Sample records for human seating model

  1. Measurement and modelling of x-direction apparent mass of the seated human body-cushioned seat system.

    PubMed

    Stein, George Juraj; Múcka, Peter; Chmúrny, Rudolf; Hinz, Barbara; Blüthner, Ralph

    2007-01-01

    For modelling purposes and for evaluation of driver's seat performance in the vertical direction various mechano-mathematical models of the seated human body have been developed and standardized by the ISO. No such models exist hitherto for human body sitting in an upright position in a cushioned seat upper part, used in industrial environment, where the fore-and-aft vibrations play an important role. The interaction with the steering wheel has to be taken into consideration, as well as, the position of the human body upper torso with respect to the cushioned seat back as observed in real driving conditions. This complex problem has to be simplified first to arrive at manageable simpler models, which still reflect the main problem features. In a laboratory study accelerations and forces in x-direction were measured at the seat base during whole-body vibration in the fore-and-aft direction (random signal in the frequency range between 0.3 and 30 Hz, vibration magnitudes 0.28, 0.96, and 2.03 ms(-2) unweighted rms). Thirteen male subjects with body masses between 62.2 and 103.6 kg were chosen for the tests. They sat on a cushioned driver seat with hands on a support and backrest contact in the lumbar region only. Based on these laboratory measurements a linear model of the system-seated human body and cushioned seat in the fore-and-aft direction has been developed. The model accounts for the reaction from the steering wheel. Model parameters have been identified for each subject-measured apparent mass values (modulus and phase). The developed model structure and the averaged parameters can be used for further bio-dynamical research in this field.

  2. Modeling the human body/seat system in a vibration environment.

    PubMed

    Rosen, Jacob; Arcan, Mircea

    2003-04-01

    The vibration environment is a common man-made artificial surrounding with which humans have a limited tolerance to cope due to their body dynamics. This research studied the dynamic characteristics of a seated human body/seat system in a vibration environment. The main result is a multi degrees of freedom lumped parameter model that synthesizes two basic dynamics: (i) global human dynamics, the apparent mass phenomenon, including a systematic set of the model parameters for simulating various conditions like body posture, backrest, footrest, muscle tension, and vibration directions, and (ii) the local human dynamics, represented by the human pelvis/vibrating seat contact, using a cushioning interface. The model and its selected parameters successfully described the main effects of the apparent mass phenomenon compared to experimental data documented in the literature. The model provided an analytical tool for human body dynamics research. It also enabled a primary tool for seat and cushioning design. The model was further used to develop design guidelines for a composite cushion using the principle of quasi-uniform body/seat contact force distribution. In terms of evenly distributing the contact forces, the best result for the different materials and cushion geometries simulated in the current study was achieved using a two layer shaped geometry cushion built from three materials. Combining the geometry and the mechanical characteristics of a structure under large deformation into a lumped parameter model enables successful analysis of the human/seat interface system and provides practical results for body protection in dynamic environment.

  3. An analytic model of the in-line and cross-axis apparent mass of the seated human body exposed to vertical vibration with and without a backrest

    NASA Astrophysics Data System (ADS)

    Zheng, Guangtai; Qiu, Yi; Griffin, Michael J.

    2011-12-01

    During vertical excitation of the seated human body there are vertical and fore-and-aft forces at the seat that are influenced by contact with a backrest, so it is desirable to take into account the effect of a backrest when developing models of the seated human body. Initially, a seven degree-of-freedom multi-body dynamic model was developed for the human body sitting with an upright posture unsupported by a backrest and exposed to vertical vibration. The model was optimized to fit the vertical apparent mass and the fore-and-aft cross-axis apparent mass measured on a seat. The model was then extended by the addition of vertical and fore-and-aft reaction forces to the upper lumbar spine to model the interaction between the human body and a backrest. By minimizing the least square error between experimental data and the analytical solution of the apparent masses on the seat and at the back, the human body model was able to represent both the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat and at the back. Parameter sensitivity studies showed that the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat and the backrest were all highly sensitive to the axial stiffness of the tissue beneath the pelvis. Pitch motion of the upper-body contributed to the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat. The apparent mass at the back was more sensitive to the stiffness and damping of the lower back than the properties of the upper back.

  4. Directional and sectional ride comfort estimation using an integrated human biomechanical-seat foam model

    NASA Astrophysics Data System (ADS)

    Mohajer, Navid; Abdi, Hamid; Nahavandi, Saeid; Nelson, Kyle

    2017-09-01

    In the methodology of objective measurement of ride comfort, application of a Human Biomechanical Model (HBM) is valuable for Whole Body Vibration (WBV) analysis. In this study, using a computational Multibody System (MBS) approach, development of a 3D passive HBM for a seated human is considered. For this purpose, the existing MBS-based HBMs of seated human are briefly reviewed first. The Equations of Motion (EoM) for the proposed model are then obtained and the simulation results are shown and compared with idealised ranges of experimental results suggested in the literature. The human-seat interaction is established using a nonlinear vibration model of foam with respect to the sectional behaviour of the seat foam. The developed system is then used for ride comfort estimation offered by a ride dynamic model. The effects of human weight, road class, and vehicle speed on the vibration of the human body segments in different directions are studied. It is shown that the there is a high correlation (more than 99.2%) between the vibration indices of the proposed HBM-foam model and the corresponding ISO 2631 WBV indices. In addition, relevant ISO 2631 indices that show a high correlation with the directional vibration of the head are identified.

  5. Predicting passenger seat comfort and discomfort on the basis of human, context and seat characteristics: a literature review.

    PubMed

    Hiemstra-van Mastrigt, Suzanne; Groenesteijn, Liesbeth; Vink, Peter; Kuijt-Evers, Lottie F M

    2017-07-01

    This literature review focused on passenger seat comfort and discomfort in a human-product-context interaction. The relationships between anthropometric variables (human level), activities (context level), seat characteristics (product level) and the perception of comfort and discomfort were studied through mediating variables, such as body posture, movement and interface pressure. It is concluded that there are correlations between anthropometric variables and interface pressure variables, and that this relationship is affected by body posture. The results of studies on the correlation between pressure variables and passenger comfort and discomfort are not in line with each other. Only associations were found between the other variables (e.g. activities and seat characteristics). A conceptual model illustrates the results of the review, but relationships could not be quantified due to a lack of statistical evidence and large differences in research set-ups between the reviewed papers. Practitioner Summary: This literature review set out to quantify the relationships between human, context and seat characteristics, and comfort and discomfort experience of passenger seats, in order to build a predictive model that can support seat designers and purchasers to make informed decisions. However, statistical evidence is lacking from existing literature.

  6. Nonlinearity in the vertical transmissibility of seating: the role of the human body apparent mass and seat dynamic stiffness

    NASA Astrophysics Data System (ADS)

    Tufano, Saverio; Griffin, Michael J.

    2013-01-01

    The efficiency of a seat in reducing vibration depends on the characteristics of the vibration, the dynamic characteristics of the seat, and the dynamic characteristics of the person sitting on the seat. However, it is not known whether seat cushions influence the dynamic response of the human body, whether the human body influences the dynamic response of seat cushions, or the relative importance of human body nonlinearity and seat nonlinearity in causing nonlinearity in measures of seat transmissibility. This study was designed to investigate the nonlinearity of the coupled seat and human body systems and to compare the apparent mass of the human body supported on rigid and foam seats. A frequency domain model was used to identify the dynamic parameters of seat foams and investigate their dependence on the subject-sitting weight and hip breadth. With 15 subjects, the force and acceleration at the seat base and acceleration at the subject interface were measured during random vertical vibration excitation (0.25-25 Hz) at each of five vibration magnitudes, (0.25-1.6 ms-2 r.m.s.) with four seating conditions (rigid flat seat and three foam cushions). The measurements are presented in terms of the subject's apparent mass on the rigid and foam seat surfaces, and the transmissibility and dynamic stiffness of each of the foam cushions. Both the human body and the foams showed nonlinear softening behaviour, which resulted in nonlinear cushion transmissibility. The apparent masses of subjects sitting on the rigid seat and on foam cushions were similar, but with an apparent increase in damping when sitting on the foams. The foam dynamic stiffness showed complex correlations with characteristics of the human body, which differed between foams. The nonlinearities in cushion transmissibilities, expressed in terms of changes in resonance frequencies and moduli, were more dependent on human body nonlinearity than on cushion nonlinearity.

  7. A statistical model including age to predict passenger postures in the rear seats of automobiles.

    PubMed

    Park, Jangwoon; Ebert, Sheila M; Reed, Matthew P; Hallman, Jason J

    2016-06-01

    Few statistical models of rear seat passenger posture have been published, and none has taken into account the effects of occupant age. This study developed new statistical models for predicting passenger postures in the rear seats of automobiles. Postures of 89 adults with a wide range of age and body size were measured in a laboratory mock-up in seven seat configurations. Posture-prediction models for female and male passengers were separately developed by stepwise regression using age, body dimensions, seat configurations and two-way interactions as potential predictors. Passenger posture was significantly associated with age and the effects of other two-way interaction variables depended on age. A set of posture-prediction models are presented for women and men, and the prediction results are compared with previously published models. This study is the first study of passenger posture to include a large cohort of older passengers and the first to report a significant effect of age for adults. The presented models can be used to position computational and physical human models for vehicle design and assessment. Practitioner Summary: The significant effects of age, body dimensions and seat configuration on rear seat passenger posture were identified. The models can be used to accurately position computational human models or crash test dummies for older passengers in known rear seat configurations.

  8. Measurement and modelling of the y-direction apparent mass of sitting human body-cushioned seat system

    NASA Astrophysics Data System (ADS)

    Stein, George Juraj; Múčka, Peter; Hinz, Barbara; Blüthner, Ralph

    2009-04-01

    Laboratory tests were conducted using 13 male subjects seated on a cushioned commercial vehicle driver's seat. The hands gripped a mock-up steering wheel and the subjects were in contact with the lumbar region of the backrest. The accelerations and forces in the y-direction were measured during random lateral whole-body vibration with a frequency range between 0.25 and 30 Hz, vibration magnitudes 0.30, 0.98, and 1.92 m s -2 (unweighted root mean square (rms)). Based on these laboratory measurements, a linear multi-degree-of-freedom (mdof) model of the seated human body and cushioned seat in the lateral direction ( y-axis) was developed. Model parameters were identified from averaged measured apparent mass values (modulus and phase) for the three excitation magnitudes mentioned. A preferred model structure was selected from four 3-dof models analysed. The mean subject parameters were identified. In addition, identification of each subject's apparent mass model parameters was performed. The results are compared with previous studies. The developed model structure and the identified parameters can be used for further biodynamical research in seating dynamics.

  9. Thermal comfort of aeroplane seats: influence of different seat materials and the use of laboratory test methods.

    PubMed

    Bartels, Volkmar T

    2003-07-01

    This study determined the influence of different cover and cushion materials on the thermal comfort of aeroplane seats. Different materials as well as ready made seats were investigated by the physiological laboratory test methods Skin Model and seat comfort tester. Additionally, seat trials with human test subjects were performed in a climatic chamber. Results show that a fabric cover produces a considerably higher sweat transport than leather. A three-dimensional knitted spacer fabric turns out to be the better cushion alternative in comparison to a moulded foam pad. Results from the physiological laboratory test methods nicely correspond to the seat trials with human test subjects.

  10. Predictive discomfort in single- and combined-axis whole-body vibration considering different seated postures.

    PubMed

    DeShaw, Jonathan; Rahmatalla, Salam

    2014-08-01

    The aim of this study was to develop a predictive discomfort model in single-axis, 3-D, and 6-D combined-axis whole-body vibrations of seated occupants considering different postures. Non-neutral postures in seated whole-body vibration play a significant role in the resulting level of perceived discomfort and potential long-term injury. The current international standards address contact points but not postures. The proposed model computes discomfort on the basis of static deviation of human joints from their neutral positions and how fast humans rotate their joints under vibration. Four seated postures were investigated. For practical implications, the coefficients of the predictive discomfort model were changed into the Borg scale with psychophysical data from 12 volunteers in different vibration conditions (single-axis random fore-aft, lateral, and vertical and two magnitudes of 3-D). The model was tested under two magnitudes of 6-D vibration. Significant correlations (R = .93) were found between the predictive discomfort model and the reported discomfort with different postures and vibrations. The ISO 2631-1 correlated very well with discomfort (R2 = .89) but was not able to predict the effect of posture. Human discomfort in seated whole-body vibration with different non-neutral postures can be closely predicted by a combination of static posture and the angular velocities of the joint. The predictive discomfort model can assist ergonomists and human factors researchers design safer environments for seated operators under vibration. The model can be integrated with advanced computer biomechanical models to investigate the complex interaction between posture and vibration.

  11. Multi-body dynamics modelling of seated human body under exposure to whole-body vibration.

    PubMed

    Yoshimura, Takuya; Nakai, Kazuma; Tamaoki, Gen

    2005-07-01

    In vehicle systems occupational drivers might expose themselves to vibration for a long time. This may cause illness of the spine such as chronic lumbago or low back pain. Therefore, it is necessary to evaluate the influence of vibration to the spinal column and to make up appropriate guidelines or counter plans. In ISO2631-1 or ISO2631-5 assessment of vibration effects to human in the view of adverse-health effect was already presented. However, it is necessary to carry out further research to understand the effect of vibration to human body to examine their validity and to prepare for the future revision. This paper shows the detail measurement of human response to vibration, and the modelling of the seated human body for the assessment of the vibration risk. The vibration transmissibilities from the seat surface to the spinal column and to the head are measured during the exposure to vertical excitation. The modal paramters of seated subject are extracted in order to understand the dominant natural modes. For the evaluation of adverse-health effect the multi-body modelling of the spinal column is introduced. A simplified model having 10 DOFs is counstructed so that the transmissibilities of the model fit to those of experiment. The transient response analysis is illustrated when a half-sine input is applied. The relative displacements of vertebrae are evaluated, which can be a basis for the assessment of vibration risk. It is suggested that the multi-body dynamic model is used to evaluate the vibration effect to the spinal column for seated subjects.

  12. A study of cervical spine kinematics and joint capsule strain in rear impacts using a human FE model.

    PubMed

    Kitagawa, Yuichi; Yasuki, Tsuyoshi; Hasegawa, Junji

    2006-11-01

    Many efforts have been made to understand the mechanism of whiplash injury. Recently, the cervical facet joint capsules have been focused on as a potential site of injury. An experimental approach has been taken to analyze the vertebral motion and to estimate joint capsule stretch that was thought to be a potential cause of pain. The purpose of this study is to analyze the kinematics of the cervical facet joint using a human FE model in order to better understand the injury mechanism. The Total Human Model for Safety (THUMS) was used to visually analyze the local and global kinematics of the spine. Soft tissues in the neck were newly modeled and introduced into THUMS for estimating the loading level in rear impacts. The model was first validated against human test data in the literature by comparing vertebrae motion as well as head and neck responses. Joint capsule strain was estimated from a maximum principal strain output from the elements representing the capsule tissues. A rear-end collision was then simulated using THUMS and a prototype seat model, assuming a delta-V of 25 km/h. The trajectory of the vertebrae was analyzed in a local coordinate system defined along the joint surface. Strain growth in the joint capsules was explained, as related to contact events between the occupant and the seat. A new seat concept was proposed to help lessen the loading level to the neck soft tissues. The foam material of the seat back was softened, the initial gap behind the head was reduced and the head restraint was stiffened for firm support. The lower seat back frame was also reinforced to withstand the impact severity at the given delta-V. Another rear impact simulation was conducted using the new seat concept model to examine the effectiveness of the new concept. The joint capsule strain was found to be relatively lower with the new seat concept. The study also discusses the influence of seat parameters to the vertebral motion and the resultant strain in the joint capsules. The meaning of the contact timing of the head to the head restraint was examined based on the results in terms of correlation with injury indicators such as NIC and the joint capsule strain.

