Sample records for human reference dose

  1. Integrated protection of humans and the environment: a view from Japan.

    PubMed

    Sakai, K

    2018-01-01

    Six and a half years after the accident at Fukushima Daiichi nuclear power plant, an area of existing exposure situation remains. One of the main concerns of people is the higher level of ionising radiation than before the accident, although this is not expected to have any discernible health effect. Since the accident, several 'abnormalities' in environmental organisms have been reported. It is still not clear if these abnormalities were induced by radiation. It appears that the impact of the released radioactivity has not been sufficient to threaten the maintenance of biological diversity, the conservation of species, or the health and status of natural habitats, which are the focus in environmental protection. This highlights a difference between the protection of humans and protection of the environment (individuals for humans and populations/species for the environment). The system for protection of the environment has been developed with a similar approach as the system for protection of humans. Reference Animals and Plants (RAPs) were introduced to connect exposure and doses in a way similar to that for Reference Male and Reference Female. RAPs can also be used as a tool to associate the level of radiation (dose rate) with the biological effects on an organism. A difference between the protection of humans and that of the environment was identified: an effect on humans is measured in terms of dose, and an effect on the environment is measured in terms of dose rate. In other words, protection criteria for humans are expressed in term of dose (as dose limits, dose constraints, and reference levels), whereas those for the environment are expressed in terms of dose rate (as derived consideration reference levels).

  2. A systematic review of Bisphenol A "low dose" studies in the context of human exposure: a case for establishing standards for reporting "low-dose" effects of chemicals.

    PubMed

    Teeguarden, Justin G; Hanson-Drury, Sesha

    2013-12-01

    Human exposure to the chemical Bisphenol A is almost ubiquitous in surveyed industrialized societies. Structural features similar to estrogen confer the ability of Bisphenol A (BPA) to bind estrogen receptors, giving BPA membership in the group of environmental pollutants called endocrine disruptors. References by scientists, the media, political entities, and non-governmental organizations to many toxicity studies as "low dose" has led to the belief that exposure levels in these studies are similar to humans, implying that BPA is toxic to humans at current exposures. Through systematic, objective comparison of our current, and a previous compilation of the "low-dose" literature to multiple estimates of human external and internal exposure levels, we found that the "low-dose" moniker describes exposures covering 8-12 orders of magnitude, the majority (91-99% of exposures) being greater than the upper bound of human exposure in the general infant, child and adult U.S. Population. "low dose" is therefore a descriptor without specific meaning regarding human exposure. Where human exposure data are available, for BPA and other environmental chemicals, reference to toxicity study exposures by direct comparison to human exposure would be more informative, more objective, and less susceptible to misunderstanding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Conversion of ICRP male reference phantom to polygon-surface phantom

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-10-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (<2 man-months), we were able to construct the polygon-surface phantom with the organ masses perfectly matching the ICRP reference values. The analysis of the calculated dose values also implies that the dose values are indeed not very sensitive to the detailed morphology of the organ models in the phantom for highly penetrating radiations such as photons and neutrons. The results of the electron beams, on the other hand, show that the dose values of the polygon-surface phantom are higher by a factor of 2-5 times than those of the ICRP reference phantom for the skin and wall organs which have large holes due to low voxel resolution. The results demonstrate that the ICRP reference phantom could provide significantly unreasonable dose values to thin or wall organs especially for weakly penetrating radiations. Therefore, when compared to the original ICRP reference phantoms, it is believed that the polygon-surface version of ICRP reference phantoms properly developed will not only provide the same or similar dose values (say, difference <5 or 10%) for highly penetrating radiations, but also provide correct dose values for the weakly penetrating radiations such as electrons and other charged particles.

  4. 21 CFR 320.27 - Guidelines on the design of a multiple-dose in vivo bioavailability study.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE BIOAVAILABILITY AND BIOEQUIVALENCE... therapeutic moiety in the body. (2) The test product and the reference material should be administered to...) Measurement of an acute pharmacological effect. When comparison of the test product and the reference material...

  5. 21 CFR 320.27 - Guidelines on the design of a multiple-dose in vivo bioavailability study.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE BIOAVAILABILITY AND BIOEQUIVALENCE... therapeutic moiety in the body. (2) The test product and the reference material should be administered to...) Measurement of an acute pharmacological effect. When comparison of the test product and the reference material...

  6. 21 CFR 320.27 - Guidelines on the design of a multiple-dose in vivo bioavailability study.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE BIOAVAILABILITY AND BIOEQUIVALENCE... therapeutic moiety in the body. (2) The test product and the reference material should be administered to...) Measurement of an acute pharmacological effect. When comparison of the test product and the reference material...

  7. Comparison of reference doses (RfDs) developed for the protection of wildlife species in contrast to humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valoppi, L.; Carlisle, J.; Polisini, J.

    1995-12-31

    A component of both human health and ecological risk assessments is the evaluation of toxicity values. A comparison between the methodology for the development of Reference Doses (RfDs) to be protective of humans, and that developed for vertebrate wildlife species is presented. For all species, a chronic No Observable Adverse Effect Level (NOAEL) is developed by applying uncertainty factors (UFs) to literature-based toxicity values. Uncertainty factors are used to compensate for the length of exposure, sensitivity of endpoints, and cross-species extrapolations between the test species and the species being assessed. Differences between human and wildlife species could include the toxicologicalmore » endpoint, the critical study, and the magnitude of the cross-species extrapolation factor. Case studies for select chemicals are presented which contrast RfDs developed for humans and those developed for avian and mammalian wildlife.« less

  8. Dose-Response Modelling of Paralytic Shellfish Poisoning (PSP) in Humans

    PubMed Central

    Arnich, Nathalie; Thébault, Anne

    2018-01-01

    Paralytic shellfish poisoning (PSP) is caused by a group of marine toxins with saxitoxin (STX) as the reference compound. Symptoms in humans after consumption of contaminated shellfish vary from slight neurological and gastrointestinal effects to fatal respiratory paralysis. A systematic review was conducted to identify reported cases of human poisoning associated with the ingestion of shellfish contaminated with paralytic shellfish toxins (PSTs). Raw data were collected from 143 exposed individuals (113 with symptoms, 30 without symptoms) from 13 studies. Exposure estimates were based on mouse bioassays except in one study. A significant relationship between exposure to PSTs and severity of symptoms was established by ordinal modelling. The critical minimal dose with a probability higher than 10% of showing symptoms is 0.37 µg STX eq./kg b.w. This means that 10% of the individuals exposed to this dose would have symptoms (without considering the severity of the symptoms). This dose is four-fold lower than the lowest-observed-adverse-effect-level (LOAEL) established by the European Food Safety Authority (EFSA, 2009) in the region of 1.5 μg STX eq./kg b.w. This work provides critical doses that could be used as point of departure to update the acute reference dose for STX. This is the first time a dose-symptoms model could be built for marine toxins using epidemiological data. PMID:29597338

  9. IRIS Toxicological Review of Beryllium and Compounds (2008 ...

    EPA Pesticide Factsheets

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Beryllium that when finalized will appear on the Integrated Risk Information System (IRIS) database. An IRIS Toxicological Review of Beryllium and Compounds was published in 1988 and reassessed in 1998. The current draft (2007) only focuses on the cancer assessment and does not re-evaluate posted reference doses or reference concentrations.

  10. IRIS Toxicological Review of Tetrachloroethylene ...

    EPA Pesticide Factsheets

    EPA conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of tetrachloroethylene that will appear on the Integrated Risk Information System (IRIS) database. Peer review is meant to ensure that science is used credibly and appropriately in derivation of the toxicological characterization and dose-response assessments. This draft health assessment addresses both non-cancer and cancer human health effects that may result from chronic exposure to tetrachloroethylene (also called Perchloroethylene or Perc) . This is an update of an existing assessment posted on IRIS in 1988. This draft Toxicological Review includes a chronic Reference Concentration (RfC) and carcinogenicity assessment, which are not currently available on IRIS, as well as an update of the 1988 IRIS Reference Dose (RfD). Tetrachloroethylene is a chemical solvent that is widely used for dry cleaning of fabrics, metal degreasing, and in making some consumer products and other chemicals.

  11. 21 CFR 320.26 - Guidelines on the design of a single-dose in vivo bioavailability or bioequivalence study.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE BIOAVAILABILITY AND BIOEQUIVALENCE... test product and the reference material should be administered to subjects in the fasting state, unless...

  12. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabrikant, J.I.

    1982-08-01

    The present review provides an understanding of our current knowledge of the carcinogenic effect of low-dose radiation in man, and surveys the epidemiological studies of human populations exposed to nuclear explosions and medical radiation. Discussion centers on the contributions of quantitative epidemiology to present knowledge, the reliability of the dose-incidence data, and those relevant epidemiological studies that provide the most useful information for risk estimation of cancer-induction in man. Reference is made to dose-incidence relationships from laboratory animal experiments where they may obtain for problems and difficulties in extrapolation from data obtained at high doses to low doses, and frommore » animal data to the human situation. The paper describes the methods of application of such epidemiological data for estimation of excess risk of radiation-induced cancer in exposed human populations, and discusses the strengths and limitations of epidemiology in guiding radiation protection philosophy and public health policy.« less

  13. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation.

    PubMed Central

    Fabrikant, J. I.

    1981-01-01

    The present review provides an understanding of our current knowledge of the carcinogenic effect of low-dose radiation in man, and surveys the epidemiological studies of human populations exposed to nuclear explosions and medical radiation. Discussion centers on the contributions of quantitative epidemiology to present knowledge, the reliability of the dose-incidence data, and those relevant epidemiological studies that provide the most useful information for risk estimation of cancer induction in man. Reference is made to dose-incidence relationships from laboratory animal experiments where they may obtain, for problems and difficulties in extrapolation from data obtained at high doses to low doses, and from animal data to the human situation. The paper describes the methods of application of such epidemiological data for estimation of excess risk of radiation-induced cancer in exposed human populations and discusses the strengths and limitations of epidemiology in guiding radiation protection philosophy and public health policy. PMID:7043913

  14. The assessment of ionising radiation impact on the cooling pond freshwater ecosystem non-human biota from the Ignalina NPP operation beginning to shut down and initial decommissioning.

    PubMed

    Mazeika, J; Marciulioniene, D; Nedveckaite, T; Jefanova, O

    2016-01-01

    The radiological doses to non-human biota of freshwater ecosystem in the Ignalina NPP cooling pond - Lake Druksiai were evaluated for several cases including the plant's operation period and initial decommissioning activities, using the ERICA 1.2 code with IAEA SRS-19 models integrated approach and tool. Among the Lake Druksiai freshwater ecosystem reference organisms investigated the highest exposure dose rate was determined for bottom fauna - benthic organisms (mollusc-bivalves, crustaceans, mollusc-gastropods, insect larvae), and among the other reference organisms - for vascular plants. The mean and maximum total dose rate values due to anthropogenic radionuclide ionising radiation impact in all investigated cases were lower than the ERICA screening dose rate value of 10 μGy/h. The main exposure of reference organisms as a result of Ignalina NPP former effluent to Lake Druksiai is due to ionizing radiation of radionuclides (60)Co and (137)Cs, of predicted releases to Lake Druksiai during initial decommissioning period - due to radionuclides (60)Co, (134)Cs and (137)Cs, and as a result of predicted releases to Lake Druksiai from low- and intermediate-level short-lived radioactive waste disposal site in 30-100 year period - due to radionuclides (99)Tc and (3)H. The risk quotient expected values in all investigated cases were <1, and therefore the risk to non-human biota can be considered negligible with the exception of a conservative risk quotient for insect larvae. Radiological protection of non-human biota in Lake Druksiai, the Ignalina NPP cooling pond, is both feasible and acceptable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. IRIS Toxicological Review and Summary Documents for Vinyl Chloride (External Review Draft)

    EPA Science Inventory

    The Draft Toxicological Review was developed to evaluate both the cancer and non cancer human health risks from environmental exposure to vinyl chloride. A reference concentration (RfC), and a reference dose (RfD) were developed based upon induction of liver cell polymorphism in ...

  16. Direct Measurement of Perchlorate Exposure Biomarkers in a Highly Exposed Population: A Pilot Study

    PubMed Central

    Wong, Michelle; Copan, Lori; Olmedo, Luis; Patton, Sharyle; Haas, Robert; Atencio, Ryan; Xu, Juhua; Valentin-Blasini, Liza

    2011-01-01

    Exposure to perchlorate is ubiquitous in the United States and has been found to be widespread in food and drinking water. People living in the lower Colorado River region may have perchlorate exposure because of perchlorate in ground water and locally-grown produce. Relatively high doses of perchlorate can inhibit iodine uptake and impair thyroid function, and thus could impair neurological development in utero. We examined human exposures to perchlorate in the Imperial Valley among individuals consuming locally grown produce and compared perchlorate exposure doses to state and federal reference doses. We collected 24-hour urine specimen from a convenience sample of 31 individuals and measured urinary excretion rates of perchlorate, thiocyanate, nitrate, and iodide. In addition, drinking water and local produce were also sampled for perchlorate. All but two of the water samples tested negative for perchlorate. Perchlorate levels in 79 produce samples ranged from non-detect to 1816 ppb. Estimated perchlorate doses ranged from 0.02 to 0.51 µg/kg of body weight/day. Perchlorate dose increased with the number of servings of dairy products consumed and with estimated perchlorate levels in produce consumed. The geometric mean perchlorate dose was 70% higher than for the NHANES reference population. Our sample of 31 Imperial Valley residents had higher perchlorate dose levels compared with national reference ranges. Although none of our exposure estimates exceeded the U. S. EPA reference dose, three participants exceeded the acceptable daily dose as defined by bench mark dose methods used by the California Office of Environmental Health Hazard Assessment. PMID:21394205

  17. IRIS Toxicological Review of Dichloromethane (Methylene ...

    EPA Pesticide Factsheets

    EPA has finalized the Toxicological Review of Dichloromethane (Methylene Chloride): In support of the Integrated Risk Information System (IRIS). Now final, this assessment may be used by EPA’s program and regional offices to inform decisions to protect human health. This document presents background information and justification for the Intergrated Risk Information System (IRIS) Summary of the hazard and dose-response assessment of dichloromethane. IRIS Summaries may include oral reference dose (RfD) and inhalation reference concentration (RfC) values for chronic and other exposure durations, and a carcinogencity assessment. Internet/NCEA web site

  18. Effects of body habitus on internal radiation dose calculations using the 5-year-old anthropomorphic male models.

    PubMed

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-07-13

    Computational phantoms are commonly used in internal radiation dosimetry to assess the amount and distribution pattern of energy deposited in various parts of the human body from different internal radiation sources. Radiation dose assessments are commonly performed on predetermined reference computational phantoms while the argument for individualized patient-specific radiation dosimetry exists. This study aims to evaluate the influence of body habitus on internal dosimetry and to quantify the uncertainties in dose estimation correlated with the use of fixed reference models. The 5-year-old IT'IS male phantom was modified to match target anthropometric parameters, including body weight, body height and sitting height/stature ratio (SSR), determined from reference databases, thus enabling the creation of 125 5-year-old habitus-dependent male phantoms with 10th, 25th, 50th, 75th and 90th percentile body morphometries. We evaluated the absorbed fractions and the mean absorbed dose to the target region per unit cumulative activity in the source region (S-values) of F-18 in 46 source regions for the generated 125 anthropomorphic 5-year-old hybrid male phantoms using the Monte Carlo N-Particle eXtended general purpose Monte Carlo transport code and calculated the absorbed dose and effective dose of five 18 F-labelled radiotracers for children of various habitus. For most organs, the S-value of F-18 presents stronger statistical correlations with body weight, standing height and sitting height than BMI and SSR. The self-absorbed fraction and self-absorbed S-values of F-18 and the absorbed dose and effective dose of 18 F-labelled radiotracers present with the strongest statistical correlations with body weight. For 18 F-Amino acids, 18 F-Brain receptor substances, 18 F-FDG, 18 F-L-DOPA and 18 F-FBPA, the mean absolute effective dose differences between phantoms of different habitus and fixed reference models are 11.4%, 11.3%, 10.8%, 13.3% and 11.4%, respectively. Total body weight, standing height and sitting height have considerable effects on human internal dosimetry. Radiation dose calculations for individual subjects using the most closely matched habitus-dependent computational phantom should be considered as an alternative to improve the accuracy of the estimates.

  19. Effects of body habitus on internal radiation dose calculations using the 5-year-old anthropomorphic male models

    NASA Astrophysics Data System (ADS)

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-08-01

    Computational phantoms are commonly used in internal radiation dosimetry to assess the amount and distribution pattern of energy deposited in various parts of the human body from different internal radiation sources. Radiation dose assessments are commonly performed on predetermined reference computational phantoms while the argument for individualized patient-specific radiation dosimetry exists. This study aims to evaluate the influence of body habitus on internal dosimetry and to quantify the uncertainties in dose estimation correlated with the use of fixed reference models. The 5-year-old IT’IS male phantom was modified to match target anthropometric parameters, including body weight, body height and sitting height/stature ratio (SSR), determined from reference databases, thus enabling the creation of 125 5-year-old habitus-dependent male phantoms with 10th, 25th, 50th, 75th and 90th percentile body morphometries. We evaluated the absorbed fractions and the mean absorbed dose to the target region per unit cumulative activity in the source region (S-values) of F-18 in 46 source regions for the generated 125 anthropomorphic 5-year-old hybrid male phantoms using the Monte Carlo N-Particle eXtended general purpose Monte Carlo transport code and calculated the absorbed dose and effective dose of five 18F-labelled radiotracers for children of various habitus. For most organs, the S-value of F-18 presents stronger statistical correlations with body weight, standing height and sitting height than BMI and SSR. The self-absorbed fraction and self-absorbed S-values of F-18 and the absorbed dose and effective dose of 18F-labelled radiotracers present with the strongest statistical correlations with body weight. For 18F-Amino acids, 18F-Brain receptor substances, 18F-FDG, 18F-L-DOPA and 18F-FBPA, the mean absolute effective dose differences between phantoms of different habitus and fixed reference models are 11.4%, 11.3%, 10.8%, 13.3% and 11.4%, respectively. Total body weight, standing height and sitting height have considerable effects on human internal dosimetry. Radiation dose calculations for individual subjects using the most closely matched habitus-dependent computational phantom should be considered as an alternative to improve the accuracy of the estimates.

  20. Organ dose conversion coefficients for voxel models of the reference male and female from idealized photon exposures

    NASA Astrophysics Data System (ADS)

    Schlattl, H.; Zankl, M.; Petoussi-Henss, N.

    2007-04-01

    A new series of organ equivalent dose conversion coefficients for whole body external photon exposure is presented for a standardized couple of human voxel models, called Rex and Regina. Irradiations from broad parallel beams in antero-posterior, postero-anterior, left- and right-side lateral directions as well as from a 360° rotational source have been performed numerically by the Monte Carlo transport code EGSnrc. Dose conversion coefficients from an isotropically distributed source were computed, too. The voxel models Rex and Regina originating from real patient CT data comply in body and organ dimensions with the currently valid reference values given by the International Commission on Radiological Protection (ICRP) for the average Caucasian man and woman, respectively. While the equivalent dose conversion coefficients of many organs are in quite good agreement with the reference values of ICRP Publication 74, for some organs and certain geometries the discrepancies amount to 30% or more. Differences between the sexes are of the same order with mostly higher dose conversion coefficients in the smaller female model. However, much smaller deviations from the ICRP values are observed for the resulting effective dose conversion coefficients. With the still valid definition for the effective dose (ICRP Publication 60), the greatest change appears in lateral exposures with a decrease in the new models of at most 9%. However, when the modified definition of the effective dose as suggested by an ICRP draft is applied, the largest deviation from the current reference values is obtained in postero-anterior geometry with a reduction of the effective dose conversion coefficient by at most 12%.

  1. Influence of Ultra-Low-Dose and Iterative Reconstructions on the Visualization of Orbital Soft Tissues on Maxillofacial CT.

    PubMed

    Widmann, G; Juranek, D; Waldenberger, F; Schullian, P; Dennhardt, A; Hoermann, R; Steurer, M; Gassner, E-M; Puelacher, W

    2017-08-01

    Dose reduction on CT scans for surgical planning and postoperative evaluation of midface and orbital fractures is an important concern. The purpose of this study was to evaluate the variability of various low-dose and iterative reconstruction techniques on the visualization of orbital soft tissues. Contrast-to-noise ratios of the optic nerve and inferior rectus muscle and subjective scores of a human cadaver were calculated from CT with a reference dose protocol (CT dose index volume = 36.69 mGy) and a subsequent series of low-dose protocols (LDPs I-4: CT dose index volume = 4.18, 2.64, 0.99, and 0.53 mGy) with filtered back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR)-50, ASIR-100, and model-based iterative reconstruction. The Dunn Multiple Comparison Test was used to compare each combination of protocols (α = .05). Compared with the reference dose protocol with FBP, the following statistically significant differences in contrast-to-noise ratios were shown (all, P ≤ .012) for the following: 1) optic nerve: LDP-I with FBP; LDP-II with FBP and ASIR-50; LDP-III with FBP, ASIR-50, and ASIR-100; and LDP-IV with FBP, ASIR-50, and ASIR-100; and 2) inferior rectus muscle: LDP-II with FBP, LDP-III with FBP and ASIR-50, and LDP-IV with FBP, ASIR-50, and ASIR-100. Model-based iterative reconstruction showed the best contrast-to-noise ratio in all images and provided similar subjective scores for LDP-II. ASIR-50 had no remarkable effect, and ASIR-100, a small effect on subjective scores. Compared with a reference dose protocol with FBP, model-based iterative reconstruction may show similar diagnostic visibility of orbital soft tissues at a CT dose index volume of 2.64 mGy. Low-dose technology and iterative reconstruction technology may redefine current reference dose levels in maxillofacial CT. © 2017 by American Journal of Neuroradiology.

  2. ESTIMATION OF EXPOSURE DOSES FOR THE SAFE MANAGEMENT OF NORM WASTE DISPOSAL.

    PubMed

    Jeong, Jongtae; Ko, Nak Yul; Cho, Dong-Keun; Baik, Min Hoon; Yoon, Ki-Hoon

    2018-03-16

    Naturally occurring radioactive materials (NORM) wastes with different radiological characteristics are generated in several industries. The appropriate options for NORM waste management including disposal options should be discussed and established based on the act and regulation guidelines. Several studies calculated the exposure dose and mass of NORM waste to be disposed in landfill site by considering the activity concentration level and exposure dose. In 2012, the Korean government promulgated an act on the safety control of NORM around living environments to protect human health and the environment. For the successful implementation of this act, we suggest a reference design for a landfill for the disposal of NORM waste. Based on this reference landfill, we estimate the maximum exposure doses and the relative impact of each pathway to exposure dose for three scenarios: a reference scenario, an ingestion pathway exclusion scenario, and a low leach rate scenario. Also, we estimate the possible quantity of NORM waste disposal into a landfill as a function of the activity concentration level of U series, Th series and 40K and two kinds of exposure dose levels, 1 and 0.3 mSv/y. The results of this study can be used to support the establishment of technical bases of the management strategy for the safe disposal of NORM waste.

  3. Use of epidemiologic data in Integrated Risk Information System (IRIS) assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persad, Amanda S.; Cooper, Glinda S.

    2008-11-15

    In human health risk assessment, information from epidemiologic studies is typically utilized in the hazard identification step of the risk assessment paradigm. However, in the assessment of many chemicals by the Integrated Risk Information System (IRIS), epidemiologic data, both observational and experimental, have also been used in the derivation of toxicological risk estimates (i.e., reference doses [RfD], reference concentrations [RfC], oral cancer slope factors [CSF] and inhalation unit risks [IUR]). Of the 545 health assessments posted on the IRIS database as of June 2007, 44 assessments derived non-cancer or cancer risk estimates based on human data. RfD and RfC calculationsmore » were based on a spectrum of endpoints from changes in enzyme activity to specific neurological or dermal effects. There are 12 assessments with IURs based on human data, two assessments that extrapolated human inhalation data to derive CSFs and one that used human data to directly derive a CSF. Lung or respiratory cancer is the most common endpoint for cancer assessments based on human data. To date, only one chemical, benzene, has utilized human data for derivation of all three quantitative risk estimates (i.e., RfC, RfD, and dose-response modeling for cancer assessment). Through examples from the IRIS database, this paper will demonstrate how epidemiologic data have been used in IRIS assessments for both adding to the body of evidence in the hazard identification process and in the quantification of risk estimates in the dose-response component of the risk assessment paradigm.« less

  4. Changes in radiation dose with variations in human anatomy: moderately and severely obese adults.

    PubMed

    Clark, Landon D; Stabin, Michael G; Fernald, Michael J; Brill, Aaron B

    2010-06-01

    The phantoms used in standardized dose assessment are based on a median (i.e., 50th percentile) individual of a large population, for example, adult males or females or children of a particular age. Here we describe phantoms that model instead the influence of obesity on specific absorbed fractions (SAFs) and dose factors in adults. The literature was reviewed to evaluate how individual organ sizes change with variations in body weight in mildly and severely obese adult men and women. On the basis of the literature evaluation, changes were made to our deformable reference adult male and female total-body models. Monte Carlo simulations of radiation transport were performed. SAFs for photons were generated for mildly and severely obese adults, and comparisons were made to the reference (50th) percentile SAF values. SAFs studied between the obese phantoms and the 50th percentile reference phantoms were not significantly different from the reference 50th percentile individual, with the exception of intestines irradiating some abdominal organs, because of an increase in separation between folds caused by an increase in mesenteric adipose deposits. Some low-energy values for certain organ pairs were different, possibly due only to the statistical variability of the data at these low energies. The effect of obesity on dose calculations for internal emitters is minor and may be neglected in the routine use of standardized dose estimates.

  5. INHALATION EXPOSURE-RESPONSE METHODOLOGY

    EPA Science Inventory

    The Inhalation Exposure-Response Analysis Methodology Document is expected to provide guidance on the development of the basic toxicological foundations for deriving reference values for human health effects, focusing on the hazard identification and dose-response aspects of the ...

  6. Interim methods for development of inhalation reference concentrations. Draft report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackburn, K.; Dourson, M.; Erdreich, L.

    1990-08-01

    An inhalation reference concentration (RfC) is an estimate of continuous inhalation exposure over a human lifetime that is unlikely to pose significant risk of adverse noncancer health effects and serves as a benchmark value for assisting in risk management decisions. Derivation of an RfC involves dose-response assessment of animal data to determine the exposure levels at which no significant increase in the frequency or severity of adverse effects between the exposed population and its appropriate control exists. The assessment requires an interspecies dose extrapolation from a no-observed-adverse-effect level (NOAEL) exposure concentration of an animal to a human equivalent NOAEL (NOAEL(HBC)).more » The RfC is derived from the NOAEL(HBC) by the application of generally order-of-magnitude uncertainty factors. Intermittent exposure scenarios in animals are extrapolated to chronic continuous human exposures. Relationships between external exposures and internal doses depend upon complex simultaneous and consecutive processes of absorption, distribution, metabolism, storage, detoxification, and elimination. To estimate NOAEL(HBC)s when chemical-specific physiologically-based pharmacokinetic models are not available, a dosimetric extrapolation procedure based on anatomical and physiological parameters of the exposed human and animal and the physical parameters of the toxic chemical has been developed which gives equivalent or more conservative exposure concentrations values than those that would be obtained with a PB-PK model.« less

  7. Effective dose evaluation of NORM-added consumer products using Monte Carlo simulations and the ICRP computational human phantoms.

    PubMed

    Lee, Hyun Cheol; Yoo, Do Hyeon; Testa, Mauro; Shin, Wook-Geun; Choi, Hyun Joon; Ha, Wi-Ho; Yoo, Jaeryong; Yoon, Seokwon; Min, Chul Hee

    2016-04-01

    The aim of this study is to evaluate the potential hazard of naturally occurring radioactive material (NORM) added consumer products. Using the Monte Carlo method, the radioactive products were simulated with ICRP reference phantom and the organ doses were calculated with the usage scenario. Finally, the annual effective doses were evaluated as lower than the public dose limit of 1mSv y(-1) for 44 products. It was demonstrated that NORM-added consumer products could be quantitatively assessed for the safety regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Mercury study report to Congress. Volume 5. Health effects of mercury and mercury compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassett-Sipple, B.; Swartout, J.; Schoeny, R.

    1997-12-01

    This volume summarizes the available information on human health effects and animal data for hazard identification and dose-response assessment for three forms of mercury: elemental mercury, mercury chloride (inorganic mercury), and methylmercury (organic mercury). Effects are summarized by endpoint. The risk assessment evaluates carcinogenicity, mutagenicity, developmental toxicity and general systemic toxicity of these chemical species of mercury. Toxicokinetics (absorption, distribution, metabolism and excretion) are described for each of the three mercury species. Reference doses are calculated for inorganic and methylmercury; a reference concentrations for inhaled elemental mercury is provided. A quantitative analysis of factors contributing to variability and uncertainty inmore » the methylmercury RfD is provided in an appendix. Interactions and sensitive populations are described. the draft volume assesses ongoing research and research needs to reduce uncertainty surrounding adverse human health consequences of methylmercury exposure.« less

  9. Simplified quantification and whole-body distribution of [18F]FE-PE2I in nonhuman primates: prediction for human studies.

    PubMed

    Varrone, Andrea; Gulyás, Balázs; Takano, Akihiro; Stabin, Michael G; Jonsson, Cathrine; Halldin, Christer

    2012-02-01

    [(18)F]FE-PE2I is a promising dopamine transporter (DAT) radioligand. In nonhuman primates, we examined the accuracy of simplified quantification methods and the estimates of radiation dose of [(18)F]FE-PE2I. In the quantification study, binding potential (BP(ND)) values previously reported in three rhesus monkeys using kinetic and graphical analyses of [(18)F]FE-PE2I were used for comparison. BP(ND) using the cerebellum as reference region was obtained with four reference tissue methods applied to the [(18)F]FE-PE2I data that were compared with the kinetic and graphical analyses. In the whole-body study, estimates of adsorbed radiation were obtained in two cynomolgus monkeys. All reference tissue methods provided BP(ND) values within 5% of the values obtained with the kinetic and graphical analyses. The shortest imaging time for stable BP(ND) estimation was 54 min. The average effective dose of [(18)F]FE-PE2I was 0.021 mSv/MBq, similar to 2-deoxy-2-[(18)F]fluoro-d-glucose. The results in nonhuman primates suggest that [(18)F]FE-PE2I is suitable for accurate and stable DAT quantification, and its radiation dose estimates would allow for a maximal administered radioactivity of 476 MBq in human subjects. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. SITE SPECIFIC REFERENCE PERSON PARAMETERS AND DERIVED CONCENTRATION STANDARDS FOR THE SAVANNAH RIVER SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannik, T.

    2013-03-14

    The purpose of this report is twofold. The first is to develop a set of behavioral parameters for a reference person specific for the Savannah River Site (SRS) such that the parameters can be used to determine dose to members of the public in compliance with Department of Energy (DOE) Order 458.1 “Radiation Protection of the Public and the Environment.” A reference person is a hypothetical, gender and age aggregation of human physical and physiological characteristics arrived at by international consensus for the purpose of standardizing radiation dose calculations. DOE O 458.1 states that compliance with the annual dose limitmore » of 100 mrem (1 mSv) to a member of the public may be demonstrated by calculating the dose to the maximally exposed individual (MEI) or to a representative person. Historically, for dose compliance, SRS has used the MEI concept, which uses adult dose coefficients and adult male usage parameters. Beginning with the 2012 annual site environmental report, SRS will be using the representative person concept for dose compliance. The dose to a representative person will be based on 1) the SRS-specific reference person usage parameters at the 95th percentile of appropriate national or regional data, which are documented in this report, 2) the reference person (gender and age averaged) ingestion and inhalation dose coefficients provided in DOE Derived Concentration Technical Standard (DOE-STD-1196-2011), and 3) the external dose coefficients provided in the DC_PAK3 toolbox. The second purpose of this report is to develop SRS-specific derived concentration standards (DCSs) for all applicable food ingestion pathways, ground shine, and water submersion. The DCS is the concentration of a particular radionuclide in water, in air, or on the ground that results in a member of the public receiving 100 mrem (1 mSv) effective dose following continuous exposure for one year. In DOE-STD-1196-2011, DCSs were developed for the ingestion of water, inhalation of air and submersion in air pathways, only. These DCSs are required by DOE O 458.1 to be used at all DOE sites in the design and conduct of radiological environmental protection programs. In this report, DCSs for the following additional pathways were considered and documented: ingestion of meat, dairy, grains, produce (fruits and vegetables), seafood, submersion in water and ground shine. These additional DCSs were developed using the same methods as in DOE-STD-1196-2011 and will be used at SRS, where appropriate, as screening and reference values.« less

  11. American association of poison control centers database characterization of human tilmicosin exposures, 2001-2005.

    PubMed

    Oakes, Jennifer; Seifert, Steven

    2008-12-01

    Tilmicosin is a veterinary antibiotic with significant human toxicity at doses commonly used in animals, but the parenteral dose-response relationship has not been well characterized. Human exposures to tilmicosin in the database of the American Association of Poison Control Centers (AAPCC) from 2001 to 2005 were analyzed for demographic associations, exposure dose, clinical effects and outcomes. Over the 5-year period, there were 1,291 single-substance human exposures to tilmicosin. The mean age was 39.1 years, and 80% were male. By route there were 768 (54%) parenteral exposures. Patients with parenteral exposures had a significantly increased likelihood of being seen at a healthcare facility, admission, and admission to an ICU. With nonparenteral exposure, most had no clinical effects or minor effects, and there were no major effects or deaths. With parenteral exposure, moderate effects occurred in 46 (6%), major effects in 2 (0.3%) and there were 4 (0.5%) deaths, two of which were suicides. A dose-response relationship could be demonstrated. Clinical effect durations of up to a week occurred at even the lowest dose range. Over 250 cases of human tilmicosin exposure are reported to poison centers per year and over 150 of those are parenteral. Most exposures produce no or minor effects, but fatalities have occurred with parenteral exposure. The case fatality rate in parenteral exposures is 10 times the case fatality rate for all human exposures in the AAPCC database. Significant adverse and prolonged effects are reported at parenteral doses > 0.5 mL, suggesting that all parenteral exposures should be referred for healthcare facility evaluation.

  12. Absorbed doses of lungs from radon retained in airway lumens of mice and rats.

    PubMed

    Sakoda, Akihiro; Ishimori, Yuu; Yamaoka, Kiyonori; Kataoka, Takahiro; Mitsunobu, Fumihiro

    2013-08-01

    This paper provides absorbed doses arising from radon gas in air retained in lung airway lumens. Because radon gas exposure experiments often use small animals, the calculation was performed for mice and rats. For reference, the corresponding computations were also done for humans. Assuming that radon concentration in airway lumens is the same as that in the environment, its progeny's production in and clearance from airways were simulated. Absorbed dose rates were obtained for three lung regions and the whole lung, considering that secretory and basal cells are sensitive to radiation. The results showed that absorbed dose rates for all lung regions and whole lung generally increase from mice to rats to humans. For example, the dose rates for the whole lung were 25.4 in mice, 41.7 in rats, and 59.9 pGy (Bq m⁻³)⁻¹ h⁻¹ in humans. Furthermore, these values were also compared with lung dose rates from two other types of exposures, that is, due to inhalation of radon or its progeny, which were already reported. It was confirmed that the direct inhalation of radon progeny in the natural environment, which is known as a cause of lung cancer, results in the highest dose rates for all species. Based on the present calculations, absorbed dose rates of the whole lung from radon gas were lower by a factor of about 550 (mice), 200 (rats), or 70 (humans) than those from radon progeny inhalation. The calculated dose rate values are comparatively small. Nevertheless, the present study is considered to contribute to our understanding of doses from inhalation of radon and its progeny.

  13. Evaluating health risks from occupational exposure to pesticides and the regulatory response.

    PubMed Central

    Woodruff, T J; Kyle, A D; Bois, F Y

    1994-01-01

    In this study, we used measurements of occupational exposures to pesticides in agriculture to evaluate health risks and analyzed how the federal regulatory program is addressing these risks. Dose estimates developed by the State of California from measured occupational exposures to 41 pesticides were compared to standard indices of acute toxicity (LD50) and chronic effects (reference dose). Lifetime cancer risks were estimated using cancer potencies. Estimated absorbed daily doses for mixers, loaders, and applicators of pesticides ranged from less than 0.0001% to 48% of the estimated human LD50 values, and doses for 10 of 40 pesticides exceeded 1% of the estimated human LD50 values. Estimated lifetime absorbed daily doses ranged from 0.1% to 114,000% of the reference doses developed by the U.S. Environmental Protection Agency, and doses for 13 of 25 pesticides were above them. Lifetime cancer risks ranged from 1 per million to 1700 per million, and estimates for 12 of 13 pesticides were above 1 per million. Similar results were obtained for field workers and flaggers. For the pesticides examined, exposures pose greater risks of chronic effects than acute effects. Exposure reduction measures, including use of closed mixing systems and personal protective equipment, significantly reduced exposures. Proposed regulations rely primarily on requirements for personal protective equipment and use restrictions to protect workers. Chronic health risks are not considered in setting these requirements. Reviews of pesticides by the federal pesticide regulatory program have had little effect on occupational risks. Policy strategies that offer immediate protection for workers and that are not dependent on extensive review of individual pesticides should be pursued. Images Figure 1. PMID:7713022

  14. Traditional medicine and gastroprotective crude drugs.

    PubMed

    Schmeda-Hirschmann, Guillermo; Yesilada, Erdem

    2005-08-22

    A frequent question when dealing with the search for gastroprotective compounds from natural sources is how far or close are both the plant preparations and extract amounts from the doses recommended in traditional medicine and what should be considered realistic levels for experimental studies. The administration way is oral and therefore extracts and products should be administered by gavage when looking for validation of ethnopharmacological uses. Suggestions of doses for both crude extracts and pure compounds are presented and discussed. For plant extracts prepared from single herbs and herbal mixtures, dose-response studies in the range between 100 and 300 mg/kg are suggested, with more than a single gastric ulcer model either in rats or mice. A suitable reference compound should be used according to the ulcer model and in doses resembling those used for human patients. For pure compounds and structure-activity studies or trends, dose-response results should be provided for at least a parent compound in order to select a reasonable dose for comparison purposes. We suggest an evaluation of the activity of the parent compound in the 50-300 mg/kg range and to look for structural modification leading to derivatives with similar or higher gastroprotective effects than the reference antiulcer compounds.

  15. A Unified Probabilistic Framework for Dose-Response Assessment of Human Health Effects.

    PubMed

    Chiu, Weihsueh A; Slob, Wout

    2015-12-01

    When chemical health hazards have been identified, probabilistic dose-response assessment ("hazard characterization") quantifies uncertainty and/or variability in toxicity as a function of human exposure. Existing probabilistic approaches differ for different types of endpoints or modes-of-action, lacking a unifying framework. We developed a unified framework for probabilistic dose-response assessment. We established a framework based on four principles: a) individual and population dose responses are distinct; b) dose-response relationships for all (including quantal) endpoints can be recast as relating to an underlying continuous measure of response at the individual level; c) for effects relevant to humans, "effect metrics" can be specified to define "toxicologically equivalent" sizes for this underlying individual response; and d) dose-response assessment requires making adjustments and accounting for uncertainty and variability. We then derived a step-by-step probabilistic approach for dose-response assessment of animal toxicology data similar to how nonprobabilistic reference doses are derived, illustrating the approach with example non-cancer and cancer datasets. Probabilistically derived exposure limits are based on estimating a "target human dose" (HDMI), which requires risk management-informed choices for the magnitude (M) of individual effect being protected against, the remaining incidence (I) of individuals with effects ≥ M in the population, and the percent confidence. In the example datasets, probabilistically derived 90% confidence intervals for HDMI values span a 40- to 60-fold range, where I = 1% of the population experiences ≥ M = 1%-10% effect sizes. Although some implementation challenges remain, this unified probabilistic framework can provide substantially more complete and transparent characterization of chemical hazards and support better-informed risk management decisions.

  16. Xenobiosis: behaviour of foreign substances in the human body.

    PubMed

    Albert, A

    1988-07-01

    The Paracelesian doctrine that foods, drugs, and poisons are much the same, in that the type of effect they elicit depends mainly on the dose, is illustrated by reference to oxygen, ethanol, and caffeine. Potency and selectivity of drugs are considered in this light.

  17. IRIS TOXICOLOGICAL REVIEW OF DECABROMODIPHENYL ETHER (EXTERNAL REVIEW DRAFT)

    EPA Science Inventory

    The U.S. EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessments of congeners of polybrominated diphenyl ethers (PDBEs), this review is about Decabromodiphenyl Ether, or commonly referred to as decaBDE (BDE-209). ...

  18. Ultralow-dose CT of the craniofacial bone for navigated surgery using adaptive statistical iterative reconstruction and model-based iterative reconstruction: 2D and 3D image quality.

    PubMed

    Widmann, Gerlig; Schullian, Peter; Gassner, Eva-Maria; Hoermann, Romed; Bale, Reto; Puelacher, Wolfgang

    2015-03-01

    OBJECTIVE. The purpose of this article is to evaluate 2D and 3D image quality of high-resolution ultralow-dose CT images of the craniofacial bone for navigated surgery using adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR) in comparison with standard filtered backprojection (FBP). MATERIALS AND METHODS. A formalin-fixed human cadaver head was scanned using a clinical reference protocol at a CT dose index volume of 30.48 mGy and a series of five ultralow-dose protocols at 3.48, 2.19, 0.82, 0.44, and 0.22 mGy using FBP and ASIR at 50% (ASIR-50), ASIR at 100% (ASIR-100), and MBIR. Blinded 2D axial and 3D volume-rendered images were compared with each other by three readers using top-down scoring. Scores were analyzed per protocol or dose and reconstruction. All images were compared with the FBP reference at 30.48 mGy. A nonparametric Mann-Whitney U test was used. Statistical significance was set at p < 0.05. RESULTS. For 2D images, the FBP reference at 30.48 mGy did not statistically significantly differ from ASIR-100 at 3.48 mGy, ASIR-100 at 2.19 mGy, and MBIR at 0.82 mGy. MBIR at 2.19 and 3.48 mGy scored statistically significantly better than the FBP reference (p = 0.032 and 0.001, respectively). For 3D images, the FBP reference at 30.48 mGy did not statistically significantly differ from all reconstructions at 3.48 mGy; FBP and ASIR-100 at 2.19 mGy; FBP, ASIR-100, and MBIR at 0.82 mGy; MBIR at 0.44 mGy; and MBIR at 0.22 mGy. CONCLUSION. MBIR (2D and 3D) and ASIR-100 (2D) may significantly improve subjective image quality of ultralow-dose images and may allow more than 90% dose reductions.

  19. Organochlorine pesticides and polychlorinated biphenyls in fish from Lake Awassa in the Ethiopian Rift Valley: human health risks.

    PubMed

    Deribe, Ermias; Rosseland, Bjørn Olav; Borgstrøm, Reidar; Salbu, Brit; Gebremariam, Zinabu; Dadebo, Elias; Skipperud, Lindis; Eklo, Ole Martin

    2014-08-01

    Dietary intake of fish containing organic contaminants poses a potential threat to human health. In the present work, an assessment has been carried out to look at the human health risk associated with consumption of fish contaminated with organochlorine pesticides (OCPs) and polychlorinated biphenyles (PCBs) in certain fish species collected from Lake Hawassa, Ethiopia. The health risk assessment was made by comparing the concentrations of OCPs and PCBs in fish muscle tissues with reference doses given in the USEPA guidelines. Dichlorodiphenyltrichloroethanes (DDTs), endosulfans, PCBs and chloridanes were identified in fish species collected from Lake Hawassa. The most predominant pesticides were DDTs, with mean concentrations of ΣDDT ranging from 19 to 56 ng g(-1) wet weights. The highest concentrations of DDTs were found in Barbus intermedius, representing the highest trophic level. PCBs, DDT and endosulfan concentrations found in B. intermedius exceeded the reference dose for children between the ages of 0-1 year (with hazard index of above 1.0). Therefore, consumption of fish from a high trophic level (e.g. B. intermedius) from Lake Hawassa may pose a special health risk to children.

  20. New Radiation Dosimetry Estimates for [18F]FLT based on Voxelized Phantoms.

    PubMed

    Mendes, B M; Ferreira, A V; Nascimento, L T C; Ferreira, S M Z M D; Silveira, M B; Silva, J B

    2018-04-25

    3'-Deoxy-3-[ 18 F]fluorothymidine, or [ 18 F]FLT, is a positron emission tomography (PET) tracer used in clinical studies for noninvasive assessment of proliferation activity in several types of cancer. Although the use of this PET tracer is expanding, to date, few studies concerning its dosimetry have been published. In this work, new [ 18 F]FLT dosimetry estimates are determined for human and mice using Monte Carlo simulations. Modern voxelized male and female phantoms and [ 18 F]FLT biokinetic data, both published by the ICRP, were used for simulations of human cases. For most human organs/tissues the absorbed doses were higher than those reported in ICRP Publication 128. An effective dose of 1.70E-02 mSv/MBq to the whole body was determined, which is 13.5% higher than the ICRP reference value. These new human dosimetry estimates obtained using more realistic human phantoms represent an advance in the knowledge of [ 18 F]FLT dosimetry. In addition, mice biokinetic data were obtained experimentally. These data and a previously developed voxelized mouse phantom were used for simulations of animal cases. Concerning animal dosimetry, absorbed doses for organs/tissues ranged from 4.47 ± 0.75 to 155.74 ± 59.36 mGy/MBq. The obtained set of organ/tissue radiation doses for healthy Swiss mice is a useful tool for application in animal experiment design.

  1. IRIS Toxicological Review of 2,2',4,4'-Tetrabromodiphenyl Ether (External Review Draft)

    EPA Science Inventory

    The U.S. EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessments of congeners of polybrominated diphenyl ethers (PDBEs), this review is about 2,2',4,4'-Tetrabromodiphenyl Ether, or commonly referred to as tetraBDE ...

  2. COMPARISONS OF ACUTE REFERENCE VALUES IN DEVELOPING AN ACUTE INHALATION ASSESSMENT METHOD

    EPA Science Inventory

    A method is being developed for performing assessments of human health risk from acute (less than 24 hour) inhalation exposures. The methodology will be flexible in its ability to utilize variously robust data sets of dose-response information. A supporting task is a comparati...

  3. Characterizing interspecies uncertainty using data from studies of anti-neoplastic agents in animals and humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Paul S.; Keenan, Russell E.; Swartout, Jeffrey C.

    For most chemicals, the Reference Dose (RfD) is based on data from animal testing. The uncertainty introduced by the use of animal models has been termed interspecies uncertainty. The magnitude of the differences between the toxicity of a chemical in humans and test animals and its uncertainty can be investigated by evaluating the inter-chemical variation in the ratios of the doses associated with similar toxicological endpoints in test animals and humans. This study performs such an evaluation on a data set of 64 anti-neoplastic drugs. The data set provides matched responses in humans and four species of test animals: mice,more » rats, monkeys, and dogs. While the data have a number of limitations, the data show that when the drugs are evaluated on a body weight basis: 1) toxicity generally increases with a species' body weight; however, humans are not always more sensitive than test animals; 2) the animal to human dose ratios were less than 10 for most, but not all, drugs; 3) the current practice of using data from multiple species when setting RfDs lowers the probability of having a large value for the ratio. These findings provide insight into inter-chemical variation in animal to human extrapolations and suggest the need for additional collection and analysis of matched toxicity data in humans and test animals.« less

  4. A framework for estimating radiation-related cancer risks in Japan from the 2011 Fukushima nuclear accident.

    PubMed

    Walsh, L; Zhang, W; Shore, R E; Auvinen, A; Laurier, D; Wakeford, R; Jacob, P; Gent, N; Anspaugh, L R; Schüz, J; Kesminiene, A; van Deventer, E; Tritscher, A; del Rosarion Pérez, M

    2014-11-01

    We present here a methodology for health risk assessment adopted by the World Health Organization that provides a framework for estimating risks from the Fukushima nuclear accident after the March 11, 2011 Japanese major earthquake and tsunami. Substantial attention has been given to the possible health risks associated with human exposure to radiation from damaged reactors at the Fukushima Daiichi nuclear power station. Cumulative doses were estimated and applied for each post-accident year of life, based on a reference level of exposure during the first year after the earthquake. A lifetime cumulative dose of twice the first year dose was estimated for the primary radionuclide contaminants ((134)Cs and (137)Cs) and are based on Chernobyl data, relative abundances of cesium isotopes, and cleanup efforts. Risks for particularly radiosensitive cancer sites (leukemia, thyroid and breast cancer), as well as the combined risk for all solid cancers were considered. The male and female cumulative risks of cancer incidence attributed to radiation doses from the accident, for those exposed at various ages, were estimated in terms of the lifetime attributable risk (LAR). Calculations of LAR were based on recent Japanese population statistics for cancer incidence and current radiation risk models from the Life Span Study of Japanese A-bomb survivors. Cancer risks over an initial period of 15 years after first exposure were also considered. LAR results were also given as a percentage of the lifetime baseline risk (i.e., the cancer risk in the absence of radiation exposure from the accident). The LAR results were based on either a reference first year dose (10 mGy) or a reference lifetime dose (20 mGy) so that risk assessment may be applied for relocated and non-relocated members of the public, as well as for adult male emergency workers. The results show that the major contribution to LAR from the reference lifetime dose comes from the first year dose. For a dose of 10 mGy in the first year and continuing exposure, the lifetime radiation-related cancer risks based on lifetime dose (which are highest for children under 5 years of age at initial exposure), are small, and much smaller than the lifetime baseline cancer risks. For example, after initial exposure at age 1 year, the lifetime excess radiation risk and baseline risk of all solid cancers in females were estimated to be 0.7 · 10(-2) and 29.0 · 10(-2), respectively. The 15 year risks based on the lifetime reference dose are very small. However, for initial exposure in childhood, the 15 year risks based on the lifetime reference dose are up to 33 and 88% as large as the 15 year baseline risks for leukemia and thyroid cancer, respectively. The results may be scaled to particular dose estimates after consideration of caveats. One caveat is related to the lack of epidemiological evidence defining risks at low doses, because the predicted risks come from cancer risk models fitted to a wide dose range (0-4 Gy), which assume that the solid cancer and leukemia lifetime risks for doses less than about 0.5 Gy and 0.2 Gy, respectively, are proportional to organ/tissue doses: this is unlikely to seriously underestimate risks, but may overestimate risks. This WHO-HRA framework may be used to update the risk estimates, when new population health statistics data, dosimetry information and radiation risk models become available.

  5. It's All Relative: A Validation of Radiation Quality Comparison Metrics

    NASA Technical Reports Server (NTRS)

    Chappell, Lori J.; Milder, Caitlin M.; Elgart, S. Robin; Semones, Edward J.

    2017-01-01

    The difference between high-LET and low-LET radiation is quantified by a measure called relative biological effectiveness (RBE). RBE is defined as the ratio of the dose of a reference radiation to that of a test radiation to achieve the same effect level, and thus, is described either as an iso-effector dose-to-dose ratio. A single dose point is not sufficient to calculate an RBE value; therefore, studies with only one dose point usually calculate an effect-to-effect ratio. While not formally used in radiation protection, these iso-dose values may still be informative. Shuryak, et al 2017 investigated the use of an iso-dose metric termed "radiation effects ratio" (RER) and used both RBE and RER to estimate high-LET risks. To apply RBE or RER to risk prediction, the selected metric must be uniquely defined. That is, the calculated value must be consistent within a model given a constant set of constraints and assumptions, regardless of how effects are defined using statistical transformations from raw endpoint data. We first test the RBE and the RER to determine whether they are uniquely defined using transformations applied to raw data. Then, we test whether both metrics can predict heavy ion response data after simulated effect size scaling between human populations or when converting animal to human endpoints.

  6. Radiation protection recommendations as applied to the disposal of long-lived solid radioactive waste. A report of The International Commission on Radiological Protection.

    PubMed

    1998-01-01

    (79) Waste, by definition, has no benefit. It should be viewed as one aspect of the beneficial practice that gave rise to it. Furthermore, radioactive waste management should be placed in the context of the management of society's waste in general. (80) A major issue in evaluating the acceptability of a disposal system for long-lived solid radioactive waste is that doses or risks may arise from exposures in the distant future. There is uncertainty surrounding any estimate of these doses or risks due to lack of knowledge about future conditions. Such exposures are treated as potential exposures as their magnitude depends on future processes and conditions that have probabilities associated with them. (81) Nevertheless, the Commission recognises a basic principle that individuals and populations in the future should be afforded at least the same level of protection from the action of disposing of radioactive waste today as is the current generation. This implies use of the current quantitative dose and risk criteria derived from considering associated health detriment. Therefore, protection of future generations should be achieved by applying these dose or risk criteria to the estimated future doses or risks in appropriately defined critical groups. These estimates should not be regarded as measures of health detriment beyond times of around several hundreds of years into the future. In the case of these longer time periods, they represent indicators of the protection afforded by the disposal system. (82 Constrained optimisation is the central approach to evaluating the radiological acceptability of a waste disposal system; dose or risk constraints are used rather than dose or risk limits. By this transition from limitation to optimisation, the needs of practical application of the radiological protection system to the disposal of long-lived solid waste disposal are met: determination of acceptability now for exposures that may occur in the distant future. Optimisation should be applied in an iterative manner during the disposal system development process and should particularly cover both site selection and repository design. (83) Two broad categories of exposure situations should be considered: natural processes and human intrusion. The latter only refers to intrusion that is inadvertent. The radiological implications of deliberate intrusion into a repository are the responsibility of the intruder. Assessed doses or risks arising from natural processes should be compared with a dose constraint of 0.3 mSv per year or its risk equivalent of around 10(-5) per year. With regard to human intrusion, the consequences from one or more plausible stylized scenarios should be considered in order to evaluate the resilience of the repository to such events. (84) The Commission considers that in circumstances where human intrusion could lead to doses to those living around the site sufficiently high that intervention on current criteria would almost always be justified, reasonable efforts should be made at the repository development stage to reduce the probability of human intrusion or to limit its consequences. In this respect, the Commission has previously advised that an existing annual dose of around 10 mSv per year may be used as a generic reference level below which intervention is not likely to be justifiable. Conversely, an existing annual dose of around 100 mSv per year may be used as a generic reference level above which intervention should be considered almost always justifiable. Similar considerations apply in situations where the thresholds for deterministic effects in relevant organs are exceeded. (85) Compliance with the constraints can be assessed by utilising either an aggregated risk-oriented approach, with a risk constraint, or a disaggregated dose/probability approach, with a dose constraint, or a combination of both. A similar level of protection can be achieved by any of these approaches; however, more information may

  7. Using physiologically based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirman, C R.; Sweeney, Lisa M.; Corley, Rick A.

    2005-04-01

    Reference values, including an oral reference dose (RfD) and an inhalation reference concentration (RfC), were derived for propylene glycol methyl ether (PGME), and an oral RfD was derived for its acetate (PGMEA). These values were based upon transient sedation observed in F344 rats and B6C3F1 mice during a two-year inhalation study. The dose-response relationship for sedation was characterized using internal dose measures as predicted by a physiologically based pharmacokinetic (PBPK) model for PGME and its acetate. PBPK modeling was used to account for changes in rodent physiology and metabolism due to aging and adaptation, based on data collected during weeksmore » 1, 2, 26, 52, and 78 of a chronic inhalation study. The peak concentration of PGME in richly perfused tissues was selected as the most appropriate internal dose measure based upon a consideration of the mode of action for sedation and similarities in tissue partitioning between brain and other richly perfused tissues. Internal doses (peak tissue concentrations of PGME) were designated as either no-observed-adverse-effect levels (NOAELs) or lowest-observed-adverse-effect levels (LOAELs) based upon the presence or absence of sedation at each time-point, species, and sex in the two year study. Distributions of the NOAEL and LOAEL values expressed in terms of internal dose were characterized using an arithmetic mean and standard deviation, with the mean internal NOAEL serving as the basis for the reference values, which was then divided by appropriate uncertainty factors. Where data were permitting, chemical-specific adjustment factors were derived to replace default uncertainty factor values of ten. Nonlinear kinetics are were predicted by the model in all species at PGME concentrations exceeding 100 ppm, which complicates interspecies and low-dose extrapolations. To address this complication, reference values were derived using two approaches which differ with respect to the order in which these extrapolations were performed: (1) uncertainty factor application followed by interspecies extrapolation (PBPK modeling); and (2) interspecies extrapolation followed by uncertainty factor application. The resulting reference values for these two approaches are substantially different, with values from the former approach being 7-fold higher than those from the latter approach. Such a striking difference between the two approaches reveals an underlying issue that has received little attention in the literature regarding the application of uncertainty factors and interspecies extrapolations to compounds where saturable kinetics occur in the range of the NOAEL. Until such discussions have taken place, reference values based on the latter approach are recommended for risk assessments involving human exposures to PGME and PGMEA.« less

  8. Mode of action in relevance of rodent liver tumors to human cancer risk.

    PubMed

    Holsapple, Michael P; Pitot, Henri C; Cohen, Samuel M; Cohen, Samuel H; Boobis, Alan R; Klaunig, James E; Pastoor, Timothy; Dellarco, Vicki L; Dragan, Yvonne P

    2006-01-01

    Hazard identification and risk assessment paradigms depend on the presumption of the similarity of rodents to humans, yet species specific responses, and the extrapolation of high-dose effects to low-dose exposures can affect the estimation of human risk from rodent data. As a consequence, a human relevance framework concept was developed by the International Programme on Chemical Safety (IPCS) and International Life Sciences Institute (ILSI) Risk Science Institute (RSI) with the central tenet being the identification of a mode of action (MOA). To perform a MOA analysis, the key biochemical, cellular, and molecular events need to first be established, and the temporal and dose-dependent concordance of each of the key events in the MOA can then be determined. The key events can be used to bridge species and dose for a given MOA. The next step in the MOA analysis is the assessment of biological plausibility for determining the relevance of the specified MOA in an animal model for human cancer risk based on kinetic and dynamic parameters. Using the framework approach, a MOA in animals could not be defined for metal overload. The MOA for phenobarbital (PB)-like P450 inducers was determined to be unlikely in humans after kinetic and dynamic factors were considered. In contrast, after these factors were considered with reference to estrogen, the conclusion was drawn that estrogen-induced tumors were plausible in humans. Finally, it was concluded that the induction of rodent liver tumors by porphyrogenic compounds followed a cytotoxic MOA, and that liver tumors formed as a result of sustained cytotoxicity and regenerative proliferation are considered relevant for evaluating human cancer risk if appropriate metabolism occurs in the animal models and in humans.

  9. Dose Calculation Evolution for Internal Organ Irradiation in Humans

    NASA Astrophysics Data System (ADS)

    Jimenez V., Reina A.

    2007-10-01

    The International Commission of Radiation Units (ICRU) has established through the years, a discrimination system regarding the security levels on the prescription and administration of doses in radiation treatments (Radiotherapy, Brach therapy, Nuclear Medicine). The first level is concerned with the prescription and posterior assurance of dose administration to a point of interest (POI), commonly located at the geometrical center of the region to be treated. In this, the effects of radiation around that POI, is not a priority. The second level refers to the dose specifications in a particular plane inside the patient, mostly the middle plane of the lesion. The dose is calculated to all the structures in that plane regardless if they are tumor or healthy tissue. In this case, the dose is not represented by a point value, but by level curves called "isodoses" as in a topographic map, so you can assure the level of doses to this particular plane, but it also leave with no information about how this values go thru adjacent planes. This is why the third level is referred to the volumetrical description of doses so these isodoses construct now a volume (named "cloud") that give us better assurance about tissue irradiation around the volume of the lesion and its margin (sub clinical spread or microscopic illness). This work shows how this evolution has resulted, not only in healthy tissue protection improvement but in a rise of tumor control, quality of life, better treatment tolerance and minimum permanent secuelae.

  10. Treatment Failure after Multiple Courses of Triclabendazole among Patients with Fascioliasis in Cusco, Peru: A Case Series

    PubMed Central

    Cabada, Miguel M.; Lopez, Martha; Cruz, Maria; Delgado, Jennifer R.; Hill, Virginia; White, A. Clinton

    2016-01-01

    Triclabendazole is reported to be highly effective in treatment of human fascioliasis. We present 7 of 19 selected cases of human fascioliasis referred to our center in the Cusco region of Peru that failed to respond to triclabendazole. These were mostly symptomatic adults of both sexes that continued passing Fasciola eggs in the stool despite multiple treatments with 2 doses of triclabendazole at 10 mg/kg per dose. We documented the presence of eggs by rapid sedimentation and Kato Katz tests after each treatment course. We found that repeated triclabendazole courses were not effective against fascioliasis in this group of people. These findings suggest that resistance to triclabendazole may be an emerging problem in the Andes. PMID:26808543

  11. Treatment Failure after Multiple Courses of Triclabendazole among Patients with Fascioliasis in Cusco, Peru: A Case Series.

    PubMed

    Cabada, Miguel M; Lopez, Martha; Cruz, Maria; Delgado, Jennifer R; Hill, Virginia; White, A Clinton

    2016-01-01

    Triclabendazole is reported to be highly effective in treatment of human fascioliasis. We present 7 of 19 selected cases of human fascioliasis referred to our center in the Cusco region of Peru that failed to respond to triclabendazole. These were mostly symptomatic adults of both sexes that continued passing Fasciola eggs in the stool despite multiple treatments with 2 doses of triclabendazole at 10 mg/kg per dose. We documented the presence of eggs by rapid sedimentation and Kato Katz tests after each treatment course. We found that repeated triclabendazole courses were not effective against fascioliasis in this group of people. These findings suggest that resistance to triclabendazole may be an emerging problem in the Andes.

  12. Identification and quantitation of all-trans- and 13-cis-retinoic acid and 13-cis-4-oxoretinoic acid in human plasma.

    PubMed

    Eckhoff, C; Nau, H

    1990-08-01

    Human plasma was analyzed by high performance liquid chromatography for the presence of retinoic acid and 4-oxoretinoic acid isomers. Peaks that coeluted with the reference compounds all-trans-retinoic acid, 13-cis-retinoic acid, and 13-cis-4-oxoretinoic acid were routinely observed in human plasma. These retinoids were unequivocally identified by the following methods: comigration with reference compounds under several high performance liquid chromatographic conditions; comparison of ultraviolet spectra with those of reference compounds; derivatization with diazomethane and coelution of the methyl esters with reference compounds in a high performance liquid chromatographic system as well as in a gas chromatography system with a mass selective detector. In vitro formation of 13-cis-retinoic acid and 13-cis-4-oxoretinoic acid as artifacts during the analytical procedure was excluded by control experiments. The mean plasma concentrations of the vitamin A metabolites in ten male volunteers were: all-trans-retinoic acid: 1.32 +/- 0.46 ng/ml; 13-cis-retinoic acid: 1.63 +/- 0.85 ng/ml; and 13-cis-4-oxoretinoic acid: 3.68 +/- 0.99 ng/ml. After oral dosing with vitamin A (833 IU/kg body weight) in five male volunteers, mean plasma all-trans-retinoic acid increased to 3.92 +/- 1.40 ng/ml and 13-cis-retinoic acid increased to 9.75 +/- 2.18 ng/ml. Maximal plasma 13-cis-4-oxoretinoic acid concentrations (average 7.60 +/- 1.45 ng/ml) were observed 6 h after dosing which was the last time point in this study. Concentrations of all-trans-4-oxoretinoic acid were low or not detectable. Our findings suggest that, in addition to all-trans-retinoic acid, 13-cis-retinoic acid and 13-cis-4-oxoretinoic acid are present in normal human plasma as metabolites of vitamin A.

  13. Derivation of an oral reference dose (RfD) for the plasticizer, di-(2-propylheptyl)phthalate (Palatinol® 10-P).

    PubMed

    Bhat, Virunya S; Durham, Jennifer L; English, J Caroline

    2014-10-01

    Di-(2-propylheptyl) phthalate (DPHP) is a high molecular weight polyvinyl chloride plasticizer. Since increasing production volume and broad utility may result in human exposure, an oral reference dose (RfD) was derived from laboratory animal data due to the lack of human data. In addition to liver and kidney, target organs were the thyroid, pituitary and adrenal glands in rats, recognizing that reproductive performance was not altered in two successive generations of DPHP-exposed rats. DPHP caused a reduction in pup and maternal body weights but not developmental or testicular effects typical of "phthalate syndrome." DPHP was not genotoxic. Due to the lack of carcinogenicity data, there is inadequate information to assess carcinogenic potential. The RfD of 0.1mg/kg-day was derived from the human equivalent BMDL10 of 10mg/kg-day for thyroid hypertrophy/hyperplasia in male F1 adults from the two-generation study. While in utero exposure did not alter sensitivity to thyroid lesions compared to subchronic exposures beginning at 6weeks of age, F1 adult males were the longest-term exposed population. The total uncertainty factor of 100x was comprised of intraspecies (10x), study duration (3x), and database (3x) factors but not an interspecies factor since rodents are more sensitive than humans to thyroid gland effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Antimony exposure and speciation in human biomarkers near an active mining area in Hunan, China.

    PubMed

    Ye, Li; Qiu, Shixin; Li, Xinhai; Jiang, Yuxuan; Jing, Chuanyong

    2018-05-28

    Antimony (Sb) exposure threatens human health. To identify human biomarkers for Sb exposure, we analyzed 480 environmental samples from an active Sb mining area in Hunan, China. Elevated Sb concentrations exceeding the reference level were detected in drinking water (70% of n = 83 total samples), foods (80%, n = 188), urine (95%, n = 63), saliva (44%, n = 48), hair (80%, n = 51) and nails (83%, n = 47). Drinking water contributed 85%-100% of the average daily dose (ADD) of Sb, and the total ADD (11.7 μg/kg bodyweight/day) was up to thirty times higher than the oral reference dose (0.4 μg/kg bodyweight/day) as recommended by USEPA. A positive correlation was found between ADD and Sb content in hair (p = 0.02), but not in urine (p = 0.051), saliva (p = 0.52) or nails (p = 0.85), suggesting that hair is the best non-invasive biomarker. Micro X-ray fluorescence analysis indicated that Sb is distributed in discrete spots in hair and nails, and Sb distribution is correlated with other metals. Methylated Sb species were predominant in urine (46%-100%) and saliva (74%-100%) in collected samples, implying that the human metabolic system adopts methylation as an effective pathway to detoxify and excrete Sb. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. A chronic oral reference dose for hexavalent chromium-induced intestinal cancer†

    PubMed Central

    Thompson, Chad M; Kirman, Christopher R; Proctor, Deborah M; Haws, Laurie C; Suh, Mina; Hays, Sean M; Hixon, J Gregory; Harris, Mark A

    2014-01-01

    High concentrations of hexavalent chromium [Cr(VI)] in drinking water induce villous cytotoxicity and compensatory crypt hyperplasia in the small intestines of mice (but not rats). Lifetime exposure to such cytotoxic concentrations increases intestinal neoplasms in mice, suggesting that the mode of action for Cr(VI)-induced intestinal tumors involves chronic wounding and compensatory cell proliferation of the intestine. Therefore, we developed a chronic oral reference dose (RfD) designed to be protective of intestinal damage and thus intestinal cancer. A physiologically based pharmacokinetic model for chromium in mice was used to estimate the amount of Cr(VI) entering each intestinal tissue section (duodenum, jejunum and ileum) from the lumen per day (normalized to intestinal tissue weight). These internal dose metrics, together with corresponding incidences for diffuse hyperplasia, were used to derive points of departure using benchmark dose modeling and constrained nonlinear regression. Both modeling techniques resulted in similar points of departure, which were subsequently converted to human equivalent doses using a human physiologically based pharmacokinetic model. Applying appropriate uncertainty factors, an RfD of 0.006 mg kg–1 day–1 was derived for diffuse hyperplasia—an effect that precedes tumor formation. This RfD is protective of both noncancer and cancer effects in the small intestine and corresponds to a safe drinking water equivalent level of 210 µg l–1. This concentration is higher than the current federal maximum contaminant level for total Cr (100 µg l–1) and well above levels of Cr(VI) in US drinking water supplies (typically ≤ 5 µg l–1). © 2013 The Authors. Journal of Applied Toxicology published by John Wiley & Sons, Ltd. PMID:23943231

  16. Clastogenic effects of bisphenol A on human cultured lymphocytes.

    PubMed

    Santovito, A; Cannarsa, E; Schleicherova, D; Cervella, P

    2018-01-01

    Bisphenol A is an endocrine disrupting compound widely used in the production of polycarbonate plastics and epoxy resins. It is ubiquitously present in the environment, mostly in aquatic environments, with consequent risks to the health of aquatic organisms and humans. In the present study, we analysed the cytogenetic effects of bisphenol A on human lymphocytes using in vitro chromosomal aberrations and micronuclei assays. Lymphocyte cultures were exposed to five different concentrations of BP-A (0.20, 0.10, 0.05, 0.02 and 0.01 μg/mL) for 24 h (for chromosomal aberrations test) and 48 h (for micronuclei test). The concentration of 0.05 µg/mL represents the reference dose established by United States Environmental Protection Agency (US EPA); 0.02 μg/mL represents the higher concentration of unconjugated BP-A found in human serum and 0.01 μg/mL represents the tolerable daily intake established by European Union. Data obtained from both assays showed significant genotoxic effects of the bisphenol A at concentrations of 0.20, 0.10 and 0.05 μg/mL, whereas at the concentration of 0.02 μg/mL, we observed only a significant increase in the micronuclei frequency. Finally, at the concentration of 0.01 μg/mL, no cytogenetic effects were observed, indicating this latter as a more tolerable concentration for human health with respect to 0.05 μg/mL, the reference dose established by US EPA.

  17. Estimating human-equivalent no observed adverse-effect levels for VOCs (volatile organic compounds) based on minimal knowledge of physiological parameters. Technical paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overton, J.H.; Jarabek, A.M.

    1989-01-01

    The U.S. EPA advocates the assessment of health-effects data and calculation of inhaled reference doses as benchmark values for gauging systemic toxicity to inhaled gases. The assessment often requires an inter- or intra-species dose extrapolation from no observed adverse effect level (NOAEL) exposure concentrations in animals to human equivalent NOAEL exposure concentrations. To achieve this, a dosimetric extrapolation procedure was developed based on the form or type of equations that describe the uptake and disposition of inhaled volatile organic compounds (VOCs) in physiologically-based pharmacokinetic (PB-PK) models. The procedure assumes allometric scaling of most physiological parameters and that the value ofmore » the time-integrated human arterial-blood concentration must be limited to no more than to that of experimental animals. The scaling assumption replaces the need for most parameter values and allows the derivation of a simple formula for dose extrapolation of VOCs that gives equivalent or more-conservative exposure concentrations values than those that would be obtained using a PB-PK model in which scaling was assumed.« less

  18. Study of the uncertainty in estimation of the exposure of non-human biota to ionising radiation.

    PubMed

    Avila, R; Beresford, N A; Agüero, A; Broed, R; Brown, J; Iospje, M; Robles, B; Suañez, A

    2004-12-01

    Uncertainty in estimations of the exposure of non-human biota to ionising radiation may arise from a number of sources including values of the model parameters, empirical data, measurement errors and biases in the sampling. The significance of the overall uncertainty of an exposure assessment will depend on how the estimated dose compares with reference doses used for risk characterisation. In this paper, we present the results of a study of the uncertainty in estimation of the exposure of non-human biota using some of the models and parameters recommended in the FASSET methodology. The study was carried out for semi-natural terrestrial, agricultural and marine ecosystems, and for four radionuclides (137Cs, 239Pu, 129I and 237Np). The parameters of the radionuclide transfer models showed the highest sensitivity and contributed the most to the uncertainty in the predictions of doses to biota. The most important ones were related to the bioavailability and mobility of radionuclides in the environment, for example soil-to-plant transfer factors, the bioaccumulation factors for marine biota and the gut uptake fraction for terrestrial mammals. In contrast, the dose conversion coefficients showed low sensitivity and contributed little to the overall uncertainty. Radiobiological effectiveness contributed to the overall uncertainty of the dose estimations for alpha emitters although to a lesser degree than a number of transfer model parameters.

  19. Mapping the Human Toxome by Systems Toxicology

    PubMed Central

    Bouhifd, Mounir; Hogberg, Helena T.; Kleensang, Andre; Maertens, Alexandra; Zhao, Liang; Hartung, Thomas

    2014-01-01

    Toxicity testing typically involves studying adverse health outcomes in animals subjected to high doses of toxicants with subsequent extrapolation to expected human responses at lower doses. The low-throughput of current toxicity testing approaches (which are largely the same for industrial chemicals, pesticides and drugs) has led to a backlog of more than 80,000 chemicals to which human beings are potentially exposed whose potential toxicity remains largely unknown. Employing new testing strategies that employ the use of predictive, high-throughput cell-based assays (of human origin) to evaluate perturbations in key pathways, referred as pathways of toxicity, and to conduct targeted testing against those pathways, we can begin to greatly accelerate our ability to test the vast “storehouses” of chemical compounds using a rational, risk-based approach to chemical prioritization, and provide test results that are more predictive of human toxicity than current methods. The NIH Transformative Research Grant project Mapping the Human Toxome by Systems Toxicology aims at developing the tools for pathway mapping, annotation and validation as well as the respective knowledge base to share this information. PMID:24443875

  20. Effect of (+)-Methamphetamine on Path Integration Learning, Novel Object Recognition, and Neurotoxicity in Rats

    PubMed Central

    Herring, Nicole R.; Schaefer, Tori L.; Gudelsky, Gary A.; Vorhees, Charles V.; Williams, Michael T.

    2008-01-01

    Rationale Methamphetamine (MA) has been implicated in cognitive deficits in humans after chronic use. Animal models of neurotoxic MA exposure reveal persistent damage to monoaminergic systems, but few associated cognitive effects. Objectives Since, questions have been raised about the typical neurotoxic dosing regimen used in animals and whether it adequately models human cumulative drug exposure, these experiments examined two different dosing regimens. Methods Rats were treated with one of two regimens, one the typical neurotoxic regimen (4 × 10 mg/kg every 2 h) and one based on pharmacokinetic modeling (Cho et al. 2001) designed to better represent accumulating plasma concentrations of MA as seen in human users (24 ×1.67 mg/kg once every 15 min); matched for total daily dose. In two separate experiments, dosing regimens were compared for their effects on markers of neurotoxicity or on behavior. Results On markers of neurotoxicity, MA showed decreased DA and 5-HT, and increased glial fibrillary acidic protein and increased corticosterone levels regardless of dosing regimen 3 days post-treatment. Behaviorally, MA-treated groups, regardless of dosing regimen, showed hypoactivity, increased initial hyperactivity to a subsequent MA challenge, impaired novel object recognition, impaired learning in a multiple-T water maze test of path integration, and no differences on spatial navigation or reference memory in the Morris water maze. After behavioral testing, reductions of DA and 5-HT remained. Conclusions MA treatment induces an effect on path integration learning not previously reported. Dosing regimen had no differential effects on behavior or neurotoxicity. PMID:18509623

  1. Effect of +-methamphetamine on path integration learning, novel object recognition, and neurotoxicity in rats.

    PubMed

    Herring, Nicole R; Schaefer, Tori L; Gudelsky, Gary A; Vorhees, Charles V; Williams, Michael T

    2008-09-01

    Methamphetamine (MA) has been implicated in cognitive deficits in humans after chronic use. Animal models of neurotoxic MA exposure reveal persistent damage to monoaminergic systems but few associated cognitive effects. Since questions have been raised about the typical neurotoxic dosing regimen used in animals and whether it adequately models human cumulative drug exposure, these experiments examined two different dosing regimens. Rats were treated with one of the two regimens: one based on the typical neurotoxic regimen (4 x 10 mg/kg every 2 h) and one based on pharmacokinetic modeling (Cho AK, Melega WP, Kuczenski R, Segal DS Synapse 39:161-166, 2001) designed to better represent accumulating plasma concentrations of MA as seen in human users (24 x 1.67 mg/kg once every 15 min) matched for total daily dose. In two separate experiments, dosing regimens were compared for their effects on markers of neurotoxicity or on behavior. On markers of neurotoxicity, MA showed decreased dopamine (DA) and 5-HT, increased glial fibrillary acidic protein, and increased corticosterone levels regardless of dosing regimen 3 days post-treatment. Behaviorally, MA-treated groups, regardless of dosing regimen, showed hypoactivity, increased initial hyperactivity to a subsequent MA challenge, impaired novel object recognition, impaired learning in a multiple T water maze test of path integration, and no differences on spatial navigation or reference memory in the Morris water maze. After behavioral testing, reductions of DA and 5-HT remained. MA treatment induces an effect on path integration learning not previously reported. Dosing regimen had no differential effects on behavior or neurotoxicity.

  2. Analysis of linear energy transfers and quality factors of charged particles produced by spontaneous fission neutrons from 252Cf and 244Pu in the human body.

    PubMed

    Endo, Akira; Sato, Tatsuhiko

    2013-04-01

    Absorbed doses, linear energy transfers (LETs) and quality factors of secondary charged particles in organs and tissues, generated via the interactions of the spontaneous fission neutrons from (252)Cf and (244)Pu within the human body, were studied using the Particle and Heavy Ion Transport Code System (PHITS) coupled with the ICRP Reference Phantom. Both the absorbed doses and the quality factors in target organs generally decrease with increasing distance from the source organ. The analysis of LET distributions of secondary charged particles led to the identification of the relationship between LET spectra and target-source organ locations. A comparison between human body-averaged mean quality factors and fluence-averaged radiation weighting factors showed that the current numerical conventions for the radiation weighting factors of neutrons, updated in ICRP103, and the quality factors for internal exposure are valid.

  3. Reproductive Alterations in Chronically Exposed Female Mice to Environmentally Relevant Doses of a Mixture of Phthalates and Alkylphenols.

    PubMed

    Patiño-García, Daniel; Cruz-Fernandes, Leonor; Buñay, Julio; Palomino, Jaime; Moreno, Ricardo D

    2018-02-01

    Endocrine-disrupting chemicals (EDCs) are exogenous compounds that modify hormone biosynthesis, causing adverse effects to human health. Among them, phthalates and alkylphenols are important due to their wide use in plastics, detergents, personal care products, cosmetics, and food packaging. However, their conjoint effects over reproductive female health have not been addressed. The aim of this work was to test the effect of chronically exposed female mice to a mixture of three phthalates [bis (2-ethylhexyl), dibutyl, and benzyl butyl] and two alkylphenols (4-nonylphenol and 4-tert-octylphenol) from conception to adulthood at environmentally relevant doses. These EDCs were administered in two doses: one below the minimal risk dose to cause adverse effects on human development and reproduction [1 mg/kg body weight (BW)/d of the total mixture] and the other one based on the reference value close to occupational exposure in humans (10 mg/kg BW/d of the total mixture). Our results show that both doses had similar effects regarding the uterus and ovary relative weight, estrous cyclicity, serum levels of progesterone and 17β-estradiol, and expression of key elements in the steroidogenesis pathway (acute steroidogenic regulatory protein and CYP19A1). However, only the 1-mg/kg BW/d dose delayed the onset of puberty and the transition from preantral to antral follicles, whereas the 10-mg/kg BW/d dose decreased the number of antral follicles and gonadotropin receptor expression. In addition, we observed changes in several fertility parameters in exposed females and in their progeny (F2 generation). In conclusion, our results indicate that chronic exposure to a complex EDC mixture, at environmentally relevant doses, modifies reproductive parameters in female mice. Copyright © 2018 Endocrine Society.

  4. Evaluation of triclosan in Minnesota lakes and rivers: Part II - human health risk assessment.

    PubMed

    Yost, Lisa J; Barber, Timothy R; Gentry, P Robinan; Bock, Michael J; Lyndall, Jennifer L; Capdevielle, Marie C; Slezak, Brian P

    2017-08-01

    Triclosan, an antimicrobial compound found in consumer products, has been detected in low concentrations in Minnesota municipal wastewater treatment plant (WWTP) effluent. This assessment evaluates potential health risks for exposure of adults and children to triclosan in Minnesota surface water, sediments, and fish. Potential exposures via fish consumption are considered for recreational or subsistence-level consumers. This assessment uses two chronic oral toxicity benchmarks, which bracket other available toxicity values. The first benchmark is a lower bound on a benchmark dose associated with a 10% risk (BMDL 10 ) of 47mg per kilogram per day (mg/kg-day) for kidney effects in hamsters. This value was identified as the most sensitive endpoint and species in a review by Rodricks et al. (2010) and is used herein to derive an estimated reference dose (RfD (Rodricks) ) of 0.47mg/kg-day. The second benchmark is a reference dose (RfD) of 0.047mg/kg-day derived from a no observed adverse effect level (NOAEL) of 10mg/kg-day for hepatic and hematopoietic effects in mice (Minnesota Department of Health [MDH] 2014). Based on conservative assumptions regarding human exposures to triclosan, calculated risk estimates are far below levels of concern. These estimates are likely to overestimate risks for potential receptors, particularly because sample locations were generally biased towards known discharges (i.e., WWTP effluent). Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Comparative Evaluation of a Silicone Membrane as an Alternative to Skin for Testing Mosquito Repellents.

    PubMed

    Agramonte, Natasha M; Gezan, Salvador A; Bernier, Ulrich R

    2017-05-01

    Repellents prevent mosquito bites and help reduce mosquito-borne disease, a global public health issue. Laboratory-based repellent bioassays predict the ability of compounds to deter mosquito feeding, but the variety of repellent bioassays and statistical analysis methods makes it difficult to compare results across methodologies. The most realistic data are collected when repellents are applied on the skin; however, this method exposes volunteers to chemicals and mosquito bites. Silicone membranes were investigated as an alternative to human skin in assays of repellent efficacy. Results from module system bioassays conducted in vitro with a silicone membrane were compared with in vivo bioassays conducted with N,N-diethyl-3-methylbenzamide (referred to as DEET), 1-piperidinecarboxylic acid 2-(2-hydroxyethyl)-1-methylpropylester (referred to as Picaridin), ethyl 3-[acetyl(butyl)amino]propanoate (referred to as IR3535), and para-menthane-3,8-diol (referred to as PMD) applied directly on the skin of the leg. No significant difference in mosquito feeding was found when comparing skin and volunteer-worn membrane controls using blood; however, feeding was significantly lower in unworn membrane controls using either 10% sucrose or blood, indicating that worn membranes are a possible surrogate for untreated human skin. Pooled data from six volunteers were used to generate dose-response curves of blood-feeding activity. Results from skin-applied repellents were modeled to determine if membranes could provide a predictive correlate for skin. Goodness-of-fit comparisons indicated that the nonlinear dose-response curves for the skin and membrane differed significantly for DEET and Picaridin, but did not differ significantly for IR3535 and PMD. With knowledge of the dose-response relationships and further modifications to this system, the membrane-based tests could be used for standardized repellent testing with infected vectors. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  6. SU-G-BRB-14: Uncertainty of Radiochromic Film Based Relative Dose Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devic, S; Tomic, N; DeBlois, F

    2016-06-15

    Purpose: Due to inherently non-linear dose response, measurement of relative dose distribution with radiochromic film requires measurement of absolute dose using a calibration curve following previously established reference dosimetry protocol. On the other hand, a functional form that converts the inherently non-linear dose response curve of the radiochromic film dosimetry system into linear one has been proposed recently [Devic et al, Med. Phys. 39 4850–4857 (2012)]. However, there is a question what would be the uncertainty of such measured relative dose. Methods: If the relative dose distribution is determined going through the reference dosimetry system (conversion of the response bymore » using calibration curve into absolute dose) the total uncertainty of such determined relative dose will be calculated by summing in quadrature total uncertainties of doses measured at a given and at the reference point. On the other hand, if the relative dose is determined using linearization method, the new response variable is calculated as ζ=a(netOD)n/ln(netOD). In this case, the total uncertainty in relative dose will be calculated by summing in quadrature uncertainties for a new response function (σζ) for a given and the reference point. Results: Except at very low doses, where the measurement uncertainty dominates, the total relative dose uncertainty is less than 1% for the linear response method as compared to almost 2% uncertainty level for the reference dosimetry method. The result is not surprising having in mind that the total uncertainty of the reference dose method is dominated by the fitting uncertainty, which is mitigated in the case of linearization method. Conclusion: Linearization of the radiochromic film dose response provides a convenient and a more precise method for relative dose measurements as it does not require reference dosimetry and creation of calibration curve. However, the linearity of the newly introduced function must be verified. Dave Lewis is inventor and runs a consulting company for radiochromic films.« less

  7. Pharmacokinetics and bioequivalence study of a fixed dose combination of rabeprazole and itopride in healthy Indian volunteers.

    PubMed

    Sahoo, Bijay Kumar; Das, Ayan; Agarwal, Sangita; Bhaumik, Uttam; Bose, Anirbandeep; Ghosh, Debotri; Roy, Bikash; Pal, Tapan Kumar

    2009-01-01

    The aim of the present study was to compare the pharmacokinetics of rabeprazole (CAS 117976-89-3) and itopride (CAS 122898-67-3) after oral administration of a rabeprazole (20 mg)-itopride (150 mg) fixed dose combination (FDC) in healthy human volunteers. The bioequivalence of two formulations (test and reference) was determined in 12 healthy Indian male volunteers (age: 25.25 +/- 4.69 years; weight: 60.50 +/- 5.04 kg) in a randomized, single-dose, two-period, two-treatment crossover study. Both formulations were administered orally as a single dose, with the treatments separated by a washout period of 1 week. Rabeprazole and itopride plasma levels were determined by a validated HPLC method using UV detection. The formulations were compared using the pharmacokinetic parameters area under the plasma concentration-time curve (AUC(0-t)), area under the plasma concentration-time curve from zero to infinity (AUC(0-infinity)) and peak plasma concentration (Cmax). General linear model (GLM) procedures were used in which sources of variation were subject, treatment and period. The results indicated that there were no statistically significant differences (P > 0.05) between the logarithmically transformed AUC(0-infinity) and Cmax values between test and reference formulation. The 90% confidence interval for the ratio of the logarithmically transformed AUC(0-t), AUC(0-infinity) and Cmax were within the bioequivalence limits of 0.8-1.25 and the relative bioavailability of rabeprazole and itopride test and reference formulations was 98.24 and 93.65%, respectively.

  8. Katja — the 24th week of virtual pregnancy for dosimetric calculations

    NASA Astrophysics Data System (ADS)

    Becker, Janine; Zankl, Maria; Fill, Ute; Hoeschen, Christoph

    2008-01-01

    Virtual human models, a.k.a. voxel models, are currently the state of the art in radiation protection for computing organ irradiation doses without difficult or morally unfeasible experiments. They are based on medical image data of human patients and offer a realistic, three dimensional representation of human anatomy. We present our newest voxel model Katja, a virtual woman in the 24th week of pregnancy. Katja integrates two previous voxel models, one obtained from the abdominal MRI scan of a pregnant patient and an already segmented model of a non-pregnant woman. The latter is the ICRP-AF, fitting the reference values for standard height, weight and organ masses given by the Internationals Committee of Radiological Protection (ICRP). The dataset was altered in order to fit the segmented foetus taken from the abdominal MRI scan. The resulting pregnant woman model, Katja, complies with the ICRP reference values for the adult female.

  9. Gene Profiling Characteristics of Radioadaptive Response in AG01522 Normal Human Fibroblasts

    PubMed Central

    Hou, Jue; Wang, Fan; Kong, Peizhong; Yu, Peter K. N.; Wang, Hongzhi; Han, Wei

    2015-01-01

    Radioadaptive response (RAR) in mammalian cells refers to the phenomenon where a low-dose ionizing irradiation alters the gene expression profiles, and protects the cells from the detrimental effects of a subsequent high dose exposure. Despite the completion of numerous experimental studies on RAR, the underlying mechanism has remained unclear. In this study, we aimed to have a comprehensive investigation on the RAR induced in the AG01522 human fibroblasts first exposed to 5 cGy (priming dose) and then followed by 2 Gy (challenge dose) of X-ray through comparisons to those cells that had only received a single 2 Gy dose. We studied how the priming dose affected the expression of gene transcripts, and to identify transcripts or pathways that were associated with the reduced chromosomal damages (in terms of the number of micronuclei) after application of the challenging dose. Through the mRNA and microRNA microarray analyses, the transcriptome alteration in AG01522 cells was examined, and the significantly altered genes were identified for different irradiation procedures using bioinformatics approaches. We observed that a low-dose X-ray exposure produced an alert, triggering and altering cellular responses to defend against subsequent high dose-induced damages, and accelerating the cell repair process. Moreover, the p53 signaling pathway was found to play critial roles in regulating DNA damage responses at the early stage after application of the challenging dose, particularly in the RAR group. Furthermore, microRNA analyses also revealed that cell communication and intercellular signaling transduction played important roles after low-dose irradiation. We conclude that RAR benefits from the alarm mechanisms triggered by a low-dose priming radation dose. PMID:25886619

  10. In vitro cytotoxicity testing of 30 reference chemicals to predict acute human and animal toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barile, F.A.; Arjun, S.; Borges, L.

