Sample records for human pulp cells

  1. Expression of insulin-like growth factor-1 and proliferating cell nuclear antigen in human pulp cells of teeth with complete and incomplete root development.

    PubMed

    Caviedes-Bucheli, J; Canales-Sánchez, P; Castrillón-Sarria, N; Jovel-Garcia, J; Alvarez-Vásquez, J; Rivero, C; Azuero-Holguín, M M; Diaz, E; Munoz, H R

    2009-08-01

    To quantify the expression of insulin-like growth factor-1 (IGF-1) and proliferating cell nuclear antigen (PCNA) in human pulp cells of teeth with complete or incomplete root development, to support the specific role of IGF-1 in cell proliferation during tooth development and pulp reparative processes. Twenty six pulp samples were obtained from freshly extracted human third molars, equally divided in two groups according to root development stage (complete or incomplete root development). All samples were processed and immunostained to determine the expression of IGF-1 and PCNA in pulp cells. Sections were observed with a light microscope at 80x and morphometric analyses were performed to calculate the area of PCNA and IGF-1 immunostaining using digital image software. Mann-Whitney's test was used to determine statistically significant differences between groups (P < 0.05) for each peptide and the co-expression of both. Expression of IGF-1 and PCNA was observed in all human pulp samples with a statistically significant higher expression in cells of pulps having complete root development (P = 0.0009). Insulin-like growth factor-1 and PCNA are expressed in human pulp cells, with a significant greater expression in pulp cells of teeth having complete root development.

  2. Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration.

    PubMed

    Nakashima, Misako; Iohara, Koichiro; Sugiyama, Masahiko

    2009-01-01

    Dental caries is a common public health problem, causing early loss of dental pulp and resultant tooth loss. Dental pulp has important functions to sustain teeth providing nutrient and oxygen supply, innervation, reactionary/reparative dentin formation and immune response. Regeneration of pulp is an unmet need in endodontic therapy, and angiogenesis/vasculogenesis and neurogenesis are critical for pulp regeneration. Permanent and deciduous pulp tissue is easily available from teeth after extraction without ethical issues and has potential for clinical use. In this review, we introduce some stem cell subfractions, CD31(-)/CD146(-) SP cells and CD105(+) cells with high angiogenic and neurogenic potential, derived from human adult dental pulp tissue. Potential utility of these cells is addressed as a source of cells for treatment of cerebral and limb ischemia and pulp inflammation complete with angiogenesis and vasculogenesis.

  3. Nicotine stimulation increases proliferation and matrix metalloproteinases-2 and -28 expression in human dental pulp cells.

    PubMed

    Manuela, Rizzi; Mario, Migliario; Vincenzo, Rocchetti; Filippo, Renò

    2015-08-15

    Dental pulp is the specialized tissue responsible for maintaining tooth viability. When tooth mineralized matrix is damaged, pulp is exposed to a plethora of environmental stimuli. In particular, in smokers, pulp become exposed to very high concentrations of nicotine. The aim of this study was to investigate the effect of direct nicotine stimulation on human dental pulp cell proliferation. Moreover, as it is known that nicotine could upregulate the expression of matrix metalloproteinases (MMPs), enzymes involved in pulpal inflammation, the effects of nicotine stimulation on MMP-2 and MMP-28 gene expression have also been investigated. Human dental pulp cells were extracted from impacted third molars obtained from healthy patients undergoing routine orthodontic treatments. Such cells were treated with growing concentrations of nicotine in the presence or absence of a nicotine antagonist (hexamethonium chloride) or of a MEK signaling inhibitor (PD98059). Cell proliferation was evaluated by cell counting, while nicotine effects on MMP expression were evaluated by PCR. The data obtained indicate that nicotine is able to increase human dental pulp cell proliferation by acting through nicotinic cholinergic receptors and downstream MAPK signaling pathway. Moreover, it is also able to increase both MMP-2 and MMP-28 gene expression. In summary these results highlight that direct exposure of human dental pulp cells to nicotine results in an inflammatory response, that could have a role in pulpal inflammation onset, a pathological condition that, when ignored, could eventually spread to the surrounding alveolar bone and progress to pulp necrosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. In vitro effects of ascorbic acid and β-glycerophosphate on human gingival fibroblast cells.

    PubMed

    Martinez, Elizabeth F; Donato, Tatiani A G; Arana-Chavez, Victor E

    2012-10-01

    Ascorbic acid (AA) and β-glycerophosphate (βG) are considered in vitro osteogenic factors important to the differentiation of osteoblastic progenitor and dental pulp cells into mineralized tissue-forming cells. So, the present study investigated in vitro if these mineralizing inducible factors (AA and βG) could influence differentiation of human gingival fibroblasts when compared with human pulp cells and osteogenic cells derived from rat calvaria cultured. The expression of osteopontin (OPN) and osteoadherin (OSAD) was analyzed by indirect immunofluorescence, immunocytochemistry as well as Western-blotting. In addition, the main ultrastructural aspects were also investigated. No mineralized matrix formation occurred on gingival fibroblasts induced with AA+βG. On these cells, no expression of OPN and OSAD was observed when compared with pulp cells, pulp cells induced with AA+βG as well as osteogenic cells. Ultrastructure analysis additionally showed that gingival fibroblasts exhibited typical fibroblast morphology with no nodule formation. The present findings showed that AA and βG could not promote a mineralized cell differentiation of human gingival fibroblasts and confirm that human dental pulp cells, as the osteogenic cells, are capable to form a mineralized extracellular. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Stem/Progenitor Cell–Mediated De Novo Regeneration of Dental Pulp with Newly Deposited Continuous Layer of Dentin in an In Vivo Model

    PubMed Central

    Yamaza, Takayoshi; Shea, Lonnie D.; Djouad, Farida; Kuhn, Nastaran Z.; Tuan, Rocky S.; Shi, Songtao

    2010-01-01

    The ultimate goal of this study is to regenerate lost dental pulp and dentin via stem/progenitor cell–based approaches and tissue engineering technologies. In this study, we tested the possibility of regenerating vascularized human dental pulp in emptied root canal space and producing new dentin on existing dentinal walls using a stem/progenitor cell–mediated approach with a human root fragment and an immunocompromised mouse model. Stem/progenitor cells from apical papilla and dental pulp stem cells were isolated, characterized, seeded onto synthetic scaffolds consisting of poly-D,L-lactide/glycolide, inserted into the tooth fragments, and transplanted into mice. Our results showed that the root canal space was filled entirely by a pulp-like tissue with well-established vascularity. In addition, a continuous layer of dentin-like tissue was deposited onto the canal dentinal wall. This dentin-like structure appeared to be produced by a layer of newly formed odontoblast-like cells expressing dentin sialophosphoprotein, bone sialoprotein, alkaline phosphatase, and CD105. The cells in regenerated pulp-like tissue reacted positively to anti-human mitochondria antibodies, indicating their human origin. This study provides the first evidence showing that pulp-like tissue can be regenerated de novo in emptied root canal space by stem cells from apical papilla and dental pulp stem cells that give rise to odontoblast-like cells producing dentin-like tissue on existing dentinal walls. PMID:19737072

  6. CD146 positive human dental pulp stem cells promote regeneration of dentin/pulp-like structures.

    PubMed

    Matsui, Mikiko; Kobayashi, Tomoko; Tsutsui, Takeo W

    2018-04-01

    CD146 and STRO-1 are endothelial biomarkers that are co-expressed on the cellular membranes of blood vessels within human dental pulp tissue. This study characterized the percentage of dentin-like structures produced by CD146-positive (CD146 + ) human dental pulp stem cells (DPSCs), compared with their CD146-negative (CD146 - ) counterparts. DPSC populations were enriched using magnetic-activated cell sorting (MACS), yielding CD146 + and CD146 - cells, as well as mixtures composed of 25% CD146 + cells and 75% CD146 - cells (CD146 +/- ). Cell growth assays indicated that CD146 + cells exhibit an approximate 3-4 h difference in doubling time, compared with CD146 - cells. Cell cycle distributions were determined by flow cytometry analysis. The low percentage of CD146 + cells' DNA content in G 0 /G 1 phase were compared with CD146 - and non-separated cells. In contrast to CD146 - and non-separated cells, prompt mineralization was observed in CD146 + cells. Subsequently, qRT-PCR revealed high mRNA expression of CD146 and Alkaline phosphatase in mineralization-induced CD146 + cells. CD146 + cells were also observed high adipogenic ability by Oil red O staining. Histological examinations revealed an increased area of dentin/pulp-like structures in transplanted CD146 + cells, compared with CD146 - and CD146 +/- cells. Immunohistochemical studies detected dentin matrix protein-1 (DMP1) and dentin sialophosphoprotein (DSPP), as well as human mitochondria, in transplanted DPSCs. Co-expression of CD146 and GFP indicated that CD146 was expressed in transplanted CD146 + cells. CD146 + cells may promote mineralization and generate dentin/pulp-like structures, suggesting a role in self-renewal of stem cells and dental pulp regenerative therapy.

  7. TOOTH (The Open study Of dental pulp stem cell Therapy in Humans): Study protocol for evaluating safety and feasibility of autologous human adult dental pulp stem cell therapy in patients with chronic disability after stroke.

    PubMed

    Nagpal, Anjali; Kremer, Karlea L; Hamilton-Bruce, Monica A; Kaidonis, Xenia; Milton, Austin G; Levi, Christopher; Shi, Songtao; Carey, Leeanne; Hillier, Susan; Rose, Miranda; Zacest, Andrew; Takhar, Parabjit; Koblar, Simon A

    2016-07-01

    Stroke represents a significant global disease burden. As of 2015, there is no chemical or biological therapy proven to actively enhance neurological recovery during the chronic phase post-stroke. Globally, cell-based therapy in stroke is at the stage of clinical translation and may improve neurological function through various mechanisms such as neural replacement, neuroprotection, angiogenesis, immuno-modulation, and neuroplasticity. Preclinical evidence in a rodent model of middle cerebral artery ischemic stroke as reported in four independent studies indicates improvement in neurobehavioral function with adult human dental pulp stem cell therapy. Human adult dental pulp stem cells present an exciting potential therapeutic option for improving post-stroke disability. TOOTH (The Open study Of dental pulp stem cell Therapy in Humans) will investigate the use of autologous stem cell therapy for stroke survivors with chronic disability, with the following objectives: (a) determine the maximum tolerable dose of autologous dental pulp stem cell therapy; (b) define that dental pulp stem cell therapy at the maximum tolerable dose is safe and feasible in chronic stroke; and (c) estimate the parameters of efficacy required to design a future Phase 2/3 clinical trial. TOOTH is a Phase 1, open-label, single-blinded clinical trial with a pragmatic design that comprises three stages: Stage 1 will involve the selection of 27 participants with middle cerebral artery ischemic stroke and the commencement of autologous dental pulp stem cell isolation, growth, and testing in sequential cohorts (n = 3). Stage 2 will involve the transplantation of dental pulp stem cell in each cohort of participants with an ascending dose and subsequent observation for a 6-month period for any dental pulp stem cell-related adverse events. Stage 3 will investigate the neurosurgical intervention of the maximum tolerable dose of autologous dental pulp stem cell followed by 9 weeks of intensive task-specific rehabilitation. Advanced magnetic resonance and positron emission tomography neuro-imaging, and clinical assessment will be employed to probe any change afforded by stem cell therapy in combination with rehabilitation. Nine participants will step-wise progress in Stage 2 to a dose of up to 10 million dental pulp stem cell, employing a cumulative 3 + 3 statistical design with low starting stem cell dose and subsequent dose escalation, assuming that an acceptable probability of dose-limiting complications is between 1 in 6 (17%) and 1 in 3 (33%) of patients. In Stage 3, another 18 participants will receive an intracranial injection with the maximum tolerable dose of dental pulp stem cell. The primary outcomes to be measured are safety and feasibility of intracranial administration of autologous human adult DPSC in patients with chronic stroke and determination of the maximum tolerable dose in human subjects. Secondary outcomes include estimation of the measures of effectiveness required to design a future Phase 2/3 clinical trial. © 2016 World Stroke Organization.

  8. Role of Angiogenesis in Endodontics: Contributions of Stem Cells and Proangiogenic and Antiangiogenic Factors to Dental Pulp Regeneration

    PubMed Central

    Saghiri, Mohammad Ali; Asatourian, Armen; Sorenson, Christine M.; Sheibani, Nader

    2016-01-01

    Introduction Dental pulp regeneration is a part of regenerative endodontics, which includes isolation, propagation, and re-transplantation of stem cells inside the prepared root canal space. The formation of new blood vessels through angiogenesis is mandatory to increase the survival rate of re-transplanted tissues. Angiogenesis is defined as the formation of new blood vessels from preexisting capillaries, which has great importance in pulp regeneration and homeostasis. Here the contribution of human dental pulp stem cells and proangiogenic and antiangiogenic factors to angiogenesis process and regeneration of dental pulp is reviewed. Methods A search was performed on the role of angiogenesis in dental pulp regeneration from January 2005 through April 2014. The recent aspects of the relationship between angiogenesis, human dental pulp stem cells, and proangiogenic and antiangiogenic factors in regeneration of dental pulp were assessed. Results Many studies have indicated an intimate relationship between angiogenesis and dental pulp regeneration. The contribution of stem cells and mechanical and chemical factors to dental pulp regeneration has been previously discussed. Conclusions Angiogenesis is an indispensable process during dental pulp regeneration. The survival of inflamed vital pulp and engineered transplanted pulp tissue are closely linked to the process of angiogenesis at sites of application. However, the detailed regulatory mechanisms involved in initiation and progression of angiogenesis in pulp tissue require investigation. PMID:25649306

  9. A monoclonal antibody recognizes undifferentiation-specific carbohydrate moieties expressed on cell surface of the human dental pulp cells.

    PubMed

    Kang, Kyung-Jung; Ko, Seon-Yle; Ryu, Chun-Jeih; Jang, Young-Joo

    2017-05-01

    Human dental pulp cells are obtained from dental pulp tissue, and have the ability to form dentin and a pulp-like complex. Although adult stem cells have been identified from the primary culture by using specific cell surface markers, the identity of surface markers for the purification of stem cells within the dental pulp population are still unclear. Previously, we had constructed monoclonal antibodies against the undifferentiated cell-specific surface markers of human dental pulp cells (hDPCs) by performing decoy immunization. Among them, a monoclonal antibody against the cell surface antigen of the undifferentiated hDPCs (named UPSA-1) was purified and its heavy and light chain consensus regions were analyzed. The cell surface binding affinity of UPSA-1 mAb on the undifferentiated hDPCs was stronger than that on the differentiated cells. When tunicamycin was applied to hDPSCs during culture, the cell surface binding affinity of the antibody was dramatically decreased, and dentinogenic differentiation was reduced. The purified UPSA-1 antigen band resulting from immunoprecipitation disappeared or shifted down on the SDS-PAGE by deglycosylation. These data suggested that glycosylation on the cell surface might be a marker of an undifferentiated state, and that UPSA-1 mAb might be useful for identifying the carbohydrate moiety on the cell surface of undifferentiated pulp cells. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Transplantation of human immature dental pulp stem cell in dogs with chronic spinal cord injury.

    PubMed

    Feitosa, Matheus Levi Tajra; Sarmento, Carlos Alberto Palmeira; Bocabello, Renato Zonzini; Beltrão-Braga, Patrícia Cristina Baleeiro; Pignatari, Graciela Conceição; Giglio, Robson Fortes; Miglino, Maria Angelica; Orlandin, Jéssica Rodrigues; Ambrósio, Carlos Eduardo

    2017-07-01

    To investigate the therapeutic potential of human immature dental pulp stem cells in the treatment of chronic spinal cord injury in dogs. Three dogs of different breeds with chronic SCI were presented as animal clinical cases. Human immature dental pulp stem cells were injected at three points into the spinal cord, and the animals were evaluated by limb function and magnetic resonance imaging (MRI) pre and post-operative. There was significant improvement from the limb function evaluated by Olby Scale, though it was not supported by the imaging data provided by MRI and clinical sign and evaluation. Human dental pulp stem cell therapy presents promising clinical results in dogs with chronic spinal cord injuries, if used in association with physical therapy.

  11. Red pulp macrophages in the human spleen are a distinct cell population with a unique expression of Fc-γ receptors

    PubMed Central

    Bruggeman, Christine W.; den Haan, Joke M. M.; Mul, Erik P. J.; van den Berg, Timo K.; van Bruggen, Robin; Kuijpers, Taco W.

    2018-01-01

    Tissue-resident macrophages in the spleen play a major role in the clearance of immunoglobulin G (IgG)–opsonized blood cells, as occurs in immune thrombocytopenia (ITP) and autoimmune hemolytic anemia (AIHA). Blood cells are phagocytosed via the Fc-γ receptors (FcγRs), but little is known about the FcγR expression on splenic red pulp macrophages in humans, with only a few previous studies that showed conflicting results. We developed a novel method to specifically isolate red pulp macrophages from 82 human spleens. Surface expression of various receptors and phagocytic capacity was analyzed by flow cytometry and immunofluorescence of tissue sections. Red pulp macrophages were distinct from splenic monocytes and blood monocyte–derived macrophages on various surface markers. Human red pulp macrophages predominantly expressed the low-affinity receptors FcγRIIa and FcγRIIIa. In contrast to blood monocyte–derived macrophages, red pulp macrophages did not express the inhibitory FcγRIIb. Red pulp macrophages expressed very low levels of the high-affinity receptor FcγRI. Messenger RNA transcript analysis confirmed this expression pattern. Unexpectedly and despite these differences in FcγR expression, phagocytosis of IgG-opsonized blood cells by red pulp macrophages was dependent on the same FcγRs as phagocytosis by blood monocyte–derived macrophages, especially in regarding the response to IV immunoglobulin. Concluding, we show the distinct nature of splenic red pulp macrophages in human subjects. Knowledge on the FcγR expression and usage of these cells is important for understanding and improving treatment strategies for autoimmune diseases such as ITP and AIHA. PMID:29692344

  12. Characterization of Coronal Pulp Cells and Radicular Pulp Cells in Human Teeth.

    PubMed

    Honda, Masaki; Sato, Momoko; Toriumi, Taku

    2017-09-01

    Dental pulp has garnered much attention as an easily accessible postnatal tissue source of high-quality mesenchymal stem cells (MSCs). Since the discovery of dental pulp stem cells (DPSCs) in permanent third molars, stem cells from human exfoliated deciduous teeth and from supernumerary teeth (mesiodentes) have been identified as a population distinct from DPSCs. Dental pulp is divided into 2 parts based on the developing stage: the coronal pulp and the radicular pulp. Root formation begins after the crown part is completed. We performed a sequential study to examine the differences between the characteristics of coronal pulp cells (CPCs) and radicular pulp cells (RPCs) from permanent teeth, mesiodentes, and deciduous teeth. Interestingly, although we have not obtained any data on the difference between CPCs and RPCs in permanent teeth, there are some differences between the characteristics of CPCs and RPCs from mesiodentes and deciduous teeth. The MSC characteristics differed between the RPCs and CPCs, and the reprogramming efficiency for the generation of induced pluripotent stem cells was greater in RPCs than in CPCs from deciduous teeth. The proportion of CD105 + cells in CPCs versus that in RPCs varied in mesiodentes but not in permanent teeth. The results indicate that the proportion of CD105 + cells is an effective means of characterizing dental pulp cells in mesiodentes. Taken together, the stem cells in deciduous and supernumerary teeth share many characteristics, such as a high proliferation rate and an immunophenotype similar to that of DPSCs. Thus, mesiodentes accidentally encountered on radiographs by the general dental practitioner might be useful for stem cell therapy. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Stimulation of matrix metalloproteinases by black-pigmented Bacteroides in human pulp and periodontal ligament cell cultures.

    PubMed

    Chang, Yu-Chao; Lai, Chung-Chih; Yang, Shun-Fa; Chan, You; Hsieh, Yih-Shou

    2002-02-01

    Matrix metalloproteinases (MMPs) are a group of proteolytic enzymes capable of degrading most components of the extracellular matrix. Recently, evidence has shown that MMPs may play a role in tissue degradation in inflamed dental pulp. To date very little is known regarding the mechanism of extracellular matrix destruction at the site of bacterial infection. The purpose of this study was to determine the effects of the supernatants from Porphyromonas endodontalis and Porphyromonas gingivalis on the production and secretion of MMPs by primary human pulp and periodontal ligament (PDL) cell cultures in vitro. The results were evaluated by substrate gel zymography from long-term cultures. The main gelatinase secreted by human pulp and PDL cells migrated at 72 kDa and represented MMP-2. Minor gelatinolytic bands were also observed at 92 kDa regions that correspond to MMP-9. After an 8-day culture period, P. endodontalis and P. gingivalis were found to elevate MMP-2 production both in human pulp and PDL cell cultures. In addition, the stimulation was in a dose- and time-dependent manner. Both human pulp and PDL cells, however, treated with either P. endodontalis or P. gingivalis had no effect on the pattern of MMP-9 produced or secreted in either cell extracts or conditioned medium fractions. These results indicate that black-pigmented Bacteroides species play an important role in tissue destruction and disintegration of extracellular matrix in pulpal and periapical diseases. Thus, activation of MMPs may be one of the distinct host degradative pathways in the pathogenesis of microbial-induced pulpal and periapical lesion. An understanding of the actions of these black-pigmented Bacteroides species on pulp and PDL cells may result in new therapies to augment current treatment of pulpal and periapical lesions.

  14. Fibroblast growth factor-2 regulates the cell function of human dental pulp cells.

    PubMed

    Shimabukuro, Yoshio; Ueda, Maki; Ozasa, Masao; Anzai, Jun; Takedachi, Masahide; Yanagita, Manabu; Ito, Masako; Hashikawa, Tomoko; Yamada, Satoru; Murakami, Shinya

    2009-11-01

    Homeostasis and tissue repair of dentin-pulp complex are attributed to dental pulp tissue and several growth factors. Dental pulp cells play a pivotal role in homeostasis of dentin-pulp complex and tissue responses after tooth injury. Among these cytokines, fibroblast growth factor (FGF)-2 has multifunctional biologic activity and is known as a signaling molecule that induces tissue regeneration. In this study, we examined the effects of FGF-2 on growth, migration, and differentiation of human dental pulp cells (HDPC). HDPC were isolated from healthy dental pulp. Cellular response was investigated by [(3)H]-thymidine incorporation into DNA. Cytodifferentiation was examined by alkaline phosphatase (ALPase) assay and cytochemical staining of calcium by using alizarin red. Migratory activity was determined by counting the cells migrating into cleared area that had introduced with silicon block. FGF-2 activated HDPC growth and migration but suppressed ALPase activity and calcified nodule formation. Interestingly, HDPC, which had been pretreated with FGF-2, showed increased ALPase activity and calcified nodule formation when subsequently cultured without FGF-2. These results suggest that FGF-2 potentiates cell growth and accumulation of HDPC that notably did not disturb cytodifferentiation of the cells later. Thus, FGF-2 is a favorable candidate for pulp capping agent. These results provide new evidence for the possible involvement of FGF-2 not only in homeostasis but also in regeneration of dentin-pulp complex.

  15. Scaffold-free Prevascularized Microtissue Spheroids for Pulp Regeneration

    PubMed Central

    Dissanayaka, W.L.; Zhu, L.; Hargreaves, K.M.; Jin, L.; Zhang, C.

    2014-01-01

    Creating an optimal microenvironment that mimics the extracellular matrix (ECM) of natural pulp and securing an adequate blood supply for the survival of cell transplants are major hurdles that need to be overcome in dental pulp regeneration. However, many currently available scaffolds fail to mimic essential functions of natural ECM. The present study investigated a novel approach involving the use of scaffold-free microtissue spheroids of dental pulp stem cells (DPSCs) prevascularized by human umbilical vein endothelial cells (HUVECs) in pulp regeneration. In vitro-fabricated microtissue spheroids were inserted into the canal space of tooth-root slices and were implanted subcutaneously into immunodeficient mice. Histological examination revealed that, after four-week implantation, tooth-root slices containing microtissue spheroids resulted in well-vascularized and cellular pulp-like tissues, compared with empty tooth-root slices, which were filled with only subcutaneous fat tissue. Immunohistochemical staining indicated that the tissue found in the tooth-root slices was of human origin, as characterized by the expression of human mitochondria, and contained odontoblast-like cells organized along the dentin, as assessed by immunostaining for nestin and dentin sialoprotein (DSP). Vascular structures formed by HUVECs in vitro were successfully anastomosed with the host vasculature upon transplantation in vivo, as shown by immunostaining for human CD31. Collectively, these findings demonstrate that prevascularized, scaffold-free, microtissue spheroids can successfully regenerate vascular dental pulp-like tissue and also highlight the significance of the microtissue microenvironment as an optimal environment for successful pulp-regeneration strategies. PMID:25201919

  16. Comparison of cytotoxicity, genotoxicity and immunological inflammatory biomarker activity of several endodontic sealers against immortalized human pulp cells.

    PubMed

    Martinho, F C; Camargo, S E A; Fernandes, A M M; Campos, M S; Prado, R F; Camargo, C H R; Valera, M C

    2018-01-01

    To establish an SV40 T-Ag-transfected cell line of human pulp-derived cells in order to compare the cytotoxicity, genotoxicity and to investigate the activities of immunological biomarkers of several endodontic sealers. Primary human pulp cells and transfected cells were cultured. Cell morphology and proliferation were analysed, and the expression of cell-specific gene transcripts and proteins was detected by RT-PCR and immunohistochemistry. Transfection of human pulp-derived cells resulted in an immortalized cell line retaining phenotypic characteristics from the primarily cells tested. The SV40 T-Ag-transfected cells were cultured and stimulated by sealers (Apexit Plus, Real Seal, AH Plus, and EndoREZ) to evaluate the cytotoxicity and genotoxicity by MTT and MTN assays, respectively. Immunological inflammatory biomarkers (IL6, IL8 and TNF-α) were determined by ELISA assay. The differences between median values were statistically analysed using Kruskal-Wallis and Dunn's tests at 5% significance level. The cytotoxicity assay revealed that multimethacrylate (Real Seal) was the most cytotoxic sealer (P < 0.05) and exhibited the highest inflammatory potential against the SV40 T-Ag-transfected cells (P < 0.05). All root canal sealers tested were able to stimulate the immortalized pulp cells to produce IL-6, IL-8 and TNF-α, with differences in relation to the control group (P < 0.05). Higher levels of IL-6, IL-8 and TNF-α were found in cell supernatant after stimulation with multimethacrylate (Real Seal) compared to all other sealers tested (P < 0.05). No differences were found comparing epoxy resin-based sealer (AHPlus), single-methacrylate sealer (EndoREZ) and calcium hydroxide-based sealer (Apexit Plus), regardless of the cytokine investigated (all P > 0.05). A SV40 T-Ag-transfected cell line of human pulp-derived cells was established. The methacrylate resin-based sealer (Real Seal) exhibited the greatest cytoxicity and inflammatory potential against immortalized pulp cells compared to an epoxy resin-based sealer (AH Plus), a methacrylate-based sealer (EndoRez) and a calcium hydroxide-based sealer (Apexit). © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  17. Effect of sodium hypochlorite on human pulp cells: an in vitro study

    PubMed Central

    Essner, Mark D.; Javed, Amjad; Eleazer, Paul D.

    2014-01-01

    Background The purpose of this study was to determine the effect of sodium hypochlorite (NaOCl) on human pulp cells to provide an aid in determining its optimum concentration in maintaining the viability of remaining pulp cells in the revascularization of immature permanent teeth with apical periodontitis. Study design Human pulp tissue cells taken from extracted third molars were plated, incubated, and subjected to various concentrations of NaOCl (0.33%, 0.16%, 0.08%, and 0.04%) for 5-, 10-, and 15-minute time intervals to simulate possible contact times in vivo. The Cell Titer–Glo Luminescent Cell Viability Assay was used to determine the number of viable cells present in culture following treatment. Results The results showed an increase in cell viability with the lowering of NaOCl concentration. The use of 0.04% NaOCl was similar to the control, indicating nearly complete preservation of cell viability at all time intervals tested. As sodium hypochlorite concentration increased from 0.04% to 0.33%, cell viability decreased correspondingly. Conclusions The results indicate that the lowest concentration of NaOCl tested did not affect the viability of cells. This may prove beneficial in developing a new treatment protocol to help preserve existing vital pulp cells in revascularization cases. PMID:21821446

  18. Production of colony-stimulating factor in human dental pulp fibroblasts.

    PubMed

    Sawa, Y; Horie, Y; Yamaoka, Y; Ebata, N; Kim, T; Yoshida, S

    2003-02-01

    Class II major histocompatilibity complex (MHC)-expressing cells are usually distributed in dental pulp, and it was postulated that the colony-stimulating factor (CSF) derived from dental pulp fibroblasts contributes to the migration of class II MHC-expressing cells into pulp tissue. This study aimed to investigate the CSF production of human dental pulp fibroblasts. In pulp tissue sections, granulocyte (G)-CSF was detected from normal teeth, while G-CSF, macrophage (M)-CSF, and granulocyte-macrophage (GM)-CSF were detected from teeth with dentinal caries. In cultured dental pulp fibroblasts, G-CSF was detected by immunostaining, immunoprecipitation, and ELISA, and mRNAs of G-CSF, M-CSF, and GM-CSF were detected by RT-PCR. The dental pulp fibroblasts cultured with TNF-alpha were found to increase the G-CSF expression and to produce M-CSF and GM-CSF. These findings suggest that dental pulp fibroblasts usually produce G-CSF. In the presence of TNF-alpha, dental pulp fibroblast express M-CSF and GM-CSF.

  19. Manufacturing of dental pulp cell-based products from human third molars: current strategies and future investigations

    PubMed Central

    Ducret, Maxime; Fabre, Hugo; Degoul, Olivier; Atzeni, Gianluigi; McGuckin, Colin; Forraz, Nico; Alliot-Licht, Brigitte; Mallein-Gerin, Frédéric; Perrier-Groult, Emeline; Farges, Jean-Christophe

    2015-01-01

    In recent years, mesenchymal cell-based products have been developed to improve surgical therapies aimed at repairing human tissues. In this context, the tooth has recently emerged as a valuable source of stem/progenitor cells for regenerating orofacial tissues, with easy access to pulp tissue and high differentiation potential of dental pulp mesenchymal cells. International guidelines now recommend the use of standardized procedures for cell isolation, storage and expansion in culture to ensure optimal reproducibility, efficacy and safety when cells are used for clinical application. However, most dental pulp cell-based medicinal products manufacturing procedures may not be fully satisfactory since they could alter the cells biological properties and the quality of derived products. Cell isolation, enrichment and cryopreservation procedures combined to long-term expansion in culture media containing xeno- and allogeneic components are known to affect cell phenotype, viability, proliferation and differentiation capacities. This article focuses on current manufacturing strategies of dental pulp cell-based medicinal products and proposes a new protocol to improve efficiency, reproducibility and safety of these strategies. PMID:26300779

  20. Examination of the signal transduction pathways leading to upregulation of tissue type plasminogen activator by Porphyromonas endodontalis in human pulp cells.

    PubMed

    Huang, F-M; Chen, Y-J; Chou, M-Y; Chang, Y-C

    2005-12-01

    To investigate the tissue type plasminogen activator (t-PA) activity in human pulp cells stimulated with Porphyromonas endodontalis (P. endodontalis) in the absence or presence of p38 inhibitor SB203580, mitogen-activated protein kinase kinase (MEK) inhibitor U0126 and phosphatidylinositaol 3-kinase (PI3K) inhibitor LY294002. The supernatants of P. endodontalis were used to evaluate t-PA activity in human pulp cells using casein zymography and enzyme-linked immunosorbent assay (ELISA). Furthermore, to search for possible signal transduction pathways, SB203580, U0126 and LY294002 were added to test how they modulated the t-PA activity. The main casein secreted by human pulp cells migrated at 70 kDa and represented t-PA. Secretion of t-PA was found to be stimulated with P. endodontalis during 2-day cultured period (P < 0.05). From the results of casein zymography and ELISA, SB203580 and U0126 significantly reduced the P. endodontalis stimulated t-PA production respectively (P < 0.05). However, LY294002 lacked the ability to change the P. endodontalis stimulated t-PA production (P > 0.05). Porphyromonas endodontalis enhances t-PA production in human pulp cells, and the signal transduction pathways p38 and MEK are involved in the inhibition of t-PA.

  1. C-myb Regulates Autophagy for Pulp Vitality in Glucose Oxidative Stress.

    PubMed

    Lee, Y H; Kim, H S; Kim, J S; Yu, M K; Cho, S D; Jeon, J G; Yi, H K

    2016-04-01

    Diabetes mellitus is closely related to oral-complicated diseases by oxidative stress. This study investigates whether cellular myeloblastosis (c-myb) could protect human dental pulp cells against glucose oxidative stress and regulate autophagy activity for pulp vitality. Diabetes mellitus was induced by streptozotocin in Sprague-Dawley rats, and their pulp tissue in teeth was analyzed in terms of pulp cavity and molecules by hematoxylin and eosin and immunohistochemistry staining. Human dental pulp cells were serially subcultured and treated with glucose oxidase in the presence of elevated glucose to generate glucose oxidative stress. The replication-deficient adenovirus c-myb and small interfering RNA c-myb were introduced for c-myb expression. The pulp tissue from the diabetic rats was structurally different from normal tissue in terms of narrow pulp capacity, reduced c-myb, and dentinogenesis molecules. Glucose oxidase treatment decreased c-myb and dentinogenesis molecules (bone morphogenetic protein 2 and 7, dentin matrix protein 1, and dentin sialophosphoprotein) in human dental pulp cells. However, overexpression of c-myb by adenovirus c-myb increased dentinogenesis, autophagy molecules (autophagy protein 5, microtubule-associated protein 1A/1B-light chain 3, and Beclin-1), and cell survival via p-AMPK/AKT signaling even with glucose oxidative stress. In contrast, the lack of c-myb decreased the above molecules and cell survival by downregulating p-AMPK/AKT signaling. The results indicate that diabetes leads to irreversible damage to dental pulp, which is related to downexpression of autophagy via the p-AMPK/AKT pathway by decline of c-myb. The findings of this study provide a new insight that c-myb could ameliorate autophagy activity and that it is applicable for monitoring complicated diseases of dental pulp. The involvement of c-myb in pulp pathology could serve a therapeutic target in oral-complicated diseases. © International & American Associations for Dental Research 2015.

  2. PAR-1 and PAR-2 Expression Is Enhanced in Inflamed Odontoblast Cells.

    PubMed

    Alvarez, M M P; Moura, G E; Machado, M F M; Viana, G M; de Souza Costa, C A; Tjäderhane, L; Nader, H B; Tersariol, I L S; Nascimento, F D

    2017-12-01

    Protease-activated receptors (PARs) are G protein-coupled receptors, which are activated by proteolytical cleavage of the amino-terminus and act as sensors for extracellular proteases. We hypothesized that PAR-1 and PAR-2 can be modulated by inflammatory stimulus in human dental pulp cells. PAR-1 and PAR-2 gene expression in human pulp tissue and MDPC-23 cells were analyzed by quantitative polymerase chain reaction. Monoclonal PAR-1 and PAR-2 antibodies were used to investigate the cellular expression of these receptors using Western blot, flow cytometry, and confocal microscopy in MDPC-23 cells. Immunofluorescence assays of human intact and carious teeth were performed to assess the presence of PAR-1 and PAR-2 in the dentin-pulp complex. The results show for the first time that human odontoblasts and MDPC-23 cells constitutively express PAR-1 and PAR-2. PAR-2 activation increased significantly the messenger RNA expression of matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and MMP-14 in MDPC-23 cells ( P < 0.05), while the expression of these enzymes decreased significantly in the PAR-1 agonist group ( P < 0.05). The high-performance liquid chromatography and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis showed the presence of MMP-13 activity cleaving PAR-1 at specific, noncanonical site TLDPRS 42 ↓F 43 LL in human dental pulp tissues. Also, we detected a presence of a trypsin-like activity cleaving PAR-2 at canonical site SKGR 20 ↓S 21 LIGRL in pulp tissues. Confocal microscopy analysis of human dentin-pulp complex showed intense positive staining of PAR-1 and PAR-2 in the odontoblast processes in dentinal tubules of carious teeth compared to intact ones. The present results support the hypothesis of activation of the upregulated PAR-1 and PAR-2 by endogenous proteases abundant during the inflammatory response in dentin-pulp complex.

  3. Influence of different types of pulp treatment during isolation in the obtention of human dental pulp stem cells

    PubMed Central

    Viña-Almunia, Jose; Borras, Consuelo; Gambini, Juan; El Alamy, Marya; Viña, Jose

    2016-01-01

    Background Different methods have been used in order to isolate dental pulp stem cells. The aim of this study was to study the effect of different types of pulp treatment during isolation, under 3% O2 conditions, in the time needed and the efficacy for obtaining dental pulp stem cells. Material and Methods One hundred and twenty dental pulps were used to isolate dental pulp stem cells treating the pulp tissue during isolation using 9 different methods, using digestive, disgregation, or mechanical agents, or combining them. The cells were positive for CD133, Oct4, Nestin, Stro-1, CD34 markers, and negative for the hematopoietic cell marker CD-45, thus confirming the presence of mesenchymal stem cells. The efficacy of dental pulp stem cells obtention and the minimum time needed to obtain such cells comparing the 9 different methods was analyzed. Results Dental pulp stem cells were obtained from 97 of the 120 pulps used in the study, i.e. 80.8% of the cases. They were obtained with all the methods used except with mechanical fragmentation of the pulp, where no enzymatic digestion was performed. The minimum time needed to isolate dental pulp stem cells was 8 hours, digesting with 2mg/ml EDTA for 10 minutes, 4mg/ml of type I collagenase, 4mg/ml of type II dispase for 40 minutes, 13ng/ml of thermolysine for 40 minutes and sonicating the culture for one minute. Conclusions Dental pulp stem cells were obtained in 97 cases from a series of 120 pulps. The time for obtaining dental pulp stem cells was reduced maximally, without compromising the obtention of the cells, by combining digestive, disgregation, and mechanical agents. Key words:Dental pulp stem cells, mesenchymal stem cells, isolation method. PMID:26946201

  4. Human immature dental pulp stem cells (hIDPSCs), their application to cell therapy and bioengineering: an analysis by systematic revision of the last decade of literature.

    PubMed

    de Souza, Priscilla Vianna; Alves, Fabiana Bucholdz Teixeira; Costa Ayub, Cristina Lucia Sant'Ana; de Miranda Soares, Maria Albertina; Gomes, Jose Rosa

    2013-12-01

    During recent years, attention has been given to the potential of therapeutic approaches using stem cells obtained from dental pulp tissue. The aim of this study, therefore, was to give an overview of the papers produced during the last 10 years that have described the use of stem cells obtained from human deciduous teeth in cell therapy or bioengineering. The PubMed database was investigated from January 2002 until July 2011 and the papers published during this period were analyzed according to criteria previously established, using the methodology of systematic review. The measurements were done using "stem cell" as the primary keyword, and "human deciduous teeth dental pulp cell" and "human exfoliated deciduous teeth" as the secondary keywords. Four hundred and seventy-five papers were found. The first screening resulted in 276 papers, from which 84 papers were selected. However, only 11 of them attained the aim proposed in our approach. There were few scientific studies related to direct therapeutic application using stem cells of human deciduous teeth and none of them had been applied to humans. However, the results indicated important and promising applications of the pulp stem-cells in cell therapy and bioengineering as demonstrated by studies in animal models of muscular dystrophy, Parkison's disease, and lupus erythematosus. Copyright © 2013 Wiley Periodicals, Inc.

  5. Investigation of functional activity human dental pulp stem cells at acute and chronic pulpitis.

    PubMed

    Ustiashvili, M; Kordzaia, D; Mamaladze, M; Jangavadze, M; Sanodze, L

    2014-09-01

    It is already recognized that together with the other connective tissues organ-specific progenic stem cells are also found in postnatal dental pulp. This group of undifferentiated cells is only 1% of total cell population of the pulp. The aim of the study was the identification of stem cells in human dental pulp, detection of their localization and assessment of functional activity during inflammation process and/or at norm. The obtained results showed that at acute pulpitis the pulp stroma is hypocellular in comparison with the norm but cells proliferative activity is low. CD 133 and NCAM (CD 56) positive stem cells were found in perivascularl space of the pulp stroma and in Hohle layer. At process prolongation and transition to the chronic phase pulp stroma is hypercellular, the cells with large, rounded or oval-shaped nuclei with clear chromatin appear together with fibroblasts. They are distributed as about entire thickness of the stroma as especially Hohle layer. In such cells higher proliferative activity (Ki67 expression) was observed. The cells in the mentioned proliferation phase are intensively marked by CD133, the rate of which is high in Hohle layer and along it. A large number of NCAM (CD 56) positive cells appear in pulp stroma. During pulpitis an involvement of stem cells into the process of reparative dentinogenesis should be conducted stepwise. In acute cases of the disease, stem cell perivascularl mobilization and proliferation and its migration to Hohle layer occur in response to irritation /stimulation. Chronification of the process leads not only to the migration of stem cells to the periphery of the pulp but also s their В«maturationВ» (increase of NCAM expression in the stem cells), which causes an increase the number of dentin producing active odontoblasts and initiation of reparative dentinogenesis.

  6. Isolation, Characterization, and Differentiation of Dental Pulp Stem Cells in Ferrets.

    PubMed

    Homayounfar, Negar; Verma, Prashant; Nosrat, Ali; El Ayachi, Ikbale; Yu, Zongdong; Romberg, Elaine; Huang, George T-J; Fouad, Ashraf F

    2016-03-01

    The ferret canine tooth has been introduced as a suitable model for studying dental pulp regeneration. The aim of this study was to isolate and characterize ferret dental pulp stem cells (fDPSCs) and their differentiation potential. Dental pulp stem cells were isolated from freshly extracted ferret canine teeth. The cells were examined for the expression of stem cell markers STRO-1, CD90, CD105, and CD146. The osteo/odontogenic and adipogenic differentiation potential of fDPSCs was evaluated. Osteogenic and odontogenic marker genes were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) on days 1, 4, and 8 after osteo/odontogenic induction of fDPSCs including dentin sialophosphoprotein (DSPP), dentin matrix protein-1, osteopontin, and alkaline phosphatase. Human dental pulp cells were used as the control. The results were analyzed using 3-way analysis of variance. fDPSCs were positive for STRO1, CD90, and CD105 and negative for CD146 markers with immunohistochemistry. fDPSCs showed strong osteogenic and weak adipogenic potential. The overall expression of DSPP was not significantly different between fDPSCs and human dental pulp cells. The expression of DSPP in osteo/odontogenic media was significantly higher in fDPSCs on day 4 (P < .01). The overall expression of dentin matrix protein-1, osteopontin, and alkaline phosphatase was significantly higher in fDPSCs (P = .0005). fDPSCs were positive for several markers of dental pulp stem cells resembling human DPSCs and appeared to show a stronger potential to differentiate to osteoblastic rather than odontoblastic lineage. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Molecular and clinical analyses of Helicobacter pylori colonization in inflamed dental pulp.

    PubMed

    Nomura, Ryota; Ogaya, Yuko; Matayoshi, Saaya; Morita, Yumiko; Nakano, Kazuhiko

    2018-04-16

    Recently, dental pulp has been considered a possible source of infection of Helicobacter pylori (H. pylori) in children. We previously developed a novel PCR system for H. pylori detection with high specificity and sensitivity using primer sets constructed based on the complete genome information for 48 H. pylori strains. This PCR system showed high sensitivity with a detection limit of 1-10 cells when serial dilutions of H. pylori genomic DNA were used as templates. However, the detection limit was lower (10 2 -10 3 cells) when H. pylori bacterial DNA was detected from inflamed pulp specimens. Thus, we further refined the system using a nested PCR method, which was much more sensitive than the previous single PCR method. In addition, we examined the distribution and virulence of H. pylori in inflamed pulp tissue. Nested PCR system was constructed using primer sets designed from the complete genome information of 48 H. pylori strains. The detection limit of the nested PCR system was 1-10 cells using both H. pylori genomic DNA and bacterial DNA isolated from inflamed pulp specimens. Next, distribution of H. pylori was examined using 131 inflamed pulp specimens with the nested PCR system. In addition, association between the detection of H. pylori and clinical information regarding endodontic-infected teeth were investigated. Furthermore, adhesion property of H. pylori strains to human dental fibroblast cells was examined. H. pylori was present in 38.9% of inflamed pulp specimens using the nested PCR system. H. pylori was shown to be predominantly detected in primary teeth rather than permanent teeth. In addition, samplings of the inflamed pulp were performed twice from the same teeth at 1- or 2-week intervals, which revealed that H. pylori was detected in most specimens in both samplings. Furthermore, H. pylori strains showed adhesion property to human dental fibroblast cells. Our results suggest that H. pylori colonizes inflamed pulp in approximately 40% of all cases through adhesion to human dental fibroblast cells.

  8. Efficacy of Sex Determination from Human Dental Pulp Tissue and its Reliability as a Tool in Forensic Dentistry.

    PubMed

    Khanna, Kaveri Surya

    2015-01-01

    Sex determination is one of the primary steps in forensics. Barr body can be used as a histological method for identification of sex as it is found to be specific to female somatic cells and rare in male cells. To demarcate human dental pulp as an important identification tool of sex in forensic odontology (FO) and to evaluate the time period till which sex can be determined from pulp tissue using three stains H and E, Feulgen, and acridine - orange under fluorescence so as. 90 pulp samples (45 males and 45 females) were subjected to Barr body analysis for determination of sex using light and fluorescent microscopy. Barr body was found to be positive for female samples and negative or rare in the male sample (<3%). Barr body from human dental pulp tissue can be used as a successful determinant of sex identification in FO.

  9. Isolation and morphology of Stem Cells from Deciduous Tooth (SHED) and Human Dental Pulp Stem Cells (hDPSC)

    NASA Astrophysics Data System (ADS)

    Ariffin, Shahrul Hisham Zainal; Manogaran, Thanaletchumi; Abidin, Intan Zarina Zainol; Senafi, Sahidan; Wahab, Rohaya Megat Abdul

    2016-11-01

    Dental pulp is a tissue obtained from pulp chamber of deciduous and permanent tooth which contain stem cells. Stem cell isolation procedure is performed to obtain cells from tissue using enzymatic digestion. The aim of this study is to isolate and observe the morphology of stem cells during passage 0 and passage 3. Dental pulp from deciduous and permanent tooth was enzymatically digested using collagenase Type I and cells obtained were cultured in DMEM-KO that contains 10% fetal bovine serum, 1% antibiotic-antimycotic solution and 0.001× GlutaMax®. During culture, cell morphology was observed under the microscope on day 3, 16 and 33 and captured using cellB software. Giemsa staining was conducted on cells at passage 3. Cells attached at the bottom of the flask on day 3 and started forming small colonies. Cells became confluent after approximately 4 weeks. Both Stem Cells from Deciduous Tooth (SHED) and Human Dental Pulp Stem Cells (hDPSC) exhibited fibroblast-like morphology during passage 0 and passage 3. Meanwhile, Giemsa staining at passage 3 revealed single intact nucleus surrounded by fibroblastic cytoplasm structure. It can be concluded that SHED and hDPSC showed consistent fibroblast-like morphology throughout culture period.

  10. Transplantation of Human Dental Pulp-Derived Stem Cells or Differentiated Neuronal Cells from Human Dental Pulp-Derived Stem Cells Identically Enhances Regeneration of the Injured Peripheral Nerve.

    PubMed

    Ullah, Imran; Park, Ju-Mi; Kang, Young-Hoon; Byun, June-Ho; Kim, Dae-Geon; Kim, Joo-Heon; Kang, Dong-Ho; Rho, Gyu-Jin; Park, Bong-Wook

    2017-09-01

    Human dental mesenchymal stem cells isolated from the dental follicle, pulp, and root apical papilla of extracted wisdom teeth have been known to exhibit successful and potent neurogenic differentiation capacity. In particular, human dental pulp-derived stem cells (hDPSCs) stand out as the most prominent source for in vitro neuronal differentiation. In this study, to evaluate the in vivo peripheral nerve regeneration potential of hDPSCs and differentiated neuronal cells from DPSCs (DF-DPSCs), a total of 1 × 10 6 hDPSCs or DF-hDPSCs labeled with PKH26 tracking dye and supplemented with fibrin glue scaffold and collagen tubulization were transplanted into the sciatic nerve resection (5-mm gap) of rat models. At 12 weeks after cell transplantation, both hDPSC and DF-hDPSC groups showed notably increased behavioral activities and higher muscle contraction forces compared with those in the non-cell transplanted control group. In immunohistochemical analysis of regenerated nerve specimens, specific markers for angiogenesis, axonal fiber, and myelin sheath increased in both the cell transplantation groups. Pretransplanted labeled PKH26 were also distinctly detected in the regenerated nerve tissues, indicating that transplanted cells were well-preserved and differentiated into nerve cells. Furthermore, no difference was observed in the nerve regeneration potential between the hDPSC and DF-hDPSC transplanted groups. These results demonstrate that dental pulp tissue is an excellent stem cell source for nerve regeneration, and in vivo transplantation of the undifferentiated hDPSCs could exhibit sufficient and excellent peripheral nerve regeneration potential.

  11. Iloprost up-regulates vascular endothelial growth factor expression in human dental pulp cells in vitro and enhances pulpal blood flow in vivo.

    PubMed

    Limjeerajarus, Chalida Nakalekha; Osathanon, Thanaphum; Manokawinchoke, Jeeranan; Pavasant, Prasit

    2014-07-01

    Prostacyclin (PGI2) is a biomolecule capable of enhancing angiogenesis and cellular proliferation. We investigated the influence of a PGI2 analogue (iloprost) on dental pulp revascularization in vitro and in vivo by using human dental pulp cells (HDPCs) and a rat tooth injury model, respectively. Iloprost stimulated the human dental pulp cell mRNA expression of vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), and platelet-derived growth factor (PDGF) in a significant dose-dependent manner. This mRNA up-regulation was significantly inhibited by pretreatment with a PGI2 receptor antagonist and forskolin (a protein kinase A activator). In contrast, a protein kinase A inhibitor significantly enhanced the iloprost-induced mRNA expression of VEGF, FGF-2, and PDGF. Pretreatment with a fibroblast growth factor receptor inhibitor attenuated the VEGF, FGF-2, and PDGF mRNA expression, indicating opposing regulatory mechanisms. The effect of iloprost on the dental pulp was investigated in vivo by using a rat molar pulp injury model. The iloprost-treated group exhibited a significant increase in pulpal blood flow at 72 hours compared with control. The present study indicates that iloprost may be a candidate agent to promote neovascularization in dental pulp tissue, suggesting the potential clinical use of iloprost in vital pulp therapy. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Interferon-gamma improves impaired dentinogenic and immunosuppressive functions of irreversible pulpitis-derived human dental pulp stem cells

    PubMed Central

    Sonoda, Soichiro; Yamaza, Haruyoshi; Ma, Lan; Tanaka, Yosuke; Tomoda, Erika; Aijima, Reona; Nonaka, Kazuaki; Kukita, Toshio; Shi, Songtao; Nishimura, Fusanori; Yamaza, Takayoshi

    2016-01-01

    Clinically, irreversible pulpitis is treated by the complete removal of pulp tissue followed by replacement with artificial materials. There is considered to be a high potential for autologous transplantation of human dental pulp stem cells (DPSCs) in endodontic treatment. The usefulness of DPSCs isolated from healthy teeth is limited. However, DPSCs isolated from diseased teeth with irreversible pulpitis (IP-DPSCs) are considered to be suitable for dentin/pulp regeneration. In this study, we examined the stem cell potency of IP-DPSCs. In comparison with healthy DPSCs, IP-DPSCs expressed lower colony-forming capacity, population-doubling rate, cell proliferation, multipotency, in vivo dentin regeneration, and immunosuppressive activity, suggesting that intact IP-DPSCs may be inadequate for dentin/pulp regeneration. Therefore, we attempted to improve the impaired in vivo dentin regeneration and in vitro immunosuppressive functions of IP-DPSCs to enable dentin/pulp regeneration. Interferon gamma (IFN-γ) treatment enhanced in vivo dentin regeneration and in vitro T cell suppression of IP-DPSCs, whereas treatment with tumor necrosis factor alpha did not. Therefore, these findings suggest that IFN-γ may be a feasible modulator to improve the functions of impaired IP-DPSCs, suggesting that autologous transplantation of IFN-γ-accelerated IP-DPSCs might be a promising new therapeutic strategy for dentin/pulp tissue engineering in future endodontic treatment. PMID:26775677

  13. A modified efficient method for dental pulp stem cell isolation.

    PubMed

    Raoof, Maryam; Yaghoobi, Mohammad Mehdi; Derakhshani, Ali; Kamal-Abadi, Ali Mohammadi; Ebrahimi, Behnam; Abbasnejad, Mehdi; Shokouhinejad, Noushin

    2014-03-01

    Dental pulp stem cells can be used in regenerative endodontic therapy. The aim of this study was to introduce an efficient method for dental pulp stem cells isolation. In this in-vitro study, 60 extracted human third molars were split and pulp tissue was extracted. Dental pulp stem cells were isolated by the following three different methods: (1) digestion of pulp by collagenase/dispase enzyme and culture of the released cells; (2) outgrowth of the cells by culture of undigested pulp pieces; (3) digestion of pulp tissue pieces and fixing them. The cells were cultured in minimum essential medium alpha modification (αMEM) medium supplemented with 20% fetal bovine serum(FBS) in humid 37°C incubator with 5% CO 2. The markers of stem cells were studied by reverse transcriptase polymerase chain reaction (PCR). The student t-test was used for comparing the means of independent groups. P <0.05 was considered as significant. The results indicated that by the first method a few cell colonies with homogenous morphology were detectable after 4 days, while in the outgrowth method more time was needed (10-12 days) to allow sufficient numbers of heterogeneous phenotype stem cells to migrate out of tissue. Interestingly, with the improved third method, we obtained stem cells successfully with about 60% efficiency after 2 days. The results of RT-PCR suggested the expression of Nanog, Oct-4, and Nucleostemin markers in the isolated cells from dental pulps. This study proposes a new method with high efficacy to obtain dental pulp stem cells in a short time.

  14. Isolation of tooth pulp cells for sex chromatin studies in experimental dehydrated and cremated remains.

    PubMed

    Duffy, J B; Waterfield, J D; Skinner, M F

    1991-03-01

    In experiments designed to assess sex chromatin in artificially mummified and heated pulp tissue, a method was devised that successfully separates cells while minimizing nuclear damage. Sex chromatin (both Barr bodies and F-bodies) is shown to preserve in dehydrated human pulps up to one year. Human pulp tissue retains sex diagnostic characteristics when heated to 100 degrees C for up to 1 h. Parallel experiments on extracted teeth from young pigs reveals comparable tissue preservation. Heat penetration is retarded, however, in unextracted pig teeth in fleshed jaws such that temperatures could be raised to 300 degrees C for longer than 1 h. Heat penetration into fleshed material was further tested by the insertion of thermocouple probes to assess the temperature attained within the pulp chamber. At chamber temperatures up to 75 degrees C sex diagnosis in human pulps from extracted teeth was still possible. In outdoor incineration of fleshed pigs' heads in an open fire, 75 degrees C in the pulp chamber was reached at a fire temperature within the range 500-700 degrees C. The implications of these findings for forensic situations are described.

  15. Overexpression of Receptor for Advanced Glycation End Products and High-Mobility Group Box 1 in Human Dental Pulp Inflammation

    PubMed Central

    Tancharoen, Salunya; Tengrungsun, Tassanee; Suddhasthira, Theeralaksna; Kikuchi, Kiyoshi; Vechvongvan, Nuttavun; Maruyama, Ikuro

    2014-01-01

    High mobility group box 1 (HMGB1), a nonhistone DNA-binding protein, is released into the extracellular space and promotes inflammation. HMGB1 binds to related cell signaling transduction receptors, including receptor for advanced glycation end products (RAGE), which actively participate in vascular and inflammatory diseases. The aim of this study was to examine whether RAGE and HMGB1 are involved in the pathogenesis of pulpitis and investigate the effect of Prevotella intermedia (P. intermedia) lipopolysaccharide (LPS) on RAGE and HMGB1 expression in odontoblast-like cells (OLC-1). RAGE and HMGB1 expression levels in clinically inflamed dental pulp were higher than those in healthy dental pulp. Upregulated expression of RAGE was observed in odontoblasts, stromal pulp fibroblasts-like cells, and endothelial-like cell lining human pulpitis tissue. Strong cytoplasmic HMGB1 immunoreactivity was noted in odontoblasts, whereas nuclear HMGB1 immunoreactivity was seen in stromal pulp fibroblasts-like cells in human pulpitis tissue. LPS stimulated OLC-1 cells produced HMGB1 in a dose-dependent manner through RAGE. HMGB1 translocation towards the cytoplasm and secretion from OLC-1 in response to LPS was inhibited by TPCA-1, an inhibitor of NF-κB activation. These findings suggest that RAGE and HMGB1 play an important role in the pulpal immune response to oral bacterial infection. PMID:25114379

  16. MAPK signaling is required for LPS-induced VEGF in pulp stem cells.

    PubMed

    Botero, T M; Son, J S; Vodopyanov, D; Hasegawa, M; Shelburne, C E; Nör, J E

    2010-03-01

    Caries-induced pulpitis is typically accompanied by an increase in dental pulp microvascular density. However, the mechanisms by which dental pulp cells recognize lipopolysaccharides (LPSs) remain unclear. We hypothesized that Porphyromonas endodontalis and Escherichia coli LPSs induce vascular endothelial growth factor (VEGF) expression in dental pulp stem cells (DPSC) and human dental pulp fibroblasts (HDPF) through mitogen-activated protein kinase (MAPK) signaling. ELISA, semi-quantitative RT-PCR, immunofluorescence, and Western blots were used. Here, we observed that LPSs induced VEGF expression in DPSC and HDPF cells, and both cell types express Toll-like receptor 4 (TLR- 4). Notably, LPS-induced VEGF is associated with phosphorylation of protein kinase C (PKC zeta) and extracellular signal-regulator kinase (ERK1/2) and is dependent upon MAPK activation. Analysis of these data, collectively, unveils a signaling pathway responsible for synthesis of VEGF by pulp cells and suggests a novel therapeutic target for the management of vascular responses in teeth with pulpitis.

  17. [Human stem cells from apical papilla can regenerate dentin-pulp complex].

    PubMed

    Xiong, Huacui; Chen, Ke; Huang, Yibin; Liu, Caiqi

    2013-10-01

    To regenerate dentin-pulp complex by tissue engineering with human stem cells from apical papilla cells (SCAP) as the seed cells. SCAP was separated from from normal human impacted third molars with immature roots by outgrowth culture. The cells were then cultured in the differentiation medium for 3 weeks or in normal medium for 60 days, and analyzed for mineralization potential by Alizarin red staining. The osteo/odontogenic markers including alkaline phosphatase (ALP), bone sialoprotein (BSP), osteocalcin (OC) and dentin sialoprotein (DSP) were investigated by immunofluorescence staining and reverse transcription-polymerase chain reaction. The co-cultured mixture of SCAP and HA/TCP, or HA/TCP alone was implanted subcutaneously on the back of nude mice for 8 weeks, and the implants were collected and examined by HE and immunohistochemical staining. Round alizarin red-positive nodules formed in the isolated cells after cell culture in the differentiation medium for 3 weeks or in normal medium for 60 days with positive staining for osteo/odontogenic markers. SCAP with HA/TCP could regenerate pulp-dentin complex-like tissue in nude mice. The cells near the dentin-like tissue were positive for DSP. No mineral tissue was found in mice receiving HA/TCP implantation. SCAP may serve as a promising seed cell for dentin-pulp complex tissue engineering.

  18. Functionalized scaffolds to control dental pulp stem cell fate

    PubMed Central

    Piva, Evandro; Silva, Adriana F.; Nör, Jacques E.

    2014-01-01

    Emerging understanding about interactions between stem cells, scaffolds and morphogenic factors has accelerated translational research in the field of dental pulp tissue engineering. Dental pulp stem cells constitute a sub-population of cells endowed with self-renewal and multipotency. Dental pulp stem cells seeded in biodegradable scaffolds and exposed to dentin-derived morphogenic signals give rise to a pulp-like tissue capable of generating new dentin. Notably, dentin-derived proteins are sufficient to induce dental pulp stem cell differentiation into odontoblasts. Ongoing work is focused on developing ways of mobilizing dentin-derived proteins and disinfecting the root canal of necrotic teeth without compromising the morphogenic potential of these signaling molecules. On the other hand, dentin by itself does not appear to be capable of inducing endothelial differentiation of dental pulp stem cells, despite the well known presence of angiogenic factors in dentin. This is particularly relevant in the context of dental pulp tissue engineering in full root canals, where access to blood supply is limited to the apical foramina. To address this challenge, scientists are looking at ways to use the scaffold as a controlled release device for angiogenic factors. The aim of this manuscript is to present and discuss current strategies to functionalize injectable scaffolds and customize them for dental pulp tissue engineering. The long-term goal of this work is to develop stem cell-based therapies that enable the engineering of functional dental pulps capable of generating new tubular dentin in humans. PMID:24698691

  19. Efficacy of Sex Determination from Human Dental Pulp Tissue and its Reliability as a Tool in Forensic Dentistry

    PubMed Central

    Khanna, Kaveri Surya

    2015-01-01

    Background: Sex determination is one of the primary steps in forensics. Barr body can be used as a histological method for identification of sex as it is found to be specific to female somatic cells and rare in male cells. To demarcate human dental pulp as an important identification tool of sex in forensic odontology (FO) and to evaluate the time period till which sex can be determined from pulp tissue using three stains H and E, Feulgen, and acridine - orange under fluorescence so as. Materials and Methods: 90 pulp samples (45 males and 45 females) were subjected to Barr body analysis for determination of sex using light and fluorescent microscopy. Results: Barr body was found to be positive for female samples and negative or rare in the male sample (<3%). Conclusion: Barr body from human dental pulp tissue can be used as a successful determinant of sex identification in FO. PMID:26668474

  20. Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential

    PubMed Central

    Alongi, Dominick J; Yamaza, Takayoshi; Song, Yingjie; Fouad, Ashraf F; Romberg, Elaine E; Shi, Songtao; Tuan, Rocky S; Huang, George T-J

    2011-01-01

    Background Potent stem/progenitor cells have been isolated from normal human dental pulps termed dental pulp stem cells (DPSCs). However, it is unknown whether these cells exist in inflamed pulps (IPs). Aims To determine whether DPSCs can be identified and isolated from IPs; and if they can be successfully cultured, whether they retain tissue regeneration potential in vivo. Materials & methods DPSCs from freshly collected normal pulps (NPs) and IPs were characterized in vitro and their tissue regeneration potential tested using an in vivo study model. Results The immunohistochemical analysis showed that IPs expressed higher levels of mesenchymal stem cell markers STRO-1, CD90, CD105 and CD146 compared with NPs (p < 0.05). Flow cytometry analysis showed that DPSCs from both NPs and IPs expressed moderate to high levels of CD146, stage-specific embryonic antigen-4, CD73 and CD166. Total population doubling of DPSCs-IPs (44.6 ± 2.9) was lower than that of DPSCs-NPs (58.9 ± 2.5) (p < 0.05), and DPSCs-IPs appeared to have a decreased osteo/dentinogenic potential compared with DPSCs-NPs based on the mineral deposition in cultures. Nonetheless, DPSCs-IPs formed pulp/dentin complexes similar to DPSCs-NPs when transplanted into immunocompromised mice. Conclusion DPSCs-IPs can be isolated and their mesenchymal stem cell marker profiles are similar to those from NPs. Although some stem cell properties of DPSCs-IPs were altered, cells from some samples remained potent in tissue regeneration in vivo. PMID:20465527

  1. In vitro proliferation and osteogenic differentiation of human dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel.

    PubMed

    Chen, Yantian; Zhang, Fengli; Fu, Qiang; Liu, Yong; Wang, Zejian; Qi, Nianmin

    2016-09-01

    Injectable thermo-sensitive hydrogels have a potential application in bone tissue engineering for their sensitivities and minimal invasive properties. Human dental pulp stem cells have been considered a promising tool for tissue reconstruction. The objective of this study was to investigate the proliferation and osteogenic differentiation of dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel in vitro. The chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel were prepared using the sol-gel method. The injectability of chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel was measured using a commercial disposable syringe. Scanning electron microscopy was used to observe the inner structure of hydrogels. Then dental pulp stem cells were seeded in chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel, respectively. The growth of dental pulp stem cells was periodically observed under an inverted microscope. The proliferation of dental pulp stem cells was detected by using an Alamar Blue kit, while cell apoptosis was determined by using a Live/Dead Viability/Cytotoxicity kit. The osteogenic differentiations of dental pulp stem cells in chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel were evaluated by alkaline phosphatase activity assay and mRNA expression of osteogenesis gene for 21 days in osteogenic medium. The results indicated that there was no significant difference between chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel in injectability. Cells within the chitosan/β-glycerophosphate/hydroxyapatite hydrogel displayed a typical adherent cell morphology and rapid proliferation with high cellular viability after 14 days of culture. Dental pulp stem cells seeded in chitosan/β-glycerophosphate/hydroxyapatite hydrogels had a higher alkaline phosphatase activity and better up-regulation of gene expression levels of Runx-2, Collagen I, alkaline phosphatase and osteocalcin than in chitosan /β-glycerophosphate hydrogels after osteogenic differentiation. These results demonstrated that the chitosan/β-glycerophosphate/hydroxyapatite hydrogel had excellent cellular compatibility and the superiority in promoting dental pulp stem cells osteogenic differentiation in vitro, showing that the combination of dental pulp stem cells and chitosan/β-glycerophosphate/hydroxyapatite hydrogel has the potential to be used for bone tissue engineering. © The Author(s) 2016.

  2. Influence of different types of light on the response of the pulp tissue in dental bleaching: a systematic review.

    PubMed

    Benetti, Francine; Lemos, Cleidiel Aparecido Araújo; de Oliveira Gallinari, Marjorie; Terayama, Amanda Miyuki; Briso, André Luiz Fraga; de Castilho Jacinto, Rogério; Sivieri-Araújo, Gustavo; Cintra, Luciano Tavares Angelo

    2018-05-01

    This systematic review (PROSPERO register: CRD42016053140) investigated the influence of different types of light on the pulp tissue during dental bleaching. Two independent authors conducted a systematic search and risk of bias evaluations. An electronic search was undertaken (PubMed/Medline, Embase, The Cochrane Library, and other databases) until May 2017. The population, intervention, comparison, outcomes (PICO) question was: "Does the light in dental bleaching change the response of the pulp to the bleaching procedure?" The intervention involved pulp tissue/cells after bleaching with light, while the comparison involved pulp tissue/cells after bleaching without light. The primary outcome was the inflammation/cytotoxicity observed in pulp after bleaching. Out of 2210 articles found, 12 articles were included in the review; four were in vivo studies (one study in dogs/others in human), and eight were in vitro studies (cell culture/with artificial pulp chamber or not). The light source used was halogen, light-emitting diode (LED), and laser. Only one in vivo study that used heat to simulate light effects showed significant pulp inflammation. Only two in vitro studies demonstrated that light influenced cell metabolism; one using halogen light indicated negative effects, and the other using laser therapy indicated positive effects. Given that animal and in vitro studies have been identified, there remain some limitations for extrapolation to the human situation. Furthermore, different light parameters were used. The effects of dental bleaching on the pulp are not influenced by different types of light, but different light parameters can influence these properties. There is insufficient evidence about the influence of different types of light on inflammation/cytotoxicity of the pulp.

  3. Inflammatory response of human dental pulp to at-home and in-office tooth bleaching

    PubMed Central

    Vaz, Maysa Magalhães; Lopes, Lawrence Gonzaga; Cardoso, Paula Carvalho; de Souza, João Batista; Batista, Aline Carvalho; Costa, Nádia Lago; Torres, Érica Miranda; Estrela, Carlos

    2016-01-01

    ABSTRACT Tooth bleaching is a technique of choice to obtain a harmonious smile, but bleaching agents may damage the dental pulp. Objective: This study evaluated the inflammatory responses of human dental pulp after the use of two bleaching techniques. Material and Methods: Pulp samples were collected from human third molars extracted for orthodontic reasons and divided into three groups: control - no tooth bleaching (CG) (n=7); at-home bleaching with 15% carbamide peroxide (AH) (n = 10), and in-office bleaching with 38% hydrogen peroxide (IO) (n=12). Pulps were removed and stained with hematoxylin-eosin for microscopic analysis of inflammation intensity, collagen degradation, and pulp tissue organization. Immunohistochemistry was used to detect mast cells (tryptase+), blood vessels (CD31+), and macrophages (CD68+). Chi-square, Kruskal-Wallis, and Mann Whitney tests were used for statistical analysis. The level of significance was set at p<.05. Results: The inflammation intensity and the number of macrophages were significantly greater in IO than in AH and CG (p<0.05). The results of CD31+ (blood vessels per mm2) were similar in CG (61.39±20.03), AH (52.29±27.62), and IO (57.43±8.69) groups (p>0.05). No mast cells were found in the pulp samples analyzed. Conclusion: In-office bleaching with 38% hydrogen peroxide resulted in more intense inflammation, higher macrophages migration, and greater pulp damage then at-home bleaching with 15% carbamide peroxide, however, these bleaching techniques did not induce migration of mast cells and increased the number of blood vessels. PMID:27812622

  4. Human dental pulp stem cells derived from cryopreserved dental pulp tissues of vital extracted teeth with disease demonstrate hepatic-like differentiation.

    PubMed

    Chen, Y K; Huang, Anderson H C; Chan, Anthony W S; Lin, L M

    2016-06-01

    Reviewing the literature, hepatic differentiation of human dental pulp stem cells (hDPSCs) from cryopreserved dental pulp tissues of vital extracted teeth with disease has not been studied. This study is aimed to evaluate the hypothesis that hDPSCs from cryopreserved dental pulp tissues of vital extracted teeth with disease could possess potential hepatic differentiation. Forty vital extracted teeth with disease recruited for hDPSCs isolation, stem cell characterization and hepatic differentiation were randomly and equally divided into group A (liquid nitrogen-stored dental pulp tissues) and group B (freshly derived dental pulp tissues). Samples of hDPSCs isolated from groups A and B but without hepatic growth factors formed negative controls. A well-differentiated hepatocellular carcinoma cell line was employed as a positive control. All the isolated hDPSCs from groups A and B showed hepatic-like differentiation with morphological change from a spindle-shaped to a polygonal shape and normal karyotype. Differentiated hDPSCs and the positive control expressed hepatic metabolic function genes and liver-specific genes. Glycogen storage of differentiated hDPSCs was noted from day 7 of differentiation-medium culture. Positive immunofluorescence staining of low-density lipoprotein and albumin was observed from day 14 of differentiation-medium culture; urea production in the medium was noted from week 6. No hepatic differentiation was observed for any of the samples of the negative controls. We not only demonstrated the feasibility of hepatic-like differentiation of hDPSCs from cryopreserved dental pulp tissues of vital extracted teeth with disease but also indicated that the differentiated cells possessed normal karyotype and were functionally close to normal hepatic-like cells. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Substance P influenced gelatinolytic activity via reactive oxygen species in human pulp cells.

    PubMed

    Wang, F-M; Hu, T; Cheng, R; Tan, H; Zhou, X-D

    2008-10-01

    To investigate the effects of substance P (SP) on gelatinolytic activity of matrix metalloproteinases (MMPs) in human pulp cells. Human dental pulp cells were isolated and cultured. Subconfluent cells, between the third and sixth passages, were maintained under serum deprivation for 18 h followed by the treatment of varying doses of SP (1 pmol L(-1), 100 pmol L(-1), 10 nmol L(-1), 1 micromol L(-1) and 100 micromol L(-1)). Conditioned media were then subjected to gelatin zymography using 8% sodium dodecyl sulphate polyacrylamide gel electrophoresis minigels containing 1.5 g L(-1) gelatin. The effect of SP on intracellular reactive oxygen species (ROS) was also examined by confocal microscopy. ROS scavenger N-Acetyl-L-cysteine (NAC, 5 mmol L(-1)) was utilized to evaluate the roles of ROS pathway in mediating the impact of SP on cellular gelatinolytic activity. Data were analysed using analysis of variance with Bonferroni correction for multiple comparisons or an unpaired Student's t-test. Substance P, at levels above 1 micromol L(-1), remarkably enhanced MMP-2 activity reflected by the band migrating at 66 kDa (P < 0.05). A gelatinolytic band at approximately 44 kDa appeared to be intensified in a SP dose-dependent manner. In addition, it was demonstrated that SP could induce ROS production in pulp cells and ROS scavenger NAC was further found to significantly reduce MMP-2 activity (P < 0.05), as well as other bands of gelatinolytic proteinases. Substance P can influence gelatinolytic activity in human pulp cells via ROS pathway.

  6. Elevated extracellular calcium increases expression of bone morphogenetic protein-2 gene via a calcium channel and ERK pathway in human dental pulp cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tada, Hiroyuki; Nemoto, Eiji, E-mail: e-nemoto@umin.ac.jp; Kanaya, Sousuke

    Dental pulp cells, which have been shown to share phenotypical features with osteoblasts, are capable of differentiating into odontoblast-like cells and generating a dentin-like mineral structure. Elevated extracellular Ca{sup 2+}Ca{sub o}{sup 2+} has been implicated in osteogenesis by stimulating the proliferation and differentiation of osteoblasts; however, the role of Ca{sub o}{sup 2+} signaling in odontogenesis remains unclear. We found that elevated Ca{sub o}{sup 2+} increases bone morphogenetic protein (BMP)-2 gene expression in human dental pulp cells. The increase was modulated not only at a transcriptional level but also at a post-transcriptional level, because treatment with Ca{sup 2+} increased the stabilitymore » of BMP-2 mRNA in the presence of actinomycin D, an inhibitor of transcription. A similar increase in BMP-2 mRNA level was observed in other human mesenchymal cells from oral tissue; periodontal ligament cells and gingival fibroblasts. However, the latter cells exhibited considerably lower expression of BMP-2 mRNA compared with dental pulp cells and periodontal ligament cells. The BMP-2 increase was markedly inhibited by pretreatment with an extracellular signal-regulated kinase (ERK) inhibitor, PD98059, and partially inhibited by the L-type Ca{sup 2+} channels inhibitor, nifedipine. However, pretreatment with nifedipine had no effect on ERK1/2 phosphorylation triggered by Ca{sup 2+}, suggesting that the Ca{sup 2+} influx from Ca{sup 2+} channels may operate independently of ERK signaling. Dental pulp cells do not express the transcript of Ca{sup 2+}-sensing receptors (CaSR) and only respond slightly to other cations such as Sr{sup 2+} and spermine, suggesting that dental pulp cells respond to Ca{sub o}{sup 2+} to increase BMP-2 mRNA expression in a manner different from CaSR and rather specific for Ca{sub o}{sup 2+} among cations.« less

  7. Tissue non-specific alkaline phosphatase production by human dental pulp stromal cells is enhanced by high density cell culture.

    PubMed

    Tomlinson, Matthew J; Dennis, Caitriona; Yang, Xuebin B; Kirkham, Jennifer

    2015-08-01

    The cell surface hydrolase tissue non-specific alkaline phosphatase (TNAP) (also known as MSCA-1) is used to identify a sub-population of bone marrow stromal cells (BMSCs) with high mineralising potential and is found on subsets of cells within the dental pulp. We aim to determine whether TNAP is co-expressed by human dental pulp stromal cells (hDPSCs) alongside a range of BMSC markers, whether this is an active form of the enzyme and the effects of culture duration and cell density on its expression. Cells from primary dental pulp and culture expanded hDPSCs expressed TNAP. Subsequent analyses revealed persistent TNAP expression and co-expression with BMSC markers such as CD73 and CD90. Flow cytometry and biochemical assays showed that increased culture durations and cell densities enhanced TNAP expression by hDPSCs. Arresting the hDPSC cell cycle also increased TNAP expression. These data confirm that TNAP is co-expressed by hDPSCs together with other BMSC markers and show that cell density affects TNAP expression levels. We conclude that TNAP is a potentially useful marker for hDPSC selection especially for uses in mineralised tissue regenerative therapies.

  8. Sensitivity of human dental pulp cells to eighteen chemical agents used for endodontic treatments in dentistry.

    PubMed

    Kobayashi, Morio; Tsutsui, Takeo W; Kobayashi, Tomoko; Ohno, Maki; Higo, Yukari; Inaba, Tomohiro; Tsutsui, Takeki

    2013-01-01

    To determine the adverse effects against human dental pulp tissue, the sensitivity of human dental pulp cells (D824 cells) to 18 chemical agents used for endodontic treatments in dentistry was examined. The cytotoxicity, as determined by a decrease in colony-forming ability of cells treated with the chemical agents, increased as the concentration increased. As a quantitative measure of the cytotoxic effect, LC(50), the concentration which induces a 50% lethality, was extrapolated from the concentration-response curves. The rank of the chemical agents according to their cytotoxic effect (LC(50)) was sodium arsenite > formaldehyde > hydrogen peroxide > zinc oxide > thymol ≈ iodoform ≈ eugenol > guaiacol > ethylenediaminetetraacetic acid ≈ iodine > procaine > lidocaine ≈ chloramphenicol ≈ m-cresol > calcium hydroxide ≈ sodium hypochlorite ≈ phenol ≈ p-phenolsulfonic acid. To compare the cytotoxicity and the levels of apoptosis and mRNA expression of five genes related to the function of dental pulp tissue, D824 cells treated with the LC(50) concentrations of chemical agents were assayed by the TUNEL method and quantitative reverse transcription polymerase chain reaction analysis, respectively. The inducibility of apoptotic cells and the level of mRNA expression of the genes varied with the chemical agents, indicating that both effects occurred independent of the rank of cytotoxic effect of the chemical agents. The results not only provide information concerning cytotoxicity of various chemical agents to human dental pulp cells, but also show an insight into the diversity of the pharmacodynamic action of the chemical agents.

  9. Fibrin gel improves tissue ingrowth and cell differentiation in human immature premolars implanted in rats.

    PubMed

    Ruangsawasdi, Nisarat; Zehnder, Matthias; Weber, Franz E

    2014-02-01

    In pulpless immature human premolars implanted in rodents, this study investigated whether fibrin gel offered advantages over leaving the root canal empty regarding soft tissue ingrowth and cell differentiation. Root canals of extracted human immature premolars (n = 12) were accessed and then irrigated with 5% sodium hypochlorite followed by 17% ethylenediaminetetraacetic acid. Root canals were then either left empty or filled with a fibrin gel (n = 6 each) before being placed subcutaneously on top of the calvarial bone of rats (1 tooth per rat) for 12 weeks. After sacrifice, teeth were histologically assessed. Tissue ingrowth was quantified and compared between groups using the Mann-Whitney U test (P < .05). Cells adhering to the pulp canal wall were immunohistochemically screened for the presence of bone sialoprotein (BSP) and dentin sialoprotein (DSP). More tissue grew into the pulp space when teeth were filled with fibrin gel (P < .05). The presence of fibrin gel affected not only the extent of tissue ingrowth but also tissue morphology and differentiation of cells contacting the dentinal wall. In the fibrin gel group, newly formed tissue was similar to normal pulp, constituted of inner pulp, cell-rich zone, cell-free zone, and an apparent odontoblast layer, which stained positive for BSP and DSP. Newly formed blood vessels were also more abundant compared with the initially empty root canals. Under the conditions of this study, fibrin gel improved cell infiltration and cell-dentin interaction. Both are necessary for pulp tissue regeneration. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Response of human dental pulp cells to a silver-containing PLGA/TCP-nanofabric as a potential antibacterial regenerative pulp-capping material.

    PubMed

    Cvikl, Barbara; Hess, Samuel C; Miron, Richard J; Agis, Hermann; Bosshardt, Dieter; Attin, Thomas; Schmidlin, Patrick R; Lussi, Adrian

    2017-02-27

    Damage or exposure of the dental pulp requires immediate therapeutic intervention. This study assessed the biocompatibility of a silver-containing PLGA/TCP-nanofabric scaffold (PLGA/Ag-TCP) in two in vitro models, i.e. the material adapted on pre-cultured cells and cells directly cultured on the material, respectively. Collagen saffolds with and without hyaluronan acid (Coll-HA; Coll) using both cell culturing methods and cells growing on culture plates served as reference. Cell viability and proliferation were assessed after 24, 48, and 72 h based on formazan formation and BrdU incorporation. Scaffolds were harvested. Gene expression of interleukin(IL)-6, tumor necrosis factor (TNF)-alpha, and alkaline phosphatase (AP) was assessed 24 h after stimulation. In both models formazan formation and BrdU incorporation was reduced by PLGA/Ag-TCP on dental pulp cells, while no significant reduction was found in cells with Coll and Coll-HA. Cells with PLGA/Ag-TCP for 72 h showed similar relative BrdU incorporation than cells stimulated with Coll and Coll-HA. A prominent increase in the pro-inflammatory genes IL-6 and TNF-α was observed when cells were cultured with PLGA/Ag-TCP compared to the other groups. This increase was parallel with a slight increase in AP expression. Overall, no differences between the two culture methods were observed. PLGA/Ag-TCP decreased viability and proliferation rate of human dental pulp cells and increased the pro-inflammatory capacity and alkaline phosphatase expression. Whether these cellular responses observed in vitro translate into pulp regeneration in vivo will be assessed in further studies.

  11. Success of Maxillary Alveolar Defect Repair in Rats Using Osteoblast-Differentiated Human Deciduous Dental Pulp Stem Cells.

    PubMed

    Jahanbin, Arezoo; Rashed, Roozbeh; Alamdari, Daryoush Hamidi; Koohestanian, Niloufar; Ezzati, Atefeh; Kazemian, Mojgan; Saghafi, Shadi; Raisolsadat, Mohammad Ali

    2016-04-01

    The use of cell-based therapies represents one of the most advanced methods for enhancing the regenerative response in craniofacial abnormalities. The main aim of this study was to evaluate the regenerative potential of human dental pulp stem cells, isolated from deciduous teeth, for reconstructing maxillary alveolar defects in Wistar rats. Human deciduous dental pulp stem cells were isolated and stimulated to differentiate into osteoblasts in culture media. Maxillary alveolar defects were created in 60 Wistar rats by a surgical procedure. Then, on the basis of the type of graft used to repair the bone defect, the rats were divided into 6 equal groups: groups 1 and 2, transplantation of iliac bone graft; groups 3 and 4, transplantation of stem cells derived from deciduous dental pulp in addition to collagen matrix; groups 5 and 6, transplantation of just collagen matrix. Then, fetal bone formation, granulation tissue, fibrous tissue, and inflammatory tissue were evaluated by hematoxylin-eosin staining at 1 month (groups 1, 3, and 5) and 2 months (groups 2, 4, and 6) after surgery, and data were analyzed and compared using the Fisher exact test. Maximum fetal bone formation occurred in group 2, in which iliac bone graft was inserted into the defect area for 2 months; there also were significant differences among the groups for bone formation (P = .009). In the 1-month groups, there were no significant differences between the control and stem cell-plus-scaffold groups. There were significant differences between the 2-month groups for fetal bone formation only between the control and scaffold groups (P = .026). The study showed that human dental pulp stem cells are an additional cell resource for repairing maxillary alveolar defects in rats and constitute a promising model for reconstruction of human maxillary alveolar defects in patients with cleft lip and palate. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  12. Dentin and pulp sense cold stimulus.

    PubMed

    Tokuda, Masayuki; Tatsuyama, Shoko; Fujisawa, Mari; Morimoto-Yamashita, Yoko; Kawakami, Yoshiko; Shibukawa, Yoshiyuki; Torii, Mistuso

    2015-05-01

    Dentin hypersensitivity is a common symptom, and recent convergent evidences have reported transient receptor potential (TRP) channels in odontoblasts act as mechanical and thermal molecular sensor, which detect stimulation applied on the exposed dentin surface, to drive multiple odontoblastic cellular functions, such as sensory transduction and/or dentin formation. In the present study, we confirmed expression of TRP melastatin subfamily member-8 (TRPM8) channels in primary cultured cells derived from human dental pulp cells (HPCs) and mouse odontoblast-lineage cells (OLCs) as well as in dentin matrix protein-1 (DMP-1) and dentin sialoprotein (DSP) positive acutely isolated rat odontoblasts from dental pulp tissue slice culture by immunohistochemical analyses. In addition, we detected TRPM8 channel expression on HPCs and OLCs by RT-PCR and Western blotting analyses. These results indicated that both odontoblasts and dental pulp cells express TRPM8 channels in rat, mouse and human, and therefore we hypothesize they may contribute as cold sensor in tooth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Insulin-like growth factor 1 promotes the proliferation and committed differentiation of human dental pulp stem cells through MAPK pathways.

    PubMed

    Lv, Taohong; Wu, Yongzheng; Mu, Chao; Liu, Genxia; Yan, Ming; Xu, Xiangqin; Wu, Huayin; Du, Jinyin; Yu, Jinhua; Mu, Jinquan

    2016-12-01

    Insulin-like growth factor 1 (IGF-1) is a broad-spectrum growth-promoting factor that plays a key role in natural tooth development. Human dental pulp stem cells (hDPSCs) are multipotent and can influence the reparative regeneration of dental pulp and dentin. This study was designed to evaluate the effects of IGF-1 on the proliferation and differentiation of human dental pulp stem cells. HDPSCs were isolated and purified from human dental pulps. The proliferation and osteo/odontogenic differentiation of hDPSCs treated with 100ng/ml exogenous IGF-1 were subsequently investigated. MTT assays revealed that IGF-1 enhanced the proliferation of hDPSCs. ALP activity in IGF-1-treated group was obviously enhanced compared to the control group from days 3 to 9. Alizarin red staining revealed that the IGF-1-treated cells contained a greater number of mineralization nodules and had higher calcium concentrations. Moreover, western blot and qRT-PCR analyses demonstrated that the expression levels of several osteogenic genes (e.g., RUNX2, OSX, and OCN) and an odontoblast-specific marker (DSPP) were significantly up-regulated in IGF-1-treated hDPSCs as compared with untreated cells (P<0.01). Interestingly, the expression of phospho-ERK and phospho-p38 were also up-regulated, indicating that the MAPK signaling pathway is activated during the differentiation of hDPSCs. IGF-1 can promote the proliferation and osteo/odontogenic differentiation of hDPSCs by activating MAPK pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Allogenic banking of dental pulp stem cells for innovative therapeutics.

    PubMed

    Collart-Dutilleul, Pierre-Yves; Chaubron, Franck; De Vos, John; Cuisinier, Frédéric J

    2015-08-26

    Medical research in regenerative medicine and cell-based therapy has brought encouraging perspectives for the use of stem cells in clinical trials. Multiple types of stem cells, from progenitors to pluripotent stem cells, have been investigated. Among these, dental pulp stem cells (DPSCs) are mesenchymal multipotent cells coming from the dental pulp, which is the soft tissue within teeth. They represent an interesting adult stem cell source because they are recovered in large amount in dental pulps with non-invasive techniques compared to other adult stem cell sources. DPSCs can be obtained from discarded teeth, especially wisdom teeth extracted for orthodontic reasons. To shift from promising preclinical results to therapeutic applications to human, DPSCs must be prepared in clinical grade lots and transformed into advanced therapy medicinal products (ATMP). As the production of patient-specific stem cells is costly and time-consuming, allogenic biobanking of clinical grade human leukocyte antigen (HLA)-typed DPSC lines provides efficient innovative therapeutic products. DPSC biobanks represent industrial and therapeutic innovations by using discarded biological tissues (dental pulps) as a source of mesenchymal stem cells to produce and store, in good manufacturing practice (GMP) conditions, DPSC therapeutic batches. In this review, we discuss about the challenges to transfer biological samples from a donor to HLA-typed DPSC therapeutic lots, following regulations, GMP guidelines and ethical principles. We also present some clinical applications, for which there is no efficient therapeutics so far, but that DPSCs-based ATMP could potentially treat.

  15. Allogenic banking of dental pulp stem cells for innovative therapeutics

    PubMed Central

    Collart-Dutilleul, Pierre-Yves; Chaubron, Franck; De Vos, John; Cuisinier, Frédéric J

    2015-01-01

    Medical research in regenerative medicine and cell-based therapy has brought encouraging perspectives for the use of stem cells in clinical trials. Multiple types of stem cells, from progenitors to pluripotent stem cells, have been investigated. Among these, dental pulp stem cells (DPSCs) are mesenchymal multipotent cells coming from the dental pulp, which is the soft tissue within teeth. They represent an interesting adult stem cell source because they are recovered in large amount in dental pulps with non-invasive techniques compared to other adult stem cell sources. DPSCs can be obtained from discarded teeth, especially wisdom teeth extracted for orthodontic reasons. To shift from promising preclinical results to therapeutic applications to human, DPSCs must be prepared in clinical grade lots and transformed into advanced therapy medicinal products (ATMP). As the production of patient-specific stem cells is costly and time-consuming, allogenic biobanking of clinical grade human leukocyte antigen (HLA)-typed DPSC lines provides efficient innovative therapeutic products. DPSC biobanks represent industrial and therapeutic innovations by using discarded biological tissues (dental pulps) as a source of mesenchymal stem cells to produce and store, in good manufacturing practice (GMP) conditions, DPSC therapeutic batches. In this review, we discuss about the challenges to transfer biological samples from a donor to HLA-typed DPSC therapeutic lots, following regulations, GMP guidelines and ethical principles. We also present some clinical applications, for which there is no efficient therapeutics so far, but that DPSCs-based ATMP could potentially treat. PMID:26328017

  16. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    PubMed Central

    Hu, Lei; Gao, Zhenhua; Zhu, Zhao; Zhang, Chunmei; Wang, Jinsong

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS) combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases. PMID:29387727

  17. P16/p53 expression and telomerase activity in immortalized human dental pulp cells

    PubMed Central

    Egbuniwe, Obi; Idowu, Bernadine D; Funes, Juan M; Grant, Andrew D; Renton, Tara

    2011-01-01

    Introduction Residing within human dental pulp are cells of an ectomesenchymal origin that have the potential to differentiate into odontoblast-like cells. These cells have a limited growth potential owing to the effects of cell senescence. This study examines the effects of immortalizing odontoblast-like cells on cell proliferation and mineralization by comparing transformed dental pulp stem cells (tDPSCs) and non-transformed dental pulp stem cells (nDPSCs). Results With the exogenous expression of hTERT, tDPSCs maintained a continued expression of odontogenic markers for cell proliferation and mineralization (ALP, COL-1, DMP-1, DSPP, OCN and OPN), as did nDPSCs. Oncoprotein expression was seen in both groups except for a noted absence of p16 in the tDPSCs. nDPSCs also showed lower levels of total ALP and DNA activity in comparison to tDPSCs when assayed, as well as low telomerase activity readings. Methods Using a retroviral vector, exogenous human telomerase reverse transcriptase (hTERT) was expressed in tDPSCs. Both cell groups were cultured, and their telomerase activities were determined using a telomerase quantification assay. Also examined, were the expression of genes involved in proliferation and mineralization, such as human alkaline phosphatase (ALP), β-actin, collagen I (col-1), core binding factor (cbfa)-1, dentin matrix protein (DMP-1), dentin sialophosphoprotein (DSPP), GAPDH, hTERT, osteocalcin (OCN), osteopontin (OPN) as well as oncoproteins involved in senescence (p16, p21 and p53) using RT-PCR. DNA and alkaline phosphate activity was also assayed in both cell groups. Conclusion These results indicate maintenance of odontoblast-like differentiation characteristics after retroviral transformation with hTERT and suggest a possible link with a reduced p16 expression. PMID:22067611

  18. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation.

    PubMed

    Lei, Ming; Li, Kun; Li, Bei; Gao, Li-Na; Chen, Fa-Ming; Jin, Yan

    2014-08-01

    Mesenchymal stem cells (MSCs) isolated from human postnatal dental pulp and periodontal ligament (PDL) tissues can give rise to multilineage differentiation in vitro and generate related dental tissues in vivo. However, the cell properties of human dental pulp stem cells (DPSCs) and PDL stem cells (PDLSCs) after in vivo implantation remain largely unidentified. In this study, cells were re-isolated from in vivo-generated dental pulp-like and PDL-like tissues (termed re-DPCs and re-PDLCs, respectively) as a result of ectopic transplantation of human DPSC and PDLSC sheets. The cell characteristics in terms of colony-forming ability, cell surface antigens and multi-differentiation potentials were all evaluated before and after implantation. It was found that re-DPCs and re-PDLCs were of human and mesenchymal origin and positive for MSC markers such as STRO-1, CD146, CD29, CD90 and CD105; and, to some extent, re-DPCs could maintain their colony forming abilities. Moreover, both cell types were able to form mineral deposits and differentiate into adipocytes and chondrocytes; however, quantitative analysis and related gene expression determination showed that the osteo-/chondro-differentiation capabilities of re-DPCs and re-PDLCs were significantly reduced compared to those of DPSCs and PDLSCs, respectively (P < 0.05); re-PDLCs showed a greater reduction potential than re-DPCs. We conclude that DPSCs and PDLSCs may maintain their MSC characteristics after in vivo implantation and, compared to PDLSCs, DPSCs appear much more stable under in vivo conditions. These findings provide additional cellular and molecular evidence that supports expanding the use of dental tissue-derived stem cells in cell therapy and tissue engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Immunocytochemical investigation of immune cells within human primary and permanent tooth pulp.

    PubMed

    Rodd, H D; Boissonade, F M

    2006-01-01

    The aim of this study was to determine whether there are any differences in the number and distribution of immune cells within human primary and permanent tooth pulp, both in health and disease. The research took the form of a quantitative immunocytochemical study. One hundred and twenty-four mandibular first permanent molars and second primary molars were obtained from children requiring dental extractions under general anaesthesia. Following exodontia, 10-microm-thick frozen pulp sections were processed for indirect immunofluorescence. Triple-labelling regimes were employed using combinations of the following: (1) protein gene product 9.5, a general neuronal marker; (2) leucocyte common antigen (LCA); and (3) Ulex europaeus I lectin, a marker of vascular endothelium. Image analysis was then used to determine the percentage area of immunostaining for LCA. Leucocytes were significantly more abundant in the pulp horn and mid-coronal region of intact and carious primary teeth, as compared to permanent teeth (P < 0.05, anova). Both dentitions demonstrated the presence of well-localized inflammatory cell infiltrates and marked aborization of pulpal nerves in areas of dense leucocyte accumulation. Primary and permanent tooth pulps appear to have a similar potential to mount inflammatory responses to gross caries The management of the compromised primary tooth pulp needs to be reappraised in the light of these findings.