  13. Characterisation of the human-seat coupling in response to vibration.

    PubMed

    Kim, Eunyeong; Fard, Mohammad; Kato, Kazuhito

    2017-08-01

    Characterising the coupling between the occupant and vehicle seat is necessary to understand the transmission of vehicle seat vibration to the human body. In this study, the vibration characteristics of the human body coupled with a vehicle seat were identified in frequencies up to 100 Hz. Transmissibilities of three volunteers seated on two different vehicle seats were measured under multi-axial random vibration excitation. The results revealed that the human-seat system vibration was dominated by the human body and foam below 10 Hz. Major coupling between the human body and the vehicle seat-structure was observed in the frequency range of 10-60 Hz. There was local coupling of the system dominated by local resonances of seat frame and seat surface above 60 Hz. Moreover, the transmissibility measured on the seat surface between the human and seat foam is suggested to be a good method of capturing human-seat system resonances rather than that measured on the human body in high frequencies above 10 Hz.Practitioner Summary: The coupling characteristics of the combined human body and vehicle seat system has not yet been fully understood in frequencies of 0.5-100 Hz. This study shows the human-seat system has distinctive dynamic coupling characteristics in three different frequency regions: below 10 Hz, 10-60 Hz, and above 60 Hz.

  14. Biodynamic Assessment of the THOR-K Manikin

    DTIC Science & Technology

    2013-09-01

    finite element model, and for optimization of occupant seating systems and restraint system design for the MPCV and USAF aircraft ejection seats and...had the same rigid backrest, a rigid seat pan, a rigid footrest and leg support panel, but also provided side supports that restrict the motion of the... Ejection Seat (Technical Report AFRL-HE-WP-SR-2000-0002). Wright-Patterson AFB OH: Human Effectiveness Directorate, Air Force Research Laboratory

  15. Energy absorption capability of foam-based composite materials and their applications as seat cushions in aircraft crashworthiness

    NASA Astrophysics Data System (ADS)

    Kh. Beheshti, Hamid

    This study is focusing on the application of foam materials in aviation. These materials are being used for acoustic purposes, as padding in the finished interior panels of the aircraft, and as seat cushions. Foams are mostly used in seating applications. Since seat cushion is directly interacting with the body of occupant, it has to be ergonomically comfortable beside of absorbing the energy during the impact. All the seats and seat cushions have to pass regulations defined by Federal Aviation Administration (FAA). In fact, all airplane companies are required to certify the subcomponents of aircrafts before installing them on the main structure, fuselage. Current Federal Aviation Administration Regulations require a dynamic sled test of the entire seat system for certifying the seat cushions. This dynamic testing is required also for replacing the deteriorated cushions with new cushions. This involves a costly and time-consuming certification process. AGATE group has suggested a procedure based on quasi-static testing in order to certify new seat cushions without conducting full-scale dynamic sled testing. AGATE subcomponent methodology involves static tests of the energy-absorbing foam cushions and design validation by conducting a full-scale dynamic seat test. Microscopic and macroscopic studies are necessary to provide a complete understanding about performance of foams during the crash. Much investigation has been done by different sources to obtain the reliable modeling in terms of demonstration of mechanical behavior of foams. However, rate sensitivity of foams needs more attention. A mathematical hybrid dynamic model for the cushion underneath of the human body will be taken into consideration in this research. Analytical and finite element codes such as MADYMO and LS-DYNA codes have the potential to greatly speed up the crashworthy design process, to help certify seats and aircraft to dynamic crash loads, to predict seat and occupant response to impact with the probability of injury, and to evaluate numerous crash scenarios not economically feasible with full-scale crash testing. Therefore, these codes are being used to find the accurate response of spinal load during the impact of model including human body, seat cushion and seat under different acceleration pulses. (Abstract shortened by UMI.)

  16. Measurement of whole-body human centers of gravity and moments of inertia.

    PubMed

    Albery, C B; Schultz, R B; Bjorn, V S

    1998-06-01

    With the inclusion of women in combat aircraft, the question of safe ejection seat operation has been raised. The potential expanded population of combat pilots would include both smaller and larger ejection seat occupants, which could significantly affect seat performance. The method developed to measure human whole-body CG and MOI used a scale, a knife edge balance, and an inverted torsional pendulum. Subjects' moments of inertia were measured along six different axes. The inertia tensor was calculated from these values, and principal moments of inertia were then derived. Thirty-eight antropometric measurements were also taken for each subject to provide a means for direct correlation of inertial properties to body dimensions and for modeling purposes. Data collected in this study has been used to validate whole-body mass properties predictions. In addition, data will be used to improve Air Force and Navy ejection seat trajectory models for the expanded population.

  17. Simulation of adaptive semi-active magnetorheological seat damper for vehicle occupant blast protection

    NASA Astrophysics Data System (ADS)

    Yoo, Jin-Hyeong; Murugan, Muthuvel; Wereley, Norman M.

    2013-04-01

    This study investigates a lumped-parameter human body model which includes lower leg in seated posture within a quarter-car model for blast injury assessment simulation. To simulate the shock acceleration of the vehicle, mine blast analysis was conducted on a generic land vehicle crew compartment (sand box) structure. For the purpose of simulating human body dynamics with non-linear parameters, a physical model of a lumped-parameter human body within a quarter car model was implemented using multi-body dynamic simulation software. For implementing the control scheme, a skyhook algorithm was made to work with the multi-body dynamic model by running a co-simulation with the control scheme software plug-in. The injury criteria and tolerance levels for the biomechanical effects are discussed for each of the identified vulnerable body regions, such as the relative head displacement and the neck bending moment. The desired objective of this analytical model development is to study the performance of adaptive semi-active magnetorheological damper that can be used for vehicle-occupant protection technology enhancements to the seat design in a mine-resistant military vehicle.

  18. Identification of human-generated forces on wheelchairs during total-body extensor thrusts.

    PubMed

    Hong, Seong-Wook; Patrangenaru, Vlad; Singhose, William; Sprigle, Stephen

    2006-10-01

    Involuntary extensor thrust experienced by wheelchair users with neurological disorders may cause injuries via impact with the wheelchair, lead to the occupant sliding out of the seat, and also damage the wheelchair. The concept of a dynamic seat, which allows movement of a seat with respect to the wheelchair frame, has been suggested as a potential solution to provide greater freedom and safety. Knowledge of the human-generated motion and forces during unconstrained extensor thrust events is of great importance in developing more comfortable and effective dynamic seats. The objective of this study was to develop a method to identify human-generated motions and forces during extensor thrust events. This information can be used to design the triggering system for a dynamic seat. An experimental system was developed to automatically track the motions of the wheelchair user using a video camera and also measure the forces at the footrest. An inverse dynamic approach was employed along with a three-link human body model and the experimental data to predict the human-generated forces. Two kinds of experiments were performed: the first experiment validated the proposed model and the second experiment showed the effects of the extensor thrust speed, the footrest angle, and the seatback angle. The proposed method was tested using a sensitivity analysis, from which a performance index was deduced to help indicate the robust region of the force identification. A system to determine human-generated motions and forces during unconstrained extensor thrusts was developed. Through experiments and simulations, the effectiveness and reliability of the developed system was established.

  19. Comfort and pressure distribution in a human contour shaped aircraft seat (developed with 3D scans of the human body).

    PubMed

    Smulders, M; Berghman, K; Koenraads, M; Kane, J A; Krishna, K; Carter, T K; Schultheis, U

    2016-08-12

    The concept of comfort is one way for the growing airline market to differentiate and build customer loyalty. This work follows the idea that increasing the contact area between human and seat can have a positive effect on comfort [5, 6, 7]. To improve comfort, reduce weight and optimise space used, a human contour shaped seat shell and cushioning was developed. First the most common activities, the corresponding postures and seat inclination angles were defined. The imprints of these postures on a rescue mat were 3D scanned and an average human contour curve was defined. The outcome was transferred to a prototype seat that was used to test the effect on perceived comfort/discomfort and pressure distribution. The resulting human contour based prototype seat has comfort and discomfort scores comparable to a traditional seat. The prototype seat had a significantly lower average pressure between subjects' buttocks and the seat pan over a traditional seat. This study shows that it is possible to design a seat pan and backrest based on the different contours of study subjects using 3D scan technology. However, translating the 3D scans into a prototype seat also showed that this can only be seen as a first step; additionally biomechanical information and calculations are needed to create ergonomic seats. Furthermore, it is not possible to capture all different human shapes and postures and translate these into one human contour shape that fits all activities and all human sizes.

  20. Energy-absorbing car seat designs for reducing whiplash.

    PubMed

    Himmetoglu, S; Acar, M; Bouazza-Marouf, K; Taylor, A J

    2008-12-01

    This study presents an investigation of anti-whiplash features that can be implemented in a car seat to reduce whiplash injuries in the case of a rear impact. The main emphasis is on achieving a seat design with good energy absorption properties. A biofidelic 50th percentile male multi-body human model for rear impact is developed to evaluate the performance of car seat design concepts. The model is validated using the responses of 7 volunteers from the Japanese Automobile Research Institute (JARI) sled tests, which were performed at an impact speed of 8 kph with a rigid seat and without head restraint and seatbelt. A generic multi-body car seat model is also developed to implement various seatback and recliner properties, anti-whiplash devices, and head restraints. Using the same driving posture and the rigid seat in the JARI sled tests as the basic configuration, several anti-whiplash seats are designed to allow different types of motion for the seatback and seat-pan. The anti-whiplash car seat design concepts limit neck internal motion successfully until the head-to-head restraint contact occurs and they exhibit low NIC(max) values (7 m(2)/s(2) on average). They are also effective in reducing neck compression forces and T1 forward accelerations. In principle, these car seat design concepts employ controlled recliner rotation and seat-pan displacement to limit the formation of S-shape. This is accomplished by using anti-whiplash devices that absorb the crash energy in such a way that an optimum protection is provided at different severities. The results indicate that the energy absorbing car seat design concepts all demonstrate good whiplash-reducing performances at the IIWPG standard pulse. Especially in higher severity rear impacts, two of the car seat design concepts reduce the ramping of the occupant considerably.

  1. Numerical assessment of fore-and-aft suspension performance to reduce whole-body vibration of wheel loader drivers

    NASA Astrophysics Data System (ADS)

    Fleury, Gérard; Mistrot, Pierre

    2006-12-01

    While driving off-road vehicles, operators are exposed to whole-body vibration acting in the fore-and-aft direction. Seat manufacturers supply products equipped with fore-and-aft suspension but only a few studies report on their performance. This work proposes a computational approach to design fore-and-aft suspensions for wheel loader seats. Field tests were conducted in a quarry to analyse the nature of vibration to which the driver was exposed. Typical input signals were recorded to be reproduced in the laboratory. Technical specifications are defined for the suspension. In order to evaluate the suspension vibration attenuation performance, a model of a sitting human body was developed and coupled to a seat model. The seat model combines the models of each suspension component. A linear two-degree-of-freedom model is used to describe the dynamic behaviour of the sitting driver. Model parameters are identified by fitting the computed apparent mass frequency response functions to the measured values. Model extensions are proposed to investigate postural effects involving variations in hands and feet positions and interaction of the driver's back with the backrest. Suspension design parameters are firstly optimized by computing the seat/man model response to sinusoidal acceleration. Four criteria including transmissibility, interaction force between the driver's back and the backrest and relative maximal displacement of the suspension are computed. A new suspension design with optimized features is proposed. Its performance is checked from calculations of the response of the seat/man model subjected to acceleration measured on the wheel loader during real work conditions. On the basis of the computed values of the SEAT factors, it is found possible to design a suspension that would increase the attenuation provided by the seat by a factor of two.

  2. Development of Accomodation Models for Soldiers in Vehicles: Driver

    DTIC Science & Technology

    2014-09-01

    human needs and performance. A small section of this standard addresses the design of vehicle seats and the layout of the driver workstation...drivers and passengers (squad). The study was designed to focus on tactical vehicle (truck) designs with fixed driver heel points and H30 values...fore-aft and vertically, along with adjusting the seat back angle, to obtain a comfortable driving position. The Soldier’s posture and seat adjustments

  3. Three experiments to support the design of lightweight comfortable vehicle seats.

    PubMed

    Vink, P; Franz, M; Kamp, I; Zenk, R

    2012-01-01

    Seats need to be more lightweight for airplanes, cars, busses and even trains to contribute to a better environment and to reduce energy consumption. However, a reduction in comfort due to weight reduction is not preferable, which opens a new area of research: improving comfort with a minimum of material or with lightweight materials and systems. In this paper three experiments are performed to test the effects of light weight seats and parts of a seat on comfort. The first experiment shows that a new developed light weight massage system improves comfort and reduces muscle activity. The second experiment shows that the automatic seat adjustment without motors improves the comfort as well. The third experiment showed that a light weight seat following closely the human body contour is experienced on many aspects in the same way as current more heavy seats. More research and models will be needed in this ergonomic field which needs more attention.

  4. Modeling the Impact of Space Suit Components and Anthropometry on the Center of Mass of a Seated Crewmember

    NASA Technical Reports Server (NTRS)

    Blackledge, Christopher; Margerum, Sarah; Ferrer, Mike; Morency, Richard; Rajulu, Sudhakar

    2010-01-01

    The Crew Impact Attenuation System (CIAS) is the energy-absorbing strut concept that dampens Orion Crew Exploration Vehicle (CEV) landing loads to levels sustainable by the crew. Significant COM variations across suited crew configurations would amplify the inertial effects of the pallet and potentially create unacceptable crew loading during launch and landing. The objective of this study was to obtain data needed for dynamic simulation models by quantifying the effects of posture, suit components, and the expected range of anthropometry on the COM of a seated individual. Several elements are required for the COM calculation of a suited human in a seated position: anthropometry, body segment mass, suit component mass, suit component location relative to the body, and joint angles defining the seated posture. Three-dimensional (3D) human body models, suit mass data, and vector calculus were utilized to compute the COM positions for 12 boundary manikins in two different seated postures. The analysis focused on two objectives: (1) quantify how much the wholebody COM varied from the smallest to largest subject and (2) quantify the effects of the suit components on the overall COM in each seat configuration. The location of the anterior-posterior COM varied across all boundary manikins by about 7 cm, and the vertical COM varied by approximately 9 to 10 cm. The mediolateral COM varied by 1.2 cm from the midline sagittal plane for both seat configurations. The suit components caused an anterior shift of the total COM by approximately 2 cm and a shift to the right along the mediolateral axis of 0.4 cm for both seat configurations. When the seat configuration was in the standard posture the suited vertical COM shifted inferiorly by as much as 1 cm, whereas in the CEV posture the vertical COM had no appreciable change. These general differences were due to the high proportion of suit mass located in the boots and lower legs and their corresponding distance from the body COM, as well as to the prevalence of suit components on the right side of the body.

  5. Human factors evaluation of the HL-20 full-scale model

    NASA Astrophysics Data System (ADS)

    Willshire, Kelli F.; Simonsen, Lisa C.; Willshire, William L., Jr.

