogenic repair response upon alveolar injury is believed to play an important role in the pathogenesis of idiopathic pulmonary fibrosis (IPF). PRM-151 (recombinant human pentraxin-2, also known as serum amyloid P), has been shown to reduce fibrosis in preclinical lung fibrosis models, and was well tolerated with a favourable pharmacokinetic profile in an earlier single-dose phase I study.A randomised, double-blind, placebo-controlled, multiple ascending dose trial was performed to assess the tolerability and pharmacokinetic and pharmacodynamic characteristics of multiple doses of PRM-151 in IPF patients. Subjects in three successive cohorts (1, 5, or 10 mg·kg(-1) versus placebo) received intravenous study drug on days 1, 3, 5, 8 and 15, and were followed-up to day 57.PRM-151 was well tolerated at all dose levels, with no serious adverse reactions. Administration of PRM-151 resulted in two- to eight-fold dose-dependent increases in circulating pentraxin-2 levels. Forced vital capacity and 6-min walk test showed trends towards improvement in the combined PRM-151 dose groups. On high-resolution computed tomography scans, stable or improved lung volume unoccupied by interstitial lung abnormality was noted in some PRM-151 subjects compared to placebo subjects on day 57.The efficacy of PRM-151 in IPF remains to be investigated in dedicated future trials.

  1. Differences in pulmonary responses of rats, other animals, and humans to chronic inhalation of silica and other particles

    SciTech Connect

    Mauderly, J.L.

    1993-12-31

    The pulmonary carcinogenicity of quartz in rats supports the plausibility of silica-induced lung cancer in humans. However, pulmonary responses of rats to dusts differ from those of other rodents, and may differ from those of humans. Dust-exposed rats have a greater propensity than mice or hamsters for epithelial hyperplasia, metaplasia, and fibrosis. Lung tumors occur in rats, but not mice or hamsters, treated with quartz, or exposed chronically to several other dusts. There are few opportunities for directly comparing the susceptibilities of rats and humans to dust-induced lung tumors. Because of the uncertain human responses to silica and many other particles, the negative human lung cancer response to coal dust may provide the best opportunity to calibrate responses of rats against those of humans. Historical dust lung burdens in coal miners were in the range of those associated with carcinogenicity in rats exposed to several dusts, but the carcinogenicity of coal dust in rats is unknown. The usefulness of tumor data from rats for predicting human lung cancer risk from inhaled silica and other dusts remains uncertain.

  2. Abnormal neutrophil-pulmonary interaction in the adult respiratory distress syndrome. Qualitative and quantitative assessment of pulmonary neutrophil kinetics in humans with in vivo /sup 111/indium neutrophil scintigraphy

    SciTech Connect

    Warshawski, F.J.; Sibbald, W.J.; Driedger, A.A.; Cheung, H.

    1986-05-01

    In the absence of direct toxins, the majority of evidence from animal models suggests that neutrophils (PMN) are necessary for the full expression of the abnormal pulmonary permeability accompanying acute microvascular lung injury. We therefore studied the role of the PMN in the human correlate of this disease, the adult respiratory distress syndrome (ARDS), by assessing the pulmonary retention of infused autologous /sup 111/Indium-labeled PMN (PMN-In). We evaluated 79 patients, prospectively categorized as: active ARDS (Aa; n = 30), active ARDS and concurrent corticosteroid therapy (As; n = 11), resolving ARDS (Ar; n = 13), sepsis without pulmonary edema (S; n = 7), and cardiac pulmonary edema (C; n = 18). This clinical separation was confirmed by retrospective analysis of associated measures of hemodynamic and respiratory dysfunction. We found that both analog scintigrams (positive/negative for diffuse pulmonary PMN-In sequestration) and computer-assisted quantitative analysis in 46 patients (T 1/2 of first hour demargination and percentage of peak activity/pixel/second remaining at 17 to 20 h) showed a significant rank order decrease in the pulmonary retention of labeled PMN-In through the Groups Aa----As----S----Ar----C. Our findings recognized aspects of in vivo PMN-In behavior that implied pathophysiologic differences between groups of critically ill patients in either the PMN themselves or in PMN-pulmonary endothelial interaction. This demonstrates the possibility of abnormal in vivo PMN-endothelial interaction in ARDS by virtue of the greater pulmonary localization of PMN in active ARDS versus resolving disease, septic non-ARDS states, and cardiac pulmonary edema.

  3. Activation of endothelial and epithelial KCa2.3 calcium-activated potassium channels by NS309 relaxes human small pulmonary arteries and bronchioles

    PubMed Central

    Kroigaard, Christel; Dalsgaard, Thomas; Nielsen, Gorm; Laursen, Britt E; Pilegaard, Hans; Köhler, Ralf; Simonsen, Ulf

    2012-01-01

    BACKGROUND AND PURPOSE Small (KCa2) and intermediate (KCa3.1) conductance calcium-activated potassium channels (KCa) may contribute to both epithelium- and endothelium-dependent relaxations, but this has not been established in human pulmonary arteries and bronchioles. Therefore, we investigated the expression of KCa2.3 and KCa3.1 channels, and hypothesized that activation of these channels would produce relaxation of human bronchioles and pulmonary arteries. EXPERIMENTAL APPROACH Channel expression and functional studies were conducted in human isolated small pulmonary arteries and bronchioles. KCa2 and KCa3.1 currents were examined in human small airways epithelial (HSAEpi) cells by whole-cell patch clamp techniques. RESULTS While KCa2.3 expression was similar, KCa3.1 protein was more highly expressed in pulmonary arteries than bronchioles. Immunoreactive KCa2.3 and KCa3.1 proteins were found in both endothelium and epithelium. KCa currents were present in HSAEpi cells and sensitive to the KCa2.3 blocker UCL1684 and the KCa3.1 blocker TRAM-34. In pulmonary arteries contracted by U46619 and in bronchioles contracted by histamine, the KCa2.3/ KCa3.1 activator, NS309, induced concentration-dependent relaxations. NS309 was equally potent in relaxing pulmonary arteries, but less potent in bronchioles, than salbutamol. NS309 relaxations were blocked by the KCa2 channel blocker apamin, while the KCa3.1 channel blocker, charybdotoxin failed to reduce relaxation to NS309 (0.01–1 µM). CONCLUSIONS AND IMPLICATIONS KCa2.3 and KCa3.1 channels are expressed in the endothelium of human pulmonary arteries and epithelium of bronchioles. KCa2.3 channels contributed to endo- and epithelium-dependent relaxations suggesting that these channels are potential targets for treatment of pulmonary hypertension and chronic obstructive pulmonary disease. PMID:22506557

  4. Pulmonary edema

    MedlinePlus

    ... congestion; Lung water; Pulmonary congestion; Heart failure - pulmonary edema ... Pulmonary edema is often caused by congestive heart failure . When the heart is not able to pump efficiently, blood ...

  5. Functional characterisation of human pulmonary monocyte-like cells in lipopolysaccharide-mediated acute lung inflammation

    PubMed Central

    2014-01-01

    Background We have previously reported the presence of novel subpopulations of pulmonary monocyte-like cells (PMLC) in the human lung; resident PMLC (rPMLC, HLA-DR+CD14++CD16+cells) and inducible PMLC (iPMLC, HLA-DR+CD14++CD16- cells). iPMLC are significantly increased in bronchoalveolar lavage (BAL) fluid following inhalation of lipopolysaccharide (LPS). We have carried out the first functional evaluation of PMLC subpopulations in the inflamed lung, following the isolation of these cells, and other lineages, from BAL fluid using novel and complex protocols. Methods iPMLC, rPMLC, alveolar macrophages (AM), neutrophils, and regulatory T cells were quantified in BAL fluid of healthy subjects at 9 hours post-LPS inhalation (n = 15). Cell surface antigen expression by iPMLC, rPMLC and AM and the ability of each lineage to proliferate and to undergo phagocytosis were investigated using flow cytometry. Basal cytokine production by iPMLC compared to AM following their isolation from BAL fluid and the responsiveness of both cell types following in vitro treatment with the synthetic corticosteroid dexamethasone were assessed. Results rPMLC have a significantly increased expression of mature macrophage markers and of the proliferation antigen Ki67, compared to iPMLC. Our cytokine data revealed a pro-inflammatory, corticosteroid-resistant phenotype of iPMLC in this model. Conclusions These data emphasise the presence of functionally distinct subpopulations of the monocyte/macrophage lineage in the human lung in experimental acute lung inflammation. PMID:24684897

  6. Augmentation of oxidant injury to human pulmonary epithelial cells by the Pseudomonas aeruginosa siderophore pyochelin.

    PubMed Central

    Britigan, B E; Rasmussen, G T; Cox, C D

    1997-01-01

    Pseudomonas aeruginosa causes acute and chronic infections of the human lung, with resultant tissue injury. We have previously shown that iron bound to pyochelin, a siderophore secreted by the organism to acquire iron, is an efficient catalyst for hydroxyl radical (HO.) formation and augments injury to pulmonary artery endothelial cells resulting from their exposure to superoxide (O2.) and/or H2O2. Sources for O2-. and H2O2 included phorbol myristate acetate (PMA)-stimulated neutrophils and pyocyanin. Pyocyanin, another P. aeruginosa secretory product, undergoes cell-mediated redox, thereby forming O2-. and H2O2. In P. aeruginosa lung infections, damage to airway epithelial cells is probably more extensive than that to endothelial cells. Therefore, we examined whether ferripyochelin also augments oxidant-mediated damage to airway epithelial cells. A549 cells, a human type II alveolar epithelial cell line, was exposed to H2O2, PMA-stimulated neutrophils, or pyocyanin, and injury was determined by release of 51Cr from prelabeled cells. Ferripyochelin significantly increased (> 10-fold) oxidant-mediated cell injury regardless of whether H2O2, neutrophils, or pyocyanin was employed. Apo-pyochelin was not effective, and ferripyochelin was not toxic by itself at the concentrations employed. Spin trapping with alpha-(4-pyrridyl-1-oxide)-N-t-butyl-nitrone-ethanol confirmed the generation of HO., and injury was decreased by a variety of antioxidants, including superoxide dismutase, catalase, and dimethylthiourea. These data are consistent with the hypothesis that the presence of ferripyochelin at sites of P. aeruginosa lung infection could contribute to tissue injury through its ability to promote HO.-mediated damage to airway epithelial cells. PMID:9038317

  7. Transcriptome Analysis and Gene Identification in the Pulmonary Artery of Broilers with Ascites Syndrome

    PubMed Central

    Xiao, Qingyang; Guo, Xiaoquan; Zhuang, Yu; Zhang, Caiying; Wang, Tiancheng; Lin, Huayuan; Song, Yalu; Hu, Guoliang; Liu, Ping

    2016-01-01

    Background Pulmonary arterial hypertension, also known as Ascites syndrome (AS), remains a clinically challenging disease with a large impact on both humans and broiler chickens. Pulmonary arterial remodeling presents a key step in the development of AS. The precise molecular mechanism of pulmonary artery remodeling regulating AS progression remains unclear. Methodology/Principal Findings We obtained pulmonary arteries from two positive AS and two normal broilers for RNA sequencing (RNA-seq) analysis and pathological observation. RNA-seq analysis revealed a total of 895 significantly differentially expressed genes (DEGs) with 437 up-regulated and 458 down-regulated genes, which were significantly enriched to 12 GO (Gene Ontology) terms and 4 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways (Padj<0.05) regulating pulmonary artery remodeling and consequently occurrence of AS. These GO terms and pathways include ribosome, Jak-STAT and NOD-like receptor signaling pathways which regulate pulmonary artery remodeling through vascular smooth cell proliferation, inflammation and vascular smooth cell proliferation together. Some notable DEGs within these pathways included downregulation of genes like RPL 5, 7, 8, 9, 14; upregulation of genes such as IL-6, K60, STAT3, STAT5 Pim1 and SOCS3; IKKα, IkB, P38, five cytokines IL-6, IL8, IL-1β, IL-18, and MIP-1β. Six important regulators of pulmonary artery vascular remodeling and construction like CYP1B1, ALDH7A1, MYLK, CAMK4, BMP7 and INOS were upregulated in the pulmonary artery of AS broilers. The pathology results showed that the pulmonary artery had remodeled and become thicker in the disease group. Conclusions/Significance Our present data suggested some specific components of the complex molecular circuitry regulating pulmonary arterial remodeling underlying AS progression in broilers. We revealed some valuable candidate genes and pathways that involved in pulmonary artery remodeling further contributing to the AS

  8. The PDZ protein TIP-1 facilitates cell migration and pulmonary metastasis of human invasive breast cancer cells in athymic mice

    SciTech Connect

    Han, Miaojun; Wang, Hailun; Zhang, Hua-Tang; Han, Zhaozhong

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer This study has revealed novel oncogenic functions of TIP-1 in human invasive breast cancer. Black-Right-Pointing-Pointer Elevated TIP-1 expression levels in human breast cancers correlate to the disease prognosis. Black-Right-Pointing-Pointer TIP-1 knockdown suppressed the cell migration and pulmonary metastasis of human breast cancer cells. Black-Right-Pointing-Pointer TIP-1 knockdown suppressed the expression and functionality of motility-related genes. -- Abstract: Tax-interacting protein 1 (TIP-1, also known as Tax1bp3) inhibited proliferation of colon cancer cells through antagonizing the transcriptional activity of beta-catenin. However, in this study, elevated TIP-1 expression levels were detected in human invasive breast cancers. Studies with two human invasive breast cancer cell lines indicated that RNAi-mediated TIP-1 knockdown suppressed the cell adhesion, proliferation, migration and invasion in vitro, and inhibited tumor growth in mammary fat pads and pulmonary metastasis in athymic mice. Biochemical studies showed that TIP-1 knockdown had moderate and differential effects on the beta-catenin-regulated gene expression, but remarkably down regulated the genes for cell adhesion and motility in breast cancer cells. The decreased expression of integrins and paxillin was accompanied with reduced cell adhesion and focal adhesion formation on fibronectin-coated surface. In conclusion, this study revealed a novel oncogenic function of TIP-1 suggesting that TIP-1 holds potential as a prognostic biomarker and a therapeutic target in the treatment of human invasive breast cancers.

  9. RNA-seq analysis of transcriptomes in thrombin-treated and control human pulmonary microvascular endothelial cells.

    PubMed

    Cheranova, Dilyara; Gibson, Margaret; Chaudhary, Suman; Zhang, Li Qin; Heruth, Daniel P; Grigoryev, Dmitry N; Ye, Shui Qing

    2013-01-01

    The characterization of gene expression in cells via measurement of mRNA levels is a useful tool in determining how the transcriptional machinery of the cell is affected by external signals (e.g. drug treatment), or how cells differ between a healthy state and a diseased state. With the advent and continuous refinement of next-generation DNA sequencing technology, RNA-sequencing (RNA-seq) has become an increasingly popular method of transcriptome analysis to catalog all species of transcripts, to determine the transcriptional structure of all expressed genes and to quantify the changing expression levels of the total set of transcripts in a given cell, tissue or organism. RNA-seq is gradually replacing DNA microarrays as a preferred method for transcriptome analysis because it has the advantages of profiling a complete transcriptome, providing a digital type datum (copy number of any transcript) and not relying on any known genomic sequence. Here, we present a complete and detailed protocol to apply RNA-seq to profile transcriptomes in human pulmonary microvascular endothelial cells with or without thrombin treatment. This protocol is based on our recent published study entitled "RNA-seq Reveals Novel Transcriptome of Genes and Their Isoforms in Human Pulmonary Microvascular Endothelial Cells Treated with Thrombin," in which we successfully performed the first complete transcriptome analysis of human pulmonary microvascular endothelial cells treated with thrombin using RNA-seq. It yielded unprecedented resources for further experimentation to gain insights into molecular mechanisms underlying thrombin-mediated endothelial dysfunction in the pathogenesis of inflammatory conditions, cancer, diabetes, and coronary heart disease, and provides potential new leads for therapeutic targets to those diseases. The descriptive text of this protocol is divided into four parts. The first part describes the treatment of human pulmonary microvascular endothelial cells with

  10. RNA-seq analysis of transcriptomes in thrombin-treated and control human pulmonary microvascular endothelial cells.

    PubMed

    Cheranova, Dilyara; Gibson, Margaret; Chaudhary, Suman; Zhang, Li Qin; Heruth, Daniel P; Grigoryev, Dmitry N; Ye, Shui Qing

    2013-02-13

    The characterization of gene expression in cells via measurement of mRNA levels is a useful tool in determining how the transcriptional machinery of the cell is affected by external signals (e.g. drug treatment), or how cells differ between a healthy state and a diseased state. With the advent and continuous refinement of next-generation DNA sequencing technology, RNA-sequencing (RNA-seq) has become an increasingly popular method of transcriptome analysis to catalog all species of transcripts, to determine the transcriptional structure of all expressed genes and to quantify the changing expression levels of the total set of transcripts in a given cell, tissue or organism. RNA-seq is gradually replacing DNA microarrays as a preferred method for transcriptome analysis because it has the advantages of profiling a complete transcriptome, providing a digital type datum (copy number of any transcript) and not relying on any known genomic sequence. Here, we present a complete and detailed protocol to apply RNA-seq to profile transcriptomes in human pulmonary microvascular endothelial cells with or without thrombin treatment. This protocol is based on our recent published study entitled "RNA-seq Reveals Novel Transcriptome of Genes and Their Isoforms in Human Pulmonary Microvascular Endothelial Cells Treated with Thrombin," in which we successfully performed the first complete transcriptome analysis of human pulmonary microvascular endothelial cells treated with thrombin using RNA-seq. It yielded unprecedented resources for further experimentation to gain insights into molecular mechanisms underlying thrombin-mediated endothelial dysfunction in the pathogenesis of inflammatory conditions, cancer, diabetes, and coronary heart disease, and provides potential new leads for therapeutic targets to those diseases. The descriptive text of this protocol is divided into four parts. The first part describes the treatment of human pulmonary microvascular endothelial cells with

  11. The effect of urapidil, an alpha-1 adrenoceptor antagonist and a 5-HT1A agonist, on the vascular tone of the porcine coronary and pulmonary arteries, the rat aorta and the human pulmonary artery.

    PubMed

    Bopp, Claire; Auger, Cyril; Diemunsch, Pierre; Schini-Kerth, Valérie

    2016-05-15

    Urapidil (Eupressyl(®)) an antihypertensive drug acting as an α1 antagonist and a 5-HT1A agonist, may be of special interest in the treatment of hypertension associated with preeclamptic toxaemia and hypoxia-induced pulmonary arterial vasoconstriction. However, the effect of urapidil on vascular tone has been poorly investigated. Vascular reactivity was evaluated using pulmonary and coronary arteries from 36 pigs, aortae from 22 rats and 9 human pulmonary artery samples suspended in organ chambers. Concentration-relaxation curves either to urapidil, 5-HT, or the 5-HT1A receptor agonist 8-OH-DPAT were constructed after pre-contraction of rings. Pig pulmonary and coronary artery rings were contracted with U46619, a thromboxane mimetic, rat aortic rings with either endothelin-1 or phenylephrine, and human pulmonary artery rings with U46619 or phenylephrine. Urapidil markedly inhibited phenylephrine-induced contractions in rat aortic rings with and without endothelium with a more pronounced effect observed in rings without endothelium. Both 5-HT and 8-OH-DPAT failed to induce relaxation in rat aortic rings with an intact endothelium. 5-HT, but not urapidil and 8-OH-DPAT, induced a concentration-dependent relaxation in the porcine coronary and pulmonary artery rings with an intact endothelium (P<0.05). 5-HT and phenylephrine but not urapidil caused concentration-dependent contractions in human pulmonary artery rings. The present findings, while confirming that urapidil is a potent inhibitor of α1-adrenoceptor-induced contraction, do not support the role of 5-HT1A receptor activation in the control of the vascular tone of the different types of arteries tested in response to urapidil. In addition, they indicate that urapidil seems to preferentially target arteries with endothelial dysfunction.

  12. An antiproliferative BMP-2/PPARγ/apoE axis in human and murine SMCs and its role in pulmonary hypertension

    PubMed Central

    Hansmann, Georg; de Jesus Perez, Vinicio A.; Alastalo, Tero-Pekka; Alvira, Cristina M.; Guignabert, Christophe; Bekker, Janine M.; Schellong, Stefan; Urashima, Takashi; Wang, Lingli; Morrell, Nicholas W.; Rabinovitch, Marlene

    2008-01-01

    Loss-of-function mutations in bone morphogenetic protein receptor II (BMP-RII) are linked to pulmonary arterial hypertension (PAH); the ligand for BMP-RII, BMP-2, is a negative regulator of SMC growth. Here, we report an interplay between PPARγ and its transcriptional target apoE downstream of BMP-2 signaling. BMP-2/BMP-RII signaling prevented PDGF-BB–induced proliferation of human and murine pulmonary artery SMCs (PASMCs) by decreasing nuclear phospho-ERK and inducing DNA binding of PPARγ that is independent of Smad1/5/8 phosphorylation. Both BMP-2 and a PPARγ agonist stimulated production and secretion of apoE by SMCs. Using a variety of methods, including short hairpin RNAi in human PASMCs, PAH patient–derived BMP-RII mutant PASMCs, a PPARγ antagonist, and PASMCs isolated from PPARγ- and apoE-deficient mice, we demonstrated that the antiproliferative effect of BMP-2 was BMP-RII, PPARγ, and apoE dependent. Furthermore, we created mice with targeted deletion of PPARγ in SMCs and showed that they spontaneously developed PAH, as indicated by elevated RV systolic pressure, RV hypertrophy, and increased muscularization of the distal pulmonary arteries. Thus, PPARγ-mediated events could protect against PAH, and PPARγ agonists may reverse PAH in patients with or without BMP-RII dysfunction. PMID:18382765

  13. Anti-inflammatory effects of indirubin derivatives on influenza A virus-infected human pulmonary microvascular endothelial cells.

    PubMed

    Kwok, Hoi-Hin; Poon, Po-Ying; Fok, Siu-Ping; Ying-Kit Yue, Patrick; Mak, Nai-Ki; Chan, Michael Chi-Wai; Peiris, Joseph Sriyal Malik; Wong, Ricky Ngok-Shun

    2016-01-01

    Influenza A virus (IAV) poses global threats to human health. Acute respiratory distress syndrome and multi-organ dysfunction are major complications in patients with severe influenza infection. This may be explained by the recent studies which highlighted the role of the pulmonary endothelium as the center of innate immune cells recruitment and excessive pro-inflammatory cytokines production. In this report, we examined the potential immunomodulatory effects of two indirubin derivatives, indirubin-3'-(2,3-dihydroxypropyl)-oximether (E804) and indirubin-3'-oxime (E231), on IAV (H9N2) infected-human pulmonary microvascular endothelial cells (HPMECs). Infection of H9N2 on HPMECs induced a high level of chemokines and cytokines production including IP-10, RANTES, IL-6, IFN-β and IFN-γ1. Post-treatment of E804 or E231 could significantly suppress the production of these cytokines. H9N2 infection rapidly triggered the activation of innate immunity through phosphorylation of signaling molecules including mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription (STAT) proteins. Using specific inhibitors or small-interfering RNA, we confirmed that indirubin derivatives can suppress H9N2-induced cytokines production through MAPKs and STAT3 signaling pathways. These results underscore the immunomodulatory effects of indirubin derivatives on pulmonary endothelium and its therapeutic potential on IAV-infection. PMID:26732368

  14. Anti-inflammatory effects of indirubin derivatives on influenza A virus-infected human pulmonary microvascular endothelial cells

    PubMed Central

    Kwok, Hoi-Hin; Poon, Po-Ying; Fok, Siu-Ping; Ying-Kit Yue, Patrick; Mak, Nai-Ki; Chan, Michael Chi-Wai; Peiris, Joseph Sriyal Malik; Wong, Ricky Ngok-Shun

    2016-01-01

    Influenza A virus (IAV) poses global threats to human health. Acute respiratory distress syndrome and multi-organ dysfunction are major complications in patients with severe influenza infection. This may be explained by the recent studies which highlighted the role of the pulmonary endothelium as the center of innate immune cells recruitment and excessive pro-inflammatory cytokines production. In this report, we examined the potential immunomodulatory effects of two indirubin derivatives, indirubin-3′-(2,3-dihydroxypropyl)-oximether (E804) and indirubin-3′-oxime (E231), on IAV (H9N2) infected-human pulmonary microvascular endothelial cells (HPMECs). Infection of H9N2 on HPMECs induced a high level of chemokines and cytokines production including IP-10, RANTES, IL-6, IFN-β and IFN-γ1. Post-treatment of E804 or E231 could significantly suppress the production of these cytokines. H9N2 infection rapidly triggered the activation of innate immunity through phosphorylation of signaling molecules including mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription (STAT) proteins. Using specific inhibitors or small-interfering RNA, we confirmed that indirubin derivatives can suppress H9N2-induced cytokines production through MAPKs and STAT3 signaling pathways. These results underscore the immunomodulatory effects of indirubin derivatives on pulmonary endothelium and its therapeutic potential on IAV-infection. PMID:26732368

  15. Investigating the relationships between peristaltic contraction and fluid transport in the human colon using Smoothed Particle Hydrodynamics.

    PubMed

    Sinnott, M D; Cleary, P W; Arkwright, J W; Dinning, P G

    2012-04-01

    Complex relationships exist between gut contractility and the flow of digesta. We propose here a Smoothed Particle Hydrodynamics model coupling the flow of luminal content and wall flexure to help investigate these relationships. The model indicates that a zone of muscular relaxation preceding the contraction is an important element for transport. Low pressures in this zone generate positive thrust for low viscosity content. The viscosity of luminal content controls the localization of the flow and the magnitude of the radial pressure gradient and together with contraction amplitude they control the transport rate. For high viscosity content, high lumen occlusion is required for effective propulsion. PMID:22297431

  16. Targeting interleukin-13 with tralokinumab attenuates lung fibrosis and epithelial damage in a humanized SCID idiopathic pulmonary fibrosis model.

    PubMed

    Murray, Lynne A; Zhang, Huilan; Oak, Sameer R; Coelho, Ana Lucia; Herath, Athula; Flaherty, Kevin R; Lee, Joyce; Bell, Matt; Knight, Darryl A; Martinez, Fernando J; Sleeman, Matthew A; Herzog, Erica L; Hogaboam, Cory M

    2014-05-01

    The aberrant fibrotic and repair responses in the lung are major hallmarks of idiopathic pulmonary fibrosis (IPF). Numerous antifibrotic strategies have been used in the clinic with limited success, raising the possibility that an effective therapeutic strategy in this disease must inhibit fibrosis and promote appropriate lung repair mechanisms. IL-13 represents an attractive target in IPF, but its disease association and mechanism of action remains unknown. In the present study, an overexpression of IL-13 and IL-13 pathway markers was associated with IPF, particularly a rapidly progressive form of this disease. Targeting IL-13 in a humanized experimental model of pulmonary fibrosis using tralokinumab (CAT354) was found to therapeutically block aberrant lung remodeling in this model. However, targeting IL-13 was also found to promote lung repair and to restore epithelial integrity. Thus, targeting IL-13 inhibits fibrotic processes and enhances repair processes in the lung.