  20. Schwann Cell Phenotype Changes in Aging Human Dental Pulp.

    PubMed

    Couve, E; Lovera, M; Suzuki, K; Schmachtenberg, O

    2018-03-01

    Schwann cells are glial cells that support axonal development, maintenance, defense, and regeneration in the peripheral nervous system. There is limited knowledge regarding the organization, plasticity, and aging of Schwann cells within the dental pulp in adult permanent teeth. The present study sought to relate changes in the pattern of Schwann cell phenotypes between young and old adult teeth with neuronal, immune, and vascular components of the dental pulp. Schwann cells are shown to form a prominent glial network at the dentin-pulp interface, consisting of nonmyelinating and myelinating phenotypes, forming a multicellular neuroimmune interface in association with nerve fibers and dendritic cells. Schwann cell phenotypes are recognized by the expression of S100, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), Sox10, GAP43, and p75NTR markers. In young adult teeth, a dense population of nonmyelinating Schwann cells projects processes in close association with sensory nerve terminals through the odontoblast layer, reaching the adjacent predentin/dentin domain. While GAP43 and p75NTR are highly expressed in nonmyelinating Schwann cells from young adult teeth, the presence of these markers declines significantly in old adult teeth. Myelinated axons, identified by MBP expression, are mainly present at the Raschkow plexus and within nerve bundles in the dental pulp, but their density is significantly reduced in old adult versus young adult teeth. These data reveal age-related changes within the glial network of the dental pulp, in association with a reduction of coronal dental pulp innervation in old adult versus young adult teeth. The prominence of Schwann cells as a cellular component at the dentin-pulp interface supports the notion that their association with sensory nerve terminals and immune system components forms part of an integrated multicellular barrier for defense against pathogens and dentin repair.

  1. A Miniature Swine Model for Stem Cell-Based De Novo Regeneration of Dental Pulp and Dentin-Like Tissue.

    PubMed

    Zhu, Xiaofei; Liu, Jie; Yu, Zongdong; Chen, Chao-An; Aksel, Hacer; Azim, Adham A; Huang, George T-J

    2018-02-01

    The goal of this study was to establish mini-swine as a large animal model for stem cell-based pulp regeneration studies. Swine dental pulp stem cells (sDPSCs) were isolated from mini-swine and characterized in vitro. For in vivo studies, we first employed both ectopic and semi-orthotopic study models using severe combined immunodeficiency mice. One is hydroxyapatite-tricalcium phosphate (HA/TCP) model for pulp-dentin complex formation, and the other is tooth fragment model for complete pulp regeneration with new dentin depositing along the canal walls. We found that sDPSCs are similar to their human counterparts exhibiting mesenchymal stem cell characteristics with ability to form colony forming unit-fibroblastic and odontogenic differentiation potential. sDPSCs formed pulp-dentin complex in the HA/TCP model and showed pulp regeneration capacity in the tooth fragment model. We then tested orthotopic pulp regeneration on mini-swine including the use of multi-rooted teeth. Using autologous sDPSCs carried by hydrogel and transplanted into the mini-swine root canal space, we observed regeneration of vascularized pulp-like tissue with a layer of newly deposited dentin-like (rD) tissue or osteodentin along the canal walls. In some cases, dentin bridge-like structure was observed. Immunohistochemical analysis detected the expression of nestin, dentin sialophosphoprotein, dentin matrix protein 1, and bone sialoprotein in odontoblast-like cells lining against the produced rD. We also tested the use of allogeneic sDPSCs for the same procedures. Similar findings were observed in allogeneic transplantation. This study is the first to show an establishment of mini-swine as a suitable large animal model utilizing multi-rooted teeth for further cell-based pulp regeneration studies.

  2. Tooth Tissue Engineering: The Importance of Blood Products as a Supplement in Tissue Culture Medium for Human Pulp Dental Stem Cells.

    PubMed

    Pisciolaro, Ricardo Luiz; Duailibi, Monica Talarico; Novo, Neil Ferreira; Juliano, Yara; Pallos, Debora; Yelick, Pamela Crotty; Vacanti, Joseph Phillip; Ferreira, Lydia Masako; Duailibi, Silvio Eduardo

    2015-11-01

    One of the goals in using cells for tissue engineering (TE) and cell therapy consists of optimizing the medium for cell culture. The present study compares three different blood product supplements for improved cell proliferation and protection against DNA damage in cultured human dental pulp stem cells for tooth TE applications. Human cells from dental pulp were first characterized as adult stem cells (ectomesenchymal mixed origin) by flow cytometry. Next, four different cell culture conditions were tested: I, supplement-free; II, supplemented with fetal bovine serum; III, allogeneic human serum; and IV, autologous human serum. Cultured cells were then characterized for cell proliferation, mineralized nodule formation, and colony-forming units (CFU) capability. After 28 days in culture, the comet assay was performed to assess possible damage in cellular DNA. Our results revealed that Protocol IV achieved higher cell proliferation than Protocol I (p = 0.0112). Protocols II and III resulted in higher cell proliferation than Protocol I, but no statistical differences were found relative to Protocol IV. The comet assay revealed less cell damage in cells cultured using Protocol IV as compared to Protocols II and III. The damage percentage observed on Protocol II was significantly higher than all other protocols. CFUs capability was highest using Protocol IV (p = 0.0018) and III, respectively, and the highest degree of mineralization was observed using Protocol IV as compared to Protocols II and III. Protocol IV resulted in significantly improved cell proliferation, and no cell damage was observed. These results demonstrate that human blood product supplements can be used as feasible supplements for culturing adult human dental stem cells.

  3. Angiogenic mechanisms of human dental pulp and their relationship with substance P expression in response to occlusal trauma.

    PubMed

    Caviedes-Bucheli, J; Gomez-Sosa, J F; Azuero-Holguin, M M; Ormeño-Gomez, M; Pinto-Pascual, V; Munoz, H R

    2017-04-01

    Angiogenesis is the formation of new blood vessels based on a pre-existing vasculature. It comprises two processes, sprouting of endothelial cells and the division of vessels due to abnormal growth of the microvasculature. It has been demonstrated that substance P (SP) can induce angiogenesis either by modulating endothelial cell growth (direct mechanism) or by attracting cells with angiogenic potential to the injury site (indirect mechanism). Therefore, the purpose of this article is to review the angiogenic mechanisms that regulate mineralized tissue formation in human dental pulp tissue and their relationship with SP expression as a defence response to stimuli such as the masticatory function and occlusal trauma. Articles included in this review were searched in PubMed, Scopus and ISI Web of Science databases, combining the following keywords: human dentine pulp, angiogenesis, angiogenic growth factors, neuropeptides, substance P, neurogenic inflammation, dentine matrix, dentinogenesis, occlusal trauma and dental occlusion. It is concluded that human dental pulp tissue responds to occlusal trauma and masticatory function with a neurogenic inflammatory phenomenon in which SP plays an important role in the direct and indirect mechanisms of angiogenesis by the action evoked via NK1 receptors at different cells, such as fibroblasts, endothelial and inflammatory cells, leading to new blood vessel formation which are needed to stimulate mineralized tissue formation as a defence mechanism. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  4. Overexpression of interleukin-6 and -8, cell growth inhibition and morphological changes in 2-hydroxyethyl methacrylate-treated human dental pulp mesenchymal stem cells.

    PubMed

    Trubiani, O; Cataldi, A; De Angelis, F; D'Arcangelo, C; Caputi, S

    2012-01-01

    To evaluate morphological features, cell growth and interleukin-6 (IL-6) and interleukin-8 (IL-8) secretion in expanded ex vivo human dental pulp mesenchymal stem cells (DP-MSCs) after exposure to 2-hydroxyethyl methacrylate (HEMA).   Dental pulp mesenchymal stem cells were derived from the dental pulps of 10 young donors. After in vitro isolation, DP-MSCs were treated with 3 and 5 mmol L(-1) HEMA, and after 24, 48 and 72 h of incubation, their morphological features, cell growth, IL-6 and IL-8 secretion were analysed. Differences in the cell growth and in the interleukin secretion were analysed for statistical significance with two-way anova tests and the Holm-Sidak method for multiple comparisons.   Dental pulp mesenchymal stem cells revealed a decrease in cell growth with both treatments (P < 0.05), more evident at 5 mmol L(-1) . Microscopic analysis displayed extensive cytotoxic effects in treated cells, which lost their fibroblastoid features and became retracted, even roundish, with a large number of granules. An up-regulation of IL-6 and IL-8 in treated cells cytokines was evident (P < 0.05).   2-Hydroxyethyl methacrylate exhibited cytotoxicity, inhibited cell growth and induced morphological changes in cultured DP-MSCs. Moreover, in treated samples, an up-regulation of soluble mediators of inflammation such as IL-6 and IL-8 cytokines was found. The direct application of HEMA potentially induces an inflammation process that could be the starting point for toxic response and cell damage in DP-MSCs. © 2011 International Endodontic Journal.

  5. Dental pulp of the third molar: a new source of pluripotent-like stem cells.

    PubMed

    Atari, Maher; Gil-Recio, Carlos; Fabregat, Marc; García-Fernández, Dani; Barajas, Miguel; Carrasco, Miguel A; Jung, Han-Sung; Alfaro, F Hernández; Casals, Nuria; Prosper, Felipe; Ferrés-Padró, Eduard; Giner, Luis

    2012-07-15

    Dental pulp is particularly interesting in regenerative medicine because of the accessibility and differentiation potential of the tissue. Dental pulp has an early developmental origin with multi-lineage differentiation potential as a result of its development during childhood and adolescence. However, no study has previously identified the presence of stem cell populations with embryonic-like phenotypes in human dental pulp from the third molar. In the present work, we describe a new population of dental pulp pluripotent-like stem cells (DPPSCs) that were isolated by culture in medium containing LIF, EGF and PDGF. These cells are SSEA4(+), OCT3/4(+), NANOG(+), SOX2(+), LIN28(+), CD13(+), CD105(+), CD34(-), CD45(-), CD90(+), CD29(+), CD73(+), STRO1(+) and CD146(-), and they show genetic stability in vitro based on genomic analysis with a newly described CGH technique. Interestingly, DPPSCs were able to form both embryoid-body-like structures (EBs) in vitro and teratoma-like structures that contained tissues derived from all three embryonic germ layers when injected in nude mice. We examined the capacity of DPPSCs to differentiate in vitro into tissues that have similar characteristics to mesoderm, endoderm and ectoderm layers in both 2D and 3D cultures. We performed a comparative RT-PCR analysis of GATA4, GATA6, MIXL1, NANOG, OCT3/4, SOX1 and SOX2 to determine the degree of similarity between DPPSCs, EBs and human induced pluripotent stem cells (hIPSCs). Our analysis revealed that DPPSCs, hIPSC and EBs have the same gene expression profile. Because DPPSCs can be derived from healthy human molars from patients of different sexes and ages, they represent an easily accessible source of stem cells, which opens a range of new possibilities for regenerative medicine.

  6. The Interplay of Dental Pulp Stem Cells and Endothelial Cells in an Injectable Peptide Hydrogel on Angiogenesis and Pulp Regeneration In Vivo

    PubMed Central

    Dissanayaka, Waruna Lakmal; Hargreaves, Kenneth M.; Jin, Lijian; Samaranayake, Lakshman P.

    2015-01-01

    Securing an adequate blood supply for the survival of cell transplants is critical for a successful outcome in tissue engineering. Interactions between endothelial and progenitor/stem cells are important for vascularization of regenerating tissue. Recently, self-assembling peptide nanofibers were described as a promising environment for pulp regeneration due to their synthetic nature and controlled physicochemical properties. In this study, the peptide hydrogel PuraMatrix™ was used as a scaffold system to investigate the role of dental pulp stem cells (DPSCs) in triggering angiogenesis and the potential for regenerating vascularized pulp in vivo. Human umbilical vein endothelial cells (HUVECs), DPSCs, or cocultures of both cell types were encapsulated in three-dimensional PuraMatrix. The peptide nanofiber microenvironment supported cell survival, cell migration, and capillary network formation in the absence of exogenous growth factors. DPSCs increased early vascular network formation by facilitating the migration of HUVECs and by increasing vascular endothelial growth factor (VEGF) expression. Both the DPSC-monoculture and coculture groups exhibited vascularized pulp-like tissue with patches of osteodentin after transplantation in mice. The cocultured groups exhibited more extracellular matrix, vascularization, and mineralization than the DPSC-monocultures in vivo. The DPSCs play a critical role in initial angiogenesis, whereas coordinated efforts by the HUVECs and DPSCs are required to achieve a balance between extracellular matrix deposition and mineralization. The findings of this study also highlighted the importance of a microenvironment that supports cell–cell interactions and cell migration, which contribute to successful dental pulp regeneration. PMID:25203774

  7. Effects of Extracellular pH on Dental Pulp Cells In Vitro.

    PubMed

    Hirose, Yujiro; Yamaguchi, Masaya; Kawabata, Shigetada; Murakami, Masashi; Nakashima, Misako; Gotoh, Momokazu; Yamamoto, Tokunori

    2016-05-01

    The proliferation and migration of dental pulp stem cells (DPSCs), a population comprised of dental pulp cells (DPCs), are important processes for pulp tissue repair. Dental pulp is exposed to changes in extracellular pH under various conditions, such as acidosis and exposure to caries-associated bacteria or a pulp capping agent. The objective of this study was to investigate the effects of extracellular pH on DPC proliferation and migration in vitro. To evaluate the proliferation potency of DPCs in various extracellular pH conditions, 2 × 10(4) cells were seeded into 35-mm dishes. The following day, we changed to NaHCO3-free medium, which was adjusted to different extracellular pH levels. After 120 hours, DPCs cultured in media from a pH of 3.5 to 5.5 showed cell death, those cultured in conditions from a pH of 6.5 to 7.5 showed growth arrest or cell death, and those grown at a pH of 9.5 showed mild proliferation. The migratory activity of living DPCs was not affected by extracellular pH. For histologic analysis, human teeth possessing a small abscess in the coronal pulp chamber were sliced for histologic analysis. Proliferating cell nuclear antigen (PCNA) immunolocalization was used as an index of cell proliferation for the sections and cultured cells. Acidic extracellular pH conditions resulted in reduced numbers of PCNA-positive DPCs in the dishes. As for pulp tissue affected by a small abscess, a PCNA-negative pulp cell layer was observed in close proximity to the infectious lesion. Together, these results suggest that an acidic extracellular pH condition is associated with DPC growth arrest or cell death. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Davallialactone reduces inflammation and repairs dentinogenesis on glucose oxidase-induced stress in dental pulp cells.

    PubMed

    Lee, Young-Hee; Kim, Go-Eun; Song, Yong-Beom; Paudel, Usha; Lee, Nan-Hee; Yun, Bong-Sik; Yu, Mi-Kyung; Yi, Ho-Keun

    2013-11-01

    The chronic nature of diabetes mellitus (DM) raises the risk of oral complication diseases. In general, DM causes oxidative stress to organs. This study aimed to evaluate the cellular change of dental pulp cells against glucose oxidative stress by glucose oxidase with a high glucose state. The purpose of this study was to test the antioxidant character of davallialactone and to reduce the pathogenesis of dental pulp cells against glucose oxidative stress. The glucose oxidase with a high glucose concentration was tested for hydroxy peroxide (H2O2) production, cellular toxicity, reactive oxygen species (ROS) formation, induction of inflammatory molecules and disturbance of dentin mineralization in human dental pulp cells. The anti-oxidant effect of Davallilactone was investigated to restore dental pulp cells' vitality and dentin mineralization via reduction of H2O2 production, cellular toxicity, ROS formation and inflammatory molecules. The treatment of glucose oxidase with a high glucose concentration increased H2O2 production, cellular toxicity, and inflammatory molecules and disturbed dentin mineralization by reducing pulp cell activity. However, davallialactone reduced H2O2 production, cellular toxicity, ROS formation, inflammatory molecules, and dentin mineralization disturbances even with a long-term glucose oxidative stress state. The results of this study imply that the development of oral complications is related to the irreversible damage of dental pulp cells by DM-induced oxidative stress. Davallialactone, a natural antioxidant, may be useful to treat complicated oral disease, representing an improvement for pulp vital therapy. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Mesenchymal and embryonic characteristics of stem cells obtained from mouse dental pulp.

    PubMed

    Guimarães, Elisalva Teixeira; Cruz, Gabriela Silva; de Jesus, Alan Araújo; Lacerda de Carvalho, Acácia Fernandes; Rogatto, Silvia Regina; Pereira, Lygia da Veiga; Ribeiro-dos-Santos, Ricardo; Soares, Milena Botelho Pereira

    2011-11-01

    Several studies have demonstrated that human dental pulp is a source of mesenchymal stem cells. To better understand the biological properties of these cells we isolated and characterized stem cells from the dental pulp of EGFP transgenic mice. The pulp tissue was gently separated from the roots of teeth extracted from C57BL/6 mice, and cultured under appropriate conditions. Flow cytometry, RT-PCR, light microscopy (staining for alkaline phosphatase) and immunofluorescence were used to investigate the expression of stem cell markers. The presence of chromosomal abnormalities was evaluated by G banding. The mouse dental pulp stem cells (mDPSC) were highly proliferative, plastic-adherent, and exhibited a polymorphic morphology predominantly with stellate or fusiform shapes. The presence of cell clusters was observed in cultures of mDPSC. Some cells were positive for alkaline phosphatase. The karyotype was normal until the 5th passage. The Pou5f1/Oct-4 and ZFP42/Rex-1, but not Nanog transcripts were detected in mDPSC. Flow cytometry and fluorescence analyses revealed the presence of a heterogeneous population positive for embryonic and mesenchymal cell markers. Adipogenic, chondrogenic and osteogenic differentiation was achieved after two weeks of cell culture under chemically defined in vitro conditions. In addition, some elongated cells spontaneously acquired a contraction capacity. Our results reinforce that the dental pulp is an important source of adult stem cells and encourage studies on therapeutic potential of mDPSC in experimental disease models. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Stimulation of interleukin-1 beta production of human dental pulp cells by Porphyromonas endodontalis lipopolysaccharide.

    PubMed

    Hosoya, S; Matsushima, K

    1997-01-01

    IL-1 beta is synthesized as an inactive precursor, which is subsequently processed by IL-1 beta converting enzyme (ICE) and found extracellularly as a mature biologically active polypeptide. Also, IL-1 beta has been detected in necrotic and inflamed dental pulp. We examined the IL-1 beta production in human dental pulp (HDP) cells treated with lipopolysaccharide (LPS) from Porphyromonas endodontalis (P. e.) isolated from root canals and radicular cyst fluids. We demonstrated that P. e. LPS stimulated IL-1 beta release from HDP cells in a time- and dose-dependent manner. However, ICE activity was not increased by P. e. LPS. Northern blot hybridization analysis revealed that the IL-1 beta mRNA level in HDP cells was increased by P. e. LPS. These results suggest that stimulation of IL-1 beta release from HDP cells by P. e. LPS may have an important role in the progression of inflammation in pulpal and periapical disease.

  11. Effect of ITGA5 down-regulation on the migration capacity of human dental pulp stem cells

    PubMed Central

    Xu, Shuaimei; Cui, Li; Ma, Dandan; Sun, Wenjuan; Wu, Buling

    2015-01-01

    Background: The purpose of this study was to evaluate the role of integrin-α5 (ITGA5) in regulating the migration capacity of human dental pulp stem cells (hDPSCs), which might provide new evidence for understanding the repair and regeneration mechanisms of dental pulp tissues. Materials and methods: The enzyme digestion method was employed to isolate the hDPSCs from dental pulp tissues. The cell surface markers of hDPSCs were detected using flow cytometry analysis. Then the colony forming and multi-differentiation capacity of hDPSCs were evaluated. The lentivirus vector that carried the ITGA5 shRNA was constructed and real-time PCR was used to examine the effectiveness of ITGA5 shRNA lentivirus. Then transwell assay was performed to evaluate the impact of ITGA5 inhibition on the migration capability of hDPSCs. Results: Our results showed that the cells we isolated from the dental pulps were positive for mesenchymal stem cells biomarkers. In addition, the cells possessed both colony forming capacity and multi-differentiation potential. ITGA5 shRNA lentivirus could not only infect hDPSCs with high efficiency, but also down-regulate the expression level of ITGA5 mRNA significantly (P<0.01). The transwell assay revealed the number of cells that migrated to the lower chamber was significantly less in the ITGA5 shRNA group compared with that in the scrambled shRNA group (P=0.016). Conclusion: ITGA5 plays an important role in maintaining and regulating the normal migration capacity of hDPSCs. PMID:26823759

  12. Expression of high mobility group box 1 in inflamed dental pulp and its chemotactic effect on dental pulp cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xufang, E-mail: xufang.zhang@student.qut.edu.au; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059; Jiang, Hongwei, E-mail: jianghw@163.com

    Highlights: • HMGB1 translocated from nucleus to cytoplasm during dental pulp inflammation. • HMGB1and its receptor RAGE were up-regulated in hDPCs under LPS stimulation. • HMGB1 enhanced hDPCs migration and induces cytoskeleton reorganization. • HMGB1 may play a critical role in dental pulp repair during inflamed state. - Abstract: High mobility group box 1 protein (HMGB1) is a chromatin protein which can be released extracellularly, eliciting a pro-inflammatory response and promoting tissue repair process. This study aimed to examine the expression and distribution of HMGB1 and its receptor RAGE in inflamed dental pulp tissues, and to assess its effects onmore » proliferation, migration and cytoskeleton of cultured human dental pulp cells (DPCs). Our data demonstrated that cytoplasmic expression of HMGB1 was observed in inflamed pulp tissues, while HMGB1 expression was confined in the nuclei in healthy dental pulp. The mRNA expression of HMGB1 and RAGE were significantly increased in inflamed pulps. In in vitro cultured DPCs, expression of HMGB1 in both protein and mRNA level was up-regulated after treated with lipopolysaccharide (LPS). Exogenous HMGB1 enhanced DPCs migration in a dose-dependent manner and induced the reorganization of f-actin in DPCs. Our results suggests that HMGB1 are not only involved in the process of dental pulp inflammation, but also play an important role in the recruitment of dental pulp stem cells, promoting pulp repair and regeneration.« less

  13. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow-derived mesenchymal stem cells.

    PubMed

    Kunimatsu, Ryo; Nakajima, Kengo; Awada, Tetsuya; Tsuka, Yuji; Abe, Takaharu; Ando, Kazuyo; Hiraki, Tomoka; Kimura, Aya; Tanimoto, Kotaro

    2018-06-18

    Mesenchymal stem cells (MSCs) are used clinically in tissue engineering and regenerative medicine. The proliferation and osteogenic differentiation potential of MSCs vary according to factors such as tissue source and cell population heterogeneity. Dental tissue has received attention as an easily accessible source of high-quality stem cells. In this study, we compared the in vitro characteristics of dental pulp stem cells from deciduous teeth (SHED), human dental pulp stem cells (hDPSCs), and human bone marrow mesenchymal stem cells (hBMSCs). SEHD and hDPSCs were isolated from dental pulp and analyzed in comparison with human bone marrow (hBM)MSCs. Proliferative capacity of cultured cells was analyzed using a bromodeoxyuridine immunoassay and cell counting. Alkaline phosphatase (ALP) levels were monitored to assess osteogenic differentiation. Mineralization was evaluated by alizarin red staining. Levels of bone marker mRNA were examined by real-time PCR analysis. SHED were highly proliferative compared with hDPSCs and hBMSCs. SHED, hDPSCs, and hBMSCs exhibited dark alizarin red staining on day 21 after induction of osteogenic differentiation, and staining of hBMSCs was significantly higher than that of SHED and hDPSCs by spectrophotometry. ALP staining was stronger in hBMSCs compared with SHED and hDPSCs, and ALP activity was significantly higher in hBMSCs compared with SHED or hDPSCs. SHED showed significantly higher expression of the Runx2 and ALP genes compared with hBMSCs, based on real-time PCR analysis. In bFGF, SHED showed significantly higher expression of the basic fibroblast growth factor (bFGF) gene compared with hDPSCs and hBMSCs. SHED exhibited higher proliferative activity and levels of bFGF and BMP-2 gene expression compared with BMMSCs and DPSCs. The ease of harvesting cells and ability to avoid invasive surgical procedures suggest that SHED may be a useful cell source for application in bone regeneration treatments. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. The effects of human platelet lysate on dental pulp stem cells derived from impacted human third molars.

    PubMed

    Chen, Bo; Sun, Hai-Hua; Wang, Han-Guo; Kong, Hui; Chen, Fa-Ming; Yu, Qing

    2012-07-01

    Human platelet lysate (PL) has been suggested as a substitute for fetal bovine serum (FBS) in the large-scale expansion of dental pulp stem cells (DPSCs). However, the biological effects and the optimal concentrations of PL for the proliferation and differentiation of human DPSCs remain unexplored. We isolated and expanded stem cells from the dental pulp of extracted third molars and evaluated the effects of PL on the cells' proliferative capacity and differentiation potential in vitro and in vivo. Before testing, immunocytochemical staining and flow cytometry-based cell sorting showed that the cells derived from human dental pulp contained mesenchymal stem cell populations. Cells were grown on tissue culture plastic or on hydroxyapatite-tricalcium phosphate (HA/TCP) biomaterials and were incubated with either normal or odontogenic/osteogenic media in the presence or absence of various concentrations of human PL for further investigation. The proliferation of DPSCs was significantly increased when the cells were cultured in 5% PL under all testing conditions (P < 0.05). However, this enhancement was inconsistent when the cells were cultured in 1% PL or in 10% PL; 10% PL significantly inhibited cell proliferation and was therefore excluded from further differentiation testing. Culture medium containing 5% PL also significantly promoted the mineralized differentiation of DPSCs, as indicated by the measurement of alkaline phosphatase activity and calcium deposition under mineral-conditioned media (P < 0.05). Scanning electron microscopy and modified Ponceau trichrome staining showed that the cells treated with 5% PL and mineralizing media were highly capable of integrating with the HA/TCP biomaterials and had fully covered the surface of the scaffold with an extensive sheet-like structure 14 d after seeding. In addition, 5% PL showed significantly positive effects on tissue regeneration in two in vivo transplantation models. We conclude that the appropriate concentration of PL enhances the proliferation and mineralized differentiation of human DPSCs both in vitro and in vivo, which supports the use of PL as an alternative to FBS or a nonzoonotic adjuvant for cell culture in future clinical trials. However, the elucidation of the molecular complexity of PL products and the identification of both the essential growth factors that determine the fate of a specific stem cell and the criteria to establish dosing require further investigation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Deciphering the Epigenetic Code in Embryonic and Dental Pulp Stem Cells

    PubMed Central

    Bayarsaihan, Dashzeveg

    2016-01-01

    A close cooperation between chromatin states, transcriptional modulation, and epigenetic modifications is required for establishing appropriate regulatory circuits underlying self-renewal and differentiation of adult and embryonic stem cells. A growing body of research has established that the epigenome topology provides a structural framework for engaging genes in the non-random chromosomal interactions to orchestrate complex processes such as cell-matrix interactions, cell adhesion and cell migration during lineage commitment. Over the past few years, the functional dissection of the epigenetic landscape has become increasingly important for understanding gene expression dynamics in stem cells naturally found in most tissues. Adult stem cells of the human dental pulp hold great promise for tissue engineering, particularly in the skeletal and tooth regenerative medicine. It is therefore likely that progress towards pulp regeneration will have a substantial impact on the clinical research. This review summarizes the current state of knowledge regarding epigenetic cues that have evolved to regulate the pluripotent differentiation potential of embryonic stem cells and the lineage determination of developing dental pulp progenitors. PMID:28018144

  16. Wnt5a Promotes Inflammatory Responses via Nuclear Factor κB (NF-κB) and Mitogen-activated Protein Kinase (MAPK) Pathways in Human Dental Pulp Cells*

    PubMed Central

    Zhao, Yuan; Wang, Chen-Lin; Li, Rui-Min; Hui, Tian-Qian; Su, Ying-Ying; Yuan, Quan; Zhou, Xue-Dong; Ye, Ling

    2014-01-01

    Wnt5a has been found recently to be involved in inflammation regulation through a mechanism that remains unclear. Immunohistochemical staining of infected human dental pulp and tissue from experimental dental pulpitis in rats showed that Wnt5a levels were increased. In vitro, Wnt5a was increased 8-fold in human dental pulp cells (HDPCs) after TNF-α stimulation compared with control cells. We then investigated the role of Wnt5a in HDPCs. In the presence of TNF-α, Wnt5a further increased the production of cytokines/chemokines, whereas Wnt5a knockdown markedly reduced cytokine/chemokine production induced by TNF-α. In addition, in HDPCs, Wnt5a efficiently induced cytokine/chemokine expression and, in particular, expression of IL-8 (14.5-fold) and CCL2 (25.5-fold), as assessed by a Luminex assay. The cytokine subsets regulated by Wnt5a overlap partially with those induced by TNF-α. However, no TNF-α and IL-1β was detected after Wnt5a treatment. We then found that Wnt5a alone and the supernatants of Wnt5a-treated HDPCs significantly increased macrophage migration, which supports a role for Wnt5a in macrophage recruitment and as an inflammatory mediator in human dental pulp inflammation. Finally, Wnt5a participates in dental pulp inflammation in a MAPK-dependent (p38-, JNK-, and ERK-dependent) and NF-κB-dependent manner. Our data suggest that Wnt5a, as an inflammatory mediator that drives the integration of cytokines and chemokines, acts downstream of TNF-α. PMID:24891513

  17. Unique proliferation response in odontoblastic cells derived from human skeletal muscle stem cells by cytokine-induced matrix metalloproteinase-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozeki, Nobuaki; Hase, Naoko; Kawai, Rie

    A pro-inflammatory cytokine mixture (CM: interleukin (IL)-1β, tumor necrosis factor-α and interferon-γ) and IL-1β-induced matrix metalloproteinase (MMP)-3 activity have been shown to increase the proliferation of rat dental pulp cells and murine stem cell-derived odontoblast-like cells. This suggests that MMP-3 may regulate wound healing and regeneration in the odontoblast-rich dental pulp. Here, we determined whether these results can be extrapolated to human dental pulp by investigating the effects of CM-induced MMP-3 up-regulation on the proliferation and apoptosis of purified odontoblast-like cells derived from human skeletal muscle stem cells. We used siRNA to specifically reduce MMP-3 expression. We found that CMmore » treatment increased MMP-3 mRNA and protein levels as well as MMP-3 activity. Cell proliferation was also markedly increased, with no changes in apoptosis, upon treatment with CM and following the application of exogenous MMP-3. Endogenous tissue inhibitors of metalloproteinases were constitutively expressed during all experiments and unaffected by MMP-3. Although treatment with MMP-3 siRNA suppressed cell proliferation, it also unexpectedly increased apoptosis. This siRNA-mediated increase in apoptosis could be reversed by exogenous MMP-3. These results demonstrate that cytokine-induced MMP-3 activity regulates cell proliferation and suppresses apoptosis in human odontoblast-like cells. - Highlights: • Pro-inflammatory cytokines induce MMP-3 activity in human odontoblast-like cells. • Increased MMP-3 activity can promote cell proliferation in odontoblasts. • Specific loss of MMP-3 increases apoptosis in odontoblasts. • MMP-3 has potential as a promising new target for pupal repair and regeneration.« less

  18. Characterization of mesenchymal stem cells from human dental pulp, preapical follicle and periodontal ligament.

    PubMed

    Navabazam, Ali Reza; Sadeghian Nodoshan, Fatemeh; Sheikhha, Mohammad Hasan; Miresmaeili, Sayyed Mohsen; Soleimani, Mehrdad; Fesahat, Farzaneh

    2013-03-01

    Human dental stem cells have high proliferative potential for self-renewal that is important to the regenerative capacity of the tissue. Objective : The aim was to isolate human dental pulp stem cells (DPSC), periodontal ligament stem cells (PDLSC) and periapical follicle stem cells (PAFSC) for their potential role in tissue regeneration. In this experimental study, the postnatal stem cells were isolated from dental pulp, preapical follicle and periodontal ligament .The cells were stained for different stem cell markers by immunocytochemistry. To investigate the mesenchymal nature of cells, differentiation potential along osteoblastic and adipogenic lineages and gene expression profile were performed. For proliferation potential assay, Brdu staining and growth curve tests were performed. Finally, all three cell types were compared together regarding their proliferation, differentiation and displaying phenotype. The isolated cell populations have similar fibroblastic like morphology and expressed all examined cell surface molecule markers. These cells were capable of differentiating into osteocyte with different capability and adipocyte with the same rate. PAFSCs showed more significant proliferation rate than others. Reverse transcriptase PCR (RT-PCR) for nanog, oct4, Alkaline phosphatase (ALP) and glyceraldehydes-3-phosphate dehydrogenease (GADPH) as control gene showed strong positive expression of these genes in all three isolated cell types. PDLSCs, DPSCs and PAFSCs exist in various tissues of the teeth and can use as a source of mesenchymal stem cells for developing bioengineered organs and also in craniomaxillofacial reconstruction with varying efficiency in differentiation and proliferation.

  19. Human Dental Pulp Cells Differentiate toward Neuronal Cells and Promote Neuroregeneration in Adult Organotypic Hippocampal Slices In Vitro.

    PubMed

    Xiao, Li; Ide, Ryoji; Saiki, Chikako; Kumazawa, Yasuo; Okamura, Hisashi

    2017-08-11

    The adult mammalian central nerve system has fundamental difficulties regarding effective neuroregeneration. The aim of this study is to investigate whether human dental pulp cells (DPCs) can promote neuroregeneration by (i) being differentiated toward neuronal cells and/or (ii) stimulating local neurogenesis in the adult hippocampus. Using immunostaining, we demonstrated that adult human dental pulp contains multipotent DPCs, including STRO-1, CD146 and P75-positive stem cells. DPC-formed spheroids were able to differentiate into neuronal, vascular, osteogenic and cartilaginous lineages under osteogenic induction. However, under neuronal inductive conditions, cells in the DPC-formed spheroids differentiated toward neuronal rather than other lineages. Electrophysiological study showed that these cells consistently exhibit the capacity to produce action potentials, suggesting that they have a functional feature in neuronal cells. We further co-cultivated DPCs with adult mouse hippocampal slices on matrigel in vitro. Immunostaining and presto blue assay showed that DPCs were able to stimulate the growth of neuronal cells (especially neurons) in both the CA1 zone and the edges of the hippocampal slices. Brain-derived neurotrophic factor (BDNF), was expressed in co-cultivated DPCs. In conclusion, our data demonstrated that DPCs are well-suited to differentiate into the neuronal lineage. They are able to stimulate neurogenesis in the adult mouse hippocampus through neurotrophic support in vitro.

  20. Human Dental Pulp Cells Differentiate toward Neuronal Cells and Promote Neuroregeneration in Adult Organotypic Hippocampal Slices In Vitro

    PubMed Central

    Ide, Ryoji; Saiki, Chikako; Kumazawa, Yasuo; Okamura, Hisashi

    2017-01-01

    The adult mammalian central nerve system has fundamental difficulties regarding effective neuroregeneration. The aim of this study is to investigate whether human dental pulp cells (DPCs) can promote neuroregeneration by (i) being differentiated toward neuronal cells and/or (ii) stimulating local neurogenesis in the adult hippocampus. Using immunostaining, we demonstrated that adult human dental pulp contains multipotent DPCs, including STRO-1, CD146 and P75-positive stem cells. DPC-formed spheroids were able to differentiate into neuronal, vascular, osteogenic and cartilaginous lineages under osteogenic induction. However, under neuronal inductive conditions, cells in the DPC-formed spheroids differentiated toward neuronal rather than other lineages. Electrophysiological study showed that these cells consistently exhibit the capacity to produce action potentials, suggesting that they have a functional feature in neuronal cells. We further co-cultivated DPCs with adult mouse hippocampal slices on matrigel in vitro. Immunostaining and presto blue assay showed that DPCs were able to stimulate the growth of neuronal cells (especially neurons) in both the CA1 zone and the edges of the hippocampal slices. Brain-derived neurotrophic factor (BDNF), was expressed in co-cultivated DPCs. In conclusion, our data demonstrated that DPCs are well-suited to differentiate into the neuronal lineage. They are able to stimulate neurogenesis in the adult mouse hippocampus through neurotrophic support in vitro. PMID:28800076

  1. Stem cells in dentistry--review of literature.

    PubMed

    Dziubińska, P; Jaskólska, M; Przyborowska, P; Adamiak, Z

    2013-01-01

    Stem cells have been successfully isolated from a variety of human and animal tissues, including dental pulp. This achievement marks progress in regenerative dentistry. This article reviews the latest improvements made in regenerative dental medicine with the involvement of stem cells. Although, various types of multipotent somatic cells can be applied in dentistry, two types of cells have been investigated in this review. Dental pulp cells are classified as: DPSCs, SCAPs and SHEDs.The third group includes two types of cell associated with the periodontium: PDL and DFPC. This review aims to systematize basic knowledge about cellular engineering in dentistry.

  2. Cryopreserved Dental Pulp Tissues of Exfoliated Deciduous Teeth Is a Feasible Stem Cell Resource for Regenerative Medicine

    PubMed Central

    Yamaza, Haruyoshi; Akiyama, Kentaro; Hoshino, Yoshihiro; Song, Guangtai; Kukita, Toshio; Nonaka, Kazuaki; Shi, Songtao; Yamaza, Takayoshi

    2012-01-01

    Human exfoliated deciduous teeth have been considered to be a promising source for regenerative therapy because they contain unique postnatal stem cells from human exfoliated deciduous teeth (SHED) with self-renewal capacity, multipotency and immunomodulatory function. However preservation technique of deciduous teeth has not been developed. This study aimed to evaluate that cryopreserved dental pulp tissues of human exfoliated deciduous teeth is a retrievable and practical SHED source for cell-based therapy. SHED isolated from the cryopreserved deciduous pulp tissues for over 2 years (25–30 months) (SHED-Cryo) owned similar stem cell properties including clonogenicity, self-renew, stem cell marker expression, multipotency, in vivo tissue regenerative capacity and in vitro immunomodulatory function to SHED isolated from the fresh tissues (SHED-Fresh). To examine the therapeutic efficacy of SHED-Cryo on immune diseases, SHED-Cryo were intravenously transplanted into systemic lupus erythematosus (SLE) model MRL/lpr mice. Systemic SHED-Cryo-transplantation improved SLE-like disorders including short lifespan, elevated autoantibody levels and nephritis-like renal dysfunction. SHED-Cryo amended increased interleukin 17-secreting helper T cells in MRL/lpr mice systemically and locally. SHED-Cryo-transplantation was also able to recover osteoporosis bone reduction in long bones of MRL/lpr mice. Furthermore, SHED-Cryo-mediated tissue engineering induced bone regeneration in critical calvarial bone-defect sites of immunocompromised mice. The therapeutic efficacy of SHED-Cryo transplantation on immune and skeletal disorders was similar to that of SHED-Fresh. These data suggest that cryopreservation of dental pulp tissues of deciduous teeth provide a suitable and desirable approach for stem cell-based immune therapy and tissue engineering in regenerative medicine. PMID:23251621

  3. Characteristics of dental pulp in human upper first premolar teeth based on immunohistochemical and morphometric examinations.

    PubMed

    Tomaszewska, Joanna Maria; Miskowiak, Bogdan; Matthews-Brzozowska, Teresa; Wierzbicki, Piotr

    2013-01-01

    Teeth extracted for orthodontic reasons are commonly considered as healthy. Therefore, it is possible to examine structure of the dental pulp can be fully recognized and how it is affected by malocclusion. The aim of the study was to evaluate by immunohistochemistry (IHC) and morphometry dental pulp in human upper first premolar teeth extracted for orthodontic reasons. The material comprised 36 teeth of 20 patients in the age range 16-26 years. By the use of IHC markers the presence of immunocompetent cells (CD20, CD45RO, and CD68), blood vessels (CD31) and nerves (PGP9.5) were examined in the pulp. Inflammatory infiltrates and tissue atrophy were observed in 24 and 10 teeth, respectively. Strong positive correlation between the width of the odontoblastic layer, the number of rows of odontoblast nuclei and the increase of MVA (microvessel area) in the pulp of atrophic teeth was found. The cellular infiltrations found in H&E-stained sections were identified by IHC as memory T cells (CD45RO+) and B lymphocytes (CD20+) with macrophages (CD68+) present at the periphery. The CD20 antigen was intensively expressed in 13 teeth, CD45RO in 33 teeth, and CD68 in 20 teeth. Thus, despite the lack of any clinical signs of pulp disease many teeth extracted for orthodontic reasons show focal pulp inflammation and atrophy which probably results from the malocclusion stress accompanying teeth crowding.

  4. Odontoblast-Like Cells Differentiated from Dental Pulp Stem Cells Retain Their Phenotype after Subcultivation

    PubMed Central

    Baldión, Paula A.; Velandia-Romero, Myriam L.

    2018-01-01

    Odontoblasts, the main cell type in teeth pulp tissue, are not cultivable and they are responsible for the first line of response after dental restauration. Studies on dental materials cytotoxicity and odontoblast cells physiology require large quantity of homogenous cells retaining most of the phenotype characteristics. Odontoblast-like cells (OLC) were differentiated from human dental pulp stem cells using differentiation medium (containing TGF-β1), and OLC expanded after trypsinization (EXP-21) were evaluated and compared. Despite a slower cell growth curve, EXP-21 cells express similarly the odontoblast markers dentinal sialophosphoprotein and dentin matrix protein-1 concomitantly with RUNX2 transcripts and low alkaline phosphatase activity as expected. Both OLC and EXP-21 cells showed similar mineral deposition activity evidenced by alizarin red and von Kossa staining. These results pointed out minor changes in phenotype of subcultured EXP-21 regarding the primarily differentiated OLC, making the subcultivation of these cells a useful strategy to obtain odontoblasts for biocompatibility or cell physiology studies in dentistry. PMID:29670655

  5. Dentin barrier test with transfected bovine pulp-derived cells.

    PubMed

    Schmalz, G; Schuster, U; Thonemann, B; Barth, M; Esterbauer, S

    2001-02-01

    Growth kinetics of SV40 large T-antigen-transfected bovine pulp-derived cells on dentin were investigated. These cells were used in a dentin barrier test device, and the system was evaluated by testing a set of dental filling materials. Cells (120 cells/mm2) were seeded on dentin slices and incubated for up to 21 days. Cell proliferation was recorded using MTT assay. For cytotoxicity tests 3500 cells/mm2 were seeded on dentin discs, which were then incorporated into the dentin barrier test device. After 72 h preincubation test materials were applied. After a 24 h exposure with or without perfusion of the pulpal part of the test device, cell survival was evaluated using MTT assay. The cells revealed similar growth kinetics on dentin slices and on tissue culture plates. In cytotoxicity tests the cells were more sensitive toward the test materials than previously used three-dimensional cultures of human foreskin fibroblasts and as anticipated from clinical experience. Further improvement is expected by using three-dimensional cultures of pulp-derived cells.

  6. Inhibition of TGF-β Signaling in SHED Enhances Endothelial Differentiation.

    PubMed

    Xu, J G; Gong, T; Wang, Y Y; Zou, T; Heng, B C; Yang, Y Q; Zhang, C F

    2018-02-01

    Low efficiency of deriving endothelial cells (ECs) from adult stem cells hampers their utilization in tissue engineering studies. The purpose of this study was to investigate whether suppression of transforming growth factor beta (TGF-β) signaling could enhance the differentiation efficiency of dental pulp-derived stem cells into ECs. We initially used vascular endothelial growth factor A (VEGF-A) to stimulate 2 dental pulp-derived stem cells (dental pulp stem cells and stem cells from human exfoliated deciduous teeth [SHED]) and compared their differentiation capacity into ECs. We further evaluated whether the vascular endothelial growth factor receptor I (VEGF-RI)-specific ligand placental growth factor-1 (PlGF-1) could mediate endothelial differentiation. Finally, we investigated whether the TGF-β signaling inhibitor SB-431542 could enhance the inductive effect of VEGF-A on endothelial differentiation, as well as the underlying mechanisms involved. ECs differentiated from dental pulp-derived stem cells exhibited the typical phenotypes of primary ECs, with SHED possessing a higher endothelial differentiation potential than dental pulp stem cells. VEGFR1-specific ligand-PLGF exerted a negligible effect on SHED-ECs differentiation. Compared with VEGF-A alone, the combination of VEGF-A and SB-431542 significantly enhanced the endothelial differentiation of SHED. The presence of SB-431542 inhibited the phosphorylation of Suppressor of Mothers Against Decapentaplegic 2/3 (SMAD2/3), allowing for VEGF-A-dependent phosphorylation and upregulation of VEGFR2. Our results indicate that the combination of VEGF-A and SB-431542 could enhance the differentiation of dental pulp-derived stem cells into endothelial cells, and this process is mediated through enhancement of VEGF-A-VEGFR2 signaling and concomitant inhibition of TGF-β-SMAD2/3 signaling.

  7. DENTAL PULP STEM CELLS AND HUMAN PERIAPICAL CYST MESENCHYMAL STEM CELLS IN BONE TISSUE REGENERATION: COMPARISON OF BASAL AND OSTEOGENIC DIFFERENTIATED GENE EXPRESSION OF A NEWLY DISCOVERED MESENCHYMAL STEM CELL LINEAGE.

    PubMed

    Tatullo, M; Falisi, G; Amantea, M; Rastelli, C; Paduano, F; Marrelli, M

    2015-01-01

    Bone regeneration is an interesting field of biomedicine. The most recent studies are aimed to achieve a bone regeneration using mesenchymal stem cells (MSCs) taken from more accessible sites: oral and dental tissues have been widely investigated as a rich accessible source of MSCs. Dental Pulp Stem Cells (DPSCs) and human Periapical Cysts Mesenchymal Stem Cells (hPCy-MSCs) represent the new generation MSCs. The aim of this study is to compare the gene expression of these two innovative cell types to highlight the advantages of their use in bone regeneration. The harvesting, culturing and differentiating of cells isolated from dental pulp as well as from periapical cystic tissue were carried out as described in previously published reports. qRT-PCR analyses were performed on osteogenic genes in undifferentiated and osteogenic differentiated cells of DPSC and hPCy-MSC lineage. Real-time RT-PCR data suggested that both DPSCs and hPCy-MSCs cultured in osteogenic media are able to differentiate into osteoblast/odontoblast-like cells: however, some differences indicated that DPSCs seem to be directed more towards dentinogenesis, while hPCy-MSCs seem to be directed more towards osteogenesis.

  8. Human dental pulp stem cells: Applications in future regenerative medicine

    PubMed Central

    Potdar, Pravin D; Jethmalani, Yogita D

    2015-01-01

    Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine. PMID:26131314

  9. A preliminary report on histological outcome of pulpotomy with endodontic biomaterials vs calcium hydroxide.

    PubMed

    Nosrat, Ali; Peimani, Ali; Asgary, Saeed

    2013-11-01

    The purpose of the study was to evaluate human dental pulp response to pulpotomy with calcium hydroxide (CH), mineral trioxide aggregate (MTA), and calcium enriched mixture (CEM) cement. A total of nine erupted third molars were randomly assigned to each pulpotomy group. The same clinician performed full pulpotomies and coronal restorations. The patients were followed clinically for six months; the teeth were then extracted and prepared for histological assessments. The samples were blindly assessed by an independent observer for pulp vitality, pulp inflammation, and calcified bridge formation. All patients were free of clinical signs/symptoms of pulpal/periradicular diseases during the follow up period. In CH group, one tooth had necrotic radicular pulp; other two teeth in this group had vital uninflamed pulps with complete dentinal bridge formation. In CEM cement and MTA groups all teeth had vital uninflamed radicular pulps. A complete dentinal bridge was formed beneath CEM cement and MTA in all roots. Odontoblast-like cells were present beneath CEM cement and MTA in all samples. This study revealed that CEM cement and MTA were reliable endodontic biomaterials in full pulpotomy treatment. In contrast, the human dental pulp response to CH might be unpredictable.

  10. Regeneration of dental pulp/dentine complex with a three-dimensional and scaffold-free stem-cell sheet-derived pellet.

    PubMed

    Na, Sijia; Zhang, Hao; Huang, Fang; Wang, Weiqi; Ding, Yin; Li, Dechao; Jin, Yan

    2016-03-01

    Dental pulp/dentine complex regeneration is indispensable to the construction of biotissue-engineered tooth roots and represents a promising approach to therapy for irreversible pulpitis. We used a tissue-engineering method based on odontogenic stem cells to design a three-dimensional (3D) and scaffold-free stem-cell sheet-derived pellet (CSDP) with the necessary physical and biological properties. Stem cells were isolated and identified and stem cells from root apical papilla (SCAPs)-based CSDPs were then fabricated and examined. Compact cell aggregates containing a high proportion of extracellular matrix (ECM) components were observed, and the CSDP culture time was prolonged. The expression of alkaline phosphatase (ALP), dentine sialoprotein (DSPP), bone sialoprotein (BSP) and runt-related gene 2 (RUNX2) mRNA was higher in CSDPs than in cell sheets (CSs), indicating that CSDPs have greater odonto/osteogenic potential. To further investigate this hypothesis, CSDPs and CSs were inserted into human treated dentine matrix fragments (hTDMFs) and transplanted into the subcutaneous space in the backs of immunodeficient mice, where they were cultured in vivo for 6 weeks. The root space with CSDPs was filled entirely with a dental pulp-like tissue with well-established vascularity, and a continuous layer of dentine-like tissue was deposited onto the existing dentine. A layer of odontoblast-like cells was found to express DSPP, ALP and BSP, and human mitochondria lined the surface of the newly formed dentine-like tissue. These results clearly indicate that SCAP-CSDPs with a mount of endogenous ECM have a strong capacity to form a heterotopic dental pulp/dentine complex in empty root canals; this method can be used in the fabrication of bioengineered dental roots and also provides an alternative treatment approach for pulp disease. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Cytotoxic effects of glass ionomer cements on human dental pulp stem cells correlate with fluoride release.

    PubMed

    Kanjevac, Tatjana; Milovanovic, Marija; Volarevic, Vladislav; Lukic, Miodrag L; Arsenijevic, Nebojsa; Markovic, Dejan; Zdravkovic, Nebojsa; Tesic, Zivoslav; Lukic, Aleksandra

    2012-01-01

    Glass ionomer cements (GICs) are commonly used as restorative materials. Responses to GICs differ among cell types and it is therefore of importance to thoroughly investigate the influence of these restorative materials on pulp stem cells that are potential source for dental tissue regeneration. Eight biomaterials were tested: Fuji I, Fuji II, Fuji VIII, Fuji IX, Fuji Plus, Fuji Triage, Vitrebond and Composit. We compared their cytotoxic activity on human dental pulp stem cells (DPSC) and correlated this activity with the content of Fluoride, Aluminium and Strontium ions in their eluates. Elution samples of biomaterials were prepared in sterile tissue culture medium and the medium was tested for toxicity by an assay of cell survival/proliferation (MTT test) and apoptosis (Annexin V FITC Detection Kit). Concentrations of Fluoride, Aluminium and Strontium ions were tested by appropriate methods in the same eluates. Cell survival ranged between 79.62% (Fuji Triage) to 1.5% (Fuji Plus) and most dead DPSCs were in the stage of late apoptosis. Fluoride release correlated with cytotoxicity of GICs, while Aluminium and Strontium ions, present in significant amount in eluates of tested GICs did not. Fuji Plus, Vitrebond and Fuji VIII, which released fluoride in higher quantities than other GICs, were highly toxic to human DPSCs. Opposite, low levels of released fluoride correlated to low cytotoxic effect of Composit, Fuji I and Fuji Triage.

  12. EDTA conditioning of dentine promotes adhesion, migration and differentiation of dental pulp stem cells.

    PubMed

    Galler, K M; Widbiller, M; Buchalla, W; Eidt, A; Hiller, K-A; Hoffer, P C; Schmalz, G

    2016-06-01

    To evaluate the effect of dentine conditioning on migration, adhesion and differentiation of dental pulp stem cells. Dentine discs prepared from extracted human molars were pre-treated with EDTA (10%), NaOCl (5.25%) or H2 O. Migration of dental pulp stem cells towards pre-treated dentine after 24 and 48 h was assessed in a modified Boyden chamber assay. Cell adhesion was evaluated indirectly by measuring cell viability. Expression of mineralization-associated genes (COL1A1, ALP, BSP, DSPP, RUNX2) in cells cultured on pre-treated dentine for 7 days was determined by RT-qPCR. Nonparametric statistical analysis was performed for cell migration and cell viability data to compare different groups and time-points (Mann-Whitney U-test, α = 0.05). Treatment of dentine with H2 O or EDTA allowed for cell attachment, which was prohibited by NaOCl with statistical significance (P = 0.000). Furthermore, EDTA conditioning induced cell migration towards dentine. The expression of mineralization-associated genes was increased in dental pulp cells cultured on dentine after EDTA conditioning compared to H2 O-pre-treated dentine discs. EDTA conditioning of dentine promoted the adhesion, migration and differentiation of dental pulp stem cells towards or onto dentine. A pre-treatment with EDTA as the final step of an irrigation protocol for regenerative endodontic procedures has the potential to act favourably on new tissue formation within the root canal. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  13. Amelogenin exons 8 and 9 encoded peptide enhances leucine rich amelogenin peptide mediated dental pulp repair.

    PubMed

    Huang, Yulei; Goldberg, Michel; Le, Thuan; Qiang, Ran; Warner, Douglas; Witkowska, Halina Ewa; Liu, Haichuan; Zhu, Li; Denbesten, Pamela; Li, Wu

    2012-01-01

    Amelogenins containing exons 8 and 9 are alternatively spliced variants of amelogenin. Some amelogenin spliced variants have been found to promote pulp regeneration following pulp exposure. The function of the amelogenin spliced variants with the exons 8 and 9 remains unknown. In this study, we synthesized recombinant leucine rich amelogenin peptide (LRAP, A-4), LRAP plus exons 8 and 9 peptide (LRAP 8, 9) or exons 8 and 9 peptide (P89), to determine their effects on odontoblasts. In vivo analyses were completed following the insertion of agarose beads containing LRAP or LRAP 8, 9 into exposed cavity preparations of rat molars. After 8, 15 or 30 days' exposure, the pulp tissues were analyzed for changes in histomorphometry and cell proliferation by PCNA stainings. In vitro analyses included the effects of the addition of the recombinant proteins or peptide on cell proliferation, differentiation and adhesion of postnatal human dental pulp cells (DPCs). These studies showed that in vivo LRAP 8, 9 enhanced the reparative dentin formation as compared to LRAP. In vitro LRAP 8, 9 promoted DPC proliferation and differentiation to a greater extent than LRAP. These data suggest that amelogenin exons 8 and 9 may be useful in amelogenin-mediated pulp repair. Copyright © 2012 S. Karger AG, Basel.

  14. Decellularized Human Dental Pulp as a Scaffold for Regenerative Endodontics.

    PubMed

    Song, J S; Takimoto, K; Jeon, M; Vadakekalam, J; Ruparel, N B; Diogenes, A

    2017-06-01

    Teeth undergo postnatal organogenesis relatively late in life and only complete full maturation a few years after the crown first erupts in the oral cavity. At this stage, development can be arrested if the tooth organ is damaged by either trauma or caries. Regenerative endodontic procedures (REPs) are a treatment alternative to conventional root canal treatment for immature teeth. These procedures rely on the transfer of apically positioned stem cells, including stem cells of the apical papilla (SCAP), into the root canal system. Although clinical success has been reported for these procedures, the predictability of expected outcomes and the organization of the newly formed tissues are affected by the lack of an available suitable scaffold that mimics the complexity of the dental pulp extracellular matrix (ECM). In this study, we evaluated 3 methods of decellularization of human dental pulp to be used as a potential autograft scaffold. Tooth slices of human healthy extracted third molars were decellularized by 3 different methods. One of the methods generated the maximum observed decellularization with minimal impact on the ECM composition and organization. Furthermore, recellularization of the scaffold supported the proliferation of SCAP throughout the scaffold with differentiation into odontoblast-like cells near the dentinal walls. Thus, this study reports that human dental pulp from healthy extracted teeth can be successfully decellularized, and the resulting scaffold supports the proliferation and differentiation of SCAP. The future application of this form of an autograft in REPs can fulfill a yet unmet need for a suitable scaffold, potentially improving clinical outcomes and ultimately promoting the survival and function of teeth with otherwise poor prognosis.

  15. Effects of pulpectomy on the amount of root resorption during orthodontic tooth movement.

    PubMed

    Kaku, Masato; Sumi, Hiromi; Shikata, Hanaka; Kojima, Shunichi; Motokawa, Masahide; Fujita, Tadashi; Tanimoto, Kotaro; Tanne, Kazuo

    2014-03-01

    Previous studies have revealed that orthodontic force affects dental pulp via the rupture of blood vessels and vacuolization of pulp tissues. We hypothesized that pulp tissues express inflammatory cytokines and regulators of odontoclast differentiation after excess orthodontic force. The purpose of this study was to investigate the effects of tensile force in human pulp cells and to measure inflammatory root resorption during tooth movement in pulpless rat teeth. After cyclic tensile force application in human pulp cells, gene expression and protein concentration of macrophage colony-stimulating factor, receptor activator of nuclear factor kappa-B ligand, interleukin-1 beta, and tumor necrosis factor alpha were determined by real-time polymerase chain reaction and enzyme-linked immunoassay. Moreover, the role of the stretch-activated channel was evaluated by gadolinium (Gd(3+)) treatment. The upper right first molars of 7-week Wistar rats were subjected to pulpectomy and root canal filling followed by mesial movement for 6 months. The expression of cytokine messenger RNAs and proteins in the experimental group peaked with loading at 10-kPa tensile force after 48 hours (P < .01). Gd(3+) reduced the expression of these cytokine messenger RNAs and protein concentrations (P < .01). The amount of inflammatory root resorption was significantly larger in the control teeth than the pulpectomized teeth (P < .05). This study shows that tensile forces in the pulp cells enhance the expression of various cytokines via the S-A channel, which may lead to inflammatory root resorption during tooth movement. It also suggests that root canal treatment is effective for progressive severe inflammatory root resorption during tooth movement. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. RAC1 regulate tumor necrosis factor-α-mediated impaired osteogenic differentiation of dental pulp stem cells.

    PubMed

    Feng, Guijuan; Shen, Qijie; Lian, Min; Gu, Zhifeng; Xing, Jing; Lu, Xiaohui; Huang, Dan; Li, Liren; Huang, Shen; Wang, Yi; Zhang, Jinlong; Shi, Jiahai; Zhang, Dongmei; Feng, Xingmei

    2015-09-01

    Human dental pulp contains a rapidly proliferative subpopulation of precursor cells termed dental pulp stem cells (DPSCs) that show self-renewal and multilineage differentiation, including neurogenic, chondrogenic, osteogenic and adipogenic. We previously reported that tomuor necrosis factor-α (TNF-α) (10 ng/mL) triggered osteogenic differentiation of human DPSCs via the nuclear factor-κB (NF-κB) signaling pathway. While previous studies showed that cells treated with TNF-α at higher concentrations showed decreased osteogenic differentiation capability. In this study we analyze the function of TNF-α (100 ng/mL) on osteogenic differentiation of human DPSCs for the first time and identify the underlying molecule mechanisms. Our data revealed that TNF-α with higher concentration significantly reduced mineralization and the expression of bone morphogenetic protein 2 (BMP2), alkaline phosphatase (ALP) and runt-related transcription factor 2 (RUNX2). Further, we revealed that TNF-α could suppress the osteogenic differentiation of DPSCs via increasing the expression of RAC1, which could activate the Wnt/β-catenin signaling pathway and liberate β-catenin to translocate into the nucleus. Genetic silencing of RAC1 expression using siRNA restored osteogenic differentiation of DPSCs. Our findings may provide a potential approach to bone regeneration in inflammatory microenvironments. © 2015 Japanese Society of Developmental Biologists.

  17. Transforming growth factor beta 1 increases collagen content, and stimulates procollagen I and tissue inhibitor of metalloproteinase-1 production of dental pulp cells: Role of MEK/ERK and activin receptor-like kinase-5/Smad signaling.

    PubMed

    Lin, Po-Shuen; Chang, Hsiao-Hua; Yeh, Chien-Yang; Chang, Mei-Chi; Chan, Chiu-Po; Kuo, Han-Yueh; Liu, Hsin-Cheng; Liao, Wan-Chuen; Jeng, Po-Yuan; Yeung, Sin-Yuet; Jeng, Jiiang-Huei

    2017-05-01

    In order to clarify the role of transforming growth factor beta 1 (TGF-β1) in pulp repair/regeneration responses, we investigated the differential signaling pathways responsible for the effects of TGF-β1 on collagen turnover, matrix metalloproteinase-3 (MMP-3), and tissue inhibitor of metalloproteinase-1 (TIMP-1) production in human dental pulp cells. Pulp cells were exposed to TGF-β1 with/without pretreatment and coincubation by 1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenyl mercapto)butadiene (U0126; a mitogen-activated protein kinase kinase [MEK]/extracellular signal-regulated kinase [ERK] inhibitor) and 4-(5-benzol[1,3]dioxol-5-yl-4-pyrldin-2-yl-1H- imidazol-2-yl)-benzamide hydrate (SB431542; an activin receptor-like kinase-5/Smad signaling inhibitor). Sircol collagen assay was used to measure cellular collagen content. Culture medium procollagen I, TIMP-1, and MMP-3 levels were determined by enzyme-linked immunosorbent assay. TGF-β1 increased the collagen content, procollagen I, and TIMP-1 production, but slightly decreased MMP-3 production of pulp cells. SB431542 and U0126 prevented the TGF-β1-induced increase of collagen content and TIMP-1 production of dental pulp cells. These results indicate that TGF-β1 may be involved in the healing/regeneration processes of dental pulp in response to injury by stimulation of collagen and TIMP-1 production. These events are associated with activin receptor-like kinase-5/Smad2/3 and MEK/ERK signaling. Copyright © 2016. Published by Elsevier B.V.

  18. Histogenesis of splenic lesions in Hodgkin's disease.

    PubMed

    Yam, L T; Li, C Y

    1976-12-01

    Histochemical markers were used to identify the various cellular and structural components of the human spleen, and to investigate the histogenesis of the splenic lesions of Hodgkin's disease. The early lesions appear in areas near the central artery (periarterial lymphatic sheath) in the white pulp. The white pulp becomes hypertrophic. The lesions enlarge, extend into the red pulp, and compress the sinuses and the cords of Billroth. The derivations of various "histiocytes" contained with the lesions are differentiated by using cytochemical stains for lysosomal enzymes and for granulocytes. The epithelioid cells in the granulomas are rich in those lysosomal enzymes typically seen in phagocytic histiocytes, suggesting that they are indeed true histiocytes. The malignant "histiocytes," including the mononuclear Hodgkin cells, the binucleated Sternberg-Reed cells, and the multinucleated giant cells, do not contain significant amounts of lysosomal enzymes and more closely resemble stimulated lymphocytes. The splenic lesions in Hodkin's disease may be the result of a lymphocytic and histiocytic cellular response to an unknown agent, which reaches the spleen through the central artery in the white pulp.

  19. Indirect immobilized Jagged1 suppresses cell cycle progression and induces odonto/osteogenic differentiation in human dental pulp cells.

    PubMed

    Manokawinchoke, Jeeranan; Nattasit, Praphawi; Thongngam, Tanutchaporn; Pavasant, Prasit; Tompkins, Kevin A; Egusa, Hiroshi; Osathanon, Thanaphum

    2017-08-31

    Notch signaling regulates diverse biological processes in dental pulp tissue. The present study investigated the response of human dental pulp cells (hDPs) to the indirect immobilized Notch ligand Jagged1 in vitro. The indirect immobilized Jagged1 effectively activated Notch signaling in hDPs as confirmed by the upregulation of HES1 and HEY1 expression. Differential gene expression profiling using an RNA sequencing technique revealed that the indirect immobilized Jagged1 upregulated genes were mainly involved in extracellular matrix organization, disease, and signal transduction. Downregulated genes predominantly participated in the cell cycle, DNA replication, and DNA repair. Indirect immobilized Jagged1 significantly reduced cell proliferation, colony forming unit ability, and the number of cells in S phase. Jagged1 treated hDPs exhibited significantly higher ALP enzymatic activity, osteogenic marker gene expression, and mineralization compared with control. Pretreatment with a γ-secretase inhibitor attenuated the Jagged1-induced ALP activity and mineral deposition. NOTCH2 shRNA reduced the Jagged1-induced osteogenic marker gene expression, ALP enzymatic activity, and mineral deposition. In conclusion, indirect immobilized Jagged1 suppresses cell cycle progression and induces the odonto/osteogenic differentiation of hDPs via the canonical Notch signaling pathway.

  20. Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective.

    PubMed

    Huang, George T-J; Al-Habib, Mey; Gauthier, Philippe

    2013-03-01

    There are two types of approaches to regenerate tissues: cell-based and cell-free. The former approach is to introduce exogenous cells into the host to regenerate tissues, and the latter is to use materials other than cells in an attempt to regenerate tissues. There has been a significant advancement in stem cell-based pulp and dentin regeneration research in the past few years. Studies in small and large animals have demonstrated that pulp/dentin-like tissues can be regenerated partially or completely in the root canal space with apical openings of 0.7-3.0 mm using dental pulp stem cells, including stem cells from apical papilla (SCAP) and subpopulations of pulp stem cells. Bone marrow mesenchymal stem cells (BMMSCs) and adipose tissue-derived MSCs (ADMSCs) have also been shown to regenerate pulp-like tissue. In contrast, the cell-free approach has not produced convincing evidence on pulp regeneration. However, one crucial concept has not been considered nor defined in the field of pulp/dentin regeneration and that is the critical size defect of dentin and pulp. Without such consideration and definition, it is difficult to predict or anticipate the extent of cell-free pulp regeneration that would occur. By reasoning, cell-free therapy is unlikely to regenerate an organ/tissue after total loss. Similarly, after a total loss of pulp, it is unlikely to regenerate without using exogenously introduced cells. A cell homing approach may provide a limited amount of tissue regeneration. Although stem cell-based pulp/dentin regeneration has shown great promise, clinical trials are difficult to launch at present. This article will address several issues that challenge and hinder the clinical applications of pulp/dentin regeneration which need to be overcome before stem cell-based pulp/dentin regeneration can occur in the clinic.

  1. Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective

    PubMed Central

    HUANG, GEORGE T.-J.; AL-HABIB, MEY; GAUTHIER, PHILIPPE

    2013-01-01

    There are two types of approaches to regenerate tissues: cell-based and cell-free. The former approach is to introduce exogenous cells into the host to regenerate tissues, and the latter is to use materials other than cells in an attempt to regenerate tissues. There has been a significant advancement in stem cell-based pulp and dentin regeneration research in the past few years. Studies in small and large animals have demonstrated that pulp/dentin-like tissues can be regenerated partially or completely in the root canal space with apical openings of 0.7-3.0 mm using dental pulp stem cells, including stem cells from apical papilla (SCAP) and subpopulations of pulp stem cells. Bone marrow mesenchymal stem cells (BMMSCs) and adipose tissue-derived MSCs (ADMSCs) have also been shown to regenerate pulp-like tissue. In contrast, the cell-free approach has not produced convincing evidence on pulp regeneration. However, one crucial concept has not been considered nor defined in the field of pulp/dentin regeneration and that is the critical size defect of dentin and pulp. Without such consideration and definition, it is difficult to predict or anticipate the extent of cell-free pulp regeneration that would occur. By reasoning, cell-free therapy is unlikely to regenerate an organ/tissue after total loss. Similarly, after a total loss of pulp, it is unlikely to regenerate without using exogenously introduced cells. A cell homing approach may provide a limited amount of tissue regeneration. Although stem cell-based pulp/dentin regeneration has shown great promise, clinical trials are difficult to launch at present. This article will address several issues that challenge and hinder the clinical applications of pulp/dentin regeneration which need to be overcome before stem cell-based pulp/dentin regeneration can occur in the clinic. PMID:23914150

  2. Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging.

    PubMed

    Yu, Jinhua; He, Huixia; Tang, Chunbo; Zhang, Guangdong; Li, Yuanfei; Wang, Ruoning; Shi, Junnan; Jin, Yan

    2010-05-08

    Dental pulp stem cells (DPSCs) can be driven into odontoblast, osteoblast, and chondrocyte lineages in different inductive media. However, the differentiation potential of naive DPSCs after serial passaging in the routine culture system has not been fully elucidated. DPSCs were isolated from human/rat dental pulps by the magnetic activated cell sorting based on STRO-1 expression, cultured and passaged in the conventional culture media. The biological features of STRO-1+ DPSCs at the 1st and 9th passages were investigated. During the long-term passage, the proliferation ability of human STRO-1+ DPSCs was downregulated as indicated by the growth kinetics. When compared with STRO-1+ DPSCs at the 1st passage (DPSC-P1), the expression of mature osteoblast-specific genes/proteins (alkaline phosphatase, bone sialoprotein, osterix, and osteopontin), odontoblast-specific gene/protein (dentin sialophosphoprotein and dentin sialoprotein), and chondrocyte-specific gene/protein (type II collagen) was significantly upregulated in human STRO-1+ DPSCs at the 9th passage (DPSC-P9). Furthermore, human DPSC-P9 cells in the mineralization-inducing media presented higher levels of alkaline phosphatase at day 3 and day 7 respectively, and produced more mineralized matrix than DPSC-P9 cells at day 14. In vivo transplantation results showed that rat DPSC-P1 cell pellets developed into dentin, bone and cartilage structures respectively, while DPSC-P9 cells can only generate bone tissues. These findings suggest that STRO-1+ DPSCs consist of several interrelated subpopulations which can spontaneously differentiate into odontoblasts, osteoblasts, and chondrocytes. The differentiation capacity of these DPSCs changes during cell passaging, and DPSCs at the 9th passage restrict their differentiation potential to the osteoblast lineage in vivo.

  3. Hydrogen sulphide increases hepatic differentiation of human tooth pulp stem cells compared with human bone marrow stem cells.

    PubMed

    Okada, M; Ishkitiev, N; Yaegaki, K; Imai, T; Tanaka, T; Fukuda, M; Ono, S; Haapasalo, M

    2014-12-01

    To determine the differences in stem cell properties, in hepatic differentiation and in the effects of hydrogen sulphide (H2 S) on hepatic differentiation between human bone marrow stem cells (hBMC) and stem cells from human exfoliated primary tooth pulp (SHED). CD117(+) cells were magnetically separated and subjected to hepatic differentiation. CD117(+) cell lineages were characterized for transcription factors indicative of stem cells by qRT-PCR. For the last 9 days of the differentiation, the test cells were exposed to 0.1 ng mL(-1) H2 S. Immunocytochemistry and flow cytometry of albumin, alpha-fetoprotein and carbamoyl phosphate synthetase were carried out after differentiation. Urea concentration and glycogen synthesis were also determined. Genes expressed in SHED were also expressed in BMC. No difference in expression level of hepatic markers was shown by immunofluorescence. SHED showed more positive cells than hBMC (P < 0.01). H2 S increased the number of positive cells in both cultures (P < 0.01). Urea concentration and glycogen synthesis increased significantly after H2 S exposure (P < 0.001 and P < 0.05, respectively). Real-time PCR data were analysed by RT(2) profiler RT-PCR Array Data Analysis version 3.5 (Qiagen), and ELISA data were analysed by Bonferroni's multiple comparison using Windows spss version 16 (SPSS Inc, Chicago, IL, USA). Bonferroni's multiple comparison test was also carried out after angle transformation for the percentage data of flow cytometer using Windows spss(®) version 16 (SPSS Inc). Statistical significance was accepted at P < 0.05. Stem cells from human exfoliated primary tooth pulp and BMC have similar properties. The level of hepatic differentiation in SHED compared with BMC was the same or higher. H2 S increased the level of hepatic differentiation. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  4. In Vitro and In Vivo Dentinogenic Efficacy of Human Dental Pulp-Derived Cells Induced by Demineralized Dentin Matrix and HA-TCP

    PubMed Central

    Kang, Kyung-Jung; Lee, Min Suk; Moon, Chan-Woong; Lee, Jae-Hoon

    2017-01-01

    Human dental pulp cells have been known to have the stem cell features such as self-renewal and multipotency. These cells are differentiated into hard tissue by addition of proper cytokines and biomaterials. Hydroxyapatite-tricalcium phosphates (HA-TCPs) are essential components of hard tissue and generally used as a biocompatible material in tissue engineering of bone. Demineralized dentin matrix (DDM) has been reported to increase efficiency of bone induction. We compared the efficiencies of osteogenic differentiation and in vivo bone formation of HA-TCP and DDM on human dental pulp stem cells (hDPSCs). DDM contains inorganic components as with HA-TCP, and organic components such as collagen type-1. Due to these components, osteoinduction potential of DDM on hDPSCs was remarkably higher than that of HA-TCP. However, the efficiencies of in vivo bone formation are similar in HA-TCP and DDM. Although osteogenic gene expression and bone formation in immunocompromised nude mice were similar levels in both cases, dentinogenic gene expression level was slightly higher in DDM transplantation than in HA-TCP. All these results suggested that in vivo osteogenic potentials in hDPSCs are induced with both HA-TCP and DDM by osteoconduction and osteoinduction, respectively. In addition, transplantation of hDPSCs/DDM might be more effective for differentiation into dentin. PMID:28761445

  5. In Vitro and In Vivo Dentinogenic Efficacy of Human Dental Pulp-Derived Cells Induced by Demineralized Dentin Matrix and HA-TCP.

    PubMed

    Kang, Kyung-Jung; Lee, Min Suk; Moon, Chan-Woong; Lee, Jae-Hoon; Yang, Hee Seok; Jang, Young-Joo

    2017-01-01

    Human dental pulp cells have been known to have the stem cell features such as self-renewal and multipotency. These cells are differentiated into hard tissue by addition of proper cytokines and biomaterials. Hydroxyapatite-tricalcium phosphates (HA-TCPs) are essential components of hard tissue and generally used as a biocompatible material in tissue engineering of bone. Demineralized dentin matrix (DDM) has been reported to increase efficiency of bone induction. We compared the efficiencies of osteogenic differentiation and in vivo bone formation of HA-TCP and DDM on human dental pulp stem cells (hDPSCs). DDM contains inorganic components as with HA-TCP, and organic components such as collagen type-1. Due to these components, osteoinduction potential of DDM on hDPSCs was remarkably higher than that of HA-TCP. However, the efficiencies of in vivo bone formation are similar in HA-TCP and DDM. Although osteogenic gene expression and bone formation in immunocompromised nude mice were similar levels in both cases, dentinogenic gene expression level was slightly higher in DDM transplantation than in HA-TCP. All these results suggested that in vivo osteogenic potentials in hDPSCs are induced with both HA-TCP and DDM by osteoconduction and osteoinduction, respectively. In addition, transplantation of hDPSCs/DDM might be more effective for differentiation into dentin.

  6. A preliminary report on histological outcome of pulpotomy with endodontic biomaterials vs calcium hydroxide

    PubMed Central

    Peimani, Ali; Asgary, Saeed

    2013-01-01

    Objectives The purpose of the study was to evaluate human dental pulp response to pulpotomy with calcium hydroxide (CH), mineral trioxide aggregate (MTA), and calcium enriched mixture (CEM) cement. Materials and Methods A total of nine erupted third molars were randomly assigned to each pulpotomy group. The same clinician performed full pulpotomies and coronal restorations. The patients were followed clinically for six months; the teeth were then extracted and prepared for histological assessments. The samples were blindly assessed by an independent observer for pulp vitality, pulp inflammation, and calcified bridge formation. Results All patients were free of clinical signs/symptoms of pulpal/periradicular diseases during the follow up period. In CH group, one tooth had necrotic radicular pulp; other two teeth in this group had vital uninflamed pulps with complete dentinal bridge formation. In CEM cement and MTA groups all teeth had vital uninflamed radicular pulps. A complete dentinal bridge was formed beneath CEM cement and MTA in all roots. Odontoblast-like cells were present beneath CEM cement and MTA in all samples. Conclusions This study revealed that CEM cement and MTA were reliable endodontic biomaterials in full pulpotomy treatment. In contrast, the human dental pulp response to CH might be unpredictable. PMID:24303358

  7. The HOX genes are expressed, in vivo, in human tooth germs: in vitro cAMP exposure of dental pulp cells results in parallel HOX network activation and neuronal differentiation.

    PubMed

    D'Antò, Vincenzo; Cantile, Monica; D'Armiento, Maria; Schiavo, Giulia; Spagnuolo, Gianrico; Terracciano, Luigi; Vecchione, Raffaela; Cillo, Clemente

    2006-03-01

    Homeobox-containing genes play a crucial role in odontogenesis. After the detection of Dlx and Msx genes in overlapping domains along maxillary and mandibular processes, a homeobox odontogenic code has been proposed to explain the interaction between different homeobox genes during dental lamina patterning. No role has so far been assigned to the Hox gene network in the homeobox odontogenic code due to studies on specific Hox genes and evolutionary considerations. Despite its involvement in early patterning during embryonal development, the HOX gene network, the most repeat-poor regions of the human genome, controls the phenotype identity of adult eukaryotic cells. Here, according to our results, the HOX gene network appears to be active in human tooth germs between 18 and 24 weeks of development. The immunohistochemical localization of specific HOX proteins mostly concerns the epithelial tooth germ compartment. Furthermore, only a few genes of the network are active in embryonal retromolar tissues, as well as in ectomesenchymal dental pulp cells (DPC) grown in vitro from adult human molar. Exposure of DPCs to cAMP induces the expression of from three to nine total HOX genes of the network in parallel with phenotype modifications with traits of neuronal differentiation. Our observations suggest that: (i) by combining its component genes, the HOX gene network determines the phenotype identity of epithelial and ectomesenchymal cells interacting in the generation of human tooth germ; (ii) cAMP treatment activates the HOX network and induces, in parallel, a neuronal-like phenotype in human primary ectomesenchymal dental pulp cells. 2005 Wiley-Liss, Inc.

  8. Human Dental Pulp Stem Cells Suppress Alloantigen-induced Immunity by Stimulating T Cells to Release Transforming Growth Factor Beta.

    PubMed

    Kwack, Kyu Hwan; Lee, Jung Min; Park, Sang Hyuk; Lee, Hyeon Woo

    2017-01-01

    Human dental pulp stem cells (hDPSCs) are ideal candidates for regenerating damaged dental tissue. To examine the possibility that hDPSCs may be used to regenerate pulp, we tested their in vitro effects on acute allogeneic immune responses. A peripheral blood mononuclear cell (PBMC) proliferation assay and immunoglobulin (Ig) production assay were performed to evaluate the immunosuppressive properties of hDPSCs. The mixed lymphocyte reaction was suppressed by incubation with hDPSCs. Transforming growth factor beta (TGF-β) was the major soluble factor responsible for inhibiting the allogeneic proliferation of PBMCs. The production of IgM and IgG by allogeneic activation of responder B lymphocytes was also completely abrogated by TGF-β released from hDPSCs via interferon gamma in response to activation of the responder T lymphocytes. hDPSCs inhibit acute allogeneic immune responses by their release of TGF-β as a result of allogeneic stimulation of T lymphocytes. This study provides an insight into the potential clinical use of hDPSCs for allogeneic transplantation. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Enamel Matrix Derivative Promote Primary Human Pulp Cell Differentiation and Mineralization

    PubMed Central

    Riksen, Elisabeth Aurstad; Landin, Maria A.; Reppe, Sjur; Nakamura, Yukio; Lyngstadaas, Ståle Petter; Reseland, Janne E.

    2014-01-01

    Enamel matrix derivative (EMD) has been found to induce reactive dentin formation; however the molecular mechanisms involved are unclear. The effect of EMD (5–50 μg/mL) on primary human pulp cells were compared to untreated cells and cells incubated with 10−8 M dexamethasone (DEX) for 1, 2, 3, 7, and 14 days in culture. Expression analysis using Affymetrix microchips demonstrated that 10 μg/mL EMD regulated several hundred genes and stimulated the gene expression of proteins involved in mesenchymal proliferation and differentiation. Both EMD and DEX enhanced the expression of amelogenin (amel), and the dentinogenic markers dentin sialophosphoprotein (DSSP) and dentin matrix acidic phosphoprotein 1 (DMP1), as well as the osteogenic markers osteocalcin (OC, BGLAP) and collagen type 1 (COL1A1). Whereas, only EMD had effect on alkaline phosphatase (ALP) mRNA expression, the stimulatory effect were verified by enhanced secretion of OC and COL1A from EMD treated cells, and increased ALP activity in cell culture medium after EMD treatment. Increased levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemoattractant proteins (MCP-1) in the cell culture medium were also found. Consequently, the suggested effect of EMD is to promote differentiation of pulp cells and increases the potential for pulpal mineralization to favor reactive dentine formation. PMID:24857913

  10. Calcium Hydroxide-induced Proliferation, Migration, Osteogenic Differentiation, and Mineralization via the Mitogen-activated Protein Kinase Pathway in Human Dental Pulp Stem Cells.

    PubMed

    Chen, Luoping; Zheng, Lisha; Jiang, Jingyi; Gui, Jinpeng; Zhang, Lingyu; Huang, Yan; Chen, Xiaofang; Ji, Jing; Fan, Yubo

    2016-09-01

    Calcium hydroxide has been extensively used as the gold standard for direct pulp capping in clinical dentistry. It induces proliferation, migration, and mineralization in dental pulp stem cells (DPSCs), but the underlying mechanisms are still unclear. The aim of this study was to investigate the role of the mitogen-activated protein (MAP) kinase pathway in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Human DPSCs between passages 3 and 6 were used. DPSCs were preincubated with inhibitors of MAP kinases and cultured with calcium hydroxide. The phosphorylated MAP kinases were detected by Western blot analysis. Cell viability was analyzed via the methylthiazol tetrazolium assay. Cell migration was estimated using the wound healing assay. Alkaline phosphatase (ALP) expression was analyzed using the ALP staining assay. Mineralization was studied by alizarin red staining analysis. Calcium hydroxide significantly promoted the phosphorylation of the c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase. The inhibition of JNK and p38 signaling abolished calcium hydroxide-induced proliferation of DPSCs. The inhibition of JNK, p38, and extracellular signal-regulated kinase signaling suppressed the migration, ALP expression, and mineralization of DPSCs. Our study showed that the MAP kinase pathway was involved in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Pulp and apical tissue response to deep caries in immature teeth: A histologic and histobacteriologic study.

    PubMed

    Ricucci, Domenico; Siqueira, José F; Loghin, Simona; Lin, Louis M

    2017-01-01

    Descriptions of the pathologic changes in the pulp and associated apical structures of human immature teeth in response to deep caries are lacking in the literature. This article describes the histologic events associated with the radicular pulp and the apical tissues of human immature teeth following pulp inflammation and necrosis. Twelve immature teeth with destructive caries lesions were obtained from 8 patients. Two intact immature teeth served as controls. Teeth were extracted for reasons not related to this study and immediately processed for histopathologic and histobacteriologic analyses. Serial sections were examined for the pulp conditions and classified as reversible or irreversible pulp inflammation, or pulp necrosis. Other histologic parameters were also evaluated. In the 3 cases with reversible pulp inflammation, tissue in the pulp chamber showed mild to moderate inflammation and tertiary dentin formation related to tubules involved in the caries process. Overall, the radicular pulp tissue, apical papilla and Hertwig's epithelial root sheath (HERS) exhibited characteristics of normality. In the 3 cases with irreversible pulp inflammation, the pulps were exposed and severe inflammation occurred in the pulp chamber, with minor areas of necrosis and infection. Large areas of the canal walls were free from odontoblasts and lined by an atubular mineralized tissue. The apical papilla showed extremely reduced cellularity or lack of cells and HERS was discontinuous or absent. In the 6 cases with pulp necrosis, the coronal and radicular pulp tissue was necrotic and colonized by bacterial biofilms. The apical papilla could not be discerned, except for one case. HERS was absent in the necrotic cases. While immature teeth with reversible pulpitis showed histologic features almost similar to normal teeth in the canal and in the apical region, those with irreversible pulpitis and necrosis exhibited significant alterations not only in the radicular pulp but also in the apical tissues, including the apical papilla and HERS. Alterations in the radicular pulp and apical tissues help explain the outcome of current regenerative/reparative therapies and should be taken into account when devising more predictable therapeutic protocols for teeth with incomplete root formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Regeneration of Corneal Epithelium With Dental Pulp Stem Cells Using a Contact Lens Delivery System.

    PubMed

    Kushnerev, Evgeny; Shawcross, Susan G; Sothirachagan, Shankari; Carley, Fiona; Brahma, Arun; Yates, Julian M; Hillarby, M Chantal

    2016-10-01

    The corneal epithelium is sloughed off surface of the eye by the action of blinking and is continually replaced by division and maturation of the limbal stem cells (LSCs). In the case of injury or disease, LSCs can be lost or damaged to a point at which the corneal epithelial layer is no longer maintained. leading to LSC deficiencies (LSCDs). When this occurs, the opaque conjunctiva overgrows the anterior surface of the eye, leading to vision impairment or loss. Dental pulp stem cells (DPSCs) are promising candidates as autologous LSC substitutes. In this study, contact lenses (CLs) are used as a novel medical device to deliver DPSCs onto corneal surface to enhance corneal epithelium regeneration. Dental pulp stem cells labeled with green fluorescent Qtracker 525 were seeded onto the pretreated CLs, allowed to adhere, then delivered to debrided human corneas. Expression of KRT3, 12, 13, and 19 was investigated by immunostaining, then standard and confocal microscopy. Dental pulp stem cells were successfully isolated, labeled, and delivered to the corneal surface using CLs. Following removal of CLs, confocal microscopy showed that the DPSCs had migrated onto the cornea. Coexpression of KRT12 and green fluorescent Qtracker 525 confirmed that the DPSCs had transdifferentiated into corneal epithelial progenitors. Delimitation of KRT 19 and green fluorescence provides evidence that Qtracker 525-labeled DPSCs establish a barrier to the invasion of the cornea by conjunctiva. In this study we show that DPSCs, delivered using CLs, can be used to enhance repair and regeneration of the human corneal epithelium.

  13. Dynamic Hydrostatic Pressure Promotes Differentiation of Human Dental Pulp Stem Cells

    PubMed Central

    Yu, V; Damek-Poprawa, M.; Nicoll, S. B.; Akintoye, S.O.

    2009-01-01

    The masticatory apparatus absorbs high occlusal forces, but uncontrolled parafunctional or orthodontic forces damage periodontal ligament (PDL), cause pulpal calcification, pulp necrosis and tooth loss. Morphology and functional differentiation of connective tissue cells can be controlled by mechanical stimuli but effects of uncontrolled forces on intra-pulpal homeostasis and ability of dental pulp stem cells (DPSCs) to withstand direct external forces are unclear. Using dynamic hydrostatic pressure (HSP), we tested the hypothesis that direct HSP disrupts DPSC survival and odontogenic differentiation. DPSCs from four teenage patients were subjected to HSP followed by assessment of cell adhesion, survival and recovery capacity based on odontogenic differentiation, mineralization and responsiveness to bone morphogenetic protein-2 (BMP-2). HSP down-regulated DPSC adhesion and survival but promoted differentiation by increasing mineralization, in vivo hard tissue regeneration and BMP-2 responsiveness despite reduced cell numbers. HSP-treated DPSCs displayed enhanced odontogenic differentiation, an indication of favorable recovery from HSP-induced cellular stress. PMID:19555657

  14. Human dental pulp stem cells: from biology to clinical applications.

    PubMed

    d'Aquino, Riccardo; De Rosa, Alfredo; Laino, Gregorio; Caruso, Filippo; Guida, Luigi; Rullo, Rosario; Checchi, Vittorio; Laino, Luigi; Tirino, Virginia; Papaccio, Gianpaolo

    2009-07-15

    Dental pulp stem cells (DPSCs) can be found within the "cell rich zone" of dental pulp. Their embryonic origin, from neural crests, explains their multipotency. Up to now, two groups have studied these cells extensively, albeit with different results. One group claims that these cells produce a "dentin-like tissue", whereas the other research group has demonstrated that these cells are capable of producing bone, both in vitro and in vivo. In addition, it has been reported that these cells can be easily cryopreserved and stored for long periods of time and still retain their multipotency and bone-producing capacity. Moreover, recent attention has been focused on tissue engineering and on the properties of these cells: several scaffolds have been used to promote 3-D tissue formation and studies have demonstrated that DPSCs show good adherence and bone tissue formation on microconcavity surface textures. In addition, adult bone tissue with good vascularization has been obtained in grafts. These results enforce the notion that DPSCs can be used successfully for tissue engineering. (c) 2008 Wiley-Liss, Inc.

  15. Odontogenic Differentiation of Human Dental Pulp Stem Cells Stimulated by the Calcium Phosphate Porous Granules

    PubMed Central

    Nam, Sunyoung; Won, Jong-Eun; Kim, Cheol-Hwan; Kim, Hae-Won

    2011-01-01

    Effects of three-dimensional (3D) calcium phosphate (CaP) porous granules on the growth and odontogenic differentiation of human dental pulp stem cells (hDPSCs) were examined for dental tissue engineering. hDPSCs isolated from adult human dental pulps were cultured for 3-4 passages, and populated on porous granules. Cell growth on the culture dish showed an ongoing increase for up to 21 days, whereas the growth on the 3D granules decreased after 14 days. This reduction in proliferative potential on the 3D granules was more conspicuous under the osteogenic medium conditions, indicating that the 3D granules may induce the odontogenic differentiation of hDPSCs. Differentiation behavior on the 3D granules was confirmed by the increased alkaline phosphatase activity, up-regulation of odontoblast-specific genes, including dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) by quantitative polymerase chain reaction, and greater level of dentin sialoprotein synthesis by western blot. Moreover, the cellular mineralization, as assessed by Alizarin red S and calcium quantification, was significantly higher in the 3D CaP granules than in the culture dish. Taken all, the 3D CaP porous granules should be useful for dental tissue engineering in combination with hDPSCs by providing favorable 3D substrate conditions for cell growth and odontogenic development. PMID:21772958

  16. Recruitment of dental pulp cells by dentine and pulp extracellular matrix components.

    PubMed

    Smith, J G; Smith, A J; Shelton, R M; Cooper, P R

    2012-11-01

    The present study aimed to determine whether dentine tissue and preparations of extracellular matrix (ECM) from pulp (pECM) and dentine (dECM), and breakdown products, influenced pulp cell migration. Chemotaxis transwell and agarose spot assays demonstrated that both dentine and pulp ECM molecules acted as chemoattractants for primary pulp cells. Chemoattractant activities of dECM and pECM were enhanced when subjected to acid and enzymatic breakdown, respectively. This enhanced activity following physiologically relevant breakdown may be pertinent to the disease environment. Pulp cell migration in response to dental ECMs was dependent on an active rho pathway. Recruited cells exhibited increased stem cell marker expression indicating that dental ECMs and their breakdown products selectively attract progenitor cells that contribute to repair processes. In conclusion, combined these results indicate that ECM molecules contribute to cell recruitment necessary for regeneration of the dentine-pulp complex after injury. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. [Cloning and characterization of genes differentially expressed in human dental pulp cells and gingival fibroblasts].

    PubMed

    Wang, Zhong-dong; Wu, Ji-nan; Zhou, Lin; Ling, Jun-qi; Guo, Xi-min; Xiao, Ming-zhen; Zhu, Feng; Pu, Qin; Chai, Yu-bo; Zhao, Zhong-liang

    2007-02-01

    To study the biological properties of human dental pulp cells (HDPC) by cloning and analysis of genes differentially expressed in HDPC in comparison with human gingival fibroblasts (HGF). HDPC and HGF were cultured and identified by immunocytochemistry. HPDC and HGF subtractive cDNA library was established by PCR-based modified subtractive hybridization, genes differentially expressed by HPDC were cloned, sequenced and compared to find homogeneous sequence in GenBank by BLAST. Cloning and sequencing analysis indicate 12 genes differentially expressed were obtained, in which two were unknown genes. Among the 10 known genes, 4 were related to signal transduction, 2 were related to trans-membrane transportation (both cell membrane and nuclear membrane), and 2 were related to RNA splicing mechanisms. The biological properties of HPDC are determined by the differential expression of some genes and the growth and differentiation of HPDC are associated to the dynamic protein synthesis and secretion activities of the cell.

  18. Biological Characteristics of Fluorescent Superparamagnetic Iron Oxide Labeled Human Dental Pulp Stem Cells

    PubMed Central

    Li, Ming-wei; Bai, Yu; Guo, Hui-hui

    2017-01-01

    Tracking transplanted stem cells is necessary to clarify cellular properties and improve transplantation success. In this study, we investigate the effects of fluorescent superparamagnetic iron oxide particles (SPIO) (Molday ION Rhodamine-B™, MIRB) on biological properties of human dental pulp stem cells (hDPSCs) and monitor hDPSCs in vitro and in vivo using magnetic resonance imaging (MRI). Morphological analysis showed that intracellular MIRB particles were distributed in the cytoplasm surrounding the nuclei of hDPSCs. 12.5–100 μg/mL MIRB all resulted in 100% labeling efficiency. MTT showed that 12.5–50 μg/mL MIRB could promote cell proliferation and MIRB over 100 μg/mL exhibited toxic effect on hDPSCs. In vitro MRI showed that 1 × 106 cells labeled with various concentrations of MIRB (12.5–100 μg/mL) could be visualized. In vivo MRI showed that transplanted cells could be clearly visualized up to 60 days after transplantation. These results suggest that 12.5–50 μg/mL MIRB is a safe range for labeling hDPSCs. MIRB labeled hDPSCs cell can be visualized by MRI in vitro and in vivo. These data demonstrate that MIRB is a promising candidate for hDPSCs tracking in hDPSCs based dental pulp regeneration therapy. PMID:28298928

  19. Imperative role of dental pulp stem cells in regenerative therapies: a systematic review.

    PubMed

    Kabir, Ramchandra; Gupta, Manish; Aggarwal, Avanti; Sharma, Deepak; Sarin, Anurag; Kola, Mohammed Zaheer

    2014-01-01

    Stem cells are primitive cells that can differentiate and regenerate organs in different parts of the body such as heart, bones, muscles and nervous system. This has been a field of great clinical interest with immense possibilities of using the stem cells in regeneration of human organ those are damaged due to disease, developmental defects and accident. The knowledge of stem cell technology is increasing quickly in all medical specialties and in dental field too. Stem cells of dental origin appears to hold the key to various cell-based therapies in regenerative medicine, but most avenues are in experimental stages and many procedures are undergoing standardization and validation. Long-term preservation of SHED cells or DPSC is becoming a popular consideration, similar to the banking of umbilical cord blood. Dental pulp stem cells (DPSCs) are the adult multipotent cells that reside in the cell rich zone of the dental pulp. The multipotent nature of these DPSCs may be utilized in both dental and medical applications. A systematic review of the literature was performed using various internet based search engines (PubMed, Medline Plus, Cochrane, Medknow, Ebsco, Science Direct, Hinari, WebMD, IndMed, Embase) using keywords like "dental pulp stem cells", "regeneration", "medical applications", "tissue engineering". DPSCs appears to be a promising innovation for the re-growth of tissues however, long term clinical studies need to be carried out that could establish some authentic guidelines in this perspective.

  20. Comparison of Gingiva, Dental Pulp, and Periodontal Ligament Cells From the Standpoint of Mesenchymal Stem Cell Properties.