    1993-09-01

    The human factors testing of the HL-20 personnel launch system full-scale model was conducted in both the vertical and horizontal positions at NASA Langley Research Center. Three main areas of testing were considered: an anthropometric fit evaluation, the ingress and egress of a 10-person crew, and pilot viewing. The subjects, ranging from the 5th to 95th percentile size, had sufficient clearance in the model, with the exception of the last two rows of seats and the cockpit area. Adjustable seat heights and/or placement of the seats farther forward would provide more headroom. In the horizontal position, the model's seat placement and aisle width allowed a quick and orderly 10-person egress for the no-keel (a structural support running the length on the aisle), 6-in.-high keel, and 12-in.-high keel conditions. Egress times were less than 20 s. For the vertical position, the model's long cylindrical shape with the ladder in the ceiling allowed a quick and orderly egress with average times less than 30 s. Ingress and egress procedures were demonstrated using shuttle partial-pressure suits. The reduced mobility experienced while wearing the suits did increase egress times, although they still remained acceptable. The window arrangement for pilot viewing was found to be reasonably acceptable, although slight modifications, such as an increased downward view, is desirable.

  6. Injuries in Full-Scale Vehicle Side Impact Moving Deformable Barrier and Pole Tests Using Postmortem Human Subjects.

    PubMed

    Yoganandan, Narayan; Pintar, Frank; Humm, John; Rudd, Rodney

    2015-01-01

    To conduct near-side moving deformable barrier (MDB) and pole tests with postmortem human subjects (PMHS) in full-scale modern vehicles, document and score injuries, and examine the potential for angled chest loading in these tests to serve as a data set for dummy biofidelity evaluations and computational modeling. Two PMHS (outboard left front and rear seat occupants) for MDB and one PMHS (outboard left front seat occupant) for pole tests were used. Both tests used sedan-type vehicles from same manufacturer with side airbags. Pretest x-ray and computed tomography (CT) images were obtained. Three-point belt-restrained surrogates were positioned in respective outboard seats. Accelerometers were secured to T1, T6, and T12 spines; sternum and pelvis; seat tracks; floor; center of gravity; and MDB. Load cells were used on the pole. Biomechanical data were gathered at 20 kHz. Outboard and inboard high-speed cameras were used for kinematics. X-rays and CT images were taken and autopsy was done following the test. The Abbreviated Injury Scale (AIS) 2005 scoring scheme was used to score injuries. MDB test: male (front seat) and female (rear seat) PMHS occupant demographics: 52 and 57 years, 177 and 166 cm stature, 78 and 65 kg total body mass. Demographics of the PMHS occupant in the pole test: male, 26 years, 179 cm stature, and 84 kg total body mass. Front seat PMHS in MDB test: 6 near-side rib fractures (AIS = 3): 160-265 mm vertically from suprasternal notch and 40-80 mm circumferentially from center of sternum. Left rear seat PMHS responded with multiple bilateral rib fractures: 9 on the near side and 5 on the contralateral side (AIS = 3). One rib fractured twice. On the near and contralateral sides, fractures were 30-210 and 20-105 mm vertically from the suprasternal notch and 90-200 and 55-135 mm circumferentially from the center of sternum. A fracture of the left intertrochanteric crest occurred (AIS = 3). Pole test PMHS had one near-side third rib fracture. Thoracic accelerations of the 2 occupants were different in the MDB test. Though both occupants sustained positive and negative x-accelerations to the sternum, peak magnitudes and relative changes were greater for the rear than the front seat occupant. Magnitudes of the thoracic and sternum accelerations were lower in the pole test. This is the first study to use PMHS occupants in MDB and pole tests in the same recent model year vehicles with side airbag and head curtain restraints. Injuries to the unilateral thorax for the front seat PMHS in contrast to the bilateral thorax and hip for the rear seat occupant in the MDB test indicate the effects of impact on the seating location and restraint system. Posterolateral locations of fractures to the front seat PMHS are attributed to constrained kinematics of occupant interaction with torso side airbag restraint system. Angled loading to the rear seat occupant from coupled sagittal and coronal accelerations of the sternum representing anterior thorax loading contributed to bilateral fractures. Inward bending initiated by the distal femur complex resulting in adduction of ipsilateral lower extremity resulted in intertrochanteric fracture to the rear seat occupant. These results serve as a data set for evaluating the biofidelity of the WorldSID and federalized side impact dummies and assist in validating human body computational models, which are increasingly used in crashworthiness studies.

  7. Human factors in design of passenger seats for commercial aircraft: A review

    NASA Technical Reports Server (NTRS)

    Schaedel, S. F.; Jacobson, I. D.; Kuhlthau, A. R.

    1977-01-01

    Seat comfort and safety research since the early part of the century is reviewed. The approach blends empirical and theoretical human factors and technical knowledge of seated humans under static and dynamic conditions experienced on commercial aircraft.

  8. The transmission of vertical vibration through seats: Influence of the characteristics of the human body

    NASA Astrophysics Data System (ADS)

    Toward, Martin G. R.; Griffin, Michael J.

    2011-12-01

    The transmission of vibration through a seat depends on the impedance of the seat and the apparent mass of the seat occupant. This study was designed to determine how factors affecting the apparent mass of the body (age, gender, physical characteristics, backrest contact, and magnitude of vibration) affect seat transmissibility. The transmission of vertical vibration through a car seat was measured with 80 adults (41 males and 39 females aged 18-65) at frequencies between 0.6 and 20 Hz with two backrest conditions (no backrest and backrest), and with three magnitudes of random vibration (0.5, 1.0, and 1.5 m s -2 rms). Linear regression models were used to study the effects of subject physical characteristics (age, gender, and anthropometry) and features of their apparent mass (resonance frequency, apparent mass at resonance and at 12 Hz) on the measured seat transmissibility. The strongest predictor of both the frequency of the principal resonance in seat transmissibility and the seat transmissibility at resonance was subject age, with other factors having only marginal effects. The transmissibility of the seat at 12 Hz depended on subject age, body mass index, and gender. Although subject weight was strongly associated with apparent mass, weight was not strongly associated with seat transmissibility. The resonance frequency of the seat decreased with increases in the magnitude of the vibration excitation and increased when subjects made contact with the backrest. Inter-subject variability in the resonance frequency and transmissibility at resonance was less with greater vibration excitation, but was largely unaffected by backrest contact. A lumped parameter seat-person model showed that changes in seat transmissibility with age can be predicted from changes in apparent mass with age, and that the dynamic stiffness of the seat appeared to increase with increased loading so as to compensate for increases in subject apparent mass associated with increased sitting weight.

  9. Finite element models of the thigh-buttock complex for assessing static sitting discomfort and pressure sore risk: a literature review.

    PubMed

    Savonnet, Léo; Wang, Xuguang; Duprey, Sonia

    2018-03-01

    Being seated for long periods, while part of many leisure or occupational activities, can lead to discomfort, pain and sometimes health issues. The impact of prolonged sitting on the body has been widely studied in the literature, with a large number of human-body finite element models developed to simulate sitting and assess seat-induced discomfort or to investigate the biomechanical factors involved. Here, we review the finite element models developed to investigate sitting discomfort or risk of pressure sores. Our study examines finite element models from twenty-seven papers, seventeen dedicated to assessing seating discomfort and ten dedicated to investigating pressure ulcers caused by prolonged sitting. The models' mesh composition and material properties are found to differ widely. These models share a lack of validation and generally make little allowance for anthropometric diversity.

  10. Occupant Kinematics in Simulated Autonomous Driving Vehicle Collisions: Influence of Seating Position, Direction and Angle.

    PubMed

    Kitagawa, Yuichi; Hayashi, Shigeki; Yamada, Katsunori; Gotoh, Mitsuaki

    2017-11-01

    This two-part study analyzed occupant kinematics in simulated collisions of future automated driving vehicles in terms of seating configuration. In part one, a frontal collision was simulated with four occupants with the front seats reversed. The left front seat occupant was unbelted while the others were belted. In part two of the study, occupant restraint was examined in various seating configurations using a single seat model with a three-point seatbelt. The seat direction with respect to impact was considered as forward, rearward, and lateral facing in 45 degree increments. The effect of seat recline was also studied in the forward-facing and rear-facing cases by assuming three positions: driving position, resting position and relaxed position. Occupants were represented by human body finite element models. The results of part one showed that the front seat (rear-facing) occupants were restrained by the seatback, resulting in T1 forward displacement less than 100 mm; the rear seat occupants were restrained by the seatbelt resulting larger T1 forward displacement more than 500 mm. The results of the part two showed the directional dependence of occupant restraint. Greater T1 displacements were observed when the occupant faced lateral or front oblique. However, the seatbelt provided some restraint in all directions considered. The seatback generated contact force to the occupant when it was in the impact direction, including the lateral directions. The relaxed position allowed increased excursion compared to the driving position when the occupant faced rearward, but the magnitude of this increase was lower with lower impact speed.

  11. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz

    NASA Astrophysics Data System (ADS)

    Findlay, R. P.; Dimbylow, P. J.

    2006-05-01

    Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at ~130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at ~120 MHz and ~160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at ~180 and ~600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the specific regions in which the seated human body absorbs the incident field. External electric field values required to produce the ICNIRP basic restrictions were derived from SAR calculations and compared with ICNIRP reference levels. This comparison shows that the reference levels provide a conservative estimate of the ICNIRP whole-body averaged SAR restriction, with the exception of the region above 1.4 GHz for the scaled 1-year-old model.

  12. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz.

    PubMed

    Findlay, R P; Dimbylow, P J

    2006-05-07

    Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at approximately 130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at approximately 120 MHz and approximately 160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at approximately 180 and approximately 600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the specific regions in which the seated human body absorbs the incident field. External electric field values required to produce the ICNIRP basic restrictions were derived from SAR calculations and compared with ICNIRP reference levels. This comparison shows that the reference levels provide a conservative estimate of the ICNIRP whole-body averaged SAR restriction, with the exception of the region above 1.4 GHz for the scaled 1-year-old model.

  13. Modeling the Impact of Space Suit Components and Anthropometry on the Center of Mass of a Seated Crewmember

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Blackledge, Christopher; Ferrer, Mike; Margerum, Sarah

    2009-01-01

    The designers of the Orion Crew Exploration Vehicle (CEV) utilize an intensive simulation program in order to predict the launch and landing characteristics of the Crew Impact Attenuation System (CIAS). The CIAS is the energy absorbing strut concept that dampens loads to levels sustainable by the crew during landing and consists of the crew module seat pallet that accommodates four to six seated astronauts. An important parameter required for proper dynamic modeling of the CIAS is knowledge of the suited center of mass (COM) variations within the crew population. Significant center of mass variations across suited crew configurations would amplify the inertial effects of the pallet and potentially create unacceptable crew loading during launch and landing. Established suited, whole-body, and posture-based mass properties were not available due to the uncertainty of the final CEV seat posture and suit hardware configurations. While unsuited segmental center of mass values can be obtained via regression equations from previous studies, building them into a model that was posture dependent with custom anthropometry and integrated suit components proved cumbersome and time consuming. Therefore, the objective of this study was to quantify the effects of posture, suit components, and the expected range of anthropometry on the center of mass of a seated individual. Several elements are required for the COM calculation of a suited human in a seated position: anthropometry; body segment mass; suit component mass; suit component location relative to the body; and joint angles defining the seated posture. Anthropometry and body segment masses used in this study were taken from a selection of three-dimensional human body models, called boundary manikins, which were developed in a previous project. These boundary manikins represent the critical anthropometric dimension extremes for the anticipated astronaut population. Six male manikins and 6 female manikins, representing a subset of the possible maximum and minimum sized crewmembers, were segmented using point-cloud software to create 17 major body segments. The general approach used to calculate the human mass properties was to utilize center of volume outputs from the software for each body segment and apply a homogeneous density function to determine segment mass 3-D coordinates. Suit components, based on the current consensus regarding predicted suit configuration values, were treated as point masses and were positioned using vector mathematics along the body segments based on anthropometry and COM position. A custom MATLAB script then articulates the body segment and suit positions into a selected seated configuration, using joint angles that characterize a standard seated position and a CEV specific seated position. Additional MATLAB(r) scripts are finally used to calculate the composite COM positions in 3-D space for all 12 manikins in both suited and unsuited conditions for both seated configurations. The analysis focused on two aspects: (1) to quantify how much the whole body COM varied from the smallest to largest subject and (2) the impacts of the suit components on the overall COM in each seat configuration. The location across all boundary manikins of the anterior- posterior COM varied by approximately 7cm, the vertical COM varied by approximately 9-10cm, and the mediolateral COM varied by approximately 1.2 cm from the midline sagittal plane for both seat configurations. This variation was surprisingly large given the relative proportionality of the mass distribution of the human body. The suit components caused an anterior shift of the total COM by approximately 2 cm and a shift to the right along the mediolateral axis of 0.4 cm for both seat configurations. When the seat configuration is in the standard posture, the suited vertical COM shifts inferiorly by up to 1 cm whereas in the CEV posture the vertical COM has no appreciable change. These general differences were due the high proportion of suit mass located in the boots and lower legs and their corresponding distance from the body COM as well as the prevalence of suit components on the right side of the body.

  14. Investigation of the transmission of fore and aft vibration through the human body.

    PubMed

    Demić, Miroslav; Lukić, Jovanka

    2009-07-01

    Understanding the behavior of human body under the influence of vibration is of great importance for the optimal motor vehicle system design. Therefore, great efforts are being done in order to discover as many information about the influence of vibration on human body as possible. So far the references show that the major scientific attention has been paid to vertical vibration, although intensive research has been performed lately on the other sorts of excitation. In this paper, the results of the investigation of behavior of human body, in seated position, under the influence of random fore and aft vibration are shown. The investigation is performed by the use of an electro-hydraulic simulator, on a group of 30 healthy male occupants. Experiments are performed in order to give results to improve human body modeling in driving conditions. Excitation amplitudes (1.75 and 2.25 m/s(2) rms) and seat backrest conditions (with and without inclination) were varied. Data results are analyzed by partial coherence and transfer functions. Analyses have been performed and results are given in detail. The results obtained have shown that the human body under the influence of random excitations behaves as a non-linear system and its response depends on spatial position. Obtained results give necessary data to define structure and parameters of human biodynamic model with respect to different excitation and seat backrest position.

  15. Human factors associated with the certification of airplane passenger seats : seat belt adjustment and release : final report.

    DOT National Transportation Integrated Search

    2002-06-01

    Two separate studies were accomplished to investigate human factors issues related to the use of lap belts. Human performance trials were conducted under two protocols to measure and assess: (1) seat belt tension adjustment during normal flight and e...

  16. Effect of human movement on airborne disease transmission in an airplane cabin: study using numerical modeling and quantitative risk analysis.

    PubMed

    Han, Zhuyang; To, Gin Nam Sze; Fu, Sau Chung; Chao, Christopher Yu-Hang; Weng, Wenguo; Huang, Quanyi

    2014-08-06

    Airborne transmission of respiratory infectious disease in indoor environment (e.g. airplane cabin, conference room, hospital, isolated room and inpatient ward) may cause outbreaks of infectious diseases, which may lead to many infection cases and significantly influences on the public health. This issue has received more and more attentions from academics. This work investigates the influence of human movement on the airborne transmission of respiratory infectious diseases in an airplane cabin by using an accurate human model in numerical simulation and comparing the influences of different human movement behaviors on disease transmission. The Eulerian-Lagrangian approach is adopted to simulate the dispersion and deposition of the expiratory aerosols. The dose-response model is used to assess the infection risks of the occupants. The likelihood analysis is performed as a hypothesis test on the input parameters and different human movement pattern assumptions. An in-flight SARS outbreak case is used for investigation. A moving person with different moving speeds is simulated to represent the movement behaviors. A digital human model was used to represent the detailed profile of the occupants, which was obtained by scanning a real thermal manikin using the 3D laser scanning system. The analysis results indicate that human movement can strengthen the downward transport of the aerosols, significantly reduce the overall deposition and removal rate of the suspended aerosols and increase the average infection risk in the cabin. The likelihood estimation result shows that the risk assessment results better fit the outcome of the outbreak case when the movements of the seated passengers are considered. The intake fraction of the moving person is significantly higher than most of the seated passengers. The infection risk distribution in the airplane cabin highly depends on the movement behaviors of the passengers and the index patient. The walking activities of the crew members and the seated passengers can significantly increase their personal infection risks. Taking the influence of the movement of the seated passengers and the index patient into consideration is necessary and important. For future studies, investigations on the behaviors characteristics of the passengers during flight will be useful and helpful for infection control.