  17. Omeprazole does not Potentiate Acute Oxygen Toxicity in Fetal Human Pulmonary Microvascular Endothelial Cells Exposed to Hyperoxia

    PubMed Central

    Patel, Ananddeep; Zhang, Shaojie; Moorthy, Bhagavatula; Shivanna, Binoy

    2015-01-01

    Hyperoxia contributes to the pathogenesis of broncho-pulmonary dysplasia (BPD), which is a developmental lung disease of premature infants that is characterized by an interruption of lung alveolar and pulmonary vascular development. Omeprazole (OM) is a proton pump inhibitor that is used to treat humans with gastric acid related disorders. Earlier we observed that OM-mediated aryl hydrocarbon receptor (AhR) activation attenuates acute hyperoxic lung injury in adult mice and oxygen toxicity in adult human lung cells. However, our later studies in newborn mice demonstrated that OM potentiates hyperoxia-induced developmental lung injury. Whether OM exerts a similar toxicity in primary human fetal lung cells is unknown. Hence, we tested the hypothesis that OM potentiates hyperoxia-induced cytotoxicity and ROS generation in the human fetal lung derived primary human pulmonary microvascular endothelial cells (HPMEC). OM activated AhR as evident by a dose-dependent increase in cytochrome P450 (CYP) 1A1 mRNA levels in OM-treated cells. Furthermore, OM at a concentration of 100 μM (OM 100) increased NADP(H) quinone oxidoreductase 1 (NQO1) expression. Surprisingly, hyperoxia decreased rather than increase the NQO1 protein levels in OM 100-treated cells. Exposure to hyperoxia increased cytotoxicity and hydrogen peroxide (H2O2) levels. Interestingly, OM 100-treated cells exposed to air had increased H2O2 levels. However, hyperoxia did not further augment H2O2 levels in OM 100-treated cells. Additionally, hyperoxia-mediated oxygen toxicity was similar in both vehicle- and OM-treated cells. These findings contradict our hypothesis and support the hypothesis that OM does not potentiate acute hyperoxic injury in HPMEC in vitro. PMID:26779382

  18. Genome Sequencing of Idiopathic Pulmonary Fibrosis in Conjunction with a Medical School Human Anatomy Course

    PubMed Central

    Kumar, Akash; Arakawa, Christopher; Baudin, Jacob; Bogaard, Andrew; Salesky, Rebecca; Zhou, Qian; Smith, Kelly; Clark, John I.; Shendure, Jay; Horwitz, Marshall S.

    2014-01-01

    Even in cases where there is no obvious family history of disease, genome sequencing may contribute to clinical diagnosis and management. Clinical application of the genome has not yet become routine, however, in part because physicians are still learning how best to utilize such information. As an educational research exercise performed in conjunction with our medical school human anatomy course, we explored the potential utility of determining the whole genome sequence of a patient who had died following a clinical diagnosis of idiopathic pulmonary fibrosis (IPF). Medical students performed dissection and whole genome sequencing of the cadaver. Gross and microscopic findings were more consistent with the fibrosing variant of nonspecific interstitial pneumonia (NSIP), as opposed to IPF per se. Variants in genes causing Mendelian disorders predisposing to IPF were not detected. However, whole genome sequencing identified several common variants associated with IPF, including a single nucleotide polymorphism (SNP), rs35705950, located in the promoter region of the gene encoding mucin glycoprotein MUC5B. The MUC5B promoter polymorphism was recently found to markedly elevate risk for IPF, though a particular association with NSIP has not been previously reported, nor has its contribution to disease risk previously been evaluated in the genome-wide context of all genetic variants. We did not identify additional predicted functional variants in a region of linkage disequilibrium (LD) adjacent to MUC5B, nor did we discover other likely risk-contributing variants elsewhere in the genome. Whole genome sequencing thus corroborates the association of rs35705950 with MUC5B dysregulation and interstitial lung disease. This novel exercise additionally served a unique mission in bridging clinical and basic science education. PMID:25192356

  19. Detection of small human cerebral cortical lesions with MRI under different levels of Gaussian smoothing: applications in epilepsy

    NASA Astrophysics Data System (ADS)

    Cantor-Rivera, Diego; Goubran, Maged; Kraguljac, Alan; Bartha, Robert; Peters, Terry

    2010-03-01

    The main objective of this study was to assess the effect of smoothing filter selection in Voxel-Based Morphometry studies on structural T1-weighted magnetic resonance images. Gaussian filters of 4 mm, 8 mm or 10 mm Full Width at High Maximum are commonly used, based on the assumption that the filter size should be at least twice the voxel size to obtain robust statistical results. The hypothesis of the presented work was that the selection of the smoothing filter influenced the detectability of small lesions in the brain. Mesial Temporal Sclerosis associated to Epilepsy was used as the case to demonstrate this effect. Twenty T1-weighted MRIs from the BrainWeb database were selected. A small phantom lesion was placed in the amygdala, hippocampus, or parahippocampal gyrus of ten of the images. Subsequently the images were registered to the ICBM/MNI space. After grey matter segmentation, a T-test was carried out to compare each image containing a phantom lesion with the rest of the images in the set. For each lesion the T-test was repeated with different Gaussian filter sizes. Voxel-Based Morphometry detected some of the phantom lesions. Of the three parameters considered: location,size, and intensity; it was shown that location is the dominant factor for the detection of the lesions.

  20. Robust pulmonary lobe segmentation against incomplete fissures

    NASA Astrophysics Data System (ADS)

    Gu, Suicheng; Zheng, Qingfeng; Siegfried, Jill; Pu, Jiantao

    2012-03-01

    As important anatomical landmarks of the human lung, accurate lobe segmentation may be useful for characterizing specific lung diseases (e.g., inflammatory, granulomatous, and neoplastic diseases). A number of investigations showed that pulmonary fissures were often incomplete in image depiction, thereby leading to the computerized identification of individual lobes a challenging task. Our purpose is to develop a fully automated algorithm for accurate identification of individual lobes regardless of the integrity of pulmonary fissures. The underlying idea of the developed lobe segmentation scheme is to use piecewise planes to approximate the detected fissures. After a rotation and a global smoothing, a number of small planes were fitted using local fissures points. The local surfaces are finally combined for lobe segmentation using a quadratic B-spline weighting strategy to assure that the segmentation is smooth. The performance of the developed scheme was assessed by comparing with a manually created reference standard on a dataset of 30 lung CT examinations. These examinations covered a number of lung diseases and were selected from a large chronic obstructive pulmonary disease (COPD) dataset. The results indicate that our scheme of lobe segmentation is efficient and accurate against incomplete fissures.

  1. Immunohistochemical detection of somatostatin sst2a receptors in the lymphatic, smooth muscular, and peripheral nervous systems of the human gastrointestinal tract: facts and artifacts.

    PubMed

    Reubi, J C; Laissue, J A; Waser, B; Steffen, D L; Hipkin, R W; Schonbrunn, A

    1999-08-01

    The cellular distribution of the somatostatin sst2A receptor protein was investigated in the lymphatic, smooth muscular, and nervous components of the human gastrointestinal tract using subtype-specific antibody R2-88 for immunohistochemical staining of cryostat and formalin-fixed, paraffin-embedded tissue sections. Germinal centers of intestinal lymphatic follicles were immunostained, exhibiting a predominantly plasma membrane localization of the receptor. Similarly, nerve fibers and cells in the submucosal and myenteric plexus were stained for sst2A. Antibody preabsorption with 100 nmol/L antigen peptide abolished staining in all of these tissues, and immunohistochemical staining correlated with the labeling observed after receptor autoradiography using the sst2-preferring radioligand 125I-[Tyr3]octreotide. Cytoplasmic immunostaining was detected in gastrointestinal smooth muscle cells and was inhibited by antibody pre-absorption with antigen peptide. However, 125I-[Tyr3]octreotide autoradiography was negative, and Western blots showed no band at the usual 70-90 kDa location for sst2A. Instead, a band was observed at 205 kDa. This band comigrated with the rabbit myosin standard, which was also stained with R2-88, although antibody sensitivity for myosin was less than 0.002% of that for the sst2A receptor. Rigorous computer-based sequence analysis demonstrated the peptide sequence chosen for antibody production was unique. Moreover, standard sequence alignment protocols were unable to identify the sequences in myosin responsible for the observed reactivity with the R2-88 antiserum. The observed cross-reactivity emphasizes the need for extensive controls to prove the specificity of immunostaining for such low abundance proteins as receptors even when the peptide sequence chosen for antibody production is unique. This study demonstrates for the first time the presence of specific sst2A receptor protein by immunohistochemistry in the human gastrointestinal lymphatic

  2. Novel regulatory mechanism in human urinary bladder: central role of transient receptor potential melastatin 4 channels in detrusor smooth muscle function.

    PubMed

    Hristov, Kiril L; Smith, Amy C; Parajuli, Shankar P; Malysz, John; Rovner, Eric S; Petkov, Georgi V

    2016-04-01

    Transient receptor potential melastatin 4 (TRPM4) channels are Ca(2+)-activated nonselective cation channels that have been recently identified as regulators of detrusor smooth muscle (DSM) function in rodents. However, their expression and function in human DSM remain unexplored. We provide insights into the functional role of TRPM4 channels in human DSM under physiological conditions. We used a multidisciplinary experimental approach, including RT-PCR, Western blotting, immunohistochemistry and immunocytochemistry, patch-clamp electrophysiology, and functional studies of DSM contractility. DSM samples were obtained from patients without preoperative overactive bladder symptoms. RT-PCR detected mRNA transcripts for TRPM4 channels in human DSM whole tissue and freshly isolated single cells. Western blotting and immunohistochemistry with confocal microscopy revealed TRPM4 protein expression in human DSM. Immunocytochemistry further detected TRPM4 protein expression in DSM single cells. Patch-clamp experiments showed that 9-phenanthrol, a selective TRPM4 channel inhibitor, significantly decreased the transient inward cation currents and voltage step-induced whole cell currents in freshly isolated human DSM cells. In current-clamp mode, 9-phenanthrol hyperpolarized the human DSM cell membrane potential. Furthermore, 9-phenanthrol attenuated the spontaneous phasic, carbachol-induced and nerve-evoked contractions in human DSM isolated strips. Significant species-related differences in TRPM4 channel activity between human, rat, and guinea pig DSM were revealed, suggesting a more prominent physiological role for the TRPM4 channel in the regulation of DSM function in humans than in rodents. In conclusion, TRPM4 channels regulate human DSM excitability and contractility and are critical determinants of human urinary bladder function. Thus, TRPM4 channels could represent promising novel targets for the pharmacological or genetic control of overactive bladder.

  3. Transcriptional repression of Caveolin-1 (CAV1) gene expression by GATA-6 in bladder smooth muscle hypertrophy in mice and human beings.

    PubMed

    Boopathi, Ettickan; Gomes, Cristiano Mendes; Goldfarb, Robert; John, Mary; Srinivasan, Vittala Gopal; Alanzi, Jaber; Malkowicz, S Bruce; Kathuria, Hasmeena; Zderic, Stephen A; Wein, Alan J; Chacko, Samuel

    2011-05-01

    Hypertrophy occurs in urinary bladder wall smooth muscle (BSM) in men with partial bladder outlet obstruction (PBOO) caused by benign prostatic hyperplasia (BPH) and in animal models of PBOO. Hypertrophied BSM from the rabbit model exhibits down-regulation of caveolin-1, a structural and functional protein of caveolae that function as signaling platforms to mediate interaction between receptor proteins and adaptor and effector molecules to regulate signal generation, amplification, and diversification. Caveolin-1 expression is diminished in PBOO-induced BSM hypertrophy in mice and in men with BPH. The proximal promoter of the human and mouse caveolin-1 (CAV1) gene was characterized, and it was observed that the transcription factor GATA-6 binds this promoter, causing reduced expression of caveolin-1. Furthermore, caveolin-1 expression levels inversely correlate with the abundance of GATA-6 in BSM hypertrophy in mice and human beings. Silencing of GATA6 gene expression up-regulates caveolin-1 expression, whereas overexpression of GATA-6 protein sustains the transcriptional repression of caveolin-1 in bladder smooth muscle cells. Together, these data suggest that GATA-6 acts as a transcriptional repressor of CAV1 gene expression in PBOO-induced BSM hypertrophy in men and mice. GATA-6-induced transcriptional repression represents a new regulatory mechanism of CAV1 gene expression in pathologic BSM, and may serve as a target for new therapy for BPH-induced bladder dysfunction in aging men.

  4. Rhynchophylline-induced vasodilation in human mesenteric artery is mainly due to blockage of L-type calcium channels in vascular smooth muscle cells.

    PubMed

    Li, Peng-Yun; Zeng, Xiao-Rong; Cheng, Jun; Wen, Jing; Inoue, Isao; Yang, Yan

    2013-11-01

    Rhynchophylline (Rhy) is a pharmacologically active substance isolated from Uncaria rhynchophylla which has been used to treat cardiovascular diseases and has drawn considerable attention in recent years for its antihypertensive activities. We investigated the actions of Rhy on endothelium-denuded human mesenteric artery by tension measurement and its actions on high conductance Ca(2+)-activated K(+) channels (BKCa) currents and calcium currents (ICa) in freshly isolated smooth muscle cells using perforated patch clamp technique. Intracellular Ca(2+) level was measured in Fura-2-loaded cells. Rhy inhibited both the KCl and BayK-evoked mesenteric artery constrictions in a dose-dependent manner. K(+) channel blockers (TEA, glibenclamide, IbTX, and 4-AP) did not affect the vasorelaxing effect of Rhy. Rhy inhibited L-type voltage-gated Ca(2+) current (ICa,L) but had no significant effect on macroscopic BKCa current. Rhy preincubation markedly reduced the elevation of [Ca(2+)]i level induced by KCl depolarization. Caffeine-stimulated [Ca(2+)]i elevation was also decreased to some extent by pretreatment with Rhy for 20 min. Our results show that Rhy relaxes smooth muscles of human mesenteric resistance arteries, mainly due to inhibition of Ca(2+) influx by blockage of L-type Ca(2+) channels and thereby the decrease in [Ca(2+)]i. PMID:23812676

  5. Preferential metabolism of N-nitrosodiethylamine by two cell lines derived from human pulmonary adenocarcinomas

    SciTech Connect

    Falzon, M.; McMahon, J.B.; Gazdar, A.F.; Schuller, H.M.

    1986-01-01

    Diethylnitrosamine (DEN), in common with other nitrosamines, is a carcinogenic agent which produces tumors in a wide variety of tissues in experimental animals. The pulmonary Clara cell is a major target of N-nitrosamine-induced carcinogenesis in hamsters and rats. DEN is believed to require metabolic activation to elicit its carcinogenic effects. The metabolism of (/sup 14/C)DEN was studied in two cell lines derived from human lung adenocarcinomas and two cell lines derived from human small cell lung cancers by monitoring /sup 14/CO/sub 2/ production and covalent binding of radiolabel from (/sup 14/C)DEN to the cell protein and DNA fractions. (/sup 14/C)DEN was metabolized by adenocarcinoma-derived NCI-H322 (with Clara cell features) and NCI-H358 (with features of alveolar type II cells) but not by NCI-H69 and NCI-H128 (derived from small cell carcinoma). Metabolism was markedly inhibited by heat denaturation of the cell protein. (/sup 14/C)DEN metabolism by NCI-H322 was greatly decreased when the incubation was carried out under anaerobic conditions and in the presence of a carbon monoxide enriched atmosphere. These results suggested the involvement of the cytochrome P-450-dependent monooxygenase enzyme system. Metabolism by NCI-H358 was also decreased in the absence of oxygen or presence of carbon monoxide although the effects were relatively small compared with the results with NCI-H322. On the other hand, aspirin or indomethacin, which are inhibitors of the fatty acid cyclooxygenase component of prostaglandin endoperoxide synthetase, preferentially inhibited (/sup 14/C)DEN metabolism by NIC-H358. There were little or no effects of these inhibitors on the metabolism of DEN in NCI-H322. The data suggest that DEN metabolism in different lung cell types may be carried out by different enzyme systems which in turn may contribute to the selective effect of DEN in the lung.

  6. Upregulation of a disintegrin and metalloproteinase-33 by VEGF in human airway smooth muscle cells: Implications for asthma

    PubMed Central

    Pei, Qing-Mei; Jiang, Ping; Yang, Min; Qian, Xue-Jiao; Liu, Jiang-Bo; Zheng, Hong; Zhao, Li-Hong; Kim, Sung-Ho

    2016-01-01

    ABSTRACT Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodeling. Features of airway remodeling include increased airway smooth muscle (ASM) mass. A disintegrin and metalloproteinase (ADAM)–33 has been identified as playing a role in the pathophysiology of asthma. ADAM-33 is expressed in ASM cells and is suggested to play a role in the function of these cells. However, the regulation of ADAM-33 is not fully understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodeling in asthmatics. Although VEGF was initially thought of as an endothelial-specific growth factor, recent reports have found that VEGF can promote proliferation of other cell types, including ASM cells. To investigate the precise mechanism of VEGF's effect on ASM cell proliferation, we tested the expression of ADAM-33, phospho-extracellularsignal-regulated kinase 1/2 (ERK1/2), and phospho-Akt in VEGF-stimulated ASM cells. We found that VEGF up-regulates ADAM-33 mRNA and protein levels in a dose- and time-dependent manner as well as phosphorylation of ERK1/2 and Akt. We also found that VEGF-induced ASM cell proliferation is inhibited by both ADAM-33 knockdown and a selective VEGF receptor 2 (VEGFR2) inhibitor (SU1498). Furthermore, VEGF-induced ADAM-33 expression and ASM cell proliferation were suppressed by inhibiting ERK1/2 activity, but not by inhibiting Akt activity. Collectively, our findings suggest that VEGF enhances ADAM-33 expression and ASM cell proliferation by activating the VEGFR2/ERK1/2 signaling pathway, which might be involved in the pathogenesis of airway remodeling. Further elucidation of the mechanisms underlying these observations might help develop therapeutic strategies for airway diseases associated with smooth muscle hyperplasia such as asthma. PMID:27579513

  7. Mesenchymal stromal cells reverse hypoxia-mediated suppression of α-smooth muscle actin expression in human dermal fibroblasts

    SciTech Connect

    Faulknor, Renea A.; Olekson, Melissa A.; Nativ, Nir I.; Ghodbane, Mehdi; Gray, Andrea J.; Berthiaume, François

    2015-02-27

    During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived soluble factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. (SB431542), an inhibitor of transforming growth factor-β{sub 1} (TGF-β{sub 1})-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-β{sub 1} at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-β{sub 1} is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia. - Highlights: • Fibroblasts were cultured in collagen lattices (FPCLs) as model contracting wounds. • Hypoxia decreased FPCL contraction and fibroblast α-smooth muscle actin expression. • Mesenchymal stromal cells (MSCs) restored function of hypoxic fibroblasts. • MSCs regulate fibroblast function mainly via secreted transforming growth factor-β{sub 1}.

  8. Blockade of Ets-1 attenuates epidermal growth factor-dependent collagen loss in human carotid plaque smooth muscle cells.

    PubMed

    Rao, Velidi H; Rai, Vikrant; Stoupa, Samantha; Agrawal, Devendra K

    2015-09-15

    Although degradation of extracellular matrix by matrix metalloproteinases (MMPs) is thought to be involved in symptomatic (S) carotid plaques in atherosclerosis, the mechanisms of MMP expression are poorly understood. Here, we demonstrate that collagen loss in vascular smooth vessel cells (VSMCs) isolated from S plaques was induced by epidermal growth factor (EGF) through the activation of p38-MAPK and JNK-MAPK pathways. Inhibitors of p38-MAPK and JNK-MAPK signaling pathways downregulated the expression of MMP-1 and MMP-9. In addition, we examined whether v-ets erythroblastosis virus E26 oncogene homologue 1 (Ets-1), an important regulator of different genes, is involved in destabilizing S plaques in patients with carotid stenosis. We demonstrate that EGF induces Ets-1 expression and decreases interstitial and basement membrane collagen in vascular smooth muscle cells (VSMCs) from patients with carotid stenosis. Increased expression of MMP-1 and -9 and decreased collagen mRNA transcripts were also found in Ets-1-overexpressed VSMCs. Transfection with both dominant-negative form of Ets-1 and small interfering RNA blocked EGF-induced MMP-1 and -9 expressions and increased the mRNA transcripts for collagen I (α1) and collagen III (α1) in S compared with asymptomatic (AS) carotid plaques. Inhibitors of p38-MAPK (SB202190) and JNK-MAPK (SP600125) signaling pathways decreased the expression of Ets-1, MMP-1, and MMP-9 and increased collagen type I and III expression in EGF-treated VSMCs. This study provides a mechanistic insight into the role of Ets-1 in the plaque destabilization in patients with carotid stenosis involving p38-MAPK and JNK signaling pathways.

  9. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma.

    PubMed

    Pei, Qing-Mei; Jiang, Ping; Yang, Min; Qian, Xue-Jiao; Liu, Jiang-Bo; Kim, Sung-Ho

    2016-10-01

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferation and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. PMID:27587274

  10. Upregulation of a disintegrin and metalloproteinase-33 by VEGF in human airway smooth muscle cells: Implications for asthma.

    PubMed

    Pei, Qing-Mei; Jiang, Ping; Yang, Min; Qian, Xue-Jiao; Liu, Jiang-Bo; Zheng, Hong; Zhao, Li-Hong; Kim, Sung-Ho

    2016-10-17

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodeling. Features of airway remodeling include increased airway smooth muscle (ASM) mass. A disintegrin and metalloproteinase (ADAM)-33 has been identified as playing a role in the pathophysiology of asthma. ADAM-33 is expressed in ASM cells and is suggested to play a role in the function of these cells. However, the regulation of ADAM-33 is not fully understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodeling in asthmatics. Although VEGF was initially thought of as an endothelial-specific growth factor, recent reports have found that VEGF can promote proliferation of other cell types, including ASM cells. To investigate the precise mechanism of VEGF's effect on ASM cell proliferation, we tested the expression of ADAM-33, phospho-extracellularsignal-regulated kinase 1/2 (ERK1/2), and phospho-Akt in VEGF-stimulated ASM cells. We found that VEGF up-regulates ADAM-33 mRNA and protein levels in a dose- and time-dependent manner as well as phosphorylation of ERK1/2 and Akt. We also found that VEGF-induced ASM cell proliferation is inhibited by both ADAM-33 knockdown and a selective VEGF receptor 2 (VEGFR2) inhibitor (SU1498). Furthermore, VEGF-induced ADAM-33 expression and ASM cell proliferation were suppressed by inhibiting ERK1/2 activity, but not by inhibiting Akt activity. Collectively, our findings suggest that VEGF enhances ADAM-33 expression and ASM cell proliferation by activating the VEGFR2/ERK1/2 signaling pathway, which might be involved in the pathogenesis of airway remodeling. Further elucidation of the mechanisms underlying these observations might help develop therapeutic strategies for airway diseases associated with smooth muscle hyperplasia such as asthma. PMID:27579513

  11. Processing of targets in smooth or apparent motion along the vertical in the human brain: an fMRI study.

    PubMed

    Maffei, Vincenzo; Macaluso, Emiliano; Indovina, Iole; Orban, Guy; Lacquaniti, Francesco

    2010-01-01

    Neural substrates for processing constant speed visual motion have been extensively studied. Less is known about the brain activity patterns when the target speed changes continuously, for instance under the influence of gravity. Using functional MRI (fMRI), here we compared brain responses to accelerating/decelerating targets with the responses to constant speed targets. The target could move along the vertical under gravity (1g), under reversed gravity (-1g), or at constant speed (0g). In the first experiment, subjects observed targets moving in smooth motion and responded to a GO signal delivered at a random time after target arrival. As expected, we found that the timing of the motor responses did not depend significantly on the specific motion law. Therefore brain activity in the contrast between different motion laws was not related to motor timing responses. Average BOLD signals were significantly greater for 1g targets than either 0g or -1g targets in a distributed network including bilateral insulae, left lingual gyrus, and brain stem. Moreover, in these regions, the mean activity decreased monotonically from 1g to 0g and to -1g. In the second experiment, subjects intercepted 1g, 0g, and -1g targets either in smooth motion (RM) or in long-range apparent motion (LAM). We found that the sites in the right insula and left lingual gyrus, which were selectively engaged by 1g targets in the first experiment, were also significantly more active during 1g trials than during -1g trials both in RM and LAM. The activity in 0g trials was again intermediate between that in 1g trials and that in -1g trials. Therefore in these regions the global activity modulation with the law of vertical motion appears to hold for both RM and LAM. Instead, a region in the inferior parietal lobule showed a preference for visual gravitational motion only in LAM but not RM. PMID:19889846

  12. Lovastatin stimulates human vascular smooth muscle cell expression of bone morphogenetic protein-2, a potent inhibitor of low-density lipoprotein-stimulated cell growth.

    PubMed

    Emmanuele, Luca; Ortmann, Jana; Doerflinger, Tim; Traupe, Tobias; Barton, Matthias

    2003-02-28

    Bone morphogenetic proteins (BMPs) stimulate ectopic bone formation in skeletal muscle. Here we show that human vascular smooth muscle cells (VSMC) abundantly express mRNA encoding for BMP receptor type II, BMP-2, and BMP-7 proteins. Treatment with the 3-hydroxy-3-methylglutaryl coenzyme A inhibitor lovastatin (34 microM) increased BMP-2 gene transcription >14-fold as measured by real-time PCR analysis (P<0.05 vs. solvent control). Moreover, VSMC proliferation stimulated with native low-density lipoprotein (100 microg of protein/mL) was prevented by either human recombinant BMP-2 or BMP-7 at concentrations of 100 ng/mL (P<0.05). Both BMPs also inhibited basal cell proliferation (P<0.05). Induction of BMPs and subsequent inhibition of VSMC growth and/or induction of vascular bone formation could contribute to the mechanisms by which statins increase plaque stability in patients with coronary atherosclerosis. PMID:12593849

  13. Transforming growth factor-β evokes Ca2+ waves and enhances gene expression in human pulmonary fibroblasts.

    PubMed

    Mukherjee, Subhendu; Kolb, Martin R J; Duan, Fuqin; Janssen, Luke J

    2012-06-01

    Fibroblasts maintain the structural framework of animal tissue by synthesizing extracellular matrix molecules. Chronic lung diseases are characterized in part by changes in fibroblast numbers, properties, and more. Fibroblasts respond to a variety of growth factors, cytokines, and proinflammatory mediators. However, the signaling mechanisms behind these responses have not been fully explored. We sought to determine the role of Ca(2+) waves in transforming growth factor-β (TGF-β)-mediated gene expression in human pulmonary fibroblasts. Primary human pulmonary fibroblasts were cultured and treated with TGF-β and different blockers under various conditions. Cells were then loaded with the Ca(2+) indicator dye Oregon green, and Ca(2+) waves were monitored by confocal [Ca(2+)](i) fluorimetry. Real-time PCR was used to probe gene expression. TGF-β (1 nM) evoked recurring Ca(2+) waves. A 30-minute pretreatment of SD 208, a TGF-β receptor-1 kinase inhibitor, prevented Ca(2+) waves from being evoked by TGF-β. The removal of external Ca(2+) completely occluded TGF-β-evoked Ca(2+) waves. Cyclopiazonic acid, an inhibitor of the internal Ca(2+) pump, evoked a relatively slowly developing rise in Ca(2+) waves compared with the rapid changes evoked by TGF-β, but the baseline fluorescence was increased. Ryanodine (10(-5) M) also blocked TGF-β-mediated Ca(2+) wave activity. Real-time PCR showed that TGF-β rapidly and dramatically increased the gene expression of collagen A1 and fibronectin. This increase was blocked by ryanodine treatment and cyclopiazonic acid. We conclude that, in human pulmonary fibroblasts, TGF-β acts on ryanodine-sensitive channels, leading to Ca(2+) wave activity, which in turn amplifies extracellular matrix gene expression.