    1991-03-11

    This study was conducted in cooperation with the Scandinavian Society of Cell Toxicology, as part of the Multicenter Evaluation for In Vitro Cytotoxicity (MEIC), and was designed to develop an in vitro model for predicting acute human and animal toxicity. The technique relies on the ability of cultured transformed rat lung epithelial cells (L2) to incorporate radiolabled amino acids into newly synthesized proteins in the absence or presence of increasing doses of the test chemical, during a 24-hr incubation. IC50 values were extrapolated from the dose-response curves after linear regression analysis. Human toxic blood concentrations estimated from rodent LD50 valuesmore » suggest that our experimental IC50's are in close correlation with the former. Validation of the data by the MEIC committee shows that our IC50 values predicted human lethal dosage as efficient as rodent LD50's. It is anticipated that this and related procedures may supplement or replace currently used animal protocols for predicting human toxicity.« less

  11. Age-specific inhalation radiation dose commitment factors for selected radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strenge, D.L.; Peloquin, R.A.; Baker, D.A.

    Inhalation dose commitment factors are presented for selected radionuclides for exposure of individuals in four age groups: infant, child, teen and adult. Radionuclides considered are /sup 35/S, /sup 36/Cl, /sup 45/Ca, /sup 67/Ga, /sup 75/Se, /sup 85/Sr, /sup 109/Cd, /sup 113/Sn, /sup 125/I, /sup 133/Ba, /sup 170/Tm, /sup 169/Yb, /sup 182/Ta, /sup 192/Ir, /sup 198/Au, /sup 201/Tl, /sup 204/Tl, and /sup 236/Pu. The calculational method is based on the human metabolic model of ICRP as defined in Publication 2 (ICRP 1959) and as used in previous age-specific dose factor calculations by Hoenes and Soldat (1977). Dose commitment factors are presentedmore » for the following organs of reference: total body, bone, liver, kidney, thyroid, lung and lower large intestine.« less

  12. IRIS Toxicological Review of 2,2',4,4'-Tetrabromodiphenyl ...

    EPA Pesticide Factsheets

    The U.S. EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessments of congeners of polybrominated diphenyl ethers (PDBEs), this review is about 2,2',4,4'-Tetrabromodiphenyl Ether, or commonly referred to as tetraBDE (BDE-47). Following the external peer review this assessment will appear in the Integrated Risk Information System (IRIS) database. Peer review will ensure that science is used credibly and appropriately in derivation of the dose-response assessments and toxicological characterization. EPA is updating the Integrated Risk Information System (IRIS) health assessments for the PBDEs.

  13. Organ dose conversion coefficients for pediatric reference computational phantoms in external photon radiation fields

    NASA Astrophysics Data System (ADS)

    Chang, Lienard A.

    In the event of a radiological accident or attack, it is important to estimate the organ doses to those exposed. In general, it is difficult to measure organ dose directly in the field and therefore dose conversion coefficients (DCC) are needed to convert measurable values such as air kerma to organ dose. Previous work on these coefficients has been conducted mainly for adults with a focus on radiation protection workers. Hence, there is a large gap in the literature for pediatric values. This study coupled a Monte Carlo N-Particle eXtended (MCNPX) code with International Council of Radiological Protection (ICRP)-adopted University of Florida and National Cancer Institute pediatric reference phantoms to calculate a comprehensive list of dose conversion coefficients (mGy/mGy) to convert air-kerma to organ dose. Parameters included ten phantoms (newborn, 1-year, 5-year, 10-year, 15-year old male and female), 28 organs over 33 energies between 0.01 and 20 MeV in six (6) irradiation geometries relevant to a child who might be exposed to a radiological release: anterior-posterior (AP), posterior-anterior (PA), right-lateral (RLAT), left-lateral (LLAT), rotational (ROT), and isotropic (ISO). Dose conversion coefficients to the red bone marrow over 36 skeletal sites were also calculated. It was hypothesized that the pediatric organ dose conversion coefficients would follow similar trends to the published adult values as dictated by human anatomy, but be of a higher magnitude. It was found that while the pediatric coefficients did yield similar patterns to that of the adult coefficients, depending on the organ and irradiation geometry, the pediatric values could be lower or higher than that of the adult coefficients.

  14. Alpha-particle-induced cancer in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mays, C.W.

    Updated information is given on alpha-particle-induced cancer in persons internally exposed to 222Rn progeny, Thorotrast, long-lived 226Ra and 228Ra, and short-lived 224Ra. The lung cancer risk to persons breathing 222Rn progeny in the indoor air of offices, schools, and homes is of increasing concern. About half of the recent deaths among the German Thorotrast patients have been from liver cancer. Animal studies indicate that the liver cancer risk from Thorotrast is mainly from its radioactivity and that the risk coefficient for the Thorotrast patients can be used provisionally for other alpha emitters in the human liver. Six skeletal cancers havemore » occurred in persons with average skeletal doses between 0.85 and 11.8 Gy from 226Ra and 228Ra. In the low-dose German 224Ra patients, two skeletal sarcomas have occurred at about 0.7 Gy compared to about six cases predicted by results from 224Ra patients at higher doses. The minimal appearance time for radiation-induced bone sarcomas in humans is about 4 y. Following brief irradiation, the vast majority of induced bone sarcomas are expressed by about 30 y. Recent evidence against the practical threshold hypothesis is given. With the downward revision of neutron doses to the atomic-bomb survivors, the follow-up of persons exposed to alpha particles may be the best opportunity to evaluate directly the effects of high LET radiation on humans. 90 references.« less

  15. Phthalates in dormitory and house dust of northern Chinese cities: Occurrence, human exposure, and risk assessment.

    PubMed

    Li, Hai-Ling; Song, Wei-Wei; Zhang, Zi-Feng; Ma, Wan-Li; Gao, Chong-Jing; Li, Jia; Huo, Chun-Yan; Mohammed, Mohammed O A; Liu, Li-Yan; Kannan, Kurunthachalam; Li, Yi-Fan

    2016-09-15

    Phthalates are widely used chemicals in household products, which severely affect human health. However, there were limited studies emphasized on young adults' exposure to phthalates in dormitories. In this study, seven phthalates were extracted from indoor dust that collected in university dormitories in Harbin, Shenyang, and Baoding, in the north of China. Dust samples were also collected in houses in Harbin for comparison. The total concentrations of phthalates in dormitory dust in Harbin and Shenyang samples were significantly higher than those in Baoding samples. The total geometric mean concentration of phthalates in dormitory dust in Harbin was lower than in house dust. Di-(2-ethylhexyl) phthalate (DEHP) was the most abundant phthalate in both dormitory and house dust. The daily intakes of the total phthalates, carcinogenic risk (CR) of DEHP, hazard index (HI) of di-isobutyl phthalate (DiBP), dibutyl phthalate (DBP), and DEHP were estimated, the median values for all students in dormitories were lower than adults who live in the houses. Monte Carlo simulation was applied to predict the human exposure risk of phthalates. HI of DiBP, DBP, and DEHP was predicted according to the reference doses (RfD) provided by the United States Environmental Protection Agency (U.S.EPA) and the reference doses for anti-androgenicity (RfD AA) developed by Kortenkamp and Faust. The results indicated that the risks of some students had exceeded the limitation, however, the measured results were not exceeded the limitation. Risk quotients (RQ) of DEHP were predicted based on China specific No Significant Risk Level (NSRL) and Maximum Allowable Dose Level (MADL). The predicted results of CR and RQ of DEHP suggested that DEHP could pose a health risk through intake of indoor dust. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Transatlantic Comparison of CT Radiation Doses in the Era of Radiation Dose-Tracking Software.

    PubMed

    Parakh, Anushri; Euler, Andre; Szucs-Farkas, Zsolt; Schindera, Sebastian T

    2017-12-01

    The purpose of this study is to compare diagnostic reference levels from a local European CT dose registry, using radiation-tracking software from a large patient sample, with preexisting European and North American diagnostic reference levels. Data (n = 43,761 CT scans obtained over the course of 2 years) for the European local CT dose registry were obtained from eight CT scanners at six institutions. Means, medians, and interquartile ranges of volumetric CT dose index (CTDI vol ), dose-length product (DLP), size-specific dose estimate, and effective dose values for CT examinations of the head, paranasal sinuses, thorax, pulmonary angiogram, abdomen-pelvis, renal-colic, thorax-abdomen-pelvis, and thoracoabdominal angiogram were obtained using radiation-tracking software. Metrics from this registry were compared with diagnostic reference levels from Canada and California (published in 2015), the American College of Radiology (ACR) dose index registry (2015), and national diagnostic reference levels from local CT dose registries in Switzerland (2010), the United Kingdom (2011), and Portugal (2015). Our local registry had a lower 75th percentile CTDI vol for all protocols than did the individual internationally sourced data. Compared with our study, the ACR dose index registry had higher 75th percentile CTDI vol values by 55% for head, 240% for thorax, 28% for abdomen-pelvis, 42% for thorax-abdomen-pelvis, 128% for pulmonary angiogram, 138% for renal-colic, and 58% for paranasal sinus studies. Our local registry had lower diagnostic reference level values than did existing European and North American diagnostic reference levels. Automated radiation-tracking software could be used to establish and update existing diagnostic reference levels because they are capable of analyzing large datasets meaningfully.

  17. Organochlorines in urban soils from Central India: probabilistic health hazard and risk implications to human population.

    PubMed

    Kumar, Bhupander; Mishra, Meenu; Verma, V K; Rai, Premanjali; Kumar, Sanjay

    2018-04-21

    This study presents distribution of organochlorines (OCs) including HCH, DDT and PCBs in urban soils, and their environmental and human health risk. Forty-eight soil samples were extracted using ultrasonication, cleaned with modified silica gel chromatography and analyzed by GC-ECD. The observed concentrations of ∑HCH, ∑DDT and ∑PCBs in soils ranged between < 0.01-2.54, 1.30-27.41 and < 0.01-62.8 µg kg -1 , respectively, which were lower than the recommended soil quality guidelines. Human health risk was estimated following recommended guidelines. Lifetime average daily dose (LADD), non-cancer risk or hazard quotient (HQ) and incremental lifetime cancer risk (ILCR) for humans due to individual and total OCs were estimated and presented. Estimated LADD were lower than acceptable daily intake and reference dose. Human health risk estimates were lower than safe limit of non-cancer risk (HQ < 1.0) and the acceptable distribution range of ILCR (10 -6 -10 -4 ). Therefore, this study concluded that present levels of OCs (HCH, DDT and PCBs) in studied soils were low, and subsequently posed low health risk to human population in the study area.

  18. Neutron organ dose and the influence of adipose tissue

    NASA Astrophysics Data System (ADS)

    Simpkins, Robert Wayne

    Neutron fluence to dose conversion coefficients have been assessed considering the influences of human adipose tissue. Monte Carlo code MCNP4C was used to simulate broad parallel beam monoenergetic neutrons ranging in energy from thermal to 10 MeV. Simulated Irradiations were conducted for standard irradiation geometries. The targets were on gender specific mathematical anthropomorphic phantoms modified to approximate human adipose tissue distributions. Dosimetric analysis compared adipose tissue influence against reference anthropomorphic phantom characteristics. Adipose Male and Post-Menopausal Female Phantoms were derived introducing interstitial adipose tissue to account for 22 and 27 kg additional body mass, respectively, each demonstrating a Body Mass Index (BMI) of 30. An Adipose Female Phantom was derived introducing specific subcutaneous adipose tissue accounting for 15 kg of additional body mass demonstrating a BMI of 26. Neutron dose was shielded in the superficial tissues; giving rise to secondary photons which dominated the effective dose for Incident energies less than 100 keV. Adipose tissue impact on the effective dose was a 25% reduction at the anterior-posterior incidence ranging to a 10% increase at the lateral incidences. Organ dose impacts were more distinctive; symmetrically situated organs demonstrated a 15% reduction at the anterior-posterior Incidence ranging to a 2% increase at the lateral incidences. Abdominal or asymmetrically situated organs demonstrated a 50% reduction at the anterior-posterior incidence ranging to a 25% increase at the lateral incidences.

  19. Neutron relative biological effectiveness in Hiroshima and Nagasaki atomic bomb survivors: a critical review

    PubMed Central

    Sasaki, Masao S.; Endo, Satoru; Hoshi, Masaharu; Nomura, Taisei

    2016-01-01

    The calculated risk of cancer in humans due to radiation exposure is based primarily on long-term follow-up studies, e.g. the life-span study (LSS) on atomic bomb (A-bomb) survivors in Hiroshima and Nagasaki. Since A-bomb radiation consists of a mixture of γ-rays and neutrons, it is essential that the relative biological effectiveness (RBE) of neutrons is adequately evaluated if a study is to serve as a reference for cancer risk. However, the relatively small neutron component hampered the direct estimation of RBE in LSS data. To circumvent this problem, several strategies have been attempted, including dose-independent constant RBE, dose-dependent variable RBE, and dependence on the degrees of dominance of intermingled γ-rays. By surveying the available literature, we tested the chromosomal RBE of neutrons as the biological endpoint for its equivalence to the microdosimetric quantities obtained using a tissue-equivalent proportional counter (TEPC) in various neutron fields. The radiation weighting factor, or quality factor, Qn, of neutrons as expressed in terms of the energy dependence of the maximum RBE, RBEm, was consistent with that predicted by the TEPC data, indicating that the chromosomally measured RBE was independent of the magnitude of coexisting γ-rays. The obtained neutron RBE, which varied with neutron dose, was confirmed to be the most adequate RBE system in terms of agreement with the cancer incidence in A-bomb survivors, using chromosome aberrations as surrogate markers. With this RBE system, the cancer risk in A-bomb survivors as expressed in unit dose of reference radiation is equally compatible with Hiroshima and Nagasaki cities, and may be potentially applicable in other cases of human radiation exposure. PMID:27614201

  20. Golden Rice is an effective source of vitamin A.

    PubMed

    Tang, Guangwen; Qin, Jian; Dolnikowski, Gregory G; Russell, Robert M; Grusak, Michael A

    2009-06-01

    Genetically engineered "Golden Rice" contains up to 35 microg beta-carotene per gram of rice. It is important to determine the vitamin A equivalency of Golden Rice beta-carotene to project the potential effect of this biofortified grain in rice-consuming populations that commonly exhibit low vitamin A status. The objective was to determine the vitamin A value of intrinsically labeled dietary Golden Rice in humans. Golden Rice plants were grown hydroponically with heavy water (deuterium oxide) to generate deuterium-labeled [2H]beta-carotene in the rice grains. Golden Rice servings of 65-98 g (130-200 g cooked rice) containing 0.99-1.53 mg beta-carotene were fed to 5 healthy adult volunteers (3 women and 2 men) with 10 g butter. A reference dose of [13C10]retinyl acetate (0.4-1.0 mg) in oil was given to each volunteer 1 wk before ingestion of the Golden Rice dose. Blood samples were collected over 36 d. Our results showed that the mean (+/-SD) area under the curve for the total serum response to [2H]retinol was 39.9 +/- 20.7 microg x d after the Golden Rice dose. Compared with that of the [13C10]retinyl acetate reference dose (84.7 +/- 34.6 microg x d), Golden Rice beta-carotene provided 0.24-0.94 mg retinol. Thus, the conversion factor of Golden Rice beta-carotene to retinol is 3.8 +/- 1.7 to 1 with a range of 1.9-6.4 to 1 by weight, or 2.0 +/- 0.9 to 1 with a range of 1.0-3.4 to 1 by moles. Beta-carotene derived from Golden Rice is effectively converted to vitamin A in humans. This trial was registered at clinicaltrials.gov as NCT00680355.

  1. RBE of quasi-monoenergetic 60 MeV neutron radiation for induction of dicentric chromosomes in human lymphocytes.

    PubMed

    Nolte, R; Mühlbradt, K-H; Meulders, J P; Stephan, G; Haney, M; Schmid, E

    2005-12-01

    The production of dicentric chromosomes in human lymphocytes by high-energy neutron radiation was studied using a quasi-monoenergetic 60 MeV neutron beam. The average yield coefficient [see text] of the linear dose-response relationship for dicentric chromosomes was measured to be (0.146+/-0.016) Gy-1. This confirms our earlier observations that above 400 keV, the yield of dicentric chromosomes decreases with increasing neutron energy. Using the linear-quadratic dose-response relationship for dicentric chromosomes established in blood of the same donor for 60Co gamma-rays as a reference radiation, an average maximum low-dose RBE (RBEM) of 14+/-4 for 60 MeV quasi-monoenergetic neutrons with a dose-weighted average energy [see text] of 41.0 MeV is obtained. A correction procedure was applied, to account for the low-energy continuum of the quasi-monoenergetic spectral neutron distribution, and the yield coefficient alpha for 60 MeV neutrons was determined from the measured average yield coefficient [see text]. For alpha, a value of (0.115+/-0.026) Gy-1 was obtained corresponding to an RBEM of 11+/-4. The present experiments extend earlier investigations with monoenergetic neutrons to higher energies.

  2. SU-E-P-10: Establishment of Local Diagnostic Reference Levels of Routine Exam in Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, M; Wang, Y; Weng, H

    Introduction National diagnostic reference levels (NDRLs) can be used as a reference dose of radiological examination can provide radiation dose as the basis of patient dose optimization. Local diagnostic reference levels (LDRLs) by periodically view and check doses, more efficiency to improve the way of examination. Therefore, the important first step is establishing a diagnostic reference level. Computed Tomography in Taiwan had been built up the radiation dose limit value,in addition, many studies report shows that CT scan contributed most of the radiation dose in different medical. Therefore, this study was mainly to let everyone understand DRL’s international status. Formore » computed tomography in our hospital to establish diagnostic reference levels. Methods and Materials: There are two clinical CT scanners (a Toshiba Aquilion and a Siemens Sensation) were performed in this study. For CT examinations the basic recommended dosimetric quantity is the Computed Tomography Dose Index (CTDI). Each exam each different body part, we collect 10 patients at least. Carried out the routine examinations, and all exposure parameters have been collected and the corresponding CTDIv and DLP values have been determined. Results: The majority of patients (75%) were between 60–70 Kg of body weight. There are 25 examinations in this study. Table 1 shows the LDRL of each CT routine examination. Conclusions: Therefore, this study would like to let everyone know DRL’s international status, but also establishment of computed tomography of the local reference levels for our hospital, and providing radiation reference, as a basis for optimizing patient dose.« less

  3. Effects of testosterone on spatial learning and memory in adult male rats

    PubMed Central

    Spritzer, Mark D.; Daviau, Emily D.; Coneeny, Meagan K.; Engelman, Shannon M.; Prince, W. Tyler; Rodriguez-Wisdom, Karlye N.

    2011-01-01

    A male advantage over females for spatial tasks has been well documented in both humans and rodents, but it remains unclear how the activational effects of testosterone influence spatial ability in males. In a series of experiments, we tested how injections of testosterone influenced the spatial working and reference memory of castrated male rats. In the eight-arm radial maze, testosterone injections (0.500 mg/rat) reduced the number of working memory errors during the early blocks of testing but had no effect on the number of reference memory errors relative to the castrated control group. In a reference memory version of the Morris water maze, injections of a wide range of testosterone doses (0.0625-1.000 mg/rat) reduced path lengths to the hidden platform, indicative of improved spatial learning. This improved learning was independent of testosterone dose, with all treatment groups showing better performance than the castrated control males. Furthermore, this effect was only observed when rats were given testosterone injections starting seven days prior to water maze testing and not when injections were given only on the testing days. We also observed that certain doses of testosterone (0.250 and 1.000 mg/rat) increased perseverative behavior in a reversal-learning task. Finally, testosterone did not have a clear effect on spatial working memory in the Morris water maze, although intermediate doses seemed to optimize performance. Overall, the results indicate that testosterone can have positive activational effects on spatial learning and memory, but the duration of testosterone replacement and the nature of the spatial task modify these effects. PMID:21295035

  4. Dose Limits for Man do not Adequately Protect the Ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higley, Kathryn A.; Alexakhin, Rudolf M.; McDonald, Joseph C.

    2004-08-01

    It has been known for quite some time that different organisms display differing degrees of sensitivity to the effects of ionizing radiations. Some microorganisms such as the bacterium Micrococcus radiodurans, along with many species of invertebrates, are extremely radio-resistant. Humans might be categorized as being relatively sensitive to radiation, and are a bit more resistant than some pine trees. Therefore, it could be argued that maintaining the dose limits necessary to protect humans will also result in the protection of most other species of flora and fauna. This concept is usually referred to as the anthropocentric approach. In other words,more » if man is protected then the environment is also adequately protected. The ecocentric approach might be stated as; the health of humans is effectively protected only when the environment is not unduly exposed to radiation. The ICRP is working on new recommendations dealing with the protection of the environment, and this debate should help to highlight a number of relevant issues concerning that topic.« less

  5. Reference Levels for Patient Radiation Doses in Interventional Radiology: Proposed Initial Values for U.S. Practice1

    PubMed Central

    Miller, Donald L.; Kwon, Deukwoo; Bonavia, Grant H.

    2009-01-01

    Purpose: To propose initial values for patient reference levels for fluoroscopically guided procedures in the United States. Materials and Methods: This secondary analysis of data from the Radiation Doses in Interventional Radiology Procedures (RAD-IR) study was conducted under a protocol approved by the institutional review board and was HIPAA compliant. Dose distributions (percentiles) were calculated for each type of procedure in the RAD-IR study where there were data from at least 30 cases. Confidence intervals for the dose distributions were determined by using bootstrap resampling. Weight banding and size correction methods for normalizing dose to patient body habitus were tested. Results: The different methods for normalizing patient radiation dose according to patient weight gave results that were not significantly different (P > .05). The 75th percentile patient radiation doses normalized with weight banding were not significantly different from those that were uncorrected for body habitus. Proposed initial reference levels for various interventional procedures are provided for reference air kerma, kerma-area product, fluoroscopy time, and number of images. Conclusion: Sufficient data exist to permit an initial proposal of values for reference levels for interventional radiologic procedures in the United States. For ease of use, reference levels without correction for body habitus are recommended. A national registry of radiation-dose data for interventional radiologic procedures is a necessary next step to refine these reference levels. © RSNA, 2009 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.2533090354/-/DC1 PMID:19789226

  6. Comparative physicochemical and biological characterization of NIST Interim Reference Material PM2.5 and SRM 1648 in human A549 and mouse RAW264.7 cells.

    PubMed

    Mitkus, Robert J; Powell, Jan L; Zeisler, Rolf; Squibb, Katherine S

    2013-12-01

    The epidemiological association between exposure to fine particulate matter (PM2.5) and adverse health effects is well-known. Here we report the size distribution, metals content, endotoxin content, and biological activity of National Institute of Standards and Technology (NIST) Interim Reference Material (RM) PM2.5. Biological activity was measured in vitro by effects on cell viability and the release of four inflammatory immune mediators, from human A549 alveolar epithelial cells or murine RAW264.7 monocytes. A dose range covering three orders of magnitude (1-1000μg/mL) was tested, and biological activity was compared to an existing Standard Reference Material (SRM) for urban PM (NIST SRM 1648). Robust release of IL-8 and MCP-1 from A549 cells was observed in response to IRM PM2.5 exposures. Significant TNF-α, but not IL-6, secretion from RAW264.7 cells was observed in response to both IRM PM2.5 and SRM 1648 particle types. Cytokine or chemokine release at high doses often occurred in the presence of cytotoxicity, likely as a result of externalization of preformed mediator. Our results are consistent with a local cytotoxic and pro-inflammatory mechanism of response to exposure to inhaled ambient PM2.5 and reinforce the continued relevance of in vitro assays for mechanistic research in PM toxicology. Our study furthers the goal of developing reference samples of environmentally relevant particulate matter of various sizes that can be used for hypothesis testing by multiple investigators. Published by Elsevier Ltd.

  7. Adenosine 2A receptor occupancy by tozadenant and preladenant in rhesus monkeys.

    PubMed

    Barret, Olivier; Hannestad, Jonas; Alagille, David; Vala, Christine; Tavares, Adriana; Papin, Caroline; Morley, Thomas; Fowles, Krista; Lee, Hsiaoju; Seibyl, John; Tytgat, Dominique; Laruelle, Marc; Tamagnan, Gilles

    2014-10-01

    Motor symptoms in Parkinson disease (PD) are caused by a loss of dopamine input from the substantia nigra to the striatum. Blockade of adenosine 2A (A(2A)) receptors facilitates dopamine D(2) receptor function. In phase 2 clinical trials, A(2A) antagonists (istradefylline, preladenant, and tozadenant) improved motor function in PD. We developed a new A(2A) PET radiotracer, (18)F-MNI-444, and used it to investigate the relationship between plasma levels and A(2A) occupancy by preladenant and tozadenant in nonhuman primates (NHP). A series of 20 PET experiments was conducted in 5 adult rhesus macaques. PET data were analyzed with both plasma-input (Logan graphical analysis) and reference-region-based (simplified reference tissue model and noninvasive Logan graphical analysis) methods. Whole-body PET images were acquired for radiation dosimetry estimates. Human pharmacokinetic parameters for tozadenant and preladenant were used to predict A(2A) occupancy in humans, based on median effective concentration (EC(50)) values estimated from the NHP PET measurements. (18)F-MNI-444 regional uptake was consistent with A(2A) receptor distribution in the brain. Selectivity was demonstrated by dose-dependent blocking by tozadenant and preladenant. The specific-to-nonspecific ratio was superior to that of other A(2A) PET radiotracers. Pharmacokinetic modeling predicted that tozadenant and preladenant may have different profiles of A(2A) receptor occupancy in humans. (18)F-MNI-444 appears to be a better PET radiotracer for A(2A) imaging than currently available radiotracers. Assuming that EC(50) in humans is similar to that in NHP, it appears that tozadenant will provide a more sustained A(2A) receptor occupancy than preladenant in humans at clinically tested doses. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  8. Risk assessment of manganese: A comparison of oral and inhalation derivations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, K.A.; Velazquez, S.F.

    1991-03-11

    An oral and inhalation human exposure-response risk assessment was calculated for manganese (Mn) using USEPA methodologies for both oral reference dose (RfD) and inhalation reference concentration (RfC) determination. When ingested, Mn is among the least toxic of the essential trace elements. The RfD for Mn is based on ingestion data from normal human diets, balance studies and neurotoxicity resulting from drinking contaminated well water. From these data, a NOAEL of 0.14 mg/kb/day was estimated. Since the NOAEL was thought to account for human sensitivity and Mn is an essential element required for normal human growth, an uncertainty factor (UF) ofmore » 1 was used resulting in a RfD of 1E-1 mg/kg/day. Although neurotoxic effects are rarely observed from oral exposures, they are more commonly associated with exposure to Mn by inhalation. Toxicity from inhaled Mn results in an increased prevalence of respiratory symptoms, reproductive dysfunction and psychomotor disturbances that can ultimately be expressed in a frank effect of manganism characterized by Parkinson disease-like symptoms. Using data from occupational exposure to in organic Mn, a dose duration adjusted LOAEL of 0.34 mg/m{sup 3} is identified. Application of an UF of 300 results in an RfC of 4E-4 mg/m{sup 3}. The RfD and RfC analyses demonstrate a dichotomous data set of toxicological effects dependent upon the route of exposure to Mn. Furthermore, these analyses demonstrate the unique issues of characterizing toxicological risk assessment for essential trace elements.« less

  9. Specific absorbed fractions of electrons and photons for Rad-HUMAN phantom using Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Cheng, Meng-Yun; Long, Peng-Cheng; Hu, Li-Qin

    2015-07-01

    The specific absorbed fractions (SAF) for self- and cross-irradiation are effective tools for the internal dose estimation of inhalation and ingestion intakes of radionuclides. A set of SAFs of photons and electrons were calculated using the Rad-HUMAN phantom, which is a computational voxel phantom of a Chinese adult female that was created using the color photographic image of the Chinese Visible Human (CVH) data set by the FDS Team. The model can represent most Chinese adult female anatomical characteristics and can be taken as an individual phantom to investigate the difference of internal dose with Caucasians. In this study, the emission of mono-energetic photons and electrons of 10 keV to 4 MeV energy were calculated using the Monte Carlo particle transport calculation code MCNP. Results were compared with the values from ICRP reference and ORNL models. The results showed that SAF from the Rad-HUMAN have similar trends but are larger than those from the other two models. The differences were due to the racial and anatomical differences in organ mass and inter-organ distance. The SAFs based on the Rad-HUMAN phantom provide an accurate and reliable data for internal radiation dose calculations for Chinese females. Supported by Strategic Priority Research Program of Chinese Academy of Sciences (XDA03040000), National Natural Science Foundation of China (910266004, 11305205, 11305203) and National Special Program for ITER (2014GB112001)

  10. A Preliminary Performance Assessment for Salt Disposal of High-Level Nuclear Waste - 12173

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joon H.; Clayton, Daniel; Jove-Colon, Carlos

    2012-07-01

    A salt repository is one of the four geologic media currently under study by the U.S. DOE Office of Nuclear Energy to support the development of a long-term strategy for geologic disposal of commercial used nuclear fuel (UNF) and high-level radioactive waste (HLW). The immediate goal of the generic salt repository study is to develop the necessary modeling tools to evaluate and improve the understanding of the repository system response and processes relevant to long-term disposal of UNF and HLW in a salt formation. The current phase of this study considers representative geologic settings and features adopted from previous studiesmore » for salt repository sites. For the reference scenario, the brine flow rates in the repository and underlying interbeds are very low, and transport of radionuclides in the transport pathways is dominated by diffusion and greatly retarded by sorption on the interbed filling materials. I-129 is the dominant annual dose contributor at the hypothetical accessible environment, but the calculated mean annual dose is negligibly small. For the human intrusion (or disturbed) scenario, the mean mass release rate and mean annual dose histories are very different from those for the reference scenario. Actinides including Pu-239, Pu-242 and Np-237 are major annual dose contributors, and the calculated peak mean annual dose is acceptably low. A performance assessment model for a generic salt repository has been developed incorporating, where applicable, representative geologic settings and features adopted from literature data for salt repository sites. The conceptual model and scenario for radionuclide release and transport from a salt repository were developed utilizing literature data. The salt GDS model was developed in a probabilistic analysis framework. The preliminary performance analysis for demonstration of model capability is for an isothermal condition at the ambient temperature for the near field. The capability demonstration emphasizes key attributes of a salt repository that are potentially important to the long-term safe disposal of UNF and HLW. The analysis presents and discusses the results showing repository responses to different radionuclide release scenarios (undisturbed and human intrusion). For the reference (or nominal or undisturbed) scenario, the brine flow rates in the repository and underlying interbeds are very low, and transport of radionuclides in the transport pathways is dominated by diffusion and greatly retarded by sorption on the interbed filling materials. I-129 (non-sorbing and unlimited solubility with a very long half-life) is the dominant annual dose contributor at the hypothetical accessible environment, but the calculated mean annual dose is negligibly small that there is no meaningful consequence for the repository performance. For the human intrusion (or disturbed) scenario analysis, the mean mass release rate and mean annual dose histories are very different from those for the reference scenario analysis. Compared to the reference scenario, the relative annual dose contributions by soluble, non-sorbing fission products, particularly I-129, are much lower than by actinides including Pu-239, Pu-242 and Np-237. The lower relative mean annual dose contributions by the fission product radionuclides are due to their lower total inventory available for release (i.e., up to five affected waste packages), and the higher mean annual doses by the actinides are the outcome of the direct release of the radionuclides into the overlying aquifer having high water flow rates, thereby resulting in an early arrival of higher concentrations of the radionuclides at the biosphere drinking water well prior to their significant decay. The salt GDS model analysis has also identified the following future recommendations and/or knowledge gaps to improve and enhance the confidence of the future repository performance analysis. - Repository thermal loading by UNF and HLW, and the effect on the engineered barrier and near-field performance. - Closure and consolidation of salt rocks by creep deformation under the influence of thermal perturbation, and the effect on the engineered barrier and near-field performance. - Brine migration and radionuclide transport under the influence of thermal perturbation in generic salt repository environment, and the effect on the engineered barrier and near-field performance and far-field performance. - Near-field geochemistry and radionuclide mobility in generic salt repository environment (high ionic strength brines, elevated temperatures and chemically reducing condition). - Degradation of engineer barrier components (waste package, waste canister, waste forms, etc.) in a generic salt repository environment (high ionic strength brines, elevated temperatures and chemically reducing condition). - Waste stream types and inventory estimates, particularly for reprocessing high-level waste. (authors)« less

  11. A Review of the Carcinogenic Potential of Bisphenol A

    PubMed Central

    Seachrist, Darcie D; Bonk, Kristen W.; Ho, Shuk-Mei; Prins, Gail S.; Soto, Ana M.; Keri, Ruth A.

    2015-01-01

    The estrogenic properties of bisphenol A (BPA), a ubiquitous synthetic monomer that can leach into the food and water supply, have prompted considerable research into exposure-associated health risks in humans. Endocrine-disrupting properties of BPA suggest it may impact developmental plasticity during early life, predisposing individuals to disease at doses below the oral reference dose (RfD) established by the Environmental Protection Agency in 1982. Herein, we review the current in vivo literature evaluating the carcinogenic properties of BPA. We conclude that there is substantial evidence from rodent studies indicating that early-life BPA exposures below the RfD lead to increased susceptibility to mammary and prostate cancer. Based on the definitions of “carcinogen” put forth by the International Agency for Research on Cancer and the National Toxicology Program, we propose that BPA may be reasonably anticipated to be a human carcinogen in the breast and prostate due to its tumor promoting properties. PMID:26493093

  12. Evaluation of radiation dose to anthropomorphic paediatric models from positron-emitting labelled tracers

    NASA Astrophysics Data System (ADS)

    Xie, Tianwu; Zaidi, Habib

    2014-03-01

    PET uses specific molecules labelled with positron-emitting radionuclides to provide valuable biochemical and physiological information. However, the administration of radiotracers to patients exposes them to low-dose ionizing radiation, which is a concern in the paediatric population since children are at a higher cancer risk from radiation exposure than adults. Therefore, radiation dosimety calculations for commonly used positron-emitting radiotracers in the paediatric population are highly desired. We evaluate the absorbed dose and effective dose for 19 positron-emitting labelled radiotracers in anthropomorphic paediatric models including the newborn, 1-, 5-, 10- and 15-year-old male and female. This is achieved using pre-calculated S-values of positron-emitting radionuclides of UF-NCI paediatric phantoms and published biokinetic data for various radiotracers. The influence of the type of anthropomorphic model, tissue weight factors and direct human- versus mouse-derived biokinetic data on the effective dose for paediatric phantoms was also evaluated. In the case of 18F-FDG, dosimetry calculations of reference paediatric patients from various dose regimens were also calculated. Among the considered radiotracers, 18F-FBPA and 15O-water resulted in the highest and lowest effective dose in the paediatric phantoms, respectively. The ICRP 103 updated tissue-weighting factors decrease the effective dose in most cases. Substantial differences of radiation dose were observed between direct human- versus mouse-derived biokinetic data. Moreover, the effect of using voxel- versus MIRD-type models on the calculation of the effective dose was also studied. The generated database of absorbed organ dose and effective dose for various positron-emitting labelled radiotracers using new generation computational models and the new ICRP tissue-weighting factors can be used for the assessment of radiation risks to paediatric patients in clinical practice. This work also contributes to a better understanding of the factors influencing patient-specific radiation dose calculation.

  13. In vitro and in vivo drug disposition of cilengitide in animals and human.

    PubMed

    Dolgos, Hugues; Freisleben, Achim; Wimmer, Elmar; Scheible, Holger; Krätzer, Friedrich; Yamagata, Tetsuo; Gallemann, Dieter; Fluck, Markus

    2016-04-01

    Cilengitide is very low permeable (1.0 nm/sec) stable cyclic pentapeptide containing an Arg-Gly-Asp motif responsible for selective binding to αvβ3 and αvβ5 integrins administered intravenously (i.v.). In vivo studies in the mouse and Cynomolgus monkeys showed the major component in plasma was unchanged drug (>85%). These results, together with the absence of metabolism in vitro and in animals, indicate minimal metabolism in both species. The excretion of [(14)C]-cilengitide showed profound species differences, with a high renal excretion of the parent drug observed in Cynomolgus monkey (50% dose), but not in mouse (7 and 28%: m/f). Consistently fecal (biliary) secretion was high in mouse (87 and 66% dose: m/f) but low in Cynomolgus monkey (36.5%). Human volunteers administrated with [(14)C]-cilengitide showed that most of the dose was recovered in urine as unchanged drug (77.5%, referred to Becker et al. 2015), indicating that the Cynomolgus monkey was the closer species to human. In order to better understand the species difference between human and mouse, the hepatobiliary disposition of [(14)C]-cilengitide was determined in sandwich-cultured hepatocytes. Cilengitide exhibited modest biliary efflux (30-40%) in mouse, while in human hepatocytes this was negligible. Furthermore, it was confirmed that the uptake of cilengitide into human hepatocytes was minor and appeared to be passive. In summary, the extent of renal and biliary secretion of cilengitide appears to be highly species specific and is qualitatively well explained using sandwich hepatocyte culture models.

  14. Proposed Multicenter Studies

    DTIC Science & Technology

    2009-02-01

    One plasma- derived AT product is Thrombate, produced by Bayer. Recombinant AT (rhAT) is made on a large scale in the milk of transgenic goats and is...infusions of rhAT to increase AT levels to 200 and 500% of normal, followed by infusions of endotoxin . AT dose dependently decreased tissue factor...injury. REFERENCES 1. Edmunds T, Van Patten SM, Pollock J, et al. Transgenically produced human antithrombin: structural and functional comparison to

  15. Air kerma to Hp(3) conversion coefficients for a new cylinder phantom for photon reference radiation qualities.

    PubMed

    Behrens, R

    2012-09-01

    The International Organization for Standardization (ISO) has issued a standard series on photon reference radiation qualities (ISO 4037). In this series, no conversion coefficients are contained for the quantity personal dose equivalent at a 3 mm depth, H(p)(3). In the past, for this quantity, a slab phantom was recommended as a calibration phantom; however, a cylinder phantom much better approximates the shape of a human head than a slab phantom. Therefore, in this work, the conversion coefficients from air kerma to H(p)(3) for the cylinder phantom are supplied for X- and gamma radiation qualities defined in ISO 4037.

  16. A national patient dose survey and setting of reference levels for interventional radiology in Bulgaria.

    PubMed

    Zotova, R; Vassileva, J; Hristova, J; Pirinen, M; Järvinen, H

    2012-06-01

    A national study on patient dose values in interventional radiology and cardiology was performed in order to assess current practice in Bulgaria, to estimate the typical patient doses and to propose reference levels for the most common procedures. Fifteen units and more than 1,000 cases were included. Average values of the measured parameters for three procedures-coronary angiography (CA), combined procedure (CA + PCI) and lower limb arteriography (LLA)--were compared with data published in the literature. Substantial variations were observed in equipment and procedure protocols used. This resulted in variations in patient dose: air-kerma area product ranges were 4-339, 6-1,003 and 0.2-288 Gy cm(2) for CA, CA + PCI and LLA respectively. Reference levels for air kerma-area product were proposed: 40 Gy cm(2) for CA, 140 Gy cm(2) for CA + PCI and 45 Gy cm(2) for LLA. Auxiliary reference intervals were proposed for other dose-related parameters: fluoroscopy time, number of images and entrance surface air kerma rate in fluoroscopy and cine mode. There is an apparent necessity for improvement in the classification of peripheral procedures and for standardisation of the protocols applied. It is important that patient doses are routinely recorded and compared with reference levels. • Patient doses in interventional radiology are high and vary greatly • Better standardisation of procedures and techniques is needed to improve practice • Dose reference levels for most common procedures are proposed.

  17. An image-based skeletal model for the ICRP reference adult male—specific absorbed fractions for neutron-generated recoil protons

    NASA Astrophysics Data System (ADS)

    Jokisch, D. W.; Rajon, D. A.; Bahadori, A. A.; Bolch, W. E.

    2011-11-01

    Recoiling hydrogen nuclei are a principle mechanism for energy deposition from incident neutrons. For neutrons incident on the human skeleton, the small sizes of two contrasting media (trabecular bone and marrow) present unique problems due to a lack of charged-particle (protons) equilibrium. Specific absorbed fractions have been computed for protons originating in the human skeletal tissues for use in computing neutron dose response functions. The proton specific absorbed fractions were computed using a pathlength-based range-energy calculation in trabecular skeletal samples of a 40 year old male cadaver.

  18. Issues raised by the reference doses for perfluorooctane sulfonate and perfluorooctanoic acid.

    PubMed

    Dong, Zhaomin; Bahar, Md Mezbaul; Jit, Joytishna; Kennedy, Bruce; Priestly, Brian; Ng, Jack; Lamb, Dane; Liu, Yanju; Duan, Luchun; Naidu, Ravi

    2017-08-01

    On 25th May 2016, the U.S. EPA released reference doses (RfDs) for Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) of 20ng/kg/day, which were much more conservative than previous values. These RfDs rely on the choices of animal point of departure (PoD) and the toxicokinetics (TK) model. At this stage, considering that the human evidence is not strong enough for RfD determination, using animal data may be appropriate but with more uncertainties. In this article, the uncertainties concerning RfDs from the choices of PoD and TK models are addressed. Firstly, the candidate PoDs should include more critical endpoints (such as immunotoxicity), which may lead to lower RfDs. Secondly, the reliability of the adopted three-compartment TK model is compromised: the parameters are not non-biologically plausible; and this TK model was applied to simulate gestation and lactation exposures, while the two exposure scenarios were not actually included in the model structure. Copyright © 2017. Published by Elsevier Ltd.

  19. The U. S. Environmental Protection Agency's inhalation RfD methodology: Risk assessment for air toxics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarabek, A.M.; Menache, M.G.; Overton, J.H. Jr.

    1990-10-01

    The U.S. Environmental Protection Agency (U.S. EPA) has advocated the establishment of general and scientific guidelines for the evaluation of toxicological data and their use in deriving benchmark values to protect exposed populations from adverse health effects. The Agency's reference dose (RfD) methodology for deriving benchmark values for noncancer toxicity originally addressed risk assessment of oral exposures. This paper presents a brief background on the development of the inhalation reference dose (RfDi) methodology, including concepts and issues related to addressing the dynamics of the respiratory system as the portal of entry. Different dosimetric adjustments are described that were incorporated intomore » the methodology to account for the nature of the inhaled agent (particle or gas) and the site of the observed toxic effects (respiratory or extra-respiratory). Impacts of these adjustments on the extrapolation of toxicity data of inhaled agents for human health risk assessment and future research directions are also discussed.« less

  20. U. S. Environmental Protection Agency's inhalation RFD methodology: Risk assessment for air toxics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarabek, A.M.; Menache, M.G.; Overton, J.H.

    1989-01-01

    The U.S. Environmental Protection Agency (U.S. EPA) has advocated the establishment of general and scientific guidelines for the evaluation of toxicological data and their use in deriving benchmark values to protect exposed populations from adverse health effects. The Agency's reference dose (RfD) methodology for deriving benchmark values for noncancer toxicity originally addressed risk assessment of oral exposures. The paper presents a brief background on the development of the inhalation reference dose (RFDi) methodology, including concepts and issues related to addressing the dynamics of the respiratory system as the portal of entry. Different dosimetric adjustments are described that were incorporated intomore » the methodology to account for the nature of the inhaled agent (particle or gas) and the site of the observed toxic effects (respiratory or extrarespiratory). Impacts of these adjustments on the extrapolation of toxicity data of inhaled agents for human health risk assessment and future research directions are also discussed.« less

  1. Using a single tablet daily to treat latent tuberculosis infection in Brazil: bioequivalence of two different isoniazid formulations (300 mg and 100 mg) demonstrated by a sensitive and rapid high-performance liquid chromatography-tandem mass spectrometry method in a randomised, crossover study.

    PubMed

    Daher, André; Pitta, Luciana; Santos, Tereza; Barreira, Draurio; Pinto, Douglas

    2015-06-01

    The recommended treatment for latent tuberculosis (TB) infection in adults is a daily dose of isoniazid (INH) 300 mg for six months. In Brazil, INH was formulated as 100 mg tablets. The treatment duration and the high pill burden compromised patient adherence to the treatment. The Brazilian National Programme for Tuberculosis requested a new 300 mg INH formulation. The aim of our study was to compare the bioavailability of the new INH 300 mg formulation and three 100 mg tablets of the reference formulation. We conducted a randomised, single dose, open label, two-phase crossover bioequivalence study in 28 healthy human volunteers. The 90% confidence interval for the INH maximum concentration of drug observed in plasma and area under the plasma concentration vs. time curve from time zero to the last measurable concentration "time t" was 89.61-115.92 and 94.82-119.44, respectively. The main limitation of our study was that neither adherence nor the safety profile of multiple doses was evaluated. To determine the level of INH in human plasma, we developed and validated a sensitive, simple and rapid high-performance liquid chromatography-tandem mass spectrometry method. Our results showed that the new formulation was bioequivalent to the 100 mg reference product. This finding supports the use of a single 300 mg tablet daily strategy to treat latent TB. This new formulation may increase patients' adherence to the treatment and quality of life.

  2. Research design strategies to evaluate the impact of formulations on abuse liability.

    PubMed

    McColl, Shelley; Sellers, Edward M

    2006-06-01

    Scheduling of a chemical drug substance under the Controlled Substances Act (CSA) includes an evaluation of preclinical and clinical safety, and experimental abuse liability studies, as well as information on diversion and overdose. Formulations that mitigate abuse liability, dependence potential and public health risks (e.g., altered absorption rate and tamperability, long half-life, pro-drugs and combination products) are amenable to preclinical and clinical studies to compare their abuse potential to reference compounds. For new formulations (NF) as marketed agents, direct comparison to the immediate release (IR) formulation of the reference compound is typically needed across the full range of potential studies. While the public health advantage of formulation changes in the marketplace can be conceptualized in behavioral economic terms, generating persuasive data is challenging. Study complexity increases because of additional conditions (e.g., placebo, 2-3 doses of the IR formulation, 2-3 doses of the new formulation, and 2-3 doses of the unscheduled or negative control drug), larger sample sizes (study power driven by the comparison of the new formulation versus the IR or placebo), and associated increases in study duration. However, the use of single maximal doses of well-characterized controls can reduce the number of study arms, and using incomplete block designs can reduce study duration. Less typical experimental approaches may also be useful, such as human choice or discrimination procedures, or pre-marketing consumer studies among experienced drug tamperers. New formulations that demonstrate a substantial difference from marketed or reference products have a potential marketing advantage and should require less onerous risk management. Post-marketing epidemiological data demonstrating the lack of abuse will carry the most weight from a public health and physician perspective.

  3. Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): Evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation

    PubMed Central

    Angle, Brittany M.; Do, Rylee Phuong; Ponzi, Davide; Stahlhut, Richard W.; Drury, Bertram E.; Nagel, Susan C.; Welshons, Wade V.; Besch-Williford, Cynthia L; Palanza, Paola; Parmigiani, Stefano; vom Saal, Frederick S.; Taylor, Julia A.

    2013-01-01

    Exposure to bisphenol A (BPA) is implicated in many aspects of metabolic disease in humans and experimental animals. We fed pregnant CD-1 mice BPA at doses ranging from 5 to 50,000 μg/kg/day, spanning 10-fold below the reference dose to 10-fold above the currently predicted no adverse effect level (NOAEL). At BPA doses below the NOAEL that resulted in average unconjugated BPA between 2 and 200pg/ml in fetal serum (AUC0–24h),we observed significant effects in adult male offspring: an age-related change in food intake, an increase in body weight and liver weight, abdominal adipocyte mass, number and volume, and in serum leptin and insulin, but a decrease in serum adiponectin and in glucose tolerance. For most of these outcomes non-monotonic dose–response relationships were observed; the highest BPA dose did not produce a significant effect for any outcome. A 0.1-μg/kg/day dose of DES resulted in some but not all low-dose BPA outcomes. PMID:23892310

  4. Opportunities to improve the in vivo measurement of manganese in human hands.

    PubMed

    Aslam; Chettle, D R; Pejović-Milić, A; Waker, A J

    2009-01-07

    Manganese (Mn) is an element which is both essential for regulating neurological and skeletal functions in the human body and also toxic when humans are exposed to excessive levels. Its excessive inhalation as a result of exposure through industrial and environmental emissions can cause neurological damage, which may manifest as memory deficit, loss of motor control and reduction in the refinement of certain body motions. A number of clinical studies demonstrate that biological monitoring of Mn exposure using body fluids, particularly blood, plasma/serum and urine is of very limited use and reflect only the most recent exposure and rapidly return to within normal ranges. In this context, a non-invasive neutron activation technique has been developed at the McMaster University accelerator laboratory that could provide an alternative to measure manganese stored in the bones of exposed subjects. In a first pilot study we conducted recently on non-exposed human subjects to measure the ratio of Mn to Ca in hand bones, it was determined that the technique needed further development to improve the precision of the measurements. It could be achieved by improving the minimum detection limit (MDL) of the system from 2.1 microg Mn/g Ca to the reference value of 0.6 microg g(-1) Ca (range: 0.16-0.78 microg Mn/g Ca) for the non-exposed population. However, the developed procedure might still be a suitable means of screening patients and people exposed to excessive amounts of Mn, who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. To improve the MDL of the technique to the expected levels of Mn in a reference population, the present study investigates further optimization of irradiation conditions, which includes the optimal selection of proton beam energy, beam current and irradiation time and the effect of upgrading the 4pi detection system. The maximum local dose equivalent that could be given to the hand as a result of irradiation was constrained to be less than 150 mSv as opposed to the previously imposed dose equivalent limit of 20 mSv. A maximum beam current, which could be delivered on the lithium target to produce neutrons, was restricted to 500 microA. The length of irradiation intervals larger than 10 min, was considered inconvenient and impractical to implement with Mn measurements in humans. To fulfil the requirements for developing a protocol for in vivo bone Mn measurements, a revised estimate of the dose equivalent has been presented here. Beam energy of 1.98 MeV was determined to be optimal to complete the irradiation procedure within 10 min using 500 microA beam current. The local dose equivalent given to hand was estimated as 118 mSv, which is lower by a factor of 1.5 compared to that of 2.00 MeV. The optimized beam parameters are expected to improve the currently obtained detection limit of 2.1 microg Mn/g Ca to 0.6 microg Mn/g Ca. Using this dose equivalent delivered to the central location of the hand, the average dose equivalent to the hand of 74 mSv and an effective dose of approximately 70 microSv will be accompanying the non-invasive, in vivo measurements of bone Mn, which is little over the chest radiograph examination dose.

  5. Organ doses, effective doses, and risk indices in adult CT: Comparison of four types of reference phantoms across different examination protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yakun; Li Xiang; Paul Segars, W.

    Purpose: Radiation exposure from computed tomography (CT) to the public has increased the concern among radiation protection professionals. Being able to accurately assess the radiation dose patients receive during CT procedures is a crucial step in the management of CT dose. Currently, various computational anthropomorphic phantoms are used to assess radiation dose by different research groups. It is desirable to better understand how the dose results are affected by different choices of phantoms. In this study, the authors assessed the uncertainties in CT dose and risk estimation associated with different types of computational phantoms for a selected group of representativemore » CT protocols. Methods: Routinely used CT examinations were categorized into ten body and three neurological examination categories. Organ doses, effective doses, risk indices, and conversion coefficients to effective dose and risk index (k and q factors, respectively) were estimated for these examinations for a clinical CT system (LightSpeed VCT, GE Healthcare). Four methods were used, each employing a different type of reference phantoms. The first and second methods employed a Monte Carlo program previously developed and validated in our laboratory. In the first method, the reference male and female extended cardiac-torso (XCAT) phantoms were used, which were initially created from the Visible Human data and later adjusted to match organ masses defined in ICRP publication 89. In the second method, the reference male and female phantoms described in ICRP publication 110 were used, which were initially developed from tomographic data of two patients and later modified to match ICRP 89 organ masses. The third method employed a commercial dosimetry spreadsheet (ImPACT group, London, England) with its own hermaphrodite stylized phantom. In the fourth method, another widely used dosimetry spreadsheet (CT-Expo, Medizinische Hochschule, Hannover, Germany) was employed together with its associated male and female stylized phantoms. Results: For fully irradiated organs, average coefficients of variation (COV) ranged from 0.07 to 0.22 across the four male phantoms and from 0.06 to 0.18 across the four female phantoms; for partially irradiated organs, average COV ranged from 0.13 to 0.30 across the four male phantoms and from 0.15 to 0.30 across the four female phantoms. Doses to the testes, breasts, and esophagus showed large variations between phantoms. COV for gender-averaged effective dose and k factor ranged from 0.03 to 0.23 and from 0.06 to 0.30, respectively. COV for male risk index and q factor ranged from 0.06 to 0.30 and from 0.05 to 0.36, respectively; COV for female risk index and q factor ranged from 0.06 to 0.49 and from 0.07 to 0.54, respectively. Conclusions: Despite closely matched organ mass, total body weight, and height, large differences in organ dose exist due to variation in organ location, spatial distribution, and dose approximation method. Dose differences for fully irradiated radiosensitive organs were much smaller than those for partially irradiated organs. Weighted dosimetry quantities including effective dose, male risk indices, k factors, and male q factors agreed well across phantoms. The female risk indices and q factors varied considerably across phantoms.« less

  6. Opportunities to improve the in vivo measurement of manganese in human hands

    NASA Astrophysics Data System (ADS)

    Aslam; Chettle, D. R.; Pejović-Milić, A.; Waker, A. J.

    2009-01-01

    Manganese (Mn) is an element which is both essential for regulating neurological and skeletal functions in the human body and also toxic when humans are exposed to excessive levels. Its excessive inhalation as a result of exposure through industrial and environmental emissions can cause neurological damage, which may manifest as memory deficit, loss of motor control and reduction in the refinement of certain body motions. A number of clinical studies demonstrate that biological monitoring of Mn exposure using body fluids, particularly blood, plasma/serum and urine is of very limited use and reflect only the most recent exposure and rapidly return to within normal ranges. In this context, a non-invasive neutron activation technique has been developed at the McMaster University accelerator laboratory that could provide an alternative to measure manganese stored in the bones of exposed subjects. In a first pilot study we conducted recently on non-exposed human subjects to measure the ratio of Mn to Ca in hand bones, it was determined that the technique needed further development to improve the precision of the measurements. It could be achieved by improving the minimum detection limit (MDL) of the system from 2.1 µg Mn/g Ca to the reference value of 0.6 µg g-1 Ca (range: 0.16-0.78 µg Mn/g Ca) for the non-exposed population. However, the developed procedure might still be a suitable means of screening patients and people exposed to excessive amounts of Mn, who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. To improve the MDL of the technique to the expected levels of Mn in a reference population, the present study investigates further optimization of irradiation conditions, which includes the optimal selection of proton beam energy, beam current and irradiation time and the effect of upgrading the 4π detection system. The maximum local dose equivalent that could be given to the hand as a result of irradiation was constrained to be less than 150 mSv as opposed to the previously imposed dose equivalent limit of 20 mSv. A maximum beam current, which could be delivered on the lithium target to produce neutrons, was restricted to 500 µA. The length of irradiation intervals larger than 10 min, was considered inconvenient and impractical to implement with Mn measurements in humans. To fulfil the requirements for developing a protocol for in vivo bone Mn measurements, a revised estimate of the dose equivalent has been presented here. Beam energy of 1.98 MeV was determined to be optimal to complete the irradiation procedure within 10 min using 500 µA beam current. The local dose equivalent given to hand was estimated as 118 mSv, which is lower by a factor of 1.5 compared to that of 2.00 MeV. The optimized beam parameters are expected to improve the currently obtained detection limit of 2.1 µg Mn/g Ca to 0.6 µg Mn/g Ca. Using this dose equivalent delivered to the central location of the hand, the average dose equivalent to the hand of 74 mSv and an effective dose of approximately 70 µSv will be accompanying the non-invasive, in vivo measurements of bone Mn, which is little over the chest radiograph examination dose.

  7. Organ doses, effective doses, and risk indices in adult CT: Comparison of four types of reference phantoms across different examination protocols

    PubMed Central

    Zhang, Yakun; Li, Xiang; Paul Segars, W.; Samei, Ehsan

    2012-01-01

    Purpose: Radiation exposure from computed tomography (CT) to the public has increased the concern among radiation protection professionals. Being able to accurately assess the radiation dose patients receive during CT procedures is a crucial step in the management of CT dose. Currently, various computational anthropomorphic phantoms are used to assess radiation dose by different research groups. It is desirable to better understand how the dose results are affected by different choices of phantoms. In this study, the authors assessed the uncertainties in CT dose and risk estimation associated with different types of computational phantoms for a selected group of representative CT protocols. Methods: Routinely used CT examinations were categorized into ten body and three neurological examination categories. Organ doses, effective doses, risk indices, and conversion coefficients to effective dose and risk index (k and q factors, respectively) were estimated for these examinations for a clinical CT system (LightSpeed VCT, GE Healthcare). Four methods were used, each employing a different type of reference phantoms. The first and second methods employed a Monte Carlo program previously developed and validated in our laboratory. In the first method, the reference male and female extended cardiac-torso (XCAT) phantoms were used, which were initially created from the Visible Human data and later adjusted to match organ masses defined in ICRP publication 89. In the second method, the reference male and female phantoms described in ICRP publication 110 were used, which were initially developed from tomographic data of two patients and later modified to match ICRP 89 organ masses. The third method employed a commercial dosimetry spreadsheet (ImPACT group, London, England) with its own hermaphrodite stylized phantom. In the fourth method, another widely used dosimetry spreadsheet (CT-Expo, Medizinische Hochschule, Hannover, Germany) was employed together with its associated male and female stylized phantoms. Results: For fully irradiated organs, average coefficients of variation (COV) ranged from 0.07 to 0.22 across the four male phantoms and from 0.06 to 0.18 across the four female phantoms; for partially irradiated organs, average COV ranged from 0.13 to 0.30 across the four male phantoms and from 0.15 to 0.30 across the four female phantoms. Doses to the testes, breasts, and esophagus showed large variations between phantoms. COV for gender-averaged effective dose and k factor ranged from 0.03 to 0.23 and from 0.06 to 0.30, respectively. COV for male risk index and q factor ranged from 0.06 to 0.30 and from 0.05 to 0.36, respectively; COV for female risk index and q factor ranged from 0.06 to 0.49 and from 0.07 to 0.54, respectively. Conclusions: Despite closely matched organ mass, total body weight, and height, large differences in organ dose exist due to variation in organ location, spatial distribution, and dose approximation method. Dose differences for fully irradiated radiosensitive organs were much smaller than those for partially irradiated organs. Weighted dosimetry quantities including effective dose, male risk indices, k factors, and male q factors agreed well across phantoms. The female risk indices and q factors varied considerably across phantoms. PMID:22755721

  8. Benzodiazepine use and aggressive behaviour: a systematic review.

    PubMed

    Albrecht, Bonnie; Staiger, Petra K; Hall, Kate; Miller, Peter; Best, David; Lubman, Dan I

    2014-12-01

    The relationship between benzodiazepine consumption and subsequent increases in aggressive behaviour in humans is not well understood. The current study aimed to identify, via a systematic review, whether there is an association between benzodiazepine consumption and aggressive responding in adults. A systematic review was conducted and reported in line with the PRISMA statement. English articles within MEDLINE, PsycARTICLES, PsycINFO, Academic Search Complete, and Psychology and Behavioural Sciences Collection databases were searched. Additional studies were identified by searching reference lists of reviewed articles. Only articles that explicitly investigated the relationship between benzodiazepine consumption and subsequent aggressive behaviour, or a lack thereof, in human adults were included. Forty-six studies met the inclusion criteria. It was not possible to conduct a meta-analysis due to the heterogeneity of study design and benzodiazepine type and dose. An association between benzodiazepine use and subsequent aggressive behaviour was found in the majority of the more rigorous studies, although there is a paucity of high-quality research with clinical or forensic populations. Diazepam and alprazolam have received the most attention. Dose-related findings are inconsistent: therapeutic doses may be more likely to be associated with aggressive responding when administered as a once-off, whereas higher doses may be more risky following repeated administration. Trait levels of anxiety and hostility may indicate a vulnerability to the experience of benzodiazepine-related aggression. There appears to be a moderate association between some benzodiazepines and subsequent aggressive behaviour in humans. The circumstances under which aggressive responding may be more likely to follow benzodiazepine use remain unclear, although some evidence suggests dose and/or personality factors may influence this effect. © The Royal Australian and New Zealand College of Psychiatrists 2014.

  9. A Systematic Review Evaluating the Effect of Vitamin B6 on Semen Quality.

    PubMed

    Banihani, Saleem Ali

    2017-12-30

    This review systematically discusses and summarizes the effect of vitamin B6 on semen quality. To achieve this contribution, we searched the PubMed, Scopus, and Web of Science databases for English language papers from 1984 through 2017 using the key words "sperm" versus "Vitamin B6", "pyridoxine", and "pyridoxal". Also, the references from selected published papers were included, only if relevant. To date, as revealed by rodent studies, high doses of vitamin B6 impair semen quality and sperm parameters. While in humans, it is suggested, but not yet directly approved, that seminal vitamin B6 levels may alter sperm quality (i.e., sperm quantity and quality), and that vitamin B6 deficiency may trigger the chemical toxicity to sperm (i.e., hyperhomocysteinemia, oxidative injury). The adverse effect of vitamin B6, when used at high doses, has been revealed in experimental animals, but not yet directly approved in humans. Consequently, in vitro studies on human ejaculate as well as clinical studies that investigate the direct effect of vitamin B6 on semen quality seem very significant.

  10. Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences.

    PubMed

    Li, Haisen S; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S; Chetty, Indrin J

    2014-01-06

    The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.

  11. Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences

    NASA Astrophysics Data System (ADS)

    Li, Haisen S.; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S.; Chetty, Indrin J.

    2014-01-01

    The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.

  12. Reference dosimetry using radiochromic film

    PubMed Central

    Girard, Frédéric; Bouchard, Hugo

    2012-01-01

    The objectives of this study are to identify and quantify factors that influence radiochromic film dose response and to determine whether such films are suitable for reference dosimetry. The influence of several parameters that may introduce systematic dose errors when performing reference dose measurements were investigated. The effect of the film storage temperature was determined by comparing the performance of three lots of GAFCHROMIC EBT2 films stored at either 4°C or room temperature. The effect of high (>80%) or low (<20%) relative humidity was also determined. Doses measured in optimal conditions with EBT and EBT2 films were then compared with an A12 ionization chamber measurement. Intensity‐modulated radiation therapy quality controls using EBT2 films were also performed in reference dose. The results obtained using reference dose measurements were compared with those obtained using relative dose measurements. Storing the film at 4°C improves the stability of the film over time, but does not eliminate the noncatalytic film development, seen as a rise in optical density over time in the absence of radiation. Relative humidity variations ranging from 80% to 20% have a strong impact on the optical density and could introduce dose errors of up to 15% if the humidity were not controlled during the film storage period. During the scanning procedure, the film temperature influences the optical density that is measured. When controlling for these three parameters, the dose differences between EBT or EBT2 and the A12 chamber are found to be within ±4% (2σ level) over a dose range of 20–350 cGy. Our results also demonstrate the limitation of the Anisotropic Analytical Algorithm for dose calculation of highly modulated treatment plans. PACS numbers: 87.55.Qr; 87.56.Fc PMID:23149793

  13. A generic biokinetic model for noble gases with application to radon.

    PubMed

    Leggett, Rich; Marsh, James; Gregoratto, Demetrio; Blanchardon, Eric

    2013-06-01

    To facilitate the estimation of radiation doses from intake of radionuclides, the International Commission on Radiological Protection (ICRP) publishes dose coefficients (dose per unit intake) based on reference biokinetic and dosimetric models. The ICRP generally has not provided biokinetic models or dose coefficients for intake of noble gases, but plans to provide such information for (222)Rn and other important radioisotopes of noble gases in a forthcoming series of reports on occupational intake of radionuclides (OIR). This paper proposes a generic biokinetic model framework for noble gases and develops parameter values for radon. The framework is tailored to applications in radiation protection and is consistent with a physiologically based biokinetic modelling scheme adopted for the OIR series. Parameter values for a noble gas are based largely on a blood flow model and physical laws governing transfer of a non-reactive and soluble gas between materials. Model predictions for radon are shown to be consistent with results of controlled studies of its biokinetics in human subjects.

  14. Is ICRP guidance on the use of reference levels consistent?

    PubMed

    Hedemann-Jensen, Per; McEwan, Andrew C

    2011-12-01

    In ICRP 103, which has replaced ICRP 60, it is stated that no fundamental changes have been introduced compared with ICRP 60. This is true except that the application of reference levels in emergency and existing exposure situations seems to be applied inconsistently, and also in the related publications ICRP 109 and ICRP 111. ICRP 103 emphasises that focus should be on the residual doses after the implementation of protection strategies in emergency and existing exposure situations. If possible, the result of an optimised protection strategy should bring the residual dose below the reference level. Thus the reference level represents the maximum acceptable residual dose after an optimised protection strategy has been implemented. It is not an 'off-the-shelf item' that can be set free of the prevailing situation. It should be determined as part of the process of optimising the protection strategy. If not, protection would be sub-optimised. However, in ICRP 103 some inconsistent concepts have been introduced, e.g. in paragraph 279 which states: 'All exposures above or below the reference level should be subject to optimisation of protection, and particular attention should be given to exposures above the reference level'. If, in fact, all exposures above and below reference levels are subject to the process of optimisation, reference levels appear superfluous. It could be considered that if optimisation of protection below a fixed reference level is necessary, then the reference level has been set too high at the outset. Up until the last phase of the preparation of ICRP 103 the concept of a dose constraint was recommended to constrain the optimisation of protection in all types of exposure situations. In the final phase, the term 'dose constraint' was changed to 'reference level' for emergency and existing exposure situations. However, it seems as if in ICRP 103 it was not fully recognised that dose constraints and reference levels are conceptually different. The use of reference levels in radiological protection is reviewed. It is concluded that the recommendations in ICRP 103 and related ICRP publications seem to be inconsistent regarding the use of reference levels in existing and emergency exposure situations.

  15. Hanford Environmental Dose Reconstruction Project Monthly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, S.M.

    1991-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, cultural and technical experts nominated by the regional Native American tribes, and an individualmore » representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. Project reports and references used in the reports are made available to the public in a public reading room. Project progress is documented in this monthly report, which is available to the public. 3 figs., 3 tabs.« less

  16. Biodistribution and radiation dosimetry of [64Cu]copper dichloride: first-in-human study in healthy volunteers.

    PubMed

    Avila-Rodriguez, M A; Rios, C; Carrasco-Hernandez, J; Manrique-Arias, J C; Martinez-Hernandez, R; García-Pérez, F O; Jalilian, A R; Martinez-Rodriguez, E; Romero-Piña, M E; Diaz-Ruiz, A

    2017-12-12

    In recent years, Copper-64 (T 1/2  = 12.7 h) in the chemical form of copper dichloride ([ 64 Cu]CuCl 2 ) has been identified as a potential agent for PET imaging and radionuclide therapy targeting the human copper transporter 1, which is overexpressed in a variety of cancer cells. Limited human biodistribution and radiation dosimetry data is available for this tracer. The aim of this research was to determine the biodistribution and estimate the radiation dosimetry of [ 64 Cu]CuCl 2 , using whole-body (WB) PET scans in healthy volunteers. Six healthy volunteers were included in this study (3 women and 3 men, mean age ± SD, 54.3 ± 8.6 years; mean weight ± SD, 77.2 ± 12.4 kg). After intravenous injection of the tracer (4.0 MBq/kg), three consecutive WB emission scans were acquired at 5, 30, and 60 min after injection. Additional scans were acquired at 5, 9, and 24 h post-injection. Low-dose CT scan without contrast was used for anatomic localization and attenuation correction. OLINDA/EXM software was used to calculate human radiation doses using the reference adult model. The highest uptake was in the liver, followed by lower and upper large intestine walls, and pancreas, in descending order. Urinary excretion was negligible. The critical organ was liver with a mean absorbed dose of 310 ± 67 μGy/MBq for men and 421 ± 56 μGy/MBq for women, while the mean WB effective doses were 51.2 ± 3.0 and 61.8 ± 5.2 μSv/MBq for men and women, respectively. To the best of our knowledge, this is the first report on biodistribution and radiation dosimetry of [ 64 Cu]CuCl 2 in healthy volunteers. Measured absorbed doses and effective doses are higher than previously reported doses estimated with biodistribution data from patients with prostate cancer, a difference that could be explained not just due to altered biodistribution in cancer patients compared to healthy volunteers but most likely due to the differences in the analysis technique and assumptions in the dose calculation.

  17. Neutron relative biological effectiveness in Hiroshima and Nagasaki atomic bomb survivors: a critical review.

    PubMed

    Sasaki, Masao S; Endo, Satoru; Hoshi, Masaharu; Nomura, Taisei

    2016-11-01

    The calculated risk of cancer in humans due to radiation exposure is based primarily on long-term follow-up studies, e.g. the life-span study (LSS) on atomic bomb (A-bomb) survivors in Hiroshima and Nagasaki. Since A-bomb radiation consists of a mixture of γ-rays and neutrons, it is essential that the relative biological effectiveness (RBE) of neutrons is adequately evaluated if a study is to serve as a reference for cancer risk. However, the relatively small neutron component hampered the direct estimation of RBE in LSS data. To circumvent this problem, several strategies have been attempted, including dose-independent constant RBE, dose-dependent variable RBE, and dependence on the degrees of dominance of intermingled γ-rays. By surveying the available literature, we tested the chromosomal RBE of neutrons as the biological endpoint for its equivalence to the microdosimetric quantities obtained using a tissue-equivalent proportional counter (TEPC) in various neutron fields. The radiation weighting factor, or quality factor, Q n , of neutrons as expressed in terms of the energy dependence of the maximum RBE, RBE m , was consistent with that predicted by the TEPC data, indicating that the chromosomally measured RBE was independent of the magnitude of coexisting γ-rays. The obtained neutron RBE, which varied with neutron dose, was confirmed to be the most adequate RBE system in terms of agreement with the cancer incidence in A-bomb survivors, using chromosome aberrations as surrogate markers. With this RBE system, the cancer risk in A-bomb survivors as expressed in unit dose of reference radiation is equally compatible with Hiroshima and Nagasaki cities, and may be potentially applicable in other cases of human radiation exposure. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  18. Characterization of a gated fiber-optic-coupled detector for application in clinical electron beam dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanyi, James A.; Nitzling, Kevin D.; Lodwick, Camille J.

    2011-02-15

    Purpose: Assessment of the fundamental dosimetric characteristics of a novel gated fiber-optic-coupled dosimetry system for clinical electron beam irradiation. Methods: The response of fiber-optic-coupled dosimetry system to clinical electron beam, with nominal energy range of 6-20 MeV, was evaluated for reproducibility, linearity, and output dependence on dose rate, dose per pulse, energy, and field size. The validity of the detector system's response was assessed in correspondence with a reference ionization chamber. Results: The fiber-optic-coupled dosimetry system showed little dependence to dose rate variations (coefficient of variation {+-}0.37%) and dose per pulse changes (with 0.54% of reference chamber measurements). The reproducibilitymore » of the system was {+-}0.55% for dose fractions of {approx}100 cGy. Energy dependence was within {+-}1.67% relative to the reference ionization chamber for the 6-20 MeV nominal electron beam energy range. The system exhibited excellent linear response (R{sup 2}=1.000) compared to reference ionization chamber in the dose range of 1-1000 cGy. The output factors were within {+-}0.54% of the corresponding reference ionization chamber measurements. Conclusions: The dosimetric properties of the gated fiber-optic-coupled dosimetry system compare favorably to the corresponding reference ionization chamber measurements and show considerable potential for applications in clinical electron beam radiotherapy.« less

  19. Four-Week Repeated Intravenous Dose Toxicity and Toxicokinetic Study of TS-DP2, a Novel Human Granulocyte Colony Stimulating Factor in Rats.

    PubMed

    Lee, JooBuom; Lee, Kyungsun; Choe, Keunbum; Jung, Hyunseob; Cho, Hyunseok; Choi, Kiseok; Kim, Taegon; Kim, Seojin; Lee, Hyeong-Seok; Cha, Mi-Jin; Song, Si-Whan; Lee, Chul Kyu; Chun, Gie-Taek

    2015-12-01

    TS-DP2 is a recombinant human granulocyte colony stimulating factor (rhG-CSF) manufactured by TS Corporation. We conducted a four-week study of TS-DP2 (test article) in repeated intravenous doses in male and female Sprague-Dawley (SD) rats. Lenograstim was used as a reference article and was administered intravenously at a dose of 1000 μg/kg/day. Rats received TS-DP2 intravenously at doses of 250, 500, and 1000 μg/kg/day once daily for 4 weeks, and evaluated following a 2-week recovery period. Edema in the hind limbs and loss of mean body weight and body weight gain were observed in both the highest dose group of TS-DP2 and the lenograstim group in male rats. Fibro-osseous lesions were observed in the lenograstim group in both sexes, and at all groups of TS-DP2 in males, and at doses of TS-DP2 500 μg/kg/day and higher in females. The lesion was considered a toxicological change. Therefore, bone is the primary toxicological target of TS-DP2. The lowest observed adverse effect level (LOAEL) in males was 250 μg/kg/day, and no observed adverse effect level (NOAEL) in females was 250 μg/kg/day in this study. In the toxicokinetic study, the serum concentrations of G-CSF were maintained until 8 hr after administration. The systemic exposures (AUC0-24h and C0) were not markedly different between male and female rats, between the administration periods, or between TS-DP2 and lenograstim. In conclusion, TS-DP2 shows toxicological similarity to lenograstim over 4-weeks of repeated doses in rats.

  20. Four-Week Repeated Intravenous Dose Toxicity and Toxicokinetic Study of TS-DP2, a Novel Human Granulocyte Colony Stimulating Factor in Rats

    PubMed Central

    Lee, JooBuom; Lee, Kyungsun; Choe, Keunbum; Jung, Hyunseob; Cho, Hyunseok; Choi, Kiseok; Kim, Taegon; Kim, Seojin; Lee, Hyeong-Seok; Cha, Mi-Jin; Song, Si-Whan; Lee, Chul Kyu; Chun, Gie-Taek

    2015-01-01

    TS-DP2 is a recombinant human granulocyte colony stimulating factor (rhG-CSF) manufactured by TS Corporation. We conducted a four-week study of TS-DP2 (test article) in repeated intravenous doses in male and female Sprague-Dawley (SD) rats. Lenograstim was used as a reference article and was administered intravenously at a dose of 1000 μg/kg/day. Rats received TS-DP2 intravenously at doses of 250, 500, and 1000 μg/kg/day once daily for 4 weeks, and evaluated following a 2-week recovery period. Edema in the hind limbs and loss of mean body weight and body weight gain were observed in both the highest dose group of TS-DP2 and the lenograstim group in male rats. Fibro-osseous lesions were observed in the lenograstim group in both sexes, and at all groups of TS-DP2 in males, and at doses of TS-DP2 500 μg/kg/day and higher in females. The lesion was considered a toxicological change. Therefore, bone is the primary toxicological target of TS-DP2. The lowest observed adverse effect level (LOAEL) in males was 250 μg/kg/day, and no observed adverse effect level (NOAEL) in females was 250 μg/kg/day in this study. In the toxicokinetic study, the serum concentrations of G-CSF were maintained until 8 hr after administration. The systemic exposures (AUC0-24h and C0) were not markedly different between male and female rats, between the administration periods, or between TS-DP2 and lenograstim. In conclusion, TS-DP2 shows toxicological similarity to lenograstim over 4-weeks of repeated doses in rats. PMID:26877840

  1. Pharmacokinetics of furagin, a new nitrofurantoin congener, on human volunteers.

    PubMed

    Männistö, P; Karttunen, P

    1979-06-01

    The human pharmacokinetics of a nitrofurantoin congener furagin was studied after a single oral dose of 200 mg and during a 9-day continuous treatment with a dose of 100 mg t.i.d. The same dose of nitrofurantoin served as a reference medication. In the acute cross-over phase food greatly speeded up and atropine somewhat retarded the absorption of furagin, but the total absorption remained virtually unchanged as judged from the unchanged AUC values. The furagin concentrations in serum remain several hours above the MIC concentrations of many pathogenic bacteria. Despite the high concentrations in serum, the urine levels of furagin were generally lower than those of nitrofurantoin. The 24 hr recoveries in urine were 8--13% for furagin and about 36% for nitrofurantoin. In the prolonged trial furagin was absorbed and excreted in the same way as in the acute trial. On the 9th day the concentrations in serum and urine were higher than on the first day. The urinary concentrations of both furagin and nitrofurantoin always remained well above the MIC values of the most susceptible bacteria. Several volunteers complained of nightly cramps in their calves after taking furagin for some days, otherwise the side effects were minimal.

  2. Radiation transport calculations for cosmic radiation.

    PubMed

    Endo, A; Sato, T

    2012-01-01

    The radiation environment inside and near spacecraft consists of various components of primary radiation in space and secondary radiation produced by the interaction of the primary radiation with the walls and equipment of the spacecraft. Radiation fields inside astronauts are different from those outside them, because of the body's self-shielding as well as the nuclear fragmentation reactions occurring in the human body. Several computer codes have been developed to simulate the physical processes of the coupled transport of protons, high-charge and high-energy nuclei, and the secondary radiation produced in atomic and nuclear collision processes in matter. These computer codes have been used in various space radiation protection applications: shielding design for spacecraft and planetary habitats, simulation of instrument and detector responses, analysis of absorbed doses and quality factors in organs and tissues, and study of biological effects. This paper focuses on the methods and computer codes used for radiation transport calculations on cosmic radiation, and their application to the analysis of radiation fields inside spacecraft, evaluation of organ doses in the human body, and calculation of dose conversion coefficients using the reference phantoms defined in ICRP Publication 110. Copyright © 2012. Published by Elsevier Ltd.

  3. Changes in radiation dose with variations in human anatomy: larger and smaller normal-stature adults.

    PubMed

    Marine, Patrick M; Stabin, Michael G; Fernald, Michael J; Brill, Aaron B

    2010-05-01

    A systematic evaluation has been performed to study how specific absorbed fractions (SAFs) vary with changes in adult body size, for persons of different size but normal body stature. A review of the literature was performed to evaluate how individual organ sizes vary with changes in total body weight of normal-stature individuals. On the basis of this literature review, changes were made to our easily deformable reference adult male and female total-body models. Monte Carlo simulations of radiation transport were performed; SAFs for photons were generated for 10th, 25th, 75th, and 90th percentile adults; and comparisons were made to the reference (50th) percentile SAF values. Differences in SAFs for organs irradiating themselves were between 0.5% and 1.0%/kg difference in body weight, from 15% to 30% overall, for organs within the trunk. Differences in SAFs for organs outside the trunk were not greater than the uncertainties in the data and will not be important enough to change calculated doses. For organs irradiating other organs within the trunk, differences were significant, between 0.3% and 1.1%/kg, or about 8%-33% overall. The differences are interesting and can be used to estimate how different patients' dosimetry might vary from values reported in standard dose tables.

  4. Effects of reduced natural background radiation on Drosophila melanogaster growth and development as revealed by the FLYINGLOW program.

    PubMed

    Morciano, Patrizia; Iorio, Roberto; Iovino, Daniela; Cipressa, Francesca; Esposito, Giuseppe; Porrazzo, Antonella; Satta, Luigi; Alesse, Edoardo; Tabocchini, Maria Antonella; Cenci, Giovanni

    2018-01-01

    Natural background radiation of Earth and cosmic rays played a relevant role during the evolution of living organisms. However, how chronic low doses of radiation can affect biological processes is still unclear. Previous data have indicated that cells grown at the Gran Sasso Underground Laboratory (LNGS, L'Aquila) of National Institute of Nuclear Physics (INFN) of Italy, where the dose rate of cosmic rays and neutrons is significantly reduced with respect to the external environment, elicited an impaired response against endogenous damage as compared to cells grown outside LNGS. This suggests that environmental radiation contributes to the development of defense mechanisms at cellular level. To further understand how environmental radiation affects metabolism of living organisms, we have recently launched the FLYINGLOW program that aims at exploiting Drosophila melanogaster as a model for evaluating the effects of low doses/dose rates of radiation at the organismal level. Here, we will present a comparative data set on lifespan, motility and fertility from different Drosophila strains grown in parallel at LNGS and in a reference laboratory at the University of L'Aquila. Our data suggest the reduced radiation environment can influence Drosophila development and, depending on the genetic background, may affect viability for several generations even when flies are moved back to normal background radiation. As flies are considered a valuable model for human biology, our results might shed some light on understanding the effect of low dose radiation also in humans. © 2017 Wiley Periodicals, Inc.

  5. Incorporation of detailed eye model into polygon-mesh versions of ICRP-110 reference phantoms

    NASA Astrophysics Data System (ADS)

    Tat Nguyen, Thang; Yeom, Yeon Soo; Kim, Han Sung; Wang, Zhao Jun; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik; Chung, Beom Sun

    2015-11-01

    The dose coefficients for the eye lens reported in ICRP 2010 Publication 116 were calculated using both a stylized model and the ICRP-110 reference phantoms, according to the type of radiation, energy, and irradiation geometry. To maintain consistency of lens dose assessment, in the present study we incorporated the ICRP-116 detailed eye model into the converted polygon-mesh (PM) version of the ICRP-110 reference phantoms. After the incorporation, the dose coefficients for the eye lens were calculated and compared with those of the ICRP-116 data. The results showed generally a good agreement between the newly calculated lens dose coefficients and the values of ICRP 2010 Publication 116. Significant differences were found for some irradiation cases due mainly to the use of different types of phantoms. Considering that the PM version of the ICRP-110 reference phantoms preserve the original topology of the ICRP-110 reference phantoms, it is believed that the PM version phantoms, along with the detailed eye model, provide more reliable and consistent dose coefficients for the eye lens.

  6. Ionization chamber-based reference dosimetry of intensity modulated radiation beams.

    PubMed

    Bouchard, Hugo; Seuntjens, Jan

    2004-09-01

    The present paper addresses reference dose measurements using thimble ionization chambers for quality assurance in IMRT fields. In these radiation fields, detector fluence perturbation effects invalidate the application of open-field dosimetry protocol data for the derivation of absorbed dose to water from ionization chamber measurements. We define a correction factor C(Q)IMRT to correct the absorbed dose to water calibration coefficient N(D, w)Q for fluence perturbation effects in individual segments of an IMRT delivery and developed a calculation method to evaluate the factor. The method consists of precalculating, using accurate Monte Carlo techniques, ionization chamber, type-dependent cavity air dose, and in-phantom dose to water at the reference point for zero-width pencil beams as a function of position of the pencil beams impinging on the phantom surface. These precalculated kernels are convolved with the IMRT fluence distribution to arrive at the dose-to-water-dose-to-cavity air ratio [D(a)w (IMRT)] for IMRT fields and with a 10x10 cm2 open-field fluence to arrive at the same ratio D(a)w (Q) for the 10x10 cm2 reference field. The correction factor C(Q)IMRT is then calculated as the ratio of D(a)w (IMRT) and D(a)w (Q). The calculation method was experimentally validated and the magnitude of chamber correction factors in reference dose measurements in single static and dynamic IMRT fields was studied. The results show that, for thimble-type ionization chambers the correction factor in a single, realistic dynamic IMRT field can be of the order of 10% or more. We therefore propose that for accurate reference dosimetry of complete n-beam IMRT deliveries, ionization chamber fluence perturbation correction factors must explicitly be taken into account.

  7. Effect of Study Design on Sample Size in Studies Intended to Evaluate Bioequivalence of Inhaled Short‐Acting β‐Agonist Formulations

    PubMed Central

    Zeng, Yaohui; Singh, Sachinkumar; Wang, Kai

    2017-01-01

    Abstract Pharmacodynamic studies that use methacholine challenge to assess bioequivalence of generic and innovator albuterol formulations are generally designed per published Food and Drug Administration guidance, with 3 reference doses and 1 test dose (3‐by‐1 design). These studies are challenging and expensive to conduct, typically requiring large sample sizes. We proposed 14 modified study designs as alternatives to the Food and Drug Administration–recommended 3‐by‐1 design, hypothesizing that adding reference and/or test doses would reduce sample size and cost. We used Monte Carlo simulation to estimate sample size. Simulation inputs were selected based on published studies and our own experience with this type of trial. We also estimated effects of these modified study designs on study cost. Most of these altered designs reduced sample size and cost relative to the 3‐by‐1 design, some decreasing cost by more than 40%. The most effective single study dose to add was 180 μg of test formulation, which resulted in an estimated 30% relative cost reduction. Adding a single test dose of 90 μg was less effective, producing only a 13% cost reduction. Adding a lone reference dose of either 180, 270, or 360 μg yielded little benefit (less than 10% cost reduction), whereas adding 720 μg resulted in a 19% cost reduction. Of the 14 study design modifications we evaluated, the most effective was addition of both a 90‐μg test dose and a 720‐μg reference dose (42% cost reduction). Combining a 180‐μg test dose and a 720‐μg reference dose produced an estimated 36% cost reduction. PMID:29281130

  8. Analysis of Moms Across America report suggesting bioaccumulation of glyphosate in U.S. mother's breast milk: Implausibility based on inconsistency with available body of glyphosate animal toxicokinetic, human biomonitoring, and physico-chemical data.

    PubMed

    Bus, James S

    2015-12-01

    The non-peer-reviewed biomonitoring report published online by Moms Across America (MAA; Honeycutt and Rowlands, 2014) does not support the conclusion that glyphosate concentrations detected in a limited number of urine samples from women, men and children, or breast milk from nursing mothers, pose a health risk to the public, including nursing children. Systemically absorbed doses of glyphosate estimated from the MAA urine biomonitoring data and from other published biomonitoring studies indicate that daily glyphosate doses are substantially below health protective reference standards (ADIs; RfDs) established by regulatory agencies. The MAA report also suggested that detection of relatively high glyphosate concentrations in breast milk in 3 of 10 sampled women raised a concern for bioaccumulation in breast milk. However, the breast milk concentrations reported by MAA are highly implausible when considered in context to low daily systemic doses of glyphosate estimated from human urine biomonitoring data, and also are inconsistent with animal toxicokinetic data demonstrating no evidence of retention in tissues or milk after single- or multiple-dose glyphosate treatment. In addition, toxicokinetic studies in lactating goats have shown that glyphosate does not partition into milk at concentrations greater than blood, and that only a very small percentage of the total administered dose (<0.03%) is ultimately excreted into milk. The toxicokinetic studies also indicate that human glyphosate exposures estimated from urine biomonitoring fall thousands-of-fold short of external doses capable of producing blood concentrations sufficient to result in the breast milk concentrations described in the MAA report. Finally, in contrast to highly lipophilic compounds with bioaccumulation potential in breast milk, the physico-chemical properties of glyphosate indicate that it is highly hydrophilic (ionized) at physiological pH and unlikely to preferentially distribute into breast milk. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Organ dose calculations by Monte Carlo modeling of the updated VCH adult male phantom against idealized external proton exposure

    NASA Astrophysics Data System (ADS)

    Zhang, Guozhi; Liu, Qian; Zeng, Shaoqun; Luo, Qingming

    2008-07-01

    The voxel-based visible Chinese human (VCH) adult male phantom has offered a high-quality test bed for realistic Monte Carlo modeling in radiological dosimetry simulations. The phantom has been updated in recent effort by adding newly segmented organs, revising walled and smaller structures as well as recalibrating skeletal marrow distributions. The organ absorbed dose against external proton exposure was calculated at a voxel resolution of 2 × 2 × 2 mm3 using the MCNPX code for incident energies from 20 MeV to 10 GeV and for six idealized irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT) and isotropic (ISO), respectively. The effective dose on the VCH phantom was derived in compliance with the evaluation scheme for the reference male proposed in the 2007 recommendations of the International Commission on Radiological Protection (ICRP). Algorithm transitions from the revised radiation and tissue weighting factors are accountable for approximately 90% and 10% of effective dose discrepancies in proton dosimetry, respectively. Results are tabulated in terms of fluence-to-dose conversion coefficients for practical use and are compared with data from other models available in the literature. Anatomical variations between various computational phantoms lead to dose discrepancies ranging from a negligible level to 100% or more at proton energies below 200 MeV, corresponding to the spatial geometric locations of individual organs within the body. Doses show better agreement at higher energies and the deviations are mostly within 20%, to which the organ volume and mass differences should be of primary responsibility. The impact of body size on dose distributions was assessed by dosimetry of a scaled-up VCH phantom that was resized in accordance with the height and total mass of the ICRP reference man. The organ dose decreases with the directionally uniform enlargement of voxels. Potential pathways to improve the VCH phantom have also been briefly addressed. This work pertains to VCH-based systematic multi-particle dose investigations and will contribute to comparative dosimetry studies of ICRP standardized voxel phantoms in the near future.