  17. Research on an Active Seat Belt System

    NASA Astrophysics Data System (ADS)

    Kawashima, Takeshi

    In a car crash, permanent injury can be avoided if deformation of an occupant's rib cage is maintained within the allowable value. In order to realize this condition, the occupant's seat belt tension must be instantaneously adjusted by a feedback control system. In this study, a seat belt tension control system based on the active shock control system is proposed. The semi-active control law used is derived from the sliding mode control method. One advantage of this proposed system is that it does not require a large power actuator because the seat belt tension is controlled by a brake mechanism. The effectiveness is confirmed by numerical simulation using general parameters of a human thorax and a passenger car in a collision scenario with a wall at a velocity of 100 km/h. The feasibility is then confirmed with a control experiment using a scale model of about 1/10 scale. The relative displacement of the thorax model approaches the allowable value smoothly along the control reference and settles near this value. Thus, the proposed seat belt tension control system design is established.

  18. Construction of a mathematical model of the human body, taking the nonlinear rigidity of the spine into account

    NASA Technical Reports Server (NTRS)

    Glukharev, K. K.; Morozova, N. I.; Potemkin, B. A.; Solovyev, V. S.; Frolov, K. V.

    1973-01-01

    A mathematical model of the human body was constructed, under the action of harmonic vibrations, in the 2.5-7 Hz frequency range. In this frequency range, the model of the human body as a vibrating system, with concentrated parameters is considered. Vertical movements of the seat and vertical components of vibrations of the human body are investigated.

  19. EVALUATING EXTREMELY LOW FREQUENCY MAGNETIC FIELDS IN THE REAR SEATS OF THE ELECTRIC VEHICLES.

    PubMed

    Lin, Jun; Lu, Meng; Wu, Tong; Yang, Lei; Wu, Tongning

    2018-03-23

    In the electric vehicles (EVs), children can sit on a safety seat installed in the rear seats. Owing to their smaller physical dimensions, their heads, generally, are closer to the underfloor electrical systems where the magnetic field (MF) exposure is the greatest. In this study, the magnetic flux density (B) was measured in the rear seats of 10 different EVs, for different driving sessions. We used the measurement results from different heights corresponding to the locations of the heads of an adult and an infant to calculate the induced electric field (E-field) strength using anatomical human models. The results revealed that measured B fields in the rear seats were far below the reference levels by the International Commission on Non-Ionizing Radiation Protection. Although small children may be exposed to higher MF strength, induced E-field strengths were much lower than that of adults due to their particular physical dimensions.

  20. Driver kinematic and muscle responses in braking events with standard and reversible pre-tensioned restraints: validation data for human models.

    PubMed

    Osth, Jonas; Olafsdóttir, Jóna Marín; Davidsson, Johan; Brolin, Karin

    2013-11-01

    The objectives of this study are to generate validation data for human models intended for simulation of occupant kinematics in a pre-crash phase, and to evaluate the effect of an integrated safety system on driver kinematics and muscle responses. Eleven male and nine female volunteers, driving a passenger car on ordinary roads, performed maximum voluntary braking; they were also subjected to autonomous braking events with both standard and reversible pre-tensioned restraints. Kinematic data was acquired through film analysis, and surface electromyography (EMG) was recorded bilaterally for muscles in the neck, the upper extremities, and lumbar region. Maximum voluntary contractions (MVCs) were carried out in a driving posture for normalization of the EMG. Seat belt positions, interaction forces, and seat indentions were measured. During normal driving, all muscle activity was below 5% of MVC for females and 9% for males. The range of activity during steady state braking for males and females was 13-44% in the cervical and lumbar extensors, while antagonistic muscles showed a co-contraction of 2.3-19%. Seat belt pre-tension affects both the kinematic and muscle responses of drivers. In autonomous braking with standard restraints, muscle activation occurred in response to the inertial load. With pre-tensioned seat belts, EMG onset occurred earlier; between 71 ms and 176 ms after belt pre-tension. The EMG onset times decreased with repeated trials and were shorter for females than for males. With the results from this study, further improvement and validation of human models that incorporate active musculature will be made possible.

  1. Application of ideal pressure distribution in development process of automobile seats.

    PubMed

    Kilincsoy, U; Wagner, A; Vink, P; Bubb, H

    2016-07-19

    In designing a car seat the ideal pressure distribution is important as it is the largest contact surface between the human and the car. Because of obstacles hindering a more general application of the ideal pressure distribution in seating design, multidimensional measuring techniques are necessary with extensive user tests. The objective of this study is to apply and integrate the knowledge about the ideal pressure distribution in the seat design process for a car manufacturer in an efficient way. Ideal pressure distribution was combined with pressure measurement, in this case pressure mats. In order to integrate this theoretical knowledge of seating comfort in the seat development process for a car manufacturer a special user interface was defined and developed. The mapping of the measured pressure distribution in real-time and accurately scaled to actual seats during test setups directly lead to design implications for seat design even during the test situation. Detailed analysis of the subject's feedback was correlated with objective measurements of the subject's pressure distribution in real time. Therefore existing seating characteristics were taken into account as well. A user interface can incorporate theoretical and validated 'state of the art' models of comfort. Consequently, this information can reduce extensive testing and lead to more detailed results in a shorter time period.

  2. Human body modeling method to simulate the biodynamic characteristics of spine in vivo with different sitting postures.

    PubMed

    Dong, Rui-Chun; Guo, Li-Xin

    2017-11-01

    The aim of this study is to model the computational model of seated whole human body including skeleton, muscle, viscera, ligament, intervertebral disc, and skin to predict effect of the factors (sitting postures, muscle and skin, buttocks, viscera, arms, gravity, and boundary conditions) on the biodynamic characteristics of spine. Two finite element models of seated whole body and a large number of finite element models of different ligamentous motion segments were developed and validated. Static, modal, and transient dynamic analyses were performed. The predicted vertical resonant frequency of seated body model was in the range of vertical natural frequency of 4 to 7 Hz. Muscle, buttocks, viscera, and the boundary conditions of buttocks have influence on the vertical resonant frequency of spine. Muscle played a very important role in biodynamic response of spine. Compared with the vertical posture, the posture of lean forward or backward led to an increase in stress on anterior or lateral posterior of lumbar intervertebral discs. This indicated that keeping correct posture could reduce the injury of vibration on lumbar intervertebral disc under whole-body vibration. The driving posture not only reduced the load of spine but also increased the resonant frequency of spine. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Impact Response Comparison Between Parametric Human Models and Postmortem Human Subjects with a Wide Range of Obesity Levels.

    PubMed

    Zhang, Kai; Cao, Libo; Wang, Yulong; Hwang, Eunjoo; Reed, Matthew P; Forman, Jason; Hu, Jingwen

    2017-10-01

    Field data analyses have shown that obesity significantly increases the occupant injury risks in motor vehicle crashes, but the injury assessment tools for people with obesity are largely lacking. The objectives of this study were to use a mesh morphing method to rapidly generate parametric finite element models with a wide range of obesity levels and to evaluate their biofidelity against impact tests using postmortem human subjects (PMHS). Frontal crash tests using three PMHS seated in a vehicle rear seat compartment with body mass index (BMI) from 24 to 40 kg/m 2 were selected. To develop the human models matching the PMHS geometry, statistical models of external body shape, rib cage, pelvis, and femur were applied to predict the target geometry using age, sex, stature, and BMI. A mesh morphing method based on radial basis functions was used to rapidly morph a baseline human model into the target geometry. The model-predicted body excursions and injury measures were compared to the PMHS tests. Comparisons of occupant kinematics and injury measures between the tests and simulations showed reasonable correlations across the wide range of BMI levels. The parametric human models have the capability to account for the obesity effects on the occupant impact responses and injury risks. © 2017 The Obesity Society.

  4. Reference PMHS Sled Tests to Assess Submarining.

    PubMed

    Uriot, Jérôme; Potier, Pascal; Baudrit, Pascal; Trosseille, Xavier; Petit, Philippe; Richard, Olivier; Compigne, Sabine; Masuda, Mitsutoshi; Douard, Richard

    2015-11-01

    Sled tests focused on pelvis behavior and submarining can be found in the literature. However, they were performed either with rigid seats or with commercial seats. The objective of this study was to get reference tests to assess the submarining ability of dummies in more realistic conditions than on rigid seat, but still in a repeatable and reproducible setup. For this purpose, a semi-rigid seat was developed, which mimics the behavior of real seats, although it is made of rigid plates and springs that are easy to reproduce and simulate with an FE model. In total, eight PMHS sled tests were performed on this semirigid seat to get data in two different configurations: first in a front seat configuration that was designed to prevent submarining, then in a rear seat configuration with adjusted spring stiffness to generate submarining. All subjects sustained extensive rib fractures from the shoulder belt loading. No pelvis fractures and no submarining were observed in the front seat configuration, but two subjects sustained lumbar vertebrae fractures. In the rear seat configuration, all subjects sustained pelvic fractures and demonstrated submarining. Corridors were constructed for the external forces and the PMHS kinematics. They are provided in this paper as new reference tests to assess the biofidelity of human surrogates in different configurations that either result in submarining or do not. In future, it is intended to analyze further seat and restraint system configurations to be able to define a submarining predictor.

  5. Factors Influencing Occupant-To-Seat Belt Interaction in Far-Side Crashes

    PubMed Central

    Douglas, C.A.; Fildes, B.N.; Gibson, T.J.; Boström, O.; Pintar, F.A.

    2007-01-01

    Seat belt interaction with a far-side occupant’s shoulder and thorax is critical to governing excursion towards the struck-side of the vehicle in side impact. In this study, occupant-to-belt interaction was simulated using a modified MADYMO human model and finite element belts. Quasi-static tests with volunteers and dynamic sled tests with PMHS and WorldSID were used for model validation and comparison. Parameter studies were then undertaken to quantify the effect of impact direction, seat belt geometry and pretension on occupant-to-seat belt interaction. Results suggest that lowering the D-ring and increasing pretension reduces the likelihood of the belt slipping off the shoulder. Anthropometry was also shown to influence restraint provided by the shoulder belt. Furthermore, the belt may slip off the occupant’s shoulder at impact angles greater than 40 degrees from frontal when no pretension is used. However, the addition of pretension allowed the shoulder to engage the belt in all impacts from 30 to 90 degrees. PMID:18184500

  6. Biomechanical considerations for abdominal loading by seat belt pretensioners.

    PubMed

    Rouhana, Stephen W; El-Jawahri, Raed E; Laituri, Tony R

    2010-11-01

    While seat belts are the most effective safety technology in vehicles today, there are continual efforts in the industry to improve their ability to reduce the risk of injury. In this paper, seat belt pretensioners and current trends towards more powerful systems were reviewed and analyzed. These more powerful systems may be, among other things, systems that develop higher belt forces, systems that remove slack from belt webbing at higher retraction speeds, or both. The analysis started with validation of the Ford Human Body Finite Element Model for use in evaluation of abdominal belt loading by pretensioners. The model was then used to show that those studies, done with lap-only belts, can be used to establish injury metrics for tests done with lap-shoulder belts. Then, previously-performed PMHS studies were used to develop AIS 2+ and AIS 3+ injury risk curves for abdominal interaction with seat belts via logistic regression and reliability analysis with interval censoring. Finally, some considerations were developed for a possible laboratory test to evaluate higher-powered pretensioners.

  7. Seatbelt and seatback control for occupant protection in frontal automotive collisions

    NASA Astrophysics Data System (ADS)

    Mott, Michael; Sun, Zhen; Rajamani, Rajesh

    2013-10-01

    This paper investigates the potential benefits of an imminent collision prediction system for improving occupant protection in a frontal automotive crash. Knowledge of an impending unavoidable crash is assumed to be known 100 ms before the crash occurs. A three dof human occupant model is developed using a Lagrangian approach to represent occupant translation with respect to seat, torso rotation and neck rotation. The performance of traditional elastic seat belts is compared with that of an analytically calculated seat belt law in which the force values are calculated in real-time so as to just prevent collision with car interior. Simulations verify that the analytical seat belt force calculation results in less force on occupant for the same level of safety. Furthermore, results show that knowledge of a future collision can be used to pre-tension seat belts but can provide no additional benefits, if seat belts are the only means for active occupant protection. However, if seat tilt-back can be deployed using an on-off mechanism, such predictive knowledge of a future collision can provide significantly improved occupant protection in terms of preventing occupant collision with car interior.

  8. Seating Considerations for Spaceflight: The Human to Machine Interface

    NASA Technical Reports Server (NTRS)

    Gohmert, Dustin M.

    2011-01-01

    Seating is one of the most critical components to be considered during design of a spacecraft. Since seats are the final interface between the occupant and the vehicle wherein all launch and landing operations are performed, significant effort must be spent to ensure proper integration of the human to the spacecraft. The importance of seating can be divided into two categories: seat layout and seat design. The layout of the seats drives the overall cabin configuration - from displays and controls, to windows, to stowage, to egress paths. Since the layout of the seats is such a critical design parameter within the crew compartment, it is one of the first design challenges that must be completed in the critical path of the spacecraft design. In consideration of seat layout in the vehicle, it is important for the designers to account for often intangible factors such as safety, operability, contingency performance, crew rescue. Seat layout will lead to definition of the quantity, shape, and posture of the seats. The seats of the craft must restrain and protect the occupant in all seated phases of flight, while allowing for nominal mission performance. In design of a spacecraft seat, the general posture of the occupant and the landing loads to be encountered are the greatest drivers of overall design. Variances, such as upright versus recumbent postures will dictate fit of the seat to the occupant and drive the total envelope of the seat around the occupant. Seat design revolves around applying sound principles of seated occupant protection coupled with the unique environments driven by the seat layout, landing loads, and operational and emergency scenarios.

  9. Modeling of Spinal Column of Seated Human Body under Exposure to Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Tamaoki, Gen; Yoshimura, Takuya; Kuriyama, Kaoru; Nakai, Kazuma

    In vehicle systems occupational drivers might expose themselves to vibration for a long time. This may cause illness of the spinal column such as low back pain. Therefore, it is necessary to evaluate the influence of vibration to the spinal column. Thus the modeling of seated human body is conducted in order to evaluate the effect of whole-body vibration to the spinal column. This model has the spinal column and the support structures such as the muscles of the back and the abdomen. The spinal column is made by the vertebrae and the intervertebral disks that are considered the rigid body and the rotational spring and damper respectively. The parameter of this model is decided by the literature and the body type of the subject with respect to the mass and the model structure. And stiffness and damping parameters are searched by fitting the model simulation results to the experimental measured data with respect to the vibration transmissibilities from the seat surface to the spinal column and the head and with respect to the driving-point apparent mass. In addition, the natural modes of the model compare with the result of experimental modal analysis. The influence of the abdomen and the muscles of the back are investigated by comparing three models with respect to above vibration characteristics. Three model are the proposed model, the model that has the spinal column and the model that has the muscles of the back in addition to the spinal column.