  14. Physiological properties of human diaphragm muscle fibres and the effect of chronic obstructive pulmonary disease.

    PubMed

    Stubbings, Alison K; Moore, Alastair J; Dusmet, Michael; Goldstraw, Peter; West, Timothy G; Polkey, Michael I; Ferenczi, Michael A

    2008-05-15

    The contractile and actomyosin ATPase properties of single fibres were examined in human diaphragm muscle obtained from patients with and without chronic obstructive pulmonary disease (COPD). Costal diaphragm biopsies were taken from five patients without evidence of COPD and from 11 age-matched individuals with varying degrees of the disease. Our aim was to establish whether changes in contractile properties of COPD diaphragm could be fully explained by the previously documented shift towards a greater proportion of type I myosin heavy chain isoform in COPD. The relative proportion of type I diaphragm fibres from non-COPD and COPD patients was measured by gel electrophoresis, and was negatively correlated with FEV(1) over the full range of values investigated. There was also significant atrophy of the type I fibre population in COPD diaphragms. Isometric tension was similar among the fibre types and between the COPD and non-COPD patients. The intrinsic energetic properties of diaphragm fibres were examined by monitoring the time-resolved actomyosin ATPase activity in COPD and non-COPD fibres that produced similar isometric forces. The isometric ATPase rate in COPD fibres was reduced to 50% of the rate in non-COPD fibres; hence, the cost of isometric contraction in type I and type IIA COPD fibres was reduced to between one-third and one-half of the tension cost calculated for non-COPD fibres. The rate of force development in type I COPD fibres was reduced to 50% of the rate seen in non-COPD type-I fibres. No difference in the rate of ATP consumption between COPD and non-COPD fibres was evident during isovelocity shortening. These data extend previous findings showing that aspects of breathing mechanics during progressive COPD are associated with remodelling of the diaphragm fibre-type distribution; on top of the increase in type I fibres there are fibre-specific reductions in force development rate (type I fibres) and ATPase rate that are consistent with the

  15. Protective roles of pulmonary rehabilitation mixture in experimental pulmonary fibrosis in vitro and in vivo.

    PubMed

    Zhang, L; Ji, Y X; Jiang, W L; Lv, C J

    2015-06-01

    Abnormal high mobility group protein B1 (HMGB1) activation is involved in the pathogenesis of pulmonary fibrosis. Pulmonary rehabilitation mixture (PRM), which combines extracts from eight traditional Chinese medicines, has very good lung protection in clinical use. However, it is not known if PRM has anti-fibrotic activity. In this study, we investigated the effects of PRM on transforming growth factor-β1 (TGF-β1)-mediated and bleomycin (BLM)-induced pulmonary fibrosis in vitro and in vivo. The effects of PRM on TGF-β1-mediated epithelial-mesenchymal transition (EMT) in A549 cells, on the proliferation of human lung fibroblasts (HLF-1) in vitro, and on BLM-induced pulmonary fibrosis in vivo were investigated. PRM treatment resulted in a reduction of EMT in A549 cells that was associated with attenuating an increase of vimentin and a decrease of E-cadherin. PRM inhibited the proliferation of HLF-1 at an IC50 of 0.51 µg/mL. PRM ameliorated BLM-induced pulmonary fibrosis in rats, with reduction of histopathological scores and collagen deposition, and a decrease in α-smooth muscle actin (α-SMA) and HMGB1 expression. An increase in receptor for advanced glycation end-product (RAGE) expression was found in BLM-instilled lungs. PRM significantly decreased EMT and prevented pulmonary fibrosis through decreasing HMGB1 and regulating RAGE in vitro and in vivo. PRM inhibited TGF-β1-induced EMT via decreased HMGB1 and vimentin and increased RAGE and E-cadherin levels. In summary, PRM prevented experimental pulmonary fibrosis by modulating the HMGB1/RAGE pathway.

  16. Mesenchymal stem cells suppress CaN/NFAT expression in the pulmonary arteries of rats with pulmonary hypertension

    PubMed Central

    LIU, JUNFENG; HAN, ZHIBO; HAN, ZHONGCHAO; HE, ZHIXU

    2015-01-01

    Inflammation and hyperproliferation of pulmonary artery smooth muscle cells (PASMCs) is considered the primary pathological feature of pulmonary hypertension (PH). The present study determined that mesenchymal stem cells (MSCs) suppress the expression of calcineurin (CaN) and nuclear factor of activated T-cells (NFAT) in the pulmonary arteries of rats, and this may exert a therapeutic effect on PH. The potential therapeutic effects of MSCs on PH were assessed via the transplantation of human umbilical cord-derived MSCs, which were cultured in serum-free medium, into a monocrotaline (MCT)-induced PH rat model. Subsequently, the expression levels of tumor necrosis factor (TNF)-α in lung tissue and plasma, and of CaN and NFATc2 in pulmonary arteries were assessed. In the rat model of MCT-induced PH, investigated in the present study, TNF-α expression levels were detected in the lung tissue, and the levels of TNF-α in the plasma were increased. Furthermore, in addition to hemodynamic changes and the evident medial hypertrophy of the pulmonary muscular arterioles, CaN and NFATc2 expression levels were significantly upregulated in the pulmonary arteries. In the present study, the transplantation of MSCs, cultured in serum-free medium, decreased the levels of TNF-α in the lung tissue and plasma of rats, and downregulated CaN and NFATc2 expression in the pulmonary arteries. Furthermore, hemodynamic abnormalities and medial hypertrophy of the pulmonary muscular arterioles were notably improved. Therefore, the results of the present study may suggest that the administration of MSCs in PH may suppress the production of TNF-α, and downregulate the expression of CaN and NFATc2 in pulmonary arteries, which may provide an effective treatment for PH by suppressing the pathological proliferation of PASMCs. PMID:26640533

  17. The Therapeutic Effects of Human Mesenchymal Stem Cells Primed with Sphingosine-1 Phosphate on Pulmonary Artery Hypertension

    PubMed Central

    Kang, Hyunsook; Kim, Kang-Hyun; Lim, Jisun; Kim, You-Sun; Heo, Jinbeom; Choi, Jongjin; Jeong, Jaeho; Kim, YongHwan; Kim, Seong Who; Oh, Yeon-Mok; Choo, Myung-Soo; Son, Jaekyoung; Kim, Su Jung; Yoo, Hyun Ju; Oh, Wonil; Choi, Soo Jin

    2015-01-01

    Stem cell (SC) therapy has become a potential treatment modality for pulmonary artery hypertension (PAH), but the efficacy of human SC and priming effects have not yet been established. The mobilization and homing of hematopoietic stem cells (HSCs) are modulated by priming factors that include a bioactive lipid, sphingosine-1-phosphate (S1P), which stimulates CXCR4 receptor kinase signaling. Here, we show that priming human mesenchymal stem cells (MSCs) with S1P enhances their therapeutic efficacy in PAH. Human MSCs, similar to HSCs, showed stronger chemoattraction to S1P in transwell assays. Concomitantly, MSCs treated with 0.2 μM S1P showed increased phosphorylation of both MAPKp42/44 and AKT protein compared with nonprimed MSCs. Furthermore, S1P-primed MSCs potentiated colony forming unit-fibroblast, anti-inflammatory, and angiogenic activities of MSCs in culture. In a PAH animal model induced by subcutaneously injected monocrotaline, administration of human cord blood-derived MSCs (hCB-MSCs) or S1P-primed cells significantly attenuated the elevated right ventricular systolic pressure. Notably, S1P-primed CB-MSCs, but not unprimed hCB-MSCs, also elicited a significant reduction in the right ventricular weight ratio and pulmonary vascular wall thickness. S1P-primed MSCs enhanced the expression of several genes responsible for stem cell trafficking and angiogenesis, increasing the density of blood vessels in the damaged lungs. Thus, this study demonstrates that human MSCs have potential utility for the treatment of PAH, and that S1P priming increases the effects of SC therapy by enhancing cardiac and vascular remodeling. By optimizing this protocol in future studies, SC therapy might form a basis for clinical trials to treat human PAH. PMID:25761906

  18. Embryological outcomes in cycles with human oocytes containing large tubular smooth endoplasmic reticulum clusters after conventional in vitro fertilization.

    PubMed

    Itoi, Fumiaki; Asano, Yukiko; Shimizu, Masashi; Honnma, Hiroyuki; Murata, Yasutaka

    2016-01-01

    There have been no studies analyzing the effect of large aggregates of tubular smooth endoplasmic reticulum (aSERT) after conventional in vitro fertilization (cIVF). The aim of this study was to investigate whether aSERT can be identified after cIVF and the association between the embryological outcomes of oocytes in cycles with aSERT. This is a retrospective study examining embryological data from cIVF cycles showing the presence of aSERT in oocytes 5-6 h after cIVF. To evaluate embryo quality, cIVF cycles with at least one aSERT-metaphase II (MII) oocyte observed (cycles with aSERT) were compared to cycles with normal-MII oocytes (control cycles). Among the 4098 MII oocytes observed in 579 cycles, aSERT was detected in 100 MII oocytes in 51 cycles (8.8%). The fertilization rate, the rate of embryo development on day 3 and day 5-6 did not significantly differ between cycles with aSERT and control group. However, aSERT-MII oocytes had lower rates for both blastocysts and good quality blastocysts (p < 0.05). aSERT can be detected in the cytoplasm by removing the cumulus cell 5 h after cIVF. However, aSERT-MII oocytes do not affect other normal-MII oocytes in cycles with aSERT.

  19. Effect of lobe pumping on human albumin: development of a lobe pump simulator using smoothed particle hydrodynamics.

    PubMed

    Gomme, Peter T; Prakash, Mahesh; Hunt, Ben; Stokes, Nick; Cleary, Paul; Tatford, Owen C; Bertolini, Joseph

    2006-02-01

    Using SPH (smoothed particle hydrodynamics), the motion of a lobe pump under load was simulated in order to predict the level of shear stress experienced by a protein solution. By varying the gap size between the lobes and pump housing, variations in pump efficiency and shear stress were determined. The simulations indicated that pump shear was dependent on gap size, with shear stress levels (0-40 Pa) correlating with those estimated in previous albumin-pumping studies. As gap size increased, the number of fluid particles experiencing low shear (<10 Pa) increased, whereas those experiencing high shear (>20 Pa) showed a decreasing trend. The pump efficiency, however, decreased with gap size, requiring more lobe revolutions to pass a unit volume. Taken together, these observations indicate that lobe pumps operated with increased gaps between the rotors and the housing result in larger number of particles within the fluid experiencing shear stresses. Moreover, the simulations indicate that it is best to use larger lobe pumps operated at high efficiency to transfer protein-containing solutions. PMID:16246177

  20. Wogonin suppresses TNF-{alpha}-induced MMP-9 expression by blocking the NF-{kappa}B activation via MAPK signaling pathways in human aortic smooth muscle cells

    SciTech Connect

    Lee, Syng-Ook; Jeong, Yun-Jeong; Yu, Mi Hee; Lee, Ji-Won; Hwangbo, Mi Hyang; Kim, Cheorl-Ho; Lee, In-Seon . E-mail: inseon@kmu.ac.kr

    2006-12-08

    Matrix metalloproteinase-9 (MMP-9) plays a major role in the pathogenesis of atherosclerosis and restenosis by regulating both migration and proliferation of vascular smooth muscle cells (VSMC) after an arterial injury. In this study, we examined the inhibitory effect of three major flavonoids in Scutellariae Radix, baicalin, baicalein, and wogonin, on TNF-{alpha}-induced MMP-9 expression in human aortic smooth muscle cells (HASMC). Wogonin, but not baicalin and baicalein, significantly and selectively suppressed TNF-{alpha}-induced MMP-9 expression in HASMC. Reporter gene, electrophoretic mobility shift, and Western blotting assays showed that wogonin inhibits MMP-9 gene transcriptional activity by blocking the activation of NF-{kappa}B via MAPK signaling pathways. Moreover, the Matrigel migration assay showed that wogonin reduced TNF-{alpha}-induced HASMC migration. These results suggest that wogonin effectively suppresses TNF-{alpha}-induced HASMC migration through the selective inhibition of MMP-9 expression and represents a potential agent for the prevention of vascular disorders related to the migration of VSMC.

  1. Stretching human mesenchymal stromal cells on stiffness-customized collagen type I generates a smooth muscle marker profile without growth factor addition

    PubMed Central

    Rothdiener, Miriam; Hegemann, Miriam; Uynuk-Ool, Tatiana; Walters, Brandan; Papugy, Piruntha; Nguyen, Phong; Claus, Valentin; Seeger, Tanja; Stoeckle, Ulrich; Boehme, Karen A.; Aicher, Wilhelm K.; Stegemann, Jan P.; Hart, Melanie L.; Kurz, Bodo; Klein, Gerd; Rolauffs, Bernd

    2016-01-01

    Using matrix elasticity and cyclic stretch have been investigated for inducing mesenchymal stromal cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage but not in combination. We hypothesized that combining lineage-specific stiffness with cyclic stretch would result in a significantly increased expression of SMC markers, compared to non-stretched controls. First, we generated dense collagen type I sheets by mechanically compressing collagen hydrogels. Atomic force microscopy revealed a nanoscale stiffness range known to support myogenic differentiation. Further characterization revealed viscoelasticity and stable biomechanical properties under cyclic stretch with >99% viable adherent human MSC. MSCs on collagen sheets demonstrated a significantly increased mRNA but not protein expression of SMC markers, compared to on culture flasks. However, cyclic stretch of MSCs on collagen sheets significantly increased both mRNA and protein expression of α-smooth muscle actin, transgelin, and calponin versus plastic and non-stretched sheets. Thus, lineage-specific stiffness and cyclic stretch can be applied together for inducing MSC differentiation towards SMCs without the addition of recombinant growth factors or other soluble factors. This represents a novel stimulation method for modulating the phenotype of MSCs towards SMCs that could easily be incorporated into currently available methodologies to obtain a more targeted control of MSC phenotype. PMID:27775041

  2. Pulmonary Thromboembolism: Evaluation By Intravenous Angiography

    NASA Astrophysics Data System (ADS)

    Pond, Gerald D.; Cook, Glenn C.; Woolfenden, James M.; Dodge, Russell R.

    1981-11-01

    Using perfusion lung scans as a guide, digital video subtraction angiography of the pulmonary arteries was performed in human subjects suspected of having pulmonary embolism. Dogs were employed as a pulmonary embolism model and both routine pulmonary angiography and intravenous pulmonary angiograms were obtained for comparison purposes. We have shown by our preliminary results that the technique is extremely promising as a safe and accurate alternative to routine pulmonary angiography in selected patients.

  3. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice

    SciTech Connect

    Korfhagen, T.R.; Glasser, S.W.; Wert, S.E.; Bruno, M.D.; Daugherty, C.C.; McNeish, J.D.; Stock, J.L.; Potter, S.S.; Whitsett, J.A. )

    1990-08-01

    Pulmonary surfactant is produced in late gestation by developing type II epithelial cells lining the alveolar epithelium of the lung. Lack of surfactant at birth is associated with respiratory distress syndrome in premature infants. Surfactant protein C (SP-C) is a highly hydrophobic peptide isolated from pulmonary tissue that enhances the biophysical activity of surfactant phospholipids. Like surfactant phospholipid, SP-C is produced by epithelial cells in the distal respiratory epithelium, and its expression increases during the latter part of gestation. A chimeric gene containing 3.6 kilobases of the promoter and 5{prime}-flanking sequences of the human SP-C gene was used to express diphtheria toxin A. The SP-C-diphtheria toxin A fusion gene was injected into fertilized mouse eggs to produce transgenic mice. Affected mice developed respiratory failure in the immediate postnatal period. Morphologic analysis of lungs from affected pups showed variable but severe cellular injury confined to pulmonary tissues. Ultrastructural changes consistent with cell death and injury were prominent in the distal respiratory epithelium. Proximal components of the tracheobronchial tree were not severely affected. Transgenic animals were of normal size at birth, and structural abnormalities were not detected in nonpulmonary tissues. Lung-specific diphtheria toxin A expression controlled by the human SP-C gene injured type II epithelial cells and caused extensive necrosis of the distal respiratory epithelium. The absence of type I epithelial cells in the most severely affected transgenic animals supports the concept that developing type II cells serve as precursors to type I epithelial cells.

  4. Angiotensin II increases matrix metalloproteinase 2 expression in human aortic smooth muscle cells via AT1R and ERK1/2

    PubMed Central

    Wang, Chunmao; Qian, Xiangyang; Sun, Xiaogang

    2015-01-01

    Increased levels of angiotensin II (Ang II) and activated matrix metalloproteinase 2 (MMP-2) produced by human aortic smooth muscle cells (human ASMCs) have recently been implicated in the pathogenesis of thoracic aortic aneurysm (TAA). Additionally, angiotensin II type 1 receptor (AT1R)-mediated extracellular signal-regulated kinase (ERK)1/2 activation contributes to TAA development in Marfan Syndrome. However, there is scant data regarding the relationship between Ang II and MMP-2 expression in human ASMCs. Therefore, we investigated the effect of Ang II on MMP-2 expression in human ASMCs and used Western blotting to identify the Ang II receptors and intracellular signaling pathways involved. Reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescence data demonstrated that Ang II receptors were expressed on human ASMCs. Additionally, Ang II increased the expression of Ang II type 2 receptor (AT2R) but not AT1R at both the transcriptional and translational levels. Furthermore, Western blotting showed that Ang II increased MMP-2 expression in human ASMCs in a dose- and time-dependent manner. This response was completely inhibited by the AT1R inhibitor candesartan but not by the AT2R blocker PD123319. In addition, Ang II–induced upregulation of MMP-2 was mediated by the activation of ERK1/2, whereas p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) had no effect on this process. In conclusion, these results indicate that Ang II can increase the expression of MMP-2 via AT1 receptor and ERK1/2 signaling pathways in human ASMCs and suggest that antagonists of AT1R and ERK1/2 may be useful for treating TAAs. PMID:25767191

  5. Changes in the structure and mechanical properties of pulmonary arteries of rats exposed to cigarette smoke.

    PubMed

    Liu, S Q; Fung, Y C

    1993-09-01

    The effect of cigarette smoke on the structure and mechanical properties of pulmonary arteries was studied in 2- and 3-month smoke-exposed rats. The animals were exposed to cigarette smoke in a smoke-generating system 10 times per day with one cigarette each time. The smoke density and the puffing duration and frequency of the system were regulated in accordance with reference values measured from human smokers. The volume fractions of the cells, including smooth muscle cells and fibroblasts, and extracellular matrix components, including collagen, elastin, and remainder (components not specified in this study), of the pulmonary arteries of approximately 450 microns in external diameter (at zero pressure) were determined in smoke-exposed and control rats by using an electron microscopic method. It was found that the volume fractions of the fibroblasts, the collagenous bundles, and the elastic laminae of the pulmonary arteries were increased significantly, whereas those of the smooth muscle cells and the remainder were decreased significantly in both the 2- and 3-month smoke-exposed rats in comparison with those of the corresponding control rats. The mechanical properties of the pulmonary arteries were determined based on the in vitro dimensional measurement of the vessels at various inflation pressures and zero-stress state. An increase in the stiffness of the pulmonary arteries was found in both the 2- and 3-month smoke-exposed rats. We conclude that cigarette smoke can induce structural and mechanical remodeling in the pulmonary arteries of rats. PMID:8368648

  6. Distribution of orientation of smooth muscle bundles does not change along human great and small varicose veins.

    PubMed

    Kochová, Petra; Witter, Kirsti; Tonar, Zbyněk

    2014-05-01

    Wall remodeling in varicose veins is associated with hypertrophy of subendothelial tissue, increase in inner diameter, wrinkling and invagination of the endothelial layer. Due to structural alterations of the wall, the smooth muscle cells (SMCs) change their original circular and longitudinal orientations. Our aim was to quantify the volume fraction of circularly, longitudinally and obliquely oriented SMCs within both the inner and outer half of the wall of 11 great saphenous varicose veins and five small saphenous varicose veins. Using stereological methods applied on cross-sections of the vessels regularly gained each 5 cm along the vessel we determined the wall thickness (846 ± 319 μm, mean ± standard deviation), the volume fraction of circular SMCs in the inner (0.19 ± 0.13) and outer (0.06 ± 0.06) layers, the volume fraction of longitudinal SMCs in the inner (0.06 ± 0.05) and outer (0.05 ± 0.04) layers, the volume fraction of oblique SMCs in the inner (0.15 ± 0.08) and outer (0.09 ± 0.08) layers, and the total volume fraction of SMCs in the inner (0.4 ± 0.1) and outer (0.21 ± 0.09) layers. The volume fraction of SMCs with circular and oblique but not with longitudinal orientation was greater in the inner layer compared to the outer layer. The SMC orientation distribution was uniform along the varicose saphenous veins. With increasing wall thickness, the volume fraction of longitudinal and oblique SMC bundles increased in both layers at the expansion of circular SMC bundles. The main differences in the orientation of the SMCs in the inner and outer wall layers should be taken into account when computational modeling of varicose saphenous veins is attempted.

  7. Changes in scalp potentials and spatial smoothing effects of inclusion of dura layer in human head models for EEG simulations

    PubMed Central

    Ramon, Ceon; Garguilo, Paolo; Fridgeirsson, Egill A.; Haueisen, Jens

    2014-01-01

    The dura layer which covers the brain is less conductive than the CSF (cerebrospinal fluid) and also more conductive than the skull bone. This could significantly influence the flow of volume currents from cortex to the scalp surface which will also change the magnitude and spatial profiles of scalp potentials. This was examined with a 3-D finite element method (FEM) model of an adult subject constructed from 192 segmented axial magnetic resonance (MR) slices with 256×256 pixel resolution. The voxel resolution was 1×1×1 mm. The model included the dura layer. In addition, other major tissues were also identified. The electrical conductivities of various tissues were obtained from the literature. The conductivities of dura and CSF were 0.001 S/m and 0.06 S/m, respectively. The electrical activity of the cortex was represented by 144,000 distributed dipolar sources with orientations normal to the local cortical surface. The dipolar intensity was in the range of 0.0–0.4 mA meter with a uniform random distribution. Scalp potentials were simulated for two head models with an adaptive finite element solver. One model had the dura layer and in the other model, dura layer was replaced with the CSF. Spatial contour plots of potentials on the cortical surface, dural surface and the scalp surface were made. With the inclusion of the dura layer, scalp potentials decrease by about 20%. The contours of gyri and sulci structures were visible in the spatial profiles of the cortical potentials which were smoothed out on the dural surface and were not visible on the scalp surface. These results suggest that dura layer should be included for an accurate modeling of scalp and cortical potentials. PMID:25140148

  8. MMP-1 and MMP-9 regulate epidermal growth factor-dependent collagen loss in human carotid plaque smooth muscle cells.

    PubMed

    Rao, Velidi H; Kansal, Vikash; Stoupa, Samantha; Agrawal, Devendra K

    2014-02-01

    Mechanisms underlying the rupture of atherosclerotic plaque, a crucial factor in the development of myocardial infarction and stroke, are not well defined. Here, we examined the role of epidermal growth factor (EGF)-mediated matrix metalloproteinases (MMP) on the stability of interstitial collagens in vascular smooth muscle cells (VSMCs) isolated from carotid endarterectomy tissues of symptomatic and asymptomatic patients with carotid stenosis. VSMCs isolated from the carotid plaques of both asymptomatic and symptomatic patients were treated with EGF. The MMP-9 activity was quantified by gelatin zymography and the analysis of mRNA transcripts and protein for MMP-9, MMP-1, EGFR and collagen types I, Col I(α1) and collagen type III, Col III(α1) were analyzed by qPCR and immunofluorescence, respectively. The effect of EGF treatment to increase MMP-9 activity and mRNA transcripts for MMP-9, MMP-1, and EGFR and to decrease mRNA transcripts for Col I(α1) and Col III(α1) was threefold to fourfold greater in VSMCs isolated from the carotid plaques of symptomatic than asymptomatic patients. Inhibitors of EGFR (AG1478) and a small molecule inhibitor of MMP-9 decreased the MMP9 expression and upregulated Col I(α1) and Col III(α1) in EGF-treated VSMCs of both groups. Additionally, the magnitude in decreased MMP-9 mRNA and increased Col I(α1) and Col III(α1) due to knockdown of MMP-9 gene with siRNA in EGF-treated VSMCs was significantly greater in the symptomatic group than the asymptomatic group. Thus, a selective blockade of both EGFR and MMP-9 may be a novel strategy and a promising target for stabilizing vulnerable plaques in patients with carotid stenosis.

  9. Intrapulmonary arteriovenous anastomoses in humans with chronic obstructive pulmonary disease: implications for cryptogenic stroke?

    PubMed

    Norris, H Cameron; Mangum, Tyler S; Kern, Julia P; Elliott, Jonathan E; Beasley, Kara M; Goodman, Randy D; Mladinov, Suzana; Barak, Otto F; Bakovic, Darija; Dujic, Zeljko; Lovering, Andrew T

    2016-08-01

    What is the central question of this study? Do individuals with chronic obstructive pulmonary disease have blood flow through intrapulmonary arteriovenous anastomoses at rest or during exercise? What is the main finding and its importance? Individuals with chronic obstructive pulmonary disease have a greater prevalence of blood flow through intrapulmonary arteriovenous anastomoses at rest than age-matched control subjects. Given that the intrapulmonary arteriovenous anastomoses are large enough to permit venous emboli to pass into the arterial circulation, patients with chronic obstructive pulmonary disease and an elevated risk of thrombus formation may be at risk of intrapulmonary arteriovenous anastomosis-facilitated embolic injury (e.g. stroke or transient ischaemic attack). The pulmonary capillaries prevent stroke by filtering venous emboli from the circulation. Intrapulmonary arteriovenous anastomoses are large-diameter (≥50 μm) vascular connections in the lung that may compromise the integrity of the pulmonary capillary filter and have recently been linked to cryptogenic stroke and transient ischaemic attack. Prothrombotic populations, such as individuals with chronic obstructive pulmonary disease (COPD), may be at increased risk of stroke and transient ischaemic attack facilitated by intrapulmonary arteriovenous anastomoses, but the prevalence and degree of blood flow through intrapulmonary arteriovenous anastomoses in this population has not been fully examined and compared with age-matched healthy control subjects. We used saline contrast echocardiography to assess blood flow through intrapulmonary arteriovenous anastomoses at rest (n = 29 COPD and 19 control subjects) and during exercise (n = 10 COPD and 10 control subjects) in subjects with COPD and age-matched healthy control subjects. Blood flow through intrapulmonary arteriovenous anastomoses was detected in 23% of subjects with COPD at rest and was significantly higher compared with age

  10. The Pesticide Metabolites Paraoxon and Malaoxon Induce Cellular Death by Different Mechanisms in Cultured Human Pulmonary Cells.

    PubMed

    Angelini, Daniel J; Moyer, Robert A; Cole, Stephanie; Willis, Kristen L; Oyler, Jonathan; Dorsey, Russell M; Salem, Harry

    2015-01-01

    Organophosphorus (OP) pesticides are known to induce pulmonary toxicity in both humans and experimental animals. To elucidate the mechanism of OP-induced cytotoxicity, we examined the effects of parathion and malathion and their respective metabolites, paraoxon and malaoxon, on primary cultured human large and small airway cells. Exposure to paraoxon and malaoxon produced a dose-dependent increase in cytotoxicity following a 24-hour exposure, while treatment with parathion or malathion produced no effects at clinically relevant concentrations. Exposure to paraoxon-induced caspase activation, but malaoxon failed to induce this response. Since caspases have a major role in the regulation of apoptosis and cell death, we evaluated OP-induced cell death in the presence of a caspase inhibitor. Pharmacological caspase inhibition protected against paraoxon-induced cell death but not malaoxon-induced cell death. These data suggest that caspase activation is a key signaling element in paraoxon-induced cell death, but not malaoxon-induced cellular death in the pulmonary epithelium. PMID:26173615

  11. Pulmonary atresia

    MedlinePlus

    ... disease - pulmonary atresia; Cyanotic heart disease - pulmonary atresia; Valve - disorder pulmonary atresia ... septum may also have a poorly developed tricuspid valve. They may also have an underdeveloped right ventricle ...

  12. Pulmonary Rehabilitation

    MedlinePlus

    ... Topics Bronchitis COPD Cystic Fibrosis Idiopathic Pulmonary Fibrosis Sarcoidosis Send a link to NHLBI to someone by ... people who have COPD (chronic obstructive pulmonary disease), sarcoidosis (sar-koy-DOE-sis), idiopathic pulmonary fibrosis , or ...