  10. [Diagnostic reference levels in interventional radiology].

    PubMed

    Vañó Carruana, E; Fernández Soto, J M; Sánchez Casanueva, R M; Ten Morón, J I

    2013-12-01

    This article discusses the diagnostic reference levels for radiation exposure proposed by the International Commission on Radiological Protection (ICRP) to facilitate the application of the optimization criteria in diagnostic imaging and interventional procedures. These levels are normally established as the third quartile of the dose distributions to patients in an ample sample of centers and are supposed to be representative of good practice regarding patient exposure. In determining these levels, it is important to evaluate image quality as well to ensure that it is sufficient for diagnostic purposes. When the values for the dose received by patients are systematically higher or much lower than the reference levels, an investigation should determine whether corrective measures need to be applied. The European and Spanish regulations require the use of these reference values in quality assurance programs. For interventional procedures, the dose area product (or kerma area product) values are usually used as reference values together with the time under fluoroscopy and the total number of images acquired. The most modern imaging devices allow the value of the accumulated dose at the entrance to the patient to be calculated to optimize the distribution of the dose on the skin. The ICRP recommends that the complexity of interventional procedures be taken into account when establishing reference levels. In the future, diagnostic imaging departments will have automatic systems to manage patient dosimetric data; these systems will enable continuous dosage auditing and alerts about individual procedures that might involve doses several times above the reference values. This article also discusses aspects that need to be clarified to take better advantage of the reference levels in interventional procedures. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.

  11. Individualized adjustments to reference phantom internal organ dosimetry—scaling factors given knowledge of patient external anatomy

    NASA Astrophysics Data System (ADS)

    Wayson, Michael B.; Bolch, Wesley E.

    2018-04-01

    Internal radiation dose estimates for diagnostic nuclear medicine procedures are typically calculated for a reference individual. Resultantly, there is uncertainty when determining the organ doses to patients who are not at 50th percentile on either height or weight. This study aims to better personalize internal radiation dose estimates for individual patients by modifying the dose estimates calculated for reference individuals based on easily obtainable morphometric characteristics of the patient. Phantoms of different sitting heights and waist circumferences were constructed based on computational reference phantoms for the newborn, 10 year-old, and adult. Monoenergetic photons and electrons were then simulated separately at 15 energies. Photon and electron specific absorbed fractions (SAFs) were computed for the newly constructed non-reference phantoms and compared to SAFs previously generated for the age-matched reference phantoms. Differences in SAFs were correlated to changes in sitting height and waist circumference to develop scaling factors that could be applied to reference SAFs as morphometry corrections. A further set of arbitrary non-reference phantoms were then constructed and used in validation studies for the SAF scaling factors. Both photon and electron dose scaling methods were found to increase average accuracy when sitting height was used as the scaling parameter (~11%). Photon waist circumference-based scaling factors showed modest increases in average accuracy (~7%) for underweight individuals, but not for overweight individuals. Electron waist circumference-based scaling factors did not show increases in average accuracy. When sitting height and waist circumference scaling factors were combined, modest average gains in accuracy were observed for photons (~6%), but not for electrons. Both photon and electron absorbed doses are more reliably scaled using scaling factors computed in this study. They can be effectively scaled using sitting height alone as patient-specific morphometric parameter.

  12. Individualized adjustments to reference phantom internal organ dosimetry-scaling factors given knowledge of patient external anatomy.

    PubMed

    Wayson, Michael B; Bolch, Wesley E

    2018-04-13

    Internal radiation dose estimates for diagnostic nuclear medicine procedures are typically calculated for a reference individual. Resultantly, there is uncertainty when determining the organ doses to patients who are not at 50th percentile on either height or weight. This study aims to better personalize internal radiation dose estimates for individual patients by modifying the dose estimates calculated for reference individuals based on easily obtainable morphometric characteristics of the patient. Phantoms of different sitting heights and waist circumferences were constructed based on computational reference phantoms for the newborn, 10 year-old, and adult. Monoenergetic photons and electrons were then simulated separately at 15 energies. Photon and electron specific absorbed fractions (SAFs) were computed for the newly constructed non-reference phantoms and compared to SAFs previously generated for the age-matched reference phantoms. Differences in SAFs were correlated to changes in sitting height and waist circumference to develop scaling factors that could be applied to reference SAFs as morphometry corrections. A further set of arbitrary non-reference phantoms were then constructed and used in validation studies for the SAF scaling factors. Both photon and electron dose scaling methods were found to increase average accuracy when sitting height was used as the scaling parameter (~11%). Photon waist circumference-based scaling factors showed modest increases in average accuracy (~7%) for underweight individuals, but not for overweight individuals. Electron waist circumference-based scaling factors did not show increases in average accuracy. When sitting height and waist circumference scaling factors were combined, modest average gains in accuracy were observed for photons (~6%), but not for electrons. Both photon and electron absorbed doses are more reliably scaled using scaling factors computed in this study. They can be effectively scaled using sitting height alone as patient-specific morphometric parameter.

  13. Characterization of the novel GlyT1 PET tracer [18F]MK-6577 in humans.

    PubMed

    Joshi, Aniket D; Sanabria-Bohórquez, Sandra M; Bormans, Guy; Koole, Michel; De Hoon, Jan; Van Hecken, Anne; Depre, Marleen; De Lepeleire, Inge; Van Laere, Koen; Sur, Cyrille; Hamill, Terence G

    2015-01-01

    Decreased glutamatergic neurotransmission is hypothesized to be involved in the pathophysiology of schizophrenia. Inhibition of glycine transporter Type-1 (GlyT1) reuptake is expected to increase the glutamatergic neurotransmission and may serve as treatment for cognitive and negative symptoms of schizophrenia. In this article, we present human data from a novel GlyT1 PET tracer, [(18) F]MK-6577. In the process of developing a GlyT1 inhibitor therapeutic, a PET tracer can assist in determining the dose with a high probability of sufficiently testing the mechanism of action. This article reports the human PET studies with [(18) F]MK-6577 for measuring GlyT1 receptor availability at baseline in normal human subjects and occupancy with a GlyT1 inhibitor, MK-2637. Studies were also performed to measure radiation burden and the baseline test-retest (T-RT) variability of the tracer. The effective dose from sequential whole-body dosimetry scans in three male subjects was estimated to be 24.5 ± 2.9 µSV/MBq (mean ± SD). The time-activity curves from T-RT scans modeled satisfactorily using a two tissue compartmental model. The tracer uptake was highest in the pons (VT  = 6.7 ± 0.9, BPND  = 4.1 ± 0.43) and lowest in the cortex (VT  = 2.1 ± 0.5, BPND  = 0.60 ± 0.23). VT T-RT variability measured in three subjects was <12% on average. The occupancy scans performed in a cohort of 15 subjects indicated absence of a reference region. The in vivo potency (Occ50 ) of MK-2637 was determined using two methods: A: Lassen plot with a population input function (Occ50  = 106 nM, SE = 20 nM) and B: pseudo reference tissue model using cortex as the pseudo reference region (Occ50  = 141 nM, SE = 21 nM). © 2014 Wiley Periodicals, Inc.

  14. Evaluation of the uncertainty in an oral reference dose for methylmercury due to interindividual variability in pharmacokinetics.

    PubMed

    Clewell, H J; Gearhart, J M; Gentry, P R; Covington, T R; VanLandingham, C B; Crump, K S; Shipp, A M

    1999-08-01

    An analysis of the uncertainty in guidelines for the ingestion of methylmercury (MeHg) due to human pharmacokinetic variability was conducted using a physiologically based pharmacokinetic (PBPK) model that describes MeHg kinetics in the pregnant human and fetus. Two alternative derivations of an ingestion guideline for MeHg were considered: the U.S. Environmental Protection Agency reference dose (RfD) of 0.1 microgram/kg/day derived from studies of an Iraqi grain poisoning episode, and the Agency for Toxic Substances and Disease Registry chronic oral minimal risk level (MRL) of 0.5 microgram/kg/day based on studies of a fish-eating population in the Seychelles Islands. Calculation of an ingestion guideline for MeHg from either of these epidemiological studies requires calculation of a dose conversion factor (DCF) relating a hair mercury concentration to a chronic MeHg ingestion rate. To evaluate the uncertainty in this DCF across the population of U.S. women of child-bearing age, Monte Carlo analyses were performed in which distributions for each of the parameters in the PBPK model were randomly sampled 1000 times. The 1st and 5th percentiles of the resulting distribution of DCFs were a factor of 1.8 and 1.5 below the median, respectively. This estimate of variability is consistent with, but somewhat less than, previous analyses performed with empirical, one-compartment pharmacokinetic models. The use of a consistent factor in both guidelines of 1.5 for pharmacokinetic variability in the DCF, and keeping all other aspects of the derivations unchanged, would result in an RfD of 0.2 microgram/kg/day and an MRL of 0.3 microgram/kg/day.

  15. Methylmercury in dried shark fins and shark fin soup from American restaurants.

    PubMed

    Nalluri, Deepthi; Baumann, Zofia; Abercrombie, Debra L; Chapman, Demian D; Hammerschmidt, Chad R; Fisher, Nicholas S

    2014-10-15

    Consumption of meat from large predatory sharks exposes human consumers to high levels of toxic monomethylmercury (MMHg). There also have been claims that shark fins, and hence the Asian delicacy shark fin soup, contain harmful levels of neurotoxic chemicals in combination with MMHg, although concentrations of MMHg in shark fins are unknown. We measured MMHg in dried, unprocessed fins (n=50) of 13 shark species that occur in the international trade of dried shark fins as well as 50 samples of shark fin soup prepared by restaurants from around the United States. Concentrations of MMHg in fins ranged from 9 to 1720 ng/g dry wt. MMHg in shark fin soup ranged from <0.01 to 34 ng/mL, with MMHg averaging 62 ± 7% of total Hg. The highest concentrations of MMHg and total Hg were observed in both fins and soup from large, high trophic level sharks such as hammerheads (Sphyrna spp.). Consumption of a 240 mL bowl of shark fin soup containing the average concentration of MMHg (4.6 ng/mL) would result in a dose of 1.1 μg MMHg, which is 16% of the U.S. EPA's reference dose (0.1 μg MMHg per 1 kg per day in adults) of 7.4 μg per day for a 74 kg person. If consumed, the soup containing the highest measured MMHg concentration would exceed the reference dose by 17%. While shark fin soup represents a potentially important source of MMHg to human consumers, other seafood products, particularly the flesh of apex marine predators, contain much higher MMHg concentrations and can result in substantially greater exposures of this contaminant for people. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Using a single tablet daily to treat latent tuberculosis infection in Brazil: bioequivalence of two different isoniazid formulations (300 mg and 100 mg) demonstrated by a sensitive and rapid high-performance liquid chromatography-tandem mass spectrometry method in a randomised, crossover study

    PubMed Central

    Daher, André; Pitta, Luciana; Santos, Tereza; Barreira, Draurio; Pinto, Douglas

    2015-01-01

    The recommended treatment for latent tuberculosis (TB) infection in adults is a daily dose of isoniazid (INH) 300 mg for six months. In Brazil, INH was formulated as 100 mg tablets. The treatment duration and the high pill burden compromised patient adherence to the treatment. The Brazilian National Programme for Tuberculosis requested a new 300 mg INH formulation. The aim of our study was to compare the bioavailability of the new INH 300 mg formulation and three 100 mg tablets of the reference formulation. We conducted a randomised, single dose, open label, two-phase crossover bioequivalence study in 28 healthy human volunteers. The 90% confidence interval for the INH maximum concentration of drug observed in plasma and area under the plasma concentration vs. time curve from time zero to the last measurable concentration “time t” was 89.61-115.92 and 94.82-119.44, respectively. The main limitation of our study was that neither adherence nor the safety profile of multiple doses was evaluated. To determine the level of INH in human plasma, we developed and validated a sensitive, simple and rapid high-performance liquid chromatography-tandem mass spectrometry method. Our results showed that the new formulation was bioequivalent to the 100 mg reference product. This finding supports the use of a single 300 mg tablet daily strategy to treat latent TB. This new formulation may increase patients’ adherence to the treatment and quality of life. PMID:26038960

  17. Comparison of Measured and Estimated CT Organ Doses for Modulated and Fixed Tube Current:: A Human Cadaver Study.

    PubMed

    Padole, Atul; Deedar Ali Khawaja, Ranish; Otrakji, Alexi; Zhang, Da; Liu, Bob; Xu, X George; Kalra, Mannudeep K

    2016-05-01

    The aim of this study was to compare the directly measured and the estimated computed tomography (CT) organ doses obtained from commercial radiation dose-tracking (RDT) software for CT performed with modulated tube current or automatic exposure control (AEC) technique and fixed tube current (mAs). With the institutional review board (IRB) approval, the ionization chambers were surgically implanted in a human cadaver (88 years old, male, 68 kg) in six locations such as liver, stomach, colon, left kidney, small intestine, and urinary bladder. The cadaver was scanned with routine abdomen pelvis protocol on a 128-slice, dual-source multidetector computed tomography (MDCT) scanner using both AEC and fixed mAs. The effective and quality reference mAs of 100, 200, and 300 were used for AEC and fixed mAs, respectively. Scanning was repeated three times for each setting, and measured and estimated organ doses (from RDT software) were recorded (N = 3*3*2 = 18). Mean CTDIvol for AEC and fixed mAs were 4, 8, 13 mGy and 7, 14, 21 mGy, respectively. The most estimated organ doses were significantly greater (P < 0.01) than the measured organ doses for both AEC and fixed mAs. At AEC, the mean estimated organ doses (for six organs) were 14.7 mGy compared to mean measured organ doses of 12.3 mGy. Similarly, at fixed mAs, the mean estimated organ doses (for six organs) were 24 mGy compared to measured organ doses of 22.3 mGy. The differences among the measured and estimated organ doses were higher for AEC technique compared to the fixed mAs for most organs (P < 0.01). The most CT organ doses estimated from RDT software are greater compared to directly measured organ doses, particularly when AEC technique is used for CT scanning. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  18. Human Micro-Dosing with Carcinogenic Polycyclic Aromatic Hydrocarbons: In Vivo Pharmacokinetics of Dibenzo[def,p]chrysene and Metabolites by UPLC Accelerator Mass Spectrometry

    PubMed Central

    Madeen, Erin P.; Ognibene, Ted J.; Corley, Richard A.; McQuistan, Tammie J.; Baird, William M.; Bench, Graham; Turteltaub, Ken W.; Williams, David E.

    2017-01-01

    Metabolism is a key health risk factor for exposures to pro-carcinogenic polycyclic aromatic hydrocarbons (PAHs) such as dibenzo[def,p]chrysene (DBC), an IARC classified 2A probable human carcinogen. Human exposure to PAHs occurs primarily from the diet in non-smokers. However, little data is available on the metabolism and pharmacokinetics in humans of high molecular weight PAHs (≥4 aromatic rings), including DBC. We previously determined the pharmacokinetics of DBC in human volunteers orally administered a micro-dose (29 ng; 5 nCi) of [14C]-DBC by accelerator mass spectrometry (AMS) analysis of total [14C] in plasma and urine. In the current study, we utilized a novel “moving wire” interface between ultra-performance liquid chromatography (UPLC) and the AMS to detect and quantify parent DBC and its major metabolites. The major [14C] product identified in plasma was unmetabolized [14C]-DBC itself, (Cmax= 18.5 ± 15.9 fg/mL, Tmax= 2.1 ± 1.0 h), whereas the major metabolite was identified as [14C]-(+/−)-DBC-11,12-diol (Cmax= 2.5 ± 1.3 fg/mL, Tmax= 1.8 h). Several minor species of [14C]-DBC metabolites were also detected for which no reference standards were available. Deconjugated and conjugated metabolites were detected in urine with [14C]-(+/−)-DBC-tetraol identified as the major metabolite, 88.7% of which was detected upon enzymatic deconjugation (Cmax= 35.8 ± 23.0 pg/pool, Tmax= 6–12 h pool). [14C]-DBC-11,12-diol, of which 94.4% was conjugated and identified in urine (Cmax= 29.4 ± 11.6 pg/pool, Tmax= 6–12 h pool). Parent [14C]-DBC was not detected in the urine. This is the first dataset to assess metabolite profiles and associated pharmacokinetics of a carcinogenic PAH in human volunteers at an environmentally relevant dose, providing the data necessary for translation of high dose laboratory animal models to human translation for environmental health risk assessment. PMID:27494294

  19. Mercury contamination in Southern New England coastal fisheries and dietary habits of recreational anglers and their families: Implications to human health and issuance of consumption advisories

    PubMed Central

    Taylor, David L.; Williamson, Patrick R.

    2016-01-01

    Total mercury (Hg) was measured in coastal fishes from Southern New England (RI, USA), and Hg exposure was estimated for anglers and family members that consumed these resources. Fish Hg was positively related to total length (n = 2028 across 7 fish species), and interspecies differences were evident among legally harvestable fish. Many recreational anglers and their families experienced excessively high Hg exposure rates, which was attributed to the enriched Hg content of frequently consumed fishes. Specifically, 51.5% of participants in this study had Hg exposures exceeding the US EPA reference dose, including 50.0% of women of childbearing years. These results are noteworthy given that Hg neurotoxicity occurs in adults and children from direct and prenatal low-dose exposure. Moreover, this study underscores the need for geographic-specific research that accounts for small-scale spatial variations in fish Hg and dietary habits of at-risk human populations. PMID:27595617

  20. On-line data collection platform for national dose surveys in diagnostic and interventional radiology.

    PubMed

    Vassileva, J; Simeonov, F; Avramova-Cholakova, S

    2015-07-01

    According to the Bulgarian regulation for radiation protection at medical exposure, the National Centre of Radiobiology and Radiation Protection (NCRRP) is responsible for performing national dose surveys in diagnostic and interventional radiology and nuclear medicine and for establishing of national diagnostic reference levels (DRLs). The next national dose survey is under preparation to be performed in the period of 2015-16, with the aim to cover conventional radiography, mammography, conventional fluoroscopy, interventional and fluoroscopy guided procedures and CT. It will be performed electronically using centralised on-line data collection platform established by the NCRRP. The aim is to increase the response rate and to improve the accuracy by reducing human errors. The concept of the on-line dose data collection platform is presented. Radiological facilities are provided with a tool to determine local typical patient doses, and the NCRRP to establish national DRLs. Future work will include automatic retrieval of dose data from hospital picture archival and communicating system. The on-line data collection platform is expected to facilitate the process of dose audit and optimisation of radiological procedures in Bulgarian hospitals. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Carcinogenicity and mode of action evaluation for alpha-hexachlorocyclohexane: Implications for human health risk assessment.

    PubMed

    Bradley, Ann E; Shoenfelt, Joanna L; Durda, Judi L

    2016-04-01

    Alpha-hexachlorocyclohexane (alpha-HCH) is one of eight structural isomers that have been used worldwide as insecticides. Although no longer produced or used agriculturally in the United States, exposure to HCH isomers is of continuing concern due to legacy usage and persistence in the environment. The U.S. Environmental Protection Agency (EPA) classifies alpha-HCH as a probable human carcinogen and provides a slope factor of 6.3 (mg/kg-day)(-1) for the compound, based on hepatic nodules and hepatocellular carcinomas observed in male mice and derived using a default linear approach for modeling carcinogens. EPA's evaluation, last updated in 1993, does not consider more recently available guidance that allows for the incorporation of mode of action (MOA) for determining a compound's dose-response. Contrary to the linear approach assumed by EPA, the available data indicate that alpha-HCH exhibits carcinogenicity via an MOA that yields a nonlinear, threshold dose-response. In our analysis, we conducted an MOA evaluation and dose-response analysis for alpha-HCH-induced liver carcinogenesis. We concluded that alpha-HCH causes liver tumors in rats and mice through an MOA involving increased promotion of cell growth, or mitogenesis. Based on these findings, we developed a threshold, cancer-based, reference dose (RfD) for alpha-HCH. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. TU-AB-BRC-03: Accurate Tissue Characterization for Monte Carlo Dose Calculation Using Dual-and Multi-Energy CT Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalonde, A; Bouchard, H

    Purpose: To develop a general method for human tissue characterization with dual-and multi-energy CT and evaluate its performance in determining elemental compositions and the associated proton stopping power relative to water (SPR) and photon mass absorption coefficients (EAC). Methods: Principal component analysis is used to extract an optimal basis of virtual materials from a reference dataset of tissues. These principal components (PC) are used to perform two-material decomposition using simulated DECT data. The elemental mass fraction and the electron density in each tissue is retrieved by measuring the fraction of each PC. A stoichiometric calibration method is adapted to themore » technique to make it suitable for clinical use. The present approach is compared with two others: parametrization and three-material decomposition using the water-lipid-protein (WLP) triplet. Results: Monte Carlo simulations using TOPAS for four reference tissues shows that characterizing them with only two PC is enough to get a submillimetric precision on proton range prediction. Based on the simulated DECT data of 43 references tissues, the proposed method is in agreement with theoretical values of protons SPR and low-kV EAC with a RMS error of 0.11% and 0.35%, respectively. In comparison, parametrization and WLP respectively yield RMS errors of 0.13% and 0.29% on SPR, and 2.72% and 2.19% on EAC. Furthermore, the proposed approach shows potential applications for spectral CT. Using five PC and five energy bins reduces the SPR RMS error to 0.03%. Conclusion: The proposed method shows good performance in determining elemental compositions from DECT data and physical quantities relevant to radiotherapy dose calculation and generally shows better accuracy and unbiased results compared to reference methods. The proposed method is particularly suitable for Monte Carlo calculations and shows promise in using more than two energies to characterize human tissue with CT.« less

  3. An atlas-based organ dose estimator for tomosynthesis and radiography

    NASA Astrophysics Data System (ADS)

    Hoye, Jocelyn; Zhang, Yakun; Agasthya, Greeshma; Sturgeon, Greg; Kapadia, Anuj; Segars, W. Paul; Samei, Ehsan

    2017-03-01

    The purpose of this study was to provide patient-specific organ dose estimation based on an atlas of human models for twenty tomosynthesis and radiography protocols. The study utilized a library of 54 adult computational phantoms (age: 18-78 years, weight 52-117 kg) and a validated Monte-Carlo simulation (PENELOPE) of a tomosynthesis and radiography system to estimate organ dose. Positioning of patient anatomy was based on radiographic positioning handbooks. The field of view for each exam was calculated to include relevant organs per protocol. Through simulations, the energy deposited in each organ was binned to estimate normalized organ doses into a reference database. The database can be used as the basis to devise a dose calculator to predict patient-specific organ dose values based on kVp, mAs, exposure in air, and patient habitus for a given protocol. As an example of the utility of this tool, dose to an organ was studied as a function of average patient thickness in the field of view for a given exam and as a function of Body Mass Index (BMI). For tomosynthesis, organ doses can also be studied as a function of x-ray tube position. This work developed comprehensive information for organ dose dependencies across tomosynthesis and radiography. There was a general exponential decrease dependency with increasing patient size that is highly protocol dependent. There was a wide range of variability in organ dose across the patient population, which needs to be incorporated in the metrology of organ dose.

  4. European Academy of Allergy and Clinical Immunology task force report on 'dose-response relationship in allergen-specific immunotherapy'.

    PubMed

    Calderón, M A; Larenas, D; Kleine-Tebbe, J; Jacobsen, L; Passalacqua, G; Eng, P A; Varga, E M; Valovirta, E; Moreno, C; Malling, H J; Alvarez-Cuesta, E; Durham, S; Demoly, P

    2011-10-01

    For a century, allergen-specific immunotherapy (SIT) has proven to be an effective treatment for allergic rhinitis, asthma, and insect sting allergy. However, as allergen doses are frequently adapted to the individual patient, there are few data on dose-response relationship in SIT. Allergen products for SIT are being increasingly required to conform to regulatory requirements for human medicines, which include the need to demonstrate dose-dependent effects. This report, produced by a Task Force of the EAACI Immunotherapy Interest Group, evaluates the currently available data on dose-response relationships in SIT and aims to provide recommendations for the design of future studies. Fifteen dose-ranging studies fulfilled the inclusion criteria and twelve reported a dose-response relationship for clinical efficacy. Several studies also reported a dose-response relationship for immunological and safety endpoints. Due to the use of different reference materials and methodologies for the determination of allergen content, variations in study design, and choice of endpoints, no comparisons could be made between studies and, as a consequence, no general dosing recommendations can be made. Despite recently introduced guidelines on the standardization of allergen preparations and study design, the Task Force identified a need for universally accepted standards for the measurement of allergen content in SIT preparations, dosing protocols, and selection of clinical endpoints to enable dose-response effects to be compared across studies. © 2011 John Wiley & Sons A/S.

  5. Ocular Adverse Events Associated with Antibody–Drug Conjugates in Human Clinical Trials

    PubMed Central

    Miller, Paul E.; Mannis, Mark J.

    2015-01-01

    Abstract This article reviews ocular adverse events (AEs) reported in association with administration of antibody–drug conjugates (ADCs) in human clinical trials. References reporting ocular toxicity or AEs associated with ADCs were collected using online publication searches. Articles, abstracts, or citations were included if they cited ocular toxicities or vision-impairing AEs with a confirmed or suspected association with ADC administration. Twenty-two references were found citing ocular or vision-impairing AEs in association with ADC administration. All references reported use of ADCs in human clinical trials for treatment of various malignancies. The molecular target and cytotoxic agent varied depending on the ADC used. Ocular AEs affected a diversity of ocular tissues. The most commonly reported AEs involved the ocular surface and included blurred vision, dry eye, and corneal abnormalities (including microcystic corneal disease). Most ocular AEs were not severe (≤ grade 2) or dose limiting. Clinical outcomes were not consistently reported, but when specified, most AEs improved or resolved with cessation of treatment or with ameliorative therapy. A diverse range of ocular AEs are reported in association with administration of ADCs for the treatment of cancer. The toxicologic mechanism(s) and pathogenesis of such events are not well understood, but most are mild in severity and reversible. Drug development and medical professionals should be aware of the clinical features of these events to facilitate early recognition and intervention in the assessment of preclinical development programs and in human clinical trials. PMID:26539624

  6. Evaluation of potential risks from ash disposal site leachate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, W.B.; Loh, J.Y.; Bate, M.C.

    1999-04-01

    A risk-based approach is used to evaluate potential human health risks associated with a discharge from an ash disposal site into a small stream. The RIVRISK model was used to estimate downstream concentrations and corresponding risks. The modeling and risk analyses focus on boron, the constituent of greatest potential concern to public health at the site investigated, in Riddle Run, Pennsylvania. Prior to performing the risk assessment, the model is validated by comparing observed and predicted results. The comparison is good and an uncertainty analysis is provided to explain the comparison. The hazard quotient (HQ) for boron is predicted tomore » be greater than 1 at presently regulated compliance points over a range of flow rates. The reference dose (RfD) currently recommended by the United States Environmental Protection Agency (US EPA) was used for the analyses. However, the toxicity of boron as expressed by the RfD is now under review by both the U.S. EPA and the World Health Organization. Alternative reference doses being examined would produce predicted boron hazard quotients of less than 1 at nearly all flow conditions.« less

  7. Evaluation of dose-area product of common radiographic examinations towards establishing a preliminary diagnostic reference levels (PDRLs) in Southwestern Nigeria.

    PubMed

    Jibiri, Nnamdi N; Olowookere, Christopher J

    2016-11-08

    In Nigeria, a large number of radiographic examinations are conducted yearly for various diagnostic purposes. However, most examinations carried out do not have records of doses received by the patients, and the employed exposure parameters used are not documented; therefore, adequate radiation dose management is hin-dered. The aim of the present study was to estimate the dose-area product (DAP) of patients examined in Nigeria, and to propose regional reference dose levels for nine common examinations (chest PA, abdomen AP, pelvis AP, lumbar AP, skull AP, leg AP, knee AP, hand AP, and thigh AP) undertaken in Nigeria. Measurement of entrance surface dose (ESD) was carried out using thermoluminescent dosimeter (TLD). Measured ESDS were converted into DAP using the beam area of patients in 12 purposely selected hospitals. Results of the study show that the maximum/ minimum ratio ranged from 3 for thigh AP to 57 in abdomen AP. The range of determined mean and 75th percentile DAPs were 0.18-17.16, and 0.25-28.59 Gy cm2, respectively. Data available for comparison show that 75th percentile DAPs in this study (in chest PA, abdomen AP, pelvis AP, lumbar AP) are higher than NRPB-HPE reference values. The DAP in this study is higher by factor of 31.4 (chest PA), 9.9 (abdomen AP), 2.2 (pelvis AP), and 2.1 (lumbar AP) than NRPB-HPE values. The relative higher dose found in this study shows nonoptimization of practice in Nigeria. It is expected that regular dose auditing and dose optimization implementation in Nigeria would lead to lower DAP value, especially in abdomen AP. The 75th percentile DAP distribution reported in this study could be taken as regional diagnostic reference level in the Southwestern Nigeria; however, a more extensive nationwide dose survey is required to establish national reference dose. © 2016 The Authors.

  8. Development of candidate reference materials for the measurement of lead in bone

    PubMed Central

    Hetter, Katherine M.; Bellis, David J.; Geraghty, Ciaran; Todd, Andrew C.; Parsons, Patrick J.

    2010-01-01

    The production of modest quantities of candidate bone lead (Pb) reference materials is described, and an optimized production procedure is presented. The reference materials were developed to enable an assessment of the interlaboratory agreement of laboratories measuring Pb in bone; method validation; and for calibration of solid sampling techniques such as laser ablation ICP-MS. Long bones obtained from Pb-dosed and undosed animals were selected to produce four different pools of a candidate powdered bone reference material. The Pb concentrations of these pools reflect both environmental and occupational exposure levels in humans. The animal bones were harvested post mortem, cleaned, defatted, and broken into pieces using the brittle fracture technique at liquid nitrogen temperature. The bone pieces were then ground in a knife mill to produce fragments of 2-mm size. These were further ground in an ultra-centrifugal mill, resulting in finely powdered bone material that was homogenized and then sampled-scooped into vials. Testing for contamination and homogeneity was performed via instrumental methods of analysis. PMID:18421443

  9. Investigating Bordetella pertussis colonisation and immunity: protocol for an inpatient controlled human infection model

    PubMed Central

    de Graaf, Hans; Gbesemete, Diane; Gorringe, Andrew R.; Diavatopoulos, Dimitri A.; Kester, Kent E.; Faust, Saul N.; Read, Robert C.

    2017-01-01

    Introduction We summarise an ethically approved protocol for the development of an experimental human challenge colonisation model. Globally Bordetella pertussis is one of the leading causes of vaccine-preventable death. Many countries have replaced whole cell vaccines with acellular vaccines over the last 20 years during which pertussis appears to be resurgent in a number of countries in the developed world that boast high immunisation coverage. The acellular vaccine provides relatively short-lived immunity and, in contrast to whole cell vaccines, may be less effective against colonisation and subsequent transmission. To improve vaccine strategies, a greater understanding of human B. pertussis colonisation is required. This article summarises a protocol and does not contain any results. Methods and analysis A controlled human colonisation model will be developed over two phases. In phase A, a low dose of the inoculum will be given intranasally to healthy participants. This dose will be escalated or de-escalated until colonisation is achieved in approximately 70% (95% CI 47% to 93%) of the exposed volunteers without causing disease. The colonisation period, shedding and exploratory immunology will be assessed during a 17-day inpatient stay and follow-up over 1 year. The dose of inoculum that achieves 70% colonisation will then be confirmed in phase B, comparing healthy participants exposed to B. pertussis with a control group receiving a sham inoculum. Ethics and dissemination This study has been approved by the ethical committee reference: 17/SC/0006, 24 February 2017. Findings will be published in peer-reviewed open access journals as soon as possible. PMID:29025851

  10. Site-Specific Reference Person Parameters and Derived Concentration Standards for the Savannah River Site

    DOE PAGES

    Stone, Daniel K.; Higley, Kathryn A.; Jannik, G. Timothy

    2014-05-01

    The U.S. Department of Energy Order 458.1 states that the compliance with the 1 mSv annual dose constraint to a member of the public may be demonstrated by calculating dose to the maximally exposed individual (MEI) or to a representative person. Historically, the MEI concept was used for dose compliance at the Savannah River Site (SRS) using adult dose coefficients and adult male usage parameters. For future compliance, SRS plans to use the representative person concept for dose estimates to members of the public. The representative person dose will be based on the reference person dose coefficients from the U.S.more » DOE Derived Concentration Technical Standard and on usage parameters specific to SRS for the reference and typical person. Usage parameters and dose coefficients were determined for inhalation, ingestion and external exposure pathways. The parameters for the representative person were used to calculate and tabulate SRS-specific derived concentration standards (DCSs) for the pathways not included in DOE-STD-1196-2011.« less

  11. (11)C-MK-8278 PET as a tool for pharmacodynamic brain occupancy of histamine 3 receptor inverse agonists.

    PubMed

    Van Laere, Koenraad J; Sanabria-Bohórquez, Sandra M; Mozley, David P; Burns, Donald H; Hamill, Terence G; Van Hecken, Anne; De Lepeleire, Inge; Koole, Michel; Bormans, Guy; de Hoon, Jan; Depré, Marleen; Cerchio, Kristine; Plalcza, John; Han, Lingling; Renger, John; Hargreaves, Richard J; Iannone, Robert

    2014-01-01

    The histamine 3 (H3) receptor is a presynaptic autoreceptor in the central nervous system that regulates the synthesis and release of histamine and modulates the release of other major neurotransmitters. H3 receptor inverse agonists (IAs) may be efficacious in the treatment of various central nervous system disorders, including excessive daytime sleepiness, attention deficit hyperactivity disorder, Alzheimer disease, ethanol addiction, and obesity. Using PET and a novel high-affinity and selective radioligand (11)C-MK-8278, we studied the tracer biodistribution, quantification, and brain H3 receptor occupancy (RO) of MK-0249 and MK-3134, 2 potential IA drugs targeting cerebral H3 receptors, in 6 healthy male subjects (age, 19-40 y). The relationship among H3 IA dose, time on target, and peripheral pharmacokinetics was further investigated in 15 healthy male volunteers (age, 18-40 y) with up to 3 PET scans and 3 subjects per dose level. The mean effective dose for (11)C-MK-8278 was 5.4 ± 1.1 μSv/MBq. Human brain kinetics showed rapid high uptake and fast washout. Binding potential values can be assessed using the pons as a reference region, with a test-retest repeatability of 7%. Drug RO data showed low interindividual variability per dose (mean RO SD, 2.1%), and a targeted 90% RO can be reached for both IAs at clinically feasible doses. (11)C-MK-8278 is a useful novel PET radioligand for determination of human cerebral H3 receptor binding and allows highly reproducible in vivo brain occupancy of H3-targeting drugs, hereby enabling the evaluation of novel compounds in early development to select doses and schedules.

  12. Microionization chamber for reference dosimetry in IMRT verification: clinical implications on OAR dosimetric errors

    NASA Astrophysics Data System (ADS)

    Sánchez-Doblado, Francisco; Capote, Roberto; Leal, Antonio; Roselló, Joan V.; Lagares, Juan I.; Arráns, Rafael; Hartmann, Günther H.

    2005-03-01

    Intensity modulated radiotherapy (IMRT) has become a treatment of choice in many oncological institutions. Small fields or beamlets with sizes of 1 to 5 cm2 are now routinely used in IMRT delivery. Therefore small ionization chambers (IC) with sensitive volumes <=0.1 cm3are generally used for dose verification of an IMRT treatment. The measurement conditions during verification may be quite different from reference conditions normally encountered in clinical beam calibration, so dosimetry of these narrow photon beams pertains to the so-called non-reference conditions for beam calibration. This work aims at estimating the error made when measuring the organ at risk's (OAR) absolute dose by a micro ion chamber (μIC) in a typical IMRT treatment. The dose error comes from the assumption that the dosimetric parameters determining the absolute dose are the same as for the reference conditions. We have selected two clinical cases, treated by IMRT, for our dose error evaluations. Detailed geometrical simulation of the μIC and the dose verification set-up was performed. The Monte Carlo (MC) simulation allows us to calculate the dose measured by the chamber as a dose averaged over the air cavity within the ion-chamber active volume (Dair). The absorbed dose to water (Dwater) is derived as the dose deposited inside the same volume, in the same geometrical position, filled and surrounded by water in the absence of the ion chamber. Therefore, the Dwater/Dair dose ratio is the MC estimator of the total correction factor needed to convert the absorbed dose in air into the absorbed dose in water. The dose ratio was calculated for the μIC located at the isocentre within the OARs for both clinical cases. The clinical impact of the calculated dose error was found to be negligible for the studied IMRT treatments.

  13. How accurately can the peak skin dose in fluoroscopy be determined using indirect dose metrics?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A. Kyle, E-mail: kyle.jones@mdanderson.org; Ensor, Joe E.; Pasciak, Alexander S.

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that result in skin reactions can be reached during these procedures. There is no consensus as to whether or not indirect skin dosimetry is sufficiently accurate for fluoroscopically-guided interventions. However, measuring PSD with film is difficult and the decision to do so must be madea priori. The purpose of this study was to assess the accuracy of different types of indirect dose estimates and to determine if PSD can be calculated within ±50% using indirect dose metrics for embolization procedures. Methods: PSD were measured directly using radiochromicmore » film for 41 consecutive embolization procedures at two sites. Indirect dose metrics from the procedures were collected, including reference air kerma. Four different estimates of PSD were calculated from the indirect dose metrics and compared along with reference air kerma to the measured PSD for each case. The four indirect estimates included a standard calculation method, the use of detailed information from the radiation dose structured report, and two simplified calculation methods based on the standard method. Indirect dosimetry results were compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the different indirect estimates were examined. Results: When using the standard calculation method, calculated PSD were within ±35% for all 41 procedures studied. Calculated PSD were within ±50% for a simplified method using a single source-to-patient distance for all calculations. Reference air kerma was within ±50% for all but one procedure. Cases for which reference air kerma or calculated PSD exhibited large (±35%) differences from the measured PSD were analyzed, and two main causative factors were identified: unusually small or large source-to-patient distances and large contributions to reference air kerma from cone beam computed tomography or acquisition runs acquired at large primary gantry angles. When calculated uncertainty limits [−12.8%, 10%] were applied to directly measured PSD, most indirect PSD estimates remained within ±50% of the measured PSD. Conclusions: Using indirect dose metrics, PSD can be determined within ±35% for embolization procedures. Reference air kerma can be used without modification to set notification limits and substantial radiation dose levels, provided the displayed reference air kerma is accurate. These results can reasonably be extended to similar procedures, including vascular and interventional oncology. Considering these results, film dosimetry is likely an unnecessary effort for these types of procedures when indirect dose metrics are available.« less

  14. Effect of Study Design on Sample Size in Studies Intended to Evaluate Bioequivalence of Inhaled Short-Acting β-Agonist Formulations.

    PubMed

    Zeng, Yaohui; Singh, Sachinkumar; Wang, Kai; Ahrens, Richard C

    2018-04-01

    Pharmacodynamic studies that use methacholine challenge to assess bioequivalence of generic and innovator albuterol formulations are generally designed per published Food and Drug Administration guidance, with 3 reference doses and 1 test dose (3-by-1 design). These studies are challenging and expensive to conduct, typically requiring large sample sizes. We proposed 14 modified study designs as alternatives to the Food and Drug Administration-recommended 3-by-1 design, hypothesizing that adding reference and/or test doses would reduce sample size and cost. We used Monte Carlo simulation to estimate sample size. Simulation inputs were selected based on published studies and our own experience with this type of trial. We also estimated effects of these modified study designs on study cost. Most of these altered designs reduced sample size and cost relative to the 3-by-1 design, some decreasing cost by more than 40%. The most effective single study dose to add was 180 μg of test formulation, which resulted in an estimated 30% relative cost reduction. Adding a single test dose of 90 μg was less effective, producing only a 13% cost reduction. Adding a lone reference dose of either 180, 270, or 360 μg yielded little benefit (less than 10% cost reduction), whereas adding 720 μg resulted in a 19% cost reduction. Of the 14 study design modifications we evaluated, the most effective was addition of both a 90-μg test dose and a 720-μg reference dose (42% cost reduction). Combining a 180-μg test dose and a 720-μg reference dose produced an estimated 36% cost reduction. © 2017, The Authors. The Journal of Clinical Pharmacology published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.

  15. TH-AB-207A-06: The Use of Realistic Phantoms to Predict CT Dose to Pediatric Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carver, D; Kost, S; Fraser, N

    Purpose: To predict pediatric patient dose from diagnostic CT scans using Monte Carlo simulation of realistic reference phantoms of various ages, weights, and heights. Methods: A series of deformable pediatric reference phantoms using Non-Uniform Rational B-Splines (NURBS) was developed for a large range of ages, percentiles, and reference anatomy. Individual bones were modeled using age-dependent factors, and red marrow was modeled as functions of age and spatial distribution based on Cristy1. Organ and effective doses for the phantom series were calculated using Monte Carlo simulation of chest, abdominopelvic, and chest-abdomen-pelvis CT exams. Non-linear regression was performed to determine the relationshipmore » between dose-length-product (DLP)-normalized organ and effective doses and phantom diameter. Patient-specific voxel computational phantoms were also created by manual segmentation of previously acquired CT images for 40 pediatric patients (0.7 to 17 years). Organ and effective doses were determined by Monte Carlo simulation of these patient-specific phantoms. Each patient was matched to the closest pediatric reference phantom based primarily on age and diameter for all major organs within the torso. Results: A total of 80 NURBS phantoms were created ranging from newborn to 15 years with height/weight percentiles from 10 to 90%. Organ and effective dose normalized by DLP correlated strongly with exponentially decreasing average phantom diameter (R{sup 2} > 0.95 for most organs). A similar relationship was determined for the patient-specific voxel phantoms. Differences between patient-phantom matched organ-dose values ranged from 0.37 to 2.39 mGy (2.87% to 22.1%). Conclusion: Dose estimation using NURBS-based pediatric reference phantoms offers the ability to predict patient dose before and after CT examinations, and physicians and scientists can use this information in their analysis of dose prescriptions for particular subjects and study types. This may lead to practices that minimize radiation dose while still achieving high quality images and, ultimately, improved patient care. NIH/NCI 1 R01 CA155400-01A1.« less

  16. Application of optical action potentials in human induced pluripotent stem cells-derived cardiomyocytes to predict drug-induced cardiac arrhythmias.

    PubMed

    Lu, H R; Hortigon-Vinagre, M P; Zamora, V; Kopljar, I; De Bondt, A; Gallacher, D J; Smith, G

    2017-09-01

    Human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) are emerging as new and human-relevant source in vitro model for cardiac safety assessment that allow us to investigate a set of 20 reference drugs for predicting cardiac arrhythmogenic liability using optical action potential (oAP) assay. Here, we describe our examination of the oAP measurement using a voltage sensitive dye (Di-4-ANEPPS) to predict adverse compound effects using hiPS-CMs and 20 cardioactive reference compounds. Fluorescence signals were digitized at 10kHz and the records subsequently analyzed off-line. Cells were exposed to 30min incubation to vehicle or compound (n=5/dose, 4 doses/compound) that were blinded to the investigating laboratory. Action potential parameters were measured, including rise time (T rise ) of the optical action potential duration (oAPD). Significant effects on oAPD were sensitively detected with 11 QT-prolonging drugs, while oAPD shortening was observed with I Ca -antagonists, I Kr -activator or ATP-sensitive K + channel (K ATP )-opener. Additionally, the assay detected varied effects induced by 6 different sodium channel blockers. The detection threshold for these drug effects was at or below the published values of free effective therapeutic plasma levels or effective concentrations by other studies. The results of this blinded study indicate that OAP is a sensitive method to accurately detect drug-induced effects (i.e., duration/QT-prolongation, shortening, beat rate, and incidence of early after depolarizations) in hiPS-CMs; therefore, this technique will potentially be useful in predicting drug-induced arrhythmogenic liabilities in early de-risking within the drug discovery phase. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brent, R.L.

    Many professionals are unfamiliar with radiation biology or the quantitative nature of the risks. Frequently, microwave, ultrasound, and ionizing radiation risks are confused. Although it is impossible to prove no risk for any environmental hazard, it appears that exposure to microwave radiation below the maximal permissible levels present no measurable risk to the embryo. Ultrasound exposure from diagnostic ultrasonographic imaging equipment also is quite innocuous. It is true that continued surveillance and research into potential risks of these low-level exposures should continue, but at present ultrasound not only improves obstetric care but also reduces the necessity of diagnostic x-ray procedures.more » In the field of ionizing radiation, we have as good a comprehension of the biologic effects and the quantitative maximum risks as of any other environmental hazard. Although the animal and human data support the conclusion that no increases in the incidence of gross congenital malformations, intrauterine growth retardation, or abortion will occur with exposures less than 5 rad, that does not mean that there are definitely no risks to the embryo exposed to lower doses of radiation. Whether there exists a linear or exponential dose-response relationship or a threshold exposure for genetic, carcinogenic, cell-depleting, and life-shortening effects has not been determined. In establishing maximum permissible levels for the embryo at low exposures, refer to Tables 4, 5, 6, 8, and 9. It is obvious that the risks of 1-rad or 5-rad acute exposure are far below the spontaneous risks of the developing embryo because 15 per cent of human embryos abort, 2.7 to 3.0 per cent of human embryos have major malformations, 4 per cent have intrauterine growth retardation, and 8 to 10 per cent have early- or late-onset genetic disease. 98 references.« less

  18. Implementing a framework for integrating toxicokinetics into human health risk assessment for agrochemicals.

    PubMed

    Terry, Claire; Hays, Sean; McCoy, Alene T; McFadden, Lisa G; Aggarwal, Manoj; Rasoulpour, Reza J; Juberg, Daland R

    2016-03-01

    A strategic and comprehensive program in which toxicokinetic (TK) measurements are made for all agrochemicals undergoing toxicity testing (both new compounds and compounds already registered for use) is described. This approach provides the data to more accurately assess the toxicokinetics of agrochemicals and their metabolites in laboratory animals and humans. Having this knowledge provides the ability to conduct more insightful toxicity studies, refine and interpret exposure assessments and reduce uncertainty in risk assessments. By developing a better understanding of TK across species, including humans via in vitro metabolism studies, any differences across species in TK can be identified early and the most relevant species can be selected for toxicity tests. It also provides the ability to identify any non-linearities in TK as a function of dose, which in turn can be used to identify a kinetically derived maximum dose (KMD) and avoid dosing inappropriately outside of the kinetic linear range. Measuring TK in key life stages also helps to identify changes in ADME parameters from in utero to adults. A robust TK database can also be used to set internal concentration based "Reference Concentrations" and Biomonitoring Equivalents (BE), and support selection of Chemical Specific Adjustment Factors (CSAF). All of these factors support the reduction of uncertainty throughout the entire risk assessment process. This paper outlines how a TK research strategy can be integrated into new agrochemical toxicity testing programs, together with a proposed Framework for future use. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Construction of boundary-surface-based Chinese female astronaut computational phantom and proton dose estimation

    PubMed Central

    Sun, Wenjuan; JIA, Xianghong; XIE, Tianwu; XU, Feng; LIU, Qian

    2013-01-01

    With the rapid development of China's space industry, the importance of radiation protection is increasingly prominent. To provide relevant dose data, we first developed the Visible Chinese Human adult Female (VCH-F) phantom, and performed further modifications to generate the VCH-F Astronaut (VCH-FA) phantom, incorporating statistical body characteristics data from the first batch of Chinese female astronauts as well as reference organ mass data from the International Commission on Radiological Protection (ICRP; both within 1% relative error). Based on cryosection images, the original phantom was constructed via Non-Uniform Rational B-Spline (NURBS) boundary surfaces to strengthen the deformability for fitting the body parameters of Chinese female astronauts. The VCH-FA phantom was voxelized at a resolution of 2 × 2 × 4 mm3for radioactive particle transport simulations from isotropic protons with energies of 5000–10 000 MeV in Monte Carlo N-Particle eXtended (MCNPX) code. To investigate discrepancies caused by anatomical variations and other factors, the obtained doses were compared with corresponding values from other phantoms and sex-averaged doses. Dose differences were observed among phantom calculation results, especially for effective dose with low-energy protons. Local skin thickness shifts the breast dose curve toward high energy, but has little impact on inner organs. Under a shielding layer, organ dose reduction is greater for skin than for other organs. The calculated skin dose per day closely approximates measurement data obtained in low-Earth orbit (LEO). PMID:23135158

  20. Incorporation of dosimetry in the derivation of reference concentrations for ambient or workplace air: a conceptual approach.

    PubMed

    Oller, Adriana R; Oberdörster, Günter

    2016-09-01

    Dosimetric models are essential tools to refine inhalation risk assessments based on local respiratory effects. Dosimetric adjustments to account for differences in aerosol particle size and respiratory tract deposition and/or clearance among rodents, workers, and the general public can be applied to experimentally- and epidemiologically-determined points of departure (PODs) to calculate size-selected (e.g., PM 10 , inhalable aerosol fraction, respirable aerosol fraction) equivalent concentrations (e.g., HEC or Human Equivalent Concentration; REC or Rodent Equivalent Concentration). A modified POD (e.g., HEC) can then feed into existing frameworks for the derivation of occupational or ambient air concentration limits or reference concentrations. HECs that are expressed in terms of aerosol particle sizes experienced by humans but are derived from animal studies allow proper comparison of exposure levels and associated health effects in animals and humans. This can inform differences in responsiveness between animals and humans, based on the same deposited or retained doses and can also allow the use of both data sources in an integrated weight of evidence approach for hazard and risk assessment purposes. Whenever possible, default values should be replaced by substance-specific and target population-specific parameters. Assumptions and sources of uncertainty need to be clearly reported.

  1. Incorporation of dosimetry in the derivation of reference concentrations for ambient or workplace air: a conceptual approach

    PubMed Central

    Oberdörster, Günter

    2016-01-01

    Dosimetric models are essential tools to refine inhalation risk assessments based on local respiratory effects. Dosimetric adjustments to account for differences in aerosol particle size and respiratory tract deposition and/or clearance among rodents, workers, and the general public can be applied to experimentally- and epidemiologically-determined points of departure (PODs) to calculate size-selected (e.g., PM10, inhalable aerosol fraction, respirable aerosol fraction) equivalent concentrations (e.g., HEC or Human Equivalent Concentration; REC or Rodent Equivalent Concentration). A modified POD (e.g., HEC) can then feed into existing frameworks for the derivation of occupational or ambient air concentration limits or reference concentrations. HECs that are expressed in terms of aerosol particle sizes experienced by humans but are derived from animal studies allow proper comparison of exposure levels and associated health effects in animals and humans. This can inform differences in responsiveness between animals and humans, based on the same deposited or retained doses and can also allow the use of both data sources in an integrated weight of evidence approach for hazard and risk assessment purposes. Whenever possible, default values should be replaced by substance-specific and target population-specific parameters. Assumptions and sources of uncertainty need to be clearly reported. PMID:27721518

  2. SU-F-J-174: A Series of Computational Human Phantoms in DICOM-RT Format for Normal Tissue Dose Reconstruction in Epidemiological Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyakuryal, A; Moroz, B; Lee, C

    2016-06-15

    Purpose: Epidemiological studies of second cancer risk in radiotherapy patients often require individualized dose estimates of normal tissues. Prior to 3D conformal radiation therapy planning, patient anatomy information was mostly limited to 2D radiological images or not even available. Generic patient CT images are often used in commercial radiotherapy treatment planning system (TPS) to reconstruct normal tissue doses. The objective of the current work was to develop a series of reference size computational human phantoms in DICOM-RT format for direct use in dose reconstruction in TPS. Methods: Contours of 93 organs and tissues were extracted from a series of pediatricmore » and adult hybrid computational human phantoms (newborn, 1-, 5-, 10-, 15-year-old, and adult males and females) using Rhinoceros software. A MATLAB script was created to convert the contours into the DICOM-RT structure format. The simulated CT images with the resolution of 1×1×3 mm3 were also generated from the binary phantom format and coupled with the DICOM-structure files. Accurate volumes of the organs were drawn in the format using precise delineation of the contours in converted format. Due to complex geometry of organs, higher resolution (1×1×1 mm3) was found to be more efficient in the conversion of newborn and 1-year-old phantoms. Results: Contour sets were efficiently converted into DICOM-RT structures in relatively short time (about 30 minutes for each phantom). A good agreement was observed in the volumes between the original phantoms and the converted contours for large organs (NRMSD<1.0%) and small organs (NRMSD<7.7%). Conclusion: A comprehensive series of computational human phantoms in DICOM-RT format was created to support epidemiological studies of second cancer risks in radiotherapy patients. We confirmed the DICOM-RT phantoms were successfully imported into the TPS programs of major vendors.« less

  3. In vitro evaluation of a new iterative reconstruction algorithm for dose reduction in coronary artery calcium scoring

    PubMed Central

    Allmendinger, Thomas; Kunz, Andreas S; Veyhl-Wichmann, Maike; Ergün, Süleyman; Bley, Thorsten A; Petritsch, Bernhard

    2017-01-01

    Background Coronary artery calcium (CAC) scoring is a widespread tool for cardiac risk assessment in asymptomatic patients and accompanying possible adverse effects, i.e. radiation exposure, should be as low as reasonably achievable. Purpose To evaluate a new iterative reconstruction (IR) algorithm for dose reduction of in vitro coronary artery calcium scoring at different tube currents. Material and Methods An anthropomorphic calcium scoring phantom was scanned in different configurations simulating slim, average-sized, and large patients. A standard calcium scoring protocol was performed on a third-generation dual-source CT at 120 kVp tube voltage. Reference tube current was 80 mAs as standard and stepwise reduced to 60, 40, 20, and 10 mAs. Images were reconstructed with weighted filtered back projection (wFBP) and a new version of an established IR kernel at different strength levels. Calcifications were quantified calculating Agatston and volume scores. Subjective image quality was visualized with scans of an ex vivo human heart. Results In general, Agatston and volume scores remained relatively stable between 80 and 40 mAs and increased at lower tube currents, particularly in the medium and large phantom. IR reduced this effect, as both Agatston and volume scores decreased with increasing levels of IR compared to wFBP (P < 0.001). Depending on selected parameters, radiation dose could be lowered by up to 86% in the large size phantom when selecting a reference tube current of 10 mAs with resulting Agatston levels close to the reference settings. Conclusion New iterative reconstruction kernels may allow for reduction in tube current for established Agatston scoring protocols and consequently for substantial reduction in radiation exposure. PMID:28607763

  4. Reference dosimetry of proton pencil beams based on dose-area product: a proof of concept.

    PubMed

    Gomà, Carles; Safai, Sairos; Vörös, Sándor

    2017-06-21

    This paper describes a novel approach to the reference dosimetry of proton pencil beams based on dose-area product ([Formula: see text]). It depicts the calibration of a large-diameter plane-parallel ionization chamber in terms of dose-area product in a 60 Co beam, the Monte Carlo calculation of beam quality correction factors-in terms of dose-area product-in proton beams, the Monte Carlo calculation of nuclear halo correction factors, and the experimental determination of [Formula: see text] of a single proton pencil beam. This new approach to reference dosimetry proves to be feasible, as it yields [Formula: see text] values in agreement with the standard and well-established approach of determining the absorbed dose to water at the centre of a broad homogeneous field generated by the superposition of regularly-spaced proton pencil beams.

  5. Estimated Daily Phthalate Exposures in a Population of Mothers of Male Infants Exhibiting Reduced Anogenital Distance

    PubMed Central

    Marsee, Kevin; Woodruff, Tracey J.; Axelrad, Daniel A.; Calafat, Antonia M.; Swan, Shanna H.

    2006-01-01

    Phthalate diesters have been shown to be developmental and reproductive toxicants in animal studies. A recent epidemiologic study showed certain phthalates to be significantly associated with reduced anogenital distance in human male infants, the first evidence of subtle developmental effects in human male infants exposed prenatally to phthalates. We used two previously published methods to estimate the daily phthalate exposures for the four phthalates whose urinary metabolites were statistically significantly associated with developmental effects in the 214 mother–infant pairs [di-n-butyl phthalate (DnBP), diethyl phthalate (DEP), butylbenzyl phthalate (BBzP), diisobutyl phthalate (DiBP)] and for another important phthalate [di-2-ethylhexyl phthalate (DEHP)]. We estimated the median and 95th percentile of daily exposures to DBP to be 0.99 and 2.68 μg/kg/day, respectively; for DEP, 6.64 and 112.3 μg/kg/day; for BBzP, 0.50 and 2.47 μg/kg/day; and for DEHP, 1.32 and 9.32 μg/kg/day. The U.S. Environmental Protection Agency (EPA) reference doses for these chemicals are 100 (DBP), 800 (DEP), 200 (BBzP), and 20 (DEHP) μg/kg/day. The median and 95th percentile exposure estimates for the phthalates associated with reduced anogenital distance in the study population are substantially lower than current U.S. EPA reference doses for these chemicals and could be informative to any updates of the hazard assessments and risk assessments for these chemicals. PMID:16759976

  6. Measuring dose from radiotherapy treatments in the vicinity of a cardiac pacemaker.

    PubMed

    Peet, Samuel C; Wilks, Rachael; Kairn, Tanya; Crowe, Scott B

    2016-12-01

    This study investigated the dose absorbed by tissues surrounding artificial cardiac pacemakers during external beam radiotherapy procedures. The usefulness of out-of-field reference data, treatment planning systems, and skin dose measurements to estimate the dose in the vicinity of a pacemaker was also examined. Measurements were performed by installing a pacemaker onto an anthropomorphic phantom, and using radiochromic film and optically stimulated luminescence dosimeters to measure the dose in the vicinity of the device during the delivery of square fields and clinical treatment plans. It was found that the dose delivered in the vicinity of the cardiac device was unevenly distributed both laterally and anteroposteriorly. As the device was moved distally from the square field, the dose dropped exponentially, in line with out-of-field reference data in the literature. Treatment planning systems were found to substantially underestimate the dose for volumetric modulated arc therapy, helical tomotherapy, and 3D conformal treatments. The skin dose was observed to be either greater or lesser than the dose received at the depth of the device, depending on the treatment site, and so care should be if skin dose measurements are to be used to estimate the dose to a pacemaker. Square field reference data may be used as an upper estimate of absorbed dose per monitor unit in the vicinity of a cardiac device for complex treatments involving multiple gantry angles. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Evaluation of dose‐area product of common radiographic examinations towards establishing a preliminary diagnostic reference levels (PDRLs) in Southwestern Nigeria

    PubMed Central

    Jibiri, Nnamdi N.

    2016-01-01

    In Nigeria, a large number of radiographic examinations are conducted yearly for various diagnostic purposes. However, most examinations carried out do not have records of doses received by the patients, and the employed exposure parameters used are not documented; therefore, adequate radiation dose management is hindered. The aim of the present study was to estimate the dose‐area product (DAP) of patients examined in Nigeria, and to propose regional reference dose levels for nine common examinations (chest PA, abdomen AP, pelvis AP, lumbar AP, skull AP, leg AP, knee AP, hand AP, and thigh AP) undertaken in Nigeria. Measurement of entrance surface dose (ESD) was carried out using thermoluminescent dosimeter (TLD). Measured ESDS were converted into DAP using the beam area of patients in 12 purposely selected hospitals. Results of the study show that the maximum/minimum ratio ranged from 3 for thigh AP to 57 in abdomen AP. The range of determined mean and 75th percentile DAPs were 0.18–17.16, and 0.25–28.59 Gy cm2, respectively. Data available for comparison show that 75th percentile DAPs in this study (in chest PA, abdomen AP, pelvis AP, lumbar AP) are higher than NRPB‐HPE reference values. The DAP in this study is higher by factor of 31.4 (chest PA), 9.9 (abdomen AP), 2.2 (pelvis AP), and 2.1 (lumbar AP) than NRPB‐HPE values. The relative higher dose found in this study shows nonoptimization of practice in Nigeria. It is expected that regular dose auditing and dose optimization implementation in Nigeria would lead to lower DAP value, especially in abdomen AP. The 75th percentile DAP distribution reported in this study could be taken as regional diagnostic reference level in the Southwestern Nigeria; however, a more extensive nationwide dose survey is required to establish national reference dose. PACS number(s): 87.53.Bn, 87.59.B PMID:27929511

  8. Comparative pharmacokinetics between a microdose and therapeutic dose for clarithromycin, sumatriptan, propafenone, paracetamol (acetaminophen), and phenobarbital in human volunteers.

    PubMed

    Lappin, Graham; Shishikura, Yoko; Jochemsen, Roeline; Weaver, Richard John; Gesson, Charlotte; Brian Houston, J; Oosterhuis, Berend; Bjerrum, Ole J; Grynkiewicz, Grzegorz; Alder, Jane; Rowland, Malcolm; Garner, Colin

    2011-06-14

    A clinical study was conducted to assess the ability of a microdose (100 μg) to predict the human pharmacokinetics (PK) following a therapeutic dose of clarithromycin, sumatriptan, propafenone, paracetamol (acetaminophen) and phenobarbital, both within the study and by reference to the existing literature on these compounds and to explore the source of any nonlinearity if seen. For each drug, 6 healthy male volunteers were dosed with 100 μg (14)C-labelled compound. For clarithromycin, sumatriptan, and propafenone this labelled dose was administered alone, i.e. as a microdose, orally and intravenously (iv) and as an iv tracer dose concomitantly with an oral non-labelled therapeutic dose, in a 3-way cross over design. The oral therapeutic doses were 250, 50, and 150 mg, respectively. Paracetamol was given as the labelled microdose orally and iv using a 2-way cross over design, whereas phenobarbital was given only as the microdose orally. Plasma concentrations of total (14)C and parent drug were measured using accelerator mass spectrometry (AMS) or HPLC followed by AMS. Plasma concentrations following non-(14)C-labelled oral therapeutic doses were measured using either HPLC-electrochemical detection (clarithromycin) or HPLC-UV (sumatriptan, propafenone). For all five drugs an oral microdose predicted reasonably well the PK, including the shape of the plasma profile, following an oral therapeutic dose. For clarithromycin, sumatriptan, and propafenone, one parameter, oral bioavailability, was marginally outside of the normally acceptable 2-fold prediction interval around the mean therapeutic dose value. For clarithromycin, sumatriptan and propafenone, data obtained from an oral and iv microdose were compared within the same cohort of subjects used in the study, as well as those reported in the literature. For paracetamol (oral and iv) and phenobarbital (oral), microdose data were compared with those reported in the literature only. Where 100 μg iv (14)C-doses were given alone and with an oral non-labelled therapeutic dose, excellent accord between the PK parameters was observed indicating that the disposition kinetics of the drugs tested were unaffected by the presence of therapeutic concentrations. This observation implies that any deviation from linearity following the oral therapeutic doses occurs during the absorption process. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Bioequivalence of fixed-dose combination RIN®-150 to each reference drug in loose combination.

    PubMed

    Wang, H F; Wang, R; O'Gorman, M; Crownover, P; Damle, B

    2015-03-01

    RIN(®)-150 is a fixed-dose combination (FDC) tablet containing rifampicin (RMP, 150 mg) and isoniazid (INH, 75 mg) developed for the treatment of tuberculosis. This study was conducted at a single center: the Pfizer Clinical Research Unit in Singapore. To demonstrate bioequivalence of each drug component between RIN-150 and individual products in a loose combination. This was a randomized, open-label, single-dose, two-way crossover study. Subjects received single doses of RIN-150 or two individual reference products under fasting conditions in a crossover fashion, with at least 7 days washout between doses. The primary measures for comparison were peak plasma concentration (Cmax) and the area under plasma concentration-time curve (AUC). Of 28 subjects enrolled, 26 completed the study. The adjusted geometric mean ratios of Cmax and AUClast between the FDC and single-drug references and 90% confidence intervals were respectively 91.63% (90%CI 83.13-101.01) and 95.45% (90%CI 92.07-98.94) for RMP, and 107.58% (90%CI 96.07-120.47) and 103.45% (90%CI 99.33-107.75) for INH. Both formulations were generally well tolerated in this study. The RIN-150 FDC tablet formulation is bioequivalent to the two single-drug references for RMP and INH at equivalent doses.

  10. A randomized, crossover pharmacokinetic study comparing generic tacrolimus vs. the reference formulation in subpopulations of kidney transplant patients.

    PubMed

    Bloom, R D; Trofe-Clark, J; Wiland, A; Alloway, R R

    2013-01-01

    An exploratory, post hoc analysis was performed using data from a prospective, multicenter, open-label, randomized, two-period (14 d per period), two-sequence, crossover, steady-state pharmacokinetic study comparing generic tacrolimus (Sandoz) vs. reference tacrolimus in stable renal transplant patients receiving their pre-study twice-daily dose. Pharmacokinetic parameters were compared in 68 patients according to gender, African American ethnicity, the presence or absence of diabetes, and use of steroids. The ratios of tacrolimus AUC0-12 h , Cmax , and C12 with generic vs. reference tacrolimus were calculated using the geometric mean (GM) of dose-normalized values at days 14 and 28. Mean (SD) tacrolimus dose at baseline was 5.7 (4.2) mg/d. There were no consistent differences in dose-normalized AUC0-12 h , C12 , Cmax, or tmax between the generic and reference preparations within subpopulations. The 90% confidence intervals (CI) for the ratios of dose-normalized AUC0-12 h and C12 with generic vs. reference tacrolimus were within 80-125% for all subpopulations, as were 90% CIs for Cmax other than for females, African Americans, and non-diabetics, which is not unexpected given the wide variability of tacrolimus Cmax and the small subpopulation sizes. These exploratory results suggest that this generic tacrolimus preparation would be expected to offer comparable bioavailability to the reference drug in these patient subpopulations. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Organ doses for reference adult male and female undergoing computed tomography estimated by Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel

    2011-03-15

    Purpose: To develop a computed tomography (CT) organ dose estimation method designed to readily provide organ doses in a reference adult male and female for different scan ranges to investigate the degree to which existing commercial programs can reasonably match organ doses defined in these more anatomically realistic adult hybrid phantomsMethods: The x-ray fan beam in the SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code MCNPX2.6. The simulated CT scanner model was validated through comparison with experimentally measured lateral free-in-air dose profiles and computed tomography dose index (CTDI) values. The reference adult malemore » and female hybrid phantoms were coupled with the established CT scanner model following arm removal to simulate clinical head and other body region scans. A set of organ dose matrices were calculated for a series of consecutive axial scans ranging from the top of the head to the bottom of the phantoms with a beam thickness of 10 mm and the tube potentials of 80, 100, and 120 kVp. The organ doses for head, chest, and abdomen/pelvis examinations were calculated based on the organ dose matrices and compared to those obtained from two commercial programs, CT-EXPO and CTDOSIMETRY. Organ dose calculations were repeated for an adult stylized phantom by using the same simulation method used for the adult hybrid phantom. Results: Comparisons of both lateral free-in-air dose profiles and CTDI values through experimental measurement with the Monte Carlo simulations showed good agreement to within 9%. Organ doses for head, chest, and abdomen/pelvis scans reported in the commercial programs exceeded those from the Monte Carlo calculations in both the hybrid and stylized phantoms in this study, sometimes by orders of magnitude. Conclusions: The organ dose estimation method and dose matrices established in this study readily provides organ doses for a reference adult male and female for different CT scan ranges and technical parameters. Organ doses from existing commercial programs do not reasonably match organ doses calculated for the hybrid phantoms due to differences in phantom anatomy, as well as differences in organ dose scaling parameters. The organ dose matrices developed in this study will be extended to cover different technical parameters, CT scanner models, and various age groups.« less

  12. Brain Serotonin Transporter Occupancy by Oral Sibutramine Dosed to Steady State: A PET Study Using 11C-DASB in Healthy Humans

    PubMed Central

    Talbot, Peter S; Bradley, Stefan; Clarke, Cyril P; Babalola, Kola O; Philipp, Andrew W; Brown, Gavin; McMahon, Adam W; Matthews, Julian C

    2010-01-01

    Sibutramine is a centrally acting monoamine reuptake inhibitor prescribed as an appetite suppressant in the management of obesity. Its effects are mostly attributable to serotonin and norepinephrine transporter (SERT and NET, respectively) inhibition by its potent metabolites mono-desmethylsibutramine (M1) and di-desmethylsibutramine (M2). However, there is a paucity of in vivo data in humans about mechanisms underlying both clinical efficacy and the dose-independent non-response observed in a minority of patients. Twelve healthy male patients (mean age 41 years) completed a double-blind, placebo-controlled, within-subject crossover investigation of brain SERT occupancy by sibutramine 15 mg daily at steady state. Correlations were measured between occupancy and (i) plasma concentrations of sibutramine, M1 and M2; (ii) appetite suppression. 11C-DASB PET scans were performed on the HRRT camera. Binding potentials (BPND) were calculated by the Logan reference tissue (cerebellum) method. SERT occupancy was modest (mean 30±10%), was similar across brain regions, but varied widely across subjects (15–46%). Occupancy was correlated positively (p=0.09) with M2 concentration, but not with sibutramine or M1. No significant appetite suppression was seen at <25% occupancy and greatest suppression was associated with highest occupancy (25–46%). However, several subjects with occupancy (36–39%) in the higher range had no appetite suppression. SERT occupancy by clinical doses of sibutramine is of modest magnitude and may be mediated predominantly by M2 in humans. 5-HT reuptake inhibition may be necessary but is not sufficient for sibutramine's efficacy in humans, supporting preclinical data suggesting that the hypophagic effect requires the co-inhibition of both SERT and NET. PMID:19890256

  13. PET-Based Human Dosimetry of the Dimeric αvβ3 Integrin Ligand 68Ga-DOTA-E-[c(RGDfK)]2, a Potential Tracer for Imaging Tumor Angiogenesis.

    PubMed

    López-Rodríguez, Victoria; Galindo-Sarco, Carlos; García-Pérez, Francisco O; Ferro-Flores, Guillermina; Arrieta, Oscar; Ávila-Rodríguez, Miguel A

    2016-03-01

    Peptides containing the Arg-Gly-Asp (RGD) sequence have high affinity for αvβ3 integrin receptors overexpressed in tumor cells. The objective of this research was to determine the biodistribution and estimate the radiation dose from (68)Ga-DOTA-E-[c(RGDfK)]2 using whole-body PET scans in humans. Five healthy volunteers (2 women, 3 men; mean age ± SD, 37.2 ± 15.6 y; range, 28-65 y; mean weight, 79.2 ± 21.0 kg; range, 64-115 kg) were included. After intravenous injection of the tracer (198.3 ± 3.3 MBq), 3 successive whole-body (vertex to mid thigh) PET/CT scans at 3 time points (30, 60, and 120 min) were obtained on a 16-slice PET/CT scanner. The subjects did not void the bladder until the entire series of images was completed. Low-dose CT without contrast agent was used for anatomic localization and attenuation correction. OLINDA/EXM software was applied to calculate human radiation doses using the reference adult model. The highest uptake was in the urinary bladder, followed by the liver, kidneys, and spleen, in descending order. The critical organ was the urinary bladder wall. The mean effective doses (all subjects, men and women) were 34.1 ± 4.9, 31.0 ± 2.4, and 20.9 ± 5.2 μSv/MBq for the no-voiding, 2.5-h-voiding, and 1-h-voiding models, respectively. Of particular interest in this research was the visualization of the choroid plexus and ventricular system, which seems to be a characteristic of RGD-dimeric peptides. Measured absorbed doses and effective doses are comparable to other previously reported RGD-based radiopharmaceuticals labeled with (68)Ga and (18)F. Therefore, (68)Ga-DOTA-E-[c(RGDfK)]2 can safely be used for imaging integrin αVβ3 expression. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  14. Threshold-driven optimization for reference-based auto-planning

    NASA Astrophysics Data System (ADS)

    Long, Troy; Chen, Mingli; Jiang, Steve; Lu, Weiguo

    2018-02-01

    We study threshold-driven optimization methodology for automatically generating a treatment plan that is motivated by a reference DVH for IMRT treatment planning. We present a framework for threshold-driven optimization for reference-based auto-planning (TORA). Commonly used voxel-based quadratic penalties have two components for penalizing under- and over-dosing of voxels: a reference dose threshold and associated penalty weight. Conventional manual- and auto-planning using such a function involves iteratively updating the preference weights while keeping the thresholds constant, an unintuitive and often inconsistent method for planning toward some reference DVH. However, driving a dose distribution by threshold values instead of preference weights can achieve similar plans with less computational effort. The proposed methodology spatially assigns reference DVH information to threshold values, and iteratively improves the quality of that assignment. The methodology effectively handles both sub-optimal and infeasible DVHs. TORA was applied to a prostate case and a liver case as a proof-of-concept. Reference DVHs were generated using a conventional voxel-based objective, then altered to be either infeasible or easy-to-achieve. TORA was able to closely recreate reference DVHs in 5-15 iterations of solving a simple convex sub-problem. TORA has the potential to be effective for auto-planning based on reference DVHs. As dose prediction and knowledge-based planning becomes more prevalent in the clinical setting, incorporating such data into the treatment planning model in a clear, efficient way will be crucial for automated planning. A threshold-focused objective tuning should be explored over conventional methods of updating preference weights for DVH-guided treatment planning.

  15. Multiparameter optimization of mammography: an update

    NASA Astrophysics Data System (ADS)

    Jafroudi, Hamid; Muntz, E. P.; Jennings, Robert J.

    1994-05-01

    Previously in this forum we have reported the application of multiparameter optimization techniques to the design of a minimum dose mammography system. The approach used a reference system to define the physical imaging performance required and the dose to which the dose for the optimized system should be compared. During the course of implementing the resulting design in hardware suitable for laboratory testing, the state of the art in mammographic imaging changed, so that the original reference system, which did not have a grid, was no longer appropriate. A reference system with a grid was selected in response to this change, and at the same time the optimization procedure was modified, to make it more general and to facilitate study of the optimized design under a variety of conditions. We report the changes in the procedure, and the results obtained using the revised procedure and the up- to-date reference system. Our results, which are supported by laboratory measurements, indicate that the optimized design can image small objects as well as the reference system using only about 30% of the dose required by the reference system. Hardware meeting the specification produced by the optimization procedure and suitable for clinical use is currently under evaluation in the Diagnostic Radiology Department at the Clinical Center, NH.

  16. A New Dual-purpose Quality Control Dosimetry Protocol for Diagnostic Reference-level Determination in Computed Tomography.

    PubMed

    Sohrabi, Mehdi; Parsi, Masoumeh; Sina, Sedigheh

    2018-05-17

    A diagnostic reference level is an advisory dose level set by a regulatory authority in a country as an efficient criterion for protection of patients from unwanted medical exposure. In computed tomography, the direct dose measurement and data collection methods are commonly applied for determination of diagnostic reference levels. Recently, a new quality-control-based dose survey method was proposed by the authors to simplify the diagnostic reference-level determination using a retrospective quality control database usually available at a regulatory authority in a country. In line with such a development, a prospective dual-purpose quality control dosimetry protocol is proposed for determination of diagnostic reference levels in a country, which can be simply applied by quality control service providers. This new proposed method was applied to five computed tomography scanners in Shiraz, Iran, and diagnostic reference levels for head, abdomen/pelvis, sinus, chest, and lumbar spine examinations were determined. The results were compared to those obtained by the data collection and quality-control-based dose survey methods, carried out in parallel in this study, and were found to agree well within approximately 6%. This is highly acceptable for quality-control-based methods according to International Atomic Energy Agency tolerance levels (±20%).

  17. Pilot study about dose-effect relationship of ocular injury in argon laser photocoagulation

    NASA Astrophysics Data System (ADS)

    Chen, P.; Zhang, C. P.; Fu, X. B.; Zhang, T. M.; Wang, C. Z.; Qian, H. W.; San, Q.

    2011-03-01

    The aim of this article was to study the injury effect of either convergent or parallel argon laser beam on rabbit retina, get the dose-effect relationship for the two types of laser beams, and calculate the damage threshold of argon laser for human retinas. An argon laser therapeutic instrument for ophthalmology was used in this study. A total of 80 rabbit eyes were irradiated for 600 lesions, half of which were treated by convergent laser and the other half were done with parallel laser beam. After irradiation, slit lamp microscope and fundus photography were used to observe the lesions, change and the incidence of injury was processed statistically to get the damage threshold of rabbit retina. Based on results from the experiments on animals and the data from clinical cases of laser treatment, the photocoagulation damage thresholds of human retinas for convergent and parallel argon laser were calculated to be 0.464 and 0.285 mJ respectively. These data provided biological reference for safely operation when employing laser photocoagulation in clinical practice and other fields.

  18. Computational Model Prediction and Biological Validation Using Simplified Mixed Field Exposures for the Development of a GCR Reference Field

    NASA Technical Reports Server (NTRS)

    Hada, M.; Rhone, J.; Beitman, A.; Saganti, P.; Plante, I.; Ponomarev, A.; Slaba, T.; Patel, Z.

    2018-01-01

    The yield of chromosomal aberrations has been shown to increase in the lymphocytes of astronauts after long-duration missions of several months in space. Chromosome exchanges, especially translocations, are positively correlated with many cancers and are therefore a potential biomarker of cancer risk associated with radiation exposure. Although extensive studies have been carried out on the induction of chromosomal aberrations by low- and high-LET radiation in human lymphocytes, fibroblasts, and epithelial cells exposed in vitro, there is a lack of data on chromosome aberrations induced by low dose-rate chronic exposure and mixed field beams such as those expected in space. Chromosome aberration studies at NSRL will provide the biological validation needed to extend the computational models over a broader range of experimental conditions (more complicated mixed fields leading up to the galactic cosmic rays (GCR) simulator), helping to reduce uncertainties in radiation quality effects and dose-rate dependence in cancer risk models. These models can then be used to answer some of the open questions regarding requirements for a full GCR reference field, including particle type and number, energy, dose rate, and delivery order. In this study, we designed a simplified mixed field beam with a combination of proton, helium, oxygen, and iron ions with shielding or proton, helium, oxygen, and titanium without shielding. Human fibroblasts cells were irradiated with these mixed field beam as well as each single beam with acute and chronic dose rate, and chromosome aberrations (CA) were measured with 3-color fluorescent in situ hybridization (FISH) chromosome painting methods. Frequency and type of CA induced with acute dose rate and chronic dose rates with single and mixed field beam will be discussed. A computational chromosome and radiation-induced DNA damage model, BDSTRACKS (Biological Damage by Stochastic Tracks), was updated to simulate various types of CA induced by acute exposures of the mixed field beams used for the experiments. The chromosomes were simulated by a polymer random walk algorithm with restrictions to their respective domains in the nucleus [1]. The stochastic dose to the nucleus was calculated with the code RITRACKS [2]. Irradiation of a target volume by a mixed field of ions was implemented within RITRACKs, and the fields of ions can be delivered over specific periods of time, allowing the simulation of dose-rate effects. Similarly, particles of various types and energies extracted from a pre-calculated spectra of galactic cosmic rays (GCR) can be used in RITRACKS. The number and spatial location of DSBs (DNA double-strand breaks) were calculated in BDSTRACKS using the simulated chromosomes and local (voxel) dose. Assuming that DSBs led to chromosome breaks, and simulating the rejoining of damaged chromosomes occurring during repair, BDSTRACKS produces the yield of various types of chromosome aberrations as a function of time (only final yields are presented). A comparison between experimental and simulation results will be shown.

  19. Diagnostic reference levels of paediatric computed tomography examinations performed at a dedicated Australian paediatric hospital.

    PubMed

    Bibbo, Giovanni; Brown, Scott; Linke, Rebecca

    2016-08-01

    Diagnostic Reference Levels (DRL) of procedures involving ionizing radiation are important tools to optimizing radiation doses delivered to patients and in identifying cases where the levels of doses are unusually high. This is particularly important for paediatric patients undergoing computed tomography (CT) examinations as these examinations are associated with relatively high-dose. Paediatric CT studies, performed at our institution from January 2010 to March 2014, have been retrospectively analysed to determine the 75th and 95th percentiles of both the volume computed tomography dose index (CTDIvol ) and dose-length product (DLP) for the most commonly performed studies to: establish local diagnostic reference levels for paediatric computed tomography examinations performed at our institution, benchmark our DRL with national and international published paediatric values, and determine the compliance of CT radiographer with established protocols. The derived local 75th percentile DRL have been found to be acceptable when compared with those published by the Australian National Radiation Dose Register and two national children's hospitals, and at the international level with the National Reference Doses for the UK. The 95th percentiles of CTDIvol for the various CT examinations have been found to be acceptable values for the CT scanner Dose-Check Notification. Benchmarking CT radiographers shows that they follow the set protocols for the various examinations without significant variations in the machine setting factors. The derivation of DRL has given us the tool to evaluate and improve the performance of our CT service by improved compliance and a reduction in radiation dose to our paediatric patients. We have also been able to benchmark our performance with similar national and international institutions. © 2016 The Royal Australian and New Zealand College of Radiologists.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, R; Zhu, X; Li, S

    Purpose: High Dose Rate (HDR) brachytherapy forward planning is principally an iterative process; hence, plan quality is affected by planners’ experiences and limited planning time. Thus, this may lead to sporadic errors and inconsistencies in planning. A statistical tool based on previous approved clinical treatment plans would help to maintain the consistency of planning quality and improve the efficiency of second checking. Methods: An independent dose calculation tool was developed from commercial software. Thirty-three previously approved cervical HDR plans with the same prescription dose (550cGy), applicator type, and treatment protocol were examined, and ICRU defined reference point doses (bladder, vaginalmore » mucosa, rectum, and points A/B) along with dwell times were collected. Dose calculation tool then calculated appropriate range with a 95% confidence interval for each parameter obtained, which would be used as the benchmark for evaluation of those parameters in future HDR treatment plans. Model quality was verified using five randomly selected approved plans from the same dataset. Results: Dose variations appears to be larger at the reference point of bladder and mucosa as compared with rectum. Most reference point doses from verification plans fell between the predicted range, except the doses of two points of rectum and two points of reference position A (owing to rectal anatomical variations & clinical adjustment in prescription points, respectively). Similar results were obtained for tandem and ring dwell times despite relatively larger uncertainties. Conclusion: This statistical tool provides an insight into clinically acceptable range of cervical HDR plans, which could be useful in plan checking and identifying potential planning errors, thus improving the consistency of plan quality.« less

  1. Neurotoxicity of lead, methylmercury, and PCBs in relation to the Great Lakes.

    PubMed Central

    Rice, D C

    1995-01-01

    There is ample evidence identifying lead, methylmercury, and polychlorinated biphenyls (PCBs) as neurotoxic agents. A large body of data on the neurotoxicity of lead, based on both epidemiologic studies in children and animal models of developmental exposure, reveals that body burdens of lead typical of people in industrialized environments produce behavioral impairment. Methylmercury was identified as a neurotoxicant in both adults and the developing organism based on episodes of human poisoning: these effects have been replicated and extended in animals. High-dose PCB exposure was recognized as a developmental toxicant as a result of several episodes of contamination of cooking oil. The threshold for PCB neurotoxicity in humans is less clear, although research in animals suggests that relatively low-level exposure produces behavioral impairment and other toxic effects. Tissue levels in fish below which human health would not be adversely affected were estimated for methylmercury and PCBs based on calculated reference doses (RfDs) and estimated fish intake. Present levels in fish tissue in the Great Lakes exceed these levels for both neurotoxicants. Great Lakes fish and water do not pose a particular hazard for increased lead intake. However, the fact that the present human body burden is in a range at which functional deficits are probable suggests that efforts should be made to eliminate point sources of lead contamination in the Great Lakes basin. PMID:8635443

  2. Toxicology Study No. S.0024589d 15, Human Cell Line Activation Test of the Novel Energetic, 3,4 -Dinitropyrazole (DNP)

    DTIC Science & Technology

    2016-04-01

    potential. The h-CLAT is one of many non- animal skin sensitizing tests , and it comprises part of an integrated testing strategy with two other in vitro...Protocol No. 158. 2015: European Union Reference Laboratory for Alternatives to Animal Testing [18, 19]. Toxicology Study No. S.0024589d-15, April...Alternatives to Animal Testing [18, 19]. If the EC200 or EC150 fell below the lowest dose, the values were extrapolated by the following equations

  3. What Risk? (edited by Roger Bate)

    NASA Astrophysics Data System (ADS)

    Behrman, E. J.

    1999-07-01

    Roger Bate, Ed. Butterworth-Heinemann: Oxford, UK. 329 pp. Cloth (1997): ISBN 0-7506-3810-9. 56.95. Paper (1999): ISBN 0 7506 4228 9. 29.95. A train carrying radioactive waste had begun its trip in New York and was close to its destination in California. As it stopped, the engineer called to a bystander, "Congratulations." "What for?" said the man. "You get to die. We calculated that each person along the route would receive one-millionth of the lethal dose of radioactivity. No one has died yet and you are the millionth person." "But I have received only one-millionth of the lethal dose." "That doesn't matter, it's a question of statistics." (This story is paraphrased from Rockwell's piece in The Scientist, March 16, 1998, p 7.) What Risk? contains 15 chapters (by 19 authors) arranged in five categories: methodology, science, science policy, commentaries, and perception. It deals in different ways, broadly speaking, with the problems raised by this anecdote. It would make a splendid textbook for high-school students or college undergraduates for a course dealing with pitfalls in extrapolation, unexpected variables, the proper use of statistics, political correctness and absolute safety, evaluation of the scientific literature, and the interplay of science and politics. Each article has an extensive reference list. Among the specific risks discussed are asbestos, benzene, environmental (secondhand) tobacco smoke, dioxin, ionizing radiation, and carcinogens. Some general principles emerge. (i) Since all organisms have repair mechanisms against environmental damage, there are thresholds for all damaging agents. Therefore, extrapolation from high dose rates to very low levels does not make sense. (ii) Doses and dose rates should not be confused. (iii) There are very large species differences in response to damaging agents. (iv) Unrecognized variables lurk everywhere. (v) The costs of enforcing demonstrably false standards are huge. Here are some illustrations. Nilsson's article on environmental tobacco smoke (ETS) concludes that the dangers are about one order of magnitude less than those currently used for regulatory purposes. The errors arise from misclassification of smoking status, inappropriate controls, confounding factors having to do with lifestyle, and, possibly, heredity. Looked at another way, a child's intake of benzo[a]pyrene during 10 hours from ETS is estimated to be about 250 times less than the amount ingested from eating one grilled sausage. Munby and Weetman's article on benzene and leukemia concludes that the risk of leukemia from nonindustrial exposure is probably zero. The slope of the hypothetically linear dose-effect curve currently in use is too large, the effect at low doses is overestimated, and the linear extrapolation to zero is not justified. The current standard for air quality is about six orders of magnitude below human toxicity levels. Ames and Gold, in the chapter Pollution, Pesticides and Cancer Misconceptions, give a fine summary of the difficulties with animal cancer tests. "Rodent carcinogens are not rare. Half of all chemicals tested in standard high dose animal cancer tests, whether occurring naturally or produced synthetically, are 'carcinogens'. There are high dose effects in these rodent cancer tests that are not relevant to low dose human exposures... Though 99.9 percent of the chemicals humans ingest are natural, the focus of regulatory policy is on synthetic chemicals." For example, more than 1000 chemicals have been identified in coffee: 27 have been tested and 19 are rodent carcinogens at the high levels at which these tests are carried out. Dioxin has been called the most toxic chemical known to man. Máller shows that this is not true by any measure. Part of the confusion is based on the fact that guinea pigs are killed by doses thousands of times less than those which affect humans. The chief symptom of dioxin exposure in humans is acne. The chapter that most surprised me was that by Jaworowski on ionizing radiation. First, the extrapolation of data on the survivors of the Hiroshima and Nagasaki bombings involves dose rates on the order of 5000 mSv/year. For these dose rates, the effects are well established. The average natural dose rate (from the unperturbed environment) is about 2.4 mSv/year. Average additional levels resulting from the Chernobyl accident in Central Europe were about 0.01 mSv/year. So, are there measurable effects at these low dose rates? The linear extrapolation model says yes. But there is no evidence to support this model. Indeed, the author refers to a large body of literature (more than 1000 publications) which is said to show that not only are these low dose rates not harmful, but they are actually beneficial. Examples: people in houses with higher than average radon levels show a lower mortality from lung cancer. The number of birth defects in Hungary in the two years following Chernobyl was smaller than in the years preceding it. At low dose rates, the incidence of neoplasms in irradiated mice is lower than in nonirradiated controls. There are other examples. This literature should be critically examined. Then there is the question of cost. Funds are limited. Are we spending our money wisely? Ames and Gold give some numbers that suggest not. The average toxin control program costs 60 times more per life-year saved than an injury prevention program and 150 times more than a health care program. Chemical educators could do much for humanity by encouraging study of the material in this book.