  10. On 4-degree-of-freedom biodynamic models of seated occupants: Lumped-parameter modeling

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Xu; Xu, Shi-Xu; Cheng, Wei; Qian, Li-Jun

    2017-08-01

    It is useful to develop an effective biodynamic model of seated human occupants to help understand the human vibration exposure to transportation vehicle vibrations and to help design and improve the anti-vibration devices and/or test dummies. This study proposed and demonstrated a methodology for systematically identifying the best configuration or structure of a 4-degree-of-freedom (4DOF) human vibration model and for its parameter identification. First, an equivalent simplification expression for the models was made. Second, all of the possible 23 structural configurations of the models were identified. Third, each of them was calibrated using the frequency response functions recommended in a biodynamic standard. An improved version of non-dominated sorting genetic algorithm (NSGA-II) based on Pareto optimization principle was used to determine the model parameters. Finally, a model evaluation criterion proposed in this study was used to assess the models and to identify the best one, which was based on both the goodness of curve fits and comprehensive goodness of the fits. The identified top configurations were better than those reported in the literature. This methodology may also be extended and used to develop the models with other DOFs.

  11. Seating Considerations for Spaceflight: The Human to Machine Interface

    NASA Astrophysics Data System (ADS)

    Gohmert, D. M.

    2012-01-01

    Seating is one of the most critical components to be considered during design of a spacecraft. Since seats are the final interface between the occupant and the vehicle wherein all launch and landing operations are performed, significant effort must be spent to ensure proper integration of the human to the spacecraft. The importance of seating can be divided into two categories: seat layout and seat design. The layout of the seats drives the overall cabin configuration - from displays and controls, to windows, to stowage, to egress paths. Since the layout of the seats is such a critical design parameter within the crew compartment, it is one of the first design challenges that must be completed in the critical path of the spacecraft design. In consideration of seat layout in the vehicle, it is important for the designers to account for often intangible factors such as safety, operability, contingency performance, and crew rescue. Seat layout will lead to definition of the quantity, shape, and posture of the seats. The seats of the craft must restrain and protect the occupant in all seated phases of flight, while allowing for nominal mission performance. In design of a spacecraft seat, the general posture of the occupant and the landing loads to be encountered are the greatest drivers of overall design. Variances, such as upright versus recumbent postures will dictate fit of the seat to the occupant and drive the total envelope of the seat around the occupant. Seat design revolves around applying sound principles of seated occupant protection coupled with the unique environments driven by the seat layout, landing loads, and operational and emergency scenarios.

  12. Dynamic forces over the interface between a seated human body and a rigid seat during vertical whole-body vibration.

    PubMed

    Liu, Chi; Qiu, Yi; Griffin, Michael J

    2017-08-16

    Biodynamic responses of the seated human body are usually measured and modelled assuming a single point of vibration excitation. With vertical vibration excitation, this study investigated how forces are distributed over the body-seat interface. Vertical and fore-and-aft forces were measured beneath the ischial tuberosities, middle thighs, and front thighs of 14 subjects sitting on a rigid flat seat in three postures with different thigh contact while exposed to random vertical vibration at three magnitudes. Measures of apparent mass were calculated from transfer functions between the vertical acceleration of the seat and the vertical or fore-and-aft forces measured at the three locations, and the sum of these forces. When sitting normally or sitting with a high footrest, vertical forces at the ischial tuberosities dominated the vertical apparent mass. With feet unsupported to give increased thigh contact, vertical forces at the front thighs were dominant around 8Hz. Around 3-7Hz, fore-and-aft forces at the middle thighs dominated the fore-and-aft cross-axis apparent mass. Around 8-10Hz, fore-and-aft forces were dominant at the ischial tuberosities with feet supported but at the front thighs with feet unsupported. All apparent masses were nonlinear: as the vibration magnitude increased the resonance frequencies decreased. With feet unsupported, the nonlinearity in the apparent mass was greater at the front thighs than at the ischial tuberosities. It is concluded that when the thighs are supported on a seat it is not appropriate to assume the body has a single point of vibration excitation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Human Factors Assessment of Vibration Effects on Visual Performance During Launch

    NASA Technical Reports Server (NTRS)

    Holden, Kritina

    2009-01-01

    The Human Factors Assessment of Vibration Effects on Visual Performance During Launch (Visual Performance) investigation will determine visual performance limits during operational vibration and g-loads on the Space Shuttle, specifically through the determination of minimum readable font size during ascent using planned Orion display formats. Research Summary: The aim of the Human Factors Assessment of Vibration Effects on Visual Performance during Launch (Visual Performance) investigation is to provide supplementary data to that collected by the Thrust Oscillation Seat Detailed Technical Objective (DTO) 695 (Crew Seat DTO) which will measure seat acceleration and vibration from one flight deck and two middeck seats during ascent. While the Crew Seat DTO data alone are important in terms of providing a measure of vibration and g-loading, human performance data are required to fully interpret the operational consequences of the vibration values collected during Space Shuttle ascent. During launch, crewmembers will be requested to view placards with varying font sizes and indicate the minimum readable size. In combination with the Crew Seat DTO, the Visual Performance investigation will: Provide flight-validated evidence that will be used to establish vibration limits for visual performance during combined vibration and linear g-loading. o Provide flight data as inputs to ongoing ground-based simulations, which will further validate crew visual performance under vibration loading in a controlled environment. o Provide vibration and performance metrics to help validate procedures for ground tests and analyses of seats, suits, displays and controls, and human-in-the-loop performance.

  14. Human strength simulations for one and two-handed tasks in zero gravity

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A description is given of a three dimensional hand force capability model for the seated operator and a biomechanical model for analysis of symmetric sagittal plane activities. The models are used to simulate and study human strengths for one and two handed tasks in zero gravity. Specific conditions considered include: (1) one hand active, (2) both hands active but with different force directions on each, (3) body bracing situations provided by portable foot restraint when standing and lap belt when seated, (4) static or slow movement tasks with maximum length of 4 seconds and a minimum rest of 5 minutes between exertions, and (5) wide range of hand positions relative to either the feet or bisection of a line connecting the hip centers. Simulations were also made for shirt sleeved individuals and for the male population strengths with anthropometry matching that of astronauts.

  15. An online means of testing asymmetries in seating preference reveals a bias for airplanes and theaters.

    PubMed

    Nicholls, Michael E R; Thomas, Nicole A; Loetscher, Tobias

    2013-08-01

    The aim of this study was to investigate asymmetrical interactions between humans and their environment using online seat booking sites. Functional differences between the cerebral hemispheres affect the choices people make. For example, when asked to imagine going to a cinema, people preferentially select seats to the right We investigated whether this experimental research generalizes to online booking sites for aircraft and theaters. Occupancy rates for seats taken on the left and right sides were assessed for 100 airline flights with 12,762 available seats and 37 theater performances with 34,456 seats. On the basis of previous research, a rightward bias was predicted for aircraft and theaters. For aircraft, contrary to expectation, occupancy rate was higher for left- compared with right-side seats. For theaters, a rightward bias was observed when the theater was less than half full.The bias was not affected by the orientation of the map. For aircraft, the leftward preference could be attributable to a rightward turning bias or a "feeling" that the port seats are closer to the exit, even though they are not. For theaters, the data demonstrate that the rightward preference observed in earlier studies exists only when the theater is relatively empty. Asymmetrical seating may play an important role in the efficient assimilation of information from the environment, and this role should take this into account when designing effective human-environment interfaces.The online method of assessing seating used in the current study provides an informative and potentially powerful means of assessing asymmetries in human perception and action.

  16. Sitting biomechanics, part II: optimal car driver's seat and optimal driver's spinal model.

    PubMed

    Harrison, D D; Harrison, S O; Croft, A C; Harrison, D E; Troyanovich, S J

    2000-01-01

    Driving has been associated with signs and symptoms caused by vibrations. Sitting causes the pelvis to rotate backwards and the lumbar lordosis to reduce. Lumbar support and armrests reduce disc pressure and electromyographically recorded values. However, the ideal driver's seat and an optimal seated spinal model have not been described. To determine an optimal automobile seat and an ideal spinal model of a driver. Information was obtained from peer-reviewed scientific journals and texts, automotive engineering reports, and the National Library of Medicine. Driving predisposes vehicle operators to low-back pain and degeneration. The optimal seat would have an adjustable seat back incline of 100 degrees from horizontal, a changeable depth of seat back to front edge of seat bottom, adjustable height, an adjustable seat bottom incline, firm (dense) foam in the seat bottom cushion, horizontally and vertically adjustable lumbar support, adjustable bilateral arm rests, adjustable head restraint with lordosis pad, seat shock absorbers to dampen frequencies in the 1 to 20 Hz range, and linear front-back travel of the seat enabling drivers of all sizes to reach the pedals. The lumbar support should be pulsating in depth to reduce static load. The seat back should be damped to reduce rebounding of the torso in rear-end impacts. The optimal driver's spinal model would be the average Harrison model in a 10 degrees posterior inclining seat back angle.

  17. Mathematical Models for the Apparent Mass of the Seated Human Body Exposed to Vertical Vibration

    NASA Astrophysics Data System (ADS)

    Wei, L.; Griffin, M. J.

    1998-05-01

    Alternative mathematical models of the vertical apparent mass of the seated human body are developed. The optimum parameters of four models (two single-degree-of-freedom models and two two-degree-of-freedom models) are derived from the mean measured apparent masses of 60 subjects (24 men, 24 women, 12 children) previously reported. The best fits were obtained by fitting the phase data with single-degree-of-freedom and two-degree-of-freedom models having rigid support structures. For these two models, curve fitting was performed on each of the 60 subjects (so as to obtain optimum model parameters for each subject), for the averages of each of the three groups of subjects, and for the entire group of subjects. The values obtained are tabulated. Use of a two-degree-of-freedom model provided a better fit to the phase of the apparent mass at frequencies greater than about 8 Hz and an improved fit to the modulus of the apparent mass at frequencies around 5 Hz. It is concluded that the two-degree-of-freedom model provides an apparent mass similar to that of the human body, but this does not imply that the body moves in the same manner as the masses in this optimized two-degree-of-freedom model.

  18. Biomechanics of 4-point seat belt systems in frontal impacts.

    PubMed

    Rouhana, Stephen W; Bedewi, Paul G; Kankanala, Sundeep V; Prasad, Priya; Zwolinski, Joseph J; Meduvsky, Alex G; Rupp, Jonathan D; Jeffreys, Thomas A; Schneider, Lawrence W

    2003-01-01

    The biomechanical behavior of 4-point seat belt systems was investigated through MADYMO modeling, dummy tests and post mortem human subject tests. This study was conducted to assess the effect of 4-point seat belts on the risk of thoracic injury in frontal impacts, to evaluate the ability to prevent submarining under the lap belt using 4-point seat belts, and to examine whether 4-point belts may induce injuries not typically observed with 3-point seat belts. The performance of two types of 4-point seat belts was compared with that of a pretensioned, load-limited, 3-point seat belt. A 3-point belt with an extra shoulder belt that "crisscrossed" the chest (X4) appeared to add constraint to the torso and increased chest deflection and injury risk. Harness style shoulder belts (V4) loaded the body in a different biomechanical manner than 3-point and X4 belts. The V4 belt appeared to shift load to the clavicles and pelvis and to reduce traction of the shoulder belt across the chest, resulting in a reduction in chest deflection by a factor of two. This is associated with a 5 to 500-fold reduction in thoracic injury risk, depending on whether one assumes 4-point belts apply concentrated or distributed load. In four of six post mortem human subjects restrained by V4 belts during 40 km/h sled tests, chest compression was zero or negative and rib fractures were nearly eliminated. Submarining was not observed in any test with post mortem human subjects. Though lumbar, sacral and pelvic injuries were noted, they are believed to be due to the artificial restraint environment (no knee bolsters, instrument panels, steering systems or airbags). While they show significant potential to reduce thoracic injury risk, there are still many issues to be resolved before 4-point belts can be considered for production vehicles. These issues include, among others, potential effects on hard and soft neck tissues, of interaction with inboard shoulder belts in farside impacts and potential effects on the fetus of latch/buckle junctions at the centerline of pregnant occupants. Work continues at Ford Motor Company to resolve these issues.

  19. Lateral bias in theatre-seat choice.

    PubMed

    Harms, Victoria; Reese, Miriam; Elias, Lorin J

    2014-01-01

    Examples of behavioural asymmetries are common in the range of human behaviour; even when faced with a symmetrical environment people demonstrate reliable asymmetries in behaviours like gesturing, cradling, and even seating. One such asymmetry is the observation that participants tend to choose seats to the right of the screen when asked to select their preferred seating location in a movie theatre. However, these results are based on seat selection using a seating chart rather than examining real seat choice behaviour in the theatre context. This study investigated the real-world seating patterns of theatre patrons during actual film screenings. Analysis of bias scores calculated using photographs of theatre patrons revealed a significant bias to choose seats on the right side of the theatre. These findings are consistent with the prior research in the area and confirm that the seating bias observed when seats are selected from a chart accurately reflects real-world seating behaviour.

  20. [Mathematical modeling of the kinematics of a pilot's head while catapulting into an air stream].

    PubMed

    Kharchenko, V I; Golovleva, N V; Konakhevich, Iu G; Liapin, V A; Mar'in, A V

    1987-01-01

    The trajectories of head movements in the helmet and velocities of impact contact with the seat and anterior of the cockpit were calculated as applied to every stage of the catapulting process and mass-inertia parameters of helmets taken into account. Kinematic models were used to describe biomechanic parameters of the head-neck system. Special attention was given to the case of catapulting to the air flow. The effect upon the nod of aerodynamic forces acting on the human body and the catapult ejection seat at air flow velocities of 700-800 and 1300 km/hr was calculated.

  1. Apparent mass of the human body in the vertical direction: Effect of a footrest and a steering wheel

    NASA Astrophysics Data System (ADS)

    Toward, M. G. R.; Griffin, M. J.

    2010-04-01

    The apparent mass of the seated human body influences the vibration transmitted through a car seat. The apparent mass of the body is known to be influenced by sitting posture but the influence of the position of the hands and the feet is not well understood. This study was designed to quantify the influence of steering wheel location and the position of a footrest on the vertical apparent mass of the human body. The influences of the forces applied by the hands to a steering wheel and by the feet to a footrest were also investigated. Twelve subjects were exposed to whole-body vertical random vibration (1.0 m s -2 rms over the frequency range 0.13-40.0 Hz) while supported by a rigid seat with a backrest reclined to 15°. The apparent mass of the body was measured with five horizontal positions and three vertical positions of a steering wheel and also with hands in the lap, and with five horizontal positions of a footrest. The influence of five forward forces (0, 50, 100, 150, 200 N) applied separately to the 'steering wheel' and the footrest were also investigated as well as a 'no backrest' condition. With their hands in their laps, subjects exhibited a resonance around 6.7 Hz, compared to 4.8 Hz when sitting upright with no backrest. In the same posture holding a steering wheel, the mass supported on the seat surface decreased and there was an additional resonance at 4 Hz. Moving the steering wheel away from the body reduced the apparent mass at the primary resonance frequency and increased the apparent mass around the 4 Hz resonance. As the feet moved forward, the mass supported on the seat surface decreased, indicating that the backrest and footrest supported a greater proportion of the subject weight. Applying force to either the steering wheel or the footrest reduced the apparent mass at resonance and decreased the mass supported on the seat surface. It is concluded that the positions and contact conditions of the hands and the feet affect the biodynamic response of the body in a car driving posture. As the biodynamic response influences the vibration transmitted through seats, these factors should be considered in dynamic models of vehicle seating.