  13. Elevation of iron storage in humans attenuates the pulmonary vascular response to hypoxia.

    PubMed

    Bart, Nicole K; Curtis, M Kate; Cheng, Hung-Yuan; Hungerford, Sara L; McLaren, Ross; Petousi, Nayia; Dorrington, Keith L; Robbins, Peter A

    2016-08-01

    Sustained hypoxia over several hours induces a progressive rise in pulmonary artery systolic pressure (PASP). Administration of intravenous iron immediately prior to the hypoxia exposure abrogates this effect, suggesting that manipulation of iron stores may modify hypoxia-induced pulmonary hypertension. Iron (ferric carboxymaltose) administered intravenously has a plasma half-life of 7-12 h. Thus any therapeutic use of intravenous iron would require its effect on PASP to persist long after the iron-sugar complex has been cleared from the blood. To examine this, we studied PASP during sustained (6 h) hypoxia on 4 separate days (days 0, 1, 8, and 43) in 22 participants. On day 0, the rise in PASP with hypoxia was well matched between the iron and saline groups. On day 1, each participant received either 1 g of ferric carboxymaltose or saline in a double-blind manner. After administration of intravenous iron, the rise in PASP with hypoxia was attenuated by ∼50%, and this response remained suppressed on both days 8 and 43 (P < 0.001). Following administration of intravenous iron, values for ferritin concentration, transferrin saturation, and hepcidin concentration rose significantly (P < 0.001, P < 0.005, and P < 0.001, respectively), and values for transferrin concentration fell significantly (P < 0.001). These changes remained significant at day 43 We conclude that the attenuation of the pulmonary vascular response to hypoxia by elevation of iron stores persists long after the artificial iron-sugar complex has been eliminated from the blood. The persistence of this effect suggests that intravenous iron may be of benefit in some forms of pulmonary hypertension.

  14. Elevation of iron storage in humans attenuates the pulmonary vascular response to hypoxia.

    PubMed

    Bart, Nicole K; Curtis, M Kate; Cheng, Hung-Yuan; Hungerford, Sara L; McLaren, Ross; Petousi, Nayia; Dorrington, Keith L; Robbins, Peter A

    2016-08-01

    Sustained hypoxia over several hours induces a progressive rise in pulmonary artery systolic pressure (PASP). Administration of intravenous iron immediately prior to the hypoxia exposure abrogates this effect, suggesting that manipulation of iron stores may modify hypoxia-induced pulmonary hypertension. Iron (ferric carboxymaltose) administered intravenously has a plasma half-life of 7-12 h. Thus any therapeutic use of intravenous iron would require its effect on PASP to persist long after the iron-sugar complex has been cleared from the blood. To examine this, we studied PASP during sustained (6 h) hypoxia on 4 separate days (days 0, 1, 8, and 43) in 22 participants. On day 0, the rise in PASP with hypoxia was well matched between the iron and saline groups. On day 1, each participant received either 1 g of ferric carboxymaltose or saline in a double-blind manner. After administration of intravenous iron, the rise in PASP with hypoxia was attenuated by ∼50%, and this response remained suppressed on both days 8 and 43 (P < 0.001). Following administration of intravenous iron, values for ferritin concentration, transferrin saturation, and hepcidin concentration rose significantly (P < 0.001, P < 0.005, and P < 0.001, respectively), and values for transferrin concentration fell significantly (P < 0.001). These changes remained significant at day 43 We conclude that the attenuation of the pulmonary vascular response to hypoxia by elevation of iron stores persists long after the artificial iron-sugar complex has been eliminated from the blood. The persistence of this effect suggests that intravenous iron may be of benefit in some forms of pulmonary hypertension. PMID:27418684

  15. Prone positioning improves distribution of pulmonary perfusion: noninvasive magnetic resonance imaging study in healthy humans.

    PubMed

    Suzuki, Hisashi; Sato, Yukio; Shindo, Masashi; Yoshioka, Hiroshi; Mizutani, Taro; Onizuka, Masataka; Sakakibara, Yuzuru

    2008-03-01

    The purpose of this study was to evaluate the effects of prone positioning on pulmonary perfusion using flow-sensitive alternating inversion recovery (FAIR), a noninvasive magnetic resonance imaging technique that requires no contrast medium. Seven healthy volunteers were studied in the supine and prone positions under three respiratory conditions: normal breathing of room air, unassisted breathing of 45% O2, and controlled mechanical ventilation (CMV) with positive end-expiratory pressure. Signal intensities (SIs) were obtained from ventral, middle, and dorsal regions on sagittal lung images and dependent/nondependent SI ratios were calculated to evaluate pulmonary perfusion distribution. In the supine position, SIs increased significantly from the ventral to dorsal region under all three respiratory conditions and prone positioning inverted the perfusion distribution under all conditions. Right lung SI ratios were 2.34 +/- 0.29, 2.74 +/- 0.66, and 2.42 +/- 0.73 in the supine position and 1.68 +/- 0.48, 1.78 +/- 0.36, and 1.92 +/- 0.21 in prone for room air, 45% O2, and CMV, respectively. The difference between supine and prone positions was statistically significant. The left lung showed a similar pattern and the difference was significant only under CMV. No difference was observed between the different respiratory conditions in both lungs. This study demonstrated that the distribution of pulmonary perfusion was more uniform in prone than in the supine position.

  16. Functional link between muscarinic receptors and large-conductance Ca2+ -activated K+ channels in freshly isolated human detrusor smooth muscle cells.

    PubMed

    Parajuli, Shankar P; Hristov, Kiril L; Cheng, Qiuping; Malysz, John; Rovner, Eric S; Petkov, Georgi V

    2015-04-01

    Activation of muscarinic acetylcholine receptors (mAChRs) constitutes the primary mechanism for enhancing excitability and contractility of human detrusor smooth muscle (DSM). Since the large-conductance Ca(2+)-activated K(+) (KCa1.1) channels are key regulators of human DSM function, we investigated whether mAChR activation increases human DSM excitability by inhibiting KCa1.1 channels. We used the mAChR agonist, carbachol, to determine the changes in KCa1.1 channel activity upon mAChR activation in freshly isolated human DSM cells obtained from open bladder surgeries using the perforated whole cell and single KCa1.1 channel patch-clamp recordings. Human DSM cells were collected from 29 patients (23 males and 6 females, average age of 65.9 ± 1.5 years). Carbachol inhibited the amplitude and frequency of KCa1.1 channel-mediated spontaneous transient outward currents and spontaneous transient hyperpolarizations, which are triggered by the release of Ca(2+) from ryanodine receptors. Carbachol also caused membrane potential depolarization, which was not observed in the presence of iberiotoxin, a KCa1.1 channel inhibitor, indicating the critical role of the KCa1.1 channels. The potential direct carbachol effects on KCa1.1 channels were examined under conditions of removing the major cellular Ca(2+) sources for KCa1.1 channel activation with pharmacological inhibitors (thapsigargin, ryanodine, and nifedipine). In the presence of these inhibitors, carbachol did not affect the single KCa1.1 channel open probability and mean KCa1.1 channel conductance (cell-attached configuration) or depolarization-induced whole cell steady-state KCa1.1 currents. The data support the concept that mAChR activation triggers indirect functional KCa1.1 channel inhibition mediated by intracellular Ca(2+), thus increasing the excitability in human DSM cells.

  17. Multi-walled carbon nanotube length as a critical determinant of bioreactivity with primary human pulmonary alveolar cells

    PubMed Central

    Sweeney, Sinbad; Berhanu, Deborah; Misra, Superb K.; Thorley, Andrew J.; Valsami-Jones, Eugenia; Tetley, Teresa D.

    2015-01-01

    Multiwalled carbon nanotube (MWCNT) length is suggested to critically determine their pulmonary toxicity. This stems from in vitro and in vivo rodent studies and in vitro human studies using cell lines (typically cancerous). There is little data using primary human lung cells. We addressed this knowledge gap, using highly relevant, primary human alveolar cell models exposed to precisely synthesized and thoroughly characterized MWCNTs. In this work, transformed human alveolar type-I-like epithelial cells (TT1), primary human alveolar type-II epithelial cells (ATII) and alveolar macrophages (AM) were treated with increasing concentrations of MWCNTs before measuring cytotoxicity, inflammatory mediator release and MAP kinase signalling. Strikingly, we observed that short MWCNTs (~0.6 µm in length) induced significantly greater responses from the epithelial cells, whilst AM were particularly susceptible to long MWCNTs (~20 µm). These differences in the pattern of mediator release were associated with alternative profiles of JNK, p38 and ERK1/2 MAP kinase signal transduction within each cell type. This study, using highly relevant target human alveolar cells and well defined and characterized MWCNTs, shows marked cellular responses to the MWCNTs that vary according to the target cell type, as well as the aspect ratio of the MWCNT. PMID:25780270

  18. cDNA and deduced amino acid sequence of human pulmonary surfactant-associated proteolipid SPL(Phe)

    SciTech Connect

    Glasser, S.W.; Korfhagen, T.R.; Weaver, T.; Pilot-Matias, T.; Fox, J.L.; Whitsett, J.A.

    1987-06-01

    Hydrophobic surfactant-associated protein of M/sub r/ 6000-14,000 was isolated from either/ethanol or chloroform/methanol extracts of mammalian pulmonary surfactant. Automated Edman degradation in a gas-phase sequencer showed the major N-terminus of the human low molecular weight protein to be Phe-Pro-Ile-Pro-Leu-Pro-Try-Cys-Trp-Leu-Cys-Arg-Ala-Leu-. Because of the N-terminal phenylalanine, the surfactant protein was designated SPL(Phe). Antiserum generated against hydrophobic surfactant protein(s) from bovine pulmonary surfactant recognized protein of M/sub r/ 6000-14,000 in immunoblot analysis and was used to screen a lambdagt11 expression library constructed from adult human lung poly(A)/sup +/ RNA. This resulted in identification of a 1.4-kilobase cDNA clone that was shown to encode the N-terminus of the surfactant polypeptide SPL(Phe) (Phe-Pro-Ile-Pro-Leu-Pro-) within an open reading frame for a larger protein. Expression of a fused ..beta..-galactosidase-SPL (Phe) gene in Escherichia coli yielded an immunoreactive M/sub r/ 34,000 fusion peptide. Hybrid-arrested translation with the cDNA and immunoprecipitation of (/sup 35/S)methionine-labeled in vitro translation products of human poly(A)/sup +/ RNA with a surfactant polyclonal antibody resulted in identification of a M/sub r/ 40,000 precursor protein. Blot hybridization analysis of electrophoretically fractionated RNA from human lung detected a 2.0-kilobase RNA that was more abundant in adult lung than in fetal lung. These proteins, and specifically SPL(Phe), may therefore be useful for synthesis of replacement surfactants for treatment of hyaline membrane disease in newborn infants or of other surfactant-deficient states.

  19. Eradication of Human Hepatic and Pulmonary Melanoma Metastases in SCID Mice by Antibody--Interleukin 2 Fusion Proteins

    NASA Astrophysics Data System (ADS)

    Becker, Jurgen C.; Pancook, James D.; Gillies, Stephen D.; Mendelsohn, John; Reisfeld, Ralph A.

    1996-04-01

    Antibody--cytokine fusion proteins combine the unique targeting ability of antibodies with the multifunctional activity of cytokines. Here, we demonstrate the therapeutic efficacy of such constructs for the treatment of hepatic and pulmonary metastases of different melanoma cell lines. Two antibody--interleukin 2 (IL-2) fusion proteins, ch225-IL2 and ch14.18-IL2, constructed by fusion of a synthetic sequence coding for human IL-2 to the carboxyl end of the Cγ 1 gene of the corresponding antibodies, were tested for their therapeutic efficacy against xenografted human melanoma in vivo. Tumorspecific fusion proteins completely inhibited the growth of hepatic and pulmonary metastases in C.B-17 scid/scid mice previously reconstituted with human lymphokine-activated killer cells, whereas treatment with combinations of the corresponding antibodies plus recombinant IL-2 only reduced the tumor load. Even when treatment with fusion proteins was delayed up to 8 days after inoculation of tumor cells, it still resulted in complete eradication of micrometastases that were established at that time point. Selection of tumor cell lines expressing or lacking the targeted antigen of the administered fusion protein proved the specificity of the observed antitumor effect. Biodistribution analysis demonstrated that the tumorspecific fusion protein accumulated not only in subcutaneous tumors but also in lungs and livers affected with micrometastases. Survival times of animals treated with the fusion protein were more than doubled as compared to those treated with the combination of the corresponding antibody plus IL-2. Our data demonstrate that an immunotherapeutic approach using cytokines targeted by antibodies to tumor sites has potent effects against disseminated human melanoma.

  20. Smooth muscle cells in human atherosclerosis: proteomic profiling reveals differences in expression of Annexin A1 and mitochondrial proteins in carotid disease.

    PubMed

    Viiri, Leena E; Full, Louise E; Navin, Tina J; Begum, Shajna; Didangelos, Athanasios; Astola, Nagore; Berge, Rolf K; Seppälä, Ilkka; Shalhoub, Joseph; Franklin, Ian J; Perretti, Mauro; Lehtimäki, Terho; Davies, Alun H; Wait, Robin; Monaco, Claudia

    2013-01-01

    Smooth muscle cells (SMC) contribute to the development and stability of atherosclerotic lesions. The molecular mechanisms that mediate their properties are incompletely defined. We employed proteomics and in vitro functional assays to identify the unique characteristics of intimal SMC isolated from human carotid endarterectomy specimens and medial SMC from thoracic aortas and carotids. We verified our findings in the Tampere Vascular Study. Human atheroma-derived SMC exhibit decreased expression of mitochondrial proteins ATP Synthase subunit-beta and Aldehyde dehydrogenase 2, and decreased mitochondrial activity when compared to control SMC. Moreover, a comparison between plaque-derived SMC isolated from patients with or without recent acute cerebrovascular symptoms uncovered an increase in Annexin A1, an endogenous anti-inflammatory protein, in the asymptomatic group. The deletion of Annexin A1 or the blockade of its signaling in SMC resulted in increased cytokine production at baseline and after stimulation with the pro-inflammatory cytokine Tumor Necrosis Factor α. In summary, our proteomics and biochemical analysis revealed mitochondrial damage in human plaque-derived SMC as well as a role of Annexin A1 in reducing the production of pro-inflammatory mediators in SMC.

  1. Cigarette smoke exposure up-regulates endothelin receptor B in human pulmonary artery endothelial cells: molecular and functional consequences

    PubMed Central

    Milara, J; Ortiz, JL; Juan, G; Guijarro, R; Almudever, P; Martorell, M; Morcillo, EJ; Cortijo, J

    2010-01-01

    BACKGROUND AND PURPOSE Pulmonary arteries from smokers and chronic obstructive pulmonary disease patients show abnormal endothelium-dependent vascular reactivity. We studied the effect of cigarette smoke extract (CSE) on endothelin receptor B (ETB) expression in human pulmonary artery endothelial cells (HPAECs) and its role in endothelial dysfunction. EXPERIMENTAL APPROACH ETB receptor expression was measured by real time RT-PCR, Western blot and immunofluorescence. Cell contraction, intracellular Ca2+, F/G-actin, RhoA activity, myosin light chain phosphorylation, ET, NO, thromboxane (Tx)A2 and reactive oxygen species (ROS) were measured by traction microscopy, fluorescence microscopy, phalloidin fluorescence, colorimetric assay, Western blot, elisa and DCFDA fluorescence respectively. KEY RESULTS Cigarette smoke extract dose-dependently increased ETB receptor expression in HPAECs after 24 h incubation. CSE-induced ETB expression was attenuated by bosentan, the ETB receptor antagonist BQ788, the Rho kinase antagonist Y27632 and the antioxidant N-acetylcysteine. A monoclonal antibody to ET-1 prevented CSE-induced ETB receptor overexpression. Twenty-four hour exposure to ET-1 dose-dependently increased ETB receptor expression, mimicking the effect of CSE. CSE-induced ETB receptor overexpression caused greater cell contraction; increased intracellular Ca2+; increased F/G-actin and RhoA activity; increased myosin light chain phosphorylation; augmented TxA2 and ROS production; and decreased NO after acute ET-1 (10 nM). These effects were attenuated by bosentan, BQ788, Y27632 and N-acetylcysteine. CONCLUSIONS AND IMPLICATION Cigarette smoke extract induced ETB receptor overexpression by a feed forward mechanism mediated partly by ET release, promoting HPAEC dysfunction and attenuated by ETB receptor blockade, Rho kinase and ROS inhibition. These results provide support for the use of bosentan in CS-related endothelial dysfunction. PMID:20698855

  2. MicroRNA-31 controls phenotypic modulation of human vascular smooth muscle cells by regulating its target gene cellular repressor of E1A-stimulated genes

    SciTech Connect

    Wang, Jie; Yan, Cheng-Hui; Li, Yang; Xu, Kai; Tian, Xiao-Xiang; Peng, Cheng-Fei; Tao, Jie; Sun, Ming-Yu; Han, Ya-Ling

    2013-05-01

    Phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a critical role in the pathogenesis of a variety of proliferative vascular diseases. The cellular repressor of E1A-stimulated genes (CREG) has been shown to play an important role in phenotypic modulation of VSMCs. However, the mechanism regulating CREG upstream signaling remains unclear. MicroRNAs (miRNAs) have recently been found to play a critical role in cell differentiation via target-gene regulation. This study aimed to identify a miRNA that binds directly to CREG, and may thus be involved in CREG-mediated VSMC phenotypic modulation. Computational analysis indicated that miR-31 bound to the CREG mRNA 3′ untranslated region (3′-UTR). miR-31 was upregulated in quiescent differentiated VSMCs and downregulated in proliferative cells stimulated by platelet-derived growth factor and serum starvation, demonstrating a negative relationship with the VSMC differentiation marker genes, smooth muscle α-actin, calponin and CREG. Using gain-of-function and loss-of-function approaches, CREG and VSMC differentiation marker gene expression levels were shown to be suppressed by a miR-31 mimic, but increased by a miR-31 inhibitor at both protein and mRNA levels. Notably, miR-31 overexpression or inhibition affected luciferase expression driven by the CREG 3′-UTR containing the miR-31 binding site. Furthermore, miR-31-mediated VSMC phenotypic modulation was inhibited in CREG-knockdown human VSMCs. We also determined miR-31 levels in the serum of patients with coronary artery disease (CAD), with or without in stent restenosis and in healthy controls. miR-31 levels were higher in the serum of CAD patients with restenosis compared to CAD patients without restenosis and in healthy controls. In summary, these data demonstrate that miR-31 not only directly binds to its target gene CREG and modulates the VSMC phenotype through this interaction, but also can be an important biomarker in diseases involving VSMC

  3. Recapitulation of developing artery muscularization in pulmonary hypertension.

    PubMed

    Sheikh, Abdul Q; Lighthouse, Janet K; Greif, Daniel M

    2014-03-13

    Excess smooth muscle accumulation is a key component of many vascular disorders, including atherosclerosis, restenosis, and pulmonary artery hypertension, but the underlying cell biological processes are not well defined. In pulmonary artery hypertension, reduced pulmonary artery compliance is a strong independent predictor of mortality, and pathological distal arteriole muscularization contributes to this reduced compliance. We recently demonstrated that embryonic pulmonary artery wall morphogenesis consists of discrete developmentally regulated steps. In contrast, poor understanding of distal arteriole muscularization in pulmonary artery hypertension severely limits existing therapies that aim to dilate the pulmonary vasculature but have modest clinical benefit and do not prevent hypermuscularization. Here, we show that most pathological distal arteriole smooth muscle cells, but not alveolar myofibroblasts, derive from pre-existing smooth muscle. Furthermore, the program of distal arteriole muscularization encompasses smooth muscle cell dedifferentiation, distal migration, proliferation, and then redifferentiation, thereby recapitulating many facets of arterial wall development. PMID:24582963

  4. Role of cyclo-oxygenase-2 induction in interleukin-1β induced attenuation of cultured human airway smooth muscle cell cyclic AMP generation in response to isoprenaline

    PubMed Central

    Pang, Linhua; Holland, Elaine; Knox, Alan J

    1998-01-01

    Airway smooth muscle (ASM) in human asthma shows reduced relaxation and cyclic AMP generation in response to β-adrenoceptor agonists. IL-β attenuates cyclic AMP generation but the underlying mechanism is unclear. We have reported that IL-1β induces cyclo-oxygenase-2 (COX-2) in human ASM cells and results in a marked increase in prostanoid generation with PGE2 and PGI2 as the major products.We investigated the role of COX-2 induction and prostanoid release (measured as PGE2) in IL-1β induced attenuation of cyclic AMP generation in response to the β-adrenoceptor agonist isoprenaline (ISO).Pre-treatment of human ASM cells with IL-1β significantly attenuated cyclic AMP generation in response to high concentrations of ISO (1.0–10.0 μM) in a time- and concentration-dependent manner. The effect was accompanied by a high concentration of PGE2 release. The non-selective COX inhibitor indomethacin (Ind), the selective COX-2 inhibitor NS-398, the protein synthesis inhibitors cycloheximide (CHX) and actinomycin D and the steroid dexamethasone (Dex) all abolished the PGE2 release and prevented the attenuated cyclic AMP generation.COX substrate arachidonic acid time- and concentration-dependently mimicked IL-1β induced attenuation and the effect was prevented by the non-selective COX inhibitors Ind and flurbiprofen, but not by NS-398, CHX and Dex.In contrast to IL-1β, TNFα and IFNγ, which are ineffective in inducing COX-2 and releasing PGE2 from human ASM cells, did not affect the cyclic AMP formation.Our study demonstrates that COX-2 induction and the consequent release of prostanoids plays a crucial role in IL-1β induced attenuation of human ASM cell cyclic AMP response to ISO. PMID:9863663

  5. [Pulmonary melioidosis].

    PubMed

    Perret, J L; Vidal, D; Thibault, F

    1998-12-01

    Melioidosis is most frequently encountered in pulmonary localization. Melioidosis is an infectious disease caused by Burkholderia pseudomallei first described by Whitmore in 1912 in Burma. B. pseudomallei is a Gram negative rod belonging to the Pseudomonadaceae family. Soil and water are the natural reservoirs for the germ which is a specific pathogen for several mammal species. Long endemic in Southeast Asia and several tropical zones, B. pseudomallei has recently been found in temperate zones, including France. Human contamination occurs via the transcutaneous route and often leads to dormant inapparent infection. Many conditions, such as diabetes, renal lithiasis, various circumstances of immunodepression or stress, facilitate clinical manifestations which vary greatly. Pulmonary manifestations may be acute and extensive, producing a torpid pseudo-tuberculous condition or a variety of clinical and radiological features mimicking other diseases. Bacteriological and serological tests may be negative. Exposure in an endemic zone, the notion of a favorable context, weight loss, cavitary images on successive chest x-rays and the presence of extra-pulmonary localizations may be suggestive. Ceftazidime or the amoxicillin-clavulanic acid combination are indicated, but mortality in acute forms still reaches 40%. Relapse can be expected if the treatment duration is too short. PMID:10100350

  6. Antibody Reactivity to Omp31 from Brucella melitensis in Human and Animal Infections by Smooth and Rough Brucellae

    PubMed Central

    Cassataro, Juliana; Pasquevich, Karina; Bruno, Laura; Wallach, Jorge C.; Fossati, Carlos A.; Baldi, Pablo C.

    2004-01-01

    Group 3 of outer membrane proteins (OMPs) of Brucella includes Omp25 and Omp31, which share 34% identity. Omp25 is highly conserved in Brucella species, and Omp31 is present in all Brucella species, except Brucella abortus. Antibodies to Brucella melitensis Omp31 have been sought only in infected sheep, and Western blotting of sera from infected sheep did not reveal anti-Omp31 reactivity. We obtained recombinant purified Omp31 (B. melitensis) and tested its recognition by sera from humans and animals suffering from brucellosis by an indirect enzyme-linked immunosorbent assay (ELISA). Serum samples from 74 patients, 57 sheep, and 47 dogs were analyzed; brucellosis was confirmed by bacteriological isolation in all ovine and canine cases and 31 human cases of brucellosis. Thirty-five patients (47%) were positive for antibodies to Omp31, including seven cases of Brucella suis infection, two cases of B. abortus infection, and three cases of B. melitensis infection. Of 39 sheep naturally infected with B. melitensis (biovars 1 and 3), 23 (59%) were positive for antibodies to Omp31. Anti-Omp31 antibodies were also detected in 12 of 18 rams (67%) in which Brucella ovis was isolated from semen. Antibodies to Omp31 were also found in 41 (87%) of the 47 dogs, including 13 with recent infection. These results suggest that an indirect ELISA using recombinant purified Omp31 from B. melitensis would be of limited value for the diagnosis of human and animal brucellosis. Nevertheless, the potential usefulness of this antigen in combination with other recombinant proteins from Brucella should not be dismissed.   PMID:14715555

  7. Effects of 0. 75ppM sulfur dioxide on pulmonary function parameters of normal human subjects

    SciTech Connect

    Stacy, R.W.; House, D.; Friedman, M.; Hazacha, M.; Green, J.; Raggio, L.; Roger, L.J.

    1981-07-01

    Of 31 young, healthy male volunteers who participated in this study, 15 were exposed to air (control) and 16 to 0.75 ppm (2.15 mg/m/sup 3/) SO/sub 2/ for 2 hr at 21/sup o/C and 60% relative humidity. At the end of the first hour, the subjects exercised for 15 min on a treadmill at 6.4 kmph, with a 10% grade. Methods employed in evaluation of pulmonary function included body plethysmography, spirometry, and multigas rebreathing test. From the battery of 15 pulmonary function parameters, only the pattern of airway resistance changes was significantly altered by SO/sub 2/ exposure, although spirometric parameters followed a similar pattern. Eight of the SO/sub 2/-exposed subjects, with one or more positive allergen skin tests, appeared to be significantly more reactive to SO/sub 2/ than skin test-negative subjects. All subjects remained asymptomatic. The small number of changes observed appeared to be reversible and do not suggest a significant health hazard to normal human subjects exposed to SO/sub 2/ under these conditions.

  8. Metabolomic analysis of bone morphogenetic protein receptor type 2 mutations in human pulmonary endothelium reveals widespread metabolic reprogramming.

    PubMed

    Fessel, Joshua P; Hamid, Rizwan; Wittmann, Bryan M; Robinson, Linda J; Blackwell, Tom; Tada, Yuji; Tanabe, Nobuhiro; Tatsumi, Koichiro; Hemnes, Anna R; West, James D

    2012-01-01

    Pulmonary arterial hypertension (PAH) is a progressive and fatal disease of the lung vasculature for which the molecular etiologies are unclear. Specific metabolic alterations have been identified in animal models and in PAH patients, though existing data focus mainly on abnormalities of glucose homeostasis. We hypothesized that analysis of the entire metabolome in PAH would reveal multiple other metabolic changes relevant to disease pathogenesis and possible treatment. Layered transcriptomic and metabolomic analyses of human pulmonary microvascular endothelial cells (hPMVEC) expressing two different disease-causing mutations in the bone morphogenetic protein receptor type 2 (BMPR2) confirmed previously described increases in aerobic glycolysis but also uncovered significant upregulation of the pentose phosphate pathway, increases in nucleotide salvage and polyamine biosynthesis pathways, decreases in carnitine and fatty acid oxidation pathways, and major impairment of the tricarboxylic acid (TCA) cycle and failure of anaplerosis. As a proof of principle, we focused on the TCA cycle, predicting that isocitrate dehydrogenase (IDH) activity would be altered in PAH, and then demonstrating increased IDH activity not only in cultured hPMVEC expressing mutant BMPR2 but also in the serum of PAH patients. These results suggest that widespread metabolic changes are an important part of PAH pathogenesis, and that simultaneous identification and targeting of the multiple involved pathways may be a more fruitful therapeutic approach than targeting of any one individual pathway.

  9. Effect of pulmonary surfactant on the dissolution, stability and uptake of zinc oxide nanowires by human respiratory epithelial cells.