  4. Photon iso-effective dose for cancer treatment with mixed field radiation based on dose-response assessment from human and an animal model: clinical application to boron neutron capture therapy for head and neck cancer

    NASA Astrophysics Data System (ADS)

    González, S. J.; Pozzi, E. C. C.; Monti Hughes, A.; Provenzano, L.; Koivunoro, H.; Carando, D. G.; Thorp, S. I.; Casal, M. R.; Bortolussi, S.; Trivillin, V. A.; Garabalino, M. A.; Curotto, P.; Heber, E. M.; Santa Cruz, G. A.; Kankaanranta, L.; Joensuu, H.; Schwint, A. E.

    2017-10-01

    Boron neutron capture therapy (BNCT) is a treatment modality that combines different radiation qualities. Since the severity of biological damage following irradiation depends on the radiation type, a quantity different from absorbed dose is required to explain the effects observed in the clinical BNCT in terms of outcome compared with conventional photon radiation therapy. A new approach for calculating photon iso-effective doses in BNCT was introduced previously. The present work extends this model to include information from dose-response assessments in animal models and humans. Parameters of the model were determined for tumour and precancerous tissue using dose-response curves obtained from BNCT and photon studies performed in the hamster cheek pouch in vivo models of oral cancer and/or pre-cancer, and from head and neck cancer radiotherapy data with photons. To this end, suitable expressions of the dose-limiting Normal Tissue Complication and Tumour Control Probabilities for the reference radiation and for the mixed field BNCT radiation were developed. Pearson’s correlation coefficients and p-values showed that TCP and NTCP models agreed with experimental data (with r  >  0.87 and p-values  >0.57). The photon iso-effective dose model was applied retrospectively to evaluate the dosimetry in tumours and mucosa for head and neck cancer patients treated with BNCT in Finland. Photon iso-effective doses in tumour were lower than those obtained with the standard RBE-weighted model (between 10% to 45%). The results also suggested that the probabilities of tumour control derived from photon iso-effective doses are more adequate to explain the clinical responses than those obtained with the RBE-weighted values. The dosimetry in the mucosa revealed that the photon iso-effective doses were about 30% to 50% higher than the corresponding RBE-weighted values. While the RBE-weighted doses are unable to predict mucosa toxicity, predictions based on the proposed model are compatible with the observed clinical outcome. The extension of the photon iso-effective dose model has allowed, for the first time, the determination of the photon iso-effective dose for unacceptable complications in the dose-limiting normal tissue. Finally, the formalism developed in this work to compute photon-equivalent doses can be applied to other therapies that combine mixed radiation fields, such as hadron therapy.

  5. Photon iso-effective dose for cancer treatment with mixed field radiation based on dose-response assessment from human and an animal model: clinical application to boron neutron capture therapy for head and neck cancer.

    PubMed

    González, S J; Pozzi, E C C; Monti Hughes, A; Provenzano, L; Koivunoro, H; Carando, D G; Thorp, S I; Casal, M R; Bortolussi, S; Trivillin, V A; Garabalino, M A; Curotto, P; Heber, E M; Santa Cruz, G A; Kankaanranta, L; Joensuu, H; Schwint, A E

    2017-10-03

    Boron neutron capture therapy (BNCT) is a treatment modality that combines different radiation qualities. Since the severity of biological damage following irradiation depends on the radiation type, a quantity different from absorbed dose is required to explain the effects observed in the clinical BNCT in terms of outcome compared with conventional photon radiation therapy. A new approach for calculating photon iso-effective doses in BNCT was introduced previously. The present work extends this model to include information from dose-response assessments in animal models and humans. Parameters of the model were determined for tumour and precancerous tissue using dose-response curves obtained from BNCT and photon studies performed in the hamster cheek pouch in vivo models of oral cancer and/or pre-cancer, and from head and neck cancer radiotherapy data with photons. To this end, suitable expressions of the dose-limiting Normal Tissue Complication and Tumour Control Probabilities for the reference radiation and for the mixed field BNCT radiation were developed. Pearson's correlation coefficients and p-values showed that TCP and NTCP models agreed with experimental data (with r  >  0.87 and p-values  >0.57). The photon iso-effective dose model was applied retrospectively to evaluate the dosimetry in tumours and mucosa for head and neck cancer patients treated with BNCT in Finland. Photon iso-effective doses in tumour were lower than those obtained with the standard RBE-weighted model (between 10% to 45%). The results also suggested that the probabilities of tumour control derived from photon iso-effective doses are more adequate to explain the clinical responses than those obtained with the RBE-weighted values. The dosimetry in the mucosa revealed that the photon iso-effective doses were about 30% to 50% higher than the corresponding RBE-weighted values. While the RBE-weighted doses are unable to predict mucosa toxicity, predictions based on the proposed model are compatible with the observed clinical outcome. The extension of the photon iso-effective dose model has allowed, for the first time, the determination of the photon iso-effective dose for unacceptable complications in the dose-limiting normal tissue. Finally, the formalism developed in this work to compute photon-equivalent doses can be applied to other therapies that combine mixed radiation fields, such as hadron therapy.

  6. A biokinetic model for systemic nickel

    DOE PAGES

    Melo, Dunstana; Leggett, Richard Wayne

    2017-01-01

    The International Commission on Radiological Protection (ICRP) is updating its suite of reference biokinetic models for internally deposited radionuclides. This paper reviews data for nickel and proposes an updated biokinetic model for systemic (absorbed) nickel in adult humans for use in radiation protection. Compared with the ICRP s current model for nickel, the proposed model is based on a larger set of observations of the behavior of nickel in human subjects and laboratory animals and provides a more realistic description of the paths of movement of nickel in the body. For the two most important radioisotopes of nickel, 59Ni andmore » 63Ni, the proposed model yields substantially lower dose estimates per unit of activity reaching blood than the current ICRP model.« less

  7. A biokinetic model for systemic nickel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melo, Dunstana; Leggett, Richard Wayne

    The International Commission on Radiological Protection (ICRP) is updating its suite of reference biokinetic models for internally deposited radionuclides. This paper reviews data for nickel and proposes an updated biokinetic model for systemic (absorbed) nickel in adult humans for use in radiation protection. Compared with the ICRP s current model for nickel, the proposed model is based on a larger set of observations of the behavior of nickel in human subjects and laboratory animals and provides a more realistic description of the paths of movement of nickel in the body. For the two most important radioisotopes of nickel, 59Ni andmore » 63Ni, the proposed model yields substantially lower dose estimates per unit of activity reaching blood than the current ICRP model.« less

  8. Protection of the public in situations of prolonged radiation exposure. The application of the Commission's system of radiological protection to controllable radiation exposure due to natural sources and long-lived radioactive residues.

    PubMed

    1999-01-01

    This report provides guidance on the application of the ICRP system of radiological protection to prolonged exposure situations affecting members of the public. It addresses the general application of the Commission's system to the control of prolonged exposures resulting from practices and to the undertaking of interventions in prolonged exposure situations. Additionally, it provides recommendations on generic reference levels for such interventions. The report also considers some specific situations and discusses a number of issues that have been of concern, namely: natural radiation sources that may give rise to high doses; the restoration and rehabilitation of sites where human activities involving radioactive substances have been carried out; the return to 'normality' following an accident that has released radioactive substances to the environment; and the global marketing of commodities for public consumption that contain radioactive substances. Annexes provide some examples of prolonged exposure situations and discuss the radiological protection quantities, radiation-induced health effects and aspects of the Commission's system of radiological protection relevant to prolonged exposure. Quantitative recommendations for prolonged exposures are provided in the report. They must be interpreted with extreme caution; Chapters 4 and 5 stress the upper bound nature of the following values: Generic reference levels for intervention, in terms of existing total annual doses, are given as < approximately 100 mSv, above which intervention is almost always justifiable (situations for which the annual dose threshold for deterministic effects in relevant organs is exceeded will almost always require intervention), and < approximately 10 mSv, below which intervention is not likely to be justifiable (and above which it may be necessary). Intervention exemption levels for commodities, especially building materials, are expressed as an additional annual dose of approximately 1 mSv. The dose limit for exposures of the public from practices is expressed as aggregated (prolonged and transitory) additional annual doses from all relevant practices of 1 mSv. Dose constraints for sources within practices are expressed as an additional annual dose lower than 1 mSv (e.g. of approximately 0.3 mSv), which could be approximately 0.1 mSv for the prolonged exposure component. An exemption level for practices is expressed as an additional annual dose of approximately 0.01 mSv.

  9. Proposed Oral Reference Dose (RfD) for Barium and Compounds (Final Report, 2004)

    EPA Science Inventory

    This document is the final report from the 2004 external peer review of the Proposed Oral Reference Dose (RfD) for Barium and Compounds, prepared by the U.S. Environmental Protection Agency (EPA), National Center for Environmental Assessment (NCEA), for the Integrated Risk...

  10. ESTIMATION OF ADULT PATIENT DOSES FOR CHEST X-RAY EXAMINATIONS AND COMPARISON WITH DIAGNOSTIC REFERENCE LEVELS (DRLs).

    PubMed

    Bas Mor, H; Altinsoy, N; Söyler, I

    2018-05-08

    The aim of this study was to evaluate the radiation doses to patient during chest (posterior anterior/and lateral) examinations. The study was performed in three public hospitals of İstanbul province with a total of 300 adult patients. Entrance surface dose (ESD) measurements were conducted on computed radiography, digital radiography and screen film system. ESD was estimated by using International Atomic Energy Agency (IAEA) model and Davies model which are the common indirect models. Results were compared with diagnostic reference levels from the European Commission, IAEA and National Radiological Protection Board. Although the results are compatible with the international diagnostic reference levels, they present variations between the hospitals. Dose variations for the same type of X-ray examination support the idea that further optimization is possible.

  11. All about MAX: a male adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Vieira, J. W.; Khoury, H. J.; Lima, F. R. A.; Fuelle, D.

    2003-05-01

    The MAX (Male Adult voXel) phantom has been developed from existing segmented images of a male adult body, in order to achieve a representation as close as possible to the anatomical properties of the reference adult male specified by the ICRP. The study describes the adjustments of the soft-tissue organ masses, a new dosimetric model for the skin, a new model for skeletal dosimetry and a computational exposure model based on coupling the MAX phantom with the EGS4 Monte Carlo code. Conversion coefficients between equivalent dose to the red bone marrow as well as effective MAX dose and air-kerma free in air for external photon irradiation from the front and from the back, respectively, are presented and compared with similar data from other human phantoms.

  12. Exjade® (deferasirox, ICL670) in the treatment of chronic iron overload associated with blood transfusion

    PubMed Central

    Cappellini, Maria Domenica

    2007-01-01

    Although blood transfusions are important for patients with anemia, chronic transfusions inevitably lead to iron overload as humans cannot actively remove excess iron. The cumulative effects of iron overload lead to significant morbidity and mortality, if untreated. Although the current reference standard iron chelator deferoxamine has been used clinically for over four decades, its effectiveness is limited by a demanding therapeutic regimen that leads to poor compliance. Deferasirox (Exjade®, ICL670, Novartis Pharma AG, Basel, Switzerland) is a once-daily, oral iron chelator approved for the treatment of transfusional iron overload in adult and pediatric patients. The efficacy and safety of deferasirox have been established in a comprehensive clinical development program involving patients with various transfusion-dependent anemias. Deferasirox has a dose-dependent effect on iron burden, and is as efficacious as deferoxamine at comparable therapeutic doses. Deferasirox therapy can be tailored to a patient’s needs, as response is related to both dose and iron intake. Since deferasirox has a long half-life and is present in the plasma for 24 hours with once-daily dosing, it is unique in providing constant chelation coverage with a single dose. The availability of this convenient, effective, and well tolerated therapy represents a significant advance in the management of transfusional iron overload. PMID:18360637

  13. Parabens can enable hallmarks and characteristics of cancer in human breast epithelial cells: a review of the literature with reference to new exposure data and regulatory status.

    PubMed

    Darbre, Philippa D; Harvey, Philip W

    2014-09-01

    A framework for understanding the complexity of cancer development was established by Hanahan and Weinberg in their definition of the hallmarks of cancer. In this review, we consider the evidence that parabens can enable development in human breast epithelial cells of four of six of the basic hallmarks, one of two of the emerging hallmarks and one of two of the enabling characteristics. In Hallmark 1, parabens have been measured as present in 99% of human breast tissue samples, possess oestrogenic activity and can stimulate sustained proliferation of human breast cancer cells at concentrations measurable in the breast. In Hallmark 2, parabens can inhibit the suppression of breast cancer cell growth by hydroxytamoxifen, and through binding to the oestrogen-related receptor gamma may prevent its deactivation by growth inhibitors. In Hallmark 3, in the 10 nm-1 μm range, parabens give a dose-dependent evasion of apoptosis in high-risk donor breast epithelial cells. In Hallmark 4, long-term exposure (>20 weeks) to parabens leads to increased migratory and invasive activity in human breast cancer cells, properties that are linked to the metastatic process. As an emerging hallmark methylparaben has been shown in human breast epithelial cells to increase mTOR, a key regulator of energy metabolism. As an enabling characteristic parabens can cause DNA damage at high concentrations in the short term but more work is needed to investigate long-term, low-dose mixtures. The ability of parabens to enable multiple cancer hallmarks in human breast epithelial cells provides grounds for regulatory review of the implications of the presence of parabens in human breast tissue. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Research on Ratio of Dosage of Drugs in Traditional Chinese Prescriptions by Data Mining.

    PubMed

    Yu, Xing-Wen; Gong, Qing-Yue; Hu, Kong-Fa; Mao, Wen-Jing; Zhang, Wei-Ming

    2017-01-01

    Maximizing the effectiveness of prescriptions and minimizing adverse effects of drugs is a key component of the health care of patients. In the practice of traditional Chinese medicine (TCM), it is important to provide clinicians a reference for dosing of prescribed drugs. The traditional Cheng-Church biclustering algorithm (CC) is optimized and the data of TCM prescription dose is analyzed by using the optimization algorithm. Based on an analysis of 212 prescriptions related to TCM treatment of kidney diseases, the study generated 87 prescription dose quantum matrices and each sub-matrix represents the referential value of the doses of drugs in different recipes. The optimized CC algorithm can effectively eliminate the interference of zero in the original dose matrix of TCM prescriptions and avoid zero appearing in output sub-matrix. This results in the ability to effectively analyze the reference value of drugs in different prescriptions related to kidney diseases, so as to provide valuable reference for clinicians to use drugs rationally.

  15. PCC-FISH in skin fibroblasts for local dose assessment: biodosimetric analysis of a victim of the Georgian radiological accident.

    PubMed

    Pouget, J-P; Laurent, C; Delbos, M; Benderitter, M; Clairand, I; Trompier, F; Stéphanazzi, J; Carsin, H; Lambert, F; Voisin, P; Gourmelon, P

    2004-10-01

    We propose a new method of biodosimetry that could be applied in cases of localized irradiation. The approach is based on excess chromosome segments determination by the PCC-FISH technique in fibroblasts isolated from skin biopsy. Typically, 0 to 10 Gy ex vivo gamma-irradiated human skin biopsies were dissociated and fibroblasts were isolated and grown for several days. Cells next underwent PCC-FISH painting of whole chromosome 4, and the number of excess chromosome segments per metaphase was determined. An ex vivo reference curve correlating the number of excess chromosome segments per metaphase to the radiation dose was established and used to assess the dose delivered to the skin of one of the victims of the radiological accident that occurred at Lia in Georgia in December 2001. Specifically, the victim suffering from moist desquamation underwent skin excision in Hospital Percy (France). Measurement of excess chromosome segments per metaphase was done in fibroblasts isolated and grown from removed wounded skin and subsequent conversion to radiation doses was performed. The radiation dose map obtained was shown to be in accordance with clinical data and physical dosimetry as well as with conventional biodosimetry. These results demonstrated that PCC-FISH painting applied to skin fibroblasts may be a suitable technique for dose estimation. To assess its worth, this approach needs to be extended to future accidents involving localized radiation exposure.

  16. NEURAL AND CARDIAC TOXICITIES ASSOCIATED WITH 3,4-METHYLENEDIOXYMETHAMPHETAMINE (MDMA)

    PubMed Central

    Baumann, Michael H.; Rothman, Richard B.

    2011-01-01

    (±)-3,4-Methylenedioxymethamphetamine (MDMA) is a commonly abused illicit drug which affects multiple organ systems. In animals, high-dose administration of MDMA produces deficits in serotonin (5-HT) neurons (e.g., depletion of forebrain 5-HT) that have been viewed as neurotoxicity. Recent data implicate MDMA in the development of valvular heart disease (VHD). The present paper reviews several issues related to MDMA-associated neural and cardiac toxicities. The hypothesis of MDMA neurotoxicity in rats is evaluated in terms of the effects of MDMA on monoamine neurons, the use of scaling methods to extrapolate MDMA doses across species, and functional consequences of MDMA exposure. A potential treatment regimen (l-5-hydroxytryptophan plus carbidopa) for MDMA-associated neural deficits is discussed. The pathogenesis of MDMA-associated VHD is reviewed with specific reference to the role of valvular 5-HT2B receptors. We conclude that pharmacological effects of MDMA occur at the same doses in rats and humans. High doses of MDMA that produce 5-HT depletions in rats are associated with tolerance and impaired 5-HT release. Doses of MDMA that fail to deplete 5-HT in rats can cause persistent behavioral dysfunction, suggesting even moderate doses may pose risks. Finally, the MDMA metabolite, 3,4-methylenedioxyamphetamine (MDA), is a potent 5-HT2B agonist which could contribute to the increased risk of VHD observed in heavy MDMA users. PMID:19897081

  17. Pharyngeal and cervical cancer incidences significantly correlate with personal UV doses among whites in the United States.

    PubMed

    Godar, Dianne E; Tang, Rong; Merrill, Stephen J

    2014-09-01

    Because we found UV-exposed oral tissue cells have reduced DNA repair and apoptotic cell death compared with skin tissue cells, we asked if a correlation existed between personal UV dose and the incidences of oral and pharyngeal cancer in the United States. We analyzed the International Agency for Research on Cancer's incidence data for oral and pharyngeal cancers by race (white and black) and sex using each state's average annual personal UV dose. We refer to our data as 'white' rather than 'Caucasian,' which is a specific subgroup of whites, and 'black' rather than African-American because blacks from other countries around the world reside in the U.S. Most oropharyngeal carcinomas harboured human papilloma virus (HPV), so we included cervical cancer as a control for direct UV activation. We found significant correlations between increasing UV dose and pharyngeal cancer in white males (p=0.000808) and females (p=0.0031) but not in blacks. Shockingly, we also found cervical cancer in whites to significantly correlate with increasing UV dose (p=0.0154). Thus, because pharyngeal and cervical cancer correlate significantly with increasing personal UV dose in only the white population, both direct (DNA damage) and indirect (soluble factors) effects may increase the risk of HPV-associated cancer. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Six months exposure to a real life mixture of 13 chemicals' below individual NOAELs induced non monotonic sex-dependent biochemical and redox status changes in rats.

    PubMed

    Docea, Anca Oana; Gofita, Eliza; Goumenou, Marina; Calina, Daniela; Rogoveanu, Otilia; Varut, Marius; Olaru, Cristian; Kerasioti, Efthalia; Fountoucidou, Polyxeni; Taitzoglou, Ioannis; Zlatian, Ovidiu; Rakitskii, Valerii N; Hernandez, Antonio F; Kouretas, Dimitrios; Tsatsakis, Aristidis

    2018-05-01

    This study assessed the potential adverse health effects of long-term low-dose exposure to chemical mixtures simulating complex real-life human exposures. Four groups of Sprague Dawley rats were administered mixtures containing carbaryl, dimethoate, glyphosate, methomyl, methyl parathion, triadimefon, aspartame, sodium benzoate, calcium disodium ethylene diamine tetra-acetate, ethylparaben, butylparaben, bisphenol A, and acacia gum at doses of 0, 0.25, 1 or 5 times the respective Toxicological Reference Values (TRV): acceptable daily intake (ADI) or tolerable daily intake (TDI) in a 24 weeks toxicity study. Body weight gain, feed and water consumption were evaluated weekly. At 24 weeks blood was collected and biochemistry parameters and redox status markers were assessed. Adverse effects were observed on body weight gain and in hepatotoxic parameters such as the total bilirubin, alanine aminotransferase (ALT) and alkaline phosphatase (ALP), especially in low dose and affecting mainly male rats. The low dose group showed increased catalase activity both in females and males, whereas the high dose group exhibited decreased protein carbonyl and total antioxidant capacity (TAC) levels in both sex groups. Non-monotonic effects and adaptive responses on liver function tests and redox status, leading to non-linear dose-responses curves, are probably produced by modulation of different mechanisms. Copyright © 2018. Published by Elsevier Ltd.

  19. Comparison of oral bioavailability of benzo[a]pyrene in soils using rat and swine and the implications for human health risk assessment.

    PubMed

    Duan, Luchun; Naidu, Ravi; Liu, Yanju; Dong, Zhaomin; Mallavarapu, Megharaj; Herde, Paul; Kuchel, Tim; Semple, Kirk T

    2016-09-01

    There are many uncertainties concerning variations in benzo[a]pyrene (B[a]P) soil guidelines protecting human health based on carcinogenic data obtained in animal studies. Although swine is recognised as being much more representative of the human child in terms of body size, gut physiology and genetic profile the rat/mice model is commonly used in practice. We compare B[a]P bioavailability using a rat model to that estimated in a swine model, to investigate the correlation between these two animal models. This may help reduce uncertainty in applying bioavailability to human health risk assessment. Twelve spiked soil samples and a spiked silica sand (reference material) were dosed to rats in parallel with a swine study. B[a]P bioavailability was estimated by the area under the plasma B[a]P concentration-time curve (AUC) and faecal excretion as well in the rats. Direct comparison between the two animal models was made for: firstly, relative bioavailability (RB) using AUC assay; and secondly, the two assays in the rat model. Both AUC and faecal excretion assays showed linear dose-response for the reference material. However, absolute bioavailability was significantly higher when using faecal excretion assay (p<0.001). In aged soils faecal excretion estimated based on solvent extraction was not accurate due to the form of non-extractable fraction through ageing. A significant correlation existed between the two models using RB for soil samples (RBrat=0.26RBswine+17.3, R(2)=0.70, p<0.001), despite the regression slope coefficient revealing that the rat model would underestimate RB by about one quarter compared to using swine. In the comparison employed in this study, an interspecies difference of four in RB using AUC assay was identified between the rat and swine models regarding pharmacokinetic differences, which supported the body weight scaling method recommended by US EPA. Future research should focus on the carcinogenic competency (pharmacodynamics) used in experiment animals and humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. MONTE CARLO STUDY OF THE CARDIAC ABSORBED DOSE DURING X-RAY EXAMINATION OF AN ADULT PATIENT.

    PubMed

    Kadri, O; Manai, K; Alfuraih, A

    2016-12-01

    The computational voxel phantom 'High-Definition Reference Korean-Man (HDRK-Man)' was implemented into the Monte Carlo transport toolkit Geant4. The voxel model, adjusted to the Reference Korean Man, is 171 cm in height and 68 kg in weight and composed of ∼30 million voxels whose size is 1.981 × 1.981 × 2.0854 mm 3 The Geant4 code is then utilised to compute the dose conversion coefficients (DCCs) expressed in absorbed dose per air kerma free in air for >30 tissues and organs, including almost all organs required in the new recommendation of the ICRP 103, due to a broad parallel beam of monoenergetic photons impinging in antero-postero direction with energy ranging from 10 to 150 keV. The computed DCCs of different organs are found to be in good agreement with data published using other simulation codes. Also, the influence of patient size on DCC values was investigated for a representative body size of the adult Korean patient population. The study was performed using five different sizes covering the range of 0.8-1.2 magnification order of the original HDRK-Man. It focussed on the computation of DCC for the human heart. Moreover, the provided DCCs were used to present an analytical parameterisation for the calculation of the cardiac absorbed dose for any arbitrary X-ray spectrum and for those patient sizes. Thus, the present work can be considered as an enhancement of the continuous studies performed by medical physicist as part of quality control tests and radiation protection dosimetry. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. The thrombogenicity of C1 esterase inhibitor (human): review of the evidence.

    PubMed

    Crowther, Mark; Bauer, Kenneth A; Kaplan, Allen P

    2014-01-01

    Thromboembolic events associated with human plasma-derived C1 esterase inhibitor (C1-INH) use in patients with hereditary angioedema (HAE) have been reported in the U.S. Food and Drug Administration (FDA) Adverse Event Reporting System database. The purpose of this article is to review and assess the strength of available evidence regarding the thrombogenicity of human plasma-derived C1-INH. A PubMed search was conducted of English language articles from January 1990 to December 2013 reporting the thrombogenicity of C1-INH. Original research articles were selected if the following criteria were met: (1) C1-INH was the focus of the study and (2) the authors addressed the pro- or antithrombotic potential of C1-INH. Additional articles on the clinical use of C1-INH in disease states other than HAE were obtained using reference lists of selected articles. Pivotal studies and prescribing information for C1-INH products were also reviewed. Limited animal and clinical data suggest that C1-INH, particularly at high doses of up to 500 U/kg (compared with the U.S. FDA-approved 20-U/kg dose), may be prothrombotic. In contrast, C1-INH has been used in some patients with myocardial infarction, ischemic stroke, sepsis, and capillary leak syndrome at off-label supratherapeutic doses (up to 100 U/kg) without evidence of a thrombogenic effect. Based on our review, thromboembolic events reported with C1-INH use are rare and patients with HAE who experienced such events often have underlying thromboembolic risk factors.

  2. It's All Relative: A Validation of Radiation Quality Comparison Metrics

    NASA Technical Reports Server (NTRS)

    Chappell, L. J.; Milder, C. M.; Elgart, S. R.; Semones, E. J.

    2017-01-01

    Historically, the relative biological effectiveness (RBE) has been calculated to quantify the difference between heavy ion and gamma ray radiation. The RBE is then applied to gamma ray data to predict the effects of heavy ions in humans. The RBE is an iso-effect dose-to-dose ratio which, due to its counterintuitive nature, has been commonly miscalculated as an iso-dose effect-to-effect ratio. A paper recently published by Shuryak et al described this second measure intentionally for the first time in 2017, referring to it as the radiation effects ratio (RER). In this study, we utilized simulations to test the ability of both the RBE and the RER to predict known heavy ion effects. RBEs and RERs were calculated using mouse data from Chang et al, and the ability of the RBE and RER to predict the heavy ion data from which they were calculated was verified. Statistical transformations often utilized during data analysis were applied to the gamma and heavy ion data to determine whether RBE and RER are each uniquely defined measures. Scale changes are expected when translating effects from mice to humans and between human populations; gamma and heavy ion data were transformed to represent potential scale changes. The ability of the RBE and RER to predict the transformed heavy ion data from the transformed gamma data was then tested. The RBE but not the RER was uniquely defined after all statistical transformations. The RBE correctly predicted the scale-transformed heavy ion data, while the RER did not. This presentation describes potential implications for both metrics in light of these findings.

  3. Harderian Gland Tumorigenesis: Low-Dose and LET Response.

    PubMed

    Chang, Polly Y; Cucinotta, Francis A; Bjornstad, Kathleen A; Bakke, James; Rosen, Chris J; Du, Nicholas; Fairchild, David G; Cacao, Eliedonna; Blakely, Eleanor A

    2016-05-01

    Increased cancer risk remains a primary concern for travel into deep space and may preclude manned missions to Mars due to large uncertainties that currently exist in estimating cancer risk from the spectrum of radiations found in space with the very limited available human epidemiological radiation-induced cancer data. Existing data on human risk of cancer from X-ray and gamma-ray exposure must be scaled to the many types and fluences of radiations found in space using radiation quality factors and dose-rate modification factors, and assuming linearity of response since the shapes of the dose responses at low doses below 100 mSv are unknown. The goal of this work was to reduce uncertainties in the relative biological effect (RBE) and linear energy transfer (LET) relationship for space-relevant doses of charged-particle radiation-induced carcinogenesis. The historical data from the studies of Fry et al. and Alpen et al. for Harderian gland (HG) tumors in the female CB6F1 strain of mouse represent the most complete set of experimental observations, including dose dependence, available on a specific radiation-induced tumor in an experimental animal using heavy ion beams that are found in the cosmic radiation spectrum. However, these data lack complete information on low-dose responses below 0.1 Gy, and for chronic low-dose-rate exposures, and there are gaps in the LET region between 25 and 190 keV/μm. In this study, we used the historical HG tumorigenesis data as reference, and obtained HG tumor data for 260 MeV/u silicon (LET ∼70 keV/μm) and 1,000 MeV/u titanium (LET ∼100 keV/μm) to fill existing gaps of data in this LET range to improve our understanding of the dose-response curve at low doses, to test for deviations from linearity and to provide RBE estimates. Animals were also exposed to five daily fractions of 0.026 or 0.052 Gy of 1,000 MeV/u titanium ions to simulate chronic exposure, and HG tumorigenesis from this fractionated study were compared to the results from single 0.13 or 0.26 Gy acute titanium exposures. Theoretical modeling of the data show that a nontargeted effect model provides a better fit than the targeted effect model, providing important information at space-relevant doses of heavy ions.

  4. Harderian Gland Tumorigenesis: Low-Dose and LET Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Polly Y.; Cucinotta, Francis A.; Bjornstad, Kathleen A.

    Increased cancer risk remains a primary concern for travel into deep space and may preclude manned missions to Mars due to large uncertainties that currently exist in estimating cancer risk from the spectrum of radiations found in space with the very limited available human epidemiological radiation-induced cancer data. Existing data on human risk of cancer from X-ray and gamma-ray exposure must be scaled to the many types and fluences of radiations found in space using radiation quality factors and dose-rate modification factors, and assuming linearity of response since the shapes of the dose responses at low doses below 100 mSvmore » are unknown. The goal of this work was to reduce uncertainties in the relative biological effect (RBE) and linear energy transfer (LET) relationship for space-relevant doses of charged-particle radiation-induced carcinogenesis. The historical data from the studies of Fry et al. and Alpen et al. for Harderian gland (HG) tumors in the female CB6F1 strain of mouse represent the most complete set of experimental observations, including dose dependence, available on a specific radiation-induced tumor in an experimental animal using heavy ion beams that are found in the cosmic radiation spectrum. However, these data lack complete information on low-dose responses below 0.1 Gy, and for chronic low-dose-rate exposures, and there are gaps in the LET region between 25 and 190 keV/μm. In this study, we used the historical HG tumorigenesis data as reference, and obtained HG tumor data for 260 MeV/u silicon (LET ~70 keV/μm) and 1,000 MeV/u titanium (LET ~100 keV/μm) to fill existing gaps of data in this LET range to improve our understanding of the dose-response curve at low doses, to test for deviations from linearity and to provide RBE estimates. Animals were also exposed to five daily fractions of 0.026 or 0.052 Gy of 1,000 MeV/u titanium ions to simulate chronic exposure, and HG tumorigenesis from this fractionated study were compared to the results from single 0.13 or 0.26 Gy acute titanium exposures. Theoretical modeling of the data show that a nontargeted effect model provides a better fit than the targeted effect model, providing important information at space-relevant doses of heavy ions.« less

  5. Gastroprotective effect of the Mapuche crude drug Araucaria araucana resin and its main constituents.

    PubMed

    Schmeda-Hirschmann, Guillermo; Astudillo, Luis; Rodríguez, Jaime; Theoduloz, Cristina; Yáñez, Tania

    2005-10-03

    The resin from the tree Araucaria araucana (Araucariaceae) has been used since pre-columbian times by the Mapuche amerindians to treat ulcers. The gastroprotective effect of the resin was assessed in the ethanol-HCl-induced gastric ulcer in mice showing a dose-dependent gastroprotective activity at 100, 200 and 300 mg/kg per os. The main three diterpene constituents of the resin, namely imbricatolic acid, 15-hydroxyimbricatolal and 15-acetoxyimbricatolic acid were isolated and evaluated for gastroprotective effect at doses of 50, 100 and 200 mg/kg. A dose-related gastroprotective effect with highly significant activity (P<0.01) was observed at doses up to 200 mg/kg. At 100 mg/kg, the highest gastroprotective activity was provided by 15-hydroxyimbricatolal and 15-acetoxyimbricatolic acid, all of them being as active as the reference drug lansoprazole at 20 mg/kg. The cytotoxicity of the main diterpenes as well as lansoprazole was studied towards human lung fibroblasts (MRC-5) and determined by the MTT reduction assay. A concentration-dependent cell viability inhibition was found with IC50 values ranging from 125 up to 290 microM. Our results support the traditional use of the Araucaria araucana resin by the Mapuche culture.

  6. A CONCEPTUAL FRAMEWORK FOR MANAGING RADIATION DOSE TO PATIENTS IN DIAGNOSTIC RADIOLOGY USING REFERENCE DOSE LEVELS.

    PubMed

    Almén, Anja; Båth, Magnus

    2016-06-01

    The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. SU-F-T-428: An Optimization-Based Commissioning Tool for Finite Size Pencil Beam Dose Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; Tian, Z; Song, T

    Purpose: Finite size pencil beam (FSPB) algorithms are commonly used to pre-calculate the beamlet dose distribution for IMRT treatment planning. FSPB commissioning, which usually requires fine tuning of the FSPB kernel parameters, is crucial to the dose calculation accuracy and hence the plan quality. Yet due to the large number of beamlets, FSPB commissioning could be very tedious. This abstract reports an optimization-based FSPB commissioning tool we have developed in MatLab to facilitate the commissioning. Methods: A FSPB dose kernel generally contains two types of parameters: the profile parameters determining the dose kernel shape, and a 2D scaling factors accountingmore » for the longitudinal and off-axis corrections. The former were fitted using the penumbra of a reference broad beam’s dose profile with Levenberg-Marquardt algorithm. Since the dose distribution of a broad beam is simply a linear superposition of the dose kernel of each beamlet calculated with the fitted profile parameters and scaled using the scaling factors, these factors could be determined by solving an optimization problem which minimizes the discrepancies between the calculated dose of broad beams and the reference dose. Results: We have commissioned a FSPB algorithm for three linac photon beams (6MV, 15MV and 6MVFFF). Dose of four field sizes (6*6cm2, 10*10cm2, 15*15cm2 and 20*20cm2) were calculated and compared with the reference dose exported from Eclipse TPS system. For depth dose curves, the differences are less than 1% of maximum dose after maximum dose depth for most cases. For lateral dose profiles, the differences are less than 2% of central dose at inner-beam regions. The differences of the output factors are within 1% for all the three beams. Conclusion: We have developed an optimization-based commissioning tool for FSPB algorithms to facilitate the commissioning, providing sufficient accuracy of beamlet dose calculation for IMRT optimization.« less

  8. A feasibility study on the use of phantoms with statistical lung masses for determining the uncertainty in the dose absorbed by the lung from broad beams of incident photons and neutrons

    PubMed Central

    Khankook, Atiyeh Ebrahimi; Hakimabad, Hashem Miri

    2017-01-01

    Abstract Computational models of the human body have gradually become crucial in the evaluation of doses absorbed by organs. However, individuals may differ considerably in terms of organ size and shape. In this study, the authors sought to determine the energy-dependent standard deviations due to lung size of the dose absorbed by the lung during external photon and neutron beam exposures. One hundred lungs with different masses were prepared and located in an adult male International Commission on Radiological Protection (ICRP) reference phantom. Calculations were performed using the Monte Carlo N-particle code version 5 (MCNP5). Variation in the lung mass caused great uncertainty: ~90% for low-energy broad parallel photon beams. However, for high-energy photons, the lung-absorbed dose dependency on the anatomical variation was reduced to <1%. In addition, the results obtained indicated that the discrepancy in the lung-absorbed dose varied from 0.6% to 8% for neutron beam exposure. Consequently, the relationship between absorbed dose and organ volume was found to be significant for low-energy photon sources, whereas for higher energy photon sources the organ-absorbed dose was independent of the organ volume. In the case of neutron beam exposure, the maximum discrepancy (of 8%) occurred in the energy range between 0.1 and 5 MeV. PMID:28077627

  9. SU-F-J-99: Dose Accumulation and Evaluation in Lung SBRT Among All Phases of Respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azcona, JD; Barbes, B; Aristu, J

    Purpose: To calculate the total planning dose on lung tumors (GTV) by accumulating the dose received in all respiration phases. Methods: A patient 4D planning CT (phase-binned, from a Siemens Somatom CT) was used to locate the GTV of a lung tumor in all respiratory phases with Pinnacle (v9.10). GTV contours defined in all phases were projected to the reference phase, where the ITV was defined. Centroids were calculated for all the GTV projections. No deformation or rotation was taken into account. The only GTV contour as defined in the reference phase was voxelized to track each voxel individually. Wemore » accumulated the absorbed dose in different phases on each voxel. A 3DCRT and a VMAT plan were designed on the reference phase fulfilling the ITV dosimetric requirements, using the 10MV FFF photon model from an Elekta Versa linac. ITV-to-PTV margins were set to 5mm. In-house developed MATLAB code was used for tumor voxeling and dose accumulation, assuming that the dose distribution planned in the reference phase behaved as a “dose-cloud” during patient breathing. Results: We tested the method on a patient 4DCT set of images exhibiting limited tumor motion (<5mm). For the 3DCRT plan, D95 was calculated for the GTV with motion and for the ITV, showing an agreement of 0.04%. For the VMAT plan, we calculated the D95 for every phase as if the GTV in that phase had received the whole treatment. Differences in D95 for all phases are within 1%, and estimate the potential interplay effect during delivery. Conclusion: A method for dose accumulation and assessment was developed that can compare GTV motion with ITV dosage, and estimate the potential interplay effect for VMAT plans. Work in progress includes the incorporation of deformable image registration and 4D CBCT dose calculation for dose reconstruction and assessment during treatment.« less

  10. SU-G-TeP3-02: Determination of Geometry-Specific Backscatter Factors for Radiobiology Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viscariello, N; Culberson, W; Lawless, M

    2016-06-15

    Purpose: Radiation biology research relies on an accurate radiation dose delivered to the biological target. Large field irradiations in a cabinet irradiator may use the AAPM TG-61 protocol. This relies on an air-kerma measurement and conversion to absorbed dose to water (Dw) on the surface of a water phantom using provided backscatter factors. Cell or small animal studies differ significantly from this reference geometry. This study aims to determine the impact of the lack of full scatter conditions in four representative geometries that may be used in radiobiology studies. Methods: MCNP6 was used to model the Dw on the surfacemore » of a full scatter phantom in a validated orthovoltage x-ray reference beam. Dw in a cylindrical mouse, 100 mm Petri dish, 6-well and 96-well cell culture dishes was simulated and compared to this full scatter geometry. A reference dose rate was measured using the TG-61 protocol in a cabinet irradiator. This nominal dose rate was used to irradiate TLDs in each phantom to a given dose. Doses were obtained based on TLDs calibrated in a NIST-traceable beam. Results: Compared to the full scattering conditions, the simulated dose to water in the representative geometries were found to be underestimated by 12-26%. The discrepancy was smallest with the cylindrical mouse geometry, which most closely approximates adequate lateral- and backscatter. TLDs irradiated in the mouse and petri dish phantoms using the TG-61 determined dose rate showed similarly lower values of Dw. When corrected for this discrepancy, they agreed with the predicted Dw within 5%. Conclusion: Using the TG-61 in-air protocol and given backscatter factors to determine a reference dose rate in a biological irradiator may not be appropriate given the difference in scattering conditions between irradiation and calibration. Without accounting for this, the dose rate is overestimated and is dependent on irradiation geometry.« less

  11. Use of short-term toxicity data for prediction of long-term health effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, W.R.; Ohanian, E.V.

    1988-01-01

    Under the Safe Drinking Water Act Amendments of 1986, the US Environmental Protection Agency determines Maximum Contaminant Level Goals (MCLGs) and enforceable Maximum Contaminant Levels (MCLs) or provides lifetime health advisories (HAs) in the absence of regulatory standards. The critical value for calculation of the lifetime level is the reference dose (RfD). The RfD is an estimate of a lifetime dose which is likely to be without significant risk to human populations. The RfD is determined by dividing the no-observed-adverse-effect level (NOAEL) or the lowest-observed-adverse-effect level (LOAEL) by an uncertainty factor (UF). The NOAEL or LOAEL is determined from toxicologicalmore » or epidemiological studies. For many chemicals, human toxicological or epidemiological data are not available. Chronic mammalian studies are sometimes unavailable. Faced with the need for providing guidance for the increasing number of chemicals threatening our drinking water sources, this paper considers the possibility of providing provisional RfDs using data from toxicological studies of less than ninety days duration. The current UF approach is reviewed along with some proposed mathematical models for extrapolation of NOAELs from dose-response data. The current UF approach to developing the RfD is protective and conservative. More research is needed on the relationship of short- and long-term toxicity data to improve our current approach.« less

  12. Identification of two main urinary metabolites of (/sup 14/C)omeprazole in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renberg, L.; Simonsson, R.; Hoffmann, K.J.

    1989-01-01

    The excretion and metabolism of (/sup 14/C)omeprazole given orally as a suspension was studied in 10 healthy male subjects. An average of 79% of the dose was recovered in the urine in 96 hr, with most of the radioactivity (76% of dose) being eliminated in the first 24 hr. Pooled urine (0-2 hr) from five subjects, containing about 47% of the dose, was analyzed by reverse phase gradient elution LC with radioisotope detection. Omeprazole was completely metabolized to at least six metabolites. The two major metabolites were extensively purified by LC and their structures were determined by MS with derivatizationmore » and use of stable isotopes, 1H NMR, and comparison with synthetic references. They were formed by hydroxylation of a methyl group in the pyridine ring, followed by further oxidation of the alcohol to the corresponding carboxylic acid. Both metabolites retained the sulfoxide group of omeprazole, rendering them as unstable as the parent compound at pH less than 7. They accounted for approximately 28% (hydroxyomeprazole) and 23% (omeprazole acid) of the amount excreted in the 0-2-hr collection interval. Based on in vitro studies with the synthetic metabolites in isolated gastric glands, it is unlikely that M1 and M2 will contribute to the pharmacological effect of omeprazole in humans.« less

  13. Signal-to-noise ratio and dose to the lens of the eye for computed tomography examination of the brain using an automatic tube current modulation system.

    PubMed

    Sookpeng, Supawitoo; Butdee, Chitsanupong

    2017-06-01

    The study aimed to evaluate the image quality in terms of signal-to-noise ratio (SNR) and dose to the lens of the eye and the other nearby organs from the CT brain scan using an automatic tube current modulation (ATCM) system with or without CT gantry tilt is needed. An anthropomorphic phantom was scanned with different settings including use of different ATCM, fixed tube current time product (mAs) settings and degree angles of gantry tilt. Gafchromic film XR-QA2 was used to measure absorbed dose of the organs. Relative doses and SNR for the various scan settings were compared with the reference setting of the fixed 330 mAs. Average absorbed dose for the lens of the eyes varied from 8.7 to 21.7 mGy. The use of the ATCM system with the gantry tilt resulted in up to 60% decrease in the dose to the lens of the eye. SNR significantly decreased while tilting the gantry using the fixed mAs techniques, compared to that of the reference setting. However, there were no statistical significant differences for SNRs between the reference setting and all ATCM settings. Compared to the reference setting of the fixed effective mAs, using the ATCM system and appropriate tilting, the gantry resulted in a substantial decrease in the dose to the lens of the eye while preserving signal-to-noise ratio. CT brain examination should be carefully controlled to optimize dose for lens of the eye and image quality of the examination.

  14. Dose estimation for astronauts using dose conversion coefficients calculated with the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Sihver, Lembit; Niita, Koji

    2011-03-01

    Absorbed-dose and dose-equivalent rates for astronauts were estimated by multiplying fluence-to-dose conversion coefficients in the units of Gy.cm(2) and Sv.cm(2), respectively, and cosmic-ray fluxes around spacecrafts in the unit of cm(-2) s(-1). The dose conversion coefficients employed in the calculation were evaluated using the general-purpose particle and heavy ion transport code system PHITS coupled to the male and female adult reference computational phantoms, which were released as a common ICRP/ICRU publication. The cosmic-ray fluxes inside and near to spacecrafts were also calculated by PHITS, using simplified geometries. The accuracy of the obtained absorbed-dose and dose-equivalent rates was verified by various experimental data measured both inside and outside spacecrafts. The calculations quantitatively show that the effective doses for astronauts are significantly greater than their corresponding effective dose equivalents, because of the numerical incompatibility between the radiation quality factors and the radiation weighting factors. These results demonstrate the usefulness of dose conversion coefficients in space dosimetry. © Springer-Verlag 2010

  15. Hybrid computational phantoms of the 15-year male and female adolescent: Applications to CT organ dosimetry for patients of variable morphometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Choonsik; Lodwick, Daniel; Williams, Jonathan L.

    Currently, two classes of the computational phantoms have been developed for dosimetry calculation: (1) stylized (or mathematical) and (2) voxel (or tomographic) phantoms describing human anatomy through mathematical surface equations and three-dimensional labeled voxel matrices, respectively. Mathematical surface equations in stylized phantoms provide flexibility in phantom design and alteration, but the resulting anatomical description is, in many cases, not very realistic. Voxel phantoms display far better anatomical realism, but they are limited in terms of their ability to alter organ shape, position, and depth, as well as body posture. A new class of computational phantoms - called hybrid phantoms -more » takes advantage of the best features of stylized and voxel phantoms - flexibility and anatomical realism, respectively. In the current study, hybrid computational phantoms representing reference 15-year male and female body anatomy and anthropometry are presented. For the male phantom, organ contours were extracted from the University of Florida (UF) 14-year series B male voxel phantom, while for the female phantom, original computed tomography (CT) data from two 14-year female patients were used. Polygon mesh models for the major organs and tissues were reconstructed for nonuniform rational B-spline (NURBS) surface modeling. The resulting NURBS/polygon mesh models representing body contour and internal anatomy were matched to anthropometric data and reference organ mass data provided by the Centers for Disease Control and Prevention (CDC) and the International Commission on Radiation Protection (ICRP), respectively. Finally, two hybrid 15-year male and female phantoms were completed where a total of eight anthropometric data categories were matched to standard values within 4% and organ masses matched to ICRP data within 1% with the exception of total skin. To highlight the flexibility of the hybrid phantoms, 10th and 90th weight percentile 15-year male and female phantoms were further developed from the 50th percentile phantoms through adjustments in the body contour to match the total body masses given in CDC pediatric growth curves. The resulting six NURBS phantoms, male and female phantoms representing their 10th, 50th, and 90th weight percentiles, were used to investigate the influence of body fat distributions on internal organ doses following CT imaging. The phantoms were exposed to multislice chest and abdomen helical CT scans, and in-field organ absorbed doses were calculated. The results demonstrated that the use of traditional stylized phantoms yielded organ dose estimates that deviate from those given by the UF reference hybrid phantoms by up to a factor of 2. The study also showed that use of reference, or 50th percentile, phantoms to assess organ doses in underweight 15-year-old children would not lead to significant organ dose errors (typically less than 10%). However, more significant errors were noted (up to {approx}30%) when reference phantoms are used to represent overweight children in CT imaging dosimetry. These errors are expected to only further increase as one considers CT organ doses in overweight and obese individuals of the adult patient population, thus emphasizing the advantages of patient-sculptable phantom technology.« less

  16. Air kerma and absorbed dose standards for reference dosimetry in brachytherapy

    PubMed Central

    2014-01-01

    This article reviews recent developments in primary standards for the calibration of brachytherapy sources, with an emphasis on the currently most common photon-emitting radionuclides. The introduction discusses the need for reference dosimetry in brachytherapy in general. The following section focuses on the three main quantities, i.e. reference air kerma rate, air kerma strength and absorbed dose rate to water, which are currently used for the specification of brachytherapy photon sources and which can be realized with primary standards from first principles. An overview of different air kerma and absorbed dose standards, which have been independently developed by various national metrology institutes over the past two decades, is given in the next two sections. Other dosimetry techniques for brachytherapy will also be discussed. The review closes with an outlook on a possible transition from air kerma to absorbed dose to water-based calibrations for brachytherapy sources in the future. PMID:24814696

  17. Imaging the Parasinus Region with a Third-Generation Dual-Source CT and the Effect of Tin Filtration on Image Quality and Radiation Dose.

    PubMed

    Lell, M M; May, M S; Brand, M; Eller, A; Buder, T; Hofmann, E; Uder, M; Wuest, W

    2015-07-01

    CT is the imaging technique of choice in the evaluation of midface trauma or inflammatory disease. We performed a systematic evaluation of scan protocols to optimize image quality and radiation exposure on third-generation dual-source CT. CT protocols with different tube voltage (70-150 kV), current (25-300 reference mAs), prefiltration, pitch value, and rotation time were systematically evaluated. All images were reconstructed with iterative reconstruction (Advanced Modeled Iterative Reconstruction, level 2). To individually compare results with otherwise identical factors, we obtained all scans on a frozen human head. Conebeam CT was performed for image quality and dose comparison with multidetector row CT. Delineation of important anatomic structures and incidental pathologic conditions in the cadaver head was evaluated. One hundred kilovolts with tin prefiltration demonstrated the best compromise between dose and image quality. The most dose-effective combination for trauma imaging was Sn100 kV/250 mAs (volume CT dose index, 2.02 mGy), and for preoperative sinus surgery planning, Sn100 kV/150 mAs (volume CT dose index, 1.22 mGy). "Sn" indicates an additional prefiltration of the x-ray beam with a tin filter to constrict the energy spectrum. Exclusion of sinonasal disease was possible with even a lower dose by using Sn100 kV/25 mAs (volume CT dose index, 0.2 mGy). High image quality at very low dose levels can be achieved by using a Sn100-kV protocol with iterative reconstruction. The effective dose is comparable with that of conventional radiography, and the high image quality at even lower radiation exposure favors multidetector row CT over conebeam CT. © 2015 by American Journal of Neuroradiology.

  18. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems

    PubMed Central

    Fernandes Azevedo, Bruna; Barros Furieri, Lorena; Peçanha, Franck Maciel; Wiggers, Giulia Alessandra; Frizera Vassallo, Paula; Ronacher Simões, Maylla; Fiorim, Jonaina; Rossi de Batista, Priscila; Fioresi, Mirian; Rossoni, Luciana; Stefanon, Ivanita; Alonso, María Jesus; Salaices, Mercedes; Valentim Vassallo, Dalton

    2012-01-01

    Environmental contamination has exposed humans to various metal agents, including mercury. This exposure is more common than expected, and the health consequences of such exposure remain unclear. For many years, mercury was used in a wide variety of human activities, and now, exposure to this metal from both natural and artificial sources is significantly increasing. Many studies show that high exposure to mercury induces changes in the central nervous system, potentially resulting in irritability, fatigue, behavioral changes, tremors, headaches, hearing and cognitive loss, dysarthria, incoordination, hallucinations, and death. In the cardiovascular system, mercury induces hypertension in humans and animals that has wide-ranging consequences, including alterations in endothelial function. The results described in this paper indicate that mercury exposure, even at low doses, affects endothelial and cardiovascular function. As a result, the reference values defining the limits for the absence of danger should be reduced. PMID:22811600

  19. Human Microdosing with Carcinogenic Polycyclic Aromatic Hydrocarbons: In Vivo Pharmacokinetics of Dibenzo[ def,p ]chrysene and Metabolites by UPLC Accelerator Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madeen, Erin P.; Ognibene, Ted J.; Corley, Richard A.

    Metabolism is a key health risk factor following exposures to pro-carcinogenic polycyclic aromatic hydrocarbons (PAHs) such as dibenzo[def,p]chrysene (DBC), an IARC classified 2A probable human carcinogen. Human exposure to PAHs occurs primarily from the diet in non-smokers. However, little data is available on the metabolism and pharmacokinetics in humans of high molecular weight PAHs (≥4 aromatic rings), including DBC. We previously determined the pharmacokinetics of DBC in human volunteers orally administered a micro-dose (29 ng; 5 nCi) of [14C]-DBC by accelerator mass spectrometry (AMS) analysis of total [14C] in plasma and urine. In the current study, we utilized a novelmore » “moving wire” interface between ultra-performance liquid chromatography (UPLC) and AMS to detect and quantify parent DBC and its major metabolites. The major [14C] product identified in plasma was unmetabolized [14C]-DBC itself, (Cmax= 18.5 ± 15.9 fg/mL, Tmax= 2.1 ± 1.0 h), whereas the major metabolite was identified as [14C]-(+/-)-DBC-11,12-diol (Cmax= 2.5 ± 1.3 fg/mL, Tmax= 1.8 h). Several minor species of [14C]-DBC metabolites were also detected for which no reference standards were available. Free and conjugated metabolites were detected in urine with [14C]-(+/-)-DBC-11,12,13,14-tetraol isomers identified as the major metabolites, 56.3% of which were conjugated (Cmax= 35.8 ± 23.0 pg/pool, Tmax= 6-12 h pool). [14C]-DBC-11,12-diol, of which 97.5% was conjugated, was also identified in urine (Cmax= 29.4 ± 11.6 pg/pool, Tmax= 6-12 h pool). Parent [14C]-DBC was not detected in urine. This is the first dataset to assess metabolite profiles and associated pharmacokinetics of a carcinogenic PAH in human volunteers at an environmentally relevant dose, providing the data necessary for translation of high dose animal models to humans for translation of environmental health risk assessment.« less

  20. Prediction of human observer performance in a 2-alternative forced choice low-contrast detection task using channelized Hotelling observer: Impact of radiation dose and reconstruction algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Lifeng; Leng Shuai; Chen Lingyun

    2013-04-15

    Purpose: Efficient optimization of CT protocols demands a quantitative approach to predicting human observer performance on specific tasks at various scan and reconstruction settings. The goal of this work was to investigate how well a channelized Hotelling observer (CHO) can predict human observer performance on 2-alternative forced choice (2AFC) lesion-detection tasks at various dose levels and two different reconstruction algorithms: a filtered-backprojection (FBP) and an iterative reconstruction (IR) method. Methods: A 35 Multiplication-Sign 26 cm{sup 2} torso-shaped phantom filled with water was used to simulate an average-sized patient. Three rods with different diameters (small: 3 mm; medium: 5 mm; large:more » 9 mm) were placed in the center region of the phantom to simulate small, medium, and large lesions. The contrast relative to background was -15 HU at 120 kV. The phantom was scanned 100 times using automatic exposure control each at 60, 120, 240, 360, and 480 quality reference mAs on a 128-slice scanner. After removing the three rods, the water phantom was again scanned 100 times to provide signal-absent background images at the exact same locations. By extracting regions of interest around the three rods and on the signal-absent images, the authors generated 21 2AFC studies. Each 2AFC study had 100 trials, with each trial consisting of a signal-present image and a signal-absent image side-by-side in randomized order. In total, 2100 trials were presented to both the model and human observers. Four medical physicists acted as human observers. For the model observer, the authors used a CHO with Gabor channels, which involves six channel passbands, five orientations, and two phases, leading to a total of 60 channels. The performance predicted by the CHO was compared with that obtained by four medical physicists at each 2AFC study. Results: The human and model observers were highly correlated at each dose level for each lesion size for both FBP and IR. The Pearson's product-moment correlation coefficients were 0.986 [95% confidence interval (CI): 0.958-0.996] for FBP and 0.985 (95% CI: 0.863-0.998) for IR. Bland-Altman plots showed excellent agreement for all dose levels and lesions sizes with a mean absolute difference of 1.0%{+-} 1.1% for FBP and 2.1%{+-} 3.3% for IR. Conclusions: Human observer performance on a 2AFC lesion detection task in CT with a uniform background can be accurately predicted by a CHO model observer at different radiation dose levels and for both FBP and IR methods.« less

  1. MATSIM: Development of a Voxel Model of the MATROSHKA Astronaut Dosimetric Phantom

    NASA Astrophysics Data System (ADS)

    Beck, Peter; Zechner, Andrea; Rollet, Sofia; Berger, Thomas; Bergmann, Robert; Hajek, Michael; Hranitzky, Christian; Latocha, Marcin; Reitz, Günther; Stadtmann, Hannes; Vana, Norbert; Wind, Michael

    2011-08-01

    The AIT Austrian Institute of Technology coordinates the project MATSIM (MATROSHKA Simulation) in collaboration with the Vienna University of Technology and the German Aerospace Center, to perform FLUKA Monte Carlo simulations of the MATROSHKA numerical phantom irradiated under reference radiation field conditions as well as for the radiation environment at the International Space Station (ISS). MATSIM is carried out as co-investigation of the ESA ELIPS projects SORD and RADIS (commonly known as MATROSHKA), an international collaboration of more than 18 research institutes and space agencies from all over the world, under the science and project lead of the German Aerospace Center. During MATSIM a computer tomography scan of the MATROSHKA phantom has been converted into a high resolution 3-dimensional voxel model. The energy imparted and absorbed dose distribution inside the model is determined for various radiation fields. The major goal of the MATSIM project is the validation of the numerical model under reference radiation conditions and further investigations under the radiation environment at ISS. In this report we compare depth dose distributions inside the phantom measured with thermoluminescence detectors (TLDs) and an ionization chamber with FLUKA Monte Carlo particle transport simulations due to 60Co photon exposure. Further reference irradiations with neutrons, protons and heavy ions are planned. The fully validated numerical model MATSIM will provide a perfect tool to assess the radiation exposure to humans during current and future space missions to ISS, Moon, Mars and beyond.

  2. A Signal-to-Noise Crossover Dose as the Point of Departure for Health Risk Assessment

    PubMed Central

    Portier, Christopher J.; Krewski, Daniel

    2011-01-01

    Background: The U.S. National Toxicology Program (NTP) cancer bioassay database provides an opportunity to compare both existing and new approaches to determining points of departure (PoDs) for establishing reference doses (RfDs). Objectives: The aims of this study were a) to investigate the risk associated with the traditional PoD used in human health risk assessment [the no observed adverse effect level (NOAEL)]; b) to present a new approach based on the signal-to-noise crossover dose (SNCD); and c) to compare the SNCD and SNCD-based RfD with PoDs and RfDs based on the NOAEL and benchmark dose (BMD) approaches. Methods: The complete NTP database was used as the basis for these analyses, which were performed using the Hill model. We determined NOAELs and estimated corresponding extra risks. Lower 95% confidence bounds on the BMD (BMDLs) corresponding to extra risks of 1%, 5%, and 10% (BMDL01, BMDL05, and BMDL10, respectively) were also estimated. We introduce the SNCD as a new PoD, defined as the dose where the additional risk is equal to the “background noise” (the difference between the upper and lower bounds of the two-sided 90% confidence interval on absolute risk) or a specified fraction thereof. Results: The median risk at the NOAEL was approximately 10%, and the default uncertainty factor (UF = 100) was considered most applicable to the BMDL10. Therefore, we chose a target risk of 1/1,000 (0.1/100) to derive an SNCD-based RfD by linear extrapolation. At the median, this approach provided the same RfD as the BMDL10 divided by the default UF. Conclusions: Under a standard BMD approach, the BMDL10 is considered to be the most appropriate PoD. The SNCD approach, which is based on the lowest dose at which the signal can be reliably detected, warrants further development as a PoD for human health risk assessment. PMID:21813365

  3. The impact of anthropometric patient-phantom matching on organ dose: A hybrid phantom study for fluoroscopy guided interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Perry B.; Geyer, Amy; Borrego, David

    Purpose: To investigate the benefits and limitations of patient-phantom matching for determining organ dose during fluoroscopy guided interventions. Methods: In this study, 27 CT datasets representing patients of different sizes and genders were contoured and converted into patient-specific computational models. Each model was matched, based on height and weight, to computational phantoms selected from the UF hybrid patient-dependent series. In order to investigate the influence of phantom type on patient organ dose, Monte Carlo methods were used to simulate two cardiac projections (PA/left lateral) and two abdominal projections (RAO/LPO). Organ dose conversion coefficients were then calculated for each patient-specific andmore » patient-dependent phantom and also for a reference stylized and reference hybrid phantom. The coefficients were subsequently analyzed for any correlation between patient-specificity and the accuracy of the dose estimate. Accuracy was quantified by calculating an absolute percent difference using the patient-specific dose conversion coefficients as the reference. Results: Patient-phantom matching was shown most beneficial for estimating the dose to heavy patients. In these cases, the improvement over using a reference stylized phantom ranged from approximately 50% to 120% for abdominal projections and for a reference hybrid phantom from 20% to 60% for all projections. For lighter individuals, patient-phantom matching was clearly superior to using a reference stylized phantom, but not significantly better than using a reference hybrid phantom for certain fields and projections. Conclusions: The results indicate two sources of error when patients are matched with phantoms: Anatomical error, which is inherent due to differences in organ size and location, and error attributed to differences in the total soft tissue attenuation. For small patients, differences in soft tissue attenuation are minimal and are exceeded by inherent anatomical differences. For large patients, difference in soft tissue attenuation can be large. In these cases, patient-phantom matching proves most effective as differences in soft tissue attenuation are mitigated. With increasing obesity rates, overweight patients will continue to make up a growing fraction of all patients undergoing medical imaging. Thus, having phantoms that better represent this population represents a considerable improvement over previous methods. In response to this study, additional phantoms representing heavier weight percentiles will be added to the UFHADM and UFHADF patient-dependent series.« less

  4. Monoamine transporter and receptor interaction profiles in vitro predict reported human doses of novel psychoactive stimulants and psychedelics.

    PubMed

    Luethi, Dino; Liechti, Matthias E

    2018-05-29

    Pharmacological profiles of new psychoactive substances (NPSs) can be established rapidly in vitro and provide information on potential psychoactive effects in humans. The present study investigated whether specific in vitro monoamine transporter and receptor interactions can predict effective psychoactive doses in humans. We correlated previously assessed in vitro data of stimulants and psychedelics with human doses that are reported on the Internet and in books. For stimulants, dopamine and norepinephrine transporter inhibition potency was positively correlated with human doses, whereas serotonin transporter inhibition potency was inversely correlated with human doses. Serotonin 5-hydroxytryptamine-2A (5-HT2A) and 5-HT2C receptor affinity was significantly correlated with psychedelic doses, but 5-HT1A receptor affinity and 5-HT2A and 5-HT2B receptor activation potency were not. The rapid assessment of in vitro pharmacological profiles of NPSs can help to predict psychoactive doses and effects in humans and facilitate the appropriate scheduling of NPSs.

  5. Bioequivalence of generic alendronate sodium tablets (70 mg) to Fosamax® tablets (70 mg) in fasting, healthy volunteers: a randomized, open-label, three-way, reference-replicated crossover study

    PubMed Central

    Zhang, Yifan; Chen, Xiaoyan; Tang, Yunbiao; Lu, Youming; Guo, Lixia; Zhong, Dafang

    2017-01-01

    Purpose The aim of this study was to evaluate the bioequivalence of a generic product 70 mg alendronate sodium tablets with the reference product Fosamax® 70 mg tablet. Materials and methods A single-center, open-label, randomized, three-period, three-sequence, reference-replicated crossover study was performed in 36 healthy Chinese male volunteers under fasting conditions. In each study period, the volunteers received a single oral dose of the generic or reference product (70 mg). Blood samples were collected at pre-dose and up to 8 h after administration. The bioequivalence of the generic product to the reference product was assessed using the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) reference-scaled average bioequivalence (RSABE) methods. Results The average maximum concentrations (Cmax) of alendronic acid were 64.78±43.76, 56.62±31.95, and 60.15±37.12 ng/mL after the single dose of the generic product and the first and second doses of the reference product, respectively. The areas under the plasma concentration–time curves from time 0 to the last timepoint (AUC0–t) were 150.36±82.90, 148.15±85.97, and 167.11±110.87 h⋅ng/mL, respectively. Reference scaling was used because the within-subject standard deviations of the reference product (sWR) for Cmax and AUC0–t were all higher than the cutoff value of 0.294. The 95% upper confidence bounds were −0.16 and −0.17 for Cmax and AUC0–t, respectively, and the point estimates for the generic/reference product ratio were 1.08 and 1.00, which satisfied the RSABE acceptance criteria of the FDA. The 90% CIs for Cmax and AUC0–t were 90.35%–129.04% and 85.31%–117.15%, respectively, which were within the limits of the EMA for the bioequivalence of 69.84%–143.19% and 80.00%–125.00%. Conclusion The generic product was bioequivalent to the reference product in terms of the rate and extent of alendronate absorption after a single 70 mg oral dose under fasting conditions. PMID:28744102

  6. Definitions and outlook targeting x-ray exposure of patients in diagnostic imaging

    NASA Astrophysics Data System (ADS)

    Regulla, Dieter F.

    2011-03-01

    Computer tomography (CT) is vital and currently irreplaceable in diagnostic radiology. But CT operates with ionizing radiation which may cause cancer or non-cancer diseases in humans. The degree of radiation impact depends on the dose administered by an investigation. And this is the core issue: Even CT exams executed lege artis, administer doses to patients which by magnitude are far beyond the level of hitherto known doses of conventional film-screen techniques. Patients undergoing one or multiple CT examinations, digital angiographies or interventions will be exposed to effective doses between roughly several mSv and several 100 mSv depending on type and frequency of the diagnostic investigations. From the radiation protection point of view, there is therefore the worldwide problem of formulating firm rules for the control of these high-dose investigations, as dose limits can not be established for reasons of the medical benefit. This makes the difference compared with radiation protection for occupationally exposed persons. What remains is "software", namely "justification" and "optimization". Justification requires balancing the interests between the health benefit and the potential harm of an exam which has to be responsibly executed by the physician himself; therefore the radiologists' associations are in the duty to prepare practicable rules for justification. Optimization again needs a cooperative solution, and that is the establishment of reference doses for diagnostic examinations, to be checked by the technical service of the producers' companies. Experts and authorities have been aware of the high-dose dilemma in diagnostic imaging since long. It is time for the reflection of active solutions and their implementation into practice.

  7. Toxicological importance of human biomonitoring of metallic and metalloid elements in different biological samples.

    PubMed

    Gil, F; Hernández, A F

    2015-06-01

    Human biomonitoring has become an important tool for the assessment of internal doses of metallic and metalloid elements. These elements are of great significance because of their toxic properties and wide distribution in environmental compartments. Although blood and urine are the most used and accepted matrices for human biomonitoring, other non-conventional samples (saliva, placenta, meconium, hair, nails, teeth, breast milk) may have practical advantages and would provide additional information on health risk. Nevertheless, the analysis of these compounds in biological matrices other than blood and urine has not yet been accepted as a useful tool for biomonitoring. The validation of analytical procedures is absolutely necessary for a proper implementation of non-conventional samples in biomonitoring programs. However, the lack of reliable and useful analytical methodologies to assess exposure to metallic elements, and the potential interference of external contamination and variation in biological features of non-conventional samples are important limitations for setting health-based reference values. The influence of potential confounding factors on metallic concentration should always be considered. More research is needed to ascertain whether or not non-conventional matrices offer definitive advantages over the traditional samples and to broaden the available database for establishing worldwide accepted reference values in non-exposed populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Dosimetric evaluation of high-dose-rate interstitial brachytherapy boost treatments for localized prostate cancer.

    PubMed

    Fröhlich, Georgina; Agoston, Péter; Lövey, József; Somogyi, András; Fodor, János; Polgár, Csaba; Major, Tibor

    2010-07-01

    To quantitatively evaluate the dose distributions of high-dose-rate (HDR) prostate implants regarding target coverage, dose homogeneity, and dose to organs at risk. Treatment plans of 174 implants were evaluated using cumulative dose-volume histograms (DVHs). The planning was based on transrectal ultrasound (US) imaging, and the prescribed dose (100%) was 10 Gy. The tolerance doses to rectum and urethra were 80% and 120%, respectively. Dose-volume parameters for target (V90, V100, V150, V200, D90, D(min)) and quality indices (DNR [dose nonuniformity ratio], DHI [dose homogeneity index], CI [coverage index], COIN [conformal index]) were calculated. Maximum dose in reference points of rectum (D(r)) and urethra (D(u)), dose to volume of 2 cm(3) of the rectum (D(2ccm)), and 0.1 cm(3) and 1% of the urethra (D(0.1ccm) and D1) were determined. Nonparametric correlation analysis was performed between these parameters. The median number of needles was 16, the mean prostate volume (V(p)) was 27.1 cm(3). The mean V90, V100, V150, and V200 were 99%, 97%, 39%, and 13%, respectively. The mean D90 was 109%, and the D(min) was 87%. The mean doses in rectum and urethra reference points were 75% and 119%, respectively. The mean volumetric doses were D(2ccm) = 49% for the rectum, D(0.1ccm) = 126%, and D1 = 140% for the urethra. The mean DNR was 0.37, while the DHI was 0.60. The mean COIN was 0.66. The Spearman rank order correlation coefficients for volume doses to rectum and urethra were R(D(r),D(2ccm)) = 0.69, R(D(u),D0.(1ccm)) = 0.64, R(D(u),D1) = 0.23. US-based treatment plans for HDR prostate implants based on the real positions of catheters provided acceptable dose distributions. In the majority of the cases, the doses to urethra and rectum were kept below the defined tolerance levels. For rectum, the dose in reference points correlated well with dose-volume parameters. For urethra dose characterization, the use of D1 volumetric parameter is recommended.

  9. Commissioning and comprehensive evaluation of the ArcCHECK cylindrical diode array for VMAT pretreatment delivery QA.

    PubMed

    Chaswal, Vibha; Weldon, Michael; Gupta, Nilendu; Chakravarti, Arnab; Rong, Yi

    2014-07-08

    We present commissioning and comprehensive evaluation for ArcCHECK as a QA equipment for volumetric-modulated arc therapy (VMAT), using the 6 MV photon beam with and without the flattening filter, and the SNC patient software (version 6.2). In addition to commissioning involving absolute dose calibration, array calibration, and PMMA density verification, ArcCHECK was evaluated for its response dependency on linac dose rate, instantaneous dose rate, radiation field size, beam angle, and couch insertion. Scatter dose characterization, consistency and symmetry of response, and dosimetry accuracy evaluation for fixed aperture arcs and clinical VMAT patient plans were also investigated. All the evaluation tests were performed with the central plug inserted and the homogeneous PMMA density value. Results of gamma analysis demonstrated an overall agreement between ArcCHECK-measured and TPS-calculated reference doses. The diode based field size dependency was found to be within 0.5% of the reference. The dose rate-based dependency was well within 1% of the TPS reference, and the angular dependency was found to be ± 3% of the reference, as tested for BEV angles, for both beams. Dosimetry of fixed arcs, using both narrow and wide field widths, resulted in clinically acceptable global gamma passing rates on the 3%/3mm level and 10% threshold. Dosimetry of narrow arcs showed an improvement over published literature. The clinical VMAT cases demonstrated high level of dosimetry accuracy in gamma passing rates.

  10. Economic implications of mercury exposure in the context of the global mercury treaty: Hair mercury levels and estimated lost economic productivity in selected developing countries.

    PubMed

    Trasande, Leonardo; DiGangi, Joseph; Evers, David C; Petrlik, Jindrich; Buck, David G; Šamánek, Jan; Beeler, Bjorn; Turnquist, Madeline A; Regan, Kevin

    2016-12-01

    Several developing countries have limited or no information about exposures near anthropogenic mercury sources and no studies have quantified costs of mercury pollution or economic benefits to mercury pollution prevention in these countries. In this study, we present data on mercury concentrations in human hair from subpopulations in developing countries most likely to benefit from the implementation of the Minamata Convention on Mercury. These data are then used to estimate economic costs of mercury exposure in these communities. Hair samples were collected from sites located in 15 countries. We used a linear dose-response relationship that previously identified a 0.18 IQ point decrement per part per million (ppm) increase in hair mercury, and modeled a base case scenario assuming a reference level of 1 ppm, and a second scenario assuming no reference level. We then estimated the corresponding increases in intellectual disability and lost Disability-Adjusted Life Years (DALY). A total of 236 participants provided hair samples for analysis, with an estimated population at risk of mercury exposure near the 15 sites of 11,302,582. Average mercury levels were in the range of 0.48 ppm-4.60 ppm, and 61% of all participants had hair mercury concentrations greater than 1 ppm, the level that approximately corresponds to the USA EPA reference dose. An additional 1310 cases of intellectual disability attributable to mercury exposure were identified annually (4110 assuming no reference level), resulting in 16,501 lost DALYs (51,809 assuming no reference level). A total of $77.4 million in lost economic productivity was estimated assuming a 1 ppm reference level and $130 million if no reference level was used. We conclude that significant mercury exposures occur in developing and transition country communities near sources named in the Minamata Convention, and our estimates suggest that a large economic burden could be avoided by timely implementation of measures to prevent mercury exposures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Definition of Local Diagnostic Reference Levels in a Radiology Department Using a Dose Tracking Software.

    PubMed

    Ghetti, C; Ortenzia, O; Palleri, F; Sireus, M

    2017-06-01

    Dose optimization in radiological examinations is a mandatory issue: in this study local Diagnostic Reference Levels (lDRLs) for Clinical Mammography (MG), Computed Tomography (CT) and Interventional Cardiac Procedures (ICP) performed in our Radiology Department were established. Using a dose tracking software, we have collected Average Glandular Dose (AGD) for two clinical mammographic units; CTDIvol, Size-Specific Dose Estimate (SSDE), Dose Length Product (DLP) and total DLP (DLPtot) for five CT scanners; Fluoro Time, Fluoro Dose Area Product (DAP) and total DAP (DAPtot) for two angiographic systems. Data have been compared with Italian Regulation and with the recent literature. The 75th percentiles of the different dosimetric indices have been calculated. Automated methods of radiation dose data collection allow a fast and detailed analysis of a great amount of data and an easy determination of lDRLs for different radiological procedures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Validity of linear measurements of the jaws using ultralow-dose MDCT and the iterative techniques of ASIR and MBIR.

    PubMed

    Al-Ekrish, Asma'a A; Al-Shawaf, Reema; Schullian, Peter; Al-Sadhan, Ra'ed; Hörmann, Romed; Widmann, Gerlig

    2016-10-01

    To assess the comparability of linear measurements of dental implant sites recorded from multidetector computed tomography (MDCT) images obtained using standard-dose filtered backprojection (FBP) technique with those from various ultralow doses combined with FBP, adaptive statistical iterative reconstruction (ASIR), and model-based iterative reconstruction (MBIR) techniques. The results of the study may contribute to MDCT dose optimization for dental implant site imaging. MDCT scans of two cadavers were acquired using a standard reference protocol and four ultralow-dose test protocols (TP). The volume CT dose index of the different dose protocols ranged from a maximum of 30.48-36.71 mGy to a minimum of 0.44-0.53 mGy. All scans were reconstructed using FBP, ASIR-50, ASIR-100, and MBIR, and either a bone or standard reconstruction kernel. Linear measurements were recorded from standardized images of the jaws by two examiners. Intra- and inter-examiner reliability of the measurements were analyzed using Cronbach's alpha and inter-item correlation. Agreement between the measurements obtained with the reference-dose/FBP protocol and each of the test protocols was determined with Bland-Altman plots and linear regression. Statistical significance was set at a P-value of 0.05. No systematic variation was found between the linear measurements obtained with the reference protocol and the other imaging protocols. The only exceptions were TP3/ASIR-50 (bone kernel) and TP4/ASIR-100 (bone and standard kernels). The mean measurement differences between these three protocols and the reference protocol were within ±0.1 mm, with the 95 % confidence interval limits being within the range of ±1.15 mm. A nearly 97.5 % reduction in dose did not significantly affect the height and width measurements of edentulous jaws regardless of the reconstruction algorithm used.

  13. Recommended treatment for urinary tract infection in pregnancy.

    PubMed

    Vercaigne, L M; Zhanel, G G

    1994-02-01

    To establish and recommend a therapeutic regimen for the treatment of urinary tract infection (UTI) in pregnancy based on the published studies. An English-language literature search employing MEDLINE, Index Medicus, and bibliographic reviews of the references obtained were searched (key terms: urinary tract infection, UTI, pregnancy, bacteriuria). All identified human studies dealing with bacteriuria or UTI in pregnancy were analyzed. Limited data are available regarding the appropriate antibiotic management of UTI in pregnancy. Single-dose cure rates with amoxicillin are approximately 80 percent. Trimethoprim/sulfamethoxazole provides cure rates of greater than 80 percent. Cephalosporins and nitrofurantoin produce variable results. We recommend separating pregnant subjects with UTI into two groups. Those with asymptomatic bacteriuria can be treated with a single dose of an antimicrobial to which the organism is susceptible. For those with symptomatic UTI, we recommend amoxicillin 500 mg tid for three days. Urine cultures should be repeated seven days following therapy to assess cure or failure. Well-designed studies need to be performed, comparing single-dose and three-day therapy for UTI in pregnancy.

  14. Comparison and applicability analysis of models for estimating radiological dose rates of freshwater biota

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofeng; Yang, Zongzhen; Qin, Chunli

    2018-01-01

    A number of inter-comparisons of non-human biota radiation assessment models have been fulfilled by international researchers and organizations. This paper describes the radiological impact to reference biota in Chinese inland nuclear power plant scenario, by using RESRAD-Biota, ERICA and R&D 128. The estimation results are ranging from 6.1×10-3μGy/h to 6.17×10-2μGy/h, mainly contributed by 134Cs and 137Cs, obviously below recommended limits and thus prove the biota in reservoir can be adequately protected from effluent discharge. By comparing models characteristics and performances in exercise, we conclude the ERICA tool reveals more applicability in Chinese nuclear sites and propose several suggestions to establish native framework for non-human biota assessment.

  15. Mercury study report to Congress. Volume 4. Health effects of mercury and mercury compounds. Sab review draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoeny, R.

    1996-06-01

    This volume of the draft Mercury Study Report to Congress summarizes the available information on human health effects and animal data for hazard identification and dose-response assessment for three forms of mercury: elemental mercury, mercury chloride (inorganic mercury), and methylmercury (organic mercury). Effects are summarized by endpoint. The risk assessment evaluates carcinogenicity, mutagenicity, developmental toxicity and general systemic toxicity of these chemical species of mercury. Toxicokinetics (absorption, distribution, metabolism and excretion) are described for each of the three mercury species. PBPK models are described, but not applied in risk assessment. Reference doses are calculated for inorganic and methylmercury; a referencemore » concentration for inhaled elemental mercury is provided. A quantitiative analysis of factors contributing to variability and uncertainty in the methylmercury RfD is provided in an appendix. Interations and sensitive populations are described.« less

  16. SU-F-I-31: Reproducibility of An Automatic Exposure Control Technique in the Low-Dose CT Scan of Cardiac PET/CT Exams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Rosica, D; Agarwal, V

    Purpose: Two separate low-dose CT scans are usually performed for attenuation correction of rest and stress N-13 ammonia PET/CT myocardial perfusion imaging (PET/CT). We utilize an automatic exposure control (AEC) technique to reduce CT radiation dose while maintaining perfusion image quality. Our goal is to assess the reproducibility of displayed CT dose index (CTDI) on same-day repeat CT scans (CT1 and CT2). Methods: Retrospectively, we reviewed CT images of PET/CT studies performed on the same day. Low-dose CT utilized AEC technique based on tube current modulation called Smart-mA. The scan parameters were 64 × 0.625mm collimation, 5mm slice thickness, 0.984more » pitch, 1-sec rotation time, 120 kVp, and noise index 50 with a range of 10–200 mA. The scan length matched with PET field of view (FOV) with the heart near the middle of axial FOV. We identified the reference slice number (RS) for an anatomical landmark (carina) and used it to estimate axial shift between two CTs. For patient size, we measured an effective diameter on the reference slice. The effect of patient positioning to CTDI was evaluated using the table height. We calculated the absolute percent difference of the CTDI (%diff) for estimation of the reproducibility. Results: The study included 168 adults with an average body-mass index of 31.72 ± 9.10 (kg/m{sup 2}) and effective diameter was 32.72 ± 4.60 cm. The average CTDI was 1.95 ± 1.40 mGy for CT1 and 1.97 ± 1.42mGy for CT2. The mean %diff was 7.8 ± 6.8%. Linear regression analysis showed a significant correlation between the table height and %diff CTDI. (r=0.82, p<0.001) Conclusion: We have shown for the first time in human subjects, using two same-day CT images, that the AEC technique in low-dose CT is reproducible within 10% and significantly depends on the patient centering.« less

  17. The UF family of reference hybrid phantoms for computational radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna; Williams, Jonathan L.; Bolch, Wesley E.

    2010-01-01

    Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms—those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR™. NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros™. The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference organ masses from ICRP Publication 89, (3) reference elemental compositions provided in ICRP 89 as well as ICRU Report 46, and (4) reference data on the alimentary tract organs given in ICRP Publications 89 and 100. Various adjustments and refinements to the organ systems of the previously described newborn, 15 year and adult phantoms are also presented. The UF series of hybrid phantoms retain the non-uniform scalability of stylized phantoms while maintaining the anatomical realism of patient-specific voxel phantoms with respect to organ shape, depth and inter-organ distance. While the final versions of these phantoms are in a voxelized format for radiation transport simulation, their primary format is given as NURBS and polygon mesh surfaces, thus permitting one to sculpt non-reference phantoms using the reference phantoms as an anatomic template.

  18. Dimethylaminoethanol affects the viability of human cultured fibroblasts.

    PubMed

    Gragnani, Alfredo; Giannoccaro, Fabiana Bocci; Sobral, Christiane S; Moraes, A A F; França, Jeronimo P; Ferreira, A T; Ferreira, Lydia Masako

    2007-01-01

    In clinical practice, dimethylaminoethanol (DMAE) has been used in the fight against wrinkles and flaccidity in the cervicofacial region. The firming action of DMAE is explained by the fact that its molecule, considered to be a precursor of acetylcholine, alters muscle contraction. However, no experimental studies have confirmed this theory. Because the actual mechanism of DMAE action was not defined and there were no references in the literature regarding its direct action on fibroblasts, this study was performed to evaluate the direct action of DMAE on cultured human fibroblasts. Human fibroblasts obtained from discarded fragments of total skin from patients undergoing plastic or reconstructive surgical procedures performed within the Plastic Surgery Division at the Federal University of São Paulo were used for this study. The explant technique was used. The culture medium was supplemented with different concentrations of DMAE on the fourth cell passage, and the cell proliferation rate, cytosolic calcium levels, and cell cycle were evaluated. Statistical analysis was performed using analysis of variance (ANOVA) followed by a Newman-Keuls test for multiple comparisons. A decrease in fibroblast proliferation was associated with an increase in DMAE concentration. A longer treatment time with trypsin was required for the groups treated with DMAE in a dose-dependent manner. In the presence of DMAE, cytosolic calcium increased in a dose-dependent manner. Apoptosis also increased in groups treated with DMAE. Dimethylaminoethanol reduced the proliferation of fibroblasts, increased cytosolic calcium, and changed the cell cycle, causing an increase in apoptosis in cultured human fibroblasts.

  19. SU-F-T-117: A Pilot Study of Organ Dose Reconstruction for Wilms Tumor Patients Treated with Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makkia, R; Pelletier, C; Jung, J

    Purpose: To reconstruct major organ doses for the Wilms tumor pediatric patients treated with radiation therapy using pediatric computational phantoms, treatment planning system (TPS), and Monte Carlo (MC) dose calculation methods. Methods: A total of ten female and male pediatric patients (15–88 months old) were selected from the National Wilms Tumor Study cohort and ten pediatric computational phantoms corresponding to the patient’s height and weight were selected for the organ dose reconstruction. Treatment plans were reconstructed on the computational phantoms in a Pinnacle TPS (v9.10) referring to treatment records and exported into DICOM-RT files, which were then used to generatemore » the input files for XVMC MC code. The mean doses to major organs and the dose received by 50% of the heart were calculated and compared between TPS and MC calculations. The same calculations were conducted by replacing the computational human phantoms with a series of diagnostic patient CT images selected by matching the height and weight of the patients to validate the anatomical accuracy of the computational phantoms. Results: Dose to organs located within the treatment fields from the computational phantoms and the diagnostic patient CT images agreed within 2% for all cases for both TPS and MC calculations. The maximum difference of organ doses was 55.9 % (thyroid), but the absolute dose difference in this case was 0.33 Gy which was 0.96% of the prescription dose. The doses to ovaries and testes from MC in out-of-field provided more discrepancy (the maximum difference of 13.2% and 50.8%, respectively). The maximum difference of the 50% heart volume dose between the phantoms and the patient CT images was 40.0%. Conclusion: This study showed the pediatric computational phantoms are applicable to organ doses reconstruction for the radiotherapy patients whose three-dimensional radiological images are not available.« less

  20. Asbestos: a perspective. I. An overview. II. An annotated literature collection, 1960--1974. III. A literature compilation, 1974--1977. [Health hazards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huff, J.E.; Hammons, A.S.; Dinger, C.Y.

    Although the general population is widely exposed to asbestos, both by inhalation and ingestion, the hazards of chronic, environmental exposure have not been determined. Reasons conflict but are attributed in part to a paucity of information on human dose response, effects of asbestos ingestion, ambient concentrations and distribution of asbestos in the environment, the environmental cycling of asbestos, and related biological interactions including transmission through foodchains. As distilled from the world's asbestos literature, conclusions representing a majority opinion on the pathological effects of asbestos on man are summarized. (38 references.)

  1. Patient radiation doses in interventional cardiology in the U.S.: Advisory data sets and possible initial values for U.S. reference levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Donald L.; Hilohi, C. Michael; Spelic, David C.

    2012-10-15

    Purpose: To determine patient radiation doses from interventional cardiology procedures in the U.S and to suggest possible initial values for U.S. benchmarks for patient radiation dose from selected interventional cardiology procedures [fluoroscopically guided diagnostic cardiac catheterization and percutaneous coronary intervention (PCI)]. Methods: Patient radiation dose metrics were derived from analysis of data from the 2008 to 2009 Nationwide Evaluation of X-ray Trends (NEXT) survey of cardiac catheterization. This analysis used deidentified data and did not require review by an IRB. Data from 171 facilities in 30 states were analyzed. The distributions (percentiles) of radiation dose metrics were determined for diagnosticmore » cardiac catheterizations, PCI, and combined diagnostic and PCI procedures. Confidence intervals for these dose distributions were determined using bootstrap resampling. Results: Percentile distributions (advisory data sets) and possible preliminary U.S. reference levels (based on the 75th percentile of the dose distributions) are provided for cumulative air kerma at the reference point (K{sub a,r}), cumulative air kerma-area product (P{sub KA}), fluoroscopy time, and number of cine runs. Dose distributions are sufficiently detailed to permit dose audits as described in National Council on Radiation Protection and Measurements Report No. 168. Fluoroscopy times are consistent with those observed in European studies, but P{sub KA} is higher in the U.S. Conclusions: Sufficient data exist to suggest possible initial benchmarks for patient radiation dose for certain interventional cardiology procedures in the U.S. Our data suggest that patient radiation dose in these procedures is not optimized in U.S. practice.« less

  2. Dosimetry of {sup 210}Po in humans, caribou, and wolves in northern Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, P.A.