  2. Influence of support conditions on vertical whole-body vibration of the seated human body.

    PubMed

    M-Pranesh, Anand; Rakheja, Subhash; Demont, Richard

    2010-01-01

    The vibration transmission to the lumbar and thoracic segments of seated human subjects exposed to whole body vibration of a vehicular nature have been mostly characterised without the back and hand supports, which is not representative of general driving conditions. This non-invasive experimental study investigated the transmission of vertical seat vibration to selected vertebrae and the head along the vertical and fore-aft axes of twelve male human subjects seated on a rigid seat and exposed to random vertical excitation in the 0.5-20 Hz range. The measurements were performed under four different sitting postures involving combinations of back support conditions and hands positions, and three difference magnitudes of vertical vibration (0.25, 0.5 and 1.0 m/s(2) rms acceleration). The results showed significant errors induced by sensor misalignment and skin effects, which required appropriate correction methodologies. The averaged corrected responses revealed that the back support attenuates vibration in the vertical axis to all the body locations while increasing the fore-aft transmissibility at the C7 and T5. The hands position generally has a relatively smaller effect, showing some influences on the C7 and L5 vibration. Sitting without a back support resulted in very low magnitude fore-aft vibration at T5, which was substantially higher with a back support, suggestive of a probable change in the body's vibration mode. The effect of back support was observed to be very small on the horizontal vibration of the lower thoracic and lumbar regions. The results suggest that distinctly different target body-segment biodynamic functions need to be defined for different support conditions in order to represent the unique contribution of the specific support condition. These datasets may then be useful for the development of biodynamic models.

  3. Dynamic Model of Aircraft Passenger Seats for Vibration Comfort Evaluation and Control

    NASA Astrophysics Data System (ADS)

    Šika, Z.; Valášek, Michael; Vampola, T.; Füllekrug, U.; Klimmek, T.

    The paper deals with the development of the seat dynamical model for vibration comfort evaluation and control. The aircraft seats have been tested extensively by vibrations on the 6 DOF vibrating platform. The importance of the careful comfort control together with the flight mechanics control is namely stressed for the blended wing body (BWB) aircrafts. They have a very large fuselage, where the mechanical properties (accelerations, angular accelerations) vary considerably for different seat places. The model have been improved by adding of dynamical models of the aircraft passenger seats identified by the measurements on the 6 DOF vibrating platform. The experiments, their results and the identification of the dynamical seat model are described. The model is further modified by adding of the comfort evaluation norms represented by dynamical filters. The structure and identification of the seat model is briefly described and discussed.

  4. Intrinsic and Extrinsic Contributions to Seated Balance in the Sagittal and Coronal Planes: Implications for Trunk Control After Spinal Cord Injury.

    PubMed

    Audu, Musa L; Triolo, Ronald J

    2015-08-01

    The contributions of intrinsic (passive) and extrinsic (active) properties of the human trunk, in terms of the simultaneous actions about the hip and spinal joints, to the control of sagittal and coronal seated balance were examined. Able-bodied (ABD) and spinal-cord-injured (SCI) volunteers sat on a moving platform which underwent small amplitude perturbations in the anterior-posterior (AP) and medial-lateral (ML) directions while changes to trunk orientation were measured. A linear parametric model that related platform movement to trunk angle was fit to the experimental data by identifying model parameters in the time domain. The results showed that spinal cord injury leads to a systematic reduction in the extrinsic characteristics, while most of the intrinsic characteristics were rarely affected. In both SCI and ABD individuals, passive characteristics alone were not enough to maintain seated balance. Passive stiffness in the ML direction was almost 3 times that in the AP direction, making more extrinsic mechanisms necessary for balance in the latter direction. Proportional and derivative terms of the extrinsic model made the largest contribution to the overall output from the active system, implying that a simple proportional plus derivative (PD) controller structure will suffice for restoring seated balance after spinal cord injury.

  5. ANTHROPOMETRIC CHARACTERISTICS OF FLIGHT PERSONNEL FOR DESIGNING DAMPERS FOR SHOCKPROOF SEATS OF HELICOPTER CREWS.

    PubMed

    Moiseev, Yu B; Ignatovich, S N; Strakhov, A Yu

    The article discusses anthropometric design of shockproof pilot seats for state-of-the-art helicopters. Object of the investigation was anthropometric parameters of the helicopter aviation personnel of the Russian interior troops. It was stated that the body parameters essential for designing helicopter seat dampers are mass of the body part that presses against the seat in the seating position, and eye level above the seat surface. An uncontrolled seat damper ensuring shockproof safety to 95 % helicopter crews must be designed for the body mass contacting the seat of 99.7 kg and eye level above the seat of 78.6 cm. To absorb.shock effectively, future dampers should be adjustable to pilot's body parameters. The optimal approach to anthropometric design of a helicopter seat is development of type pilot' body models with due account of pilot's the flight outfit and seat geometry. Principle criteria of type models are body mass and eye level. The authors propose a system of type body models facilitating specification of anthropometric data helicopter seat developers.

  6. Patterns of correlation between vehicle occupant seat pressure and anthropometry.

    PubMed

    Paul, Gunther; Daniell, Nathan; Fraysse, François

    2012-01-01

    Seat pressure is known as a major factor of seat comfort in vehicles. In passenger vehicles, there is lacking research into the seat comfort of rear seat occupants. As accurate seat pressure measurement requires significant effort, simulation of seat pressure is evolving as a preferred method. However, analytic methods are based on complex finite element modeling and therefore are time consuming and involve high investment. Based on accurate anthropometric measurements of 64 male subjects and outboard rear seat pressure measurements in three different passenger vehicles, this study investigates if a set of parameters derived from seat pressure mapping are sensitive enough to differentiate between different seats and whether they correlate with anthropometry in linear models. In addition to the pressure map analysis, H-Points were measured with a coordinate measurement system based on palpated body landmarks and the range of H-Point locations in the three seats is provided. It was found that for the cushion, cushion contact area and cushion front area/force could be modeled by subject anthropometry, while only seatback contact area could be modeled based on anthropometry for all three vehicles. Major differences were found between the vehicles for other parameters.

  7. NASA Standards Inform Comfortable Car Seats

    NASA Technical Reports Server (NTRS)

    2014-01-01

    NASA developed standards, which included the neutral body posture (NBP), to specify ways to design flight systems that support human health and safety. Nissan Motor Company, with US offices in Franklin, Tennessee, turned to NASA's NBP research for the development of a new driver's seat. The 2013 Altima now features the new seat, and the company plans to incorporate the seats in upcoming vehicles.

  8. Reduced Protection for Belted Occupants in Rear Seats Relative to Front Seats of New Model Year Vehicles

    PubMed Central

    Sahraei, Elham; Digges, Kennerly; Marzougui, Dhafer

    2010-01-01

    Effectiveness of the rear seat in protecting occupants of different age groups in frontal crashes for 2000–2009 model years (MY) of vehicles was estimated and compared to 1990–1999 model years of vehicles. The objective was to determine the effectiveness of the rear seat compared to the front seat for various age groups in newer model year vehicles. The double paired comparison method was used to estimate relative effectiveness. For belted adults of the 25–49 age group, the fatality reduction effectiveness of the rear seat compared to the right front seat was 25 % (CI 11% to 36%), in the 1990–1999 model year vehicles. The relative effectiveness was −31% (CI −63% to −5%) for the same population, in the 2000–2009 model year vehicles. For restrained children 0–8 years old, the relative effectiveness was 55% (CI 48% to 61%) when the vehicles were of the 1990–1999 period. The level of effectiveness for this age group was reduced to 25% (CI −4% to 46%) in the 2000–2009 MYs of vehicles. Results for other age groups of belted occupants have followed a similar trend. All belted adult occupants of 25+ years old were significantly less protected in rear seats as compared to right front seats in the 2000–2009 model years of vehicles. For unbelted occupants however, rear seats were still a safer position than front seats, even in the 2000–2009 model years of vehicles. PMID:21050599

  9. Oblique Loading in Post Mortem Human Surrogates from Vehicle Lateral Impact Tests using Chestbands.

    PubMed

    Yoganandan, Narayan; Humm, John R; Pintar, Frank A; Arun, Mike W J; Rhule, Heather; Rudd, Rodney; Craig, Matthew

    2015-11-01

    While numerous studies have been conducted to determine side impact responses of Post Mortem Human Surrogates (PMHS) using sled and other equipment, experiments using the biological surrogate in modern full-scale vehicles are not available. The present study investigated the presence of oblique loading in moving deformable barrier and pole tests. Threepoint belt restrained PMHS were positioned in the left front and left rear seats in the former and left front seat in the latter condition and tested according to consumer testing protocols. Three chestbands were used in each specimen (upper, middle and lower thorax). Accelerometers were secured to the skull, shoulder, upper, middle and lower thoracic vertebrae, sternum, and sacrum. Chestband signals were processed to determine magnitudes and angulations of peak deflections. The magnitude and timing of various signal peaks are given. Vehicle accelerations, door velocities, and seat belt loads are also given. Analysis of deformation contours, peak deflections, and angulations indicated that the left rear seated specimen were exposed to anterior oblique loading while left front specimens in both tests sustained essentially pure lateral loading to the torso. These data can be used to validate human body computational models. The occurrence of oblique loading in full-scale testing, hitherto unrecognized, may serve to stimulate the exploration of its role in injuries to the thorax and lower extremities in modern vehicles. It may be important to continue research in this area because injury metrics have a lower threshold for angled loading.

  10. Effects of deceleration and rate of deceleration on live seated human subjects

    DOT National Transportation Integrated Search

    1977-10-01

    This report describes the testing of live, seated human subjects to determine : the maximum deceleration and associated rate of change of deceleration (jerk) at : which the majority of potential users of automated guideway transportation (ACT) : syst...

  11. Design Control Systems of Human Machine Interface in the NTVS-2894 Seat Grinder Machine to Increase the Productivity

    NASA Astrophysics Data System (ADS)

    Ardi, S.; Ardyansyah, D.

    2018-02-01

    In the Manufacturing of automotive spare parts, increased sales of vehicles is resulted in increased demand for production of engine valve of the customer. To meet customer demand, we carry out improvement and overhaul of the NTVS-2894 seat grinder machine on a machining line. NTVS-2894 seat grinder machine has been decreased machine productivity, the amount of trouble, and the amount of downtime. To overcome these problems on overhaul the NTVS-2984 seat grinder machine include mechanical and programs, is to do the design and manufacture of HMI (Human Machine Interface) GP-4501T program. Because of the time prior to the overhaul, NTVS-2894 seat grinder machine does not have a backup HMI (Human Machine Interface) program. The goal of the design and manufacture in this program is to improve the achievement of production, and allows an operator to operate beside it easier to troubleshoot the NTVS-2894 seat grinder machine thereby reducing downtime on the NTVS-2894 seat grinder machine. The results after the design are HMI program successfully made it back, machine productivity increased by 34.8%, the amount of trouble, and downtime decreased 40% decrease from 3,160 minutes to 1,700 minutes. The implication of our design, it could facilitate the operator in operating machine and the technician easer to maintain and do the troubleshooting the machine problems.

  12. The NASA Ames integral aircraft passenger seat concept - A human engineering approach

    NASA Technical Reports Server (NTRS)

    Kubokawa, C. C.

    1974-01-01

    A new NASA Ames concept for an aircraft passenger seat has been under research and development since 1968. It includes many human-factor features that will provide protection to the passenger from vibration, jostle, and high impact. It is comfortable and safer than any of the seats presently in use. An in-depth design, fabrication, and impact analysis was conducted in order to design a seat that will maximize passenger protection in high g impacts (20 g horizontal -Gx, 36 g vertical +Gz, 16 g lateral Gy). The method for absorbing impact energy was accomplished with a combination of stretching stainless steel cables, thread breaking of stitches, hydraulic mechanism and the special Temper Form cushions. The restraint system for the seat consisted of a lap belt and shoulder harness inertia reel combination.

  13. Repeatability, reproducibility, and validity of a new method for characterizing lumbar support in automotive seating.

    PubMed

    Kolich, Mike

    2009-04-01

    This article describes a new and more repeatable, reproducible, and valid test method for characterizing lumbar support in automotive seating. Lumbar support is important because it affects occupant accommodation and perceptions of seat comfort. Assessing only the lumbar mechanism--particularly in terms of travel--is inadequate because it does not consider the effects of trim and foam. The Society of Automotive Engineers' next-generation H-Point machine and associated loading protocol were used as the basis for the new test. The method was found to satisfy minimum gage repeatability and reproducibility requirements. Validity was demonstrated through a regression model that revealed 93.9% of the variance in subjective ratings of poor uncomfortable lumbar support can be explained by two objective indicators: (1) lumbar support prominence in the full-off position and (2) effective travel. The method can be used to differentiate between seats offering two-way adjustable lumbar support. The best two-way adjustable lumbar seat systems are those that couple little to no lumbar support in the starting or off position (i.e., they are nonintrusive) with a considerable amount of effective or perceptible travel. The automotive industry has long needed a way to address the fact that consumers want more lumbar support than their seats currently supply. This contribution offers a method to objectify an important aspect of automotive seating comfort-namely, lumbar support. This should help human factors professionals produce, but not necessarily guarantee, better consumer ratings.

  14. 76 FR 291 - Special Conditions: Gulfstream Model GVI Airplane; Single-Occupant Side-Facing Seats

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...-occupant side-facing seat installations. Dynamic testing of all seats approved for occupancy during takeoff.... 25.562, ``Emergency landing dynamic conditions,'' requires dynamic testing of all seats occupied... seats, or seats equipped with conventional restraint systems. [[Page 292

  15. The influence of car-seat design on its character experience.

    PubMed

    Kamp, Irene

    2012-03-01

    Producing higher efficiency cars with less and lighter materials but without compromising safety, comfort and driving pleasure might give a competitive advantage. In this light, at BMW a new light weight car-seat concept was developed based on the human body contour. A possibility to increase the comfort is using a seat which elicits positive tactile experiences. However, limited information is available on seat characteristics and tactile experiences. Therefore, this study describes the contour of three different car-seat designs, including a light weight seat, and the recorded corresponding emotion and tactile experience of 21 persons sitting in the seats. Results show that the new light weight car-seat concept rated well on experienced relaxedness, even with the lack of a side support. The most important findings are that hard seats with rather high side supports are rated sporty and seats that are softer are rated more luxurious. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Effects of UAV Supervisory Control on F-18 Formation Flight Performance in a Simulator Environment

    DTIC Science & Technology

    2013-03-01

    words) Continual advances in technology, along with increased cockpit workload— particularly the shift from two- seat to single- seat fighters to save...INTENTIONALLY LEFT BLANK v ABSTRACT Continual advances in technology, along with increased cockpit workload— particularly the shift from two- seat to...single- seat fighters to save money and reduce risk to life—push the limits of human mental capacity. Additionally, there is interest within the

  17. Pedal force determination respect to ride comfort

    NASA Astrophysics Data System (ADS)

    Mačužić, Slavica; Lukić, Jovanka; Glišović, Jasna; Miloradović, Danijela

    2017-10-01

    Automotive ergonomics is a set of knowledge which has a task to design a vehicle to make the passengers feel comfortable. Interior packaging represents an important stage in the vehicle design process, in order to enable the driver to every important aspect of movement. During the process of driving, the driver performs various movements of arms and legs, leading to a certain fatigue. Each seating position in the vehicle, contain certain boundary conditions, and for that reason it was necessary to examine how the seating position affects the driver possibilities. In this paper, the pedal forces were determined by application of Ramsis human model. Different human populations were taken into account. Correlation between subjects’ anthropometrics measures and the foot pedal force pedal was observed. Obtained results were significant input data for vehicle packaging.