    PubMed

    Theodorou, Ioannis G; Ruenraroengsak, Pakatip; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng Jim; Chung, Kian Fan; Tetley, Teresa D; Ryan, Mary P; Porter, Alexandra E

    2016-11-01

    Inhaled nanoparticles (NPs) have high-deposition rates in the alveolar region of the lung but the effects of pulmonary surfactant (PS) on nanoparticle bioreactivity are unclear. Here, the impact of PS on the stability and dissolution of ZnO nanowires (ZnONWs) was investigated, and linked with their bioreactivity in vitro with human alveolar epithelial type 1-like cells (TT1). Pre-incubation of ZnONWs with Curosurf® (a natural porcine PS) decreased their dissolution at acidic pH, through the formation of a phospholipid corona. Confocal live cell microscopy confirmed that Curosurf® lowered intracellular dissolution, thus delaying the onset of cell death compared to bare ZnONWs. Despite reducing dissolution, Curosurf® significantly increased the uptake of ZnONWs within TT1 cells, ultimately increasing their toxicity after 24 h. Although serum improved ZnONW dispersion in suspension similar to Curosurf®, it had no effect on ZnONW internalization and toxicity, indicating a unique role of PS in promoting particle uptake. In the absence of PS, ZnONW length had no effect on dissolution kinetics or degree of cellular toxicity, indicating a less important role of length in determining ZnONW bioreactivity. This work provides unique findings on the effects of PS on the stability and toxicity of ZnONWs, which could be important in the study of pulmonary toxicity and epithelial-endothelial translocation of nanoparticles in general.

  10. Effect of pulmonary surfactant on the dissolution, stability and uptake of zinc oxide nanowires by human respiratory epithelial cells.

    PubMed

    Theodorou, Ioannis G; Ruenraroengsak, Pakatip; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng Jim; Chung, Kian Fan; Tetley, Teresa D; Ryan, Mary P; Porter, Alexandra E

    2016-11-01

    Inhaled nanoparticles (NPs) have high-deposition rates in the alveolar region of the lung but the effects of pulmonary surfactant (PS) on nanoparticle bioreactivity are unclear. Here, the impact of PS on the stability and dissolution of ZnO nanowires (ZnONWs) was investigated, and linked with their bioreactivity in vitro with human alveolar epithelial type 1-like cells (TT1). Pre-incubation of ZnONWs with Curosurf® (a natural porcine PS) decreased their dissolution at acidic pH, through the formation of a phospholipid corona. Confocal live cell microscopy confirmed that Curosurf® lowered intracellular dissolution, thus delaying the onset of cell death compared to bare ZnONWs. Despite reducing dissolution, Curosurf® significantly increased the uptake of ZnONWs within TT1 cells, ultimately increasing their toxicity after 24 h. Although serum improved ZnONW dispersion in suspension similar to Curosurf®, it had no effect on ZnONW internalization and toxicity, indicating a unique role of PS in promoting particle uptake. In the absence of PS, ZnONW length had no effect on dissolution kinetics or degree of cellular toxicity, indicating a less important role of length in determining ZnONW bioreactivity. This work provides unique findings on the effects of PS on the stability and toxicity of ZnONWs, which could be important in the study of pulmonary toxicity and epithelial-endothelial translocation of nanoparticles in general. PMID:27441789

  11. Anti-atherogenic effect of trivalent chromium-loaded CPMV nanoparticles in human aortic smooth muscle cells under hyperglycemic conditions in vitro.

    PubMed

    Ganguly, Rituparna; Wen, Amy M; Myer, Ashley B; Czech, Tori; Sahu, Soumyadip; Steinmetz, Nicole F; Raman, Priya

    2016-03-28

    Atherosclerosis, a major macrovascular complication associated with diabetes, poses a tremendous burden on national health care expenditure. Despite extensive efforts, cost-effective remedies are unknown. Therapies for atherosclerosis are challenged by a lack of targeted drug delivery approaches. Toward this goal, we turn to a biology-derived drug delivery system utilizing nanoparticles formed by the plant virus, Cowpea mosaic virus (CPMV). The aim herein is to investigate the anti-atherogenic potential of the beneficial mineral nutrient, trivalent chromium, loaded CPMV nanoparticles in human aortic smooth muscle cells (HASMC) under hyperglycemic conditions. A non-covalent loading protocol is established yielding CrCl3-loaded CPMV (CPMV-Cr) carrying 2000 drug molecules per particle. Using immunofluorescence microscopy, we show that CPMV-Cr is readily taken up by HASMC in vitro. In glucose (25 mM)-stimulated cells, 100 nM CPMV-Cr inhibits HASMC proliferation concomitant to attenuated proliferating cell nuclear antigen (PCNA, proliferation marker) expression. This is accompanied by attenuation in high glucose-induced phospho-p38 and pAkt expression. Moreover, CPMV-Cr inhibits the expression of pro-inflammatory cytokines, transforming growth factor-β (TGF-β) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), in glucose-stimulated HASMCs. Finally glucose-stimulated lipid uptake is remarkably abrogated by CPMV-Cr, revealed by Oil Red O staining. Together, these data provide key cellular evidence for an atheroprotective effect of CPMV-Cr in vascular smooth muscle cells (VSMC) under hyperglycemic conditions that may promote novel therapeutic ventures for diabetic atherosclerosis. PMID:26935414

  12. Anti-atherogenic effect of trivalent chromium-loaded CPMV nanoparticles in human aortic smooth muscle cells under hyperglycemic conditions in vitro

    NASA Astrophysics Data System (ADS)

    Ganguly, Rituparna; Wen, Amy M.; Myer, Ashley B.; Czech, Tori; Sahu, Soumyadip; Steinmetz, Nicole F.; Raman, Priya

    2016-03-01

    Atherosclerosis, a major macrovascular complication associated with diabetes, poses a tremendous burden on national health care expenditure. Despite extensive efforts, cost-effective remedies are unknown. Therapies for atherosclerosis are challenged by a lack of targeted drug delivery approaches. Toward this goal, we turn to a biology-derived drug delivery system utilizing nanoparticles formed by the plant virus, Cowpea mosaic virus (CPMV). The aim herein is to investigate the anti-atherogenic potential of the beneficial mineral nutrient, trivalent chromium, loaded CPMV nanoparticles in human aortic smooth muscle cells (HASMC) under hyperglycemic conditions. A non-covalent loading protocol is established yielding CrCl3-loaded CPMV (CPMV-Cr) carrying 2000 drug molecules per particle. Using immunofluorescence microscopy, we show that CPMV-Cr is readily taken up by HASMC in vitro. In glucose (25 mM)-stimulated cells, 100 nM CPMV-Cr inhibits HASMC proliferation concomitant to attenuated proliferating cell nuclear antigen (PCNA, proliferation marker) expression. This is accompanied by attenuation in high glucose-induced phospho-p38 and pAkt expression. Moreover, CPMV-Cr inhibits the expression of pro-inflammatory cytokines, transforming growth factor-β (TGF-β) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), in glucose-stimulated HASMCs. Finally glucose-stimulated lipid uptake is remarkably abrogated by CPMV-Cr, revealed by Oil Red O staining. Together, these data provide key cellular evidence for an atheroprotective effect of CPMV-Cr in vascular smooth muscle cells (VSMC) under hyperglycemic conditions that may promote novel therapeutic ventures for diabetic atherosclerosis.

  13. Involvement of Organic Cation Transporter-3 and Plasma Membrane Monoamine Transporter in Serotonin Uptake in Human Brain Vascular Smooth Muscle Cells

    PubMed Central

    Li, Rachel W. S.; Yang, Cui; Kwan, Y. W.; Chan, S. W.; Lee, Simon M. Y.; Leung, George P. H.

    2013-01-01

    The serotonin (5-HT) uptake system is supposed to play a crucial part in vascular functions by “fine-tuning” the local concentration of 5-HT in the vicinity of 5-HT2 receptors in vascular smooth muscle cells. In this study, the mechanism of 5-HT uptake in human brain vascular smooth muscle cells (HBVSMCs) was investigated. [3H]5-HT uptake in HBVSMCs was Na+-independent. Kinetic analyses of [3H]5-HT uptake in HBVSMCs revealed a Km of 50.36 ± 10.2 mM and a Vmax of 1033.61 ± 98.86 pmol/mg protein/min. The specific serotonin re-uptake transporter (SERT) inhibitor citalopram, the specific norepinephrine transporter (NET) inhibitor desipramine, and the dopamine transporter (DAT) inhibitor GBR12935 inhibited 5-HT uptake in HBVSMCs with IC50 values of 97.03 ± 40.10, 10.49 ± 5.98, and 2.80 ± 1.04 μM, respectively. These IC50 values were 100-fold higher than data reported by other authors, suggesting that those inhibitors were not blocking their corresponding transporters. Reverse transcription-polymerase chain reaction results demonstrated the presence of mRNA for organic cation transporter (OCT)-3 and plasma membrane monoamine transporter (PMAT), but the absence of OCT-1, OCT-2, SERT, NET, and DAT. siRNA knockdown of OCT-3 and PMAT specifically attenuated 5-HT uptake in HBVSMCs. It is concluded that 5-HT uptake in HBVSMCs was mediated predominantly by a low-affinity and Na+-independent mechanism. The most probable candidates are OCT-3 and PMAT, but not the SERT. PMID:23407616

  14. Comparative characterization of pulmonary surfactant aggregates and alkaline phosphatase isozymes in human lung carcinoma tissue.

    PubMed

    Iino, Nozomi; Matsunaga, Toshiyuki; Harada, Tsuyoshi; Igarashi, Seiji; Koyama, Iwao; Komoda, Tsugikazu

    2007-05-01

    Alkaline phosphatase (AP) isozymes are surfactant-associated proteins (SPs). Since several different AP isozymes have been detected in the pneumocytes of lung cancer patients, we attempted to identify the relationship between pulmonary surfactant aggregate subtypes and AP isozymes. Pulmonary surfactant aggregates were isolated from carcinoma and non-carcinoma tissues of patients with non-small cell carcinoma of the lung. Upon analysis, ultraheavy, heavy, and light surfactant aggregates were detected in the non-carcinoma tissues, but no ultraheavy surfactant aggregates were found in the carcinoma tissues. Surfactant-associated protein A (SP-A) was detected as two bands (a 27-kDa band and a 54-kDa band) in the ultraheavy, heavy, and light surfactant aggregates found in the non-carcinoma tissues. Although both SP-A bands were detected in the heavy and light surfactant aggregates from adenocarcinoma tissues, the 54-kDa band was not detected in squamous cell carcinoma tissues. Liver AP (LAP) was detected in the heavy and light surfactant aggregates from both non-carcinoma and squamous carcinoma tissues, but not in heavy surfactant aggregates from adenocarcinoma tissues. A larger amount of bone type AP (BAP) was found in light surfactant aggregate fractions from squamous cell carcinomas than those from adenocarcinoma tissues or non-carcinoma tissues from patients with either type of cancer. LAP, BAP, and SP-A were identified immunohistochemically in type II pneumocytes from non-carcinoma tissues and adenocarcinoma cells, but no distinct SP-A staining was observed in squamous cell carcinoma tissues. The present study has thus revealed several differences in pulmonary surfactant aggregates and AP isozymes between adenocarcinoma tissue and squamous cell carcinoma tissue.

  15. Monitoring the initial pulmonary absorption of two different beclomethasone dipropionate aerosols employing a human lung reperfusion model

    PubMed Central

    Freiwald, Matthias; Valotis, Anagnostis; Kirschbaum, Andreas; McClellan, Monika; Mürdter, Thomas; Fritz, Peter; Friedel, Godehard; Thomas, Michael; Högger, Petra

    2005-01-01

    Background The pulmonary residence time of inhaled glucocorticoids as well as their rate and extend of absorption into systemic circulation are important facets of their efficacy-safety profile. We evaluated a novel approach to elucidate the pulmonary absorption of an inhaled glucocorticoid. Our objective was to monitor and compare the combined process of drug particle dissolution, pro-drug activation and time course of initial distribution from human lung tissue into plasma for two different glucocorticoid formulations. Methods We chose beclomethasone dipropionate (BDP) delivered by two different commercially available HFA-propelled metered dose inhalers (Sanasthmax®/Becloforte™ and Ventolair®/Qvar™). Initially we developed a simple dialysis model to assess the transfer of BDP and its active metabolite from human lung homogenate into human plasma. In a novel experimental setting we then administered the aerosols into the bronchus of an extracorporally ventilated and reperfused human lung lobe and monitored the concentrations of BDP and its metabolites in the reperfusion fluid. Results Unexpectedly, we observed differences between the two aerosol formulations Sanasthmax®/Becloforte™ and Ventolair®/Qvar™ in both the dialysis as well as in the human reperfusion model. The HFA-BDP formulated as Ventolair®/Qvar™ displayed a more rapid release from lung tissue compared to Sanasthmax®/Becloforte™. We succeeded to explain and illustrate the observed differences between the two aerosols with their unique particle topology and divergent dissolution behaviour in human bronchial fluid. Conclusion We conclude that though the ultrafine particles of Ventolair®/Qvar™ are beneficial for high lung deposition, they also yield a less desired more rapid systemic drug delivery. While the differences between Sanasthmax®/Becloforte™ and Ventolair®/Qvar™ were obvious in both the dialysis and lung perfusion experiments, the latter allowed to record time courses

  16. Assessing the utility of autofluorescence-based pulmonary optical endomicroscopy to predict the malignant potential of solitary pulmonary nodules in humans

    PubMed Central

    Seth, Sohan; Akram, Ahsan R.; McCool, Paul; Westerfeld, Jody; Wilson, David; McLaughlin, Stephen; Dhaliwal, Kevin; Williams, Christopher K. I.

    2016-01-01

    Solitary pulmonary nodules are common, often incidental findings on chest CT scans. The investigation of pulmonary nodules is time-consuming and often leads to protracted follow-up with ongoing radiological surveillance, however, clinical calculators that assess the risk of the nodule being malignant exist to help in the stratification of patients. Furthermore recent advances in interventional pulmonology include the ability to both navigate to nodules and also to perform autofluorescence endomicroscopy. In this study we assessed the efficacy of incorporating additional information from label-free fibre-based optical endomicrosopy of the nodule on assessing risk of malignancy. Using image analysis and machine learning approaches, we find that this information does not yield any gain in predictive performance in a cohort of patients. Further advances with pulmonary endomicroscopy will require the addition of molecular tracers to improve information from this procedure. PMID:27550539

  17. Assessing the utility of autofluorescence-based pulmonary optical endomicroscopy to predict the malignant potential of solitary pulmonary nodules in humans.

    PubMed

    Seth, Sohan; Akram, Ahsan R; McCool, Paul; Westerfeld, Jody; Wilson, David; McLaughlin, Stephen; Dhaliwal, Kevin; Williams, Christopher K I

    2016-01-01

    Solitary pulmonary nodules are common, often incidental findings on chest CT scans. The investigation of pulmonary nodules is time-consuming and often leads to protracted follow-up with ongoing radiological surveillance, however, clinical calculators that assess the risk of the nodule being malignant exist to help in the stratification of patients. Furthermore recent advances in interventional pulmonology include the ability to both navigate to nodules and also to perform autofluorescence endomicroscopy. In this study we assessed the efficacy of incorporating additional information from label-free fibre-based optical endomicrosopy of the nodule on assessing risk of malignancy. Using image analysis and machine learning approaches, we find that this information does not yield any gain in predictive performance in a cohort of patients. Further advances with pulmonary endomicroscopy will require the addition of molecular tracers to improve information from this procedure. PMID:27550539

  18. [Pulmonary hypertension in patients infected with human immunodeficiency virus: current situation].

    PubMed

    Soto-Abánades, Clara Itzíar; Alcolea-Batres, Sergio; Ríos-Blanco, Juan José

    2013-01-01

    The increase in survival that has been achieved with the new treatments in the era of highly active antiretroviral therapy, has enabled clinicians and researchers to analyze issues that emerge in the long term in patients with HIV infection. Although the majority of cardiovascular complications have been widely described, the pathogenesis of pulmonary arterial hypertension is still poorly understood, and is one of the more complex and feared complications as it worsens the prognosis and quality of life of these patients This article reviews newer aspects related to the aetiology, symptoms, diagnosis and treatment of this disease.

  19. Notch Activation of Ca2+ Signaling in the Development of Hypoxic Pulmonary Vasoconstriction and Pulmonary Hypertension

    PubMed Central

    Smith, Kimberly A.; Voiriot, Guillaume; Tang, Haiyang; Fraidenburg, Dustin R.; Song, Shanshan; Yamamura, Hisao; Yamamura, Aya; Guo, Qiang; Wan, Jun; Pohl, Nicole M.; Tauseef, Mohammad; Bodmer, Rolf; Ocorr, Karen; Thistlethwaite, Patricia A.; Haddad, Gabriel G.; Powell, Frank L.; Makino, Ayako; Mehta, Dolly

    2015-01-01

    Hypoxic pulmonary vasoconstriction (HPV) is an important physiological response that optimizes the ventilation/perfusion ratio. Chronic hypoxia causes vascular remodeling, which is central to the pathogenesis of hypoxia-induced pulmonary hypertension (HPH). We have previously shown that Notch3 is up-regulated in HPH and that activation of Notch signaling enhances store-operated Ca2+ entry (SOCE), an important mechanism that contributes to pulmonary arterial smooth muscle cell (PASMC) proliferation and contraction. Here, we investigate the role of Notch signaling in HPV and hypoxia-induced enhancement of SOCE. We examined SOCE in human PASMCs exposed to hypoxia and pulmonary arterial pressure in mice using the isolated perfused/ventilated lung method. Wild-type and canonical transient receptor potential (TRPC) 6−/− mice were exposed to chronic hypoxia to induce HPH. Inhibition of Notch signaling with a γ-secretase inhibitor attenuates hypoxia-enhanced SOCE in PASMCs and hypoxia-induced increase in pulmonary arterial pressure. Our results demonstrate that hypoxia activates Notch signaling and up-regulates TRPC6 channels. Additionally, treatment with a Notch ligand can mimic hypoxic responses. Finally, inhibition of TRPC6, either pharmacologically or genetically, attenuates HPV, hypoxia-enhanced SOCE, and the development of HPH. These results demonstrate that hypoxia-induced activation of Notch signaling mediates HPV and the development of HPH via functional activation and up-regulation of TRPC6 channels. Understanding the molecular mechanisms that regulate cytosolic free Ca2+ concentration and PASMC proliferation is critical to elucidation of the pathogenesis of HPH. Targeting Notch regulation of TRPC6 will be beneficial in the development of novel therapies for pulmonary hypertension associated with hypoxia. PMID:25569851

  20. PAF-receptor is preferentially expressed in a distinct synthetic phenotype of smooth muscle cells cloned from human internal thoracic artery: Functional implications in cell migration

    SciTech Connect

    Stengel, Dominique; O'Neil, Caroline; Brocheriou, Isabelle; Karabina, Sonia-Athina; Durand, Herve; Caplice, Noel M.; Pickering, J. Geoffrey; Ninio, Ewa . E-mail: ninio@chups.jussieu.fr

    2006-08-04

    Platelet-activating-Factor (PAF) and its structural analogues formed upon low density lipoprotein oxidation are involved in atherosclerotic plaque formation and may signal through PAF-receptor (PAF-R) expressed in human macrophages and in certain smooth muscle cells (SMCs) in the media, but rarely in the intima of human plaques. Our aim was to determine which SMC phenotype expresses PAF-R and whether this receptor is functional in cell migration. Circulating SMC progenitors and two phenotypically distinct clones of proliferative, epithelioid phenotype vs contractile, spindle-shaped SMCs from the media of adult internal thoracic artery were studied for the presence of PAF-receptor (PAF-R). The levels of specific mRNA were obtained by reverse transcription/real-time PCR, the protein expression was deduced from immunohistochemistry staining, and the functional transmigration assay was performed by Boyden chamber-type chemotaxis assay. Only SMCs of spindle-shape and synthetic phenotype expressed both mRNA and PAF-R protein and in the functional test migrated at low concentrations of PAF. Two unrelated, specific PAF-R antagonists inhibited PAF-induced migration, but did not modify the migration initiated by PDGF. The presence of functional PAF-R in arterial spindle-shaped SMCs of synthetic phenotype may be important for their migration from the media into the intima and atherosclerotic plaques formation.

  1. Monounsaturated and polyunsaturated n-6 fatty acid-enriched diets modify LDL oxidation and decrease human coronary smooth muscle cell DNA synthesis.

    PubMed

    Mata, P; Varela, O; Alonso, R; Lahoz, C; de Oya, M; Badimon, L

    1997-10-01

    Proliferation of smooth muscle cells (SMCs) plays an important role in atherosclerotic lesion progression. The purpose of this investigation was to examine the effect of diets differing in fatty acid composition on human coronary SMC entry in the cell proliferation cycle. Twenty-four healthy men and women were placed on four consecutive diets lasting 5 weeks each: (1) saturated fatty acid (SFA)-rich diet with palm oil; (2) monounsaturated fatty acid (MUFA)-rich diet with olive oil; (3) polyunsaturated fatty acid (PUFA) n-6-rich diet with sunflower oil; and (4) PUFA n-3-rich diet (3.8 g/d). All diets supplied 35% of calories as fat. Compared with the SFA diet, all unsaturated diets reduced LDL cholesterol. Resistance of LDL to oxidative modification was significantly increased during the MUFA period (P < .05). Human coronary SMCs were cultured and induced by sera derived from the different groups. 3H-Thymidine incorporation into doubling DNA was significantly (P < .01) reduced during the MUFA and PUFA n-6 periods but not during the PUFA n-3 diet with respect to the SFA diet. This effect was more pronounced in women than in men. In conclusion, the MUFA-enriched diet reduced SMC DNA synthesis and LDL levels and protected LDL from oxidation. Therefore, these combined effects suggest that an oleic acid-rich Mediterranean diet could be better than PUFA (n-6)- or PUFA (n-3)-rich diets in the prevention of atherosclerosis.

  2. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    SciTech Connect

    Matsuzaki, Shinichi; Ishizuka, Tamotsu; Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo; Komachi, Mayumi; Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko; Dobashi, Kunio; Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki; Mori, Masatomo; Okajima, Fumikazu

    2011-10-07

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.

  3. Inflammatory Micro-Environmental Cues of Human Atherothrombotic Arteries Confer to Vascular Smooth Muscle Cells the Capacity to Trigger Lymphoid Neogenesis

    PubMed Central

    Clement, Marc; Morvan, Marion; Delbosc, Sandrine; Gaston, Anh-Thu; Andreata, Francesco; Castier, Yves; Deschildre, Catherine; Michel, Jean-Baptiste; Caligiuri, Giuseppina; Nicoletti, Antonino

    2014-01-01

    Background Experimental atherosclerosis is characterized by the formation of tertiary lymphoid structures (TLOs) within the adventitial layer, which involves the chemokine-expressing aortic smooth muscle cells (SMCs). TLOs have also been described around human atherothrombotic arteries but the mechanisms of their formation remain poorly investigated. Herein, we tested whether human vascular SMCs play the role of chemokine-expressing cells that would trigger the formation of TLOs in atherothrombotic arteries. Results We first characterized, by flow cytometry and immunofluorescence analysis, the prevalence and cell composition of TLOs in human abdominal aneurysms of the aorta (AAAs), an evolutive form of atherothrombosis. Chemotaxis experiments revealed that the conditioned medium from AAA tissues recruited significantly more B and T lymphocytes than the conditioned medium from control (N-AAA) tissues. This was associated with an increase in the concentration of CXCL13, CXCL16, CCL19, CCL20, and CCL21 chemokines in the conditioned medium from AAA tissues. Immunofluorescence analysis of AAA cryosections revealed that α-SMA-positive SMCs were the main contributors to the chemokine production. These results were confirmed by RT-qPCR assays where we found that primary vascular SMCs from AAA tissues expressed significantly more chemokines than SMCs from N-AAA. Finally, in vitro experiments demonstrated that the inflammatory cytokines found to be increased in the conditioned medium from AAA were able to trigger the production of chemokines by primary SMCs. Conclusion Together, these results suggest that human vascular SMCs in atherothrombotic arteries, in response to inflammatory signals, are converted into chemokine-expressing cells that trigger the recruitment of immune cells and the formation of aortic TLOs. PMID:25548922

  4. Single-channel biophysical and pharmacological characterizations of native human large-conductance calcium-activated potassium channels in freshly isolated detrusor smooth muscle cells.

    PubMed

    Malysz, John; Rovner, Eric S; Petkov, Georgi V

    2013-07-01

    Recent studies have demonstrated the importance of large-conductance Ca(2+)-activated K(+) (BK) channels in detrusor smooth muscle (DSM) function in vitro and in vivo. However, in-depth characterization of human native DSM single BK channels has not yet been provided. Here, we conducted single-channel recordings from excised patches from native human DSM cells. Inside-out and outside-out recordings in high K(+) symmetrical solution (containing 140 mM KCl and ~300 nM free Ca(2+)) showed single-channel conductance of 215-220 pS, half-maximum constant for activation of ~+75 to +80 mV, and low probability of opening (P o) at +20 mV that increased ~10-fold at +40 mV and ~60-fold at +60 mV. Using the inside-out configuration at +30 mV, reduction of intracellular [Ca(2+)] from ~300 nM to Ca(2+)-free decreased the P o by ~85 %, whereas elevation to ~800 nM increased P o by ~50-fold. The BK channel activator NS1619 (10 μM) enhanced the P o by ~10-fold at +30 mV; subsequent application of the selective BK channel inhibitor paxilline (500 nM) blocked the activity. Changes in intracellular [Ca(2+)] or the addition of NS1619 did not significantly alter the current amplitude or single-channel conductance. This is the first report to provide biophysical and pharmacological profiles of native human DSM single BK channels highlighting their importance in regulating human DSM excitability.

  5. Human Adipose Tissue Derived Stem Cells as a Source of Smooth Muscle Cells in the Regeneration of Muscular Layer of Urinary Bladder Wall

    PubMed Central

    SALEM, Salah Abood; HWIE, Angela Ng Min; SAIM, Aminuddin; CHEE KONG, Christopher Ho; SAGAP, Ismail; SINGH, Rajesh; YUSOF, Mohd Reusmaazran; MD ZAINUDDIN, Zulkifili; HJ IDRUS, Ruszymah

    2013-01-01

    Background: Adipose tissue provides an abundant source of multipotent cells, which represent a source of cell-based regeneration strategies for urinary bladder smooth muscle repair. Our objective was to confirm that adipose-derived stem cells (ADSCs) can be differentiated into smooth muscle cells. Methods: In this study, adipose tissue samples were digested with 0.075% collagenase, and the resulting ADSCs were cultured and expanded in vitro. ADSCs at passage two were differentiated by incubation in smooth muscle inductive media (SMIM) consisting of MCDB I31 medium, 1% FBS, and 100 U/mL heparin for three and six weeks. ADSCs in non-inductive media were used as controls. Characterisation was performed by cell morphology and gene and protein expression. Result: The differentiated cells became elongated and spindle shaped, and towards the end of six weeks, sporadic cell aggregation appeared that is typical of smooth muscle cell culture. Smooth muscle markers (i.e. alpha smooth muscle actin (ASMA), calponin, and myosin heavy chain (MHC)) were used to study gene expression. Expression of these genes was detected by PCR after three and six weeks of differentiation. At the protein expression level, ASMA, MHC, and smoothelin were expressed after six weeks of differentiation. However, only ASMA and smoothelin were expressed after three weeks of differentiation. Conclusion: Adipose tissue provides a possible source of smooth muscle precursor cells that possess the potential capability of smooth muscle differentiation. This represents a promising alternative for urinary bladder smooth muscle repair. PMID:24044001

  6. Sulfur dioxide and ammonium sulfate effects on pulmonary function and bronchial reactivity in human subjects

    SciTech Connect

    Kulle, T.J.; Sauder, L.R.; Shanty, F.; Kerr, H.D.; Farrell, B.P.; Miller, W.R.; Milman, J.H.

    1984-03-01

    The effect of exposures to 1 ppm sulfur dioxide (SO/sub 2/) and 500 ..mu..g/m/sup 3/ respirable ammonium sulfate ((NH/sub 4/)/sub 2/SO/sub 4/) was studied in 20 nonsmoking subjects to determine if a response can be measured at these atmospheric levels and if the response is additive or synergistic. Four-hour separate and combined exposures were employed. Each subject acted as his or her own control and performed two light-to-moderate exercise stints (612 kg-m/min) for 15 minutes on each day's confinement in the environmental chamber. Pulmonary function tests (body plethysmography and spirometry) and bronchial reactivity to methacholine were performed to assess the response of these exposures. No significant changes in pulmonary function or bronchial reactivity were observed in the individual exposures ((NH/sub 4/)/sub 2/SO/sub 4/ or SO/sub 2/), the combined exposure ((NH/sub 4/)/sub 2/SO/sub 4/ and SO/sub 2/), or 24 hours post-exposure. This study design and the observed results did not demonstrate any readily apparent risk to healthy subjects with these exposures. Since no significant changes were measured, it was not possible to conclude if these two pollutants in combination produce an additive or synergistic response.