    PubMed

    Otabe, Koji; Muneta, Takeshi; Kawashima, Nobuyuki; Suda, Hideaki; Tsuji, Kunikazu; Sekiya, Ichiro

    2012-01-01

    The specific properties of mesenchymal stem cells (MSCs) in oral tissues still remain unknown though their existence has been previously reported. We collected gingiva, dental pulp, and periodontal ligament tissues from removed teeth and isolated MSCs. These MSCs were compared in terms of their yields per tooth, surface epitopes, and differentiation potentials by patient-matched analysis. For in vivo calcification analysis, rat gingival and dental pulp cells mounted on β-tricalcium phospateTCP were transplanted into the perivertebral muscle of rats for 6 weeks. Gingival cells and dental pulp cells showed higher yield per tooth than periodontal ligament cells (n=6, p<0.05). Yields of periodontal ligament cells were too low for further analysis. Gingival and dental pulp cells expressed MSC markers such as CD44, CD90, and CD166. Gingival and dental pulp cells obtained phenotypes of chondrocytes and adipocytes in vitro. Approximately 60% of the colonies of gingival cells and 40% of the colonies of dental pulp cells were positively stained with alizarin red in vitro, and both gingival and dental pulp cells were calcified in vivo. We clarified properties of MSCs derived from removed teeth. We could obtain a high yield of MSCs with osteogenic potential from gingiva and dental pulp. These results indicate that gingiva and dental pulp are putative cell sources for hard tissue regeneration.

  1. Comparison of Gingiva, Dental Pulp, and Periodontal Ligament Cells From the Standpoint of Mesenchymal Stem Cell Properties

    PubMed Central

    Otabe, Koji; Muneta, Takeshi; Kawashima, Nobuyuki; Suda, Hideaki; Tsuji, Kunikazu; Sekiya, Ichiro

    2012-01-01

    The specific properties of mesenchymal stem cells (MSCs) in oral tissues still remain unknown though their existence has been previously reported. We collected gingiva, dental pulp, and periodontal ligament tissues from removed teeth and isolated MSCs. These MSCs were compared in terms of their yields per tooth, surface epitopes, and differentiation potentials by patient-matched analysis. For in vivo calcification analysis, rat gingival and dental pulp cells mounted on β-tricalcium phospateTCP were transplanted into the perivertebral muscle of rats for 6 weeks. Gingival cells and dental pulp cells showed higher yield per tooth than periodontal ligament cells (n=6, p<0.05). Yields of periodontal ligament cells were too low for further analysis. Gingival and dental pulp cells expressed MSC markers such as CD44, CD90, and CD166. Gingival and dental pulp cells obtained phenotypes of chondrocytes and adipocytes in vitro. Approximately 60% of the colonies of gingival cells and 40% of the colonies of dental pulp cells were positively stained with alizarin red in vitro, and both gingival and dental pulp cells were calcified in vivo. We clarified properties of MSCs derived from removed teeth. We could obtain a high yield of MSCs with osteogenic potential from gingiva and dental pulp. These results indicate that gingiva and dental pulp are putative cell sources for hard tissue regeneration. PMID:26858852

  2. Concentrations of and application protocols for hydrogen peroxide bleaching gels: effects on pulp cell viability and whitening efficacy.

    PubMed

    Soares, Diana Gabriela; Basso, Fernanda Gonçalves; Hebling, Josimeri; de Souza Costa, Carlos Alberto

    2014-02-01

    To assess the whitening effectiveness and the trans-enamel/trans-dentinal toxicity of experimental tooth-bleaching protocols on pulp cells. Enamel/dentine discs individually adapted to trans-well devices were placed on cultured odontoblast-like cells (MDPC-23) or human dental pulp cells (HDPCs). The following groups were formed: G1 - no treatment (control); G2 to G4 - 35% H2O2, 3 × 15, 1 × 15, and 1 × 5 min, respectively; and G5 to G7 - 17.5% H2O2, 3 × 15, 1 × 15, and 1 × 5 min, respectively. Cell viability and morphology were evaluated immediately after bleaching (T1) and 72 h thereafter (T2). Oxidative stress and cell membrane damage were also assessed (T1). The amount of H2O2 in culture medium was quantified (Mann-Whitney; α=5%) and colour change (ΔE) of enamel was analysed after 3 sessions (Tukey's test; α=5%). Cell viability reduction, H2O2 diffusion, cell morphology alteration, oxidative stress, and cell membrane damage occurred in a concentration-/time-dependent fashion. The cell viability reduction was significant in all groups for HDPCs and only for G2, G3, and G5 in MDPC-23 cells compared with G1. Significant cell viability and morphology recovery were observed in all groups at T2, except for G2 in HDPCs. The highest ΔE value was found in G2. However, all groups presented significant ΔE increases compared with G1. Shortening the contact time of a 35%-H2O2 gel for 5 min, or reducing its concentration to 17.5% and applying it for 45, 15, or 5 min produce gradual tooth colour change associated with reduced trans-enamel and trans-dentinal cytotoxicity to pulp cells. The experimental protocols tested in the present study provided significant tooth-bleaching improvement associated with decreased toxicity to pulp cells, which may be an interesting alternative to be tested in clinical situations intended to reduce tooth sensitivity and pulp damage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Survival of the Apical Papilla and Its Resident Stem Cells in a Case of Advanced Pulpal Necrosis and Apical Periodontitis.

    PubMed

    Chrepa, Vanessa; Pitcher, Brandon; Henry, Michael A; Diogenes, Anibal

    2017-04-01

    Apical papilla represents a source of an enriched mesenchymal stem cell (MSC) population (stem cells of the apical papilla [SCAPs]) that modulates root development and may participate in regenerative endodontic procedures in immature teeth with pulp necrosis. The characteristics and phenotype of this tissue in the presence of inflammation are largely unknown. The purpose of this study was to characterize a human apical papilla sample that was isolated from an immature tooth with pulp necrosis and apical periodontitis. Inflamed periapical tissue that included part of the apical papilla (apical papilla clinical sample [CS]) was collected from an immature mandibular premolar previously diagnosed with pulp necrosis and apical periodontitis during an apexification procedure. Harvested cells from this tissue (SCAP CS) were compared with inflamed periapical progenitor cells (IPAPCs) and normal SCAP (SCAP-RP89) in flow cytometry and quantitative osteogenesis experiments. Part of the issue was further processed for immunohistochemistry and compared with apical papilla and coronal pulp sections from normal immature teeth as well as inflamed periapical tissues from mature teeth. Similar to SCAP-RP89, 96.6% of the SCAP CS coexpressed the MSC markers CD73, CD90, and CD105, whereas only 66.3% of IPAPCs coexpressed all markers. The SCAP CS showed a significantly greater mineralization potential than both SCAP-RP89 and IPAPCs. Finally, immunohistochemical analysis revealed moderate infiltration of cells expressing the inflammatory markers CD45/68 in the apical papilla CS and prominent CD24, CD105, and von Willebrand factor expression. Under inflammatory conditions, human apical papilla was found moderately inflamed with retained SCAP vitality and stemness and increased osteogenic and angiogenesis potential. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars

    PubMed Central

    Balic, Anamaria; Aguila, H. Leonardo; Caimano, Melissa J.; Francone, Victor P.; Mina, Mina

    2010-01-01

    In the past few years there have been significant advances in the identification of putative stem cells also referred to as “mesenchymal stem cells” (MSC) in dental tissues including the dental pulp. It is thought that MSC in dental pulp share certain similarities with MSC isolated from other tissues. However, cells in dental pulp are still poorly characterized. This study focused on the characterization of progenitor and stem cells in dental pulps of erupted and unerupted mice molars. Our study showed that dental pulps from unerupted molars contain a significant number of cells expressing CD90+/CD45-, CD117+/CD45-, Sca-1+/CD45- and little if any CD45+ cells. Our in vitro functional studies showed that dental pulp cells from unerupted molars displayed extensive osteo-dentinogenic potential but were unable to differentiate into chondrocytes and adipocytes. Dental pulp from erupted molars displayed a reduced number of cells, contained higher percentage of CD45+ and lower percentage of cells expressing CD90+/CD45-, CD117+/CD45- as compared to unerupted molars. In vitro functional assays demonstrated the ability of a small fraction of cells to differentiate into odontoblasts, osteoblasts, adipocytes and chondrocytes. There was a significant reduction in the osteo-dentinogenic potential of the pulp cells derived from erupted molars compared to unerupted molars. Furthermore, the adipogenic and chondrogenic differentiation of pulp cells from erupted molars was dependent on a long induction period and infrequent. Based on these findings we propose that the dental pulp of the erupted molars contain a small population of multipotent cells, whereas the dental pulp of the unerupted molars does not contain multipotent cells but is enriched in osteo-dentinogenic progenitors engaged in the formation of coronal and radicular odontoblasts. PMID:20193787

  5. A Novel Combinatorial Therapy With Pulp Stem Cells and Granulocyte Colony-Stimulating Factor for Total Pulp Regeneration

    PubMed Central

    Iohara, Koichiro; Murakami, Masashi; Takeuchi, Norio; Osako, Yohei; Ito, Masataka; Ishizaka, Ryo; Utunomiya, Shinji; Nakamura, Hiroshi; Matsushita, Kenji

    2013-01-01

    Treatment of deep caries with pulpitis is a major challenge in dentistry. Stem cell therapy represents a potential strategy to regenerate the dentin-pulp complex, enabling conservation and restoration of teeth. The objective of this study was to assess the efficacy and safety of pulp stem cell transplantation as a prelude for the impending clinical trials. Clinical-grade pulp stem cells were isolated and expanded according to good manufacturing practice conditions. The absence of contamination, abnormalities/aberrations in karyotype, and tumor formation after transplantation in an immunodeficient mouse ensured excellent quality control. After autologous transplantation of pulp stem cells with granulocyte-colony stimulating factor (G-CSF) in a dog pulpectomized tooth, regenerated pulp tissue including vasculature and innervation completely filled in the root canal, and regenerated dentin was formed in the coronal part and prevented microleakage up to day 180. Transplantation of pulp stem cells with G-CSF yielded a significantly larger amount of regenerated dentin-pulp complex compared with transplantation of G-CSF or stem cells alone. Also noteworthy was the reduction in the number of inflammatory cells and apoptotic cells and the significant increase in neurite outgrowth compared with results without G-CSF. The transplanted stem cells expressed angiogenic/neurotrophic factors. It is significant that G-CSF together with conditioned medium of pulp stem cells stimulated cell migration and neurite outgrowth, prevented cell death, and promoted immunosuppression in vitro. Furthermore, there was no evidence of toxicity or adverse events. In conclusion, the combinatorial trophic effects of pulp stem cells and G-CSF are of immediate utility for pulp/dentin regeneration, demonstrating the prerequisites of safety and efficacy critical for clinical applications. PMID:23761108

  6. Comparison of the bone regeneration ability between stem cells from human exfoliated deciduous teeth, human dental pulp stem cells and human bone marrow mesenchymal stem cells.

    PubMed

    Nakajima, Kengo; Kunimatsu, Ryo; Ando, Kazuyo; Ando, Toshinori; Hayashi, Yoko; Kihara, Takuya; Hiraki, Tomoka; Tsuka, Yuji; Abe, Takaharu; Kaku, Masato; Nikawa, Hiroki; Takata, Takashi; Tanne, Kazuo; Tanimoto, Kotaro

    2018-03-11

    Cleft lip and palate is the most common congenital anomaly in the orofacial region. Autogenous iliac bone graft, in general, has been employed for closing the bone defect at the alveolar cleft. However, such iliac bone graft provides patients with substantial surgical and psychological invasions. Consequently, development of a less invasive method has been highly anticipated. Stem cells from human exfoliated deciduous teeth (SHED) are a major candidate for playing a significant role in tissue engineering and regenerative medicine. The aim of this study was to elucidate the nature of bone regeneration by SHED as compared to that of human dental pulp stem cells (hDPSCs) and bone marrow mesenchymal stem cells (hBMSCs). The stems cells derived from pulp tissues and bone marrow were transplanted with a polylactic-coglycolic acid barrier membrane as a scaffold, for use in bone regeneration in an artificial bone defect of 4 mm in diameter in the calvaria of immunodeficient mice. Three-dimensional analysis using micro CT and histological evaluation were performed. Degree of bone regeneration with SHED relative to the bone defect was almost equivalent to that with hDPSCs and hBMSCs 12 weeks after transplantation. The ratio of new bone formation relative to the pre-created bone defect was not significantly different among groups with SHED, hDPSCs and hBMSCs. In addition, as a result of histological evaluation, SHED produced the largest osteoid and widely distributed collagen fibers compared to hDPSCs and hBMSCs groups. Thus, SHED transplantation exerted bone regeneration ability sufficient for the repair of bone defect. The present study has demonstrated that SHED is one of the best candidate as a cell source for the reconstruction of alveolar cleft due to the bone regeneration ability with less surgical invasion. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Transforming growth factor-β-induced gene product-h3 inhibits odontoblastic differentiation of dental pulp cells.

    PubMed

    Serita, Suguru; Tomokiyo, Atsushi; Hasegawa, Daigaku; Hamano, Sayuri; Sugii, Hideki; Yoshida, Shinichiro; Mizumachi, Hiroyuki; Mitarai, Hiromi; Monnouchi, Satoshi; Wada, Naohisa; Maeda, Hidefumi

    2017-06-01

    The aim of this study was to investigate transforming growth factor-β-induced gene product-h3 (βig-h3) expression in dental pulp tissue and its effects on odontoblastic differentiation of dental pulp cells (DPCs). A rat direct pulp capping model was prepared using perforated rat upper first molars capped with mineral trioxide aggregate cement. Human DPCs (HDPCs) were isolated from extracted teeth. βig-h3 expression in rat dental pulp tissue and HDPCs was assessed by immunostaining. Mineralization of HDPCs was assessed by Alizarin red-S staining. Odontoblast-related gene expression in HDPCs was analyzed by quantitative RT-PCR. Expression of βig-h3 was detected in rat dental pulp tissue, and attenuated by direct pulp capping, while expression of interleukin-1β and tumor necrosis factor-α was increased in exposed pulp tissue. βig-h3 expression was also detected in HDPCs, with reduced expression during odontoblastic differentiation. The above cytokines reduced βig-h3 expression in HDPCs, and promoted their mineralization. Recombinant βig-h3 inhibited the expression of odontoblast-related genes and mineralization of HDPCs, while knockdown of βig-h3 gene expression promoted the expression of odontoblast-related genes in HDPCs. The present findings suggest that βig-h3 in DPCs may be involved in reparative dentin formation and that its expression is likely to negatively regulate this process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Imperative Role of Dental Pulp Stem Cells in Regenerative Therapies: A Systematic Review

    PubMed Central

    Kabir, Ramchandra; Gupta, Manish; Aggarwal, Avanti; Sharma, Deepak; Sarin, Anurag; Kola, Mohammed Zaheer

    2014-01-01

    Stem cells are primitive cells that can differentiate and regenerate organs in different parts of the body such as heart, bones, muscles and nervous system. This has been a field of great clinical interest with immense possibilities of using the stem cells in regeneration of human organ those are damaged due to disease, developmental defects and accident. The knowledge of stem cell technology is increasing quickly in all medical specialties and in dental field too. Stem cells of dental origin appears to hold the key to various cell-based therapies in regenerative medicine, but most avenues are in experimental stages and many procedures are undergoing standardization and validation. Long-term preservation of SHED cells or DPSC is becoming a popular consideration, similar to the banking of umbilical cord blood. Dental pulp stem cells (DPSCs) are the adult multipotent cells that reside in the cell rich zone of the dental pulp. The multipotent nature of these DPSCs may be utilized in both dental and medical applications. A systematic review of the literature was performed using various internet based search engines (PubMed, Medline Plus, Cochrane, Medknow, Ebsco, Science Direct, Hinari, WebMD, IndMed, Embase) using keywords like “dental pulp stem cells”, “regeneration”, “medical applications”, “tissue engineering”. DPSCs appears to be a promising innovation for the re-growth of tissues however, long term clinical studies need to be carried out that could establish some authentic guidelines in this perspective. PMID:24665194

  9. Stimulation of angiogenesis, neurogenesis and regeneration by side population cells from dental pulp.

    PubMed

    Ishizaka, Ryo; Hayashi, Yuki; Iohara, Koichiro; Sugiyama, Masahiko; Murakami, Masashi; Yamamoto, Tsubasa; Fukuta, Osamu; Nakashima, Misako

    2013-03-01

    Mesenchymal stem cells (MSCs) have been used for cell therapy in various experimental disease models. However, the regenerative potential of MSCs from different tissue sources and the influence of the tissue niche have not been investigated. In this study, we compared the regenerative potential of dental pulp, bone marrow and adipose tissue-derived CD31(-) side population (SP) cells isolated from an individual porcine source. Pulp CD31(-) SP cells expressed the highest levels of angiogenic/neurotrophic factors and had the highest migration activity. Conditioned medium from pulp CD31(-) SP cells produced potent anti-apoptotic activity and neurite outgrowth, compared to those from bone marrow and adipose CD31(-) SP cells. Transplantation of pulp CD31(-) SP cells in a mouse hindlimb ischemia model produced higher blood flow and capillary density than transplantation of bone marrow and adipose CD31(-) SP cells. Motor function recovery and infarct size reduction were greater with pulp CD31(-) SP cells. Pulp CD31(-) SP cells induced maximal angiogenesis, neurogenesis and pulp regeneration in ectopic transplantation models compared to other tissue sources. These results demonstrate that pulp stem cells have higher angiogenic, neurogenic and regenerative potential and may therefore be superior to bone marrow and adipose stem cells for cell therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Absorption and biological activity of phytochemical-rich extracts from açai (Euterpe oleracea Mart.) pulp and oil in vitro.

    PubMed

    Pacheco-Palencia, Lisbeth A; Talcott, Stephen T; Safe, Stephen; Mertens-Talcott, Susanne

    2008-05-28

    Polyphenolic extracts from various fruits and vegetables have been shown to exert growth inhibitory effects in cell culture studies. Whereas individual polyphenolic compounds have been extensively evaluated, understanding of the biological activity of polyphenolic extracts from natural sources is limited and critical to the understanding of their potential effects on the human body. This study investigated the absorption and antiproliferative effects of phytochemical extracts from acai pulp and a polyphenolic-enriched acai oil obtained from the fruit pulp of the acai berry ( Euterpe oleracea Mart.). Chemical composition, antioxidant properties, and polyphenolic absorption of phytochemical fractions in a Caco-2 monolayer were determined, along with their cytotoxicity in HT-29 human colon adenocarcinoma cells. Standardized extracts were characterized by their predominance of hydroxybenzoic acids, monomeric flavan-3-ols, and procyanidin dimers and trimers. Polyphenolic mixtures (0-12 microg of gallic acid equiv/mL) from both acai pulp and acai oil extracts inhibited cell proliferation by up to 90.7%, which was accompanied by an increase of up to 2.1-fold in reactive oxygen species. Absorption experiments using a Caco-2 intestinal cell monolayer demonstrated that phenolic acids such as p-hydroxybenzoic, vanillic, syringic, and ferulic acids, in the presence of DMSO, were readily transported from the apical to the basolateral side along with monomeric flavanols such as (+)-catechin and (-)-epicatechin. Results from this study provide further evidence for the bioactive properties of acai polyphenolics and offer new insight on their composition and cellular absorption.

  11. Local myogenic pulp-derived cell injection enhances craniofacial muscle regeneration in vivo.

    PubMed

    Jung, J E; Song, M J; Shin, S; Choi, Y J; Kim, K H; Chung, C J

    2017-02-01

    To enhance myogenic differentiation in pulp cells isolated from extracted premolars by epigenetic modification using a DNA demethylation agent, 5-aza-2'-deoxycytidine (5-Aza), and to evaluate the potent stimulatory effect of 5-Aza-treated pulp cell injection for craniofacial muscle regeneration in vivo. Pulp cells were isolated from premolars extracted for orthodontic purposes from four adults (age range, 18-22.1 years). Levels of myogenic differentiation and functional contraction response in vitro were compared between pulp cells with or without pre-treatment of 5-Aza. Changes in muscle regeneration in response to green fluorescent protein (GFP)-labelled myogenic pulp cell injection in vivo were evaluated using a cardiotoxin (CTX)-induced muscle injury model of the gastrocnemius as well as the masseter muscle in mice. Pre-treatment of 5-Aza in pulp cells stimulated myotube formation, myogenic differentiation in terms of desmin and myogenin expression, and the level of collagen gel contraction. The local injection of 5-Aza pre-treated myogenic pulp cells was engrafted into the host tissue and indicated signs of enhanced muscle regeneration in both the gastrocnemius and the masseter muscles. The epigenetic modification of pulp cells from extracted premolars and the local injection of myogenic pulp cells may stimulate craniofacial muscles regeneration in vivo. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Human dental pulp stem cells produce mineralized matrix in 2D and 3D cultures

    PubMed Central

    Riccio, M.; Resca, E.; Maraldi, T.; Pisciotta, A.; Ferrari, A.; Bruzzesi, G.; De Pol, A.

    2010-01-01

    The aim of this study was to characterize the in vitro osteogenic differentiation of dental pulp stem cells (DPSCs) in 2D cultures and 3D biomaterials. DPSCs, separated from dental pulp by enzymatic digestion, and isolated by magnetic cell sorting were differentiated toward osteogenic lineage on 2D surface by using an osteogenic medium. During differentiation process, DPSCs express specific bone proteins like Runx-2, Osx, OPN and OCN with a sequential expression, analogous to those occurring during osteoblast differentiation, and produce extracellular calcium deposits. In order to differentiate cells in a 3D space that mimes the physiological environment, DPSCs were cultured in two distinct bioscaffolds, Matrigel™ and Collagen sponge. With the addition of a third dimension, osteogenic differentiation and mineralized extracellular matrix production significantly improved. In particular, in Matrigel™ DPSCs differentiated with osteoblast/osteocyte characteristics and connected by gap junction, and therefore formed calcified nodules with a 3D intercellular network. Furthermore, DPSCs differentiated in collagen sponge actively secrete human type I collagen micro-fibrils and form calcified matrix containing trabecular-like structures. These neo-formed DPSCs-scaffold devices may be used in regenerative surgical applications in order to resolve pathologies and traumas characterized by critical size bone defects. PMID:21263745

  13. Human dental pulp pluripotent-like stem cells promote wound healing and muscle regeneration.

    PubMed

    Martínez-Sarrà, Ester; Montori, Sheyla; Gil-Recio, Carlos; Núñez-Toldrà, Raquel; Costamagna, Domiziana; Rotini, Alessio; Atari, Maher; Luttun, Aernout; Sampaolesi, Maurilio

    2017-07-27

    Dental pulp represents an easily accessible autologous source of adult stem cells. A subset of these cells, named dental pulp pluripotent-like stem cells (DPPSC), shows high plasticity and can undergo multiple population doublings, making DPPSC an appealing tool for tissue repair or maintenance. DPPSC were harvested from the dental pulp of third molars extracted from young patients. Growth factors released by DPPSC were analysed using antibody arrays. Cells were cultured in specific differentiation media and their endothelial, smooth and skeletal muscle differentiation potential was evaluated. The therapeutic potential of DPPSC was tested in a wound healing mouse model and in two genetic mouse models of muscular dystrophy (Scid/mdx and Sgcb-null Rag2-null γc-null). DPPSC secreted several growth factors involved in angiogenesis and extracellular matrix deposition and improved vascularisation in all three murine models. Moreover, DPPSC stimulated re-epithelialisation and ameliorated collagen deposition and organisation in healing wounds. In dystrophic mice, DPPSC engrafted in the skeletal muscle of both dystrophic murine models and showed integration in muscular fibres and vessels. In addition, DPPSC treatment resulted in reduced fibrosis and collagen content, larger cross-sectional area of type II fast-glycolytic fibres and infiltration of higher numbers of proangiogenic CD206 + macrophages. Overall, DPPSC represent a potential source of stem cells to enhance the wound healing process and slow down dystrophic muscle degeneration.

  14. Testing of the cytotoxic effects of sulfate pulp mill waste waters.

    PubMed

    Cernáková, M; Golis, E

    1994-01-01

    The effect of 22 technological waste water samples and of some standards was tested on bacteria, fungi, chlorococcal algae, flagellata, plant cells, cells of Tubifex tubifex, hamster cells V79 and the fish Lebistes reticulatus. Of these 22 samples, some inhibition of cell life processes was displayed by the black liquor formed in the production of paper pulp and viscose pulp, by the waste solution produced during the preparation of bleaching agents for paper pulp and viscose pulp, and by the residual liquor after hypochlorite treatment of paper pulp.

  15. Monitoring Notch Signaling-Associated Activation of Stem Cell Niches within Injured Dental Pulp

    PubMed Central

    Mitsiadis, Thimios A.; Catón, Javier; Pagella, Pierfrancesco; Orsini, Giovanna; Jimenez-Rojo, Lucia

    2017-01-01

    Dental pulp stem/progenitor cells guarantee tooth homeostasis, repair and regeneration throughout life. The decision between renewal and differentiation of these cells is influenced by physical and molecular interactions with stromal cells and extracellular matrix molecules forming the specialized microenvironment of dental pulp stem cell niches. Here we study the activation of putative pulp niches after tooth injury through the upregulation of Notch signaling pathway. Notch1, Notch2, and Notch3 molecules were used as markers of dental pulp stem/progenitor cells. Upon dental injury, Notch1 and Notch3 are detected in cells related to vascular structures suggesting a role of these proteins in the activation of specific pulpal perivascular niches. In contrast, a population of Notch2-positive cells that are actively proliferative is observed in the apical part of the pulp. Kinetics of these cells is followed up with a lipophilic DiI labeling, showing that apical pulp cells migrate toward the injury site where dynamic regenerative/repair events occur. The knowledge of the activation and regulation of dental pulp stem/progenitor cells within their niches in pathologic conditions may be helpful for the realization of innovative dental treatments in the near future. PMID:28611689

  16. Insulin-Like Growth Factor 1 Receptor and p38 Mitogen-Activated Protein Kinase Signals Inversely Regulate Signal Transducer and Activator of Transcription 3 Activity to Control Human Dental Pulp Stem Cell Quiescence, Propagation, and Differentiation

    PubMed Central

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre

    2014-01-01

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Ylow stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration. PMID:24266654

  17. Dentine sialoprotein and collagen I expression after experimental pulp capping in humans using emdogain gel.

    PubMed

    Fransson, H; Petersson, K; Davies, J R

    2011-03-01

    To characterize the hard tissue formed in human teeth experimentally pulp capped either with calcium hydroxide or with Emdogain Gel (Biora AB, Malmö, Sweden) - a derivative of enamel matrix (EMD), using two markers for dentine; dentine sialoprotein (DSP) and type 1 collagen (Col I). Affinity-purified rabbit anti-Col I and anti-DSP polyclonal antibodies were used to stain histological sections from nine pairs of contra-lateral premolars that had been experimentally pulp amputated and randomly capped with EMDgel or calcium hydroxide. Twelve weeks after the teeth had been pulp capped, they were extracted, fixed, demineralized and serially sectioned prior to immunohistochemical staining. In the calcium hydroxide treated teeth DSP was seen in the new hard tissue which formed a bridge. DSP was also seen in the newly formed hard tissue in the EMDgel-treated teeth. Proliferated pulp tissue partly filled the space initially occupied by EMDgel and DSP-stained hard tissue was observed alongside exposed dentine surfaces as well as in isolated masses within the proliferated pulp tissue, although the new hard tissue did not cover the pulp exposure. DSP staining was also seen in the cells lining the hard tissue in both groups. Col I staining was seen in the newly formed hard tissue in both groups. The new hard tissue formed after pulp capping with EMDgel or calcium hydroxide contained DSP and Col I, considered to be markers for dentine. Thus, the newly formed hard tissue can be characterized as dentine rather than unspecific hard tissue. © 2010 International Endodontic Journal.

  18. DNA methylcytosine dioxygenase ten-eleven translocation 2 enhances lipopolysaccharide-induced cytokine expression in human dental pulp cells by regulating MyD88 hydroxymethylation.

    PubMed

    Wang, Xinxuan; Feng, Zhihui; Li, Qimeng; Yi, Baicheng; Xu, Qiong

    2018-04-13

    Dental pulp inflammation is a bacterially driven inflammation process characterized by the local accumulation of cytokines/chemokines that participate in destructive processes in the pulp. Multiple mechanisms are involved in dental pulp inflammation, including epigenetic events, such as DNA methylation/demethylation. Ten-eleven translocation 2 (TET2) is a recently discovered DNA methylcytosine dioxygenase that plays important roles in inflammatory disease. However, its role in the inflammatory response of dental pulp is unknown. We observed elevated mRNA and protein levels of TET2 after lipopolysaccharide (LPS) stimulation in human dental pulp cells (hDPCs). To identify the effects of TET2 on cytokine expression, TET2 was knocked down and cytokines were detected using a cytokine antibody array after LPS stimulation. The protein expression of GM-CSF, IL-6, IL-8 and RANTES decreased in the LPS-induced hDPCs following TET2 knockdown. The downregulated expression levels of IL-6 and IL-8 were further confirmed by real-time quantitative polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Additionally, the phosphorylation levels of IKK-α/β, p65 and IκBα of the NF-κB signaling pathway were decreased in the TET2-silenced group. Furthermore, the global 5-hydroxymethylcytosine (5hmC) level was significantly decreased and the genomic 5-methylcytosine (5mC) level was increased in the TET2-deficient hDPCs; TET2 depletion resulted in a decrease in the 5hmC level of the MyD88 promoter following LPS stimulation. These findings indicate that TET2 knockdown inhibits LPS-induced inflammatory response in hDPCs by downregulating MyD88 hydroxymethylation. Thus, TET2-dependent DNA demethylation might play an important role in dental pulp inflammation as an epigenetic regulator.

  19. Clinical and histological evaluation of thermal injury thresholds in human teeth: a preliminary study.

    PubMed

    Baldissara, P; Catapano, S; Scotti, R

    1997-11-01

    The effect on healthy dental pulp of thermal increases ranging from 8.9 to 14.7 degrees C was evaluated. These temperature increases correspond approximately to those caused by certain restorative procedures, such as tooth preparation with high-speed instruments and the fabrication of direct provisional crowns. Two criteria of evaluation have been used in conjunction, a clinical (symptomatic) and a histological one, to assert with greater precision potential damage to the pulp. The results suggest a low susceptibility of cells to heat, which does not appear to be a major factor of injury, at least in the short term. The main cause of postoperative inflammation or necrosis of the pulp is probably the injury of the dentine, a tissue in direct functional and physiological connection with the pulp.

  20. Ionizing radiation induces senescence and differentiation of human dental pulp stem cells.

    PubMed

    Havelek, R; Soukup, T; Ćmielová, J; Seifrtová, M; Suchánek, J; Vávrová, J; Mokrý, J; Muthná, D; Řezáčová, M

    2013-01-01

    Head and neck cancer is one of the most common cancers in Europe. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells, including adult stem cells. One of the fundamental properties of an adult stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. However, under certain stimuli, unspecialized adult stem cells can give rise to specialized cells to generate replacements for cells that are lost during one's life or due to injury or disease. Nevertheless, specialization of stem cells must be controlled by specific milieu and also initiated at the proper time, making the entire process beneficial for tissue recovery and maintaining it for a long time. In this paper we assess whether irradiated dental pulp stem cells have maintained open their options to mature into specialized cells, or whether they have lost their unspecialized (immature) state following irradiation. Our findings showed radiation-induced premature differentiation of dental pulp stem cells towards odonto-/osteoblast lineages in vitro. Matrix calcification was visualized from Day 6 or Day 9 following irradiation of cells expressing low or high levels of CD146, respectively.

  1. Autologous dental pulp stem cells in periodontal regeneration: a case report.

    PubMed

    Aimetti, Mario; Ferrarotti, Francesco; Cricenti, Luca; Mariani, Giulia Maria; Romano, Federica

    2014-01-01

    Histologic findings in animal models suggest that the application of dental pulp stem cells (DPSCs) may promote periodontal regeneration in infrabony defects. This case report describes the clinical and radiographic regenerative potential of autologous DPSCs in the treatment of human noncontained intraosseous defects. A chronic periodontitis patient with one vital third molar requiring extraction was surgically treated. The third molar was extracted and used as an autologous DPSCs source to regenerate the infrabony defect on the mandibular right second premolar. At the 1-year examination, the defect was completely filled with bonelike tissue as confirmed through the reentry procedure.

  2. Bladder Smooth Muscle Cells Differentiation from Dental Pulp Stem Cells: Future Potential for Bladder Tissue Engineering

    PubMed Central

    Song, Bing; Jiang, Wenkai; Alraies, Amr; Liu, Qian; Gudla, Vijay; Oni, Julia; Wei, Xiaoqing; Sloan, Alastair; Ni, Longxing; Agarwal, Meena

    2016-01-01

    Dental pulp stem cells (DPSCs) are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC) regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1). After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin) increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering. PMID:26880982

  3. Effects of recombinant dentin sialoprotein in dental pulp cells.

    PubMed

    Lee, S-Y; Kim, S-Y; Park, S-H; Kim, J-J; Jang, J-H; Kim, E-C

    2012-04-01

    Dentin sialophosphoprotein (DSPP) is critical for dentin mineralization. However, the function of dentin sialoprotein (DSP), the cleaved product of DSPP, remains unclear. This study aimed to investigate the signal transduction pathways and effects of recombinant human DSP (rh-DSP) on proliferation, migration, and odontoblastic differentiation in human dental pulp cells (HDPCs). The exogenous addition of rh-DSP enhanced the proliferation and migration of HDPCs in dose- and time-dependent manners. rh-DSP markedly increased ALP activity, calcium nodule formation, and levels of odontoblastic marker mRNA. rh-DSP increased BMP-2 expression and Smad1/5/8 phosphorylation, which was blocked by the BMP antagonist, noggin. Furthermore, rh-DSP phosphorylated extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), Akt, and IκB-α, and induced the nuclear translocation of the NF-κB p65 subunit. Analysis of these data demonstrates a novel signaling function of rh-DSP for the promotion of growth, migration, and differentiation in HDPCS via the BMP/Smad, JNK, ERK, MAPK, and NF-κB signaling pathways, suggesting that rh-DSP may have therapeutic utility in dentin regeneration or dental pulp tissue engineering.

  4. Polymeric vs hydroxyapatite-based scaffolds on dental pulp stem cell proliferation and differentiation

    PubMed Central

    Khojasteh, Arash; Motamedian, Saeed Reza; Rad, Maryam Rezai; Shahriari, Mehrnoosh Hasan; Nadjmi, Nasser

    2015-01-01

    AIM: To evaluate adhesion, proliferation and differentiation of human dental pulp stem cells (hDPSCs) on four commercially available scaffold biomaterials. METHODS: hDPSCs were isolated from human dental pulp tissues of extracted wisdom teeth and established in stem cell growth medium. hDPSCs at passage 3-5 were seeded on four commercially available scaffold biomaterials, SureOss (Allograft), Cerabone (Xenograft), PLLA (Synthetic), and OSTEON II Collagen (Composite), for 7 and 14 d in osteogenic medium. Cell adhesion and morphology to the scaffolds were evaluated by scanning electron microscopy (SEM). Cell proliferation and differentiation into osteogenic lineage were evaluated using DNA counting and alkaline phosphatase (ALP) activity assay, respectively. RESULTS: All scaffold biomaterials except SureOss (Allograft) supported hDPSC adhesion, proliferation and differentiation. hDPSCs seeded on PLLA (Synthetic) scaffold showed the highest cell proliferation and attachment as indicated with both SEM and DNA counting assay. Evaluating the osteogenic differentiation capability of hDPSCs on different scaffold biomaterials with ALP activity assay showed high level of ALP activity on cells cultured on PLLA (Synthetic) and OSTEON II Collagen (Composite) scaffolds. SEM micrographs also showed that in the presence of Cerabone (Xenograft) and OSTEON II Collagen (Composite) scaffolds, the hDPSCs demonstrated the fibroblastic phenotype with several cytoplasmic extension, while the cells on PLLA scaffold showed the osteoblastic-like morphology, round-like shape. CONCLUSION: PLLA scaffold supports adhesion, proliferation and osteogenic differentiation of hDPSCs. Hence, it may be useful in combination with hDPSCs for cell-based reconstructive therapy. PMID:26640621

  5. Pulp Cell Tracking by Radionuclide Imaging for Dental Tissue Engineering

    PubMed Central

    Souron, Jean-Baptiste; Petiet, Anne; Decup, Franck; Tran, Xuan Vinh; Lesieur, Julie; Poliard, Anne; Le Guludec, Dominique; Letourneur, Didier; Chaussain, Catherine; Rouzet, Francois

    2014-01-01

    Pulp engineering with dental mesenchymal stem cells is a promising therapy for injured teeth. An important point is to determine the fate of implanted cells in the pulp over time and particularly during the early phase following implantation. Indeed, the potential engraftment of the implanted cells in other organs has to be assessed, in particular, to evaluate the risk of inducing ectopic mineralization. In this study, our aim was to follow by nuclear imaging the radiolabeled pulp cells after implantation in the rat emptied pulp chamber. For that purpose, indium-111-oxine (111In-oxine)-labeled rat pulp cells were added to polymerizing type I collagen hydrogel to obtain a pulp equivalent. This scaffold was implanted in the emptied pulp chamber space in the upper first rat molar. Labeled cells were then tracked during 3 weeks by helical single-photon emission computed tomography (SPECT)/computed tomography performed on a dual modality dedicated small animal camera. Negative controls were performed using lysed radiolabeled cells obtained in a hypotonic solution. In vitro data indicated that 111In-oxine labeling did not affect cell viability and proliferation. In vivo experiments allowed a noninvasive longitudinal follow-up of implanted living cells for at least 3 weeks and indicated that SPECT signal intensity was related to implanted cell integrity. Notably, there was no detectable systemic release of implanted cells from the tooth. In addition, histological analysis of the samples showed mitotically active fibroblastic cells as well as neoangiogenesis and nervous fibers in pulp equivalents seeded with entire cells, whereas pulp equivalents prepared from lysed cells were devoid of cell colonization. In conclusion, our study demonstrates that efficient labeling of pulp cells can be achieved and, for the first time, that these cells can be followed up after implantation in the tooth by nuclear imaging. Furthermore, it appears that grafted cells retained the label and are viable to follow the repair process. This technique is expected to be of major interest for monitoring implanted cells in innovative therapies for injured teeth. PMID:23789732

  6. Electrophysiologic and functional evaluations of regenerated facial nerve defects with a tube containing dental pulp cells in rats.

    PubMed

    Sasaki, Ryo; Matsumine, Hajime; Watanabe, Yorikatsu; Takeuchi, Yuichi; Yamato, Masayuki; Okano, Teruo; Miyata, Mariko; Ando, Tomohiro

    2014-11-01

    Dental pulp tissue contains Schwann and neural progenitor cells. Tissue-engineered nerve conduits with dental pulp cells promote facial nerve regeneration in rats. However, no nerve functional or electrophysiologic evaluations were performed. This study investigated the compound muscle action potential recordings and facial functional analysis of dental pulp cell regenerated nerve in rats. A silicone tube containing rat dental pulp cells in type I collagen gel was transplanted into a 7-mm gap of the buccal branch of the facial nerve in Lewis rats; the same defect was created in the marginal mandibular branch, which was ligatured. Compound muscle action potential recordings of vibrissal muscles and facial functional analysis with facial palsy score of the nerve were performed. Tubulation with dental pulp cells showed significantly lower facial palsy scores than the autograft group between 3 and 10 weeks postoperatively. However, the dental pulp cell facial palsy scores showed no significant difference from those of autograft after 11 weeks. Amplitude and duration of compound muscle action potentials in the dental pulp cell group showed no significant difference from those of the intact and autograft groups, and there was no significant difference in the latency of compound muscle action potentials between the groups at 13 weeks postoperatively. However, the latency in the dental pulp cell group was prolonged more than that of the intact group. Tubulation with dental pulp cells could recover facial nerve defects functionally and electrophysiologically, and the recovery became comparable to that of nerve autografting in rats.

  7. Trophic Effects and Regenerative Potential of Mobilized Mesenchymal Stem Cells From Bone Marrow and Adipose Tissue as Alternative Cell Sources for Pulp/Dentin Regeneration.

    PubMed

    Murakami, Masashi; Hayashi, Yuki; Iohara, Koichiro; Osako, Yohei; Hirose, Yujiro; Nakashima, Misako

    2015-01-01

    Dental pulp stem cell (DPSC) subsets mobilized by granulocyte-colony-stimulating factor (G-CSF) are safe and efficacious for complete pulp regeneration. The supply of autologous pulp tissue, however, is very limited in the aged. Therefore, alternative sources of mesenchymal stem/progenitor cells (MSCs) are needed for the cell therapy. In this study, DPSCs, bone marrow (BM), and adipose tissue (AD)-derived stem cells of the same individual dog were isolated using G-CSF-induced mobilization (MDPSCs, MBMSCs, and MADSCs). The positive rates of CXCR4 and G-CSFR in MDPSCs were similar to MADSCs and were significantly higher than those in MBMSCs. Trophic effects of MDPSCs on angiogenesis, neurite extension, migration, and antiapoptosis were higher than those of MBMSCs and MADSCs. Pulp-like loose connective tissues were regenerated in all three MSC transplantations. Significantly higher volume of regenerated pulp and higher density of vascularization and innervation were observed in response to MDPSCs compared to MBMSC and MADSC transplantation. Collagenous matrix containing dentin sialophosphoprotein (DSPP)-positive odontoblast-like cells was the highest in MBMSCs and significantly higher in MADSCs compared to MDPSCs. MBMSCs and MADSCs, therefore, have potential for pulp regeneration, although the volume of regenerated pulp tissue, angiogenesis, and reinnervation, were less. Thus, in conclusion, an alternative cell source for dental pulp/dentin regeneration are stem cells from BM and AD tissue.

  8. Uremia Induces Dental Pulp Ossification but Reciprocally Inhibits Adjacent Alveolar Bone Osteogenesis.

    PubMed

    Yang, Chih-Yu; Chang, Zee-Fen; Chau, Yat-Pang; Chen, Ann; Lee, Oscar Kuang-Sheng; Yang, An-Hang

    2015-11-01

    Uremic patients are predisposed to atrophy of the alveolar bone and narrowing of the dental pulp chamber. Such pulp chamber changes have only been diagnosed radiologically; however, this has not been supported by any pathological evidence. We used a uremic rat model with secondary hyperparathyroidism induced by 5/6 nephrectomy surgery and high-phosphate diet to examine the dental pulp and adjacent alveolar bone pathology. In addition, we collected pulp tissues for real-time PCR. We found an opposite histopathological presentation of the ossified dental pulp and the osteomalacic adjacent alveolar bone. Furthermore, pulp cells with positive staining for Thy-1, a surrogate stem cell marker, were significantly reduced in the pulp of uremic rats compared to the controls, indicating a paucity of stem cells. This was further evidenced by the reduced pulp expression of dickkopf-1 (Dkk-1), a Wnt/β-catenin signaling inhibitor produced by mesenchymal stem cells. In contrast, expressions of receptor activator of nuclear factor κB ligand (RANKL) and RANK in uremic pulp were up-regulated, probably to counteract the ossifying process of uremic pulp. In conclusion, uremic pulp ossifications were associated with a paucity of stem cells and dysregulated Dkk-1 and RANKL signaling systems, further shifting the imbalance toward osteogenesis. Strategies to counteract such an imbalance may offer a potential therapeutic target to improve dental health in uremic patients, which warrants further interventional studies.

  9. Regenerative Endodontics in light of the stem cell paradigm

    PubMed Central

    Rosa, Vinicius; Botero, Tatiana M.; Nör, Jacques E.

    2013-01-01

    Stem cells play a critical role in development and in tissue regeneration. The dental pulp contains a small sub-population of stem cells that are involved in the response of the pulp to caries progression. Specifically, stem cells replace odontoblasts that have undergone cell death as a consequence of the cariogenic challenge. Stem cells also secrete factors that have the potential to enhance pulp vascularization and provide the oxygen and nutrients required for the dentinogenic response that is typically observed in teeth with deep caries. However, the same angiogenic factors that are required for dentin regeneration may ultimately contribute to the demise of the pulp by enhancing vascular permeability and interstitial pressure. Recent studies focused on the biology of dental pulp stem cells revealed that the multipotency and angiogenic capacity of these cells could be exploited therapeutically in dental pulp tissue engineering. Collectively, these findings suggest new treatment paradigms in the field of Endodontics. The goal of this review is to discuss the potential impact of dental pulp stem cells to Regenerative Endodontics. PMID:21726222

  10. Melatonin attenuates inflammation of acute pulpitis subjected to dental pulp injury

    PubMed Central

    Li, Ji-Guo; Lin, Jia-Ji; Wang, Zhao-Ling; Cai, Wen-Ke; Wang, Pei-Na; Jia, Qian; Zhang, An-Sheng; Wu, Gao-Yi; Zhu, Guo-Xiong; Ni, Long-Xing

    2015-01-01

    Acute pulpitis (AP), one of the most common diseases in the endodontics, usually causes severe pain to the patients, which makes the search for therapeutic target of AP essential in clinic. Toll-like receptor 4 (TLR4) signaling is widely involved in the mechanism of pulp inflammation, while melatonin has been reported to have an inhibition for a various kinds of inflammation. We hereby studied whether melatonin can regulate the expression of TLR4/NF-ĸB signaling in the pulp tissue of AP and in human dental pulp cells (HDPCs). Two left dental pulps of the adult rat were drilled open to establish the AP model, and the serum levels of melatonin and pro-inflammatory cytokines, including interleukin 1β (IL-1β), interleukin 18 (IL-18) and tumor necrosis factor α (TNF-α), were assessed at 1, 3 and 5 d post injury. At the same time points, the expression of TLR4 signaling in the pulp was explored by quantitative real-time PCR and immunohistochemistry. The AP rats were administered an abdominal injection of melatonin to assess whether melatonin rescued AP and TLR4/NF-ĸB signaling. Dental pulp injury led to an approximately five-day period acute pulp inflammation and necrosis in the pulp and a significant up-regulation of IL-1β, IL-18 and TNF-α in the serum. ELISA results showed that the level of melatonin in the serum decreased due to AP, while an abdominal injection of melatonin suppressed the increase in serum cytokines and the percentage of necrosis at the 5 d of the injured pulp. Consistent with the inflammation in AP rats, TLR4, NF-ĸB, TNF-α and IL-1β in the pulp were increased post AP compared with the baseline expression. And melatonin showed an inhibition on TLR4/NF-ĸB signaling as well as IL-1β and TNF-α production in the pulp of AP rats. Furthermore, melatonin could also regulate the expression of TLR4/NF-ĸB signaling in LPS-stimulated HDPCs. These data suggested that dental pulp injury induced AP and reduced the serum level of melatonin and that supplementation with melatonin may have a protective effect on AP by modulating TLR4/NF-ĸB signaling in the pulp and in pulp cells. PMID:25755829

  11. Role of CD146 Enrichment in Purification of Stem Cells Derived from Dental Pulp Polyp.

    PubMed

    Tavangar, Maryam Sadat; Hosseini, Seyed-Mojtaba; Dehghani-Nazhvani, Ali; Monabati, Ahmad

    2017-01-01

    Hyperplastic pulpitis (pulp polyp) tissues contains cells with stem cell properties similar to that of the dental pulp stem cells (DPSCs). It has also been shown that CD146 enrichment can homogenize the cultures of DPSCs and enhance the colony forming potentials of their cultures. This study determines whether CD146 enrichment can help purifying the stem cells from heterogeneous cultures of the pulp polyp derived stem cells (PPSCs). Healthy dental pulps and pulp polyp tissues were enzymatically digested and the harvested single cells were sorted according to the presence of CD146 marker. The sorted cells were seeded directly for colony forming unit (CFU) assays of the negative and positive portions. Flowcytometric antigen panel and differentiation assays were used to see if these cells conform with mesenchymal stems cells (MSCs) definition. Differences between the between groups was assessed using independent t-test. The level of significance was set at 0.05. Normal pulp tissue derived cells formed higher colonies (42.5±16.8 per 10 4 cells) than the pulp polyp (17.75±8.9 per 10 4 cells) ( P =0.015). The CD146 positive portion of the polyp derived cells formed an average of 91.5±29.7 per 10 4 cells per CFU. On the other hand, CD146 negative portion did not show any colonies ( P <0.001). Both resources showed cells with flowcytometric antigen panel and differentiation potentials conforming to MSC definition. The entire CFU of PPSCs were formed within CD146 enriched portion. It seems that CD146 enrichment may reduce the number of possible fibroblasts of the pulp polyps and may further homogenize the culture of the PPSCs.

  12. A Simplified and Systematic Method to Isolate, Culture, and Characterize Multiple Types of Human Dental Stem Cells from a Single Tooth.

    PubMed

    Bakkar, Mohammed; Liu, Younan; Fang, Dongdong; Stegen, Camille; Su, Xinyun; Ramamoorthi, Murali; Lin, Li-Chieh; Kawasaki, Takako; Makhoul, Nicholas; Pham, Huan; Sumita, Yoshinori; Tran, Simon D

    2017-01-01

    This chapter describes a simplified method that allows the systematic isolation of multiple types of dental stem cells such as dental pulp stem cells (DPSC), periodontal ligament stem cells (PDLSC), and stem cells of the apical papilla (SCAP) from a single tooth. Of specific interest is the modified laboratory approach to harvest/retrieve the dental pulp tissue by minimizing trauma to DPSC by continuous irrigation, reduction of frictional heat from the bur rotation, and reduction of the bur contact time with the dentin. Also, the use of a chisel and a mallet will maximize the number of live DPSC for culture. Steps demonstrating the potential for multiple cell differentiation lineages of each type of dental stem cell into either osteocytes, adipocytes, or chondrocytes are described. Flow cytometry, with a detailed strategy for cell gating and analysis, is described to verify characteristic markers of human mesenchymal multipotent stromal cells (MSC) from DPSC, PDLSC, or SCAP for subsequent experiments in cell therapy and in tissue engineering. Overall, this method can be adapted to any laboratory with a general setup for cell culture experiments.

  13. Dental Stem Cell Migration on Pulp Ceiling Cavities Filled with MTA, Dentin Chips, or Bio-Oss

    PubMed Central

    Lymperi, Stefania; Taraslia, Vasiliki; Tsatsoulis, Ioannis N.; Samara, Athina; Agrafioti, Anastasia; Anastasiadou, Ema; Kontakiotis, Evangelos

    2015-01-01

    MTA, Bio-Oss, and dentin chips have been successfully used in endodontics. The aim of this study was to assess the adhesion and migration of dental stem cells on human pulp ceiling cavities filled with these endodontic materials in an experimental model, which mimics the clinical conditions of regenerative endodontics. Cavities were formed, by a homemade mold, on untouched third molars, filled with endodontic materials, and observed with electron microscopy. Cells were seeded on cavities' surface and their morphology and number were analysed. The phenomenon of tropism was assessed in a migration assay. All three materials demonstrated appropriate microstructures for cell attachment. Cells grew on all reagents, but they showed a differential morphology. Moreover, variations were observed when comparing cells numbers on cavity's filling versus the surrounding dentine disc. The highest number of cells was recorded on dentin chips whereas the opposite was true for Bio-Oss. This was confirmed in the migration assay where a statistically significant lower number of cells migrated towards Bio-Oss as compared to MTA and dentin chips. This study highlights that MTA and dentin chips have a greater potential compared to Bio-Oss regarding the attraction of dental stem cells and are good candidates for bioengineered pulp regeneration. PMID:26146613

  14. Two Distinct Processes of Bone-like Tissue Formation by Dental Pulp Cells after Tooth Transplantation

    PubMed Central

    Yukita, Akira; Yoshiba, Kunihiko; Yoshiba, Nagako; Takahashi, Masafumi; Nakamura, Hiroaki

    2012-01-01

    Dental pulp is involved in the formation of bone-like tissue in response to external stimuli. However, the origin of osteoblast-like cells constructing this tissue and the mechanism of their induction remain unknown. We therefore evaluated pulp mineralization induced by transplantation of a green fluorescent protein (GFP)–labeled tooth into a GFP-negative hypodermis of host rats. Five days after the transplantation, the upper pulp cavity became necrotic; however, cell-rich hard tissue was observed adjacent to dentin at the root apex. At 10 days, woven bone-like tissue was formed apart from the dentin in the upper pulp. After 20 days, these hard tissues expanded and became histologically similar to bone. GFP immunoreactivity was detected in the hard tissue-forming cells within the root apex as well as in the upper pulp. Furthermore, immunohistochemical observation of α–smooth muscle actin, a marker for undifferentiated cells, showed a positive reaction in cells surrounding this bone-like tissue within the upper pulp but not in those within the root apex. Immunoreactivities of Smad4, Runx2, and Osterix were detected in the hard tissue-forming cells within both areas. These results collectively suggest that the dental pulp contains various types of osteoblast progenitors and that these cells might thus induce bone-like tissue in severely injured pulp. PMID:22899860

  15. Comparison of immunodulatory properties of dental pulp stem cells derived from healthy and inflamed teeth.

    PubMed

    Yazid, Farinawati Binti; Gnanasegaran, Nareshwaran; Kunasekaran, Wijenthiran; Govindasamy, Vijayendran; Musa, Sabri

    2014-12-01

    The aim of this study was to investigate the immunodulatory properties of dental pulp stem cells derived from healthy (SCD) and inflamed pulp deciduous (SCDIP) tissues. The overall hypothesis is that SCDIP possess equal immune properties with SCD and could be used as an alternative tissue source in regenerative medicine. An intra-oral examination was carried out to assess the status of the pulp tissues and group them according to healthy or inflamed. Primary cells were established from these groups, and basic mesenchymal stem cells (MSC) characterizations were conducted. The expression of human leukocyte antigen (HLA), namely HLA-G, HLA-DR, and HLA-ABC were examined in both cell lines using flow cytometry. We further compared the immunosuppressive effects of SCD and SCDIP on phytohemagglutinin-induced T cell proliferation. Supernatants were tested for cytokine profiling using multiplex array. While SCD exhibited typical MSC characteristics, SCDIP on the other hand, did not. Compared with SCDIP, SCD effectively suppresses mitogen-induced T cells proliferation in a dose-dependent manner, as well as express a higher percentage of HLA-ABC and HLA-G. In addition, levels of several cytokines, such as TNF-α, TNF-β, and IL-2, were drastically suppressed in SCD than SCDIP. Furthermore, a high level of IL-10, an important anti-inflammatory cytokine, was present in SCD compared with SCDIP. These findings suggest that SCDIP is highly dysfunctional in terms of their stemness and immunomodulatory properties. SCDIP is not a viable therapeutic cell source especially when used in graft versus host disease (GvHD) and organ rejection.

  16. [In vitro and in vivo effects of mango pulp (Mangifera indica cv. Azucar) in colon carcinogenesis].

    PubMed

    Corrales-Bernal, Andrea; Amparo Urango, Luz; Rojano, Benjamín; Maldonado, Maria Elena

    2014-03-01

    Mango pulp contains ascorbic acid, carotenoids, polyphenols, terpenoids and fiber which are healthy and could protect against colon cancer. The aim of this study was to evaluate the antiproliferative and preventive capacity of an aqueous extract of Mangifera indica cv. Azúcar on a human colon adenocarcinoma cell line (SW480) and in a rodent model of colorectal cancer, respectively. The content of total phenolics, flavonoids and carotenoids were also analyzed in the extract. SW480 cell growth was inhibited in a dose and time dependent manner by 22.3% after a 72h exposure to the extract (200 µg/ mL). Colon carcinogenesis was initiated in Balb/c mice by two intra-peritoneal injections of azoxymethane (AOM) at the third and fourth week of giving mango in drinking water (0.3%, 0.6%, 1.25%). After 10 weeks of treatment, in the colon of mice receiving 0.3% mango, aberrant crypt foci formation was inhibited more than 60% (p=0,05) and the inhibition was dose-dependent when compared with controls receiving water. These results show that mango pulp, a natural food, non toxic, part of human being diet, contains bioactive compounds able to reduce growth of tumor cells and to prevent the appearance of precancerous lesions in colon during carcinogenesis initiation.

  17. A novel three-dimensional scaffold for regenerative endodontics: materials and biological characterizations.

    PubMed

    Bottino, Marco C; Yassen, Ghaeth H; Platt, Jeffrey A; Labban, Nawaf; Windsor, L Jack; Spolnik, Kenneth J; Bressiani, Ana H A

    2015-11-01

    An electrospun nanocomposite fibrous material holds promise as a scaffold, as well as a drug-delivery device to aid in root maturogenesis and the regeneration of the pulp-dentine complex. A novel three-dimensional (3D) nanocomposite scaffold composed of polydioxanone (PDS II®) and halloysite nanotubes (HNTs) was designed and fabricated by electrospinning. Morphology, structure, mechanical properties and cell compatibility studies were carried out to evaluate the effects of HNTs incorporation (0.5-10 wt% relative to PDS w/w). Overall, a 3D porous network was seen in the different fabricated electrospun scaffolds, regardless of the HNT content. The incorporation of HNTs at 10 wt% led to a significant (p < 0.0001) fibre diameter increase and a reduction in scaffold strength. Moreover, PDS-HNTs scaffolds supported the attachment and proliferation of human-derived pulp fibroblast cells. Quantitative proliferation assay performed with human dental pulp-derived cells as a function of nanotubes concentration indicated that the HNTs exhibit a high level of biocompatibility, rendering them good candidates for the potential encapsulation of distinct bioactive molecules. Collectively, the reported data support the conclusion that PDS-HNTs nanocomposite fibrous structures hold potential in the development of a bioactive scaffold for regenerative endodontics. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Oestrogen receptor β (ERβ) regulates osteogenic differentiation of human dental pulp cells.

    PubMed

    Alhodhodi, Aishah; Alkharobi, Hanaa; Humphries, Matthew; Alkhafaji, Hasanain; El-Gendy, Reem; Feichtinger, Georg; Speirs, Valerie; Beattie, James

    2017-11-01

    Estradiol (E 2 ) has many important actions in the tissues of the oral cavity. Disruption of E 2 metabolism or alterations in systemic E 2 concentrations have been associated with compromised periodontal health. In many instances such changes occur secondarily to the well characterised effects of E 2 on bone physiology -especially maintenance of bone mineral density (BMD). Despite these important epidemiological findings, little is known about the mechanism of action of E 2 in oral tissues or the expression and function of oestrogen receptor (ER) isoforms in these tissues. We have isolated human dental pulp cells (hDPCs), which are able to differentiate towards an osteogenic lineage under appropriate culture conditions. We show that hDPCs express ERα, ERβ1, ERβ2 and the cell membrane associated G protein-coupled ER (GPR30). Following osteogenic differentiation of hDPCs, ERβ1 and ERβ2 were up regulated approximately 50-fold while ERα and GPR30 were down regulated, but to a much lesser degree (approximately 2-fold). ERβ was characterised as a 59kDa protein following Western blot analysis with validated antibodies and ERβ was detected in both nuclear and cytoplasmic cell compartments following immunofluorescence (IF) and immunohistochemical (IHC) analysis of cultured cells. Furthermore isoform specific antibodies detected both ERβ1 and ERβ2 in DPC cultures and in situ analysis of ERβ expression in decalcified tooth/pulp sections identified the odontoblast layer of pulp cells juxtaposed to the tooth enamel as strongly reactive for both ERβ isoforms. Finally the use of isoform specific agonists identified ERβ as the main receptor responsible for the pro-osteogenic effect of oestrogenic hormones in this tissue. Our data suggest that oestrogens stimulated osteogenic differentiation in hDPCs and that this action is mediated principally through the ERβ isoform. These findings may have important consequences for the investigation and treatment of oral and periodontal pathologies which are associated with imbalances in oestrogen concentrations and action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Regeneration of dental pulp by stem cells.

    PubMed

    Nakashima, M; Iohara, K

    2011-07-01

    Angiogenesis/vasculogenesis and neurogenesis are essential for pulp regeneration. Two subfractions of side-population (SP) cells, CD31(-)/CD146(-) SP cells and CD105(+) cells with angiogenic and neurogenic potential, were isolated by flow cytometry from canine dental pulp. In an experimental model of mouse hindlimb ischemia, transplantation of these cell populations resulted in an increase in blood flow, including high-density capillary formation. In a model of rat cerebral ischemia, stem cell transplantations enhanced neuronal regeneration and recovery from motor disability. Autologous transplantation of the CD31(-)/CD146(-) SP cells into an in vivo model of amputated pulp resulted in complete regeneration of pulp tissue with vascular and neuronal processes within 14 days. The transplanted cells expressed pro-angiogenic factors, implying trophic action on endothelial cells. Autologous transplantation of CD31(-)/CD146(-) SP cells or CD105(+) cells with stromal-cell-derived factor-1 (SDF-1) into root canals after whole pulp removal of mature teeth resulted in complete regeneration of pulp replete with nerves and vasculature by day 14, followed by dentin formation along the dentinal wall by day 35. Therefore, the potential utility of fractionated SP cells and CD105(+) cells in angiogenesis and neurogenesis was demonstrated by treatment of limb and cerebral ischemia following pulpotomy and pulpectomy.

  20. Human dental pulp stem cells cultured in serum-free supplemented medium

    PubMed Central

    Bonnamain, Virginie; Thinard, Reynald; Sergent-Tanguy, Solène; Huet, Pascal; Bienvenu, Géraldine; Naveilhan, Philippe; Farges, Jean-Christophe; Alliot-Licht, Brigitte

    2013-01-01

    Growing evidence show that human dental pulp stem cells (DPSCs) could provide a source of adult stem cells for the treatment of neurodegenerative pathologies. In this study, DPSCs were expanded and cultured with a protocol generally used for the culture of neural stem/progenitor cells. Methodology: DPSC cultures were established from third molars. The pulp tissue was enzymatically digested and cultured in serum-supplemented basal medium for 12 h. Adherent (ADH) and non-adherent (non-ADH) cell populations were separated according to their differential adhesion to plastic and then cultured in serum-free defined N2 medium with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). Both ADH and non-ADH populations were analyzed by FACS and/or PCR. Results: FACS analysis of ADH-DPSCs revealed the expression of the mesenchymal cell marker CD90, the neuronal marker CD56, the transferrin receptor CD71, and the chemokine receptor CXCR3, whereas hematopoietic stem cells markers CD45, CD133, and CD34 were not expressed. ADH-DPSCs expressed transcripts coding for the Nestin gene, whereas expression levels of genes coding for the neuronal markers β-III tubulin and NF-M, and the oligodendrocyte marker PLP-1 were donor dependent. ADH-DPSCs did not express the transcripts for GFAP, an astrocyte marker. Cells of the non-ADH population that grew as spheroids expressed Nestin, β-III tubulin, NF-M and PLP-1 transcripts. DPSCs that migrated out of the spheroids exhibited an odontoblast-like morphology and expressed a higher level of DSPP and osteocalcin transcripts than ADH-DPSCs. Conclusion: Collectively, these data indicate that human DPSCs can be expanded and cultured in serum-free supplemented medium with EGF and bFGF. ADH-DPSCs and non-ADH populations contained neuronal and/or oligodendrocyte progenitors at different stages of commitment and, interestingly, cells from spheroid structures seem to be more engaged into the odontoblastic lineage than the ADH-DPSCs. PMID:24376422

  1. Osteogenesis and angiogenesis properties of dental pulp cell on novel injectable tricalcium phosphate cement by silica doped.

    PubMed

    Su, Ying-Fang; Lin, Chi-Chang; Huang, Tsui-Hsien; Chou, Ming-Yung; Yang, Jaw-Ji; Shie, Ming-You

    2014-09-01

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material in clinical. In this study, we have doped silica (Si) into β-TCP and enhanced its bioactive and osteostimulative properties. To check its effectiveness, a series of Si-doped with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of the diametral tensile strength, ions released and weight loss of cements was considered after immersion. In addition, we also examined the behavior of human dental pulp cells (hDPCs) cultured on Si-doped β-TCP cements. The results showed that setting time and injectability of the Si-doped β-TCP cements were decreased as the Si content was increased. At the end of the immersion point, weight losses of 30.1%, 36.9%, 48.1%, and 55.3% were observed for the cement doping 0%, 10%, 20%, and 30% Si into β-TCP cements, respectively. In vitro cell experiments show that the Si-rich cements promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the Si-doped in the cement is more than 20%, the amount of cells and osteogenesis protein of hDPCs was stimulated by Si released from Si-doped β-TCP cements. The degradation of β-TCP and osteogenesis of Si gives a strong reason to believe that these Si-doped β-TCP cements may prove to be promising bone repair materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Stem cell regulatory gene expression in human adult dental pulp and periodontal ligament cells undergoing odontogenic/osteogenic differentiation.

    PubMed

    Liu, Lu; Ling, Junqi; Wei, Xi; Wu, Liping; Xiao, Yin

    2009-10-01

    During development and regeneration, odontogenesis and osteogenesis are initiated by a cascade of signals driven by several master regulatory genes. In this study, we investigated the differential expression of 84 stem cell-related genes in dental pulp cells (DPCs) and periodontal ligament cells (PDLCs) undergoing odontogenic/osteogenic differentiation. Our results showed that, although there was considerable overlap, certain genes had more differential expression in PDLCs than in DPCs. CCND2, DLL1, and MME were the major upregulated genes in both PDLCs and DPCs, whereas KRT15 was the only gene significantly downregulated in PDLCs and DPCs in both odontogenic and osteogenic differentiation. Interestingly, a large number of regulatory genes in odontogenic and osteogenic differentiation interact or crosstalk via Notch, Wnt, transforming growth factor beta (TGF-beta)/bone morphogenic protein (BMP), and cadherin signaling pathways, such as the regulation of APC, DLL1, CCND2, BMP2, and CDH1. Using a rat dental pulp and periodontal defect model, the expression and distribution of both BMP2 and CDH1 have been verified for their spatial localization in dental pulp and periodontal tissue regeneration. This study has generated an overview of stem cell-related gene expression in DPCs and PDLCs during odontogenic/osteogenic differentiation and revealed that these genes may interact through the Notch, Wnt, TGF-beta/BMP, and cadherin signaling pathways to play a crucial role in determining the fate of dental derived cell and dental tissue regeneration. These findings provided a new insight into the molecular mechanisms of the dental tissue mineralization and regeneration.

  3. A clinical assessment of the effects of 10% carbamide peroxide gel on human pulp tissue.

    PubMed

    Anderson, D G; Chiego, D J; Glickman, G N; McCauley, L K

    1999-04-01

    Bleaching vital teeth with 10% carbamide peroxide gel is a routine procedure in which there has been no evidence of associated permanent pulpal damage. Synthesis of the enzyme heme oxygenase-1 (HO-1) is increased after exposure of eukaryotic cells to conditions of oxidative stress (including H2O2) as a defense against the damaging effects of free radicals. Dental pulps were evaluated for HO-1 (aka Heat Shock Protein 32) presence in teeth treated with 10% carbamide peroxide. Seventeen intact first premolars scheduled for orthodontic extraction were bleached for 4 h immediately preceding extraction. Fourteen additional premolars from the same individuals were not bleached. All 31 teeth were extracted, fixed, demineralized, frozen, sectioned, and immunostained with anti-HO-1 antibody using a standard ABC protocol. There was no significant difference in the presence of HO-1 between total bleached versus total unbleached teeth using the Fisher's Exact Test (p < or = 0.05). However, the histological findings could be interpreted to suggest that coronal odontoblasts and endothelial cells in the underlying pulp proper may have the potential to respond to oxidative stress by increasing the synthesis of HO-1 (HSP32). This could represent a component of an initial defensive response by specific cells in strategic locations in the pulp that precedes classical inflammatory pathways.

  4. Evaluation of an experimental rat model for comparative studies of bleaching agents.

    PubMed

    Cintra, Luciano Tavares Angelo; Benetti, Francine; Ferreira, Luciana Louzada; Rahal, Vanessa; Ervolino, Edilson; Jacinto, Rogério de Castilho; Gomes Filho, João Eduardo; Briso, André Luiz Fraga

    2016-04-01

    Dental materials in general are tested in different animal models prior to the clinical use in humans, except for bleaching agents. Objectives To evaluate an experimental rat model for comparative studies of bleaching agents, by investigating the influence of different concentrations and application times of H2O2 gel in the pulp tissue during in-office bleaching of rats' vital teeth. Material and Methods The right and left maxillary molars of 50 Wistar rats were bleached with 20% and 35% H2O2 gels, respectively, for 5, 10, 15, 30, or 45 min (n=10 rats/group). Ten animals were untreated (control). The rats were killed after 2 or 30 days, and the maxillae were examined by light microscopy. Inflammation was evaluated through histomorphometric analysis with inflammatory cell count in the coronal and radicular thirds of the pulp. Fibroblasts were also counted. Scores were attributed to odontoblastic layer and vascular changes. Tertiary dentin area and pulp chamber central area were measured histomorphometrically. Data were compared by analysis of variance and Kruskal-Wallis test (p<0.05). Results After 2 days, the amount of inflammatory cells increased in the coronal pulp occlusal third up to the 15-min application groups of each bleaching gel. In the groups exposed to each concentration for 30 and 45 min, the number of inflammatory cells decreased along with the appearance of necrotic areas. After 30 days, reduction on the pulp chamber central area and enlargement of the tertiary dentin area were observed, without the detection of inflammation areas. Conclusion The rat model of extracoronal bleaching showed to be adequate for studies of bleaching protocols, as it was possible to observe alterations in the pulp tissues and tooth structure caused by different concentrations and application periods of bleaching agents.

  5. Evaluation of an experimental rat model for comparative studies of bleaching agents

    PubMed Central

    CINTRA, Luciano Tavares Angelo; BENETTI, Francine; FERREIRA, Luciana Louzada; RAHAL, Vanessa; ERVOLINO, Edilson; JACINTO, Rogério de Castilho; GOMES, João Eduardo; BRISO, André Luiz Fraga

    2016-01-01

    ABSTRACT Dental materials in general are tested in different animal models prior to the clinical use in humans, except for bleaching agents. Objectives To evaluate an experimental rat model for comparative studies of bleaching agents, by investigating the influence of different concentrations and application times of H2O2 gel in the pulp tissue during in-office bleaching of rats’ vital teeth. Material and Methods The right and left maxillary molars of 50 Wistar rats were bleached with 20% and 35% H2O2 gels, respectively, for 5, 10, 15, 30, or 45 min (n=10 rats/group). Ten animals were untreated (control). The rats were killed after 2 or 30 days, and the maxillae were examined by light microscopy. Inflammation was evaluated through histomorphometric analysis with inflammatory cell count in the coronal and radicular thirds of the pulp. Fibroblasts were also counted. Scores were attributed to odontoblastic layer and vascular changes. Tertiary dentin area and pulp chamber central area were measured histomorphometrically. Data were compared by analysis of variance and Kruskal-Wallis test (p<0.05). Results After 2 days, the amount of inflammatory cells increased in the coronal pulp occlusal third up to the 15-min application groups of each bleaching gel. In the groups exposed to each concentration for 30 and 45 min, the number of inflammatory cells decreased along with the appearance of necrotic areas. After 30 days, reduction on the pulp chamber central area and enlargement of the tertiary dentin area were observed, without the detection of inflammation areas. Conclusion The rat model of extracoronal bleaching showed to be adequate for studies of bleaching protocols, as it was possible to observe alterations in the pulp tissues and tooth structure caused by different concentrations and application periods of bleaching agents. PMID:27119766

  6. Cytotoxicity assessment of polyhydroxybutyrate/chitosan/nano- bioglass nanofiber scaffolds by stem cells from human exfoliated deciduous teeth stem cells from dental pulp of exfoliated deciduous tooth

    PubMed Central

    Hashemi-Beni, Batool; Khoroushi, Maryam; Foroughi, Mohammad Reza; Karbasi, Saeed; Khademi, Abbas Ali

    2018-01-01

    Background: The aim of this study was to compare the cytotoxicity and the biocompatibility of three different nanofibers scaffolds after seeding of stem cells harvested from human deciduous dental pulp. Given the importance of scaffold and its features in tissue engineering, this study demonstrated the construction of polyhydroxybutyrate (PHB)/chitosan/nano-bioglass (nBG) nanocomposite scaffold using electrospinning method. Materials and Methods: This experimental study was conducted on normal exfoliated deciduous incisors obtained from 6-year-old to 11-year-old healthy children. The dental pulp was extracted from primary incisor teeth which are falling aseptically. After digesting the tissue with 4 mg/ml of type I collagenase, the cells were cultured in medium solution. Identification of stem cells from human exfoliated deciduous teeth was performed by flowcytometry using CD19, CD14, CD146, and CD90 markers. Then, 1 × 104 stem cells were seeded on the scaffold with a diameter of 10 mm × 0.3 mm. Cell viability was evaluated on days 3, 5, and 7 through methyl thiazol tetrazolium techniques (P < 0.05) on different groups that they are groups included (1) PHB scaffold (G1), (2) PHB/chitosan scaffold (G2), (3) the optimal PHB/chitosan/nBG scaffold (G3), (4) mineral trioxide aggregate (MTA), and (5) the G3 + MTA scaffold (G3 + MTA). Data were analyzed with two-way ANOVA at significance level of P < 0.05. Results: The results indicated that the PHB/chitosan/nBG scaffold and PHB/chitosan/nBG scaffold + MTA groups showed significant difference compared with the PHB/chitosan scaffold and PHB scaffold groups on the 7th day (P < 0.05). Conclusion: Thus, it can be concluded that the scaffold with nBG nanoparticles is more biocompatible than the other scaffolds and can be considered as a suitable scaffold for growth and proliferation of stem cells. PMID:29576778

  7. Cytotoxicity assessment of polyhydroxybutyrate/chitosan/nano- bioglass nanofiber scaffolds by stem cells from human exfoliated deciduous teeth stem cells from dental pulp of exfoliated deciduous tooth.

    PubMed

    Hashemi-Beni, Batool; Khoroushi, Maryam; Foroughi, Mohammad Reza; Karbasi, Saeed; Khademi, Abbas Ali

    2018-01-01

    The aim of this study was to compare the cytotoxicity and the biocompatibility of three different nanofibers scaffolds after seeding of stem cells harvested from human deciduous dental pulp. Given the importance of scaffold and its features in tissue engineering, this study demonstrated the construction of polyhydroxybutyrate (PHB)/chitosan/nano-bioglass (nBG) nanocomposite scaffold using electrospinning method. This experimental study was conducted on normal exfoliated deciduous incisors obtained from 6-year-old to 11-year-old healthy children. The dental pulp was extracted from primary incisor teeth which are falling aseptically. After digesting the tissue with 4 mg/ml of type I collagenase, the cells were cultured in medium solution. Identification of stem cells from human exfoliated deciduous teeth was performed by flowcytometry using CD19, CD14, CD146, and CD90 markers. Then, 1 × 10 4 stem cells were seeded on the scaffold with a diameter of 10 mm × 0.3 mm. Cell viability was evaluated on days 3, 5, and 7 through methyl thiazol tetrazolium techniques ( P < 0.05) on different groups that they are groups included (1) PHB scaffold (G1), (2) PHB/chitosan scaffold (G2), (3) the optimal PHB/chitosan/nBG scaffold (G3), (4) mineral trioxide aggregate (MTA), and (5) the G3 + MTA scaffold (G3 + MTA). Data were analyzed with two-way ANOVA at significance level of P < 0.05. The results indicated that the PHB/chitosan/nBG scaffold and PHB/chitosan/nBG scaffold + MTA groups showed significant difference compared with the PHB/chitosan scaffold and PHB scaffold groups on the 7 th day ( P < 0.05). Thus, it can be concluded that the scaffold with nBG nanoparticles is more biocompatible than the other scaffolds and can be considered as a suitable scaffold for growth and proliferation of stem cells.

  8. Pulp regeneration in a full-length human tooth root using a hierarchical nanofibrous microsphere system.

    PubMed

    Li, Xiangwei; Ma, Chi; Xie, Xiaohua; Sun, Hongchen; Liu, Xiaohua

    2016-04-15

    While pulp regeneration using tissue engineering strategy has been explored for over a decade, successful regeneration of pulp tissues in a full-length human root with a one-end seal that truly simulates clinical endodontic treatment has not been achieved. To address this challenge, we designed and synthesized a unique hierarchical growth factor-loaded nanofibrous microsphere scaffolding system. In this system, vascular endothelial growth factor (VEGF) binds with heparin and is encapsulated in heparin-conjugated gelatin nanospheres, which are further immobilized in the nanofibers of an injectable poly(l-lactic acid) (PLLA) microsphere. This hierarchical microsphere system not only protects the VEGF from denaturation and degradation, but also provides excellent control of its sustained release. In addition, the nanofibrous PLLA microsphere integrates the extracellular matrix-mimicking architecture with a highly porous injectable form, efficiently accommodating dental pulp stem cells (DPSCs) and supporting their proliferation and pulp tissue formation. Our in vivo study showed the successful regeneration of pulp-like tissues that fulfilled the entire apical and middle thirds and reached the coronal third of the full-length root canal. In addition, a large number of blood vessels were regenerated throughout the canal. For the first time, our work demonstrates the success of pulp tissue regeneration in a full-length root canal, making it a significant step toward regenerative endodontics. The regeneration of pulp tissues in a full-length tooth root canal has been one of the greatest challenges in the field of regenerative endodontics, and one of the biggest barriers for its clinical application. In this study, we developed a unique approach to tackle this challenge, and for the first time, we successfully regenerated living pulp tissues in a full-length root canal, making it a significant step toward regenerative endodontics. This study will make positive scientific impact and interest the broad and multidisciplinary readership in the dental biomaterials and craniofacial tissue engineering community. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Regenerative Endodontics: Barriers and Strategies for Clinical Translation

    PubMed Central

    Kim, Sahng G.; Zhou, Jian; Ye, Ling; Cho, Shoko; Suzuki, Takahiro; Fu, Susan Y.; Yang, Rujing; Zhou, Xuedong; Mao, Jeremy J.

    2014-01-01

    SYNOPSIS Despite a great deal of enthusiasm and effort, regenerative endodontics has encountered substantial challenges towards clinical translation. Recent adoption by the American Dental Association (ADA) of evoked pulp bleeding in immature permanent teeth is an important step for regenerative endodontics. However, there is no regenerative therapy for the majority of endodontic diseases. Simple recapitulation of cell therapy and tissue engineering strategies that are under development for other organ systems has not led to clinical translation in regeneration endodontics. Dental pulp stem cells may appear to be a priori choice for dental pulp regeneration. However, dental pulp stem cells may not be available in a patient who is in need of pulp regeneration. Even if dental pulp stem cells are available autologously or perhaps allogeneically, one must address a multitude of scientific, regulatory and commercialization barriers, and unless these issues are resolved, transplantation of dental pulp stem cells will remain a scientific exercise, rather than a clinical reality. Recent work using novel biomaterial scaffolds and growth factors that orchestrate the homing of host endogenous cells represents a departure from traditional cell transplantation approaches and may accelerate clinical translation. Given the functions and scale of dental pulp and dentin, regenerative endodontics is poised to become one of the early biological solutions in regenerative dental medicine. PMID:22835543

  10. Biomimetic extracellular matrix mediated somatic stem cell differentiation: applications in dental pulp tissue regeneration

    PubMed Central

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dental caries is one of the most widely prevalent infectious diseases in the world. It affects more than half of the world's population. The current treatment for necrotic dental pulp tissue arising from dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality making it prone for secondary infections. Over the past decade, several tissue-engineering approaches have attempted regeneration of the dental pulp tissue. Although several studies have highlighted the potential of dental stem cells, none have transitioned into a clinical setting owing to limited availability of dental stem cells and the need for growth factor delivery systems. Our strategy is to utilize the intact ECM of pulp cells to drive lineage specific differentiation of bone marrow derived mesenchymal stem cells. From a clinical perspective, pulp ECM scaffolds can be generated using cell lines and patient specific somatic stem cells can be used for regeneration. Our published results have shown the feasibility of using pulp ECM scaffolds for odontogenic differentiation of non-dental mesenchymal cells. This focused review discusses the issues surrounding dental pulp tissue regeneration and the potential of our strategy to overcome these issues. PMID:25954205

  11. Immunolocalization of bone-resorptive cytokines in rat pulp and periapical lesions following surgical pulp exposure.

    PubMed

    Tani-Ishii, N; Wang, C Y; Stashenko, P

    1995-08-01

    The bone-resorptive cytokines interleukin 1 (IL-1) and tumor necrosis factor (TNF) have been implicated in the pathogenesis of many chronic inflammatory diseases, including pulpitis and apical periodontitis.To further elucidate their role in these disorders, we have identified cells that express IL-1 alpha and TNF alpha in infected pulps and in developing rat periapical lesions after surgical pulp exposure. As detected by immunohistochemistry, IL-1 alpha- and TNF alpha-positive cells were present as early as 2 days after pulp exposure in both the pulp and periapical region. The numbers of cytokine-expressing cells increased up to day 4 in the pulp and up to day 30 in the periapex. In contrast, cells expressing IL-1 beta and TNF beta, the homologous forms of these mediators, were not found in pulp or periapical lesions during this period. Cells expressing IL-1 alpha and TNF alpha were identified primarily as macrophages and fibroblasts, with occasional staining of polymorphonuclear leukocytes. Osteoblasts and osteoclasts were also positive, whereas lymphocytes were negative. In general, cytokine-expressing cells were located proximal to abscesses and the root apex. These findings demonstrate that cells that express bone-resorptive cytokines IL-1 alpha and TNF alpha are present immediately after pulp exposure in this model, which supports the hypothesis that these mediators play a key role in pulpal and periapical pathogenesis, including the concomitant bone destruction. They also indicate that both resident connective tissue cells as well as infiltrating cells express bone-resorptive cytokines in response to infection in these lesions.

  12. Dentinogenic Specificity in the Preclinical Evaluation of Vital Pulp Treatment Strategies: A Critical Review.

    PubMed

    Tziafas, Dimitrios; Kodonas, Konstantinos

    2015-11-27

    Reviews on the clinical performance of vital pulp treatment strategies and capping materials repeatedly showed an insufficient grade of evidence concerning their therapeutic validity. The biological mechanisms underlying the regenerative potential of pulp-dentin complex have attracted much attention during the last two decades, since new pulp treatment modalities have been designed and tested at the preclinical level. It has been recognized that evaluation should be based on the specific ability of therapeutic interventions to signal recruitment and differentiation of odontoblast-like cells forming a matrix in a predentin-like pattern, rather than uncontrolled hard tissue deposition in a scar-like form. The aim of the present article was to critically review data from histological experimental studies on pulp capping, published during the last 7 decades. A comprehensive literature search covering the period from 1949 to 2015 was done using the Medline/Pubmed database. Inclusion of a study was dependent on having sufficient data regarding the type of capping material used and the unit of observation (human permanent tooth in vivo or animal permanent dentition; primary teeth were excluded). The post-operatively deposited matrix was categorized into three types: unspecified, osteotypic, or dentin-like matrix. One hundred fifty-two studies were included in the final evaluation. Data from the present systematic review have shown that only 30.2% of the 152 experimental histological pulp capping studies described the heterogenic nature of the hard tissue bridge formation, including osteotypic and tubular mineralized tissue. Structural characteristics of the new matrix and the associated formative cells were not provided by the remaining 106 studies. Analysis showed that more careful preclinical evaluation with emphasis on the evidence regarding the dentinogenic specificity of pulp therapies is required. It seems that selection of appropriate vital pulp treatment strategies and pulp capping materials would be further facilitated in terms of their therapeutic validity if international consensus could be reached on a select number of mandatory criteria for tissue-specific dentinogenic events.

  13. Dentinogenic Specificity in the Preclinical Evaluation of Vital Pulp Treatment Strategies: A Critical Review

    PubMed Central

    Tziafas, Dimitrios; Kodonas, Konstantinos

    2015-01-01

    Reviews on the clinical performance of vital pulp treatment strategies and capping materials repeatedly showed an insufficient grade of evidence concerning their therapeutic validity. The biological mechanisms underlying the regenerative potential of pulp-dentin complex have attracted much attention during the last two decades, since new pulp treatment modalities have been designed and tested at the preclinical level. It has been recognized that evaluation should be based on the specific ability of therapeutic interventions to signal recruitment and differentiation of odontoblast-like cells forming a matrix in a predentin-like pattern, rather than uncontrolled hard tissue deposition in a scar-like form. The aim of the present article was to critically review data from histological experimental studies on pulp capping, published during the last 7 decades. A comprehensive literature search covering the period from 1949 to 2015 was done using the Medline/Pubmed database. Inclusion of a study was dependent on having sufficient data regarding the type of capping material used and the unit of observation (human permanent tooth in vivo or animal permanent dentition; primary teeth were excluded). The post-operatively deposited matrix was categorized into three types: unspecified, osteotypic, or dentin-like matrix. One hundred fifty-two studies were included in the final evaluation. Data from the present systematic review have shown that only 30.2% of the 152 experimental histological pulp capping studies described the heterogenic nature of the hard tissue bridge formation, including osteotypic and tubular mineralized tissue. Structural characteristics of the new matrix and the associated formative cells were not provided by the remaining 106 studies. Analysis showed that more careful preclinical evaluation with emphasis on the evidence regarding the dentinogenic specificity of pulp therapies is required. It seems that selection of appropriate vital pulp treatment strategies and pulp capping materials would be further facilitated in terms of their therapeutic validity if international consensus could be reached on a select number of mandatory criteria for tissue-specific dentinogenic events. PMID:29567934

  14. Synthetic octacalcium phosphate-enhanced reparative dentine formation via induction of odontoblast differentiation.

    PubMed

    Wang, Xiaogu; Suzawa, Tetsuo; Miyauchi, Tomohiko; Zhao, Baohong; Yasuhara, Rika; Anada, Takahisa; Nakamura, Masanori; Suzuki, Osamu; Kamijo, Ryutaro

    2015-11-01

    Synthetic octacalcium phosphate (OCP) has been suggested to be a useful biomaterial for the regeneration of hard tissues, including bone. However, it remains unknown whether OCP induces dentine formation by dental pulp. We investigated biomineralization of dental pulp exposed to synthetic OCP in vitro and in vivo. When dental pulp was exposed directly to OCP, rapid formation of reparative dentine (RD) was induced and expression of dentine sialoprotein synthesis was observed in dental pulp adjacent to newly synthesized RD. OCP inhibited the proliferation of rat pulp cells and also promoted their odontoblastic differentiation in vitro, as alkaline phosphatase activity, mineralization of pulp cells and the expression level of dentine sialophosphoprotein were enhanced. Direct contact between OCP and pulp cells is required for OCP to exhibit its effects in vitro. The expression level of Runx2, a transcription factor whose downregulation is closely related to odontoblast differentiation, was downregulated in pulp cells cultured with OCP. Structural changes of OCP during culture were determined by Fourier transform infrared spectroscopy. OCP tended to be converted to carbonate hydroxyapatite after incubation with or without pulp cells, which may be analogous to biological apatite crystals. Taken together, our data suggest that synthetic OCP supports RD formation by dental pulp and downregulation of Runx2 may be involved in that stimulatory activity. Furthermore, OCP-apatite conversion is involved in this stimulatory capacity of OCP. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Pulpo-dentin complex response after direct capping with self-etch adhesive systems.

    PubMed

    Nowicka, Alicja; Parafiniuk, Miroslaw; Lipski, Mariusz; Lichota, Damian; Buczkowska-Radlinska, Jadwiga

    2012-01-01

    The purpose of the present study was to evaluate morphologically the response of feline teeth pulp to direct pulp capping with two different self-etch adhesive systems. Twenty-four cavities in feline teeth were mechanically exposed and assigned to one of two experimental groups: AdheSE + Tetric Ceram (the ASE group), or Adper Prompt L-Pop + Filtek Supreme (the APLP group). There was also a control group Dycal Ca(OH)(2) liner + Amalgam (the CH group eight teeth), and six teeth were used as an intact control group. The animals were sacrificed after 40 days. The teeth were removed and processed for standard histological evaluation, using a scoring system for inflammatory cell response, pulp tissue disorganisation, reparative tissue formation, and the presence of bacteria. Statistical analysis revealed no significant differences between the ASE and APLP self-etching resin systems during the observation period. The majority of the specimens presented inflammatory pulp response with tissue disorganisation and a lack of dentinal bridge formation. CH capping resulted in a significantly smaller inflammatory pulp response and a considerably higher incidence of reparative dentin formation. ASE and APLP were comparably effective as direct pulp capping materials, but their application resulted in significantly greater pulp tissue damage than CH capping. Further in vivo human studies are necessary to determine which adhesive resin systems should be clinically used for direct pulp capping without incurring severe damage to the pulpal tissue.

  16. Correlation between Fibrillin-1 Degradation and mRNA Downregulation and Myofibroblast Differentiation in Cultured Human Dental Pulp Tissue

    PubMed Central

    Yoshiba, Nagako; Yoshiba, Kunihiko; Ohkura, Naoto; Takei, Erika; Edanami, Naoki; Oda, Youhei; Hosoya, Akihiro; Nakamura, Hiroaki; Okiji, Takashi

    2015-01-01

    Myofibroblasts and extracellular matrix are important components in wound healing. Alpha-smooth muscle actin (α-SMA) is a marker of myofibroblasts. Fibrillin-1 is a major constituent of microfibrils and an extracellular-regulator of TGF-β1, an important cytokine in the transdifferentiation of resident fibroblasts into myofibroblasts. To study the correlation between changes in fibrillin-1 expression and myofibroblast differentiation, we examined alterations in fibrillin-1 and α-SMA expression in organotypic cultures of dental pulp in vitro. Extracted healthy human teeth were cut to 1-mm-thick slices and cultured for 7 days. In intact dental pulp, fibrillin-1 was broadly distributed, and α-SMA was observed in pericytes and vascular smooth muscle cells. After 7 days of culture, immunostaining for fibrillin-1 became faint concomitant with a downregulation in its mRNA levels. Furthermore, fibroblasts, odontoblasts and Schwann cells were immunoreactive for α-SMA with a significant increase in α-SMA mRNA expression. Double immunofluorescence staining was positive for pSmad2/3, central mediators of TGF-β signaling, and α-SMA. The administration of inhibitors for extracellular matrix proteases recovered fibrillin-1 immunostaining; moreover, fibroblasts lost their immunoreactivity for α-SMA along with a downregulation in α-SMA mRNA. These findings suggest that the expression of α-SMA is TGF-β1 dependent, and fibrillin-1 degradation and downregulation might be implicated in the differentiation of myofibroblasts in dental pulp wound healing. PMID:25805839

  17. Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion

    PubMed Central

    Paim, A.; Braghirolli, D.I.; Cardozo, N.S.M.; Pranke, P.; Tessaro, I.C.

    2018-01-01

    Cell adhesion in three-dimensional scaffolds plays a key role in tissue development. However, stem cell behavior in electrospun scaffolds under perfusion is not fully understood. Thus, an investigation was made on the effect of flow rate and shear stress, adhesion time, and seeding density under direct perfusion in polycaprolactone electrospun scaffolds on human dental pulp stem cell detachment. Polycaprolactone scaffolds were electrospun using a solvent mixture of chloroform and methanol. The viable cell number was determined at each tested condition. Cell morphology was analyzed by confocal microscopy after various incubation times for static cell adhesion with a high seeding density. Scanning electron microscopy images were obtained before and after perfusion for the highest flow rate tested. The wall pore shear stress was calculated for all tested flow rates (0.005–3 mL/min). An inversely proportional relationship between adhesion time with cell detachment under perfusion was observed. Lower flow rates and lower seeding densities reduced the drag of cells by shear stress. However, there was an operational limit for the lowest flow rate that can be used without compromising cell viability, indicating that a flow rate of 0.05 mL/min might be more suitable for the tested cell culture in electrospun scaffolds under direct perfusion. PMID:29590258

  18. Effects of fibroblast growth factor-2 on the expression and regulation of chemokines in human dental pulp cells.

    PubMed

    Kim, Young-Suk; Min, Kyung-San; Jeong, Dong-Ho; Jang, Jun-Hyeog; Kim, Hae-Won; Kim, Eun-Cheol

    2010-11-01

    Fibroblast growth factor-2 (FGF-2) participates in both hematopoiesis and osteogenesis; however, the effects of FGF-2 on chemokines during odontoblastic differentiation have not been reported. This study investigated whether human dental pulp cells (HDPCs) treated with FGF-2 could express chemokines during differentiation into odontoblastic cells and sought to identify its underlying mechanism of action. To analyze differentiation, we measured alkaline phosphatase (ALP) activity, calcified nodule formation by alizarin red staining, and marker RNA (mRNA) expression by reverse-transcriptase polymerase chain reaction (RT-PCR). Expression of chemokines, such as interleukin-6 (IL-6), IL-8, monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), and MIP-3α, were evaluated by RT-PCR. ALP activity, the mineralization, and mRNA expression for odontoblastic markers were enhanced by FGF-2 in HDPCs. FGF-2 also up-regulated the expression of IL-6, IL-8, MCP-1, MIP-1α, and MIP-3α mRNAs, which were attenuated by inhibitors of p38, ERK1/2 and p38 MAP kinases, protein kinase C, phosphoinositide-3 kinase, and NF-κB. Taken together, these data suggest that FGF-2 plays a role not only as a differentiation inducing factor in the injury repair processes of pulpal tissue but also as a positive regulator of chemokine expression, which may help in tissue engineering and pulp regeneration using HDPCs. However, the fate of odontoblastic or osteoblastic differentiation, effective local delivery for FGF-2, interaction of chemotatic and odontogenic factors, and other limitations will need to be overcome before a major modality for the treatment of pulp disease. Copyright © 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Pulp regeneration concepts for non-vital teeth: from tissue engineering to clinical approaches.

    PubMed

    Orti, Valérie; Collart-Dutilleul, Pierre-Yves; Piglionico, Sofía Silvia; Pall, Orsolya; Cuisinier, Frédéric; Panayotov, Ivan Vladislavov

    2018-05-04

    Following the basis of tissue engineering (Cells - Scaffold - Bioactive molecules), regenerative endodontic has emerged as a new concept of dental treatment. Clinical procedures have been proposed by endodontic practitioners willing to promote regenerative therapy. Preserving pulp vitality was a first approach. Later procedures aimed to regenerate a vascularized pulp in necrotic root canals. However, there is still no protocol allowing an effective regeneration of necrotic pulp tissue either in immature or mature teeth. This review explore in vitro and preclinical concepts developed during the last decade, especially the potential use of stem cells, bioactive molecules and scaffolds, and makes a comparison with the goals achieved so far in clinical practice. Regeneration of pulp-like tissue has been shown in various experimental conditions. However, the appropriate techniques are currently in a developmental stage. The ideal combination of scaffolds and growth factors to obtain a complete regeneration of the pulp-dentin complex is still unknown. The use of stem cells, especially from pulp origin, sounds promising for pulp regeneration therapy, but it has not been applied so far for clinical endodontics, in case of necrotic teeth. The gap observed between the hope raised from in vitro experiments and the reality of endodontic treatments suggests that clinical success may be achieved without external stem cell application. Therefore, procedures using the concept of cell homing, through evoked bleeding, that permit to recreate a living tissue that mimics the original pulp have been proposed. Perspectives for pulp tissue engineering in a near future include a better control of clinical parameters and pragmatic approach of the experimental results (autologous stem cells from cell homing, controlled release of growth factors). In the coming years, this therapeutic strategy will probably become a clinical reality, even for mature necrotic teeth.