  18. Measurements of the Absorption by Auditorium SEATING—A Model Study

    NASA Astrophysics Data System (ADS)

    BARRON, M.; COLEMAN, S.

    2001-01-01

    One of several problems with seat absorption is that only small numbers of seats can be tested in standard reverberation chambers. One method proposed for reverberation chamber measurements involves extrapolation when the absorption coefficient results are applied to actual auditoria. Model seat measurements in an effectively large model reverberation chamber have allowed the validity of this extrapolation to be checked. The alternative barrier method for reverberation chamber measurements was also tested and the two methods were compared. The effect on the absorption of row-row spacing as well as absorption by small numbers of seating rows was also investigated with model seats.

  19. Qualitative models of seat discomfort including static and dynamic factors.

    PubMed

    Ebe, K; Griffin, M J

    2000-06-01

    Judgements of overall seating comfort in dynamic conditions sometimes correlate better with the static characteristics of a seat than with measures of the dynamic environment. This study developed qualitative models of overall seat discomfort to include both static and dynamic seat characteristics. A dynamic factor that reflected how vibration discomfort increased as vibration magnitude increased was combined with a static seat factor which reflected seating comfort without vibration. The ability of the model to predict the relative and overall importance of dynamic and static seat characteristics on comfort was tested in two experiments. A paired comparison experiment, using four polyurethane foam cushions (50, 70, 100, 120 mm thick), provided different static and dynamic comfort when 12 subjects were exposed to one-third octave band random vertical vibration with centre frequencies of 2.5 and 5.5 Hz, at magnitudes of 0.00, 0.25 and 0.50 m x s(-2) rms measured beneath the foam samples. Subject judgements of the relative discomfort of the different conditions depended on both static and dynamic characteristics in a manner consistent with the model. The effect of static and dynamic seat factors on overall seat discomfort was investigated by magnitude estimation using three foam cushions (of different hardness) and a rigid wooden seat at six vibration magnitudes with 20 subjects. Static seat factors (i.e. cushion stiffness) affected the manner in which vibration influenced the overall discomfort: cushions with lower stiffness were more comfortable and more sensitive to changes in vibration magnitude than those with higher stiffness. The experiments confirm that judgements of overall seat discomfort can be affected by both the static and dynamic characteristics of a seat, with the effect depending on vibration magnitude: when vibration magnitude was low, discomfort was dominated by static seat factors; as the vibration magnitude increased, discomfort became dominated by dynamic factors.

  20. A human body model with active muscles for simulation of pretensioned restraints in autonomous braking interventions.

    PubMed

    Osth, Jonas; Brolin, Karin; Bråse, Dan

    2015-01-01

    The aim of this work is to study driver and passenger kinematics in autonomous braking scenarios, with and without pretensioned seat belts, using a whole-body finite element (FE) human body model (HBM) with active muscles. Upper extremity musculature for elbow and shoulder flexion-extension feedback control was added to an HBM that was previously complemented with feedback controlled muscles for the trunk and neck. Controller gains were found using a radial basis function metamodel sampled by making 144 simulations of an 8 ms(-2) volunteer sled test. The HBM kinematics, interaction forces, and muscle activations were validated using a second volunteer data set for the passenger and driver positions, with and without 170 N seat belt pretension, in 11 ms(-2) autonomous braking deceleration. The HBM was then used for a parameter study in which seat belt pretension force and timing were varied from 170 to 570 N and from 0.25 s before to 0.15 s after deceleration onset, in an 11 ms(-2) autonomous braking scenario. The model validation showed that the forward displacements and interaction forces of the HBM correlated with those of corresponding volunteer tests. Muscle activations and head rotation angles were overestimated in the HBM when compared with volunteer data. With a standard seat belt in 11 ms(-2) autonomous braking interventions, the HBM exhibited peak forward head displacements of 153 and 232 mm for the driver and passenger positions. When 570 N seat belt pretension was applied 0.15 s before deceleration onset, a reduction of peak head displacements to 60 and 75 mm was predicted. Driver and passenger responses to autonomous braking with standard and pretensioned restraints were successfully modeled in a whole-body FE HBM with feedback controlled active muscles. Variations of belt pretension force level and timing revealed that belt pretension 0.15 s before deceleration onset had the largest effect in reducing forward head and torso movement caused by the autonomous brake intervention. The displacement of the head relative to the torso for the HBM is quite constant for all variations in timing and belt force; it is the reduced torso displacements that lead to reduced forward head displacements.

  1. Adaptive magnetorheological seat suspension for shock mitigation

    NASA Astrophysics Data System (ADS)

    Singh, Harinder Jit

    This research focuses on theoretical and experimental analysis of an adaptive seat suspension employing magnetorheological energy absorber with the objective of minimizing injury potential to seated occupant of different weights subjected to broader crash intensities. The research was segmented into three tasks: (1) development of magnetorheological energy absorber, (2) biodynamic modeling of a seated occupant, and (3) control schemes for shock mitigation. A linear stroking semi-active magnetorheological energy absorber (MREA) was designed, fabricated and tested for intense impact conditions with piston velocities up to 8 m/s. MREA design was optimized on the basis of Bingham-plastic model (BPM model) in order to maximize the energy absorption capabilities at high impact velocities. Computational fluid dynamics and magnetic FE analysis were conducted to validate MREA performance. Subsequently, low-speed cyclic testing (0-2 Hz subjected to 0-5.5 A) and high-speed drop testing (0-4.5 m/s at 0 A) were conducted for quantitative comparison with the numerical simulations. Later, a nonlinear four degrees-of-freedom biodynamic model representing a seated 50th percentile male occupant was developed on the basis of experiments conducted on Hybrid II 50th percentile male anthropomorphic test device. The response of proposed biodynamic model was compared quantitatively against two different biodynamic models from the literature that are heavily implemented for obtaining biodynamic response under impact conditions. The proposed biodynamic model accurately predicts peak magnitude, overall shape and the duration of the biodynamic transient response, with minimal phase shift. The biodynamic model was further validated against 16 impact tests conducted on horizontal accelerator facility at NAVAIR for two different shock intensities. Compliance effects of human body were also investigated on the performance of adaptive seat suspension by comparing the proposed biodynamic model response with that of a rigid body response. Finally, three different control schemes were analyzed for maximizing shock attenuation using semi-active magnetorheological energy absorber. High-speed drop experiments were conducted by dropping two rigid payloads of 240 and 340 lb mass from heights of 35 and 60 inch to simulate different impact intensities. First control scheme called constant stroking load control offered inflexible stroking load irrespective of varying impact severity or occupant weight. The other two control schemes: terminal trajectory control and optimal control adapted stroking load as per the shock intensity. The control schemes were compared on the basis of their adaptability and ease of implementation. These tools can serve as the basis for future research and development of state-of-the-art crashworthy seat suspension designs that further enhance occupant protection compared to limited performance of existing passive crashworthy concepts.

  2. Modeling the Effect of Enlarging Seating Room on Passengers' Preference of Taiwan's Domestic Airlines

    NASA Technical Reports Server (NTRS)

    Lu, Jin-Long; Tsai, Li-Non

    2003-01-01

    This study addresses the need for measuring the effect of enlarging seating room in airplane on passengers' preferences of airline in Taiwan. The results can assist Taiwan's domestic air carriers in better understanding their customers' expectations. Stated choice experiment is used to incorporate passengers' trade-offs in the preferred measurement, and three major attributes are taken into account in the stated choice experiment: (1) type of seat (enlarged or not), (2) price, and (3) brand names of airlines. Furthermore, a binary logit model is used to model the choice behavior of air passengers. The findings show that the type of seat is a major significant variable; price and airline's brand are also significant as well. It concludes that air carriers should put more emphasis on the issue of improving the quality of seat comfort. Keywords: Passengers' preference, Enlarged seating room, Stated choice experiment, Binary logit model.

  3. Development of a multi-body nonlinear model for a seat-occupant system

    NASA Astrophysics Data System (ADS)

    Azizi, Yousof

    A car seat is an important component of today's cars, which directly affects ride comfort experienced by occupants. Currently, the process of ride comfort evaluation is subjective. Alternatively, the ride comfort can be evaluated by a series of objective metrics in the dynamic response of the occupant. From previous studies it is well known that the dynamic behavior of a seat-occupant system is greatly affected by soft nonlinear viscoelastic materials used in the seat cushion. Therefore, in this research, especial attention was given to efficiently modeling the behavior of seat cushion. In the first part of this research, a phenomenological nonlinear viscoelastic foam model was proposed and its ability to capture uniaxial behavior of foam was investigated. The model is based on the assumption that the total stress can be decomposed into the sum of a nonlinear elastic component, modeled by a higher order polynomial of strain, and a nonlinear hereditary type viscoelastic component. System identification procedures were developed to estimate the model parameters using uniaxial cyclic compression data from experiments conducted at different rates on two types of low density polyurethane foams and three types of high density CONFOR foams. The performance of the proposed model was compared to that of other traditional continuum models. For each foam type, it was observed that lower order models are sufficient to describe the uniaxial behavior of the foam compressed at different rates. Although, the estimated model parameters were functions of the input strain rate. Alternatively, higher order comprehensive models, with strain independent parameters, were estimated as well. The estimated comprehensive model predicts foam responses under different compression rates. Also, a methodology was proposed to predict the stress-response of a layered foam system using the estimated models of each foam in the layers. Next, the estimated foam model was incorporated into a single-degree of freedom foam-mass model which is also the simplest model of seat-occupant systems. The steady-state response of the system when it is subjected to harmonic base excitation was studied using the incremental harmonic balance method. The incremental harmonic balance method was used to reduce the time required to generate the steady-state response of the system. The incremental harmonic balance method was used to reduce the time required to generate the steady-state response of the system. Experiments are conducted on a single-degree of freedom foam-mass system subjected to harmonic base excitation. Initially, the simulated response predictions were found to deviate from the experimental results. The foam-mass model was then modified to incorporate rate dependency of foam parameters resulting in response predictions that were in good agreement with experimental results. In the second part of this research, the dynamic response of a seat-occupant system was examined through a more realistic planar multi-body seat-occupant model. A constraint Lagrangian formulation was used to derive the governing equations for the seat-occupant model. First, the governing equations were solved numerically to obtain the occupant transient response, the occupant's H-Point location and the interfacial pressure distribution. Variations in the H-Point location and the seat-occupant pressure distribution with changes in the seat-occupant parameters, including the seat geometry and the occupant's characteristics, were studied. The estimated pressure was also investigated experimentally and was found to match with the results obtained using the seat-occupant model. Next, the incremental harmonic balance method was modified and used to obtain the occupant's steady-state response when the seat-occupant system was subjected to harmonic base excitation at different frequencies. The system frequency response and mode shapes at different frequencies were also obtained and compared to the previously measured experimental frequency responses. Finally, variations in the estimated frequency response with changes in the seat-occupant parameters, including the seat geometry and the occupant characteristics, were studied.

  4. Boeing CST-100 Starliner Seat Test

    NASA Image and Video Library

    2017-02-21

    Engineers working with Boeing's CST-100 Starliner test the spacecraft's seat design in Mesa, Arizona, focusing on how the spacecraft seats would protect an astronaut's head, neck and spine during the 240-mile descent from the International Space Station. The company incorporated test dummies for a detailed analysis of impacts on a crew returning to earth. The human-sized dummies were equipped with sensitive instrumentation and secured in the seats for 30 drop tests at varying heights, angles, velocities and seat orientations in order to mimic actual landing conditions. High-speed cameras captured the footage for further analysis. The Starliner spacecraft is being developed in partnership with NASA's Commercial Crew Program.

  5. Comparison of simulator fidelity model predictions with in-simulator evaluation data

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Mckissick, B. T.; Ashworth, B. R.

    1983-01-01

    A full factorial in simulator experiment of a single axis, multiloop, compensatory pitch tracking task is described. The experiment was conducted to provide data to validate extensions to an analytic, closed loop model of a real time digital simulation facility. The results of the experiment encompassing various simulation fidelity factors, such as visual delay, digital integration algorithms, computer iteration rates, control loading bandwidths and proprioceptive cues, and g-seat kinesthetic cues, are compared with predictions obtained from the analytic model incorporating an optimal control model of the human pilot. The in-simulator results demonstrate more sensitivity to the g-seat and to the control loader conditions than were predicted by the model. However, the model predictions are generally upheld, although the predicted magnitudes of the states and of the error terms are sometimes off considerably. Of particular concern is the large sensitivity difference for one control loader condition, as well as the model/in-simulator mismatch in the magnitude of the plant states when the other states match.

  6. Vertical Drop Testing and Analysis of the WASP Helicopter Skid Gear

    NASA Technical Reports Server (NTRS)

    Fuchs, Yvonne T.; Jackson, Karen E.

    2008-01-01

    Human occupant modeling and injury risk assessment have been identified as areas of research for improved prediction of rotorcraft crashworthiness within the NASA Aeronautics Program's Subsonic Rotary Wing Project. As part of this effort, an experimental program was conducted to assess the impact performance of a skid gear for use on the WASP kit-built helicopter, which is marketed by HeloWerks, Inc. of Hampton, Virginia. Test data from a drop test at an impact velocity of 8.4 feet-per-second were used to assess a finite element model of the skid gear test article. This assessment included human occupant analytic models developed for execution in LS-DYNA. The test article consisted of an aluminum skid gear mounted beneath a steel plate. A seating platform was attached to the upper surface of the steel plate, and two 95th percentile Hybrid III male Aerospace Anthropomorphic Test Devices (ATDs) were seated on the platform and secured using a four-point restraint system. The goal of the test-analysis correlation is to further the understanding of LS-DYNA ATD occupant models and responses in the vertical (or spinal) direction. By correlating human occupant experimental test data for a purely vertical impact with the LS-DYNA occupant responses, improved confidence in the use of these tools and better understanding of the limitations of the automotive-based occupant models for aerospace application can begin to be developed.

  7. Vertical Drop Testing and Analysis of the WASP Helicopter Skid Gear

    NASA Technical Reports Server (NTRS)

    Fuchs, Yvonne T.; Jackson, Karen E.

    2008-01-01

    Human occupant modeling and injury risk assessment have been identified as areas of research for improved prediction of rotorcraft crashworthiness within the NASA Aeronautics Program s Subsonic Rotary Wing Project. As part of this effort, an experimental program was conducted to assess the impact performance of a skid gear for use on the WASP kit-built helicopter, which is marketed by HeloWerks, Inc. of Hampton, Virginia. Test data from a drop test at an impact velocity of 8.4 feet-per-second were used to assess a finite element model of the skid gear test article. This assessment included human occupant analytic models developed for execution in LS-DYNA. The test article consisted of an aluminum skid gear mounted beneath a steel plate. A seating platform was attached to the upper surface of the steel plate, and two 95th percentile Hybrid III male Aerospace Anthropomorphic Test Devices (ATDs) were seated on the platform and secured using a four-point restraint system. The goal of the test-analysis correlation is to further the understanding of LS-DYNA ATD occupant models and responses in the vertical (or spinal) direction. By correlating human occupant experimental test data for a purely vertical impact with the LS-DYNA occupant responses, improved confidence in the use of these tools and better understanding of the limitations of the automotive-based occupant models for aerospace application can begin to be developed.