  7. β2-Adrenoceptor agonist-mediated inhibition of human airway smooth muscle cell proliferation: importance of the duration of β2-adrenoceptor stimulation

    PubMed Central

    Stewart, Alastair G; Tomlinson, Paul R; Wilson, John W

    1997-01-01

    Airway hyperresponsiveness in asthma has been ascribed to airway wall thickening as a result of smooth muscle proliferation and hypertrophy. We have previously shown that continuous exposure to the β2-adrenoceptor agonist, salbutamol inhibits mitogen-induced proliferation of airway smooth muscle cells. In the present study, the effects of variable durations and repeated periods of exposure to β2-adrenoceptor agonists on DNA synthesis in human cultured airway smooth muscle have been investigated to model some of the possible pharmacokinetic profiles of these agents following inhalation. DNA synthesis was measured by [3H]-thymidine incorporation. Shorter periods of exposure (up to 2.5 h) of airway smooth muscle cells to salbutamol (100 nM) commencing 30 min before thrombin (0.3 u ml−1) stimulation had no effect on the subsequent increase in [3H]-thymidine incorporation. However, inhibition by salbutamol was evident with a 4.5 h exposure and was maximal after an 8.5 h exposure. Similar patterns of results were observed when fenoterol (100 nM) was used in place of salbutamol as the β2-adrenoceptor agonist or when epidermal growth factor (300 pM) was used in place of thrombin as the mitogen. Salbutamol had no effect on thrombin-stimulated [3H]-leucine incorporation after 8.5 h of exposure, but a statistically significant effect was observed after 48 h of exposure. Experiments in which DNA synthesis was measured up to 52 h after the addition of thrombin indicated that exposure to salbutamol during the first 8 h of mitogen stimulation delayed rather than inhibited the DNA synthesis. Addition of salbutamol (100 nM) at different times either before or up to 24 h after the addition of thrombin indicated that [3H]-thymidine incorporation (measured between 24 and 28 h after thrombin) could be significantly attenuated when salbutamol was added as late as 18 h after the addition of thrombin. The effects of more prolonged exposure to

  8. CFTR and sphingolipids mediate hypoxic pulmonary vasoconstriction.

    PubMed

    Tabeling, Christoph; Yu, Hanpo; Wang, Liming; Ranke, Hannes; Goldenberg, Neil M; Zabini, Diana; Noe, Elena; Krauszman, Adrienn; Gutbier, Birgitt; Yin, Jun; Schaefer, Michael; Arenz, Christoph; Hocke, Andreas C; Suttorp, Norbert; Proia, Richard L; Witzenrath, Martin; Kuebler, Wolfgang M

    2015-03-31

    Hypoxic pulmonary vasoconstriction (HPV) optimizes pulmonary ventilation-perfusion matching in regional hypoxia, but promotes pulmonary hypertension in global hypoxia. Ventilation-perfusion mismatch is a major cause of hypoxemia in cystic fibrosis. We hypothesized that cystic fibrosis transmembrane conductance regulator (CFTR) may be critical in HPV, potentially by modulating the response to sphingolipids as mediators of HPV. HPV and ventilation-perfusion mismatch were analyzed in isolated mouse lungs or in vivo. Ca(2+) mobilization and transient receptor potential canonical 6 (TRPC6) translocation were studied in human pulmonary (PASMCs) or coronary (CASMCs) artery smooth muscle cells. CFTR inhibition or deficiency diminished HPV and aggravated ventilation-perfusion mismatch. In PASMCs, hypoxia caused CFTR to interact with TRPC6, whereas CFTR inhibition attenuated hypoxia-induced TRPC6 translocation to caveolae and Ca(2+) mobilization. Ca(2+) mobilization by sphingosine-1-phosphate (S1P) was also attenuated by CFTR inhibition in PASMCs, but amplified in CASMCs. Inhibition of neutral sphingomyelinase (nSMase) blocked HPV, whereas exogenous nSMase caused TRPC6 translocation and vasoconstriction that were blocked by CFTR inhibition. nSMase- and hypoxia-induced vasoconstriction, yet not TRPC6 translocation, were blocked by inhibition or deficiency of sphingosine kinase 1 (SphK1) or antagonism of S1P receptors 2 and 4 (S1P2/4). S1P and nSMase had synergistic effects on pulmonary vasoconstriction that involved TRPC6, phospholipase C, and rho kinase. Our findings demonstrate a central role of CFTR and sphingolipids in HPV. Upon hypoxia, nSMase triggers TRPC6 translocation, which requires its interaction with CFTR. Concomitant SphK1-dependent formation of S1P and activation of S1P2/4 result in phospholipase C-mediated TRPC6 and rho kinase activation, which conjointly trigger vasoconstriction. PMID:25829545

  9. CFTR and sphingolipids mediate hypoxic pulmonary vasoconstriction

    PubMed Central

    Tabeling, Christoph; Yu, Hanpo; Wang, Liming; Ranke, Hannes; Goldenberg, Neil M.; Zabini, Diana; Noe, Elena; Krauszman, Adrienn; Gutbier, Birgitt; Yin, Jun; Schaefer, Michael; Arenz, Christoph; Hocke, Andreas C.; Suttorp, Norbert; Proia, Richard L.; Witzenrath, Martin; Kuebler, Wolfgang M.

    2015-01-01

    Hypoxic pulmonary vasoconstriction (HPV) optimizes pulmonary ventilation-perfusion matching in regional hypoxia, but promotes pulmonary hypertension in global hypoxia. Ventilation-perfusion mismatch is a major cause of hypoxemia in cystic fibrosis. We hypothesized that cystic fibrosis transmembrane conductance regulator (CFTR) may be critical in HPV, potentially by modulating the response to sphingolipids as mediators of HPV. HPV and ventilation-perfusion mismatch were analyzed in isolated mouse lungs or in vivo. Ca2+ mobilization and transient receptor potential canonical 6 (TRPC6) translocation were studied in human pulmonary (PASMCs) or coronary (CASMCs) artery smooth muscle cells. CFTR inhibition or deficiency diminished HPV and aggravated ventilation-perfusion mismatch. In PASMCs, hypoxia caused CFTR to interact with TRPC6, whereas CFTR inhibition attenuated hypoxia-induced TRPC6 translocation to caveolae and Ca2+ mobilization. Ca2+ mobilization by sphingosine-1-phosphate (S1P) was also attenuated by CFTR inhibition in PASMCs, but amplified in CASMCs. Inhibition of neutral sphingomyelinase (nSMase) blocked HPV, whereas exogenous nSMase caused TRPC6 translocation and vasoconstriction that were blocked by CFTR inhibition. nSMase- and hypoxia-induced vasoconstriction, yet not TRPC6 translocation, were blocked by inhibition or deficiency of sphingosine kinase 1 (SphK1) or antagonism of S1P receptors 2 and 4 (S1P2/4). S1P and nSMase had synergistic effects on pulmonary vasoconstriction that involved TRPC6, phospholipase C, and rho kinase. Our findings demonstrate a central role of CFTR and sphingolipids in HPV. Upon hypoxia, nSMase triggers TRPC6 translocation, which requires its interaction with CFTR. Concomitant SphK1-dependent formation of S1P and activation of S1P2/4 result in phospholipase C-mediated TRPC6 and rho kinase activation, which conjointly trigger vasoconstriction. PMID:25829545

  10. Divergent effects of 17-{beta}-estradiol on human vascular smooth muscle and endothelial cell function diminishes TNF-{alpha}-induced neointima formation

    SciTech Connect

    Nintasen, Rungrat; Riches, Kirsten; Mughal, Romana S.; Viriyavejakul, Parnpen; Chaisri, Urai; Maneerat, Yaowapa; Turner, Neil A.; Porter, Karen E.

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} augments neointimal hyperplasia in human saphenous vein. Black-Right-Pointing-Pointer TNF-{alpha} induces detrimental effects on endothelial and smooth muscle cell function. Black-Right-Pointing-Pointer Estradiol exerts modulatory effects on TNF-induced vascular cell functions. Black-Right-Pointing-Pointer The modulatory effects of estradiol are discriminatory and cell-type specific. -- Abstract: Coronary heart disease (CHD) is a condition characterized by increased levels of proinflammatory cytokines, including tumor necrosis factor-{alpha} (TNF-{alpha}). TNF-{alpha} can induce vascular endothelial cell (EC) and smooth muscle cell (SMC) dysfunction, central events in development of neointimal lesions. The reduced incidence of CHD in young women is believed to be due to the protective effects of estradiol (E2). We therefore investigated the effects of TNF-{alpha} on human neointima formation and SMC/EC functions and any modulatory effects of E2. Saphenous vein (SV) segments were cultured in the presence of TNF-{alpha} (10 ng/ml), E2 (2.5 nM) or both in combination. Neointimal thickening was augmented by incubation with TNF-{alpha}, an effect that was abolished by co-culture with E2. TNF-{alpha} increased SV-SMC proliferation in a concentration-dependent manner that was optimal at 10 ng/ml (1.5-fold increase), and abolished by E2 at all concentrations studied (1-50 nM). Surprisingly, E2 itself at low concentrations (1 and 5 nM) stimulated SV-SMC proliferation to a level comparable to that of TNF-{alpha} alone. SV-EC migration was significantly impaired by TNF-{alpha} (42% of control), and co-culture with E2 partially restored the ability of SV-EC to migrate and repair the wound. In contrast, TNF-{alpha} increased SV-SMC migration by 1.7-fold, an effect that was completely reversed by co-incubation with E2. Finally, TNF-{alpha} potently induced ICAM-1 and VCAM-1 expression in both SV-EC and SV-SMC. However there

  11. Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo.

    PubMed

    Ferreira, Lino S; Gerecht, Sharon; Shieh, Hester F; Watson, Nicki; Rupnick, Maria A; Dallabrida, Susan M; Vunjak-Novakovic, Gordana; Langer, Robert

    2007-08-01

    We report that human embryonic stem cells contain a population of vascular progenitor cells that have the ability to differentiate into endothelial-like and smooth muscle (SM)-like cells. Vascular progenitor cells were isolated from EBs grown in suspension for 10 days and were characterized by expression of the endothelial/hematopoietic marker CD34 (CD34+ cells). When these cells are subsequently cultured in EGM-2 (endothelial growth medium) supplemented with vascular endothelial growth factor-165 (50 ng/mL), they give rise to endothelial-like cells characterized by a cobblestone cell morphology, expression of endothelial markers (platelet endothelial cell-adhesion molecule-1, CD34, KDR/Flk-1, vascular endothelial cadherin, von Willebrand factor), incorporation of acetylated low-density lipoprotein, and formation of capillary-like structures when placed in Matrigel. In contrast, when CD34+ cells are cultured in EGM-2 supplemented with platelet-derived growth factor-BB (50 ng/mL), they give rise to SM-like cells characterized by spindle-shape morphology, expression of SM cell markers (alpha-SM actin, SM myosin heavy chain, calponin, caldesmon, SM alpha-22), and the ability to contract and relax in response to common pharmacological agents such as carbachol and atropine but rarely form capillary-like structures when placed in Matrigel. Implantation studies in nude mice show that both cell types contribute to the formation of human microvasculature. Some microvessels contained mouse blood cells, which indicates functional integration with host vasculature. Therefore, the vascular progenitors isolated from human embryonic stem cells using methods established in the present study could provide a means to examine the mechanisms of endothelial and SM cell development, and they could also provide a potential source of cells for vascular tissue engineering.

  12. MicroRNA-145 regulates platelet-derived growth factor-induced human aortic vascular smooth muscle cell proliferation and migration by targeting CD40

    PubMed Central

    Li, Yumei; Huang, Jiangnan; Jiang, Zhiyuan; Zhong, Yuanli; Xia, Mingjie; Wang, Hui; Jiao, Yang

    2016-01-01

    The objective of this study is to investigate the expression of microRNA (miR)-145 in human aortic vascular smooth muscle cells (VSMCs) and the effect of miR-145 in the biological behavior and expression of CD40 in VSMCs. Cells were treated with either miR-145 or miR-145 inhibitor. Cell proliferation was analyzed by a colony formation assay and a methyl thiazolyl tetrazolium assay. Cell migration and invasion were assessed using a transwell assay, an invasion assay, and a wound healing assay. A luciferase reporter assay was used to detect the interaction between miR-145 and CD40. Expression of α-SMA, calponin, osteopontin (OPN), epiregulin, activator protein-1 (AP-1) and CD40 was measured using real-time RT-PCR for mRNA levels and Western blotting for protein levels. Overexpression of miR-145 significantly inhibited VSMC proliferation, invasion and migration. Furthermore, OPN, epiregulin, AP-1 and CD40 expression at the mRNA and protein levels was down-regulated by overexpression of miR-145. However, α-SMA and calponin expression at the mRNA and protein levels was up-regulated by overexpression of miR-145. In addition, the luciferase reporter assay showed that CD40 may be a direct target gene of miR-145 in VSMC initiation and development. Moreover, these data demonstrate that the up-regulation of CD40 is critical for miR-145-mediated inhibitory effects on platelet-derived growth factor-induced cell proliferation and migration in human VSMCs. In summary, CD40, a direct target of miR-145, reverses the inhibitory effects of miR-145. These results suggest that the specific modulation of miR-145 in human VSMCs may be an attractive approach for the treatment of proliferative vascular diseases. PMID:27186305

  13. VA/Q distribution during heavy exercise and recovery in humans: implications for pulmonary edema

    NASA Technical Reports Server (NTRS)

    Schaffartzik, W.; Poole, D. C.; Derion, T.; Tsukimoto, K.; Hogan, M. C.; Arcos, J. P.; Bebout, D. E.; Wagner, P. D.

    1992-01-01

    Ventilation-perfusion (VA/Q) inequality has been shown to increase with exercise. Potential mechanisms for this increase include nonuniform pulmonary vasoconstriction, ventilatory time constant inequality, reduced large airway gas mixing, and development of interstitial pulmonary edema. We hypothesized that persistence of VA/Q mismatch after ventilation and cardiac output subside during recovery would be consistent with edema; however, rapid resolution would suggest mechanisms related to changes in ventilation and blood flow per se. Thirteen healthy males performed near-maximal cycle ergometry at an inspiratory PO2 of 91 Torr (because hypoxia accentuates VA/Q mismatch on exercise). Cardiorespiratory variables and inert gas elimination patterns were measured at rest, during exercise, and between 2 and 30 min of recovery. Two profiles of VA/Q distribution behavior emerged during heavy exercise: in group 1 an increase in VA/Q mismatch (log SDQ of 0.35 +/- 0.02 at rest and 0.44 +/- 0.02 at exercise; P less than 0.05, n = 7) and in group 2 no change in VA/Q mismatch (n = 6). There were no differences in anthropometric data, work rate, O2 uptake, or ventilation during heavy exercise between groups. Group 1 demonstrated significantly greater VA/Q inequality, lower vital capacity, and higher forced expiratory flow at 25-75% of forced vital capacity for the first 20 min during recovery than group 2. Cardiac index was higher in group 1 both during heavy exercise and 4 and 6 min postexercise. However, both ventilation and cardiac output returned toward baseline values more rapidly than did VA/Q relationships. Arterial pH was lower in group 1 during exercise and recovery. We conclude that greater VA/Q inequality in group 1 and its persistence during recovery are consistent with the hypothesis that edema occurs and contributes to the increase in VA/Q inequality during exercise. This is supported by observation of greater blood flows and acidosis and, presumably therefore

  14. Subcellular adaptation of the human diaphragm in chronic obstructive pulmonary disease.

    PubMed

    Orozco-Levi, M; Gea, J; Lloreta, J L; Félez, M; Minguella, J; Serrano, S; Broquetas, J M

    1999-02-01

    Pulmonary hyperinflation impairs the function of the diaphragm in patients with chronic obstructive pulmonary disease (COPD). However, it has been recently demonstrated that the muscle can counterbalance this deleterious effect, remodelling its structure (i.e. changing the proportion of different types of fibres). The aim of this study was to investigate whether the functional impairment present in COPD patients can be associated with structural subcellular changes of the diaphragm. Twenty individuals (60+/-9 yrs, 11 COPD patients and 9 subjects with normal spirometry) undergoing thoracotomy were included. Nutritional status and respiratory function were evaluated prior to surgery. Then, small samples of the costal diaphragm were obtained and processed for electron microscopy analysis. COPD patients showed a mean forced expiratory volume in one second (FEV1) of 60+/-9% predicted, a higher concentration of mitochondria (n(mit)) in their diaphragm than controls (0.62+/-0.16 versus 0.46+/-0.16 mitochondrial transections (mt) x microm(-2), p<0.05). On the other hand, subjects with air trapping (residual volume (RV)/total lung capacity (TLC) >37%) disclosed not only a higher n(mit) (0.63+/-0.17 versus 0.43+/-0.07 mt x microm(-2), p<0.05) but shorter sarcomeres (L(sar)) than subjects without this functional abnormality (2.08+/-0.16 to 2.27+/-0.15 microm, p<0.05). Glycogen stores were similar in COPD and controls. The severity of airways obstruction (i.e. FEV1) was associated with n(mit) (r=-0.555, p=0.01), while the amount of air trapping (i.e. RV/TLC) was found to correlate with both n(mit) (r=0.631, p=0.005) and L(sar) (r=-0.526, p<0.05). Finally, maximal inspiratory pressure (PI,max) inversely correlated with n(mit) (r=-0.547, p=0.01). In conclusion, impairment in lung function occurring in patients with chronic obstructive pulmonary disease is associated with subcellular changes in their diaphragm, namely a shortening in the length of sarcomeres and an increase in

  15. Airway smooth muscle changes in the nitrofen-induced congenital diaphragmatic hernia rat model.

    PubMed

    Belik, Jaques; Davidge, Sandra T; Zhang, Wei; Pan, Jingyi; Greer, John J

    2003-05-01

    In the fetal rat, nitrofen induces congenital diaphragmatic hernia (CDH) and pulmonary vascular remodeling similar to what is observed in the human condition. Airway hyperactivity is common in infants with CDH and attributed to the ventilator-induced airway damage. The purpose of this study was to test the hypothesis that airway smooth muscle mechanical properties are altered in the nitrofen-induced CDH rat model. Lungs from nitrofen-exposed fetuses with hernias (CDH) or intact diaphragm (nitrofen) and untreated fetuses (control) were studied on gestation d 21. The left intrapulmonary artery and bronchi were removed and mounted on a wire myograph, and lung expression, content, and immunolocalization of cyclooxygenases COX-1 and COX-2 were evaluated. Pulmonary artery muscle in the CDH group had significantly (p < 0.01) lower force generation compared with control and nitrofen groups. In contrast, the same generation bronchial smooth muscle of the CDH and nitrofen groups developed higher force compared with control. Whereas no differences were found in endothelium-dependent pulmonary vascular muscle tone, the epithelium-dependent airway muscle relaxation was significantly decreased (p < 0.01) in the CDH and nitrofen groups. The lung mRNA levels of COX-1 and COX-2 were increased in the CDH and nitrofen groups. COX-1 vascular and airway immunostaining, as well as COX-1 and COX-2 lung protein content, were increased in the CDH group. This is the first report of airway smooth muscle abnormalities in the nitrofen-induced fetal rat model of CDH. We speculate that congenital airway muscle changes may be present in the human form of this disease. PMID:12612200

  16. Lipid-based carriers for pulmonary products: preclinical development and case studies in humans.

    PubMed

    Cipolla, David; Shekunov, Boris; Blanchard, Jim; Hickey, Anthony

    2014-08-01

    A number of lipid-based technologies have been applied to pharmaceuticals to modify their drug release characteristics, and additionally, to improve the drug loading for poorly soluble drugs. These technologies, including solid-state lipid microparticles, many of which are porous in nature, liposomes, solid lipid nanoparticles and nanostructured lipid carriers, are increasingly being developed for inhalation applications. This article provides a review of the rationale for the use of these technologies in the pulmonary delivery of drugs, and summarizes the manufacturing processes and their limitations, the in vitro and in vivo performance of these systems, the safety of these lipid-based systems in the lung, and their promise for commercialization. PMID:24819218

  17. Versican accumulates in vascular lesions in pulmonary arterial hypertension.

    PubMed

    Chang, Ya-Ting; Chan, Christina K; Eriksson, Inger; Johnson, Pamela Y; Cao, Xiaofang; Westöö, Christian; Norvik, Christian; Andersson-Sjöland, Annika; Westergren-Thorsson, Gunilla; Johansson, Staffan; Hedin, Ulf; Kjellén, Lena; Wight, Thomas N; Tran-Lundmark, Karin

    2016-09-01

    Pulmonary arterial hypertension (PAH) is a lethal condition for which there is no effective curative pharmacotherapy. PAH is characterized by vasoconstriction, wall thickening of pulmonary arteries, and increased vascular resistance. Versican is a chondroitin sulfate proteoglycan in the vascular extracellular matrix that accumulates following vascular injury and promotes smooth-muscle cell proliferation in systemic arteries. Here, we investigated whether versican may play a similar role in PAH. Paraffin-embedded lung sections from patients who underwent lung transplantation to treat PAH were used for immunohistochemistry. The etiologies of PAH in the subjects involved in this study were idiopathic PAH, scleroderma, and congenital heart disease (atrial septal defect) with left-to-right shunt. Independent of the underlying etiology, increased versican immunostaining was observed in areas of medial thickening, in neointima, and in plexiform lesions. Western blot of lung tissue lysates confirmed accumulation of versican in patients with PAH. Double staining for versican and CD45 showed only occasional colocalization in neointima of high-grade lesions and plexiform lesions. In vitro, metabolic labeling with [(35)S]sulfate showed that human pulmonary artery smooth-muscle cells (hPASMCs) produce mainly chondroitin sulfate glycosaminoglycans. In addition, hypoxia, but not cyclic stretch, was demonstrated to increase both versican messenger RNA expression and protein synthesis by hPASMCs. Versican accumulates in vascular lesions of PAH, and the amount of versican correlates more with lesion severity than with underlying etiology or inflammation. Hypoxia is a possible regulator of versican accumulation, which may promote proliferation of pulmonary smooth-muscle cells and vascular remodeling in PAH. PMID:27683612

  18. Versican accumulates in vascular lesions in pulmonary arterial hypertension

    PubMed Central

    Chan, Christina K.; Eriksson, Inger; Johnson, Pamela Y.; Cao, Xiaofang; Westöö, Christian; Norvik, Christian; Andersson-Sjöland, Annika; Westergren-Thorsson, Gunilla; Johansson, Staffan; Hedin, Ulf; Kjellén, Lena; Wight, Thomas N.; Tran-Lundmark, Karin

    2016-01-01

    Abstract Pulmonary arterial hypertension (PAH) is a lethal condition for which there is no effective curative pharmacotherapy. PAH is characterized by vasoconstriction, wall thickening of pulmonary arteries, and increased vascular resistance. Versican is a chondroitin sulfate proteoglycan in the vascular extracellular matrix that accumulates following vascular injury and promotes smooth-muscle cell proliferation in systemic arteries. Here, we investigated whether versican may play a similar role in PAH. Paraffin-embedded lung sections from patients who underwent lung transplantation to treat PAH were used for immunohistochemistry. The etiologies of PAH in the subjects involved in this study were idiopathic PAH, scleroderma, and congenital heart disease (atrial septal defect) with left-to-right shunt. Independent of the underlying etiology, increased versican immunostaining was observed in areas of medial thickening, in neointima, and in plexiform lesions. Western blot of lung tissue lysates confirmed accumulation of versican in patients with PAH. Double staining for versican and CD45 showed only occasional colocalization in neointima of high-grade lesions and plexiform lesions. In vitro, metabolic labeling with [35S]sulfate showed that human pulmonary artery smooth-muscle cells (hPASMCs) produce mainly chondroitin sulfate glycosaminoglycans. In addition, hypoxia, but not cyclic stretch, was demonstrated to increase both versican messenger RNA expression and protein synthesis by hPASMCs. Versican accumulates in vascular lesions of PAH, and the amount of versican correlates more with lesion severity than with underlying etiology or inflammation. Hypoxia is a possible regulator of versican accumulation, which may promote proliferation of pulmonary smooth-muscle cells and vascular remodeling in PAH.