    1994-06-01

    Effective doses from {sup 210}Po intake with caribou meat were determined for human residents in Baker Lake and Snowdrift in the Northwest Territories of Canada and compared to doses calculated from reported {sup 210}Po tissue activities in Alaskan and British residents. Effective doses were calculated to separate body tissues, using ICRP 60 human weighting factors and the ICRP 30 metabolic model for {sup 210}Po. Baker Lake and Alaskan effective doses were similar at 0.4 mSv y{sup {minus}1} and slightly higher than Snowdrift doses (0.3 mSv y{sup {minus}1}). Alaskan tissue activities indicated higher effective doses to liver, bone surfaces and redmore » marrow and lower doses to spleen than the {sup 210}Po metabolic model (ICRP 1979a) predicts. Effective doses to Baker Lake and Snowdrift caribou and wolves, calculated from tissue activities, ranged from 7-20 mSv y{sup {minus}1} using human weighting factors for comparison to human doses only. Effective doses to northern Canadians and wildlife were, respectively, 7-11% and 1.8-5 times an estimated human background of 4 mSv y{sup {minus}} from all sources. 51 refs., 2 figs., 9 tabs.« less

  3. Patient dose measurement in common medical X-ray examinations and propose the first local dose reference levels to diagnostic radiology in Iran

    NASA Astrophysics Data System (ADS)

    Rasuli, Behrouz; Tabari Juybari, Raheleh; Forouzi, Meysam; Ghorbani, Mohammad

    2017-09-01

    Introduction: The main purpose of this study was to investigate patient dose in pelvic and abdomen x-ray examinations. This work also provided the LDRLs (local diagnostic reference levels) in Khuzestan region, southwest of Iran to help establish the NDRLs (national diagnostic reference levels). Methods: Patient doses were assessed from patient's anatomical data and exposure parameters based on the IAEA indirect dosimetry method. With regard to this method, exposure parameters such as tube output, kVp, mAs, FFD and patient anatomical data were used for calculating ESD (entrance skin dose) of patients. This study was conducted on 250 standard patients (50% men and 50% women) at eight high-patient-load imaging centers. Results: The results indicate that mean ESDs for the both pelvic and abdomen examinations were lower than the IAEA and EC reference levels, 2.3 and 3.7 mGy, respectively. Mean applied kVps were 67 and 70 and mean FFDs were 103 and 109, respectively. Tube loadings obtained in this study for pelvic examination were lower than all the corresponding values in the reviewed literature. Likewise, the average annual patient load across all hospitals were more than 37000 patients, i.e. more than 100 patients a day. Conclusions: The authors recommend that DRLs (diagnostic reference levels) obtained in this region, which are the first available data, can be used as local DRLs for pelvic and abdomen procedures. This work also provides that on-the-job training programs for staffs and close cross collaboration between physicists and physicians should be strongly considered.

  4. NCICT: a computational solution to estimate organ doses for pediatric and adult patients undergoing CT scans.

    PubMed

    Lee, Choonsik; Kim, Kwang Pyo; Bolch, Wesley E; Moroz, Brian E; Folio, Les

    2015-12-01

    We developed computational methods and tools to assess organ doses for pediatric and adult patients undergoing computed tomography (CT) examinations. We used the International Commission on Radiological Protection (ICRP) reference pediatric and adult phantoms combined with the Monte Carlo simulation of a reference CT scanner to establish comprehensive organ dose coefficients (DC), organ absorbed dose per unit volumetric CT Dose Index (CTDIvol) (mGy/mGy). We also developed methods to estimate organ doses with tube current modulation techniques and size specific dose estimates. A graphical user interface was designed to obtain user input of patient- and scan-specific parameters, and to calculate and display organ doses. A batch calculation routine was also integrated into the program to automatically calculate organ doses for a large number of patients. We entitled the computer program, National Cancer Institute dosimetry system for CT(NCICT). We compared our dose coefficients with those from CT-Expo, and evaluated the performance of our program using CT patient data. Our pediatric DCs show good agreements of organ dose estimation with those from CT-Expo except for thyroid. Our results support that the adult phantom in CT-Expo seems to represent a pediatric individual between 10 and 15 years rather than an adult. The comparison of CTDIvol values between NCICT and dose pages from 10 selected CT scans shows good agreements less than 12% except for two cases (up to 20%). The organ dose comparison between mean and modulated mAs shows that mean mAs-based calculation significantly overestimates dose (up to 2.4-fold) to the organs in close proximity to lungs in chest and chest-abdomen-pelvis scans. Our program provides more realistic anatomy based on the ICRP reference phantoms, higher age resolution, the most up-to-date bone marrow dosimetry, and several convenient features compared to previous tools. The NCICT will be available for research purpose in the near future.

  5. Application of the Spanish methodological approach for biosphere assessment to a generic high-level waste disposal site.

    PubMed

    Agüero, A; Pinedo, P; Simón, I; Cancio, D; Moraleda, M; Trueba, C; Pérez-Sánchez, D

    2008-09-15

    A methodological approach which includes conceptual developments, methodological aspects and software tools have been developed in the Spanish context, based on the BIOMASS "Reference Biospheres Methodology". The biosphere assessments have to be undertaken with the aim of demonstrating compliance with principles and regulations established to limit the possible radiological impact of radioactive waste disposals on human health and on the environment, and to ensure that future generations will not be exposed to higher radiation levels than those that would be acceptable today. The biosphere in the context of high-level waste disposal is defined as the collection of various radionuclide transfer pathways that may result in releases into the surface environment, transport within and between the biosphere receptors, exposure of humans and biota, and the doses/risks associated with such exposures. The assessments need to take into account the complexity of the biosphere, the nature of the radionuclides released and the long timescales considered. It is also necessary to make assumptions related to the habits and lifestyle of the exposed population, human activities in the long term and possible modifications of the biosphere. A summary on the Spanish methodological approach for biosphere assessment are presented here as well as its application in a Spanish generic case study. A reference scenario has been developed based on current conditions at a site located in Central-West Spain, to indicate the potential impact to the actual population. In addition, environmental change has been considered qualitatively through the use of interaction matrices and transition diagrams. Unit source terms of (36)Cl, (79)Se, (99)Tc, (129)I, (135)Cs, (226)Ra, (231)Pa, (238)U, (237)Np and (239)Pu have been taken. Two exposure groups of infants and adults have been chosen for dose calculations. Results are presented and their robustness is evaluated through the use of uncertainty and sensitivity analyses.

  6. [Substance monograph on bisphenol A (BPA) - reference and human biomonitoring (HBM) values for BPA in urine. Opinion of the Human Biomonitoring Commission of the German Federal Environment Agency (UBA)].

    PubMed

    2012-09-01

    Bisphenol A (BPA) is used for the production of polycarbonates and synthetic resins. Many of the items that contain BPA, for example polycarbonate bottles and coated cans, are commodities from which BPA can migrate into food and drinks, resulting in ubiquitous exposure of the population. Numerous animal studies and in vitro tests have shown that BPA acts as an "endocrine disruptor". Because of the still incomplete understanding of the complex and contradictory effects of BPA at doses below the NOAEL, the toxicological significance of recent findings is uncertain. The German HBM Commission takes notice that the risk assessment is currently in flux and that in the EU and other countries precautionary bans on BPA have been introduced. In the light of the extensive and growing body of literature, the Commission does not see itself in a position to resolve this controversy, nor to answer the question of the relevance of observed effects of low BPA doses on human health. The Commission has derived reference values (RV95) and TDI-based HBM I values for total BPA in urine. The RV95 values are 30 μg/l for 3-5 year olds, 15 μg/l for 6-14 year olds, and 7 μg/l for 20-29 year olds. The HBM I value for children is 1.5 mg/l and 2.5 mg/l for adults, respectively. The Commission emphasizes that the HBM values will require immediate adjustment should the current TDI of 0.05 mg/kg bw/day be changed. For the practical application of HBM, the Commission recommends an assessment based on the RV95. Confirmed exceedance of the RV95 by repeat measurements should prompt a search for the possible source(s), following the ALARA principle.

  7. Blonanserin – A Novel Antianxiety and Antidepressant Drug? An Experimental Study

    PubMed Central

    Limaye, Ramchandra Prabhakar; Patil, Aditi Nitin

    2016-01-01

    Introduction Many psychiatric disorders show signs and symptoms of anxiety and depression. A drug with both, effects and lesser adverse effects is always desired. Blonanserin is a novel drug with postulated effect on anxiety and depression. Aim The study was aimed to evaluate the effect of Blonanserin on anxiety and depression in animal models. Materials and Methods By using elevated plus maze test and forced swimming test, the antianxiety and antidepressant effects were evaluated. Animal ethics protocols were followed strictly. Total 50 rats (10 rats per group) were used for each test. As a control drug diazepam and imipramine were used in elevated plus maze and forced swimming test respectively. Blonanserin was tested for 3 doses 0.075, 0.2 and 0.8mg. These doses were selected from previous references as well as by extrapolating human doses. Results This study showed an antianxiety effect of Blonanserin comparable to diazepam, which was statistically significant. Optimal effect was observed with 0.075mg, followed by 0.2 and 0.8mg. It also showed an antidepressant effect which was statistically significant. Optimal effect was observed at 0.2mg dose. Conclusion The results showed that at a dose range of 0.075 and 0.2mg Blonanserin has potential to exert an adjuvant antianxiety and antidepressant activity in animal models. In order to extrapolate this in patient, longer clinical studies with comparable doses should be planned. The present study underlines potential of Blonanserin as a novel drug for such studies. PMID:27790460

  8. Blonanserin - A Novel Antianxiety and Antidepressant Drug? An Experimental Study.

    PubMed

    Limaye, Ramchandra Prabhakar; Patil, Aditi Nitin

    2016-09-01

    Many psychiatric disorders show signs and symptoms of anxiety and depression. A drug with both, effects and lesser adverse effects is always desired. Blonanserin is a novel drug with postulated effect on anxiety and depression. The study was aimed to evaluate the effect of Blonanserin on anxiety and depression in animal models. By using elevated plus maze test and forced swimming test, the antianxiety and antidepressant effects were evaluated. Animal ethics protocols were followed strictly. Total 50 rats (10 rats per group) were used for each test. As a control drug diazepam and imipramine were used in elevated plus maze and forced swimming test respectively. Blonanserin was tested for 3 doses 0.075, 0.2 and 0.8mg. These doses were selected from previous references as well as by extrapolating human doses. This study showed an antianxiety effect of Blonanserin comparable to diazepam, which was statistically significant. Optimal effect was observed with 0.075mg, followed by 0.2 and 0.8mg. It also showed an antidepressant effect which was statistically significant. Optimal effect was observed at 0.2mg dose. The results showed that at a dose range of 0.075 and 0.2mg Blonanserin has potential to exert an adjuvant antianxiety and antidepressant activity in animal models. In order to extrapolate this in patient, longer clinical studies with comparable doses should be planned. The present study underlines potential of Blonanserin as a novel drug for such studies.

  9. Copper absorption from foods labelled intrinsically and extrinsically with Cu-65 stable isotope.

    PubMed

    Harvey, L J; Dainty, J R; Beattie, J H; Majsak-Newman, G; Wharf, S G; Reid, M D; Fairweather-Tait, S J

    2005-03-01

    To determine copper absorption from copper containing foods labelled either intrinsically or extrinsically with a highly enriched Cu-65 stable isotope label. A longitudinal cross-over study. The study was conducted at the Institute of Food Research, Human Nutrition Unit, Norwich, UK. Subjects were recruited locally via advertisements placed around the Norwich Research Park. A total of 10 volunteers (nine female, one male) took part in the study, but not all volunteers completed each of the test meals. A highly enriched Cu-65 stable isotope label was administered to volunteers in the form of a reference dose or in breakfast test meals consisting of red wine, soya beans, mushrooms or sunflower seeds. Faecal monitoring and mass spectrometry techniques were used to estimate the relative quantities of copper absorbed from the different test meals. True copper absorption from the reference dose (54%) was similar to extrinsically labelled red wine (49%) and intrinsically labelled sunflower seeds (52%), but significantly higher than extrinsically labelled mushrooms (35%), intrinsically (29%) and extrinsically (15%) labelled soya beans and extrinsically labelled sunflower seed (32%) test meals. The use of Cu-65 extrinsic labels in copper absorption studies requires validation according to the food being examined; intrinsic and extrinsic labelling produced significantly different results for sunflower seeds.

  10. Calculation of conversion coefficients using Chinese adult reference phantoms for air submersion and ground contamination.

    PubMed

    Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli

    2017-03-21

    The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm -2 in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an individual organ and the body mass between the Chinese and the ICRP adult reference phantoms. These monoenergetic photon conversion coefficients are subsequently used to evaluate radionuclides with decay data from ICRP publication 107.

  11. Calculation of conversion coefficients using Chinese adult reference phantoms for air submersion and ground contamination

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli

    2017-03-01

    The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm-2 in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an individual organ and the body mass between the Chinese and the ICRP adult reference phantoms. These monoenergetic photon conversion coefficients are subsequently used to evaluate radionuclides with decay data from ICRP publication 107.

  12. Persistence of immunity after vaccination with a capsular group B meningococcal vaccine in 3 different toddler schedules

    PubMed Central

    Sadarangani, Manish; Sell, Tim; Iro, Mildred A.; Snape, Matthew D.; Voysey, Merryn; Finn, Adam; Heath, Paul T.; Bona, Gianni; Esposito, Susanna; Diez-Domingo, Javier; Prymula, Roman; Odueyungbo, Adefowope; Toneatto, Daniela; Pollard, Andrew J.

    2017-01-01

    BACKGROUND: One schedule for the capsular group B meningococcal vaccine 4CMenB is 2 doses that are administered 2 months apart for children aged 12–23 months, with a booster dose 12–24 months later. Our objective was to provide data on persistence of human serum bactericidal antibody (hSBA) titres in children up to 4 years of age after initial doses at 12–24 months, and immunogenicity of a booster dose at 48 months of age compared with vaccine-naive children. METHODS: Children previously immunized, as part of a randomized controlled trial, with 2 doses of 4CMenB vaccine at 12–24 months of age received a booster at 4 years of age. Vaccine-naive age-matched toddlers received 2 doses of 4CMenB. Human serum bactericidal antibody titres against reference strains H44/76, 5/99, NZ98/254 and M10713 were evaluated before and after innoculation with 4CMenB vaccine in 4-year-old children. RESULTS: Of 332 children in the study, 123 had previously received 4CMenB and 209 were vaccine-naive controls. Before the booster, the proportions of participants (previously vaccinated groups compared with controls) with hSBA titres of 1:5 or more were as follows: 9%–11% v. 1% (H44/76), 84%–100% v. 4% (5/99), 0%–18% v. 0% (NZ98/254) and 59%–60% v. 60% (M10713). After 1 dose of 4CMenB in previously immunized children, the proportions of participants achieving hSBA titres of 1:5 or more were 100% (H44/76 and 5/99), 70%–100% (NZ98/254) and 90%–100% (M10713). INTERPRETATION: We found that waning of hSBA titres by 4 years of age occurred after 2 doses of 4CMenB vaccine administered at 12–24 months, and doses at 12–24 months have a priming effect on the immune system. A booster may be necessary to maintain hSBA titres of 1:5 or more among those children with increased disease risk. Trial registration: ClinicalTrials.gov, no. NCT01717638 PMID:29038320

  13. [Progesterone Promotes Human Bone Marrow Mesenchymal Stem Cells to Synthesize Fibronectin via ERK Pathway].

    PubMed

    Wu, Zhen-Yong; Chen, Jing-Li; Huang, Shu; Zhang, Hui; Wang, Fang; Wang, Yan; Bi, Xiao-Yun; Guo, Zi-Kuan

    2015-12-01

    To investigate whether the progesterone can promote fibronection (FN) synthesis by human bone marrow mesenchymal stem cells (MSCs) and to explore the potential underlying mechanism. The human bone marrow MSCs were cultured in a serum-free medium with progesterone for 72 hours, the MTT test was performed to observe the proliferation status and adhension ability of the treated cells. Western blot was used to detect the content of FN in MSDs with GAPDH as the internal reference, the phosphorylation of ERK1/2, as well as the FN content in MSC treated by PD98059, a specific inhibitor of ERK1/2. The progesterone at a range of certain doses not effect on the proliferation of human bone marrow MSCs. Progesterone (25 µg/L) treatment enhanced the FN expression and adherent ability of marrow MSCs. Progesterone could induce prompt phosphorylation of ERK 1/2 and its promoting effects on FN synthesis was reversed by PD98059. The progesterone can promote FN synthesis by human bone marrow MSCs via ERK 1/2 pathway, and it might be used to culture MSCs in serum-free medium.

  14. Dosimetric impact of applicator displacement during high dose rate (HDR) Cobalt-60 brachytherapy for cervical cancer: A planning study

    NASA Astrophysics Data System (ADS)

    Yong, J. S.; Ung, N. M.; Jamalludin, Z.; Malik, R. A.; Wong, J. H. D.; Liew, Y. M.; Ng, K. H.

    2016-02-01

    We investigated the dosimetric impact of applicator displacement on dose specification during high dose rate (HDR) Cobalt-60 (Co-60) brachytherapy for cervical cancer through a planning study. Eighteen randomly selected HDR full insertion plans were restrospectively studied. The tandem and ovoids were virtually shifted translationally and rotationally in the x-, y- and z-axis directions on the treatment planning system. Doses to reference points and volumes of interest in the plans with shifted applicators were compared with the original plans. The impact of dose displacement on 2D (point-based) and 3D (volume-based) treatment planning techniques was also assessed. A ±2 mm translational y-axis applicator shift and ±4° rotational x-axis applicator shift resulted in dosimetric changes of more than 5% to organs at risk (OAR) reference points. Changes to the maximum doses to 2 cc of the organ (D2cc) in 3D planning were statistically significant and higher than the reference points in 2D planning for both the rectum and bladder (p<0.05). Rectal D2cc was observed to be the most sensitive to applicator displacement among all dose metrics. Applicator displacement that is greater than ±2 mm translational y-axis and ±4° rotational x-axis resulted in significant dose changes to the OAR. Thus, steps must be taken to minimize the possibility of applicator displacement during brachytherapy.

  15. Round-robin study of arsenic implant dose measurement in silicon by SIMS

    NASA Astrophysics Data System (ADS)

    Simons, D.; Kim, K.; Benbalagh, R.; Bennett, J.; Chew, A.; Gehre, D.; Hasegawa, T.; Hitzman, C.; Ko, J.; Lindstrom, R.; MacDonald, B.; Magee, C.; Montgomery, N.; Peres, P.; Ronsheim, P.; Yoshikawa, S.; Schuhmacher, M.; Stockwell, W.; Sykes, D.; Tomita, M.; Toujou, F.; Won, J.

    2006-07-01

    An international round-robin study was undertaken under the auspices of ISO TC201/SC6 to determine the best analytical conditions and the level of interlaboratory agreement for the determination of the implantation dose of arsenic in silicon by secondary ion mass spectrometry (SIMS). Fifteen SIMS laboratories, as well as two laboratories that performed low energy electron-induced X-ray emission spectrometry (LEXES) and one that made measurements by instrumental neutron activation analysis (INAA) were asked to determine the implanted arsenic doses in three unknown samples using as a comparator NIST Standard Reference Material ® 2134. The use of a common reference material by all laboratories resulted in better interlaboratory agreement than was seen in a previous round-robin that lacked a common comparator. The relative standard deviation among laboratories was less than 4% for the medium-dose sample, but several percent larger for the low- and high-dose samples. The high-dose sample showed a significant difference between point-by-point and average matrix normalization because the matrix signal decreased in the vicinity of the implant peak, as observed in a previous study. The dose from point-by-point normalization was in close agreement with that determined by INAA. No clear difference in measurement repeatability was seen when comparing Si 2- and Si 3- as matrix references with AsSi -.

  16. A feasibility study on the use of phantoms with statistical lung masses for determining the uncertainty in the dose absorbed by the lung from broad beams of incident photons and neutrons.

    PubMed

    Khankook, Atiyeh Ebrahimi; Hakimabad, Hashem Miri; Motavalli, Laleh Rafat

    2017-05-01

    Computational models of the human body have gradually become crucial in the evaluation of doses absorbed by organs. However, individuals may differ considerably in terms of organ size and shape. In this study, the authors sought to determine the energy-dependent standard deviations due to lung size of the dose absorbed by the lung during external photon and neutron beam exposures. One hundred lungs with different masses were prepared and located in an adult male International Commission on Radiological Protection (ICRP) reference phantom. Calculations were performed using the Monte Carlo N-particle code version 5 (MCNP5). Variation in the lung mass caused great uncertainty: ~90% for low-energy broad parallel photon beams. However, for high-energy photons, the lung-absorbed dose dependency on the anatomical variation was reduced to <1%. In addition, the results obtained indicated that the discrepancy in the lung-absorbed dose varied from 0.6% to 8% for neutron beam exposure. Consequently, the relationship between absorbed dose and organ volume was found to be significant for low-energy photon sources, whereas for higher energy photon sources the organ-absorbed dose was independent of the organ volume. In the case of neutron beam exposure, the maximum discrepancy (of 8%) occurred in the energy range between 0.1 and 5 MeV. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  17. Feasibility study of a lead(II) iodide-based dosimeter for quality assurance in therapeutic radiology

    NASA Astrophysics Data System (ADS)

    Heo, Y. J.; Kim, K. T.; Oh, K. M.; Lee, Y. K.; Ahn, K. J.; Cho, H. L.; Kim, J. Y.; Min, B. I.; Mun, C. W.; Park, S. K.

    2017-09-01

    The most widely used form of radiotherapy to treat tumors uses a linear accelerator, and the apparatus requires regular quality assurance (QA). QA for a linear accelerator demands accuracy throughout, from mock treatment and treatment planning, up to treatment itself. Therefore, verifying a radiation dose is essential to ensure that the radiation is being applied as planned. In current clinical practice, ionization chambers and diodes are used for QA. However, using conventional gaseous ionization chambers presents drawbacks such as complex analytical procedures, difficult measurement procedures, and slow response time. In this study, we discuss the potential of a lead(II) iodide (PbI2)-based radiation dosimeter for radiotherapy QA. PbI2 is a semiconductor material suited to measurements of X-rays and gamma rays, because of its excellent response properties to radiation signals. Our results show that the PbI2-based dosimeter offers outstanding linearity and reproducibility, as well as dose-independent characteristics. In addition, percentage depth dose (PDD) measurements indicate that the error at a fixed reference depth Dmax was 0.3%, very similar to the measurement results obtained using ionization chambers. Based on these results, we confirm that the PbI2-based dosimeter has all the properties required for radiotherapy: stable dose detection, dose linearity, and rapid response time. Based on the evidence of this experimental verification, we believe that the PbI2-based dosimeter could be used commercially in various fields for precise measurements of radiation doses in the human body and for measuring the dose required for stereotactic radiosurgery or localized radiosurgery.

  18. XM17 Follitropin Alfa (Ovaleap(®)): A Review in Reproductive Endocrine Disorders.

    PubMed

    Hoy, Sheridan M

    2016-08-01

    The subcutaneous recombinant human follicle-stimulating hormone XM17 follitropin alfa (Ovaleap(®)) is approved in the EU as a biosimilar of follitropin alfa (Gonal-f(®)) for use in all indications for which the reference product is approved, including as a multifollicular stimulant in women undergoing superovulation for assisted reproductive technology (ART) treatment. In a nonblind, phase I study in healthy female volunteers, the pharmacokinetic profile of XM17 follitropin alfa was bioequivalent to that of reference follitropin alfa following single dosing. Moreover, in a multinational, phase III study, the efficacy of XM17 follitropin alfa as a multifollicular stimulant was equivalent to that of reference follitropin alfa in terms of the number of retrieved oocytes (primary endpoint) in women undergoing controlled ovarian stimulation for ART treatment. There were no clinically relevant differences in oocyte quality between XM17 follitropin alfa and reference follitropin alfa, with biochemical, clinical and ongoing pregnancy rates and take-home baby rates not significantly differing between the treatment groups. XM17 follitropin alfa was generally well tolerated in this patient population, with its tolerability profile generally similar to that of reference follitropin alfa and with no new unexpected tolerability concerns identified. Thus, XM17 follitropin alfa is an effective treatment option in patients requiring follitropin alfa therapy for various reproductive endocrine disorders, providing a useful alternative to reference follitropin alfa.

  19. SU-C-202-05: Pilot Study of Online Treatment Evaluation and Adaptive Re-Planning for Laryngeal SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, W; Henry Ford Health System, Detroit, MI; Liu, C

    Purpose: We have instigated a phase I trial of 5-fraction stereotactic body radiotherapy (SBRT) for advanced-stage laryngeal cancer. We conducted this pilot dosimetric study to confirm the potential utility of online adaptive re-planning to preserve treatment quality. Methods: Ten cases of larynx cancer were evaluated. Baseline and daily SBRT treatment plans were generated per trial protocol. Daily volumetric images were acquired prior to every fraction of treatment. Reference simulation CT images were deformably registered to daily volumetric images using Eclipse. Planning contours were then deformably propagated to daily images. Reference SBRT plans were directly copied to calculate delivered dose distributionsmore » on deformed reference CT images. In-house software platform has been developed to calculate cumulative dose over a course of treatment in four steps: 1) deforming delivered dose grid to reference CT images using deformation information exported from Eclipse; 2) generating tetrahedrons using deformed dose grid as vertices; 3) resampling dose to a high resolution within every tetrahedron; 4) calculating dose-volume histograms. Our inhouse software was benchmarked with a commercial software, Mirada. Results: In all ten cases including 49 fractions of treatments, delivered daily doses were completely evaluated and treatment could be re-planned within 10 minutes. Prescription dose coverage of PTV was less than intended in 53% of fractions of treatment (mean: 94%, range: 84%–98%) while minimum coverage of CTV and GTV was 94% and 97%, respectively. Maximum bystander point dose limits to arytenoids, parotids, and spinal cord remained respected in all cases, although variances in carotid artery doses were observed in a minority of cases. Conclusion: Although GTV and CTV coverage is preserved by in-room 3D image guidance of larynx SBRT, PTV coverage can vary significantly from intended plans. Online adaptive treatment evaluation and re-planning is potentially necessary and our procedure is clinically applicable to fully preserve treatment quality. This project is supported by CPRIT Individual Investigator Research Award RP150386.« less

  20. Stochastic Human Exposure and Dose Simulation Model for Pesticides

    EPA Science Inventory

    SHEDS-Pesticides (Stochastic Human Exposure and Dose Simulation Model for Pesticides) is a physically-based stochastic model developed to quantify exposure and dose of humans to multimedia, multipathway pollutants. Probabilistic inputs are combined in physical/mechanistic algorit...

  1. Land and Water Use Characteristics and Human Health Input Parameters for use in Environmental Dosimetry and Risk Assessments at the Savannah River Site. 2016 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannik, G. Tim; Hartman, Larry; Stagich, Brooke

    Operations at the Savannah River Site (SRS) result in releases of small amounts of radioactive materials to the atmosphere and to the Savannah River. For regulatory compliance purposes, potential offsite radiological doses are estimated annually using computer models that follow U.S. Nuclear Regulatory Commission (NRC) regulatory guides. Within the regulatory guides, default values are provided for many of the dose model parameters, but the use of applicant site-specific values is encouraged. Detailed surveys of land-use and water-use parameters were conducted in 1991 and 2010. They are being updated in this report. These parameters include local characteristics of meat, milk andmore » vegetable production; river recreational activities; and meat, milk and vegetable consumption rates, as well as other human usage parameters required in the SRS dosimetry models. In addition, the preferred elemental bioaccumulation factors and transfer factors (to be used in human health exposure calculations at SRS) are documented. The intent of this report is to establish a standardized source for these parameters that is up to date with existing data, and that is maintained via review of future-issued national references (to evaluate the need for changes as new information is released). These reviews will continue to be added to this document by revision.« less

  2. Land and Water Use Characteristics and Human Health Input Parameters for use in Environmental Dosimetry and Risk Assessments at the Savannah River Site 2017 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannik, T.; Stagich, B.

    Operations at the Savannah River Site (SRS) result in releases of relatively small amounts of radioactive materials to the atmosphere and to the Savannah River. For regulatory compliance purposes, potential offsite radiological doses are estimated annually using computer models that follow U.S. Nuclear Regulatory Commission (NRC) regulatory guides. Within the regulatory guides, default values are provided for many of the dose model parameters, but the use of site-specific values is encouraged. Detailed surveys of land-use and water-use parameters were conducted in 1991, 2008, 2010, and 2016 and are being concurred with or updated in this report. These parameters include localmore » characteristics of meat, milk, and vegetable production; river recreational activities; and meat, milk, and vegetable consumption rates, as well as other human usage parameters required in the SRS dosimetry models. In addition, the preferred elemental bioaccumulation factors and transfer factors (to be used in human health exposure calculations at SRS) are documented. The intent of this report is to establish a standardized source for these parameters that is up to date with existing data, and that is maintained via review of future-issued national references (to evaluate the need for changes as new information is released). These reviews will continue to be added to this document by revision.« less

  3. Commissioning and comprehensive evaluation of the ArcCHECK cylindrical diode array for VMAT pretreatment delivery QA

    PubMed Central

    Chaswal, Vibha; Weldon, Michael; Gupta, Nilendu; Chakravarti, Arnab

    2014-01-01

    We present commissioning and comprehensive evaluation for ArcCHECK as a QA equipment for volumetric‐modulated arc therapy (VMAT), using the 6 MV photon beam with and without the flattening filter, and the SNC patient software (version 6.2). In addition to commissioning involving absolute dose calibration, array calibration, and PMMA density verification, ArcCHECK was evaluated for its response dependency on linac dose rate, instantaneous dose rate, radiation field size, beam angle, and couch insertion. Scatter dose characterization, consistency and symmetry of response, and dosimetry accuracy evaluation for fixed aperture arcs and clinical VMAT patient plans were also investigated. All the evaluation tests were performed with the central plug inserted and the homogeneous PMMA density value. Results of gamma analysis demonstrated an overall agreement between ArcCHECK‐measured and TPS‐calculated reference doses. The diode based field size dependency was found to be within 0.5% of the reference. The dose rate‐based dependency was well within 1% of the TPS reference, and the angular dependency was found to be ± 3% of the reference, as tested for BEV angles, for both beams. Dosimetry of fixed arcs, using both narrow and wide field widths, resulted in clinically acceptable global gamma passing rates on the 3%/3 mm level and 10% threshold. Dosimetry of narrow arcs showed an improvement over published literature. The clinical VMAT cases demonstrated high level of dosimetry accuracy in gamma passing rates. PACS numbers: 87.56.Fc, 87.55.kh, 87.55.Qr PMID:25207411

  4. Individualized adjustments to reference phantom internal organ dosimetry—scaling factors given knowledge of patient internal anatomy

    NASA Astrophysics Data System (ADS)

    Wayson, Michael B.; Bolch, Wesley E.

    2018-04-01

    Various computational tools are currently available that facilitate patient organ dosimetry in diagnostic nuclear medicine, yet they are typically restricted to reporting organ doses to ICRP-defined reference phantoms. The present study, while remaining computational phantom based, provides straightforward tools to adjust reference phantom organ dose for both internal photon and electron sources. A wide variety of monoenergetic specific absorbed fractions were computed using radiation transport simulations for tissue spheres of varying size and separation distance. Scaling methods were then constructed for both photon and electron self-dose and cross-dose, with data validation provided from patient-specific voxel phantom simulations, as well as via comparison to the scaling methodology given in MIRD Pamphlet No. 11. Photon and electron self-dose was found to be dependent on both radiation energy and sphere size. Photon cross-dose was found to be mostly independent of sphere size. Electron cross-dose was found to be dependent on sphere size when the spheres were in close proximity, owing to differences in electron range. The validation studies showed that this dataset was more effective than the MIRD 11 method at predicting patient-specific photon doses for at both high and low energies, but gave similar results at photon energies between 100 keV and 1 MeV. The MIRD 11 method for electron self-dose scaling was accurate for lower energies but began to break down at higher energies. The photon cross-dose scaling methodology developed in this study showed gains in accuracy of up to 9% for actual patient studies, and the electron cross-dose scaling methodology showed gains in accuracy up to 9% as well when only the bremsstrahlung component of the cross-dose was scaled. These dose scaling methods are readily available for incorporation into internal dosimetry software for diagnostic phantom-based organ dosimetry.

  5. MO-E-18A-01: Imaging: Best Practices In Pediatric Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, C; Strauss, K; MacDougall, R

    This imaging educational program will focus on solutions to common pediatric imaging challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children's hospitals. Areas of focus will include general radiography, the use of manual and automatic dose management in computed tomography, and enterprise-wide radiation dose management in the pediatric practice. The educational program will begin with a discussion of the complexities of exposure factor control in pediatric projection radiography. Following this introduction will be two lectures addressing the challenges of computed tomography (CT) protocol optimization in the pediatric population. The firstmore » will address manual CT protocol design in order to establish a managed radiation dose for any pediatric exam on any CT scanner. The second CT lecture will focus on the intricacies of automatic dose modulation in pediatric imaging with an emphasis on getting reliable results in algorithmbased technique selection. The fourth and final lecture will address the key elements needed to developing a comprehensive radiation dose management program for the pediatric environment with particular attention paid to new regulations and obligations of practicing medical physicists. Learning Objectives: To understand how general radiographic techniques can be optimized using exposure indices in order to improve pediatric radiography. To learn how to establish diagnostic dose reference levels for pediatric patients as a function of the type of examination, patient size, and individual design characteristics of the CT scanner. To learn how to predict the patient's radiation dose prior to the exam and manually adjust technique factors if necessary to match the patient's dose to the department's established dose reference levels. To learn how to utilize manufacturer-provided automatic dose modulation technology to consistently achieve patient doses within the department's established size-based diagnostic reference range. To understand the key components of an enterprise-wide pediatric dose management program that integrates the expanding responsibilities of medial physicists in the new era of dose monitoring.« less

  6. Individualized adjustments to reference phantom internal organ dosimetry-scaling factors given knowledge of patient internal anatomy.

    PubMed

    Wayson, Michael B; Bolch, Wesley E

    2018-04-13

    Various computational tools are currently available that facilitate patient organ dosimetry in diagnostic nuclear medicine, yet they are typically restricted to reporting organ doses to ICRP-defined reference phantoms. The present study, while remaining computational phantom based, provides straightforward tools to adjust reference phantom organ dose for both internal photon and electron sources. A wide variety of monoenergetic specific absorbed fractions were computed using radiation transport simulations for tissue spheres of varying size and separation distance. Scaling methods were then constructed for both photon and electron self-dose and cross-dose, with data validation provided from patient-specific voxel phantom simulations, as well as via comparison to the scaling methodology given in MIRD Pamphlet No. 11. Photon and electron self-dose was found to be dependent on both radiation energy and sphere size. Photon cross-dose was found to be mostly independent of sphere size. Electron cross-dose was found to be dependent on sphere size when the spheres were in close proximity, owing to differences in electron range. The validation studies showed that this dataset was more effective than the MIRD 11 method at predicting patient-specific photon doses for at both high and low energies, but gave similar results at photon energies between 100 keV and 1 MeV. The MIRD 11 method for electron self-dose scaling was accurate for lower energies but began to break down at higher energies. The photon cross-dose scaling methodology developed in this study showed gains in accuracy of up to 9% for actual patient studies, and the electron cross-dose scaling methodology showed gains in accuracy up to 9% as well when only the bremsstrahlung component of the cross-dose was scaled. These dose scaling methods are readily available for incorporation into internal dosimetry software for diagnostic phantom-based organ dosimetry.

  7. Corrigendum to "Chemical composition and acidity of size-fractionated inorganic aerosols of 2013-14 winter haze in Shanghai and associated health risk of toxic elements" [Atmos. Environ. (2015) 259-271

    NASA Astrophysics Data System (ADS)

    Behera, Sailesh N.; Cheng, Jinping; Huang, Xian; Zhu, Qiongyu; Liu, Ping; Balasubramanian, Rajasekhar

    2018-03-01

    The authors regret that the sources from which the RfC (reference concentration) and the IUR (inhalation unit risk) values were obtained for estimation of RfD (reference dose, presented in Table 2) and SF (slope factor, presented in Table 3) were not clearly indicated in the published article due to an oversight. The revised tables with improved clarity are given below. a The Risk Assessment Information System (https://rais.ornl.gov/) b USEPA Integrated Risk Information System (IRIS) (http://www.epa.gov/iris) c The California EPA, the office of Environmental Health Hazard Assessment (OEHHA) (https://www.oehha.gov.gov/) d Behera, S.N., Xian, H. and Balasubramanian, R., 2014. Human health risk associated with exposure to toxic elements in mainstream and sidestream cigarette smoke. Science of the Total Environment, 472, pp.947-956.

  8. Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code.

    PubMed

    Yoriyaz, H; dos Santos, A; Stabin, M G; Cabezas, R

    2000-07-01

    A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. MCNP-4B absorbed fractions for photons in the mathematical phantom of Snyder et al. agreed well with reference values. Results obtained through radiation transport simulation in the voxel-based phantom, in general, agreed well with reference values. Considerable discrepancies, however, were found in some cases due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the voxel-based phantom, which is not considered in the mathematical phantom.

  9. Comparison of current recommended regimens of atropinization in organophosphate poisoning.

    PubMed

    Connors, Nicholas J; Harnett, Zachary H; Hoffman, Robert S

    2014-06-01

    Atropine is the mainstay of therapy in organophosphate (OP) toxicity, though research and consensus on dosing is lacking. In 2004, as reported by Eddleston et al. (J Toxicol Clin Toxicol 42(6):865-75, 2004), they noted variation in recommended regimens. We assessed revisions of original references, additional citations, and electronic sources to determine the current variability in atropine dosing recommendations. Updated editions of references from Eddleston et al.'s work, texts of Internal and Emergency Medicine, and electronic resources were reviewed for atropine dosing recommendations. For comparison, recommendations were assessed using the same mean dose (23.4 mg) and the highest dose (75 mg) of atropine as used in the original paper. Recommendations were also compared with the dosing regimen from the World Health Organization (WHO). Thirteen of the original recommendations were updated and 15 additional references were added giving a convenience sample of 28. Sufficient information to calculate time to targeted dose was provided by 24 of these samples. Compared to 2004, current recommendations have greatly increased the speed of atropinization with 13/24 able to reach the mean and high atropine dose within 30 min compared to 1/36 in 2004. In 2004, there were 13 regimens where the maximum time to reach 75 mg was over 18 h, whereas now, there are 2. While only one recommendation called for doubling the dose for faster escalation in 2004, 15 of the 24 current works include dose doubling. In 2004, Eddleston et al. called for an evidence-based guideline for the treatment of OP poisoning that could be disseminated worldwide. Many current recommendations can adequately treat patients within 1 h. While the WHO recommendations remain slow to treat patients with OP poisoning, other authorities are close to a consensus on rapid atropinization.

  10. The use of dose-response data in a margin of exposure approach to carcinogenic risk assessment for genotoxic chemicals in food.

    PubMed

    Benford, Diane J

    2016-05-01

    Genotoxic substances are generally not permitted for deliberate use in food production. However, an appreciable number of known or suspected genotoxic substances occur unavoidably in food, e.g. from natural occurrence, environmental contamination and generation during cooking and processing. Over the past decade a margin of exposure (MOE) approach has increasingly been used in assessing the exposure to substances in food that are genotoxic and carcinogenic. The MOE is defined as a reference point on the dose-response curve (e.g. a benchmark dose lower confidences limit derived from a rodent carcinogenicity study) divided by the estimated human intake. A small MOE indicates a higher concern than a very large MOE. Whilst the MOE cannot be directly equated to risk, it supports prioritisation of substances for further research or for possible regulatory action, and provides a basis for communicating to the public. So far, the MOE approach has been confined to substances for which carcinogenicity data are available. In the absence of carcinogenicity data, evidence of genotoxicity is used only in hazard identification. The challenge to the genetic toxicology community is to develop approaches for characterising risk to human health based on data from genotoxicity studies. In order to achieve wide acceptance, it would be important to further address the issues that have been discussed in the context of dose-response modelling of carcinogenicity data in order to assign levels of concern to particular MOE values, and also whether it is possible to make generic conclusions on how potency in genotoxicity assays relates to carcinogenic potency. © Crown copyright 2015.

  11. Sub-chronic safety evaluation of the ethanol extract of Aralia elata leaves in Beagle dogs.

    PubMed

    Li, Fengjin; He, Xiaoli; Niu, Wenying; Feng, Yuenan; Bian, Jingqi; Kuang, Haixue; Xiao, Hongbin

    2016-08-01

    Aralia elata Seem. (A. elata) is a traditional Chinese medicine to treat some diseases. This investigation aims to evaluate the pharmaceutical safety of the ethanol extract of A. elata leaves, namely ethanol leaves extract (ELE), in Beagle dogs. In sub-chronic oral toxicity study, dogs were treated with the ELE at doses of 50, 100 and 200 mg/kg for 12 weeks and followed by 4 weeks recovery period. During experimental period, clinical signs, mortality, body temperature, food consumption and body weight were recorded. Analysis of electrocardiogram, urinalysis, ophthalmoscopy, hematology, serum biochemistry, organ weights and histopathology were performed. The results showed that both food consumption and body weight significantly decreased in high-dose group. Treatment-related side effects and mortality were observed in high-dose female dogs. Some parameters showed significant alterations in electrocardiogram, urinalysis, serum biochemistry and relative organ weights. These alterations were not related to dose or consistent across gender, which were ascribed to incidental and biological variability. The findings in this study indicated that the no-observed adverse effect level (NOAEL) of the ELE was 100 mg/kg in dogs and provided a vital reference for selecting a safe application dosage for human consumption. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Review of the Reference Dose and Reference Concentration Processes Document

    EPA Pesticide Factsheets

    Summarizes the review and deliberations of the Risk Assessment Forum’s RfD/RfC Technical Panel and its recommendations for improvements in oral referencedose/inhalation reference concentration (RfD/RfC) process.

  13. Effects of particle size and coating on toxicologic parameters, fecal elimination kinetics and tissue distribution of acutely ingested silver nanoparticles in a mouse model

    PubMed Central

    Bergin, Ingrid L.; Wilding, Laura A.; Morishita, Masako; Walacavage, Kim; Ault, Andrew P.; Axson, Jessica L.; Stark, Diana I.; Hashway, Sara A.; Capracotta, Sonja S.; Leroueil, Pascale R.; Maynard, Andrew D.; Philbert, Martin A.

    2015-01-01

    Consumer exposure to silver nanoparticles (AgNP) via ingestion can occur due to incorporation of AgNP into products such as food containers and dietary supplements. AgNP variations in size and coating may affect toxicity, elimination kinetics or tissue distribution. Here, we directly compared acute administration of AgNP of two differing coatings and sizes to mice, using doses of 0.1, 1 and 10 mg/kg body weight/day administered by oral gavage for 3 days. The maximal dose is equivalent to 2000× the EPA oral reference dose. Silver acetate at the same doses was used as ionic silver control. We found no toxicity and no significant tissue accumulation. Additionally, no toxicity was seen when AgNP were dosed concurrently with a broad-spectrum antibiotic. Between 70.5% and 98.6% of the administered silver dose was recovered in feces and particle size and coating differences did not significantly influence fecal silver. Peak fecal silver was detected between 6- and 9-h post-administration and <0.5% of the administered dose was cumulatively detected in liver, spleen, intestines or urine at 48 h. Although particle size and coating did not affect tissue accumulation, silver was detected in liver, spleen and kidney of mice administered ionic silver at marginally higher levels than those administered AgNP, suggesting that silver ion may be more bioavailable. Our results suggest that, irrespective of particle size and coating, acute oral exposure to AgNP at doses relevant to potential human exposure is associated with predominantly fecal elimination and is not associated with accumulation in tissue or toxicity. PMID:26305411

  14. Reliability of Current Biokinetic and Dosimetric Models for Radionuclides: A Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, Richard Wayne; Eckerman, Keith F; Meck, Robert A.

    2008-10-01

    This report describes the results of a pilot study of the reliability of the biokinetic and dosimetric models currently used by the U.S. Nuclear Regulatory Commission (NRC) as predictors of dose per unit internal or external exposure to radionuclides. The study examines the feasibility of critically evaluating the accuracy of these models for a comprehensive set of radionuclides of concern to the NRC. Each critical evaluation would include: identification of discrepancies between the models and current databases; characterization of uncertainties in model predictions of dose per unit intake or unit external exposure; characterization of variability in dose per unit intakemore » or unit external exposure; and evaluation of prospects for development of more accurate models. Uncertainty refers here to the level of knowledge of a central value for a population, and variability refers to quantitative differences between different members of a population. This pilot study provides a critical assessment of models for selected radionuclides representing different levels of knowledge of dose per unit exposure. The main conclusions of this study are as follows: (1) To optimize the use of available NRC resources, the full study should focus on radionuclides most frequently encountered in the workplace or environment. A list of 50 radionuclides is proposed. (2) The reliability of a dose coefficient for inhalation or ingestion of a radionuclide (i.e., an estimate of dose per unit intake) may depend strongly on the specific application. Multiple characterizations of the uncertainty in a dose coefficient for inhalation or ingestion of a radionuclide may be needed for different forms of the radionuclide and different levels of information of that form available to the dose analyst. (3) A meaningful characterization of variability in dose per unit intake of a radionuclide requires detailed information on the biokinetics of the radionuclide and hence is not feasible for many infrequently studied radionuclides. (4) The biokinetics of a radionuclide in the human body typically represents the greatest source of uncertainty or variability in dose per unit intake. (5) Characterization of uncertainty in dose per unit exposure is generally a more straightforward problem for external exposure than for intake of a radionuclide. (6) For many radionuclides the most important outcome of a large-scale critical evaluation of databases and biokinetic models for radionuclides is expected to be the improvement of current models. Many of the current models do not fully or accurately reflect available radiobiological or physiological information, either because the models are outdated or because they were based on selective or uncritical use of data or inadequate model structures. In such cases the models should be replaced with physiologically realistic models that incorporate a wider spectrum of information.« less

  15. An FDA oncology analysis of CD3 bispecific constructs and first-in-human dose selection.

    PubMed

    Saber, Haleh; Del Valle, Pedro; Ricks, Tiffany K; Leighton, John K

    2017-11-01

    We retrospectively examined the nonclinical studies conducted with 17 CD3 bispecific constructs in support of first-in-human (FIH) trials in oncology. We also collected information on the design of dose-finding clinical trials. Sponsors have used different MABEL approaches for FIH dose selection. To better assess acceptable approaches, FIH doses were computed from nonclinical studies and compared to the maximum tolerated doses (MTDs) in patients, to the highest human doses (HHDs) when an MTD was not identified, or to the recommended human dose (RHD) for blinatumomab. We concluded that approaches based on receptor occupancy, highest non-severely toxic dose, or no-observed adverse effect level are not acceptable for selecting the FIH dose as they resulted in doses close to or above the MTDs, HHDs, or the RHD. A FIH dose corresponding to 10%-30% pharmacologic activity (PA) was an acceptable approach. A FIH dose corresponding to 50% PA was acceptable for all except one construct, potentially due to its biological or structural properties. The most common toxicities in animals and patients were those related to cytokine release. Doses were better tolerated when intra-animal or intra-patient dose escalation was used. Exposing naïve patients to an MTD achieved with intra-patient dose escalation design may be unsafe. Published by Elsevier Inc.

  16. Standardized peripheral blood mononuclear cell culture assay for determination of drug susceptibilities of clinical human immunodeficiency virus type 1 isolates. The RV-43 Study Group, the AIDS Clinical Trials Group Virology Committee Resistance Working Group.

    PubMed Central

    Japour, A J; Mayers, D L; Johnson, V A; Kuritzkes, D R; Beckett, L A; Arduino, J M; Lane, J; Black, R J; Reichelderfer, P S; D'Aquila, R T

    1993-01-01

    A standardized antiviral drug susceptibility assay for clinical human immunodeficiency virus type 1 (HIV-1) isolates has been developed for use in clinical trials. The protocol is a two-step procedure that first involves cocultivation of patient infected peripheral blood mononuclear cells (PBMC) with seronegative phytohemagglutinin-stimulated donor PBMC to obtain an HIV-1 stock. The virus stock is titrated for viral infectivity (50% tissue culture infective dose) by use of serial fourfold virus dilutions in donor PBMC. A standardized inoculum of 1,000 50% tissue culture infective doses per 10(6) cells is used in the second step of the procedure to acutely infect seronegative donor PBMC in a 7-day microtiter plate assay with triplicate wells containing zidovudine (ZDV) concentrations ranging from 0 to 5.0 microM. The ZDV 50% inhibitory concentrations (IC50) for reference ZDV-susceptible and ZDV-resistant HIV-1 isolates ranged from 0.002 to 0.113 microM and from 0.15 to > 5.0 microM, respectively. Use of this consensus protocol reduced interlaboratory variability for ZDV IC50 determinations with reference HIV-1 isolates. Among eight laboratories, the coefficient of variation ranged from 0.85 to 1.25 with different PBMC protocols and was reduced to 0.39 to 0.98 with the standardized assay. Among the clinical HIV-1 isolates assayed by the standardized drug susceptibility assay, the median ZDV IC50 increased gradually with more ZDV therapy. This protocol provides an efficient and reproducible means to assess the in vitro susceptibility to antiretroviral agents of virtually all clinical HIV-1 isolates. PMID:8517697

  17. A formalism for reference dosimetry in photon beams in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    van Asselen, B.; Woodings, S. J.; Hackett, S. L.; van Soest, T. L.; Kok, J. G. M.; Raaymakers, B. W.; Wolthaus, J. W. H.

    2018-06-01

    A generic formalism is proposed for reference dosimetry in the presence of a magnetic field. Besides the regular correction factors from the conventional reference dosimetry formalisms, two factors are used to take into account magnetic field effects: (1) a dose conversion factor to correct for the change in local dose distribution and (2) a correction of the reading of the dosimeter used for the reference dosimetry measurements. The formalism was applied to the Elekta MRI-Linac, for which the 1.5 T magnetic field is orthogonal to the 7 MV photon beam. For this setup at reference conditions it was shown that the dose decreases with increasing magnetic field strength. The reduction in local dose for a 1.5 T transverse field, compared to no field is 0.51%  ±  0.03% at the reference point of 10 cm depth. The effect of the magnetic field on the reading of the dosimeter was measured for two waterproof ionization chambers types (PTW 30013 and IBA FC65-G) before and after multiple ramp-up and ramp-downs of the magnetic field. The chambers were aligned perpendicular and parallel to the magnetic field. The corrections of the readings of the perpendicularly aligned chambers were 0.967  ±  0.002 and 0.957  ±  0.002 for respectively the PTW and IBA ionization chambers. In the parallel alignment the corrections were small; 0.997  ±  0.001 and 1.002  ±  0.003 for the PTW and IBA chamber respectively. The change in reading due to the magnetic field can be measured by individual departments. The proposed formalism can be used to determine the correction factors needed to establish the absorbed dose in a magnetic field. It requires Monte Carlo simulations of the local dose and measurements of the response of the dosimeter. The formalism was successfully implemented for the MRI-Linac and is applicable for other field strengths and geometries.

  18. A formalism for reference dosimetry in photon beams in the presence of a magnetic field.

    PubMed

    van Asselen, B; Woodings, S J; Hackett, S L; van Soest, T L; Kok, J G M; Raaymakers, B W; Wolthaus, J W H

    2018-06-11

    A generic formalism is proposed for reference dosimetry in the presence of a magnetic field. Besides the regular correction factors from the conventional reference dosimetry formalisms, two factors are used to take into account magnetic field effects: (1) a dose conversion factor to correct for the change in local dose distribution and (2) a correction of the reading of the dosimeter used for the reference dosimetry measurements. The formalism was applied to the Elekta MRI-Linac, for which the 1.5 T magnetic field is orthogonal to the 7 MV photon beam. For this setup at reference conditions it was shown that the dose decreases with increasing magnetic field strength. The reduction in local dose for a 1.5 T transverse field, compared to no field is 0.51%  ±  0.03% at the reference point of 10 cm depth. The effect of the magnetic field on the reading of the dosimeter was measured for two waterproof ionization chambers types (PTW 30013 and IBA FC65-G) before and after multiple ramp-up and ramp-downs of the magnetic field. The chambers were aligned perpendicular and parallel to the magnetic field. The corrections of the readings of the perpendicularly aligned chambers were 0.967  ±  0.002 and 0.957  ±  0.002 for respectively the PTW and IBA ionization chambers. In the parallel alignment the corrections were small; 0.997  ±  0.001 and 1.002  ±  0.003 for the PTW and IBA chamber respectively. The change in reading due to the magnetic field can be measured by individual departments. The proposed formalism can be used to determine the correction factors needed to establish the absorbed dose in a magnetic field. It requires Monte Carlo simulations of the local dose and measurements of the response of the dosimeter. The formalism was successfully implemented for the MRI-Linac and is applicable for other field strengths and geometries.

  19. Calibration of helical tomotherapy machine using EPR/alanine dosimetry.

    PubMed

    Perichon, Nicolas; Garcia, Tristan; François, Pascal; Lourenço, Valérie; Lesven, Caroline; Bordy, Jean-Marc

    2011-03-01

    Current codes of practice for clinical reference dosimetry of high-energy photon beams in conventional radiotherapy recommend using a 10 x 10 cm2 square field, with the detector at a reference depth of 10 cm in water and 100 cm source to surface distance (SSD) (AAPM TG-51) or 100 cm source-to-axis distance (SAD) (IAEA TRS-398). However, the maximum field size of a helical tomotherapy (HT) machine is 40 x 5 cm2 defined at 85 cm SAD. These nonstandard conditions prevent a direct implementation of these protocols. The purpose of this study is twofold: To check the absorbed dose in water and dose rate calibration of a tomotherapy unit as well as the accuracy of the tomotherapy treatment planning system (TPS) calculations for a specific test case. Both topics are based on the use of electron paramagnetic resonance (EPR) using alanine as transfer dosimeter between the Laboratoire National Henri Becquerel (LNHB) 60Co-gamma-ray reference beam and the Institut Curie's HT beam. Irradiations performed in the LNHB reference 60Co-gamma-ray beam allowed setting up the calibration method, which was then implemented and tested at the LNHB 6 MV linac x-ray beam, resulting in a deviation of 1.6% (at a 1% standard uncertainty) relative to the reference value determined with the standard IAEA TRS-398 protocol. HT beam dose rate estimation shows a difference of 2% with the value stated by the manufacturer at a 2% standard uncertainty. A 4% deviation between measured dose and the calculation from the tomotherapy TPS was found. The latter was originated by an inadequate representation of the phantom CT-scan values and, consequently, mass densities within the phantom. This difference has been explained by the mass density values given by the CT-scan and used by the TPS which were not the true ones. Once corrected using Monte Carlo N-Particle simulations to validate the accuracy of this process, the difference between corrected TPS calculations and alanine measured dose values was then found to be around 2% (with 2% standard uncertainty on TPS doses and 1.5% standard uncertainty on EPR measurements). Beam dose rate estimation results were found to be in good agreement with the reference value given by the manufacturer at 2% standard uncertainty. Moreover, the dose determination method was set up with a deviation around 2% (at a 2% standard uncertainty).

  20. Bayesian methods for uncertainty factor application for derivation of reference values.

    PubMed

    Simon, Ted W; Zhu, Yiliang; Dourson, Michael L; Beck, Nancy B

    2016-10-01

    In 2014, the National Research Council (NRC) published Review of EPA's Integrated Risk Information System (IRIS) Process that considers methods EPA uses for developing toxicity criteria for non-carcinogens. These criteria are the Reference Dose (RfD) for oral exposure and Reference Concentration (RfC) for inhalation exposure. The NRC Review suggested using Bayesian methods for application of uncertainty factors (UFs) to adjust the point of departure dose or concentration to a level considered to be without adverse effects for the human population. The NRC foresaw Bayesian methods would be potentially useful for combining toxicity data from disparate sources-high throughput assays, animal testing, and observational epidemiology. UFs represent five distinct areas for which both adjustment and consideration of uncertainty may be needed. NRC suggested UFs could be represented as Bayesian prior distributions, illustrated the use of a log-normal distribution to represent the composite UF, and combined this distribution with a log-normal distribution representing uncertainty in the point of departure (POD) to reflect the overall uncertainty. Here, we explore these suggestions and present a refinement of the methodology suggested by NRC that considers each individual UF as a distribution. From an examination of 24 evaluations from EPA's IRIS program, when individual UFs were represented using this approach, the geometric mean fold change in the value of the RfD or RfC increased from 3 to over 30, depending on the number of individual UFs used and the sophistication of the assessment. We present example calculations and recommendations for implementing the refined NRC methodology. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Stochastic rat lung dosimetry for inhaled radon progeny: a surrogate for the human lung for lung cancer risk assessment.

    PubMed

    Winkler-Heil, R; Hussain, M; Hofmann, W

    2015-05-01

    Laboratory rats are frequently used in inhalation studies as a surrogate for human exposures. The objective of the present study was therefore to develop a stochastic dosimetry model for inhaled radon progeny in the rat lung, to predict bronchial dose distributions and to compare them with corresponding dose distributions in the human lung. The most significant difference between human and rat lungs is the branching structure of the bronchial tree, which is relatively symmetric in the human lung, but monopodial in the rat lung. Radon progeny aerosol characteristics used in the present study encompass conditions typical for PNNL and COGEMA rat inhalation studies, as well as uranium miners and human indoor exposure conditions. It is shown here that depending on exposure conditions and modeling assumptions, average bronchial doses in the rat lung ranged from 5.4 to 7.3 mGy WLM(-1). If plotted as a function of airway generation, bronchial dose distributions exhibit a significant maximum in large bronchial airways. If, however, plotted as a function of airway diameter, then bronchial doses are much more uniformly distributed throughout the bronchial tree. Comparisons between human and rat exposures indicate that rat bronchial doses are slightly higher than human bronchial doses by about a factor of 1.3, while lung doses, averaged over the bronchial (BB), bronchiolar (bb) and alveolar-interstitial (AI) regions, are higher by about a factor of about 1.6. This supports the current view that the rat lung is indeed an appropriate surrogate for the human lung in case of radon-induced lung cancers. Furthermore, airway diameter seems to be a more appropriate morphometric parameter than airway generations to relate bronchial doses to bronchial carcinomas.

  2. Accuracy of a dose-area product compared to an absorbed dose to water at a point in a 2 cm diameter field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufreneix, S.; Ostrowsky, A.; Rapp, B.

    Purpose: Graphite calorimeters with a core diameter larger than the beam can be used to establish dosimetric references in small fields. The dose-area product (DAP) measured can theoretically be linked to an absorbed dose at a point by the determination of a profile correction. This study aims at comparing the DAP-based protocol to the usual absorbed dose at a point protocol in a 2 cm diameter field for which both references exist. Methods: Two calorimeters were used, respectively, with a sensitive volume of 0.6 cm (for the absorbed dose at a point measurement) and 3 cm diameter (for the DAPmore » measurement). Profile correction was calculated from a 2D dose mapping using three detectors: a PinPoint chamber, a synthetic diamond, and EBT3 films. A specific protocol to read EBT3 films was implemented and the dose-rate and energy dependences were studied to assure a precise measurement, especially in the penumbra and out-of-field regions. Results: EBT3 films were found independent on dose rates over the range studied but showed a strong under-response (18%) at low energies. Depending on the dosimeter used for calculating the profile correction, a deviation of 0.8% (PinPoint chamber), 0.9% (diamond), or 1.9% (EBT3 films) was observed between the calibration coefficient derived from DAP measurements and the one directly established in terms of absorbed dose to water at a point. Conclusions: The DAP method can currently be linked to the classical dosimetric reference system based in an absorbed dose at a point only with a confidence interval of 95% (k = 2). None of the detectors studied can be used to determine an absorbed dose to water at a point from a DAP measurement with an uncertainty smaller than 1.2%.« less

  3. Ultra-low power high temperature and radiation hard complementary metal-oxide-semiconductor (CMOS) silicon-on-insulator (SOI) voltage reference.

    PubMed

    Boufouss, El Hafed; Francis, Laurent A; Kilchytska, Valeriya; Gérard, Pierre; Simon, Pascal; Flandre, Denis

    2013-12-13

    This paper presents an ultra-low power CMOS voltage reference circuit which is robust under biomedical extreme conditions, such as high temperature and high total ionized dose (TID) radiation. To achieve such performances, the voltage reference is designed in a suitable 130 nm Silicon-on-Insulator (SOI) industrial technology and is optimized to work in the subthreshold regime of the transistors. The design simulations have been performed over the temperature range of -40-200 °C and for different process corners. Robustness to radiation was simulated using custom model parameters including TID effects, such as mobilities and threshold voltages degradation. The proposed circuit has been tested up to high total radiation dose, i.e., 1 Mrad (Si) performed at three different temperatures (room temperature, 100 °C and 200 °C). The maximum drift of the reference voltage V(REF) depends on the considered temperature and on radiation dose; however, it remains lower than 10% of the mean value of 1.5 V. The typical power dissipation at 2.5 V supply voltage is about 20 μW at room temperature and only 75 μW at a high temperature of 200 °C. To understand the effects caused by the combination of high total ionizing dose and temperature on such voltage reference, the threshold voltages of the used SOI MOSFETs were extracted under different conditions. The evolution of V(REF) and power consumption with temperature and radiation dose can then be explained in terms of the different balance between fixed oxide charge and interface states build-up. The total occupied area including pad-ring is less than 0.09 mm2.

  4. Dosimetry and image quality assessment in a direct radiography system

    PubMed Central

    Oliveira, Bruno Beraldo; de Oliveira, Marcio Alves; Paixão, Lucas; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2014-01-01

    Objective To evaluate the mean glandular dose with a solid state detector and the image quality in a direct radiography system, utilizing phantoms. Materials and Methods Irradiations were performed with automatic exposure control and polymethyl methacrylate slabs with different thicknesses to calculate glandular dose values. The image quality was evaluated by means of the structures visualized on the images of the phantoms. Results Considering the uncertainty of the measurements, the mean glandular dose results are in agreement with the values provided by the equipment and with internationally adopted reference levels. Results obtained from images of the phantoms were in agreement with the reference values. Conclusion The present study contributes to verify the equipment conformity as regards dose values and image quality. PMID:25741119

  5. HDRK-Woman: whole-body voxel model based on high-resolution color slice images of Korean adult female cadaver

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol; Ham, Bo Kyoung; Cho, Kun Woo; Hwang, Sung Bae

    2014-07-01

    In a previous study, we constructed a male reference Korean phantom; HDRK-Man (High-Definition Reference Korean-Man), to represent Korean adult males for radiation protection purposes. In the present study, a female phantom; HDRK-Woman (High-Definition Reference Korean-Woman), was constructed to represent Korean adult females. High-resolution color photographic images obtained by serial sectioning of a 26 year-old Korean adult female cadaver were utilized. The body height and weight, the skeletal mass, and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The phantom was then compared with the International Commission on Radiological Protection (ICRP) female reference phantom in terms of calculated organ doses and organ-depth distributions. Additionally, the effective doses were calculated using both the HDRK-Man and HDRK-Woman phantoms, and the values were compared with those of the ICRP reference phantoms.

  6. HDRK-Woman: whole-body voxel model based on high-resolution color slice images of Korean adult female cadaver.

    PubMed

    Yeom, Yeon Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol; Ham, Bo Kyoung; Cho, Kun Woo; Hwang, Sung Bae

    2014-07-21

    In a previous study, we constructed a male reference Korean phantom; HDRK-Man (High-Definition Reference Korean-Man), to represent Korean adult males for radiation protection purposes. In the present study, a female phantom; HDRK-Woman (High-Definition Reference Korean-Woman), was constructed to represent Korean adult females. High-resolution color photographic images obtained by serial sectioning of a 26 year-old Korean adult female cadaver were utilized. The body height and weight, the skeletal mass, and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The phantom was then compared with the International Commission on Radiological Protection (ICRP) female reference phantom in terms of calculated organ doses and organ-depth distributions. Additionally, the effective doses were calculated using both the HDRK-Man and HDRK-Woman phantoms, and the values were compared with those of the ICRP reference phantoms.

  7. Extrapolation of plasma clearance to understand species differences in toxicokinetics of bisphenol A.

    PubMed

    Poet, Torka; Hays, Sean

    2017-10-13

    1. Understanding species differences in the toxicokinetics of bisphenol A (BPA) is central to setting acceptable exposure limits for human exposures to BPA. BPA toxicokinetics have been well studied, with controlled oral dosing studies in several species and across a wide dose range. 2. We analyzed the available toxicokinetic data for BPA following oral dosing to assess potential species differences and dose dependencies. BPA is rapidly conjugated and detoxified in all species. The toxicokinetics of BPA can be well described using non-compartmental analyses. 3. Several studies measured free (unconjugated) BPA in blood and reported area under the curve (AUC) of free BPA in blood of mice, rats, monkeys, chimpanzees and humans following controlled oral doses. Extrinsic clearance was calculated and analyzed across species and dose using allometric scaling. 4. The results indicate free BPA clearance is well described using allometric scaling with high correlation coefficients across all species and doses up to 10 mg/kg. The results indicate a human equivalent dose factor (HEDf) of 0.9 is appropriate for extrapolating a point of departure from mice and rats to a human equivalent dose (HED), thereby replacing default uncertainty factors for animal to human toxicokinetics.

  8. Highly Sensitive Detection of Urinary Cadmium to Assess Personal Exposure

    PubMed Central

    Argun, Avni A.; Banks, Ashley; Merlen, Gwendolynne; Tempelman, Linda A.; Becker, Michael F.; Schuelke, Thomas; Dweik, Badawi

    2013-01-01

    A series of Boron-Doped Diamond (BDD) ultramicroelectrode arrays were fabricated and investigated for their performance as electrochemical sensors to detect trace level metals such as cadmium. The steady-state diffusion behavior of these sensors was validated using cyclic voltammetry followed by electrochemical detection of cadmium in water and in human urine to demonstrate high sensitivity (>200 μA/ppb/cm2) and low background current (<4 nA). When an array of ultramicroelectrodes was positioned with optimal spacing, these BDD sensors showed a sigmoidal diffusion behavior. They also demonstrated high accuracy with linear dose dependence for quantification of cadmium in a certified reference river water sample from the National Institute of Standards and Technology (NIST) as well as in a human urine sample spiked with 0.25–1 ppb cadmium. PMID:23561905

  9. Dose to 'water-like' media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate.

    PubMed

    Andreo, Pedro

    2015-01-07

    The difference between Monte Carlo Treatment Planning (MCTP) based on the assumption of 'water-like' tissues with densities obtained from CT procedures, or on tissue compositions derived from CT-determined densities, have been investigated. Stopping powers and electron fluences have been calculated for a range of media and body tissues for 6 MV photon beams, including changes in their physical data (density and stopping powers). These quantities have been used to determine absorbed doses using cavity theory. It is emphasized that tissue compositions given in ICRU or ICRP reports should not be given the standing of physical constants as they correspond to average values obtained for a limited number of human-body samples. It has been shown that mass stopping-power ratios to water are more dependent on patient-to-patient composition differences, and therefore on their mean excitation energies (I-values), than on mass density. Electron fluence in different media are also more dependent on media composition (and their I-values) than on density. However, as a consequence of the balance between fluence and stopping powers, doses calculated from their product are more constant than what the independent stopping powers and fluence variations suggest. Additionally, cancelations in dose ratios minimize the differences between the 'water-like' and 'tissue' approaches, yielding practically identical results except for bone, and to a lesser extent for adipose tissue. A priori, changing from one approach to another does not seem to be justified considering the large number of approximations and uncertainties involved throughout the treatment planning tissue segmentation and dose calculation procedures. The key issue continues to be the composition of tissues and their I-values, and as these cannot be obtained for individual patients, whatever approach is selected does not lead to significant differences from a water reference dose, the maximum of these being of the order of 5% for bone tissues. Considering, however, current developments in advanced dose calculation methods, planning in terms of dose-to-tissue should be the preferred choice, under the expectancy that progress in the field will gradually improve some of the crude approximations included in MCTP and numerical transport methods. The small differences obtained also show that a retrospective conversion from dose-to-tissue to dose-to-water, based on a widely used approach, would mostly increase the final uncertainty of the treatment planning process. It is demonstrated that, due to the difference between electron fluence distributions in water and in body tissues, the conversion requires an additional fluence correction that has so far been neglected. An improved expression for the conversion and data for the fluence correction factor are provided. These will be necessary even in a dose-to-tissue environment, for the normalization of the treatment plan to the reference dosimetry of the treatment unit, always calibrated in terms of absorbed dose to water.

  10. Dose to ‘water-like’ media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate

    NASA Astrophysics Data System (ADS)

    Andreo, Pedro

    2015-01-01

    The difference between Monte Carlo Treatment Planning (MCTP) based on the assumption of ‘water-like’ tissues with densities obtained from CT procedures, or on tissue compositions derived from CT-determined densities, have been investigated. Stopping powers and electron fluences have been calculated for a range of media and body tissues for 6 MV photon beams, including changes in their physical data (density and stopping powers). These quantities have been used to determine absorbed doses using cavity theory. It is emphasized that tissue compositions given in ICRU or ICRP reports should not be given the standing of physical constants as they correspond to average values obtained for a limited number of human-body samples. It has been shown that mass stopping-power ratios to water are more dependent on patient-to-patient composition differences, and therefore on their mean excitation energies (I-values), than on mass density. Electron fluence in different media are also more dependent on media composition (and their I-values) than on density. However, as a consequence of the balance between fluence and stopping powers, doses calculated from their product are more constant than what the independent stopping powers and fluence variations suggest. Additionally, cancelations in dose ratios minimize the differences between the ‘water-like’ and ‘tissue’ approaches, yielding practically identical results except for bone, and to a lesser extent for adipose tissue. A priori, changing from one approach to another does not seem to be justified considering the large number of approximations and uncertainties involved throughout the treatment planning tissue segmentation and dose calculation procedures. The key issue continues to be the composition of tissues and their I-values, and as these cannot be obtained for individual patients, whatever approach is selected does not lead to significant differences from a water reference dose, the maximum of these being of the order of 5% for bone tissues. Considering, however, current developments in advanced dose calculation methods, planning in terms of dose-to-tissue should be the preferred choice, under the expectancy that progress in the field will gradually improve some of the crude approximations included in MCTP and numerical transport methods. The small differences obtained also show that a retrospective conversion from dose-to-tissue to dose-to-water, based on a widely used approach, would mostly increase the final uncertainty of the treatment planning process. It is demonstrated that, due to the difference between electron fluence distributions in water and in body tissues, the conversion requires an additional fluence correction that has so far been neglected. An improved expression for the conversion and data for the fluence correction factor are provided. These will be necessary even in a dose-to-tissue environment, for the normalization of the treatment plan to the reference dosimetry of the treatment unit, always calibrated in terms of absorbed dose to water.

  11. Investigating a Potential Auxin-Related Mode of Hormetic/Inhibitory Action of the Phytotoxin Parthenin.

    PubMed

    Belz, Regina G

    2016-01-01

    Parthenin is a metabolite of Parthenium hysterophorus and is believed to contribute to the weed's invasiveness via allelopathy. Despite the potential of parthenin to suppress competitors, low doses stimulate plant growth. This biphasic action was hypothesized to be auxin-like and, therefore, an auxin-related mode of parthenin action was investigated using two approaches: joint action experiments with Lactuca sativa, and dose-response experiments with auxin/antiauxin-resistant Arabidopsis thaliana genotypes. The joint action approach comprised binary mixtures of subinhibitory doses of the auxin 3-indoleacetic acid (IAA) mixed with parthenin or one of three reference compounds [indole-3-butyric acid (IBA), 2,3,5-triiodobenzoic acid (TIBA), 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB)]. The reference compounds significantly interacted with IAA at all doses, but parthenin interacted only at low doses indicating that parthenin hormesis may be auxin-related, in contrast to its inhibitory action. The genetic approach investigated the response of four auxin/antiauxin-resistant mutants and a wildtype to parthenin or two reference compounds (IAA, PCIB). The responses of mutant plants to the reference compounds confirmed previous reports, but differed from the responses observed for parthenin. Parthenin stimulated and inhibited all mutants independent of resistance. This provided no indication for an auxin-related action of parthenin. Therefore, the hypothesis of an auxin-related inhibitory action of parthenin was rejected in two independent experimental approaches, while the hypothesis of an auxin-related stimulatory effect could not be rejected.

  12. SU-F-T-461: Dosimetric Evaluation of Indigenous Farmer Type Chamber FAR65- GB for Reference Dosimetry of FFF MV Photon Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patwe, P; Mhatre, V; Dandekar, P

    Purpose: Indigenous Farmer type chamber FAR 65 GB is a reference class 0.6 cc ion chamber. It can be used for dosimetric evaluation of photon and high energy electron beams. We studied dosimetric characteristics of the chamber for 6MV and 10MV Flattening filter free FFF photon beams available on trueBEAM STx Linac. Methods: The study was carried out on trueBEAM STx Linac having 6 and 10 MV FFF photon beam with maximum dose rate 1400 and 2400 MU per min respectively. The dosimetric device to be evaluated is Rosalina Instruments FAR 65-GB Ion Chamber with active volume 0.65 cc, totalmore » active length 23.1cm, inner diameter of cylinder 6.2mm, wall thickness 0.4mm, inner electrode diameter 1mm. Inner and outer electrodes are made from Aluminium 2.7 gm per cc and graphite 1.82 gm per cc respectively. The ion chamber was placed along central axis of beam at 10cm depth and irradiated for 10cm × 10cm field size at SAD of 100 cm in plastic phantom. We studied Precision, Dose Linearity, Dose Rate dependence, directional dependence, Recombination effect. Recombination effect was determined using standard two-voltage method. Results: 1. Measurements were reproducible std deviation of 0.0105 and type A uncertainty 0.003265 under same set of reference conditions 2. Chamber exhibit dose linearity over a wider dose range. 3. Chamber shows dose rate independence for all available dose rate range. 4. Response of chamber with the angle of incidence of radiation is constant. 5. Recombination correction factors were 1.01848 and 1.02537 for dose rate 1400 and 2400 MU per min resp. Conclusion: Our study reveals that the chamber is prone to saturation effect at dose rate of 2400 MU per min. FAR 65-GB can be used for reference dosimetry of FFF MV photon beam with proper calculation of recombination effect.« less

  13. Patient dosimetry audit for establishing local diagnostic reference levels for nuclear medicine CT.

    PubMed

    Gardner, Matthew; Katsidzira, Ngonidzashe M; Ross, Erin; Larkin, Elizabeth A

    2017-03-01

    To establish a system for patient dosimetry audit and setting of local diagnostic reference levels (LDRLs) for nuclear medicine (NM) CT. Computed radiological information system (CRIS) data were matched with NM paper records, which provided the body region and dose mode for NMCT carried out at a large UK hospital. It was necessary to divide data in terms of the NM examination type, body region and dose mode. The mean and standard deviation dose-length products (DLPs) for common NMCT examinations were then calculated and compared with the proposed National Diagnostic Reference Levels (NDRLs). Only procedures which have 10 or more patients will be used to suggest LDRLs. For most examinations, the mean DLPs do not exceed the proposed NDRLs. The bone single-photon emission CT/CT lumbar spine data clearly show the need to divide data according to the purpose of the scan (dose mode), with mean (±standard error) DLPs ranging from 51 ± 5 mGy cm (low dose) to 1086 ± 124 mGy cm (metal dose). A system for NMCT patient dose audit has been developed, but there are non-trivial challenges which make the process labour intensive. These include limited information provided by CRIS downloads, dependence on paper records and limited number of examinations available owing to the need to subdivide data. Advances in knowledge: This article demonstrates that a system can be developed for NMCT patient dose audit, but also highlights the challenges associated with such audit, which may not be encountered with more routine audit of radiology CT.

  14. Duration of post-vaccination immunity to yellow fever in volunteers eight years after a dose-response study.

    PubMed

    de Menezes Martins, Reinaldo; Maia, Maria de Lourdes S; de Lima, Sheila Maria Barbosa; de Noronha, Tatiana Guimarães; Xavier, Janaina Reis; Camacho, Luiz Antonio Bastos; de Albuquerque, Elizabeth Maciel; Farias, Roberto Henrique Guedes; da Matta de Castro, Thalita; Homma, Akira

    2018-06-27

    In 2009, Bio-Manguinhos conducted a dose-response study with the yellow fever vaccine, administering the vaccine in the usual mean dose of 27,476 IU (full dose, reference) and in tapered doses (10,447 IU, 3013 IU, 587 IU, 158 IU, and 31 IU) by the usual subcutaneous route and usual volume (0.5 mL). Tapered doses were obtained by dilution in the manufacturer's laboratory, and the test batches presented industrial quality. Doses down to 587 IU showed similar immunogenicity to the full dose (27,476, reference), while the 158 IU and 31 IU doses displayed lower immunogenicity. Seropositivity was maintained at 10 months, except in the group that received the 31 IU dose. The current study aims to determine whether yellow fever seropositivity was maintained eight years after YF vaccination in non-revaccinated individuals. According to the current study's results, seropositivity was maintained in 85% of 318 participants and was similar across groups. The findings support the use of the yellow fever vaccine in fractional doses during outbreaks, but each fractional dose should have at least 587 IU. This study also supports the minimum dose required by WHO, 1000 IU. Clinicaltrials.gov NCT 03338231. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Percentiles of the product of uncertainty factors for establishing probabilistic reference doses.

    PubMed

    Gaylor, D W; Kodell, R L

    2000-04-01

    Exposure guidelines for potentially toxic substances are often based on a reference dose (RfD) that is determined by dividing a no-observed-adverse-effect-level (NOAEL), lowest-observed-adverse-effect-level (LOAEL), or benchmark dose (BD) corresponding to a low level of risk, by a product of uncertainty factors. The uncertainty factors for animal to human extrapolation, variable sensitivities among humans, extrapolation from measured subchronic effects to unknown results for chronic exposures, and extrapolation from a LOAEL to a NOAEL can be thought of as random variables that vary from chemical to chemical. Selected databases are examined that provide distributions across chemicals of inter- and intraspecies effects, ratios of LOAELs to NOAELs, and differences in acute and chronic effects, to illustrate the determination of percentiles for uncertainty factors. The distributions of uncertainty factors tend to be approximately lognormally distributed. The logarithm of the product of independent uncertainty factors is approximately distributed as the sum of normally distributed variables, making it possible to estimate percentiles for the product. Hence, the size of the products of uncertainty factors can be selected to provide adequate safety for a large percentage (e.g., approximately 95%) of RfDs. For the databases used to describe the distributions of uncertainty factors, using values of 10 appear to be reasonable and conservative. For the databases examined the following simple "Rule of 3s" is suggested that exceeds the estimated 95th percentile of the product of uncertainty factors: If only a single uncertainty factor is required use 33, for any two uncertainty factors use 3 x 33 approximately 100, for any three uncertainty factors use a combined factor of 3 x 100 = 300, and if all four uncertainty factors are needed use a total factor of 3 x 300 = 900. If near the 99th percentile is desired use another factor of 3. An additional factor may be needed for inadequate data or a modifying factor for other uncertainties (e.g., different routes of exposure) not covered above.

  16. NOTE: On the need to revise the arm structure in stylized anthropomorphic phantoms in lateral photon irradiation geometry

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lee, Choonik; Lee, Jai-Ki

    2006-11-01

    Distributions of radiation absorbed dose within human anatomy have been estimated through Monte Carlo radiation transport techniques implemented for two different classes of computational anthropomorphic phantoms: (1) mathematical equation-based stylized phantoms and (2) tomographic image-based voxel phantoms. Voxel phantoms constructed from tomographic images of real human anatomy have been actively developed since the late 1980s to overcome the anatomical approximations necessary with stylized phantoms, which themselves have been utilized since the mid 1960s. However, revisions of stylized phantoms have also been pursued in parallel to the development of voxel phantoms since voxel phantoms (1) are initially restricted to the individual-specific anatomy of the person originally imaged, (2) must be restructured on an organ-by-organ basis to conform to reference individual anatomy and (3) cannot easily represent very fine anatomical structures and tissue layers that are thinner than the voxel dimensions of the overall phantom. Although efforts have been made to improve the anatomic realism of stylized phantoms, most of these efforts have been limited to attempts to alter internal organ structures. Aside from the internal organs, the exterior shapes, and especially the arm structures, of stylized phantoms are also far from realistic descriptions of human anatomy, and may cause dosimetry errors in the calculation of organ-absorbed doses for external irradiation scenarios. The present study was intended to highlight the need to revise the existing arm structure within stylized phantoms by comparing organ doses of stylized adult phantoms with those from three adult voxel phantoms in the lateral photon irradiation geometry. The representative stylized phantom, the adult phantom of the Oak Ridge National Laboratory (ORNL) series and two adult male voxel phantoms, KTMAN-2 and VOXTISS8, were employed for Monte Carlo dose calculation, and data from another voxel phantom, VIP-Man, were obtained from literature sources. The absorbed doses for lungs, oesophagus, liver and kidneys that could be affected by arm structures in the lateral irradiation geometry were obtained for both classes of phantoms in lateral monoenergetic photon irradiation geometries. As expected, those organs in the ORNL phantoms received apparently higher absorbed doses than those in the voxel phantoms. The overestimation is mainly attributed to the relatively poor representation of the arm structure in the ORNL phantom in which the arm bones are embedded within the regions describing the phantom's torso. The results of this study suggest that the overestimation of organ doses, due to unrealistic arm representation, should be taken into account when stylized phantoms are employed for equivalent or effective dose estimates, especially in the case of an irradiation scenario with dominating lateral exposure. For such a reason, the stylized phantom arm structure definition should be revised in order to obtain more realistic evaluations.

  17. SU-E-J-93: Development of Pre-Contoured Human Model Library in DICOM-RT Format for the Epidemiological Study of the Radiotherapy Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyakuryal, A; Lee, C; Lee, C

    Purpose: Prior to 3D conformal radiation therapy planning, patient anatomy information was mostly limited to 2D beams-eye-view from the conventional simulator. To analyze the outcomes of such treatments for radiation late effects, 3D computational human models are often used in commercial treatment planning systems (TPSs). However, several underlying difficulties such as time-consuming manual delineation procedures of a large number of structures in the model have always limited its applications. Primary objective of this work was to develop a human model library for the epidemiological study by converting 3D-surface model organs to DICOM-RT format (DICOM-RT structure) using an in-house built software.more » We converted the ICRP reference human models to DICOM-RT models, which can be readily adopted for various dose calculations. Methods: MATLAB based code were utilized to convert the contour drawings extracted in text-format from the 3D graphic-tool, Rhinoceros into DICOM-RT structure format for 50 different organs of each model using a 16GB dual-core processor. The conversion periods were measured for each DICOM-RT models, and the reconstructed structure volumes were validated against the original 3D-surface models in the TPS. Ten reference hybrid whole-body models (8-pediatric and 2-adults) were automatically processed to create DICOM-RT computational human model library. Results: Mean contour conversion period was found to be 580 (N=2) and 394.5 (N=8) seconds for 50 organs in the adult and pediatric models respectively. A good agreement for large organs (NRMSD <1.0%) and small organs (NRMSD <7.7%) was also observed between the original volumes and corresponding DICOM-RT structure volumes of the organs. Conclusion: The ICRP reference human models were converted into DICOM-RT format to support the epidemiological study using a large cohort of conventional radiotherapy patients. Due to its DICOM-compatibility, the library may be implemented to many other different applications. We also expect to develop the library by including additional models in future.« less

  18. Eye lens dosimetry in interventional cardiology: results of staff dose measurements and link to patient dose levels.

    PubMed

    Antic, V; Ciraj-Bjelac, O; Rehani, M; Aleksandric, S; Arandjic, D; Ostojic, M

    2013-01-01

    Workers involved in interventional cardiology procedures receive high eye lens dose if protection is not used. Currently, there is no suitable method for routine use for the measurement of eye dose. Since most angiography machines are equipped with suitable patient dosemeters, deriving factors linking staff eye doses to the patient doses can be helpful. In this study the patient kerma-area product, cumulative dose at an interventional reference point and eye dose in terms of Hp(3) of the cardiologists, nurses and radiographers for interventional cardiology procedures have been measured. Correlations between the patient dose and the staff eye dose were obtained. The mean eye dose was 121 µSv for the first operator, 33 µSv for the second operator/nurse and 12 µSv for radiographer. Normalised eye lens doses per unit kerma-area product were 0.94 µSv Gy⁻¹ cm⁻² for the first operator, 0.33 µSv Gy⁻¹ cm⁻² for the second operator/nurse and 0.16 µSv Gy⁻¹ cm⁻² for radiographers. Statistical analysis indicated that there is a weak but significant (p < 0.01) correlation between the eye dose and the kerma-area product for all three staff categories. These values are based on a local practice and may provide useful reference for other studies for validation and for wider utilisation in assessing the eye dose using patient dose values.

  19. PAEDIATRIC CT EXPOSURE PRACTICE IN THE COUNTY OF RIO DE JANEIRO: THE NEED TO ESTABLISH DIAGNOSTIC REFERENCE LEVELS.

    PubMed

    de Jesus, Fillipe M; Magalhães, Luis A G; Kodlulovich, Simone

    2016-11-01

    A pilot study of dose indicators in paediatric computed tomography (CT) was conducted to prove the need to establish diagnostic reference levels (DRLs) for the county of Rio de Janeiro. The dose descriptors were estimated from the beam dosimetry by applying the protocols used in each examination. The total patient sample included 279 children. Regarding the comparison of the dose-length product values among the hospitals, the high-resolution chest CT scans were distinguished among the three types of examinations, due to the discrepancies of 1148 % (1-5 y age group) and 2248 % (5-10 y age group) presented in Hospital A's dose-length product values relative to Hospital D's dose-length product values. The results showed that without DRL, the dose variation can be significant between hospitals in the same county for the same age group in the same examination. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Radiation dose delivery verification in the treatment of carcinoma-cervix

    NASA Astrophysics Data System (ADS)

    Shrotriya, D.; Kumar, S.; Srivastava, R. N. L.

    2015-06-01

    The accurate dose delivery to the clinical target volume in radiotherapy can be affected by various pelvic tissues heterogeneities. An in-house heterogeneous woman pelvic phantom was designed and used to verify the consistency and computational capability of treatment planning system of radiation dose delivery in the treatment of cancer cervix. Oncentra 3D-TPS with collapsed cone convolution (CCC) dose calculation algorithm was used to generate AP/PA and box field technique plan. the radiation dose was delivered by Primus Linac (Siemens make) employing high energy 15 MV photon beam by isocenter technique. A PTW make, 0.125cc ionization chamber was used for direct measurements at various reference points in cervix, bladder and rectum. The study revealed that maximum variation between computed and measured dose at cervix reference point was 1% in both the techniques and 3% and 4% variation in AP/PA field and 5% and 4.5% in box technique at bladder and rectum points respectively.

  1. Organ and effective dose coefficients for cranial and caudal irradiation geometries: Neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.

    Dose coefficients based on the recommendations of International Commission on Radiological Protection (ICRP) Publication 103 were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57 for the six reference irradiation geometries: anterior–posterior, posterior–anterior, right and left lateral, rotational and isotropic. In this work, dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and downward from above the head (cranial) using the ICRP 103 methodology were computed using the MCNP 6.1 radiation transport code. The dose coefficients were determined for neutrons ranging in energy from 10more » –9 MeV to 10 GeV. Here, at energies below about 500 MeV, the cranial and caudal dose coefficients are less than those for the six reference geometries reported in ICRP Publication 116.« less

  2. Organ and effective dose coefficients for cranial and caudal irradiation geometries: Neutrons

    DOE PAGES

    Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.; ...

    2016-08-29

    Dose coefficients based on the recommendations of International Commission on Radiological Protection (ICRP) Publication 103 were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57 for the six reference irradiation geometries: anterior–posterior, posterior–anterior, right and left lateral, rotational and isotropic. In this work, dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and downward from above the head (cranial) using the ICRP 103 methodology were computed using the MCNP 6.1 radiation transport code. The dose coefficients were determined for neutrons ranging in energy from 10more » –9 MeV to 10 GeV. Here, at energies below about 500 MeV, the cranial and caudal dose coefficients are less than those for the six reference geometries reported in ICRP Publication 116.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrotriya, D., E-mail: shrotriya2007@gmail.com; Srivastava, R. N. L.; Kumar, S.

    The accurate dose delivery to the clinical target volume in radiotherapy can be affected by various pelvic tissues heterogeneities. An in-house heterogeneous woman pelvic phantom was designed and used to verify the consistency and computational capability of treatment planning system of radiation dose delivery in the treatment of cancer cervix. Oncentra 3D-TPS with collapsed cone convolution (CCC) dose calculation algorithm was used to generate AP/PA and box field technique plan. the radiation dose was delivered by Primus Linac (Siemens make) employing high energy 15 MV photon beam by isocenter technique. A PTW make, 0.125cc ionization chamber was used for directmore » measurements at various reference points in cervix, bladder and rectum. The study revealed that maximum variation between computed and measured dose at cervix reference point was 1% in both the techniques and 3% and 4% variation in AP/PA field and 5% and 4.5% in box technique at bladder and rectum points respectively.« less

  4. Predictive dose-based estimation of systemic exposure multiples in mouse and monkey relative to human for antisense oligonucleotides with 2'-o-(2-methoxyethyl) modifications.

    PubMed

    Yu, Rosie Z; Grundy, John S; Henry, Scott P; Kim, Tae-Won; Norris, Daniel A; Burkey, Jennifer; Wang, Yanfeng; Vick, Andrew; Geary, Richard S

    2015-01-20

    Evaluation of species differences and systemic exposure multiples (or ratios) in toxicological animal species versus human is an ongoing exercise during the course of drug development. The systemic exposure ratios are best estimated by directly comparing area under the plasma concentration-time curves (AUCs), and sometimes by comparing the dose administered, with the dose being adjusted either by body surface area (BSA) or body weight (BW). In this study, the association between AUC ratio and the administered dose ratio from animals to human were studied using a retrospective data-driven approach. The dataset included nine antisense oligonucleotides (ASOs) with 2'-O-(2-methoxyethyl) modifications, evaluated in two animal species (mouse and monkey) following single and repeated parenteral administrations. We found that plasma AUCs were similar between ASOs within the same species, and are predictable to human exposure using a single animal species, either mouse or monkey. Between monkey and human, the plasma exposure ratio can be predicted directly based on BW-adjusted dose ratios, whereas between mouse and human, the exposure ratio would be nearly fivefold lower in mouse compared to human based on BW-adjusted dose values. Thus, multiplying a factor of 5 for the mouse BW-adjusted dose would likely provide a reasonable AUC exposure estimate in human at steady-state.