  20. Dental pulp stem cells in regenerative dentistry.

    PubMed

    Casagrande, Luciano; Cordeiro, Mabel M; Nör, Silvia A; Nör, Jacques E

    2011-01-01

    Stem cells constitute the source of differentiated cells for the generation of tissues during development, and for regeneration of tissues that are diseased or injured postnatally. In recent years, stem cell research has grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that span from Alzheimer's disease to cardiac ischemia to bone or tooth loss. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental pulp is considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications. It is known that dental pulp stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. The dental pulp stem cells are highly proliferative. This characteristic facilitates ex vivo expansion and enhances the translational potential of these cells. Notably, the dental pulp is arguably the most accessible source of postnatal stem cells. Collectively, the multipotency, high proliferation rates, and accessibility make the dental pulp an attractive source of mesenchymal stem cells for tissue regeneration. This review discusses fundamental concepts of stem cell biology and tissue engineering within the context of regenerative dentistry.

  1. Effects of Adenosine Triphosphate on Proliferation and Odontoblastic Differentiation of Human Dental Pulp Cells.

    PubMed

    Wang, Wei; Yi, Xiaosong; Ren, Yanfang; Xie, Qiufei

    2016-10-01

    Adenosine 5'-triphosphate (ATP) is a potent signaling molecule that regulates diverse biological activities in cells. Its effects on human dental pulp cells (HDPCs) remain unknown. This study aimed to examine the effects of ATP on proliferation and differentiation of HDPCs. Reverse transcription polymerase chain reaction was performed to explore the mRNA expression of P2 receptor subtypes. Cell Counting Kit-8 test and flow cytometry analysis were used to examine the effects of ATP on proliferation and cell cycle of HDPCs. The effects of ATP on differentiation of HDPCs were examined by using alizarin red S staining, energy-dispersive x-ray analysis, Western blot analysis, and real-time polymerase chain reaction. The purinoceptors P2X3, P2X4, P2X5, P2X7, and all P2Y receptor subtypes were confirmed to present in HDPCs. ATP enhanced HDPC proliferation at 10 μmol/L concentration. However, it inhibited cell proliferation by arresting the cell cycle in G0G1 phase (P < .05 versus control) and induced odontoblastic differentiation, ERK/MAPK activation, and dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) mRNA transcriptions at 800 μmol/L concentration. Suramin, an ATP receptor antagonist, inhibited ERK/MAPK activation and HDPC odontoblastic differentiation (P < .05 versus control). Extracellular ATP activates P2 receptors and downstream signaling events that induce HDPC odontogenic differentiation. Thus, ATP may promote dental pulp tissue healing and repair through P2 signaling. Results provide new insights into the molecular regulation of pulpal wound healing. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Osteo-/odontogenic differentiation of induced mesenchymal stem cells generated through epithelial-mesenchyme transition of cultured human keratinocytes.

    PubMed

    Yi, Jin-Kyu; Mehrazarin, Shebli; Oh, Ju-Eun; Bhalla, Anu; Oo, Jenessa; Chen, Wei; Lee, Min; Kim, Reuben H; Shin, Ki-Hyuk; Park, No-Hee; Kang, Mo K

    2014-11-01

    Revascularization of necrotic pulp has been successful in the resolution of periradicular inflammation; yet, several case studies suggest the need for cell-based therapies using mesenchymal stem cells (MSCs) as an alternative for de novo pulp regeneration. Because the availability of MSCs may be limited, especially in an aged population, the current study reports an alternative approach in generating MSCs from epidermal keratinocytes through a process called epithelial-mesenchymal transition (EMT). We induced EMT in primary normal human epidermal keratinocytes (NHEKs) by transient transfection of small interfering RNA targeting the p63 gene. The resulting cells were assayed for their mesenchymal marker expression, proliferation capacities as a monolayer and in a 3-dimensional collagen scaffold, and differentiation capacities. Transient transfection of p63 small-interfering RNA successfully abolished the expression of endogenous p63 in NHEKs and induced the expression of mesenchymal markers (eg, vimentin and fibronectin), whereas epithelial markers (eg, E-cadherin and involucrin) were lost. The NHEKs exhibiting the EMT phenotype acquired extended replicative potential and an increased telomere length compared with the control cells. Similar to the established MSCs, the NHEKs with p63 knockdown showed attachment onto the 3-dimensional collagen scaffold and underwent progressive proliferation and differentiation. Upon differentiation, these EMT cells expressed alkaline phosphatase activity, osteocalcin, and osteonectin and readily formed mineralized nodules detected by alizarin S red staining, showing osteo-/odontogenic differentiation. The induction of EMT in primary NHEKs by means of transient p63 knockdown allows the generation of induced MSCs from autologous sources. These cells may be used for tissues engineering purposes, including that of dental pulp. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Ectopic Hard Tissue Formation by Odonto/Osteogenically In Vitro Differentiated Human Deciduous Teeth Pulp Stem Cells.

    PubMed

    Kim, Seunghye; Song, Je Seon; Jeon, Mijeong; Shin, Dong Min; Kim, Seong-Oh; Lee, Jae Ho

    2015-07-01

    There have been many attempts to use the pulp tissue from human deciduous teeth for dentin or bone regeneration. The objective of this study was to determine the effects of odonto/osteogenic in vitro differentiation of deciduous teeth pulp stem cells (DTSCs) on their in vivo hard tissue-forming potential. DTSCs were isolated from extracted deciduous teeth using the outgrowth method. These cells were exposed to odonto/osteogenic stimuli for 4 and 8 days (Day 4 and Day 8 groups, respectively), while cells in the control group were cultured in normal medium. The in vitro differentiated DTSCs and the control DTSCs were transplanted subcutaneously into immunocompromised mice with macroporous biphasic calcium phosphate and sacrificed at 8 weeks post-implantation. The effect of odonto/osteogenic in vitro differentiation was evaluated using alkaline phosphatase (ALP) staining and quantitative reverse transcription polymerase chain reaction (RT-PCR). The in vivo effect was evaluated by qualitative RT-PCR, assessment of ALP activity, histologic analysis, and immunohistochemical staining. The amount of hard tissue was greater in Day 4 group than Day 8 group (p = 0.014). However, Day 8 group generated lamellar bone-like structure, which was immunonegative to anti-human dentin sialoprotein with significantly low expression level of DSPP compared with the control group (p = 0.008). This study demonstrates that odonto/osteogenic in vitro differentiation of DTSCs enhances the formation of bone-like tissue, instead of dentin-like tissue, when transplanted subcutaneously using MBCP as a carrier. The odonto/osteogenic in vitro differentiation of DTSCs may be an effective modification that enhances in vivo bone formation by DTSCs.

  4. Comparison of osteo/odontogenic differentiation of human adult dental pulp stem cells and stem cells from apical papilla in the presence of platelet lysate.

    PubMed

    Abuarqoub, Duaa; Awidi, Abdalla; Abuharfeil, Nizar

    2015-10-01

    Human dental pulp cells (DPSCs) and stem cells from apical papilla have been used for the repair of damaged tooth tissues. Human platelet lysate (PL) has been suggested as a substitute for fetal bovine serum (FBS) for large scale expansion of dental stem cells. However, biological effects and optimal concentrations of PL for proliferation and differentiation of human dental stem cells remain to be elucidated. DPSCs and SCAP cells were isolated from impacted third molars of young healthy donors, at the stage of root development and identified by markers using flow cytometry. For comparison the cells were cultured in media containing PL (1%, 5% and 10%) and FBS, with subsequent induction for osteogenic/odontogenic differentiation. The cultures were analyzed for; morphology, growth characteristics, mineralization potential (Alizarin Red method) and differentiation markers using ELISA and real time -polymerase chain reaction (qPCR). The proliferation rates of DPSCs and SCAP significantly increased when cells were treated with 5% PL (7X doubling time) as compared to FBS. 5% PL also enhanced mineralized differentiation of DPSCs and SCAP, as indicated by the measurement of alkaline phosphatase activity, osteocalcin and osteopontin, calcium deposition and q-PCR. Our findings suggest that using 5% platelet lysate, proliferation and osteo/odontogenesis of DPSCs and SCAP for a short period of time (15 days), was significantly improved. This may imply its use as an optimum concentration for expansion of dental stem cells in bone regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Paracrine-Mediated Neuroprotection and Neuritogenesis of Axotomised Retinal Ganglion Cells by Human Dental Pulp Stem Cells: Comparison with Human Bone Marrow and Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Mead, Ben; Logan, Ann; Berry, Martin

    2014-01-01

    We have investigated and compared the neurotrophic activity of human dental pulp stem cells (hDPSC), human bone marrow-derived mesenchymal stem cells (hBMSC) and human adipose-derived stem cells (hAMSC) on axotomised adult rat retinal ganglion cells (RGC) in vitro in order to evaluate their therapeutic potential for neurodegenerative conditions of RGC. Using the transwell system, RGC survival and length/number of neurites were quantified in coculture with stem cells in the presence or absence of specific Fc-receptor inhibitors to determine the role of NGF, BDNF, NT-3, VEGF, GDNF, PDGF-AA and PDGF-AB/BB in stem cell-mediated RGC neuroprotection and neuritogenesis. Conditioned media, collected from cultured hDPSC/hBMSC/hAMSC, were assayed for the secreted growth factors detailed above using ELISA. PCR array determined the hDPSC, hBMSC and hAMSC expression of genes encoding 84 growth factors and receptors. The results demonstrated that hDPSC promoted significantly more neuroprotection and neuritogenesis of axotomised RGC than either hBMSC or hAMSC, an effect that was neutralized after the addition of specific Fc-receptor inhibitors. hDPSC secreted greater levels of various growth factors including NGF, BDNF and VEGF compared with hBMSC/hAMSC. The PCR array confirmed these findings and identified VGF as a novel potentially therapeutic hDPSC-derived neurotrophic factor (NTF) with significant RGC neuroprotective properties after coculture with axotomised RGC. In conclusion, hDPSC promoted significant multi-factorial paracrine-mediated RGC survival and neurite outgrowth and may be considered a potent and advantageous cell therapy for retinal nerve repair. PMID:25290916

  6. Stimulation of interleukin-1beta-independent interleukin-6 production in human dental pulp cells by lipopolysaccharide.

    PubMed

    Hosoya, S; Matsushima, K; Ohbayashi, E; Yamazaki, M; Shibata, Y; Abiko, Y

    1996-12-01

    Dental pulpal infection is most commonly caused by extensive dental caries. A principal driving force behind pulpal disease response appears to lie in the immune system's response to bacteria. However, the production of interleukin (IL)-1beta and IL-6 in human dental pulp (HDP) cells in response to lipopolysaccharide (LPS) has not been well characterized. We examined IL-1beta and IL-6 production in HDP cells by challenging with LPS from Porphyromonas endodontalis, which is a Gram-negative bacteria found in root canals. Our results presented here showed that when HDP cells were stimulated by LPS, the production of IL-6 always preceded that of IL-1beta. Since the IL-6 production was observed even in the presence of the IL-1beta receptor antagonist, we concluded IL-6 production was independent of the IL-1beta molecule in LPS-stimulated HDP cells. This idea was further supported by the results obtained from RT-PCR experiments, in which IL-6 mRNA, but not IL-1beta mRNA, was present in the RNA preparation isolated from the early stage of cells.

  7. Human Dental Pulp Stem Cells Are More Effective Than Human Bone Marrow-Derived Mesenchymal Stem Cells in Cerebral Ischemic Injury.

    PubMed

    Song, Miyeoun; Lee, Jae-Hyung; Bae, Jinhyun; Bu, Youngmin; Kim, Eun-Cheol

    2017-06-09

    We compared the therapeutic effects and mechanism of transplanted human dental pulp stem cells (hDPSCs) and human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in a rat stroke model and an in vitro model of ischemia. Rats were intravenously injected with hDPSCs or hBM-MSCs 24 h after middle cerebral artery occlusion (MCAo), and both groups showed improved functional recovery and reduced infarct volume versus control rats, but the hDPSC group showed greater reduction in infarct volume than the hBM-MSC group. The positive area for the endothelial cell marker was greater in the lesion boundary areas in the hDPSC group than in the hBM-MSC group. Administration of hDPSCs to rats with stroke significantly decreased reactive gliosis, as evidenced by the attenuation of MCAo-induced GFAP+/nestin+ and GFAP+/Musashi-1+ cells, compared with hBM-MSCs. In vivo findings were confirmed by in vitro data illustrating that hDPSCs showed superior neuroprotective, migratory, and in vitro angiogenic effects in oxygen-glucose deprivation (OGD)-injured human astrocytes (hAs) versus hBM-MSCs. Comprehensive comparative bioinformatics analyses from hDPSC- and hBM-MSC-treated in vitro OGD-injured hAs were examined by RNA sequencing technology. In gene ontology and KEGG pathway analyses, significant pathways in the hDPSC-treated group were the MAPK and TGF-β signaling pathways. Thus, hDPSCs may be a better cell therapy source for ischemic stroke than hBM-MSCs.

  8. Age-related Changes in the Alkaline Phosphatase Activity of Healthy and Inflamed Human Dental Pulp.

    PubMed

    Aslantas, Eda E; Buzoglu, Hatice Dogan; Karapinar, Senem Pinar; Cehreli, Zafer C; Muftuoglu, Sevda; Atilla, Pergin; Aksoy, Yasemin

    2016-01-01

    Alkaline phosphatase (ALP) plays an important role in inducing mineralization events in the dental pulp. This study investigated and compared the ALP levels in healthy and inflamed pulp in young and old human pulp. Tissue samples were collected from young (<30 years) and old (>60 years) donors. In both age groups, healthy human pulp (n = 18) were collected from extracted wisdom teeth. For reversible and irreversible pulpitis, pulp samples (n = 18 each) were obtained during endodontic treatment. ALP activity was assessed by spectrophotometry and immunhistochemistry. Regardless of age, reversible pulpitis group samples showed a slight elevation in ALP activity compared with normal healthy pulp. In elderly patients, ALP expression with irreversible pulpitis was significantly higher than those with a healthy pulp (P < .05). In the hyperemic state, both the young and old pulp shows a slight increase in ALP activity, whereas in irreversible pulpitis, only the old pulp shows significantly elevated ALP levels. Such an increase may trigger calcification events, which may eventually cause difficulties in endodontic treatment procedures in elderly individuals. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Small Molecules Affect Human Dental Pulp Stem Cell Properties Via Multiple Signaling Pathways

    PubMed Central

    Al-Habib, Mey; Yu, Zongdong

    2013-01-01

    One fundamental issue regarding stem cells for regenerative medicine is the maintenance of stem cell stemness. The purpose of the study was to test whether small molecules can enhance stem cell properties of mesenchymal stem cells (MSCs) derived from human dental pulp (hDPSCs), which have potential for multiple clinical applications. We identified the effects of small molecules (Pluripotin (SC1), 6-bromoindirubin-3-oxime and rapamycin) on the maintenance of hDPSC properties in vitro and the mechanisms involved in exerting the effects. Primary cultures of hDPSCs were exposed to optimal concentrations of these small molecules. Treated hDPSCs were analyzed for their proliferation, the expression levels of pluripotent and MSC markers, differentiation capacities, and intracellular signaling activations. We found that small molecule treatments decreased cell proliferation and increased the expression of STRO-1, NANOG, OCT4, and SOX2, while diminishing cell differentiation into odonto/osteogenic, adipogenic, and neurogenic lineages in vitro. These effects involved Ras-GAP-, ERK1/2-, and mTOR-signaling pathways, which may preserve the cell self-renewal capacity, while suppressing differentiation. We conclude that small molecules appear to enhance the immature state of hDPSCs in culture, which may be used as a strategy for adult stem cell maintenance and extend their capacity for regenerative applications. PMID:23573877

  10. The synergistic effects of Chinese herb and injectable calcium silicate/β-tricalcium phosphate composite on an osteogenic accelerator in vitro.

    PubMed

    Huang, Ming-Hsien; Kao, Chia-Tze; Chen, Yi-Wen; Hsu, Tuan-Ti; Shieh, Den-En; Huang, Tsui-Hsien; Shie, Ming-You

    2015-04-01

    This study investigates the physicochemical and biological effects of traditional Chinese medicines on the β-tricalcium phosphate (β-TCP)/calcium silicate (CS) composites of bone cells using human dental pulp cell. CS is an osteoconductive and bioactive material. For this research we have combined β-TCP and CS and check its effectiveness, a series of β-TCP/CS composites with different ratios of Xu Duan (XD) were prepared to make new bioactive and biodegradable biocomposites for bone repair. XD has been used in Traditional Chinese Medicine for hundreds of years as an antiosteoporosis, tonic and antiaging agent for the therapy of low back pain, traumatic hematoma, threatened abortion and bone fractures. Formation of bone-like apatite, the diametral tensile strength, and weight loss of composites were considered before and after immersion in simulated body fluid (SBF). In addition, we also examined the effects of XD released from β-TCP/CS composites and in vitro human dental pulp cell (hDPCs) and studied its behavior. The results show the XD-contained paste did not give any demixing when the weight ratio of XD increased to 5-10 % due to the filter-pressing effect during extrusion through the syringe. After immersion in SBF, the microstructure image showed a dense bone-like apatite layer covered on the β-TCP/CS/XD composites. In vitro cell experiments shows that the XD-rich composites promote human dental pulp cells (hDPCs) proliferation and differentiation. However, when the XD quantity in the composite is more than 5 %, the amount of cells and osteogenesis protein of hDPCs were stimulated by XD released from β-TCP/CS composites. The combination of XD in degradation of β-TCP and osteogenesis of CS gives strong reason to believe that these calcium-based composite cements may prove to be promising bone repair materials.

  11. Cellular response of pulp fibroblast to single or multiple photobiomodulation applications

    NASA Astrophysics Data System (ADS)

    Fernandes, Amanda; Lourenço Neto, Natalino; Teixeira Marques, Nadia Carolina; Lourenço Ribeiro Vitor, Luciana; Tavares Oliveira Prado, Mariel; Cardoso Oliveira, Rodrigo; Moreira Machado, Maria Aparecida Andrade; Marchini Oliveira, Thais

    2018-06-01

    This study aimed to evaluate in vitro the effects of single or multiple photobiomodulation (PBM) applications on the viability and proliferation of pulp fibroblasts. Pulp fibroblasts from human deciduous teeth were obtained from a biorepository, plated into 96-well plates, and irradiated according to the experimental groups. At 24 h, 48 h, and 72 h after irradiation, cell viability and proliferation were assessed through MTT and Crystal Violet assays, respectively. The intragroup comparison revealed statistically significant differences for 2.5 J cm‑2 (3×) with increasing viability at 72 h over 48 h (p  =  0.027). The intergroup analysis showed a greater viability of the multiple PBM applications 2.5 J cm‑2 (3×) over the single application 7.5 J cm‑2 (1×) at 72 h. The application of 5 J cm‑2 (1×) exhibited greater proliferation than the application of 7.5 J cm‑2 (1×), 2.5 J cm‑2 (2×) and 2.5 J cm‑2 (3×). Single or multiple PBM applications demonstration different stimulatory effects on pulp fibroblast. The results show that the group submitted to multiple irradiation presented significantly higher cell viability than the groups with single irradiation at 72 h. However, the photobiomodulation therapy with single irradiations was more effective on cell proliferation at 24 h.

  12. Three-dimensional culture of dental pulp stem cells in direct contact to tricalcium silicate cements.

    PubMed

    Widbiller, M; Lindner, S R; Buchalla, W; Eidt, A; Hiller, K-A; Schmalz, G; Galler, K M

    2016-03-01

    Calcium silicate cements are biocompatible dental materials applicable in contact with vital tissue. The novel tricalcium silicate cement Biodentine™ offers properties superior to commonly used mineral trioxide aggregate (MTA). Objective of this study was to evaluate its cytocompatibility and ability to induce differentiation and mineralization in three-dimensional cultures of dental pulp stem cells after direct contact with the material. Test materials included a new tricalcium silicate (Biodentine™, Septodont, Saint-Maur-des-Fossés, France), MTA (ProRoot® MTA, DENSPLY Tulsa Dental Specialities, Johnson City, TN, USA), glass ionomer (Ketac™ Molar Aplicap™, 3M ESPE, Seefeld, Germany), human dentin disks and polystyrene. Magnetic activated cell sorting for to the surface antigen STRO-1 was performed to gain a fraction enriched with mesenchymal stem cells. Samples were allowed to set and dental pulp stem cells in collagen carriers were placed on top. Scanning electron microscopy of tricalcium silicate cement surfaces with and without cells was conducted. Cell viability was measured for 14 days by MTT assay. Alkaline phosphatase activity was evaluated (days 3, 7, and 14) and expression of mineralization-associated genes (COL1A1, ALP, DSPP, and RUNX2) was quantified by real-time quantitative PCR. Nonparametric statistical analysis for cell viability and alkaline phosphatase data was performed to compare different materials as well as time points (Mann-Whitney U test, α = 0.05). Cell viability was highest on tricalcium silicate cement, followed by MTA. Viability on glass ionomer cement and dentin disks was significantly lower. Alkaline phosphatase activity was lower in cells on new tricalcium silicate cement compared to MTA, whereas expression patterns of marker genes were alike. Increased cell viability and similar levels of mineralization-associated gene expression in three-dimensional cell cultures on the novel tricalcium silicate cement and mineral trioxide aggregate indicate that the material is cytocompatible and bioactive. The tested new tricalcium silicate cement confirms its suitability as an alternative to MTA in vital pulp therapy.

  13. Synergistic cytotoxic action of vitamin C and vitamin K3.

    PubMed

    Zhang, W; Negoro, T; Satoh, K; Jiang, Y; Hashimoto, K; Kikuchi, H; Nishikawa, H; Miyata, T; Yamamoto, Y; Nakano, K; Yasumoto, E; Nakayachi, T; Mineno, K; Satoh, T; Sakagami, H

    2001-01-01

    We investigated the combination effect of sodium ascorbate (vitamin C) and menadione (vitamin K3) on the viability of various cultured cells. Human oral squamous cell carcinoma (HSC-2, HSC-3) and human promyelocytic leukemia (HL-60) cells were more sensitive to these vitamins as compared to normal cells (human gingival fibroblast HGF, human periodontal ligament fibroblast HPLF, human pulp cell HPC). The combination of vitamin C and vitamin K3 produced synergistic cytotoxicity against all these 6 cell lines. Treatment with vitamin C or vitamin K3, or their combination, induced internucleosomal DNA fragmentation only in HL-60 cells, but not in the oral tumor cell lines (HSC-2, HSC-3, HSG). ESR spectroscopy showed that vitamins C and K3 produce radicals under alkaline conditions and that the combination of these two vitamins synergistically enhanced their respective radical intensities.

  14. Expression and purification recombinant human dentin sialoprotein in Escherichia coli and its effects on human dental pulp cells.

    PubMed

    Yun, Ye-Rang; Kim, Hae-Won; Kang, Wonmo; Jeon, Eunyi; Lee, Sujin; Lee, Hye-Young; Kim, Cheol-Hwan; Jang, Jun-Hyeog

    2012-05-01

    Dentin sialoprotein (DSP) is cleaved from dentin sialophosphoprotein (DSPP) and most abundant dentinal non-collagenous proteins in dentin. DSP is believed to participate in differentiation and mineralization of cells. In this study, we first constructed recombinant human DSP (rhDSP) in Escherichia coli (E. coli) and investigated its odontoblastic differentiation effects on human dental pulp cells (hDPCs). Cell adhesion activity was measured by crystal violet assay and cell proliferation activity was measured by MTT assay. To assess mineralization activity of rhDSP, Alizarin Red S staining was performed. In addition, the mRNA levels of collagen type І (Col І), alkaline phosphatase (ALP), and osteocalcin (OCN) were measured due to their use as mineralization markers for odontoblast-/osteoblast-like differentiation of hDPCs. The obtained rhDSP in E. coli was approximately identified by SDS-PAGE and Western blot. Initially, rhDSP significantly enhanced hDPCs adhesion activity and proliferation (p<0.05). In Alizarin Red S staining, stained hDPCs increased in a time-dependent manner. This odontoblastic differentiation activity was also verified through mRNA levels of odontoblast-related markers. Here, we first demonstrated that rhDSP may be an important regulatory ECM in determining the hDPCs fate including cell adhesion, proliferation, and odontoblastic differentiation activity. These findings indicate that rhDSP can induce growth and differentiation on hDPCs, leading to improve tooth repair and regeneration. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. 10(-7)  m 17β-oestradiol enhances odonto/osteogenic potency of human dental pulp stem cells by activation of the NF-κB pathway.

    PubMed

    Wang, Y; Zheng, Y; Wang, Z; Li, J; Wang, Z; Zhang, G; Yu, J

    2013-12-01

    Oestrogen has been proven to significantly enhance osteogenic potency, while oestrogen deficiency usually leads to impaired osteogenic differentiation of mesenchymal stem cells. However, little is known concerning direct effects of oestrogen on differentiation of human dental pulp stem cells (DPSCs). In this study, human DPSCs were isolated and treated with 10(-7)  m 17β-oestradiol (E2). Alkaline phosphatase (ALP) assay and alizarin red staining were performed. Alkaline phosphatase and alizarin red showed that E2 treatment significantly enhanced ALP activity and mineralization ability of DPSCs, but had no effect on cell proliferation. Real-time RT-PCR and western blot assay demonstrated that odonto/osteogenic markers (ALP, RUNX2/RUNX2, OSX/OSX, OCN/OCN and DSPP/DSP) were significantly upregulated in the cells after E2 treatment. Moreover, phosphorylation of cytoplasmic IκBα/P65 and expression of nuclear P65 were enhanced in a time-dependent manner following E2 treatment, suggesting activation of NF-κB signaling. Conversely, inhibition of the NF-κB pathway suppressed E2-mediated upregulation of odonto/osteogenic markers, indicating that the NF-κB pathway was pivotal for E2-mediated differentiation. These findings provide evidence that 10(-7)  m 17β-oestradiol promoted odonto/osteogenic differentiation of human DPSCs via activation of the NF-κB signaling pathway. © 2013 The Authors. Cell Proliferation published by John Wiley & Sons Ltd.

  16. Highly Efficient In Vitro Reparative Behaviour of Dental Pulp Stem Cells Cultured with Standardised Platelet Lysate Supplementation.

    PubMed

    Marrazzo, Pasquale; Paduano, Francesco; Palmieri, Francesca; Marrelli, Massimo; Tatullo, Marco

    2016-01-01

    Dental pulp is an accessible source of multipotent mesenchymal stromal cells (MSCs). The perspective role of dental pulp stem cells (DPSCs) in regenerative medicine demands an in vitro expansion and in vivo delivery which must deal with the safety issues about animal serum, usually required in cell culture practice. Human platelet lysate (PL) contains autologous growth factors and has been considered as valuable alternative to fetal bovine serum (FBS) in cell cultures. The optimum concentration to be added of such supplement is highly dependent on its preparation whose variability limits comparability of results. By in vitro experiments, we aimed to evaluate a standardised formulation of pooled PL. A low selected concentration of PL (1%) was able to support the growth and maintain the viability of the DPSCs. The use of PL in cell cultures did not impair cell surface signature typically expressed by MSCs and even upregulated the transcription of Sox2. Interestingly, DPSCs cultured in presence of PL exhibited a higher healing rate after injury and are less susceptible to toxicity mediated by exogenous H 2 O 2 than those cultured with FBS. Moreover, PL addition was shown as a suitable option for protocols promoting osteogenic and chondrogenic differentiation of DPSCs. Taken together, our results indicated that PL is a valid substitute of FBS to culture and differentiate DPSCs for clinical-grade use.

  17. Highly Efficient In Vitro Reparative Behaviour of Dental Pulp Stem Cells Cultured with Standardised Platelet Lysate Supplementation

    PubMed Central

    Palmieri, Francesca; Marrelli, Massimo

    2016-01-01

    Dental pulp is an accessible source of multipotent mesenchymal stromal cells (MSCs). The perspective role of dental pulp stem cells (DPSCs) in regenerative medicine demands an in vitro expansion and in vivo delivery which must deal with the safety issues about animal serum, usually required in cell culture practice. Human platelet lysate (PL) contains autologous growth factors and has been considered as valuable alternative to fetal bovine serum (FBS) in cell cultures. The optimum concentration to be added of such supplement is highly dependent on its preparation whose variability limits comparability of results. By in vitro experiments, we aimed to evaluate a standardised formulation of pooled PL. A low selected concentration of PL (1%) was able to support the growth and maintain the viability of the DPSCs. The use of PL in cell cultures did not impair cell surface signature typically expressed by MSCs and even upregulated the transcription of Sox2. Interestingly, DPSCs cultured in presence of PL exhibited a higher healing rate after injury and are less susceptible to toxicity mediated by exogenous H2O2 than those cultured with FBS. Moreover, PL addition was shown as a suitable option for protocols promoting osteogenic and chondrogenic differentiation of DPSCs. Taken together, our results indicated that PL is a valid substitute of FBS to culture and differentiate DPSCs for clinical-grade use. PMID:27774106

  18. Biocompatibility and bioactivity of calcium silicate-based endodontic sealers in human dental pulp cells.

    PubMed

    Mestieri, Leticia Boldrin; Gomes-Cornélio, Ana Lívia; Rodrigues, Elisandra Márcia; Salles, Loise Pedrosa; Bosso-Martelo, Roberta; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mário

    2015-10-01

    Mineral Trioxide Aggregate (MTA) is a calcium silicate-based material. New sealers have been developed based on calcium silicate as MTA Fillapex and MTA Plus. The aim of this study was to evaluate biocompatibility and bioactivity of these two calcium silicate-based sealers in culture of human dental pulp cells (hDPCs). The cells were isolated from third molars extracted from a 16-year-old patient. Pulp tissue was sectioned into fragments with approximately 1 mm3 and kept in supplemented medium to obtain hDPCs adherent cultures. Cell characterization assays were performed to prove the osteogenic potential. The evaluated materials were: MTA Plus (MTAP); MTA Fillapex (MTAF) and FillCanal (FC). Biocompatibility was evaluated with MTT and Neutral Red (NR) assays, after hDPCs exposure for 24 h to different dilutions of each sealer extract (1:2, 1:3 and 1:4). Unexposed cells were the positive control (CT). Bioactivity was assessed by alkaline phosphatase (ALP) enzymatic assay in cells exposed for one and three days to sealer extracts (1:4 dilution). All data were analyzed by ANOVA and Tukey post-test (p≤0.05%). MTT and NR results showed suitable cell viability rates for MTAP at all dilutions (90-135%). Cells exposed to MTAF and FC (1:2 and 1:4 dilutions) showed significant low viability rate when compared to CT in MTT. The NR results demonstrated cell viability for all materials tested. In MTAP group, the cells ALP activity was similar to CT in one and three days of exposure to the material. MTAF and FC groups demonstrated a decrease in ALP activity when compared to CT at both periods of cell exposure. The hDPCs were suitable for the evaluation of new endodontic materialsin vitro. MTAP may be considered a promising material for endodontic treatments.

  19. Porous microscaffolds for 3D culture of dental pulp mesenchymal stem cells.

    PubMed

    Bhuptani, Ronak S; Patravale, Vandana B

    2016-12-30

    The collective power of stem cells due to their evident advantages is incessantly investigated in regenerative medicine to be the next generation exceptional remedy for tissue regeneration and treatment of diseases. Stem cells are highly sensitive and a 3D culture environment is a requisite for its successful transplantation and integration with tissues. Porous microscaffolds can create a 3D microenvironment for growing stems cells, controlling their fate both in vitro and in vivo. In the present study, interconnected porous PLGA microscaffolds were fabricated, characterized and employed to propagate human dental pulp mesenchymal stem cells (DPMSCs) in vitro. The porous topography was investigated by scanning electron microscopy and the pore size was controlled by fabrication conditions such as the concentration of porogen. DPMSCs were cultured on microscaffolds and were evaluated for their morphology, attachment, proliferation, cell viability via MTT and molecular expression (RT-PCR). DPMSCs were adequately proliferated and adhered over the microscaffolds forming a 3D cell-microscaffold construct. The average number of DPMSCs grown on PLGA microscaffolds was significantly higher than monolayer 2D culture during 5th and 7th day. Moreover, cell viability and gene expression results together corroborated that microscaffolds maintained the viability, stemness and plasticity of the cultured dental pulp mesenchymal stem cells. The novel porous microscaffold developed acts as promising scaffold for 3D culture and survival and transplantation of stem cells for tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Cellular Responses in Human Dental Pulp Stem Cells Treated with Three Endodontic Materials

    PubMed Central

    Ibañez-Cabellos, José Santiago; de Cutanda, Sergio Bañuls-Sánchez; Berenguer-Pascual, Ester; Beltrán-García, Jesús; García-López, Eva; Pallardó, Federico V.; García-Giménez, José Luis; Pallarés-Sabater, Antonio; Zarzosa-López, Ignacio; Monterde, Manuel

    2017-01-01

    Human dental pulp stem cells (HDPSCs) are of special relevance in future regenerative dental therapies. Characterizing cytotoxicity and genotoxicity produced by endodontic materials is required to evaluate the potential for regeneration of injured tissues in future strategies combining regenerative and root canal therapies. This study explores the cytotoxicity and genotoxicity mediated by oxidative stress of three endodontic materials that are widely used on HDPSCs: a mineral trioxide aggregate (MTA-Angelus white), an epoxy resin sealant (AH-Plus cement), and an MTA-based cement sealer (MTA-Fillapex). Cell viability and cell death rate were assessed by flow cytometry. Oxidative stress was measured by OxyBlot. Levels of antioxidant enzymes were evaluated by Western blot. Genotoxicity was studied by quantifying the expression levels of DNA damage sensors such as ATM and RAD53 genes and DNA damage repair sensors such as RAD51 and PARP-1. Results indicate that AH-Plus increased apoptosis, oxidative stress, and genotoxicity markers in HDPSCs. MTA-Fillapex was the most cytotoxic oxidative stress inductor and genotoxic material for HDPSCs at longer times in preincubated cell culture medium, and MTA-Angelus was less cytotoxic and genotoxic than AH-Plus and MTA-Fillapex at all times assayed. PMID:28751918

  1. Basic Fibroblast Growth Factor Regulates Gene and Protein Expression Related to Proliferation, Differentiation, and Matrix Production of Human Dental Pulp Cells.

    PubMed

    Chang, Ya-Ching; Chang, Mei-Chi; Chen, Yi-Jane; Liou, Ji-Uei; Chang, Hsiao-Hua; Huang, Wei-Ling; Liao, Wan-Chuen; Chan, Chiu-Po; Jeng, Po-Yuan; Jeng, Jiiang-Huei

    2017-06-01

    Basic fibroblast growth factor (bFGF) plays differential effects on the proliferation, differentiation, and extracellular matrix turnover in various tissues. However, limited information is known about the effect of bFGF on dental pulp cells. The purposes of this study were to investigate whether bFGF influences the cell differentiation and extracellular matrix turnover of human dental pulp cells (HDPCs) and the related gene and protein expression as well as the role of the mitogen-activated protein kinase (MEK)/extracellular-signal regulated kinase (ERK) signaling pathway. The expression of fibroblast growth factor receptors (FGFRs) in HDPCs was also studied. The expression of FGFR1 and FGFR2 in HDPCs was investigated by reverse-transcription polymerase chain reaction. HDPCs were treated with different concentrations of bFGF. Cell proliferation was evaluated using the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Cell differentiation was evaluated using alkaline phosphatase (ALP) staining. Changes in messenger expression of cyclin B1 and tissue inhibitor of metalloproteinase (TIMP) 1 were determined by reverse-transcription polymerase chain reaction. Changes in protein expression of cdc2, TIMP-1, TIMP-2, and collagen I were determined by Western blotting. U0126 was used to clarify the role of MEK/ERK signaling. HDPCs expressed both FGFR1 and FGFR2. Cell viability was stimulated by 50-250 ng/mL bFGF. The expression and enzyme activities of ALP were inhibited by 10-500 ng/mL bFGF. At similar concentrations, bFGF stimulates cdc2, cyclin B1, and TIMP-1 messenger RNA and protein expression. bFGF showed little effect on TIMP-2 and partly inhibited collagen I expression of pulp cells. U0126 (a MEK/ERK inhibitor) attenuated the bFGF-induced increase of cyclin B1, cdc2, and TIMP-1. bFGF may be involved in pulpal repair and regeneration by activation of FGFRs to regulate cell growth; stimulate cdc2, cyclin B1, and TIMP-1 expression; and inhibit ALP. These events are partly associated with MEK/ERK signaling. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Stem cell research: applicability in dentistry.

    PubMed

    Mathur, Shivani; Chopra, Rahul; Pandit, I K; Srivastava, Nikhil; Gugnani, Neeraj

    2014-01-01

    In the face of extraordinary advances in the prevention, diagnosis, and treatment of human diseases, the inability of most tissues and organs to repair and regenerate after damage is a problem that needs to be solved. Stem cell research is being pursued in the hope of achieving major medical breakthroughs. Scientists are striving to create therapies that rebuild or replace damaged cells with tissues grown from stem cells that will offer hope to people suffering from various ailments. Regeneration of damaged periodontal tissue, bone, pulp, and dentin is a problem that dentists face today. Stem cells present in dental pulp, periodontal ligament, and alveolar bone marrow have the potential to repair and regenerate teeth and periodontal structures. These stem cells can be harvested from dental pulp, periodontal ligament, and/or alveolar bone marrow; expanded; embedded in an appropriate scaffold; and transplanted back into a defect to regenerate bone and tooth structures. These cells have the potential to regenerate dentin, periodontal ligament, and cementum and can also be used to restore bone defects. The kind of scaffold, the source of cells, the type of in vitro culturing, and the type of surgical procedure to be used all require careful consideration. The endeavor is clearly multidisciplinary in nature, and the practicing dental surgeon has a critical role in it. Playing this role in the most effective way requires awareness of the huge potential associated with the use of stem cells in a clinical setting, as well as a proper understanding of the related problems.

  3. Vascular status in human primary and permanent teeth in health and disease.

    PubMed

    Rodd, Helen D; Boissonade, Fiona M

    2005-04-01

    The present study sought to compare the vascular status of human primary teeth with that of human permanent teeth, and to determine whether caries or painful pulpitis was associated with changes in vascularity. Coronal pulps were removed from 62 primary and 62 permanent mandibular molars with a known pain history. Teeth were categorized as intact, moderately carious or grossly carious. Pulp sections were labelled with Ulex europaeus I lectin (UEIL), which is a marker of human vascular endothelium. Image analysis was then used to quantify the percentage area of UEIL-labelled tissue (vascularity) and the number of blood vessels present within three regions: the pulp horn, the subodontoblastic region, and the mid-coronal pulp. Only the mid-coronal region of the primary tooth pulp was found to be significantly more vascular than the corresponding area of the permanent tooth pulp. Both dentitions showed a significant increase in vascularity within the pulp horn region with caries progression, but this was not accompanied by an increase in vessel number. There was no correlation between vascularity and pain symptoms. These findings suggest that the primary tooth pulp is more vascular than its successor within the mid-coronal region. However, the functional and clinical significance of this finding remains speculative.

  4. Effects of TGF-β1 on plasminogen activation in human dental pulp cells: Role of ALK5/Smad2, TAK1 and MEK/ERK signalling.

    PubMed

    Chang, Mei-Chi; Chang, Hsiao-Hua; Lin, Po-Shuan; Huang, Yu-An; Chan, Chiu-Po; Tsai, Yi-Ling; Lee, Shen-Yang; Jeng, Po-Yuan; Kuo, Han-Yueh; Yeung, Sin-Yuet; Jeng, Jiiang-Huei

    2018-04-01

    Transforming growth factor-β1 (TGF-β1) plays an important role in the pulpal repair and dentinogenesis. Plasminogen activation (PA) system regulates extracellular matrix turnover. In this study, we investigated the effects of TGF-β1 on PA system of dental pulp cells and its signalling pathways. Dental pulp cells were treated with different concentrations of TGF-β1. MTT assay, reverse transcription-polymerase chain reaction, Western blotting and enzyme-linked immunosorbant assay (ELISA) were used to detect the effect of TGF-β1 on cell viability, mRNA and protein expression of urokinase-type plasminogen activator (uPA), uPA receptor (uPAR), plasminogen activator inhibitor-1 (PAI-1) as well as their secretion. The phosphorylation of Smad2 and TAK1 was analysed by Pathscan ELISA or Western blotting. Cells were pretreated with SB431542 (ALK5/Smad2/3 inhibitor), 5z-7-oxozeaenol (TAK1 inhibitor) and U0126 (MEK/ERK inhibitor) for examining the related signalling. TGF-β1 slightly inhibited cell growth that was reversed by SB431542. TGF-β1 upregulated both RNA and protein expression of PAI-1 and uPAR, whereas it downregulated uPA expression. Accordingly, TGF-β1 stimulated PAI-1 and soluble uPAR (suPAR) secretion of pulp cells, whereas uPA secretion was inhibited. TGF-β1 induced the phosphorylation of Smad2 and TAK1. In addition, SB431542, 5z-7-oxozeaenol and U0126 attenuated the TGF-β1-induced secretion of PAI-1 and suPAR. These results indicate that TGF-β1 is possibly involved in the repair/regeneration and inflammatory processes of dental pulp via regulation of PAI-1, uPA and uPAR. These effects of TGF-β1 are related to activation of ALK5/Smad2, TAK1 and MEK/ERK signalling pathways. Clarifying the signal transduction for the effects of TGF-β1 is helpful for pulpo-dentin regeneration and tissue engineering. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Evaluation of an experimental rat model for comparative studies of bleaching agents

    PubMed Central

    Cintra, Luciano Tavares Angelo; Benetti, Francine; Ferreira, Luciana Lousada; Rahal, Vanessa; Ervolino, Edilson; Jacinto, Rogério de Castilho; Gomes, João Eduardo; Briso, André Luiz Fraga

    2016-01-01

    ABSTRACT Dental materials, in general, are tested in different animal models prior to their clinical use in humans, except for bleaching agents. Objectives To evaluate an experimental rat model for comparative studies of bleaching agents by investigating the influence of different concentrations and application times of H2O2 gel in the pulp tissue during in-office bleaching of rats’ vital teeth. Material and methods The right and left maxillary molars of 50 Wistar rats were bleached with 20% and 35% H2O2 gels, respectively, for 5, 10, 15, 30, or 45 min (n=10 rats/group). Ten animals (control) were untreated. The rats were killed after 2 or 30 days, and the maxillae were examined by light microscopy. Inflammation was evaluated by histomorphometric analysis with inflammatory cell counting in the coronal and radicular thirds of the pulp. The counting of fibroblasts was also performed. Scores were attributed to the odontoblastic layer and to vascular changes. The tertiary dentin area and the pulp chamber central area were histomorphometrically measured. Data were compared by the analysis of variance and the Kruskal-Wallis test (p<0.05). Results After 2 days, the amount of inflammatory cells increased in the occlusal third of the coronal pulp until the time of 15 min for both concentrations of bleaching gels. In 30 and 45 min groups of each concentration, the number of inflammatory cells decreased along with the appearance of necrotic areas. After 30 days, a reduction in the pulp chamber central area and an enlargement of tertiary dentin area were observed without the detection of inflammation areas. Conclusion The rat model of extra coronal bleaching showed to be adequate for bleaching protocols studies, as it was possible to observe alterations in the pulp tissues and in the tooth structure caused by different concentrations and periods of application of bleaching agents. PMID:27008262

  6. Evaluation of an experimental rat model for comparative studies of bleaching agents.

    PubMed

    Cintra, Luciano Tavares Angelo; Benetti, Francine; Ferreira, Luciana Lousada; Rahal, Vanessa; Ervolino, Edilson; Jacinto, Rogério de Castilho; Gomes Filho, João Eduardo; Briso, André Luiz Fraga

    2016-01-01

    Dental materials, in general, are tested in different animal models prior to their clinical use in humans, except for bleaching agents. To evaluate an experimental rat model for comparative studies of bleaching agents by investigating the influence of different concentrations and application times of H2O2 gel in the pulp tissue during in-office bleaching of rats' vital teeth. The right and left maxillary molars of 50 Wistar rats were bleached with 20% and 35% H2O2 gels, respectively, for 5, 10, 15, 30, or 45 min (n=10 rats/group). Ten animals (control) were untreated. The rats were killed after 2 or 30 days, and the maxillae were examined by light microscopy. Inflammation was evaluated by histomorphometric analysis with inflammatory cell counting in the coronal and radicular thirds of the pulp. The counting of fibroblasts was also performed. Scores were attributed to the odontoblastic layer and to vascular changes. The tertiary dentin area and the pulp chamber central area were histomorphometrically measured. Data were compared by the analysis of variance and the Kruskal-Wallis test (p<0.05). After 2 days, the amount of inflammatory cells increased in the occlusal third of the coronal pulp until the time of 15 min for both concentrations of bleaching gels. In 30 and 45 min groups of each concentration, the number of inflammatory cells decreased along with the appearance of necrotic areas. After 30 days, a reduction in the pulp chamber central area and an enlargement of tertiary dentin area were observed without the detection of inflammation areas. The rat model of extra coronal bleaching showed to be adequate for bleaching protocols studies, as it was possible to observe alterations in the pulp tissues and in the tooth structure caused by different concentrations and periods of application of bleaching agents.

  7. 3D porous chitosan scaffolds suit survival and neural differentiation of dental pulp stem cells.

    PubMed

    Feng, Xingmei; Lu, Xiaohui; Huang, Dan; Xing, Jing; Feng, Guijuan; Jin, Guohua; Yi, Xin; Li, Liren; Lu, Yuanzhou; Nie, Dekang; Chen, Xiang; Zhang, Lei; Gu, Zhifeng; Zhang, Xinhua

    2014-08-01

    A key aspect of cell replacement therapy in brain injury treatment is construction of a suitable biomaterial scaffold that can effectively carry and transport the therapeutic cells to the target area. In the present study, we created small 3D porous chitosan scaffolds through freeze-drying, and showed that these can support and enhance the differentiation of dental pulp stem cells (DPSCs) to nerve cells in vitro. The DPSCs were collected from the dental pulp of adult human third molars. At a swelling rate of ~84.33 ± 10.92 %, the scaffold displayed high porosity and interconnectivity of pores, as revealed by SEM. Cell counting kit-8 assay established the biocompatibility of the chitosan scaffold, supporting the growth and survival of DPSCs. The successful neural differentiation of DPSCs was assayed by RT-PCR, western blotting, and immunofluorescence. We found that the scaffold-attached DPSCs showed high expression of Nestin that decreased sharply following induction of differentiation. Exposure to the differentiation media also increased the expression of neural molecular markers Microtubule-associated protein 2, glial fibrillary acidic protein, and 2',3'-cyclic nucleotide phosphodiesterase. This study demonstrates that the granular 3D chitosan scaffolds are non-cytotoxic, biocompatible, and provide a conducive and favorable micro-environment for attachment, survival, and neural differentiation of DPSCs. These scaffolds have enormous potential to facilitate future advances in treatment of brain injury.

  8. Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration?

    PubMed

    Goldberg, Michel; Njeh, Akram; Uzunoglu, Emel

    2015-01-01

    The importance of inflammation has been underestimated in pulpal healing, and in the past, it has been considered only as an undesirable effect. Associated with moderate inflammation, necrosis includes pyroptosis, apoptosis, and nemosis. There are now evidences that inflammation is a prerequisite for pulp healing, with series of events ahead of regeneration. Immunocompetent cells are recruited in the apical part. They slide along the root and migrate toward the crown. Due to the high alkalinity of the capping agent, pulp cells display mild inflammation, proliferate, and increase in number and size and initiate mineralization. Pulp fibroblasts become odontoblast-like cells producing type I collagen, alkaline phosphatase, and SPARC/osteonectin. Molecules of the SIBLING family, matrix metalloproteinases, and vascular and nerve mediators are also implicated in the formation of a reparative dentinal bridge, osteo/orthodentin closing the pulp exposure. Beneath a calciotraumatic line, a thin layer identified as reactionary dentin underlines the periphery of the pulp chamber. Inflammatory and/or noninflammatory processes contribute to produce a reparative dentinal bridge closing the pulp exposure, with minute canaliculi and large tunnel defects. Depending on the form and severity of the inflammatory and noninflammatory processes, and according to the capping agent, pulp reactions are induced specifically.

  9. Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration?

    PubMed Central

    Goldberg, Michel; Njeh, Akram; Uzunoglu, Emel

    2015-01-01

    The importance of inflammation has been underestimated in pulpal healing, and in the past, it has been considered only as an undesirable effect. Associated with moderate inflammation, necrosis includes pyroptosis, apoptosis, and nemosis. There are now evidences that inflammation is a prerequisite for pulp healing, with series of events ahead of regeneration. Immunocompetent cells are recruited in the apical part. They slide along the root and migrate toward the crown. Due to the high alkalinity of the capping agent, pulp cells display mild inflammation, proliferate, and increase in number and size and initiate mineralization. Pulp fibroblasts become odontoblast-like cells producing type I collagen, alkaline phosphatase, and SPARC/osteonectin. Molecules of the SIBLING family, matrix metalloproteinases, and vascular and nerve mediators are also implicated in the formation of a reparative dentinal bridge, osteo/orthodentin closing the pulp exposure. Beneath a calciotraumatic line, a thin layer identified as reactionary dentin underlines the periphery of the pulp chamber. Inflammatory and/or noninflammatory processes contribute to produce a reparative dentinal bridge closing the pulp exposure, with minute canaliculi and large tunnel defects. Depending on the form and severity of the inflammatory and noninflammatory processes, and according to the capping agent, pulp reactions are induced specifically. PMID:26538825

  10. Chondroitin sulphates A, B and C, collagen types I-IV and fibronectin in venous sinus of the red pulp in human spleen.

    PubMed

    Rovenská, E; Michalka, P; Papincák, J; Durdík, S; Jakubovský, J

    2005-01-01

    The morphological relationship of chondroitin sulphates A, B, and C, collagen types I-IV and fibronectin in the wall of venous sinuses of the red pulp in human spleen has not been a focus of interest among morphologists. Regarding the hypothesis that the structure of the spleen lends it the function of a blood filter the substances described in our study might play a significant role in the functional morphology. Of 146 human spleen surgical specimens, groups of 12 specimens each were examined under a light microscope using the method of antibodies against fibronectin, against collagen types I-IV and against chondroitin sulphates A, B, and C. The sections of the red pulp of human spleen stained with hematoxylin and eosin provided limited information about the wall of the sinuses. Chondroitin sulphates A and B were observed on the surface of sinus-lining cells (SLC), and fibronectin was detected on the surface of the annular fibers. Collagen type 11 was observed almost in the same places as chondroitin sulphates A and B. Collagen type IV was present in annular fibers of the wall of the sinus and in the basement membrane, like fibronectin. Chondroitin sulphate was not present in the walls of sinuses. Binding of antibodies against chondroitin sulphate A and against chondroitin sulphate B indicates the presence of chondroitin sulfates on the surface of SLC, where they probably play a role in helping the human organism to recognize alien and self substances. The presence of chondroitin,sulphates A and B probably affects inhibition of binding of cells with collagen type I, but not with fibronectin.

  11. 10−7 m 17β-oestradiol enhances odonto/osteogenic potency of human dental pulp stem cells by activation of the NF-κB pathway

    PubMed Central

    Wang, Y; Zheng, Y; Wang, Z; Li, J; Wang, Z; Zhang, G; Yu, J

    2013-01-01

    Objectives Oestrogen has been proven to significantly enhance osteogenic potency, while oestrogen deficiency usually leads to impaired osteogenic differentiation of mesenchymal stem cells. However, little is known concerning direct effects of oestrogen on differentiation of human dental pulp stem cells (DPSCs). Materials and methods In this study, human DPSCs were isolated and treated with 10−7 m 17β-oestradiol (E2). Alkaline phosphatase (ALP) assay and alizarin red staining were performed. Results Alkaline phosphatase and alizarin red showed that E2 treatment significantly enhanced ALP activity and mineralization ability of DPSCs, but had no effect on cell proliferation. Real-time RT-PCR and western blot assay demonstrated that odonto/osteogenic markers (ALP, RUNX2/RUNX2, OSX/OSX, OCN/OCN and DSPP/DSP) were significantly upregulated in the cells after E2 treatment. Moreover, phosphorylation of cytoplasmic IκBα/P65 and expression of nuclear P65 were enhanced in a time-dependent manner following E2 treatment, suggesting activation of NF-κB signaling. Conversely, inhibition of the NF-κB pathway suppressed E2-mediated upregulation of odonto/osteogenic markers, indicating that the NF-κB pathway was pivotal for E2-mediated differentiation. Conclusion These findings provide evidence that 10−7 m 17β-oestradiol promoted odonto/osteogenic differentiation of human DPSCs via activation of the NF-κB signaling pathway. PMID:24152244

  12. Vital Pulp Therapy—Current Progress of Dental Pulp Regeneration and Revascularization

    PubMed Central

    Zhang, Weibo; Yelick, Pamela C.

    2010-01-01

    Pulp vitality is extremely important for the tooth viability, since it provides nutrition and acts as biosensor to detect pathogenic stimuli. In the dental clinic, most dental pulp infections are irreversible due to its anatomical position and organization. It is difficult for the body to eliminate the infection, which subsequently persists and worsens. The widely used strategy currently in the clinic is to partly or fully remove the contaminated pulp tissue, and fill and seal the void space with synthetic material. Over time, the pulpless tooth, now lacking proper blood supply and nervous system, becomes more vulnerable to injury. Recently, potential for successful pulp regeneration and revascularization therapies is increasing due to accumulated knowledge of stem cells, especially dental pulp stem cells. This paper will review current progress and feasible strategies for dental pulp regeneration and revascularization. PMID:20454445

  13. OCT4B1 Regulates the Cellular Stress Response of Human Dental Pulp Cells with Inflammation

    PubMed Central

    Liu, Lu; Huang, Rong; Yang, Ruiqi

    2017-01-01

    Introduction. Infection and apoptosis are combined triggers for inflammation in dental tissues. Octamer-binding transcription factor 4-B1 (OCT4B1), a novel spliced variant of OCT4 family, could respond to the cellular stress and possess antiapoptotic property. However, its specific role in dental pulpitis remains unknown. Methods. To investigate the effect of OCT4B1 on inflammation of dental pulp cells (DPCs), its expression in inflamed dental pulp tissues and DPCs was examined by in situ hybridization, real-time PCR, and FISH assay. OCT4B1 overexpressed DPCs model was established, confirmed by western blot and immunofluorescence staining, and then stimulated with Lipopolysaccharide (LPS). Apoptotic rate was determined by Hoechst/PI staining and FACS. Cell survival rate was calculated by CCK8 assay. Results. In situ hybridization, real-time PCR, and FISH assay revealed that OCT4B1 was extensively expressed in inflamed dental pulp tissues and DPCs with LPS stimulation. Western blot and immunofluorescence staining showed the expression of OCT4B1 and OCT4B increased after OCT4B1 transfection. Hoechst/PI staining and FACS demonstrated that less red/blue fluorescence was detected and apoptotic percentage decreased (3.45%) after transfection. CCK8 demonstrated that the survival rate of pCDH-OCT4B1-flag cells increased. Conclusions. OCT4B1 plays an essential role in inflammation and apoptosis of DPCs. OCT4B might operate synergistically with OCT4B1 to reduce apoptosis. PMID:28473980

  14. Endothelial progenitor cells from human dental pulp-derived iPS cells as a therapeutic target for ischemic vascular diseases.

    PubMed

    Yoo, Chae Hwa; Na, Hee-Jun; Lee, Dong-Seol; Heo, Soon Chul; An, Yuri; Cha, Junghwa; Choi, Chulhee; Kim, Jae Ho; Park, Joo-Cheol; Cho, Yee Sook

    2013-11-01

    Human dental pulp cells (hDPCs) are a valuable source for the generation of patient-specific human induced pluripotent stem cells (hiPSCs). An advanced strategy for the safe and efficient reprogramming of hDPCs and subsequent lineage-specific differentiation is a critical step toward clinical application. In present research, we successfully generated hDPC-iPSCs using only two non-oncogenic factors: Oct4 and Sox2 (2F hDPC-hiPSCs) and evaluated the feasibility of hDPC-iPSCs as substrates for endothelial progenitor cells (EPCs), contributing to EPC-based therapies. Under conventional differentiation conditions, 2F hDPC-hiPSCs showed higher differentiation efficiency, compared to hiPSCs from other cell types, into multipotent CD34(+) EPCs (2F-hEPCs) capable to differentiate into functional endothelial and smooth muscle cells. The angiogenic and neovasculogenic activities of 2F-hEPCs were confirmed using a Matrigel plug assay in mice. In addition, the therapeutic effects of 2F-hEPC transplantation were confirmed in mouse models of hind-limb ischemia and myocardial infarction. Importantly, 2F-EPCs effectively integrated into newly formed vascular structures and enhanced neovascularization via likely both direct and indirect paracrine mechanisms. 2F hDPC-hiPSCs have a robust capability for the generation of angiogenic and vasculogenic EPCs, representing a strategy for patient-specific EPC therapies and disease modeling, particularly for ischemic vascular diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. An In vivo Model for Short-Term Evaluation of the Implantation Effects of Biomolecules or Stem Cells in the Dental Pulp

    PubMed Central

    Lacerda-Pinheiro, Sally; Marchadier, Arnaud; Donãs, Patricio; Septier, Dominique; Benhamou, Laurent; Kellermann, Odile; Goldberg, Michel; Poliard, Anne

    2008-01-01

    The continuously growing rodent incisor is a widely used model to investigate odontogenesis and mineralized tissue formation. This study focused on evaluating the mouse mandibular incisor as an experimental biological tool for analyzing in vivo the capacity of odontoblast-like progenitors or bioactive molecules to contribute to reparative dentinogenesis. We describe here a surgical procedure allowing direct access to the forming part of the incisor dental pulp Amelogenin peptide A+4 adsorbed on agarose beads, or dental pulp progenitor cells were implanted in the pulp following this procedure. After 10 days A+4 induced the formation of an osteodentin occluding almost the totality of the pulp compartment. Implantation of progenitor cells leads to formation of islets of osteodentin-like structures located centrally in the pulp. These pilot studies validate the incisor as an experimental model to test the capacity of progenitor cells or bioactive molecules to induce the formation of reparative dentin. PMID:19088885

  16. Cell-derived micro-environment helps dental pulp stem cells promote dental pulp regeneration.

    PubMed

    Zhang, Xuexin; Li, Hui; Sun, Jingjing; Luo, Xiangyou; Yang, Hefeng; Xie, Li; Yang, Bo; Guo, Weihua; Tian, Weidong

    2017-10-01

    The function of the dental pulp is closely connected to the extracellular matrix (ECM) structure, and ECM has received significant attention due to its biological functions for regulating cells. As such, the interaction between the ECM niche and cells is worth exploring for potential clinical uses. In this study, dental pulp stem cell (DPSC)-derived ECM (DPM) was prepared through cell culture and decellularization to function as the cell niche, and changes in DPSC behaviour and histological analysis of dental pulp tissue regeneration were evaluated following the DPM culture. DPM promoted the replication of DPSCs and exhibited retention of their mineralization. Then, the DPM-based culture strategy under odontogenic culture medium was further investigated, and the mineralization-related markers showed that DPSCs were regulated towards odontogenic differentiation. Dental pulp-like tissue with well-arranged ECM was harvested after a 2-month subcutaneous implantation in nude mice with DPM application. Additionally, DPSCs cultured on the plastic culture surface showed the up-regulation of mineralization makers in vitro, but there was a disorder in matrix formation and mineralization when the cells were cultured in vivo. DPM-based cultivation could serve as a cell niche and modulate DPSC behaviour, and this method also provided an alternative to harvest tissue-specific ECM and provided a strategy for ECM-cell interaction. © 2017 John Wiley & Sons Ltd.

  17. CD34+ cells from dental pulp stem cells with a ZFN-mediated and homology-driven repair-mediated locus-specific knock-in of an artificial β-globin gene.

    PubMed

    Chattong, S; Ruangwattanasuk, O; Yindeedej, W; Setpakdee, A; Manotham, K

    2017-07-01

    In humans, mutations in the β-globin gene (HBB) have two important clinical manifestations: β-thalassemia and sickle cell disease. The progress in genome editing and stem cell research may be relevant to the treatment of β-globin-related diseases. In this work, we employed zinc-finger nuclease (ZFN)-mediated gene integration of synthetic β-globin cDNA into HBB loci, thus correcting almost all β-globin mutations. The integration was achieved in both HEK 293 cells and isolated dental pulp stem cell (DPSCs). We also showed that DPSCs with an artificial gene knock-in were capable of generating stable six-cell clones and were expandable at least 10 8 -fold; therefore, they may serve as a personalized stem cell factory. In addition, transfection with non-integrated pCAG-hOct4 and culturing in a conditioned medium converted the genome-edited DPSCs to CD34 + HSC-like cells. We believe that this approach may be useful for the treatment of β-globin-related diseases, especially the severe form of β-thalassemia.

  18. Human periapical cyst-mesenchymal stem cells differentiate into neuronal cells.

    PubMed

    Marrelli, M; Paduano, F; Tatullo, M

    2015-06-01

    It was recently reported that human periapical cysts (hPCys), a commonly occurring odontogenic cystic lesion of inflammatory origin, contain mesenchymal stem cells (MSCs) with the capacity for self-renewal and multilineage differentiation. In this study, periapical inflammatory cysts were compared with dental pulp to determine whether this tissue may be an alternative accessible tissue source of MSCs that retain the potential for neurogenic differentiation. Flow cytometry and immunofluorescence analysis indicated that hPCy-MSCs and dental pulp stem cells spontaneously expressed the neuron-specific protein β-III tubulin and the neural stem-/astrocyte-specific protein glial fibrillary acidic protein (GFAP) in their basal state before differentiation occurs. Furthermore, undifferentiated hPCy-MSCs showed a higher expression of transcripts for neuronal markers (β-III tubulin, NF-M, MAP2) and neural-related transcription factors (MSX-1, Foxa2, En-1) as compared with dental pulp stem cells. After exposure to neurogenic differentiation conditions (neural media containing epidermal growth factor [EGF], basic fibroblast growth factor [bFGF], and retinoic acid), the hPCy-MSCs showed enhanced expression of β-III tubulin and GFAP proteins, as well as increased expression of neurofilaments medium, neurofilaments heavy, and neuron-specific enolase at the transcript level. In addition, neurally differentiated hPCy-MSCs showed upregulated expression of the neural transcription factors Pitx3, Foxa2, Nurr1, and the dopamine-related genes tyrosine hydroxylase and dopamine transporter. The present study demonstrated for the first time that hPCy-MSCs have a predisposition toward the neural phenotype that is increased when exposed to neural differentiation cues, based on upregulation of a comprehensive set of proteins and genes that define neuronal cells. In conclusion, these results provide evidence that hPCy-MSCs might be another optimal source of neural/glial cells for cell-based therapies to treat neurologic diseases. © International & American Associations for Dental Research 2015.

  19. Potential dental pulp revascularization and odonto-/osteogenic capacity of a novel transplant combined with dental pulp stem cells and platelet-rich fibrin.

    PubMed

    Chen, Yong-Jin; Zhao, Yin-Hua; Zhao, Ya-Juan; Liu, Nan-Xia; Lv, Xin; Li, Qiang; Chen, Fa-Ming; Zhang, Min

    2015-08-01

    Our aim is to investigate the cytobiological effects of autologous platelet-rich fibrin (PRF) on dental pulp stem cells (DPSCs) and to explore the ectopic and orthotopic possibilities of dental pulp revascularization and pulp-dentin complex regeneration along the root canal cavities of the tooth by using a novel tissue-engineered transplant composed of cell-sheet fragments of DPSCs and PRF granules. Canine DPSCs were isolated and characterized by assaying their colony-forming ability and by determining their cell surface markers and osteogenic/adipogenic differentiation potential. The biological effects of autologous PRF on DPSCs, including cell proliferation, alkaline phosphatase (ALP) activity and odonto-/osteogenic gene expression, were then investigated and quantified. A novel transplant consisting of cell-sheet fragments of DPSCs and PRF granules was adopted to regenerate pulp-dentin-like tissues in the root canal, both subcutaneously in nude mice and in the roots of canines. PRF promoted the proliferation of DPSCs in a dose- and time-dependent manner and induced the differentiation of DPSCs to odonto-/osteoblastic fates by increasing the expression of the Alp, Dspp, Dmp1 and Bsp genes. Transplantation of the DPSC/PRF construct led both to a favorable regeneration of homogeneous and compact pulp-like tissues with abundantly distributed blood capillaries and to the deposition of regenerated dentin along the intracanal walls at 8 weeks post-operation. Thus, the application of DPSC/PRF tissue constructs might serve as a potential therapy in regenerative endodontics for pulp revitalization or revascularization.

  20. Claustral single cell reactions to tooth pulp stimulation in cats.

    PubMed

    Jastreboff, P; Sikora, M; Frydrychowski, A; Słoniewski, P

    1983-01-01

    Single unit activity in the central region of the claustrum, evoked by electrical stimulation of tooth pulp or paws was studied on cats under chloralose anesthesia. The majority of cells responded in similar manner to stimulation of tooth pulp or paws, but there were cells with clear preference to a given type of stimulation. Latencies of reactions evoked by tooth pulp stimulation were significantly shorter than those for limb stimulation. In the former case latencies as short as 8 rns were observed. It is postulated that the central region of the claustrum receives a projection from the tooth pulp, and that in those cases with very short latency the projection is direct and does not involve the cerebral cortex.

  1. Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration.

    PubMed

    Paduano, Francesco; Marrelli, Massimo; Alom, Noura; Amer, Mahetab; White, Lisa J; Shakesheff, Kevin M; Tatullo, Marco

    2017-06-01

    Dental pulp tissue represents a source of mesenchymal stem cells that have a strong differentiation potential towards the osteogenic lineage. The objective of the current study was to examine in vitro osteogenic induction of dental pulp stem cells (DPSCs) cultured on hydrogel scaffolds derived from decellularized bone extracellular matrix (bECM) compared to collagen type I (Col-I), the major component of bone matrix. DPSCs in combination with bECM hydrogels were cultured under three different conditions: basal medium, osteogenic medium and medium supplemented with growth factors (GFs) and cell growth, mineral deposition, gene and protein expression were investigated. The DPSCs/bECM hydrogel constructs cultured in basal medium showed that cells were viable after three weeks and that the expression of runt-related transcription factor 2 (RUNX-2) and bone sialoprotein (BSP) were significantly upregulated in the absence of extra osteogenic inducers compared to Col-I hydrogel scaffolds. In addition, the protein expression levels of BSP and osteocalcin were higher on bECM with respect to Col-I hydrogel scaffolds. Furthermore, DPSCs/bECM hydrogels cultured with osteogenic or GFs supplemented medium displayed a higher upregulation of the osteo-specific markers compared to Col-I hydrogels in identical media. Collectively, our results demonstrate that bECM hydrogels might be considered as suitable scaffolds to support osteogenic differentiation of DPSCs.

  2. Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.

    PubMed

    Chun, So Young; Soker, Shay; Jang, Yu-Jin; Kwon, Tae Gyun; Yoo, Eun Sang

    2016-02-01

    We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.

  3. Dental Pulp Stem Cells Model Early Life and Imprinted DNA Methylation Patterns.

    PubMed

    Dunaway, Keith; Goorha, Sarita; Matelski, Lauren; Urraca, Nora; Lein, Pamela J; Korf, Ian; Reiter, Lawrence T; LaSalle, Janine M

    2017-04-01

    Early embryonic stages of pluripotency are modeled for epigenomic studies primarily with human embryonic stem cells (ESC) or induced pluripotent stem cells (iPSCs). For analysis of DNA methylation however, ESCs and iPSCs do not accurately reflect the DNA methylation levels found in preimplantation embryos. Whole genome bisulfite sequencing (WGBS) approaches have revealed the presence of large partially methylated domains (PMDs) covering 30%-40% of the genome in oocytes, preimplantation embryos, and placenta. In contrast, ESCs and iPSCs show abnormally high levels of DNA methylation compared to inner cell mass (ICM) or placenta. Here we show that dental pulp stem cells (DPSCs), derived from baby teeth and cultured in serum-containing media, have PMDs and mimic the ICM and placental methylome more closely than iPSCs and ESCs. By principal component analysis, DPSC methylation patterns were more similar to two other neural stem cell types of human derivation (EPI-NCSC and LUHMES) and placenta than were iPSCs, ESCs or other human cell lines (SH-SY5Y, B lymphoblast, IMR90). To test the suitability of DPSCs in modeling epigenetic differences associated with disease, we compared methylation patterns of DPSCs derived from children with chromosome 15q11.2-q13.3 maternal duplication (Dup15q) to controls. Differential methylation region (DMR) analyses revealed the expected Dup15q hypermethylation at the imprinting control region, as well as hypomethylation over SNORD116, and novel DMRs over 147 genes, including several autism candidate genes. Together these data suggest that DPSCs are a useful model for epigenomic and functional studies of human neurodevelopmental disorders. Stem Cells 2017;35:981-988. © 2016 AlphaMed Press.

  4. Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells.

    PubMed

    Zaccara, Ivana Maria; Ginani, Fernanda; Mota-Filho, Haroldo Gurgel; Henriques, Águida Cristina Gomes; Barboza, Carlos Augusto Galvão

    2015-12-01

    A positive effect of low-level laser irradiation (LLLI) on the proliferation of some cell types has been observed, but little is known about its effect on dental pulp stem cells (DPSCs). The aim of this study was to identify the lowest energy density able to promote the proliferation of DPSCs and to maintain cell viability. Human DPSCs were isolated from two healthy third molars. In the third passage, the cells were irradiated or not (control) with an InGaAlP diode laser at 0 and 48 h using two different energy densities (0.5 and 1.0 J/cm²). Cell proliferation and viability and mitochondrial activity were evaluated at intervals of 24, 48, 72, and 96 h after the first laser application. Apoptosis- and cell cycle-related events were analyzed by flow cytometry. The group irradiated with an energy density of 1.0 J/cm² exhibited an increase of cell proliferation, with a statistically significant difference (p < 0.05) compared to the control group at 72 and 96 h. No significant changes in cell viability were observed throughout the experiment. The distribution of cells in the cell cycle phases was consistent with proliferating cells in all three groups. We concluded that LLLI, particularly a dose of 1.0 J/cm², contributed to the growth of DPSCs and maintenance of its viability. This fact indicates this therapy to be an important future tool for tissue engineering and regenerative medicine involving stem cells.

  5. Stimulation of EphB2/ephrin-B1 signalling by tumour necrosis factor alpha in human dental pulp stem cells.

    PubMed

    Zhu, Lifang; Dissanayaka, Waruna Lakmal; Green, David William; Zhang, Chengfei

    2015-04-01

    The aim of this study was to investigate whether in vitro stimulation of dental pulp stem cells (DPSCs) by tumour necrosis factor alpha (TNF-α) would induce secretion of EphB2/ephrin-B1 signalling. Dental pulp stem cells isolated from human dental pulp were treated with TNF-α (5-100 ng/ml) over 2-48 h. EphB2/ephrin-B1 mRNA and protein levels were measured by real-time polymerase chain reaction (RT-PCR) and western blot analysis respectively. Additionally, DPSCs were pre-incubated with TNF-α receptor neutralizing antibodies or infected with nuclear factor-kappa B (NF-ĸB) inhibitor, p38 MAPK inhibitor, Jun N-terminal kinase (JNK) inhibitor and MEK inhibitor before TNF-α treatment. Results were analysed by one-way ANOVA. Tumour necrosis factor alpha increased EphB2 mRNA expression in DPSCs at concentrations up to 20 ng/ml and ephrin-B1 at concentrations up to 40 ng/ml (P < 0.05). Its mRNA expression reached maximum at 24 h when treated with TNF-α at 20 ng/ml (P < 0.05). EphB2/ephrin-B1 protein expression levels were high at 16 and 24 h as shown by western blotting. Neutralizing antibodies for TNFR1/2 receptors down-regulated EphB2/ephrin-B1 mRNA expression (P < 0.05) and ephrin-B1 protein expression, but not EphB2 protein expression. JNK-inhibitor inhibited EphB2 mRNA expression only (P < 0.05). EphB2/ephrin-B1 were invoked in DPSCs with TNF-α treatment via the JNK-dependent pathway, but not NF-ĸB, p38 MAPK or MEK signalling. © 2015 John Wiley & Sons Ltd.

  6. A Customized Self-Assembling Peptide Hydrogel for Dental Pulp Tissue Engineering

    PubMed Central

    Hartgerink, Jeffrey D.; Cavender, Adriana C.; Schmalz, Gottfried

    2012-01-01

    Root canal therapy is common practice in dentistry. During this procedure, the inflamed or necrotic dental pulp is removed and replaced with a synthetic material. However, recent research provides evidence that engineering of dental pulp and dentin is possible by using biologically driven approaches. As tissue engineering strategies hold the promise to soon supersede conventional root canal treatment, there is a need for customized scaffolds for stem cell delivery or recruitment. We hypothesize that the incorporation of dental pulp-derived stem cells with bioactive factors into such a scaffold can promote cell proliferation, differentiation, and angiogenesis. In this study, we used a cell adhesive, enzyme-cleavable hydrogel made from self-assembling peptide nanofibers to encapsulate dental pulp stem cells. The growth factors (GFs) fibroblast growth factor basic, transforming growth factor β1, and vascular endothelial growth factor were incorporated into the hydrogel via heparin binding. Release profiles were established, and the influence of GFs on cell morphology and proliferation was assessed to confirm their bioactivity after binding and subsequent release. Cell morphology and spreading in three-dimensional cultures were visualized by using cell tracker and histologic stains. Subcutaneous transplantation of the hydrogel within dentin cylinders into immunocompromised mice led to the formation of a vascularized soft connective tissue similar to dental pulp. These data support the use of this novel biomaterial as a highly promising candidate for future treatment concepts in regenerative endodontics. PMID:21827280

  7. Microarray evaluation of gene expression profiles in inflamed and healthy human dental pulp: the role of IL1beta and CD40 in pulp inflammation.

    PubMed

    Gatta, V; Zizzari, V L; Dd ' Amico, V; Salini, L; D' Aurora, M; Franchi, S; Antonucci, I; Sberna, M T; Gherlone, E; Stuppia, L; Tetè, S

    2012-01-01

    Dental pulp undergoes a number of changes passing from healthy status to inflammation due to deep decay. These changes are regulated by several genes resulting differently expressed in inflamed and healthy dental pulp, and the knowledge of the processes underlying this differential expression is of great relevance in the identification of the pathogenesis of the disease. In this study, the gene expression profile of inflamed and healthy dental pulps were compared by microarray analysis, and data obtained were analyzed by Ingenuity Pathway Analysis (IPA) software. This analysis allows to focus on a variety of genes, typically expressed in inflamed tissues. The comparison analysis showed an increased expression of several genes in inflamed pulp, among which IL1β and CD40 resulted of particular interest. These results indicate that gene expression profile of human dental pulp in different physiological and pathological conditions may become an useful tool for improving our knowledge about processes regulating pulp inflammation.

  8. Paleoproteomics of the Dental Pulp: The plague paradigm.

    PubMed

    Barbieri, Rémi; Mekni, Rania; Levasseur, Anthony; Chabrière, Eric; Signoli, Michel; Tzortzis, Stéfan; Aboudharam, Gérard; Drancourt, Michel

    2017-01-01

    Chemical decomposition and fragmentation may limit the detection of ancient host and microbial DNA while some proteins can be detected for extended periods of time. We applied paleoproteomics on 300-year-old dental pulp specimens recovered from 16 individuals in two archeological funeral sites in France, comprising one documented plague site and one documented plague-negative site. The dental pulp paleoproteome of the 16 teeth comprised 439 peptides representative of 30 proteins of human origin and 211 peptides representative of 27 proteins of non-human origin. Human proteins consisted of conjunctive tissue and blood proteins including IgA immunoglobulins. Four peptides were indicative of three presumable Yersinia pestis proteins detected in 3/8 dental pulp specimens from the plague-positive site but not in the eight dental pulp specimens collected in the plague-negative site. Paleoproteomics applied to the dental pulp is a new and innovative approach to screen ancient individuals for the detection of blood-borne pathogens and host inflammatory response.

  9. Odontogenic Differentiation of Human Dental Pulp Stem Cells on Hydrogel Scaffolds Derived from Decellularized Bone Extracellular Matrix and Collagen Type I.

    PubMed

    Paduano, Francesco; Marrelli, Massimo; White, Lisa J; Shakesheff, Kevin M; Tatullo, Marco

    2016-01-01

    The aim of this study was to evaluate the level of odontogenic differentiation of dental pulp stem cells (DPSCs) on hydrogel scaffolds derived from bone extracellular matrix (bECM) in comparison to those seeded on collagen I (Col-I), one of the main components of dental pulp ECM. DPSCs isolated from human third molars were characterized for surface marker expression and odontogenic potential prior to seeding into bECM or Col-I hydrogel scaffolds. The cells were then seeded onto bECM and Col-I hydrogel scaffolds and cultured under basal conditions or with odontogenic and growth factor (GF) supplements. DPSCs cultivated on tissue culture polystyrene (TCPS) with and without supplements were used as controls. Gene expression of dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP-1) and matrix extracellular phosphoglycoprotein (MEPE) was evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and mineral deposition was observed by Von Kossa staining. When DPSCs were cultured on bECM hydrogels, the mRNA expression levels of DSPP, DMP-1 and MEPE genes were significantly upregulated with respect to those cultured on Col-I scaffolds or TCPS in the absence of extra odontogenic inducers. In addition, more mineral deposition was observed on bECM hydrogel scaffolds as demonstrated by Von Kossa staining. Moreover, DSPP, DMP-1 and MEPE mRNA expressions of DPSCs cultured on bECM hydrogels were further upregulated by the addition of GFs or osteo/odontogenic medium compared to Col-I treated cells in the same culture conditions. These results demonstrate the potential of the bECM hydrogel scaffolds to stimulate odontogenic differentiation of DPSCs.

  10. Tissue-engineering-based Strategies for Regenerative Endodontics

    PubMed Central

    Albuquerque, M.T.P.; Valera, M.C.; Nakashima, M.; Nör, J.E.; Bottino, M.C.

    2014-01-01

    Stemming from in vitro and in vivo pre-clinical and human models, tissue-engineering-based strategies continue to demonstrate great potential for the regeneration of the pulp-dentin complex, particularly in necrotic, immature permanent teeth. Nanofibrous scaffolds, which closely resemble the native extracellular matrix, have been successfully synthesized by various techniques, including but not limited to electrospinning. A common goal in scaffold synthesis has been the notion of promoting cell guidance through the careful design and use of a collection of biochemical and physical cues capable of governing and stimulating specific events at the cellular and tissue levels. The latest advances in processing technologies allow for the fabrication of scaffolds where selected bioactive molecules can be delivered locally, thus increasing the possibilities for clinical success. Though electrospun scaffolds have not yet been tested in vivo in either human or animal pulpless models in immature permanent teeth, recent studies have highlighted their regenerative potential both from an in vitro and in vivo (i.e., subcutaneous model) standpoint. Possible applications for these bioactive scaffolds continue to evolve, with significant prospects related to the regeneration of both dentin and pulp tissue and, more recently, to root canal disinfection. Nonetheless, no single implantable scaffold can consistently guide the coordinated growth and development of the multiple tissue types involved in the functional regeneration of the pulp-dentin complex. The purpose of this review is to provide a comprehensive perspective on the latest discoveries related to the use of scaffolds and/or stem cells in regenerative endodontics. The authors focused this review on bioactive nanofibrous scaffolds, injectable scaffolds and stem cells, and pre-clinical findings using stem-cell-based strategies. These topics are discussed in detail in an attempt to provide future direction and to shed light on their potential translation to clinical settings. PMID:25201917

  11. Promotive Effect of Zinc Ions on the Vitality, Migration, and Osteogenic Differentiation of Human Dental Pulp Cells.

    PubMed

    An, Shaofeng; Gong, Qimei; Huang, Yihua

    2017-01-01

    Zinc is an essential trace element for proper cellular function and bone formation. However, its exact role in the osteogenic differentiation of human dental pulp cells (hDPCs) has not been fully clarified before. Here, we speculated that zinc may be effective to regulate their growth and osteogenic differentiation properties. To test this hypothesis, different concentrations (1 × 10 -5 , 4 × 10 -5 , and 8 × 10 -5  M) of zinc ions (Zn 2+ ) were added to the basic growth culture medium and osteogenic inductive medium. Cell viability and migration were measured by cell counting kit-8 (CCK-8) and transwell migration assay in the basic growth culture medium, respectively. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the gene expression levels of selective osteogenic differentiation markers and zinc transporters. Alkaline phosphatase (ALP) activity analysis and alizarin red S staining were used to investigate the mineralization of hDPCs. Exposure of hDPCs to Zn 2+ stimulated their viability and migration capacity in a dose- and time-dependent manner. RT-qPCR assay revealed elevated expression levels of osteogenic differentiation-related genes and zinc transporters genes in various degrees. ALP activity was also increased with elevated Zn 2+ concentrations and extended culture periods, but enhanced matrix nodules formation were observed only in 4 × 10 -5 and 8 × 10 -5  M Zn 2+ groups. These findings suggest that specific concentrations of Zn 2+ could potentiate the vitality, migration, and osteogenic differentiation of hDPCs. We may combine optimum zinc element into pulp capping materials to improve their biological performance.

  12. Isolation and evaluation of dental pulp stem cells from teeth with advanced periodontal disease.

    PubMed

    Derakhshani, Ali; Raoof, Maryam; Dabiri, Shahriar; Farsinejad, Ali Reza; Gorjestani, Hedayat; Yaghoobi, Mohammad Mehdi; Shokouhinejad, Noushin; Ehsani, Maryam

    2015-04-01

    Successful isolation of mesenchymal stem cells from waste tissues might be extremely promising for developing stem cell-based therapies. This study aimed to explore whether cells retrieved from teeth extracted due to advanced periodontal disease present mesenchymal stem cell-like properties. Pulp cells were isolated from 15 intact molars and 15 teeth with advanced periodontal disease. Cell proliferation and markers of mesenchymal stem cells were evaluated. Based on the RT-PCR and agarose gel electrophoresis, nucleostemin, Oct-4 and jmj2c, but not Nanog, were expressed in undifferentiated mesenchymal stem cells of both groups. Interestingly, diseased pulp exhibited higher gene expressions although it was not statistically significant. The average percentage of BrdU positive cells in the diseased group (84.4%, n = 5) was significantly higher than that of the control group (65.4%, n = 5) (t-test, P = 0.001). Our results indicate the successful isolation of mesenchymal stem cells from the pulp tissue of hopeless periodontally involved teeth.

  13. Clinical outcomes for teeth treated with electrospun poly(ε-caprolactone) fiber meshes/mineral trioxide aggregate direct pulp capping.

    PubMed

    Lee, Li-Wan; Hsiao, Sheng-Huang; Hung, Wei-Chiang; Lin, Yun-Ho; Chen, Po-Yu; Chiang, Chun-Pin

    2015-05-01

    Mineral trioxide aggregate (MTA) is a biocompatible material for direct pulp capping. This study was designed to compare the clinical outcomes of pulp-exposed teeth treated with either poly(ε-caprolactone) fiber mesh (PCL-FM) as a barrier for MTA (so-called PCL-FM/MTA) or MTA direct pulp capping. Sixty human vital teeth were evenly divided into 4 groups (n = 15 in each group). Teeth in groups 1 and 3 had pulp exposure <1 mm in diameter, whereas teeth in groups 2 and 4 had pulp exposure of 1-1.5 mm in diameter. Teeth in groups 1 and 2 were treated with PCL-FM/MTA direct pulp capping, and those in groups 3 and 4 were treated with MTA direct pulp capping. Teeth treated with PCL-FM/MTA direct pulp capping needed a significantly shorter mean duration for dentin bridge formation than teeth treated with MTA direct pulp capping. Moreover, teeth with pulp exposure <1.0 mm in diameter needed a significantly shorter mean duration for dentin bridge formation than teeth with pulp exposure of 1-1.5 mm in diameter after either PCL-FM/MTA or MTA direct pulp capping treatment. In addition, teeth treated with PCL-FM/MTA direct pulp capping formed an approximately 3-fold thicker dentin bridge than teeth treated with MTA direct pulp capping 8 weeks or 3 months later. Furthermore, none of the teeth treated with PCL-FM/MTA direct pulp capping showed tooth discoloration after treatment for 3 months. PCL-FM/MTA is a better combination material than MTA alone for direct pulp capping of human permanent teeth. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Cytotoxicity Testing of Temporary Luting Cements with Two- and Three-Dimensional Cultures of Bovine Dental Pulp-Derived Cells

    PubMed Central

    Ülker, Hayriye Esra; Ülker, Mustafa; Gümüş, Hasan Önder; Yalçın, Muhammet; Şengün, Abdulkadir

    2013-01-01

    This study evaluated the cytotoxicity of eugenol-containing and eugenol-free temporary luting cements. For cytotoxicity testing, bovine pulp-derived cells transfected with Simian virus 40 Large T antigen were exposed to extracts of eugenol-containing (Rely X Temp E) and eugenol-free (Provicol, PreVISION CEM, and Rely X Temp NE) temporary luting cements for 24 h. The cytotoxicity of the same materials was also evaluated in a dentin barrier test device using three-dimensional cell cultures of bovine pulp-derived cells. The results of the cytotoxicity studies with two-dimensional cultures of bovine dental pulp-derived cells revealed that cell survival with the extracts of Rely X Temp E, Provicol, PreVISION CEM, and Rely X Temp NE was 89.1%, 84.9%, 92.3%, and 66.8%, respectively. Rely X Temp NE and Provicol showed cytotoxic effects on bovine dental pulp-derived cells (P < 0.05). The results of the dentin barrier test revealed that cell survival with the above-mentioned temporary cement was 101.5%, 91.9%, 93.5%, and 90.6%, respectively. None of the temporary luting cements significantly reduced cell survival compared with the negative control in the dentin barrier test (P > 0.05). Biologically active materials released from temporary luting cements may not influence the dentine-pulp complex if the residual dentine layer is at least 0.5 mm thick. PMID:23984419

  15. [Bioactive glass 45S5-silk fibroin membrane supports proliferation and differentiation of human dental pulp stem cells].

    PubMed

    Lyu, Xiaoshuai; Li, Zhengmao; Wang, Haiyan; Yang, Xuechao

    2015-12-01

    To investigate the effect of bioactivity glass 45S5- silk fibroin(BG45S5- SF) membrane on growth, proliferation and differentiation of human dental pulp stem cells(hDPSC), and to provide new ideas and method for the regeneration of pulp-dentine complex. hDPSC seed on pure silk fibroin membrane (protein membrane group) and BG45S5-SF membrane with different concentrations(1 000, 5 000 mg/L, composite membrane group A and B, respectively) were prepared, and the materials were incubated in cell culture fluid for 24 h. No material membrane orifice plate was used as blank control group. Contact angle meter was used to measure surface contact angle of protein membrane and composite membrane group(each group had three repeated holes). Cell proliferation was assessed by cell counting kit- 8 on the 4, 7, 14, and 21 days. The state of adhesion and growth of hDPSC on the materials surface was evaluated by scanning electron microscopy and cytoskeleton staining; and alkaline phosphatase (ALP) activity was measured to evaluate the cell differentiation potential. The expression of odontoblastic differentiation-related genes was measured by real-time PCR. Surface contact angle of the protein membrane group and composite membrane group A and group B were 89.51° ± 0.12°, 70.32° ± 0.07° and 71.31° ± 0.09° respectively. hDPSC adhered well on each materials surface on the 7, 14, 21 days, ALP activity and differentiation genes of composite membrane group A and B rised more significantly than the blank control group and protein membrane group did (P<0.05). Dentin matrix protein1(DMP- 1), dentin sialoprotein(DSP), ALP, osteocalcin(OC) mRNA expression reached peak on the 14 days in group A, and in group B on the 21 days. Bone sialoprotein(BSP) mRNA expression in both group A and B reached peak on the 21 days. BG45S5- SF membrane is able to support the proliferation and showed the potential of odontoblastic differentiation for hDPSC. This finding suggests that BG45S5-SF membrane was a kind of tissue engineering film material with the regeneration potential for pulp-dentine complex.

  16. Pluripotency of Stem Cells from Human Exfoliated Deciduous Teeth for Tissue Engineering

    PubMed Central

    Rosa, Vinicius; Dubey, Nileshkumar; Islam, Intekhab; Min, Kyung-San; Nör, Jacques E.

    2016-01-01

    Stem cells from human exfoliated deciduous teeth (SHED) are highly proliferative pluripotent cells that can be retrieved from primary teeth. Although SHED are isolated from the dental pulp, their differentiation potential is not limited to odontoblasts only. In fact, SHED can differentiate into several cell types including neurons, osteoblasts, adipocytes, and endothelial cells. The high plasticity makes SHED an interesting stem cell model for research in several biomedical areas. This review will discuss key findings about the characterization and differentiation of SHED into odontoblasts, neurons, and hormone secreting cells (e.g., hepatocytes and islet-like cell aggregates). The outcomes of the studies presented here support the multipotency of SHED and their potential to be used for tissue engineering-based therapies. PMID:27313627

  17. Regenerative endodontics: a state of the art.

    PubMed

    Bansal, Rashmi; Bansal, Rajesh

    2011-01-01

    Scientific advances in the creation of restorative biomaterials, in vitro cell culture technology, tissue grafting, tissue engineering, molecular biology and the human genome project provide the basis for the introduction of new technologies into dentistry. Non-vital infected teeth have long been treated with root canal therapy (for mature root apex) and apexification (for immature root apex), or doomed to extraction. Although successful, current treatments fail to re-establish healthy pulp tissue in these teeth. But, what if the non-vital tooth could be made vital once again? That is the hope offered by regenerative endodontics, an emerging field focused on replacing traumatized and diseased pulp with functional pulp tissue. Restoration of vitality of non-vital tooth is based on tissue engineering and revascularization procedures. The purpose of this article is to review these biological procedures and the hurdles that must be overcome to develop regenerative endodontic procedures.

  18. IFN-γ regulates human dental pulp stem cells behavior via NF-κB and MAPK signaling

    PubMed Central

    He, Xinyao; Jiang, Wenkai; Luo, Zhirong; Qu, Tiejun; Wang, Zhihua; Liu, Ningning; Zhang, Yaqing; Cooper, Paul R.; He, Wenxi

    2017-01-01

    During caries, dental pulp expresses a range of pro-inflammatory cytokines in response to the infectious challenge. Interferon gamma (IFN-γ) is a dimerized soluble cytokine, which is critical for immune responses. Previous study has demonstrated that IFN-γ at relative high concentration (100 ng/mL) treatment improved the impaired dentinogenic and immunosuppressive regulatory functions of disease-derived dental pulp stem cells (DPSCs). However, little is known about the regulatory effects of IFN-γ at relative low concentration on healthy DPSC behavior (including proliferation, migration, and multiple-potential differentiation). Here we demonstrate that IFN-γ at relatively low concentrations (0.5 ng/mL) promoted the proliferation and migration of DPSCs, but abrogated odonto/osteogenic differentiation. Additionally, we identified that NF-κB and MAPK signaling pathways are both involved in the process of IFN-γ-regulated odonto/osteogenic differentiation of DPSCs. DPSCs treated with IFN-γ and supplemented with pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor) or SB203580 (a MAPK inhibitor) showed significantly improved potential for odonto/osteogenic differentiation of DPSCs both in vivo and in vitro. These data provide important insight into the regulatory effects of IFN-γ on the biological behavior of DPSCs and indicate a promising therapeutic strategy for dentin/pulp tissue engineering in future endodontic treatment. PMID:28098169

  19. Acai Juice Attenuates Atherosclerosis Through Antioxidant and Anti-Inflammatory Effects in ApoE Deficient Mice

    USDA-ARS?s Scientific Manuscript database

    Introduction: Acai fruit (Euterpe oleracea Mart.) has been shown to exhibit extremely high antioxidant capacity. Antioxidant capacities and anti-inflammatory effects of acai pulp or acai juices have been studied in human, animal and cell culture models. However, their potential effects on atheroscl...

  20. Tissue engineering: Dentin - pulp complex regeneration approaches (A review).

    PubMed

    Hashemi-Beni, Batool; Khoroushi, Maryam; Foroughi, Mohammad Reza; Karbasi, Saeed; Khademi, Abbas Ali

    2017-10-01

    Dental pulp is a highly specialized tissue that preserves teeth. It is important to maintain the capabilities of dental pulp before a pulpectomy by creating a local restoration of the dentin-pulp complex from residual dental pulp. The articles identified were selected by two reviewers based on entry and exit criteria. All relevant articles indexed in PubMed, Springer, Science Direct, and Scopus with no limitations from 1961 to 2016 were searched. Factors investigated in the selected articles included the following key words: Dentin-Pulp Complex, Regeneration, Tissue Engineering, Scaffold, Stem Cell, and Growth Factors. Of the 233 abstracts retrieved, the papers which were selected had evaluated the clinical aspects of the application of dentin-pulp regeneration. Generally, this study has introduced a new approach to provoke the regeneration of the dentin-pulp complex after a pulpectomy, so that exogenous growth factors and the scaffold are able to induce cells and blood vessels from the residual dental pulp in the tooth root canal. This study further presents a new strategy for local regeneration therapy of the dentin-pulp complex. This review summarizes the current knowledge of the potential beneficial effects derived from the interaction of dental materials with the dentin-pulp complex as well as potential future developments in this exciting field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Induction of vascular endothelial growth factor expression in human pulp fibroblasts stimulated with black-pigmented Bacteroides.

    PubMed

    Yang, L-C; Tsai, C-H; Huang, F-M; Su, Y-F; Lai, C-C; Liu, C-M; Chang, Y-C

    2004-09-01

    To investigate the effect of black-pigmented Bacteroides on the expression of vascular endothelial growth factor (VEGF) gene in human pulp fibroblasts. The supernatants of Porphyromonas endodontalis, Porphyromonas gingivalis and Prevotella intermedia were used to evaluate VEGF gene expression in human pulp fibroblasts. The levels of mRNAs were measured by the quantitative reverse-transcriptase polymerase chain reaction analysis. Black-pigmented Bacteroides induced significantly high levels of VEGF mRNA gene expression in human pulp fibroblasts (P < 0.05). In addition, the expression of VEGF depended on the bacteria tested. Black-pigmented Bacteroides may be involved in developing pulpal disease through the stimulation of VEGF production that would lead to the expansion of the vascular network coincident to progression of the inflammation.

  2. Analysis of papaya cell wall-related genes during fruit ripening indicates a central role of polygalacturonases during pulp softening.