  19. Versican accumulates in vascular lesions in pulmonary arterial hypertension

    PubMed Central

    Chan, Christina K.; Eriksson, Inger; Johnson, Pamela Y.; Cao, Xiaofang; Westöö, Christian; Norvik, Christian; Andersson-Sjöland, Annika; Westergren-Thorsson, Gunilla; Johansson, Staffan; Hedin, Ulf; Kjellén, Lena; Wight, Thomas N.; Tran-Lundmark, Karin

    2016-01-01

    Abstract Pulmonary arterial hypertension (PAH) is a lethal condition for which there is no effective curative pharmacotherapy. PAH is characterized by vasoconstriction, wall thickening of pulmonary arteries, and increased vascular resistance. Versican is a chondroitin sulfate proteoglycan in the vascular extracellular matrix that accumulates following vascular injury and promotes smooth-muscle cell proliferation in systemic arteries. Here, we investigated whether versican may play a similar role in PAH. Paraffin-embedded lung sections from patients who underwent lung transplantation to treat PAH were used for immunohistochemistry. The etiologies of PAH in the subjects involved in this study were idiopathic PAH, scleroderma, and congenital heart disease (atrial septal defect) with left-to-right shunt. Independent of the underlying etiology, increased versican immunostaining was observed in areas of medial thickening, in neointima, and in plexiform lesions. Western blot of lung tissue lysates confirmed accumulation of versican in patients with PAH. Double staining for versican and CD45 showed only occasional colocalization in neointima of high-grade lesions and plexiform lesions. In vitro, metabolic labeling with [35S]sulfate showed that human pulmonary artery smooth-muscle cells (hPASMCs) produce mainly chondroitin sulfate glycosaminoglycans. In addition, hypoxia, but not cyclic stretch, was demonstrated to increase both versican messenger RNA expression and protein synthesis by hPASMCs. Versican accumulates in vascular lesions of PAH, and the amount of versican correlates more with lesion severity than with underlying etiology or inflammation. Hypoxia is a possible regulator of versican accumulation, which may promote proliferation of pulmonary smooth-muscle cells and vascular remodeling in PAH. PMID:27683612

  20. Dynamic Changes of Pulmonary Arterial Pressure and Ductus Arteriosus in Human Newborns From Birth to 72 Hours of Age

    PubMed Central

    Kang, Chunmiao; Zhao, Enfa; Zhou, Yinghua; Zhao, Huayun; Liu, Yunyao; Gao, Ningning; Huang, Xiaoxin; Liu, Baomin

    2016-01-01

    Abstract Normal pulmonary artery pressure and pulmonary hypertension assessment of newborns is rarely reported. The aim of the study is to explore dynamic changes of pulmonary arterial pressure and ductus arteriosus in human newborns from birth to 72 h of age with echocardiography. A total of 76 cases of normal newborns were prospectively detected by echocardiography after birth of 2 h, 6 h, 12 h, 24 h, 48 h, and 72 h, respectively. Ductus arteriosus diameter, blood shunt direction, blood flow velocity, and pressure gradient were recorded. The brachial artery blood pressure were measured to estimate the pulmonary artery systolic pressure (PASP) and pulmonary artery diastolic pressure (PADP) using patent ductus arteriosus pressure gradient method. The mean pulmonary artery pressure (PAMP) were calculated by equation of PAMP = PADP + 1/3(PASP-PADP). (1) There were 76 cases of normal newborns. Among them, 29 cases (38%) ductus arteriosus closed within 24 h, 59 cases (78%) closed within 48 h, 72 cases (95%) closed within 72 h, and 4 cases (5%) ductus arteriosus not closed within 72 h. (2) The ductus arteriosus diameter of 2 h, 6 h, 12 h, 24 h, 48 h, and 72 h after birth was 4.60 ± 0.59 mm, 3.37 ± 0.59 mm, 2.47 ± 0.49 mm, 1.89 ± 0.41 mm, 1.61 ± 0.35 mm, and 1.20 ± 0.24 mm, respectively. Compared all of the ductus arteriosus diameter of the above time periods, there were statistically differences with P < 0.05, respectively. (3) The mean PASP in 2 h, 6 h, 12 h, 24 h, 48 h, 72 h after birth were 76.58 ± 7.28 mm Hg, 65.53 ± 9.25mm Hg, 52.51 ± 9.07 mm Hg, 43.83 ± 7.90 mm Hg, 38.07 ± 8.26 mm Hg, and 36 ± 6.48 mm Hg, respectively. The PADP of the above time period were 37.88 ± 5.56 mm Hg, 29.93 ± 7.91 mm Hg, 23.43 ± 7.37 mm Hg, 19.70 ± 8.51 mm Hg, 13.85 ± 5.58 mm Hg, 13.25 ± 6.18 mm Hg, respectively. The PAMP of the

  1. Role of TGF-β1 and MAP Kinases in the Antiproliferative Effect of Aspirin in Human Vascular Smooth Muscle Cells

    PubMed Central

    Redondo, Santiago; Ruiz, Emilio; Gordillo-Moscoso, Antonio; Navarro-Dorado, Jorge; Ramajo, Marta; Carnero, Manuel; Reguillo, Fernando; Rodriguez, Enrique; Tejerina, Teresa

    2010-01-01

    Background We aimed to test the antiproliferative effect of acetylsalicylic acid (ASA) on vascular smooth muscle cells (VSMC) from bypass surgery patients and the role of transforming growth factor beta 1 (TGF-β1). Methodology/Principal Findings VSMC were isolated from remaining internal mammary artery from patients who underwent bypass surgery. Cell proliferation and DNA fragmentation were assessed by ELISA. Protein expression was assessed by Western blot. ASA inhibited BrdU incorporation at 2 mM. Anti-TGF-β1 was able to reverse this effect. ASA (2 mM) induced TGF-β1 secretion; however it was unable to induce Smad activation. ASA increased p38MAPK phosphorylation in a TGF-β1-independent manner. Anti-CD105 (endoglin) was unable to reverse the antiproliferative effect of ASA. Pre-surgical serum levels of TGF-β1 in patients who took at antiplatelet doses ASA were assessed by ELISA and remained unchanged. Conclusions/Significance In vitro antiproliferative effects of aspirin (at antiinflammatory concentration) on human VSMC obtained from bypass patients are mediated by TGF-β1 and p38MAPK. Pre-surgical serum levels of TGF- β1 from bypass patients who took aspirin at antiplatelet doses did not change. PMID:20339548

  2. Effect of endothelium mimicking self-assembled nanomatrices on cell adhesion and spreading of human endothelial cells and smooth muscle cells

    PubMed Central

    Andukuri, Adinarayana; Minor, Will P.; Kushwaha, Meenakshi; Anderson, Joel M.; Jun, Ho-Wook

    2009-01-01

    The goal of this study is to develop unique native endothelium mimicking nanomatrices and evaluate their effects on adhesion and spreading of human umbilical vein endothelial cells (HUVECs) and aortic smooth muscle cells (AoSMCs). These nanomatrices were developed by self-assembly of peptide amphiphiles (PAs) through a solvent evaporation technique. Three PAs, one containing the Tyr-Ile-Gly-Ser-Arg (YIGSR) ligand, second containing the Val-Ala-Pro-Gly (VAPG) ligand, and a third without cell adhesive ligands were developed. Cell adhesion and spreading were evaluated by a PicoGreen-DNA assay and Live/Dead assay respectively. Our results show that PA-YIGSR significantly enhances HUVEC adhesion (26704±2708) spreading (84 ±8%), and proliferation (50±2%) when compared to other PAs. PA-VAPG and PA-YIGSR showed significantly greater AoSMC adhesion when compared to PA-S. PA-VAPG also showed significantly greater spreading of AoSMCs (63 ±11%) when compared with other PAs. Also, all the PAs showed significantly reduced platelet adhesion when compared with collagen I (control). These findings would facilitate the development of novel vascular grafts, heart valves, and cell based therapies for cardiovascular diseases. PMID:19800987

  3. Effects of serotonin on expression of the LDL receptor family member LR11 and 7-ketocholesterol-induced apoptosis in human vascular smooth muscle cells

    SciTech Connect

    Nagayama, Daiji; Ishihara, Noriko; Bujo, Hideaki; Shirai, Kohji; Tatsuno, Ichiro

    2014-04-18

    Highlights: • The dedifferentiation of VSMCs in arterial intima is involved in atherosclerosis. • 5-HT showed proliferative effect on VSMCs which was abolished by sarpogrelate. • 5-HT enhanced expression of LR11 mRNA in VSMCs which was abolished by sarpogrelate. • 5-HT suppressed 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. • The mechanisms explain the 5-HT-induced remodeling of arterial structure. - Abstract: Serotonin (5-HT) is a known mitogen for vascular smooth muscle cells (VSMCs). The dedifferentiation and proliferation/apoptosis of VSMCs in the arterial intima represent one of the atherosclerotic changes. LR11, a member of low-density lipoprotein receptor family, may contribute to the proliferation of VSMCs in neointimal hyperplasia. We conducted an in vitro study to investigate whether 5-HT is involved in LR11 expression in human VSMCs and apoptosis of VSMCs induced by 7-ketocholesterol (7KCHO), an oxysterol that destabilizes plaque. 5-HT enhanced the proliferation of VSMCs, and this effect was abolished by sarpogrelate, a selective 5-HT2A receptor antagonist. Sarpogrelate also inhibited the 5-HT-enhanced LR11 mRNA expression in VSMCs. Furthermore, 5-HT suppressed the 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. These findings provide new insights on the changes in the differentiation stage of VSMCs mediated by 5-HT.

  4. Biological behaviour of human umbilical artery smooth muscle cell grown on nickel-free and nickel-containing stainless steel for stent implantation

    PubMed Central

    Li, Liming; An, Liwen; Zhou, Xiaohang; Pan, Shuang; Meng, Xin; Ren, Yibin; Yang, Ke; Guan, Yifu

    2016-01-01

    To evaluate the clinical potential of high nitrogen nickel-free austenitic stainless steel (HNNF SS), we have compared the cellular and molecular responses of human umbilical artery smooth muscle cells (HUASMCs) to HNNF SS and 316L SS (nickel-containing austenitic 316L stainless steel). CCK-8 analysis and flow cytometric analysis were used to assess the cellular responses (proliferation, apoptosis, and cell cycle), and quantitative real-time PCR (qRT-PCR) was used to analyze the gene expression profiles of HUASMCs exposed to HNNF SS and 316L SS, respectively. CCK-8 analysis demonstrated that HUASMCs cultured on HNNF SS proliferated more slowly than those on 316L SS. Flow cytometric analysis revealed that HNNF SS could activate more cellular apoptosis. The qRT-PCR results showed that the genes regulating cell apoptosis and autophagy were up-regulated on HNNF SS. Thus, HNNF SS could reduce the HUASMC proliferation in comparison to 316L SS. The findings furnish valuable information for developing new biomedical materials for stent implantation. PMID:26727026

  5. The ability of AIF-1 to activate human vascular smooth muscle cells is lost by mutations in the EF-hand calcium-binding region

    SciTech Connect

    Autieri, Michael V. . E-mail: mautieri@temple.edu; Chen Xing

    2005-07-01

    Allograft Inflammatory Factor-1 (AIF-1) is a cytoplasmic calcium-binding protein expressed in vascular smooth muscle cells (VSMC) in response to injury or cytokine stimulation. AIF-1 contains a partially conserved EF-hand calcium-binding domain, and participates in VSMC activation by activation of Rac1 and induction of Granulocyte-Colony Stimulating Factor (G-CSF) expression; however, the mechanism whereby AIF-1 mediates these effects is presently uncharacterized. To determine if calcium binding plays a functional role in AIF-1 activity, a single site-specific mutation was made in the EF-hand calcium-binding domain to abrogate binding of calcium (AIF-1{delta}A), which was confirmed by calcium overlay. Functionally, similar to wild-type AIF-1, AIF-1{delta}A was able to polymerize F-actin in vitro. However, in contrast to wild-type AIF-1, over-expression of AIF-1{delta}A was unable to increase migration or proliferation of primary human VSMC. Further, it was unable to activate Rac1, or induce G-CSF expression to the degree as wild-type AIF-1. Taken together, modification of the wild-type EF-hand domain and native calcium-binding activity results in a loss of AIF-1 function. We conclude that appropriate calcium-binding potential is critical in AIF-1-mediated effects on VSMC pathophysiology, and that AIF-1 activity is mediated by Rac1 activation and G-CSF expression.

  6. Activation of protease-activated receptors (PARs)-1 and -2 promotes alpha-smooth muscle actin expression and release of cytokines from human lung fibroblasts

    PubMed Central

    Asokananthan, Nithiananthan; Lan, Rommel S; Graham, Peter T; Bakker, Anthony J; Tokanović, Ana; Stewart, Geoffrey A

    2015-01-01

    Previous studies have shown that protease-activated receptors (PARs) play an important role in various physiological processes. In the present investigation, we determined the expression of PARs on human lung fibroblasts (HLF-1) and whether they were involved in cellular differentiation and pro-inflammatory cytokine and prostaglandin (PGE2) secretion. PAR-1, PAR-2, PAR-3, and PAR-4 were detected in fibroblasts using RT-PCR, immunocytochemistry, and flow cytometry. Increased expression of PAR-4, but not other PARs, was observed in fibroblasts stimulated with phorbol myristate acetate. The archetypical activators of PARs, namely, thrombin and trypsin, as well as PAR-1 and PAR-2 agonist peptides, stimulated transient increases in intracellular Ca2+, and promoted increased α-smooth muscle actin expression. The proteolytic and peptidic PAR activators also stimulated the release of IL-6 and IL-8, as well as PGE2, with a rank order of potency of PAR-1 > PAR-2. The combined stimulation of PAR-1 and PAR-2 resulted in an additive release of both IL-6 and IL-8. In contrast, PAR-3 and PAR-4 agonist peptides, as well as all the PAR control peptides examined, were inactive. These results suggest an important role for PARs associated with fibroblasts in the modulation of inflammation and remodeling in the airway. PMID:25663523

  7. Persimmon peel extract attenuates PDGF-BB-induced human aortic smooth muscle cell migration and invasion through inhibition of c-Src activity.

    PubMed

    Son, Joe Eun; Hwang, Mun Kyung; Lee, Eunjung; Seo, Sang Gwon; Kim, Jong-Eun; Jung, Sung Keun; Kim, Jong Rhan; Ahn, Gwang-Hwan; Lee, Ki Won; Lee, Hyong Joo

    2013-12-15

    The unregulated migration and invasion of human aortic smooth muscle cells (HASMCs) into the intima is a crucial step in the development of atherosclerosis. Recently, the oriental persimmon extract (Diospyros kaki Thunb. cv. Fuyu) has been investigated for its anti-atherogenic properties, but the molecular mechanisms involved remain unclear. We investigated the inhibitory effects of persimmon peel and flesh extract on the platelet-derived growth factor (PDGF) BB-induced MMP-1 expression using Western blot, and abnormal migration and invasion of HASMCs using a modified Boyden chamber assay and a wound healing assay. We also evaluated the inhibitory effects of persimmon peel extract on aortic vessel thickening using a rat aortic sprouting assay. Persimmon peel (PPE), but not flesh extract (PFE), inhibited PDGF-BB-induced MMP-1 expression, cell migration and invasion in HASMCs, while suppressing the rat aortic sprouting. Western blot and in vitro kinase assay data demonstrated that PPE inhibited Src kinase activity and subsequently attenuated PDGF-BB-induced phosphorylation of MAPK and Akt signalling pathways. Taken together, our results indicate that persimmon peel might possess a potential anti-atherogenic effect through attenuation of ASMCs migration and invasion and aortic sprouting by direct inhibition of the c-Src kinase activity.

  8. Activation of protease-activated receptors (PARs)-1 and -2 promotes alpha-smooth muscle actin expression and release of cytokines from human lung fibroblasts.

    PubMed

    Asokananthan, Nithiananthan; Lan, Rommel S; Graham, Peter T; Bakker, Anthony J; Tokanović, Ana; Stewart, Geoffrey A

    2015-02-01

    Previous studies have shown that protease-activated receptors (PARs) play an important role in various physiological processes. In the present investigation, we determined the expression of PARs on human lung fibroblasts (HLF-1) and whether they were involved in cellular differentiation and pro-inflammatory cytokine and prostaglandin (PGE2) secretion. PAR-1, PAR-2, PAR-3, and PAR-4 were detected in fibroblasts using RT-PCR, immunocytochemistry, and flow cytometry. Increased expression of PAR-4, but not other PARs, was observed in fibroblasts stimulated with phorbol myristate acetate. The archetypical activators of PARs, namely, thrombin and trypsin, as well as PAR-1 and PAR-2 agonist peptides, stimulated transient increases in intracellular Ca(2+), and promoted increased α-smooth muscle actin expression. The proteolytic and peptidic PAR activators also stimulated the release of IL-6 and IL-8, as well as PGE2, with a rank order of potency of PAR-1 > PAR-2. The combined stimulation of PAR-1 and PAR-2 resulted in an additive release of both IL-6 and IL-8. In contrast, PAR-3 and PAR-4 agonist peptides, as well as all the PAR control peptides examined, were inactive. These results suggest an important role for PARs associated with fibroblasts in the modulation of inflammation and remodeling in the airway.

  9. Biological behaviour of human umbilical artery smooth muscle cell grown on nickel-free and nickel-containing stainless steel for stent implantation

    NASA Astrophysics Data System (ADS)

    Li, Liming; An, Liwen; Zhou, Xiaohang; Pan, Shuang; Meng, Xin; Ren, Yibin; Yang, Ke; Guan, Yifu

    2016-01-01

    To evaluate the clinical potential of high nitrogen nickel-free austenitic stainless steel (HNNF SS), we have compared the cellular and molecular responses of human umbilical artery smooth muscle cells (HUASMCs) to HNNF SS and 316L SS (nickel-containing austenitic 316L stainless steel). CCK-8 analysis and flow cytometric analysis were used to assess the cellular responses (proliferation, apoptosis, and cell cycle), and quantitative real-time PCR (qRT-PCR) was used to analyze the gene expression profiles of HUASMCs exposed to HNNF SS and 316L SS, respectively. CCK-8 analysis demonstrated that HUASMCs cultured on HNNF SS proliferated more slowly than those on 316L SS. Flow cytometric analysis revealed that HNNF SS could activate more cellular apoptosis. The qRT-PCR results showed that the genes regulating cell apoptosis and autophagy were up-regulated on HNNF SS. Thus, HNNF SS could reduce the HUASMC proliferation in comparison to 316L SS. The findings furnish valuable information for developing new biomedical materials for stent implantation.

  10. TGF-β1 induces human aortic vascular smooth muscle cell phenotype switch through PI3K/AKT/ID2 signaling

    PubMed Central

    Zhu, Shui-Bo; Zhu, Jian; Zhou, Zi-Zi; Xi, Er-Ping; Wang, Rong-Ping; Zhang, Yu

    2015-01-01

    The vascular smooth muscle cell (VSMC) phenotypic switch is considered to be the key pathophysiological change in various cardiovascular diseases, such as aortic dissection, atherosclerosis, and hypertension. The results in this study showed that TGF-β1 promotes the proliferation, migration and morphological changes of VSMC.TGF-β1 promoted the expressions of PI3K, P-PI3K, AKT, P-AKT, ID2, and OPN protein and suppressed the expressions of α-SMA and SM22α protein; the opposite results were observed for TGF-β1 inhibitor group, AKT inhibitor group and Combined inhibitors group. After the stimulation of TGF-β1 signaling, the mRNA levels of PI3K, AKT, ID2, and OPN were the highest, while the mRNA levels of α-SMA and SM22α were the lowest; the opposite results were found in the same groups above. These results suggested the PI3K/AKT/ID2 signaling pathway is involved in TGF-β1-mediated human aortic VSMC phenotypic switching, that is from a contractile to synthetic phenotype, and Combined inhibitors was more effective in inhibiting the phenotypic switch than a single inhibitor. The Combined inhibitors experiments may provide new avenues for the prevention and treatment of thoracic aortic dissection (TAD) that are based on the pathological effects of phenotypic switching. PMID:26885273

  11. Experimental tests of a superposition hypothesis to explain the relationship between the vestibuloocular reflex and smooth pursuit during horizontal combined eye-head tracking in humans

    NASA Technical Reports Server (NTRS)

    Huebner, W. P.; Leigh, R. J.; Seidman, S. H.; Thomas, C. W.; Billian, C.; DiScenna, A. O.; Dell'Osso, L. F.

    1992-01-01

    1. We used a modeling approach to test the hypothesis that, in humans, the smooth pursuit (SP) system provides the primary signal for cancelling the vestibuloocular reflex (VOR) during combined eye-head tracking (CEHT) of a target moving smoothly in the horizontal plane. Separate models for SP and the VOR were developed. The optimal values of parameters of the two models were calculated using measured responses of four subjects to trials of SP and the visually enhanced VOR. After optimal parameter values were specified, each model generated waveforms that accurately reflected the subjects' responses to SP and vestibular stimuli. The models were then combined into a CEHT model wherein the final eye movement command signal was generated as the linear summation of the signals from the SP and VOR pathways. 2. The SP-VOR superposition hypothesis was tested using two types of CEHT stimuli, both of which involved passive rotation of subjects in a vestibular chair. The first stimulus consisted of a "chair brake" or sudden stop of the subject's head during CEHT; the visual target continued to move. The second stimulus consisted of a sudden change from the visually enhanced VOR to CEHT ("delayed target onset" paradigm); as the vestibular chair rotated past the angular position of the stationary visual stimulus, the latter started to move in synchrony with the chair. Data collected during experiments that employed these stimuli were compared quantitatively with predictions made by the CEHT model. 3. During CEHT, when the chair was suddenly and unexpectedly stopped, the eye promptly began to move in the orbit to track the moving target. Initially, gaze velocity did not completely match target velocity, however; this finally occurred approximately 100 ms after the brake onset. The model did predict the prompt onset of eye-in-orbit motion after the brake, but it did not predict that gaze velocity would initially be only approximately 70% of target velocity. One possible

  12. Nuclear membrane R-type calcium channels mediate cytosolic ET-1-induced increase of nuclear calcium in human vascular smooth muscle cells.

    PubMed

    Bkaily, Ghassan; Avedanian, Levon; Al-Khoury, Johny; Chamoun, Marc; Semaan, Rana; Jubinville-Leblanc, Cynthia; D'Orléans-Juste, Pedro; Jacques, Danielle

    2015-04-01

    The objective of this work was to verify whether, as in the case of the plasma membrane of human vascular smooth muscle cells (hVSMCs), cytosolic ET-1-induced increase of nuclear calcium is mediated via the activation of calcium influx through the steady-state R-type calcium channel. Pharmacological tools to identify the R-type calcium channels, as well as real 3-D confocal microscopy imaging techniques coupled to calcium fluorescent probes, were used to study the effect of cytosolic ET-1 on nuclear calcium in isolated nuclei of human hepatocytes and plasma membrane perforated hVSMCs. Our results showed that pre-treatment with pertussis toxin (PTX) or cholera toxin (CTX) prevented cytosolic ET-1 (10(-9) mol/L) from inducing a sustained increase in nuclear calcium. Furthermore, the L-type calcium channel blocker nifedipine did not prevent cytosolic ET-1 from inducing an increase in nuclear calcium, as opposed to the dual L- and R-type calcium channel blocker isradipine (PN200-110) (in the presence of nifedipine). In conclusion, the preventative effect with PTX and CTX, and the absence of an effect with nifedipine, as well as the blockade by isradipine on cytosolic ET-1-induced increase in nuclear calcium, suggest that this nuclear calcium influx in hVSMCs is due to activation of the steady-state R-type calcium channel. The sarcolemmal and nuclear membrane R-type calcium channels in hVSMCs are involved in ET-1 modulation of vascular tone in physiology and pathology.

  13. Sphingosine-1-phosphate inhibits PDGF-induced chemotaxis of human arterial smooth muscle cells: spatial and temporal modulation of PDGF chemotactic signal transduction

    PubMed Central

    1995-01-01

    Activation of the PDGF receptor on human arterial smooth muscle cells (SMC) induces migration and proliferation via separable signal transduction pathways. Sphingosine-1-phosphate (Sph-1-P) can be formed following PDGF receptor activation and therefore may be implicated in PDGF-receptor signal transduction. Here we show that Sph-1-P does not significantly affect PDGF-induced DNA synthesis, proliferation, or activation of mitogenic signal transduction pathways, such as the mitogen-activated protein (MAP) kinase cascade and PI 3-kinase, in human arterial SMC. On the other hand, Sph-1-P strongly mimics PDGF receptor-induced chemotactic signal transduction favoring actin filament disassembly. Although Sph-1-P mimics PDGF, exogenously added Sph-1-P induces more prolonged and quantitatively greater PIP2 hydrolysis compared to PDGF-BB, a markedly stronger calcium mobilization and a subsequent increase in cyclic AMP levels and activation of cAMP-dependent protein kinase. This excessive and prolonged signaling favors actin filament disassembly by Sph-1-P, and results in inhibition of actin nucleation, actin filament assembly and formation of focal adhesion sites. Sph-1-P-induced interference with the dynamics of PDGF-stimulated actin filament disassembly and assembly results in a marked inhibition of cell spreading, of extension of the leading lamellae toward PDGF, and of chemotaxis toward PDGF. The results suggest that spatial and temporal changes in phosphatidylinositol turnover, calcium mobilization and actin filament disassembly may be critical to PDGF-induced chemotaxis and suggest a possible role for endogenous Sph-1-P in the regulation of PDGF receptor chemotactic signal transduction. PMID:7790372

  14. Prostaglandin E2 enhances interleukin-8 production via EP4 receptor in human pulmonary microvascular endothelial cells.

    PubMed

    Aso, Hiromichi; Ito, Satoru; Mori, Akemi; Morioka, Masataka; Suganuma, Nobukazu; Kondo, Masashi; Imaizumi, Kazuyoshi; Hasegawa, Yoshinori

    2012-01-15

    Prostaglandin E(2) (PGE(2)) is a bioactive prostanoid implicated in the inflammatory processes of acute lung injury/acute respiratory distress syndrome. This study investigated whether PGE(2) can induce production of interleukin (IL)-8, the major chemokine for neutrophil activation, from human pulmonary microvascular endothelial cells (HPMVECs). PGE(2) significantly enhanced IL-8 protein production with increases in IL-8 mRNA expression and intracellular cAMP levels. HPMVECs expressed only EP4 receptor mRNA. The PGE(2) effects were mimicked by a selective EP4 receptor agonist, ONO-AE1-329, and inhibited by a selective EP4 receptor antagonist, ONO-AE3-208, or a protein kinase A inhibitor, Rp-adenosine 3',5'-cyclic monophosphorothioate triethylamine salt. The specific agonist for EP1, EP2, or EP3 receptor did not induce IL-8 production. PGE(2)-induced IL-8 production was accompanied by p38 phosphorylation and was significantly inhibited by a p38 inhibitor, SB-203580, but not by an ERK1/2 inhibitor, U-0126, or a JNK inhibitor, SP-600125. Additionally, PGE(2) increased cyclooxygenase-2 expression with no change in constitutive cyclooxygenase-1 expression, suggesting possible involvement of an autocrine or paracrine manner. In conclusion, PGE(2) enhances IL-8 production via EP4 receptor coupled to G(s) protein in HPMVECs. Activation of the cAMP/protein kinase A pathway, followed by p38 activation, is essential for these mechanisms. Because neutrophils play a critical role in the inflammation of acute lung injury/acute respiratory distress syndrome, IL-8 released from the pulmonary microvasculature in response to PGE(2) may contribute to pathophysiology of this disease.

  15. Arterial and pulmonary arterial hemodynamics and oxygen delivery/extraction in normal humans exposed to hyperbaric air and oxygen.

    PubMed

    Weaver, Lindell K; Howe, Steve; Snow, Gregory L; Deru, Kayla

    2009-07-01

    Divers and hyperbaric chamber attendants breathe hyperbaric air routinely. Hyperbaric oxygen (HBO(2)) is used therapeutically frequently. Although much is understood about the hemodynamic physiology and gas exchange effects during hyperbaric air and HBO(2) exposure, arterial and pulmonary arterial (PA) catheter data, including blood gas values during hyperbaric air and HBO(2) exposure of normal humans, have not been reported. We exposed 10 healthy volunteers instrumented with arterial and PA catheters to air at 0.85, 3.0, 2.5, 2.0, 1.3 (decompression stop), 1.12 (decompression stop), and 0.85 atm abs (our altitude) and then at identical pressures breathing O(2) followed by atmospheric pressure air while we measured arterial and PA pressures (PAP), cardiac output (Q), and blood gas measurements from both arterial and PA catheters. Although hemodynamic changes occurred during exposure to both hyperbaric air and HBO(2), we observed a greater magnitude of change under HBO(2) conditions: heart rate changes ranged from -9 to -19% (air to O(2)), respiratory rate from -12 to -17%, Q from -7 to -18%, PAP from -18 to -19%, pulmonary vascular resistance from -38 to -48%, and right-to-left shunt fraction from -87 to -107%. Mixed venous CO(2) fell 8% from baseline during HBO(2) despite mixed venous O(2) tensions of several hundred Torr. The stroke volume, O(2) delivery, and O(2) consumption did not change across exposures. The arterial and mixed venous partial pressures of O(2) and contents were elevated, as predicted. O(2) extraction increased 37% during HBO(2).

  16. Endothelial HIF signaling regulates pulmonary fibrosis-associated pulmonary hypertension.

    PubMed

    Bryant, Andrew J; Carrick, Ryan P; McConaha, Melinda E; Jones, Brittany R; Shay, Sheila D; Moore, Christy S; Blackwell, Thomas R; Gladson, Santhi; Penner, Niki L; Burman, Ankita; Tanjore, Harikrishna; Hemnes, Anna R; Karwandyar, Ayub K; Polosukhin, Vasiliy V; Talati, Megha A; Dong, Hui-Jia; Gleaves, Linda A; Carrier, Erica J; Gaskill, Christa; Scott, Edward W; Majka, Susan M; Fessel, Joshua P; Haase, Volker H; West, James D; Blackwell, Timothy S; Lawson, William E

    2016-02-01

    Pulmonary hypertension (PH) complicating chronic parenchymal lung disease, such as idiopathic pulmonary fibrosis, results in significant morbidity and mortality. Since the hypoxia-inducible factor (HIF) signaling pathway is important for development of pulmonary hypertension in chronic hypoxia, we investigated whether HIF signaling in vascular endothelium regulates development of PH related to pulmonary fibrosis. We generated a transgenic model in which HIF is deleted within vascular endothelial cells and then exposed these mice to chronic intraperitoneal bleomycin to induce PH associated with lung fibrosis. Although no differences in the degree of fibrotic remodeling were observed, we found that endothelial HIF-deficient mice were protected against development of PH, including right ventricle and pulmonary vessel remodeling. Similarly, endothelial HIF-deficient mice were protected from PH after a 4-wk exposure to normobaric hypoxia. In vitro studies of pulmonary vascular endothelial cells isolated from the HIF-targeted mice and controls revealed that endothelial HIF signaling increases endothelial cell expression of connective tissue growth factor, enhances vascular permeability, and promotes pulmonary artery smooth muscle cell proliferation and wound healing ability, all of which have the potential to impact the development of PH in vivo. Taken together, these studies demonstrate that vascular endothelial cell HIF signaling is necessary for development of hypoxia and pulmonary fibrosis associated PH. As such, HIF and HIF-regulated targets represent a therapeutic target in these conditions.

  17. Generalized smooth models

    SciTech Connect

    Glosup, J.