  5. Human exposure to chemical mixtures: Challenges for the integration of toxicology with epidemiology data in risk assessment.

    PubMed

    Hernández, Antonio F; Tsatsakis, Aristidis M

    2017-05-01

    Little is known about the potential adverse effects from longterm exposure to complex mixtures at low doses, close to health-based reference values. Traditional chemical-specific risk assessment based on animal testing may be insufficient and the lack of toxicological studies on chemical mixtures remains a major regulatory challenge. Hence, new methodologies on cumulative risk assessment are being developed but still present major limitations. Evaluation of chemical mixture effects requires an integrated and systematic approach and close collaboration across different scientific fields, particularly toxicology, epidemiology, exposure science, risk assessment and statistics for a proper integration of data from all these disciplines. Well designed and conducted epidemiological studies can take advantage of this new paradigm and can provide insight to support the correlation between humans low-dose exposures and diseases, thus avoiding the uncertainty associated with extrapolation across species. In this regard, human epidemiology studies may play a significant role in the new vision of toxicity testing. However, this type of information has not been fully considered in risk assessment, mainly due to the inherent limitations of epidemiologic studies. An integrated approach of in vivo, in vitro and in silico data, together with systematic reviews or meta-analysis of high quality epidemiological studies will improve the robustness of risk assessment of chemical mixtures and will provide a stronger basis for regulatory decisions. The ultimate goal is that experimental and mechanistic data can lend support and biological plausibility to the human epidemiological observations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. High In Vitro Activity of the Novel Spiropyrimidinetrione AZD0914, a DNA Gyrase Inhibitor, against Multidrug-Resistant Neisseria gonorrhoeae Isolates Suggests a New Effective Option for Oral Treatment of Gonorrhea

    PubMed Central

    Jacobsson, Susanne; Golparian, Daniel; Alm, Richard A.; Huband, Michael; Mueller, John; Jensen, Jorgen Skov; Ohnishi, Makoto

    2014-01-01

    We evaluated the activity of the novel spiropyrimidinetrione AZD0914 (DNA gyrase inhibitor) against clinical gonococcal isolates and international reference strains (n = 250), including strains with diverse multidrug resistance and extensive drug resistance. The AZD0914 MICs were substantially lower than those of most other currently or previously recommended antimicrobials. AZD0914 should be further evaluated, including in vitro selection, in vivo emergence and mechanisms of resistance, pharmacokinetics/pharmacodynamics in humans, optimal dosing, and performance, in appropriate randomized and controlled clinical trials. PMID:24982070

  7. Pharmacokinetics, pharmacodynamics, metabolism, toxicology and residues of phenylbutazone in humans and horses.

    PubMed

    Lees, Peter; Toutain, Pierre-Louis

    2013-06-01

    The presence of horse meat in food products destined for human consumption and labelled as beef has raised several concerns of public interest. This review deals solely with one aspect of these concerns; samples of equine tissue from horses destined for the human food chain have tested positive for the non-steroidal anti-inflammatory drug, phenylbutazone. The safety of some or all such foods for human consumers is a major concern, because it was shown many years ago that phenylbutazone therapy in humans can be associated with life threatening blood dyscrasias. As an initial basis for assessing the potential toxicity of foods containing phenylbutazone and its metabolites, this article reviews (1) the pharmacokinetic, pharmacodynamic, metabolic and toxicological profiles of phenylbutazone, with particular reference to horses and humans; (2) toxicity data in laboratory animals; (3) phenylbutazone residues in food producing species, and (4) as a preliminary assessment, the potential hazard associated with the consumption of horse meat containing phenylbutazone and its metabolites. Since phenylbutazone cannot be classified as a carcinogenic substance in humans, and noting that blood dyscrasias in humans are likely to be dose and treatment duration-dependent, the illegal and erratic presence of trace amount residues of phenylbutazone in horse meat is not a public health issue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Comparison of Ecotoxicological Dose-Response Relationships between Amphibians (Lithobates sylvaticus and Ambystoma maculatum) and Fish (Salmo salar and Salvelinus fontinalis) in the Freshwater Acidification Literature

    NASA Astrophysics Data System (ADS)

    Maxwell, A.; Gooding Lassiter, M.; Greaver, T.

    2016-12-01

    Ecosystem acidification due to increased deposition of oxides of nitrogen (NOX) and sulfur (SOX) has been an issue since the 1970s. Elevated levels of NOX and SOX deposition due to human activity can cause chemical changes in terrestrial and freshwater ecosystems, which may adversely affect biota. Reduced pH is a chemical change that may be caused by elevated deposition; survival is an example of a biological response to chemical changes. Although amphibians have historically been considered relatively tolerant to acidification, most studies have focused on phytoplankton, invertebrates and fish. The goal of this study is to compare ecotoxicological dose-response relationships for amphibians and fish in the freshwater acidification literature from the 1970s to the present. Our data sources were references from the U.S. EPA's 2008 Integrated Science Assessment for Oxides of Nitrogen and Sulfur - Ecological Criteria, references from the Baker et al. 1990 report "Biological effects of changes in surface water acid-base chemistry", and keyword searches in Web of Science limited to 1990 to 2016 to include more recent studies. Fish comprised nearly 50% of the 54 identified species or groupings for which acidification effects are available, and amphibians comprised about 12% of them. Initial data suggest the most common dose-response relationship among commonly studied fish and amphibians was pH versus survival. Amphibians (Lithobates sylvaticus and Ambystoma maculatum) appear more tolerant to acidification than fish (Salmo salar and Salvelinus fontinalis). Although this observation is solely based on the pH versus survival dose-response relationships, other factors may also contribute to differences in tolerance to acidification between amphibians and fish. The views expressed in this abstract are those of the authors and do not necessarily represent the views or policies of the U.S. EPA.

  9. Effect of N-acetylcysteine administration on homocysteine level, oxidative damage to proteins, and levels of iron (Fe) and Fe-related proteins in lead-exposed workers.

    PubMed

    Kasperczyk, Sławomir; Dobrakowski, Michał; Kasperczyk, Aleksandra; Romuk, Ewa; Rykaczewska-Czerwińska, Monika; Pawlas, Natalia; Birkner, Ewa

    2016-09-01

    N-Acetylcysteine (NAC) could be included in protocols designed for the treatment of lead toxicity. Therefore, in this study, we decided to investigate the influence of NAC administration on homocysteine (Hcy) levels, oxidative damage to proteins, and the levels of iron (Fe), transferrin (TRF), and haptoglobin (HPG) in lead (Pb)-exposed workers. The examined population (n = 171) was composed of male employees who worked with Pb. They were randomized into four groups. Workers who were not administered any antioxidants, drugs, vitamins, or dietary supplements were classified as the reference group (n = 49). The remaining three groups consisted of workers who were treated orally with NAC at three different doses (1 × 200, 2 × 200, or 2 × 400 mg) for 12 weeks. After the treatment, blood Pb levels significantly decreased in the groups receiving NAC compared with the reference group. The protein concentration was not affected by NAC administration. In contrast, Hcy levels significantly decreased or showed a strong tendency toward lower values depending on the NAC dose. Levels of the protein carbonyl groups were significantly decreased in all of the groups receiving NAC. Conversely, glutamate dehydrogenase activity was significantly elevated in all of the groups receiving NAC, while the level of protein thiol groups was significantly elevated only in the group receiving 200 mg of NAC. Treatment with NAC did not significantly affect Fe and TRF levels, whereas HPG levels showed a tendency toward lower values. Treatment with NAC normalized the level of Hcy and decreased oxidative stress as measured by the protein carbonyl content; this effect occurred in a dose-dependent manner. Moreover, small doses of NAC elevated the levels of protein thiol groups. Therefore, NAC could be introduced as an alternative therapy for chronic Pb toxicity in humans. © The Author(s) 2015.

  10. Assessment of impact of urbanisation on background radiation exposure and human health risk estimation in Kuala Lumpur, Malaysia.

    PubMed

    Sanusi, M S M; Ramli, A T; Hassan, W M S W; Lee, M H; Izham, A; Said, M N; Wagiran, H; Heryanshah, A

    2017-07-01

    Kuala Lumpur has been undergoing rapid urbanisation process, mainly in infrastructure development. The opening of new township and residential in former tin mining areas, particularly in the heavy mineral- or tin-bearing alluvial soil in Kuala Lumpur, is a contentious subject in land-use regulation. Construction practices, i.e. reclamation and dredging in these areas are potential to enhance the radioactivity levels of soil and subsequently, increase the existing background gamma radiation levels. This situation is worsened with the utilisation of tin tailings as construction materials apart from unavoidable soil pollutions due to naturally occurring radioactive materials in construction materials, e.g. granitic aggregate, cement and red clay brick. This study was conducted to assess the urbanisation impacts on background gamma radiation in Kuala Lumpur. The study found that the mean value of measured dose rate was 251±6nGyh -1 (156-392nGyh -1 ) and 4 times higher than the world average value. High radioactivity levels of 238 U (95±12Bqkg -1 ), 232 Th (191±23Bqkg -1 ,) and 40 K (727±130Bqkg -1 ) in soil were identified as the major source of high radiation exposure. Based on statistical ANOVA, t-test, and analyses of cumulative probability distribution, this study has statistically verified the dose enhancements in the background radiation. The effective dose was estimated to be 0.31±0.01mSvy -1 per man. The recommended ICRP reference level (1-20mSvy -1 ) is applicable to the involved existing exposure situation in this study. The estimated effective dose in this study is lower than the ICRP reference level and too low to cause deterministic radiation effects. Nevertheless based on estimations of lifetime radiation exposure risks, this study found that there was small probability for individual in Kuala Lumpur being diagnosed with cancer and dying of cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. PROPOSALS FOR THE ESTABLISHMENT OF NATIONAL DIAGNOSTIC REFERENCE LEVELS FOR RADIOGRAPHY FOR ADULT PATIENTS BASED ON REGIONAL DOSE SURVEYS IN RUSSIAN FEDERATION.

    PubMed

    Vodovatov, A V; Balonov, M I; Golikov, V Yu; Shatsky, I G; Chipiga, L A; Bernhardsson, C

    2017-04-01

    In 2009-2014, dose surveys aimed to collect adult patient data and parameters of most common radiographic examinations were performed in six Russian regions. Typical patient doses were estimated for the selected examinations both in entrance surface dose and in effective dose. 75%-percentiles of typical patient effective dose distributions were proposed as preliminary regional diagnostic reference levels (DRLs) for radiography. Differences between the 75%-percentiles of regional typical patient dose distributions did not exceed 30-50% for the examinations with standardized clinical protocols (skull, chest and thoracic spine) and a factor of 1.5 for other examinations. Two different approaches for establishing national DRLs were evaluated: as a 75%-percentile of a pooled regional sample of patient typical doses (pooled method) and as a median of 75%-percentiles of regional typical patient dose distributions (median method). Differences between pooled and median methods for effective dose did not exceed 20%. It was proposed to establish Russian national DRLs in effective dose using a pooled method. In addition, the local authorities were granted an opportunity to establish regional DRLs if the local radiological practice and typical patient dose distributions are significantly different. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Medical management of ectopic pregnancy with single-dose and 2-dose methotrexate protocols: human chorionic gonadotropin trends and patient outcomes.

    PubMed

    Mergenthal, Michelle C; Senapati, Suneeta; Zee, Jarcy; Allen-Taylor, Lynne; Whittaker, Paul G; Takacs, Peter; Sammel, Mary D; Barnhart, Kurt T

    2016-11-01

    Ectopic pregnancy, although rare, is an important cause of female morbidity and mortality and early, effective treatment is critical. Systemic methotrexate has become widely accepted as a safe and effective alternative to surgery in the stable patient. As the number and timing of methotrexate doses differ in the 3 main medical treatment regimens, one might expect trends in serum human chorionic gonadotropin and time to resolution to vary depending on protocol. Furthermore, human chorionic gonadotropin trends and time to resolution may predict ultimate treatment success. This study hypothesized that the 2-dose methotrexate protocol would be associated with a faster initial decline in serum human chorionic gonadotropin levels and a shorter time to resolution compared to the single-dose protocol. A prospective multicenter cohort study included clinical data from women who received medical management for ectopic pregnancy. Rates of human chorionic gonadotropin change and successful pregnancy resolution were assessed. Propensity score modeling addressed confounding by indication, the potential for differential assignment of patients with better prognosis to the single-dose methotrexate protocol. In all, 162 ectopic pregnancies were in the final analysis; 114 (70%) were treated with the single-dose methotrexate and 48 (30%) with the 2-dose protocol. Site, race, ethnicity, and reported pain level were associated with differential protocol allocation (P < .001, P = .011, P < .001, and P = .035, respectively). Women had similar initial human chorionic gonadotropin levels in either protocol but the mean rate of decline of human chorionic gonadotropin from day 0 (day of administration of first dose of methotrexate) to day 7 was significantly more rapid in women who received the single-dose protocol compared to those treated with the 2-dose protocol (mean change -31.3% vs -10.4%, P = .037, adjusted for propensity score and site). The 2 protocols had no significant differences in success rate or time to resolution. In a racially and geographically diverse group of women, the single- and double-dose methotrexate protocols had comparable outcomes. The more rapid human chorionic gonadotropin initial decline in the single-dose group suggested these patients were probably at lower risk for ectopic rupture than those getting the 2-dose protocol. A prospective randomized controlled design is needed to remove confounding by indication. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. In vitro dermal absorption of pyrethroid pesticides in human and rat skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Michael F., E-mail: hughes.michaelf@epa.go; Edwards, Brenda C.

    2010-07-15

    Dermal exposure to pyrethroid pesticides can occur during manufacture and application. This study examined the in vitro dermal absorption of pyrethroids using rat and human skin. Dermatomed skin from adult male Long Evans rats or human cadavers was mounted in flow-through diffusion cells, and radiolabeled bifenthrin, deltamethrin or cis-permethrin was applied in acetone to the skin. Fractions of receptor fluid were collected every 4 h. At 24 h, the skins were washed with soap and water to remove unabsorbed chemical. The skin was then solubilized. Two additional experiments were performed after washing the skin; the first was tape-stripping the skinmore » and the second was the collection of receptor fluid for an additional 24 h. Receptor fluid, skin washes, tape strips and skin were analyzed for radioactivity. For rat skin, the wash removed 53-71% of the dose and 26-43% remained in the skin. The cumulative percentage of the dose at 24 h in the receptor fluid ranged from 1 to 5%. For human skin, the wash removed 71-83% of the dose and 14-25% remained in the skin. The cumulative percentage of the dose at 24 h in the receptor fluid was 1-2%. Tape-stripping removed 50-56% and 79-95% of the dose in rat and human skin, respectively, after the wash. From 24-48 h, 1-3% and about 1% of the dose diffused into the receptor fluid of rat and human skin, respectively. The pyrethroids bifenthrin, deltamethrin and cis-permethrin penetrated rat and human skin following dermal application in vitro. However, a skin wash removed 50% or more of the dose from rat and human skin. Rat skin was more permeable to the pyrethroids than human skin. Of the dose in skin, 50% or more was removed by tape-stripping, suggesting that permeation of pyrethroids into viable tissue could be impeded. The percentage of the dose absorbed into the receptor fluid was considerably less than the dose in rat and human skin. Therefore, consideration of the skin type used and fractions analyzed are important when using in vitro dermal absorption data for risk assessment.« less

  14. Dose-Dependent Model of Caffeine Effects on Human Vigilance during Total Sleep Deprivation

    DTIC Science & Technology

    2014-05-20

    does not consider the absorption of caffeine . This is a reasonable approximation for caffeine when ingested via coffee , tea, energy drinks, and most...Dose-dependent model of caffeine effects on human vigilance during total sleep deprivation Sridhar Ramakrishnan a, Srinivas Laxminarayan a, Nancy J...We modeled the dose-dependent effects of caffeine on human vigilance. The model predicted the effects of both single and repeated caffeine doses

  15. Comparison of potential risks of lactic acidosis induction by biguanides in rats.

    PubMed

    Bando, Kiyoko; Ochiai, Shoko; Kunimatsu, Takeshi; Deguchi, Jiro; Kimura, Juki; Funabashi, Hitoshi; Seki, Takaki

    2010-10-01

    Lactic acidosis has been considered to be a side effect of some biguanides, after phenformin was withdrawn from the market because of its association with lactic acidosis. The potential of lactic acidosis induced by biguanides at human therapeutic exposure levels, however, has not been examined. Then, we compared the risk of lactic acid at doses providing exposure levels comparable to human therapeutic doses. Metformin and phenformin were orally administered to rats for up to 28 days, and plasma drug concentrations and blood lactic acid levels were examined. Metformin did not elevate lactic acid levels at the dose corresponding to higher systemic drug exposure than human therapeutic level, even for repeated doses. In contrast, phenformin elevated lactic acid levels at the dose corresponding to lower exposure than human therapeutic level, and sustained high levels were observed up to 24h post-dose; furthermore, these changes were enhanced by repeated doses. Direct comparison at each rat equivalent dose clearly indicated that lactic acid levels of phenformin were higher than those of metformin. These non-clinical findings suggest that metformin dose not increase lactic acid levels like phenformin does, and therefore may not increase the risk for lactic acidosis at human therapeutic exposure level. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  16. Proof of mechanism study of a novel serotonin transporter blocker, DA-8031, using [11C]DASB positron emission tomography and in vivo microdialysis.

    PubMed

    Park, Hyun Soo; Jung, In Soon; Lim, Nam Hee; Sung, Ji Hyun; Lee, Sukhyang; Moon, Byung Seok; Lee, Byung Chul; Kang, Kyung Koo; Kim, Sang Eun

    2014-07-01

    To investigate the efficacy of DA-8031, a novel compound for the treatment of premature ejaculation, we measured serotonin transporter (SERT) occupancy by DA-8031, as well as DA-8031-induced changes in extracellular serotonin levels, in the rat brain using positron emission tomography (PET) and 11C-N,N-dimethyl-2-(2-amino-4-cyanophenylthio) benzylamine ([11C]DASB) and in vivo microdialysis, respectively. [11C]DASB PET scans were performed in rats with graded doses of DA-8031 (vehicle: 10, 30, and 100 mg/kg). SERT occupancy in the midbrain was determined using binding potentials for [11C]DASB calculated by the multilinear reference tissue model. Extracellular serotonin levels were monitored in the dorsal raphe nucleus of rats after the administration of DA-8031 (10-100 mg/kg) using in vivo microdialysis. PET data indicated a reduction of [11C]DASB binding to SERTs in the midbrain as a function of DA-8031 dose. SERT occupancy for each DA-8031 dose (10-100 mg/kg) ranged between 31% and 84%. The drug dose required for 50% occupancy of SERT was 13.5 mg/kg in the midbrain, comparable with previous preclinical behavioral data (∼10-30 mg/kg). In vivo microdialysis showed that DA-8031 produced a dose-dependent increase in extracellular serotonin levels in the dorsal raphe nucleus (33%-81% increase for doses of 10-100 mg/kg). These preclinical data provide a proof of mechanism for DA-8031 as a novel compound of targeting the SERT for the treatment of premature ejaculation, warranting further clinical trials. They also offer insight into the optimal drug dose needed to exert therapeutic effects while minimizing adverse effects in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Estimating Toxicity Pathway Activating Doses for High Throughput Chemical Risk Assessments

    EPA Science Inventory

    Estimating a Toxicity Pathway Activating Dose (TPAD) from in vitro assays as an analog to a reference dose (RfD) derived from in vivo toxicity tests would facilitate high throughput risk assessments of thousands of data-poor environmental chemicals. Estimating a TPAD requires def...

  18. The estimation of absorbed dose rates for non-human biota : an extended inter-comparison.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batlle, J. V. I.; Beaugelin-Seiller, K.; Beresford, N. A.

    An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of {+-}20%. Themore » variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.« less

  19. The role of a microDiamond detector in the dosimetry of proton pencil beams.

    PubMed

    Gomà, Carles; Marinelli, Marco; Safai, Sairos; Verona-Rinati, Gianluca; Würfel, Jan

    2016-03-01

    In this work, the performance of a microDiamond detector in a scanned proton beam is studied and its potential role in the dosimetric characterization of proton pencil beams is assessed. The linearity of the detector response with the absorbed dose and the dependence on the dose-rate were tested. The depth-dose curve and the lateral dose profiles of a proton pencil beam were measured and compared to reference data. The feasibility of calibrating the beam monitor chamber with a microDiamond detector was also studied. It was found the detector reading is linear with the absorbed dose to water (down to few cGy) and the detector response is independent of both the dose-rate (up to few Gy/s) and the proton beam energy (within the whole clinically-relevant energy range). The detector showed a good performance in depth-dose curve and lateral dose profile measurements; and it might even be used to calibrate the beam monitor chambers-provided it is cross-calibrated against a reference ionization chamber. In conclusion, the microDiamond detector was proved capable of performing an accurate dosimetric characterization of proton pencil beams. Copyright © 2015. Published by Elsevier GmbH.

  20. An EGSnrc Monte Carlo study of the microionization chamber for reference dosimetry of narrow irregular IMRT beamlets.

    PubMed

    Capote, Roberto; Sánchez-Doblado, Francisco; Leal, Antonio; Lagares, Juan Ignacio; Arráns, Rafael; Hartmann, Günther H

    2004-09-01

    Intensity modulated radiation therapy (IMRT) has evolved toward the use of many small radiation fields, or "beamlets," to increase the resolution of the intensity map. The size of smaller beamlets can be typically about 1-5 cm2. Therefore small ionization chambers (IC) with sensitive volumes < or = 0.1 cm3 are generally used for dose verification of IMRT treatment. The dosimetry of these narrow photon beams pertains to the so-called nonreference conditions for beam calibration. The use of ion chambers for such narrow beams remains questionable due to the lack of electron equilibrium in most of the field. The present contribution aims to estimate, by the Monte Carlo (MC) method, the total correction needed to convert the IBA-Wellhöfer NAC007 micro IC measured charge in such radiation field to the absolute dose to water. Detailed geometrical simulation of the microionization chamber was performed. The ion chamber was always positioned at a 10 cm depth in water, parallel to the beam axis. The delivered doses to air and water cavity were calculated using the CAVRZ EGSnrc user code. The 6 MV phase-spaces for Primus Clinac (Siemens) used as an input to the CAVRZnrc code were derived by BEAM/EGS4 modeling of the treatment head of the machine along with the multileaf collimator [Sánchez-Doblado et al., Phys. Med. Biol. 48, 2081-2099 (2003)] and contrasted with experimental measurements. Dose calculations were carried out for two irradiation geometries, namely, the reference 10x10 cm2 field and an irregular (approximately 2x2 cm2) IMRT beamlet. The dose measured by the ion chamber is estimated by MC simulation as a dose averaged over the air cavity inside the ion-chamber (Dair). The absorbed dose to water is derived as the dose deposited inside the same volume, in the same geometrical position, filled and surrounded by water (Dwater) in the absence of the ionization chamber. Therefore, the Dwater/Dair dose ratio is a MC direct estimation of the total correction factor needed to convert the absorbed dose in air to absorbed dose to water. The dose ratio was calculated for several chamber positions, starting from the penumbra region around the beamlet along the two diagonals crossing the radiation field. For this quantity from 0 up to a 3% difference is observed between the dose ratio values obtained within the small irregular IMRT beamlet in comparison with the dose ratio derived for the reference 10x10 cm2 field. Greater differences from the reference value up to 9% were obtained in the penumbra region of the small IMRT beamlet.

  1. Occurrence, sources and human exposure assessment of SCCPs in indoor dust of northeast China.

    PubMed

    Liu, Li-Hua; Ma, Wan-Li; Liu, Li-Yan; Huo, Chun-Yan; Li, Wen-Long; Gao, Chong-Jing; Li, Hai-Ling; Li, Yi-Fan; Chan, Hing Man

    2017-06-01

    Short-chain chlorinated paraffins (SCCPs) are widely used chemicals in household products and might cause adverse human health effects. However, limited information is available on the occurrence of SCCPs in indoor environments and their exposure risks on humans. In this study the concentrations, profiles and human exposure of SCCPs in indoor dust from five different indoor environments, including commercial stores, residential apartments, dormitories, offices and laboratories were characterized. The SCCPs levels ranged from 10.1 to 173.0 μg/g, with the median and mean concentration of 47.2 and 53.6 μg/g, respectively. No significant difference was found on concentrations among the five microenvironments. The most abundant compounds in indoor dust samples were homologues of C 13 group, Cl 7 group and N 20 (N is the total number of C and Cl) group. In the five microenvironments, commercial stores were more frequently exposed to shorter carbon chained and higher chlorinated homologues. Three potential sources for SCCPs were identified by the multiple linear regression of factor score model and correspondence analysis. The major sources of SCCPs in indoor dust were technical mixtures of CP-42 (42% chlorine, w/w) and CP-52 b (52% chlorine, w/w). The total daily exposure doses and hazard quotients (HQ) were calculated by the human exposure models, and they were all below the reference doses and threshold values, respectively. Monte Carlo simulation was applied to predict the human exposure risk of SCCPs. Infants and toddlers were at risk of SCCPs based on predicted HQ values, which were exceeded the threshold for neoplastic effects in the worst case. Our results on the occurrences, sources and human exposures of SCCPs will be useful to provide a better understanding of SCCPs behaviors in indoor environment in China, and to support environmental risk evaluation and regulation of SCCPs in the world. Copyright © 2017. Published by Elsevier Ltd.

  2. Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses

    PubMed Central

    Colborn, Theo; Hayes, Tyrone B.; Heindel, Jerrold J.; Jacobs, David R.; Lee, Duk-Hee; Shioda, Toshi; Soto, Ana M.; vom Saal, Frederick S.; Welshons, Wade V.; Zoeller, R. Thomas

    2012-01-01

    For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of “the dose makes the poison,” because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health. PMID:22419778

  3. National reference doses for dental cephalometric radiography.

    PubMed

    Holroyd, J R

    2011-12-01

    Diagnostic reference levels (DRLs) are an important tool in the optimisation of clinical radiography. Although national DRLs are provided for many diagnostic procedures including dental intra-oral radiography, there are currently no national DRLs set for cephalometric radiography. In the absence of formal national DRLs, the Health Protection Agency (HPA) has previously published National Reference Doses (NRDs) covering a wide range of diagnostic X-ray examinations. The aim of this study was to determine provisional NRDs for cephalometric radiography. Measurements made by the Dental X-ray Protection Service (DXPS) of the HPA, as part of the cephalometric X-ray equipment testing service provided to dentists and dental trade companies throughout the UK, were used to derive provisional NRDs. Dose-area product measurements were made on 42 X-ray sets. Third quartile dose-area product values for adult and child lateral cephalometric radiography were found to be 41 mGy cm² and 25 mGy cm², respectively, with individual measurements ranging from 3 mGy cm² to 108 mGy cm². This report proposes provisional NRDs of 40 mGy cm² and 25 mGy cm² for adult and child lateral cephalometric radiographs, respectively; these doses could be considered by employers when establishing their local DRLs.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, Gabriel A., E-mail: gabriel.knudsen@nih.gov; Hughes, Michael F.; McIntosh, Katelyn L.

    Tetrabromobisphenol A (TBBPA) is currently the world's highest production volume brominated flame retardant. Humans are frequently exposed to TBBPA by the dermal route. In the present study, a parallelogram approach was used to make predictions of internal dose in exposed humans. Human and rat skin samples received 100 nmol of TBBPA/cm{sup 2} skin and absorption and penetrance were determined using a flow-through in vitro system. TBBPA-derived [{sup 14}C]-radioactivity was determined at 6 h intervals in the media and at 24 h post-dosing in the skin. The human skin and media contained an average of 3.4% and 0.2% of the totalmore » dose at the terminal time point, respectively, while the rat skin and media contained 9.3% and 3.5%, respectively. In the intact rat, 14% of a dermally-administered dose of ~ 100 nmol/cm{sup 2} remained in the skin at the dosing site, with an additional 8% reaching systemic circulation by 24 h post-dosing. Relative absorption and penetrance were less (10% total) at 24 h following dermal administration of a ten-fold higher dose (~ 1000 nmol/cm{sup 2}) to rats. However, by 72 h, 70% of this dose was either absorbed into the dosing-site skin or had reached systemic circulation. It is clear from these results that TBBPA can be absorbed by the skin and dermal contact with TBBPA may represent a small but important route of exposure. Together, these in vitro data in human and rat skin and in vivo data from rats may be used to predict TBBPA absorption in humans following dermal exposure. Based on this parallelogram calculation, up to 6% of dermally applied TBBPA may be bioavailable to humans exposed to TBBPA. - Highlights: • Tetrabromobisphenol A is the brominated flame retardant with highest global production volumes. • Humans are frequently exposed to TBBPA by the dermal route, especially via contaminated dust. • Human and rat skin data were integrated using a parallelogram method to predict human absorption. • TBBPA was dermally absorbed and skin contact may represent a small but important route of exposure. • Up to 6% of dermally applied TBBPA may be bioavailable to humans exposed to TBBPA.« less

  5. Organ doses for reference pediatric and adolescent patients undergoing computed tomography estimated by Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel J.

    Purpose: To establish an organ dose database for pediatric and adolescent reference individuals undergoing computed tomography (CT) examinations by using Monte Carlo simulation. The data will permit rapid estimates of organ and effective doses for patients of different age, gender, examination type, and CT scanner model. Methods: The Monte Carlo simulation model of a Siemens Sensation 16 CT scanner previously published was employed as a base CT scanner model. A set of absorbed doses for 33 organs/tissues normalized to the product of 100 mAs and CTDI{sub vol} (mGy/100 mAs mGy) was established by coupling the CT scanner model with age-dependentmore » reference pediatric hybrid phantoms. A series of single axial scans from the top of head to the feet of the phantoms was performed at a slice thickness of 10 mm, and at tube potentials of 80, 100, and 120 kVp. Using the established CTDI{sub vol}- and 100 mAs-normalized dose matrix, organ doses for different pediatric phantoms undergoing head, chest, abdomen-pelvis, and chest-abdomen-pelvis (CAP) scans with the Siemens Sensation 16 scanner were estimated and analyzed. The results were then compared with the values obtained from three independent published methods: CT-Expo software, organ dose for abdominal CT scan derived empirically from patient abdominal circumference, and effective dose per dose-length product (DLP). Results: Organ and effective doses were calculated and normalized to 100 mAs and CTDI{sub vol} for different CT examinations. At the same technical setting, dose to the organs, which were entirely included in the CT beam coverage, were higher by from 40 to 80% for newborn phantoms compared to those of 15-year phantoms. An increase of tube potential from 80 to 120 kVp resulted in 2.5-2.9-fold greater brain dose for head scans. The results from this study were compared with three different published studies and/or techniques. First, organ doses were compared to those given by CT-Expo which revealed dose differences up to several-fold when organs were partially included in the scan coverage. Second, selected organ doses from our calculations agreed to within 20% of values derived from empirical formulae based upon measured patient abdominal circumference. Third, the existing DLP-to-effective dose conversion coefficients tended to be smaller than values given in the present study for all examinations except head scans. Conclusions: A comprehensive organ/effective dose database was established to readily calculate doses for given patients undergoing different CT examinations. The comparisons of our results with the existing studies highlight that use of hybrid phantoms with realistic anatomy is important to improve the accuracy of CT organ dosimetry. The comprehensive pediatric dose data developed here are the first organ-specific pediatric CT scan database based on the realistic pediatric hybrid phantoms which are compliant with the reference data from the International Commission on Radiological Protection (ICRP). The organ dose database is being coupled with an adult organ dose database recently published as part of the development of a user-friendly computer program enabling rapid estimates of organ and effective dose doses for patients of any age, gender, examination types, and CT scanner model.« less

  6. Fructo-oligosaccharide effects on blood glucose: an overview.

    PubMed

    Costa, Graciana Teixeira; Guimarães, Sergio Botelho; Sampaio, Helena Alves de Carvalho

    2012-03-01

    To identify the current status of scientific knowledge in fructo-oligosaccharides (FOS), non-conventional sugars that play an important role in glycemia control. We performed a search for scientific articles in MEDLINE and LILACS databases, from January 1962 to December 2011, using English/Portuguese key words: "blood glucose/glicemia", "prebiotics/prebióticos" and "dietary fiber/fibras na dieta". From an initial number of 434 references, some repeated, 43 references published from 1962 to 2011 were included in this study. The selected texts were distributed in three topics: (1) metabolism of FOS, (2) FOS and experimental studies involving glucose and (3) human studies involving glucose and FOS. Five studies have shown that the use of FOS reduces the fecal content and increases intestinal transit time. Experimental studies have shown that dietary supplementation with high doses (60 g/Kg) of propionate, a short-chain fatty acid decreased glycemia. The use of lower doses (3 g/kg) did not produce the same results. Study in subjects with diabetes type II showed that the addition of 8 grams of FOS in the diet for 14 days, caused a reduction in serum glucose. In another study with healthy subjects, there were no changes in glycemic control. This review demonstrates that consumption of FOS has a beneficial influence on glucose metabolism. The controversies appear to be due to inadequate methodological designs and/or the small number of individuals included in some studies.

  7. Development and validation of an UHPLC-MS/MS method for β2-agonists quantification in human urine and application to clinical samples.

    PubMed

    Bozzolino, Cristina; Leporati, Marta; Gani, Federica; Ferrero, Cinzia; Vincenti, Marco

    2018-02-20

    A fast analytical method for the simultaneous detection of 24 β 2 -agonists in human urine was developed and validated. The method covers the therapeutic drugs most commonly administered, but also potentially abused β 2 -agonists. The procedure is based on enzymatic deconjugation with β-glucuronidase followed by SPE clean up using mixed-phase cartridges with both ion-exchange and lipophilic properties. Instrumental analysis conducted by UHPLC-MS/MS allowed high peak resolution and rapid chromatographic separation, with reduced time and costs. The method was fully validated according ISO 17025:2005 principles. The following parameters were determined for each analyte: specificity, selectivity, linearity, limit of detection, limit of quantification, precision, accuracy, matrix effect, recovery and carry-over. The method was tested on real samples obtained from patients subjected to clinical treatment under chronic or acute therapy with either formoterol, indacaterol, salbutamol, or salmeterol. The drugs were administered using pressurized metered dose inhalers. All β 2 -agonists administered to the patients were detected in the real samples. The method proved adequate to accurately measure the concentration of these analytes in the real samples. The observed analytical data are discussed with reference to the administered dose and the duration of the therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A PC-based software test for measuring alcohol and drug effects in human subjects.

    PubMed

    Mills, K C; Parkman, K M; Spruill, S E

    1996-12-01

    A new software-based visual search and divided-attention test of cognitive performance was developed and evaluated in an alcohol dose-response study with 24 human subjects aged 21-62 years. The test used language-free, color, graphic displays to represent the visuospatial demands of driving. Cognitive demands were increased over previous hardware-based tests, and the motor skills required for the test involved minimal eye movements and eye-hand coordination. Repeated performance on the test was evaluated with a latin-square design by using a placebo and two alcohol doses, low (0.48 g/kg/LBM) and moderate (0.72 g/kg/LBM). The data on 7 females and 17 males yielded significant falling and rising impairment effects coincident with moderate rising and falling breath alcohol levels (mean peak BrALs = 0.045 g/dl and 0.079 g/dl). None of the subjects reported eye-strain or psychomotor fatigue as compared with previous tests. The high sensitivity/variance relative to use in basic and applied research, and worksite fitness-for-duty testing, was discussed. The most distinct advantage of a software-based test that operates on readily available PCs is that it can be widely distributed to researchers with a common reference to compare a variety of alcohol and drug effects.

  9. SU-E-T-549: A Combinatorial Optimization Approach to Treatment Planning with Non-Uniform Fractions in Intensity Modulated Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papp, D; Unkelbach, J

    2014-06-01

    Purpose: Non-uniform fractionation, i.e. delivering distinct dose distributions in two subsequent fractions, can potentially improve outcomes by increasing biological dose to the target without increasing dose to healthy tissues. This is possible if both fractions deliver a similar dose to normal tissues (exploit the fractionation effect) but high single fraction doses to subvolumes of the target (hypofractionation). Optimization of such treatment plans can be formulated using biological equivalent dose (BED), but leads to intractable nonconvex optimization problems. We introduce a novel optimization approach to address this challenge. Methods: We first optimize a reference IMPT plan using standard techniques that deliversmore » a homogeneous target dose in both fractions. The method then divides the pencil beams into two sets, which are assigned to either fraction one or fraction two. The total intensity of each pencil beam, and therefore the physical dose, remains unchanged compared to the reference plan. The objectives are to maximize the mean BED in the target and to minimize the mean BED in normal tissues, which is a quadratic function of the pencil beam weights. The optimal reassignment of pencil beams to one of the two fractions is formulated as a binary quadratic optimization problem. A near-optimal solution to this problem can be obtained by convex relaxation and randomized rounding. Results: The method is demonstrated for a large arteriovenous malformation (AVM) case treated in two fractions. The algorithm yields a treatment plan, which delivers a high dose to parts of the AVM in one of the fractions, but similar doses in both fractions to the normal brain tissue adjacent to the AVM. Using the approach, the mean BED in the target was increased by approximately 10% compared to what would have been possible with a uniform reference plan for the same normal tissue mean BED.« less

  10. Fiber-Coupled, Time-Gated { {Al}}_{2}{ {O}}_{3} : { {C}} Radioluminescence Dosimetry Technique and Algorithm for Radiation Therapy With LINACs

    NASA Astrophysics Data System (ADS)

    Magne, Sylvain; Deloule, Sybelle; Ostrowsky, Aimé; Ferdinand, Pierre

    2013-08-01

    An original algorithm for real-time In Vivo Dosimetry (IVD) based on Radioluminescence (RL) of dosimetric-grade Al2O3:C crystals is described and demonstrated in reference conditions with 12-MV photon beams from a Saturne 43 linear accelerator (LINAC), simulating External Beam Radiation Therapy (EBRT) treatments. During the course of irradiation, a portion of electrons is trapped within the Al2O3:C crystal while another portion recombines and generates RL, recorded on-line using an optical fiber. The RL sensitivity is dose-dependent and increases in accordance with the concentration of trapped electrons. Once irradiation is completed, the Al2O3:C crystal is reset by laser light (reusable) and the resultant OSL (Optically Stimulated Luminescence) is also collected back by the remote RL-OSL reader and finally integrated to yield the absorbed dose. During irradiation, scintillation and Cerenkov lights generated within the optical fiber (“stem effect”) are removed by a time-discrimination method involving a discriminating unit and a fiber-coupled BGO scintillator placed in the irradiation room, next to the LINAC. The RL signals were then calibrated with respect to reference dose and dose rate data using an ionization chamber (IC). The algorithm relies upon the integral of the RL and provides the accumulated dose (useful to the medical physicist) at any time during irradiation, the dose rate being derived afterwards. It is tested with both step and arbitrary dose rate profiles, manually operated from the LINAC control desk. The doses measured by RL and OSL are both compared to reference doses and deviations are about ±2% and ±1% respectively, thus demonstrating the reliability of the algorithm for arbitrary profiles and wide range of dose rates. Although the calculation was done off-line, it is amenable to real-time processing during irradiation.

  11. Role of N-acetyltransferase 2 acetylation polymorphism in 4, 4'-methylene bis (2-chloroaniline) biotransformation.

    PubMed

    Hein, David W; Zhang, Xiaoyan; Doll, Mark A

    2018-02-01

    Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) catalyze the acetylation of arylamine carcinogens. Single nucleotide polymorphisms in the NAT2 coding exon present in NAT2 haplotypes encode allozymes with reduced N-acetyltransferase activity towards the N-acetylation of arylamine carcinogens and the O-acetylation of their N-hydroxylated metabolites. NAT2 acetylator phenotype modifies urinary bladder cancer risk following exposures to arylamine carcinogens such as 4-aminobiphenyl. 4, 4'-methylene bis (2-chloroaniline) (MOCA) is a Group 1 carcinogen for which a role of the NAT2 acetylation polymorphism on cancer risk is unknown. We investigated the role of NAT2 and the genetic acetylation polymorphism on both MOCA N-acetylation and N-hydroxy-MOCA O-acetylation. MOCA N-acetylation exhibited a robust gene dose response in rabbit liver cytosol and in cryopreserved human hepatocytes derived from individuals of rapid, intermediate and slow acetylator NAT2 genotype. MOCA exhibited about 4-fold higher affinity for recombinant human NAT2 than NAT1. Recombinant human NAT2*4 (reference) and 15 variant recombinant human NAT2 allozymes catalyzed both the N-acetylation of MOCA and the O-acetylation of N-hydroxy-MOCA. Human NAT2 5, NAT2 6, NAT2 7 and NAT2 14 allozymes catalyzed MOCA N-acetylation and N-hydroxy-O-acetylation at rates much lower than the reference NAT2 4 allozyme. In conclusion, our results show that NAT2 acetylator genotype has an important role in MOCA metabolism and suggest that risk assessments related to MOCA exposures consider accounting for NAT2 acetylator phenotype in the analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. International Atomic Energy Agency study with referring physicians on patient radiation exposure and its tracking: a prospective survey using a web-based questionnaire

    PubMed Central

    Rehani, Madan M; Berris, Theocharis

    2012-01-01

    Objectives To assess the following themes among referring physicians: (A) importance of acquiring information about previous diagnostic exposures; (B) knowledge about radiation doses involved, familiarity with radiation units and, age-related radiosensitivity; (C) opinion on whether patients should be provided information about radiation dose and (D) self-assessment of appropriateness of referrals. Design A prospective survey using a web-based questionnaire. Setting International survey among referring physicians. Participants Referring physicians from 28 countries. Main outcome measures Knowledge, opinion and practice of the four themes of the survey. Results All 728 responses from 28 countries (52.3% from developed and 47.7% from developing countries) indicated that while the vast majority (71.7%) of physicians feel that being aware of history of CT scans would always or mostly lead them to a better decision on referring patients for CT scans, only 43.4% often enquire about it. The majority of referring physicians (60.5%) stated that having a system that provides quick information about patient exposure history would be useful. The knowledge about radiation doses involved is poor, as only one-third (34.7%) of respondents chose the correct option of the number of chest x-rays with equivalence of a CT scan. In total, 70.9% of physicians stated that they do not feel uncomfortable when patients ask about radiation risk from CT scans they prescribe. Most physicians (85.6%) assessed that they have rarely prescribed CT scans of no clinical use in patient management. Conclusions This first ever multinational survey among referring physicians from 28 countries indicates support for a system that provides radiation exposure history of the patient, demonstrates poor knowledge about radiation doses, supports radiation risk communication with patients and mandatory provisions for justification of a CT examination. PMID:22997065

  13. Radiological assessment. A textbook on environmental dose analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Till, J.E.; Meyer, H.R.

    1983-09-01

    Radiological assessment is the quantitative process of estimating the consequences to humans resulting from the release of radionuclides to the biosphere. It is a multidisciplinary subject requiring the expertise of a number of individuals in order to predict source terms, describe environmental transport, calculate internal and external dose, and extrapolate dose to health effects. Up to this time there has been available no comprehensive book describing, on a uniform and comprehensive level, the techniques and models used in radiological assessment. Radiological Assessment is based on material presented at the 1980 Health Physics Society Summer School held in Seattle, Washington. Themore » material has been expanded and edited to make it comprehensive in scope and useful as a text. Topics covered include (1) source terms for nuclear facilities and Medical and Industrial sites; (2) transport of radionuclides in the atmosphere; (3) transport of radionuclides in surface waters; (4) transport of radionuclides in groundwater; (5) terrestrial and aquatic food chain pathways; (6) reference man; a system for internal dose calculations; (7) internal dosimetry; (8) external dosimetry; (9) models for special-case radionuclides; (10) calculation of health effects in irradiated populations; (11) evaluation of uncertainties in environmental radiological assessment models; (12) regulatory standards for environmental releases of radionuclides; (13) development of computer codes for radiological assessment; and (14) assessment of accidental releases of radionuclides.« less

  14. Bioaccumulation of 210Po and 210Pb in cephalopods collected from Kudankulam (Southeastern coast of Gulf of Mannar, India) and assessment of dose in human beings.

    PubMed

    Khan, M Feroz; Wesley, S Godwin

    2011-11-01

    Activities of (210)Po and (210)Pb in various tissues of two common species of cephalopod molluscs (cuttlefishes) of Kudankulam coast were studied. Of all the tissues, (210)Po and (210)Pb were found accumulated more in the digestive gland, shell gland and intestine. Urotheuthis duvauceli accumulated more (210)Po and (210)Pb in certain organs when compared with Sepiella inermis. The activity ratio of (210)Po/(210)Pb fell within the range of 0.6-29.3 in the organs. The biological concentration factor for the organs ranged from 1.2×10(3) to 2×10(5) for (210)Po and 3.6×10(2) to 7.6×10(4) for (210)Pb. A significant variation in the accumulation of (210)Po and (210)Pb was noted between species, organs and seasons (p < 0.05). The whole-body internal dose rate due to (210)Po was 1.24 and 0.83 µGy h(-1) and it was 2×10(-3) and 3×10(-3) µGy h(-1) due to (210)Pb for both the species. The effective dose in humans due to (210)Po intake ranged from 96.3 to 376.6 µSv y(-1) and that of (210)Pb ranged from 35.2 to 105.7 µSv y(-1), respectively. The data generated will act as a reference database for these organisms of this coast in which a nuclear power station is under construction.

  15. Pharmacokinetic Interaction between Darunavir Boosted with Ritonavir and Omeprazole or Ranitidine in Human Immunodeficiency Virus-Negative Healthy Volunteers▿

    PubMed Central

    Sekar, Vanitha J.; Lefebvre, Eric; De Paepe, Els; De Marez, Tine; De Pauw, Martine; Parys, Wim; Hoetelmans, Richard M. W.

    2007-01-01

    Darunavir (DRV; TMC114; Prezista) is a human immunodeficiency virus (HIV) protease inhibitor used in combination with low-dose ritonavir (RTV) (DRV/r) as a pharmacokinetic enhancer. Protease inhibitor absorption may be decreased during coadministration of drugs that limit stomach acid secretion and increase gastric pH. This study was conducted to investigate the effect of ranitidine and omeprazole on the plasma pharmacokinetics of DRV and RTV in HIV-negative healthy volunteers. Sixteen volunteers completed the study and received DRV/r, DRV/r plus ranitidine, and DRV/r plus omeprazole, in three separate sessions. Treatment was given for 4 days with an additional morning dose on day 5, and regimens were separated by a washout period of 7 days. Samples were taken over a 12-h period on day 5 for the assessment of DRV and RTV plasma concentrations. Pharmacokinetic parameters assessed included DRV area under the curve, maximum plasma concentration, and trough plasma concentration. The least-squares mean ratios and 90% confidence intervals are reported with treatment of DRV/r alone as a reference. Compared with DRV/r alone, no significant changes in DRV pharmacokinetic parameters were observed during coadministration of DRV/r and either ranitidine or omeprazole. Treatment regimens were generally well tolerated, and no serious adverse events were reported. In conclusion, coadministration of DRV/r and ranitidine or omeprazole was well tolerated by the volunteers. Ranitidine and omeprazole did not have a significant influence on DRV pharmacokinetics. No dose adjustments are required when DRV/r is coadministered with omeprazole or ranitidine. PMID:17210768

  16. The impact of water temperature on the measurement of absolute dose

    NASA Astrophysics Data System (ADS)

    Islam, Naveed Mehdi

    To standardize reference dosimetry in radiation therapy, Task Group 51 (TG 51) of American Association of Physicist's in Medicine (AAPM) recommends that dose calibration measurements be made in a water tank at a depth of 10 cm and at a reference geometry. Methodologies are provided for calculating various correction factors to be applied in calculating the absolute dose. However the protocol does not specify the water temperature to be used. In practice, the temperature of water during dosimetry may vary considerably between independent sessions and different centers. In this work the effect of water temperature on absolute dosimetry has been investigated. Density of water varies with temperature, which in turn may impact the beam attenuation and scatter properties. Furthermore, due to thermal expansion or contraction air volume inside the chamber may change. All of these effects can result in a change in the measurement. Dosimetric measurements were made using a Farmer type ion chamber on a Varian Linear Accelerator for 6 MV and 23 MV photon energies for temperatures ranging from 10 to 40 °C. A thermal insulation was designed for the water tank in order to maintain relatively stable temperature over the duration of the experiment. Dose measured at higher temperatures were found to be consistently higher by a very small magnitude. Although the differences in dose were less than the uncertainty in each measurement, a linear regression of the data suggests that the trend is statistically significant with p-values of 0.002 and 0.013 for 6 and 23 MV beams respectively. For a 10 degree difference in water phantom temperatures, which is a realistic deviation across clinics, the final calculated reference dose can differ by 0.24% or more. To address this effect, first a reference temperature (e.g.22 °C) can be set as the standard; subsequently a correction factor can be implemented for deviations from this reference. Such a correction factor is expected to be of similar magnitude as existing TG 51 recommended correction factors.

  17. SU-E-T-13: A Feasibility Study of the Use of Hybrid Computational Phantoms for Improved Historical Dose Reconstruction in the Study of Late Radiation Effects for Hodgkin's Lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petroccia, H; O'Reilly, S; Bolch, W

    Purpose: Radiation-induced cancer effects are well-documented following radiotherapy. Further investigation is needed to more accurately determine a dose-response relationship for late radiation effects. Recent dosimetry studies tend to use representative patients (Taylor 2009) or anthropomorphic phantoms (Wirth 2008) for estimating organ mean doses. In this study, we compare hybrid computational phantoms to patient-specific voxel phantoms to test the accuracy of University of Florida Hybrid Phantom Library (UFHP Library) for historical dose reconstructions. Methods: A cohort of 10 patients with CT images was used to reproduce the data that was collected historically for Hodgkin's lymphoma patients (i.e. caliper measurements and photographs).more » Four types of phantoms were generated to show a range of refinement from reference hybrid-computational phantom to patient-specific phantoms. Each patient is matched to a reference phantom from the UFHP Library based on height and weight. The reference phantom is refined in the anterior/posterior direction to create a ‘caliper-scaled phantom’. A photograph is simulated using a surface rendering from segmented CT images. Further refinement in the lateral direction is performed using ratios from a simulated-photograph to create a ‘photograph and caliper-scaled phantom’; breast size and position is visually adjusted. Patient-specific hybrid phantoms, with matched organ volumes, are generated and show the capabilities of the UF Hybrid Phantom Library. Reference, caliper-scaled, photograph and caliper-scaled, and patient-specific hybrid phantoms are compared with patient-specific voxel phantoms to determine the accuracy of the study. Results: Progression from reference phantom to patient specific hybrid shows good agreement with the patient specific voxel phantoms. Each stage of refinement shows an overall trend of improvement in dose accuracy within the study, which suggests that computational phantoms can show improved accuracy in historical dose estimates. Conclusion: Computational hybrid phantoms show promise for improved accuracy within retrospective studies when CTs and other x-ray images are not available.« less

  18. Revealing the missing expressed genes beyond the human reference genome by RNA-Seq.

    PubMed

    Chen, Geng; Li, Ruiyuan; Shi, Leming; Qi, Junyi; Hu, Pengzhan; Luo, Jian; Liu, Mingyao; Shi, Tieliu

    2011-12-02

    The complete and accurate human reference genome is important for functional genomics researches. Therefore, the incomplete reference genome and individual specific sequences have significant effects on various studies. we used two RNA-Seq datasets from human brain tissues and 10 mixed cell lines to investigate the completeness of human reference genome. First, we demonstrated that in previously identified ~5 Mb Asian and ~5 Mb African novel sequences that are absent from the human reference genome of NCBI build 36, ~211 kb and ~201 kb of them could be transcribed, respectively. Our results suggest that many of those transcribed regions are not specific to Asian and African, but also present in Caucasian. Then, we found that the expressions of 104 RefSeq genes that are unalignable to NCBI build 37 in brain and cell lines are higher than 0.1 RPKM. 55 of them are conserved across human, chimpanzee and macaque, suggesting that there are still a significant number of functional human genes absent from the human reference genome. Moreover, we identified hundreds of novel transcript contigs that cannot be aligned to NCBI build 37, RefSeq genes and EST sequences. Some of those novel transcript contigs are also conserved among human, chimpanzee and macaque. By positioning those contigs onto the human genome, we identified several large deletions in the reference genome. Several conserved novel transcript contigs were further validated by RT-PCR. Our findings demonstrate that a significant number of genes are still absent from the incomplete human reference genome, highlighting the importance of further refining the human reference genome and curating those missing genes. Our study also shows the importance of de novo transcriptome assembly. The comparative approach between reference genome and other related human genomes based on the transcriptome provides an alternative way to refine the human reference genome.

  19. Comparison of Individual Radiosensitivity to γ-Rays and Carbon Ions.

    PubMed

    Shim, Grace; Normil, Marie Delna; Testard, Isabelle; Hempel, William M; Ricoul, Michelle; Sabatier, Laure

    2016-01-01

    Carbon ions are an up-and-coming ion species, currently being used in charged particle radiotherapy. As it is well established that there are considerable interindividual differences in radiosensitivity in the general population that can significantly influence clinical outcomes of radiotherapy, we evaluate the degree of these differences in the context of carbon ion therapy compared with conventional radiotherapy. In this study, we evaluate individual radiosensitivity following exposure to carbon-13 ions or γ-rays in peripheral blood lymphocytes of healthy individuals based on the frequency of ionizing radiation (IR)-induced DNA double strand breaks (DSBs) that was either misrepaired or left unrepaired to form chromosomal aberrations (CAs) (simply referred to here as DSBs for brevity). Levels of DSBs were estimated from the scoring of CAs visualized with telomere/centromere-fluorescence in situ hybridization (TC-FISH). We examine radiosensitivity at the dose of 2 Gy, a routinely administered dose during fractionated radiotherapy, and we determined that a wide range of DSBs were induced by the given dose among healthy individuals, with highly radiosensitive individuals harboring more IR-induced breaks in the genome than radioresistant individuals following exposure to the same dose. Furthermore, we determined the relative effectiveness of carbon irradiation in comparison to γ-irradiation in the induction of DSBs at each studied dose (isodose effect), a quality we term "relative dose effect" (RDE). This ratio is advantageous, as it allows for simple comparison of dose-response curves. At 2 Gy, carbon irradiation was three times more effective in inducing DSBs compared with γ-irradiation (RDE of 3); these results were confirmed using a second cytogenetic technique, multicolor-FISH. We also analyze radiosensitivity at other doses (0.2-15 Gy), to represent hypo- and hyperfractionation doses and determined that RDE is dose dependent: high ratios at low doses, and approaching 1 at high doses. These results could have clinical implications as IR-induced DNA damage and the ensuing CAs and genomic instability can have significant cellular consequences that could potentially have profound implications for long-term human health after IR exposure, such as the emergence of secondary cancers and other pathobiological conditions after radiotherapy.

  20. Animal and human dose-response models for Brucella species.

    PubMed

    Teske, Sondra S; Huang, Yin; Tamrakar, Sushil B; Bartrand, Timothy A; Weir, Mark H; Haas, Charles N

    2011-10-01

    Human Brucellosis is one of the most common zoonotic diseases worldwide. Disease transmission often occurs through the handling of domestic livestock, as well as ingestion of unpasteurized milk and cheese, but can have enhanced infectivity if aerosolized. Because there is no human vaccine available, rising concerns about the threat of Brucellosis to human health and its inclusion in the Center for Disease Control's Category B Bioterrorism/Select Agent List make a better understanding of the dose-response relationship of this microbe necessary. Through an extensive peer-reviewed literature search, candidate dose-response data were appraised so as to surpass certain standards for quality. The statistical programming language, "R," was used to compute the maximum likelihood estimation to fit two models, the exponential and the approximate beta-Poisson (widely used for quantitative risk assessment) to dose-response data. Dose-response models were generated for prevalent species of Brucella: Br. suis, Br. melitensis, and Br. abortus. Dose-response models were created for aerosolized Br. suis exposure to guinea pigs from pooled studies. A parallel model for guinea pigs inoculated through both aerosol and subcutaneous routes with Br. melitensis showed that the median infectious dose corresponded to a 30 colony-forming units (CFU) dose of Br. suis, much less than the N(50) dose of about 94 CFU for Br. melitensis organisms. When Br. melitensis was tested subcutaneously on mice, the N(50) dose was higher, 1,840 CFU. A dose-response model was constructed from pooled data for mice, rhesus macaques, and humans inoculated through three routes (subcutaneously/aerosol/intradermally) with Br. melitensis. © 2011 Society for Risk Analysis.

  1. Fluence-to-dose conversion coefficients for heavy ions calculated using the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Niita, Koji

    2010-04-21

    The fluence to organ-absorbed-dose and effective-dose conversion coefficients for heavy ions with atomic numbers up to 28 and energies from 1 MeV/nucleon to 100 GeV/nucleon were calculated using the PHITS code coupled to the ICRP/ICRU adult reference computational phantoms, following the instruction given in ICRP Publication 103 (2007 (Oxford: Pergamon)). The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. The calculation results indicate that the effective dose can generally give a conservative estimation of the effective dose equivalent for heavy-ion exposure, although it is occasionally too conservative especially for high-energy lighter-ion irradiations. It is also found from the calculation that the conversion coefficients for the Q(y)-based effective dose equivalents are generally smaller than the corresponding Q(L)-based values because of the conceptual difference between LET and y as well as the numerical incompatibility between the Q(L) and Q(y) relationships. The calculated data of these dose conversion coefficients are very useful for the dose estimation of astronauts due to cosmic-ray exposure.

  2. Patient doses and occupational exposure in a hybrid operating room.

    PubMed

    Andrés, C; Pérez-García, H; Agulla, M; Torres, R; Miguel, D; Del Castillo, A; Flota, C M; Alonso, D; de Frutos, J; Vaquero, C

    2017-05-01

    This study aimed to characterize the radiation exposure to patients and workers in a new vascular hybrid operating room during X-ray-guided procedures. During one year, data from 260 interventions performed in a hybrid operating room equipped with a Siemens Artis Zeego angiography system were monitored. The patient doses were analysed using the following parameters: radiation time, kerma-area product, patient entrance reference point dose and peak skin dose. Staff radiation exposure and ambient dose equivalent were also measured using direct reading dosimeters and thermoluminescent dosimeters. The radiation time, kerma-area product, patient entrance reference point dose and peak skin dose were, on average, 19:15min, 67Gy·cm 2 , 0.41Gy and 0.23Gy, respectively. Although the contribution of the acquisition mode was smaller than 5% in terms of the radiation time, this mode accounted for more than 60% of the effective dose per patient. All of the worker dose measurements remained below the limits established by law. The working conditions in the hybrid operating room HOR are safe in terms of patient and staff radiation protection. Nevertheless, doses are highly dependent on the workload; thus, further research is necessary to evaluate any possible radiological deviation of the daily working conditions in the HOR. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Biomarkers of Dose and Effect of Inhaled Ozone in Resting versus Exercising Human Subjects: Comparison with Resting Rats

    PubMed Central

    Hatch, Gary E.; McKee, John; Brown, James; McDonnell, William; Seal, Elston; Soukup, Joleen; Slade, Ralph; Crissman, Kay; Devlin, Robert

    2013-01-01

    To determine the influence of exercise on pulmonary dose of inhaled pollutants, we compared biomarkers of inhaled ozone (O3) dose and toxic effect between exercise levels in humans, and between humans and rats. Resting human subjects were exposed to labeled O3 (18O3, 0.4 ppm, for 2 hours) and alveolar O3 dose measured as the concentration of excess 18O in cells and extracellular material of nasal, bronchial, and bronchoalveolar lavage fluid (BALF). We related O3 dose to effects (changes in BALF protein, LDH, IL-6, and antioxidant substances) measurable in the BALF. A parallel study of resting subjects examined lung function (FEV1) changes following O3. Subjects exposed while resting had 18O concentrations in BALF cells that were 1/5th of those of exercising subjects and directly proportional to the amount of O3 breathed during exposure. Quantitative measures of alveolar O3 dose and toxicity that were observed previously in exercising subjects were greatly reduced or non-observable in O3 exposed resting subjects. Resting rats and resting humans were found to have a similar alveolar O3 dose. PMID:23761957

  4. Different dose rate-dependent responses of human melanoma cells and fibroblasts to low dose fast neutrons.

    PubMed

    Dionet, Claude; Müller-Barthélémy, Melanie; Marceau, Geoffroy; Denis, Jean-Marc; Averbeck, Dietrich; Gueulette, John; Sapin, Vincent; Pereira, Bruno; Tchirkov, Andrei; Chautard, Emmanuel; Verrelle, Pierre

    2016-09-01

    To analyze the dose rate influence in hyper-radiosensitivity (HRS) of human melanoma cells to very low doses of fast neutrons and to compare to the behaviour of normal human skin fibroblasts. We explored different neutron dose rates as well as possible implication of DNA double-strand breaks (DSB), apoptosis, and energy-provider adenosine-triphosphate (ATP) levels during HRS. HRS in melanoma cells appears only at a very low dose rate (VLDR), while a high dose rate (HDR) induces an initial cell-radioresistance (ICRR). HRS does not seem to be due either to DSB or to apoptosis. Both phenomena (HRS and ICRR) appear to be related to ATP availability for triggering cell repair. Fibroblast survival after neutron irradiation is also dose rate-dependent but without HRS. Melanoma cells or fibroblasts exert their own survival behaviour at very low doses of neutrons, suggesting that in some cases there is a differential between cancer and normal cells radiation responses. Only the survival of fibroblasts at HDR fits the linear no-threshold model. This new insight into human cell responses to very low doses of neutrons, concerns natural radiations, surroundings of accelerators, proton-therapy devices, flights at high altitude. Furthermore, ATP inhibitors could increase HRS during high-linear energy transfer (high-LET) irradiation.

  5. Does Intensity Matter? Preschoolers' Print Knowledge Development within a Classroom-Based Intervention

    ERIC Educational Resources Information Center

    McGinty, Anita S.; Breit-Smith, Allison; Fan, Xitao; Justice, Laura M.; Kaderavek, Joan N.

    2011-01-01

    The present study examined the extent to which two dimensions of intervention intensity, ("dose frequency" and "dose") of a 30-week print-referencing intervention related to the print knowledge development of 367 randomly selected children from 55 preschool classrooms. "Dose frequency" refers to the number of intervention sessions implemented per…

  6. 10 CFR 20.1003 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... assessment of dose equivalent by the use of devices designed to be worn by an individual; (2) The assessment... equipment) means devices designed to be worn by a single individual for the assessment of dose equivalent... radionuclide in a year by the reference man that would result in a committed effective dose equivalent of 5...

  7. 10 CFR 20.1003 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... assessment of dose equivalent by the use of devices designed to be worn by an individual; (2) The assessment... equipment) means devices designed to be worn by a single individual for the assessment of dose equivalent... radionuclide in a year by the reference man that would result in a committed effective dose equivalent of 5...

  8. 10 CFR 20.1003 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... assessment of dose equivalent by the use of devices designed to be worn by an individual; (2) The assessment... equipment) means devices designed to be worn by a single individual for the assessment of dose equivalent... radionuclide in a year by the reference man that would result in a committed effective dose equivalent of 5...

  9. 10 CFR 20.1003 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... assessment of dose equivalent by the use of devices designed to be worn by an individual; (2) The assessment... equipment) means devices designed to be worn by a single individual for the assessment of dose equivalent... radionuclide in a year by the reference man that would result in a committed effective dose equivalent of 5...

  10. 10 CFR 20.1003 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... assessment of dose equivalent by the use of devices designed to be worn by an individual; (2) The assessment... equipment) means devices designed to be worn by a single individual for the assessment of dose equivalent... radionuclide in a year by the reference man that would result in a committed effective dose equivalent of 5...

  11. [STUDYING SOME PHARMACOLOGICAL EFFECTS OF NEW 3-HYDROXYPYRIDINE DERIVATIVE].

    PubMed

    Yasnetsov, V V; Tsublova, E G; Yasnetsov, Vic V; Skachilova, S Ya; Karsanova, S K; Ivanov, Yu V

    2016-01-01

    It was established that a new 3-hydroxypyridine (3-HP) derivative, 2-ethyl-6-methyl-3-hydroxypyridine L-aspartate (3-HP), in small doses (1 and 5 mg/kg) increased physical performance in treadmill and swimming tests on rats. The new substance showed greater or equal effects compared to the reference actoprotector drugs metaprot and ladasten in much higher doses. The gluconeogenesis inhibitor tryptophan significantly (74 ± 5%, p < 0.01) prevented this stimulatory effect of 3-HPA in the treadmill test on rats. 3-HPA at a higher dose (30 mg/kg) had marked antiamnesic effect on various models of amnesia in mice. It was more effective than reference drugs mexidol (another 3-HP derivative) in a dose of 30 mg/kg and nootropic drug piracetam in a dose of 200 mg/kg, but had equal effect with these drugs in doses of 50 and 800 mg/kg, respectively. 3-HPA (30 mg/kg per day) had neuroprotective effect in rats with brain ischemia and decreased the neurologic deficiency more effectively than mexidol (50 mg/kg per day).

  12. Derivation of a reference dose for a complex petroleum hydrocarbon mixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryer-Powder, J.E.; LaPirre, A.; Scofield, R.

    1997-12-31

    Petroleum hydrocarbon mixtures pose a challenge in assessing potential health effects associated with environmental exposures through impacted media. Two components of risk assessment that must be addressed when evaluating these mixtures are toxicity and environmental fate. In this paper, we focus on issues regarding toxicity. Specifically, we have developed a methodology to derive a reference dose (RfD) for a complex petroleum hydrocarbon mixture referred to as diluent. Diluent is a solvent used in the production of crude oil and is composed of hydrocarbons in the middle distillate range. Two conservative approaches to developing a reference dose for diluent are presented.more » Both involve separating the diluent into carbon number ranges (e.g., diluent consists of hydrocarbons containing between 5 carbons and greater than 21 carbons, so, the mixture can be divided into mixtures of hydrocarbons having 5 carbons, 6-11 carbons, etcetera) and assigning each range a representative RfD. In the first approach, the representative RfD for each range is that of one specific chemical within the range (e.g., the reference dose for the C{sub 5}-C{sub 8} carbon range is that of n-hexane). In the second approach, the RfD dose for each range is that of a mixture of chemicals representative of each carbon number range (e.g., the RfD for the C{sub 6} to C{sub 11} carbon range is that of mineral spirits). The RfD for each carbon range is then multiplied by the percent of diluent in the corresponding range and the products are added to arrive at a final RfD. The RfD for diluent using the first approach is estimated at 2 mg/kg-day and that using the second approach is estimated at 1 mg/kg-day.« less

  13. The impact of the oxygen scavenger on the dose-rate dependence and dose sensitivity of MAGIC type polymer gels

    NASA Astrophysics Data System (ADS)

    Khan, Muzafar; Heilemann, Gerd; Kuess, Peter; Georg, Dietmar; Berg, Andreas

    2018-03-01

    Recent developments in radiation therapy aimed at more precise dose delivery along with higher dose gradients (dose painting) and more efficient dose delivery with higher dose rates e.g. flattening filter free (FFF) irradiation. Magnetic-resonance-imaging based polymer gel dosimetry offers 3D information for precise dose delivery techniques. Many of the proposed polymer gels have been reported to exhibit a dose response, measured as relaxation rate ΔR2(D), which is dose rate dependent. A lack of or a reduced dose-rate sensitivity is very important for dosimetric accuracy, especially with regard to the increasing clinical use of FFF irradiation protocols with LINACs at high dose rates. Some commonly used polymer gels are based on Methacrylic-Acid-Gel-Initiated-by-Copper (MAGIC). Here, we report on the dose sensitivity (ΔR2/ΔD) of MAGIC-type gels with different oxygen scavenger concentration for their specific dependence on the applied dose rate in order to improve the dosimetric performance, especially for high dose rates. A preclinical x-ray machine (‘Yxlon’, E  =  200 kV) was used for irradiation to cover a range of dose rates from low \\dot{D} min  =  0.6 Gy min-1 to high \\dot{D} max  =  18 Gy min-1. The dose response was evaluated using R2-imaging of the gel on a human high-field (7T) MR-scanner. The results indicate that all of the investigated dose rates had an impact on the dose response in polymer gel dosimeters, being strongest in the high dose region and less effective for low dose levels. The absolute dose rate dependence \\frac{(Δ R2/Δ D)}{Δ \\dot{D}} of the dose response in MAGIC-type gel is significantly reduced using higher concentrations of oxygen scavenger at the expense of reduced dose sensitivity. For quantitative dose evaluations the relative dose rate dependence of a polymer gel, normalized to its sensitivity is important. Based on this normalized sensitivity the dose rate sensitivity was reduced distinctly using an increased oxygen scavenger concentration with reference to standard MAGIC-type gel formulation at high dose rate levels. The proposed gel composition with high oxygen scavenger concentration exhibits a larger linear active dose response and might be used especially in FFF-radiation applications and preclinical dosimetry at high dose rates. We propose in general to use high dose rates for calibration and evaluation as the change in relative dose sensitivity is reduced at higher dose rates in all of the investigated gel types.

  14. Fluence-to-dose conversion coefficients for neutrons and protons calculated using the PHITS code and ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Zankl, Maria; Petoussi-Henss, Nina; Niita, Koji

    2009-04-07

    The fluence to organ-dose and effective-dose conversion coefficients for neutrons and protons with energies up to 100 GeV was calculated using the PHITS code coupled to male and female adult reference computational phantoms, which are to be released as a common ICRP/ICRU publication. For the calculation, the radiation and tissue weighting factors, w(R) and w(T), respectively, as revised in ICRP Publication 103 were employed. The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of the absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. By comparing these data with the corresponding data for the effective dose, we found that the numerical compatibilities of the revised w(R) with the Q(L) and Q(y) relationships are fairly established. The calculated data of these dose conversion coefficients are indispensable for constructing the radiation protection systems based on the new recommendations given in ICRP103 for aircrews and astronauts, as well as for workers in accelerators and nuclear facilities.

  15. A revision of the gamma-evaluation concept for the comparison of dose distributions.

    PubMed

    Bakai, Annemarie; Alber, Markus; Nüsslin, Fridtjof

    2003-11-07

    A method for the quantitative four-dimensional (4D) evaluation of discrete dose data based on gradient-dependent local acceptance thresholds is presented. The method takes into account the local dose gradients of a reference distribution for critical appraisal of misalignment and collimation errors. These contribute to the maximum tolerable dose error at each evaluation point to which the local dose differences between comparison and reference data are compared. As shown, the presented concept is analogous to the gamma-concept of Low et al (1998a Med. Phys. 25 656-61) if extended to (3+1) dimensions. The pointwise dose comparisons of the reformulated concept are easier to perform and speed up the evaluation process considerably, especially for fine-grid evaluations of 3D dose distributions. The occurrences of false negative indications due to the discrete nature of the data are reduced with the method. The presented method was applied to film-measured, clinical data and compared with gamma-evaluations. 4D and 3D evaluations were performed. Comparisons prove that 4D evaluations have to be given priority, especially if complex treatment situations are verified, e.g., non-coplanar beam configurations.

  16. Evidence of dose saving in routine CT practice using iterative reconstruction derived from a national diagnostic reference level survey.

    PubMed

    Thomas, P; Hayton, A; Beveridge, T; Marks, P; Wallace, A

    2015-09-01

    To assess the influence and significance of the use of iterative reconstruction (IR) algorithms on patient dose in CT in Australia. We examined survey data submitted to the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) National Diagnostic Reference Level Service (NDRLS) during 2013 and 2014. We compared median survey dose metrics with categorization by scan region and use of IR. The use of IR results in a reduction in volume CT dose index of between 17% and 44% and a reduction in dose-length product of between 14% and 34% depending on the specific scan region. The reduction was highly significant (p < 0.001, Wilcoxon rank-sum test) for all six scan regions included in the NDRLS. Overall, 69% (806/1167) of surveys included in the analysis used IR. The use of IR in CT is achieving dose savings of 20-30% in routine practice in Australia. IR appears to be widely used by participants in the ARPANSA NDRLS with approximately 70% of surveys submitted employing this technique. This study examines the impact of the use of IR on patient dose in CT on a national scale.

  17. Selection of the initial design for the two-stage continual reassessment method.

    PubMed

    Jia, Xiaoyu; Ivanova, Anastasia; Lee, Shing M

    2017-01-01

    In the two-stage continual reassessment method (CRM), model-based dose escalation is preceded by a pre-specified escalating sequence starting from the lowest dose level. This is appealing to clinicians because it allows a sufficient number of patients to be assigned to each of the lower dose levels before escalating to higher dose levels. While a theoretical framework to build the two-stage CRM has been proposed, the selection of the initial dose-escalating sequence, generally referred to as the initial design, remains arbitrary, either by specifying cohorts of three patients or by trial and error through extensive simulations. Motivated by a currently ongoing oncology dose-finding study for which clinicians explicitly stated their desire to assign at least one patient to each of the lower dose levels, we proposed a systematic approach for selecting the initial design for the two-stage CRM. The initial design obtained using the proposed algorithm yields better operating characteristics compared to using a cohort of three initial design with a calibrated CRM. The proposed algorithm simplifies the selection of initial design for the two-stage CRM. Moreover, initial designs to be used as reference for planning a two-stage CRM are provided.

  18. Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose

    NASA Technical Reports Server (NTRS)

    Welton, Andrew; Lee, Kerry

    2010-01-01

    While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.

  19. SU-F-P-19: Fetal Dose Estimate for a High-Dose Fluoroscopy Guided Intervention Using Modern Data Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moirano, J

    Purpose: An accurate dose estimate is necessary for effective patient management after a fetal exposure. In the case of a high-dose exposure, it is critical to use all resources available in order to make the most accurate assessment of the fetal dose. This work will demonstrate a methodology for accurate fetal dose estimation using tools that have recently become available in many clinics, and show examples of best practices for collecting data and performing the fetal dose calculation. Methods: A fetal dose estimate calculation was performed using modern data collection tools to determine parameters for the calculation. The reference pointmore » air kerma as displayed by the fluoroscopic system was checked for accuracy. A cumulative dose incidence map and DICOM header mining were used to determine the displayed reference point air kerma. Corrections for attenuation caused by the patient table and pad were measured and applied in order to determine the peak skin dose. The position and depth of the fetus was determined by ultrasound imaging and consultation with a radiologist. The data collected was used to determine a normalized uterus dose from Monte Carlo simulation data. Fetal dose values from this process were compared to other accepted calculation methods. Results: An accurate high-dose fetal dose estimate was made. Comparison to accepted legacy methods were were within 35% of estimated values. Conclusion: Modern data collection and reporting methods ease the process for estimation of fetal dose from interventional fluoroscopy exposures. Many aspects of the calculation can now be quantified rather than estimated, which should allow for a more accurate estimation of fetal dose.« less

  20. SU-F-BRD-15: Quality Correction Factors in Scanned Or Broad Proton Therapy Beams Are Indistinguishable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorriaux, J; Lee, J; ICTEAM Institute, Universite catholique de Louvain, Louvain-la-Neuve

    2015-06-15

    Purpose: The IAEA TRS-398 code of practice details the reference conditions for reference dosimetry of proton beams using ionization chambers and the required beam quality correction factors (kQ). Pencil beam scanning (PBS) requires multiple spots to reproduce the reference conditions. The objective is to demonstrate, using Monte Carlo (MC) calculations, that kQ factors for broad beams can be used for scanned beams under the same reference conditions with no significant additional uncertainty. We consider hereafter the general Alfonso formalism (Alfonso et al, 2008) for non-standard beam. Methods: To approach the reference conditions and the associated dose distributions, PBS must combinemore » many pencil beams with range modulation and shaping techniques different than those used in passive systems (broad beams). This might lead to a different energy spectrum at the measurement point. In order to evaluate the impact of these differences on kQ factors, ion chamber responses are computed with MC (Geant4 9.6) in a dedicated scanned pencil beam (Q-pcsr) producing a 10×10cm2 composite field with a flat dose distribution from 10 to 16 cm depth. Ion chamber responses are also computed by MC in a broad beam with quality Q-ds (double scattering). The dose distribution of Q -pcsr matches the dose distribution of Q-ds. k-(Q-pcsr,Q-ds) is computed for a 2×2×0.2cm{sup 3} idealized air cavity and a realistic plane-parallel ion chamber (IC). Results: Under reference conditions, quality correction factors for a scanned composite field versus a broad beam are the same for air cavity dose response, k-(Q-pcsr,Q-ds) =1.001±0.001 and for a Roos IC, k-(Q-pcsr,Q-ds) =0.999±0.005. Conclusion: Quality correction factors for ion chamber response in scanned and broad proton therapy beams are identical under reference conditions within the calculation uncertainties. The results indicate that quality correction factors published in IAEA TRS-398 can be used for scanned beams in the SOBP of a high-energy proton beam. Jefferson Sorriaux is financed by the Walloon Region under the convention 1217662. Jefferson Sorriaux is sponsored by a public-private partnership IBA - Walloon Region.« less

  1. Olfactory deposition of inhaled nanoparticles in humans

    PubMed Central

    Garcia, Guilherme J. M.; Schroeter, Jeffry D.; Kimbell, Julia S.

    2016-01-01

    Context Inhaled nanoparticles can migrate to the brain via the olfactory bulb, as demonstrated in experiments in several animal species. This route of exposure may be the mechanism behind the correlation between air pollution and human neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. Objectives This manuscript aims to (1) estimate the dose of inhaled nanoparticles that deposit in the human olfactory epithelium during nasal breathing at rest and (2) compare the olfactory dose in humans with our earlier dose estimates for rats. Materials and methods An anatomically-accurate model of the human nasal cavity was developed based on computed tomography scans. The deposition of 1–100 nm particles in the whole nasal cavity and its olfactory region were estimated via computational fluid dynamics (CFD) simulations. Our CFD methods were validated by comparing our numerical predictions for whole-nose deposition with experimental data and previous CFD studies in the literature. Results In humans, olfactory dose of inhaled nanoparticles is highest for 1–2 nm particles with approximately 1% of inhaled particles depositing in the olfactory region. As particle size grows to 100 nm, olfactory deposition decreases to 0.01% of inhaled particles. Discussion and conclusion Our results suggest that the percentage of inhaled particles that deposit in the olfactory region is lower in humans than in rats. However, olfactory dose per unit surface area is estimated to be higher in humans due to their larger minute volume. These dose estimates are important for risk assessment and dose-response studies investigating the neurotoxicity of inhaled nanoparticles. PMID:26194036

  2. [Estimation of Maximum Entrance Skin Dose during Cerebral Angiography].

    PubMed

    Kawauchi, Satoru; Moritake, Takashi; Hayakawa, Mikito; Hamada, Yusuke; Sakuma, Hideyuki; Yoda, Shogo; Satoh, Masayuki; Sun, Lue; Koguchi, Yasuhiro; Akahane, Keiichi; Chida, Koichi; Matsumaru, Yuji

    2015-09-01

    Using radio-photoluminescence glass dosimeter, we measured the entrance skin dose (ESD) in 46 cases and analyzed the correlations between maximum ESD and angiographic parameters [total fluoroscopic time (TFT); number of digital subtraction angiography (DSA) frames, air kerma at the interventional reference point (AK), and dose-area product (DAP)] to estimate the maximum ESD in real time. Mean (± standard deviation) maximum ESD, dose of the right lens, and dose of the left lens were 431.2 ± 135.8 mGy, 33.6 ± 15.5 mGy, and 58.5 ± 35.0 mGy, respectively. Correlation coefficients (r) between maximum ESD and TFT, number of DSA frames, AK, and DAP were r=0.379 (P<0.01), r=0.702 (P<0.001), r=0.825 (P<0.001), and r=0.709 (P<0.001), respectively. AK was identified as the most useful parameter for real-time prediction of maximum ESD. This study should contribute to the development of new diagnostic reference levels in our country.

  3. Dose Responses of Ibuprofen In Vitro on Platelet Aggregation and Coagulation in Human and Pig Blood Samples.

    PubMed

    Martini, Wenjun Z; Rodriguez, Cassandra M; Deguzman, Rodolfo; Guerra, Jessica B; Martin, Angela K; Pusateri, Anthony E; Cap, Andrew P; Dubick, Michael A

    2016-05-01

    Ibuprofen is commonly used by warfighters in the deployed environment. This study investigated its dose effects on in vitro coagulation in human and pig blood. Blood samples were collected from 6 normal volunteers and 6 healthy pigs and processed to make platelet-adjusted samples (100 × 10(3)/μL, common transfusion trigger in trauma). Ibuprofen was added to the samples at concentrations of 0 μg/mL (control), the concentration from the highest recommended oral dose (163 μg/mL, 1×), and 2×, 4×, 8×, 10×, 12×, 16×, and 20×. Platelet aggregation by Chrono-Log aggregometer and coagulation by rotational thrombelastogram (Rotem) were assessed at 15 minutes after the addition of ibuprofen. A robust inhibition of ibuprofen on arachidonic acid-induced platelet aggregation was observed at all doses tested in human or pig blood. Collagen-stimulated platelet aggregation was inhibited starting at 1× in human blood and 4× in pig blood. Rotem measurements were similarly compromised in pig and human blood starting at 16×, except clot formation time was prolonged at 1× in human blood (all p < 0.05). Ibuprofen inhibited platelet aggregation at recommended doses, and compromised coagulation at higher doses. Human blood was more sensitive to ibuprofen inhibition. Further effort is needed to investigate ibuprofen dose responses on coagulation in vivo. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  4. [Toxicological and analytical lists: chromium and its compounds].

    PubMed

    Minoia, C; Apostoli, P; Battaglia, A; Catenacci, G; Cottica, D; Franco, G; Pozzoli, L; Vanola, C; Candura, F; Capodaglio, E

    1987-03-01

    The main aspects of occupational exposure to chromium and chromium compounds are surveyed. Special attention is paid to the toxic action of this metal at the different target organs. The nutritional aspect of CrIII is examined preliminarily, and data detailing the metal contents in water and food are provided. As far the different working processes that entail occupational exposure to chromium are concerned, hygienic and environmental problems are discussed while identifying the average environment exposure to the different chemical forms of chromium (CrIII, CrIV, soluble and not soluble), as a function of the worker's tasks, and the relevant human response (total human Cr). Different hygienic and environmental standards in force in various countries and applicable to chromium compounds are compared. Additional information is given on the main aspects of chromium metabolism (absorption, distribution, excretion), and on the prevailing toxic actions, with specific reference to cancerogenesis. As far as biologic monitoring of the exposed people is concerned, the significance of Cr-U as dose-exposure indicator is discussed, also in the light of a critical review of the reference values. The report describes a series of analytical methods for the identification of chromium in aqueous and biologic matrices. The problems connected with health monitoring and fitness for work are eventually covered.

  5. Assessment of dosimetric impact of system specific geometric distortion in an MRI only based radiotherapy workflow for prostate

    NASA Astrophysics Data System (ADS)

    Gustafsson, C.; Nordström, F.; Persson, E.; Brynolfsson, J.; Olsson, L. E.

    2017-04-01

    Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were  ⩽0.02% and the radiotherapy structure mean volume deviations were  <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.

  6. Assessment of dosimetric impact of system specific geometric distortion in an MRI only based radiotherapy workflow for prostate.

    PubMed

    Gustafsson, C; Nordström, F; Persson, E; Brynolfsson, J; Olsson, L E

    2017-04-21

    Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were  ⩽0.02% and the radiotherapy structure mean volume deviations were  <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.

  7. Methods for Derivation of Inhalation Reference Concentrations and Application of Inhalation Dosimetry

    EPA Pesticide Factsheets

    EPA's methodology for estimation of inhalation reference concentrations (RfCs) as benchmark estimates of the quantitative dose-response assessment of chronic noncancer toxicity for individual inhaled chemicals.

  8. Is patient size important in dose determination and optimization in cardiology?

    NASA Astrophysics Data System (ADS)

    Reay, J.; Chapple, C. L.; Kotre, C. J.

    2003-12-01

    Patient dose determination and optimization have become more topical in recent years with the implementation of the Medical Exposures Directive into national legislation, the Ionising Radiation (Medical Exposure) Regulations. This legislation incorporates a requirement for new equipment to provide a means of displaying a measure of patient exposure and introduces the concept of diagnostic reference levels. It is normally assumed that patient dose is governed largely by patient size; however, in cardiology, where procedures are often very complex, the significance of patient size is less well understood. This study considers over 9000 cardiology procedures, undertaken throughout the north of England, and investigates the relationship between patient size and dose. It uses simple linear regression to calculate both correlation coefficients and significance levels for data sorted by both room and individual clinician for the four most common examinations, left ventrical and/or coronary angiography, single vessel stent insertion and single vessel angioplasty. This paper concludes that the correlation between patient size and dose is weak for the procedures considered. It also illustrates the use of an existing method for removing the effect of patient size from dose survey data. This allows typical doses and, therefore, reference levels to be defined for the purposes of dose optimization.

  9. Generative Adversarial Networks for Noise Reduction in Low-Dose CT.

    PubMed

    Wolterink, Jelmer M; Leiner, Tim; Viergever, Max A; Isgum, Ivana

    2017-12-01

    Noise is inherent to low-dose CT acquisition. We propose to train a convolutional neural network (CNN) jointly with an adversarial CNN to estimate routine-dose CT images from low-dose CT images and hence reduce noise. A generator CNN was trained to transform low-dose CT images into routine-dose CT images using voxelwise loss minimization. An adversarial discriminator CNN was simultaneously trained to distinguish the output of the generator from routine-dose CT images. The performance of this discriminator was used as an adversarial loss for the generator. Experiments were performed using CT images of an anthropomorphic phantom containing calcium inserts, as well as patient non-contrast-enhanced cardiac CT images. The phantom and patients were scanned at 20% and 100% routine clinical dose. Three training strategies were compared: the first used only voxelwise loss, the second combined voxelwise loss and adversarial loss, and the third used only adversarial loss. The results showed that training with only voxelwise loss resulted in the highest peak signal-to-noise ratio with respect to reference routine-dose images. However, CNNs trained with adversarial loss captured image statistics of routine-dose images better. Noise reduction improved quantification of low-density calcified inserts in phantom CT images and allowed coronary calcium scoring in low-dose patient CT images with high noise levels. Testing took less than 10 s per CT volume. CNN-based low-dose CT noise reduction in the image domain is feasible. Training with an adversarial network improves the CNNs ability to generate images with an appearance similar to that of reference routine-dose CT images.

  10. EPA's Reanalysis of Key Issues Related to Dioxin Toxicity and ...

    EPA Pesticide Factsheets

    EPA is releasing for external peer review and public comment an important draft document reviewing the literature on the health effects of dioxin and related compounds (also referred to as 2,3,7,8-Tetrachlorodibenzo-p-dioxin). At the request of Administrator Jackson, EPA is in the process of re-assessing the science on the effects of dioxin, a toxic chemical that is emitted by multiple sources, on the public’s health. This draft dioxin report is EPA’s response to key comments and recommendations made by the National Academy of Sciences on the Agency’s draft dioxin reassessment. This assessment has been in progress for many years and raises health issues of broad interest to scientists and policymakers across the federal family. The Agency’s draft report includes significant new analyses on potential cancer and non-cancer human health effects that may result from exposures to dioxins and includes an oral reference dose for what is considered to be the most toxic of the dioxin-like compounds. EPA’s Science

  11. A systematic evaluation of the potential effects of trichloroethylene exposure on cardiac development.

    PubMed

    Makris, Susan L; Scott, Cheryl Siegel; Fox, John; Knudsen, Thomas B; Hotchkiss, Andrew K; Arzuaga, Xabier; Euling, Susan Y; Powers, Christina M; Jinot, Jennifer; Hogan, Karen A; Abbott, Barbara D; Hunter, E Sidney; Narotsky, Michael G

    2016-10-01

    The 2011 EPA trichloroethylene (TCE) IRIS assessment, used developmental cardiac defects from a controversial drinking water study in rats (Johnson et al. [51]), along with several other studies/endpoints to derive reference values. An updated literature search of TCE-related developmental cardiac defects was conducted. Study quality, strengths, and limitations were assessed. A putative adverse outcome pathway (AOP) construct was developed to explore key events for the most commonly observed cardiac dysmorphologies, particularly those involved with epithelial-mesenchymal transition (EMT) of endothelial origin (EndMT); several candidate pathways were identified. A hypothesis-driven weight-of-evidence analysis of epidemiological, toxicological, in vitro, in ovo, and mechanistic/AOP data concluded that TCE has the potential to cause cardiac defects in humans when exposure occurs at sufficient doses during a sensitive window of fetal development. The study by Johnson et al. [51] was reaffirmed as suitable for hazard characterization and reference value derivation, though acknowledging study limitations and uncertainties. Published by Elsevier Inc.