    PubMed

    Fabi, João Paulo; Broetto, Sabrina Garcia; da Silva, Sarah Lígia Garcia Leme; Zhong, Silin; Lajolo, Franco Maria; do Nascimento, João Roberto Oliveira

    2014-01-01

    Papaya (Carica papaya L.) is a climacteric fleshy fruit that undergoes dramatic changes during ripening, most noticeably a severe pulp softening. However, little is known regarding the genetics of the cell wall metabolism in papayas. The present work describes the identification and characterization of genes related to pulp softening. We used gene expression profiling to analyze the correlations and co-expression networks of cell wall-related genes, and the results suggest that papaya pulp softening is accomplished by the interactions of multiple glycoside hydrolases. The polygalacturonase cpPG1 appeared to play a central role in the network and was further studied. The transient expression of cpPG1 in papaya results in pulp softening and leaf necrosis in the absence of ethylene action and confirms its role in papaya fruit ripening.

  3. Effect of Propolis on Dentin Regeneration and the Potential Role of Dental Pulp Stem Cell in Guinea Pigs

    PubMed Central

    Ahangari, Zohreh; Naseri, Mandana; Jalili, Maryam; Mansouri, Yasaman; Mashhadiabbas, Fatemeh; Torkaman, Anahita

    2012-01-01

    Objective: Evaluation of the effect of Propolis as a bioactive material on quality of dentin and presence of dental pulp stem cells. Materials and Methods: For conducting this experimental split-mouth study,a total of 48 maxillary and mandibular incisors of male guinea pigs were randomly divided into an experimental Propolis group and a control calcium hydroxide group. Cutting the crowns and using Propolis or calcium hydroxide to cap the pulp, all of the cavities were sealed. Sections of the teeth were obtained after sacrificing 4 guinea pigs from each group on the 10th, 15th and 30th day. After they had been stained by hematoxylin and eosin (H&E), specimens underwent a histological evaluation under a light microscope for identification of the presence of odontoblast-like cells, pulp vitality, congestion, inflammation of the pulp and the presence of remnants of the material used. The immunohistochemistry (IHC) method using CD29 and CD146 was performed to evaluate the presence of stem cells and the results were statistically evaluated by Kruskal-Wallis, Chi Square and Fisher tests. Results: In H&E stained specimens, there was no difference between the two groups in the presence of odontoblast-like cells, pulp vitality, congestion, inflammation of the pulp and the presence of remnants of used material(p>0.05). There was a significant difference between the quality of regenerative dentin on the 15th and 30th days (p<0.05): all of the Propolis cases presented tubular dentin while 14% of the calcium hydroxide cases produced porous dentin. There was no significant difference between Propolis and calcium hydroxide in stimulation of dental pulp stem cells (DPSCs). Conclusion: This study which is the first one that documented the stimulation of stem cells by Propolis, provides evidence that this material has advantages over calcium hydroxide as a capping agent in vital pulp therapy. In addition to producing no pulpal inflammation, infection or necrosis this material induces the production of high quality tubular dentin. PMID:23508294

  4. Dental pulp stem cells promote regeneration of damaged neuron cells on the cellular model of Alzheimer's disease.

    PubMed

    Wang, Feixiang; Jia, Yali; Liu, Jiajing; Zhai, Jinglei; Cao, Ning; Yue, Wen; He, Huixia; Pei, Xuetao

    2017-06-01

    Alzheimer's disease (AD) is an incurable neurodegenerative disease and many types of stem cells have been used in AD therapy with some favorable effects. In this study, we investigated the potential therapeutical effects of human dental pulp stem cells (hDPSCs) on AD cellular model which established by okadaic acid (OA)-induced damage to human neuroblastoma cell line, SH-SY5Y, in vitro for 24 h. After confirmed the AD cellular model, the cells were co-culture with hDPSCs by transwell co-culture system till 24 h for treatment. Then the cytomorphology of the hDPSCs-treated cells were found to restore gradually with re-elongation of retracted dendrites. Meanwhile, Cell Counting Kit-8 assay and Hoechst 33258 staining showed that hDPSCs caused significant increase in the viability and decrease in apoptosis of the model cells, respectively. Observation of DiI labeling also exhibited the prolongation dendrites in hDPSCs-treated cells which were obviously different from the retraction dendrites in AD model cells. Furthermore, specific staining of α-tubulin and F-actin demonstrated that the hDPSCs-treated cells had the morphology of restored neurons, with elongated dendrites, densely arranged microfilaments, and thickened microtubular fibrils. In addition, results from western blotting revealed that phosphorylation at Ser 396 of Tau protein was significantly suppressed by adding of hDPSCs. These results indicate that hDPSCs may promote regeneration of damaged neuron cells in vitro model of AD and may serve as a useful cell source for treatment of AD. © 2017 International Federation for Cell Biology.

  5. Cryopreservation Method for the Effective Collection of Dental Pulp Stem Cells.

    PubMed

    Takebe, Yusuke; Tatehara, Seiko; Fukushima, Tatsuhiro; Tokuyama-Toda, Reiko; Yasuhara, Rika; Mishima, Kenji; Satomura, Kazuhito

    2017-05-01

    Dental pulp stem cells (DPSCs) are an attractive cell source for use in cell-based therapy, regenerative medicine, and tissue engineering because DPSCs have a high cell proliferation ability and multidifferentiation capacity. However, several problems are associated with the collection and preservation of DPSCs for use in future cell-based therapy. In particular, the isolation of DPSCs for cryopreservation is time consuming and expensive. In this study, we developed a novel cryopreservation method (NCM) for dental pulp tissues to isolate suitable DPSCs after thawing cryopreserved tissue. Using the NCM, dental pulp tissues were cultured on adhesion culture dishes for 5 days and then cryopreserved. After thawing, the cryopreserved dental pulp tissue fragments exhibited cell migration. We evaluated each property of DPSCs isolated using the NCM (DPSCs-NCM) and the explant method alone without cryopreservation (DPSCs-C). DPSCs-NCM had the same proliferation capacity as DPSCs-C. Flow cytometry (FACS) analysis indicated that both DPSCs-NCM and DPSCs-C were positive for mesenchymal stem cell markers at the same level but negative for hematopoietic cell markers. Moreover, both DPSCs-NCM and DPSCs-C could differentiate into osteogenic, chondrogenic, and adipogenic cells during culture in each induction medium. These results suggest that DPSCs-NCM may be mesenchymal stem cells. Therefore, our novel method might facilitate the less expensive cryopreservation of DPSCs, thereby providing suitable DPSCs for use in patients in future cell-based therapies.

  6. Optothermal transfer simulation in laser-irradiated human dentin.

    PubMed

    Moriyama, Eduardo H; Zangaro, Renato A; Lobo, Paulo D C; Villaverde, Antonio Balbin; Pacheco, Marcos T; Watanabe, Ii-Sei; Vitkin, Alex

    2003-04-01

    Laser technology has been studied as a potential replacement to the conventional dental drill. However, to prevent pulpal cell damage, information related to the safety parameters using high-power lasers in oral mineralized tissues is needed. In this study, the heat distribution profiles at the surface and subsurface regions of human dentine samples irradiated with a Nd:YAG laser were simulated using Crank-Nicolson's finite difference method for different laser energies and pulse durations. Heat distribution throughout the dentin layer, from the external dentin surface to the pulp chamber wall, were calculated in each case, to investigate the details of pulsed laser-hard dental tissue interactions. The results showed that the final temperature at the pulp chamber wall and at the dentin surface are strongly dependent on the pulse duration, exposure time, and the energy contained in each pulse.

  7. The Experimental Study of the Performance of Nano-Thin Polyelectrolyte Shell for Dental Pulp Stem Cells Immobilization.

    PubMed

    Grzeczkowicz, A; Granicka, L H; Maciejewska, I; Strawski, M; Szklarczyk, M; Borkowska, M

    2015-12-01

    Carious is the most frequent disease of mineralized dental tissues which might result in dental pulp inflammation and mortality. In such cases an endodontic treatment is the only option to prolong tooth functioning in the oral cavity; however, in the cases of severe pulpitis, especially when complicated with periodontal tissue inflammation, the endodontic treatment might not be enough to protect against tooth loss. Thus, keeping the dental pulp viable and/or possibility of the reconstruction of a viable dental pulp complex, appears to become a critical factor for carious and/or pulp inflammation treatment. The nowadays technologies, which allow handling dental pulp stem cells (DPSC), seem to bring us closer to the usage of dental stem cells for tooth tissues reconstruction. Thus, DPSC immobilized within nano-thin polymeric shells, allowing for a diffusion of produced factors and separation from bacteria, may be considered as a cover system supporting technology of dental pulp reconstruction. The DPSC were immobilized using a layer-by-layer technique within nano-thin polymeric shells constructed and modified by nanostructure involvement to ensure the layers stability and integrity as well as separation from bacterial cells. The cytotoxity of the material used for membrane production was assessed on the model of adherent cells. The performance of DPSC nano-coating was assessed in vitro. Membrane coatings showed no cytotoxicity on the immobilized cells. The presence of coating shell was confirmed with flow cytometry, atomic force microscopy and visualized with fluorescent microscopy. The transfer of immobilized DPSC within the membrane system ensuring cells integrity, viability and protection from bacteria should be considered as an alternative method for dental tissues transportation and regeneration.

  8. Effects of Camphorquinone on Cytotoxicity, Cell Cycle Regulation and Prostaglandin E2 Production of Dental Pulp Cells: Role of ROS, ATM/Chk2, MEK/ERK and Hemeoxygenase-1

    PubMed Central

    Chang, Mei-Chi; Lin, Li-Deh; Wu, Min-Tsz; Chan, Chiu-Po; Chang, Hsiao-Hua; Lee, Ming-Shu; Sun, Tzu-Ying; Jeng, Po-Yuan; Yeung, Sin-Yuet; Lin, Hsueh-Jen; Jeng, Jiiang-Huei

    2015-01-01

    Camphorquinone (CQ) is a popularly-used photosensitizer in composite resin restoration. In this study, the effects of CQ on cytotoxicity and inflammation-related genes and proteins expression of pulp cells were investigated. The role of reactive oxygen species (ROS), ATM/Chk2/p53 and hemeoxygenase-1 (HO-1) and MEK/ERK signaling was also evaluated. We found that ROS and free radicals may play important role in CQ toxicity. CQ (1 and 2 mM) decreased the viability of pulp cells to about 70% and 50% of control, respectively. CQ also induced G2/M cell cycle arrest and apoptosis of pulp cells. The expression of type I collagen, cdc2, cyclin B, and cdc25C was inhibited, while p21, HO-1 and cyclooxygenase-2 (COX-2) were stimulated by CQ. CQ also activated ATM, Chk2, and p53 phosphorylation and GADD45α expression. Besides, exposure to CQ increased cellular ROS level and 8-isoprostane production. CQ also stimulated COX-2 expression and PGE2 production of pulp cells. The reduction of cell viability caused by CQ can be attenuated by N-acetyl-L-cysteine (NAC), catalase and superoxide dismutase (SOD), but can be promoted by Zinc protoporphyin (ZnPP). CQ stimulated ERK1/2 phosphorylation, and U0126 prevented the CQ-induced COX-2 expression and prostaglandin E2 (PGE2) production. These results indicate that CQ may cause cytotoxicity, cell cycle arrest, apoptosis, and PGE2 production of pulp cells. These events could be due to stimulation of ROS and 8-isoprostane production, ATM/Chk2/p53 signaling, HO-1, COX-2 and p21 expression, as well as the inhibition of cdc2, cdc25C and cyclin B1. These results are important for understanding the role of ROS in pathogenesis of pulp necrosis and pulpal inflammation after clinical composite resin filling. PMID:26658076

  9. Insulin-like growth factor 1 can promote proliferation and osteogenic differentiation of human dental pulp stem cells via mTOR pathway.

    PubMed

    Feng, Xingmei; Huang, Dan; Lu, Xiaohui; Feng, Guijuan; Xing, Jing; Lu, Jun; Xu, Ke; Xia, Weiwei; Meng, Yan; Tao, Tao; Li, Liren; Gu, Zhifeng

    2014-12-01

    Insulin-like growth factor 1 (IGF-1) is a multifunctional peptide that can enhance osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). However, it remains unclear whether IGF-1 can promote osteogenic differentiation of human dental pulp stem cells (DPSCs). In our study, DPSCs were isolated from the impacted third molars, and treated with IGF-1. Osteogenic differentiation abilities were investigated. We found that IGF-1 activated the mTOR signaling pathway during osteogenic differentiation of DPSCs. IGF-1 also increased the expression of runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osterix (OSX) and collagen type I (COL I) during this process. Rapamycin, an mTOR inhibitor, blocked osteogenic differentiation induced by IGF-1. Meanwhile, CCK-8 assay and flow cytometry results demonstrated that 10-200 ng/mL IGF-1 could enhance proliferation ability of DPSCs and 100 ng/mL was the optimal concentration. In summary, IGF-1 could promote proliferation and osteogenic differentiation of DPSCs via mTOR pathways, which might have clinical implications for osteoporosis. © 2014 The Authors Development, Growth & Differentiation © 2014 Japanese Society of Developmental Biologists.

  10. DENTAL PULP TISSUE ENGINEERING

    PubMed Central

    Demarco, FF; Conde, MCM; Cavalcanti, B; Casagrande, L; Sakai, V; Nör, JE

    2013-01-01

    Dental pulp is a highly specialized mesenchymal tissue, which have a restrict regeneration capacity due to anatomical arrangement and post-mitotic nature of odontoblastic cells. Entire pulp amputation followed by pulp-space disinfection and filling with an artificial material cause loss of a significant amount of dentin leaving as life-lasting sequelae a non-vital and weakened tooth. However, regenerative endodontics is an emerging field of modern tissue engineering that demonstrated promising results using stem cells associated with scaffolds and responsive molecules. Thereby, this article will review the most recent endeavors to regenerate pulp tissue based on tissue engineering principles and providing insightful information to readers about the different aspects enrolled in tissue engineering. Here, we speculate that the search for the ideal combination of cells, scaffolds, and morphogenic factors for dental pulp tissue engineering may be extended over future years and result in significant advances in other areas of dental and craniofacial research. The finds collected in our review showed that we are now at a stage in which engineering a complex tissue, such as the dental pulp, is no longer an unachievable and the next decade will certainly be an exciting time for dental and craniofacial research. PMID:21519641

  11. Pulp revascularization of immature permanent teeth: a review of the literature and a proposal of a new clinical protocol.

    PubMed

    Namour, Mélanie; Theys, Stephanie

    2014-01-01

    Tissue engineering is a growing field. In the near future, it will probably be possible to generate a complete vital tooth from a single stem cell. Pulp revascularization is dependent on the ability of residual pulp and apical and periodontal stem cells to differentiate. These cells have the ability to generate a highly vascularized and a conjunctive rich living tissue. This one is able to colonize the available pulp space. Revascularization is a new treatment method for immature necrotic permanent teeth. Up to now, apexification procedures were applied for these teeth, using calcium dihydroxide or MTA to produce an artificial apical barrier. However, the pulp revascularization allows the stimulation of the apical development and the root maturation of immature teeth. Two pulp revascularization techniques are used in the literature, one using calcium dihydroxide and the second using a triple antibiotic paste. Based on these two different pulp revascularization protocols, which obtain the desired therapeutic success, the literature will be reviewed and analyzed according to the relevance of their choice of materials. Based on the literature, we propose a new relevant protocol and a new mixture of antibiotics.

  12. Alkaline phosphatase and OCT-3/4 as useful markers for predicting susceptibility of human deciduous teeth-derived dental pulp cells to reprogramming factor-induced iPS cells.

    PubMed

    Inada, Emi; Saitoh, Issei; Kubota, Naoko; Soda, Miki; Matsueda, Kazunari; Murakami, Tomoya; Sawami, Tadashi; Kagoshima, Akiko; Yamasaki, Youichi; Sato, Masahiro

    2017-11-01

    The aim of the present study was to prove that primary cells enriched with stem cells are more easily reprogrammed to generate induced pluripotent stem (iPS) cells than those with scarce numbers of stem cells. We surveyed the alkaline phosphatase (ALP) activity in five primarily-isolated human deciduous teeth-derived dental pulp cells (HDDPC) with cytochemical staining to examine the possible presence of stem cells. Next, the expression of stemness-specific factors, such as OCT(Octumer-binding transcription factor)3/4, NANOG, SOX2(SRY (sex determining region Y)-box 2), CD90, muscle segment homeodomain homeobox (MSX) 1, and MSX2, was assessed with a reverse transcription polymerase chain reaction method. Finally, these isolated HDDPC were transfected with plasmids carrying genes coding Yamanaka factors to determine whether these cells could be reprogrammed to generate iPS cells. Of the five primarily-isolated HDDPC, two (HDDPC-1 and -5) exhibited higher degrees of ALP activity. OCT-3/4 expression was also prominent in those two lines. Furthermore, these two lines proliferated faster than the other three lines. The transfection of HDDPC with Yamanaka factors resulted in the generation of iPS cells from HDDPC-1 and -5. The number of cells with the stemness property of HDDPC differs among individuals, which suggests that HDDPC showing an increased expression of both ALP and OCT-3/4 can be more easily reprogrammed to generate iPS cells after the forced expression of reprogramming factors. © 2016 John Wiley & Sons Australia, Ltd.

  13. Systemically Transplanted Bone Marrow-derived Cells Contribute to Dental Pulp Regeneration in a Chimeric Mouse Model.

    PubMed

    Xu, Wenan; Jiang, Shan; Chen, Qiuyue; Ye, Yanyan; Chen, Jiajing; Heng, Boon Chin; Jiang, Qianli; Wu, Buling; Ding, Zihai; Zhang, Chengfei

    2016-02-01

    Migratory cells via blood circulation or cells adjacent to the root apex may potentially participate in dental pulp tissue regeneration or renewal. This study investigated whether systemically transplanted bone marrow cells can contribute to pulp regeneration in a chimeric mouse model. A chimeric mouse model was created through the injection of bone marrow cells from green fluorescent protein (GFP) transgenic C57BL/6 mice into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 8.5 Gy from a high-frequency linear accelerator. These mice were subjected to pulpectomy and pulp revascularization. At 1, 4, and 8 weeks after surgery, in vivo animal imaging and histologic analyses were conducted. In vivo animal imaging showed that the green biofluorescence signal from the transplanted GFP+ cells increased significantly and was maintained at a high level during the first 4 weeks after surgery. Immunofluorescence analyses of tooth specimens collected at 8 weeks postsurgery showed the presence of nestin+/GFP+, α smooth muscle actin (α-SMA)/GFP+, and NeuN/GFP+ cells within the regenerated pulplike tissue. These data confirm that transplanted bone marrow-derived cells can contribute to dental pulp regeneration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Effects of Growth Factors on Dental Stem/ProgenitorCells

    PubMed Central

    Kim, Sahng G.; Solomon, Charles; Zheng, Ying; Suzuki, Takahiro; Mo, Chen; Song, Songhee; Jiang, Nan; Cho, Shoko; Zhou, Jian; Mao, Jeremy J.

    2014-01-01

    Synopsis The primary goal of regenerative endodontics is to restore the vitality and functions of the dentin-pulp complex, as opposed to filing of the root canal with bioinert materials. Structural restoration is also important but is likely secondary to vitality and functions. Myriads growth factors regulate multiple cellular functions including migration, proliferation, differentiation and apoptosis of several cell types that are intimately involved in dentin-pulp regeneration: odontoblasts, interstitial fibroblasts, vascular-endothelial cells and sprouting nerve fibers. Recent work showing that growth factor delivery, without cell transplantation, can yield pulp-dentin like tissues in vivo provides one of the tangible pathways for regenerative endodontics. This review synthesizes our knowledge on a multitude of growth factors that are known or anticipated to be efficacious in dental pulp-dentin regeneration. PMID:22835538

  15. Osteogenic differentiation of stem cells derived from human periodontal ligaments and pulp of human exfoliated deciduous teeth.

    PubMed

    Chadipiralla, Kiranmai; Yochim, Ji Min; Bahuleyan, Bindu; Huang, Chun-Yuh Charles; Garcia-Godoy, Franklin; Murray, Peter E; Stelnicki, Eric J

    2010-05-01

    Multipotent stem cells derived from periodontal ligaments (PDLSC) and pulp of human exfoliated deciduous teeth (SHED) represent promising cell sources for bone regeneration. Recent studies have demonstrated that retinoic acid (RA) and dexamethasone (Dex) induce osteogenesis of postnatal stem cells. The objective of this study was to examine the effects of RA and Dex on the proliferation and osteogenic differentiation of SHED and PDLSC and to compare the osteogenic characteristics of SHED and PDLSC under RA treatment. SHED and PDLSC were treated with serum-free medium either alone or supplemented with RA or Dex for 21 days. The proliferation of SHED and PDLSC was significantly inhibited by both RA and Dex. RA significantly upregulated gene expression and the activity of alkaline phosphatase in SHED and PDLSC. Positive Alizarin red and von Kossa staining of calcium deposition was seen on the RA-treated SHED and PDLSC after 21 days of culture. The influences of RA on the osteogenic differentiation of SHED and PDLSC were significantly stronger than with Dex. Supplementation with insulin enhanced RA-induced osteogenic differentiation of SHED. Thus, RA is an effective inducer of osteogenic differentiation of SHED and PDLSC, whereas RA treatment in combination with insulin supplementation might be a better option for inducing osteogenic differentiation. Significantly higher cell proliferation of PDLSC results in greater calcium deposition after 3-week culture, suggesting that PDLSC is a better osteogenic stem cell source. This study provides valuable information for efficiently producing osteogenically differentiated SHED or PDLSC for in vivo bone regeneration.

  16. Analysis of Papaya Cell Wall-Related Genes during Fruit Ripening Indicates a Central Role of Polygalacturonases during Pulp Softening

    PubMed Central

    Fabi, João Paulo; Broetto, Sabrina Garcia; da Silva, Sarah Lígia Garcia Leme; Zhong, Silin; Lajolo, Franco Maria; do Nascimento, João Roberto Oliveira

    2014-01-01

    Papaya (Carica papaya L.) is a climacteric fleshy fruit that undergoes dramatic changes during ripening, most noticeably a severe pulp softening. However, little is known regarding the genetics of the cell wall metabolism in papayas. The present work describes the identification and characterization of genes related to pulp softening. We used gene expression profiling to analyze the correlations and co-expression networks of cell wall-related genes, and the results suggest that papaya pulp softening is accomplished by the interactions of multiple glycoside hydrolases. The polygalacturonase cpPG1 appeared to play a central role in the network and was further studied. The transient expression of cpPG1 in papaya results in pulp softening and leaf necrosis in the absence of ethylene action and confirms its role in papaya fruit ripening. PMID:25162506

  17. NADPH oxidase 4 is involved in the triethylene glycol dimethacrylate-induced reactive oxygen species and apoptosis in human embryonic palatal mesenchymal and dental pulp cells.

    PubMed

    Yeh, Cheng-Chang; Chang, Jenny Zwei-Chieng; Yang, Wan-Hsien; Chang, Hao-Hueng; Lai, Eddie Hsiang-Hua; Kuo, Mark Yen-Ping

    2015-07-01

    Triethylene glycol dimethacrylate (TEGDMA) is a common component of resin-based dental composites and endodontic sealers. TEGDMA induces apoptosis in several types of cells. However, the mechanisms are not completely understood. The aim of this study was to investigate the mechanisms underlying TEGDMA-induced apoptosis in human embryonic palatal mesenchymal (HEPM) pre-osteoblasts and primary human dental pulp (HDP) cells. Cell viability was examined after TEGDMA treatment. Cell cycle progression was checked by flow cytometry. Apoptotic cells were evaluated using terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling assay and visualized by fluorescence microscopy. Western blot analyses were performed to determine expressions of apoptosis-related proteins. The production of reactive oxygen species (ROS) was detected using flow cytometry. NADPH oxidase 4 (NOX4) expression levels were investigated using real-time quantitative polymerase chain reaction and Western blot analyses. TEGDMA increased cytosol cytochrome c levels and activated caspase-9 in HEPM and HDP cells. TEGDMA decreased the expression of anti-apoptotic protein Bcl-XL. TEGDMA-induced apoptosis was inhibited by caspase-9-specific inhibitor, anti-oxidants, NOX inhibitor, NOX4 inhibitor, and NOX4 small interfering RNA (siRNA). TEGDMA increased ROS production and upregulated NOX4 mRNA and protein expression. TEGDMA-induced intracellular ROS production was inhibited by NOX inhibitor and NOX4 inhibitor. We demonstrate significant involvement of NOX4 in the TEGDMA-induced ROS. NOX4-derived ROS subsequently induces mitochondrial cytochrome c release leading to apoptosis through activation of the intrinsic apoptotic pathway. NOX4 may be a potential target for strategies to prevent or ameliorate the TEGDMA-induced toxicity in HEPM and HDP cells.

  18. Histological transformations of the dental pulp as possible indicator of post mortem interval: a pilot study.

    PubMed

    Carrasco, Patricio A; Brizuela, Claudia I; Rodriguez, Ismael A; Muñoz, Samuel; Godoy, Marianela E; Inostroza, Carolina

    2017-10-01

    The correct estimation of the post mortem interval (PMI) can be crucial on the success of a forensic investigation. Diverse methods have been used to estimate PMI, considering physical changes that occur after death, such as mortis algor, livor mortis, among others. Degradation after death of dental pulp is a complex process that has not yet been studied thoroughly. It has been described that pulp RNA degradation could be an indicator of PMI, however this study is limited to 6 days. The tooth is the hardest organ of the human body, and within is confined dental pulp. The pulp morphology is defined as a lax conjunctive tissue with great sensory innervation, abundant microcirculation and great presence of groups of cell types. The aim of this study is to describe the potential use of pulp post mortem alterations to estimate PMI, using a new methodology that will allow obtainment of pulp tissue to be used for histomorphological analysis. The current study will identify potential histological indicators in dental pulp tissue to estimate PMI in time intervals of 24h, 1 month, 3 months and 6 months. This study used 26 teeth from individuals with known PMI of 24h, 1 month, 3 months or 6 months. All samples were manipulated with the new methodology (Carrasco, P. and Inostroza C. inventors; Universidad de los Andes, assignee. Forensic identification, post mortem interval estimation and cause of death determination by recovery of dental tissue. United State patent US 61/826,558 23.05.2013) to extract pulp tissue without the destruction of the tooth. The dental pulp tissues obtained were fixed in formalin for the subsequent generation of histological sections, stained with Hematoxylin Eosin and Masson's Trichrome. All sections were observed under an optical microscope using magnifications of 10× and 40×. The microscopic analysis of the samples showed a progressive transformation of the cellular components and fibers of dental pulp along PMI. These results allowed creating a chart of qualitative and quantitative parameters to be used on the estimation on PMI based on microscopic degradation of dental pulp. The histological transformations of dental pulp as a function of time can be used as PMI indicators. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Direct and Indirect Pulp Capping: A Brief History, Material Innovations, and Clinical Case Report.

    PubMed

    Alex, Gary

    2018-03-01

    Among the goals of pulp capping are to manage bacteria, arrest caries progression, stimulate pulp cells to form new dentin, and produce a durable seal that protects the pulp complex. This article will provide a general discussion of direct and indirect pulp capping procedures, offering practitioners a pragmatic and science-based clinical protocol for treatment of vital pulp exposures. A clinical case will be presented in which a novel light-cured resin-modified mineral trioxide aggregate hybrid material was used to manage a mechanical vital pulp exposure that occurred during deep caries excavation.

  20. Inflammatory and immunological aspects of dental pulp repair

    PubMed Central

    Goldberg, Michel; Farges, Jean-Christophe; Lacerda-Pinheiro, Sally; Six, Ngampis; Jegat, Nadège; Decup, Frank; Septier, Dominique; Carrouel, Florence; Durand, Stéphanie; Chaussain-Miller, Catherine; DenBesten, Pamela; Veis, Arthur; Poliard, Anne

    2010-01-01

    The repair of dental pulp by direct capping with calcium hydroxide or by implantation of bioactive extracellular matrix (ECM) molecules implies a cascade of four steps: a moderate inflammation, the commitment of adult reserve stem cells, their proliferation and terminal differentiation. The link between the initial inflammation and cell commitment is not yet well established but appears as a potential key factor in the reparative process. Either the release of cytokines due to inflammatory events activates resident stem (progenitor) cells, or inflammatory cells or pulp fibroblasts undergo a phenotypic conversion into osteoblast/odontoblast-like progenitors implicated in reparative dentin formation. Activation of antigen-presenting dendritic cells by mild inflammatory processes may also promote osteoblast/odontoblast-like differentiation and expression of ECM molecules implicated in mineralization. Recognition of bacteria by specific odontoblast and fibroblast membrane receptors triggers an inflammatory and immune response within the pulp tissue that would also modulate the repair process. PMID:18602009

  1. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis.

    PubMed

    Jarmalavičiūtė, Akvilė; Tunaitis, Virginijus; Pivoraitė, Ugnė; Venalis, Algirdas; Pivoriūnas, Augustas

    2015-07-01

    Stem cells derived from the dental pulp of human exfoliated deciduous teeth (SHEDs) have unique neurogenic properties that could be potentially exploited for therapeutic use. The importance of paracrine SHED signaling for neuro-regeneration has been recognized, but the exact mechanisms behind these effects are presently unknown. In the present study, we investigated the neuro-protective potential of exosomes and micro-vesicles derived from SHEDs on human dopaminergic neurons during oxidative stress-induced by 6-hydroxy-dopamine (6-OHDA). ReNcell VM human neural stem cells were differentiated into dopaminergic neurons and treated with 100 μmol/L of 6-OHDA alone or in combination with exosomes or micro-vesicles purified by ultracentrifugation from SHEDs cultivated in serum-free medium under two conditions: in standard two-dimensional culture flasks or on laminin-coated micro-carriers in a bioreactor. Real-time monitoring of apoptosis was performed with the use of time-lapse confocal microscopy and the CellEvent Caspase-3/7 green detection reagent. Exosomes but not micro-vesicles derived from SHEDs grown on the laminin-coated three-dimensional alginate micro-carriers suppressed 6-OHDA-induced apoptosis in dopaminergic neurons by approximately 80% throughout the culture period. Strikingly, no such effects were observed for the exosomes derived from SHEDs grown under standard culture conditions. Our results suggest that exosomes derived from SHEDs are considered as new potential therapeutic tool in the treatment of Parkinson's disease. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  2. Transcriptome comparison of human neurons generated using induced pluripotent stem cells derived from dental pulp and skin fibroblasts.

    PubMed

    Chen, Jian; Lin, Mingyan; Foxe, John J; Pedrosa, Erika; Hrabovsky, Anastasia; Carroll, Reed; Zheng, Deyou; Lachman, Herbert M

    2013-01-01

    Induced pluripotent stem cell (iPSC) technology is providing an opportunity to study neuropsychiatric disorders through the capacity to grow patient-specific neurons in vitro. Skin fibroblasts obtained by biopsy have been the most reliable source of cells for reprogramming. However, using other somatic cells obtained by less invasive means would be ideal, especially in children with autism spectrum disorders (ASD) and other neurodevelopmental conditions. In addition to fibroblasts, iPSCs have been developed from cord blood, lymphocytes, hair keratinocytes, and dental pulp from deciduous teeth. Of these, dental pulp would be a good source for neurodevelopmental disorders in children because obtaining material is non-invasive. We investigated its suitability for disease modeling by carrying out gene expression profiling, using RNA-seq, on differentiated neurons derived from iPSCs made from dental pulp extracted from deciduous teeth (T-iPSCs) and fibroblasts (F-iPSCs). This is the first RNA-seq analysis comparing gene expression profiles in neurons derived from iPSCs made from different somatic cells. For the most part, gene expression profiles were quite similar with only 329 genes showing differential expression at a nominally significant p-value (p<0.05), of which 63 remained significant after correcting for genome-wide analysis (FDR <0.05). The most striking difference was the lower level of expression detected for numerous members of the all four HOX gene families in neurons derived from T-iPSCs. In addition, an increased level of expression was seen for several transcription factors expressed in the developing forebrain (FOXP2, OTX1, and LHX2, for example). Overall, pathway analysis revealed that differentially expressed genes that showed higher levels of expression in neurons derived from T-iPSCs were enriched for genes implicated in schizophrenia (SZ). The findings suggest that neurons derived from T-iPSCs are suitable for disease-modeling neuropsychiatric disorder and may have some advantages over those derived from F-iPSCs.

  3. Eluted zinc ions stimulate osteoblast differentiation and mineralization in human dental pulp stem cells for bone tissue engineering.

    PubMed

    Yusa, Kazuyuki; Yamamoto, Osamu; Iino, Mitsuyoshi; Takano, Hiroshi; Fukuda, Masayuki; Qiao, Zhiwei; Sugiyama, Toshihiro

    2016-11-01

    Zinc is an essential element for proliferation, differentiation and survival in various cell types. In a previous study, we found that zinc ions released from zinc-modified titanium surfaces (eluted zinc ions; EZ) stimulate cell viability, osteoblast marker gene expression and calcium deposition in human bone marrow-derived mesenchymal cells (hBMCs). The aim of the present study was to investigate the effects of EZ on osteoblast differentiation among dental pulp stem cells (DPSCs) in vitro. In this study, we evaluated the effects of EZ on osteogenesis in DPSCs. Osteoblast and osteoclast marker gene expression was evaluated by real-time PCR. We also evaluated alkaline phosphatase (ALP) staining and calcium deposition. We found that EZ stimulated osteoblast marker gene (type I collagen, alkaline phosphatase (ALP), osteocalcin (OCN) and Runx2) expression, vascular endothelial growth factor A (VEGF-A), and TGF-beta signaling pathway-related gene expression after 7days of incubation. Osteoclastogenesis occurs in a receptor for activated nuclear-factor kappa B ligand (RANKL)/osteoprotegerin (OPG)-independent manner. Real-time PCR analysis revealed that EZ did not affect RANKL or OPG mRNA expression. It was also revealed that EZ induced alkaline phosphatase (ALP) staining and calcium deposition in DPSCs. Collectively, these results demonstrate the potential for clinical application to prospective treatment of bone diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Red algae and their use in papermaking.

    PubMed

    Seo, Yung-Bum; Lee, Youn-Woo; Lee, Chun-Han; You, Hack-Chul

    2010-04-01

    Gelidialian red algae, that contain rhizoidal filaments, except the family Gelidiellaceae were processed to make bleached pulps, which can be used as raw materials for papermaking. Red algae consist of rhizoidal filaments, cortical cells usually reddish in color, and medullary cells filled with mucilaginous carbohydrates. Red algae pulp consists of mostly rhizoidal filaments. Red algae pulp of high brightness can be produced by extracting mucilaginous carbohydrates after heating the algae in an aqueous medium and subsequently treating the extracted with bleaching chemicals. In this study, we prepared paper samples from bleached pulps obtained from two red algae species (Gelidium amansii and Gelidium corneum) and compared their properties to those of bleached wood chemical pulps. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. [Vital pulp therapy of damaged dental pulp].

    PubMed

    Xuedong, Zhou; Dingming, Huang; Jianguo, Liu; Zhengwei, Huang; Xin, Wei; Deqin, Yang; Jin, Zhao; Liming, Chen; Lin, Zhu; Yanhong, Li; Jiyao, Li

    2017-08-01

    The development of an expert consensus on vital pulp therapy can provide practical guidance for the improvement of pulp damage care in China. Dental pulp disease is a major type of illness that adversely affects human oral health. Pulp capping and pulpotomy are currently the main methods for vital pulp therapy. Along with the development of minimal invasion cosmetic dentistry, using different treatment technologies and materials reasonably, preserving healthy tooth tissue, and extending tooth save time have become urgent problems that call for immediate solution in dental clinics. This paper summarizes the experiences and knowledge of endodontic experts. We develop a clinical path of vital pulp therapy for clinical work by utilizing the nature, approach, and degree of pulp damage as references, defense and self-repairing ability of pulp as guidance, and modern technologies of diagnosis and treatment as means.

  6. Method and apparatus for assaying wood pulp fibers

    DOEpatents

    Gustafson, Richard [Bellevue, WA; Callis, James B [Seattle, WA; Mathews, Jeffrey D [Neenah, WI; Robinson, John [Issaquah, WA; Bruckner, Carsten A [San Mateo, CA; Suvamakich, Kuntinee [Seattle, WA

    2009-05-26

    Paper pulp is added to a stain solution. The stain solution and pulp fibers are mixed to form a slurry. Samples are removed from the slurry and are admixed with dilution water and a bleach. Then, the fibers are moved into a flow cell where they are subjected to a light source adapted to stimulate fluorescence from the stained pulp fiber. Before the fiber slurry enters the flow cell it is mixed with a dilution water of bleach to reduce background fluorescence. The fluorescent light is collimated and directed through a dichroic filter onto a fluorescence splitting dichroic filter.

  7. Histologic investigation of the human pulp after thermodebonding of metal and ceramic brackets.

    PubMed

    Jost-Brinkmann, P G; Stein, H; Miethke, R R; Nakata, M

    1992-11-01

    Twenty-five human permanent teeth scheduled for extraction for orthodontic reasons were used to study the effect of thermodebonding on the pulp tissue. One week before brackets were removed the teeth were bonded with either metal or ceramic brackets, with two alternative adhesives. For debonding, three different techniques were used: (1) debonding of ceramic brackets warmed up indirectly by resistance heating of a metallic bow applied to the bracket slot, (2) debonding of metal brackets warmed up directly by inductive heating of the bracket itself, and (3) debonding of ceramic brackets warmed up indirectly by inductive heating of metallic plier tips, applied to the mesial and distal bracket surfaces. Teeth with metal brackets removed without heat by squeezing the wings together served as a control group. The teeth were extracted 24 hours after debonding and subjected to a light microscopic study after histologic preparation and staining. In addition, the location of adhesive remnants was evaluated. While the thermodebonding of metal brackets worked properly and without any obvious pulp damage, there were problems related to the thermodebonding of ceramic brackets: (1) if more than one heating cycle was necessary, several teeth showed localized damage of the pulp with slight infiltration of inflammatory cells, (2) bracket fractures occurred frequently, and enamel damage could be shown, and (3) often with Transbond (Unitek/3M, Monrovia, Calif.) as the adhesive, more than one heating cycle was necessary for bracket removal, and thus patients complained about pain.

  8. PiggyBac transposon-mediated gene delivery efficiently generates stable transfectants derived from cultured primary human deciduous tooth dental pulp cells (HDDPCs) and HDDPC-derived iPS cells.

    PubMed

    Inada, Emi; Saitoh, Issei; Watanabe, Satoshi; Aoki, Reiji; Miura, Hiromi; Ohtsuka, Masato; Murakami, Tomoya; Sawami, Tadashi; Yamasaki, Youichi; Sato, Masahiro

    2015-09-14

    The ability of human deciduous tooth dental pulp cells (HDDPCs) to differentiate into odontoblasts that generate mineralized tissue holds immense potential for therapeutic use in the field of tooth regenerative medicine. Realization of this potential depends on efficient and optimized protocols for the genetic manipulation of HDDPCs. In this study, we demonstrate the use of a PiggyBac (PB)-based gene transfer system as a method for introducing nonviral transposon DNA into HDDPCs and HDDPC-derived inducible pluripotent stem cells. The transfection efficiency of the PB-based system was significantly greater than previously reported for electroporation-based transfection of plasmid DNA. Using the neomycin resistance gene as a selection marker, HDDPCs were stably transfected at a rate nearly 40-fold higher than that achieved using conventional methods. Using this system, it was also possible to introduce two constructs simultaneously into a single cell. The resulting stable transfectants, expressing tdTomato and enhanced green fluorescent protein, exhibited both red and green fluorescence. The established cell line did not lose the acquired phenotype over three months of culture. Based on our results, we concluded that PB is superior to currently available methods for introducing plasmid DNA into HDDPCs. There may be significant challenges in the direct clinical application of this method for human dental tissue engineering due to safety risks and ethical concerns. However, the high level of transfection achieved with PB may have significant advantages in basic scientific research for dental tissue engineering applications, such as functional studies of genes and proteins. Furthermore, it is a useful tool for the isolation of genetically engineered HDDPC-derived stem cells for studies in tooth regenerative medicine.

  9. In vitro fermentation of juçara pulp (Euterpe edulis) by human colonic microbiota.

    PubMed

    Guergoletto, Karla Bigetti; Costabile, Adele; Flores, Gema; Garcia, Sandra; Gibson, Glenn R

    2016-04-01

    This study was carried out to investigate the potential fermentation properties of juçara pulp, using pH-controlled anaerobic batch cultures reflective of the distal region of the human large intestine. Effects upon major groups of the microbiota were monitored over 24h incubations by fluorescence in situ hybridisation (FISH). Short-chain fatty acids (SCFA) were measured by HPLC. Phenolic compounds, during an in vitro simulated digestion and fermentation, were also analysed. Juçara pulp can modulate the intestinal microbiota in vitro, promoting changes in the relevant microbial populations and shifts in the production of SCFA. Fermentation of juçara pulp resulted in a significant increase in numbers of bifidobacteria after a 24h fermentation compared to a negative control. After in vitro digestion, 46% of total phenolic content still remained. This is the first study reporting the potential prebiotic effect of juçara pulp; however, human studies are necessary to prove its efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Proteomic Analysis of Mesenchymal Stem Cells from Normal and Deep Carious Dental Pulp

    PubMed Central

    Gao, Jie; Yan, Wenjuan; Liu, Ying; Xu, Shuaimei; Wu, Buling

    2014-01-01

    Dental pulp stem cells (DPSCs), precursor cells of odontoblasts, are ideal seed cells for tooth tissue engineering and regeneration. Our previous study has demonstrated that stem cells exist in dental pulp with deep caries and are called carious dental pulp stem cells (CDPSCs). The results indicated that CDPSCs had a higher proliferative and stronger osteogenic differentiation potential than DPSCs. However, the molecular mechanisms responsible for the biological differences between DPSCs and CDPSCs are poorly understood. The aim of this study was to define the molecular features of DPSCs and CDPSCs by comparing the proteomic profiles using two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) in combination with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Our results revealed that there were 18 protein spots differentially expressed between DPSCs and CDPSCs in a narrow pH range of 4 to 7. These differently expressed proteins are mostly involved in the regulation of cell proliferation, differentiation, cell cytoskeleton and motility. In addition, our results suggested that CDPSCs had a higher expression of antioxidative proteins that might protect CDPSCs from oxidative stress. This study explores some potential proteins responsible for the biological differences between DPSCs and CDPSCs and expands our understanding on the molecular mechanisms of mineralization of DPSCs in the formation of the dentin-pulp complex. PMID:24809979

  11. Repair dentinogenesis following transplantation into normal and germ-free animals.

    PubMed

    Inoue, T; Shimono, M

    1992-01-01

    The purpose of this study was to investigate the dentinogenesis of dental pulp tissue following transplantation and during regeneration in normal and germ free animals, as well as in vitro experiments. (1) Partial and complete exposure of dental pulp in germ free rats by removing the enamel and dentin of molars. (2) The central portion of rat incisor which consisted of pulp and pulp chamber were autografted into various tissues. (3) Explants of rat pulp tissue were cultured on dentin matrix. (4) Resin bonding agent, 4-META/MMA-TBB-O (Superbond), was placed directly on surgically-exposed dental pulp. (1) Dentin bridge formation was recognized at 5 days after operation in germ free rat. (2) The cut surface of the transplant exhibited dentin bridge at 7 days after implantation, and the thickness of the newly formed dentin increased gradually thereafter up to 30 days. (3) Cultured pulp cells had high alkaline phosphatase activity and bone- or dentin-like hard tissue was synthesized on the dentin matrix in vitro. (4) Dentin bridge formation was evident on the surgically-exposed dental pulp even after application of Superbond. From these results, it is suggested that pulp tissue has a high activity of dentinogenesis both in vivo and in vitro and 3 days is enough for pulp cells to express the odontoblast phenotype when inflammatory factors are not present.

  12. Autophagy in SDF-1α-mediated DPSC migration and pulp regeneration.

    PubMed

    Yang, Jing-Wen; Zhang, Yu-Feng; Wan, Chun-Yan; Sun, Zhe-Yi; Nie, Shuai; Jian, Shu-Juan; Zhang, Lu; Song, Guang-Tai; Chen, Zhi

    2015-03-01

    Critical morphological requirements for pulp regeneration are tissues replete with vascularisation, neuron formation, and dentin deposition. Autophagy was recently shown to be related to angiogenesis, neural differentiation, and osteogenesis. The present study aimed to investigate the involvement of autophagy in stromal cell-derived factor-1α (SDF-1α)-mediated dental pulp stem cell (DPSC) migration and pulp regeneration, and identify its presence during pulp revascularisation of pulpectomised dog teeth with complete apical closure. In vitro studies showed that SDF-1α enhanced DPSCs migration and optimised focal adhesion formation and stress fibre assembly, which were accompanied by autophagy. Moreover, autophagy inhibitors significantly suppressed, whereas autophagy activator substantially augmented SDF-1α-stimulated DPSCs migration. Furthermore, after ectopic transplantation of tooth fragment/silk fibroin scaffold with DPSCs into nude mice, pulp-like tissues with vascularity, well-organised fibrous matrix formation, and new dentin deposition along the dentinal wall were generated in SDF-1α-loaded samples accompanied by autophagy. More importantly, in a pulp revascularisation model in situ, SDF-1α-loaded silk fibroin scaffolds improved the de novo ingrowth of pulp-like tissues in pulpectomised mature dog teeth, which correlated with the punctuated LC3 and Atg5 expressions, indicating autophagy. Our findings provide novel insights into the pulp regeneration mechanism, and SDF-1α shows promise for future clinical application in pulp revascularisation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Molecular, cellular, and behavioral changes associated with pathological pain signaling occur after dental pulp injury

    PubMed Central

    Lee, Caroline S; Ramsey, Austin A; De Brito-Gariepy, Helaine; Michot, Benoit; Podborits, Eugene; Melnyk, Janet

    2017-01-01

    Persistent pain can occur after routine dental treatments in which the dental pulp is injured. To better understand pain chronicity after pulp injury, we assessed whether dental pulp injury in mice causes changes to the sensory nervous system associated with pathological pain. In some experiments, we compared findings after dental pulp injury to a model of orofacial neuropathic pain, in which the mental nerve is injured. After unilateral dental pulp injury, we observed increased expression of activating transcription factor 3 (ATF3) and neuropeptide Y (NPY) mRNA and decreased tachykinin precursor 1 gene expression, in the ipsilateral trigeminal ganglion. We also observed an ipsilateral increase in the number of trigeminal neurons expressing immunoreactivity for ATF3, a decrease in substance P (SP) immunoreactive cells, and no change in the number of cells labeled with IB4. Mice with dental pulp injury transiently exhibit hindpaw mechanical allodynia, out to 12 days, while mice with mental nerve injury have persistent hindpaw allodynia. Mice with dental pulp injury increased spontaneous consumption of a sucrose solution for 17 days while mental nerve injury mice did not. Finally, after dental pulp injury, an increase in expression of the glial markers Iba1 and glial fibrillary acidic protein occurs in the transition zone between nucleus caudalis and interpolaris, ipsilateral to the injury. Collectively these studies suggest that dental pulp injury is associated with significant neuroplasticity that could contribute to persistent pain after of dental pulp injury. PMID:28580829

  14. One step pulp revascularization treatment of an immature permanent tooth with chronic apical abscess: a case report.

    PubMed

    Shin, S Y; Albert, J S; Mortman, R E

    2009-12-01

    To describe a case in which a mandibular right second premolar with a necrotic pulp, sinus tract, periradicular radiolucency and an immature apex underwent revascularization via a single treatment approach. Revascularization procedures have the potential to heal a partially necrotic pulp, which can be beneficial for the continued root development of immature teeth. However, it is not clear which revascularization protocols are the most effective. This case report details the outcome of a successful revascularization procedure on tooth 45 (FDI) in a 12-year-old patient, eliminating the associated periapical pathosis within 19 months. The tooth was treated using coronal root irrigation with 6% NaOCl and 2% chlorhexidine without instrumentation in a single visit. The successful outcome of this case report suggests that this conservative revascularization treatment approach can preserve the vitality of the dental pulp stem cells and create a suitable environment for pulp regeneration, resulting in the completion of root maturation. The noninstrumentation procedure using 6% NaOCl and 2% chlorhexidine coronal irrigation may help preserve the remaining vital dental pulp stem cells believed to be critical for pulp revascularization. A single visit pulp revascularization protocol can be a favourable treatment option for an immature permanent tooth with a partially necrotic pulp.

  15. Assessment of the Tumorigenic Potential of Spontaneously Immortalized and hTERT-Immortalized Cultured Dental Pulp Stem Cells

    PubMed Central

    Wilson, Ryan; Urraca, Nora; Skobowiat, Cezary; Hope, Kevin A.; Miravalle, Leticia; Chamberlin, Reed; Donaldson, Martin; Seagroves, Tiffany N.

    2015-01-01

    Dental pulp stem cells (DPSCs) provide an exciting new avenue to study neurogenetic disorders. DPSCs are neural crest-derived cells with the ability to differentiate into numerous tissues including neurons. The therapeutic potential of stem cell-derived lines exposed to culturing ex vivo before reintroduction into patients could be limited if the cultured cells acquired tumorigenic potential. We tested whether DPSCs that spontaneously immortalized in culture acquired features of transformed cells. We analyzed immortalized DPSCs for anchorage-independent growth, genomic instability, and ability to differentiate into neurons. Finally, we tested both spontaneously immortalized and human telomerase reverse transcriptase (hTERT)-immortalized DPSC lines for the ability to form tumors in immunocompromised animals. Although we observed increased colony-forming potential in soft agar for the spontaneously immortalized and hTERT-immortalized DPSC lines relative to low-passage DPSC, no tumors were detected from any of the DPSC lines tested. We noticed some genomic instability in hTERT-immortalized DPSCs but not in the spontaneously immortalized lines tested. We determined that immortalized DPSC lines generated in our laboratory, whether spontaneously or induced, have not acquired the potential to form tumors in mice. These data suggest cultured DPSC lines that can be differentiated into neurons may be safe for future in vivo therapy for neurobiological diseases. Significance This study demonstrated that immortalized dental pulp stem cells (DPSCs) do not form tumors in animals and that immortalized DPSCs can be differentiated into neurons in culture. These results lend support to the use of primary and immortalized DPSCs for future therapeutic approaches to treatment of neurobiological diseases. PMID:26032749

  16. Enhanced differentiation of dental pulp cells cultured on microtubular polymer scaffolds in vitro.

    PubMed

    Haeri, Morteza; Sagomonyants, Karen; Mina, Mina; Kuhn, Liisa T; Goldberg, A Jon

    2017-06-01

    Dental caries (tooth decay) is the most common chronic disease. Dental tissue engineering is a promising alternative approach to alleviate the shortcomings of the currently available restorative materials. Mimicking the natural extracellular matrix (ECM) could enhance the performance of tissue engineering scaffolds. In this study, we developed microtubular (~20 μm diameter) polymethyl methacrylate (PMMA) scaffolds resembling the tubular (~2.5 μm diameter) structure of dentin, the collagen-based mineralized tissue that forms the major portion of teeth, to study the effect of scaffold architecture on differentiation of mouse dental pulp cells in vitro . Flat (control), plasma-treated solid and microtubular PMMA scaffolds with densities of 240±15, 459±51 and 480±116 tubules/mm 2 were first characterized using scanning electron microscopy and contact angle measurements. Dental pulp cells were cultured on the surface of the scaffolds for up to 21 days and examined using various assays. Cell proliferation and mineralization were examined using Alamar Blue and Xylenol Orange (XO) staining assays, respectively. The differentiation of pulp cells into odontoblasts was examined by immunostaining for Nestin and by quantitative PCR analysis for dentin matrix protein 1 ( Dmp1 ), dentin sialophosphoprotein ( Dspp ) and osteocalcin ( Ocn ). Our results showed that the highest tubular density scaffolds significantly (p<0.05) enhanced differentiation of pulp cells into odontoblasts as compared to control flat scaffolds, as evidenced by increased expression of Nestin (5.4x). However, mineralization was suppressed on all surfaces, possibly due to low cell density. These results suggest that the microtubular architecture may be a desirable feature of scaffolds developed for clinical applications. Regenerative engineering of diseased or traumatized tooth structure could avoid the deficiencies of traditional dental restorative (filling) materials. Cells in the dental pulp have the potential to differentiate to dentin-producing odontoblast cells. Furthermore, cell-supporting scaffolds that mimic a natural extracellular matrix (ECM) are known to influence behavior of progenitor cells. Accordingly, we hypothesized that a dentin-like microtubular scaffold would enhance differentiation of dental pulp cells. The hypothesis was proven true and differentiation to odontoblasts increased with increasing density of the microtubules. However, mineralization was suppressed, possibly due to a low density of cells. The results demonstrate the potential benefits of a microtubular scaffold design to promote odontoblast cells for regeneration of dentin.

  17. [Comparison of expression of transforming growth factor-β1 in rat dental pulp during direct pulp capping with 2 capping agents].

    PubMed

    Zhang, Xiao-fang; Yao, Ya-peng; Kang, Hong-ying; Dong, Pei

    2014-04-01

    To examine and compare the expression of transforming growth factor-β1(TGF-β1) in rat dental pulp after direct pulp capping with calcium hydroxide (CH) and mineral trioxide aggregate (MTA). The model of direct dental pulp capping after first molars was established in 28 female Wistar rats with CH and MTA. The rats were sacrificed 1, 3, 5, 7, 14,21 and 28 days after direct pulp capping. TGF-β1 expression in pulp tissues were measured with immunohistochemical staining. The data was analyzed by Dunnett t test and paired t test with SPSS 13.0 software package. The results showed that no TGF-β1 expression was detected in the control group. After direct pulp capping with MTA, TGF-β1 expression gradually increased and reached peak expression on 5 day. TGF-β1 expression gradually decreased afterwards and reached normal on 21 day after direct pulp. TGF-β1 was mainly expressed in neutrophils, odontoblasts cells, vascular endothelial cells and fibroblasts. The expression of TGF-β1 was significantly different between 2 capping agents 1, 3, 5, 7, 14 days after direct pulp capping (P<0.05). The results suggest that TGF-β1 expression increases at first and then decreases after direct pulp capping. The type of capping agents has an impact on the expression of TGF-β1 after direct pulp capping. MTA enhances more TGFβ-1 expression than CH 1, 3, 5, 7 and 14 days after direct pulp capping. Supported by Science and Technology Plan Project of Liaoning Province (2009225001-2).

  18. Human bone marrow harbors cells with neural crest-associated characteristics like human adipose and dermis tissues

    PubMed Central

    Coste, Cécile; Neirinckx, Virginie; Sharma, Anil; Agirman, Gulistan; Rogister, Bernard; Foguenne, Jacques; Lallemend, François

    2017-01-01

    Adult neural crest stem-derived cells (NCSC) are of extraordinary high plasticity and promising candidates for use in regenerative medicine. Several locations such as skin, adipose tissue, dental pulp or bone marrow have been described in rodent, as sources of NCSC. However, very little information is available concerning their correspondence in human tissues, and more precisely for human bone marrow. The main objective of this study was therefore to characterize NCSC from adult human bone marrow. In this purpose, we compared human bone marrow stromal cells to human adipose tissue and dermis, already described for containing NCSC. We performed comparative analyses in terms of gene and protein expression as well as functional characterizations. It appeared that human bone marrow, similarly to adipose tissue and dermis, contains NESTIN+ / SOX9+ / TWIST+ / SLUG+ / P75NTR+ / BRN3A+/ MSI1+/ SNAIL1+ cells and were able to differentiate into melanocytes, Schwann cells and neurons. Moreover, when injected into chicken embryos, all those cells were able to migrate and follow endogenous neural crest migration pathways. Altogether, the phenotypic characterization and migration abilities strongly suggest the presence of neural crest-derived cells in human adult bone marrow. PMID:28683107

  19. Effects of decellularized matrices derived from periodontal ligament stem cells and SHED on the adhesion, proliferation and osteogenic differentiation of human dental pulp stem cells in vitro.

    PubMed

    Heng, Boon Chin; Zhu, Shaoyue; Xu, Jianguang; Yuan, Changyong; Gong, Ting; Zhang, Chengfei

    2016-04-01

    A major bottleneck to the therapeutic applications of dental pulp stem cells (DPSC) are their limited proliferative capacity ex vivo and tendency to undergo senescence. This may be partly due to the sub-optimal in vitro culture milieu, which could be improved by an appropriate extracellular matrix substratum. This study therefore examined decellularized matrix (DECM) from stem cells derived from human exfoliated deciduous teeth (SHED) and periodontal ligament stem cells (PDLSC), as potential substrata for DPSC culture. Both SHED-DECM and PDLSC-DECM promoted rapid adhesion and spreading of newly-seeded DPSC compared to bare polystyrene (TCPS), with vinculin immunocytochemistry showing expression of more focal adhesions by newly-adherent DPSC cultured on DECM versus TCPS. Culture of DPSC on SHED-DECM and PDLSC-DECM yielded higher proliferation of cell numbers compared to TCPS. The qRT-PCR data showed significantly higher expression of nestin by DPSC cultured on DECM versus the TCPS control. Osteogenic differentiation of DPSC was enhanced by culturing on PDLSC-DECM and SHED-DECM versus TCPS, as demonstrated by alizarin red S staining for mineralized calcium deposition, alkaline phosphatase assay and qRT-PCR analysis of key osteogenic marker expression. Hence, both SHED-DECM and PDLSC-DECM could enhance the ex vivo culture of DPSC under both non-inducing and osteogenic-inducing conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Tetracycline-regulated expression of OLIG2 gene in human dental pulp stem cells lead to mouse sciatic nerve regeneration upon transplantation.

    PubMed

    Askari, N; Yaghoobi, M M; Shamsara, M; Esmaeili-Mahani, S

    2015-10-01

    Numerous studies have indicated dental pulp stem cells (DPSCs) potency to differentiate into several types of cell lineages. Oligodendrocyte lineage transcription factor 2 (OLIG2) plays an important role in the oligodendrogenic pathway. In this study, a tetracycline (Tet)-inducible system expressing OLIG2 gene was transfected into human DPSCs to direct their differentiation toward oligodendrocyte progenitor cells (OPCs). Following induction, the expression of stage-specific markers was studied by Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR), immunocytochemistry and western blotting. In the following, the cells were transplanted into the mouse model of local sciatic demyelination damage by lysolecithin. Recovery of lysolecithin-induced lesions in sciatic nerve was studied by treadmill exercise, von Frey filament test and hind paw withdrawal in response to a thermal stimulus. Improvement of behavioral symptoms was efficiently observed from the second week to the sixth week post-transplantation. Our findings showed that exogenous expression of the OLIG2 gene by a Tet-regulated system could be used as an efficient way to induce the differentiation of DPSCs into functional oligodendrocytes. Meanwhile, the DPSC-derived OPCs have relevant therapeutic potential in the animal model of sciatic nerve injury and therefore might represent a valuable tool for stem cell-based therapy in inflammatory and degenerative diseases of the peripheral and central nervous systems (CNSs). Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Screening antimutagenic and antiproliferative properties of extracts isolated from Jackfruit pulp (Artocarpus heterophyllus Lam).

    PubMed

    Ruiz-Montañez, G; Burgos-Hernández, A; Calderón-Santoyo, M; López-Saiz, C M; Velázquez-Contreras, C A; Navarro-Ocaña, A; Ragazzo-Sánchez, J A

    2015-05-15

    The present focused on the study of the antimutagenic and antiproliferative potential of pulp Jackfruit (Artocarpus heterophyllus Lam) extract, using Salmonella typhimurium tester strains TA98 and TA100 with metabolic activation (S9) and a cancer cell line M12.C3.F6 (murine B-cell lymphoma), respectively. Jackfruit pulp extract was sequentially fractionated by chromatography (RP-HPLC) and each fraction was tested for antimutagenic and antiproliferative activities. The organic extracts obtained from Jackfruit pulp reduced the number of revertants caused by aflatoxin B1 (AFB1) and proliferation of cells M12.C3.F6; a dose-response relationship was showed. Sequential RP-HPLC fractionation of the active extracts produced both antimutagenic and/or antiproliferative fractions. These results suggested that the Jackfruit contained compounds with chemoprotective properties to reduce the mutagenicity of AFB1, also proliferation of a cancer cell line. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Viral MicroRNAs Identified in Human Dental Pulp.

    PubMed

    Zhong, Sheng; Naqvi, Afsar; Bair, Eric; Nares, Salvador; Khan, Asma A

    2017-01-01

    MicroRNAs (miRs) are a family of noncoding RNAs that regulate gene expression. They are ubiquitous among multicellular eukaryotes and are also encoded by some viruses. Upon infection, viral miRs (vmiRs) can potentially target gene expression in the host and alter the immune response. Although prior studies have reported viral infections in human pulp, the role of vmiRs in pulpal disease is yet to be explored. The purpose of this study was to examine the expression of vmiRs in normal and diseased pulps and to identify potential target genes. Total RNA was extracted and quantified from normal and inflamed human pulps (N = 28). Expression profiles of vmiRs were then interrogated using miRNA microarrays (V3) and the miRNA Complete Labeling and Hyb Kit (Agilent Technologies, Santa Clara, CA). To identify vmiRs that were differentially expressed, we applied a permutation test. Of the 12 vmiRs detected in the pulp, 4 vmiRs (including those from herpesvirus and human cytomegalovirus) were differentially expressed in inflamed pulp compared with normal pulp (P < .05). Using bioinformatics, we identified potential target genes for the differentially expressed vmiRs. They included key mediators involved in the detection of microbial ligands, chemotaxis, proteolysis, cytokines, and signal transduction molecules. These data suggest that miRs may play a role in interspecies regulation of pulpal health and disease. Further research is needed to elucidate the mechanisms by which vmiRs can potentially modulate the host response in pulpal disease. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. [Preparation trauma in stomatology].

    PubMed

    Novák, L; Půza, V; Cervinka, M; Kolárová, J

    1997-01-01

    In this paper authors deal with the causes of preparation trauma in stomatology. They have studied effects of high temperature on human cells cultured in vitro. Based both on literature data and on their own experience they summarize basic principles of preparation which prevent preparation trauma. They summarize how to eliminate as much as possible factors that damage hard dental tissues and pulp.

  4. Splenic red pulp macrophages are intrinsically superparamagnetic and contaminate magnetic cell isolates.

    PubMed

    Franken, Lars; Klein, Marika; Spasova, Marina; Elsukova, Anna; Wiedwald, Ulf; Welz, Meike; Knolle, Percy; Farle, Michael; Limmer, Andreas; Kurts, Christian

    2015-08-11

    A main function of splenic red pulp macrophages is the degradation of damaged or aged erythrocytes. Here we show that these macrophages accumulate ferrimagnetic iron oxides that render them intrinsically superparamagnetic. Consequently, these cells routinely contaminate splenic cell isolates obtained with the use of MCS, a technique that has been widely used in immunological research for decades. These contaminations can profoundly alter experimental results. In mice deficient for the transcription factor SpiC, which lack red pulp macrophages, liver Kupffer cells take over the task of erythrocyte degradation and become superparamagnetic. We describe a simple additional magnetic separation step that avoids this problem and substantially improves purity of magnetic cell isolates from the spleen.

  5. Comparative evaluation of the isolation and quantification of stem cells derived from dental pulp and periodontal ligament of a permanent tooth and to assess their viability and proliferation on a platelet-rich fibrin scaffold.

    PubMed

    Khurana, Rohit; Kudva, Praveen Bhasker; Husain, Syed Yawer

    2017-01-01

    The present study aims to comparatively evaluate the isolation and quantification of stem cells derived from dental pulp and periodontal ligament of a permanent tooth and to assess their viability and proliferation on a platelet-rich fibrin (PRF) scaffold. A total of 15 systemically healthy individuals between the age group of 15-25 years requiring third molar or orthodontic premolar extractions. Teeth were extracted atraumatically and transported to the laboratory. Stem cells were isolated from dental pulp and periodontal ligament. After attaining more than 90% confluency by the 7 th day, these cells were tested for their viability and characterization. Stem cells were also incubated with PRF and viability was assessed on the 7 th day. The mean number of cell for dental pulp stem cells (DPSCs) and periodontal ligament stem cell (PDLSC) was statistically insignificant ( P > 0.05). The mean live cell viability was compared between DPSC (98.07%) and PDLSC (98%). Both DPSC and PDLSC showed a high percentage of expression of CD73 markers, 30.40% and 29.80%, respectively. However, DPSCs and PDLSCs lacked expression of CD34 expressing only 3.47% and 3.53%, respectively. PRF membrane as a scaffold exhibited no cytotoxic effects on DPCS's or PDLSC's. The cell viability of cells cultured with PRF was statistically insignificant ( P > 0.05) when compared to the cells cultured with culture media. The study thus indicates that dental pulp and periodontal ligament are both rich sources of mesenchymal stem cells and can be successfully used for obtaining stem cells. PRF exhibits no cytotoxic effects on the cells and can be used in conjunction with dental stem cells.

  6. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase.

    PubMed

    Apiwatanapiwat, Waraporn; Murata, Yoshinori; Kosugi, Akihiko; Yamada, Ryosuke; Kondo, Akihiko; Arai, Takamitsu; Rugthaworn, Prapassorn; Mori, Yutaka

    2011-04-01

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.

  7. Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for periodontal regeneration in swine.

    PubMed

    Cao, Yu; Liu, Zhenhai; Xie, Yilin; Hu, Jingchao; Wang, Hua; Fan, Zhipeng; Zhang, Chunmei; Wang, Jingsong; Wu, Chu-Tse; Wang, Songlin

    2015-12-15

    Periodontitis is one of the most widespread infectious diseases in humans. We previously promoted significant periodontal tissue regeneration in swine models with the transplantation of autologous periodontal ligament stem cells (PDLSCs) and PDLSC sheet. We also promoted periodontal tissue regeneration in a rat model with a local injection of allogeneic bone marrow mesenchymal stem cells. The purpose of the present study is to investigate the roles of the hepatocyte growth factor (HGF) and human dental pulp stem cells (DPSCs) in periodontal tissue regeneration in swine. In the present study, we transferred an adenovirus that carried HGF gene into human DPSCs (HGF-hDPSCs) under good manufacturing practice (GMP) conditions. These cells were then transplanted into a swine model for periodontal regeneration. Twenty miniature pigs were used to generate periodontitis with bone defect of 5 mm in width, 7 mm in length, and 3 mm in depth. After 12 weeks, clinical, radiological, quantitative and histological assessment of regenerated periodontal tissues was performed to compare periodontal regeneration in swine treated with cell implantation. Our study showed that injecting HGF-hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. A hDPSC or HGF-hDPSC sheet showed superior periodontal tissue regeneration compared to the injection of dissociated cells. However, the sheets required surgical placement; thus, they were suitable for surgically-managed periodontitis treatments. The adenovirus-mediated transfer of the HGF gene markedly decreased hDPSC apoptosis in a hypoxic environment or in serum-free medium, and it increased blood vessel regeneration. This study indicated that HGF-hDPSCs produced under GMP conditions significantly improved periodontal bone regeneration in swine; thus, this method represents a potential clinical application for periodontal regeneration.

  8. Flow Line, Durafill VS, and Dycal toxicity to dental pulp cells: effects of growth factors

    PubMed Central

    Furey, Alyssa; Hjelmhaug, Julie; Lobner, Doug

    2010-01-01

    Introduction The objective was to determine the effects of growth factor treatment on dental pulp cell sensitivity to toxicity of two composite restoration materials, Flow Line and Durafill VS, and a calcium hydroxide pulp capping material, Dycal. Methods Toxicity of the dental materials to cultures of primary dental pulp cells was determined by the MTT metabolism assay. The ability of six different growth factors to influence the toxicity was tested. Results A 24 hour exposure to either Flow Line or Durafill VS caused approximately 40% cell death, while Dycal exposure caused approximately 80% cell death. The toxicity of Flow Line and Durafill VS was mediated by oxidative stress. Four of the growth factors tested (BMP-2, BMP-7, EGF, and TGF-β) decreased the basal MTT values while making the cells resistant to Flow Line and Durafill VS toxicity, except BMP-2 which made the cells more sensitive to Flow Line. Treatment with FGF-2 caused no change in basal MTT metabolism, prevented the toxicity of Durafill VS, but increased the toxicity of Flow Line. Treatment with IGF-I increased basal MTT metabolism and made the cells resistant to Flow Line and Durafill VS toxicity. None of the growth factors made the cells resistant to Dycal toxicity. Conclusions The results indicate that growth factors can be used to alter the sensitivity of dental pulp cells to commonly used restoration materials. The growth factors BMP-7, EGF, TGF-β, and IGF-I provided the best profile of effects, making the cells resistant to both Flow Line and Durafill VS toxicity. PMID:20630288

  9. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice.

    PubMed

    Hu, Jingchao; Cao, Yu; Xie, Yilin; Wang, Hua; Fan, Zhipeng; Wang, Jinsong; Zhang, Chunmei; Wang, Jinsong; Wu, Chu-Tse; Wang, Songlin

    2016-09-09

    Periodontitis, one of the most prevalent infectious diseases in humans, results in the destruction of tooth-supporting tissues. The purpose of the present study is to evaluate the effect of cell injection and cell sheet transplantation on periodontal regeneration in a swine model. In the present study, human dental pulp stem cells (hDPSCs) were transplanted into a swine model for periodontal regeneration. Twelve miniature pigs were used to generate periodontitis with bone defects of 5 mm in width, 7 mm in length, and 3 mm in depth. hDPSCs were obtained for bone regeneration using cell injection or cell sheet transplantation. After 12 weeks, clinical, radiological, and histological assessments of regenerated periodontal tissues were performed to compare periodontal regeneration treated with xenogeneic cell injection and cell sheet implantation. Our study showed that translating hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. After 12 weeks, both the hDPSC sheet treatment and hDPSC injection significantly improved periodontal tissue healing clinically in comparison with the control group. The volume of regenerative bone in the hDPSC sheet group (52.7 ± 4.1 mm(3)) was significantly larger than in the hDPSC injection group (32.4 ± 5.1 mm(3)) (P < 0.05). The percentage of bone in the periodontium in the hDPSC injection group was 12.8 ± 4.4 %, while it was 17.4 ± 5.3 % in the hDPSC sheet group (P < 0.05). Both hDPSC injection and cell sheet transplantation significantly regenerated periodontal bone in swine. The hDPSC sheet had more bone regeneration capacity compared with hDPSC injection.

  10. Biophysical characterization of low-frequency ultrasound interaction with dental pulp stem cells

    PubMed Central

    2013-01-01

    Background Low-intensity ultrasound is considered an effective non-invasive therapy to stimulate hard tissue repair, in particular to accelerate delayed non-union bone fracture healing. More recently, ultrasound has been proposed as a therapeutic tool to repair and regenerate dental tissues. Our recent work suggested that low-frequency kilohertz-range ultrasound is able to interact with dental pulp cells which could have potential to stimulate dentine reparative processes and hence promote the viability and longevity of teeth. Methods In this study, the biophysical characteristics of low-frequency ultrasound transmission through teeth towards the dental pulp were explored. We conducted cell culture studies using an odontoblast-like/dental pulp cell line, MDPC-23. Half of the samples underwent ultrasound exposure while the other half underwent ‘sham treatment’ where the transducer was submerged into the medium but no ultrasound was generated. Ultrasound was applied directly to the cell cultures using a therapeutic ultrasound device at a frequency of 45 kHz with intensity settings of 10, 25 and 75 mW/cm2 for 5 min. Following ultrasound treatment, the odontoblast-like cells were detached from the culture using a 0.25% Trypsin/EDTA solution, and viable cell numbers were counted. Two-dimensional tooth models based on μ-CT 2D images of the teeth were analyzed using COMSOL as the finite element analysis platform. This was used to confirm experimental results and to demonstrate the potential theory that with the correct combination of frequency and intensity, a tooth can be repaired using small doses of ultrasound. Frequencies in the 30 kHz–1 MHz range were analyzed. For each frequency, pressure/intensity plots provided information on how the intensity changes at each point throughout the propagation path. Spatial peak temporal average (SPTA) intensity was calculated and related to existing optimal spatial average temporal average (SATA) intensity deemed effective for cell proliferation during tooth repair. Results The results demonstrate that odontoblast MDPC-23 cell numbers were significantly increased following three consecutive ultrasound treatments over a 7-day culture period as compared with sham controls underscoring the anabolic effects of ultrasound on these cells. Data show a distinct increase in cell number compared to the sham data after ultrasound treatment for intensities of 10 and 25 mW/cm2 (p < 0.05 and p < 0.01, respectively). Using finite element analysis, we demonstrated that ultrasound does indeed propagate through the mineralized layers of the teeth and into the pulp chamber where it forms a ‘therapeutic’ force field to interact with the living dental pulp cells. This allowed us to observe the pressure/intensity of the wave as it propagates throughout the tooth. A selection of time-dependent snapshots of the pressure/intensity reveal that the lower frequency waves propagate to the pulp and remain within the chamber for a while, which is ideal for cell excitation. Input frequencies and pressures of 30 kHz (70 Pa) and 45 kHz (31 kPa), respectively, with an average SPTA of up to 120 mW/cm2 in the pulp seem to be optimal and agree with the SATA intensities reported experimentally. Conclusions Our data suggest that ultrasound can be harnessed to propagate to the dental pulp region where it can interact with the living cells to promote dentine repair. Further research is required to analyze the precise physical and biological interactions of low-frequency ultrasound with the dental pulp to develop a novel non-invasive tool for dental tissue regeneration. PMID:25516801

  11. The Anti-Inflammatory Effect of Human Telomerase-Derived Peptide on P. gingivalis Lipopolysaccharide-Induced Inflammatory Cytokine Production and Its Mechanism in Human Dental Pulp Cells

    PubMed Central

    Ko, Yoo-Jin; Kwon, Kil-Young; Kum, Kee-Yeon; Lee, Woo-Cheol; Baek, Seung-Ho; Kang, Mo K.; Shon, Won-Jun

    2015-01-01

    Porphyromonas gingivalis is considered with inducing pulpal inflammation and has lipopolysaccharide (LPS) as an inflammatory stimulator. GV1001 peptide has anticancer and anti-inflammation activity due to inhibiting activation of signaling molecules after penetration into the various types of cells. Therefore, this study examined inhibitory effect of GV1001 on dental pulp cells (hDPCs) stimulated by P. gingivalis LPS. The intracellular distribution of GV1001 was analyzed by confocal microscopy. Real-time RT-PCR was performed to determine the expression levels of TNF-α and IL-6 cytokines. The role of signaling by MAP kinases (ERK and p38) was explored using Western blot analysis. The effect of GV1001 peptide on hDPCs viability was measured by MTT assay. GV1001 was predominantly located in hDPC cytoplasm. The peptide inhibited P. gingivalis LPS-induced TNF-α and IL-6 production in hDPCs without significant cytotoxicity. Furthermore, GV1001 treatment markedly inhibited the phosphorylation of MAP kinases (ERK and p38) in LPS-stimulated hDPCs. GV1001 may prevent P. gingivalis LPS-induced inflammation of apical tissue. Also, these findings provide mechanistic insight into how GV1001 peptide causes anti-inflammatory actions in LPS-stimulated pulpitis without significantly affecting cell viability. PMID:26604431

  12. Nanofibrous spongy microspheres enhance odontogenic differentiation of human dental pulp stem cells.

    PubMed

    Kuang, Rong; Zhang, Zhanpeng; Jin, Xiaobing; Hu, Jiang; Gupte, Melanie J; Ni, Longxing; Ma, Peter X

    2015-09-16

    Dentin regeneration is challenging due to its complicated anatomical structure and the shortage of odontoblasts. In this study, a novel injectable cell carrier, nanofibrous spongy microspheres (NF-SMS), is developed for dentin regeneration. Biodegradable and biocompatible poly(l-lactic acid)-block-poly(l-lysine) are synthesized and fabricated into NF-SMS using self-assembly and thermally induced phase separation techniques. It is hypothesized that NF-SMS with interconnected pores and nanofibers can enhance the proliferation and odontogenic differentiation of human dental pulp stem cells (hDPSCs), compared to nanofibrous microspheres (NF-MS) without pore structure and conventional solid microspheres (S-MS) with neither nanofibers nor pore structure. During the first 9 d in culture, hDPSCs proliferate significantly faster on NF-SMS than on NF-MS or S-MS (p < 0.05). Following in vitro odontogenic induction, all the examined odontogenic genes (alkaline phosphatase content, osteocalcin, bone sialoprotein, collagen 1, dentin sialophosphoprotein (DSPP)), calcium content, and DSPP protein content are found significantly higher in the NF-SMS group than in the control groups. Furthermore, 6 weeks after subcutaneous injection of hDPSCs and microspheres into nude mice, histological analysis shows that NF-SMS support superior dentin-like tissue formation compared to NF-MS or S-MS. Taken together, NF-SMS have great potential as an injectable cell carrier for dentin regeneration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Behaviour of human mesenchymal stem cells on chemically synthesized HA-PCL scaffolds for hard tissue regeneration.

    PubMed

    D'Antò, Vincenzo; Raucci, Maria Grazia; Guarino, Vincenzo; Martina, Stefano; Valletta, Rosa; Ambrosio, Luigi

    2016-02-01

    Our goal was to characterize the response of human mesenchymal stem cells (hMSCs) to a novel composite scaffold for bone tissue engineering. The hydroxyapatite-polycaprolactone (HA-PCL) composite scaffolds were prepared by a sol-gel method at room temperature and the scaffold morphology was investigated by scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS) to validate the synthesis process. The response of two different lines of hMSCs, bone-marrow-derived human mesenchymal stem cells (BMSCs) and dental pulp stem cells (DPSCs) in terms of cell proliferation and differentiation into the osteoblastic phenotype, was evaluated using Alamar blue assay, SEM, histology and alkaline phosphatase activity. Our results indicate that tissue engineering by means of composite HA-PCL scaffolds may represent a new therapeutic strategy to repair craniofacial bone defects. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Interaction between mDia1 and ROCK in Rho-induced migration and adhesion of human dental pulp cells.

    PubMed

    Cheng, L; Xu, J; Qian, Y Y; Pan, H Y; Yang, H; Shao, M Y; Cheng, R; Hu, T

    2017-01-01

    To investigate the effects of mammalian homologue of Drosophila diaphanous-1(mDia1) and Rho-associated coiled-coil-containing protein kinase (ROCK) on the migration and adhesion of dental pulp cells (DPCs). Lysophosphatidic acid (LPA) was used to activate Rho signalling. mDia1 and ROCK were inhibited by short interfering RNA and the specific inhibitor, Y-27632, respectively. The migration of DPCs was assessed using the transwell migration assay and scratch test. Formation of cytoskeleton and focal adhesions(FAs) was observed by confocal laser scanning microscopy. Cell adhesion and spreading assays were performed. Phosphorylation of focal adhesion kinase (FAK) and paxillin was detected by Western blotting, and the bands were analysed using Adobe Photoshop CS5 software. All experiments were performed at least three times, and data were analysed with one-way anova and a post hoc test. LPA-triggered activation of Rho and inhibition of ROCK significantly increased the cell migration rate. Cell migration was inhibited by silencing mDia1. mDia1 silencing and ROCK inhibition suppressed the LPA-induced formation of the cytoskeleton, FA and phosphorylation of FAK and paxillin. Inhibition of ROCK or mDia1 facilitated early cell adhesion and spreading; by contrast, the combined inhibition of ROCK and mDia1 neutralized these effects. mDia1 promoted RhoA-induced migration of DPCs, but ROCK had an opposite effect. Both mDia1 and ROCK participated in cytoskeleton formation and adhesion of DPCs. The interactions between mDia1 and ROCK might influence dental pulp repair by determining the migration and adhesion of DPCs. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  15. Hematopoietic Stem Cells as a Novel Source of Dental Tissue Cells.

    PubMed

    Wilson, Katie R; Kang, In-Hong; Baliga, Uday; Xiong, Ying; Chatterjee, Shilpak; Moore, Emily; Parthiban, Beneta; Thyagarajan, Krishnamurthy; Borke, James L; Mehrotra, Shikhar; Kirkwood, Keith L; LaRue, Amanda C; Ogawa, Makio; Mehrotra, Meenal

    2018-05-23

    While earlier studies have suggested that cells positive for hematopoietic markers can be found in dental tissues, it has yet to be confirmed. To conclusively demonstrate this, we utilized a unique transgenic model in which all hematopoietic cells are green fluorescent protein + (GFP + ). Pulp, periodontal ligament (PDL) and alveolar bone (AvB) cell culture analysis demonstrated numerous GFP + cells, which were also CD45 + (indicating hematopoietic origin) and co-expressed markers of cellular populations in pulp (dentin matrix protein-1, dentin sialophosphoprotein, alpha smooth muscle actin [ASMA], osteocalcin), in PDL (periostin, ASMA, vimentin, osteocalcin) and in AvB (Runx-2, bone sialoprotein, alkaline phosphatase, osteocalcin). Transplantation of clonal population derived from a single GFP + hematopoietic stem cell (HSC), into lethally irradiated recipient mice, demonstrated numerous GFP + cells within dental tissues of recipient mice, which also stained for markers of cell populations in pulp, PDL and AvB (used above), indicating that transplanted HSCs can differentiate into cells in dental tissues. These hematopoietic-derived cells deposited collagen and can differentiate in osteogenic media, indicating that they are functional. Thus, our studies demonstrate, for the first time, that cells in pulp, PDL and AvB can have a hematopoietic origin, thereby opening new avenues of therapy for dental diseases and injuries.

  16. Penetration of 38% hydrogen peroxide into the pulp chamber in bovine and human teeth submitted to office bleach technique.

    PubMed

    Camargo, Samira Esteves Afonso; Valera, Marcia Carneiro; Camargo, Carlos Henrique Ribeiro; Gasparoto Mancini, Maria Nadir; Menezes, Marcia Maciel

    2007-09-01

    This study evaluated the pulp chamber penetration of peroxide bleaching agent in human and bovine teeth after office bleach technique. All the teeth were sectioned 3 mm apical of the cement-enamel junction and were divided into 2 groups, A (70 third human molars) and B (70 bovine lateral incisors), that were subdivided into A1 and B1 restored by using composite resin, A2 and B2 by using glass ionomer cement, and A3 and B3 by using resin-modified glass ionomer cement; A4, A5, B4, and B5 were not restored. Acetate buffer was placed in the pulp chamber, and the bleaching agent was applied for 40 minutes as follows: A1-A4 and B1-B4, 38% hydrogen peroxide exposure and A5 and B5, immersion into distilled water. The buffer solution was transferred to a glass tube in which leuco crystal violet and horseradish peroxidase were added, producing a blue solution. The optical density of the blue solution was determined by spectrophotometer and converted into microgram equivalents of hydrogen peroxide. Data were submitted to analysis of variance and Dunnett, Kruskal-Wallis, and Tukey tests (5%). A higher level of hydrogen peroxide penetrated into the pulp chamber in resin-modified glass ionomer cements in bovine (0.79 +/- 0.61 microg) and human (2.27 +/- 0.41 microg) groups. The bleaching agent penetration into the pulp chamber was higher in human teeth for any experimental situation. The penetration of the hydrogen peroxide depends on restorative materials, and under the conditions of this study human teeth are more susceptible to penetration of bleaching agent into the pulp chamber than bovine teeth.

  17. NZ-GMP Approved Serum Improve hDPSC Osteogenic Commitment and Increase Angiogenic Factor Expression.

    PubMed

    Spina, Anna; Montella, Roberta; Liccardo, Davide; De Rosa, Alfredo; Laino, Luigi; Mitsiadis, Thimios A; La Noce, Marcella

    2016-01-01

    Human dental pulp stem cells (hDPSCs), selected from the stromal-vascular fraction of dental pulp, are ecto-mesenchymal stem cells deriving from neural crests, successfully used in human bone tissue engineering. For their use in human therapy GMP procedures are required. For instance, the use of fetal bovine serum (FBS) is strongly discouraged in clinical practice due to its high risk of prions and other infections for human health. Alternatively, clinical grade sera have been suggested, including the New Zealand FBS (NZ-FBS). Therefore, the aim of this study was to evaluate the behavior of hDPSCs expanded in culture medium containing NZ-FBS. Since it was widely demonstrated hDPSCs display relevant capabilities to differentiate into osteogenic and angiogenic lineages, we performed a comparative study to assess if these features are also retained by cultivating the cells with a safer serum never tested on this cell line. hDPSCs were grown using NZ-FBS and conventional (C-FBS) for 7, 14, and 21 days, in both 2D and 3D cultures. Growth curves, expression of bone-related markers, calcification and angiogenesis were evaluated. NZ-FBS induced significant cell growth with respect to C-FBS and promoted an earlier increase expression of osteogenic markers, in particular of those involved in the formation of mineralized matrix (BSP and OPN) within 14 days. In addition, hDPSCs cultured in presence of NZ-FBS were found to produce higher mRNA levels of the angiogenic factors, such as VEGF and PDGFA. Taken together, our results highlight that hDPSCs proliferate, enhance their osteogenic commitment and increase angiogenic factors in NZ-FBS containing medium. These features have also been found when hDPSC were seeded on the clinical-grade collagen I scaffold (Bio-Gide®), leading to the conclusion that for human therapy some procedures and above all the use of GMP-approved materials have no negative impact.

  18. Rapid cell separation with minimal manipulation for autologous cell therapies

    NASA Astrophysics Data System (ADS)

    Smith, Alban J.; O'Rorke, Richard D.; Kale, Akshay; Rimsa, Roberts; Tomlinson, Matthew J.; Kirkham, Jennifer; Davies, A. Giles; Wälti, Christoph; Wood, Christopher D.

    2017-02-01

    The ability to isolate specific, viable cell populations from mixed ensembles with minimal manipulation and within intra-operative time would provide significant advantages for autologous, cell-based therapies in regenerative medicine. Current cell-enrichment technologies are either slow, lack specificity and/or require labelling. Thus a rapid, label-free separation technology that does not affect cell functionality, viability or phenotype is highly desirable. Here, we demonstrate separation of viable from non-viable human stromal cells using remote dielectrophoresis, in which an electric field is coupled into a microfluidic channel using shear-horizontal surface acoustic waves, producing an array of virtual electrodes within the channel. This allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like fluids, overcoming the limitations of conventional dielectrophoresis. We demonstrate viable/non-viable separation efficacy of >98% in pre-purified mesenchymal stromal cells, extracted from human dental pulp, with no adverse effects on cell viability, or on their subsequent osteogenic capabilities.

  19. Eckols reduce dental pulp inflammation through the ERK1/2 pathway independent of COX-2 inhibition.

    PubMed

    Paudel, U; Lee, Y H; Kwon, T H; Park, N H; Yun, B S; Hwang, P H; Yi, H K

    2014-11-01

    The aim of this study was to elucidate the role of 6-6 bieckol (EB1) and pholorofucofuroeckol-A (EB5) from brown seaweed marine algae (Eisenia bicyclis) on lipopolysaccharide (LPS)-induced inflammation in human dental pulp cells (HDPCs). The cytotoxicity of EB1 and EB5 was examined by MTT assay on LPS-induced human dental pulp cells. Their role on expression of inflammatory, odontogenic, and osteogenic molecules was determined by Western blot analysis. The dentin mineralization was checked by alkaline phosphatase activity. The five compounds from E. bicyclis have different structure with non-cytotoxic in HDPCs. EB1 and EB5 showed anti-inflammatory properties and inhibited phosphorylated-extracellular signal-regulated kinase (p-ERK1/2) and phosphorylated-c-jun N-terminal kinases (p-JNK) without any cytotoxicity. In particular, EB1 inhibited cyclooxygenase-2 (COX-2) and p-ERK1/2 signaling, and EB5 inhibited only p-ERK1/2 signaling but not COX-2. Both compounds inhibited nuclear factor kappa-B (NF-κB) translocation. Furthermore, EB1 and EB5 increased dentinogenic and osteogenic molecules, and dentin mineralized via alkaline phosphatase activity (ALP) in LPS-induced HDPCs. This study elucidates that EB1 and EB5 have different types of anti-inflammatory property and help in dentin formation. Therefore, these compounds derived from marine algae of E. bicyclis may be used as selective therapeutic strategies for pulpitis and oral diseases. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Ionic extraction of a novel nano-sized bioactive glass enhances differentiation and mineralization of human dental pulp cells.

    PubMed

    Gong, Weiyu; Huang, Zhiwei; Dong, Yanmei; Gan, Yehua; Li, Shenglin; Gao, Xuejun; Chen, Xiaofeng

    2014-01-01

    This study aimed to investigate the effects of a novel nano-sized 58S bioactive glass (nano-58S BG) on the odontogenic differentiation and mineralization of human dental pulp cells (hDPCs) in vitro. Extractions were prepared by incubating nano-58S BG, 45S5 BG, or 58S BG particulates in Dulbecco modified Eagle medium at 1% w/v for 24 hours and were filtrated through 0.22-μm filters. The supernatants were used as BG extractions. The hDPCs were cultured in nano-58S BG, 45S5 BG, and 58S BG extractions. The proliferation of hDPCs was evaluated using the methylthiazol tetrazolium assay. Odontogenic differentiation was evaluated based on the real-time polymerase chain reaction of differentiation- and mineralization-related genes, namely, alkaline phosphatase (ALP), collagen type I, dentin sialophosphoprotein (DSPP), and dentin matrix protein 1. The gene expressions were verified using ALP activity assessment, immunocytochemistry staining of osteocalcin and DSPP, and mineralization assay using alizarin red S stain. All BG extractions up-regulated the expression of odontogenic genes, and the most significant enhancement was in the nano-58S BG group. All BG extractions, especially nano-58S, increased ALP activity, osteocalcin and DSPP protein production, and mineralized nodules formation. Compared with regular BG, the novel nano-58S BG can induce the differentiation and mineralization of hDPCs more efficiently and might be a better potential candidate for dentin-pulp complex regeneration. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Tissue Engineering of Necrotic Dental Pulp of Immature Teeth with Apical Periodontitis in Dogs: Radiographic and Histological Evaluation.

    PubMed

    El Ashiry, Eman A; Alamoudi, Najlaa M; El Ashiry, Mahmoud K; Bastawy, Hagar A; El Derwi, Douaa A; Atta, Hazem M

    2018-05-15

    To evaluate tissue engineering technology to regenerate pulp-dentin like tissues in pulp canals of immature necrotic permanent teeth with apical periodontitis in dogs. The study was performed on 36 teeth in 12 dogs. The experiment was carried out using split mouth design. In each dog 3 teeth were selected for implementing the study procedure. Apical periodontitis was induced in Group A and B teeth. Group (A): immature upper left 2 nd permanent incisors that were transplanted with a construct of autologous dental pulp stem cells with growth factors seeded in a chitosn hydrogel scaffold. Group (B): immature upper right 2 nd permanent incisor that received only growth factors with scaffold. A third tooth in each dog was selected randomly for isolation of dental pulp stem cells (DPSCs). Both groups were closed with a double coronal seal of white MTA (Mineral trioxide aggregate) and glass ionomer cement. Both groups were monitored radiographically for 4 months and histologically after sacrificing the animals. There was no statistically significant difference in radiographic findings between group (A) and group (B) for healing of radiolucencies, while there was statistically significant difference between group (A) and group (B) regarding radicular thickening, root lengthening and apical closure. Histologically, group (A) teeth showed regeneration of pulp-dentin like tissue while group (B) teeth did not show any tissue regeneration. Dental pulp stem cells and growth factors incorporated in chitosan hydrogel are able to regenerate pulp-dentine like tissue and help in complete root maturation of non-vital immature permanent teeth with apical periodontitis in dogs.

  2. Nitric Oxide-Induced Apoptosis of Human Dental Pulp Cells Is Mediated by the Mitochondria-Dependent Pathway

    PubMed Central

    Park, Min Young; Jeong, Yeon Jin; Kang, Gi Chang; Kim, Mi-Hwa; Kim, Sun Hun; Chung, Hyun-Ju

    2014-01-01

    Nitric oxide (NO) is recognized as a mediator and regulator of inflammatory responses. NO is produced by nitric oxide synthase (NOS), and NOS is abundantly expressed in the human dental pulp cells (HDPCs). NO produced by NOS can be cytotoxic at higher concentrations to HDPCs. However, the mechanism by which this cytotoxic pathway is activated in cells exposed to NO is not known. The purpose of this study was to elucidate the NO-induced cytotoxic mechanism in HDPCs. Sodium nitroprusside (SNP), a NO donor, reduced the viability of HDPCs in a dose- and time-dependent manner. We investigated the in vitro effects of nitric oxide on apoptosis of cultured HDPCs. Cells showed typical apoptotic morphology after exposure to SNP. Besides, the number of Annexin V positive cells was increased among the SNP-treated HDPCs. SNP enhanced the production of reactive oxygen species (ROS), and N-acetylcysteine (NAC) ameliorated the decrement of cell viability induced by SNP. However, a soluble guanylate cyclase inhibitor (ODQ) did not inhibited the decrement of cell viability induced by SNP. SNP increased cytochrome c release from the mitochondria to the cytosol and the ratio of Bax/Bcl-2 expression levels. Moreover, SNP-treated HDPCs elevated activities of caspase-3 and caspase-9. While pretreatment with inhibitors of caspase (z-VAD-fmk, z-DEVD-fmk) reversed the NO-induced apoptosis of HDPCs. From these results, it can be suggested that NO induces apoptosis of HDPCs through the mitochondria-dependent pathway mediated by ROS and Bcl-2 family, but not by the cyclic GMP pathway. PMID:24634593

  3. Immunoregulatory effects of human dental pulp-derived stem cells on T cells: comparison of transwell co-culture and mixed lymphocyte reaction systems.

    PubMed

    Demircan, Pinar Cetinalp; Sariboyaci, Ayla Eker; Unal, Zehra Seda; Gacar, Gulcin; Subasi, Cansu; Karaoz, Erdal

    2011-11-01

    BACKGROUND AIMS. Studies performed using human and animal models have indicated the immunoregulatory capability of mesenchymal stromal cells in several lineages. We investigated whether human dental pulp-derived stem cells (hDP-SC) have regulatory effects on phytohemagglutinin (PHA)-activated CD3(+) T cells. We aimed to define the regulatory mechanisms associated with hDP-SC that occur in mixed lymphocyte reaction (MLR) and transwell systems with PHA-CD3(+) T cells and hDP-SC at a ratio of 1:1. METHODS. Proliferation, apoptosis and pro- and anti-inflammatory cytokines of PHA-CD3(+)T cells, the expression of Regulatory T cells (Treg) markers and some regulatory factors related to hDP-SC, were studied in Both transwell and MLR are co-cultures systems. RESULTS. Anti-proliferative and apoptotic effects of hDP-SC were determined in co-culture systems. Elevated expression levels of human leukocyte antigen (HLA)-G, hepatocyte growth factor (HGF)-β1, intracellular adhesion molecule (ICAM-1)-1, interleukin (IL)-6, IL-10, transforming growth factor (TGF)-β1, vascular adhesion molecule (VCAM)-1 and vascular endothelial growth factor (VEGF) by hDP-SC were detected in the co-culture systems. We observed decreased expression levels of pro-inflammatory cytokines [interferon (IFN)-γ, IL-2, IL-6 receptor (R), IL-12, Interleukin-17A (IL-17A), tumor necrosis factor (TNF)-α] and increased expression levels of anti-inflammatory cytokine [inducible protein (IP)-10] from PHA-CD3(+) T cells in the transwell system. Expression of Treg (CD4(+) CD25(+) Foxp3(+)) markers was significantly induced by hDP-SC in both co-culture systems. We observed apoptosis of PHA-CD3(+) T cells with 24 h using time-lapse camera photographs and active caspase labeling; it is likely that paracrine soluble factors and molecular signals secreted by hDP-SC led this apoptosis. CONCLUSIONS. We suggest that hDP-SC have potent immunoregulatory functions because of their soluble factors and cytokines via paracrine mechanisms associated with PHA-CD3(+) T cells, which could contribute to clinical therapies.