    1992-07-23

    The class of gene linear models is extended to develop a class of nonparametric regression models known as generalized smooth models. The technique of local scoring is used to estimate a generalized smooth model and the estimation procedure based on locally weighted regression is shown to produce local likelihood estimates. The asymptotically correct distribution of the deviance difference is derived and its use in comparing the fits of generalized linear models and generalized smooth models is illustrated. The relationship between generalized smooth models and generalized additive models is discussed, also.

  18. New Biochemical Insights into the Mechanisms of Pulmonary Arterial Hypertension in Humans.

    PubMed

    Bujak, Renata; Mateo, Jesús; Blanco, Isabel; Izquierdo-García, José Luis; Dudzik, Danuta; Markuszewski, Michał J; Peinado, Victor Ivo; Laclaustra, Martín; Barberá, Joan Albert; Barbas, Coral; Ruiz-Cabello, Jesús

    2016-01-01

    Diagnosis of pulmonary arterial hypertension (PAH) is difficult due to the lack of specific clinical symptoms and biomarkers, especially at early stages. We compared plasma metabolic fingerprints of PAH patients (n = 20) with matched healthy volunteers (n = 20) using, for the first time, untargeted multiplatform metabolomics approach consisting of high-performance liquid and gas chromatography coupled with mass spectrometry. Multivariate statistical analyses were performed to select metabolites that contribute most to groups' classification (21 from liquid in both ionization modes and 9 from gas chromatography-mass spectrometry). We found metabolites related to energy imbalance, such as glycolysis-derived metabolites, as well as metabolites involved in fatty acid, lipid and amino acid metabolism. We observed statistically significant changes in threitol and aminomalonic acid in PAH patients, which could provide new biochemical insights into the pathogenesis of the disease. The results were externally validated on independent case and control cohorts, confirming up to 16 metabolites as statistically significant in the validation study. Multiplatform metabolomics, followed by multivariate chemometric data analysis has a huge potential for explaining pathogenesis of PAH and for searching potential and new more specific and less invasive markers of the disease. PMID:27486806

  19. Multiplex Analysis of Serum Cytokines in Humans with Hantavirus Pulmonary Syndrome

    PubMed Central

    Morzunov, Sergey P.; Khaiboullina, Svetlana F.; St. Jeor, Stephen; Rizvanov, Albert A.; Lombardi, Vincent C.

    2015-01-01

    Hantavirus pulmonary syndrome (HPS) is an acute zoonotic disease transmitted primarily through inhalation of virus-contaminated aerosols. Hantavirus infection of endothelial cells leads to increased vascular permeability without a visible cytopathic effect. For this reason, it has been suggested that the pathogenesis of HPS is indirect with immune responses, such as cytokine production, playing a dominant role. In order to investigate their potential contribution to HPS pathogenesis, we analyzed the serum of hantavirus-infected subjects and healthy controls for 68 different cytokines, chemokines, angiogenic, and growth factors. Our analysis identified differential expression of cytokines that promote tissue migration of mononuclear cells including T lymphocytes, natural killer cells, and dendritic cells. Additionally, we observed a significant upregulation of cytokines known to regulate leukocyte migration and subsequent repair of lung tissue, as well as cytokines known to increase endothelial monolayer permeability and facilitate leukocyte transendothelial migration. Conversely, we observed a downregulation of cytokines associated with platelet numbers and function, consistent with the thrombocytopenia observed in subjects with HPS. This study corroborates clinical findings and extends our current knowledge regarding immunological and laboratory findings in subjects with HPS. PMID:26379668

  20. New Biochemical Insights into the Mechanisms of Pulmonary Arterial Hypertension in Humans.

    PubMed

    Bujak, Renata; Mateo, Jesús; Blanco, Isabel; Izquierdo-García, José Luis; Dudzik, Danuta; Markuszewski, Michał J; Peinado, Victor Ivo; Laclaustra, Martín; Barberá, Joan Albert; Barbas, Coral; Ruiz-Cabello, Jesús

    2016-01-01

    Diagnosis of pulmonary arterial hypertension (PAH) is difficult due to the lack of specific clinical symptoms and biomarkers, especially at early stages. We compared plasma metabolic fingerprints of PAH patients (n = 20) with matched healthy volunteers (n = 20) using, for the first time, untargeted multiplatform metabolomics approach consisting of high-performance liquid and gas chromatography coupled with mass spectrometry. Multivariate statistical analyses were performed to select metabolites that contribute most to groups' classification (21 from liquid in both ionization modes and 9 from gas chromatography-mass spectrometry). We found metabolites related to energy imbalance, such as glycolysis-derived metabolites, as well as metabolites involved in fatty acid, lipid and amino acid metabolism. We observed statistically significant changes in threitol and aminomalonic acid in PAH patients, which could provide new biochemical insights into the pathogenesis of the disease. The results were externally validated on independent case and control cohorts, confirming up to 16 metabolites as statistically significant in the validation study. Multiplatform metabolomics, followed by multivariate chemometric data analysis has a huge potential for explaining pathogenesis of PAH and for searching potential and new more specific and less invasive markers of the disease.

  1. Surface morphology and function of human pulmonary alveolar macrophages from smokers and non-smokers.

    PubMed Central

    Ando, M; Sugimoto, M; Nishi, R; Suga, M; Horio, S; Kohrogi, H; Shimazu, K; Araki, S

    1984-01-01

    Pulmonary alveolar macrophages were obtained by saline lavage from 23 healthy male volunteers--10 non-smokers and 13 cigarette smokers. Lavage produced three times as many alveolar macrophages in smokers than in non-smokers. When macrophages from smokers and from non-smokers were incubated in vitro, more cells from smokers adhered to glass, spread out, and showed enhanced nitroblue tetrazolium (NBT) reduction. The surface morphology of alveolar macrophages from smokers showed more with a plate like appearance and ridge like membrane surface, while the macrophages from non-smokers were predominantly spherical with ruffles. The proportions of cells which stained highly for beta galactosidase were 55% in smokers and 11% in non-smokers. Thus, in a resting state in vitro, alveolar macrophages from smokers were more active than those from non-smokers. When, however, macrophages from smokers and non-smokers were incubated with immunobeads and with opsonised or non-opsonised BCG, the phagocytic activity and stimulated NBT reduction of alveolar macrophages from smokers were similar to or somewhat less than those of non-smokers. Images PMID:6438822

  2. New Biochemical Insights into the Mechanisms of Pulmonary Arterial Hypertension in Humans

    PubMed Central

    Blanco, Isabel; Izquierdo-García, José Luis; Dudzik, Danuta; Markuszewski, Michał J.; Peinado, Victor Ivo; Laclaustra, Martín; Barberá, Joan Albert; Barbas, Coral

    2016-01-01

    Diagnosis of pulmonary arterial hypertension (PAH) is difficult due to the lack of specific clinical symptoms and biomarkers, especially at early stages. We compared plasma metabolic fingerprints of PAH patients (n = 20) with matched healthy volunteers (n = 20) using, for the first time, untargeted multiplatform metabolomics approach consisting of high-performance liquid and gas chromatography coupled with mass spectrometry. Multivariate statistical analyses were performed to select metabolites that contribute most to groups’ classification (21 from liquid in both ionization modes and 9 from gas chromatography-mass spectrometry). We found metabolites related to energy imbalance, such as glycolysis-derived metabolites, as well as metabolites involved in fatty acid, lipid and amino acid metabolism. We observed statistically significant changes in threitol and aminomalonic acid in PAH patients, which could provide new biochemical insights into the pathogenesis of the disease. The results were externally validated on independent case and control cohorts, confirming up to 16 metabolites as statistically significant in the validation study. Multiplatform metabolomics, followed by multivariate chemometric data analysis has a huge potential for explaining pathogenesis of PAH and for searching potential and new more specific and less invasive markers of the disease. PMID:27486806

  3. Pulmonary Embolism

    MedlinePlus

    ... pulmonary embolism is a sudden blockage in a lung artery. The cause is usually a blood clot ... loose and travels through the bloodstream to the lung. Pulmonary embolism is a serious condition that can ...

  4. Pulmonary Fibrosis

    MedlinePlus

    Pulmonary fibrosis is a condition in which the tissue deep in your lungs becomes scarred over time. This tissue ... may not get enough oxygen. Causes of pulmonary fibrosis include environmental pollutants, some medicines, some connective tissue ...

  5. Pulmonary Rehabilitation

    MedlinePlus

    Pulmonary Rehabilitation If you have shortness of breath because of lung problems, you may have asked yourself: • Can I ... medications do I really need to take? Pulmonary rehabilitation can help answer these and other questions. Enrolling ...

  6. Migration of Airway Smooth Muscle Cells

    PubMed Central

    Gerthoffer, William T.

    2008-01-01

    Migration of smooth muscle cells is a process fundamental to development of hollow organs, including blood vessels and the airways. Migration is also thought to be part of the response to tissue injury. It has also been suggested to contribute to airways remodeling triggered by chronic inflammation. In both nonmuscle and smooth muscle cells numerous external signaling molecules and internal signal transduction pathways contribute to cell migration. The review includes evidence for the functional significance of airway smooth muscle migration, a summary of promigratory and antimigratory agents, and summaries of important signaling pathways mediating migration. Important signaling pathways and effector proteins described include small G proteins, phosphatidylinositol 3-kinases (PI3-K), Rho activated protein kinase (ROCK), p21-activated protein kinases (PAK), Src family tyrosine kinases, and mitogen-activated protein kinases (MAPK). These signaling modules control multiple critical effector proteins including actin nucleating, capping and severing proteins, myosin motors, and proteins that remodel microtubules. Actin filament remodeling, focal contact remodeling and propulsive force of molecular motors are all coordinated to move cells along gradients of chemical cues, matrix adhesiveness, or matrix stiffness. Airway smooth muscle cell migration can be modulated in vitro by drugs commonly used in pulmonary medicine including β-adrenergic agonists and corticosteroids. Future studies of airway smooth muscle cell migration may uncover novel targets for drugs aimed at modifying airway remodeling. PMID:18094091

  7. Resilience of the human fetal lung following stillbirth: potential relevance for pulmonary regenerative medicine.

    PubMed

    De Paepe, Monique E; Chu, Sharon; Heger, Nicholas; Hall, Susan; Mao, Quanfu

    2012-02-01

    Recent advances in pulmonary regenerative medicine have increased the demand for alveolar epithelial progenitor cells. Fetal lung tissues from spontaneous pregnancy losses may represent a neglected, yet ethically and societally acceptable source of alveolar epithelial cells. The aim of this study was to determine the regenerative capacity of fetal lungs obtained from second trimester stillbirths. Lung tissues were harvested from 11 stillborn fetuses (13 to 22 weeks' gestation) at postdelivery intervals ranging from 10 to 41 hours and grafted to the renal subcapsular space of immune-suppressed rats to provide optimal growth conditions. Histology, epithelial and alveolar type II cell proliferation, and surfactant protein-C mRNA expression were studied in preimplantation lung tissues and in xenografts at posttransplantation week 2. All xenografts displayed advanced architectural maturation compared with their respective preimplantation tissues, regardless of gestational age and postdelivery interval. The proliferative activity of the grafts was significantly higher than that of the preimplantation tissues (mean Ki-67 labeling index 26.7%±7.7% versus 14.7%±10.5%; P<.01). The proliferative activity of grafts obtained after a long (>36 hours) postdelivery interval was significantly higher than that of the corresponding preimplantation tissue, and equivalent to that of grafts obtained after a short postdelivery interval (<14 hours). The regenerative capacity of fetal lung tissue was greater at younger (13 to 17 weeks) than at older (19 to 22 weeks) gestational ages. The presence of inflammation/chorioamnionitis did not appear to affect graft regeneration. All grafts studied displayed robust surfactant protein-C mRNA expression. In conclusion, fetal lung tissues from second trimester stillbirths can regain their inherent high regenerative potential following short-term culture, even if harvested more than 36 hours after delivery.

  8. Rosuvastatin Attenuates CD40L-Induced Downregulation of Extracellular Matrix Production in Human Aortic Smooth Muscle Cells via TRAF6-JNK-NF-κB Pathway

    PubMed Central

    Wang, Xiao-Lin; Zhou, Yuan-Li; Sun, Wei; Li, Li

    2016-01-01

    CD40L and statins exhibit pro-inflammatory and anti-inflammatory effects, respectively. They are both pleiotropic and can regulate extracellular matrix (ECM) degeneration in an atherosclerotic plaque. Statins can decrease both the CD40 expression and the resulting inflammation. However, the effects of CD40L and stains on atherosclerotic plaque ECM production and the underlying mechanisms are not well established. Moreover, prolyl-4-hydroxylase α1 (P4Hα1) is involved in collagen synthesis but its correlations with CD40L and statins are unknown. In the present study, CD40L suppressed P4Hα1 expression in human aortic smooth muscle cells (HASMCs) in a dose- and time-dependent manner, with insignificant changes in MMP2 expression and negative enzymatic activity of MMP9. CD40L increased TRAF6 expression, JNK phosphorylation, NF-κB nuclear translocation as well as DNA binding. Furthermore, silencing TRAF6, JNK or NF-κB genes abolished CD40L-induced suppression of P4Hα1. Lower NF-κB nuclear import rates were observed when JNK or TRAF6 silenced HASMCs were stimulated with CD40L compared to HASMCs with active JNK or TRAF6. Together, these results indicate that CD40L suppresses P4Hα1 expression in HASMCs by activating the TRAF6-JNK- NF-κB pathway. We also found that rosuvastatin inhibits CD40L-induced activation of the TRAF6-JNK- NF-κB pathway, thereby significantly rescuing the CD40L stimulated P4Hα1 inhibition. The results from this study will help find potential targets for stabilizing vulnerable atherosclerotic plaques. PMID:27120457

  9. Lipopolysaccharide induces VCAM-1 expression and neutrophil adhesion to human tracheal smooth muscle cells: Involvement of Src/EGFR/PI3-K/Akt pathway

    SciTech Connect

    Lin, W.-N.; Luo, S.-F.; Wu, C.-B.; Lin, C.-C.; Yang, C.-M.

    2008-04-15

    In our previous study, LPS has been shown to induce vascular cell adhesion molecule-1(VCAM-1) expression through MAPKs and NF-{kappa}B in human tracheal smooth muscle cells (HTSMCs). In addition to these pathways, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3K) have been shown to be implicated in the expression of several inflammatory target proteins. Here, we reported that LPS-induced up-regulation of VCAM-1 enhanced the adhesion of neutrophils onto HTSMC monolayer, which was inhibited by LY294002 and wortmannin. LPS stimulated phosphorylation of protein tyrosine kinases including Src, PYK2, and EGFR, which were further confirmed using specific anti-phospho-Src, PYK2, or EGFR Ab, respectively, revealed by Western blotting. LPS-stimulated Src, PYK2, EGFR, and Akt phosphorylation and VCAM-1 expression were attenuated by the inhibitors of Src (PP1), EGFR (AG1478), PI3-K (LY294002 and wortmannin), and Akt (SH-5), respectively, or transfection with siRNAs of Src or Akt and shRNA of p110. LPS-induced VCAM-1 expression was also blocked by pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA. LPS-stimulated Akt activation translocated into nucleus and associated with p300 and VCAM-1 promoter region was further confirmed by immunofluorescence, immunoprecipitation, and chromatin immunoprecipitation assays. This association of Akt and p300 to VCAM-1 promoter was inhibited by pretreatment with PP1, AG1478, wortmannin, and SH-5. LPS-induced p300 activation enhanced VCAM-1 promoter activity and VCAM-1 mRNA expression. These results suggested that in HTSMCs, Akt phosphorylation mediated through transactivation of Src/PYK2/EGFR promoted the transcriptional p300 activity and eventually led to VCAM-1 expression induced by LPS.

  10. Microarray analysis of ox-LDL (oxidized low-density lipoprotein)-regulated genes in human coronary artery smooth muscle cells.

    PubMed

    Minta, Joe; Jungwon Yun, James; St Bernard, Rosanne

    2010-01-01

    Recent studies suggest that circulating LDL (low-density lipoproteins) play a central role in the pathogenesis of atherosclerosis, and the oxidized form (ox-LDL) is highly atherogenic. Deposits of ox-LDL have been found in atherosclerotic plaques, and ox-LDL has been shown to promote monocyte recruitment, foam cell formation and the transition of quiescent and contractile vascular SMCs (smooth muscle cells) to the migratory and proliferative phenotype. SMC phenotype transition and hyperplasia are the pivotal events in the pathogenesis of atherosclerosis. To comprehend the complex molecular mechanisms involved in ox-LDL-mediated SMC phenotype transition, we have compared the differential gene expression profiles of cultured quiescent human coronary artery SMCs with cells induced with ox-LDL for 3 and 21 h using Affymetrix HG-133UA cDNA microarray chips. Assignment of the regulated genes into functional groups indicated that several genes involved in metabolism, membrane transport, cell-cell interactions, signal transduction, transcription, translation, cell migration, proliferation and apoptosis were differentially expressed. Our data suggests that the interaction of ox-LDL with its cognate receptors on SMCs modulates the induction of several growth factors and cytokines, which activate a variety of intracellular signalling mechanisms (including PI3K, MAPK, Jak/STAT, sphingosine, Rho kinase pathways) that contribute to SMC transition from the quiescent and contractile phenotype to the proliferative and migratory phenotype. Our study has also identified several genes (including CDC27, cyclin A1, cyclin G2, glypican 1, MINOR, p15 and apolipoprotein) not previously implicated in ox-LDL-induced SMC phenotype transition and substantially extends the list of potential candidate genes involved in atherogenesis.

  11. Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-{kappa}B in human aortic smooth muscle cells

    SciTech Connect

    Manea, Adrian; Tanase, Laurentia I.; Raicu, Monica; Simionescu, Maya

    2010-06-11

    Inflammation-induced changes in the activity and expression of NADPH oxidases (Nox) play a key role in atherogenesis. The molecular mechanisms of Nox regulation are scantily elucidated. Since nuclear factor-{kappa}B (NF-{kappa}B) controls the expression of many genes associated to inflammation-related diseases, in this study we have investigated the role of NF-{kappa}B signaling in the regulation of Nox1 and Nox4 transcription in human aortic smooth muscle cells (SMCs). Cultured cells were exposed to tumor necrosis factor-{alpha} (TNF{alpha}), a potent inducer of both Nox and NF-{kappa}B, up to 24 h. Lucigenin-enhanced chemiluminescence and dichlorofluorescein assays, real-time polymerase chain reaction, and Western blot analysis showed that inhibition of NF-{kappa}B pathway reduced significantly the TNF{alpha}-dependent up-regulation of Nox-derived reactive oxygen species production, Nox1 and Nox4 expression. In silico analysis indicated the existence of typical NF-{kappa}B elements in the promoters of Nox1 and Nox4. Transient overexpression of p65/NF-{kappa}B significantly increased the promoter activities of both isoforms. Physical interaction of p65/NF-{kappa}B proteins with the predicted sites was demonstrated by chromatin immunoprecipitation assay. These findings demonstrate that NF-{kappa}B is an essential regulator of Nox1- and Nox4-containing NADPH oxidase in SMCs. Elucidation of the complex relationships between NF-{kappa}B and Nox enzymes may lead to a novel pharmacological strategy to reduce both inflammation and oxidative stress in atherosclerosis and its associated complications.

  12. Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-kappaB in human aortic smooth muscle cells.

    PubMed

    Manea, Adrian; Tanase, Laurentia I; Raicu, Monica; Simionescu, Maya

    2010-06-11

    Inflammation-induced changes in the activity and expression of NADPH oxidases (Nox) play a key role in atherogenesis. The molecular mechanisms of Nox regulation are scantily elucidated. Since nuclear factor-kappaB (NF-kappaB) controls the expression of many genes associated to inflammation-related diseases, in this study we have investigated the role of NF-kappaB signaling in the regulation of Nox1 and Nox4 transcription in human aortic smooth muscle cells (SMCs). Cultured cells were exposed to tumor necrosis factor-alpha (TNFalpha), a potent inducer of both Nox and NF-kappaB, up to 24h. Lucigenin-enhanced chemiluminescence and dichlorofluorescein assays, real-time polymerase chain reaction, and Western blot analysis showed that inhibition of NF-kappaB pathway reduced significantly the TNFalpha-dependent up-regulation of Nox-derived reactive oxygen species production, Nox1 and Nox4 expression. In silico analysis indicated the existence of typical NF-kappaB elements in the promoters of Nox1 and Nox4. Transient overexpression of p65/NF-kappaB significantly increased the promoter activities of both isoforms. Physical interaction of p65/NF-kappaB proteins with the predicted sites was demonstrated by chromatin immunoprecipitation assay. These findings demonstrate that NF-kappaB is an essential regulator of Nox1- and Nox4-containing NADPH oxidase in SMCs. Elucidation of the complex relationships between NF-kappaB and Nox enzymes may lead to a novel pharmacological strategy to reduce both inflammation and oxidative stress in atherosclerosis and its associated complications. PMID:20457132

  13. Simvastatin Increases Fibulin-2 Expression in Human Coronary Artery Smooth Muscle Cells via RhoA/Rho-Kinase Signaling Pathway Inhibition

    PubMed Central

    Serra, Noemí; Rosales, Roser; Masana, Lluís; Vallvé, Joan-Carles

    2015-01-01

    The composition and structure of the extracellular matrix (ECM) in the vascular wall and in the atherosclerotic plaque are important factors that determine plaque stability. Statins can stabilize atherosclerotic plaques by modulating ECM protein expression. Fibulins are important components of the ECM. We evaluated the in vitro effect of simvastatin on the expression of fibulin-1, -2, -4 and -5 in human coronary artery smooth muscle cells (SMCs) and the mechanisms involved. Cells were incubated with simvastatin (0.05–1 μM), mevalonate (100 and 200 μM), geranylgeranyl pyrophosphate (GGPP) (15 μM), farnesyl pyrophosphate (FPP) (15 μM), the Rho kinase (ROCK) inhibitor Y-27632 (15 and 20 μM), the Rac-1 inhibitor (another member of Rho family) NSC23766 (100 μM), arachidonic acid (a RhoA/ROCK activator, 25–100 μM) and other fatty acids that are not activators of RhoA/ROCK (25–100 μM). Gene expression was analyzed by quantitative real-time PCR, and fibulin protein levels were analyzed by western blotting and ELISA. Simvastatin induced a significant increase in mRNA and protein levels of fibulin-2 at 24 hours of incubation (p<0.05), but it did not affect fibulin-1, -4, and -5 expression. Mevalonate and GGPP were able to reverse simvastatin’s effect, while FPP did not. In addition, Y-27632, but not NSC23766, significantly increased fibulin-2 expression. Furthermore, activation of the RhoA/ROCK pathway with arachidonic acid decreased fibulin-2 mRNA. Simvastatin increased mRNA levels and protein expression of the ECM protein fibulin-2 through a RhoA and Rho-Kinase-mediated pathway. This increase could affect the composition and structure of the ECM. PMID:26207907

  14. Gingipains from the Periodontal Pathogen Porphyromonas gingivalis Play a Significant Role in Regulation of Angiopoietin 1 and Angiopoietin 2 in Human Aortic Smooth Muscle Cells

    PubMed Central

    Khalaf, Hazem; Sirsjö, Allan; Bengtsson, Torbjörn

    2015-01-01

    Angiopoietin 1 (Angpt1) and angiopoietin 2 (Angpt2) are the ligands of tyrosine kinase (Tie) receptors, and they play important roles in vessel formation and the development of inflammatory diseases, such as atherosclerosis. Porphyromonas gingivalis is a Gram-negative periodontal bacterium that is thought to contribute to the progression of cardiovascular disease. The aim of this study was to investigate the role of P. gingivalis infection in the modulation of Angpt1 and Angpt2 in human aortic smooth muscle cells (AoSMCs). We exposed AoSMCs to wild-type (W50 and 381), gingipain mutant (E8 and K1A), and fimbrial mutant (DPG-3 and KRX-178) P. gingivalis strains and to different concentrations of tumor necrosis factor (TNF). The atherosclerosis risk factor TNF was used as a positive control in this study. We found that P. gingivalis (wild type, K1A, DPG3, and KRX178) and TNF upregulated the expression of Angpt2 and its transcription factor ETS1, respectively, in AoSMCs. In contrast, Angpt1 was inhibited by P. gingivalis and TNF. However, the RgpAB mutant E8 had no effect on the expression of Angpt1, Angpt2, or ETS1 in AoSMCs. The results also showed that ETS1 is critical for P. gingivalis induction of Angpt2. Exposure to Angpt2 protein enhanced the migration of AoSMCs but had no effect on proliferation. This study demonstrates that gingipains are crucial to the ability of P. gingivalis to markedly increase the expressed Angpt2/Angpt1 ratio in AoSMCs, which determines the regulatory role of angiopoietins in angiogenesis and their involvement in the development of atherosclerosis. These findings further support the association between periodontitis and cardiovascular disease. PMID:26283334

  15. MiR 3180-5p promotes proliferation in human bladder smooth muscle cell by targeting PODN under hydrodynamic pressure

    PubMed Central

    Sun, Yi; Luo, De-Yi; Zhu, Yu-Chun; Zhou, Liang; Yang, Tong-Xin; Tang, Cai; Shen, Hong; Wang, Kun-Jie

    2016-01-01

    Human bladder smooth muscle cells (HBSMCs) were subjected to pressure cycles of up to 200 cm H2O to a pressure of 0 cm H2O for 24 hours. The total RNA extracted from each group was subjected to microarray analysis. miR-3180-5p emerged as the most overexpressed of all the differentially expressed microRNAs, and this finding was validated by PCR. We then used CCK-8 to quantify cell proliferation after liposome-mediated transfection. Subsequently, we investigated the change in PODN and its downstream signaling proteins, including cyclin-dependent kinase 2 (cdk2) and p21. In addition, flow cytometry was performed to quantify cell-cycle distribution. The results show that miR-3180-5p, the microRNA that was most overexpressed in response to HP, reduced the expression of PODN and podocan (p = 0.004 and p = 0.041, respectively). Silencing of PODN via miR-3180-5p overexpression revealed a significant promotion of cell proliferation increased in the CCK-8 experiment, p = 0.00077). This cell proliferation was accompanied by an increase in cdk2 expression (p = 0.00193) and a decrease in p21 expression (p = 0.0095). The percentage of cells in (S + G2/M) improved after transfection (p = 0.002). It was apparent that HP upregulates miR-3180-5p, which inhibits the expression of PODN and promotes HBSMC proliferation via the cdk2 signaling pathway. PMID:27608612

  16. MiR 3180-5p promotes proliferation in human bladder smooth muscle cell by targeting PODN under hydrodynamic pressure.

    PubMed

    Sun, Yi; Luo, De-Yi; Zhu, Yu-Chun; Zhou, Liang; Yang, Tong-Xin; Tang, Cai; Shen, Hong; Wang, Kun-Jie

    2016-01-01

    Human bladder smooth muscle cells (HBSMCs) were subjected to pressure cycles of up to 200 cm H2O to a pressure of 0 cm H2O for 24 hours. The total RNA extracted from each group was subjected to microarray analysis. miR-3180-5p emerged as the most overexpressed of all the differentially expressed microRNAs, and this finding was validated by PCR. We then used CCK-8 to quantify cell proliferation after liposome-mediated transfection. Subsequently, we investigated the change in PODN and its downstream signaling proteins, including cyclin-dependent kinase 2 (cdk2) and p21. In addition, flow cytometry was performed to quantify cell-cycle distribution. The results show that miR-3180-5p, the microRNA that was most overexpressed in response to HP, reduced the expression of PODN and podocan (p = 0.004 and p = 0.041, respectively). Silencing of PODN via miR-3180-5p overexpression revealed a significant promotion of cell proliferation increased in the CCK-8 experiment, p = 0.00077). This cell proliferation was accompanied by an increase in cdk2 expression (p = 0.00193) and a decrease in p21 expression (p = 0.0095). The percentage of cells in (S + G2/M) improved after transfection (p = 0.002). It was apparent that HP upregulates miR-3180-5p, which inhibits the expression of PODN and promotes HBSMC proliferation via the cdk2 signaling pathway. PMID:27608612