  12. IRIS TOXICOLOGICAL REVIEW AND SUMMARY ...

    EPA Pesticide Factsheets

    The Draft Toxicological Review was developed to evaluate both the cancer and non cancer human health risks from environmental exposure to vinyl chloride. A reference concentration (RfC), and a reference dose (RfD) were developed based upon induction of liver cell polymorphism in a chronic dietary study utilizing Wistar rats. An RfC of 1E-1 mg/m3 and an RfD of 5E-3 mg/kg-d are recommended. On the basis of sufficient evidence for carcinogenicity in human epidemiology studies vinyl chloride is reaffirmed to be a known human carcinogen. Cancer potencies were derived for oral and inhalation exposure. An oral slope factor of 1.3 per (mg/kg-day) for continuous exposure during adulthood and 2.5 per (mg/kg-day) for continuous lifetime exposure from birth, based upon a chronic dietary study in female Wistar rats is recommended; an inhalation unit risk of 4.3 E-6 per (55g/m3) for continuous exposure during adulthood and 8.7 E-6 per (55g/m3) for continuous lifetime exposure from birth is also recommended, based upon exposure of male and female Sprague Dawley rats and Swiss mice, via inhalation, for a lifetime. A PBPK model was used in the derivation of the RfC, RfD, and cancer potency estimates. Its use is based on the assumption that equal tissue concentrations of reactive metabolite, chlorethylene oxide or chloracetaldehyde, at the critical target site will result in equivalent toxicity between species.

  13. Development of a Zealand White Rabbit Deposition Model to Study Inhalation Anthrax

    PubMed Central

    Asgharian, Bahman; Price, Owen; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Kuprat, A.P.; Corley, Richard A.

    2016-01-01

    Despite using rabbits in several inhalation exposure experiments to study diseases such as anthrax, there is a lack of understanding regarding deposition characteristics and fate of inhaled particles (bio-aerosols and viruses) in the respiratory tracts of rabbits. Such information allows dosimetric extrapolation to humans to inform human outcomes. The lung geometry of the New Zealand white rabbit (referred to simply as rabbits throughout the article) was constructed using recently acquired scanned images of the conducting airways of rabbits and available information on its acinar region. In addition, functional relationships were developed for the lung and breathing parameters of rabbits as a function of body weight. The lung geometry and breathing parameters were used to extend the existing deposition model for humans and several other species to rabbits. Evaluation of the deposition model for rabbits was made by comparing predictions with available measurements in the literature. Deposition predictions in the lungs of rabbits indicated smaller deposition fractions compared to those found in humans across various particle diameter ranges. The application of the deposition model for rabbits was demonstrated by extrapolating deposition predictions in rabbits to find equivalent human exposure concentrations assuming the same dose-response relationship between the two species. Human equivalent exposure concentration levels were found to be much smaller than those for rabbits. PMID:26895308

  14. Vanderbilt University Gamma Irradiation of Nano-modified Concrete (2017 Milestone Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deichert, Geoffrey G.; Linton, Kory D.; Terrani, Kurt A.

    This document outlines the irradiation of concrete specimens in the Gamma Irradiation Facility in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Two gamma irradiation runs were performed in July of 2017 on 18 reference mortar bar specimens, 26 reference cement paste bar specimens, and 28 reference cement paste tab specimens to determine the dose and temperature response of the specimens in the gamma irradiation environment. Specimens from the first two gamma irradiations were surveyed and released to Vanderbilt University. The temperature and dose information obtained informs the test parameters of the final two gamma irradiationsmore » of nano-modified concrete planned for FY 2018.« less

  15. Organ shielding and doses in Low-Earth orbit calculated for spherical and anthropomorphic phantoms

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Berger, Thomas; Reitz, Günther

    2013-08-01

    Humans in space are exposed to elevated levels of radiation compared to ground. Different sources contribute to the total exposure with galactic cosmic rays being the most important component. The application of numerical and anthropomorphic phantoms in simulations allows the estimation of dose rates from galactic cosmic rays in individual organs and whole body quantities such as the effective dose. The male and female reference phantoms defined by the International Commission on Radiological Protection and the hermaphrodite numerical RANDO phantom are voxel implementations of anthropomorphic phantoms and contain all organs relevant for radiation risk assessment. These anthropomorphic phantoms together with a spherical water phantom were used in this work to translate the mean shielding of organs in the different anthropomorphic voxel phantoms into positions in the spherical phantom. This relation allows using a water sphere as surrogate for the anthropomorphic phantoms in both simulations and measurements. Moreover, using spherical phantoms in the calculation of radiation exposure offers great advantages over anthropomorphic phantoms in terms of computational time. In this work, the mean shielding of organs in the different voxel phantoms exposed to isotropic irradiation is presented as well as the corresponding depth in a water sphere. Dose rates for Low-Earth orbit from galactic cosmic rays during solar minimum conditions were calculated using the different phantoms and are compared to the results for a spherical water phantom in combination with the mean organ shielding. For the spherical water phantom the impact of different aluminium shielding between 1 g/cm2 and 100 g/cm2 was calculated. The dose equivalent rates were used to estimate the effective dose rate.

  16. Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates

    NASA Astrophysics Data System (ADS)

    Fournier, P.; Crosbie, J. C.; Cornelius, I.; Berkvens, P.; Donzelli, M.; Clavel, A. H.; Rosenfeld, A. B.; Petasecca, M.; Lerch, M. L. F.; Bräuer-Krisch, E.

    2016-07-01

    Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency’s TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called ‘current ramping’ method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials.

  17. Comparison of Individual Radiosensitivity to γ-Rays and Carbon Ions

    PubMed Central

    Shim, Grace; Normil, Marie Delna; Testard, Isabelle; Hempel, William M.; Ricoul, Michelle; Sabatier, Laure

    2016-01-01

    Carbon ions are an up-and-coming ion species, currently being used in charged particle radiotherapy. As it is well established that there are considerable interindividual differences in radiosensitivity in the general population that can significantly influence clinical outcomes of radiotherapy, we evaluate the degree of these differences in the context of carbon ion therapy compared with conventional radiotherapy. In this study, we evaluate individual radiosensitivity following exposure to carbon-13 ions or γ-rays in peripheral blood lymphocytes of healthy individuals based on the frequency of ionizing radiation (IR)-induced DNA double strand breaks (DSBs) that was either misrepaired or left unrepaired to form chromosomal aberrations (CAs) (simply referred to here as DSBs for brevity). Levels of DSBs were estimated from the scoring of CAs visualized with telomere/centromere-fluorescence in situ hybridization (TC-FISH). We examine radiosensitivity at the dose of 2 Gy, a routinely administered dose during fractionated radiotherapy, and we determined that a wide range of DSBs were induced by the given dose among healthy individuals, with highly radiosensitive individuals harboring more IR-induced breaks in the genome than radioresistant individuals following exposure to the same dose. Furthermore, we determined the relative effectiveness of carbon irradiation in comparison to γ-irradiation in the induction of DSBs at each studied dose (isodose effect), a quality we term “relative dose effect” (RDE). This ratio is advantageous, as it allows for simple comparison of dose–response curves. At 2 Gy, carbon irradiation was three times more effective in inducing DSBs compared with γ-irradiation (RDE of 3); these results were confirmed using a second cytogenetic technique, multicolor-FISH. We also analyze radiosensitivity at other doses (0.2–15 Gy), to represent hypo- and hyperfractionation doses and determined that RDE is dose dependent: high ratios at low doses, and approaching 1 at high doses. These results could have clinical implications as IR-induced DNA damage and the ensuing CAs and genomic instability can have significant cellular consequences that could potentially have profound implications for long-term human health after IR exposure, such as the emergence of secondary cancers and other pathobiological conditions after radiotherapy. PMID:27379201

  18. Gadolinium-enhanced cardiovascular magnetic resonance: administered dose in relationship to United States Food and Drug Administration (FDA) guidelines.

    PubMed

    Nacif, Marcelo S; Arai, Andrew E; Lima, Joao A C; Bluemke, David A

    2012-02-29

    Myocardial late gadolinium enhancement was originally validated using higher than label-recommended doses of gadolinium chelate. The objective of this study was to evaluate available evidence for various gadolinium dosing regimens used for CMR. The relationship of gadolinium dose warnings (due to nephrogenic systemic fibrosis) announced in 2008 to gadolinium dosing regimens was also examined. We conducted a meta-analysis of peer reviewed publications from January, 2004 to December, 2010. Major subject search headings (MeSh) terms from the National Library of Medicine's PubMed were: contrast media, gadolinium, heart, magnetic resonance imaging; searches were limited to human studies with abstracts published in English. Case reports, review articles, editorials, MRA related papers and all reports that did not indicate gadolinium type or weight-based dose were excluded. For all included references, full text was available to determine the total administered gadolinium dose on a per kg basis. Average and median dose values were weighted by the number of subjects in each study. 399 publications were identified in PubMed; 233 studies matched the inclusion criteria, encompassing 19,934 patients with mean age 54.2 ± 11.4 (range 9.3 to 76 years). 34 trials were related to perfusion testing and 199 to myocardial late gadolinium enhancement. In 2004, the weighted-median and weighted-mean contrast dose were 0.15 and 0.16 ± 0.06 mmol/kg, respectively. Median contrast doses for 2005-2010 were: 0.2 mmol/kg for all years, respectively. Mean contrast doses for the years 2005-2010 were: 0.19 ± 0.03, 0.18 ± 0.04, 0.18 ± 0.10, 0.18 ± 0.03, 0.18 ± 0.04 and 0.18 ± 0.04 mmol/kg, respectively (p for trend, NS). Gadopentetate dimeglumine was the most frequent gadolinium type [114 (48.9%) studies]. No change in mean gadolinium dose was present before, versus after the Food and Drug Administration (FDA) black box warning (p > 0.05). Three multi-center dose ranging trials have been published for cardiac MRI applications. CMR studies in the peer-reviewed published literature routinely use higher gadolinium doses than regulatory agencies indicated in the package leaflet. Clinical trials should be supported to determine the appropriate doses of gadolinium for CMR studies.

  19. First-in-Human Assessment of the Novel PDE2A PET Radiotracer 18F-PF-05270430

    PubMed Central

    Waterhouse, Rikki N.; Nabulsi, Nabeel; Lin, Shu-Fei; Labaree, David; Ropchan, Jim; Tarabar, Sanela; DeMartinis, Nicholas; Ogden, Adam; Banerjee, Anindita; Huang, Yiyun; Carson, Richard E.

    2016-01-01

    This was a first-in-human study of the novel phosphodiesterase-2A (PDE2A) PET ligand 18F-PF-05270430. The primary goals were to determine the appropriate tracer kinetic model to quantify brain uptake and to examine the within-subject test–retest variability. Methods: In advance of human studies, radiation dosimetry was determined in nonhuman primates. Six healthy male subjects participated in a test–retest protocol with dynamic scans and metabolite-corrected input functions. Nine brain regions of interest were studied, including the striatum, white matter, neocortical regions, and cerebellum. Multiple modeling methods were applied to calculate volume of distribution (VT) and binding potentials relative to the nondisplaceable tracer in tissue (BPND), concentration of tracer in plasma (BPP), and free tracer in tissue (BPF). The cerebellum was selected as a reference region to calculate binding potentials. Results: The dosimetry study provided an effective dose of less than 0.30 mSv/MBq, with the gallbladder as the critical organ; the human target dose was 185 MBq. There were no adverse events or clinically detectable pharmacologic effects reported. Tracer uptake was highest in the striatum, followed by neocortical regions and white matter, and lowest in the cerebellum. Regional time–activity curves were well fit by multilinear analysis-1, and a 70-min scan duration was sufficient to quantify VT and the binding potentials. BPND, with mean values ranging from 0.3 to 0.8, showed the best intrasubject and intersubject variability and reliability. Test–retest variability in the whole brain (excluding the cerebellum) of VT, BPND, and BPP were 8%, 16%, and 17%, respectively. Conclusion: 18F-PF-05270430 shows promise as a PDE2A PET ligand, albeit with low binding potential values. PMID:27103022

  20. Dosimetry for Small Fields in Stereotactic Radiosurgery Using Gafchromic MD-V2-55 Film, TLD-100 and Alanine Dosimeters

    PubMed Central

    Massillon-JL, Guerda; Cueva-Prócel, Diego; Díaz-Aguirre, Porfirio; Rodríguez-Ponce, Miguel; Herrera-Martínez, Flor

    2013-01-01

    This work investigated the suitability of passive dosimeters for reference dosimetry in small fields with acceptable accuracy. Absorbed dose to water rate was determined in nine small radiation fields with diameters between 4 and 35 mm in a Leksell Gamma Knife (LGK) and a modified linear accelerator (linac) for stereotactic radiosurgery treatments. Measurements were made using Gafchromic film (MD-V2-55), alanine and thermoluminescent (TLD-100) dosimeters and compared with conventional dosimetry systems. Detectors were calibrated in terms of absorbed dose to water in 60Co gamma-ray and 6 MV x-ray reference (10×10 cm2) fields using an ionization chamber calibrated at a standards laboratory. Absorbed dose to water rate computed with MD-V2-55 was higher than that obtained with the others dosimeters, possibly due to a smaller volume averaging effect. Ratio between the dose-rates determined with each dosimeter and those obtained with the film was evaluated for both treatment modalities. For the LGK, the ratio decreased as the dosimeter size increased and remained constant for collimator diameters larger than 8 mm. The same behaviour was observed for the linac and the ratio increased with field size, independent of the dosimeter used. These behaviours could be explained as an averaging volume effect due to dose gradient and lack of electronic equilibrium. Evaluation of the output factors for the LGK collimators indicated that, even when agreement was observed between Monte Carlo simulation and measurements with different dosimeters, this does not warrant that the absorbed dose to water rate in the field was properly known and thus, investigation of the reference dosimetry should be an important issue. These results indicated that alanine dosimeter provides a high degree of accuracy but cannot be used in fields smaller than 20 mm diameter. Gafchromic film can be considered as a suitable methodology for reference dosimetry. TLD dosimeters are not appropriate in fields smaller than 10 mm diameters. PMID:23671677

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papadimitroulas, P; Kagadis, GC; Loudos, G

    Purpose: Our purpose is to evaluate the administered absorbed dose in pediatric, nuclear imaging studies. Monte Carlo simulations with the incorporation of pediatric computational models can serve as reference for the accurate determination of absorbed dose. The procedure of the calculated dosimetric factors is described, while a dataset of reference doses is created. Methods: Realistic simulations were executed using the GATE toolkit and a series of pediatric computational models, developed by the “IT'IS Foundation”. The series of the phantoms used in our work includes 6 models in the range of 5–14 years old (3 boys and 3 girls). Pre-processing techniquesmore » were applied to the images, to incorporate the phantoms in GATE simulations. The resolution of the phantoms was set to 2 mm3. The most important organ densities were simulated according to the GATE “Materials Database”. Several used radiopharmaceuticals in SPECT and PET applications are being tested, following the EANM pediatric dosage protocol. The biodistributions of the several isotopes used as activity maps in the simulations, were derived by the literature. Results: Initial results of absorbed dose per organ (mGy) are presented in a 5 years old girl from the whole body exposure to 99mTc - SestaMIBI, 30 minutes after administration. Heart, kidney, liver, ovary, pancreas and brain are the most critical organs, in which the S-factors are calculated. The statistical uncertainty in the simulation procedure was kept lower than 5%. The Sfactors for each target organ are calculated in Gy/(MBq*sec) with highest dose being absorbed in kidneys and pancreas (9.29*10{sup 10} and 0.15*10{sup 10} respectively). Conclusion: An approach for the accurate dosimetry on pediatric models is presented, creating a reference dosage dataset for several radionuclides in children computational models with the advantages of MC techniques. Our study is ongoing, extending our investigation to other reference models and evaluating the results with clinical estimated doses.« less

  2. Evaluation of radiation doses and associated risk from the Fukushima nuclear accident to marine biota and human consumers of seafood

    PubMed Central

    Fisher, Nicholas S.; Beaugelin-Seiller, Karine; Hinton, Thomas G.; Baumann, Zofia; Madigan, Daniel J.; Garnier-Laplace, Jacqueline

    2013-01-01

    Radioactive isotopes originating from the damaged Fukushima nuclear reactor in Japan following the earthquake and tsunami in March 2011 were found in resident marine animals and in migratory Pacific bluefin tuna (PBFT). Publication of this information resulted in a worldwide response that caused public anxiety and concern, although PBFT captured off California in August 2011 contained activity concentrations below those from naturally occurring radionuclides. To link the radioactivity to possible health impairments, we calculated doses, attributable to the Fukushima-derived and the naturally occurring radionuclides, to both the marine biota and human fish consumers. We showed that doses in all cases were dominated by the naturally occurring alpha-emitter 210Po and that Fukushima-derived doses were three to four orders of magnitude below 210Po-derived doses. Doses to marine biota were about two orders of magnitude below the lowest benchmark protection level proposed for ecosystems (10 µGy⋅h−1). The additional dose from Fukushima radionuclides to humans consuming tainted PBFT in the United States was calculated to be 0.9 and 4.7 µSv for average consumers and subsistence fishermen, respectively. Such doses are comparable to, or less than, the dose all humans routinely obtain from naturally occurring radionuclides in many food items, medical treatments, air travel, or other background sources. Although uncertainties remain regarding the assessment of cancer risk at low doses of ionizing radiation to humans, the dose received from PBFT consumption by subsistence fishermen can be estimated to result in two additional fatal cancer cases per 10,000,000 similarly exposed people. PMID:23733934

  3. 18F-FPEB, a PET radiopharmaceutical for quantifying metabotropic glutamate 5 receptors: a first-in-human study of radiochemical safety, biokinetics, and radiation dosimetry.

    PubMed

    Wong, Dean F; Waterhouse, Rikki; Kuwabara, Hiroto; Kim, Jongho; Brašić, James R; Chamroonrat, Wichana; Stabins, Michael; Holt, Daniel P; Dannals, Robert F; Hamill, Terence G; Mozley, P David

    2013-03-01

    Identification of safe and valid PET radioligands for metabotropic glutamate receptor, type 5 (mGluR5), is essential to measure changes in brain mGluR5 in neuropsychiatric disorders, to confirm central mGluR5 occupancy of drug candidates, and to guide dose selection for obtaining an optimum therapeutic window. Here we present the results of a first-in-human study assessing the safety and effectiveness of a novel PET radiopharmaceutical, (18)F-3-fluoro-5-[(pyridin-3-yl)ethynyl]benzonitrile ((18)F-FPEB), for quantifying regional brain concentrations of mGluR5. Quantification of whole-body biokinetics was conducted in 6 healthy adults (3 men and 3 women). The radiation safety profile was estimated with OLINDA/EXM software. Subsequently, pairs of dynamic brain scans were obtained for 11 healthy men to identify optimal methods for derivation of regional distribution volume and binding potential and to determine the repeatability of measurement. The whole-body effective radiation dose was approximately 17 μSv/MBq (62 mrem/mCi), with the gallbladder receiving the highest dose of 190 μSv/MBq. In brain studies, time-activity curves showed high accumulation in the insula/caudate nucleus, moderate uptake in the thalamus, and the lowest concentration in the cerebellum/pons. The plasma reference graphical analysis method appeared optimal for (18)F-FPEB; it showed acceptable test-retest variability of nondisplaceable binding potential (<10%) and identified the highest nondisplaceable binding potential values (from ∼0.5 in the globus pallidus to ∼3.5 in the insula) for target regions. Safety assessments revealed no clinically meaningful changes in vital signs, electrocardiogram, or laboratory values. (18)F-FPEB is safe and well tolerated, and its regional cerebral distribution is consistent with previous reports in the literature for metabotropic glutamate receptors. The repeatability of measurement suggests that (18)F-FPEB is suitable for quantifying mGluR5 in humans.

  4. Subcutaneous administration of a 10-fold-lower dose of a commercial human tuberculosis vaccine, Mycobacterium bovis bacillus Calmette-Guerin Danish, induced levels of protection against bovine tuberculosis and responses in the tuberculin intradermal test similar to those induced by a standard cattle dose.

    PubMed

    Buddle, Bryce M; Hewinson, R Glyn; Vordermeier, H Martin; Wedlock, D Neil

    2013-10-01

    Vaccination of cattle with a commercial human tuberculosis (TB) vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG) Danish, at a dose equivalent to 5 human doses of BCG has protected these animals against TB in field and experimental trials. There is interest in determining whether a 10-fold-lower dose could still protect cattle but not induce a tuberculin intradermal test response. Two groups of calves (n = 9/group) were vaccinated subcutaneously with a lyophilized BCG Danish vaccine containing either 0.5 (1 × 10(5) to 4 × 10(5) CFU) or 5 (1 × 10(6) to 4 × 10(6) CFU) human doses of BCG Danish, with an additional group of 10 calves serving as nonvaccinated controls. Fifteen weeks after vaccination, these animals were challenged intratracheally with 5 × 10(3) CFU of virulent M. bovis and another 15 weeks later were slaughtered and examined for the presence of tuberculous lesions. Vaccination of the calves with either 0.5 or 5 equivalent human doses of BCG Danish induced similar levels of protection against challenge with M. bovis, with both groups showing significant reductions in the pathological and microbiological parameters compared to those for the the control group (P < 0.05). Vaccination with either of the two BCG doses induced similar numbers of animals responding to the tuberculin intradermal test at 11 weeks postvaccination. Vaccination with a 0.5 equivalent human dose of a commercial lyophilized BCG vaccine can protect cattle against challenge with M. bovis.

  5. TLD and OSLD dosimetry systems for remote audits of radiotherapy external beam calibration.

    PubMed

    Alvarez, P; Kry, S F; Stingo, F; Followill, D

    2017-11-01

    The Imaging and Radiation Oncology Core QA Center in Houston (IROC-H) performs remote dosimetry audits of more than 20,000 megavoltage photon and electron beams each year. Both a thermoluminescent dosimeter (TLD-100) and optically stimulated luminescent dosimeter (OSLD; nanoDot) system are commissioned for this task, with the OSLD system being predominant due to the more time-efficient read-out process. The measurement apparatus includes 3 TLD or 2 OSLD in an acrylic mini-phantom, which are irradiated by the institution under reference geometry. Dosimetry systems are calibrated based on the signal-to-dose conversion established with reference dosimeters irradiated in a Co-60 beam, using a reference dose of 300 cGy for TLD and 100 cGy for OSLD. The uncertainty in the dose determination is 1.3% for TLD and 1.6% for OSLD at the one sigma level. This accuracy allows for a tolerance of ±5% to be used.

  6. Novel spectrometers for environmental dose rate monitoring.

    PubMed

    Kessler, P; Behnke, B; Dabrowski, R; Dombrowski, H; Röttger, A; Neumaier, S

    2018-07-01

    A new generation of dosemeters, based on the scintillators LaBr 3 , CeBr 3 and SrI 2 , read out with conventional photomultipliers, to be used in the field of environmental gamma-radiation monitoring, was investigated. The main features of these new instruments and especially their outdoor performance, studied by long-term investigations under real weather conditions, are presented. The systems were tested at the reference sites for environmental radiation of the Physikalisch-Technische Bundesanstalt. The measurements are compared with that of well characterized classical dose rate reference instruments to demonstrate the suitability of new spectrometers for environmental dose rate monitoring even in adverse weather conditions. Their potential to replace the (mainly Geiger Müller based) dose rate meters operated in about 5000 European early waning network stations as well as in environmental radiation monitoring in general is shown. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Dosimetric changes with computed tomography automatic tube-current modulation techniques.

    PubMed

    Spampinato, Sofia; Gueli, Anna Maria; Milone, Pietro; Raffaele, Luigi Angelo

    2018-04-06

    The study is aimed at a verification of dose changes for a computed tomography automatic tube-current modulation (ATCM) technique. For this purpose, anthropomorphic phantom and Gafchromic ® XR-QA2 films were used. Radiochromic films were cut according to the shape of two thorax regions. The ATCM algorithm is based on noise index (NI) and three exam protocols with different NI were chosen, of which one was a reference. Results were compared with dose values displayed by the console and with Poisson statistics. The information obtained with radiochromic films has been normalized with respect to the NI reference value to compare dose percentage variations. Results showed that, on average, the information reported by the CT console and calculated values coincide with measurements. The study allowed verification of the dose information reported by the CT console for an ATCM technique. Although this evaluation represents an estimate, the method can be a starting point for further studies.

  8. Extended range radiation dose-rate monitor

    DOEpatents

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  9. Variability in CT lung-nodule quantification: Effects of dose reduction and reconstruction methods on density and texture based features.

    PubMed

    Lo, P; Young, S; Kim, H J; Brown, M S; McNitt-Gray, M F

    2016-08-01

    To investigate the effects of dose level and reconstruction method on density and texture based features computed from CT lung nodules. This study had two major components. In the first component, a uniform water phantom was scanned at three dose levels and images were reconstructed using four conventional filtered backprojection (FBP) and four iterative reconstruction (IR) methods for a total of 24 different combinations of acquisition and reconstruction conditions. In the second component, raw projection (sinogram) data were obtained for 33 lung nodules from patients scanned as a part of their clinical practice, where low dose acquisitions were simulated by adding noise to sinograms acquired at clinical dose levels (a total of four dose levels) and reconstructed using one FBP kernel and two IR kernels for a total of 12 conditions. For the water phantom, spherical regions of interest (ROIs) were created at multiple locations within the water phantom on one reference image obtained at a reference condition. For the lung nodule cases, the ROI of each nodule was contoured semiautomatically (with manual editing) from images obtained at a reference condition. All ROIs were applied to their corresponding images reconstructed at different conditions. For 17 of the nodule cases, repeat contours were performed to assess repeatability. Histogram (eight features) and gray level co-occurrence matrix (GLCM) based texture features (34 features) were computed for all ROIs. For the lung nodule cases, the reference condition was selected to be 100% of clinical dose with FBP reconstruction using the B45f kernel; feature values calculated from other conditions were compared to this reference condition. A measure was introduced, which the authors refer to as Q, to assess the stability of features across different conditions, which is defined as the ratio of reproducibility (across conditions) to repeatability (across repeat contours) of each feature. The water phantom results demonstrated substantial variability among feature values calculated across conditions, with the exception of histogram mean. Features calculated from lung nodules demonstrated similar results with histogram mean as the most robust feature (Q ≤ 1), having a mean and standard deviation Q of 0.37 and 0.22, respectively. Surprisingly, histogram standard deviation and variance features were also quite robust. Some GLCM features were also quite robust across conditions, namely, diff. variance, sum variance, sum average, variance, and mean. Except for histogram mean, all features have a Q of larger than one in at least one of the 3% dose level conditions. As expected, the histogram mean is the most robust feature in their study. The effects of acquisition and reconstruction conditions on GLCM features vary widely, though trending toward features involving summation of product between intensities and probabilities being more robust, barring a few exceptions. Overall, care should be taken into account for variation in density and texture features if a variety of dose and reconstruction conditions are used for the quantification of lung nodules in CT, otherwise changes in quantification results may be more reflective of changes due to acquisition and reconstruction conditions than in the nodule itself.

  10. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan

    NASA Astrophysics Data System (ADS)

    Inaniwa, Taku; Kanematsu, Nobuyuki; Matsufuji, Naruhiro; Kanai, Tatsuaki; Shirai, Toshiyuki; Noda, Koji; Tsuji, Hiroshi; Kamada, Tadashi; Tsujii, Hirohiko

    2015-04-01

    At the National Institute of Radiological Sciences (NIRS), more than 8,000 patients have been treated for various tumors with carbon-ion (C-ion) radiotherapy in the past 20 years based on a radiobiologically defined clinical-dose system. Through clinical experience, including extensive dose escalation studies, optimum dose-fractionation protocols have been established for respective tumors, which may be considered as the standards in C-ion radiotherapy. Although the therapeutic appropriateness of the clinical-dose system has been widely demonstrated by clinical results, the system incorporates several oversimplifications such as dose-independent relative biological effectiveness (RBE), empirical nuclear fragmentation model, and use of dose-averaged linear energy transfer to represent the spectrum of particles. We took the opportunity to update the clinical-dose system at the time we started clinical treatment with pencil beam scanning, a new beam delivery method, in 2011. The requirements for the updated system were to correct the oversimplifications made in the original system, while harmonizing with the original system to maintain the established dose-fractionation protocols. In the updated system, the radiation quality of the therapeutic C-ion beam was derived with Monte Carlo simulations, and its biological effectiveness was predicted with a theoretical model. We selected the most used C-ion beam with αr = 0.764 Gy-1 and β = 0.0615 Gy-2 as reference radiation for RBE. The C-equivalent biological dose distribution is designed to allow the prescribed survival of tumor cells of the human salivary gland (HSG) in entire spread-out Bragg peak (SOBP) region, with consideration to the dose dependence of the RBE. This C-equivalent biological dose distribution is scaled to a clinical dose distribution to harmonize with our clinical experiences with C-ion radiotherapy. Treatment plans were made with the original and the updated clinical-dose systems, and both physical and clinical dose distributions were compared with regard to the prescribed dose level, beam energy, and SOBP width. Both systems provided uniform clinical dose distributions within the targets consistent with the prescriptions. The mean physical doses delivered to targets by the updated system agreed with the doses by the original system within ±1.5% for all tested conditions. The updated system reflects the physical and biological characteristics of the therapeutic C-ion beam more accurately than the original system, while at the same time allowing the continued use of the dose-fractionation protocols established with the original system at NIRS.

  11. Evaluation of the dosimetric properties of a synthetic single crystal diamond detector in high energy clinical proton beams.

    PubMed

    Mandapaka, A K; Ghebremedhin, A; Patyal, B; Marinelli, Marco; Prestopino, G; Verona, C; Verona-Rinati, G

    2013-12-01

    To investigate the dosimetric properties of a synthetic single crystal diamond Schottky diode for accurate relative dose measurements in large and small field high-energy clinical proton beams. The dosimetric properties of a synthetic single crystal diamond detector were assessed by comparison with a reference Markus parallel plate ionization chamber, an Exradin A16 microionization chamber, and Exradin T1a ion chamber. The diamond detector was operated at zero bias voltage at all times. Comparative dose distribution measurements were performed by means of Fractional depth dose curves and lateral beam profiles in clinical proton beams of energies 155 and 250 MeV for a 14 cm square cerrobend aperture and 126 MeV for 3, 2, and 1 cm diameter circular brass collimators. ICRU Report No. 78 recommended beam parameters were used to compare fractional depth dose curves and beam profiles obtained using the diamond detector and the reference ionization chamber. Warm-up∕stability of the detector response and linearity with dose were evaluated in a 250 MeV proton beam and dose rate dependence was evaluated in a 126 MeV proton beam. Stem effect and the azimuthal angle dependence of the diode response were also evaluated. A maximum deviation in diamond detector signal from the average reading of less than 0.5% was found during the warm-up irradiation procedure. The detector response showed a good linear behavior as a function of dose with observed deviations below 0.5% over a dose range from 50 to 500 cGy. The detector response was dose rate independent, with deviations below 0.5% in the investigated dose rates ranging from 85 to 300 cGy∕min. Stem effect and azimuthal angle dependence of the diode signal were within 0.5%. Fractional depth dose curves and lateral beam profiles obtained with the diamond detector were in good agreement with those measured using reference dosimeters. The observed dosimetric properties of the synthetic single crystal diamond detector indicate that its behavior is proton energy independent and dose rate independent in the investigated energy and dose rate range and it is suitable for accurate relative dosimetric measurements in large as well as in small field high energy clinical proton beams.

  12. SU-E-T-602: Patient-Specific Online Dose Verification Based On Transmission Detector Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoelking, J; Yuvaraj, S; Jens, F

    Purpose: Intensity modulated radiotherapy requires a comprehensive quality assurance program in general and ideally independent verification of dose delivery. Since conventional 2D detector arrays allow only pre-treatment verification, there is a debate concerning the need of online dose verification. This study presents the clinical performance, including dosimetric plan verification in 2D as well as in 3D and the error detection abilities of a new transmission detector (TD) for online dose verification of 6MV photon beam. Methods: To validate the dosimetric performance of the new device, dose reconstruction based on TD measurements were compared to a conventional pre-treatment verification method (reference)more » and treatment planning system (TPS) for 18 IMRT and VMAT treatment plans. Furthermore, dose reconstruction inside the patient based on TD read-out was evaluated by comparing various dose volume indices and 3D gamma evaluations against independent dose computation and TPS. To investigate the sensitivity of the new device, different types of systematic and random errors for leaf positions and linac output were introduced in IMRT treatment sequences. Results: The 2D gamma index evaluation of transmission detector based dose reconstruction showed an excellent agreement for all IMRT and VMAT plans compared to reference measurements (99.3±1.2)% and TPS (99.1±0.7)%. Good agreement was also obtained for 3D dose reconstruction based on TD read-out compared to dose computation (mean gamma value of PTV = 0.27±0.04). Only a minimal dose underestimation within the target volume was observed when analyzing DVH indices (<1%). Positional errors in leaf banks larger than 1mm and errors in linac output larger than 2% could clearly identified with the TD. Conclusion: Since 2D and 3D evaluations for all IMRT and VMAT treatment plans were in excellent agreement with reference measurements and dose computation, the new TD is suitable to qualify for routine treatment plan verification. Funding Support, Disclosures, and Conflict of Interest: COIs: Frank Lohr: Elekta: research grant, travel grants, teaching honoraria IBA: research grant, travel grants, teaching honoraria, advisory board C-Rad: board honoraria, travel grants Frederik Wenz: Elekta: research grant, teaching honoraria, consultant, advisory board Zeiss: research grant, teaching honoraria, patent Hansjoerg Wertz: Elekta: research grant, teaching honoraria IBA: research grant.« less

  13. An FDA oncology analysis of immune activating products and first-in-human dose selection.

    PubMed

    Saber, Haleh; Gudi, Ramadevi; Manning, Michael; Wearne, Emily; Leighton, John K

    2016-11-01

    As sub-therapeutic doses are not medically justifiable in patients with cancer, we retrospectively analyzed data on immune activating products, to assess approaches used in first-in-human (FIH) dose selection, the utility of animal toxicology studies in dose selection, and the length of time to complete FIH trials. The information collected included pharmacology and toxicology data, FIH dose and rationale, and dose-finding trial design. We used the principles of the Hill equation to estimate the FIH doses for antibodies and compared them to the doses administered to patients with acceptable toxicities. For approximately half the antibodies (44%) examined, the FIH doses were at least a hundred-fold lower than the doses safely administered to patients, indicating optimization of FIH dose selection and/or optimization of dose-finding trial design is needed to minimize patient exposure to sub-therapeutic doses. However, selection of the FIH dose for antibodies based on animal toxicology studies using 1/6th the HNSTD or 1/10th the NOAEL resulted in human doses that were unsafe for several antibodies examined. We also concluded that antibodies with Fc-modifications for increased effector function may be less tolerated, resulting in toxicities at lower doses than those without such modifications. There was insufficient information to evaluate CD3 bispecific products. Published by Elsevier Inc.

  14. RBE, reference RBE and clinical RBE: applications of these concepts in hadron therapy.

    PubMed

    Wambersie, A

    1999-06-01

    Introduction of heavy particles (hadrons) into radiation therapy aims at improving the physical selectivity of the irradiation (e.g. proton beams), or the radiobiological differential effect (e.g. fast neutrons), or both (e.g. heavy-ion beams). Each of these new therapy modalities requires several types of information before prescribing safely the doses to patients, as well as for recording and reporting the treatments: (i) absorbed dose measured in a homogeneous phantom in reference conditions; (ii) dose distribution computed at the level of the target volume(s) and the normal tissues at risk; (iii) radiation quality from which a RBE evaluation could be predicted and (iv) RBE measured on biological systems or derived from clinical observation. In hadron therapy, the RBE of the different beams raises specific problems. For fast neutrons, the RBE varies within wide limits (about 2 to 5) depending on the neutron energy spectrum, dose, and biological system. For protons, the RBE values range between smaller limits (about 1.0 to 1.2). A clinical benefit can thus not be expected from RBE differences. However, the proton RBE problem cannot be ignored since dose differences of about 5% can be detected clinically in some cases. The situation is most complex with heavy ions since RBE variations are at least as large as for fast neutrons, as a function of particle type and energy, dose and biological system. In addition, RBE varies with depth. Radiation quality thus has to be taken into account when prescribing and reporting a treatment. This can be done in different ways: (a) description of the method of beam production; (b) computed LET spectra and/or measured microdosimetric spectra at the points clinically relevant; (c) RBE determination. The most relevant RBE data are those obtained for late tolerance of normal tissues at 2 Gy per fraction ("reference RBE"). The "clinical RBE" selected by the radiation oncologist when prescribing the treatment will be close to the reference RBE, but other factors (such as heterogeneity in dose distribution) may influence the selection of the clinical RBE. Combination of microdosimetric data and experimental RBE values improves the confidence in both sets of data.

  15. Stochastic Human Exposure and Dose Simulation for Air Toxics

    EPA Science Inventory

    The Stochastic Human Exposure and Dose Simulation model for Air Toxics (SHEDS-AirToxics) is a multimedia, multipathway population-based exposure and dose model for air toxics developed by the US EPA's National Exposure Research Laboratory (NERL). SHEDS-AirToxics uses a probabili...

  16. Pharmacokinetic and pharmacodynamic modeling to determine the dose of ST-246 to protect against smallpox in humans.

    PubMed

    Leeds, Janet M; Fenneteau, Frederique; Gosselin, Nathalie H; Mouksassi, Mohamad-Samer; Kassir, Nastya; Marier, J F; Chen, Yali; Grosenbach, Doug; Frimm, Annie E; Honeychurch, Kady M; Chinsangaram, Jarasvech; Tyavanagimatt, Shanthakumar R; Hruby, Dennis E; Jordan, Robert

    2013-03-01

    Although smallpox has been eradicated, the United States government considers it a "material threat" and has funded the discovery and development of potential therapeutic compounds. As reported here, the human efficacious dose for one of these compounds, ST-246, was determined using efficacy studies in nonhuman primates (NHPs), together with pharmacokinetic and pharmacodynamic analysis that predicted the appropriate dose and exposure levels to provide therapeutic benefit in humans. The efficacy analysis combined the data from studies conducted at three separate facilities that evaluated treatment following infection with a closely related virus, monkeypox virus (MPXV), in a total of 96 NHPs. The effect of infection on ST-246 pharmacokinetics in NHPs was applied to humans using population pharmacokinetic models. Exposure at the selected human dose of 600 mg is more than 4-fold higher than the lowest efficacious dose in NHPs and is predicted to provide protection to more than 95% of the population.

  17. Synergistic effect of low-dose cucurbitacin B and low-dose methotrexate for treatment of human osteosarcoma

    PubMed Central

    Goff, Catherine; Iwanski, Gabriela B.; Forscher, Charles; Doan, Ngan B.; Said, Jonathan W.; Koeffler, H. Phillip

    2016-01-01

    We investigated the use of cucurbitacin B, a plant-derived tetracyclic triterpenoid, as a single agent or in combination with methotrexate (MTX) for human osteosarcoma (OS) treatment. Cucurbitacin B showed antiproliferative activity against seven human OS cell lines in vitro accompanying G2/M cell cycle arrest, apoptosis, and inhibition of ERK, Akt, and mTOR proteins. Cucurbitacin B in combination with MTX synergistically inhibited OS cell growth in vitro. Low-dose cucurbitacin B (LD-CuB, 0.5 mg/kg body weight) or low-dose MTX (LD-MTX, 150 mg/kg) failed to decrease the size of human OS xenografts in nude mice. However, combined therapy at identical concentrations inhibited tumor growth by 62% vs. LD-CuB and 81% vs. LD-MTX (p < 0.001). Strikingly, the effect persisted even when the dose of MTX was decreased by two thirds (VLD-MTX, 50 mg/kg). In conclusion, cucurbitacin B alone or in combination with MTX shows promising antiproliferative activity against human OS. PMID:21440986

  18. Disposition and metabolism of [14C]-levomilnacipran, a serotonin and norepinephrine reuptake inhibitor, in humans, monkeys, and rats

    PubMed Central

    Brunner, Valérie; Maynadier, Bernadette; Chen, Laishun; Roques, Louise; Hude, Isabelle; Séguier, Sébastien; Barthe, Laurence; Hermann, Philippe

    2015-01-01

    Levomilnacipran is approved in the US for the treatment of major depressive disorder in adults. We characterized the metabolic profile of levomilnacipran in humans, monkeys, and rats after oral administration of [14C]-levomilnacipran. In vitro binding of levomilnacipran to human plasma proteins was also studied. Unchanged levomilnacipran was the major circulating compound after dosing in all species. Within 12 hours of dosing in humans, levomilnacipran accounted for 52.9% of total plasma radioactivity; the circulating metabolites N-desethyl levomilnacipran N-carbamoyl glucuronide, N-desethyl levomilnacipran, and levomilnacipran N-carbamoyl glucuronide accounted for 11.3%, 7.5%, and 5.6%, respectively. Similar results were seen in monkeys. N-Desethyl levomilnacipran and p-hydroxy levomilnacipran were the main circulating metabolites in rats. Mass balance results indicated that renal excretion was the major route of elimination with 58.4%, 35.5%, and 40.2% of total radioactivity being excreted as unchanged levomilnacipran in humans, monkeys, and rats, respectively. N-Desethyl levomilnacipran was detected in human, monkey, and rat urine (18.2%, 12.4%, and 7.9% of administered dose, respectively). Human and monkey urine contained measurable quantities of levomilnacipran glucuronide (3.8% and 4.1% of administered dose, respectively) and N-desethyl levomilnacipran glucuronide (3.2% and 2.3% of administered dose, respectively); these metabolites were not detected in rat urine. The metabolites p-hydroxy levomilnacipran and p-hydroxy levomilnacipran glucuronide were detected in human urine (≤1.2% of administered dose), and p-hydroxy levomilnacipran glucuronide was found in rat urine (4% of administered dose). None of the metabolites were pharmacologically active. Levomilnacipran was widely distributed with low plasma protein binding (22%). PMID:26150694

  19. Direct comparison of radiation dosimetry of six PET tracers using human whole-body imaging and murine biodistribution studies.

    PubMed

    Sakata, Muneyuki; Oda, Keiichi; Toyohara, Jun; Ishii, Kenji; Nariai, Tadashi; Ishiwata, Kiichi

    2013-04-01

    We investigated the whole-body biodistributions and radiation dosimetry of five (11)C-labeled and one (18)F-labeled radiotracers in human subjects, and compared the results to those obtained from murine biodistribution studies. The radiotracers investigated were (11)C-SA4503, (11)C-MPDX, (11)C-TMSX, (11)C-CHIBA-1001, (11)C-4DST, and (18)F-FBPA. Dynamic whole-body positron emission tomography (PET) was performed in three human subjects after a single bolus injection of each radiotracer. Emission scans were collected in two-dimensional mode in five bed positions. Regions of interest were placed over organs identified in reconstructed PET images. The OLINDA program was used to estimate radiation doses from the number of disintegrations of these source organs. These results were compared with the predicted human radiation doses on the basis of biodistribution data obtained from mice by dissection. The ratios of estimated effective doses from the human-derived data to those from the mouse-derived data ranged from 0.86 to 1.88. The critical organs that received the highest absorbed doses in the human- and mouse-derived studies differed for two of the six radiotracers. The differences between the human- and mouse-derived dosimetry involved not only the species differences, including faster systemic circulation of mice and differences in the metabolism, but also measurement methodologies. Although the mouse-derived effective doses were roughly comparable to the human-derived doses in most cases, considerable differences were found for critical organ dose estimates and pharmacokinetics in certain cases. Whole-body imaging for investigation of radiation dosimetry is desirable for the initial clinical evaluation of new PET probes prior to their application in subsequent clinical investigations.

  20. ASSESSING CHILDREN'S EXPOSURES TO PESTICIDES: AN IMPORTANT APPLICATION OF THE STOCHASTIC HUMAN EXPOSURE AND DOSE SIMULATION MODEL (SHEDS)

    EPA Science Inventory

    Accurately quantifying human exposures and doses of various populations to environmental pollutants is critical for the Agency to assess and manage human health risks. For example, the Food Quality Protection Act of 1996 (FQPA) requires EPA to consider aggregate human exposure ...

  1. Pharmacological and Toxicological Properties of the Potent Oral γ-Secretase Modulator BPN-15606.

    PubMed

    Wagner, Steven L; Rynearson, Kevin D; Duddy, Steven K; Zhang, Can; Nguyen, Phuong D; Becker, Ann; Vo, Uyen; Masliah, Deborah; Monte, Louise; Klee, Justin B; Echmalian, Corinne M; Xia, Weiming; Quinti, Luisa; Johnson, Graham; Lin, Jiunn H; Kim, Doo Y; Mobley, William C; Rissman, Robert A; Tanzi, Rudolph E

    2017-07-01

    Alzheimer's disease (AD) is characterized neuropathologically by an abundance of 1) neuritic plaques, which are primarily composed of a fibrillar 42-amino-acid amyloid- β peptide (A β ), as well as 2) neurofibrillary tangles composed of aggregates of hyperphosporylated tau. Elevations in the concentrations of the A β 42 peptide in the brain, as a result of either increased production or decreased clearance, are postulated to initiate and drive the AD pathologic process. We initially introduced a novel class of bridged aromatics referred t γ -secretase modulatoro as γ -secretase modulators that inhibited the production of the A β 42 peptide and to a lesser degree the A β 40 peptide while concomitantly increasing the production of the carboxyl-truncated A β 38 and A β 37 peptides. These modulators potently lower A β 42 levels without inhibiting the γ -secretase-mediated proteolysis of Notch or causing accumulation of carboxyl-terminal fragments of APP. In this study, we report a large number of pharmacological studies and early assessment of toxicology characterizing a highly potent γ -secretase modulator (GSM), ( S )- N -(1-(4-fluorophenyl)ethyl)-6-(6-methoxy-5-(4-methyl-1 H -imidazol-1-yl)pyridin-2-yl)-4-methylpyridazin-3-amine (BPN-15606). BPN-15606 displayed the ability to significantly lower A β 42 levels in the central nervous system of rats and mice at doses as low as 5-10 mg/kg, significantly reduce A β neuritic plaque load in an AD transgenic mouse model, and significantly reduce levels of insoluble A β 42 and pThr181 tau in a three-dimensional human neural cell culture model. Results from repeat-dose toxicity studies in rats and dose escalation/repeat-dose toxicity studies in nonhuman primates have designated this GSM for 28-day Investigational New Drug-enabling good laboratory practice studies and positioned it as a candidate for human clinical trials. Copyright © 2017 by The Author(s).

  2. Genetic susceptibility: radiation effects relevant to space travel.

    PubMed

    Peng, Yuanlin; Nagasawa, Hatsumi; Warner, Christy; Bedford, Joel S

    2012-11-01

    Genetic variation in the capacity to repair radiation damage is an important factor influencing both cellular and tissue radiosensitivity variation among individuals as well as dose rate effects associated with such damage. This paper consists of two parts. The first part reviews some of the available data relating to genetic components governing such variability among individuals in susceptibility to radiation damage relevant for radiation protection and discusses the possibility and extent to which these may also apply for space radiations. The second part focuses on the importance of dose rate effects and genetic-based variations that influence them. Very few dose rate effect studies have been carried out for the kinds of radiations encountered in space. The authors present here new data on the production of chromosomal aberrations in noncycling low passage human ATM+/+ or ATM+/- cells following irradiations with protons (50 MeV or 1 GeV), 1 GeV(-1) n iron ions and gamma rays, where doses were delivered at a high dose rate of 700 mGy(-1) min, or a lower dose rate of 5 mGy min(-1). Dose responses were essentially linear over the dose ranges tested and not significantly different for the two cell strains. Values of the dose rate effectiveness factor (DREF) were expressed as the ratio of the slopes of the dose-response curves for the high versus the lower (5 mGy min(-1)) dose rate exposures. The authors refer to this as the DREF5. For the gamma ray standard, DREF5 values of approximately two were observed. Similar dose rate effects were seen for both energies of protons (DREF5 ≈ 2.2 in both cases). For 1 GeV(-1) n iron ions [linear energy transfer (LET) ≈ 150 keV μ(-1)], the DREF5 was not 1 as might have been expected on the basis of LET alone but was approximately 1.3. From these results and conditions, the authors estimate that the relative biological effectiveness for 1 GeV(-1) n iron ions for high and low dose rates, respectively, were about 10 and 15 rather than around 20 for low dose rates, as has been assumed by most recommendations from radiation protection organizations for charged particles of this LET. The authors suggest that similar studies using appropriate animal models of carcinogenesis would be valuable.

  3. Sci—Thur AM: YIS - 11: Estimation of Bladder-Wall Cumulative Dose in Multi-Fraction Image-Based Gynaecological Brachytherapy Using Deformable Point Set Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakariaee, R; Brown, C J; Hamarneh, G

    2014-08-15

    Dosimetric parameters based on dose-volume histograms (DVH) of contoured structures are routinely used to evaluate dose delivered to target structures and organs at risk. However, the DVH provides no information on the spatial distribution of the dose in situations of repeated fractions with changes in organ shape or size. The aim of this research was to develop methods to more accurately determine geometrically localized, cumulative dose to the bladder wall in intracavitary brachytherapy for cervical cancer. The CT scans and treatment plans of 20 cervical cancer patients were used. Each patient was treated with five high-dose-rate (HDR) brachytherapy fractions ofmore » 600cGy prescribed dose. The bladder inner and outer surfaces were delineated using MIM Maestro software (MIM Software Inc.) and were imported into MATLAB (MathWorks) as 3-dimensional point clouds constituting the “bladder wall”. A point-set registration toolbox for MATLAB, Coherent Point Drift (CPD), was used to non-rigidly transform the bladder-wall points from four of the fractions to the coordinate system of the remaining (reference) fraction, which was chosen to be the emptiest bladder for each patient. The doses were accumulated on the reference fraction and new cumulative dosimetric parameters were calculated. The LENT-SOMA toxicity scores of these patients were studied against the cumulative dose parameters. Based on this study, there was no significant correlation between the toxicity scores and the determined cumulative dose parameters.« less

  4. Sci-Fri AM: MRI and Diagnostic Imaging - 02: Quality Improvement: Diagnostic Reference Levels for Interior Health CT exams – L-Spine, Chest/Abdomen/pelvis, Abdomen/Pelvis, Head

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjarnason, Thorarin

    Diagnostic Reference Levels are used to optimize patient dose and image quality in the clinical setting. It is assumed that the majority of exams are of diagnostic quality, or the radiologists would request protocol adjustments. By investigating the dose indicator distributions from all scanners, the upper DRL can be set to the 75th percentile of the distribution and a lower DRL can be set to the 10th percentile. Scanners using doses consistently outside the upper/lower DRL range can be adjusted accordingly. 11 CT scanners, all contributing to the American College of Radiology Dose Index Registry (ACR DIR) were used inmore » this study. Dose indicator data were compiled from the ACR DIR data and local DRLs established. Scanners with median doses outside the upper/lower DRL were followed-up with. Using effective dose and exam volumes, collective dose was determined before and after protocol adjustments to evaluate the effect of this quality improvement effort. The quality initiative is complete for L-spine and Chest/Abdomen/Pelvis exams and only initial surveys were completed for Head and Abdomen/Pelvis examsg. Median Scanner Dose reductions were 8.8 and 4.9 % for L-spine and Chest/Abdomen/Pelvis exams, respectively, resulting with collective dose reductions of 0.7 and 3.2 person•Sv/yr. Follow-up is ongoing for Abdomen/Pelvis and Head exams.« less

  5. POPULATION EXPOSURE AND DOSE MODEL FOR AIR TOXICS: A BENZENE CASE STUDY

    EPA Science Inventory

    The EPA's National Exposure Research Laboratory (NERL) is developing a human exposure and dose model called the Stochastic Human Exposure and Dose Simulation model for Air Toxics (SHEDS-AirToxics) to characterize population exposure to air toxics in support of the National Air ...

  6. OVERVIEW OF EPA'S HUMAN EXPOSURE AND SOURCE-TO-DOSE MODELING PROGRAM: HEADSUP

    EPA Science Inventory

    EPA's human exposure and source-to-dose modeling program is designed to provide a scientifically sound approach to understanding how people are actually exposed to pollutants and the magnitude of predicted exposures and dose. The objective of this research project is to develo...

  7. Urinary chromium concentrations in humans following ingestion of safe doses of hexavalent and trivalent chromium: Implications for biomonitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, B.L.; Scott, P.K.; Norton, R.L.

    1996-08-09

    This study evaluates the significance of increased urinary chromium concentrations as a marker of chromium exposure and potential health risk. Six human volunteers ingested trivalent chromium [Cr(III)] and hexavalent chromium [Cr(VI)] at doses that are known to be safe but higher than typical levels. The following dosing regimen was used: d 1-7, 200 {mu}g/d chromium picolinate; d 8-10, Cr(VI) ingestion at the U.S. Environmental Protection Agency (EPA) reference dose (RfD) of 0.005 mg/kg/d; d 11-13, no dose; d 14-16, Cr(III) ingestion at the U.S. EPA RfD of 1.0 mg/kg/d; and 17-18, postdose. Findings are as follows: (1) ingestion of 200more » {mu}g/d of chromium picolinate yielded significantly elevated urine concentrations such that each participant routinely exceeded background, (2) ingestion of the Cr(VI) RfD (0.005 mg/kg/d) yielded individual mean urinary chromium levels (1.2-2.3 {mu}g/L) and a pooled mean urinary chromium level (2.4 {mu}g/L) that significantly exceeded background, and (3) ingestion of the Cr(III) RfD yielded no significantly exceeded background, and (3) ingestion of the Cr(III) RfD yielded no significant increase in urinary chromium concentrations, indicating that little, if any, absorption occurred. Our work identified three critical issues that need to be accounted for in any future studies that will use urinary chromium as a marker of exposure. First, a minimum urinary chromium concentration of approximately 2 {mu}g/L should be used as a screening level to critically identify individuals who may have experienced elevated exposures to chromium. Second, if Cr(III) levels in soils are known to be less than 80,000 ppm and the Cr(III) is insoluble, urinary chromium concentrations are not an appropriate marker of exposure. Third, newer forms of chromium supplements that contain organic forms of Cr(III) must be considered potential confounders and their contribution to residential chromium uptake must be carefully evaluated. 19 refs., 7 figs., 3 tabs.« less

  8. Redefining relative biological effectiveness in the context of the EQDX formalism: implications for alpha-particle emitter therapy.

    PubMed

    Hobbs, Robert F; Howell, Roger W; Song, Hong; Baechler, Sébastien; Sgouros, George

    2014-01-01

    Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from irradiation of a breast cancer cell line. Radiobiological parameters are obtained using the linear quadratic model to fit cell survival data for MDA-MB-231 human breast cancer cells that were irradiated with either α particles or a single fraction of low-LET (137)Cs γ rays. From these, the linear coefficient for both the biologically effective dose (BED) and the EQD2(α/β) response lines were derived for fractionated irradiation. The standard RBE calculation, using the traditional single fraction reference radiation, gave RBE values that ranged from 2.4 for a surviving fraction of 0.82-6.0 for a surviving fraction of 0.02, while the dose-independent RBE2(4.6) value was 4.5 for all surviving fraction values. Furthermore, bioeffect modeling with RBE2(α/β) and EQD2(α/β) demonstrated the capacity to predict the surviving fraction of cells irradiated with acute and fractionated low-LET radiation, α particles and chronic exponentially decreasing dose rates of low-LET radiation. RBE2(α/β) is independent of absorbed dose for α-particle emitters and it provides a more logical framework for data reporting and conversion to equieffective dose than the conventional dose-dependent definition of RBE. Moreover, it provides a much needed foundation for the ongoing development of an α-particle dosimetry paradigm and will facilitate the use of tolerance dose data available from external beam radiation therapy, thereby helping to develop αRPT as a single modality as well as for combination therapies.

  9. Redefining Relative Biological Effectiveness in the Context of the EQDX Formalism: Implications for Alpha-Particle Emitter Therapy.

    PubMed

    Hobbs, Robert F; Howell, Roger W; Song, Hong; Baechler, Sébastien; Sgouros, George

    2013-12-30

    Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from irradiation of a breast cancer cell line. Radiobiological parameters are obtained using the linear quadratic model to fit cell survival data for MDA-MB-231 human breast cancer cells that were irradiated with either α particles or a single fraction of low-LET 137 Cs γ rays. From these, the linear coefficient for both the biologically effective dose (BED) and the EQD2(α/β) response lines were derived for fractionated irradiation. The standard RBE calculation, using the traditional single fraction reference radiation, gave RBE values that ranged from 2.4 for a surviving fraction of 0.82-6.0 for a surviving fraction of 0.02, while the dose-independent RBE2(4.6) value was 4.5 for all surviving fraction values. Furthermore, bioeffect modeling with RBE2(α/β) and EQD2(α/β) demonstrated the capacity to predict the surviving fraction of cells irradiated with acute and fractionated low-LET radiation, α particles and chronic exponentially decreasing dose rates of low-LET radiation. RBE2(α/β) is independent of absorbed dose for α-particle emitters and it provides a more logical framework for data reporting and conversion to equieffective dose than the conventional dose-dependent definition of RBE. Moreover, it provides a much needed foundation for the ongoing development of an α-particle dosimetry paradigm and will facilitate the use of tolerance dose data available from external beam radiation therapy, thereby helping to develop αRPT as a single modality as well as for combination therapies.

  10. Agonistic TAM-163 antibody targeting tyrosine kinase receptor-B: applying mechanistic modeling to enable preclinical to clinical translation and guide clinical trial design.

    PubMed

    Vugmeyster, Yulia; Rohde, Cynthia; Perreault, Mylene; Gimeno, Ruth E; Singh, Pratap

    2013-01-01

    TAM-163, an agonist monoclonal antibody targeting tyrosine receptor kinase-B (TrkB), is currently being investigated as a potential body weight modulatory agent in humans. To support the selection of the dose range for the first-in-human (FIH) trial of TAM-163, we conducted a mechanistic analysis of the pharmacokinetic (PK) and pharmacodynamic (PD) data (e.g., body weight gain) obtained in lean cynomolgus and obese rhesus monkeys following single doses ranging from 0.3 to 60 mg/kg. A target-mediated drug disposition (TMDD) model was used to describe the observed nonlinear PK and Emax approach was used to describe the observed dose-dependent PD effect. The TMDD model development was supported by the experimental determination of the binding affinity constant (9.4 nM) and internalization rate of the drug-target complex (2.08 h(-1)). These mechanistic analyses enabled linking of exposure, target (TrkB) coverage, and pharmacological activity (e.g., PD) in monkeys, and indicated that ≥ 38% target coverage (time-average) was required to achieve significant body weight gain in monkeys. Based on the scaling of the TMDD model from monkeys to humans and assuming similar relationship between the target coverage and pharmacological activity between monkey and humans, subcutaneous (SC) doses of 1 and 15 mg/kg in humans were projected to be the minimally and the fully pharmacologically active doses, respectively. Based on the minimal anticipated biological effect level (MABEL) approach for starting dose selection, the dose of 0.05 mg/kg (3 mg for a 60 kg human) SC was recommended as the starting dose for FIH trials, because at this dose level<10% target coverage was projected at Cmax (and all other time points). This study illustrates a rational mechanistic approach for the selection of FIH dose range for a therapeutic protein with a complex model of action.

  11. Approaches to the risk assessment of genotoxic carcinogens in food: a critical appraisal.

    PubMed

    O'Brien, J; Renwick, A G; Constable, A; Dybing, E; Müller, D J G; Schlatter, J; Slob, W; Tueting, W; van Benthem, J; Williams, G M; Wolfreys, A

    2006-10-01

    The present paper examines the particular difficulties presented by low levels of food-borne DNA-reactive genotoxic carcinogens, some of which may be difficult to eliminate completely from the diet, and proposes a structured approach for the evaluation of such compounds. While the ALARA approach is widely applicable to all substances in food that are both carcinogenic and genotoxic, it does not take carcinogenic potency into account and, therefore, does not permit prioritisation based on potential risk or concern. In the absence of carcinogenicity dose-response data, an assessment based on comparison with an appropriate threshold of toxicological concern may be possible. When carcinogenicity data from animal bioassays are available, a useful analysis is achieved by the calculation of margins of exposure (MOEs), which can be used to compare animal potency data with human exposure scenarios. Two reference points on the dose-response relationship that can be used for MOE calculation were examined; the T25 value, which is derived from linear extrapolation, and the BMDL10, which is derived from mathematical modelling of the dose-response data. The above approaches were applied to selected food-borne genotoxic carcinogens. The proposed approach is applicable to all substances in food that are DNA-reactive genotoxic carcinogens and enables the formulation of appropriate semi-quantitative advice to risk managers.

  12. Health Risk Evaluations for Ingestion Exposure of Humans to Polonium-210

    PubMed Central

    Scott, Bobby R.

    2007-01-01

    The incident in London during November 2006 involving a lethal intake by Mr. Alexander Litvinenko of the highly-radioactive, alpha-particles-emitting polonium-210 (Po-210) isotope, presumably via ingestion, sparked renewed interest in the area of Po-210 toxicity to humans. This paper is the result of assembling and interpreting existing Po-210 data within the context of what is considered a reliable risk model (hazard-function [HF] model) for characterizing the risk of death from deterministic effects of high alpha radiation doses and dose rates to body organs. The HF model was developed to address radiation exposure scenarios involving combined exposures to alpha, beta, and gamma radiations and can be used in circumstances where only one type of radiation is involved. Under a plausible but not yet validated set of assumptions and using available megabecquerel (Po-210) to gray dose-conversion factors, acute lethality risk vs. dose curves were developed for circumstances of ingestion exposure to Po-210 by humans. Initial risk calculations were carried out for a reference adult male human (a hypothetical 70-kg person). Results were then modified for application to all ages (except the in utero child) via the use of systemic Po-210 burden. Because of the unavailability of acute lethality data derived from human ingestions of high levels of Po-210, plausibility of risk calculations were evaluated based on data from studies of Po-210 injections in animals. The animal data, although limited, were found to be consistent with the theoretical risk calculations. Key findings are as follows: (1) ingestion (or inhalation) of a few tents of a milligram of Po-210 will likely be fatal to all exposed persons. (2) Lethal intakes are expected to involve fatal damage to the bone marrow which is likely to be compounded by damage caused by higher doses to other organs including the kidneys and liver. (3) Lethal intakes are expected to cause severe damage to the kidney, spleen, stomach, small and large intestines, lymph nodes, skin, and testes (males) in addition to the fatal damage to bone marrow. (4) The time distribution of deaths is expected to depend on the level of radioactivity ingested or inhaled, with deaths occurring within about a month after very high levels of radioactivity intake (e.g., systemic burdens > 1 MBq/kg-body-mass) and occurring over longer periods, possibly up to or exceeding a year for lower but lethal intakes (systemic burdens from 0.1 to 1.0 MBq/kg-body-mass). Below a systemic burden estimate of 0.02 MBq/kg-body-mass, deaths from deterministic effects are not expected to occur but the risk of cancer and for life shortening could be significant. New, funded experimental and modeling/theoretical research is needed to improve on these estimates. PMID:18648599

  13. Population Physiologically-Based Pharmacokinetic Modeling for the Human Lactational Transfer of PCB 153 with Consideration of Worldwide Human Biomonitoring Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redding, Laurel E.; Sohn, Michael D.; McKone, Thomas E.

    2008-03-01

    We developed a physiologically based pharmacokinetic model of PCB 153 in women, and predict its transfer via lactation to infants. The model is the first human, population-scale lactational model for PCB 153. Data in the literature provided estimates for model development and for performance assessment. Physiological parameters were taken from a cohort in Taiwan and from reference values in the literature. We estimated partition coefficients based on chemical structure and the lipid content in various body tissues. Using exposure data in Japan, we predicted acquired body burden of PCB 153 at an average childbearing age of 25 years and comparemore » predictions to measurements from studies in multiple countries. Forward-model predictions agree well with human biomonitoring measurements, as represented by summary statistics and uncertainty estimates. The model successfully describes the range of possible PCB 153 dispositions in maternal milk, suggesting a promising option for back estimating doses for various populations. One example of reverse dosimetry modeling was attempted using our PBPK model for possible exposure scenarios in Canadian Inuits who had the highest level of PCB 153 in their milk in the world.« less

  14. Keeping an eye on the ring: COMS plaque loading optimization for improved dose conformity and homogeneity.

    PubMed

    Gagne, Nolan L; Cutright, Daniel R; Rivard, Mark J

    2012-09-01

    To improve tumor dose conformity and homogeneity for COMS plaque brachytherapy by investigating the dosimetric effects of varying component source ring radionuclides and source strengths. The MCNP5 Monte Carlo (MC) radiation transport code was used to simulate plaque heterogeneity-corrected dose distributions for individually-activated source rings of 14, 16 and 18 mm diameter COMS plaques, populated with (103)Pd, (125)I and (131)Cs sources. Ellipsoidal tumors were contoured for each plaque size and MATLAB programming was developed to generate tumor dose distributions for all possible ring weighting and radionuclide permutations for a given plaque size and source strength resolution, assuming a 75 Gy apical prescription dose. These dose distributions were analyzed for conformity and homogeneity and compared to reference dose distributions from uniformly-loaded (125)I plaques. The most conformal and homogeneous dose distributions were reproduced within a reference eye environment to assess organ-at-risk (OAR) doses in the Pinnacle(3) treatment planning system (TPS). The gamma-index analysis method was used to quantitatively compare MC and TPS-generated dose distributions. Concentrating > 97% of the total source strength in a single or pair of central (103)Pd seeds produced the most conformal dose distributions, with tumor basal doses a factor of 2-3 higher and OAR doses a factor of 2-3 lower than those of corresponding uniformly-loaded (125)I plaques. Concentrating 82-86% of the total source strength in peripherally-loaded (131)Cs seeds produced the most homogeneous dose distributions, with tumor basal doses 17-25% lower and OAR doses typically 20% higher than those of corresponding uniformly-loaded (125)I plaques. Gamma-index analysis found > 99% agreement between MC and TPS dose distributions. A method was developed to select intra-plaque ring radionuclide compositions and source strengths to deliver more conformal and homogeneous tumor dose distributions than uniformly-loaded (125)I plaques. This method may support coordinated investigations of an appropriate clinical target for eye plaque brachytherapy.

  15. Comparison of estimated human dose of (68)Ga-MAA with (99m)Tc-MAA based on rat data.

    PubMed

    Shanehsazzadeh, Saeed; Lahooti, Afsaneh; Yousefnia, Hassan; Geramifar, Parham; Jalilian, Amir Reza

    2015-10-01

    (99m)Tc macroaggregated albumin ((99m)Tc-MAA) that had been used as a perfusion agent has been evaluated. In this study, we tried to estimate human absorbed dose of ⁶⁸Ga-MAA via commercially available kit from Pars-Isotopes, based on biodistribution data in wild-type rats, and compare our estimation with the available absorbed dose data from (99m)Tc-MAA. For biodistribution of ⁶⁸Ga-MAA, three rats were sacrificed at each selected times after injection (15, 30, 45, 60, and 120 min) and the percentage of injected dose per gram of each organ was measured by direct counting from rats data from 11 harvested organs. The medical internal radiation dose formulation was applied to extrapolate from rats to human and to project the absorbed radiation dose for various organs in humans. The biodistribution data for ⁶⁸Ga-MAA showed that the most of the activity was taken up by the lung (more than 97 %) in no time. Our dose prediction shows that a 185-MBq injection of ⁶⁸Ga-MAA into humans might result in an estimated absorbed dose of 4.31 mGy in the whole body. The highest absorbed doses are observed in the adrenals, spleen, pancreas, and red marrow with 0.36, 0.34, 0.26, and 0.19 mGy, respectively. Since the (99m)Tc-MAA remains longer than ⁶⁸Ga-MAA in the lung and ⁶⁸Ga-MAA has good image qualities and results in lower amounts of dose delivery to the critical organs such as gonads, red marrow, and adrenals, the use of ⁶⁸Ga-MAA is recommended.

  16. Urinary Concentrations of Bisphenol A and 4-Nonylphenol in a Human Reference Population

    PubMed Central

    Calafat, Antonia M.; Kuklenyik, Zsuzsanna; Reidy, John A.; Caudill, Samuel P.; Ekong, John; Needham, Larry L.

    2005-01-01

    Bisphenol A (BPA) is used to manufacture polycarbonate plastic and epoxy resins, which are used in baby bottles, as protective coatings on food containers, and for composites and sealants in dentistry. 4-Nonylphenol (NP) is used to make nonylphenol ethoxylates, nonionic surfactants applied as emulsifying, wetting, dispersing, or stabilizing agents in industrial, agricultural, and domestic consumer products. The potential for human exposure to BPA and NP is high because of their widespread use. We measured BPA and NP in archived urine samples from a reference population of 394 adults in the United States using isotope-dilution gas chromatography/mass spectrometry. The concentration ranges of BPA and NP were similar to those observed in other human populations. BPA was detected in 95% of the samples examined at concentrations ≥0.1 μg/L urine; the geometric mean and median concentrations were 1.33 μg/L (1.36 μg/g creatinine) and 1.28 μg/L (1.32 μg/g creatinine), respectively; the 95th percentile concentration was 5.18 μg/L (7.95 μg/g creatinine). NP was detected in 51% of the samples examined ≥0.1 μg/L. The median and 95th percentile concentrations were < 0.1 μg/L and 1.57 μg/L (1.39 μg/g creatinine), respectively. The frequent detection of BPA suggests widespread exposure to this compound in residents of the United States. The lower frequency of detection of NP than of BPA could be explained by a lower exposure of humans to NP, by different pharmacokinetic factors (i.e., absorption, distribution, metabolism, elimination), by the fact that 4-n-nonylphenol—the measured NP isomer—represents a small percentage of the NP used in commercial mixtures, or a combination of all of the above. Additional research is needed to determine the best urinary biomarker(s) to assess exposure to NP. Despite the sample population’s nonrepresentativeness of the U.S. population (although sample weights were used to improve the extent to which the results represent the U.S. population) and relatively small size, this study provides the first reference range of human internal dose levels of BPA and NP in a demographically diverse human population. PMID:15811827

  17. [Primary study on fluro [ 19F] berberine derivative for human hepatocellular carcinoma targetting in vitro].

    PubMed

    Zhang, Tong; Wu, Xiaoai; Cai, Huawei; Liang, Meng; Fan, Chengzhong

    2017-04-01

    [ 18 F]HX-01, a Fluorine-18 labeled berberine derivative, is a potential positron emission tomography (PET) tumor imaging agent, while [ 19 F]HX-01 is a nonradioactive reference substance with different energy state and has the same physical and chemical properties. In order to collect data for further study of [ 18 F]HX-01 PET imaging of hepatocellular carcinoma in vivo , this study compared the uptake of [ 19 F]HX-01 by human hepatocellular carcinoma and normal hepatocytes in vitro . The target compound, [ 19 F]HX-01, was synthesized in one step using berberrubine and 3-fluoropropyl 4-methylbenzenesulfonate. Cellular uptake and localization of [ 19 F]HX-01 were performed by a fluorescence microscope in human hepatocellular carcinoma HepG2, SMMC-7721 and human normal hepatocyte HL-7702. Cellular proliferation inhibition and cell cytotoxicity assay of the [ 19 F]HX-01 were conducted using cell counting kit-8 (CCK-8) on HepG2, SMMC-7721 and HL-7702 cells. Fluorescent microscopy showed that the combining ability of [ 19 F]HX-01 to the carcinoma SMMC-7721 and HepG2 was higher than that to the normal HL-7702. Cellular proliferation inhibition assay demonstrated that [ 19 F]HX-01 leaded to a dose-dependent inhibition on SMMC-7721, HepG2, and HL-7702 proliferation. Cell cytotoxicity assay presented that the cytotoxicity of [ 19 F]HX-01 to SMMC-7721 and HepG2 was obviously higher than that to HL-7702. This in vitro study showed that [ 19 F]HX-01 had a higher selectivity on human hepatocellular carcinoma cells (SMMC-7721, HepG2) but has less toxicity to normal hepatocytes (HL-7702). This could set up the idea that the radioactive reference substance [ 18 F]HX-01 may be worthy of further development as a potential molecular probe targeting human hepatocellular carcinoma using PET.

  18. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device.

    PubMed

    Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2010-01-21

    In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.

  19. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2010-01-01

    In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.

  20. Monte Carlo evaluation of magnetically focused proton beams for radiosurgery

    NASA Astrophysics Data System (ADS)

    McAuley, Grant A.; Heczko, Sarah L.; Nguyen, Theodore T.; Slater, James M.; Slater, Jerry D.; Wroe, Andrew J.

    2018-03-01

    The purpose of this project is to investigate the advantages in dose distribution and delivery of proton beams focused by a triplet of quadrupole magnets in the context of potential radiosurgery treatments. Monte Carlo simulations were performed using various configurations of three quadrupole magnets located immediately upstream of a water phantom. Magnet parameters were selected to match what can be commercially manufactured as assemblies of rare-earth permanent magnetic materials. Focused unmodulated proton beams with a range of ~10 cm in water were target matched with passive collimated beams (the current beam delivery method for proton radiosurgery) and properties of transverse dose, depth dose and volumetric dose distributions were compared. Magnetically focused beams delivered beam spots of low eccentricity to Bragg peak depth with full widths at the 90% reference dose contour from ~2.5 to 5 mm. When focused initial beam diameters were larger than matching unfocused beams (10 of 11 cases) the focused beams showed 16%–83% larger peak-to-entrance dose ratios and 1.3 to 3.4-fold increases in dose delivery efficiency. Peak-to-entrance and efficiency benefits tended to increase with larger magnet gradients and larger initial diameter focused beams. Finally, it was observed that focusing tended to shift dose in the water phantom volume from the 80%–20% dose range to below 20% of reference dose, compared to unfocused beams. We conclude that focusing proton beams immediately upstream from tissue entry using permanent magnet assemblies can produce beams with larger peak-to-entrance dose ratios and increased dose delivery efficiencies. Such beams could potentially be used in the clinic to irradiate small-field radiosurgical targets with fewer beams, lower entrance dose and shorter treatment times.

  1. Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry.

    PubMed

    Di Venanzio, C; Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Falco, M D; Bagalà, P; Santoni, R; Pimpinella, M

    2013-02-01

    To investigate the dosimetric properties of synthetic single crystal diamond based Schottky diodes under irradiation with therapeutic electron beams from linear accelerators. A single crystal diamond detector was fabricated and tested under 6, 8, 10, 12, and 15 MeV electron beams. The detector performances were evaluated using three types of commercial detectors as reference dosimeters: an Advanced Markus plane parallel ionization chamber, a Semiflex cylindrical ionization chamber, and a p-type silicon detector. Preirradiation, linearity with dose, dose rate dependence, output factors, lateral field profiles, and percentage depth dose profiles were investigated and discussed. During preirradiation the diamond detector signal shows a weak decrease within 0.7% with respect to the plateau value and a final signal stability of 0.1% (1σ) is observed after about 5 Gy. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below ±0.3% in the dose range from 0.02 to 10 Gy. In addition, the detector response is dose rate independent, with deviations below 0.3% in the investigated dose rate range from 0.17 to 5.45 Gy∕min. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. A good agreement within experimental uncertainties was also found in terms of output factor measurements between the diamond detector and reference dosimeters. The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical electron beam dosimetry.

  2. Urinary calculi composed of uric acid, cystine, and mineral salts: differentiation with dual-energy CT at a radiation dose comparable to that of intravenous pyelography.

    PubMed

    Thomas, Christoph; Heuschmid, Martin; Schilling, David; Ketelsen, Dominik; Tsiflikas, Ilias; Stenzl, Arnulf; Claussen, Claus D; Schlemmer, Heinz-Peter

    2010-11-01

    To retrospectively evaluate radiation dose, image quality, and the ability to differentiate urinary calculi of differing compositions by using low-dose dual-energy computed tomography (CT). The institutional review board approved this retrospective study; informed consent was waived. A low-dose dual-energy CT protocol (tube voltage and reference effective tube current-time product, 140 kV and 23 mAs and 80 kV and 105 mAs; collimation, 64 × 0.6 mm; pitch, 0.7) for the detection of urinary calculi was implemented into routine clinical care. All patients (n = 112) who were examined with this protocol from July 2008 to August 2009 were included. The composition of urinary calculi was assessed by using commercially available postprocessing software and was compared with results of the reference standard (ex vivo infrared spectroscopy) in 40 patients for whom the reference standard was available. Effective doses were calculated. Image quality was rated subjectively and objectively and was correlated with patient size expressed as body cross-sectional area at the level of acquisition by using Spearman correlation coefficients. One calcified concrement in the distal ureter of an obese patient was mistakenly interpreted as mixed calcified and uric acid. One struvite calculus was falsely interpreted as cystine. All other uric acid, cystine, and calcium-containing calculi were correctly identified by using dual-energy CT. The mean radiation dose was 2.7 mSv. The average image quality was rated as acceptable, with a decrease in image quality in larger patients. Low-dose unenhanced dual-source dual-energy CT can help differentiate between calcified, uric acid, and cystine calculi at a radiation dose comparable to that of conventional intravenous pyelography. Because of decreased image quality in obese patients, only nonobese patients should be examined with this protocol. © RSNA, 2010.

  3. Computational assessment of effective dose and patient specific doses for kilovoltage stereotactic radiosurgery of wet age-related macular degeneration

    NASA Astrophysics Data System (ADS)

    Hanlon, Justin Mitchell

    Age-related macular degeneration (AMD) is a leading cause of vision loss and a major health problem for people over the age of 50 in industrialized nations. The current standard of care, ranibizumab, is used to help slow and in some cases stabilize the process of AMD, but requires frequent invasive injections into the eye. Interest continues for stereotactic radiosurgery (SRS), an option that provides a non-invasive treatment for the wet form of AMD, through the development of the IRay(TM) (Oraya Therapeutics, Inc., Newark, CA). The goal of this modality is to destroy choroidal neovascularization beneath the pigment epithelium via delivery of three 100 kVp photon beams entering through the sclera and overlapping on the macula delivering up to 24 Gy of therapeutic dose over a span of approximately 5 minutes. The divergent x-ray beams targeting the fovea are robotically positioned and the eye is gently immobilized by a suction-enabled contact lens. Device development requires assessment of patient effective dose, reference patient mean absorbed doses to radiosensitive tissues, and patient specific doses to the lens and optic nerve. A series of head phantoms, including both reference and patient specific, was derived from CT data and employed in conjunction with the MCNPX 2.5.0 radiation transport code to simulate treatment and evaluate absorbed doses to potential tissues-at-risk. The reference phantoms were used to evaluate effective dose and mean absorbed doses to several radiosensitive tissues. The optic nerve was modeled with changeable positions based on individual patient variability seen in a review of head CT scans gathered. Patient specific phantoms were used to determine the effect of varying anatomy and gaze. The results showed that absorbed doses to the non-targeted tissues were below the threshold levels for serious complications; specifically the development of radiogenic cataracts and radiation induced optic neuropathy (RON). The effective dose determined (0.29 mSv) is comparable to diagnostic procedures involving the head, such as an x-ray or CT scan. Thus, the computational assessment performed indicates that a previously established therapeutic dose can be delivered effectively to the macula with IRay(TM) without the potential for secondary complications.

  4. A global quality assurance system for personalized radiation therapy treatment planning for the prostate (or other sites)

    NASA Astrophysics Data System (ADS)

    Nwankwo, Obioma; Sihono, Dwi Seno K.; Schneider, Frank; Wenz, Frederik

    2014-09-01

    Introduction: the quality of radiotherapy treatment plans varies across institutions and depends on the experience of the planner. For the purpose of intra- and inter-institutional homogenization of treatment plan quality, we present an algorithm that learns the organs-at-risk (OARs) sparing patterns from a database of high quality plans. Thereafter, the algorithm predicts the dose that similar organs will receive in future radiotherapy plans prior to treatment planning on the basis of the anatomies of the organs. The predicted dose provides the basis for the individualized specification of planning objectives, and for the objective assessment of the quality of radiotherapy plans. Materials and method: one hundred and twenty eight (128) Volumetric Modulated Arc Therapy (VMAT) plans were selected from a database of prostate cancer plans. The plans were divided into two groups, namely a training set that is made up of 95 plans and a validation set that consists of 33 plans. A multivariate analysis technique was used to determine the relationships between the positions of voxels and their dose. This information was used to predict the likely sparing of the OARs of the plans of the validation set. The predicted doses were visually and quantitatively compared to the reference data using dose volume histograms, the 3D dose distribution, and a novel evaluation metric that is based on the dose different test. Results: a voxel of the bladder on the average receives a higher dose than a voxel of the rectum in optimized radiotherapy plans for the treatment of prostate cancer in our institution if both voxels are at the same distance to the PTV. Based on our evaluation metric, the predicted and reference dose to the bladder agree to within 5% of the prescribed dose to the PTV in 18 out of 33 cases, while the predicted and reference doses to the rectum agree to within 5% in 28 out of the 33 plans of the validation set. Conclusion: We have described a method to predict the likely dose that OARs will receive before treatment planning. This prospective knowledge could be used to implement a global quality assurance system for personalized radiation therapy treatment planning.

  5. Relative bioavailability of two 5-mg montelukast sodium chewable tablets: a single dose, randomized, open-label, 2-period crossover comparison in healthy korean adult male volunteers.

    PubMed

    Kim, H T; Song, Y-K; Lee, S D; Park, Y; Kim, C-K

    2012-03-01

    Montelukast sodium, cysteinyl leukotriene receptor 1 specific antagonist, has been marketed in Korea for the treatment of bronchial asthma and allergic rhinitis. The aim of this study was to compare the pharmacokinetics and relative bioavailability of a test and reference formulation of montelukast 5-mg chewable tablets in healthy Korean male volunteers to meet KFDA regulatory criteria for marketing of the new generic formulation. This study was designed as a single-dose, 2-treatment, and 2-period crossover trial with 32 healthy volunteers. Each subject was randomly assigned to receive the test (Dong-Kook Montelukast Sodium Chewable Tablet 5 mg®) or reference (Singulair Chewable Tablet 5 mg®) formulation. The tablet was chewed 20 times, and then swallowed with 240 mL of water. Plasma concentrations of montelukast up to 24 h after the dose were determined using a validated UPLC-MS/MS method, and the bioequivalence between the 2 formulations was assessed by statistical analysis of mean ratios of log-transformed AUC0-24 h and Cmax. No period or sequence effects were detected. The AUC0-24 h was 1 835 ng·h/mL for the test formulation, and 1 930 ng·h/mL for the reference formulation. The respective values of AUC0-∞ were 1 917 and 2 015 ng·h/mL. The Cmax of the test and reference products (247 and 283 ng/mL, respectively) reached at 2.25 and 2.72 h, respectively. Then, they gradually decreased with the mean terminal t1/2 of 5.25 and 5.30 h for the test and reference products, respectively. The 90% CIs for the ratio of log-transformed AUC0-24 h and Cmax for the test and reference formulations were 0.92-0.99 and 0.83-0.91, respectively. No adverse events were reported in this study. This single dose study found that the test and reference products met the regulatory criteria for bioequivalence in these fasting healthy Korean male volunteers. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Reference in human and non-human primate communication: What does it take to refer?

    PubMed

    Sievers, Christine; Gruber, Thibaud

    2016-07-01

    The concept of functional reference has been used to isolate potentially referential vocal signals in animal communication. However, its relatedness to the phenomenon of reference in human language has recently been brought into question. While some researchers have suggested abandoning the concept of functional reference altogether, others advocate a revision of its definition to include contextual cues that play a role in signal production and perception. Empirical and theoretical work on functional reference has also put much emphasis on how the receiver understands the referential signal. However, reference, as defined in the linguistic literature, is an action of the producer, and therefore, any definition describing reference in non-human animals must also focus on the producer. To successfully determine whether a signal is used to refer, we suggest an approach from the field of pragmatics, taking a closer look at specific situations of signal production, specifically at the factors that influence the production of a signal by an individual. We define the concept of signaller's reference to identify intentional acts of reference produced by a signaller independently of the communicative modality, and illustrate it with a case study of the hoo vocalizations produced by wild chimpanzees during travel. This novel framework introduces an intentional approach to referentiality. It may therefore permit a closer comparison of human and non-human animal referential behaviour and underlying cognitive processes, allowing us to identify what may have emerged solely in the human lineage.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamdi, Dounia Houria; Chevalier, François; Groetz, Jean-Emmanuel

    Purpose: Particle therapy using carbon ions (C-ions) has been successfully used in the treatment of tumors resistant to conventional radiation therapy. However, the potential side effects to healthy cartilage exposed to lower linear energy transfer (LET) ions in the beam track before the tumor have not been evaluated. The aim of the present study was to assess the extent of damage after C-ion irradiation in a 3-dimensional (3D) cartilage model close to human homeostasis. Methods and Materials: Primary human articular chondrocytes from a healthy donor were cultured in a collagen scaffold to construct a physioxic 3D cartilage model. A 2-dimensionalmore » (2D) culture was used as a reference. The cells were irradiated with a single dose of a monoenergetic C-ion beam with a LET of approximatively 30 keV/μm. This LET corresponds to the entrance channel of C-ions in the shallow healthy tissues before the spread-out Bragg peak (∼100 keV/μm) during hadron therapy protocols. The same dose of X-rays was used as a reference. Survival, cell death, and senescence assays were performed. Results: As expected, in the 2D culture, C-ions were more efficient than X-rays in reducing cell survival with a relative biological effectiveness of 2.6. This correlated with stronger radiation-induced senescence (two-fold) but not with higher cell death induction. This differential effect was not reflected in the 3D culture. Both ionizing radiation types induced a comparable rate of senescence induction in the 3D model. Conclusions: The greater biological effectiveness of C-ions compared with low LET radiation when evaluated in treatment planning systems might be misevaluated using 2D culture experiments. Radiation-induced senescence is an important factor of potential cartilage attrition. The present data should encourage the scientific community to use relevant models and beams to improve the use of charged particles with better safety for patients.« less

  8. Repeated Post- or Presession Cocaine Administration: Roles of Dose and Fixed-Ratio Schedule

    ERIC Educational Resources Information Center

    Pinkston, Jonathan W.; Branch, Marc N.

    2004-01-01

    Effects of repeated administration of cocaine to animals behaving under operant contingencies have depended on when the drug is given. Moderate doses given presession have generally led to a decrease in the drug's effect, an outcome usually referred to as tolerance. When these same doses have been given after sessions, the usual result has been no…

  9. Radiation dose in temporomandibular joint zonography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coucke, M.E.; Bourgoignie, R.R.; Dermaut, L.R.

    1991-06-01

    Temporomandibular joint morphology and function can be evaluated by panoramic zonography. Thermoluminescent dosimetry was applied to evaluate the radiation dose to predetermined sites on a phantom eye, thyroid, pituitary, and parotid, and the dose distribution on the skin of the head and neck when the TMJ program of the Zonarc panoramic x-ray unit was used. Findings are discussed with reference to similar radiographic techniques.