  4. Dental pulp stem cells express tendon markers under mechanical loading and are a potential cell source for tissue engineering of tendon-like tissue.

    PubMed

    Chen, Yu-Ying; He, Sheng-Teng; Yan, Fu-Hua; Zhou, Peng-Fei; Luo, Kai; Zhang, Yan-Ding; Xiao, Yin; Lin, Min-Kui

    2016-12-16

    Postnatal mesenchymal stem cells have the capacity to differentiate into multiple cell lineages. This study explored the possibility of dental pulp stem cells (DPSCs) for potential application in tendon tissue engineering. The expression of tendon-related markers such as scleraxis, tenascin-C, tenomodulin, eye absent homologue 2, collagens I and VI was detected in dental pulp tissue. Interestingly, under mechanical stimulation, these tendon-related markers were significantly enhanced when DPSCs were seeded in aligned polyglycolic acid (PGA) fibre scaffolds. Furthermore, mature tendon-like tissue was formed after transplantation of DPSC-PGA constructs under mechanical loading conditions in a mouse model. This study demonstrates that DPSCs could be a potential stem cell source for tissue engineering of tendon-like tissue.

  5. Advanced Scaffolds for Dental Pulp and Periodontal Regeneration.

    PubMed

    Bottino, Marco C; Pankajakshan, Divya; Nör, Jacques E

    2017-10-01

    No current therapy promotes root canal disinfection and regeneration of the pulp-dentin complex in cases of pulp necrosis. Antibiotic pastes used to eradicate canal infection negatively affect stem cell survival. Three-dimensional easy-to-fit antibiotic-eluting nanofibers, combined with injectable scaffolds, enriched or not with stem cells and/or growth factors, may increase the likelihood of achieving predictable dental pulp regeneration. Periodontitis is an aggressive disease that impairs the integrity of tooth-supporting structures and may lead to tooth loss. The latest advances in membrane biomodification to endow needed functionalities and technologies to engineer patient-specific membranes/constructs to amplify periodontal regeneration are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Effect of novel chitosan-fluoroaluminosilicate resin modified glass ionomer cement supplemented with translationally controlled tumor protein on pulp cells.

    PubMed

    Wanachottrakul, Nattaporn; Chotigeat, Wilaiwan; Kedjarune-Leggat, Ureporn

    2014-04-01

    Dental materials that can promote cell proliferation and function is required for regenerative pulp therapy. Resin modified glass ionomer cement (RMGIC), a broadly used liner or restorative material, can cause apoptosis to pulp cells mainly due to HEMA (2-hydroxyethyl methacrylate), the released residual monomer. Recent studies found that chitosan and albumin could promote release of protein in GIC while translationally controlled tumor protein (TCTP) has an anti-apoptotic activity against HEMA. The aim of this study was to examine the effect of chitosan and albumin modified RMGIC (Exp-RMGIC) supplemented with TCTP on pulp cell viability and mineralization. Exp-RMGIC+TCTP was composed of RMGIC powder incorporated with 15 % of chitosan, 5 % albumin and supplemented with TCTP mixed with the same liquid components of RMGIC. The effect of each specimen on pulp cells was examined using the Transwell plate. From the MTT assay, Exp-RMGIC+TCTP had the highest percentages of viable cells (P < 0.05) at both 24 and 74 h. Flow cytometry revealed that, after 24 h, Exp-RMGIC+TCTP gave the lowest percentages of apoptotic cells compared to other groups. There was no difference in alkaline phosphatase (ALP) activity among different formula of the specimens, while cells cultured in media with TCTP had higher ALP activity. Von Kossa staining revealed that RMGIC+TCTP, and Exp-RMGIC+TCTP had higher percentages of calcium deposit area compared to those without TCTP. It was concluded that Exp-RMGIC supplemented with TCTP had less cytotoxicity than RMGIC and can protect cells from apoptosis better than RMGIC supplemented with TCTP.

  7. Effects of washed platelets vs platelet-rich plasma on the proliferation and mineralization of rat dental pulp cells.

    PubMed

    Zhang, L; Xie, Y H; Lin, B R

    2015-08-14

    We examined the effects of washed platelets (WPLTs) and platelet-rich plasma (PRP) on the proliferation and mineralization of rat dental pulp cells. Rat dental pulp cells were separated, cultured, and identified. Medium containing 1, 10, 100, or 500 mL/L PRP or WPLTs was added to 4th generation cells. The MTS method was used to determine cell proliferation. Alizarin red staining was used to observe the formation of mineralized nodules after cell mineralization and induction for 10 and 20 days under different culture conditions, and the areas of the mineralized nodules formed 20 days after induction were computed. The addition of 1, 10, and 100 mL/L WPLTs or PRP significantly promoted rat dental pulp cell proliferation (P < 0.05) whereas 500 mL/L WPLTs or PRP had no significant effect (P > 0.05). Under the same concentrations, no significant differences on cell proliferation were observed between WPLT and PRP treatments (P > 0.05 in all groups). After 10 days mineralization and culture, the 100 and 500 mL/L WPLT and PRP group positive nodule rates were significantly higher than those of the low concentration and the control groups (P < 0.05). After 20 days, the areas of the mineralized nodules formed in the 100 and 500 mL/L WPLT and PRP groups were significantly larger than those in the control group (P < 0.05). These results demonstrate that both WPLTs and PRP are equally able to significantly promote the proliferation and calcification of rat dental pulp cells under a certain range of concentrations.

  8. The effect of UV-Vis to near-infrared light on the biological response of human dental pulp cells

    NASA Astrophysics Data System (ADS)

    Hadis, Mohammed A.; Cooper, Paul R.; Milward, Michael R.; Gorecki, Patricia; Tarte, Edward; Churm, James; Palin, William M.

    2015-03-01

    Human dental pulp cells (DPCs) were isolated and cultured in phenol-red-free α-MEM/10%-FCS at 37ºC in 5% CO2. DPCs at passages 2-4 were seeded (150μL; 25,000 cell/ml) in black 96-microwell plates with transparent bases. 24h post-seeding, cultures were irradiated using a bespoke LED array consisting of 60 LEDs (3.5mW/cm2) of wavelengths from 400-900nm (10 wavelengths, n=6) for time intervals of up to 120s. Metabolic and mitochondrial activity was assessed via a modified MTT assay. Statistical differences were identified using multi-factorial analysis of variance and post-hoc Tukey tests (P=0.05). The biological responses were significantly dependent upon post-irradiation incubation period, wavelength and exposure time (P<0.05). At shorter wavelength irradiances (400nm), a reduction in mitochondrial activity was detected although not significant, whereas longer wavelength irradiances (at 633, 656, 781 and 799nm) significantly increased mitochondrial activity (P<0.05) in DPCs. At these wavelengths, mitochondrial activity was generally increased for exposures less than 90s with 30s exposures being most effective with 24h incubation. Increasing the post-irradiation incubation period increased the measured response and identified further significance (P<0.05). The biological responses of human DPCs were wavelength, exposure-time and incubation period dependent. The optimisation of irradiation parameters will be key to the successful application of LLLT in dentistry.

  9. 21 CFR 186.1673 - Pulp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Pulp. 186.1673 Section 186.1673 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...

  10. In vivo stem cell transplantation using reduced cell numbers.

    PubMed

    Tsutsui, Takeo W

    2015-01-01

    Dental pulp stem cell (DPSC) characterization is essential for regeneration of a dentin/pulp like complex in vivo. This is especially important for identifying the potential of DPSCs to function as stem cells. Previously reported DPSC transplantation methods have used with huge numbers of cells, along with hydroxyapatite/tricalcium phosphate (HA/TCP), gelatin and fibrin, and collagen scaffolds. This protocol describe a transplantation protocol that uses fewer cells and a temperature-responsive cell culture dish.

  11. p16(INK4A) mediates age-related changes in mesenchymal stem cells derived from human dental pulp through the DNA damage and stress response.

    PubMed

    Feng, Xingmei; Xing, Jing; Feng, Guijuan; Huang, Dan; Lu, Xiaohui; Liu, Suzhe; Tan, Wei; Li, Liren; Gu, Zhifeng

    2014-01-01

    Mesenchymal stem cells derived from human dental pulp (DP-MSCs) are characterized by self-renewal and multi-lineage differentiation, which play important roles in regenerative medicine. Autologous transfers, as non-immunogenic, constitute the safest approach in cellular transplantations. However, their use may be limited by age-related changes. In the study, we compared DP-MSCs isolated from human in five age groups: 5-12 y, 12-20 y, 20-35 y, 35-50 y, and >50 y. We tested the effect of age on proliferation, differentiation, senescence-associated β-galactosidase (SA-β-gal), cell cycle and programmed cell death. DP-MSCs showed characteristics of senescence as a function of age. Meanwhile, the expression of p16(INK4A) and γ-H2A.X significantly increased with age, whereas heat shock protein 60 (HSP60) was decreased in the senescent DP-MSCs. Reactive oxygen species (ROS) staining showed the number of ROS-stained cells and the DCFH fluorescent level were higher in the aged group. Further we examined the senescence of DP-MSCs after modulating p16(INK4A) signaling. The results indicated the dysfunction of DP-MSCs was reversed by p16(INK4A) siRNA. In summary, our study indicated p16(INK4A) pathway may play a critical role in DP-MSCs age-related changes and the DNA damage response (DDR) and stress response may be the main mediators of DP-MSCs senescence induced by excessive activation of p16(INK4A) signaling. Copyright © 2014. Published by Elsevier Ireland Ltd.

  12. Artificial dental pulp exposure injury up-regulates antigen-presenting cell-related molecules in rat central nervous system.

    PubMed

    Kaneko, Tomoatsu; Kaneko, Mitsuhiro; Chokechanachaisakul, Uraiwan; Kawamura, Jun; Kaneko, Reika; Sunakawa, Mitsuhiro; Okiji, Takashi; Suda, Hideaki

    2010-03-01

    Bacterial infection and resulting inflammation of the dental pulp might not only trigger neuroimmune interactions in this tissue but also sensitize the central nervous system (CNS) such as the thalamus via nociceptive neurons. Thus, immunopathologic changes in the rat thalamus that take place after pulp inflammation were investigated. Pulp exposure was made in mandibular right first molars of 5-week-old Wistar rats. After 24 hours, the thalamus was retrieved and subjected to either immunohistochemistry for class II major histocompatibility complex (MHC) molecules and glial fibrillary acidic protein (GFAP) or mRNA expression analysis of antigen-presenting cell-related molecules and N-methyl-D-aspartate receptor 2D subunit (NR2D) by means of reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR. At 24 hours after pulp exposure, the density of class II MHC molecule-expressing and GFAP-expressing cells was increased in the contralateral thalamus. Gene expression analysis revealed the up-regulation of class II MHC molecules, CD80, CD83, CD86, and NR2D in the contralateral thalamus, as compared with the ipsilateral thalamus. These results suggest the signal of pulp inflammation induces neuronal activation in the CNS. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Mesenchymal stem cells promote hard-tissue repair after direct pulp capping.

    PubMed

    Obeid, Maram; Saber, Shehab El Din Mohamed; Ismael, Alaa El Din; Hassanien, Ehab

    2013-05-01

    The aim of this study was to investigate the potential of autologous mesenchymal bone marrow stem cells (BMSCs) to promote hard-tissue formation after direct pulp capping procedures. Bone marrow was aspirated from the iliac crest of healthy dogs of nonspecific race. Mononuclear cells were obtained using the Histopaque (Sigma-Aldrich, St Louis, MO) protocol and cultured for 21 days. Direct pulp capping procedures were performed in posterior teeth, and then mineral trioxide aggregate (MTA), hydroxyapatite/tricalcium phosphate, or BMSCs were used as direct pulp capping agents. After 3 months, animals were sacrificed, and jaw segments were processed for radiographic examination using cone-beam computed tomography scanning and histologic examination to assess the formation of a hard-tissue barrier according to a scoring system. The longitudinal and cross-sectional radiophotographs and histologic sections confirmed the formation of an evident calcific barrier after direct pulp capping with MTA and BMSCs. Statistical analysis of the scores given for radiographic and histologic calcific bridge formation showed that both MTA and BMSCs had a comparable tendency to produce a hard-tissue barrier that was significantly higher than hydroxyapatite tricalcium phosphate (P < .05). Autologous mesenchymal BMSCs were able to promote hard-tissue formation after direct pulp capping procedures. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Contribution of the Collagen-Binding Proteins of Streptococcus mutans to Bacterial Colonization of Inflamed Dental Pulp.

    PubMed

    Nomura, Ryota; Ogaya, Yuko; Nakano, Kazuhiko

    2016-01-01

    Streptococcus mutans is a major pathogen of dental caries. Collagen-binding proteins (CBPs) (approximately 120 kDa), termed Cnm and Cbm, are regarded as important cell surface antigens related to the adherence of S. mutans to collagenous tissue. Furthermore, CBP-positive S. mutans strains are associated with various systemic diseases involving bacteremia, such as infective endocarditis. Endodontic infection is considered to be an important cause of bacteremia, but little is known regarding the presence of S. mutans in dental pulp tissue. In the present study, the distribution and virulence of S. mutans in dental pulp tissues were investigated by focusing on CBPs. Adhesion and invasion properties of various S. mutans strains were analyzed using human dental pulp fibroblasts (HDPFs). CBP-positive strains had a significantly higher rate of adhesion to HDPFs compared with CBP-defective isogenic mutant strains (P<0.001). In addition, CBP-positive strains induced HDPF proliferation, which is a possible mechanism related to development of hyperplastic pulpitis. The distribution of S. mutans strains isolated from infected root canal specimens was then analyzed by PCR. We found that approximately 50% of the root canal specimens were positive for S. mutans. Approximately 20% of these strains were Cnm-positive, while no Cbm-positive strains were isolated. The Cnm-positive strains isolated from the specimens showed adhesion to HDPFs. Our results suggest that CBP-positive S. mutans strains exhibit high colonization in dental pulp. This could be a possible virulence factor for various systemic diseases.

  15. Prostaglandin E2 to diagnose between reversible and irreversible pulpitis.

    PubMed

    Petrini, M; Ferrante, M; Ciavarelli, L; Brunetti, L; Vacca, M; Spoto, G

    2012-01-01

    The aim of this work is to verify a correlation between the grade of inflammation and the concentration of PGE2 in human dental pulp. A total of 25 human dental pulps were examined by histological analysis and radioimmunologic dosage of PGE2. The pulps used in this experiment were from healthy and symptomatic teeth; the first ones were collected from teeth destined to be extracted for orthodontic reasons. An increase was observed of PGE2 in reversible pulpitis compared with healthy pulps and with the irreversible pulpitis and the clear decrease of these when NSAIDs are taken. This study demonstrates that PGE2 level is correlated to histological analysis thus allowing to distinguish symptomatic teeth in reversible and irreversible pulpitis.

  16. 21 CFR 872.1730 - Electrode gel for pulp testers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrode gel for pulp testers. 872.1730 Section 872.1730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1730 Electrode gel for pulp testers. (a...

  17. 21 CFR 872.1730 - Electrode gel for pulp testers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrode gel for pulp testers. 872.1730 Section 872.1730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1730 Electrode gel for pulp testers. (a...

  18. Chitosan-Intercalated Montmorillonite/Poly(vinyl alcohol) Nanofibers as a Platform to Guide Neuronlike Differentiation of Human Dental Pulp Stem Cells.

    PubMed

    Ghasemi Hamidabadi, Hatef; Rezvani, Zahra; Nazm Bojnordi, Maryam; Shirinzadeh, Haji; Seifalian, Alexander M; Joghataei, Mohammad Taghi; Razaghpour, Mojgan; Alibakhshi, Abbas; Yazdanpanah, Abolfazl; Salimi, Maryam; Mozafari, Masoud; Urbanska, Aleksandra M; Reis, Rui L; Kundu, Subhas C; Gholipourmalekabadi, Mazaher

    2017-04-05

    In this study, we present a novel chitosan-intercalated montmorillonite/poly(vinyl alcohol) (OMMT/PVA) nanofibrous mesh as a microenvironment for guiding differentiation of human dental pulp stem cells (hDPSCs) toward neuronlike cells. The OMMT was prepared through ion exchange reaction between the montmorillonite (MMT) and chitosan. The PVA solutions containing various concentrations of OMMT were electrospun to form 3D OMMT-PVA nanofibrous meshes. The biomechanical and biological characteristics of the nanofibrous meshes were evaluated by ATR-FTIR, XRD, SEM, MTT, and LDH specific activity, contact angle, and DAPI staining. They were carried out for mechanical properties, overall viability, and toxicity of the cells. The hDPSCs were seeded on the prepared scaffolds and induced with neuronal specific differentiation media at two differentiation stages (2 days at preinduction stage and 6 days at induction stage). The neural differentiation of the cells cultured on the meshes was evaluated by determining the expression of Oct-4, Nestin, NF-M, NF-H, MAP2, and βIII-tubulin in the cells after preinduction, at induction stages by real-time PCR (RT-PCR) and immunostaining. All the synthesized nanofibers exhibited a homogeneous morphology with a favorable mechanical behavior. The population of the cells differentiated into neuronlike cells in all the experimental groups was significantly higher than that in control group. The expression level of the neuronal specific markers in the cells cultured on 5% OMMT/PVA meshes was significantly higher than the other groups. This study demonstrates the feasibility of the OMMT/PVA artificial nerve graft cultured with hDPSCs for regeneration of damaged neural tissues. These fabricated matrices may have a potential in neural tissue engineering applications.

  19. Advanced glycation end products increase expression of S100A8 and A9 via RAGE-MAPK in rat dental pulp cells.

    PubMed

    Nakajima, Y; Inagaki, Y; Kido, J; Nagata, T

    2015-04-01

    Advanced glycation end products (AGE) are involved in the progression of diabetic complications. Although our previous reports show that AGE increased dental pulp calcification, AGE accumulation is also associated with inflammation. This study examined AGE effect on the expression of inflammation factors using rat dental pulp tissues and cell cultures. Receptor for AGE (RAGE), S100A8, S100A9, and interleukin (IL)-1β were selected as inflammation parameters. Rat dental pulp cells were cultured and treated with AGE, and the effects were determined by real-time PCR. An anti-RAGE antibody or MAPK pathway inhibitors (PD98059, SB203580, and SP60012) were used to investigate AGE signaling pathway. The mRNA levels of RAGE, S100A8, S100A9, and IL-1β were higher in diabetic pulp tissues. AGE increased mRNA expressions of S100A8, S100A9, and IL-1β in cultured dental pulp cells. In the presence of anti-RAGE antibody, AGE did not increase in S100A8 or S100A9 expressions. The AGE-induced increases in S100A8 and S100A9 were inhibited by PD98059 and SB203580, respectively. Advanced glycation end products increased mRNA expression of S100A8, S100A9, and IL-1β under diabetic pulp conditions, and AGE-induced increases in S100A8 and S100A9 expressions may be associated with the RAGE-MAPK signaling pathway. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Modified Dietary Fiber from Cassava Pulp and Assessment of Mercury Bioaccessibility and Intestinal Uptake Using an In Vitro Digestion/Caco-2 Model System.

    PubMed

    Kachenpukdee, Natta; Santerre, Charles R; Ferruzzi, Mario G; Oonsivilai, Ratchadaporn

    2016-07-01

    The ability of modified dietary fiber (MDF) generated from cassava pulp to modulate the bioaccessibility and intestinal absorption of heavy metals may be helpful to mitigate health risk associated with select foods including select fish high in methyl mercury. Using a coupled in vitro digestion/Caco-2 human intestinal cell model, the reduction of fish mercury bioaccessibility and intestinal uptake by MDF was investiaged. MDF was prepared from cassava pulp, a byproduct of tapioca production. The highest yield (79.68%) of MDF was obtained by enzymatic digestion with 0.1% α-amylase (w/v), 0.1% amyloglucosidase (v/v) and 1% neutrase (v/v). MDF and fish tissue were subjected to in vitro digestion and results suggest that MDF may reduce mercury bioaccessibility from fish to 34% to 85% compared to control in a dose-dependent manner. Additionally, accumulation of mercury from digesta containing fish and MDF was only modestly impacted by the presence of MDF. In conclusion, MDF prepared from cassava pulp may be useful as an ingredient to reduce mercury bioavailability from food such as fish specifically by inhibiting mercury transfer to the bioaccessibile fraction during digestion. © 2016 Institute of Food Technologists®

  1. Photoacoustic microscopy of human teeth

    NASA Astrophysics Data System (ADS)

    Rao, Bin; Cai, Xin; Favazza, Christopher; Yao, Junjie; Li, Li; Duong, Steven; Liaw, Lih-Huei; Holtzman, Jennifer; Wilder-Smith, Petra; Wang, Lihong V.

    2011-03-01

    Photoacoustic microscopy (PAM) utilizes short laser pulses to deposit energy into light absorbers and sensitively detects the ultrasonic waves the absorbers generate in response. PAM directly renders a three-dimensional spatial distribution of sub-surface optical absorbers. Unlike other optical imaging technologies, PAM features label-free optical absorption contrast and excellent imaging depths. Standard dental imaging instruments are limited to X-ray and CCD cameras. Subsurface optical dental imaging is difficult due to the highly-scattering enamel and dentin tissue. Thus, very few imaging methods can detect dental decay or diagnose dental pulp, which is the innermost part of the tooth, containing the nerves, blood vessels, and other cells. Here, we conducted a feasibility study on imaging dental decay and dental pulp with PAM. Our results showed that PAM is sensitive to the color change associated with dental decay. Although the relative PA signal distribution may be affected by surface contours and subsurface reflections from deeper dental tissue, monitoring changes in the PA signals (at the same site) over time is necessary to identify the progress of dental decay. Our results also showed that deep-imaging, near-infrared (NIR) PAM can sensitively image blood in the dental pulp of an in vitro tooth. In conclusion, PAM is a promising tool for imaging both dental decay and dental pulp.

  2. The Anti-Inflammatory Effects of Matrix Metalloproteinase-3 on Irreversible Pulpitis of Mature Erupted Teeth

    PubMed Central

    Eba, Hisanori; Murasawa, Yusuke; Iohara, Koichiro; Isogai, Zenzo; Nakamura, Hiroshi; Nakamura, Hiroyuki; Nakashima, Misako

    2012-01-01

    Matrix metalloproteinases (MMPs) are involved in extracellular matrix degradation and the modulation of cell behavior. These proteinases have also been implicated in tissue repair and regeneration. Our previous studies have demonstrated that MMP-3 elicits stimulatory effects on the proliferation and the migration of endothelial cells as well as anti-apoptotic effects on these cells in vitro. In addition, we found that MMP-3 enhanced the regeneration of lost pulp tissue in a rat incisor pulp injury model. However, continuously erupting rodent incisors exhibit significantly different pulp organization compared with mature erupted teeth. Therefore, we have further extended these studies using a canine irreversible pulpitis model to investigate the effects of MMP-3. In this study, the crowns of the canine mature premolars were removed and the pulp tissues were amputated. The amputated pulp tissues remained exposed for 24 or 72 hours to induce mild or severe irreversible pulpitis, respectively, followed by sealing of the cavities. In both models, the whole pulp tissues became necrotic by day 14. In this mild pulpitis model, the regeneration of pulp tissue with vasculature and nerves was observed until 14 days after sealing with MMP-3, followed by extracellular matrix formation in the regenerated pulp tissues until day 28. The treatment with MMP-3 resulted in a decrease in the number of macrophage and antigen-presenting cells and a significant inhibition of IL-6 expression on day 3. The inhibition of MMP-3 activity abolished these anti-inflammatory effects. Immunofluorescence staining demonstrated that MMP-3 was involved in the modification of serum-derived hyaluronan-associated proteins and hyaluronan (SHAP-HA) complexes possibly through the degradation of versican. These results demonstrate that MMP-3 can act as an anti-inflammatory agent and suggest that MMP-3 might represent a useful therapy for the treatment of mild irreversible pulpitis. PMID:23285075

  3. 21 CFR 176.260 - Pulp from reclaimed fiber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Pulp from reclaimed fiber. 176.260 Section 176.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS Substances...

  4. 21 CFR 176.260 - Pulp from reclaimed fiber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Pulp from reclaimed fiber. 176.260 Section 176.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS Substances...

  5. 21 CFR 176.260 - Pulp from reclaimed fiber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Pulp from reclaimed fiber. 176.260 Section 176.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS Substances...

  6. 21 CFR 176.260 - Pulp from reclaimed fiber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Pulp from reclaimed fiber. 176.260 Section 176.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS Substances...

  7. 21 CFR 186.1673 - Pulp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... for use as a constituent of food packaging containers. (c) The ingredient is used in paper and... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Pulp. 186.1673 Section 186.1673 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  8. 21 CFR 186.1673 - Pulp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... for use as a constituent of food packaging containers. (c) The ingredient is used in paper and... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Pulp. 186.1673 Section 186.1673 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  9. 21 CFR 186.1673 - Pulp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... for use as a constituent of food packaging containers. (c) The ingredient is used in paper and... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Pulp. 186.1673 Section 186.1673 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  10. Adult stem cell-based apexogenesis

    PubMed Central

    Li, Yao; Shu, Li-Hong; Yan, Ming; Dai, Wen-Yong; Li, Jun-Jun; Zhang, Guang-Dong; Yu, Jin-Hua

    2014-01-01

    Generally, the dental pulp needs to be removed when it is infected, and root canal therapy (RCT) is usually required in which infected dental pulp is replaced with inorganic materials (paste and gutta percha). This treatment approach ultimately brings about a dead tooth. However, pulp vitality is extremely important to the tooth itself, since it provides nutrition and acts as a biosensor to detect the potential pathogenic stimuli. Despite the reported clinical success rate, RCT-treated teeth are destined to be devitalized, brittle and susceptible to postoperative fracture. Recently, the advances and achievements in the field of stem cell biology and regenerative medicine have inspired novel biological approaches to apexogenesis in young patients suffering from pulpitis or periapical periodontitis. This review mainly focuses on the benchtop and clinical regeneration of root apex mediated by adult stem cells. Moreover, current strategies for infected pulp therapy are also discussed here. PMID:25332909

  11. EZH2 regulates dental pulp inflammation by direct effect on inflammatory factors.

    PubMed

    Hui, Tianqian; A, Peng; Zhao, Yuan; Yang, Jing; Ye, Ling; Wang, Chenglin

    2018-01-01

    Pulpitis is a multi-factorial disease that could be caused by complex interactions between genetics, epigenetics and environmental factors. We aimed to evaluate the role of Enhancer of Zeste Homolog 2 (EZH2) in the inflammatory response of human dental pulp cells (HDPCs) and dental pulp tissues. The expressions of inflammatory cytokines in HDPCs treated by EZH2 complex or EZH2 siRNA with or without rhTNF-α were examined by quantitative real-time polymerase chain reaction (q-PCR). The levels of secreted inflammatory cytokines including IL-6, IL-8, IL-15, CCL2 and CXCL12 in culture supernatants were measured by Luminex assay. In rat pulpitis model, the effects of EZH2 on dental pulp tissues were verified by histology. We invested the mechanisms of the effect of EZH2 on the inflammatory factors by ChIP assay. EZH2 down-regulation inhibited the expression of inflammatory factors, including IL-6, IL-8, IL-15, CCL2 and CXCL12 in HDPCs. EZH2 complex promoted the expression and secretion of these inflammatory factors in HDPCs, while EZH2 silencing could attenuate the promotion of inflammatory factors that were induced by rhTNF-α. In pulpitis models of rats, EZH2 down-regulation inhibited the inflammatory process of dental pulp while EZH2 complex showed no significant facilitation of pulpal inflammation. In addition, EZH2 could bind on the promoters of IL-6, IL-8 and CCL2, but not IL-15 and CXCL12, to affect the transcription of these proinflammatory cytokines. In HDPCs, EZH2 could induce inflammation, while EZH2 down-regulation could attenuate the inflammatory responses. EZH2 plays an important role in this inflammatory process of dental pulp. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Capsaicin-evoked iCGRP release from human dental pulp: a model system for the study of peripheral neuropeptide secretion in normal healthy tissue

    PubMed Central

    Fehrenbacher, Jill C.; Sun, Xiaoling X.; Locke, Erin E.; Henry, Michael A.; Hargreaves, Kenneth M.

    2009-01-01

    The mechanisms underlying trigeminal pain conditions are incompletely understood. In vitro animal studies have elucidated various targets for pharmacological intervention; however, a lack of clinical models that allow evaluation of viable innervated human tissue has impeded successful translation of many preclinical findings into clinical therapeutics. Therefore, we developed and characterized an in vitro method that evaluates the responsiveness of isolated human nociceptors by measuring basal and stimulated release of neuropeptides from collected dental pulp biopsies. Informed consent was obtained from patients presenting for extraction of normal wisdom teeth. Patients were anesthetized using nerve block injection, teeth were extracted and bisected, and pulp was removed and superfused in vitro. Basal and capsaicin-evoked peripheral release of immunoreactive calcitonin gene-related peptide (iCGRP) was analyzed by enzyme immunoassay. The presence of nociceptive markers within neurons of the dental pulp was characterized using confocal microscopy. Capsaicin increased the release of iCGRP from dental pulp biopsies in a concentration-dependent manner. Stimulated release was dependent on extracellular calcium, reversed by a TRPV1 receptor antagonist, and desensitized acutely (tachyphylaxis) and pharmacologically by pretreatment with capsaicin. Superfusion with phorbol 12-myristate 13-acetate (PMA) increased basal and stimulated release, whereas PGE2 augmented only basal release. Compared with vehicle treatment, pretreatment with PGE2 induced competence for DAMGO to inhibit capsaicin-stimulated iCGRP release, similar to observations in animal models where inflammatory mediators induce competence for opioid inhibition. These results indicate the release of iCGRP from human dental pulp provides a novel tool to determine the effects of pharmacological compounds on human nociceptor sensitivity. PMID:19428185

  13. Application of Stem Cell Technology in Dental Regenerative Medicine.

    PubMed

    Feng, Ruoxue; Lengner, Chistopher

    2013-07-01

    In this review, we summarize the current literature regarding the isolation and characterization of dental tissue-derived stem cells and address the potential of these cell types for use in regenerative cell transplantation therapy. Looking forward, platforms for the delivery of stem cells via scaffolds and the use of growth factors and cytokines for enhancing dental stem cell self-renewal and differentiation are discussed. We aim to understand the developmental origins of dental tissues in an effort to elucidate the molecular pathways governing the genesis of somatic dental stem cells. The advantages and disadvantages of several dental stem cells are discussed, including the developmental stage and specific locations from which these cells can be purified. In particular, stem cells from human exfoliated deciduous teeth may act as a very practical and easily accessibly reservoir for autologous stem cells and hold the most value in stem cell therapy. Dental pulp stem cells and periodontal ligament stem cells should also be considered for their triple lineage differentiation ability and relative ease of isolation. Further, we address the potentials and limitations of induced pluripotent stem cells as a cell source in dental regenerative. From an economical and a practical standpoint, dental stem cell therapy would be most easily applied in the prevention of periodontal ligament detachment and bone atrophy, as well as in the regeneration of dentin-pulp complex. In contrast, cell-based tooth replacement due to decay or other oral pathology seems, at the current time, an untenable approach.

  14. Regeneration and Repair in Endodontics—A Special Issue of the Regenerative Endodontics—A New Era in Clinical Endodontics

    PubMed Central

    Saoud, Tarek Mohamed A.; Ricucci, Domenico; Lin, Louis M.; Gaengler, Peter

    2016-01-01

    Caries is the most common cause of pulp-periapical disease. When the pulp tissue involved in caries becomes irreversibly inflamed and progresses to necrosis, the treatment option is root canal therapy because the infected or non-infected necrotic pulp tissue in the root canal system is not accessible to the host's innate and adaptive immune defense mechanisms and antimicrobial agents. Therefore, the infected or non-infected necrotic pulp tissue must be removed from the canal space by pulpectomy. As our knowledge in pulp biology advances, the concept of treatment of pulpal and periapical disease also changes. Endodontists have been looking for biologically based treatment procedures, which could promote regeneration or repair of the dentin-pulp complex destroyed by infection or trauma for several decades. After a long, extensive search in in vitro laboratory and in vivo preclinical animal experiments, the dental stem cells capable of regenerating the dentin-pulp complex were discovered. Consequently, the biological concept of ‘regenerative endodontics’ emerged and has highlighted the paradigm shift in the treatment of immature permanent teeth with necrotic pulps in clinical endodontics. Regenerative endodontics is defined as biologically based procedures designed to physiologically replace damaged tooth structures, including dentin and root structures, as well as the pulp-dentin complex. According to the American Association of Endodontists’ Clinical Considerations for a Regenerative Procedure, the primary goal of the regenerative procedure is the elimination of clinical symptoms and the resolution of apical periodontitis. Thickening of canal walls and continued root maturation is the secondary goal. Therefore, the primary goal of regenerative endodontics and traditional non-surgical root canal therapy is the same. The difference between non-surgical root canal therapy and regenerative endodontic therapy is that the disinfected root canals in the former therapy are filled with biocompatible foreign materials and the root canals in the latter therapy are filled with the host's own vital tissue. The purpose of this article is to review the potential of using regenerative endodontic therapy for human immature and mature permanent teeth with necrotic pulps and/or apical periodontitis, teeth with persistent apical periodontitis after root canal therapy, traumatized teeth with external inflammatory root resorption, and avulsed teeth in terms of elimination of clinical symptoms and resolution of apical periodontitis. PMID:29563445

  15. Regeneration and Repair in Endodontics-A Special Issue of the Regenerative Endodontics-A New Era in Clinical Endodontics.

    PubMed

    Saoud, Tarek Mohamed A; Ricucci, Domenico; Lin, Louis M; Gaengler, Peter

    2016-02-27

    Caries is the most common cause of pulp-periapical disease. When the pulp tissue involved in caries becomes irreversibly inflamed and progresses to necrosis, the treatment option is root canal therapy because the infected or non-infected necrotic pulp tissue in the root canal system is not accessible to the host's innate and adaptive immune defense mechanisms and antimicrobial agents. Therefore, the infected or non-infected necrotic pulp tissue must be removed from the canal space by pulpectomy. As our knowledge in pulp biology advances, the concept of treatment of pulpal and periapical disease also changes. Endodontists have been looking for biologically based treatment procedures, which could promote regeneration or repair of the dentin-pulp complex destroyed by infection or trauma for several decades. After a long, extensive search in in vitro laboratory and in vivo preclinical animal experiments, the dental stem cells capable of regenerating the dentin-pulp complex were discovered. Consequently, the biological concept of 'regenerative endodontics' emerged and has highlighted the paradigm shift in the treatment of immature permanent teeth with necrotic pulps in clinical endodontics. Regenerative endodontics is defined as biologically based procedures designed to physiologically replace damaged tooth structures, including dentin and root structures, as well as the pulp-dentin complex. According to the American Association of Endodontists' Clinical Considerations for a Regenerative Procedure, the primary goal of the regenerative procedure is the elimination of clinical symptoms and the resolution of apical periodontitis. Thickening of canal walls and continued root maturation is the secondary goal. Therefore, the primary goal of regenerative endodontics and traditional non-surgical root canal therapy is the same. The difference between non-surgical root canal therapy and regenerative endodontic therapy is that the disinfected root canals in the former therapy are filled with biocompatible foreign materials and the root canals in the latter therapy are filled with the host's own vital tissue. The purpose of this article is to review the potential of using regenerative endodontic therapy for human immature and mature permanent teeth with necrotic pulps and/or apical periodontitis, teeth with persistent apical periodontitis after root canal therapy, traumatized teeth with external inflammatory root resorption, and avulsed teeth in terms of elimination of clinical symptoms and resolution of apical periodontitis.

  16. Comparative evaluation of the isolation and quantification of stem cells derived from dental pulp and periodontal ligament of a permanent tooth and to assess their viability and proliferation on a platelet-rich fibrin scaffold

    PubMed Central

    Khurana, Rohit; Kudva, Praveen Bhasker; Husain, Syed Yawer

    2017-01-01

    Background: The present study aims to comparatively evaluate the isolation and quantification of stem cells derived from dental pulp and periodontal ligament of a permanent tooth and to assess their viability and proliferation on a platelet-rich fibrin (PRF) scaffold. Materials and Methods: A total of 15 systemically healthy individuals between the age group of 15–25 years requiring third molar or orthodontic premolar extractions. Teeth were extracted atraumatically and transported to the laboratory. Stem cells were isolated from dental pulp and periodontal ligament. After attaining more than 90% confluency by the 7th day, these cells were tested for their viability and characterization. Stem cells were also incubated with PRF and viability was assessed on the 7th day. Results: The mean number of cell for dental pulp stem cells (DPSCs) and periodontal ligament stem cell (PDLSC) was statistically insignificant (P > 0.05). The mean live cell viability was compared between DPSC (98.07%) and PDLSC (98%). Both DPSC and PDLSC showed a high percentage of expression of CD73 markers, 30.40% and 29.80%, respectively. However, DPSCs and PDLSCs lacked expression of CD34 expressing only 3.47% and 3.53%, respectively. PRF membrane as a scaffold exhibited no cytotoxic effects on DPCS's or PDLSC's. The cell viability of cells cultured with PRF was statistically insignificant (P > 0.05) when compared to the cells cultured with culture media. Conclusion: The study thus indicates that dental pulp and periodontal ligament are both rich sources of mesenchymal stem cells and can be successfully used for obtaining stem cells. PRF exhibits no cytotoxic effects on the cells and can be used in conjunction with dental stem cells. PMID:29386795

  17. Therapeutic potential of dental stem cells

    PubMed Central

    Chalisserry, Elna Paul; Nam, Seung Yun; Park, Sang Hyug; Anil, Sukumaran

    2017-01-01

    Stem cell biology has become an important field in regenerative medicine and tissue engineering therapy since the discovery and characterization of mesenchymal stem cells. Stem cell populations have also been isolated from human dental tissues, including dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla, dental follicle progenitor cells, and periodontal ligament stem cells. Dental stem cells are relatively easily obtainable and exhibit high plasticity and multipotential capabilities. The dental stem cells represent a gold standard for neural-crest-derived bone reconstruction in humans and can be used for the repair of body defects in low-risk autologous therapeutic strategies. The bioengineering technologies developed for tooth regeneration will make substantial contributions to understand the developmental process and will encourage future organ replacement by regenerative therapies in a wide variety of organs such as the liver, kidney, and heart. The concept of developing tooth banking and preservation of dental stem cells is promising. Further research in the area has the potential to herald a new dawn in effective treatment of notoriously difficult diseases which could prove highly beneficial to mankind in the long run. PMID:28616151

  18. Regenerative endodontics--Creating new horizons.

    PubMed

    Dhillon, Harnoor; Kaushik, Mamta; Sharma, Roshni

    2016-05-01

    Trauma to the dental pulp, physical or microbiologic, can lead to inflammation of the pulp followed by necrosis. The current treatment modality for such cases is non-surgical root canal treatment. The damaged tissue is extirpated and the root canal system prepared. It is then obturated with an inert material such a gutta percha. In spite of advances in techniques and materials, 10%-15% of the cases may end in failure of treatment. Regenerative endodontics combines principles of endodontics, cell biology, and tissue engineering to provide an ideal treatment for inflamed and necrotic pulp. It utilizes mesenchymal stem cells, growth factors, and organ tissue culture to provide treatment. Potential treatment modalities include induction of blood clot for pulp revascularization, scaffold aided regeneration, and pulp implantation. Although in its infancy, successful treatment of damaged pulp tissue has been performed using principles of regenerative endodontics. This field is dynamic and exciting with the ability to shape the future of endodontics. This article highlights the fundamental concepts, protocol for treatment, and possible avenues for research in regenerative endodontics. © 2015 Wiley Periodicals, Inc.

  19. Stage-specific effects of FGF2 on the differentiation of dental pulp cells

    PubMed Central

    Sagomonyants, Karen; Mina, Mina

    2015-01-01

    Dentinogenesis is a complex and multistep process, which is regulated by various growth factors, including members of the Fibroblast Growth Factor (FGF) family. Both positive and negative effects of FGFs on dentinogenesis have been reported but the underlying mechanisms of these conflicting results are still unclear. To gain better insight into the role of FGF2 in dentinogenesis, we used dental pulp cells from various transgenic mice, in which fluorescent protein expression identifies cells at different stages of odontoblast differentiation. Our results showed that continuous exposure of pulp cells to FGF2 inhibited mineralization and revealed both stimulatory and inhibitory effects of FGF2 on expression of markers of dentinogenesis and various transgenes. During the proliferation phase of in vitro growth FGF2 increased expression of markers of dentinogenesis and the percentages of DMP1-GFP+ functional odontoblasts and DSPP-Cerulean+ odontoblasts. Additional exposure to FGF2 during the differentiation/mineralization phase of in vitro growth decreased the extent of mineralization, expression of markers of dentinogenesis, and expression of DMP1-GFP and DSPP-Cerulean transgenes. Recovery experiments showed that the inhibitory effects of FGF2 on dentinogenesis were related to the blocking of differentiation of cells into mature odontoblasts. These observations together showed stage-specific effects of FGF2 on dentinogenesis by dental pulp cells and provide critical information for the development of improved treatments for vital pulp therapy and dentin regeneration. PMID:25823776

  20. Epidermal growth factor enhances osteogenic differentiation of dental pulp stem cells in vitro.

    PubMed

    Del Angel-Mosqueda, Casiano; Gutiérrez-Puente, Yolanda; López-Lozano, Ada Pricila; Romero-Zavaleta, Ricardo Emmanuel; Mendiola-Jiménez, Andrés; Medina-De la Garza, Carlos Eduardo; Márquez-M, Marcela; De la Garza-Ramos, Myriam Angélica

    2015-09-03

    Epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) play an important role in extracellular matrix mineralization, a complex process required for proper bone regeneration, one of the biggest challenges in dentistry. The purpose of this study was to evaluate the osteogenic potential of EGF and bFGF on dental pulp stem cells (DPSCs). Human DPSCs were isolated using CD105 magnetic microbeads and characterized by flow cytometry. To induce osteoblast differentiation, the cells were cultured in osteogenic medium supplemented with EGF or bFGF at a low concentration. Cell morphology and expression of CD146 and CD10 surface markers were analyzed using fluorescence microscopy. To measure mineralization, an alizarin red S assay was performed and typical markers of osteoblastic phenotype were evaluated by RT-PCR. EGF treatment induced morphological changes and suppression of CD146 and CD10 markers. Additionally, the cells were capable of producing calcium deposits and increasing the mRNA expression to alkaline phosphatase (ALP) and osteocalcin (OCN) in relation to control groups (p < 0.001). However, bFGF treatment showed an inhibitory effect. These data suggests that DPSCs in combination with EGF could be an effective stem cell-based therapy for bone tissue engineering applications in periodontics and oral implantology.

  1. Molecular differences between mature and immature dental pulp cells: Bioinformatics and preliminary results.

    PubMed

    Chen, Long; Jiang, Yifeng; Du, Zhen

    2018-04-01

    Although previous studies have demonstrated that dental pulp stem cells (DPSCs) from mature and immature teeth exhibit potential for multi-directional differentiation, the molecular and biological difference between the DPSCs from mature and immature permanent teeth has not been fully investigated. In the present study, 500 differentially expressed genes from dental pulp cells (DPCs) in mature and immature permanent teeth were obtained from the Gene Expression Omnibus online database. Based on bioinformatics analysis using the Database for Annotation, Visualization and Integrated Discovery, these genes were divided into a number of subgroups associated with immunity, inflammation and cell signaling. The results of the present study suggest that immune features, response to infection and cell signaling may be different in DPCs from mature and immature permanent teeth; furthermore, DPCs from immature permanent teeth may be more suitable for use in tissue engineering or stem cell therapy. The Online Mendelian Inheritance in Man database stated that Sonic Hedgehog (SHH), a differentially expressed gene in DPCs from mature and immature permanent teeth, serves a crucial role in the development of craniofacial tissues, including teeth, which further confirmed that SHH may cause DPCs from mature and immature permanent teeth to exhibit different biological characteristics. The Search Tool for the Retrieval of Interacting Genes/Proteins database revealed that SHH has functional protein associations with a number of other proteins, including Glioma-associated oncogene (GLI)1, GLI2, growth arrest-specific protein 1, bone morphogenetic protein (BMP)2 and BMP4, in mice and humans. It was also demonstrated that SHH may interact with other genes to regulate the biological characteristics of DPCs. The results of the present study may provide a useful reference basis for selecting suitable DPSCs and molecules for the treatment of these cells to optimize features for tissue engineering or stem cell therapy. Quantitative polymerase chain reaction should be performed to confirm the differential expression of these genes prior to the beginning of a functional study.

  2. Wnt/β-Catenin Signaling Determines the Vasculogenic Fate of Postnatal Mesenchymal Stem Cells.

    PubMed

    Zhang, Zhaocheng; Nör, Felipe; Oh, Min; Cucco, Carolina; Shi, Songtao; Nör, Jacques E

    2016-06-01

    Vasculogenesis is the process of de novo blood vessel formation observed primarily during embryonic development. Emerging evidence suggest that postnatal mesenchymal stem cells are capable of recapitulating vasculogenesis when these cells are engaged in tissue regeneration. However, the mechanisms underlining the vasculogenic differentiation of mesenchymal stem cells remain unclear. Here, we used stem cells from human permanent teeth (dental pulp stem cells [DPSC]) or deciduous teeth (stem cells from human exfoliated deciduous teeth [SHED]) as models of postnatal primary human mesenchymal stem cells to understand mechanisms regulating their vasculogenic fate. GFP-tagged mesenchymal stem cells seeded in human tooth slice/scaffolds and transplanted into immunodeficient mice differentiate into human blood vessels that anastomize with the mouse vasculature. In vitro, vascular endothelial growth factor (VEGF) induced the vasculogenic differentiation of DPSC and SHED via potent activation of Wnt/β-catenin signaling. Further, activation of Wnt signaling is sufficient to induce the vasculogenic differentiation of postnatal mesenchymal stem cells, while Wnt inhibition blocked this process. Notably, β-catenin-silenced DPSC no longer differentiate into endothelial cells in vitro, and showed impaired vasculogenesis in vivo. Collectively, these data demonstrate that VEGF signaling through the canonical Wnt/β-catenin pathway defines the vasculogenic fate of postnatal mesenchymal stem cells. Stem Cells 2016;34:1576-1587. © 2016 AlphaMed Press.

  3. Effects of a discoloration-resistant calcium aluminosilicate cement on the viability and proliferation of undifferentiated human dental pulp stem cells.

    PubMed

    Niu, Li-na; Watson, Devon; Thames, Kyle; Primus, Carolyn M; Bergeron, Brian E; Jiao, Kai; Bortoluzzi, Eduardo A; Cutler, Christopher W; Chen, Ji-hua; Pashley, David H; Tay, Franklin R

    2015-11-30

    Discoloration-resistant calcium aluminosilicate cement has been formulated to overcome the timely problem of tooth discoloration reported in the clinical application of bismuth oxide-containing hydraulic cements. The present study examined the effects of this experimental cement (Quick-Set2) on the viability and proliferation of human dental pulp stem cells (hDPSCs) by comparing the cellular responses with commercially available calcium silicate cement (white mineral trioxide aggregate; WMTA) after different aging periods. Cell viability and proliferation were examined using assays that examined plasma membrane integrity, leakage of cytosolic enzyme, caspase-3 activity for early apoptosis, oxidative stress, mitochondrial metabolic activity and intracellular DNA content. Results of the six assays indicated that both Quick-Set2 and WMTA were initially cytotoxic to hDPSCs after setting for 24 h, with Quick-Set2 being comparatively less cytotoxic than WMTA at this stage. After two aging cycles, the cytotoxicity profiles of the two hydraulic cements were not significantly different and were much less cytotoxic than the positive control (zinc oxide-eugenol cement). Based on these results, it is envisaged that any potential beneficial effect of the discoloration-resistant calcium aluminosilicate cement on osteogenesis by differentiated hDPSCs is more likely to be revealed after outward diffusion and removal of its cytotoxic components.

  4. Effects of a discoloration-resistant calcium aluminosilicate cement on the viability and proliferation of undifferentiated human dental pulp stem cells

    PubMed Central

    Niu, Li-na; Watson, Devon; Thames, Kyle; Primus, Carolyn M.; Bergeron, Brian E.; Jiao, Kai; Bortoluzzi, Eduardo A.; Cutler, Christopher W.; Chen, Ji-hua; Pashley, David H.; Tay, Franklin R.

    2015-01-01

    Discoloration-resistant calcium aluminosilicate cement has been formulated to overcome the timely problem of tooth discoloration reported in the clinical application of bismuth oxide-containing hydraulic cements. The present study examined the effects of this experimental cement (Quick-Set2) on the viability and proliferation of human dental pulp stem cells (hDPSCs) by comparing the cellular responses with commercially available calcium silicate cement (white mineral trioxide aggregate; WMTA) after different aging periods. Cell viability and proliferation were examined using assays that examined plasma membrane integrity, leakage of cytosolic enzyme, caspase-3 activity for early apoptosis, oxidative stress, mitochondrial metabolic activity and intracellular DNA content. Results of the six assays indicated that both Quick-Set2 and WMTA were initially cytotoxic to hDPSCs after setting for 24 h, with Quick-Set2 being comparatively less cytotoxic than WMTA at this stage. After two aging cycles, the cytotoxicity profiles of the two hydraulic cements were not significantly different and were much less cytotoxic than the positive control (zinc oxide–eugenol cement). Based on these results, it is envisaged that any potential beneficial effect of the discoloration-resistant calcium aluminosilicate cement on osteogenesis by differentiated hDPSCs is more likely to be revealed after outward diffusion and removal of its cytotoxic components. PMID:26617338

  5. Paracrine Maturation and Migration of SH-SY5Y Cells by Dental Pulp Stem Cells.

    PubMed

    Gervois, P; Wolfs, E; Dillen, Y; Hilkens, P; Ratajczak, J; Driesen, R B; Vangansewinkel, T; Bronckaers, A; Brône, B; Struys, T; Lambrichts, I

    2017-06-01

    Neurological disorders are characterized by neurodegeneration and/or loss of neuronal function, which cannot be adequately repaired by the host. Therefore, there is need for novel treatment options such as cell-based therapies that aim to salvage or reconstitute the lost tissue or that stimulate host repair. The present study aimed to evaluate the paracrine effects of human dental pulp stem cells (hDPSCs) on the migration and neural maturation of human SH-SY5Y neuroblastoma cells. The hDPSC secretome had a significant chemoattractive effect on SH-SY5Y cells as shown by a transwell assay. To evaluate neural maturation, SH-SY5Y cells were first induced toward neuronal cells, after which they were exposed to the hDPSC secretome. In addition, SH-SY5Y cells subjected to the hDPSC secretome showed increased neuritogenesis compared with nonexposed cells. Maturated cells were shown to increase immune reactivity for neuronal markers compared with controls. Ultrastructurally, retinoic acid (RA) signaling and subsequent exposure to the hDPSC secretome induced a gradual rise in metabolic activity and neuronal features such as multivesicular bodies and cytoskeletal elements associated with cellular communication. In addition, electrophysiological recordings of differentiating cells demonstrated a transition toward a neuronal electrophysiological profile based on the maximum tetrodotoxin (TTX)-sensitive, Na + current. Moreover, conditioned medium (CM)-hDPSC-maturated SH-SY5Y cells developed distinct features including, Cd 2+ -sensitive currents, which suggests that CM-hDPSC-maturated SH-SY5Y acquired voltage-gated Ca 2+ channels. The results reported in this study demonstrate the potential of hDPSCs to support differentiation and recruitment of cells with neuronal precursor characteristics in a paracrine manner. Moreover, this in vitro experimental design showed that the widely used SH-SY5Y cell line can improve and simplify the preclinical in vitro research on the molecular mechanisms of stem cell-mediated neuronal regeneration.

  6. Electrochemical delignification of wood pulp using polyoxometalate mediators

    Treesearch

    R.S. Reiner; E.L. Springer; R.H. Atalla

    2003-01-01

    It has been found that polyoxometalates (POMs) can act as mediators in the electrochemical oxidation of lignin in pulps. An electrochemical cell, with a Nafion® membrane separating the anode and cathode compartments, was used in the delignification experiments. A softwood kraft pulp was placed in the anode compartment with a buffered 0.01M solution of the...

  7. Dental pulp stem cells. Biology and use for periodontal tissue engineering.

    PubMed

    Ashri, Nahid Y; Ajlan, Sumaiah A; Aldahmash, Abdullah M

    2015-12-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.

  8. Concise Review: Dental Pulp Stem Cells: A Novel Cell Therapy for Retinal and Central Nervous System Repair.

    PubMed

    Mead, Ben; Logan, Ann; Berry, Martin; Leadbeater, Wendy; Scheven, Ben A

    2017-01-01

    Dental pulp stem cells (DPSC) are neural crest-derived ecto-mesenchymal stem cells that can relatively easily and non-invasively be isolated from the dental pulp of extracted postnatal and adult teeth. Accumulating evidence suggests that DPSC have great promise as a cellular therapy for central nervous system (CNS) and retinal injury and disease. The mode of action by which DPSC confer therapeutic benefit may comprise multiple pathways, in particular, paracrine-mediated processes which involve a wide array of secreted trophic factors and is increasingly regarded as the principal predominant mechanism. In this concise review, we present the current evidence for the use of DPSC to repair CNS damage, including recent findings on retinal ganglion cell neuroprotection and regeneration in optic nerve injury and glaucoma. Stem Cells 2017;35:61-67. © 2016 AlphaMed Press.

  9. Expression of DMP-1 in the human pulp tissue using low level laser therapy

    NASA Astrophysics Data System (ADS)

    Lourenço Neto, Natalino; Teixeira Marques, Nádia Carolina; Fernandes, Ana Paula; Oliveira Rodini, Camila; Cruvinel Silva, Thiago; Moreira Machado, Maria Aparecida Andrade; Marchini Oliveira, Thais

    2015-09-01

    This study aimed to evaluate the effects of low-level laser therapy (LLLT) on DMP-1 expression in pulp tissue repair of human primary teeth. Twenty mandibular primary molars were randomly assigned into the following groups: Group I—Buckley’s Formocresol (FC); Group II—Calcium Hydroxide (CH); Group III—LLLT + CH and Group IV—LLLT + Zinc oxide/Eugenol. The teeth at the regular exfoliation period were extracted for histological analysis and immunolocalization of DMP-1. Descriptive analysis was performed on the dentin pulp complex. Histopathological assessment showed internal resorption in group FC. Groups CH and LLLT + CH provided better pulpal repair due to the absence of inflammation and the formation of hard tissue barrier. These two groups presented odontoblastic layer expressing DMP-1. According to this study, low level laser therapy preceding the use of calcium hydroxide exhibited satisfactory bio-inductive activity on pulp tissue repair of human primary teeth. However, other histological and cellular studies are needed to confirm the laser tissue action and efficacy.

  10. Influence of Partial O₂ Pressure on the Adhesion, Proliferation, and Osteogenic Differentiation of Human Dental Pulp Stem Cells on β-Tricalcium Phosphate Scaffold.

    PubMed

    Viña-Almunia, Jose; Mas-Bargues, Cristina; Borras, Consuelo; Gambini, Juan; El Alami, Marya; Sanz-Ros, Jorge; Peñarrocha, Miguel; Vina, Jose

    To analyze, in vitro, the influence of O₂ pressure on the adhesion, proliferation, and osteogenic differentiation of human dental pulp stem cells (DPSC) on β-tricalcium phosphate (β-TCP) scaffold. DPSC, positive for the molecular markers CD133, Oct4, Nestin, Stro-1, and CD34, and negative for CD45, were isolated from extracted third molars. Experiments were started by seeding 200,000 cells on β-TCP cultured under 3% or 21% O₂ pressure. No osteogenic medium was used. Eight different cultures were performed at each time point under each O₂ pressure condition. Cell adhesion, proliferation, and differentiation over the biomaterial were evaluated at 7, 13, 18, and 23 days of culture. Cell adhesion was determined by light microscopy, proliferation by DNA quantification, and osteogenic differentiation by alkaline phosphatase (ALP) activity analysis. DPSC adhered to β-TCP with both O₂ conditions. Cell proliferation was found from day 7 of culture. Higher values were recorded at 3% O₂ in each time point. Statistically significant differences were recorded at 23 days of culture (P = .033). ALP activity was not detectable at 7 days. There was, however, an increase in ALP activity over time in both groups. At 13, 18, and 23 days of culture, higher ALP activity was recorded under 3% O₂ pressure. Statistical differences were found at day 23 (P = .014). DPSC display capacity of adhering to β-TCP under 3% or 21% O₂ pressure conditions. Cell proliferation on β-TCP phosphate is significantly higher at 3% than at 21% O₂ pressure, the most frequently used O₂ tension. β-TCP can itself promote osteogenic differentiation of DPSC and is enhanced under 3% O₂ compared with 21%.

  11. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Rajreddy; Kumar, B. Mohana; Lee, Won-Jae

    Dental tissues provide an alternative autologous source of mesenchymal stem cells (MSCs) for regenerative medicine. In this study, we isolated human dental MSCs of follicle, pulp and papilla tissue from a single donor tooth after impacted third molar extraction by excluding the individual differences. We then compared the morphology, proliferation rate, expression of MSC-specific and pluripotency markers, and in vitro differentiation ability into osteoblasts, adipocytes, chondrocytes and functional hepatocyte-like cells (HLCs). Finally, we analyzed the protein expression profiles of undifferentiated dental MSCs using 2DE coupled with MALDI-TOF-MS. Three types of dental MSCs largely shared similar morphology, proliferation potential, expression ofmore » surface markers and pluripotent transcription factors, and differentiation ability into osteoblasts, adipocytes, and chondrocytes. Upon hepatogenic induction, all MSCs were transdifferentiated into functional HLCs, and acquired hepatocyte functions by showing their ability for glycogen storage and urea production. Based on the proteome profiling results, we identified nineteen proteins either found commonly or differentially expressed among the three types of dental MSCs. In conclusion, three kinds of dental MSCs from a single donor tooth possessed largely similar cellular properties and multilineage potential. Further, these dental MSCs had similar proteomic profiles, suggesting their interchangeable applications for basic research and call therapy. - Highlights: • Isolated and characterized three types of human dental MSCs from a single donor. • MSCs of dental follicle, pulp and papilla had largely similar biological properties. • All MSCs were capable of transdifferentiating into functional hepatocyte-like cells. • 2DE proteomics with MALDI-TOF/MS identified 19 proteins in three types of MSCs. • Similar proteomic profiles suggest interchangeable applications of dental MSCs.« less

  12. The effect of ATM kinase inhibition on the initial response of human dental pulp and periodontal ligament mesenchymal stem cells to ionizing radiation.

    PubMed

    Cmielova, Jana; Havelek, Radim; Kohlerova, Renata; Soukup, Tomas; Bruckova, Lenka; Suchanek, Jakub; Vavrova, Jirina; Mokry, Jaroslav; Rezacova, Martina

    2013-07-01

    This study evaluates early changes in human mesenchymal stem cells (MSC) isolated from dental pulp and periodontal ligament after γ-irradiation and the effect of ataxia-telangiectasia mutated (ATM) inhibition. MSC were irradiated with 2 and 20 Gy by (60)Co. For ATM inhibition, specific inhibitor KU55933 was used. DNA damage was measured by Comet assay and γH2AX detection. Cell cycle distribution and proteins responding to DNA damage were analyzed 2-72 h after the irradiation. The irradiation of MSC causes an increase in γH2AX; the phosphorylation was ATM-dependent. Irradiation activates ATM kinase, and the level of p53 protein is increased due to its phosphorylation on serine15. While this phosphorylation of p53 is ATM-dependent in MSC, the increase in p53 was not prevented by ATM inhibition. A similar trend was observed for Chk1 and Chk2. The increase in p21 is greater without ATM inhibition. ATM inhibition also does not fully abrogate the accumulation of irradiated MSC in the G2-phase of the cell-cycle. In irradiated MSC, double-strand breaks are tagged quickly by γH2AX in an ATM-dependent manner. Although phosphorylations of p53(ser15), Chk1(ser345) and Chk2(thr68) are ATM-dependent, the overall amount of these proteins increases when ATM is inhibited. In both types of MSC, ATM-independent mechanisms for cell-cycle arrest in the G2-phase are triggered.

  13. Substance P increases production of proinflammatory cytokines and formation of osteoclasts in dental pulp fibroblasts in patients with severe orthodontic root resorption.

    PubMed

    Yamaguchi, Masaru; Ozawa, Yasuhito; Mishima, Hiroyuki; Aihara, Norihito; Kojima, Tadashi; Kasai, Kazutaka

    2008-05-01

    The objective of this study was to determine the extent to which substance P (SP) increases proinflammatory cytokine production and osteoclast formation of human dental pulp fibroblasts (HDPF) in patients with severe orthodontically induced inflammatory root resorption (OIIRR). HDPF were obtained from 5 patients with severe apical root resorption after orthodontic treatment. The levels of interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha were determined after 24 hours by using ELISA kits. Furthermore, culture supernatants were added to cultured human osteoclasts, and osteoclast formation was observed after tartrate-resistant acid phosphatase (TRAP) staining and the formation of resorption cavities. Stimulation with SP increased the levels of IL-1beta, IL-6, and TNF-alpha, in a time- and concentration-dependent manner, although the increase was greater in the severe root resorption (SRR) group than in the nonresorption (NR) group (P < 0.001, 3-way repeated measures ANOVA). As for osteoclast formation, the numbers of TRAP-positive multinucleate cells and resorptive pits were significantly increased in the SRR group compared with the NR group (P < 0.001, 2-way repeated measures ANOVA). These results suggest that HDPF stimulated with SP might be deeply involved in the progress of inflammation in pulp tissue and the incidence of SRR during orthodontic treatment.

  14. Human intrabony defect regeneration with micro-grafts containing dental pulp stem cells: A randomized controlled clinical trial.

    PubMed

    Ferrarotti, Francesco; Romano, Federica; Gamba, Mara Noemi; Quirico, Andrea; Giraudi, Marta; Audagna, Martina; Aimetti, Mario

    2018-05-19

    The goal of this study was to evaluate if dental pulp stem cells (DPSCs) delivered into intrabony defects in a collagen scaffold would enhance the clinical and radiographic parameters of periodontal regeneration. In this randomized controlled trial, 29 chronic periodontitis patients presenting one deep intrabony defect and requiring extraction of one vital tooth were consecutively enrolled. Defects were randomly assigned to test or control treatments which both consisted of the use of minimally invasive surgical technique. The dental pulp of the extracted tooth was mechanically dissociated to obtain micro-grafts rich in autologous DPSCs. Test sites (n=15) were filled with micro-grafts seeded onto collagen sponge, whereas control sites (n=14) with collagen sponge alone. Clinical and radiographic parameters were recorded at baseline, 6 and 12 months postoperatively. Test sites exhibited significantly more PD reduction (4.9 mm versus 3.4 mm), CAL gain (4.5 versus 2.9 mm) and bone defect fill (3.9 versus 1.6 mm) than controls. Moreover, residual PD < 5 mm (93% versus 50%) and CAL gain ≥ 4 mm (73% versus 29%) was significantly more frequent in the test group. Application of DPSCs significantly improved clinical parameters of periodontal regeneration one year after treatment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. CKIP-1 suppresses odontoblastic differentiation of dental pulp stem cells via BMP2 pathway and can interact with NRP1.

    PubMed

    Song, Yihua; Wang, Chenfei; Gu, Zhifeng; Cao, Peipei; Huang, Dan; Feng, Guijuan; Lian, Min; Zhang, Ye; Feng, Xingmei; Gao, Zhenran

    2018-05-31

    Casein kinase 2 interacting protein-1 (CKIP-1) is a recently discovered intracellular regulator of bone formation, muscle cell differentiation and tumor cell proliferation. Our study aims to identify the inhibition of BMP2-Smad1/5 signaling by CKIP-1 in odontoblastic differentiation of human dental pulp stem cells (DPSCs). DPSCs infected CKIP-1 siRNA or transfected CKIP-1 full-length plasmid were cultured in odontoblastic differentiation medium or added noggin (200 ng/mL) for 21 days. We examined the effects of CKIP-1 on odontoblastic differentiation, mineralized nodules formation and interaction by western blot, real-time polymerase chain reaction (RT-PCR), alkaline phosphatase (ALP) staining, alizarin red S staining and immunoprecipitation. Firstly, we have demonstrated that CKIP-1 expression markedly decreased time-dependently along with cell odontoblastic differentiation. Indeed, the silence of CKIP-1 up-regulated odontoblastic differentiation via BMP2-Smad1/5 signaling, while CKIP-1 over-expression had a negative effect on odontoblastic differentiation of DPSCs. Furthermore, CKIP-1 could interact with Neuropilin-1 (NRP1). This work provides data that it advocates a novel perception on odontoblastic differentiation of DPSCs. Therefore, inhibiting the expression of CKIP-1 may be of great significance to the development of dental caries.

  16. Dual ECM Biomimetic Scaffolds for Dental Pulp Regenerative Applications

    PubMed Central

    Huang, Chun-Chieh; Narayanan, Raghuvaran; Warshawsky, Noah; Ravindran, Sriram

    2018-01-01

    Dental pulp is a highly vascularized and innervated tissue that provides sensitivity and vitality to the tooth. Chronic caries results in an infected pulp tissue prone to necrosis. Existing clinical treatments replace the living pulp tissue with a non-responsive resin filling resulting in loss of tooth vitality. Tissue engineering approaches to dental pulp tissue regeneration have been investigated to preserve tooth vitality and function. However, a critical criterion is the choice of growth factors that may promote mesenchymal stem cell differentiation and more importantly, vascularization. But, the problems associated with growth factor dosage, delivery, safety, immunological and ectopic complications affect their translatory potential severely. The purpose of this study is to develop, characterize and evaluate a biomimetic native extracellular matrix (ECM) derived dual ECM scaffold that consists of a pulp-specific ECM to promote MSC attachment, proliferation and differentiation and an endothelial ECM to promote migration of host endothelial cells and eventual vascularization in vivo. Our results show that the dual ECM scaffolds possess similar properties as a pulp-ECM scaffold to promote MSC attachment and odontogenic differentiation in vitro. Additionally, when implanted subcutaneously in a tooth root slice model in vivo, the dual ECM scaffolds promoted robust odontogenic differentiation of both dental pulp and bone marrow derived MSCs and also extensive vascularization when compared to respective controls. These scaffolds are mass producible for clinical use and hence have the potential to replace root canal therapy as a treatment for chronic dental caries. PMID:29887803

  17. Characterization of Neurons from Immortalized Dental Pulp Stem Cells for the Study of Neurogenetic Disorders

    PubMed Central

    Urraca, Nora; Memon, Rawaha; El-Iyachi, Ikbale; Goorha, Sarita; Valdez, Colleen; Tran, Quynh T.; Scroggs, Reese; Miranda-Carboni, Gustavo A.; Donaldson, Martin; Bridges, Dave; Reiter, Lawrence T.

    2015-01-01

    A major challenge to the study and treatment of neurogenetic syndromes is accessing live neurons for study from affected individuals. Although several sources of stem cells are currently available, acquiring these involve invasive procedures, may be difficult or expensive to generate and are limited in number. Dental pulp stem cells (DPSC) are multipotent stem cells that reside deep the pulp of shed teeth. To investigate the characteristics of DPSC that make them a valuable resource for translational research, we performed a set of viability, senescence, immortalization and gene expression studies on control DPSC and derived neurons. We investigated the basic transport conditions and maximum passage number for primary DPSC. We immortalized control DPSC using human telomerase reverse transcriptase (hTERT) and evaluated neuronal differentiation potential and global gene expression changes by RNA-seq. We show that neurons from immortalized DPSC share morphological and electrophysiological properties with non-immortalized DPSC. We also show that differentiation of DPSC into neurons significantly alters gene expression for 1305 transcripts. Here we show that these changes in gene expression are concurrent with changes in protein levels of the transcriptional repressor REST/NSRF, which is known to be involved in neuronal differentiation. Immortalization significantly altered the expression of 183 genes after neuronal differentiation, 94 of which also changed during differentiation. Our studies indicate that viable DPSC can be obtained from teeth stored for ≥72hrs, these can then be immortalized and still produce functional neurons for in vitro studies, but that constitutive hTERT immortalization is not be the best approach for long term use of patient derived DPSC for the study of disease. PMID:26599327

  18. Characterization of neurons from immortalized dental pulp stem cells for the study of neurogenetic disorders.

    PubMed

    Urraca, Nora; Memon, Rawaha; El-Iyachi, Ikbale; Goorha, Sarita; Valdez, Colleen; Tran, Quynh T; Scroggs, Reese; Miranda-Carboni, Gustavo A; Donaldson, Martin; Bridges, Dave; Reiter, Lawrence T

    2015-11-01

    A major challenge to the study and treatment of neurogenetic syndromes is accessing live neurons for study from affected individuals. Although several sources of stem cells are currently available, acquiring these involve invasive procedures, may be difficult or expensive to generate and are limited in number. Dental pulp stem cells (DPSCs) are multipotent stem cells that reside deep the pulp of shed teeth. To investigate the characteristics of DPSCs that make them a valuable resource for translational research, we performed a set of viability, senescence, immortalization and gene expression studies on control DPSC and derived neurons. We investigated the basic transport conditions and maximum passage number for primary DPSCs. We immortalized control DPSCs using human telomerase reverse transcriptase (hTERT) and evaluated neuronal differentiation potential and global gene expression changes by RNA-seq. We show that neurons from immortalized DPSCs share morphological and electrophysiological properties with non-immortalized DPSCs. We also show that differentiation of DPSCs into neurons significantly alters gene expression for 1305 transcripts. Here we show that these changes in gene expression are concurrent with changes in protein levels of the transcriptional repressor REST/NRSF, which is known to be involved in neuronal differentiation. Immortalization significantly altered the expression of 183 genes after neuronal differentiation, 94 of which also changed during differentiation. Our studies indicate that viable DPSCs can be obtained from teeth stored for ≥72 h, these can then be immortalized and still produce functional neurons for in vitro studies, but that constitutive hTERT immortalization is not be the best approach for long term use of patient derived DPSCs for the study of disease. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Sedimentary rocks in our mouth: dental pulp stones made by nanobacteria

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Neva; Ciftcioglu, Vefa; Vali, Hojatollah; Turcott, Eduardo; Kajander, E. Olavi

    1998-07-01

    The mechanisms of dental pulp stone formation are still largely unknown. Pulp stones are mainly composed of carbonate apatite. Only few experimental reports have elucidated the potential of some selected bacteria to produce apatite under in vitro conditions using special calcification media. The tested stone forming bacteria were, in fact, often better known for their cariogenic potential. Our preliminary work with 18 dental pulp stones from Turkey, selected only by severity of the stone formation, indicated the presence of nanobacterial antigens in the demineralized stones. Furthermore, high incidence of kidney stones and gall stones in the patient group and in their parents was found. This raises the implication that nanobacteria may enter the body also via oral route, in addition to the parenteral and transplacental routes. The role of nanobacteria in dental pulp stone formation was further studied by following nanobacterial colonization and mineral formation on human tooth in vitro. Two molar teeth, one having pulp stone and one without, were vertically cut into two pieces, sterilized by autoclaving and incubated with or without nanobacteria in DMEM. Electron microscopic observations indicate that nanobacteria can cause apatite stone formation on tooth surface. The sever from of dental pulp stone formation might be associated with nanobacteria. This form of dental disease results in loss of teeth due to osteolytic processes. This addresses the necessity for a study on unconventional mineral-forming bacteria as a cause for human diseases.

  20. Changes in alpha-L-arabinofuranosidase activity in peel and pulp of banana (Musa sp.) fruits during ripening and softening.

    PubMed

    Zhuang, Jun-Ping; Su, Jing; Li, Xue-Ping; Chen, Wei-Xin

    2007-04-01

    Arabinose is one of the most dynamic cell wall glycosyl residues released during fruit ripening, alpha-L-arabinofuranosidase (alpha-Arab) are major glycosidases that may remove arabinose units from fruit cell wall polysaccharides. To find out whether alpha-Arab plays important roles in banana fruit softening, the enzyme activities in peel and pulp, fruit firmness, respiration rate and ethylene release rate were assayed during banana softening. The results showed that alpha-Arab activities in banana pulp and peel increased slightly at the beginning of storage and reached their maxima when the fruit firmness decreased drastically, alpha-Arab activity increased by more than ten folds in both pulp and peel during ripening and alpha-Arab activities were higher in pulp than in peel. Treatment of banana fruits with ethylene absorbent postponed the time of reaching of its maxima of respiration and ethylene, enhanced the firmness of pup and decreased alpha-Arab activity in the peel and pulp. These results suggest that alpha-Arab induced the decrease of fruit firmness and played an important role in banana fruit softening, and its activity was regulated by ethylene.

  1. Dental Pulp and Dentin Tissue Engineering and Regeneration – Advancement and Challenge

    PubMed Central

    Huang, George T.-J.

    2012-01-01

    Hard tissue is difficult to repair especially dental structures. Tooth enamel is incapable of self-repairing whereas dentin and cememtum can regenerate with limited capacity. Enamel and dentin are commonly under the attack by caries. Extensive forms of caries destroy enamel and dentin and can lead to dental pulp infection. Entire pulp amputation followed by the pulp space disinfection and filled with an artificial rubber-like material is employed to treat the infection --commonly known as root canal or endodontic therapy. Regeneration of dentin relies on having vital pulps; however, regeneration of pulp tissue has been difficult as the tissue is encased in dentin without collateral blood supply except from the root apical end. With the advent of modern tissue engineering concept and the discovery of dental stem cells, regeneration of pulp and dentin has been tested. This article will review the recent endeavor on pulp and dentin tissue engineering and regeneration. The prospective outcome of the current advancement and challenge in this line of research will be discussed. PMID:21196351

  2. Mucopolysaccharidosis enzyme production by bone marrow and dental pulp derived human mesenchymal stem cells.

    PubMed

    Jackson, Matilda; Derrick Roberts, Ainslie; Martin, Ellenore; Rout-Pitt, Nathan; Gronthos, Stan; Byers, Sharon

    2015-04-01

    Mucopolysaccharidoses (MPS) are inherited metabolic disorders that arise from a complete loss or a reduction in one of eleven specific lysosomal enzymes. MPS children display pathology in multiple cell types leading to tissue and organ failure and early death. Mesenchymal stem cells (MSCs) give rise to many of the cell types affected in MPS, including those that are refractory to current treatment protocols such as hematopoietic stem cell (HSC) based therapy. In this study we compared multiple MPS enzyme production by bone marrow derived (hBM) and dental pulp derived (hDP) MSCs to enzyme production by HSCs. hBM MSCs produce significantly higher levels of MPS I, II, IIIA, IVA, VI and VII enzyme than HSCs, while hDP MSCs produce significantly higher levels of MPS I, IIIA, IVA, VI and VII enzymes. Higher transfection efficiency was observed in MSCs (89%) compared to HSCs (23%) using a lentiviral vector. Over-expression of four different lysosomal enzymes resulted in up to 9303-fold and up to 5559-fold greater levels in MSC cell layer and media respectively. Stable, persistent transduction of MSCs and sustained over-expression of MPS VII enzyme was observed in vitro. Transduction of MSCs did not affect the ability of the cells to differentiate down osteogenic, adipogenic or chondrogenic lineages, but did partially delay differentiation down the non-mesodermal neurogenic lineage. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Epigallocatechin-3-gallate blocks triethylene glycol dimethacrylate-induced cyclooxygenase-2 expression by suppressing extracellular signal-regulated kinase in human dental pulp and embryonic palatal mesenchymal cells.

    PubMed

    Yang, Wan-Hsien; Deng, Yi-Ting; Kuo, Mark Yen-Ping; Liu, Cheing-Meei; Chang, Hao-Hueng; Chang, Jenny Zwei-Chieng

    2013-11-01

    Methacrylate resin-based materials could release components into adjacent environment even after polymerization. The major components leached include triethylene glycol dimethacrylate (TEGDMA). TEGDMA has been shown to induce the expression of cyclooxygenase-2 (COX-2). However, the mechanisms are not completely understood. The aims of this study were to investigate the molecular mechanism underlying TEGDMA-induced COX-2 in 2 oral cell types, the primary culture of human dental pulp (HDP) cells and the human embryonic palatal mesenchymal (HEPM) pre-osteoblasts, and to propose potential strategy to prevent or ameliorate the TEGDMA-induced inflammation in oral tissues. TEGDMA-induced COX-2 expression and its signaling pathways were assessed by Western blot analyses in HDP and HEPM cells. The inhibition of TEGDMA-induced COX-2 protein expression using various dietary phytochemicals was investigated. COX-2 protein expression was increased after exposure to TEGDMA at concentrations as low as 5 μmol/L. TEGDMA-induced COX-2 expression was associated with reaction oxygen species, the extracellular signal-regulated kinase 1/2, and the p38 mitogen-activated protein kinase signaling pathways in HDP and HEPM cells. The activation of p38 mitogen-activated protein kinase was directly associated with reactive oxygen species. Epigallocatechin-3-gallate suppressed TEGDMA-induced COX-2 expression by inhibiting phosphorylation of extracellular signal-regulated kinase 1/2. Cells exposed to low concentrations of TEGDMA may induce inflammatory responses of the adjacent tissues, and this should be taken into consideration during common dental practice. Green tea, which has a long history of safe beverage consumption, may be a useful agent for the prevention or treatment of TEGDMA-induced inflammation in oral tissues. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Regenerative medicine using dental pulp stem cells for liver diseases.

    PubMed

    Ohkoshi, Shogo; Hara, Hajime; Hirono, Haruka; Watanabe, Kazuhiko; Hasegawa, Katsuhiko

    2017-02-06

    Acute liver failure is a refractory disease and its prognosis, if not treated using liver transplantation, is extremely poor. It is a good candidate for regenerative medicine, where stem cell-based therapies play a central role. Mesenchymal stem cells (MSCs) are known to differentiate into multiple cell lineages including hepatocytes. Autologous cell transplant without any foreign gene induction is feasible using MSCs, thereby avoiding possible risks of tumorigenesis and immune rejection. Dental pulp also contains an MSC population that differentiates into hepatocytes. A point worthy of special mention is that dental pulp can be obtained from deciduous teeth during childhood and can be subsequently harvested when necessary after deposition in a tooth bank. MSCs have not only a regenerative capacity but also act in an anti-inflammatory manner via paracrine mechanisms. Promising efficacies and difficulties with the use of MSC derived from teeth are summarized in this review.

  5. SEM evaluation of pulp reaction to different pulp capping materials in dog’s teeth

    PubMed Central

    Asgary, Saeed; Parirokh, Masoud; Eghbal, Mohammad Jafar; Ghoddusi, Jamileh

    2006-01-01

    Introduction: This investigation evaluates the effects of mineral trioxide aggregate (MTA), calcium hydroxide (CH) and calcium enriched mixture (CEM) as pulp capping materials on dental pulp tissues. Materials and Methods: The experimental procedures were performed on eighteen intact dog canine teeth. The pulps were exposed. Cavities were randomly filled with CEM, MTA, or CH followed by glass ionomer filling. After 2 months, animals were sacrificed, each tooth was sectioned into halves, and the interface between each capping material and pulp tissue was evaluated by scanning electron microscope (SEM) in profile view of the specimens. Results: Dentinal bridge formation as the most characteristic reaction was resulted from SEM observation in all examined groups. Odontoblast-like cells were formed and create dens collagen network, which was calcified gradually by deposition of calcosphirit structures to form newly dentinal bridge. Conclusion: Based on the results of this in vivo study, it was concluded that these test materials are able to produce calcified tissue in underlying pulp in the case of being used as a pulp capping agent. Additionally, it appears that CEM has the potential to be used as a direct pulp capping material during vital pulp therapy. PMID:24379876

  6. Transplantation of Hepatocyte Growth Factor-Modified Dental Pulp Stem Cells Prevents Bone Loss in the Early Phase of Ovariectomy-Induced Osteoporosis.

    PubMed

    Kong, Fanxuan; Shi, Xuefeng; Xiao, Fengjun; Yang, Yuefeng; Zhang, Xiaoyan; Wang, Li-Sheng; Wu, Chu-Tse; Wang, Hua

    2018-02-01

    Investigations based on mesenchymal stem cells (MSCs) for osteoporosis have attracted attention recently. MSCs can be derived from various tissues, such as bone marrow, adipose, umbilical cord, placenta, and dental pulp. Among these, dental pulp-derived MSCs (DPSCs) and hepatocyte growth factor (HGF)-modified DPSCs (DPSCs-HGF) highly express osteogenic-related genes and have stronger osteogenic differentiation capacities. DPSCs have more benefits in treating osteoporosis. The purpose of this study was to investigate the roles of HGF gene-modified DPSCs in bone regeneration using a mouse model of ovariectomy (OVX)-induced bone loss. The HGF and luciferase genes were transferred into human DPSCs using recombinant adenovirus. These transduced cells were assayed for distribution or bone regeneration assay by transplantation into an OVX-induced osteoporosis model. By using bioluminogenic imaging, it was determined that some DPSCs could survive for >1 month in vivo. The DPSCs were mainly distributed to the lung in the early stage and to the liver in the late stage of OVX osteoporosis after administration, but they were scarcely distributed to the bone. The homing efficiency of DPSCs is higher when administrated in the early stage of a mouse OVX model. Micro-computed tomography indicated that DPSCs-Null or DPSCs-HGF transplantation significantly reduces OVX-induced bone loss in the trabecular bone of the distal femur metaphysis, and DPSCs-HGF show a stronger capacity to reduce bone loss. The data suggest that systemic infusion of DPSCs-HGF is a potential therapeutic approach for OVX-induced bone loss, which might be mediated by paracrine mechanisms.

  7. HDAC inhibitor LMK-235 promotes the odontoblast differentiation of dental pulp cells

    PubMed Central

    Liu, Zhao; Chen, Ting; Han, Qianqian; Chen, Ming; You, Jie; Fang, Fuchun; Peng, Ling; Wu, Buling

    2018-01-01

    The role of dental pulp cells (DPCs) in hard dental tissue regeneration had received increasing attention because DPCs can differentiate into odontoblasts and other tissue-specific cells. In recent years, epigenetic modifications had been identified to serve an important role in cell differentiation, and histone deacetylase (HDAC) inhibitors have been widely studied by many researchers. However, the effects of HDAC4 and HDAC5 on the differentiation of DPCs and the precise molecular mechanisms remain unclear. The present study demonstrated that LMK-235, a specific human HDAC4 and HDAC5 inhibitor, increased the expression of specific odontoblastic gene expression levels detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in dental pulp cells, and did not reduce cell proliferation tested by MTT assay after 3 days in culture at a low concentration. In addition, the mRNA and protein expression levels of dentin sialophosphoprotein, runt-related transcription factor 2, alkaline phosphatase (ALP) and osteocalcin were evaluated by RT-qPCR and western blotting, respectively. The increased gene and protein expression of specific markers demonstrated, indicating that LMK-235 promoted the odontoblast induction of DPCs. ALP activity and mineralised nodule formation were also enhanced due to the effect of LMK-235, detected by an ALP activity test and Alizarin Red S staining, respectively. Additionally, the vascular endothelial growth factor (VEGF)/RAC-gamma serine/threonine-protein kinase (AKT)/mechanistic target of rapamycin (mTOR) signalling pathway was tested to see if it takes part in the differentiation of DPCs treated with LMK-235, and it was demonstrated that the mRNA expression levels of VEGF, AKT and mTOR were upregulated. These findings indicated that LMK-235 may serve a key role in the proliferation and odontoblast differentiation of DPCs, and could be used to accelerate dental tissue regeneration. PMID:29138868

  8. Comparative Study of Pulp Vitality in Primary and Young Permanent Molars in Human Children with Pulse Oximeter and Electric Pulp Tester.

    PubMed

    Shahi, Prinka; Sood, P B; Sharma, Arun; Madan, Manish; Shahi, Nishat; Gandhi, Geetanjali

    2015-01-01

    The purpose of this study was to compare the pulp testing methods (pulse oximetry and electric pulp test) in primary and young permanent teeth of children. The study included a total of 155 children aged 4 to 15 years. Twenty children formed control group I. Study group included all healthy, 85 primary 2nd molars in group II and 85 permanent 1st molars in group III. Fifty children needing endodontics treatment formed test group IV. The readings were recorded as true positive (TP), false positive (FP), true negative (TN), false negative (FN). Based on this, the sensitivity, specificity, positive predictive value and negative predictive value were calculated for each method. The results were statistically analyzed using Chi-square test. On comparing pulse oximetry with electric pulp test 'p-value' was found to be 0.487 and 1.00 for groups 1 and 2 respectively and was statistically not significant. Whereas 'p-value' for groups 3 and 4 was < 0.0001 and 0.003 respectively and was statistically highly significant. The present study indicates that pulse oximetry can be used as a routine method for assessing the pulp vitality in primary, young permanent and mature permanent teeth. How to cite this article: Shahi P, Sood PB, Sharma A, Madan M, Shahi N, Gandhi G. Comparative Study of Pulp Vitality in Primary and Young Permanent Molars in Human Children with Pulse Oximeter and Electric Pulp Tester. Int J Clin Pediatr Dent 2015;8(2):94-98.

  9. Evaluation of thermal cooling mechanisms for laser application to teeth.

    PubMed

    Miserendino, L J; Abt, E; Wigdor, H; Miserendino, C A

    1993-01-01

    Experimental cooling methods for the prevention of thermal damage to dental pulp during laser application to teeth were compared to conventional treatment in vitro. Pulp temperature measurements were made via electrical thermistors implanted within the pulp chambers of extracted human third molar teeth. Experimental treatments consisted of lasing without cooling, lasing with cooling, laser pulsing, and high-speed dental rotary drilling. Comparisons of pulp temperature elevation measurements for each group demonstrated that cooling by an air and water spray during lasing significantly reduced heat transfer to dental pulp. Laser exposures followed by an air and water spray resulted in pulp temperature changes comparable to conventional treatment by drilling. Cooling by an air water spray with evacuation appears to be an effective method for the prevention of thermal damage to vital teeth following laser exposure.

  10. Control of proliferation and osteogenic differentiation of human dental-pulp-derived stem cells by distinct surface structures.

    PubMed

    Kolind, K; Kraft, D; Bøggild, T; Duch, M; Lovmand, J; Pedersen, F S; Bindslev, D A; Bünger, C E; Foss, M; Besenbacher, F

    2014-02-01

    The ability to control the behavior of stem cells provides crucial benefits, for example, in tissue engineering and toxicity/drug screening, which utilize the stem cell's capacity to engineer new tissues for regenerative purposes and the testing of new drugs in vitro. Recently, surface topography has been shown to influence stem cell differentiation; however, general trends are often difficult to establish due to differences in length scales, surface chemistries and detailed surface topographies. Here we apply a highly versatile screening approach to analyze the interplay of surface topographical parameters on cell attachment, morphology, proliferation and osteogenic differentiation of human mesenchymal dental-pulp-derived stem cells (DPSCs) cultured with and without osteogenic differentiation factors in the medium (ODM). Increasing the inter-pillar gap size from 1 to 6 μm for surfaces with small pillar sizes of 1 and 2 μm resulted in decreased proliferation and in more elongated cells with long pseudopodial protrusions. The same alterations of pillar topography, up to an inter-pillar gap size of 4 μm, also resulted in enhanced mineralization of DPSCs cultured without ODM, while no significant trend was observed for DPSCs cultured with ODM. Generally, cells cultured without ODM had a larger deposition of osteogenic markers on structured surfaces relative to the unstructured surfaces than what was found when culturing with ODM. We conclude that the topographical design of biomaterials can be optimized for the regulation of DPSC differentiation and speculate that the inclusion of ODM alters the ability of the cells to sense surface topographical cues. These results are essential in order to transfer the use of this highly proliferative, easily accessible stem cell into the clinic for use in cell therapy and regenerative medicine. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Role of medullary astroglial glutamine synthesis in tooth pulp hypersensitivity associated with frequent masseter muscle contraction.

    PubMed

    Watase, Tetsuro; Shimizu, Kohei; Ohara, Kinuyo; Komiya, Hiroki; Kanno, Kohei; Hatori, Keisuke; Noma, Noboru; Honda, Kuniya; Tsuboi, Yoshiyuki; Katagiri, Ayano; Shinoda, Masamichi; Ogiso, Bunnai; Iwata, Koichi

    2018-01-01

    Background The mechanisms underlying tooth pulp hypersensitivity associated with masseter muscle hyperalgesia remain largely underinvestigated. In the present study, we aimed to determine whether masseter muscle contraction induced by daily electrical stimulation influences the mechanical head-withdrawal threshold and genioglossus electromyography activity caused by the application of capsaicin to the upper first molar tooth pulp. We further investigated whether astroglial glutamine synthesis is involved in first molar tooth pulp hypersensitivity associated with masseter muscle contraction. Methods The first molar tooth pulp was treated with capsaicin or vehicle in masseter muscle contraction or sham rats, following which the astroglial glutamine synthetase inhibitor methionine sulfoximine or Phosphate buffered saline (PBS) was applied. Astroglial activation was assessed via immunohistochemistry. Results The mechanical head-withdrawal threshold of the ipsilateral masseter muscle was significantly decreased in masseter muscle contraction rats than in sham rats. Genioglossus electromyography activity was significantly higher in masseter muscle contraction rats than sham rats. Glial fibrillary acidic protein-immunoreactive cell density was significantly higher in masseter muscle contraction rats than in sham rats. Administration of methionine sulfoximine induced no significant changes in the density of glial fibrillary acidic protein-immunoreactive cells relative to PBS treatment. However, mechanical head-withdrawal threshold was significantly higher in masseter muscle contraction rats than PBS-treated rats after methionine sulfoximine administration. Genioglossus electromyography activity following first molar tooth pulp capsaicin treatment was significantly lower in methionine sulfoximine-treated rats than in PBS-treated rats. In the ipsilateral region, the total number of phosphorylated extracellular signal-regulated protein kinase immunoreactive cells in the medullary dorsal horn was significantly smaller upon first molar tooth pulp capsaicin application in methionine sulfoximine-treated rats than in PBS-treated rats. Conclusions Our results suggest that masseter muscle contraction induces astroglial activation, and that this activation spreads from caudal to the obex in the medullary dorsal horn, resulting in enhanced neuronal excitability associated with astroglial glutamine synthesis in medullary dorsal horn neurons receiving inputs from the tooth pulp. These findings provide significant insight into the mechanisms underlying tooth pulp hypersensitivity associated with masseter muscle contraction.

  12. Temperature changes in the pulpal chamber and the sealing performance of various methods of direct pulp capping of primary teeth.

    PubMed

    Yilmaz, Y; Keles, S; Mete, A

    2013-06-01

    To compare changes in pulpal chamber temperature during the visible-light curing of direct pulp capping compounds and various modes of diode laser irradiation without prior placement of a pulp capping compound and the resultant seals. Pulp exposure holes were made in 100 extracted human primary first molars, which were randomly assigned to ten equal groups. The holes were sealed by (a= Group 1, 2, 3, 4, 5, 6 and 7) different pulp capping compounds which were cured using various types of visible-light curing units or (b=Group 8, 9 and 10) diode laser irradiation without prior application of a pulp capping compound. Pulpal chamber temperatures were recorded during the procedure, and the resultant seals were examined under a scanning electron microscope. Visible-light curing of the pulp capping compounds and diode laser irradiation at a 0.7 W output power can cause non-injurious temperature rises in the pulpal chamber. At higher output powers of the diode laser, the temperature rises are sufficient to cause thermal injury. The seals were complete when pulp capping compounds were used for direct pulp capping, but were incomplete when laser irradiation without prior placement of a pulp capping compound was used for the identical purpose. The visible-light curing of pulp capping compounds is not harmful to vital pulp, and provides an effective seal of the pulp exposure hole. Laser irradiation is not an effective sealant, and can cause thermal injury to vital pulp at high output powers.

  13. Assessment of the Tumorigenic Potential of Spontaneously Immortalized and hTERT-Immortalized Cultured Dental Pulp Stem Cells.

    PubMed

    Wilson, Ryan; Urraca, Nora; Skobowiat, Cezary; Hope, Kevin A; Miravalle, Leticia; Chamberlin, Reed; Donaldson, Martin; Seagroves, Tiffany N; Reiter, Lawrence T

    2015-08-01

    Dental pulp stem cells (DPSCs) provide an exciting new avenue to study neurogenetic disorders. DPSCs are neural crest-derived cells with the ability to differentiate into numerous tissues including neurons. The therapeutic potential of stem cell-derived lines exposed to culturing ex vivo before reintroduction into patients could be limited if the cultured cells acquired tumorigenic potential. We tested whether DPSCs that spontaneously immortalized in culture acquired features of transformed cells. We analyzed immortalized DPSCs for anchorage-independent growth, genomic instability, and ability to differentiate into neurons. Finally, we tested both spontaneously immortalized and human telomerase reverse transcriptase (hTERT)-immortalized DPSC lines for the ability to form tumors in immunocompromised animals. Although we observed increased colony-forming potential in soft agar for the spontaneously immortalized and hTERT-immortalized DPSC lines relative to low-passage DPSC, no tumors were detected from any of the DPSC lines tested. We noticed some genomic instability in hTERT-immortalized DPSCs but not in the spontaneously immortalized lines tested. We determined that immortalized DPSC lines generated in our laboratory, whether spontaneously or induced, have not acquired the potential to form tumors in mice. These data suggest cultured DPSC lines that can be differentiated into neurons may be safe for future in vivo therapy for neurobiological diseases. ©AlphaMed Press.