  10. Design, assembly, and validation of a nose-only inhalation exposure system for studies of aerosolized viable influenza H5N1 virus in ferrets

    PubMed Central

    2010-01-01

    Background The routes by which humans acquire influenza H5N1 infections have not been fully elucidated. Based on the known biology of influenza viruses, four modes of transmission are most likely in humans: aerosol transmission, ingestion of undercooked contaminated infected poultry, transmission by large droplets and self-inoculation of the nasal mucosa by contaminated hands. In preparation of a study to resolve whether H5N1 viruses are transmissible by aerosol in an animal model that is a surrogate for humans, an inhalation exposure system for studies of aerosolized H5N1 viruses in ferrets was designed, assembled, and validated. Particular attention was paid towards system safety, efficacy of dissemination, the viability of aerosolized virus, and sampling methodology. Results An aerosol generation and delivery system, referred to as a Nose-Only Bioaerosol Exposure System (NBIES), was assembled and function tested. The NBIES passed all safety tests, met expected engineering parameters, required relatively small quantities of material to obtain the desired aerosol concentrations of influenza virus, and delivered doses with high-efficacy. Ferrets withstood a mock exposure trial without signs of stress. Conclusions The NBIES delivers doses of aerosolized influenza viruses with high efficacy, and uses less starting material than other similar designs. Influenza H5N1 and H3N2 viruses remain stable under the conditions used for aerosol generation and sample collection. The NBIES is qualified for studies of aerosolized H5N1 virus. PMID:20573226

  11. The pharmacological profile of CGP 28238, a novel highly potent anti-inflammatory compound.

    PubMed

    Wiesenberg-Boettcher, I; Schweizer, A; Green, J R; Mueller, K; Maerki, F; Pfeilschifter, J

    1989-01-01

    CGP 28238 (6-(2,4-difluorophenoxy)-5-methylsulfonylamino-1-indanone ) exhibits very potent anti-inflammatory activity in rat adjuvant arthritis (ED40 = 0.05 mg/kg, p.o.) and pronounced analgesic and antipyretic activity in acute models in mice and rats (ED50 2-5 mg/kg, p.o.), but has clear advantages over reference NSAIDs with respect to gastro-intestinal tolerability. Threshold doses for gastro-intestinal ulcerogenicity in rats after single and repeated (10x) doses were found to be 30 mg/kg, p.o., and prostaglandin (PGE2) production in rat gastric and ileal mucosa was only marginally inhibited (ED50 greater than 30 mg/kg, p.o.). On the other hand, PGE2 production in rat inflammatory exudate and thromboxane synthesis in rat blood were inhibited with ED50 values of less than or equal to 2 mg/kg, p.o. Although CGP28238 does not inhibit cyclooxygenase in bovine seminal vesicle microsomal preparations (IC50 greater than 10(-3) mol/l), potent inhibition of prostaglandin synthesis was shown in various in vitro systems using human and animal cells with IC50 values of less than 10(-6) mol/l. IL-1-stimulated bone resorption and PGE2 production in murine calvarial cultures were inhibited with IC50 values of 3 x 10(-7) and 2 x 10(-8) mol/l, respectively. 5-Lipoxygenase (murine macrophages), phospholipase A2 (human PMN) and phospholipase C (human platelets) were not inhibited. CGP 28238 may represent a novel highly potent anti-inflammatory compound with improved gastro-intestinal safety.

  12. Dose calculation algorithm of fast fine-heterogeneity correction for heavy charged particle radiotherapy.

    PubMed

    Kanematsu, Nobuyuki

    2011-04-01

    This work addresses computing techniques for dose calculations in treatment planning with proton and ion beams, based on an efficient kernel-convolution method referred to as grid-dose spreading (GDS) and accurate heterogeneity-correction method referred to as Gaussian beam splitting. The original GDS algorithm suffered from distortion of dose distribution for beams tilted with respect to the dose-grid axes. Use of intermediate grids normal to the beam field has solved the beam-tilting distortion. Interplay of arrangement between beams and grids was found as another intrinsic source of artifact. Inclusion of rectangular-kernel convolution in beam transport, to share the beam contribution among the nearest grids in a regulatory manner, has solved the interplay problem. This algorithmic framework was applied to a tilted proton pencil beam and a broad carbon-ion beam. In these cases, while the elementary pencil beams individually split into several tens, the calculation time increased only by several times with the GDS algorithm. The GDS and beam-splitting methods will complementarily enable accurate and efficient dose calculations for radiotherapy with protons and ions. Copyright © 2010 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Use of calcium folinate in the management of accidental methotrexate ingestion in two dogs.

    PubMed

    Lewis, Daniel H; Barfield, Dominic M; Humm, Karen R; Goggs, Robert A

    2010-12-15

    2 English Pointers were suspected of having consumed toxic doses of methotrexate, a dihydrofolate reductase inhibitor frequently used in human and veterinary chemotherapeutic protocols. Potentially toxic plasma concentrations of methotrexate were detected in both dogs. Results of physical examination, a CBC, blood gas analysis, and serum biochemical analysis were predominantly unremarkable, although 1 dog had mild hyponatremia (1372 mmol/L; reference range, 140 to 153 mmol/L) and mild hypocalcemia (1.03 mmol of ionized calcium/L; reference range, 1.13 to 1.33 mmol of ionized calcium/L). Point-of-care determination of plasma methotrexate concentrations was not available; thus, palliative care was provided. Emesis was induced in both dogs by SC administration of apomorphine, and 3 doses of a suspension of activated charcoal with sorbitol were administered orally over a 6-hour period. Fluid diuresis was initiated in both dogs by administration of a compound sodium lactate solution, and N-acetylcysteine was administered IV to both dogs as a hepatoprotectant. A solution of calcium folinate (also known as leucovorin) was administered IV to both dogs to mitigate the effects of ingested methotrexate. No adverse effects associated with calcium folinate administration were identified, and no clinical or pathological evidence of methotrexate intoxication was detected. IV administration of calcium folinate appeared to prevent the pathological sequelae of methotrexate intoxication without adverse effects. Administration of calcium folinate is recommended for the treatment of dogs with suspected or confirmed methotrexate overdose.

  14. Reference dose (RfD): description and use in health risk assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, D.G.; Dourson, M.

    1988-12-01

    For many years the concept of the acceptable daily intake has served the toxicological and regulatory fields quite well. However, as approaches to assessing the health significance of exposures to noncarcinogenic substances receive greater scrutiny, some difficulties with this traditional approach have become more apparent. Consequently, the concept of the reference dose is introduced in order to avoid use of prejudicial terms (e.g., safety and acceptable), to promote greater consistency in the assessment of noncarcinogenic chemicals, and to maintain the functional separation between risk assessment and risk management.

  15. Synergistic Effect of High Charge and Energy Particle Radiation and Chronological Age on Biomarkers of Oxidative Stress and Tissue Degeneration: A Ground-Based Study Using the Vertebrate Laboratory Model Organism Oryzias latipes

    PubMed Central

    Zheng, Xuan; Zhang, Xinyan; Ding, Lingling; Lee, Jeffrey R.; Weinberger, Paul M.; Dynan, William S.

    2014-01-01

    High charge and energy (HZE) particles are a main hazard of the space radiation environment. Uncertainty regarding their health effects is a limiting factor in the design of human exploration-class space missions, that is, missions beyond low earth orbit. Previous work has shown that HZE exposure increases cancer risk and elicits other aging-like phenomena in animal models. Here, we investigate how a single exposure to HZE particle radiation, early in life, influences the subsequent age-dependent evolution of oxidative stress and appearance of degenerative tissue changes. Embryos of the laboratory model organism, Oryzias latipes (Japanese medaka fish), were exposed to HZE particle radiation at doses overlapping the range of anticipated human exposure. A separate cohort was exposed to reference γ-radiation. Survival was monitored for 750 days, well beyond the median lifespan. The population was also sampled at intervals and liver tissue was subjected to histological and molecular analysis. HZE particle radiation dose and aging contributed synergistically to accumulation of lipid peroxidation products, which are a marker of chronic oxidative stress. This was mirrored by a decline in PPARGC1A mRNA, which encodes a transcriptional co-activator required for expression of oxidative stress defense genes and for mitochondrial maintenance. Consistent with chronic oxidative stress, mitochondria had an elongated and enlarged ultrastructure. Livers also had distinctive, cystic lesions. Depending on the endpoint, effects of γ-rays in the same dose range were either lesser or not detected. Results provide a quantitative and qualitative framework for understanding relative contributions of HZE particle radiation exposure and aging to chronic oxidative stress and tissue degeneration. PMID:25375139

  16. Development of biomonitoring equivalents for barium in urine and plasma for interpreting human biomonitoring data.

    PubMed

    Poddalgoda, Devika; Macey, Kristin; Assad, Henry; Krishnan, Kannan

    2017-06-01

    The objectives of the present work were: (1) to assemble population-level biomonitoring data to identify the concentrations of urinary and plasma barium across the general population; and (2) to derive biomonitoring equivalents (BEs) for barium in urine and plasma in order to facilitate the interpretation of barium concentrations in the biological matrices. In population level biomonitoring studies, barium has been measured in urine in the U.S. (NHANES study), but no such data on plasma barium levels were identified. The BE values for plasma and urine were derived from U.S. EPA's reference dose (RfD) of 0.2 mg/kg bw/d, based on a lower confidence limit on the benchmark dose (BMDL 05 ) of 63 mg/kg bw/d. The plasma BE (9 μg Ba/L) was derived by regression analysis of the near-steady-state plasma concentrations associated with the administered doses in animals exposed to barium chloride dihydrate in drinking water for 2-years in a NTP study. Using a human urinary excretion fraction of 0.023, a BE for urinary barium (0.19 mg/L or 0.25 mg/g creatinine) was derived for US EPA's RfD. The median and the 95 th percentile barium urine concentrations of the general population in U.S. are below the BE determined in this study, indicating that the population exposure to inorganic barium is expected to be below the exposure guidance value of 0.2 mg/kg bw/d. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Frequency-risk and duration-risk relations between occupational livestock contact and methicillin-resistant Staphylococcus aureus carriage among workers in Guangdong, China.

    PubMed

    Ye, Xiaohua; Liu, Weidong; Fan, Yanping; Wang, Xiaolin; Zhou, Junli; Yao, Zhenjiang; Chen, Sidong

    2015-07-01

    Increasing evidence indicates a strong association between occupational livestock contact and methicillin-resistant Staphylococcus aureus (MRSA) carriage. However, it remains unclear whether there are frequency-risk and duration-risk relations between occupational livestock contact and human MRSA carriage. A cross-sectional survey was conducted in Guangdong, China, using a multistage sampling method. Participants were interviewed and provided a nasal swab for S aureus analysis. All MRSA isolates were genotyped by multilocus sequence typing. The dose-response relation was examined using logistic regression models. Among the 1,860 participants, 1.4% of controls tested positive for MRSA (characterized as sequence type [ST] 59 and ST7), and 7% of workers with livestock contact tested positive for MRSA (characterized as ST9, ST59, and ST7). There was a 5.31 times increased risk of MRSA carriage corresponding to occupational livestock contact (odds ratio = 6.31; 95% confidence interval, 3.44-11.57) using no contact as reference. We found frequency and short-term duration of occupational livestock contact were associated with increased risk of MRSA carriage in a dose-response manner. These significant trends were observed consistently among workers with occupational pig contact. However, no long-term duration-risk increasing trend was observed for occupational livestock or pig contact. Our findings suggest that there may be dose-response relations between occupational livestock contact and human MRSA carriage. Nasal MRSA clonal complex 9 is not found in controls, but it is found in workers with livestock contact. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  18. Synergistic Effect of High Charge and Energy Particle Radiation and Chronological Age on Biomarkers of Oxidative Stress and Tissue Degeneration: A Ground-Based Study Using the Vertebrate Laboratory Model Organism Oryzias latipes

    DOE PAGES

    Zheng, Xuan; Zhang, Xinyan; Ding, Lingling; ...

    2014-11-06

    High charge and energy (HZE) particles are a main hazard of the space radiation environment. Uncertainty regarding their health effects is a limiting factor in the design of human exploration-class space missions, that is, missions beyond low earth orbit. Previous work has shown that HZE exposure increases cancer risk and elicits other aging-like phenomena in animal models. Here, we investigate how a single exposure to HZE particle radiation, early in life, influences the subsequent age-dependent evolution of oxidative stress and appearance of degenerative tissue changes. Embryos of the laboratory model organism, Oryzias latipes (Japanese medaka fish), were exposed to HZEmore » particle radiation at doses overlapping the range of anticipated human exposure. A separate cohort was exposed to reference γ-radiation. Survival was monitored for 750 days, well beyond the median lifespan. The population was also sampled at intervals and liver tissue was subjected to histological and molecular analysis. HZE particle radiation dose and aging contributed synergistically to accumulation of lipid peroxidation products, which are a marker of chronic oxidative stress. This was mirrored by a decline in PPARGC1A mRNA, which encodes a transcriptional co-activator required for expression of oxidative stress defense genes and for mitochondrial maintenance. Consistent with chronic oxidative stress, mitochondria had an elongated and enlarged ultrastructure. Livers also had distinctive, cystic lesions. Depending on the endpoint, effects of γ-rays in the same dose range were either lesser or not detected. Results provide a quantitative and qualitative framework for understanding relative contributions of HZE particle radiation exposure and aging to chronic oxidative stress and tissue degeneration.« less

  19. Time-dependent pharmacokinetics of dexamethasone and its efficacy in human breast cancer xenograft mice: a semi-mechanism-based pharmacokinetic/pharmacodynamic model.

    PubMed

    Li, Jian; Chen, Rong; Yao, Qing-Yu; Liu, Sheng-Jun; Tian, Xiu-Yun; Hao, Chun-Yi; Lu, Wei; Zhou, Tian-Yan

    2018-03-01

    Dexamethasone (DEX) is the substrate of CYP3A. However, the activity of CYP3A could be induced by DEX when DEX was persistently administered, resulting in auto-induction and time-dependent pharmacokinetics (pharmacokinetics with time-dependent clearance) of DEX. In this study we investigated the pharmacokinetic profiles of DEX after single or multiple doses in human breast cancer xenograft nude mice and established a semi-mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model for characterizing the time-dependent PK of DEX as well as its anti-cancer effect. The mice were orally given a single or multiple doses (8 mg/kg) of DEX, and the plasma concentrations of DEX were assessed using LC-MS/MS. Tumor volumes were recorded daily. Based on the experimental data, a two-compartment model with first order absorption and time-dependent clearance was established, and the time-dependence of clearance was modeled by a sigmoid E max equation. Moreover, a semi-mechanism-based PK/PD model was developed, in which the auto-induction effect of DEX on its metabolizing enzyme CYP3A was integrated and drug potency was described using an E max equation. The PK/PD model was further used to predict the drug efficacy when the auto-induction effect was or was not considered, which further revealed the necessity of adding the auto-induction effect into the final PK/PD model. This study established a semi-mechanism-based PK/PD model for characterizing the time-dependent pharmacokinetics of DEX and its anti-cancer effect in breast cancer xenograft mice. The model may serve as a reference for DEX dose adjustments or optimization in future preclinical or clinical studies.

  20. PERCEPTION OF MERCURY RISK INFORMATION

    EPA Science Inventory

    Approximately 8% of American women have blood Mercury levels exceeding the EPA reference dose (a dose below which symptoms would be unlikely). The children of these women are at risk of neurological deficits (lower IQ scores) primarily because of the mother's consumption of conta...

  1. Boron.

    PubMed

    2008-01-01

    To evaluate the scientific evidence on boron including expert opinion, folkloric precedent, history, pharmacology, kinetics/dynamics, interactions, adverse effects, toxicology, and dosing. This review serves as a clinical support tool. Electronic searches were conducted in nine databases, 20 additional journals (not indexed in common databases), and bibliographies from 50 selected secondary references. No restrictions were placed on language or quality of publications. All literature collected pertained to efficacy in humans, dosing, precautions, adverse effects, use in pregnancy/lactation, interactions, alteration of laboratory assays, and mechanisms of action. Standardized inclusion/exclusion criteria are utilized for selection. Grades were assigned using an evidence-based grading rationale. There was a lack of systematic study on the safety and effectiveness of boron in humans. However, based on popular use and supportive scientific data, nine indications are discussed in this review: hormone regulation, improving cognitive function, osteoarthritis, osteoporosis, vaginitis (topical), bodybuilding aid (increasing testosterone), menopausal symptoms, prevention of blood clotting (coagulation effects), and psoriasis (topical). Although studies assessing the use of boron for osteoarthritis and osteoporosis are in preliminary stages, reports are promising. There is conflicting evidence to support the use of boron in hormonal regulation and cognitive function. Future randomized controlled trials are warranted. There is fair negative evidence regarding the use of boron as an anticoagulant, a bodybuilding aid, for menopausal symptoms, or for psoriasis. Excessive use may be harmful, and caution is advised.

  2. Developmental neurotoxic effects of Malathion on 3D neurosphere system

    PubMed Central

    Salama, Mohamed; Lotfy, Ahmed; Fathy, Khaled; Makar, Maria; El-emam, Mona; El-gamal, Aya; El-gamal, Mohamed; Badawy, Ahmad; Mohamed, Wael M.Y.; Sobh, Mohamed

    2015-01-01

    Developmental neurotoxicity (DNT) refers to the toxic effects induced by various chemicals on brain during the early childhood period. As human brains are vulnerable during this period, various chemicals would have significant effects on brains during early childhood. Some toxicants have been confirmed to induce developmental toxic effects on CNS; however, most of agents cannot be identified with certainty. This is because available animal models do not cover the whole spectrum of CNS developmental periods. A novel alternative method that can overcome most of the limitations of the conventional techniques is the use of 3D neurosphere system. This in-vitro system can recapitulate many of the changes during the period of brain development making it an ideal model for predicting developmental neurotoxic effects. In the present study we verified the possible DNT of Malathion, which is one of organophosphate pesticides with suggested possible neurotoxic effects on nursing children. Three doses of Malathion (0.25 μM, 1 μM and 10 μM) were used in cultured neurospheres for a period of 14 days. Malathion was found to affect proliferation, differentiation and viability of neurospheres, these effects were positively correlated to doses and time progress. This study confirms the DNT effects of Malathion on 3D neurosphere model. Further epidemiological studies will be needed to link these results to human exposure and effects data. PMID:27054080

  3. Comparative analysis of risk-based cleanup levels and associated remediation costs using linearized multistage model (cancer slope factor) vs. threshold approach (reference dose) for three chlorinated alkenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawton, L.J.; Mihalich, J.P.

    1995-12-31

    The chlorinated alkenes 1,1-dichloroethene (1,1-DCE), tetrachloroethene (PCE), and trichloroethene (TCE) are common environmental contaminants found in soil and groundwater at hazardous waste sites. Recent assessment of data from epidemiology and mechanistic studies indicates that although exposure to 1,1-DCE, PCE, and TCE causes tumor formation in rodents, it is unlikely that these chemicals are carcinogenic to humans. Nevertheless, many state and federal agencies continue to regulate these compounds as carcinogens through the use of the linearized multistage model and resulting cancer slope factor (CSF). The available data indicate that 1,1-DCE, PCE, and TCE should be assessed using a threshold (i.e., referencemore » dose [RfD]) approach rather than a CSF. This paper summarizes the available metabolic, toxicologic, and epidemiologic data that question the use of the linear multistage model (and CSF) for extrapolation from rodents to humans. A comparative analysis of potential risk-based cleanup goals (RBGs) for these three compounds in soil is presented for a hazardous waste site. Goals were calculated using the USEPA CSFs and using a threshold (i.e., RfD) approach. Costs associated with remediation activities required to meet each set of these cleanup goals are presented and compared.« less

  4. Conformal image-guided microbeam radiation therapy at the ESRF biomedical beamline ID17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donzelli, Mattia, E-mail: donzelli@esrf.fr; Bräuer-Krisch, Elke; Nemoz, Christian

    Purpose: Upcoming veterinary trials in microbeam radiation therapy (MRT) demand for more advanced irradiation techniques than in preclinical research with small animals. The treatment of deep-seated tumors in cats and dogs with MRT requires sophisticated irradiation geometries from multiple ports, which impose further efforts to spare the normal tissue surrounding the target. Methods: This work presents the development and benchmarking of a precise patient alignment protocol for MRT at the biomedical beamline ID17 of the European Synchrotron Radiation Facility (ESRF). The positioning of the patient prior to irradiation is verified by taking x-ray projection images from different angles. Results: Usingmore » four external fiducial markers of 1.7  mm diameter and computed tomography-based treatment planning, a target alignment error of less than 2  mm can be achieved with an angular deviation of less than 2{sup ∘}. Minor improvements on the protocol and the use of smaller markers indicate that even a precision better than 1  mm is technically feasible. Detailed investigations concerning the imaging dose lead to the conclusion that doses for skull radiographs lie in the same range as dose reference levels for human head radiographs. A currently used online dose monitor for MRT has been proven to give reliable results for the imaging beam. Conclusions: The ESRF biomedical beamline ID17 is technically ready to apply conformal image-guided MRT from multiple ports to large animals during future veterinary trials.« less

  5. NMDA receptor blockade and hippocampal neuronal loss impair fear conditioning and position habit reversal in C57Bl/6 mice.

    PubMed

    Bardgett, Mark E; Boeckman, Ryan; Krochmal, Daniel; Fernando, Hiran; Ahrens, Rebecca; Csernansky, John G

    2003-04-15

    The interpretation of learning and memory deficits in transgenic mice has largely involved theories of NMDA receptor and/or hippocampal function. However, there is little empirical data that describes what NMDA receptors or the hippocampus do in mice. This research assessed the effects of different doses of the NMDA receptor antagonist, MK-801, or different-sized hippocampal lesions on several behavioral parameters in adult male C57Bl/6 mice. In the first set of experiments, different doses of MK-801 (0.05-0.3mg/kg, s.c.) were assayed in fear conditioning, shock sensitivity, locomotion, anxiety, and position habit reversal tests. Contextual and cued fear conditioning, and position habit reversal were impaired in a dose-dependent manner. Locomotor activity was increased immediately after injection of the highest dose of MK-801. A second set of experiments determined the behavioral effects of a moderate and large excitotoxic hippocampal lesion. Both lesions impaired contextual conditioning, while the larger lesion interfered with cued conditioning. Reversal learning was significantly diminished by the large lesion, while the moderate lesion had a detrimental effect at a trend level (P<0.10). These results provide important reference data for studies involving genetic manipulations of NMDA receptor or hippocampal function in mice. Furthermore, they serve as a basis for a non-transgenic mouse model of the NMDA receptor or hippocampal dysfunction hypothesized to occur in human cognitive disorders.

  6. Radioactive impacts on nekton species in the Northwest Pacific and humans more than one year after the Fukushima nuclear accident.

    PubMed

    Men, Wu; Deng, Fangfang; He, Jianhua; Yu, Wen; Wang, Fenfen; Li, Yiliang; Lin, Feng; Lin, Jing; Lin, Longshan; Zhang, Yusheng; Yu, Xingguang

    2017-10-01

    This study investigated the radioactive impacts on 10 nekton species in the Northwest Pacific more than one year after the Fukushima Nuclear Accident (FNA) from the two perspectives of contamination and harm. Squids were especially used for the spatial and temporal comparisons to demonstrate the impacts from the FNA. The radiation doses to nekton species and humans were assessed to link this radioactivity contamination to possible harm. The total dose rates to nektons were lower than the ERICA ecosystem screening benchmark of 10μGy/h. Further dose-contribution analysis showed that the internal doses from the naturally occurring nuclide 210 Po were the main dose contributor. The dose rates from 134 Cs, 137 Cs, 90 Sr and 110m Ag were approximately three or four orders of magnitude lower than those from naturally occurring radionuclides. The 210 Po-derived dose was also the main contributor of the total human dose from immersion in the seawater and the ingestion of nekton species. The human doses from anthropogenic radionuclides were ~ 100 to ~ 10,000 times lower than the doses from naturally occurring radionuclides. A morbidity assessment was performed based on the Linear No Threshold assumptions of exposure and showed 7 additional cancer cases per 100,000,000 similarly exposed people. Taken together, there is no need for concern regarding the radioactive harm in the open ocean area of the Northwest Pacific. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Initial Evaluation of an Adenosine A2A Receptor Ligand, 11C-Preladenant, in Healthy Human Subjects.

    PubMed

    Sakata, Muneyuki; Ishibashi, Kenji; Imai, Masamichi; Wagatsuma, Kei; Ishii, Kenji; Zhou, Xiaoyun; de Vries, Erik F J; Elsinga, Philip H; Ishiwata, Kiichi; Toyohara, Jun

    2017-09-01

    11 C-preladenant is a selective antagonist for mapping of cerebral adenosine A 2A receptors (A 2A Rs) by PET. This is a first-in-human study to examine the safety, radiation dosimetry, and brain imaging of 11 C-preladenant in healthy human subjects. Methods: Dynamic 11 C-preladenant PET scans (90 min) were obtained in 5 healthy male subjects. During the scan, arterial blood was sampled at various time intervals, and the fraction of the parent compound in plasma was determined. For anatomic coregistration, T1-weighted MRI was performed. The total distribution volume ( V T ) was estimated using 1- and 2-tissue-compartment models (1T and 2T, respectively). The distribution volume ratio (DVR) was calculated from V T of target and reference region and obtained with a noninvasive Logan graphical reference tissue method ( t * = 30 min). The applicability of a shortened protocol as an alternative to the 90-min PET scan was investigated. Tracer biodistribution and dosimetry were determined in 3 healthy male subjects, using serial whole-body PET scans acquired over 2 h after 11 C-preladenant injection. Results: There were no serious adverse events in any of the subjects throughout the study period. 11 C-preladenat readily entered the brain, with a peak uptake in the putamen and head of the caudate nucleus 30-40 min after tracer injection. Other brain regions showed rapid clearance of radioactivity. The regional distribution of 11 C-preladenant was consistent with known A 2A R densities in the brain. At pseudoequilibrium (reached at 40 min after injection), stable target-to-cerebellar cortex ratios of around 3.8-10.0 were obtained. The 2T fit better than the 1T in the low-density A 2A R regions. In contrast, there were no significant differences between 1T and 2T in the high-A 2A R-density regions. DVRs in the putamen and head of the caudate nucleus were around 3.8-10.3 when estimated using a Logan graphical reference tissue method with cerebellum as the reference region. PET scanning at 50 or 70 min can provide the stable DVR estimates within 10% or 5% differences at most, respectively. The radioactivity was mainly excreted through the hepatobiliary system after 11 C-preladenant injection. As a result, the absorbed dose (μGy/MBq) was highest in the gallbladder wall (mean ± SD, 17.0 ± 2.5) and liver (11.7 ± 2.1). The estimated effective dose for 11 C-preladenant was 3.7 ± 0.4 μSv/MBq. Conclusion: This initial evaluation indicated that 11 C-preladenat is suitable for imaging of A 2A Rs in the brain. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  8. Bioavailability of paracetamol, phenylephrine hydrochloride and guaifenesin in a fixed-combination syrup versus an oral reference product.

    PubMed

    Janin, Annick; Monnet, Joelle

    2014-04-01

    The primary objective of this study was to compare the bioavailability of paracetamol, phenylephrine hydrochloride and guaifenesin in a new oral syrup with an established oral reference product. The secondary objective was to compare the safety of the new syrup and the reference product. This was a single-centre, open-label, randomized, reference-replicated, crossover study. Healthy adult volunteers received one dose of syrup and two separate doses of a reference oral liquid formulation in a randomized sequence over three study periods, with a washout interval of ≥ 7 days between study periods. Blood samples were taken regularly postdose and analysed for paracetamol, phenylephrine hydrochloride and guaifenesin concentrations; adverse events were recorded. This study enrolled 45 subjects. For paracetamol and guaifenesin, the syrup and reference product were considered to be bioequivalent. Bioequivalence was not shown for phenylephrine hydrochloride. All adverse events were mild or moderate, most of which were considered formulation related. The syrup did not reach bioequivalence with the reference product, as bioequivalence could not be shown for phenylephrine hydrochloride. This may be due to differences in the excipients between the two products. Both the syrup and the reference product had a good safety profile and were well tolerated.

  9. The novel antibacterial compound walrycin A induces human PXR transcriptional activity

    PubMed Central

    Berthier, Alexandre; Oger, Frédérik; Gheeraert, Céline; Boulahtouf, Abdel; Le Guével, Rémy; Balaguer, Patrick; Staels, Bart; Salbert, Gilles; Lefebvre, Philippe

    2012-01-01

    The human pregnane X receptor (PXR) is a ligand-regulated transcription factor belonging to the nuclear receptor superfamily. PXR is activated by a large, structurally diverse, set of endogenous and xenobiotic compounds, and coordinates the expression of genes central to metabolism and excretion of potentially harmful chemicals and therapeutic drugs in humans. Walrycin A is a novel antibacterial compound targeting the WalK/WalR two-component signal transduction system of Gram (+) bacteria. Here we report that, in hepatoma cells, walrycin A potently activates a gene set known to be regulated by the xenobiotic sensor PXR. Walrycin A was as efficient as the reference PXR agonist rifampicin to activate PXR in a transactivation assay at non cytoxic concentrations. Using a limited proteolysis assay, we show that walrycin A induces conformational changes at a concentration which correlates with walrycin A ability to enhance the expression of prototypic target genes, suggesting that walrycin A interacts with PXR. The activation of the canonical human PXR target gene CYP3A4 by walrycin A is dose- and PXR-dependent. Finally, in silico docking experiments suggest that the walrycin A oxidation product Russig’s blue is the actual a ligand for PXR. Taken together, these results identify walrycin A as novel human PXR activator. PMID:22314385

  10. The ampakine, Org 26576, bolsters early spatial reference learning and retrieval in the Morris water maze: a subchronic, dose-ranging study in rats.

    PubMed

    Hamlyn, Eugene; Brand, Linda; Shahid, Mohammed; Harvey, Brian H

    2009-10-01

    Ampakines have shown beneficial effects on cognition in selected animal models of learning. However, their ability to modify long-term spatial memory tasks has not been studied yet. This would lend credence to their possible value in treating disorders of cognition. We evaluated the actions of subchronic Org 26576 administration on spatial reference memory performance in the 5-day Morris water maze task in male Sprague-Dawley rats, at doses of 1, 3 and 10 mg/kg twice daily through intraperitoneal injection over 12 days. Org 26576 exerted a dose and time-dependent effect on spatial learning, with dosages of 3 and 10 mg/kg significantly enhancing acquisition on day 1. Globally, escape latency decreased significantly as the training days progressed in the saline and Org 26576-treated groups, indicating that significant and equal learning had taken place over the learning period. However, at the end of the learning period, all doses of Org 26576 significantly improved spatial memory storage/retrieval without confounding effects in the cued version of the task. Org 26576 offers early phase spatial memory benefits in rats, but particularly enhances search accuracy during reference memory retrieval. These results support its possible utility in treating disorders characterized by deficits in cognitive performance.

  11. Diagnostic value of different adherence measures using electronic monitoring and virologic failure as reference standards.

    PubMed

    Deschamps, Ann E; De Geest, Sabina; Vandamme, Anne-Mieke; Bobbaers, Herman; Peetermans, Willy E; Van Wijngaerden, Eric

    2008-09-01

    Nonadherence to antiretroviral therapy is a substantial problem in HIV and jeopardizes the success of treatment. Accurate measurement of nonadherence is therefore imperative for good clinical management but no gold standard has been agreed on yet. In a single-center prospective study nonadherence was assessed by electronic monitoring: percentage of doses missed and drug holidays and by three self reports: (1) a visual analogue scale (VAS): percentage of overall doses taken; (2) the Swiss HIV Cohort Study Adherence Questionnaire (SHCS-AQ): percentage of overall doses missed and drug holidays and (3) the European HIV Treatment Questionnaire (EHTQ): percentage of doses missed and drug holidays for each antiretroviral drug separately. Virologic failure prospectively assessed during 1 year, and electronic monitoring were used as reference standards. Using virologic failure as reference standard, the best results were for (1) the SHCS-AQ after electronic monitoring (sensitivity, 87.5%; specificity, 78.6%); (2) electronic monitoring (sensitivity, 75%; specificity, 85.6%), and (3) the VAS combined with the SHCS-AQ before electronic monitoring (sensitivity, 87.5%; specificity, 58.6%). The sensitivity of the complex EHTQ was less than 50%. Asking simple questions about doses taken or missed is more sensitive than complex questioning about each drug separately. Combining the VAS with the SHCS-AQ seems a feasible nonadherence measure for daily clinical practice. Self-reports perform better after electronic monitoring: their diagnostic value could be lower when given independently.

  12. External dose-rate conversion factors of radionuclides for air submersion, ground surface contamination and water immersion based on the new ICRP dosimetric setting.

    PubMed

    Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong

    2013-01-01

    For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13.

  13. External dose-rate conversion factors of radionuclides for air submersion, ground surface contamination and water immersion based on the new ICRP dosimetric setting

    PubMed Central

    Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong

    2013-01-01

    For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13. PMID:23542764

  14. Nonclinical and clinical pharmacological characterization of the potent and selective cathepsin K inhibitor MIV-711.

    PubMed

    Lindström, Erik; Rizoska, Biljana; Henderson, Ian; Terelius, Ylva; Jerling, Markus; Edenius, Charlotte; Grabowska, Urszula

    2018-05-09

    Cathepsin K is an attractive therapeutic target for diseases in which bone resorption is excessive such as osteoporosis and osteoarthritis (OA). The current paper characterized the pharmacological profile of the potent and selective cathepsin K inhibitor, MIV-711, in vitro and in cynomolgus monkeys, and assessed translation to human based on a single dose clinical study in man. The potency and selectivity of MIV-711 were assessed in vitro using recombinant enzyme assays and differentiated human osteoclasts. MIV-711 was administered to healthy cynomolgus monkeys (3-30 µmol/kg, p.o.). Plasma levels of MIV-711 and the bone resorption biomarker CTX-I were measured after single dose experiments, and urine levels of CTX-I, NTX-I and CTX-II biomarkers were measured after repeat dose experiments. The safety, pharmacokinetics and pharmacodynamics (serum CTX-I) of MIV-711 were assessed in human healthy subjects after single ascending doses from 20 to 600 mg. MIV-711 was a potent inhibitor of human cathepsin K (K i : 0.98 nmol/L) with > 1300-fold selectivity towards other human cathepsins. MIV-711 inhibited human osteoclast-mediated bone resorption with an IC 50 value of 43 nmol/L. Single oral doses of MIV-711 to monkeys reduced plasma levels of CTX-I in a dose-dependent fashion by up to 57% at trough. The effect on CTX-I was linearly correlated to the plasma exposure of MIV-711, while the efficacy duration outlasted plasma exposure. Repeat oral dosing with MIV-711 also reduced urinary levels of the bone resorption biomarkers CTX-I (by 93%) and NTX-I (by 71%) and the cartilage degradation biomarker CTX-II (by 71%). MIV-711 was safe and well-tolerated when given as single ascending doses to healthy subjects. MIV-711 reduced serum CTX-I levels in a dose-dependent manner by up to 79% at trough. The relationship between MIV-711 exposure and effects on these biomarkers in humans was virtually identical when compared to the corresponding monkey data. MIV-711 is a potent and selective cathepsin K inhibitor with dose-dependent effects on biomarkers of bone and cartilage degradation in monkey and human. Taken together, MIV-711 shows promise for the treatment of bone and cartilage related disorders in humans, such as OA. Trial Registration EudraCT number 2011-003024-12, registered on June 22nd 2011.

  15. A Unified Probabilistic Framework for Dose–Response Assessment of Human Health Effects

    PubMed Central

    Slob, Wout

    2015-01-01

    Background When chemical health hazards have been identified, probabilistic dose–response assessment (“hazard characterization”) quantifies uncertainty and/or variability in toxicity as a function of human exposure. Existing probabilistic approaches differ for different types of endpoints or modes-of-action, lacking a unifying framework. Objectives We developed a unified framework for probabilistic dose–response assessment. Methods We established a framework based on four principles: a) individual and population dose responses are distinct; b) dose–response relationships for all (including quantal) endpoints can be recast as relating to an underlying continuous measure of response at the individual level; c) for effects relevant to humans, “effect metrics” can be specified to define “toxicologically equivalent” sizes for this underlying individual response; and d) dose–response assessment requires making adjustments and accounting for uncertainty and variability. We then derived a step-by-step probabilistic approach for dose–response assessment of animal toxicology data similar to how nonprobabilistic reference doses are derived, illustrating the approach with example non-cancer and cancer datasets. Results Probabilistically derived exposure limits are based on estimating a “target human dose” (HDMI), which requires risk management–informed choices for the magnitude (M) of individual effect being protected against, the remaining incidence (I) of individuals with effects ≥ M in the population, and the percent confidence. In the example datasets, probabilistically derived 90% confidence intervals for HDMI values span a 40- to 60-fold range, where I = 1% of the population experiences ≥ M = 1%–10% effect sizes. Conclusions Although some implementation challenges remain, this unified probabilistic framework can provide substantially more complete and transparent characterization of chemical hazards and support better-informed risk management decisions. Citation Chiu WA, Slob W. 2015. A unified probabilistic framework for dose–response assessment of human health effects. Environ Health Perspect 123:1241–1254; http://dx.doi.org/10.1289/ehp.1409385 PMID:26006063

  16. Assessment of health risks due to arsenic from iron ore lumps in a beach setting.

    PubMed

    Swartjes, Frank A; Janssen, Paul J C M

    2016-09-01

    In 2011, an artificial hook-shaped peninsula of 128ha beach area was created along the Dutch coast, containing thousands of iron ore lumps, which include arsenic from natural origin. Elemental arsenic and inorganic arsenic induce a range of toxicological effects and has been classified as proven human carcinogens. The combination of easy access to the beach and the presence of arsenic raised concern about possible human health effects by the local authorities. The objective of this study is therefore to investigate human health risks from the presence of arsenic-containing iron ore lumps in a beach setting. The exposure scenarios underlying the human health-based risk limits for contaminated land in The Netherlands, based on soil material ingestion and a residential setting, are not appropriate. Two specific exposure scenarios related to the playing with iron ore lumps on the beach ('sandcastle building') are developed on the basis of expert judgement, relating to children in the age of 2 to 12years, i.e., a worst case exposure scenario and a precautionary scenario. Subsequently, exposure is calculated by the quantification of the following factors: hand loading, soil-mouth transfer effectivity, hand-mouth contact frequency, contact surface, body weight and the relative oral bioavailability factor. By lack of consensus on a universal reference dose for arsenic for use in the stage of risk characterization, three different types of assessments have been evaluated: on the basis of the current Provisional Tolerable Daily Intake (PTWI), on the basis of the Benchmark Dose Lower limit (BMDL), and by a comparison of exposure from the iron ore lumps with background exposure. It is concluded, certainly from the perspective of the conservative exposure assessment, that unacceptable human health risks due to exposure to arsenic from the iron ore lumps are unlikely and there is no need for risk management actions. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. MODELING HUMAN EXPOSURES AND DOSE USING A 2-DIMENSIONAL MONTE-CARLO MODEL (SHEDS)

    EPA Science Inventory

    Since 1998, US EPA's National Exposure Research Laboratory (NERL) has been developing the Stochastic Human Exposure and Dose Simulation (SHEDS) model for various classes of pollutants. SHEDS is a physically-based probabilistic model intended for improving estimates of human ex...

  18. Comparison of Biological Effectiveness of Carbon-Ion Beams in Japan and Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uzawa, Akiko; Ando, Koichi; Koike, Sachiko

    2009-04-01

    Purpose: To compare the biological effectiveness of 290 MeV/amu carbon-ion beams in Chiba, Japan and in Darmstadt, Germany, given that different methods for beam delivery are used for each. Methods and Materials: Murine small intestine and human salivary gland tumor (HSG) cells exponentially growing in vitro were irradiated with 6-cm width of spread-out Bragg peaks (SOBPs) adjusted to achieve nearly identical beam depth-dose profiles at the Heavy-Ion Medical Accelerator in Chiba, and the SchwerIonen Synchrotron in Darmstadt. Cell kill efficiencies of carbon ions were measured by colony formation for HSG cells and jejunum crypts survival in mice. Cobalt-60 {gamma} raysmore » were used as the reference radiation. Isoeffective doses at given survivals were used for relative biological effectiveness (RBE) calculations and interinstitutional comparisons. Results: Isoeffective D{sub 10} doses (mean {+-} standard deviation) of HSG cells ranged from 2.37 {+-} 0.14 Gy to 3.47 {+-} 0.19 Gy for Chiba and from 2.31 {+-} 0.11 Gy to 3.66 {+-} 0.17 Gy for Darmstadt. Isoeffective D{sub 10} doses of gut crypts after single doses ranged from 8.25 {+-} 0.17 Gy to 10.32 {+-} 0.14 Gy for Chiba and from 8.27 {+-} 0.10 Gy to 10.27 {+-} 0.27 Gy for Darmstadt, whereas isoeffective D{sub 30} doses after three fractionated doses were 9.89 {+-} 0.17 Gy through 13.70 {+-} 0.54 Gy and 10.14 {+-} 0.20 Gy through 13.30 {+-} 0.41 Gy for Chiba and Darmstadt, respectively. Overall difference of RBE between the two facilities was 0-5% or 3-7% for gut crypt survival or HSG cell kill, respectively. Conclusion: The carbon-ion beams at the National Institute of Radiological Sciences in Chiba, Japan and the Gesellschaft fuer Schwerionenforschung in Darmstadt, Germany are biologically identical after single and daily fractionated irradiation.« less

  19. Study protocol for a randomised controlled double-blinded trial of the dose-dependent efficacy and safety of primaquine for clearance of gametocytes in children with uncomplicated falciparum malaria in Uganda.

    PubMed

    Eziefula, Alice Chijioke; Staedke, Sarah G; Yeung, Shunmay; Webb, Emily; Kamya, Moses; White, Nicholas J; Bousema, Teun; Drakeley, Chris

    2013-03-26

    For the purpose of blocking transmission of Plasmodium falciparum malaria from humans to mosquitoes, a single dose of primaquine is recommended by the WHO as an addition to artemisinin combination therapy. Primaquine clears gametocytes but causes dose-dependent haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Evidence is needed to inform the optimal dosing of primaquine for malaria elimination programmes and for the purpose of interrupting the spread of artemisinin-resistant malaria. This study investigates the efficacy and safety of reducing doses of primaquine for clearance of gametocytes in participants with normal G6PD status. In this prospective, four-armed randomised placebo-controlled double-blinded trial, children aged 1-10 years, weighing over 10 kg, with haemoglobin ≥8 g/dl and uncomplicated P falciparum malaria are treated with artemether lumefantrine and randomised to receive a dose of primaquine (0.1, 0.4 or 0.75 mg base/kg) or placebo on the third day of treatment. Participants are followed up for 28 days. Gametocytaemia is measured by quantitative nucleic acid sequence-based analysis on days 0, 2, 3, 7, 10 and 14 with a primary endpoint of the number of days to gametocyte clearance in each treatment arm and secondarily the area under the curve of gametocyte density over time. Analysis is for non-inferiority of efficacy compared to the reference dose, 0.75 mg base/kg. Safety is assessed by pair-wise comparisons of the arithmetic mean (±SD) change in haemoglobin concentration per treatment arm and analysed for superiority to placebo and incidence of adverse events. Ethics and dissemination Approval was obtained from the ethical committees of Makerere University School of Medicine, the Ugandan National Council of Science and Technology and the London School of Hygiene and Tropical Medicine. These will be disseminated to inform malaria elimination policy, through peer-reviewed publication and academic presentations.

  20. SU-E-T-399: Evaluation of Selection Criteria for Computational Human Phantoms for Use in Out-Of-Field Organ Dosimetry for Radiotherapy Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelletier, C; Jung, J; Lee, C

    2015-06-15

    Purpose: To quantify the dosimetric uncertainty due to organ position errors when using height and weight as phantom selection criteria in the UF/NCI Hybrid Phantom Library for the purpose of out-of-field organ dose reconstruction. Methods: Four diagnostic patient CT images were used to create 7-field IMRT plans. For each patient, dose to the liver, right lung, and left lung were calculated using the XVMC Monte Carlo code. These doses were taken to be the ground truth. For each patient, the phantom with the most closely matching height and weight was selected from the body size dependent phantom library. The patientmore » plans were then transferred to the computational phantoms and organ doses were recalculated. Each plan was also run on 4 additional phantoms with reference heights and or weights. Maximum and mean doses for the three organs were computed, and the DVHs were extracted and compared. One sample t-tests were performed to compare the accuracy of the height and weight matched phantoms against the additional phantoms in regards to both maximum and mean dose. Results: For one of the patients, the height and weight matched phantom yielded the most accurate results across all three organs for both maximum and mean doses. For two additional patients, the matched phantom yielded the best match for one organ only. In 13 of the 24 cases, the matched phantom yielded better results than the average of the other four phantoms, though the results were only statistically significant at the .05 level for three cases. Conclusion: Using height and weight matched phantoms does yield better results in regards to out-of-field dosimetry than using average phantoms. Height and weight appear to be moderately good selection criteria, though this selection criteria failed to yield any better results for one patient.« less

  1. Effect of Gold Nanoparticles on Prostate Dose Distribution under Ir-192 Internal and 18 MV External Radiotherapy Procedures Using Gel Dosimetry and Monte Carlo Method.

    PubMed

    Khosravi, H; Hashemi, B; Mahdavi, S R; Hejazi, P

    2015-03-01

    Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions. The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC) method for studying the effect of gold nanoparticles (GNPs) in prostate dose distributions under the internal Ir-192 and external 18MV radiotherapy practices. A Plexiglas phantom was made representing human pelvis. The GNP shaving 15 nm in diameter and 0.1 mM concentration were synthesized using chemical reduction method. Then, a new formulation of MAGIC-f gel was synthesized. The fabricated gel was poured in the tubes located at the prostate (with and without the GNPs) and bladder locations of the phantom. The phantom was irradiated to an Ir-192 source and 18 MV beam of a Varian linac separately based on common radiotherapy procedures used for prostate cancer. After 24 hours, the irradiated gels were read using a Siemens 1.5 Tesla MRI scanner. The absolute doses at the reference points and isodose curves resulted from the experimental measurement of the gels and MC simulations following the internal and external radiotherapy practices were compared. The mean absorbed doses measured with the gel in the presence of the GNPs in prostate were 15% and 8 % higher than the corresponding values without the GNPs under the internal and external radiation therapies, respectively. MC simulations also indicated a dose increase of 14 % and 7 % due to presence of the GNPs, for the same experimental internal and external radiotherapy practices, respectively. There was a good agreement between the dose enhancement factors (DEFs) estimated with MC simulations and experiment gel measurements due to the GNPs. The results indicated that the polymer gel dosimetry method as developed and used in this study, can be recommended as a reliable method for investigating the DEF of GNPs in internal and external radiotherapy practices.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, K; Nachabe, R; Racadio, J

    Purpose: To define an alternative to antiscatter grid (ASG) removal in angiographic systems which achieves similar patient dose reduction as ASG removal without degrading image quality during pediatric imaging. Methods: This study was approved by the local institution animal care and use committee (IACUC). Six different digital subtraction angiography settings were evaluated that altered the mAs, (100, 70, 50, 35, 25, 17.5% of reference mAs) with and without ASG. Three pigs of 5, 15, and 20 kg (9, 15, and 17 cm abdominal thickness; smaller than a newborn, average 3 yr old, and average 10 year old human abdomen respectively)more » were imaged using the six dose settings with and without ASG. Image quality was defined as the order of vessel branch that is visible relative to the injected vessel. Five interventional radiologists evaluated all images. Image quality and patient dose were statistically compared using analysis of variance and receiver operating curve (ROC) analysis to define the preferred dose level and use of ASG for a minimum visibility of 2nd or 3rd order branches of vessel visibility. Results: ASG grid removal reduces dose by 26% with reduced image quality. Only with the ASG present can 3rd order branches be visualized; 100% mAs is required for 9 cm pig while 70% mAs is adequate for the larger pigs. 2nd order branches can be visualized with ASG at 17.5% mAs for all three pig sizes. Without the ASG, 50%, 35% and 35% mAs is required for smallest to largest pig. Conclusion: Removing ASG reduces patient dose and image quality. Image quality can be improved with the ASG present while further reducing patient dose if an optimized radiographic technique is used. Rami Nachabe is an employee of Philips Health Care; Keith Strauss is a paid consultant of Philips Health Care.« less

  3. Comparison of 2-Dose and 3-Dose 9-Valent Human Papillomavirus Vaccine Schedules in the United States: A Cost-effectiveness Analysis.

    PubMed

    Laprise, Jean-François; Markowitz, Lauri E; Chesson, Harrell W; Drolet, Mélanie; Brisson, Marc

    2016-09-01

    A recent clinical trial using the 9-valent human papillomavirus virus (HPV) vaccine has shown that antibody responses after 2 doses are noninferior to those after 3 doses, suggesting that 2 and 3 doses may have comparable vaccine efficacy. We used an individual-based transmission-dynamic model to compare the population-level effectiveness and cost-effectiveness of 2- and 3-dose schedules of 9-valent HPV vaccine in the United States. Our model predicts that if 2 doses of 9-valent vaccine protect for ≥20 years, the additional benefits of a 3-dose schedule are small as compared to those of 2-dose schedules, and 2-dose schedules are likely much more cost-efficient than 3-dose schedules. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  4. DIFFUSION AND PERCEPTION OF MERCURY RISK INFORMATION

    EPA Science Inventory

    Approximately 8% of American women have blood Mercury levels exceeding the EPA reference dose (a dose below which symptoms would be unlikely). The children of these women are at risk of neurological deficits (lower IQ scores) primarily because of the mother’s consumption of...

  5. Induction of Chromosomal Aberrations at Fluences of Less Than One HZE Particle per Cell Nucleus

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Chappell, Lori J.; Wang, Minli; George, Kerry A.; Cucinotta, Francis A.

    2014-01-01

    The assumption of a linear dose response used to describe the biological effects of high LET radiation is fundamental in radiation protection methodologies. We investigated the dose response for chromosomal aberrations for exposures corresponding to less than one particle traversal per cell nucleus by high energy and charge (HZE) nuclei. Human fibroblast and lymphocyte cells where irradiated with several low doses of <0.1 Gy, and several higher doses of up to 1 Gy with O (77 keV/ (long-s)m), Si (99 keV/ (long-s)m), Fe (175 keV/ (long-s)m), Fe (195 keV/ (long-s)m) or Fe (240 keV/ (long-s)m) particles. Chromosomal aberrations at first mitosis were scored using fluorescence in situ hybridization (FISH) with chromosome specific paints for chromosomes 1, 2 and 4 and DAPI staining of background chromosomes. Non-linear regression models were used to evaluate possible linear and non-linear dose response models based on these data. Dose responses for simple exchanges for human fibroblast irradiated under confluent culture conditions were best fit by non-linear models motivated by a non-targeted effect (NTE). Best fits for the dose response data for human lymphocytes irradiated in blood tubes were a NTE model for O and a linear response model fit best for Si and Fe particles. Additional evidence for NTE were found in low dose experiments measuring gamma-H2AX foci, a marker of double strand breaks (DSB), and split-dose experiments with human fibroblasts. Our results suggest that simple exchanges in normal human fibroblasts have an important NTE contribution at low particle fluence. The current and prior experimental studies provide important evidence against the linear dose response assumption used in radiation protection for HZE particles and other high LET radiation at the relevant range of low doses.

  6. Real time radiation dosimeters based on vertically aligned multiwall carbon nanotubes and graphene.

    PubMed

    Funaro, Maria; Sarno, Maria; Ciambelli, Paolo; Altavilla, Claudia; Proto, Antonio

    2013-02-22

    Measurements of the absorbed dose and quality assurance programs play an important role in radiotherapy. Ionization chambers (CIs) are considered the most important dosimeters for their high accuracy, practicality and reliability, allowing absolute dose measurements. However, they have a relative large physical size, which limits their spatial resolution, and require a high bias voltage to achieve an acceptable collection of charges, excluding their use for in vivo dosimetry. In this paper, we propose new real time radiation detectors with electrodes based on graphene or vertically aligned multiwall carbon nanotubes (MWCNTs). We have investigated their charge collection efficiency and compared their performance with electrodes made of a conventional material. Moreover, in order to highlight the effect of nanocarbons, reference radiation detectors were also tested. The proposed dosimeters display an excellent linear response to dose and collect more charge than reference ones at a standard bias voltage, permitting the construction of miniaturized CIs. Moreover, an MWCNT based CI gives the best charge collection efficiency and it enables working also to lower bias voltages and zero volts, allowing in vivo applications. Graphene based CIs show better performance with respect to reference dosimeters at a standard bias voltage. However, at decreasing bias voltage the charge collection efficiency becomes worse if compared to a reference detector, likely due to graphene's semiconducting behavior.

  7. SU-F-J-29: Dosimetric Effect of Image Registration ROI Size and Focus in Automated CBCT Registration for Spine SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnelli, A; Smith, A; Chao, S

    2016-06-15

    Purpose: Spinal stereotactic body radiotherapy (SBRT) involves highly conformal dose distributions and steep dose gradients due to the proximity of the spinal cord to the treatment volume. To achieve the planning goals while limiting the spinal cord dose, patients are setup using kV cone-beam CT (kV-CBCT) with 6 degree corrections. The kV-CBCT registration with the reference CT is dependent on a user selected region of interest (ROI). The objective of this work is to determine the dosimetric impact of ROI selection. Methods: Twenty patients were selected for this study. For each patient, the kV-CBCT was registered to the reference CTmore » using three ROIs including: 1) the external body, 2) a large anatomic region, and 3) a small region focused in the target volume. Following each registration, the aligned CBCTs and contours were input to the treatment planning system for dose evaluation. The minimum dose, dose to 99% and 90% of the tumor volume (D99%, D90%), dose to 0.03cc and the dose to 10% of the spinal cord subvolume (V10Gy) were compared to the planned values. Results: The average deviations in the tumor minimum dose were 2.68%±1.7%, 4.6%±4.0%, 14.82%±9.9% for small, large and the external ROIs, respectively. The average deviations in tumor D99% were 1.15%±0.7%, 3.18%±1.7%, 10.0%±6.6%, respectively. The average deviations in tumor D90% were 1.00%±0.96%, 1.14%±1.05%, 3.19%±4.77% respectively. The average deviations in the maximum dose to the spinal cord were 2.80%±2.56%, 7.58%±8.28%, 13.35%±13.14%, respectively. The average deviation in V10Gy to the spinal cord were 1.69%±0.88%, 1.98%±2.79%, 2.71%±5.63%. Conclusion: When using automated registration algorithms for CBCT-Reference alignment, a small target-focused ROI results in the least dosimetric deviation from the plan. It is recommended to focus narrowly on the target volume to keep the spinal cord dose below tolerance.« less

  8. Organ doses can be estimated from the computed tomography (CT) dose index for cone-beam CT on radiotherapy equipment.

    PubMed

    Martin, Colin J; Abuhaimed, Abdullah; Sankaralingam, Marimuthu; Metwaly, Mohamed; Gentle, David J

    2016-06-01

    Cone beam computed tomography (CBCT) systems are fitted to radiotherapy linear accelerators and used for patient positioning prior to treatment by image guided radiotherapy (IGRT). Radiotherapists' and radiographers' knowledge of doses to organs from CBCT imaging is limited. The weighted CT dose index for a reference beam of width 20 mm (CTDIw,ref) is displayed on Varian CBCT imaging equipment known as an On-Board Imager (OBI) linked to the Truebeam linear accelerator. This has the potential to provide an indication of organ doses. This knowledge would be helpful for guidance of radiotherapy clinicians preparing treatments. Monte Carlo simulations of imaging protocols for head, thorax and pelvic scans have been performed using EGSnrc/BEAMnrc, EGSnrc/DOSXYZnrc, and ICRP reference computational male and female phantoms to derive the mean absorbed doses to organs and tissues, which have been compared with values for the CTDIw,ref displayed on the CBCT scanner console. Substantial variations in dose were observed between male and female phantoms. Nevertheless, the CTDIw,ref gave doses within  ±21% for the stomach and liver in thorax scans and 2  ×  CTDIw,ref can be used as a measure of doses to breast, lung and oesophagus. The CTDIw,ref could provide indications of doses to the brain for head scans, and the colon for pelvic scans. It is proposed that knowledge of the link between CTDIw for CBCT should be promoted and included in the training of radiotherapy staff.

  9. 10 CFR 63.111 - Performance objectives for the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of the deep dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose equivalent may not exceed 0.15 Sv (15... TEDE (hereafter referred to as “dose”) to any real member of the public located beyond the boundary of...

  10. 10 CFR 63.111 - Performance objectives for the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of the deep dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose equivalent may not exceed 0.15 Sv (15... TEDE (hereafter referred to as “dose”) to any real member of the public located beyond the boundary of...

  11. 10 CFR 63.111 - Performance objectives for the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of the deep dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose equivalent may not exceed 0.15 Sv (15... TEDE (hereafter referred to as “dose”) to any real member of the public located beyond the boundary of...

  12. 10 CFR 63.111 - Performance objectives for the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of the deep dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose equivalent may not exceed 0.15 Sv (15... TEDE (hereafter referred to as “dose”) to any real member of the public located beyond the boundary of...

  13. SU-F-BRF-14: Increasing the Accuracy of Dose Calculation On Cone-Beam Imaging Using Deformable Image Registration in the Case of Prostate Translation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fillion, O; Gingras, L; Departement de physique, de genie physique et d'optique, Universite Laval, Quebec, Quebec

    2014-06-15

    Purpose: Artifacts can reduce the quality of dose re-calculations on CBCT scans during a treatment. The aim of this project is to correct the CBCT images in order to allow for more accurate and exact dose calculations in the case of a translation of the tumor in prostate cancer. Methods: Our approach is to develop strategies based on deformable image registration algorithms using the elastix software (Klein et al., 2010) to register the treatment planning CT on a daily CBCT scan taken during treatment. Sets of images are provided by a 3D deformable phantom and comprise two CT and twomore » CBCT scans: one of both with the reference anatomy and the others with known deformations (i.e. translations of the prostate). The reference CT is registered onto the deformed CBCT and the deformed CT serves as the control for dose calculation accuracy. The planned treatment used for the evaluation of dose calculation is a 2-Gy fraction prescribed at the location of the reference prostate and assigned to 7 rectangular fields. Results: For a realistic 0.5-cm translation of the prostate, the relative dose discrepancy between the CBCT and the CT control scan at the prostate's centroid is 8.9 ± 0.8 % while dose discrepancy between the registered CT and the control scan lessens to −2.4 ± 0.8 %. For a 2-cm translation, clinical indices like the V90 and the D100 are more accurate by 0.7 ± 0.3 % and 8.0 ± 0.5 cGy respectively when using registered CT than when using CBCT for dose calculation. Conclusion: The results show that this strategy gives doses in agreement within a few percents with those from calculations on actual CT scans. In the future, various deformations of the phantom anatomy will allow a thorough characterization of the registration strategies needed for more complex anatomies.« less

  14. Levothyroxine soft capsules demonstrate bioequivalent pharmacokinetic exposure with the European reference tablets in healthy volunteers under fasting conditions.

    PubMed

    Al-Numani, Dina; Scarsi, Claudia; Ducharme, Murray P

    2016-02-01

    To assess the bioequivalence (BE) potential under fasting conditions between levothyroxine soft capsules and the European reference tablet formulation. Two studies were conducted to assess the BE potential as per European regulations. Study 1 was a two-way crossover BE study comparing a high strength of levothyroxine soft capsules versus levothyroxine tablets (200 μg), while study 2 was a three-way crossover dosage form proportionality study between low, medium, and high strengths of soft capsules. 70 healthy adult subjects participated in the two studies. Each treatment consisted of a 600-μg dose of levothyroxine sodium, administered under fasting conditions. Blood samples were collected for levothyroxine (T4) assay prior to dosing and up to 72 hours post dose. A washout of 35 days separated treatments in each study. Pharmacokinetics was assessed using noncompartmental methods. A total of 61 subjects completed the studies. Baseline-adjusted total T4 ratios (test/reference) and 90% confidence intervals (CIs) between soft capsules and tablets were within 80.00 - 125.00%. Comparison of the three strengths of soft capsules indicated pharmacokinetic equivalence between them (ratios and 90% CIs were contained within 80.00 - 125.00%). Overall, levothyroxine sodium was well tolerated with all products when given as single oral doses of 600 μg, except for 1 serious adverse event of secondary bacteremia reported in study 2, deemed not to be related to treatment. Levothyroxine soft capsules meet BE criteria in terms of systemic exposure when compared to a European reference tablet under fasting conditions in healthy volunteers.

  15. Prevalence of Tramadol Consumption in First Seizure Patients; a One-Year Cross-sectional Study

    PubMed Central

    Asadi, Payman; Monsef Kasmaei, Vahid; Ziabari, Seyyed Zia; Zohrevandi, Behzad; Moadab Manesh, Aslan

    2015-01-01

    Introduction: Previous studies have shown that there is a probability of seizure even with therapeutic doses of tramadol. Yet, no accurate data exist regarding this problem in Iran. Therefore, the present study aimed to evaluate the prevalence of tramadol consumption in patients with first seizure referred to the emergency department (ED). Methods: In the present retrospective one-year cross-sectional study, all patients who were referred to the ED of Poursina Hospital, Rasht, Iran, with the complaint of first seizure were evaluated. Demographic data and data regarding history of tramadol consumption, duration, total dose, last dose, and time passed from the last dose of consumption were recorded and analyzed regarding the study questions using SPSS 20. Results: 383 (68.9%) out of the 556 patients referred to the ED, were experiencing their first seizure (mean age 26.43 ± 6.48 years; 70.5% male). 84 (21.9%) patients had recently used tramadol. History of seizure in the family of tramadol consumers was significantly lower (3.6% compared to 11%; p = 0.036). Mean total tramadol consumption dose in the last 24 hours was 140.17 ± 73.53 mg (range: 50-300 mg). Duration of tramadol consumption was less than 10 days in 84.5% (df: 2; χ2 = 96.1; p < 0.001). In addition, 62 (73.8%) patients had seizure within 6 hours of consumption (df: 3; χ2 = 29.5; p < 0.001). Conclusion: Results of the present study showed that 21.9% of the patients with first seizure had a history of tramadol consumption. Seizure following tramadol consumption is more prevalent in the initial 10 days and within 6 hours of consumption. In addition, it seems that lower doses of tramadol may also induce seizure. PMID:26495407

  16. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 06: Investigation of an absorbed dose to water formalism for a miniature low-energy x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Peter; Seuntjens, Jan

    Purpose: We present a formalism for calculating the absorbed dose to water from a miniature x-ray source (The INTRABEAM system, Carl Zeiss), using a parallel-plate ionization chamber calibrated in terms of air-kerma. Monte Carlo calculations were performed to derive a chamber conversion factor (C{sub Q}) from reference air-kerma to dose to water for the INTRABEAM. C{sub Q} was investigated as a function of depth in water, and compared with the manufacturer’s reported value. The effect of chamber air cavity dimension tolerance was also investigated. Methods: Air-kerma (A{sub k}) from a reference beam was calculated using the EGSnrc user code cavity.more » Using egs-chamber, a model of a PTW 34013 parallel-plate ionization chamber was created according to manufacturer specifications. The dose to the chamber air cavity (D{sub gas}) was simulated both in-air (with reference beam) and in-water (with INTRABEAM source). Dose to a small water voxel (D{sub w}) was also calculated. C{sub Q} was derived from these quantities. Results: C{sub Q} was found to vary by up to 15% (1.30 vs 1.11) between chamber dimension extremes. The agreement between chamber C{sub Q} was found to improve with increasing depth in water. However, in all cases investigated, C{sub Q} was larger than the manufacturer reported value of 1.054. Conclusions: Our results show that cavity dimension tolerance has a significant effect on C{sub Q}, with differences as large as 15%. In all cases considered, C{sub Q} was found to be larger than the reported value of 1.054. This suggests that the recommended calculation underestimates the dose to water.« less

  17. Ultraviolet Radiation Dose National Standard of México

    NASA Astrophysics Data System (ADS)

    Cardoso, R.; Rosas, E.

    2006-09-01

    We present the Ultraviolet (UV) Radiation Dose National Standard for México. The establishment of this measurement reference at Centro Nacional de Metrología (CENAM) eliminates the need of contacting foreign suppliers in the search for traceability towards the SI units when calibrating instruments at 365 nm. Further more, the UV Radiation Dose National Standard constitutes a highly accurate and reliable source for the UV radiation dose measurements performed in medical and cosmetic treatments as in the the food and pharmaceutics disinfection processes, among other.

  18. A Crosslinked HA-Based Hydrogel Ameliorates Dry Eye Symptoms in Dogs

    PubMed Central

    Williams, David L.; Mann, Brenda K.

    2013-01-01

    Keratoconjunctivitis sicca, commonly referred to as dry eye or KCS, can affect both humans and dogs. The standard of care in treating KCS typically includes daily administration of eye drops to either stimulate tear production or to hydrate and lubricate the corneal surface. Lubricating eye drops are often applied four to six times daily for the life of the patient. In order to reduce this dosing regimen yet still provides sufficient hydration and lubrication, we have developed a crosslinked hydrogel based on a modified, thiolated hyaluronic acid (HA), xCMHA-S. This xCMHA-S gel was found to have different viscosity and rheologic behavior than solutions of noncrosslinked HA. The gel was also able to increase tear breakup time in rabbits, indicating a stabilization of the tear film. Further, in a preliminary clinical study of dogs with KCS, the gel significantly reduced the symptoms associated with KCS within two weeks while only being applied twice daily. The reduction of symptoms combined with the low dosing regimen indicates that this gel may lead to both improved patient health and owner compliance in applying the treatment. PMID:23840213

  19. Effects of sub-lethal exposure of rats to the herbicide glyphosate in drinking water: glutathione transferase enzyme activities, levels of reduced glutathione and lipid peroxidation in liver, kidneys and small intestine.

    PubMed

    Larsen, K; Najle, R; Lifschitz, A; Virkel, G

    2012-11-01

    Glyphosate (GLP), the active ingredient of many weed killing formulations, is a broad spectrum herbicide compound. Wistar rats were exposed during 30 or 90 days to the highest level (0.7 mg/L) of GLP allowed in water for human consumption (US EPA, 2011) and a 10-fold higher concentration (7 mg/L). The low levels of exposure to the herbicide did not produce histomorphological changes. The production of TBARS was similar or tended to be lower compared to control animals not exposed to the herbicide. In rats exposed to GLP, increased levels of reduced glutathione (GSH) and enhanced glutathione peroxidase (GPx) activity may act as a protective mechanism against possible detrimental effects of the herbicide. Overall, this work showed certain biochemical modifications, even at 3-20-fold lower doses of GLP than the oral reference dose of 2mg/kg/day (US EPA, 1993). The toxicological significance of these findings remains to be clarified. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. [The effect of 3-oxypyridine and succinic acid derivatives on obsessive-compulsive activity of mice in marble-burying test].

    PubMed

    Volchegorskiĭ, I A; Miroshnichenko, I Iu; Rassokhina, L M; Faĭzullin, R M; Priakhina, K E

    2014-01-01

    The effect of domestic derivatives of 3-oxypyridine and succinic acid (emoxipine, reamberin, and mexidol) on obsessive-compulsive behavior of mice was studied in the marble-burying test. Additionally the effect of these drugs on the behavior of animals was assessed in the open field test. Amitriptylin and alpha-lipoic acid were used as reference drugs. It was established that single administration of the investigated drugs in optimal doses, corresponding to therapeutic range in humans, inhibits obsessive-compulsive behavior of mice in the marble-burying test. Amitriptylin and alpha-lipoic acid produced similar effects. It is established that emoxipine stimulates the behavior of mice in the open field after single administration. An increase in the emoxipine dose led to decrease of stimulation and gradual development of sedative effect. Reamberin and mexidol, as well as alpha-lipoic acid and amitriptyline, caused sedation in mice tested in the open field. Inhibiting effect of emoxipine, reamberin, mexidol and alpha-lipoic acid on the obsessive-compulsive behavior in mice directly depended on sedative action of these drugs.

  1. Traces of natural radionuclides in animal food

    NASA Astrophysics Data System (ADS)

    Merli, Isabella Desan; da Silveira, Marcilei A. Guazzelli; Medina, Nilberto H.

    2014-11-01

    Naturally occurring radioactive materials are present everywhere, e.g., in soil, air, housing materials, food, etc. Therefore, human beings and animals receive internal exposure from radioactive elements inside their bodies through breathing and alimentation. Gamma radiation has enough energy to remove an electron from the atom and compromise the rearrangement of electrons in the search for a more stable configuration which can disturb molecule chemical bonding. Food ingestion is one of the most common forms of radioisotopes absorption. The goal of this work is the measurement of natural gamma radiation rates from natural radioisotopes present in animal food. To determine the concentration of natural radionuclides present in animal food gamma-ray spectrometry was applied. We have prepared animal food samples for poultry, fish, dogs, cats and cattle. The two highest total ingestion effective doses observed refers to a sample of mineral salt cattle, 95.3(15) μSv/year, rabbit chow, with a value of 48(5) μSv/year, and cattle mineral salt, with a value of 69(7) μSv/year, while the annual total dose value from terrestrial intake radionuclide is of the order of 290 μSv/year.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asadi, Somayeh; Masoudi, Seyed Farhad, E-mail: masoudi@kntu.ac.ir; Shahriari, Majid

    In ophthalmic brachytherapy dosimetry, it is common to consider the water phantom as human eye anatomy. However, for better clinical analysis, there is a need for the dose determination in different parts of the eye. In this work, a full human eye is simulated with MCNP-4C code by considering all parts of the eye, i.e., the lens, cornea, retina, choroid, sclera, anterior chamber, optic nerve, and bulk of the eye comprising vitreous body and tumor. The average dose in different parts of this full model of the human eye is determined and the results are compared with the dose calculatedmore » in water phantom. The central axes depth dose and the dose in whole of the tumor for these 2 simulated eye models are calculated as well, and the results are compared.« less

  3. Global transport and deposition of 137Cs following the Fukushima nuclear power plant accident in Japan: emphasis on Europe and Asia using high-resolution model versions and radiological impact assessment of the human population and the environment using interactive tools.

    PubMed

    Evangeliou, Nikolaos; Balkanski, Yves; Cozic, Anne; Møller, Anders Pape

    2013-06-04

    The earthquake and the subsequent tsunami that occurred offshore of Japan resulted in an important loss of life and a serious accident at the nuclear facility of Fukushima. The "hot spots" of the release are evaluated here applying the model LMDZORINCA for (137)Cs. Moreover, an assessment is attempted for the population and the environment using the dosimetric scheme of the WHO and the interactive tool ERICA, respectively. Cesium-137 was deposited mostly in Pacific and Atlantic Oceans and North Pole (80%), whereas the rest in the continental areas of North America and Eurasia contributed slightly to the natural background (0.5-5.0 kBq m(-2)). The effective dose from (137)Cs and (134)Cs (radiocesium) irradiation during the first 3 months was estimated between 1-5 mSv in Fukushima and the neighboring prefectures. In the rest of Japan, the respective doses were found to be less than 0.5 mSv, whereas in the rest of the world it was less than 0.1 mSv. Such doses are equivalent with the obtained dose from a simple X-ray; for the highly contaminated regions, they are close to the dose limit for exposure due to radon inhalation (10 mSv). The calculated dose rates from radiocesium exposure on reference organisms ranged from 0.03 to 0.18 μGy h(-1), which are 2 orders of magnitude below the screening dose limit (10 μGy h(-1)) that could result in obvious effects on the population. However, these results may underestimate the real situation, since stable soil density was used in the calculations, a zero radiocesium background was assumed, and dose only from two radionuclides was estimated, while more that 40 radionuclides have been deposited in the vicinity of the facility. When monitoring data applied, much higher dose rates were estimated certifying ecological risk for small mammals and reptiles in terms of cytogenetic damage and reproduction.

  4. Olive oil phenolics are dose-dependently absorbed in humans.

    PubMed

    Visioli, F; Galli, C; Bornet, F; Mattei, A; Patelli, R; Galli, G; Caruso, D

    2000-02-25

    Olive oil phenolic constituents have been shown, in vitro, to be endowed with potent biological activities including, but not limited to, an antioxidant action. To date, there is no information on the absorption and disposition of such compounds in humans. We report that olive oil phenolics, namely tyrosol and hydroxytyrosol, are dose-dependently absorbed in humans after ingestion and that they are excreted in the urine as glucuronide conjugates. Furthermore, an increase in the dose of phenolics administered increased the proportion of conjugation with glucuronide.

  5. On the use of quality factors and fluence to dose rate conversion in human radiation exposures

    NASA Technical Reports Server (NTRS)

    Sondhaus, C. A.

    1972-01-01

    It is shown that various combinations of numbers and factors arrive at estimates of dose and dose effectiveness from values of fluence; but as yet it has not been possible to use biological data with the same degree of precision to estimate the physical data. It would seem that the most reasonable way to use the human data that exist is to apply them as far as possible to the human animal as a whole.

  6. RISK PERCEPTION AND DIFFUSION OF MERCURY RISK INFORMATION

    EPA Science Inventory

    The most recent NHANES data reveals that approximately 8% of American women have blood Mercury levels exceeding the EPA reference dose (a dose below which symptoms would be unlikely). The children of these women are at risk of neurological deficits (lower IQ scores) primarily bec...

  7. Multidetector CT radiation dose optimisation in adults: short- and long-term effects of a clinical audit.

    PubMed

    Tack, Denis; Jahnen, Andreas; Kohler, Sarah; Harpes, Nico; De Maertelaer, Viviane; Back, Carlo; Gevenois, Pierre Alain

    2014-01-01

    To report short- and long-term effects of an audit process intended to optimise the radiation dose from multidetector row computed tomography (MDCT). A survey of radiation dose from all eight MDCT departments in the state of Luxembourg performed in 2007 served as baseline, and involved the most frequently imaged regions (head, sinus, cervical spine, thorax, abdomen, and lumbar spine). CT dose index volume (CTDIvol), dose-length product per acquisition (DLP/acq), and DLP per examination (DLP/exa) were recorded, and their mean, median, 25th and 75th percentiles compared. In 2008, an audit conducted in each department helped to optimise doses. In 2009 and 2010, two further surveys evaluated the audit's impact on the dose delivered. Between 2007 and 2009, DLP/exa significantly decreased by 32-69 % for all regions (P < 0.001) except the lumbar spine (5 %, P = 0.455). Between 2009 and 2010, DLP/exa significantly decreased by 13-18 % for sinus, cervical and lumbar spine (P ranging from 0.016 to less than 0.001). Between 2007 and 2010, DLP/exa significantly decreased for all regions (18-75 %, P < 0.001). Collective dose decreased by 30 % and the 75th percentile (diagnostic reference level, DRL) by 20-78 %. The audit process resulted in long-lasting dose reduction, with DRLs reduced by 20-78 %, mean DLP/examination by 18-75 %, and collective dose by 30 %. • External support through clinical audit may optimise default parameters of routine CT. • Reduction of 75th percentiles used as reference diagnostic levels is 18-75 %. • The effect of this audit is sustainable over time. • Dose savings through optimisation can be added to those achievable through CT.

  8. Inverse Planning Approach for 3-D MRI-Based Pulse-Dose Rate Intracavitary Brachytherapy in Cervix Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chajon, Enrique; Dumas, Isabelle; Touleimat, Mahmoud B.Sc.

    2007-11-01

    Purpose: The purpose of this study was to evaluate the inverse planning simulated annealing (IPSA) software for the optimization of dose distribution in patients with cervix carcinoma treated with MRI-based pulsed-dose rate intracavitary brachytherapy. Methods and Materials: Thirty patients treated with a technique using a customized vaginal mold were selected. Dose-volume parameters obtained using the IPSA method were compared with the classic manual optimization method (MOM). Target volumes and organs at risk were delineated according to the Gynecological Brachytherapy Group/European Society for Therapeutic Radiology and Oncology recommendations. Because the pulsed dose rate program was based on clinical experience with lowmore » dose rate, dwell time values were required to be as homogeneous as possible. To achieve this goal, different modifications of the IPSA program were applied. Results: The first dose distribution calculated by the IPSA algorithm proposed a heterogeneous distribution of dwell time positions. The mean D90, D100, and V100 calculated with both methods did not differ significantly when the constraints were applied. For the bladder, doses calculated at the ICRU reference point derived from the MOM differed significantly from the doses calculated by the IPSA method (mean, 58.4 vs. 55 Gy respectively; p = 0.0001). For the rectum, the doses calculated at the ICRU reference point were also significantly lower with the IPSA method. Conclusions: The inverse planning method provided fast and automatic solutions for the optimization of dose distribution. However, the straightforward use of IPSA generated significant heterogeneity in dwell time values. Caution is therefore recommended in the use of inverse optimization tools with clinical relevance study of new dosimetric rules.« less

  9. Beta-carotene conversion to vitamin A decreases as the dietary dose increases in humans

    USDA-ARS?s Scientific Manuscript database

    It has been suggested that high doses of B-carotene limit its conversion to vitamin A, yet this effect has not been well established in humans. A feeding study was conducted in which volunteers consumed two doses of deuterium labeled B-carotene on two occasions, with B-carotene and vitamin A respon...

  10. Interpretation of the margin of exposure for genotoxic carcinogens - elicitation of expert knowledge about the form of the dose response curve at human relevant exposures.

    PubMed

    Boobis, Alan; Flari, Villie; Gosling, John Paul; Hart, Andy; Craig, Peter; Rushton, Lesley; Idahosa-Taylor, Ehi

    2013-07-01

    The general approach to risk assessment of genotoxic carcinogens has been to advise reduction of exposure to "as low as reasonably achievable/practicable" (ALARA/P). However, whilst this remains the preferred risk management option, it does not provide guidance on the urgency or extent of risk management actions necessary. To address this, the "Margin of Exposure" (MOE) approach has been proposed. The MOE is the ratio between the point of departure for carcinogenesis and estimated human exposure. However, interpretation of the MOE requires implicit or explicit consideration of the shape of the dose-response curve at human relevant exposures. In a structured elicitation exercise, we captured expert opinion on available scientific evidence for low dose-response relationships for genotoxic carcinogens. This allowed assessment of: available evidence for the nature of dose-response relationships at human relevant exposures; the generality of judgments about such dose-response relationships; uncertainties affecting judgments on the nature of such dose-response relationships; and whether this last should differ for different classes of genotoxic carcinogens. Elicitation results reflected the variability in experts' views on the form of the dose-response curve for low dose exposure and major sources of uncertainty affecting the assumption of a linear relationship. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Biodistribution and radiation dosimetry of the hypoxia marker 18F-HX4 in monkeys and humans determined by using whole-body PET/CT.

    PubMed

    Doss, Mohan; Zhang, James J; Bélanger, Marie-José; Stubbs, James B; Hostetler, Eric D; Alpaugh, Katherine; Kolb, Hartmuth C; Yu, Jian Q

    2010-12-01

    F-HX4 is a novel positron emission tomography (PET) tracer for imaging hypoxia. The purpose of this study was to determine the biodistribution and estimate the radiation dose of F-HX4 using whole-body PET/computed tomography (CT) scans in monkeys and humans. Successive whole-body PET/CT scans were done after the injection of F-HX4 in four healthy humans (422±142 MBq) and in three rhesus monkeys (189±3 MBq). Biodistribution was determined from PET images and organ doses were estimated using OLINDA/EXM software. The bladder, liver, and kidneys showed the highest percentage of the injected radioactivity for humans and monkeys. For humans, approximately 45% of the activity is eliminated by bladder voiding in 3.6 h, and for monkeys 60% is in the bladder content after 3 h. The critical organ is the urinary bladder wall with the highest absorbed radiation dose of 415±18 (monkeys) and 299±38 μGy/MBq (humans), in the 4.8-h bladder voiding interval model. The average value of effective dose for the adult male was estimated at 42±4.2 μSv/MBq from monkey data and 27±2 μSv/MBq from human data. Bladder, kidneys, and liver have the highest uptake of injected F-HX4 activity for both monkeys and humans. The urinary bladder wall receives the highest dose of F-HX4 and is the critical organ. Thus, patients should be encouraged to maintain adequate hydration and void frequently. The effective dose of F-HX4 is comparable with that of other F-based imaging agents.

  12. Development of a Zealand white rabbit deposition model to study inhalation anthrax

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asgharian, Bahman; Price, Owen; Kabilan, Senthil

    Despite using rabbits in several inhalation exposure experiments to study diseases such as anthrax, there is a lack of understanding regarding deposition characteristics and fate of inhaled particles (bio-aerosols and viruses) in the respiratory tracts of rabbits. Such information allows dosimetric extrapolation to humans to inform human outcomes. The lung geometry of the New Zealand white rabbit (referred to simply as rabbits throughout the article) was constructed using recently acquired scanned images of the conducting airways of rabbits and available information on its acinar region. In addition, functional relationships were developed for the lung and breathing parameters of rabbits asmore » a function of body weight. The lung geometry and breathing parameters were used to extend the existing deposition model for humans and several other species to rabbits. Evaluation of the deposition model for rabbits was made by comparing predictions with available measurements in the literature. Deposition predictions in the lungs of rabbits indicated smaller deposition fractions compared to those found in humans across various particle diameter ranges. The application of the deposition model for rabbits was demonstrated by extrapolating deposition predictions in rabbits to find equivalent human exposure concentrations assuming the same dose-response relationship between the two species. Human equivalent exposure concentration levels were found to be much smaller than those for rabbits.« less

  13. High resolution, MRI-based, segmented, computerized head phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubal, I.G.; Harrell, C.R.; Smith, E.O.

    1999-01-01

    The authors have created a high-resolution software phantom of the human brain which is applicable to voxel-based radiation transport calculations yielding nuclear medicine simulated images and/or internal dose estimates. A software head phantom was created from 124 transverse MRI images of a healthy normal individual. The transverse T2 slices, recorded in a 256x256 matrix from a GE Signa 2 scanner, have isotropic voxel dimensions of 1.5 mm and were manually segmented by the clinical staff. Each voxel of the phantom contains one of 62 index numbers designating anatomical, neurological, and taxonomical structures. The result is stored as a 256x256x128 bytemore » array. Internal volumes compare favorably to those described in the ICRP Reference Man. The computerized array represents a high resolution model of a typical human brain and serves as a voxel-based anthropomorphic head phantom suitable for computer-based modeling and simulation calculations. It offers an improved realism over previous mathematically described software brain phantoms, and creates a reference standard for comparing results of newly emerging voxel-based computations. Such voxel-based computations lead the way to developing diagnostic and dosimetry calculations which can utilize patient-specific diagnostic images. However, such individualized approaches lack fast, automatic segmentation schemes for routine use; therefore, the high resolution, typical head geometry gives the most realistic patient model currently available.« less

  14. COMPARING BEHAVIORAL DOSE-EFFECT CURVES FOR HUMANS AND LABORATORY ANIMALS ACUTELY EXPOSED TO TOLUENE.

    EPA Science Inventory

    The utility of laboratory animal data in toxicology depends upon the ability to generalize the results quantitatively to humans. To compare the acute behavioral effects of inhaled toluene in humans to those in animals, dose-effect curves were fitted by meta-analysis of published...

  15. Accuracy of computer-aided design models of the jaws produced using ultra-low MDCT doses and ASIR and MBIR.

    PubMed

    Al-Ekrish, Asma'a A; Alfadda, Sara A; Ameen, Wadea; Hörmann, Romed; Puelacher, Wolfgang; Widmann, Gerlig

    2018-06-16

    To compare the surface of computer-aided design (CAD) models of the maxilla produced using ultra-low MDCT doses combined with filtered backprojection (FBP), adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR) reconstruction techniques with that produced from a standard dose/FBP protocol. A cadaveric completely edentulous maxilla was imaged using a standard dose protocol (CTDIvol: 29.4 mGy) and FBP, in addition to 5 low dose test protocols (LD1-5) (CTDIvol: 4.19, 2.64, 0.99, 0.53, and 0.29 mGy) reconstructed with FBP, ASIR 50, ASIR 100, and MBIR. A CAD model from each test protocol was superimposed onto the reference model using the 'Best Fit Alignment' function. Differences between the test and reference models were analyzed as maximum and mean deviations, and root-mean-square of the deviations, and color-coded models were obtained which demonstrated the location, magnitude and direction of the deviations. Based upon the magnitude, size, and distribution of areas of deviations, CAD models from the following protocols were comparable to the reference model: FBP/LD1; ASIR 50/LD1 and LD2; ASIR 100/LD1, LD2, and LD3; MBIR/LD1. The following protocols demonstrated deviations mostly between 1-2 mm or under 1 mm but over large areas, and so their effect on surgical guide accuracy is questionable: FBP/LD2; MBIR/LD2, LD3, LD4, and LD5. The following protocols demonstrated large deviations over large areas and therefore were not comparable to the reference model: FBP/LD3, LD4, and LD5; ASIR 50/LD3, LD4, and LD5; ASIR 100/LD4, and LD5. When MDCT is used for CAD models of the jaws, dose reductions of 86% may be possible with FBP, 91% with ASIR 50, and 97% with ASIR 100. Analysis of the stability and accuracy of CAD/CAM surgical guides as directly related to the jaws is needed to confirm the results.

  16. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation.

    PubMed

    Yang, Feng; Waters, Katrina M; Miller, John H; Gritsenko, Marina A; Zhao, Rui; Du, Xiuxia; Livesay, Eric A; Purvine, Samuel O; Monroe, Matthew E; Wang, Yingchun; Camp, David G; Smith, Richard D; Stenoien, David L

    2010-11-30

    High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation. We have identified 7117 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts 1 h post-exposure. Semi-quantitative label-free analyses were performed to identify phosphopeptides that are apparently altered by radiation exposure. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation-responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatic analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role for MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provide a basis for the systems-level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low-dose radiation exposure on human health.

  17. Phosphoproteomics Profiling of Human Skin Fibroblast Cells Reveals Pathways and Proteins Affected by Low Doses of Ionizing Radiation

    PubMed Central

    Yang, Feng; Waters, Katrina M.; Miller, John H.; Gritsenko, Marina A.; Zhao, Rui; Du, Xiuxia; Livesay, Eric A.; Purvine, Samuel O.; Monroe, Matthew E.; Wang, Yingchun; Camp, David G.; Smith, Richard D.; Stenoien, David L.

    2010-01-01

    Background High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation. Principal Findings We have identified 7117 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts 1 h post-exposure. Semi-quantitative label-free analyses were performed to identify phosphopeptides that are apparently altered by radiation exposure. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation-responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatic analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role for MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Conclusions Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provide a basis for the systems-level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low-dose radiation exposure on human health. PMID:21152398

  18. Korean anatomical reference data for adults for use in radiological protection

    NASA Astrophysics Data System (ADS)

    Choi, Chansoo; Yeom, Yeon Soo; Nguyen, Thang Tat; Lee, Hanjin; Han, Haegin; Shin, Bangho; Zhang, Xujia; Kim, Chan Hyeong; Chung, Beom Sun

    2018-01-01

    For radiological protection from exposure to ionizing radiation, in which a population-averaged dose evaluation is used, establishing a system of reference anatomical and physiological data for a specific population of interest is important. Some studies were done in the past to establish Korean reference data; however, the data provided the mass values only for a limited number of organs/tissues. In addition, the standing height and total body mass are based on 20-year-old data. In the present study, a new set of Korean reference anatomical values was established for use in the radiological protection of Korean workers and members of the public. The established Korean reference data provide the masses of 58 organs/tissues, including those needed to calculate the effective dose, which were derived by collecting and analyzing various scientific reports in the literature and data. In addition, the data provide not only standing height and total body mass, but also 131 additional anthropometric parameters; these values were derived from the most recent Korean national survey project, 7 th Size Korea. The characteristics of the data were also compared with several other population data, including the Asian and the International Commission on Radiological Protection (ICRP) reference data.

  19. Polonium assimilation and retention in mule deer and pronghorn antelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sejkora, K.J.

    Excretion kinetics and tissue distribution of polonium-210 in mule deer and pronghorn were studied. Each animal in a captive herd of 7 mule deer and 2 pronghorn received an intraruminal injection of 4.4 ..mu..Ci of polonium chloride. Feces and urine were collected periodically over a 43-day period and daily excretion rate for each pathway was regressed as a function of time. Assimilation fractions of 0.40 and 0.51 were calculated for mule deer (n=2) and 0.60 for a pronghorn. Body burden retention functions were calculated from integrated excretion rate functions. Polonium burdens in muscle, liver, and kidney were calculated as amore » fraction of body burden from serially-sacrificed animals. Background tissue burdens in mule deer were comparable to those of other ruminants reported in the literature. Hypothetical cases were assumed which combined feeding rate of mule deer, forage concentrations of polonium, retention function, tissue burden fraction, and human intake to estimate human radiation dose. 26 references.« less

  20. DNA fragmentation induced by Fe ions in human cells: shielding influence on spatially correlated damage

    NASA Technical Reports Server (NTRS)

    Antonelli, F.; Belli, M.; Campa, A.; Chatterjee, A.; Dini, V.; Esposito, G.; Rydberg, B.; Simone, G.; Tabocchini, M. A.

    2004-01-01

    Outside the magnetic field of the Earth, high energy heavy ions constitute a relevant part of the biologically significant dose to astronauts during the very long travels through space. The typical pattern of energy deposition in the matter by heavy ions on the microscopic scale is believed to produce spatially correlated damage in the DNA which is critical for radiobiological effects. We have investigated the influence of a lucite shielding on the initial production of very small DNA fragments in human fibroblasts irradiated with 1 GeV/u iron (Fe) ions. We also used gamma rays as reference radiation. Our results show: (1) a lower effect per incident ion when the shielding is used; (2) an higher DNA Double Strand Breaks (DSB) induction by Fe ions than by gamma rays in the size range 1-23 kbp; (3) a non-random DNA DSB induction by Fe ions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

Top