  14. Dental Pulp Stem Cell-Derived, Scaffold-Free Constructs for Bone Regeneration.

    PubMed

    Tatsuhiro, Fukushima; Seiko, Tatehara; Yusuke, Takebe; Reiko, Tokuyama-Toda; Kazuhito, Satomura

    2018-06-22

    In the present study, a scaffold-free tissue construct was developed as an approach for the regeneration of tissue defects, which produced good outcomes. We fabricated a scaffold-free tissue construct from human dental pulp stem cells (hDPSCs construct), and examined the characteristics of the construct. For its fabrication, basal sheets prepared by 4-week hDPSCs culturing were subjected to 1-week three-dimensional culture, with or without osteogenic induction, whereas hDPSC sheets (control) were fabricated by 1-week culturing of basal sheets on monolayer culture. The hDPSC constructs formed a spherical structure and calcified matrix that are absent in the control. The expression levels for bone-related genes in the hDPSC constructs were significantly upregulated compared with those in the control. Moreover, the hDPSC constructs with osteogenic induction had a higher degree of calcified matrix formation, and higher expression levels for bone-related genes, than those for the hDPSC constructs without osteogenic induction. These results suggest that the hDPSC constructs with osteogenic induction are composed of cells and extracellular and calcified matrices, and that they can be a possible scaffold-free material for bone regeneration.

  15. Pulpal responses to cavity preparation in aged rat molars.

    PubMed

    Kawagishi, Eriko; Nakakura-Ohshima, Kuniko; Nomura, Shuichi; Ohshima, Hayato

    2006-10-01

    The dentin-pulp complex is capable of repair after tooth injuries including dental procedures. However, few data are available concerning aged changes in pulpal reactions to such injuries. The present study aimed to clarify the capability of defense in aged pulp by investigating the responses of odontoblasts and cells positive for class II major histocompatibility complex (MHC) to cavity preparation in aged rat molars (300-360 days) and by comparing the results with those in young adult rats (100 days). In untreated control teeth, immunoreactivity for intense heat-shock protein (HSP)-25 and nestin was found in odontoblasts, whereas class-II-MHC-positive cells were densely distributed in the periphery of the pulp. Cavity preparation caused two types of pulpal reactions based on the different extent of damage in the aged rats. In the case of severe damage, destruction of the odontoblast layer was conspicuous at the affected site. By 12 h after cavity preparation, numerous class-II-MHC-positive cells appeared along the pulp-dentin border but subsequently disappeared together with HSP-25-immunopositive cells, and finally newly differentiated odontoblast-like cells took the place of the degenerated odontoblasts and acquired immunoreactivity for HSP-25 and nestin by postoperative day 3. In the case of mild damage, no remarkable changes occurred in odontoblasts after operation, and some survived through the experimental stages. These findings indicate that aged pulp tissue still possesses a defense capacity, and that a variety of reactions can occur depending on the difference in the status of dentinal tubules and/or odontoblast processes in individuals.

  16. Future dentistry: cell therapy meets tooth and periodontal repair and regeneration

    PubMed Central

    Catón, Javier; Bostanci, Nagihan; Remboutsika, Eumorphia; De Bari, Cosimo; Mitsiadis, Thimios A

    2011-01-01

    Abstract Cell-based tissue repair of the tooth and – tooth-supporting – periodontal ligament (PDL) is a new attractive approach that complements traditional restorative or surgical techniques for replacement of injured or pathologically damaged tissues. In such therapeutic approaches, stem cells and/or progenitor cells are manipulated in vitro and administered to patients as living and dynamic biological agents. In this review, we discuss the clonogenic potential of human dental and periodontal tissues such as the dental pulp and the PDL and their potential for tooth and periodontal repair and/or regeneration. We propose novel therapeutic approaches using stem cells or progenitor cells, which are targeted to regenerate the lost dental or periodontal tissue. PMID:21199329

  17. Age estimation using exfoliative cytology and radiovisiography: A comparative study.

    PubMed

    Nallamala, Shilpa; Guttikonda, Venkateswara Rao; Manchikatla, Praveen Kumar; Taneeru, Sravya

    2017-01-01

    Age estimation is one of the essential factors in establishing the identity of an individual. Among various methods, exfoliative cytology (EC) is a unique, noninvasive technique, involving simple, and pain-free collection of intact cells from the oral cavity for microscopic examination. The study was undertaken with an aim to estimate the age of an individual from the average cell size of their buccal smears calculated using image analysis morphometric software and the pulp-tooth area ratio in mandibular canine of the same individual using radiovisiography (RVG). Buccal smears were collected from 100 apparently healthy individuals. After fixation in 95% alcohol, the smears were stained using Papanicolaou stain. The average cell size was measured using image analysis software (Image-Pro Insight 8.0). The RVG images of mandibular canines were obtained, pulp and tooth areas were traced using AutoCAD 2010 software, and area ratio was calculated. The estimated age was then calculated using regression analysis. The paired t -test between chronological age and estimated age by cell size and pulp-tooth area ratio was statistically nonsignificant ( P > 0.05). In the present study, age estimated by pulp-tooth area ratio and EC yielded good results.

  18. Development of a Novel Large Animal Model to Evaluate Human Dental Pulp Stem Cells for Articular Cartilage Treatment.

    PubMed

    Fernandes, Tiago Lazzaretti; Shimomura, Kazunori; Asperti, Andre; Pinheiro, Carla Cristina Gomes; Caetano, Heloísa Vasconcellos Amaral; Oliveira, Claudia Regina G C M; Nakamura, Norimasa; Hernandez, Arnaldo José; Bueno, Daniela Franco

    2018-05-04

    Chondral lesion is a pathology with high prevalence, reaching as much as 63% of general population and 36% among athletes. The ability of human Dental Pulp Stem Cells (DPSCs) to differentiate into chondroblasts in vitro suggests that this stem cell type may be useful for tissue bioengineering. However, we have yet to identify a study of large animal models in which DPSCs were used to repair articular cartilage. Therefore, this study aimed to describe a novel treatment for cartilage lesion with DPSCs on a large animal model. Mesenchymal stem cells (MSC) were obtained from deciduous teeth and characterized by flow cytometry. DPSCs were cultured and added to a collagen type I/III biomaterial composite scaffold. Brazilian miniature pig (BR-1) was used. A 6-mm diameter, full-thickness chondral defect was created in each posterior medial condyle. The defects were covered with scaffold alone or scaffold + DPSCs on the contralateral side. Animals were euthanized 6 weeks post-surgery. Cartilage defects were analyzed macroscopically and histology according to modified O'Driscoll scoring system. Flow cytometry confirmed characterization of DPSCs as MSCs. Macroscopic and histological findings suggested that this time period was reasonable for evaluating cartilage repair. To our knowledge, this study provides the first description of an animal model using DPSCs to study the differentiation of hyaline articular cartilage in vivo. The animals tolerated the procedure well and did not show clinical or histological rejection of the DPSCs, reinforcing the feasibility of this descriptive miniature pig model for pre-clinical studies.

  19. Analysis of Aloe vera cytotoxicity and genotoxicity associated with endodontic medication and laser photobiomodulation.

    PubMed

    Carvalho, Nayane Chagas; Guedes, Simone Alves Garcez; Albuquerque-Júnior, Ricardo Luiz Cavalcanti; de Albuquerque, Diana Santana; de Souza Araújo, Adriano Antunes; Paranhos, Luiz Renato; Camargo, Samira Esteves Afonso; Ribeiro, Maria Amália Gonzaga

    2018-01-01

    This study aims to evaluate, in vitro, the effect of Aloe vera associated with endodontic medication, with or without laser photobiomodulation (FTL) irradiation in FP6 human pulp fibroblasts. The materials were divided into eight groups: CTR - control; CL - FTL alone; AA - Aloe vera with distilled water; AL - Aloe vera with distilled water and FTL; HA - calcium hydroxide P.A. with distilled water; HL - calcium hydroxide P.A. with distilled water and FTL; HAA - calcium hydroxide P.A. with Aloe vera and distilled water; HAL - calcium hydroxide P.A. with Aloe vera, distilled water, and FTL. The cytotoxicity was evaluated by MTT assay at 24, 48, and 72h and the genotoxicity by micronucleus test assay. This study was performed in triplicate. Data obtained in both tests were statistically analyzed by ANOVA and Tukey's tests (p≤0.05). Group AA presented high genotoxicity and low cytotoxicity. After 24, 48, and 72h, the group HAA significantly reduced the cell viability. Interaction with FTL showed slightly increase cell viability after 24 and 48h in groups CL and HL (p<0.001), despite the high genotoxicity in group CL and low genotoxicity in group HL. Group AL showed higher cell survival rate at 72h (p<0.05) and high genotoxicity (p<0.001). It was concluded that Aloe vera allowed higher cell viability in human pulp fibroblasts in the presence of calcium hydroxide or with FTL separately, but genotoxicity increased in these associations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. [Three dimensional bioprinting technology of human dental pulp cells mixtures].

    PubMed

    Xue, Shi-hua; Lv, Pei-jun; Wang, Yong; Zhao, Yu; Zhang, Ting

    2013-02-18

    To explore the three dimensional(3D)bioprinting technology, using human dental pulp cells (hDPCs) mixture as bioink and to lay initial foundations for the application of the 3D bioprinting technology in tooth regeneration. Imageware 11.0 computer software was used to aid the design of the 3D biological printing blueprint. Sodium alginate-gelatin hydrosol was prepared and mixed with in vitro isolated hDPCs. The mixture contained 20 g/L sodium alginate and 80 g/L gelatin with cell density of 1×10(6)/mL. The bioprinting of hDPCs mixture was carried out according to certain parameters; the 3D constructs obtained by printing were examined; the viability of hDPCs after printing by staining the constructs with calcein-AM and propidium iodide dye and scanning of laser scanning confocal microscope was evaluated. The in vitro constructs obtained by the bioprinting were cultured, and the proliferation of hDPCs in the constructs detected. By using Imageware 11.0 software, the 3D constructs with the grid structure composed of the accumulation of staggered cylindrical microfilament layers were obtained. According to certain parameters, the hDPCs-sodium alginate-gelatin blends were printed by the 3D bioprinting technology. The self-defined shape and dimension of 3D constructs with the cell survival rate of 87%± 2% were constructed. The hDPCs could proliferate in 3D constructs after printing. In this study, the 3D bioprinting of hDPCs mixtures was realized, thus laying initial foundations for the application of the 3D bioprinting technology in tooth regeneration.

  1. Pharmacokinetics of anthocyanins and antioxidant effects after the consumption of anthocyanin-rich acai juice and pulp (Euterpe oleracea Mart.) in human healthy volunteers.

    PubMed

    Mertens-Talcott, Susanne U; Rios, Jolian; Jilma-Stohlawetz, Petra; Pacheco-Palencia, Lisbeth A; Meibohm, Bernd; Talcott, Stephen T; Derendorf, Hartmut

    2008-09-10

    The acai berry is the fruit of the acai palm and is traditionally consumed in Brazil but has gained popularity abroad as a food and functional ingredient, yet little information exists on its health effect in humans. This study was performed as an acute four-way crossover clinical trial with acai pulp and clarified acai juice compared to applesauce and a non-antioxidant beverage as controls. Healthy volunteers (12) were dosed at 7 mL/kg of body weight after a washout phase and overnight fast, and plasma was repeatedly sampled over 12 h and urine over 24 h after consumption. Noncompartmental pharmacokinetic analysis of total anthocyanins quantified as cyanidin-3-O-glucoside showed Cmax values of 2321 and 1138 ng/L at t max times of 2.2 and 2.0 h, and AUC last values of 8568 and 3314 ng h L(-1) for pulp and juice, respectively. Nonlinear mixed effect modeling identified dose volume as a significant predictor of relative oral bioavailability in a negative nonlinear relationship for acai pulp and juice. Plasma antioxidant capacity was significantly increased by the acai pulp and applesauce. Individual increases in plasma antioxidant capacity of up to 2.3- and 3-fold for acai juice and pulp, respectively were observed. The antioxidant capacity in urine, generation of reactive oxygen species, and uric acid concentrations in plasma were not significantly altered by the treatments. Results demonstrate the absorption and antioxidant effects of anthocyanins in acai in plasma in an acute human consumption trial.

  2. Role of SIRT1 in heat stress- and lipopolysaccharide-induced immune and defense gene expression in human dental pulp cells.

    PubMed

    Lee, Sang-Im; Min, Kyung-San; Bae, Won-Jung; Lee, Young-Man; Lee, So-Youn; Lee, Eui-Suk; Kim, Eun-Cheol

    2011-11-01

    Although bacterial infection and heat stress are common causes of injury in human dental pulp cells (HDPCs), little is known about the potential defense mechanisms mediating their effects. This study examined the role of SIRT1 in mediating heat stress and lipopolysaccharide (LPS)-induced immune and defense gene expression in HDPCs. HDPCs were exposed to heat stress (42°C) for 30 minutes after stimulation with LPS (1 μg/mL) for 48 hours. The expression of defense genes was evaluated by reverse-transcriptase polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay. LPS and heat stress synergistically increased the expression of SIRT1 and immune and defense genes such as interleukin (IL)-8, hemeoxygenase-1 (HO-1), and human β-defensin 2 (hBD-2). Resveratrol enhanced LPS- and heat stress-induced expression of HO-1 and hBD-2 but reduced IL-8 messenger RNA levels. The stimulation of HO-1 and hBD-2 messenger RNA expression by LPS and heat stress was inhibited by sirtinol; SIRT1 small interfering RNA; and inhibitors of p38, ERK, JNK, and nuclear factor κB. These results show for the first time that SIRT1 mediates the induction of immune and defense gene expression in HDPCs by LPS and heat stress. SIRT1 may play a pivotal role in host immune defense system in HDPCS. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Mapping of NKp46+ Cells in Healthy Human Lymphoid and Non-Lymphoid Tissues

    PubMed Central

    Tomasello, Elena; Yessaad, Nadia; Gregoire, Emilie; Hudspeth, Kelly; Luci, Carmelo; Mavilio, Domenico; Hardwigsen, Jean; Vivier, Eric

    2012-01-01

    Understanding Natural Killer (NK) cell anatomical distribution is key to dissect the role of these unconventional lymphocytes in physiological and disease conditions. In mouse, NK cells have been detected in various lymphoid and non-lymphoid organs, while in humans the current knowledge of NK cell distribution at steady state is mainly restricted to lymphoid tissues. The translation to humans of findings obtained in mice is facilitated by the identification of NK cell markers conserved between these two species. The Natural Cytotoxicity Receptor (NCR) NKp46 is a marker of the NK cell lineage evolutionary conserved in mammals. In mice, NKp46 is also present on rare T cell subsets and on a subset of gut Innate Lymphoid Cells (ILCs) expressing the retinoic acid receptor-related orphan receptor γt (RORγt) transcription factor. Here, we documented the distribution and the phenotype of human NKp46+ cells in lymphoid and non-lymphoid tissues isolated from healthy donors. Human NKp46+ cells were found in splenic red pulp, in lymph nodes, in lungs, and gut lamina propria, thus mirroring mouse NKp46+ cell distribution. We also identified a novel cell subset of CD56dimNKp46low cells that includes RORγt+ ILCs with a lineage−CD94−CD117brightCD127bright phenotype. The use of NKp46 thus contributes to establish the basis for analyzing quantitative and qualitative changes of NK cell and ILC subsets in human diseases. PMID:23181063

  4. Mineralization and Expression of Col1a1-3.6GFP Transgene in Primary Dental Pulp Culture

    PubMed Central

    Balic, Anamaria; Rodgers, Barbara; Mina, Mina

    2008-01-01

    We have examined and compared the effects of various differentiation-inducing media on mineralization, cell morphology and expression of pOBCol3.6GFP (3.6-GFP) in primary dental pulp cultures derived from 3.6-GFP transgenic mice. Our results show that media containing ascorbic acid only could not induce mineralization in primary dental pulp cultures. On the other hand, media containing ascorbic acid and β-glycerophosphate induced formation of mineralized matrix-containing dentin. The amount of mineralized matrix was increased by addition of dexamethasone. Cells treated with ascorbic acid and β-glycerophosphate were fibroblast like and cells treated with dexamethasone were cuboidal. In all culture conditions, high levels of 3.6-GFP were expressed in areas of mineralization PMID:18781059

  5. Histological evaluation of direct pulp capping of rat pulp with experimentally developed low-viscosity adhesives containing reparative dentin-promoting agents.

    PubMed

    Suzuki, Masaya; Taira, Yoshihisa; Kato, Chikage; Shinkai, Koichi; Katoh, Yoshiroh

    2016-01-01

    This study examines the wound healing process in exposed rat pulp when capped with experimental adhesive resin systems. Experimental adhesive resin system for direct pulp capping was composed of primer-I (PI), -II (PII), and -III (PIII) and an experimental bonding agent (EBA). PI was Clearfil(®) SE Bond(®)/Primer (CSP) containing 5.0 wt% CaCl2, PII was PI containing 10 wt% nanofiller (Aerosil(®) 380), and PIII was CSP containing 5.0 wt% of compounds of equal moles of synthetic peptides (pA and pB) derived from dentin matrix protein 1. EBA was Clearfil(®) SE Bond(®)/Bond (CSB) containing 10 wt% hydroxyapatite powders. Three experimental groups were designed. PI was assigned to experimental Groups 1 and 3. PII was assigned to experimental Groups 2 and 3. PIII and EBA were assigned to all experimental adhesive groups. Control teeth were capped with calcium hydroxide preparation (Dycal(®)), and CSP and CSB were applied to the cavity. The rats were sacrificed after each observation period (14, 28, 56, and 112 days). The following parameters were evaluated: pulp tissue disorganization, inflammatory cell infiltration, reparative dentin formation (RDF), and bacterial penetration. There were no significant differences among all the groups for all parameters and all observation periods (p>0.05, Kruskal-Wallis test). All groups showed initial RDF at 14 days postoperatively and extensive RDF until 112 days postoperatively. Groups 2 and 3 demonstrated higher quantity of mineralized dentin bridge formation compared with Group 1. Addition of nanofillers to the primer was effective in promoting high-density RDF. Experimentally developed adhesive resin systems induce the exposed pulp to produce almost the same quantity of reparative dentin as calcium hydroxide. However, we need further studies to elucidate whether the same results could be obtained in humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Induction of non-apoptotic cell death by morphinone in human promyelocytic leukemia HL-60 cells.

    PubMed

    Takeuchi, Risa; Hoshijima, Hiroshi; Nagasaka, Hiroshi; Chowdhury, Shahead Ali; Kikuchi, Hirotaka; Kanda, Yumiko; Kunii, Shiro; Kawase, Masami; Sakagami, Hiroshi

    2006-01-01

    As previously suggested, codeinone (oxidation product of codeine) induces non-apoptotic cell death, characterized by marginal caspase activation and the lack of DNA fragmentation in HL-60 human promyelocytic leukemia cells, which was inhibited by N-acetyl-L-cysteine. Whether, morphinone, an oxidative metabolite of morphine, also induced a similar type of cell death in HL-60 cells was investigated. Morphinone showed slightly higher cytotoxic activity against human tumor cell lines (oral squamous cell carcinoma HSC-2, HSC-3, HSC-4, NA, Ca9-22, promyelocytic leukemia HL-60, cervical carcinoma HeLa) than against normal oral human cells (gingival fibroblast HGF, pulp cells HPC, periodontal ligament fibroblast HPLF). Morphinone also induced an almost undetectable level of internucleosomal DNA fragmentation in the HL-60 cells. Morphinone did not activate caspase-8 or -9 in these cells. Morphinone dose-dependently activated caspase-3 in both HL-60 and HSC-2 cell lines, but to a much lesser extent than actinomycin D. Electron microscopy demonstrated that morphinone induced mitochondrial shrinkage, vacuolization and production of autophagosome and the loss of cell surface microvilli, without destruction of cell surface and nuclear membranes in the HL-60 cells. The autophagy inhibitor 3-methyladenine (0.3-10 mM) slightly inhibited the morphinone-induced cytotoxicity, when corrected for its own cytotoxicity. These data suggest that morphinone induces non-apoptotic cell death in HL-60 cells.

  7. Cytotoxicity Evaluation of Self Adhesive Composite Resin Cements by Dentin Barrier Test on 3D Pulp Cells.

    PubMed

    Ulker, Hayriye Esra; Sengun, Abdulkadir

    2009-04-01

    The aim of this study was to evaluate the effects of five self-etch dental composite resin cements on the cell viability of bovine dental papilla-derived cells. The cytotoxicity of composite resin cements (Rely X Unicem Clicker, 3M ESPE; MaxCem; KERR, Panavia F 2.0; Kuraray, BisCem; Bisco and Bistite II DC; Tokuyama) was analyzed in a dentin barrier test device using three-dimensional (3D) pulp cell cultures. A commercially available cell culture perfusion chamber was separated into two compartments by 500 mum dentin disc. The three dimensional cultures placed on a dentin disk held in place by a special biocompatible stainless-steel holder. Test materials were introduced into the upper compartment in direct contact with the cavity side of the dentin disks according to the manufacturer's instructions. Subsequently, the pulpal part of the perfusion chamber containing the cell cultures was perfused with medium (2 ml/h). After an exposure period of 24 h, the cell survival was determined by the MTT assay. Statistical analyses were performed using the Mann-Whitney U-test. In dentin barrier test, cell survival was similar with Maxcem and negative control group (P>.05), and all other tested materials were cytotoxic for the three dimensional cell cultures (P>.05). The significance of composite resin cements is being more important in dentistry. The cytotoxic potencies demonstrated by these materials might be of clinical relevance. Some composite resin cements include biologically active ingredients and may modify pulp cell metabolism when the materials are used in deep cavities or directly contact pulp tissue.

  8. Pulp Obliteration in a Patient with Sclerodermatous Chronic Graft-versus-Host Disease.

    PubMed

    Gomes, Camilla Borges Ferreira; Treister, Nathaniel Simon; Miller, Brian; Armand, Philippe; Friedland, Bernard

    2016-04-01

    Dental pulp calcification is a common finding associated with localized dental trauma, genetic disorders, and systemic inflammatory diseases. Chronic graft-versus-host disease (cGVHD) is a frequent complication after allogeneic hematopoietic cell transplantation (allo-HCT) characterized by immune-mediated injury to the skin, mouth, eyes, liver, and other tissues, resulting in significant disability and reduced quality of life. We report a patient with sclerodermatous cGVHD who presented with general pulp calcification in all teeth 5 years after allo-HCT. A review of full mouth dental radiographs obtained just before allo-HCT revealed normal-appearing pulp chambers. Based on prior reports of generalized pulp calcification associated with progressive systemic sclerosis, we hypothesized that the etiology was likely related to the presence of cGVHD with associated vascular and fibrotic tissue changes within the pulp vasculature. Clinicians should consider cGVHD in the differential diagnosis of generalized pulp calcification. Copyright © 2016 American Association of Endodontists. All rights reserved.

  9. Controlled release of lovastatin from poly(lactic-co-glycolic acid) nanoparticles for direct pulp capping in rat teeth.

    PubMed

    Lin, Hung-Pin; Tu, Han-Ping; Hsieh, Yu-Ping; Lee, Bor-Shiunn

    2017-01-01

    Statin at appropriate concentrations has been shown to induce odontoblastic differentiation, dentinogenesis, and angiogenesis. However, using a carrier to control statin release might reduce toxicity and enhance its therapeutic effects. The aim of this study was to prepare poly(d,l-lactide- co -glycolide acid) (PLGA) nanoparticles that contain lovastatin for application in direct pulp capping. The PLGA-lovastatin particle size was determined using dynamic light scattering measurements and transmission electron microscopy. In addition, the release of lovastatin was quantified using a UV-Vis spectrophotometer. The cytotoxicity and alkaline phosphatase (ALP) activity of PLGA-lovastatin nanoparticles on human dental pulp cells were investigated. Moreover, a real-time polymerase chain reaction (PCR) assay, Western blot analysis, and an enzyme-linked immunosorbent assay (ELISA) were used to examine the osteogenesis gene and protein expression of dentin sialophosphoprotein (DSPP), dentin matrix acidic phosphoprotein 1 (DMP1), and osteocalcin (OCN). Finally, PLGA-lovastatin nanoparticles and mineral trioxide aggregate (MTA) were compared as direct pulp capping materials in Wistar rat teeth. The results showed that the median diameter of PLGA-lovastatin nanoparticles was 174.8 nm and the cumulative lovastatin release was 92% at the 44th day. PLGA-lovastatin nanoparticles demonstrated considerably a lower cytotoxicity than free lovastatin at 5, 9, and 13 days of culture. For ALP activity, the ALP amount of PLGA-lovastatin (100 μg/mL) was significantly higher than that of the other groups for 9 and 13 days of culture. The real-time PCR assay, Western blot analysis, and ELISA assay showed that PLGA-lovastatin (100 μg/mL) induced the highest mRNA and protein expression of DSPP, DMP1, and OCN in pulp cells. Histological evaluation of the animal studies revealed that MTA was superior to the PLGA-lovastatin in stimulating the formation of tubular dentin in an observation period of 2 weeks. However, in an observation period of 4 weeks, it was evident that the PLGA-lovastatin and MTA were competitive in the formation of tubular reparative dentin and a complete dentinal bridge.

  10. Histological Effects of Enamel Matrix Derivative on Exposed Dental Pulp.

    PubMed

    Bajić, Marijana Popović; Danilović, Vesna; Prokić, Branislav; Prokić, Bogomir Bolka; Manojlović, Milica; Živković, Slavoljub

    2015-01-01

    Direct pulp capping procedure is a therapeutic application of a drug on exposed tooth pulp in order to ensure the closure of the pulp chamber and to allow the healing process to take place. The aim of this study was to examine the histological effects of Emdogain® on exposed tooth pulp of a Vietnamese pig (Sus scrofa verus). The study comprised 20 teeth of a Vietnamese pig. After class V preparation on the buccal surfaces of incisors, canines and first premolars, pulp was exposed. In the experimental group, the perforations were capped with Emdogain® (Straumann, Basel, Switzerland), while in the control group pulp capping was performed with MTA® (Dentsply Tulsa Dental, Johnson City, TN, USA). All cavities were restored with glass-ionomer cement (GC Fuji VIII, GC Corporation, Tokyo, Japan). The observational period was 28 days, after which the animal was sacrificed and histological preparations were made. A light microscope was used to analyze dentin bridge formation, tissue reorganization and inflammation, and the presence of bacteria in the pulp. The formation of dentin bridge was observed in the experimental and control groups. Inflammation of the pulp was mild to moderate in both groups. Angiogenesis and many odontoblast-like cells, responsible for dentin bridge formation, were observed. Necrosis was not observed in any case, nor were bacteria present in the pulp. Histological analysis indicated a favorable therapeutic effect of Emdogain® Gel in direct pulp capping of Vietnamese pigs. Pulp reaction was similar to that of MTA®.

  11. Survival analysis applied to the sensory shelf-life dating of high hydrostatic pressure processed avocado and mango pulps.

    PubMed

    Jacobo-Velázquez, D A; Ramos-Parra, P A; Hernández-Brenes, C

    2010-08-01

    High hydrostatic pressure (HHP) pasteurized and refrigerated avocado and mango pulps contain lower microbial counts and thus are safer and acceptable for human consumption for a longer period of time, when compared to fresh unprocessed pulps. However, during their commercial shelf life, changes in their sensory characteristics take place and eventually produce the rejection of these products by consumers. Therefore, in the present study, the use of sensory evaluation was proposed for the shelf-life determinations of HHP-processed avocado and mango pulps. The study focused on evaluating the feasibility of applying survival analysis methodology to the data generated by consumers in order to determine the sensory shelf lives of both HHP-treated pulps of avocado and mango. Survival analysis proved to be an effective methodology for the estimation of the sensory shelf life of avocado and mango pulps processed with HHP, with potential application for other pressurized products. Practical Application: At present, HHP processing is one of the most effective alternatives for the commercial nonthermal pasteurization of fresh tropical fruits. HHP processing improves the microbial stability of the fruit pulps significantly; however, the products continue to deteriorate during their refrigerated storage mainly due to the action of residual detrimental enzymes. This article proposes the application of survival analysis methodology for the determination of the sensory shelf life of HHP-treated avocado and mango pulps. Results demonstrated that the procedure appears to be simple and practical for the sensory shelf-life determination of HHP-treated foods when their main mode of failure is not caused by increases in microbiological counts that can affect human health.

  12. The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering

    PubMed Central

    Ratajczak, Jessica; Bronckaers, Annelies; Dillen, Yörg; Gervois, Pascal; Vangansewinkel, Tim; Driesen, Ronald B.; Wolfs, Esther; Lambrichts, Ivo

    2016-01-01

    Within the field of tissue engineering, natural tissues are reconstructed by combining growth factors, stem cells, and different biomaterials to serve as a scaffold for novel tissue growth. As adequate vascularization and innervation are essential components for the viability of regenerated tissues, there is a high need for easily accessible stem cells that are capable of supporting these functions. Within the human tooth and its surrounding tissues, different stem cell populations can be distinguished, such as dental pulp stem cells, stem cells from human deciduous teeth, stem cells from the apical papilla, dental follicle stem cells, and periodontal ligament stem cells. Given their straightforward and relatively easy isolation from extracted third molars, dental stem cells (DSCs) have become an attractive source of mesenchymal-like stem cells. Over the past decade, there have been numerous studies supporting the angiogenic, neuroprotective, and neurotrophic effects of the DSC secretome. Together with their ability to differentiate into endothelial cells and neural cell types, this makes DSCs suitable candidates for dental tissue engineering and nerve injury repair. PMID:27688777

  13. Nemesia Root Hair Response to Paper Pulp Substrate for Micropropagation

    PubMed Central

    Labrousse, Pascal; Delmail, David; Decou, Raphaël; Carlué, Michel; Lhernould, Sabine; Krausz, Pierre

    2012-01-01

    Agar substrates for in vitro culture are well adapted to plant micropropagation, but not to plant rooting and acclimatization. Conversely, paper-pulp-based substrates appear as potentially well adapted for in vitro culture and functional root production. To reinforce this hypothesis, this study compares in vitro development of nemesia on several substrates. Strong differences between nemesia roots growing in agar or in paper-pulp substrates were evidenced through scanning electron microscopy. Roots developed in agar have shorter hairs, larger rhizodermal cells, and less organized root caps than those growing on paper pulp. In conclusion, it should be noted that in this study, in vitro microporous substrates such as paper pulp lead to the production of similar root hairs to those found in greenhouse peat substrates. Consequently, if agar could be used for micropropagation, rooting, and plant acclimatization, enhancement could be achieved if rooting stage was performed on micro-porous substrates such as paper pulp. PMID:22312323

  14. Nemesia root hair response to paper pulp substrate for micropropagation.

    PubMed

    Labrousse, Pascal; Delmail, David; Decou, Raphaël; Carlué, Michel; Lhernould, Sabine; Krausz, Pierre

    2012-01-01

    Agar substrates for in vitro culture are well adapted to plant micropropagation, but not to plant rooting and acclimatization. Conversely, paper-pulp-based substrates appear as potentially well adapted for in vitro culture and functional root production. To reinforce this hypothesis, this study compares in vitro development of nemesia on several substrates. Strong differences between nemesia roots growing in agar or in paper-pulp substrates were evidenced through scanning electron microscopy. Roots developed in agar have shorter hairs, larger rhizodermal cells, and less organized root caps than those growing on paper pulp. In conclusion, it should be noted that in this study, in vitro microporous substrates such as paper pulp lead to the production of similar root hairs to those found in greenhouse peat substrates. Consequently, if agar could be used for micropropagation, rooting, and plant acclimatization, enhancement could be achieved if rooting stage was performed on micro-porous substrates such as paper pulp.

  15. Histological evaluation of direct pulp capping with all-in-one adhesives in rat teeth.

    PubMed

    Shinkai, Koichi; Taira, Yoshihisa; Kawashima, Satoki; Suzuki, Shiro; Suzuki, Masaya

    2017-05-31

    The aim of this study was to histologically evaluate direct pulp capping using different all-in-one adhesives in rat teeth. Five all-in-one adhesives and a control material (MTA) were used. Each material was applied on the exposed pulp, and each cavity was subsequently restored with the resin composite. Rats were sacrificed 14 days after the surgical procedure. Serial stained sections were histologically evaluated for examining pulp tissue disorganization (PTD), inflammatory cell infiltration (ICI), dentin bridge formation (DBF), and bacterial penetration (BP). We found that rat pulps, which were direct capped with all-in-one adhesives, showed various degrees of PTD, ICI, and DBF depending on the material, and that there were no complete dentin bridges. In contrast, rat pulps capped with MTA showed no PTD and ICI, and there were complete dentin bridges in all, but one specimen. No BP was observed in any specimen.

  16. Application of thermophilic enzymes and water jet system to cassava pulp.

    PubMed

    Chaikaew, Siriporn; Maeno, Yuka; Visessanguan, Wonnop; Ogura, Kota; Sugino, Gaku; Lee, Seung-Hwan; Ishikawa, Kazuhiko

    2012-12-01

    Co-production of fermentable sugars and nanofibrillated cellulose from cassava pulp was achieved by the combination of thermophilic enzymes (endoglucanase, β-glucosidase, and α-amylase) and a new atomization system (Star Burst System; SBS), which employs opposing water jets. The SBS represents a key technology for providing cellulose nanofibers and improving the enzymatic saccharification of cassava pulp. Depending on the enzymes used, the production of glucose from cassava pulp treated with the SBS was 1.2- to 2.5-fold higher than that from pulp not treated with the SBS. Nanofibrillated cellulose with the gel-like property in suspension was produced (yield was over 90%) by α-amylase treatment, which completely released trapped starch granules from the fibrous cell wall structure of cassava pulp pretreated with the SBS. The SBS provides an environmentally low-impact pretreatment system for processing biomass material into value-added products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Methods for the identification, characterization and banking of human DPSCs: current strategies and perspectives.

    PubMed

    Tirino, Virginia; Paino, Francesca; d'Aquino, Riccardo; Desiderio, Vincenzo; De Rosa, Alfredo; Papaccio, Gianpaolo

    2011-09-01

    Dental pulp stem cells (DPSCs), originating from neural crests, can be found within dental pulp. Up to now, it has been demonstrated that these cells are capable of producing bone tissue, both in vitro and in vivo and differentiate into adipocytes, endotheliocytes, melanocytes, neurons, glial cells, and can be easily cryopreserved and stored. Moreover, recent attention has been focused on tissue engineering and on the properties of these cells. In addition, adult bone tissue with good vascularisation has been obtained in grafts. The latest use in clinical trials for bone repair enforces the notion that DPSCs can be used successfully in patients. Therefore, their isolation, selection, differentiation and banking is of great importance. The isolation and detection techniques used in most laboratories are based on the use of antibodies revealed by flow-cytometers with cell sorter termed FACS (fluorescent activated cell sorter). In this report, we focus our attention on the main procedures used in the selection of DPSCs by flow cytometry, cell culture, freezing/thawing, cell cycle evaluation, histochemistry/immunofluorescence and differentiation of DPSCs. In addition, new methods/protocols to select and isolate stem cells without staining by fluorescent markers for implementation in biomedical/clinical laboratories are discuss. We emphasize that the new methods must address simplicity and short times of preparation and use of samples, complete sterility of cells, the potential disposable, low cost and complete maintenance of the viability and integrity of the cells with real-time response for subsequent applications in the biomedical/clinical/surgical fields.

  18. Phenotypic Characterization of a Novel Virulence-Factor Deletion Strain of Burkholderia mallei that Provides Partial Protection against Inhalational Glanders in Mice

    DTIC Science & Technology

    2016-02-26

    minimal to mild expansion of the white pulp by lymphoid hyperplasia with variable numbers of plasma cells within the white and red pulp (Figures 8G–I... Cell . Infect. Microbiol. 6:21. doi: 10.3389/fcimb.2016.00021 Phenotypic Characterization of a Novel Virulence-Factor Deletion Strain of Burkholderia...respect to intracellular growth, macrophage uptake and phagosomal escape, actin-based motility, and multinucleated giant cell formation. Based on observed

  19. Influence of moderate to severe chronic periodontitis on dental pulp.

    PubMed

    Fatemi, K; Disfani, R; Zare, R; Moeintaghavi, A; Ali, Saadat A; Boostani, H R

    2012-10-01

    The relationship between periodontal disease and dental pulp changes is controversial and has been debated for many years. This human study was performed to evaluate the possible effects of moderate to advanced periodontal disease on the different aspect of dental pulp structure. Twenty hopeless permanent teeth were extracted from systemically healthy adults because of moderate to advanced chronic periodontitis, with a bone loss of >6 mm and a mobility of grade 2 or 3. Upon extraction, the apical 2 to 3 mm of the roots were immediately sectioned. Four to five sections were mounted on each slide, and every third slide was stained with hematoxylin and eosin. The specimens were histologically processed and examined by an oral pathologist. Non-inflamed pulp, with partial or complete necrosis in some sections and several non-necrotic sections, was found in only 6.3% of teeth. Most teeth (58.3%) displayed edematous pulps. Slightly fibrotic pulps were seen in 52.1% of sections. Odontoblastic integrity was seen in 31.3% of teeth. Most teeth (77.1%) displayed no pulp stones. In 43.8% of teeth, the pulp vessels displayed dilatation. Moderate to advanced periodontal disease can affect the dental pulp. Careful consideration of diagnostic and treatment planing in patients with endodontic-periodontal involvement is therefore recommended.

  20. Influence of moderate to severe chronic periodontitis on dental pulp

    PubMed Central

    Fatemi, K; Disfani, R; Zare, R; Moeintaghavi, A; Ali, Saadat A.; Boostani, H. R

    2012-01-01

    Background: The relationship between periodontal disease and dental pulp changes is controversial and has been debated for many years. This human study was performed to evaluate the possible effects of moderate to advanced periodontal disease on the different aspect of dental pulp structure. Materials and Methods: Twenty hopeless permanent teeth were extracted from systemically healthy adults because of moderate to advanced chronic periodontitis, with a bone loss of >6 mm and a mobility of grade 2 or 3. Upon extraction, the apical 2 to 3 mm of the roots were immediately sectioned. Four to five sections were mounted on each slide, and every third slide was stained with hematoxylin and eosin. The specimens were histologically processed and examined by an oral pathologist. Results: Non-inflamed pulp, with partial or complete necrosis in some sections and several non-necrotic sections, was found in only 6.3% of teeth. Most teeth (58.3%) displayed edematous pulps. Slightly fibrotic pulps were seen in 52.1% of sections. Odontoblastic integrity was seen in 31.3% of teeth. Most teeth (77.1%) displayed no pulp stones. In 43.8% of teeth, the pulp vessels displayed dilatation. Conclusions: Moderate to advanced periodontal disease can affect the dental pulp. Careful consideration of diagnostic and treatment planing in patients with endodontic-periodontal involvement is therefore recommended. PMID:23493524

  1. Comparative histopathological analysis of human pulps after class I cavity preparation with a high-speed air-turbine handpiece or Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Kina, J. F.; Benitez, P. C.; Lizarelli, R. F. Z.; Bagnato, V. S.; Martinez, T. C.; Oliveira, C. F.; Hebling, J.; Costa, C. A. S.

    2008-12-01

    The purpose of this study was to comparatively evaluate the response of human pulps after cavity preparation with different devices. Deep class I cavities were prepared in sound mandibular premolars using either a high-speed air-turbine handpiece (Group 1) or an Er:YAG laser (Group 2). Following total acid etching and the application of an adhesive system, all cavities were restored with composite resin. Fifteen days after the clinical procedure, the teeth were extracted and processed for analysis under optical microscopy. In Group 1 in which the average for the remaining dentin thickness (RDT) between the cavity floor and the coronal pulp was 909.5 μm, a discrete inflammatory response occurred in only one specimen with an RDT of 214 μm. However, tissue disorganization occurred in most specimens. In Group 2 (average RDT = 935.2 μm), the discrete inflammatory pulp response was observed in only one specimen (average RDT = 413 μm). It may be concluded that the high-speed air-turbine handpiece caused greater structural alterations in the pulp, although without inducing inflammatory processes.

  2. Pulpal blood flow recorded from human premolar teeth with a laser Doppler flow meter using either red or infrared light.

    PubMed

    Kijsamanmith, Kanittha; Timpawat, Siriporn; Vongsavan, Noppakun; Matthews, Bruce

    2011-07-01

    To compare red (635 nm) and infrared (780 nm) light for recording pulpal blood flow from human premolar teeth. Recordings were made from 11 healthy teeth in 9 subjects (aged 16-30 years) using a laser Doppler flow meter (Periflux 4001) equipped with both red and infrared lasers. Average blood flow signals were obtained with both light sources alternately from each tooth under five conditions: intact tooth without opaque rubber dam, intact tooth with dam, after injecting local anaesthetic (3% Mepivacaine) (LA) over the apex of the tooth and cavity preparation to almost expose the pulp, after removal and replacement of the pulp, and with the root canal empty. With infrared light, the dam significantly decreased the mean blood flow by 80%. Injecting LA and cavity preparation had no significant effect. Removal and replacement of the pulp reduced the mean blood flow by 58%. There was no further change when the pulp was removed. With red light, the dam reduced the signal from intact teeth by 60%. Injecting LA and cavity preparation had no significant effect. The signal fell by 67% after pulp removal and replacement and did not change significantly when the pulp was removed. Opaque rubber dam minimises the contribution of non-pulpal tissues to the laser Doppler signal recorded from premolars. Using dam, the pulp contributed about 60% to the blood flow signal with both red and infrared light. The difference between them in this respect was not significant. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Diabetes induces metabolic alterations in dental pulp.

    PubMed

    Leite, Mariana Ferreira; Ganzerla, Emily; Marques, Márcia Martins; Nicolau, José

    2008-10-01

    Diabetes can interfere in tissue nutrition and can impair dental pulp metabolism. This disease causes oxidative stress in cells and tissues. However, little is known about the antioxidant system in the dental pulp of diabetics. Thus, it would be of importance to study this system in this tissue in order to verify possible alterations indicative of oxidative stress. The aim of this study was to evaluate some parameters of antioxidant system of the dental pulp of healthy (n = 8) and diabetic rats (n = 8). Diabetes was induced by streptozotocin in rats. Six weeks after diabetes induction, a pool of the dental pulp of the 4 incisors of each rat (healthy and diabetic) was used for the determination of total protein and sialic acid concentrations and catalase and peroxidase activities. Data were compared by a Student t test (p

  4. Mineralogenic characteristics of osteogenic lineage-committed human dental pulp stem cells following their exposure to a discoloration-free calcium aluminosilicate cement.

    PubMed

    Niu, Li-Na; Pei, Dan-Dan; Morris, Matthew; Jiao, Kai; Huang, Xue-Qing; Primus, Carolyn M; Susin, Lisiane F; Bergeron, Brian E; Pashley, David H; Tay, Franklin R

    2016-10-01

    An experimental discoloration-free calcium aluminosilicate cement has been developed with the intention of maximizing the beneficial attributes of tricalcium silicate cements and calcium aluminate cements. The present study examined the effects of this experimental cement (Quick-Set2) on the mineralogenic characteristics of osteogenic lineage-committed human dental pulp stem cells (hDPSCs), by comparing the cellular responses with a commercially available tricalcium silicate cement (white mineral trioxide aggregate (ProRoot(®) MTA); WMTA). The osteogenic potential of hDPSCs exposed to the cements was examined using qRT-PCR for osteogenic gene expressions, Western blot for osteogenic-related protein expressions, alkaline phosphatase enzyme activity, Alizarin red S staining, Fourier transform infrared spectroscopy and transmission electron microscopy of extracellular calcium deposits. Results of the six assays indicated that osteogenic differentiation of hDPSCs was significantly enhanced after exposure to the tricalcium silicate cement or the experimental calcium aluminosilicate cement, with the former demonstrating better mineralogenic stimulation capacity. The better osteogenic stimulating effect of the tricalcium silicate cement on hDPSCs may be due to its relatively higher silicate content, or higher OH(-) and Ca(2+) release. Further investigations with the use of in vivo animal models are required to validate the potential augmenting osteogenic effects of the experimental discoloration-free calcium aluminosilicate cement. Published by Elsevier Ltd.

  5. Protective effects of seabuckthorn pulp and seed oils against radiation-induced acute intestinal injury.

    PubMed

    Shi, Jing; Wang, Lan; Lu, Yan; Ji, Yue; Wang, Yaqing; Dong, Ke; Kong, Xiangqing; Sun, Wei

    2017-01-01

    Radiation-induced gastrointestinal syndrome, including nausea, diarrhea and dehydration, contributes to morbidity and mortality after medical or industrial radiation exposure. No safe and effective radiation countermeasure has been approved for clinical therapy. In this study, we aimed to investigate the potential protective effects of seabuckthorn pulp and seed oils against radiation-induced acute intestinal injury. C57/BL6 mice were orally administered seabuckthorn pulp oil, seed oil and control olive oil once per day for 7 days before exposure to total-body X-ray irradiation of 7.5 Gy. Terminal deoxynucleotidyl transferase dUTP nick end labeling, quantitative real-time polymerase chain reaction and western blotting were used for the measurement of apoptotic cells and proteins, inflammation factors and mitogen-activated protein (MAP) kinases. Seabuckthorn oil pretreatment increased the post-radiation survival rate and reduced the damage area of the small intestine villi. Both the pulp and seed oil treatment significantly decreased the apoptotic cell numbers and cleaved caspase 3 expression. Seabuckthorn oil downregulated the mRNA level of inflammatory factors, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-8. Both the pulp and seed oils elevated the level of phosphorylated extracellular-signal-regulated kinase and reduced the levels of phosphorylated c-Jun N-terminal kinase and p38. Palmitoleic acid (PLA) and alpha linolenic acid (ALA) are the predominant components of pulp oil and seed oil, respectively. Pretreatment with PLA and ALA increased the post-radiation survival time. In conclusion, seabuckthorn pulp and seed oils protect against mouse intestinal injury from high-dose radiation by reducing cell apoptosis and inflammation. ALA and PLA are promising natural radiation countermeasure candidates. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  6. Dental Pulp Defence and Repair Mechanisms in Dental Caries

    PubMed Central

    Farges, Jean-Christophe; Alliot-Licht, Brigitte; Renard, Emmanuelle; Ducret, Maxime; Gaudin, Alexis; Smith, Anthony J.; Cooper, Paul R.

    2015-01-01

    Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and reducing innate repair capacities. For complete tooth healing the formation of a reactionary/reparative dentin barrier to distance and protect the pulp from infectious agents and restorative materials is required. Clinical and in vitro experimental data clearly indicate that dentin barrier formation only occurs when pulp inflammation and infection are minimised, thus enabling reestablishment of tissue homeostasis and health. Therefore, promoting the resolution of pulp inflammation may provide a valuable therapeutic opportunity to ensure the sustainability of dental treatments. This paper focusses on key cellular and molecular mechanisms involved in pulp responses to bacteria and in the pulpal transition between caries-induced inflammation and dentinogenic-based repair. We report, using selected examples, different strategies potentially used by odontoblasts and specialized immune cells to combat dentin-invading bacteria in vivo. PMID:26538821

  7. Dental Pulp Defence and Repair Mechanisms in Dental Caries.

    PubMed

    Farges, Jean-Christophe; Alliot-Licht, Brigitte; Renard, Emmanuelle; Ducret, Maxime; Gaudin, Alexis; Smith, Anthony J; Cooper, Paul R

    2015-01-01

    Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and reducing innate repair capacities. For complete tooth healing the formation of a reactionary/reparative dentin barrier to distance and protect the pulp from infectious agents and restorative materials is required. Clinical and in vitro experimental data clearly indicate that dentin barrier formation only occurs when pulp inflammation and infection are minimised, thus enabling reestablishment of tissue homeostasis and health. Therefore, promoting the resolution of pulp inflammation may provide a valuable therapeutic opportunity to ensure the sustainability of dental treatments. This paper focusses on key cellular and molecular mechanisms involved in pulp responses to bacteria and in the pulpal transition between caries-induced inflammation and dentinogenic-based repair. We report, using selected examples, different strategies potentially used by odontoblasts and specialized immune cells to combat dentin-invading bacteria in vivo.

  8. Evaluation of the antihypertensive properties of yellow passion fruit pulp (Passiflora edulis Sims f. flavicarpa Deg.) in spontaneously hypertensive rats.

    PubMed

    Konta, Eliziane Mieko; Almeida, Mara Ribeiro; do Amaral, Cátia Lira; Darin, Joana Darc Castania; de Rosso, Veridiana V; Mercadante, Adriana Zerlotti; Antunes, Lusânia Maria Greggi; Bianchi, Maria Lourdes Pires

    2014-01-01

    Various species of the genus Passiflora have been extensively used in traditional medicine as sedatives, anxiolytics, diuretics and analgesics. In the present study, after the identification and quantification of phytochemical compounds from yellow passion fruit pulp by liquid chromatography-photodiode array-mass spectrometry (HPLC-PDA-MS/MS), its antihypertensive effect was investigated on spontaneously hypertensive rats. Additionally, the renal function, evaluated by kidney/body weight, serum creatinine, proteinuria, urinary flow, reduced glutathione (GSH) levels and thiobarbituric acid-reactive substances (TBARS) and mutagenicity in bone marrow cells were assessed to evaluate the safety of passion fruit consumption. Yellow passion fruit pulp (5, 6 or 8 g/kg b.w.) was administered by gavage once a day for 5 consecutive days. HLPC-PDA-MS/MS analysis revealed that yellow passion fruit pulp contains phenolic compounds, ascorbic acid, carotenoids and flavonoids. The highest dose of passion fruit pulp significantly reduced the systolic blood pressure, increased the GSH levels and decreased TBARS. There were no changes in renal function parameters or the frequency of micronuclei in bone marrow cells. In conclusion, the antihypertensive effect of yellow passion fruit pulp, at least in part, might be due to the enhancement of the antioxidant status. The exact mechanisms responsible by this effect need further investigation. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Immunophenotypic and Molecular Analysis of Human Dental Pulp Stem Cells Potential for Neurogenic Differentiation

    PubMed Central

    Fatima, Nikhat; Khan, Aleem A.; Vishwakarma, Sandeep K.

    2017-01-01

    Background: Growing evidence shows that dental pulp (DP) tissues could be a potential source of adult stem cells for the treatment of devastating neurological diseases and several other conditions. Aims: Exploration of the expression profile of several key molecular markers to evaluate the molecular dynamics in undifferentiated and differentiated DP-derived stem cells (DPSCs) in vitro. Settings and Design: The characteristics and multilineage differentiation ability of DPSCs were determined by cellular and molecular kinetics. DPSCs were further induced to form adherent (ADH) and non-ADH (NADH) neurospheres under serum-free condition which was further induced into neurogenic lineage cells and characterized for their molecular and cellular diversity at each stage. Statistical Analysis Used: Statistical analysis used one-way analysis of variance, Student's t-test, Livak method for relative quantification, and R programming. Results: Immunophenotypic analysis of DPSCs revealed >80% cells positive for mesenchymal markers CD90 and CD105, >70% positive for transferring receptor (CD71), and >30% for chemotactic factor (CXCR3). These cells showed mesodermal differentiation also and confirmed by specific staining and molecular analysis. Activation of neuronal lineage markers and neurogenic growth factors was observed during lineage differentiation of cells derived from NADH and ADH spheroids. Greater than 80% of cells were found to express β-tubulin III in both differentiation conditions. Conclusions: The present study reported a cascade of immunophenotypic and molecular markers to characterize neurogenic differentiation of DPSCs under serum-free condition. These findings trigger the future analyses for clinical applicability of DP-derived cells in regenerative applications. PMID:28566856

  10. Immunohistochemical study of dental pulp applied with 4-META/MMA-TBB adhesive resin after pulpotomy.

    PubMed

    Nakamura, M; Inoue, T; Shimono, M

    2000-08-01

    The purpose of this study was to investigate nerve regeneration and proliferative activity in amputated pulp tissue after the application of 4-META/MMA-TBB adhesive resin (4-META resin). Calcium hydroxide was used as a control material. At 3 days, fibroblast-like cells were positive for proliferating cell nuclear antigen (PCNA) in both 4-META resin- and calcium hydroxide-treated groups and were located mainly within 0.5 mm from the cut surface. Only a few fragmented neurofilament protein (NFP)-positive nerve fibers were observed in this area. At 7 and 14 days, the number of PCNA-positive cells had gradually decreased and regenerated NFP-positive nerve fibers were observed close to the cut surface of the pulp in both groups. At 21 days in the experimental group, several PCNA-positive cells were still found in the area 0.5 mm from the cut surface, and NFP-positive nerve fibers were detected about 0.15-;0.2 mm from the cut surface. In contrast, a dentin bridge was produced under the necrotic layer at 21 days in the control group. PCNA-positive cells were not found underneath the dentin bridge, but NFP-positive nerve fibers had regenerated close to it. These results suggest that although cell differentiation and nerve regeneration are delayed, wound healing occurred even after the application of 4-META resin to exposed pulp surface the same as calcium hydroxide application. Copyright 2000 John Wiley & Sons, Inc.

  11. Differential expression of basal microRNAs’ patterns in human dental pulp stem cells

    PubMed Central

    Vasanthan, Punitha; Govindasamy, Vijayendran; Gnanasegaran, Nareshwaran; Kunasekaran, Wijenthiran; Musa, Sabri; Abu Kasim, Noor Hayaty

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate translation of mRNA into protein and play a crucial role for almost all biological activities. However, the identification of miRNAs from mesenchymal stem cells (MSCs), especially from dental pulp, is poorly understood. In this study, dental pulp stem cells (DPSCs) were characterized in terms of their proliferation and differentiation capacity. Furthermore, 104 known mature miRNAs were profiled by using real-time PCR. Notably, we observed 19 up-regulated miRNAs and 29 significantly down-regulated miRNAs in DPSCs in comparison with bone marrow MSCs (BM-MSCs). The 19 up-regulated miRNAs were subjected to ingenuity analysis, which were composed into 25 functional networks. We have chosen top 2 functional networks, which comprised 10 miRNA (hsa-miR-516a-3p, hsa-miR-125b-1-3p, hsa-miR-221-5p, hsa-miR-7, hsa-miR-584-5p, hsa-miR-190a, hsa-miR-106a-5p, hsa-mir-376a-5p, hsa-mir-377-5p and hsa-let-7f-2-3p). Prediction of target mRNAs and associated biological pathways regulated by each of this miRNA was carried out. We paid special attention to hsa-miR-516a-3p and hsa-miR-7-5p as these miRNAs were highly expressed upon validation with qRT-PCR analysis. We further proceeded with loss-of-function analysis with these miRNAs and we observed that hsa-miR-516a-3p knockdown induced a significant increase in the expression of WNT5A. Likewise, the knockdown of hsa-miR-7-5p increased the expression of EGFR. Nevertheless, further validation revealed the role of WNT5A as an indirect target of hsa-miR-516a-3p. These results provide new insights into the dynamic role of miRNA expression in DPSCs. In conclusion, using miRNA signatures in human as a prediction tool will enable us to elucidate the biological processes occurring in DPSCs. PMID:25475098

  12. Animal Model of Fatal Human Monocytotropic Ehrlichiosis

    PubMed Central

    Sotomayor, Edgar A.; Popov, Vsevolod L.; Feng, Hui-Min; Walker, David H.; Olano, Juan P.

    2001-01-01

    Human monocytotropic ehrlichiosis caused by Ehrlichia chaffeensis is a life-threatening, tick-borne, emerging infectious disease for which no satisfactory animal model has been developed. Strain HF565, an ehrlichial organism closely related to E. chaffeensis isolated from Ixodes ovatus ticks in Japan, causes fatal infection of mice. C57BL/6 mice became ill on day 7 after inoculation and died on day 9. The liver revealed confluent necrosis, ballooning cell injury, apoptosis, poorly formed granulomas, Kupffer cell hyperplasia, erythrophagocytosis, and microvesicular fatty metamorphosis. The other significant histological findings consisted of marked expansion of the marginal zone and infiltration of the red pulp of the spleen by macrophages, interstitial pneumonitis, and increased numbers of immature myeloid cells and areas of necrosis in the bone marrow. Ehrlichiae were detected by immunohistology and electron microscopy in the liver, lungs, and spleen. The main target cells were macrophages, including Kupffer cells, hepatocytes, and endothelial cells. Apoptosis was detected in Kupffer cells, hepatocytes, and macrophages in the lungs and spleen. This tropism for macrophages and the pathological lesions closely resemble those of human monocytotropic ehrlichiosis for which it is a promising model for investigation of immunity and pathogenesis. PMID:11159213

  13. Osteogenic Differentiation of Mesenchymal Stromal Cells: A Comparative Analysis Between Human Subcutaneous Adipose Tissue and Dental Pulp.

    PubMed

    D'Alimonte, Iolanda; Mastrangelo, Filiberto; Giuliani, Patricia; Pierdomenico, Laura; Marchisio, Marco; Zuccarini, Mariachiara; Di Iorio, Patrizia; Quaresima, Raimondo; Caciagli, Francesco; Ciccarelli, Renata

    2017-06-01

    White adipose tissue is a source of mesenchymal stromal/stem cells (MSCs) that are actively studied for their possible therapeutic use in bone tissue repair/remodeling. To better appreciate the osteogenic potential of these cells, we compared some properties of MSCs from human subcutaneous adipose tissue [subcutaneous-adipose stromal cells (S-ASCs)] and dental pulp stem cell (DPSCs) of third-impacted molars, the latter representing a well-established MSC source. Both undifferentiated cell types showed similar fibroblast-like morphology and mesenchymal marker expression. However, undifferentiated S-ASCs displayed a faster doubling time coupled to greater proliferation and colony-forming ability than DPSCs. Also, the osteogenic differentiation of S-ASCs was greater than that of DPSCs, as evaluated by the higher levels of expression of early osteogenic markers Runt-related transcription factor-2 (RUNX2) and alkaline phosphatase at days 3-14 and of extracellular matrix mineralization at days 14-21. Moreover, S-ASCs showed a better colonization of the titanium scaffold. In addition, we investigated whether S-ASC osteogenic commitment was enhanced by adenosine A1 receptor (A1R) stimulation, as previously shown for DPSCs. Although A1R expression was constant during DPSC differentiation, it increased in S-ASC at day 21 from osteogenesis induction. Accordingly, A1R stimulation by the agonist 2-chloro-N 6 -cyclopentyl-adenosine, added to the cultures at each medium change, stimulated proliferation only in differentiating DPSC and enhanced the osteogenic differentiation earlier in DPSCs than in S-ASCs. These effects were counteracted by cell pretreatment with a selective A1R antagonist. Thus, our findings suggest that S-ASCs could be advantageously used in regenerative orthopedics/dentistry, and locally released or exogenously added purines may play a role in bone repair/remodeling, even though this aspect should be more thoroughly evaluated.

  14. 21 CFR 186.1673 - Pulp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... food packaging containers. (c) The ingredient is used in paper and paperboard made by conventional... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Pulp. 186.1673 Section 186.1673 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD...

  15. Intrafibrillar-silicified collagen scaffolds enhance the osteogenic capacity of human dental pulp stem cells.

    PubMed

    Niu, Li-na; Sun, Jia-qi; Li, Qi-hong; Jiao, Kai; Shen, Li-juan; Wu, Dan; Tay, Franklin; Chen, Ji-hua

    2014-07-01

    The present study investigated the effects of intrafibrillar-silicified collagen scaffolds (ISCS) on the osteogenic differentiation of human dental pulp stem cells (hDPSCs) in vitro and in vivo. The hDPSCs were co-cultured with ISCS or nonsilicified collagen scaffolds (NCS) in control medium (CM) or osteogenic differentiation medium (ODM). Cell cycle and cell apoptosis were analyzed with flow cytometry to measure the viability of hDPSCs. Reverse transcription-polymerase chain reaction (RT-PCR) and western blotting were used to evaluate the expression levels of osteogenic marker genes and proteins of hDPSCs. Alkaline phosphatase (ALP) staining and alizarin red S assay were used to evaluate the ALP activity of hDPSCs and their calcium deposition potential. In addition, hDPSCs and scaffolds were implanted subcutaneously in nude mice for 8 weeks. Harvested tissues were immunohistochemically stained for osteocalcin (OCN) expression from hDPSCs, and stained with alizarin red S for examination of their calcium deposition in vivo. The ISCS had no adverse effect on hDPSCs, promoted their proliferation, and significantly up-regulated the expression of osteogenesis-related genes and proteins. The hDPSCs co-cultured with ISCS in ODM exhibited the highest ALP activity and calcium deposition in vitro. The ISCS promoted the OCN expression and calcium deposition of hDPSCs after ectopic transplantation in vivo. Intrafibrillar-silicified collagen scaffolds significantly promoted the proliferation, osteogenic differentiation and mineralization of hDPSCs, when compared with NCS. This study demonstrates combining the use of hDPSCs and ISCS to promote bone-like tissue formation is a promising approach for clinical bone repair and regeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. PAR-2 regulates dental pulp inflammation associated with caries.

    PubMed

    Lundy, F T; About, I; Curtis, T M; McGahon, M K; Linden, G J; Irwin, C R; El Karim, I A

    2010-07-01

    Protease-activated receptors (PARs) are G-protein-coupled receptors that are activated enzymatically by proteolysis of an N-terminal domain. The cleavage and activation of PARs by serine proteases represent a novel mechanism by which such enzymes could influence the host inflammatory response. The aim of this study was to determine whether PAR-2 expression and activation were increased in dental caries. Using immunohistochemistry, we showed PAR-2 to be localized to pulp cells subjacent to caries lesions, but minimally expressed by healthy pulp tissue. Trypsin and the PAR-2 agonist (PAR2-AP) activated PAR-2 in an in vitro functional assay. Endogenous molecules present in pulp cell lysates from carious teeth specifically activated PAR-2, but those from healthy teeth failed to do so. The activation of PAR-2 in vitro was shown to increase the expression of the pro-inflammatory mediator cyclo-oxygenase-2 (COX-2), providing a mechanism whereby PAR-2 could modulate pulpal inflammation.

  17. Current Advance and Future Prospects of Tissue Engineering Approach to Dentin/Pulp Regenerative Therapy

    PubMed Central

    Gong, Ting; Heng, Boon Chin; Lo, Edward Chin Man; Zhang, Chengfei

    2016-01-01

    Recent advances in biomaterial science and tissue engineering technology have greatly spurred the development of regenerative endodontics. This has led to a paradigm shift in endodontic treatment from simply filling the root canal systems with biologically inert materials to restoring the infected dental pulp with functional replacement tissues. Currently, cell transplantation has gained increasing attention as a scientifically valid method for dentin-pulp complex regeneration. This multidisciplinary approach which involves the interplay of three key elements of tissue engineering—stem cells, scaffolds, and signaling molecules—has produced an impressive number of favorable outcomes in preclinical animal studies. Nevertheless, many practical hurdles need to be overcome prior to its application in clinical settings. Apart from the potential health risks of immunological rejection and pathogenic transmission, the lack of a well-established banking system for the isolation and storage of dental-derived stem cells is the most pressing issue that awaits resolution and the properties of supportive scaffold materials vary across different studies and remain inconsistent. This review critically examines the classic triad of tissue engineering utilized in current regenerative endodontics and summarizes the possible techniques developed for dentin/pulp regeneration. PMID:27069484

  18. Histological and immunohistochemical study on the dental pulp of patients with diabetes mellitus.

    PubMed

    Moraru, Alina Iren; GheorghiŢă, Lelia Mihaela; Dascălu, Ionela Teodora; Bătăiosu, Marilena; Manolea, Horia Octavian; Agop Forna, Doriana; Râcă, Ana Maria; RaŢiu, Cristian Adrian; Diaconu, Oana Andreea

    2017-01-01

    Diabetes mellitus is a disease that brings numerous alterations in the human body, mainly on the blood vessels and nervous system, its complications being difficult to treat most of the time. Oral complications are largely known and studied. Changes that occur in the dental pulp are of importance for the dentists, considering regular procedures outcome. In early stages of the disease, new blood vessels appear especially under the odontoblasts layer as a reaction to stimuli. In later stages, the defense systems of the dental pulp are outnumbered, nervous branches will be destroyed and disorganized. When periodontal disease occurs as well the mortification of the dental pulp will be faster.

  19. Direct measurement of time-dependent anesthetized in vivo human pulp temperature.

    PubMed

    Runnacles, Patrício; Arrais, Cesar Augusto Galvão; Pochapski, Marcia Thais; dos Santos, Fábio André; Coelho, Ulisses; Gomes, João Carlos; De Goes, Mário Fernando; Gomes, Osnara Maria Mongruel; Rueggeberg, Frederick Allen

    2015-01-01

    Human intrapupal tooth temperature is considered to be similar to that of the body (≈37 °C), although the actual temperature has never been measured. This study evaluated the in vivo, human, basal, coronal intrapulpal temperature of anesthetized upper first premolars. After approval of the local Ethics Committee was obtained (protocol no. 255,945), upper right and left first premolars requiring extraction for orthodontic reasons from 8 volunteers, ranging from 12 to 30 years old, received infiltrative and intraligamental anesthesia. The teeth (n=15) were isolated using rubber dam and a small, occlusal preparation was made using high-speed handpiece, under constant air-water spray, until a minute pulp exposure was attained. The sterile probe from a wireless, NIST-traceable, temperature acquisition system (Thermes WFI) was inserted directly into the coronal pulp. Once the probe was properly positioned and stable, real-time temperature data were continuously acquired for approximately 25 min. Data (°C) were subjected to 2-tailed, paired t-test (α=0.05), and the 95% confidence intervals for the initial and 25-min mean temperatures were also determined. The initial pulp temperature value (31.8±1.5 °C) was significantly lower than after 25-min (35.3±0.7 °C) (p<0.05). The 95% confidence interval for the initial temperature ranged from 31.0 to 32.6 °C and from 35.0 to 35.7 °C after 25 min. A slow, gradual temperature increase was observed after probe insertion until the pulp temperature reached a plateau, usually after 15 min. Consistent coronal, human, in vivo temperature values were observed and were slightly, but significantly below that of body core temperature. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair

    PubMed Central

    Wang, Lin; Zhang, Chi; Li, Chunyan; Weir, Michael D.; Wang, Ping; Reynolds, Mark A.; Zhao, Liang; Xu, Hockin H.K.

    2017-01-01

    Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs), dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However, there has been no report comparing hDPSCs, hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering, and (2) compare cell viability, proliferation and osteogenic differentiation of hDPSCs, hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs), and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs, BM-hiPSC-MSCs, and hBMSCs exhibited high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin gene expressions. Cell-synthesized minerals increased with time (p < 0.05), with no significant difference among hDPSCs, BM-hiPSC-MSCs and hBMSCs (p > 0.1). Mineralization by hDPSCs, BM-hiPSC-MSCs, and hBMSCs inside CPC at 14 d was 14-fold that at 1 d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion, hDPSCs, BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however, FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental, craniofacial and orthopedic applications. PMID:27612810

  1. ION EXCHANGE TESTS ON LIQUOR AND PULPS PRODUCED FROM UTEX ORES. Topical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollis, E.T.; Pickwick, F.J. Jr.; Kazanjian, A.R.

    1954-07-30

    Uranium leach liquors produced from Utex ore by cold leaching, hot leaching, and pugging proved amenable to the lon exchange process, Higher resin loadings were obtained rom the cold leach liquors than from the hot leach and pug liquors. In general, the less vigorous leaching conditions produced liquors which gave the highest resin loadings. In addition, a resin-in-pulp system was operated using the lucite Winchester cells on Utex pulp produced by cold leaching. Satisfactory loadings were obtained. (auth)

  2. Water-soluble factors eluated from surface pre-reacted glass-ionomer filler promote osteoblastic differentiation of human mesenchymal stem cells

    PubMed Central

    Nemoto, Akira; Chosa, Naoyuki; Kyakumoto, Seiko; Yokota, Seiji; Kamo, Masaharu; Noda, Mamoru; Ishisaki, Akira

    2018-01-01

    Surface pre-reacted glass-ionomer (S-PRG)-containing dental materials, including composite and coating resins have been used for the restoration and/or prevention of dental cavities. S-PRG is known to have the ability to release aluminum, boron, fluorine, silicon, and strontium ions. Aluminum ions are known to be inhibitors whereas boron, fluorine, silicon, and strontium ions are known to be promoters of mineralization, via osteoblasts. However, it remains to be clarified how an aqueous eluate obtained from S-PRG containing these ions affects the ability of mesenchymal stem cells (MSCs), which are known to be present in dental pulp and bone marrow, to differentiate into osteogenic cell types. The present study demonstrated that 200- to 1,000-fold-diluted aqueous eluates obtained from S-PRG significantly upregulated the mRNA expression level of the osteogenic differentiation marker alkaline phosphatase in human MSCs (hMSCs) without exhibiting the cytotoxic effect. In addition, the 500- to 1,000-fold-diluted aqueous eluates obtained from S-PRG significantly and clearly promoted mineralization of the extracellular matrix of hMSCs. It was additionally demonstrated that hMSCs cultured on the cured resin composites containing S-PRG fillers exhibited osteogenic differentiation in direct correlation with the weight percent of S-PRG fillers. These results strongly suggested that aqueous eluates of S-PRG fillers promoted hard tissue formation by hMSCs, implicating that resins containing S-PRG may act as a useful biomaterial to cover accidental exposure of dental pulp. PMID:29257332

  3. Invasion of vascular cells in vitro by Porphyromonas endodontalis.

    PubMed

    Dorn, B R; Harris, L J; Wujick, C T; Vertucci, F J; Progulske-Fox, A

    2002-04-01

    The objective of this study was to determine whether laboratory strains and clinical isolates of microorganisms associated with root canal infections can invade primary cultures of cardiovascular cells. Quantitative levels of bacterial invasion of human coronary artery endothelial cells (HCAEC) and coronary artery smooth muscle cells (CASMC) were measured using a standard antibiotic protection assay. Transmission electron microscopy was used to confirm and visualize internalization within the vascular cells. Of the laboratory and clinical strains tested, only P. endodontalis ATCC 35406 was invasive in an antibiotic protection assay using HCAEC and CASMC. Invasion of P. endodontalis ATCC 35406 was confirmed by transmission electron microscopy. Certain microorganisms associated with endodontic infections are invasive. If bacterial invasion of the vasculature contributes to the pathogenesis of cardiovascular disease, then microorganisms in the pulp chamber represent potential pathogens.

  4. 21 CFR 176.260 - Pulp from reclaimed fiber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Pulp from reclaimed fiber. 176.260 Section 176.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS Substances for Use Only as Components of Paper and...

  5. Histological Evaluation of Allium sativum Oil as a New Medicament for Pulp Treatment of Permanent Teeth.

    PubMed

    Mohammad, Shukry Gamal; Raheel, Syed Ahmed; Baroudi, Kusai

    2015-02-01

    The objective of this study was to evaluate the histo pathology effects of two medicaments Allium sativum oil and formocresol on the remaining pulp tissue of the permanent teething children. A total of 18 premolars were included in this study. Two sound premolars were extracted and subjected to histological examination to show the normal pulp tissue. Pulpo tomy procedure was performed in the rest of the remaining 16 premolars; half of them using Allium sativum oil and the rest of the tested premolars were medicated using formocresol and all were sealed with suitable restoration. Then, premolars extracted at variable intervals (48 hours, 2 weeks, 1 month, 2 months), stained using hemotoxylin and eosin etain (H&E) and prepared for histopathology examination. Histological evaluation seemed far more promising for Allium sativum oil than formocresol. Histological evaluation revealed that teeth treated with Allium sativa oil showed infammatory changes that had been resolved in the end of the study. On the contrary, the severe chronic infammation of pulp tissue accompanied with formocresol eventually produced pulp necrosis with or without fibrosis. In addition, pulp calcification was evidenced in certain cases. Allium sativum oil is a biocompatible material that is compatible with vital human pulp tissue. It offers a good healing potential, leaving the remaining pulp tissue healthy and functioning.

  6. Improved pulp bleaching potential of Bacillus subtilis WB800 through overexpression of three lignolytic enzymes from various bacteria.

    PubMed

    Ozer, Aysegul; Uzuner, Ugur; Guler, Halil Ibrahim; Ay Sal, Fulya; Belduz, Ali Osman; Deniz, Ilhan; Canakci, Sabriye

    2017-12-29

    A chemical bleaching process of paper pulps gives off excessive amount of chlorinated organic wastes mostly released to environment without exposing complete bioremediaton. Recent alternative and eco-friendly approaches toward pulp bleaching appear more responsive to environmental awareness. Here we report, direct use of a recombinant Bacillus subtilis bacterium for pulp bleaching, endowed with three ligninolytic enzymes from various bacteria. In addition, efficient bleaching performance from glutathione-S-transferase (GST) biocatalyst tested for the first time in pulp bleaching applications was also achieved. Simultaneous and extracellular overproduction of highly active GST, laccase, and lignin peroxidase catalysts were also performed by Bacillus cells. Both enhanced bleaching success and improved delignification rates were identified when enzyme combinations tested on both pine kraft and waste paper pulps, ranging from 69.75% to 79.18% and 60.89% to 74.65%, respectively. Furthermore, when triple enzyme combination applied onto the papers from pine kraft and waste pulps, the best ISO brightness values were identified as 66.45% and 64.67%, respectively. The delignification rates of pulp fibers exposed to various enzymatic bleaching sequences were comparatively examined under SEM. In conclusion, the current study points out that in near future, a more fined-tuned engineering of pulp-colonizing bacteria may become a cost-effective and environmentally friendly alternative to chemical bleaching. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  7. Neurogenic differentiation of dental pulp stem cells to neuron-like cells in dopaminergic and motor neuronal inductive media.

    PubMed

    Chang, Chia-Chieh; Chang, Kai-Chun; Tsai, Shang-Jye; Chang, Hao-Hueng; Lin, Chun-Pin

    2014-12-01

    Dental pulp stem cells (DPSCs) have been proposed as a promising source of stem cells in nerve regeneration due to their close embryonic origin and ease of harvest. The aim of this study was to evaluate the efficacy of dopaminergic and motor neuronal inductive media on transdifferentiation of human DPSCs (hDPSCs) into neuron-like cells. Isolation, cultivation, and identification of hDPSCs were performed with morphological analyses and flow cytometry. The proliferation potential of DPSCs was evaluated with an XTT [(2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide)] assay. Media for the induction of dopaminergic and spinal motor neuronal differentiation were prepared. The efficacy of neural induction was evaluated by detecting the expression of neuron cell-specific cell markers in DPSCs by immunocytochemistry and quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). In the XTT assay, there was a 2.6- or 2-fold decrease in DPSCs cultured in dopaminergic or motor neuronal inductive media, respectively. The proportions of βIII-tubulin (βIII-tub), glial fibrillary acidic protein (GFAP), and oligodendrocyte (O1)-positive cells were significantly higher in DPSCs cultured in both neuronal inductive media compared with those cultured in control media. Furthermore, hDPSC-derived dopaminergic and spinal motor neuron cells after induction expressed a higher density of neuron cell markers than those before induction. These findings suggest that in response to the neuronal inductive stimuli, a greater proportion of DPSCs stop proliferation and acquire a phenotype resembling mature neurons. Such neural crest-derived adult DPSCs may provide an alternative stem cell source for therapy-based treatments of neuronal disorders and injury. Copyright © 2014. Published by Elsevier B.V.

  8. Effects of Non-Collagenous Proteins, TGF-β1, and PDGF-BB on Viability and Proliferation of Dental Pulp Stem Cells

    PubMed Central

    Tabatabaei, Fahimeh Sadat

    2016-01-01

    ABSTRACT Objectives The dentin matrix servers as a reservoir of growth factors, sequestered during dentinogenesis. The aim of this study was to assess the viability and proliferation of dental pulp stem cells in the presence of dentin matrix-derived non-collagenous proteins and two growth factors; platelet-derived growth factor BB and transforming growth factor beta 1. Material and Methods The dental pulp cells were isolated and cultured. The dentin proteins were extracted and purified. The MTT assay was performed for assessment of cell viability and proliferation in the presence of different concentrations of dentin proteins and growth factors during 24 - 72 h post-treatment. Results The cells treated with 250 ng/mL dentin proteins had the best viability and proliferation ability in comparison with other concentrations (P < 0.05). The MTT assay demonstrated that cells cultured with 5 ng/mL platelet-derived growth factor BB had the highest viability at each time point as compared to other groups (P < 0.05). However, in presence of platelet-derived growth factor BB alone and in combination with transforming growth factor beta 1 and dentin proteins (10 ng/mL), significant higher viability was seen at all time points (P < 0.05). The least viability and proliferation at each growth factor concentration was seen in cells treated with combination of transforming growth factor beta 1 and dentin proteins at 72 h (P < 0.05). Conclusions The results indicated that the triple combination of growth factors and matrix-derived non-collagenous proteins (especially at 10 ng/mL concentration) has mitogenic effect on dental pulp stem cells. PMID:27099698

  9. Pulpal reaction to a dental adhesive in deep human cavities.

    PubMed

    Torstenson, B

    1995-08-01

    In the last years several dental adhesives have been developed. They are supposed to chemically adhere to dentin and a liner to protect the pulp is not used. The aim of this study was to compare the short-term pulpal reaction, in an intra-toothpair study, between a dental adhesive, Scotchbond 2, and a lining system, Tubulitec, in combination with P-50 in surface-sealed cavities. Deep buccal cavities in 16 human pairs of premolars, 32 teeth, were restored in vivo with a light cured composite resin, P-50. To minimize bacterial contamination all cavities were treated with a cleanser, Tubulicid, and the cavities were surface-sealed with temporary cement, Coltosol. One tooth in each pair, the test, was treated with Scotchprep Dentin Primer and Scotchbond 2 Light Cure Dental Adhesive. In the other tooth in the pair, the control, Tubulitec Primer and Liner were used. The teeth were extracted after 6-14 days. The sections were evaluated for degree of inflammation and the presence of bacteria. Irrespective of treatment of dentin the majority of teeth, 23, including one pulpal exposure, revealed no inflammation or a few inflammatory cells. In four test teeth, including one pulpal exposure, and two controls, growth of bacteria was found on the cavity walls and slight or moderate inflammation was seen in the corresponding pulps. In one test and two control teeth slight inflammation was seen but no bacteria could be detected. In the absence of bacteria Scotchbond 2 did not seem to irritate the pulp.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Histological Evaluation to Study the Effects of Dental Amalgam and Composite Restoration on Human Dental Pulp: An in vivo Study

    PubMed Central

    Chandwani, Neelam D.; Pawar, Mansing G.; Tupkari, Jagdish V.; Yuwanati, Monal

    2013-01-01

    Objective To study and compare the effects of dental amalgam and composite restorations on human dental pulp. Materials and Methods One hundred sound premolars scheduled for orthodontic extraction were divided equally into two groups: group A, teeth restored with silver amalgam, and group B, teeth restored with composite resin. Each group was equally subdivided into two subgroups [extracted after 24 h (A-1 and B-1) or 7 days (A−2 and B−2)], and the histological changes in the pulp related to the two different materials at the two different intervals were studied. Results It was found that after 24 h, the inflammatory response of the pulp in teeth restored with amalgam and composite was similar (p = 1.00). However, after 7 days, the severity of the inflammatory response of the pulp in teeth restored with amalgam was less compared to that in teeth restored with composite (p = 0.045). Conclusion This study confirmed that amalgam continues to be the mechanically as well as biologically more competent restorative material. Composite could be a promising restorative material to satisfy esthetic needs for a considerable period of time. However, its biological acceptance is still in doubt. PMID:24217468

  11. Prion protein-deficient mice exhibit decreased CD4 T and LTi cell numbers and impaired spleen structure.

    PubMed

    Kim, Soochan; Han, Sinsuk; Lee, Ye Eun; Jung, Woong-Jae; Lee, Hyung Soo; Kim, Yong-Sun; Choi, Eun-Kyoung; Kim, Mi-Yeon

    2016-01-01

    The cellular prion protein is expressed in almost all tissues, including the central nervous system and lymphoid tissues. To investigate the effects of the prion protein in lymphoid cells and spleen structure formation, we used prion protein-deficient (Prnp(0/0)) Zürich I mice generated by inactivation of the Prnp gene. Prnp(0/0) mice had decreased lymphocytes, in particular, CD4 T cells and lymphoid tissue inducer (LTi) cells. Decreased CD4 T cells resulted from impaired expression of CCL19 and CCL21 in the spleen rather than altered chemokine receptor CCR7 expression. Importantly, some of the white pulp regions in spleens from Prnp(0/0) mice displayed impaired T zone structure as a result of decreased LTi cell numbers and altered expression of the lymphoid tissue-organizing genes lymphotoxin-α and CXCR5, although expression of the lymphatic marker podoplanin and CXCL13 by stromal cells was not affected. In addition, CD3(-)CD4(+)IL-7Rα(+) LTi cells were rarely detected in impaired white pulp in spleens of these mice. These data suggest that the prion protein is required to form the splenic white pulp structure and for development of normal levels of CD4 T and LTi cells. Copyright © 2015. Published by Elsevier GmbH.

  12. Amniotic fluid-derived mesenchymal stem cells lead to bone differentiation when cocultured with dental pulp stem cells.

    PubMed

    De Rosa, Alfredo; Tirino, Virginia; Paino, Francesca; Tartaglione, Antonella; Mitsiadis, Thimios; Feki, Anis; d'Aquino, Riccardo; Laino, Luigi; Colacurci, Nicola; Papaccio, Gianpaolo

    2011-03-01

    Mesenchymal stem cells are present in many tissues of the human body, including amniotic fluid (AF) and dental pulp (DP). Stem cells of both AF and DP give rise to a variety of differentiated cells. In our experience, DP stem cells (DPSCs) display a high capacity to produce bone. Therefore, our aim was to investigate if AF-derived stem cells (AFSCs) were able to undergo bone differentiation in the presence of DPSCs. AFSCs were seeded under three different conditions: (i) cocultured with DPSCs previously differentiated into osteoblasts; (ii) cultured in the conditioned medium of osteoblast-differentiated DPSCs; (iii) cultured in the osteogenic medium supplemented with vascular endothelial growth factor and bone morphogenetic protein-2 (BMP-2). Results showed that AFSCs were positive for mesenchymal markers, and expressed high levels of Tra1-60, Tra1-80, BMPR1, BMPR2, and BMP-2. In contrast, AFSCs were negative for epithelial and hematopoietic/endothelial markers. When AFSCs were cocultured with DPSCs-derived osteoblasts, they differentiated into osteoblasts. A similar effect was observed when AFSCs were cultured in the presence of a conditioned medium originated from DPSCs. We found that osteoblasts derived from DPSCs released large amounts of BMP-2 and vascular endothelial growth factor into the culture medium and that those morphogens significantly upregulate RUNX-2 gene, stimulating osteogenesis. This study highlights the mechanisms of osteogenesis and strongly suggests that the combination of AFSCs with DPSCs may provide a rich source of soluble proteins useful for bone engineering purposes.

  13. Evaluation of in situ layers for treatment of acid mine drainage: a field comparison.

    PubMed

    Hulshof, Andrea H M; Blowes, David W; Gould, W Douglas

    2006-05-01

    Reactive treatment layers, containing labile organic carbon, were evaluated to determine their ability to promote sulfate reduction and metal sulfide precipitation within a tailings impoundment, thereby treating tailings effluent prior to discharge. Organic carbon materials, including woodchips and pulp waste, were mixed with the upper meter of tailings in two separate test cells, a third control cell contained only tailings. In the woodchip cell sulfate reduction rates were 500 mg L-1a-1, (5.2 mmol L-1a-1) this was coupled with the gradual removal of 350 mg L-1 Zn (5.4 mmol L-1). Decreased delta13CDIC values from -3 per thousand to as low as -12 per thousand indicated that sulfate reduction was coupled with organic carbon oxidation. In the pulp waste cell the most dramatic change was observed near the interface between the pulp waste amended tailings and the underlying undisturbed tailings. Sulfate reduction rates were 5000 mg L-1a-1 (52 mmol L-1a-1), Fe concentrations decreased by 80-99.5% (148 mmol L-1) and Zn was consistently <5 mg L-1. Rates of sulfate reduction and metal removal decreased as the pore water migrated upward into the shallower tailings. Increased rates of sulfate reduction in the pulp waste cell were consistent with decreased delta13CDIC values, to as low as -22 per thousand, and increased populations of sulfate reducing bacteria. Lower concentrations of the nutrients, phosphorus, organic carbon and nitrogen in the woodchip material contribute to the lower sulfate reduction rates observed in the woodchip cell.

  14. Vital pulp therapy using calcium-enriched mixture: An evidence-based review

    PubMed Central

    Asgary, Saeed; Ahmadyar, Maryam

    2013-01-01

    Worldwide, casecontrol studies have revealed that the treatment outcomes of root canal therapy (RCT) are generally favorable; however, the overall epidemiological success rate of RCT in the general population is relatively low. On the other hand, vitality of dental pulp is a key factor in the long-term prognosis of permanent teeth; in recent years, vital pulp therapy (VPT) has received significant consideration as it has been revealed that the inflamed pulp has the potential to heal. In this review article, the current best evidence with regard to VPT using calcium-enriched mixture (CEM) cement in human permanent/primary teeth is discussed. A strategy based on a search using keywords for CEM cement as well as VPT was applied. PMID:23716958

  15. Active Nanomaterials to Meet the Challenge of Dental Pulp Regeneration

    PubMed Central

    Keller, Laetitia; Offner, Damien; Schwinté, Pascale; Morand, David; Wagner, Quentin; Gros, Catherine; Bornert, Fabien; Bahi, Sophie; Musset, Anne-Marie; Benkirane-Jessel, Nadia; Fioretti, Florence

    2015-01-01

    The vitality of the pulp is fundamental to the functional life of the tooth. For this aim, active and living biomaterials are required to avoid the current drastic treatment, which is the removal of all the cellular and molecular content regardless of its regenerative potential. The regeneration of the pulp tissue is the dream of many generations of dental surgeons and will revolutionize clinical practices. Recently, the potential of the regenerative medicine field suggests that it would be possible to achieve such complex regeneration. Indeed, three crucial steps are needed: the control of infection and inflammation and the regeneration of lost pulp tissues. For regenerative medicine, in particular for dental pulp regeneration, the use of nano-structured biomaterials becomes decisive. Nano-designed materials allow the concentration of many different functions in a small volume, the increase in the quality of targeting, as well as the control of cost and delivery of active molecules. Nanomaterials based on extracellular mimetic nanostructure and functionalized with multi-active therapeutics appear essential to reverse infection and inflammation and concomitantly to orchestrate pulp cell colonization and differentiation. This novel generation of nanomaterials seems very promising to meet the challenge of the complex dental pulp regeneration. PMID:28793649

  16. Differentiation of Human Dental Stem Cells Reveal a Role for microRNA-218

    PubMed Central

    Gay, Isabel; Cavender, Adriana; Peto, David; Sun, Zhao; Speer, Aline; Cao, Huojun; Amendt, Brad A.

    2013-01-01

    Background Regeneration of the lost periodontium is the ultimate goal of periodontal therapy. Advances in tissue engineering have demonstrated the multilineage potential and plasticity of adult stem cells located in the periodontal apparatus. However, it remains unclear how epigenetic mechanisms controlling signals determine tissue specification and cell lineage decisions. To date, no data is available on micro-RNAs (miRNAs) activity behind human-derived dental stem cells. Methods In this study, we isolated periodontal ligament stem cells (PDLSCs), dental pulp stem cells (DPSCs), and gingival stem cells (GSCs) from extracted third molars; human bone marrow stem cells (BMSCs) were used as a positive control. The expression of OCT4A and NANOG was confirmed in these undifferentiated cells. All cells were cultured under osteogenic inductive conditions and RUNX2 expression was analyzed as a marker of mineralized tissue differentiation. A miRNA expression profile was obtained at baseline and after osteogenic induction in all cell types. Results RUNX2 expression demonstrated the successful osteogenic induction of all cell types, which was confirmed by alizarin red stain. The analysis of 765 miRNAs demonstrated a shift in miRNA expression occurred in all four stem cell types, including a decrease in hsa-mir-218 across all differentiated cell populations. Hsa-mir-218 targets RUNX2 and decreases RUNX2 expression in undifferentiated human dental stem cells (DSCs). DSC mineralized tissue type differentiation is associated with a decrease in hsa-mir-218 expression. Conclusions These data reveal a miRNA regulated pathway for the differentiation of human DSCs and a select network of human microRNAs that control DSC osteogenic differentiation. PMID:23662917

  17. Bacterial profile in primary teeth with necrotic pulp and periapical lesions.

    PubMed

    da Silva, Léa Assed Bezerra; Nelson-Filho, Paulo; Faria, Gisele; de Souza-Gugelmin, Maria Cristina Monteiro; Ito, Izabel Yoko

    2006-01-01

    The objective of this study was to evaluate the bacterial profile in root canals of human primary teeth with necrotic pulp and periapical lesions using bacterial culture. A total of 20 primary teeth with necrotic pulp and radiographically visible radiolucent areas in the region of the bone furcation and/or the periapical region were selected. After crown access, 4 sterile absorbent paper points were introduced sequentially into the root canal for collection of material. After 30 s, the paper points were removed and placed in a test tube containing reduced transport fluid (RTF) and were sent for microbiological evaluation. Anaerobic microorganisms were found in 100% of the samples, black-pigmented bacilli in 30%, aerobic microorganisms in 60%, streptococci in 85%, gram-negative aerobic rods in 15% and staphylococci were not quantified. Mutans streptococci were found in 6 root canals (30%), 5 canals with Streptococcus mutans and 1 canal with Streptococcus mutans and Streptococcus sobrinus. It was concluded that in root canals of human primary teeth with necrotic pulp and periapical lesions, the infection is polymicrobial with predominance of anaerobic microorganisms.

  18. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Henry F., E-mail: Hal.Duncan@dental.tcd.ie; Smith, Anthony J.; Fleming, Garry J.P.

    Application of histone deacetylase inhibitors (HDACi) to cells epigenetically alters their chromatin structure and induces transcriptional and cellular reparative events. This study investigated the application of two HDACi, valproic acid (VPA) and trichostatin A (TSA) on the induction of repair-associated responses in primary dental pulp cell (DPC) cultures. Flow cytometry demonstrated that TSA (100 nM, 400 nM) significantly increased cell viability. Neither HDACi was cytotoxic, although cell growth analysis revealed significant anti-proliferative effects at higher concentrations for VPA (>0.5 mM) and TSA (>50 nM). While high-content-analysis demonstrated that HDACi did not significantly induce caspase-3 or p21 activity, p53-expression was increasedmore » by VPA (3 mM, 5 mM) at 48 h. HDACi-exposure induced mineralization per cell dose-dependently to a plateau level (VPA-0.125 mM and TSA-25 nM) with accompanying increases in mineralization/dentinogenic-associated gene expression at 5 days (DMP-1, BMP-2/-4, Nestin) and 10 days (DSPP, BMP-2/-4). Both HDACis, at a range of concentrations, significantly stimulated osteopontin and BMP-2 protein expression at 10 and 14 days further supporting the ability of HDACi to promote differentiation. HDACi exert different effects on primary compared with transformed DPCs and promote mineralization and differentiation events without cytotoxic effects. These novel data now highlight the potential in restorative dentistry for applying low concentrations of HDACi in vital pulp treatment. -- Highlights: • Valproic acid and trichostatin A promoted mineralization in primary pulp cells. • Cell viability, apoptosis, caspase-3, p21 unaltered; p53 increased by valproic acid. • Trichostatin A increased cell viability at 24 h at selected concentrations. • Altered cell toxicity and differentiation between primary and transformed cells. • HDACi-induced the differentiation marker proteins osteopontin and BMP-2.« less

  19. Age estimation based on pulp chamber volume of first molars from cone-beam computed tomography images.

    PubMed

    Ge, Zhi-pu; Ma, Ruo-han; Li, Gang; Zhang, Ji-zong; Ma, Xu-chen

    2015-08-01

    To establish a method that can be used for human age estimation on the basis of pulp chamber volume of first molars and to identify whether the method is good enough for age estimation in real human cases. CBCT images of 373 maxillary first molars and 372 mandibular first molars were collected to establish the mathematical model from 190 female and 213 male patients whose age between 12 and 69 years old. The inclusion criteria of the first molars were: no caries, no excessive tooth wear, no dental restorations, no artifacts due to metal restorative materials present in adjacent teeth, and no pulpal calcification. All the CBCT images were acquired with a CBCT unit NewTom VG (Quantitative Radiology, Verona, Italy) and reconstructed with a voxel-size of 0.15mm. The images were subsequently exported as DICOM data sets and imported into an open source 3D image semi-automatic segmenting and voxel-counting software ITK-SNAP 2.4 for the calculation of pulp chamber volumes. A logarithmic regression analysis was conducted with age as dependent variable and pulp chamber volume as independent variables to establish a mathematical model for the human age estimation. To identify the precision and accuracy of the model for human age estimation, another 104 maxillary first molars and 103 mandibular first molars from 55 female and 57 male patients whose age between 12 and 67 years old were collected, too. Mean absolute error and root mean square error between the actual age and estimated age were used to determine the precision and accuracy of the mathematical model. The study was approved by the Institutional Review Board of Peking University School and Hospital of Stomatology. A mathematical model was suggested for: AGE=117.691-26.442×ln (pulp chamber volume). The regression was statistically significant (p=0.000<0.01). The coefficient of determination (R(2)) was 0.564. There is a mean absolute error of 8.122 and root mean square error of 5.603 between the actual age and estimated age for all the tested teeth. The pulp chamber volume of first molar is a useful index for the estimation of human age with reasonable precision and accuracy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties.

    PubMed

    Filannino, Pasquale; Cavoski, Ivana; Thlien, Nadia; Vincentini, Olimpia; De Angelis, Maria; Silano, Marco; Gobbetti, Marco; Di Cagno, Raffaella

    2016-01-01

    Cactus pear (Opuntia ficus-indica L.) is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05) on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin) were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05) of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05) higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The highest functional effect was found using ethyl acetate extracts. In conclusion, fermentation, especially with L. plantarum strains and L. brevis POM4, enhanced the antioxidant and immune-modulation features of cladode pulp.

  1. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties

    PubMed Central

    Filannino, Pasquale; Cavoski, Ivana; Thlien, Nadia; Vincentini, Olimpia; De Angelis, Maria; Silano, Marco; Gobbetti, Marco; Di Cagno, Raffaella

    2016-01-01

    Cactus pear (Opuntia ficus-indica L.) is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05) on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin) were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05) of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05) higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The highest functional effect was found using ethyl acetate extracts. In conclusion, fermentation, especially with L. plantarum strains and L. brevis POM4, enhanced the antioxidant and immune-modulation features of cladode pulp. PMID:27023062

  2. Bioactivities of anastasia black (Russian sweet pepper).

    PubMed

    Shirataki, Yoshiaki; Kawase, Masami; Sakagami, Hiroshi; Nakashima, Hideki; Tani, Satoru; Tanaka, Toru; Sohara, Yoshitaka; Schelz, Zsuzsanna; Molnar, Joseph; Motohashi, Noboru

    2005-01-01

    Anastasia Black (Russian sweet pepper) of Capsicum annuum L. var. angulosum Mill. (Solanaceae) was successively extracted with hexane, acetone, methanol and 70% methanol, and the extracts were further separated into a total of twenty-three fractions by silica gel or octadecylsilane (ODS; C18) column chromatography. These extracts and fractions were investigated for their cytotoxicity, anti-human immunodeficiency virus (HIV), anti-Helicobacter pylori (H. pylori), urease inhibition and multidrug resistance (MDR) reversal activity. Some fractions of hexane and acetone extracts showed higher cytotoxic activity against three human oral tumor cell lines (squamous cell carcinoma HSC-2, HSC-3, submandibular gland carcinoma HSG) than against three normal human oral cells (gingival fibroblast HGF, pulp cell HPC, periodontal ligament fibroblast HPLF), suggesting a tumor-specific cytotoxic activity. No fractions displayed anti-HIV activity, but some hydrophobic fractions showed higher anti-H. pylori activity, urease inhibition activity and MDR reversal activity. The higher MDR activity of these fractions against MDR gene-transfected L5178 mouse lymphoma T cells may possibly be due to their higher content of carotene or polyphenol. These data suggest that Anastasia Black should be further investigated as a potent supplement for cancer chemotherapy.

  3. UHPLC-QqQ-MS/MS identification, quantification of polyphenols from Passiflora subpeltata fruit pulp and determination of nutritional, antioxidant, α-amylase and α-glucosidase key enzymes inhibition properties.

    PubMed

    Shanmugam, Saravanan; Gomes, Isla Alcântara; Denadai, Marina; Dos Santos Lima, Bruno; de Souza Araújo, Adriano Antunes; Narain, Narendra; Neta, Maria Terezinha Santos Leite; Serafini, Mairim Russo; Quintans-Júnior, Lucindo José; Thangaraj, Parimelazhagan

    2018-06-01

    The diabetic key enzymes inhibition, nutritional, antioxidant activity and bioactive compounds identification of Passiflora subpeltata fruit pulp were investigated. Fifteen polyphenolic compounds including protocatechuic acid, ferulic acid, vanillic acid, epicatechin, p-coumaric acid, cinnamic acid, eriodictyol and quercetin-3-glucoside were identified in the pulp of this species by using UHPLC-QqQ-MS/MS analysis. The total carbohydrates and crude protein contents in fruit pulp were 2.62 mg glucose equivalent/g sample fruit pulp and 8.80 mg BSA equivalent/g sample fruit pulp, respectively. The fresh fruit pulp of P. subpeltata contained high total phenolic (724.76 mg GAE/g sample) content and it revealed very high DPPH • (IC 50 of 5.667 μg/mL) and ABTS +• (6794.96 μM trolox equivalent/g sample) scavenging activities. In the key enzymes assays useful for diabetic inhibition the fresh fruit pulp characterized maximum inhibition of α-amylase and α-glucosidase IC 50 of 18.69 and 32.63 μg/mL, respectively. Thus, these results lead to conclude that this fruit specie could be very useful source in nutraceutical products preparations for Type 2 diabetic suffering humans. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Retrieval of a periodontally compromised tooth by allogeneic grafting of mesenchymal stem cells from dental pulp: A case report.

    PubMed

    Hernández-Monjaraz, Beatriz; Santiago-Osorio, Edelmiro; Ledesma-Martínez, Edgar; Alcauter-Zavala, Andrés; Mendoza-Núñez, Víctor Manuel

    2018-01-01

    Objective To report a case of successful allogeneic grafting of mesenchymal dental pulp stem cells (DPSCs) as preliminary findings in a patient with periodontal disease enrolled into clinical trial ISRCTN12831118. Methods Mesenchymal stem cells from the dental pulp of a deciduous tooth from a 7-year-old donor were separated from the pulp chamber and processed via enzymatic digestion and centrifugation. DPSCs were passaged and cultured on a 35 × 13 mm culture dish in minimum essential medium-alpha, without supplementation. After reaching 80% confluency, 5 x 10 6 allogeneic DPSCs in 250 µl phosphate buffered saline were seeded onto a dry scaffold of lyophilized collagen-polyvinylpyrrolidone sponge placed in the left lower premolar area of a 61-year-old patient with periodontal disease. Surgical access to the lower premolar area was achieved using the flap technique. Results At 3 and 6 months following allogeneic graft, the patient showed no sign of rejection and exhibited decreases in tooth mobility, periodontal pocket depth and bone defect area. Bone mineral density had increased at the graft site. Conclusions Regenerative periodontal therapy using DPSCs of allogeneic origin may be a promising treatment for periodontal disease-induced bone defects.

  5. Biocompatibility Evaluation of Four Dentin Adhesives Used as Indirect Pulp Capping Materials

    PubMed Central

    Cortés, Olga; Bernabé, Antonia

    2017-01-01

    Background In many cases, the indirect pulp treatment (IPT) is an acceptable treatment for deciduous teeth with reversible pulp inflammation. Various medicaments have been used for IPT, ranging from calcium hydroxide and glass ionomers to dentin adhesives. Objective This in vitro trial aimed to measure cytotoxicity in a cell culture, comparing the following four adhesives: Xeno® V (XE), Excite® F DSC (EX), Adhese® OneF (AD) and Prime & Bond NT (PB). Materials and methods The adhesives were prepared according to the manufacturer’s instructions. After 24 hours of exposure, the cell viability was evaluated using a photometrical test (MTT test). Data were subjected to analysis of variance (ANOVA). Results Adhesives, the main component of which was 2-hydroxyethyl methacrylate (HEMA), were found to be less cytotoxic, while those that included the monomer urethane dimethacrylate (UDMA were the most cytotoxic) in their composition. The effects on cell viability assay varied between the adhesives assayed with statistically significant differences. Conclusions The results may support the argument that Adhese® OneF is the least cytotoxic of the adhesives assayed, and may be considered as an adhesive agent for indirect pulp treatment. However, Prime and Bond NT showed a reduced biocompatibility under the same conditions. PMID:28827848

  6. A comparison between red and infrared light for recording pulpal blood flow from human anterior teeth with a laser Doppler flow meter.

    PubMed

    Kijsamanmith, Kanittha; Timpawat, Siriporn; Vongsavan, Noppakun; Matthews, Bruce

    2011-06-01

    To compare red (635 nm) and infrared (780 nm) light for recording pulpal blood flow from human anterior teeth with a laser Doppler flow meter. Recordings were made from 7 healthy teeth in 5 subjects (aged 22-55 years) using a laser Doppler flow meter (Periflux 4001) equipped with both red and infrared lasers. Average blood flow signals were obtained with both light sources alternately from each tooth under five conditions: intact tooth without opaque rubber dam, intact tooth with dam, after injecting local anaesthetic (3% Mepivacaine) (LA) over the apex of the tooth and cavity preparation to almost expose the pulp, after removal and replacement of the pulp, and with the root canal empty. With infrared light, because of technical limitations, data were obtained for the first three conditions only. The dam significantly decreased the mean blood flow by 82%. Injecting LA and cavity preparation had no significant effect. With red light, dam produced a decrease of 56%, and the resulting signal was reduced by 33% after LA and cavity preparation. The remaining signal fell by 46% after pulp removal and replacement. This contribution of the pulp is similar to that recorded previously with infrared light. There was no significant further change when the pulp was finally removed. The importance of using opaque rubber dam is confirmed. With dam, there is no advantage to using red rather than infrared light, and in each case the pulp contributes less than 50% to the blood flow signal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Re-evaluation of tumor-specific cytotoxicity of mitomycin C, bleomycin and peplomycin.

    PubMed

    Sasaki, Masahiro; Okamura, Masahiko; Ideo, Atsushi; Shimada, Jun; Suzuki, Fumika; Ishihara, Mariko; Kikuchi, Hirotaka; Kanda, Yumiko; Kunii, Shiro; Sakagami, Hiroshi

    2006-01-01

    Three antitumor antibiotics, mitomycin C, bleomycin sulfate and peplomycin sulfate, were compared for their tumor-specific cytotoxicity, using human oral squamous cell lines (HSC-2, HSC-3, HSC-4, Ca9-22 and NA), human promyelocytic leukemic cell line HL-60 and human normal oral cell types (gingival fibroblast HGF, pulp cell HPC and periodontal ligament fibroblast HPLF). Among these three compounds, mitomycin C showed the highest tumor-specificity, due to its higher cytotoxic activity against human oral tumor cell lines than bleomycin and peplomycin. However, there was considerable variation of drug sensitivity among the six tumor cell lines. Mitomycin C induced internucleosomal DNA fragmentation and caspase-3, -8 and -9 activation in HL-60 cells only after 24 h. On the other hand, mitomycin C induced no clear-cut DNA fragmentation in HCS-2 cells, although it activated caspase-3, -8 and -9 to a slightly higher extent. Western blot analysis demonstrated that mitomycin C did not induce any apparent change in the intracellular concentration of anti-apoptotic protein (Bcl-2) and pro-apoptotic proteins (Bax, Bad). Electron microscopy of mitomycin C-treated HL-60 cells showed intact mitochondria (as regards to integrity and size) and cell surface microvilli, without production of an apoptotic body or autophagosome, at an early stage after treatment. The present study suggests the incomplete induction of apoptosis or the induction of another type of cell death by mitomycin C treatment.

  8. Transplantation of human dental pulp-derived stem cells protects against heatstroke in mice.

    PubMed

    Tseng, Ling-Shu; Chen, Sheng-Hsien; Lin, Mao-Tsun; Lin, Ying-Chu

    2015-01-01

    Stem cells from human exfoliated deciduous tooth pulp (SHED) is a promising approach for the treatment of stroke and spinal cord injury. In this study, we investigated the therapeutic effects of SHED for the treatment of multiple organ (including brain, particularly hypothalamus) injury in heatstroke mice. ICR male mice were exposed to whole body heating (WBH; 41.2°C, relative humidity 50-55%, for 1 h) and then returned to normal room temperature (26°C). We observed that intravenous administration of SHED immediately post-WBH exhibited the following therapeutic benefits for recovery after heatstroke: (a) inhibition of WBH-induced neurologic and thermoregulatory deficits; (b) reduction of WBH-induced ischemia, hypoxia, and oxidative damage to the brain (particularly the hypothalamus); (c) attenuation of WBH-induced increased plasma levels of systemic inflammatory response molecules, such as tumor necrosis factor-α and intercellular adhesion molecule-1; (d) improvement of WBH-induced hypothalamo-pituitary-adrenocortical (HPA) axis activity (as reflected by enhanced plasma levels of both adrenocorticotrophic hormone and corticosterone); and (e) attenuation of WBH-induced multiple organ apoptosis as well as lethality. In conclusion, post-WBH treatment with SHED reduced induction of proinflammatory cytokines and oxidative radicals, enhanced plasma induction of both adrenocorticotrophic hormone and corticosterone, and improved lethality in mouse heatstroke. The protective effect of SHED may be related to a decreased inflammatory response, decreased oxidative stress, and an increased HPA axis activity following the WBH injury.

  9. Comparative morphology of the pollical distal phalanx.

    PubMed

    Shrewsbury, M M; Marzke, M W; Linscheid, R L; Reece, S P

    2003-05-01

    Functional analysis of human pollical distal phalangeal (PDP) morphology is undertaken to establish a basis for the assessment of fossil hominid PDP morphology. Features that contribute to the effectiveness of grips involving the distal thumb and finger pulp areas include: 1) distal thumb interphalangeal joint morphology, facilitating PDP conjunct pronation with flexion; 2) differentiation of a proximal, mobile pulp region from a distal, stable pulp region, providing for firm precision pinch grips and precision handling of objects; and 3) asymmetric attachment of the flexor pollicis longus (FPL) tendon fibers, favoring PDP conjunct pronation. A proportionately larger size of the ulnar vs. radial ungual spine suggests differential loading intensity of the ulnar side of the proximal ungual pulp and supporting nail bed. Stresses at the distal interphalangeal joint are indicated by the presence of a sesamoid bone within the volar (palmar) plate, which also increases the length of the flexor pollicis longus tendon moment arm. Dissections of specimens from six nonhuman primate genera indicate that these human features are shared variably with individuals in other species, although the full pattern of features appears to be distinctively human. Humans share variably with these other species all metric relationships examined here. The new data identify a need to systematically review long-standing assumptions regarding the range of precision and power manipulative capabilities that might reasonably be inferred from morphology of the distal phalangeal tuberosity and from the FPL tendon insertion site on the PDP. Copyright 2003 Wiley-Liss, Inc.

  10. Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification

    Treesearch

    Ingrid C. Hoeger; Sandeep S. Nair; Arthur J. Ragauskas; Yulin Deng; Orlando J. Rojas; J.Y. Zhu

    2013-01-01

    Laboratory mechanical softwood pulps (MSP) and commercial bleached softwood kraft pulps (BSKP) were mechanically fibrillated by stone grinding with a SuperMassColloider®. The extent of fibrillation was evaluated by SEM imaging, water retention value (WRV) and cellulase adsorption. Both lignin content and mechanical treatment significantly affected deconstruction and...

  11. Potential Roles of Dental Pulp Stem Cells in Neural Regeneration and Repair

    PubMed Central

    Luo, Lihua; Wang, Xiaoyan; Key, Brian; Lee, Bae Hoon

    2018-01-01

    This review summarizes current advances in dental pulp stem cells (DPSCs) and their potential applications in the nervous diseases. Injured adult mammalian nervous system has a limited regenerative capacity due to an insufficient pool of precursor cells in both central and peripheral nervous systems. Nerve growth is also constrained by inhibitory factors (associated with central myelin) and barrier tissues (glial scarring). Stem cells, possessing the capacity of self-renewal and multicellular differentiation, promise new therapeutic strategies for overcoming these impediments to neural regeneration. Dental pulp stem cells (DPSCs) derive from a cranial neural crest lineage, retain a remarkable potential for neuronal differentiation, and additionally express multiple factors that are suitable for neuronal and axonal regeneration. DPSCs can also express immunomodulatory factors that stimulate formation of blood vessels and enhance regeneration and repair of injured nerve. These unique properties together with their ready accessibility make DPSCs an attractive cell source for tissue engineering in injured and diseased nervous systems. In this review, we interrogate the neuronal differentiation potential as well as the neuroprotective, neurotrophic, angiogenic, and immunomodulatory properties of DPSCs and its application in the injured nervous system. Taken together, DPSCs are an ideal stem cell resource for therapeutic approaches to neural repair and regeneration in nerve diseases. PMID:29853908

  12. Stem cell-based biological tooth repair and regeneration

    PubMed Central

    Volponi, Ana Angelova; Pang, Yvonne; Sharpe, Paul T.

    2010-01-01

    Teeth exhibit limited repair in response to damage, and dental pulp stem cells probably provide a source of cells to replace those damaged and to facilitate repair. Stem cells in other parts of the tooth, such as the periodontal ligament and growing roots, play more dynamic roles in tooth function and development. Dental stem cells can be obtained with ease, making them an attractive source of autologous stem cells for use in restoring vital pulp tissue removed because of infection, in regeneration of periodontal ligament lost in periodontal disease, and for generation of complete or partial tooth structures to form biological implants. As dental stem cells share properties with mesenchymal stem cells, there is also considerable interest in their wider potential to treat disorders involving mesenchymal (or indeed non-mesenchymal) cell derivatives, such as in Parkinson's disease. PMID:21035344

  13. Formocresol versus calcium hydroxide direct pulp capping of human primary molars: two year follow-up.

    PubMed

    Aminabadi, Naser Asl; Farahani, Ramin Mostofi Zadeh; Oskouei, Sina Ghertasi

    2010-01-01

    Clinical and radiographic evaluation of the premedicated direct pulp capping using formocresol (PDC) versus conventional direct pulp capping using calcium hydroxide (CDC) in human carious primary molars. A total of 120 vital primary molars with pinpoint exposure during caries removal in 84 patients aged 4-5 years were selected. In the PDC group (n = 60), 20% Buckley's formocresol solution, and in the CDC group (n = 60), calcium hydroxide powder were applied to the exposure sites followed by placement of zinc oxide-eugenol base. Teeth were restored with preformed stainless steel crowns. Clinical and radiographic evaluations of the treatment outcomes were performed at regular intervals of 6 and 12 months, respectively, for two years post-operatively. The prevalence of spontaneous pain, sensitivity on percussion, and fistula were significantly higher in the CDC group compared to the PDC group (P < 0.05). The number of teeth exhibiting periapical/furcal radiolucency or external/internal root resorption was also higher in the CDC group (P < 0.05). The clinical success rate of the PDC was 90% compared to the 61.7% of the CDC (P < 0.05). The radiographic success rates of the PDC and CDC groups were 85% and 53.3%, respectively (P < 0.05). It seems formocresol premedicated direct pulp capping could safely be used as a substitute for conventional direct pulp capping.

  14. Intra-pulp temperature increase of equine cheek teeth during treatment with motorized grinding systems: influence of grinding head position and rotational speed.

    PubMed

    Haeussler, Silvia; Luepke, Matthias; Seifert, Hermann; Staszyk, Carsten

    2014-02-21

    In equine practice, teeth corrections by means of motorized grinding systems are standard procedure. The heat resulting from that treatment may cause irreparable damage to the dental pulp. It has been shown that a 5.5°C temperature rise may cause severe destruction in pulp cells. Hence, the capability to continuously form secondary dentine is lost, and may lead, due to equine-typical occlusal tooth abrasion, to an opening of the pulp cavity.To obtain reliable data on the intra-pulp increase in temperature during corrective treatments, equine cheek teeth (CT) were modified in a way (occlusal surface smoothed, apical parts detached, pulp horns standardized) that had been qualified in own former published studies. All parameters influencing the grinding process were standardized (force applied, initial temperatures, dimensions of pulp horns, positioning of grinding disk, rotational speed). During grinding experiments, imitating real dental treatments, the time span for an intra-pulp temperature increase of 5.5°C was determined. The minimum time recorded for an intra-pulp temperature increase of 5.5°C was 38 s in mandibular CT (buccal grinding, 12,000 rpm) and 70 s in maxillary CT (flat occlusal grinding, 12,000 rpm). The data obtained showed that doubling the rotational speed of the disk results in halving the time span after which the critical intra-pulp temperature increase in maxillary CT is reached. For mandibular CT, the time span even drops by two thirds. The use of standardized hypsodont CT enabled comparative studies of intra-pulp heating during the grinding of occlusal tooth surfaces using different tools and techniques. The anatomical structure of the natural vital hypsodont tooth must be kept in mind, so that the findings of this study do not create a deceptive sense of security with regard to the time-dependent heating of the native pulp.

  15. Intra-pulp temperature increase of equine cheek teeth during treatment with motorized grinding systems: influence of grinding head position and rotational speed

    PubMed Central

    2014-01-01

    Background In equine practice, teeth corrections by means of motorized grinding systems are standard procedure. The heat resulting from that treatment may cause irreparable damage to the dental pulp. It has been shown that a 5.5°C temperature rise may cause severe destruction in pulp cells. Hence, the capability to continuously form secondary dentine is lost, and may lead, due to equine-typical occlusal tooth abrasion, to an opening of the pulp cavity. To obtain reliable data on the intra-pulp increase in temperature during corrective treatments, equine cheek teeth (CT) were modified in a way (occlusal surface smoothed, apical parts detached, pulp horns standardized) that had been qualified in own former published studies. All parameters influencing the grinding process were standardized (force applied, initial temperatures, dimensions of pulp horns, positioning of grinding disk, rotational speed). During grinding experiments, imitating real dental treatments, the time span for an intra-pulp temperature increase of 5.5°C was determined. Results The minimum time recorded for an intra-pulp temperature increase of 5.5°C was 38 s in mandibular CT (buccal grinding, 12,000 rpm) and 70 s in maxillary CT (flat occlusal grinding, 12,000 rpm). The data obtained showed that doubling the rotational speed of the disk results in halving the time span after which the critical intra-pulp temperature increase in maxillary CT is reached. For mandibular CT, the time span even drops by two thirds. Conclusion The use of standardized hypsodont CT enabled comparative studies of intra-pulp heating during the grinding of occlusal tooth surfaces using different tools and techniques. The anatomical structure of the natural vital hypsodont tooth must be kept in mind, so that the findings of this study do not create a deceptive sense of security with regard to the time-dependent heating of the native pulp. PMID:24559121

  16. The effect of 8.25% sodium hypochlorite on dental pulp dissolution and dentin flexural strength and modulus.

    PubMed

    Cullen, James K T; Wealleans, James A; Kirkpatrick, Timothy C; Yaccino, John M

    2015-06-01

    The purpose of this study was to evaluate the effect of various concentrations of sodium hypochlorite (NaOCl), including 8.25%, on dental pulp dissolution and dentin flexural strength and modulus. Sixty dental pulp samples and 55 plane parallel dentin bars were retrieved from extracted human teeth. Five test groups (n = 10) were formed consisting of a pulp sample and dentin bar immersed in various NaOCl solutions. The negative control group (n = 5) consisted of pulp samples and dentin bars immersed in saline. The positive control group (n = 5) consisted of pulp samples immersed in 8.25% NaOCl without a dentin bar. Every 6 minutes for 1 hour, the solutions were refreshed. The dentin bars were tested for flexural strength and modulus with a 3-point bend test. The time until total pulp dissolution and any changes in dentin bar flexural strength and modulus for the different NaOCl solutions were statistically analyzed. An increase in NaOCl concentration showed a highly significant decrease in pulp dissolution time. The pulp dissolution property of 8.25% NaOCl was significantly faster than any other tested concentration of NaOCl. The presence of dentin did not have a significant effect on the dissolution capacity of NaOCl if the solutions were refreshed. NaOCl concentration did not have a statistically significant effect on dentin flexural strength or modulus. Dilution of NaOCl decreases its pulp dissolution capacity. Refreshing the solution is essential to counteract the effects of dentin. In this study, NaOCl did not have a significant effect on dentin flexural strength or modulus. Published by Elsevier Inc.

  17. IGF-1 and TGF-β stimulate cystine/glutamate exchange activity in dental pulp cells

    PubMed Central

    Pauly, Katherine; Fritz, Kimberly; Furey, Alyssa; Lobner, Doug

    2011-01-01

    Introduction The growth factors IGF-1 and TGF-β are protective to dental pulp cells in culture against the toxicity of the composite materials Durafill VS and Flow Line. Since the toxicity of these materials is mediated by oxidative stress, it seemed possible that the protective effects of IGF-1 and TGF-β were through enhancement of an endogenous antioxidant mechanism. Methods We used cultured dental pulp cells to determine the mechanism of the protective effects of IGF-1 and TGF-β, focusing on the glutathione system and the role of cystine/glutamate exchange (system xc-). Results We found that the toxicity of Durafill VS and Flow Line was attenuated by addition of glutathione monoethylester, suggesting a specific role for the cellular antioxidant glutathione. Supporting this hypothesis we found that IGF-1 and TGF-β were protective against the toxicity of the glutathione synthesis inhibitor buthionine sulfoximine. Since levels of cellular cystine are the limiting factor in the production of glutathione we tested the effects of IGF-1 and TGF-β on cystine uptake. Both growth factors stimulated system xc- mediated cystine uptake. Furthermore, they attenuated the glutathione depletion induced by Durafill VS and Flow Line. Conclusions The results suggest that IGF-1 and TGF-β are protective through the stimulation of system xc- mediated cystine uptake leading to maintenance of cellular glutathione. This novel action of growth factors on dental pulp cells has implications not only for preventing toxicity of dental materials but also for the general function of these cells. PMID:21689549

  18. Pulpal status of human primary teeth with physiological root resorption.

    PubMed

    Monteiro, Joana; Day, Peter; Duggal, Monty; Morgan, Claire; Rodd, Helen

    2009-01-01

    The overall aim of this study was to determine whether any changes occur in the pulpal structure of human primary teeth in association with physiological root resorption. The experimental material comprised 64 sound primary molars, obtained from children requiring routine dental extractions under general anaesthesia. Pulp sections were processed for indirect immunofluorescence using combinations of: (i) protein gene product 9.5 (a general neuronal marker); (ii) leucocyte common antigen CD45 (a general immune cell marker); and (iii) Ulex europaeus I lectin (a marker of vascular endothelium). Image analysis was then used to determine the percentage area of staining for each label within both the pulp horn and mid-coronal region. Following measurement of the greatest degree of root resorption in each sample, teeth were subdivided into three groups: those with physiological resorption involving less than one-third, one-third to two-thirds, and more than two-thirds of their root length. Wide variation was evident between different tooth samples with some resorbed teeth showing marked changes in pulpal histology. Decreased innervation density, increased immune cell accumulation, and increased vascularity were evident in some teeth with advanced root resorption. Analysis of pooled data, however, did not reveal any significant differences in mean percentage area of staining for any of these variables according to the three root resorption subgroups (P > 0.05, analysis of variance on transformed data). This investigation has revealed some changes in pulpal status of human primary teeth with physiological root resorption. These were not, however, as profound as one may have anticipated. It is therefore speculated that teeth could retain the potential for sensation, healing, and repair until advanced stages of root resorption.

  19. Grapevine fruit extract protects against radiation-induced oxidative stress and apoptosis in human lymphocyte.

    PubMed

    Singha, Indrani; Das, Subir Kumar

    2015-11-01

    Ionizing radiation (IR) causes oxidative stress through overwhelming generation of reactive oxygen species (ROS) in the living cells leading the oxidative damage further to biomolecules. Grapevine (Vitis vinifera L.) posses several bioactive phytochemicals and is the richest source of antioxidants. In this study, we investigated V. vinifera for its phytochemical content, enzymes profile and, ROS- and oxidant-scavenging activities. We have also studied the fruit extract of four different grapevine viz., Thompson seedless, Flame seedless, Kishmish chorni and Red globe for their radioprotective actions in human lymphocytes. The activities of ascorbic acid oxidase and catalase significantly (P < 0.01) differed among extracts within the same cultivar, while that of peroxidase and polyphenol oxidase did not differ significantly. The superoxide radical-scavenging activity was higher in the seed as compared to the skin or pulp of the same cultivar. Pretreatment with grape extracts attenuated the oxidative stress induced by 4 Gy γ-radiation in human lymphocytes in vitro. Further, γ-radiation-induced increase in caspase 3/7 activity was significantly attenuated by grape extracts. These results suggest that grape extract serve as a potential source of natural antioxidants against the IR-induced oxidative stress and also inhibit apoptosis. Furthermore, the protective action of grape depends on the source of extract (seed, skin or pulp) and type of the cultivars.

  20. [Influence of the Arg-Gly-Asp-Ser sequence on the biological effects of bioactive glass on human dental pulp cells].

    PubMed

    Liu, Y; Wang, S N; Cui, C Y; Dong, Y M

    2017-04-18

    Positive effects of bioactive glass (BG) on proliferation, mineralization, and differentiation of human dental pulp cells (hDPCs) was already verified in various former studies. The Arg-Gly-Asp-Ser sequence (RGDS) was confirmed of affecting cell adhesion. Before further investigation, the objective of this study is to investigate whether RGDS can affect the effects of BG on the adhesion, proliferation and mineralization of hDPCs. hDPCs were harvested from third molars of 18-25-year-old individuals after informed consent. Enzyme digestion technique was used. The 4th to 6th generation of hDPCs were used for all experiments. The cells of the experimental groups were cultured in Dulbecco minimum essential medium (DMEM) containing ionic dissolution products of BG and RGDS of several concentrations (12.5 mg/L, 25.0 mg/L, 50.0 mg/L, 100.0 mg/L, 200.0 mg/L). DMEM containing ionic dissolution products of BG without RGDS was used for cell culture as control group. Cell adhesion was tested 4 h after cell seeding by MTT assay. Cell proliferation was examined at 1, 3, 5, 7, and 9 d after cell seeding by MTT assay. Cell mineralization was investigated on days 14 and 28 by alizarin red staining. After being stained and dried, mineralized nodules were dissolved by cetylpyridinium chloride (CPC) for semi-quantitative test. Results were statistically analyzed by one way ANOVA, SPSS (version 19.0) and P<0.05 was considered to be significant. Cell adhesion in BG group showed no difference from that in DMEM group. Compared with BG group, hDPCs in BG+RGDS groups suggested weaker cell adhesion.When the concentration of RGDS increased, the adhered cell number decreased. hDPCs cultured with BG and RGDS showed lower proliferation activity in the early stage, while no significant difference was observed after 3 d. BG group promoted the mineralization of hDPCs compared with positive control group, negative control group and RGDS group. No significant difference was observed between BG+RGDS group and BG group or between RGDS group and positive control group. BG promotes proliferation and mineralization without affecting cell adhesion of hDPCs. Unbounded RGDS inhibits cell adhesion, but has no influence on the positive effects of BG on the proliferation and mineralization of hDPCs.

  1. Poly herbal formulation with anti-elastase and anti-oxidant properties for skin anti-aging.

    PubMed

    Kalyana Sundaram, Induja; Sarangi, Deepika Deeptirekha; Sundararajan, Vignesh; George, Shinomol; Sheik Mohideen, Sahabudeen

    2018-01-29

    Skin forms an important part of human innate immune system. Wrinkles, thinning and roughening of skin are some of the symptoms that affect the skin as it ages. Reactive oxygen species induced oxidative stress plays a major role in skin aging by modulating the elastase enzyme level in the skin. Extrinsic factors that affect skin aging such as UV radiation can also cause malignant melanoma. Here we selected four medicinal plant materials, namely, leaves of Nyctanthes arbor-tristis, unripe and ripe Aegle marmelos fruit pulp and the terminal meristem of Musa paradisiaca flower and investigated their anti-aging properties and cytotoxicity in vitro individually as well as in a poly herbal formulation containing the four plant extracts in different ratios. The phytochemical contents of the plant extracts were investigated for radical scavenging activity and total reducing power. Based upon its anti-oxidant properties, a poly herbal formulation containing leaves of Nyctanthes arbor-tristis, unripe and ripe fruit pulp of Aegle marmelos, and the terminal meristem of Musa paradisiaca flower in the ratio 6:2:1:1 (Poly Herbal Formulation 1) and 1:1:1:1 (Poly Herbal Formulation 2), respectively were formulated. It has been observed that the Poly Herbal Formulation 1 was more potent than Poly Herbal Formulation 2 due to better anti-oxidant and anti-elastase activities in NIH3T3 fibroblast cells. In addition Poly Herbal formulation 1 also had better anti-cancer activity in human malignant melanoma cells. Based on these results these beneficial plant extracts were identified for its potential application as an anti-aging agent in skin creams as well as an anti-proliferation compound against cancer cells.

  2. Human treated dentin matrices combined with Zn-doped, Mg-based bioceramic scaffolds and human dental pulp stem cells towards targeted dentin regeneration.

    PubMed

    Bakopoulou, Athina; Papachristou, Eleni; Bousnaki, Maria; Hadjichristou, Christina; Kontonasaki, Eleana; Theocharidou, Anna; Papadopoulou, Lambrini; Kantiranis, Nikolaos; Zachariadis, George; Leyhausen, Gabriele; Geurtsen, Werner; Koidis, Petros

    2016-08-01

    This study aimed to investigate the potential of Mg-based bioceramic scaffolds combined with human treated-dentin matrices (hTDMs) and dentinogenesis-related morphogens to promote odontogenic differentiation and dentin-like tissue formation by Dental Pulp Stem Cells-DPSCs. DPSC cultures were established and characterized by flow cytometry. Experimental cavities were prepared inside crowns of extracted teeth and demineralized by EDTA (hTDMs). Zn-doped, Mg-based bioceramic scaffolds, synthesized by the sol-gel technique, were hosted inside the hTDMs. DPSCs were spotted inside the hTDMs/scaffold constructs with/without additional exposure to DMP-1 or BMP-2 (100ng/ml, 24h). Scanning Electron Microscopy-SEM, live/dead fluorescence staining and MTT assay were used to evaluate cell attachment and viability; Real time PCR for expression of osteo/odontogenic markers; Inductively Coupled Plasma-Atomic Emission Spectrometry-ICP/AES for scaffold elemental release analysis; ELISA for hTDM growth factor release analysis; SEM and X-ray Diffraction-XRD for structural/chemical characterization of the regenerated tissues. Scaffolds constantly released low concentrations of Mg(2+), Ca(2+), Zn(2+) and Si(4+), while hTDMs growth factors, like DMP-1, BMP-2 and TGFβ-1. hTDMs/scaffold constructs supported DPSC viability, inducing their rapid odontogenic shift, indicated by upregulation of DSPP, BMP-2, osteocalcin and osterix expression. Newly-formed Ca-P tissue overspread the scaffolds partially transforming into bioapatite. Exposure to DMP-1 or BMP-2 pronouncedly enhanced odontogenic differentiation phenomena. This is the first study to validate that combining the bioactivity and ion releasing properties of bioceramic materials with growth factor release by treated natural dentin further supported by exogenous addition of key dentinogenesis-related morphogens (DMP-1, BMP-2) can be a promising strategy for targeted dentin regeneration. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. TNF-α and LPS activate angiogenesis via VEGF and SIRT1 signalling in human dental pulp cells.

    PubMed

    Shin, M R; Kang, S K; Kim, Y S; Lee, S Y; Hong, S C; Kim, E-C

    2015-07-01

    To assess whether SIRT1 and VEGF are responsible for tumour necrosis factor-α (TNF-α) and lipopolysaccharide (LPS)-induced angiogenesis and to examine the molecular mechanism(s) of action in human dental pulp cells (HDPCs). Immortalized HDPCs obtained from Prof. Takashi Takata (Hiroshima University, Japan) were treated with LPS (1 μg mL(-1) ) and TNF-α (10 ng mL(-1) ) for 24 h. mRNA and protein levels were examined by RT-PCR and Western blotting, respectively. Migration and tube formation were examined in human umbilical vein endothelial cells (HUVECs). The data were analysed by one-way anova. Statistical analysis was performed at α = 0.05. LPS and TNF-α upregulated VEGF and SIRT1 mRNA and protein levels. Inhibition of SIRT1 activity by sirtinol and SIRT1 siRNA or inhibition of the VEGF receptor by CBO-P11 significantly attenuated LPS + TNF-α-stimulated MMPs production in HDPCs, as well as migration and tube formation in HUVECs (P < 0.05). Furthermore, sirtinol, SIRT1 siRNA and CBO-P11 attenuated phosphorylation of Akt, extracellular signal-regulated kinase (ERK), p38 and c-Jun N-terminal kinase (JNK) and the nuclear translocation of NF-κB p65. Pre-treatment with inhibitors of p38, ERK, JNK, PI3K and NF-κB decreased LPS + TNF-α-induced VEGF and SIRT1 expression, MMPs activity in HDPCs and angiogenesis (P < 0.05) in HUVECs. TNF-α and LPS led to upregulation of VEGF and SIRT1, and subsequent upregulation of MMP-2 and MMP-9 production, and promote angiogenesis via pathways involving PI3K, p38, ERK, JNK and NF-κB. The results suggest that inhibition of SIRT1 and VEGF might attenuate pro-inflammatory mediator-induced pulpal disease. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  4. p75 neurotrophin receptor positive dental pulp stem cells: new hope for patients with neurodegenerative disease and neural injury.

    PubMed

    Dai, Jie-wen; Yuan, Hao; Shen, Shun-yao; Lu, Jing-ting; Zhu, Xiao-fang; Yang, Tong; Zhang, Jiang-fei; Shen, Guo-fang

    2013-08-01

    Neurodegenerative diseases and neural injury are 2 of the most feared disorders that afflict humankind by leading to permanent paralysis and loss of sensation. Cell based treatment for these diseases had gained special interest in recent years. Previous studies showed that dental pulp stem cells (DPSCs) could differentiate toward functionally active neurons both in vitro and in vivo, and could promote neuranagenesis through both cell-autonomous and paracrine neuroregenerative activities. Some of these neuroregenerative activities were unique to tooth-derived stem cells and superior to bone marrow stromal cells. However, DPSCs used in most of these studies were mixed and unfractionated dental pulp cells that contain several types of cells, and most were fibroblast cells while just contain a small portion of DPSCs. Thus, there might be weaker ability of neuranagenesis and more side effects from the fibroblast cells that cannot differentiate into neural cells. p75 neurotrophin receptor (p75NTR) positive DPSCs subpopulation was derived from migrating cranial neural crest cells and had been isolated from DPSCs, which had capacity of differentiation into neurons and repairing neural system. In this article, we hypothesize that p75NTR positive DPSCs simultaneously have greater propensity for neuronal differentiation and fewer side effects from fibroblast, and in vivo transptantation of autologous p75NTR positive DPSCs is a novel method for neuranagenesis. This will bring great hope to patients with neurodegenerative disease and neural injury.

  5. Facilitatory effect of AC-iontophoresis of lidocaine hydrochloride on the permeability of human enamel and dentine in extracted teeth.

    PubMed

    Ikeda, Hideharu; Suda, Hideaki

    2013-04-01

    The objectives of the present study were to quantitatively evaluate chemical permeability through human enamel/dentine using conductometry and to clarify if alternating current (AC) iontophoresis facilitates such permeability. Electrical impedance of different concentrations of lidocaine hydrochloride was measured using a bipolar platinum impedance probe. A quadratic curve closely fitted to the response functions between conductance and lidocaine hydrochloride. For analysis of the passage of lidocaine hydrochloride through human enamel/dentine, eight premolars that were extracted for orthodontic treatment were sectioned at the cemento-enamel junction. The tooth crowns were held between two chambers with a double O-ring. The enamel-side chamber was filled with lidocaine hydrochloride, and the pulp-side chamber was filled with extrapure water. Two platinum plate electrodes were set at the end of each chamber to pass alternating current. A simulated interstitial pulp pressure was applied to the pulp-side chamber. The change in the concentration of lidocaine hydrochloride in the pulp-side chamber was measured every 2min using a platinum recording probe positioned at the centre of the pulp-side chamber. Passive entry without iontophoresis was used as a control. The level of lidocaine hydrochloride that passed through enamel/dentine against the dentinal fluid flow increased with time. Electrical conductance (G, mho) correlated closely to the concentration (x, mmol/L) of lidocaine hydrochloride (G=2.16x(2)+0.0289x+0.000376, r(2)=0.999). Lidocaine hydrochloride can pass through enamel/dentine. Conductometry showed that the level of lidocaine hydrochloride that passed through enamel/dentine was increased by AC iontophoresis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. CCL3 and CXCL12 production in vitro by dental pulp fibroblasts from permanent and deciduous teeth stimulated by Porphyromonas gingivalis LPS

    PubMed Central

    SIPERT, Carla Renata; MORANDINI, Ana Carolina de Faria; MODENA, Karin Cristina da Silva; DIONÍSIO, Thiago José; MACHADO, Maria Aparecida Andrade Moreira; de OLIVEIRA, Sandra Helena Penha; CAMPANELLI, Ana Paula; SANTOS, Carlos Ferreira

    2013-01-01

    Objective: The aim of this study was to compare the production of the chemokines CCL3 and CXCL12 by cultured dental pulp fibroblasts from permanent (PDPF) and deciduous (DDPF) teeth under stimulation by Porphyromonas gingivalis LPS (PgLPS). Material and Methods: Primary culture of fibroblasts from permanent (n=3) and deciduous (n=2) teeth were established using an explant technique. After the fourth passage, fibroblasts were stimulated by increasing concentrations of PgLPS (0 - 10 µg/mL) at 1, 6 and 24 h. The cells were tested for viability through MTT assay, and production of the chemokines CCL3 and CXCL12 was determined through ELISA. Comparisons among samples were performed using One-way ANOVA for MTT assay and Two-way ANOVA for ELISA results. Results: Cell viability was not affected by the antigen after 24 h of stimulation. PgLPS induced the production of CCL3 by dental pulp fibroblasts at similar levels for both permanent and deciduous pulp fibroblasts. Production of CXCL12, however, was significantly higher for PDPF than DDPF at 1 and 6 h. PgLPS, in turn, downregulated the production of CXCL12 by PDPF but not by DDPF. Conclusion: These data suggest that dental pulp fibroblasts from permanent and deciduous teeth may present a differential behavior under PgLPS stimulation. PMID:23739851

  7. [Morpho-functional reaction of spleen natural killer cells and macrophages to melatonin administration to the animals kept on different illumination regimens].

    PubMed

    Shatskikh, O A; Luzikova, E M

    2012-01-01

    The aim this investigation was to study the changes in the numbers of spleen CD57+ and CD68+ cells (natural killer cells and macrophages respectively) after melatonin administration to the animals kept on different illumination regimens. The experimental animals were given melatonin in dose of 0.03 mg per day for 2 and 4 weeks under conditions of natural illumination or artificial darkening. Spleen paraffin sections were stained using immunohistochemical methods for detection of CD57+ and CD68+ cells. It was shown that long-term administration of melatonin under conditions of natural illumination had an immunosuppressive effect, that was manifested by the depopulation of the marginal zones, white pulp and all the zones of the red pulp, parenchyma loosening and denudation of the reticular stroma of the organ. However, long-term hormone administration under conditions of artificial darkening had an immunostimulatory effect as evidenced by the increased inflow of immunocompetent cells into the spleen, their migration from the white pulp into the marginal zones and emigration into peripheral blood flow, concomitant with the increase in the number of lymphoid nodules. The number of CD57+ and CD68+ cells was increased in splenic periarterial lymphoid sheaths and decreased in B-dependent zones of the organ.

  8. Conditioned medium of dental pulp cells stimulated by Chinese propolis show neuroprotection and neurite extension in vitro.

    PubMed

    Kudo, Daichi; Inden, Masatoshi; Sekine, Shin-Ichiro; Tamaoki, Naritaka; Iida, Kazuki; Naito, Eiji; Watanabe, Kazuhiro; Kamishina, Hiroaki; Shibata, Toshiyuki; Hozumi, Isao

    2015-03-04

    The purpose of this study was to clarify the effect of Chinese propolis on the expression level of neurotrophic factors in dental pulp cells (DPCs). We also investigated that the effects of the conditioned medium (CM) of DPCs stimulated by the propolis against oxidative and endoplasmic reticulum (ER) stresses in human neuroblastoma SH-SY5Y cells, and on neurite extensions in rat adrenal pheochromocytoma PC12 cells. To investigate the effect of the propolis on the levels of neurotrophic factors in DPCs, we performed a qRT-PCR experiment. As results, NGF, but not BDNF and NT-3, in DPCs was significantly elevated by the propolis in a concentration-dependent manner. H2O2-induced cell death was significantly inhibited by the treatment with the CM of DPCs. In addition, the treatment with the propolis-stimulated CM of DPCs had a more protective effect than that with the CM of DPCs. We also examine the effect of the propolis-stimulated CM of DPCs against a tunicamycin-induced ER stress. The treatment with the propolis-stimulated CM as well as the CM of DPCs significantly inhibited tunicamycin-induced cell death. Moreover, the treatment with the propolis-stimulated CM of DPCs significantly induced neurite outgrowth from PC12 cells than that with the CM of DPCs. These results suggest that the CM of DPCs as well as DPCs will be an efficient source of new treatments for neurodegenerative diseases and that the propolis promote the advantage of the CM of DPCs via producing neurotrophic factors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Biocompatability of compomer restorative systems on nonexposed dental pulps of primate teeth.

    PubMed

    Tarim, B; Hafez, A A; Suzuki, S H; Suzuki, S; Cox, C F

    1997-01-01

    This study evaluated the histologic response of total-etched and nonetched compomer restored cavity preparations. One hundred fifteen class 5 cavity preparations were placed in the teeth of four healthy adult monkeys at 7, 27, and 90 days. A 37% H3PO4 was applied for 10 seconds and rinsed in total-etched preparations. No statistical differences were seen in inflammatory reactions among total-etched or nonetched compomers at 7, 27, and 90 days. There were no statistical differences in inflammatory cell responses among all compomer systems in regard to time intervals. Pulpal responses of compomers were greater than IRM at each time period. Pulp responses were associated with stained bacteria in 32 of 89 compomer teeth. No necrotic pulps were seen in any teeth. Statistical data show a positive correlation (P < 0.05) between bacterial presence and pulpal inflammation. IRM pulps showed no inflammation or bacterial staining. Compomers are biologically compatible with pulp tissues when bacteria are excluded.

  10. Classification of Ancient Mammal Individuals Using Dental Pulp MALDI-TOF MS Peptide Profiling

    PubMed Central

    Tran, Thi-Nguyen-Ny; Aboudharam, Gérard; Gardeisen, Armelle; Davoust, Bernard; Bocquet-Appel, Jean-Pierre; Flaudrops, Christophe; Belghazi, Maya; Raoult, Didier; Drancourt, Michel

    2011-01-01

    Background The classification of ancient animal corpses at the species level remains a challenging task for forensic scientists and anthropologists. Severe damage and mixed, tiny pieces originating from several skeletons may render morphological classification virtually impossible. Standard approaches are based on sequencing mitochondrial and nuclear targets. Methodology/Principal Findings We present a method that can accurately classify mammalian species using dental pulp and mass spectrometry peptide profiling. Our work was organized into three successive steps. First, after extracting proteins from the dental pulp collected from 37 modern individuals representing 13 mammalian species, trypsin-digested peptides were used for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. The resulting peptide profiles accurately classified every individual at the species level in agreement with parallel cytochrome b gene sequencing gold standard. Second, using a 279–modern spectrum database, we blindly classified 33 of 37 teeth collected in 37 modern individuals (89.1%). Third, we classified 10 of 18 teeth (56%) collected in 15 ancient individuals representing five mammal species including human, from five burial sites dating back 8,500 years. Further comparison with an upgraded database comprising ancient specimen profiles yielded 100% classification in ancient teeth. Peptide sequencing yield 4 and 16 different non-keratin proteins including collagen (alpha-1 type I and alpha-2 type I) in human ancient and modern dental pulp, respectively. Conclusions/Significance Mass spectrometry peptide profiling of the dental pulp is a new approach that can be added to the arsenal of species classification tools for forensics and anthropology as a complementary method to DNA sequencing. The dental pulp is a new source for collagen and other proteins for the species classification of modern and ancient mammal individuals. PMID:21364886

  11. High levels of hydrogen peroxide in overnight tooth-whitening formulas: effects on enamel and pulp.

    PubMed

    Pugh, George; Zaidel, Lynette; Lin, Nora; Stranick, Michael; Bagley, Daniel

    2005-01-01

    Limited data are available to assess the safety of high levels of hydrogen peroxide in overnight tooth-whitening formulas. The purpose of this study was to assess the effects of hydrogen peroxide on enamel microhardness, pulp penetration, and enamel morphology. Colgate Platinum Professional Overnight Whitening System (Colgate Oral Pharmaceuticals, Inc., Canton, MA, USA) (10% carbamide peroxide, equivalent to 3.5% hydrogen peroxide) was compared with two prototype formulations containing either 7.0% or 12.0% hydrogen peroxide. In the pulp chamber studies, human extracted teeth were exposed to 3.5%, 7.0%, or 12.0% hydrogen peroxide for 30 minutes, 4 hours, or 7 hours. Microhardness, electron spectroscopy for chemical analysis, and atomic force microscopy evaluations were made from enamel blocks cut from human extracted molars. The enamel blocks were evaluated following 14 7-hour treatments (98 h total). At 7 hours' post-treatment, hydrogen peroxide penetrated the pulp chamber at 23.12 +/- 10.09, 24.58 +/- 6.90, and 26.39 +/- 5.43 microg for 3.5%, 7.0%, and 12.0% hydrogen peroxide, respectively. With regard to enamel morphology, pulp penetration, microhardness, and elemental composition, no statistically significant differences were observed between treatment groups following 98 hours of treatment. Hydrogen peroxide does not adversely affect enamel morphology or microhardness. The levels recovered in pulp indicate that hydrogen peroxide is not expected to inhibit pulpal enzymes. Overnight tray products containing levels of hydrogen peroxide of 3.5%, 7.0%, and 12.0% are not expected to adversely affect the enamel or pulpal enzymes. Additional safety studies are needed to assess the potential for tooth sensitivity and gingival irritation.

  12. Comparative evaluation of human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite: An in vitro study

    PubMed Central

    Taneja, Sonali; Mishra, Neha; Malik, Shubhra

    2014-01-01

    Introduction: Irrigation plays an indispensable role in removal of tissue remnants and debris from the complicated root canal system. This study compared the human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite. Materials and Methods: Pulp tissue was standardized to a weight of 9 mg for each sample. In all,60 samples obtained were divided into 6 groups according to the irrigating solution used- 2.5% sodium hypochlorite (NaOCl), 5.25% NaOCl, 5% calcium hypochlorite (Ca(OCl)2), 10% Ca(OCl)2, 5%chlorine dioxide (ClO2) and 13% ClO2. Pulp tissue was placed in each test tube carrying irrigants of measured volume (5ml) according to their specified subgroup time interval: 30 minutes (Subgroup A) and 60 minutes (Subgroup B). The solution from each sample test tube was filtered and was left for drying overnight. The residual weight was calculated by filtration method. Results: Mean tissue dissolution increases with increase in time period. Results showed 5.25% NaOCl to be most effective at both time intervals followed by 2.5% NaOCl at 60 minutes, 10%Ca(OCl)2 and 13% ClO2 at 60 minutes. Least amount of tissue dissolving ability was demonstrated by 5% Ca(OCl)2 and 5% ClO2 at 30 minutes. Distilled water showed no pulp tissue dissolution. Conclusion: Withinthe limitations of the study, NaOCl most efficiently dissolved the pulp tissue at both concentrations and at both time intervals. Mean tissue dissolution by Ca(OCl)2 and ClO2 gradually increased with time and with their increase in concentration. PMID:25506141

  13. [Heat-induced symptomatology in human teeth. An in-vitro study].

    PubMed

    Baldissara, P; Bortolini, S; Papale, G; Scotti, R

    1998-09-01

    Various dental procedures can generate thermal increase in the dental pulp, in particular if they are incorrectly conducted. In literature the pulp cells are considered very heat sensitive. In this study the symptomatological response of patients during and after thermal administration to the dental crown has been recorded. The analysis of the symptomatology was used as an indication for the definition of the threshold of thermal damage. Twelve healthy teeth of four patients programmed for extraction were subdivided into six couples of homologous teeth. One tooth out of each couple was used for the immediate in vivo recording of the symptoms; the other, once extracted, was used to determine the thermal increase applied through the insertion of a thermocouple sensor. In each couple of teeth the thermal stimulus was equal. The average thermal increase was 11.2 degrees C. Pain starts at temperatures ranging from 39.5 to 50.4 degrees C with an average of 44.6 degrees C. This agrees with classical physiological data which reports the threshold of pain at 45 degrees C. The threshold of pain registered suggests that at temperatures below 44.6 degrees C damage to the dental pulp is improbable, at least in healthy teeth. The limit of 45 degrees C appears, therefore, to be a probable safe threshold, contrary to what is reported in literature.

  14. Simultaneous saccharification and viscosity reduction of cassava pulp using a multi-component starch- and cell-wall degrading enzyme for bioethanol production.

    PubMed

    Poonsrisawat, Aphisit; Paemanee, Atchara; Wanlapatit, Sittichoke; Piyachomkwan, Kuakoon; Eurwilaichitr, Lily; Champreda, Verawat

    2017-10-01

    In this study, an efficient ethanol production process using simultaneous saccharification and viscosity reduction of raw cassava pulp with no prior high temperature pre-gelatinization/liquefaction step was developed using a crude starch- and cell wall-degrading enzyme preparation from Aspergillus aculeatus BCC17849. Proteomic analysis revealed that the enzyme comprised a complex mixture of endo- and exo-acting amylases, cellulases, xylanases, and pectina ses belonging to various glycosyl hydrolase families. Enzymatic hydrolysis efficiency was dependent on the initial solid loading in the reaction. Reduction in mixture viscosity was observed with a rapid decrease in complex viscosity from 3785 to 0.45 Pa s with the enzyme dosage of 2.19 mg/g on a dried weight basis within the first 2 h, which resulted from partial destruction of the plant cell wall fiber and degradation of the released starch granules by the enzymes as shown by scanning electron microscopy. Saccharification of cassava pulp at an initial solid of 16% (w/v) in a bench-scale bioreactor resulted in 736.4 mg glucose/g, which is equivalent to 82.92% glucose yield based on the total starch and glucan in the substrate, after 96 h at 40 °C. Simultaneous saccharification and fermentation of cassava pulp by Saccharomyces cerevisiae with the uncooked enzymatic process led to a final ethanol concentration of 6.98% w/v, equivalent to 96.7% theoretical yield based on the total starch and cellulose content. The results demonstrated potential of the enzyme for low-energy processing of cassava pulp in biofuel industry.

  15. Orthodontic treatment mediates dental pulp microenvironment via IL17A.

    PubMed

    Yu, Wenjing; Zhang, Yueling; Jiang, Chunmiao; He, Wei; Yi, Yating; Wang, Jun

    2016-06-01

    Orthodontic treatment induces dental tissue remodeling; however, dental pulp stem cell (DPSC)-mediated pulp micro-environmental alteration is still largely uncharacterized. In the present study, we identified elevated interleukin-17A (IL17A) in the dental pulp, which induced the osteogenesis of DPSCs after orthodontic force loading. Tooth movement animal models were established in Sprague-Dawley rats, and samples were harvested at 1, 4, 7, 14, and 21 days after orthodontic treatment loading. DPSC self-renewal and differentiation at different time points were examined, as well as the alteration of the microenvironment of dental pulp tissue by histological analysis and the systemic serum IL17A expression level by an ELISA assay. In vitro recombinant IL17A treatment was used to confirm the effect of IL17A on the enhancement of DPSC self-renewal and differentiation. Orthodontic treatment altered the dental pulp microenvironment by activation of the pro-inflammatory cytokine IL17A in vivo. Orthodontic loading significantly promoted the self-renewal and differentiation of DPSCs. Inflammation and elevated IL17A secretion occurred in the dental pulp during orthodontic tooth movement. Moreover, in vitro recombinant IL17A treatment mimicked the enhancement of the self-renewal and differentiation of DPSCs. Orthodontic treatment enhanced the differentiation and self-renewal of DPSCs, mediated by orthodontic-induced inflammation and subsequent elevation of IL17A level in the dental pulp microenvironment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Protective Effect of Adansonia digitata against Isoproterenol-Induced Myocardial Injury in Rats.

    PubMed

    Ghoneim, Mona A M; Hassan, Amal I; Mahmoud, Manal G; Asker, Mohsen S

    2016-01-01

    The baobab fruit (Adansonia digitata) was analyzed for proximate composition, amino acids, and minerals. The fruit pulp was found to be a good source of carbohydrates, proteins, phenols, and substantial quantities of K, Ca, and Mg. Amino acid analyses revealed high glutamic and aspartic acid, but the sulfur amino acids were the most limited. The present study was designed to investigate the role of Adansonia digitata (Baobab fruit pulp) against isoproterenol induced myocardial oxidative stress in experimental rats by demonstrating the changes in tissue cardiac markers, some antioxidant enzymes, interleukin-1 β (IL-1 β), monocyte chemoattractant protein-1(MCP-1), myeloperoxidase (MPO), Collagen-1, galectin-3, and serum corticosterone. The activities of enzymatic antioxidant glutathione peroxidase (GPX) and non-enzymatic antioxidant reduced glutathione (GSH) in the heart tissue; additionally, histopathological examination of the heart was estimated. Male albino rats were randomly divided into four groups of ten animals each. Group I served as normal control animal. Group II animals received isoproterenol (ISP) (85 mg/kg body weight intraperitonealy (i.p.) to develop myocardial injury. Group III were myocardial oxidative animals treated with Baobab fruit pulp (200 µg/rats/day) for 4 weeks. Group IV received Baobab fruit pulp only. The data suggested an isoproterenol increase in levels of cardiac marker enzymes [creatine kinase MB (CK- MB), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST)], IL-1ß, MCP-1, MPO, Collagen, and galectin-3, with concomitant decrease in the activities GPX and GSH in heart tissue as well as corticosterone in serum. Baobab fruit pulp brings all the parameters to near normal level in ISP-induced myocardial infarction in rats. Histopathological examination of heart tissue of ISP-administered model rat showed infiltration of inflammatory cells and congestion in the blood vessels. However, treatment with Baobab fruit pulp (200 µg/rats/day) showed predominantly normal myocardial structure and no inflammatory cell infiltration. It has been concluded that Baobab fruit pulp has cardio protective effect against ISP-induced oxidative stress in rats.

  17. Euterpe oleracea pulp extract: Chemical analyses, antibiofilm activity against Staphylococcus aureus, cytotoxicity and interference on the activity of antimicrobial drugs.

    PubMed

    Dias-Souza, Marcus Vinícius; Dos Santos, Renan Martins; Cerávolo, Isabela Penna; Cosenza, Gustavo; Ferreira Marçal, Pedro Henrique; Figueiredo, Flávio Jr Barbosa

    2018-01-01

    Euterpe oleracea (Açaí) fruit are widely consumed at the Brazilian Amazon region, and biological potentials such as immunomodulatory and antioxidant have been described for its extracts. However, its antimicrobial properties remain poorly investigated. Here, the antimicrobial and antibiofilm activities of the methanolic extract of an artisanally-manufactured açaí pulp (MEAP) were evaluated against clinical isolates of Staphylococcus aureus. Besides, MEAP interference on the activity of antimicrobial drugs of clinical relevance was explored, and its cytotoxicity against hepatocellular carcinoma cells (HepG2) was investigated. Biochemical and physicochemical properties of the pulp were investigated, and the presence of polyphenols on the extract was confirmed. For the first time, we report that the methanolic extract of açaí pulp is effective against planktonic cells and biofilms of S. aureus, and also decreased the proliferation of HepG2 cells. Statistically significant synergism was observed when the extract was combined to the tested antimicrobials except for erythromycin, and all biochemical and physicochemical parameters ranged within the accepted values established by the Brazilian legislation. Our data open doors for more studies on the antimicrobial activity of phytomolecules isolated from Euterpe oleracea extracts, and also for its combined use with antimicrobial drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Synthetic Light-Curable Polymeric Materials Provide a Supportive Niche for Dental Pulp Stem Cells.

    PubMed

    Vining, Kyle H; Scherba, Jacob C; Bever, Alaina M; Alexander, Morgan R; Celiz, Adam D; Mooney, David J

    2018-01-01

    Dental disease annually affects billions of patients, and while regenerative dentistry aims to heal dental tissue after injury, existing polymeric restorative materials, or fillings, do not directly participate in the healing process in a bioinstructive manner. There is a need for restorative materials that can support native functions of dental pulp stem cells (DPSCs), which are capable of regenerating dentin. A polymer microarray formed from commercially available monomers to rapidly identify materials that support DPSC adhesion is used. Based on these findings, thiol-ene chemistry is employed to achieve rapid light-curing and minimize residual monomer of the lead materials. Several triacrylate bulk polymers support DPSC adhesion, proliferation, and differentiation in vitro, and exhibit stiffness and tensile strength similar to existing dental materials. Conversely, materials composed of a trimethacrylate monomer or bisphenol A glycidyl methacrylate, which is a monomer standard in dental materials, do not support stem cell adhesion and negatively impact matrix and signaling pathways. Furthermore, thiol-ene polymerized triacrylates are used as permanent filling materials at the dentin-pulp interface in direct contact with irreversibly injured pulp tissue. These novel triacrylate-based biomaterials have potential to enable novel regenerative dental therapies in the clinic by both restoring teeth and providing a supportive niche for DPSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. In vitro imaging of remaining dentin and pulp chamber by optical coherence tomography: comparison between 850 and 1280 nm

    NASA Astrophysics Data System (ADS)

    Fonsêca, Déborah D. D.; Kyotoku, Bernardo B. C.; Maia, Ana M. A.; Gomes, Anderson S. L.

    2009-03-01

    We report the application of optical coherence tomography (OCT) to generate images of the remaining dentin and pulp chamber of in vitro human teeth. Bidimensional images of remaining dentin and of the pulp chamber were obtained parallel to the long axis of the teeth, by two OCT systems operating around 1280 and 850 nm, and compared to tomography images using the i-CAT® Cone Beam Volumetric Tomography system as the gold standard. The results demonstrated the efficacy of the OCT technique; furthermore, the wavelength close to 1280 nm presented greater penetration depth in the dentine than 850 nm, as expected from scattering and absorption coefficients. The OCT technique has great potential to be used on clinical practice, preventing accidental exposure of the pulp and promoting preventive restoration treatment.

  20. Cytotoxicity and Bioactivity of Calcium Silicate Cements Combined with Niobium Oxide in Different Cell Lines.

    PubMed

    Mestieri, Leticia Boldrin; Gomes-Cornélio, Ana Lívia; Rodrigues, Elisandra Márcia; Faria, Gisele; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mário

    2017-01-01

    The aim of this study was to evaluate the cytotoxicity and bioactivity of calcium silicate-based cements combined with niobium oxide (Nb2O5) micro and nanoparticles, comparing the response in different cell lines. This evaluation used four cell lines: two primary cultures (human dental pulp cells - hDPCs and human dental follicle cells - hDFCs) and two immortalized cultures (human osteoblast-like cells - Saos-2 and mouse periodontal ligament cells - mPDL). The tested materials were: White Portland Cement (PC), mineral trioxide aggregate (MTA), white Portland cement combined with microparticles (PC/Nb2O5µ) or nanoparticles (PC/Nb2O5n) of niobium oxide (Nb2O5). Cytotoxicity was evaluated by the methylthiazolyldiphenyl-tetrazolium bromide (MTT) and trypan blue exclusion assays and bioactivity by alkaline phosphatase (ALP) enzyme activity. Results were analyzed by ANOVA and Tukey test (a=0.05). PC/Nb2O5n presented similar or higher cell viability than PC/Nb2O5µ in all cell lines. Moreover, the materials presented similar or higher cell viability than MTA. Saos-2 exhibited high ALP activity, highlighting PC/Nb2O5µ material at 7 days of exposure. In conclusion, calcium silicate cements combined with micro and nanoparticles of Nb2O5 presented cytocompatibility and bioactivity, demonstrating the potential of Nb2O5 as an alternative radiopacifier agent for these cements. The different cell lines had similar response to cytotoxicity evaluation of calcium silicate cements. However, bioactivity was more accurately detected in human osteoblast-like cell line, Saos-2.

  1. Pulp tissue in sex determination: A fluorescent microscopic study

    PubMed Central

    Nayar, Amit; Singh, Harkanwal Preet; Leekha, Swati

    2014-01-01

    Aims: To determine and compare the reliability of pulp tissue in determination of sex and to analyze whether caries have any effect on fluorescent body test. Materials and Methods: This study was carried on 50 maxillary and mandibular teeth (25 male teeth and 25 female teeth), which were indicated for extraction. The teeth are categorized into 5 groups, 10 each (5 from males and 5 from females) on the basis of caries progression. The pulp cells are stained with quinacrine hydrochloride and observed with fluorescent microscope for fluorescent body. Gender is determined by identification of Y chromosome fluorescence in dental pulp. Results: Fluorescent bodies were found to be more in sound teeth in males as the caries increase the mean percentage of fluorescent bodies observed decreases in males. We also observed the fluorescent spots in females, and the value of the spot increases in female as the caries progresses, thereby giving false positive results in females. Conclusion: Sex determination by fluorescent staining of the Y chromosome is a reliable technique in teeth with healthy pulps or caries with enamel or up to half way of dentin. Teeth with caries involving pulp cannot be used for sex determination. PMID:25125912

  2. Bioceramic/poly (glycolic)-poly (lactic acid) composite induces mineralized barrier after direct capping of rat tooth pulp tissue.

    PubMed

    Gala-Garcia, Alfonso; Teixeira, Karina Imaculada Rosa; Wykrota, Francisco Henrique Lana; Sinisterra, Rubén Dario; Cortés, Maria Esperanza

    2010-01-01

    The aim of this study was to observe the histopathological pulp response following direct pulp capping of mechanically exposed teeth in rats with a composite of beta-tricalcium phosphate-hydroxyapatite bioceramic (BC) and poly (glycolic)-poly (lactic acid) (PLGA) material or a calcium hydroxide [Ca(OH)2] material, compared to BC alone and a negative control of water. Pulp of the maxillary molars was exposed, followed by capping with the experimental material. The pulpal tissue response was assessed post-operatively at 1, 7, 14 and 30 d, followed by histological analysis. The Ca(OH)2 group exhibited severe acute inflammatory cell infiltration at day 14. However after 30 d, a new hard tissue with macro porous obliteration of the pulp chamber and a characteristic necrotic area had appeared. BC and Ca(OH)2 capping were associated with moderate inflammation and dentinal bridge similar. Meanwhile, in the BC/PLGA composite group, there was moderate inflammatory infiltrate and formation of a dense and complete dentinal bridge. In conclusion, the BC/PLGA composite material showed a large zone of tertiary dentin, and effectively reorganized the dentin-pulp complex.

  3. GE132+Natural: Novel promising dietetic supplement with antiproliferative influence on prostate, colon, and breast cancer cells.

    PubMed

    Okic-Djordjevic, I; Trivanovic, D; Krstic, J; Jaukovic, A; Mojsilovic, S; Santibanez, J F; Terzic, M; Vesovic, D; Bugarski, D

    2013-01-01

    Natural products have been investigated for promising new leads in pharmaceutical development. The purpose of this study was to analyze the biological effect of GE132+Natural, a novel supplement consisting of 5 compounds: Resveratrol, Ganoderma lucidum, Sulforaphane, Lycopene and Royal jelly. The antiproliferative activity of GE132+Natural was tested on 3 different human cancer cell lines: MCF7 (breast cancer cells), PC3 (prostate cancer cells), and SW480 (colon cancer cells), as well as on EA.hy 926 (normal human endothelial cell line). In addition, the cytotoxicity of GE132+- Natural on the proliferation of primary human mesenchymal stem cells isolated from dental pulp (DP=MSC), along with its in vitro impact on different peripheral blood parameters, was determined. The results revealed high antiproliferative activity of GE132+Natural on all tested cancer cell lines (PC3, MCF7 and SW480), as well as on the EA.hy 926 endothelial cell line in a dose-dependent manner. However, applied in a wide range of concentrations GE132+Natural did not affect both the proliferation of primary mesenchymal stem cells and the peripheral blood cells counts. The data obtained demonstrated that GE132+Natural is effective in inhibiting cancer cell proliferation, indicating its potential beneficial health effects. In addition, the results pointed that adult mesenchymal stem cells might be valuable as a test system for evaluating the toxicity and efficacy of new medicines or chemicals.

  4. Omega 3 Fatty Acids Reduce Bone Resorption While Promoting Bone Generation in Rat Apical Periodontitis.

    PubMed

    Azuma, Mariane Maffei; Gomes-Filho, João Eduardo; Ervolino, Edilson; Pipa, Camila Barbosa; Cardoso, Carolina de Barros Morais; Andrada, Ana Cristina; Kawai, Toshihisa; Cintra, Luciano Tavares Angelo

    2017-06-01

    This study evaluated the effects of the dietary supplement omega 3 polyunsaturated fatty acids (ω-3 PUFAs) on pulp exposure-induced apical periodontitis (AP) in rats. Twenty-eight male rats were divided into groups: control untreated rats (C), control rats treated with ω-3 PUFAs alone (C-O), rats with pulp exposure-induced AP, and rats with pulp exposure-induced AP treated with ω-3 PUFAs (AP-O). The ω-3 PUFAs were administered orally, once a day, for 15 days before pulp exposure and, subsequently, 30 days after pulp exposure. Rats were killed 30 days after pulp exposure, and jaws were subjected to histologic and immunohistochemical analyses. Immunohistochemical analyses were performed to detect tartrate-resistant acid phosphatase-positive osteoclasts and osteocalcin-positive osteoblasts on the bone surface of periapical area. Results were statistically evaluated by using analysis of variance and Tukey honestly significant difference, and P < .05 was considered statistically significant. The bone resorption lesion was significantly larger in the AP group compared with AP-O, C, and C-O groups (P < .05). The level of inflammatory cell infiltration was significantly elevated, and the number of tartrate-resistant acid phosphatase-positive osteoclasts was significantly higher in the periapical lesions of the AP group compared with AP-O, C, and C-O groups (P < .05). The number of osteocalcin-positive osteoblasts was significantly increased in the AP-O group compared with the AP group (P > .05). Supplementation with ω-3 PUFAs not only suppresses bone resorption but also promotes new bone formation in the periapical area of rats with AP in conjunction with downregulation of inflammatory cell infiltration into the lesion. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Evaluation of a Commercially Available Hyaluronic Acid Hydrogel (Restylane) as Injectable Scaffold for Dental Pulp Regeneration: An In Vitro Evaluation.

    PubMed

    Chrepa, Vanessa; Austah, Obadah; Diogenes, Anibal

    2017-02-01

    Regenerative endodontic procedures (REPs) are viable alternatives for treating immature teeth, yet these procedures do not predictably lead to pulp-dentin regeneration. A true bioengineering approach for dental pulp regeneration requires the incorporation of a scaffold conducive with the regeneration of the pulp-dentin complex. Several materials have been proposed as scaffolds for REPs; nonetheless, the majority are not eligible for immediate clinical chairside use. Thus, the aim of this study was to evaluate Restylane, a Food and Drug Administration-approved hyaluronic acid-based gel, as possible scaffold for REPs. Stem cells of the apical papilla (SCAP) were cultured either alone or in mixtures with either Restylane or Matrigel scaffolds. Groups were cultured in basal culture medium for 6, 24, and 72 hours, and cell viability was assessed. For the mineralizing differentiation experiments, groups were cultured in differentiation medium either for 7 days and processed for alkaline phosphatase activity or for 14 days and processed for gene expression by using quantitative reverse-transcription polymerase chain reaction. SCAP in basal medium served as control. Cell encapsulation in either Restylane or Matrigel demonstrated reduced cell viability compared with control. Nonetheless, cell viability significantly increased in the Restylane group in the course of 3 days, whereas it decreased significantly in the Matrigel group. Restylane promoted significantly greater alkaline phosphatase activity and upregulation of dentin sialophosphoprotein, dentin matrix acidic phosphoprotein-1, and matrix extracellular phosphoglycoprotein, compared with control. A Food and Drug Administration-approved hyaluronic acid-based injectable gel promoted SCAP survival, mineralization, and differentiation into an odontoblastic phenotype and may be a promising scaffold material for REPs. Published by Elsevier Inc.

  6. Redefining the potential applications of dental stem cells: An asset for future

    PubMed Central

    Rai, Shalu; Kaur, Mandeep; Kaur, Sandeep; Arora, Sapna Panjwani

    2012-01-01

    Recent exciting discoveries isolated dental stem cells from the pulp of the primary and permanent teeth, from the periodontal ligament, and from associated healthy tissues. Dental pulp stem cells (DPSCs) represent a kind of adult cell colony which has the potent capacity of self-renewing and multilineage differentiation. Stem cell-based tooth engineering is deemed as a promising approach to the making of a biological tooth (bio-tooth) or engineering of functional tooth structures. Dental professionals have the opportunity to make their patients aware of these new sources of stem cells that can be stored for future use as new therapies are developed for a range of diseases and injuries. The aim of this article is to review and understand how dental stem cells are being used for regeneration of oral and conversely nonoral tissues. A brief review on banking is also done for storing of these valuable stem cells for future use. PMID:23716933

  7. Strategies for decolorization and detoxification of pulp and paper mill effluent.

    PubMed

    Garg, Satyendra K; Tripathi, Manikant

    2011-01-01

    The potential hazards associated with industrial effluents, coupled with increasing awareness of environment problems, have prompted many countries to limit the indiscriminate discharge of untreated wastewaters. The pulp and paper industry has been among the most significant of industrial polluters of the waterways, and therefore has been one of the industries of concern. The pulp and paper industry produces large quantities of brown/black effluent that primarily result from pulping, bleaching, and paper-making production stages. The dark color and toxicity of pulp-paper mill effluent comes primarily from lignin and its chlorinated derivatives (e.g., lignosulphonic acid, resins, phenols, and hydrocarbons) that are released during various processing steps of lignocellulosic materials. The color originates from pulping and pulp bleaching stages, while adsorbable organic halides (AOX) originates exclusively from chlorine bleaching. Discharge of untreated effluent results in increased BOD/COD, slime growth, thermal problems, scum formation, discoloration, loss of aesthetic quality and toxicity to the aquatic life, in the receiving waterbodies. The dark brow color of pulp-paper effluent is not only responsible for aesthetic unacceptability, but also prevents the passage of sunlight through colored waterbodies. This reduces the photosynthetic activity of aquatic flora, ultimately causing depletion of dissolved oxygen. The pulp-paper organic waste, coupled with the presence of chlorine, results in the generation of highly chlorinated organic compounds. These toxic constituents of wastewater pose a human health risk through long term exposure. via drinking water and\\or through consumption of fish that can bioaccumulate certain pollutants from the food chain. Therefore, considerable attention has been focused by many countries on decolorization of paper mill effluents , along with reduction in the contaminants that pose human health or other environmental hazards. Various physicochemical remediation treatments in the pulp-paper industry are now used, or have been suggested, but often are not implemented, because of the high cost involved. More recently, the paper and pulp industry has been investigating the use of biological remediation steps to replace or augment current treatment strategies. Certain biological treatments offer opportunities to reduce cost (both capital and operating), reduce energy consumption, and minimize environmental impact. Two primary approaches may be effective to curtail release of toxic effluents: first, development of pulping and bleaching processes that emphasize improved oxygen delignification or biopulping, plus partial or complete replacement of chlorine treatment with hydrogen peroxide or with biobleaching; second, implementation of biological processing that involves sequential two-step anaerobic-aerobic or three-step aerobic-anaerobic treatment technologies at end of pipe. The selection of the specific process will depend upon the type of pollutants/toxicants/mutagens present in the effluent. The use of environmental-friendly technologies in the pulp and paper industry is becoming more popular, partly because of increasing regulation, and partly because of the availability of new techniques that can be used to economically deal with pollutants in the effluents. Moreover, biotechnology research methods are offering promise for even greater improvements in the future. The obvious ultimate goal of the industry and the regulators should be zero emission through recycling of industrial wastewater, or discharge of the bare minimum amount of toxicants or color.

  8. Dental pulp pluripotent-like stem cells (DPPSC), a new stem cell population with chromosomal stability and osteogenic capacity for biomaterials evaluation.

    PubMed

    Núñez-Toldrà, Raquel; Martínez-Sarrà, Ester; Gil-Recio, Carlos; Carrasco, Miguel Ángel; Al Madhoun, Ashraf; Montori, Sheyla; Atari, Maher

    2017-04-21

    Biomaterials are widely used to regenerate or substitute bone tissue. In order to evaluate their potential use for clinical applications, these need to be tested and evaluated in vitro with cell culture models. Frequently, immortalized osteoblastic cell lines are used in these studies. However, their uncontrolled proliferation rate, phenotypic changes or aberrations in mitotic processes limits their use in long-term investigations. Recently, we described a new pluripotent-like subpopulation of dental pulp stem cells derived from the third molars (DPPSC) that shows genetic stability and shares some pluripotent characteristics with embryonic stem cells. In this study we aim to describe the use of DPPSC to test biomaterials, since we believe that the biomaterial cues will be more critical in order to enhance the differentiation of pluripotent stem cells. The capacity of DPPSC to differentiate into osteogenic lineage was compared with human sarcoma osteogenic cell line (SAOS-2). Collagen and titanium were used to assess the cell behavior in commonly used biomaterials. The analyses were performed by flow cytometry, alkaline phosphatase and mineralization stains, RT-PCR, immunohistochemistry, scanning electron microscopy, Western blot and enzymatic activity. Moreover, the genetic stability was evaluated and compared before and after differentiation by short-comparative genomic hybridization (sCGH). DPPSC showed excellent differentiation into osteogenic lineages expressing bone-related markers similar to SAOS-2. When cells were cultured on biomaterials, DPPSC showed higher initial adhesion levels. Nevertheless, their osteogenic differentiation showed similar trend among both cell types. Interestingly, only DPPSC maintained a normal chromosomal dosage before and after differentiation on 2D monolayer and on biomaterials. Taken together, these results promote the use of DPPSC as a new pluripotent-like cell model to evaluate the biocompatibility and the differentiation capacity of biomaterials used in bone regeneration.

  9. In vitro transdentinal effect of low-level laser therapy

    NASA Astrophysics Data System (ADS)

    Oliveira, C. F.; Basso, F. G.; dos Reis, R. I.; Parreiras-e-Silva, L. T.; Lins, E. C.; Kurachi, C.; Hebling, J.; Bagnato, V. S.; de Souza Costa, C. A.

    2013-05-01

    Low-level laser therapy (LLLT) has been used for the treatment of dentinal hypersensitivity. However, the specific LLL dose and the response mechanisms of these cells to transdentinal irradiation have not yet been demonstrated. Therefore, this study evaluated the transdentinal effects of different LLL doses on stressed odontoblast-like pulp cells MDPC-23 seeded onto the pulpal side of dentin discs obtained from human third molars. The discs were placed in devices simulating in vitro pulp chambers and the whole set was placed in 24-well plates containing plain culture medium (DMEM). After 24 h incubation, the culture medium was replaced by fresh DMEM supplemented with either 5% (simulating a nutritional stress condition) or 10% fetal bovine serum (FBS). The cells were irradiated with doses of 15 and 25 J cm-2 every 24 h, totaling three applications over three consecutive days. The cells in the control groups were removed from the incubator for the same times as used in their respective experimental groups for irradiation, though without activating the laser source (sham irradiation). After 72 h of the last active or sham irradiation, the cells were evaluated with respect to succinic dehydrogenase (SDH) enzyme production (MTT assay), total protein (TP) expression, alkaline phosphatase (ALP) synthesis, reverse transcriptase polymerase chain reaction (RT-PCR) for collagen type 1 (Col-I) and ALP, and morphology (SEM). For both tests, significantly higher values were obtained for the 25 J cm-2 dose. Regarding SDH production, supplementation of the culture medium with 5% FBS provided better results. For TP and ALP expression, the 25 J cm-2 presented higher values, especially for the 5% FBS concentration (Mann-Whitney p < 0.05). Under the tested conditions, near infrared laser irradiation at 25 J cm-2 caused transdentinal biostimulation of odontoblast-like MDPC-23 cells.

  10. Biological Analysis of Simvastatin-releasing Chitosan Scaffold as a Cell-free System for Pulp-dentin Regeneration.

    PubMed

    Soares, Diana G; Anovazzi, Giovanna; Bordini, Ester Alves F; Zuta, Uxua O; Silva Leite, Maria Luísa A; Basso, Fernanda G; Hebling, Josimeri; de Souza Costa, Carlos A

    2018-06-01

    The improvement of biomaterials capable of driving the regeneration of the pulp-dentin complex mediated by resident cells is the goal of regenerative dentistry. In the present investigation, a chitosan scaffold (CHSC) that released bioactive concentrations of simvastatin (SIM) was tested, aimed at the development of a cell-free tissue engineering system. First, we performed a dose-response assay to select the bioactive dose of SIM capable of inducing an odontoblastic phenotype in dental pulp cells (DPCs); after which we evaluated the synergistic effect of this dosage with the CHSC/DPC construct. SIM at 1.0 μmol/L (CHSC-SIM1.0) and 0.5 μmol/L were incorporated into the CHSC, and cell viability, adhesion, and calcium deposition were evaluated. Finally, we assessed the biomaterials in an artificial pulp chamber/3-dimensional culture model to simulate the cell-free approach in vitro. SIM at 0.1 μmol/L was selected as the bioactive dose. This drug was capable of strongly inducing an odontoblastic phenotype on the DPC/CHSC construct. The incorporation of SIM into CHSC had no deleterious effect on cell viability and adhesion to the scaffold structure. CHSC-SIM1.0 led to significantly higher calcium-rich matrix deposition on scaffold/dentin disc assay compared with the control (CHSC). This biomaterial induced the migration of DPCs from a 3-dimensional culture to its surface as well as stimulated significantly higher expressions of alkaline phosphatase, collagen type 1 alpha 1, dentin matrix acidic phosphoprotein 1, and dentin sialophosphoprotein on 3-dimensional-cultured DPCs than on those in contact with CHSC. CHSC-SIM1.0 scaffold was capable of increasing the chemotaxis and regenerative potential of DPCs. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Inflammation triggers constitutive activity and agonist-induced negative responses at M(3) muscarinic receptor in dental pulp.

    PubMed

    Sterin-Borda, Leonor; Orman, Betina; De Couto Pita, Alejandra; Borda, Enri

    2011-02-01

    The purpose of this study was to investigate whether the inflammation of rat dental pulp induces the muscarinic acetylcholine receptor (mAChR) constitutive receptor activity. Pulpitis was induced with bacterial lipolysaccharide in rat incisors dental pulp. Saturation assay with [(3)H]-quinuclidinyl benzilate ([(3)H] QNB), competitive binding with different mAChR antagonist subtypes, and nitric oxide synthase (NOS) activity were performed. A drastic change in expression and response to mAChR subtypes was observed in pulpitis. Inflamed pulp expressed high number of M(3) mAChR of high affinity, whereas the M(1) mAChR is the main subtype displayed in normal pulp. Consistent with the identification of the affinity constant (Ki) of M(3) and Ki of M(1) in both pulpitis and in normal pulps are the differences in the subtype functionality of these cells. In pulpitis, pilocarpine (1 × 10(-11) mol/L to 5 × 10(-9) mol/L) exerted an inhibitory action on NOS activity that was blocked by J 104129 fumarate (highest selective affinity to M(3) mAChR). In normal pulps, pilocarpine (1 × 10(-11) mol/L to 5 × 10(-9) mol/L) has no effect. NOS basal activity was 5.9 times as high in pulpitis as in the normal pulp as a result of the activation of inducible NOS. The irreversible pulpitis could induce a mAChR alteration, increasing the high-affinity receptor density and transduction-coupling efficiency of inducible NOS activity, leading to a spontaneously active conformation of the receptor. Pilocarpine acting as an inverse agonist might be useful therapeutically to prevent necrosis and subsequent loss of dental pulp. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Antimicrobial and biological activity of leachate from light curable pulp capping materials.

    PubMed

    Arias-Moliz, Maria Teresa; Farrugia, Cher; Lung, Christie Y K; Wismayer, Pierre Schembri; Camilleri, Josette

    2017-09-01

    Characterization of a number of pulp capping materials and assessment of the leachate for elemental composition, antimicrobial activity and cell proliferation and expression. Three experimental light curable pulp-capping materials, Theracal and Biodentine were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The elemental composition of the leachate formed after 24h was assessed by inductively coupled plasma (ICP). The antimicrobial activity of the leachate was determined by the minimum inhibitory concentration (MIC) against multispecies suspensions of Streptococcus mutans ATCC 25175, Streptococcus gordonii ATCC 33478 and Streptococcus sobrinus ATCC 33399. Cell proliferation and cell metabolic function over the material leachate was assessed by an indirect contact test using 3-(4,5 dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The hydration behavior of the test materials varied with Biodentine being the most reactive and releasing the highest amount of calcium ions in solution. All materials tested except the unfilled resin exhibited depletion of phosphate ions from the solution indicating interaction of the materials with the media. Regardless the different material characteristics, there was a similar antimicrobial activity and cellular activity. All the materials exhibited no antimicrobial activity and were initially cytotoxic with cell metabolic function improving after 3days. The development of light curable tricalcium silicate-based pulp capping materials is important to improve the bonding to the final resin restoration. Testing of both antimicrobial activity and biological behavior is critical for material development. The experimental light curable materials exhibited promising biological properties but require further development to enhance the antimicrobial characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The in vitro and in vivo influence of 4-META/MMA-TBB resin components on dental pulp tissues.

    PubMed

    Inoue, T; Miyakoshi, S; Shimono, M

    2001-08-01

    The purpose of this study was to qualitate the penetration of the major components of 4-META/MMA-TBB adhesive resin (4-META resin) and to characterize their influence on the in vitro and in vivo wound healing of dental pulp tissues. Fresh 4-META resin was applied to rabbit mesentery; its components penetrated the mesentery to form three of layers, depending on the amounts of monomer components in the tissue. The superficial layer was a soft-tissue hybrid layer (STHL), the intermediate layer contained small particles of polymerized 4-META resin, while the deepest layer contained unpolymerized monomer components including MMA and butanol, which were detected by gas chromatography (GC). To characterize the in vivo effects of the deepest layer, we immersed the pulp tissue in MMA or in 5% 4-META/MMA and autotransplanted it to placement beneath a rabbit kidney capsule. The MMA-immersed pulp was positive for osteocalcin and presented osteodentin formation at 7 days, as did the untreated control pulp tissue. In contrast, the 5% 4-META/MMA-immersed pulp collapsed into the cell-deficient fibrous connective tissue, with slight calcification by 7 days and less osteodentin formation at 14 days. Analysis of these data suggests that MMA does not inhibit osteogenic activity of pulp tissue, while 5% 4-META/MMA does inhibit osteogenic activity to some extent.

  14. EZH2 Impairs Human Dental Pulp Cell Mineralization via the Wnt/β-Catenin Pathway.

    PubMed

    Li, B; Yu, F; Wu, F; Hui, T; A, P; Liao, X; Yin, B; Wang, C; Ye, L

    2018-05-01

    The enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of PRC2 (polycomb repressor complex 2). It mediates gene silencing via methyltransferase activity and is involved in the determination of cell lineage. However, the function of EZH2 and the underlying mechanisms by which it affects the differentiation of human dental pulp cell (hDPC) have remained underexplored. In this research, we found that EZH2 expression decreased during the mineralization of hDPCs, with attenuated H3K27me3 (trimethylation on lysine 27 in histone H3). Overexpression of EZH2 impaired the odontogenic differentiation of hDPCs, while EZH2 without methyltransferase activity mutation (mutation of suppressed variegation of 3 to 9, enhancer of zeste and trithorax domain, EZH2ΔSET) did not display this phenotype. In addition, siRNA knockdown studies showed that EZH2 negatively modulated hDPC differentiation in vitro and inhibited mineralized nodule formation in transplanted β-tricalcium phosphate / hDPC composites. To further investigate the underlying mechanisms, we explored the Wnt/β-catenin signaling pathway in view of the fact that previous research had documented the essential role that it plays during hDPC mineralization, as well as its links to EZH2 in other cells. We demonstrated for the first time that EZH2 depletion activated the Wnt/β-catenin signaling pathway and enhanced the accumulation of β-catenin in hDPCs. Chromatin immunoprecipitation analysis suggested that these effects are attributable to the level of the EZH2-regulated H3K27me3 on the β-catenin promoter. We conclude that EZH2 plays a negative role during the odontogenic differentiation of hDPCs. Suppression of EZH2 could promote hDPC mineralization by epigenetically regulating the expression of β-catenin and activating the Wnt canonical signaling pathway.

  15. Lymphocyte migration in the micro-channel of splenic sheathed capillaries in Chinese soft-shelled turtles, Pelodiscus sinensis.

    PubMed

    Zhang, Qian; Ullah, Shakeeb; Liu, Yi; Yang, Ping; Chen, Bing; Waqas, Yasir; Bao, Huijun; Hu, Lisi; Li, Quanfu; Chen, Qiusheng

    2016-01-01

    The structural characteristics of the splenic sheathed capillary were investigated using light microscopy and transmission electron microscopy (TEM). This study mainly focused on lymphocyte migration to the splenic white pulp via micro-channels in Chinese soft-shelled turtles, Pelodiscus sinensis. The results showed that the sheathed capillaries in the turtle spleen were high endothelial venule (HEV)-like vessels. These capillaries consist of micro-channels that facilitate lymphocyte migration to the splenic white pulp. The micro-channel is a dynamic structure comprising processes of endothelial cells, supporting cells, and ellipsoid-associated cells (EACs), which provides a microenvironment for lymphocyte migration. The pattern of lymphocyte migration in the micro-channel of the turtle spleen includes the following steps: (i) lymphocyte first adheres to the endothelium of the sheathed capillary, passes through the endothelial cells, and traverses through the basement membrane of the sheathed capillary; (ii) it then enters into the ellipsoid combined with supporting cells and EACs; and (iii) lymphocyte migrates from the ellipsoid to the periellipsoidal lymphatic sheath (PELS) via the micro-channel. This study provides morphological evidence for lymphocyte migration in the micro-channels of turtle spleens and also an insight into the mechanism of lymphocyte homing to the splenic white pulp of reptiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Quantification and purification of mangiferin from Chinese Mango (Mangifera indica L.) cultivars and its protective effect on human umbilical vein endothelial cells under H(2)O(2)-induced stress.

    PubMed

    Luo, Fenglei; Lv, Qiang; Zhao, Yuqin; Hu, Guibing; Huang, Guodi; Zhang, Jiukai; Sun, Chongde; Li, Xian; Chen, Kunsong

    2012-01-01

    Mangiferin is a natural xanthonoid with various biological activities. Quantification of mangiferin in fruit peel, pulp, and seed kernel was carried out in 11 Chinese mango (Mangifera indica L.) cultivars. The highest mangiferin content was found in the peel of Lvpimang (LPM) fruit (7.49 mg/g DW). Efficient purification of mangiferin from mango fruit peel was then established for the first time by combination of macroporous HPD100 resin chromatography with optimized high-speed counter-current chromatography (HSCCC). Purified mangiferin was identified by both HPLC and LC-MS, and it showed higher DPPH(•) free-radical scavenging capacities and ferric reducing ability of plasma (FRAP) than by l-ascorbic acid (Vc) or Trolox. In addition, it showed significant protective effects on human umbilical vein endothelial cells (HUVEC) under H(2)O(2)-induced stress. Cells treated with mangiferin resulted in significant enhanced cell survival under of H(2)O(2) stress. Therefore, mangiferin from mango fruit provides a promising perspective for the prevention of oxidative stress-associated diseases.

  17. Quantification and Purification of Mangiferin from Chinese Mango (Mangifera indica L.) Cultivars and Its Protective Effect on Human Umbilical Vein Endothelial Cells under H2O2-induced Stress

    PubMed Central

    Luo, Fenglei; Lv, Qiang; Zhao, Yuqin; Hu, Guibing; Huang, Guodi; Zhang, Jiukai; Sun, Chongde; Li, Xian; Chen, Kunsong

    2012-01-01

    Mangiferin is a natural xanthonoid with various biological activities. Quantification of mangiferin in fruit peel, pulp, and seed kernel was carried out in 11 Chinese mango (Mangifera indica L.) cultivars. The highest mangiferin content was found in the peel of Lvpimang (LPM) fruit (7.49 mg/g DW). Efficient purification of mangiferin from mango fruit peel was then established for the first time by combination of macroporous HPD100 resin chromatography with optimized high-speed counter-current chromatography (HSCCC). Purified mangiferin was identified by both HPLC and LC-MS, and it showed higher DPPH• free-radical scavenging capacities and ferric reducing ability of plasma (FRAP) than by l-ascorbic acid (Vc) or Trolox. In addition, it showed significant protective effects on human umbilical vein endothelial cells (HUVEC) under H2O2-induced stress. Cells treated with mangiferin resulted in significant enhanced cell survival under of H2O2 stress. Therefore, mangiferin from mango fruit provides a promising perspective for the prevention of oxidative stress-associated diseases. PMID:23109851

  18. Isolation and characterization of stem cells derived from human third molar tooth germs of young adults: implications in neo-vascularization, osteo-, adipo- and neurogenesis.

    PubMed

    Yalvac, M E; Ramazanoglu, M; Rizvanov, A A; Sahin, F; Bayrak, O F; Salli, U; Palotás, A; Kose, G T

    2010-04-01

    A number of studies have reported in the last decade that human tooth germs contain multipotent cells that give rise to dental and peri-odontal structures. The dental pulp, third molars in particular, have been shown to be a significant stem cell source. In this study, we isolated and characterized human tooth germ stem cells (hTGSCs) from third molars and assessed the expression of developmentally important transcription factors, such as oct4, sox2, klf4, nanog and c-myc, to determine their pluri-potency. Flow-cytometry analysis revealed that hTGSCs were positive for CD73, CD90, CD105 and CD166, but negative for CD34, CD45 and CD133, suggesting that these cells are mesenchymal-like stem cells. Under specific culture conditions, hTGSCs differentiated into osteogenic, adipogenic and neurogenic cells, as well as formed tube-like structures in Matrigel assay. hTGSCs showed significant levels of expression of sox2 and c-myc messenger RNA (mRNA), and a very high level of expression of klf4 mRNA when compared with human embryonic stem cells. This study reports for the first time that hTGSCs express developmentally important transcription factors that could render hTGSCs an attractive candidate for future somatic cell re-programming studies to differentiate germs into various tissue types, such as neurons and vascular structures. In addition, these multipotential hTGSCs could be important stem cell sources for autologous transplantation.

  19. Healthy Dental Pulp Oxygen Saturation Rates in Subjects with Homozygous Sickle Cell Anemia: A Cross-Sectional Study Nested in a Cohort.

    PubMed

    Souza, Soraia de Fátima Carvalho; Thomaz, Erika Bárbara Abreu Fonseca; Costa, Cyrene Piazera Silva

    2017-12-01

    To compare the percentage of arterial oxygen saturation (SpO 2 ) in healthy teeth with confirmed pulp vitality between individuals with sickle cell anemia (HbSS) and normal hemoglobin A (HbAA). This is a cross-sectional study nested within a cohort. Samples (n = 2543) comprised teeth with intact crowns and pulp vitality confirmed by thermal sensitivity tests and no history of caries, periodontal disease, or dental trauma. A total of 728 teeth of 113 individuals with HbSS and 1815 teeth of 246 individuals with HbAA were evaluated. Data analysis was performed using the χ 2 and Mann-Whitney tests and Spearman correlation analysis (α = 0.05). The study groups were comparable in terms of age, race, and sex (P > .05). Subjects with HbSS exhibited lower median SpO 2 levels in the body and upper teeth, excluding canines, than subjects with HbAA (P < .05). There were no significant differences in the evaluated parameters between the 2 groups (P > .05). Compared with individuals with HbAA, those with HbSS exhibited lower SpO 2 in maxillary teeth with confirmed pulp vitality, except in the canines. There was no correlation between SpO 2 levels of the body and dental pulp in individuals with HbSS or HbAA. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. HOX and TALE signatures specify human stromal stem cell populations from different sources.

    PubMed

    Picchi, Jacopo; Trombi, Luisa; Spugnesi, Laura; Barachini, Serena; Maroni, Giorgia; Brodano, Giovanni Barbanti; Boriani, Stefano; Valtieri, Mauro; Petrini, Mario; Magli, Maria Cristina

    2013-04-01

    Human stromal stem cell populations reside in different tissues and anatomical sites, however a critical question related to their efficient use in regenerative medicine is whether they exhibit equivalent biological properties. Here, we compared cellular and molecular characteristics of stromal stem cells derived from the bone marrow, at different body sites (iliac crest, sternum, and vertebrae) and other tissues (dental pulp and colon). In particular, we investigated whether homeobox genes of the HOX and TALE subfamilies might provide suitable markers to identify distinct stromal cell populations, as HOX proteins control cell positional identity and, together with their co-factors TALE, are involved in orchestrating differentiation of adult tissues. Our results show that stromal populations from different sources, although immunophenotypically similar, display distinct HOX and TALE signatures, as well as different growth and differentiation abilities. Stromal stem cells from different tissues are characterized by specific HOX profiles, differing in the number and type of active genes, as well as in their level of expression. Conversely, bone marrow-derived cell populations can be essentially distinguished for the expression levels of specific HOX members, strongly suggesting that quantitative differences in HOX activity may be crucial. Taken together, our data indicate that the HOX and TALE profiles provide positional, embryological and hierarchical identity of human stromal stem cells. Furthermore, our data suggest that cell populations derived from different body sites may not represent equivalent cell sources for cell-based therapeutical strategies for regeneration and repair of specific tissues. Copyright © 2012 Wiley Periodicals, Inc.

Top