  8. Physiological Motion Axis for the Seat of a Dynamic Office Chair.

    PubMed

    Kuster, Roman Peter; Bauer, Christoph Markus; Oetiker, Sarah; Kool, Jan

    2016-09-01

    The aim of this study was to determine and verify the optimal location of the motion axis (MA) for the seat of a dynamic office chair. A dynamic seat that supports pelvic motion may improve physical well-being and decrease the risk of sitting-associated disorders. However, office work requires an undisturbed view on the work task, which means a stable position of the upper trunk and head. Current dynamic office chairs do not fulfill this need. Consequently, a dynamic seat was adapted to the physiological kinematics of the human spine. Three-dimensional motion tracking in free sitting helped determine the physiological MA of the spine in the frontal plane. Three dynamic seats with physiological, lower, and higher MA were compared in stable upper body posture (thorax inclination) and seat support of pelvic motion (dynamic fitting accuracy). Spinal kinematics during sitting and walking were compared. The physiological MA was at the level of the 11th thoracic vertebra, causing minimal thorax inclination and high dynamic fitting accuracy. Spinal motion in active sitting and walking was similar. The physiological MA of the seat allows considerable lateral flexion of the spine similar to walking with a stable upper body posture and a high seat support of pelvic motion. The physiological MA enables lateral flexion of the spine, similar to walking, without affecting stable upper body posture, thus allowing active sitting while focusing on work. © 2016, Human Factors and Ergonomics Society.

  9. Kineto-dynamic design optimisation for vehicle-specific seat-suspension systems

    NASA Astrophysics Data System (ADS)

    Shangguan, Wen-Bin; Shui, Yijie; Rakheja, Subhash

    2017-11-01

    Designs and analyses of seat-suspension systems are invariably performed considering effective vertical spring rate and damping properties, while neglecting important contributions due to kinematics of the widely used cross-linkage mechanism. In this study, a kineto-dynamic model of a seat-suspension is formulated to obtain relations for effective vertical suspension stiffness and damping characteristics as functions of those of the air spring and the hydraulic damper, respectively. The proposed relations are verified through simulations of the multi-body dynamic model of the cross-linkage seat-suspension in the ADAMS platform. The validity of the kineto-dynamic model is also demonstrated through comparisons of its vibration transmission response with the experimental data. The model is used to identify optimal air spring coordinates to attain nearly constant natural frequency of the suspension, irrespective of the seated body mass and seated height. A methodology is further proposed to identify optimal damping requirements for vehicle-specific suspension designs to achieve minimal seat effective amplitude transmissibility (SEAT) and vibration dose value (VDV) considering vibration spectra of different classes of earthmoving vehicles. The shock and vibration isolation performance potentials of the optimal designs are evaluated under selected vehicle vibration superimposed with shock motions. Results show that the vehicle-specific optimal designs could provide substantial reductions in the SEAT and VDV values for the vehicle classes considered.

  10. Determination of crash test pulses and their application to aircraft seat analysis

    NASA Technical Reports Server (NTRS)

    Alfaro-Bou, E.; Williams, M. S.; Fasanella, E. L.

    1981-01-01

    Deceleration time histories (crash pulses) from a series of twelve light aircraft crash tests conducted at NASA Langley Research Center (LaRC) were analyzed to provide data for seat and airframe design for crashworthiness. Two vertical drop tests at 12.8 m/s (42 ft/s) and 36 G peak deceleration (simulating one of the vertical light aircraft crash pulses) were made using an energy absorbing light aircraft seat prototype. Vertical pelvis acceleration measured in a 50 percentile dummy in the energy absorbing seat were found to be 45% lower than those obtained from the same dummy in a typical light aircraft seat. A hybrid mathematical seat-occupant model was developed using the DYCAST nonlinear finite element computer code and was used to analyze a vertical drop test of the energy absorbing seat. Seat and occupant accelerations predicted by the DYCAST model compared quite favorably with experimental values.

  11. Human Tolerance to Rapidly Applied Accelerations: A Summary of the Literature

    NASA Technical Reports Server (NTRS)

    Eiband, A. Martin

    1959-01-01

    The literature is surveyed to determine human tolerance to rapidly applied accelerations. Pertinent human and animal experiments applicable to space flight and to crash impact forces are analyzed and discussed. These data are compared and presented on the basis of a trapezoidal pulse. The effects of body restraint and of acceleration direction, onset rate, and plateau duration on the maximum tolerable and survivable rapidly applied accelerations are shown. Results of the survey indicate that adequate torso and extremity restraint is the primary variable in tolerance to rapidly applied accelerations. The harness, or restraint system, must be arranged to transmit the major portion of the accelerating force directly to the pelvic structure and not via the vertebral column. When the conditions of adequate restraint have been met, then the other variables, direction, magnitude, and onset rate of rapidly applied accelerations, govern maximum tolerance and injury limits. The results also indicate that adequately stressed aft-faced passenger seats offer maximum complete body support with minimum objectionable harnessing. Such a seat, whether designed for 20-, 30-, or 40-G dynamic loading, would include lap strap, chest (axillary) strap, and winged-back seat to increase headward and lateral G protection, full-height integral head rest, arm rests (load-bearing) with recessed hand-holds and provisions to prevent arms from slipping either laterally or beyond the seat back, and leg support to keep the legs from being wedged under the seat. For crew members and others whose duties require forward-facing seats, maximum complete body support requires lap, shoulder, and thigh straps, lap-belt tie-down strap, and full-height seat back with integral head support.

  12. Aircraft Cabin Turbulence Warning Experiment

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Larcher, Kenneth

    2006-01-01

    New turbulence prediction technology offers the potential for advance warning of impending turbulence encounters, thereby allowing necessary cabin preparation time prior to the encounter. The amount of time required for passengers and flight attendants to be securely seated (that is, seated with seat belts fastened) currently is not known. To determine secured seating-based warning times, a consortium of aircraft safety organizations have conducted an experiment involving a series of timed secured seating trials. This demonstrative experiment, conducted on October 1, 2, and 3, 2002, used a full-scale B-747 wide-body aircraft simulator, human passenger subjects, and supporting staff from six airlines. Active line-qualified flight attendants from three airlines participated in the trials. Definitive results have been obtained to provide secured seating-based warning times for the developers of turbulence warning technology

  13. Installation of child safety seats in selected 1988-1989 model year automobiles

    DOT National Transportation Integrated Search

    1989-06-01

    The study tested whether currently marketed child safety seats are difficult to install in current model automobiles. The study also tested whether once installed, the child seats remain securely fastened when rocked or tilted. Thirteen toddler and f...

  14. Average male and female virtual dummy model (BioRID and EvaRID) simulations with two seat concepts in the Euro NCAP low severity rear impact test configuration.

    PubMed

    Linder, Astrid; Holmqvist, Kristian; Svensson, Mats Y

    2018-05-01

    Soft tissue neck injuries, also referred to as whiplash injuries, which can lead to long term suffering accounts for more than 60% of the cost of all injuries leading to permanent medical impairment for the insurance companies, with respect to injuries sustained in vehicle crashes. These injuries are sustained in all impact directions, however they are most common in rear impacts. Injury statistics have since the mid-1960s consistently shown that females are subject to a higher risk of sustaining this type of injury than males, on average twice the risk of injury. Furthermore, some recently developed anti-whiplash systems have revealed they provide less protection for females than males. The protection of both males and females should be addresses equally when designing and evaluating vehicle safety systems to ensure maximum safety for everyone. This is currently not the case. The norm for crash test dummies representing humans in crash test laboratories is an average male. The female part of the population is not represented in tests performed by consumer information organisations such as NCAP or in regulatory tests due to the absence of a physical dummy representing an average female. Recently, the world first virtual model of an average female crash test dummy was developed. In this study, simulations were run with both this model and an average male dummy model, seated in a simplified model of a vehicle seat. The results of the simulations were compared to earlier published results from simulations run in the same test set-up with a vehicle concepts seat. The three crash pulse severities of the Euro NCAP low severity rear impact test were applied. The motion of the neck, head and upper torso were analysed in addition to the accelerations and the Neck Injury Criterion (NIC). Furthermore, the response of the virtual models was compared to the response of volunteers as well as the average male model, to that of the response of a physical dummy model. Simulations with the virtual male and female dummy models revealed differences in dynamic response related to the crash severity, as well as between the two dummies in the two different seat models. For the comparison of the response of the virtual models to the response of the volunteers and the physical dummy model, the peak angular motion of the first thoracic vertebra as found in the volunteer tests and mimicked by the physical dummy were not of the same magnitude in the virtual models. The results of the study highlight the need for an extended test matrix that includes an average female dummy model to evaluate the level of occupant protection different seats provide in vehicle crashes. This would provide developers with an additional tool to ensure that both male and female occupants receive satisfactory protection and promote seat concepts that provide the best possible protection for the whole adult population. This study shows that using the mathematical models available today can provide insights suitable for future testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Influence of a detailed model of man on proton depth/dose calculation

    NASA Technical Reports Server (NTRS)

    Kase, P. G.

    1972-01-01

    The development of a detailed radiation shielding model of man is discussed. This model will be used to plan for manned space missions in which sensitive human tissues may be subjected to excessive radiation. The model has two configurations: standing and seated. More than 2500 individual elements were used to depict the external conformation, skeleton, and principal organs. The model is briefly described and several examples of its application to mission planning are given.

  16. Impact of scaling and body movement on contaminant transport in airliner cabins

    NASA Astrophysics Data System (ADS)

    Mazumdar, Sagnik; Poussou, Stephane B.; Lin, Chao-Hsin; Isukapalli, Sastry S.; Plesniak, Michael W.; Chen, Qingyan

    2011-10-01

    Studies of contaminant transport have been conducted using small-scale models. This investigation used validated Computational Fluid Dynamics (CFD) to examine if a small-scale water model could reveal the same contaminant transport characteristics as a full-scale airliner cabin. But due to similarity problems and the difficulty of scaling the geometry, a perfect scale up from a small water model to an actual air model was found to be impossible. The study also found that the seats and passengers tended to obstruct the lateral transport of the contaminants and confine their spread to the aisle of the cabin. The movement of a crew member or a passenger could carry a contaminant in its wake to as many rows as the crew member or passenger passed. This could be the reason why a SARS infected passenger could infect fellow passengers who were seated seven rows away. To accurately simulate the contaminant transport, the shape of the moving body should be a human-like model.

  17. Comfort model for automobile seat.

    PubMed

    da Silva, Lizandra da; Bortolotti, Silvana Ligia Vincenzi; Campos, Izabel Carolina Martins; Merino, Eugenio Andrés Díaz

    2012-01-01

    Comfort on automobile seats is lived daily by thousands of drivers. Epistemologically, comfort can be understood under the theory of complexity, since it emerges from a chain of interrelationships between man and several elements of the system. This interaction process can engender extreme comfort associated to the feeling of pleasure and wellbeing or, on the other hand, lead to discomfort, normally followed by pain. This article has for purpose the development of a theoretical model that favours the comfort feature on automobile seats through the identification of its facets and indicators. For such, a theoretical study is resorted to, allowing the mapping of elements that constitute the model. The results present a comfort model on automobile seats that contemplates the (physical, psychological, object, context and environment) facets. This model is expected to contribute with the automobile industry for the development of improvements of the ergonomic project of seats to increase the comfort noticed by the users.

  18. De Sedibus et Causis Morborum: is Essential Tremor a Primary Disease of the Cerebellum?

    PubMed

    Louis, Elan D

    2016-06-01

    Morgagni's 1761 publication of De sedibus et causis morborum (i.e., of the Seats and Causes of Diseases) represented a paradigmatic moment in the history of medicine. The book ushered in a new way of conceptualizing human disease, shattering old dogma, and linking constellations of symptoms and signs (i.e., clinical disease) with anatomic pathology in specific organs (i.e., organ disease). This was the anatomical-clinical method, and it attempted to unveil "the seat" of each disease in a specific organ. Essential tremor (ET) is among the most common neurological diseases. There is little debate that the origin of ET lies in the brain, but if one tries to delve more deeply than this, things become murky. The dogma for the past 40 years has been that the seat of ET is the inferior olivary nucleus. Closer scrutiny of this model, however, has revealed its many flaws, and the model, based on little if any empiric evidence, has increasingly lost favor. Arising from a wealth of research in recent years is a growing body of knowledge that links ET to a disarrangement of the cerebellum. Data from a variety of sources reviewed in this issue (clinical, neuroimaging, neurochemical, animal model, physiological, and pathological) link ET to the cerebellum. That the cerebellum is involved in an abnormal brain loop that is responsible for ET is not debated. The tantalizing question is whether an abnormality in the cerebellum is the prime mover, and whether the cerebellum is the seat of this particular disease.

  19. Crashworthy Seats Would Afford Superior Protection

    NASA Technical Reports Server (NTRS)

    Gohmert, Dustin

    2009-01-01

    Seats to prevent or limit crash injuries to astronauts aboard the crew vehicle of the Orion spacecraft are undergoing development. The design of these seats incorporates and goes beyond crash-protection concepts embodied in prior spacecraft and racing-car seats to afford superior protection against impacts. Although the seats are designed to support astronauts in a recumbent, quasi-fetal posture that would likely not be suitable for non-spacecraft applications, parts of the design could be adapted to military and some civilian aircraft seats and to racing car seats to increase levels of protection. The main problem in designing any crashworthy seat is to provide full support of the occupant against anticipated crash and emergency-landing loads so as to safely limit motion, along any axis, of any part of the occupant s body relative to (1) any other part of the occupant s body, (2) the spacecraft or other vehicle, and (3) the seat itself. In the original Orion spacecraft application and in other applications that could easily be envisioned, the problem is complicated by severe limits on space available for the seat, a requirement to enable rapid egress by the occupant after a crash, and a requirement to provide for fitting of the seat to a wide range of sizes and shapes of a human body covered by a crash suit, space suit, or other protective garment. The problem is further complicated by other Orion-application-specific requirements that must be omitted here for the sake of brevity. To accommodate the wide range of crewmember body lengths within the limits on available space in the original Orion application, the design provides for taller crewmembers to pull their legs back closer toward their chests, while shorter crewmembers can allow their legs to stretch out further. The range of hip-support seat adjustments needed to effect this accommodation, as derived from NASA s Human Systems Integration Standard, was found to define a parabolic path along which the knees must be positioned. For a given occupant, the specific position along the path depends on the distance from the heel to the back of the knee. The application of the concept of parabolic adjustment of the hip-support structure caused the seat pan to also take on a parabolic shape, yielding the unanticipated additional benefit that the seat pan fits the occupant s buttocks and thighs more nearly conformally than do seat pans of prior design. This more nearly conformal fit effectively eliminates a void between the occupant s body and the seat pan, thereby helping to prevent what, in prior seat designs, was shifting of the occupant s body into that void during an impact.

  20. Parameter study for child injury mitigation in near-side impacts through FE simulations.

    PubMed

    Andersson, Marianne; Pipkorn, Bengt; Lövsund, Per

    2012-01-01

    The objective of this study is to investigate the effects of crash-related car parameters on head and chest injury measures for 3- and 12-year-old children in near-side impacts. The evaluation was made using a model of a complete passenger car that was impacted laterally by a barrier. The car model was validated in 2 crash conditions: the Insurance Institute for Highway Safety (IIHS) and the US New Car Assessment Program (NCAP) side impact tests. The Small Side Impact Dummy (SID-IIs) and the human body model 3 (HBM3) (Total HUman Model for Safety [THUMS] 3-year-old) finite element models were used for the parametric investigation (HBM3 on a booster). The car parameters were as follows: vehicle mass, side impact structure stiffness, a head air bag, a thorax-pelvis air bag, and a seat belt with pretensioner. The studied dependent variables were as follows: resultant head linear acceleration, resultant head rotational acceleration, chest viscous criterion, rib deflection, and relative velocity at head impact. The chest measurements were only considered for the SID-IIs. The head air bag had the greatest effect on the head measurements for both of the occupant models. On average, it reduced the peak head linear acceleration by 54 g for the HBM3 and 78 g for the SID-IIs. The seat belt had the second greatest effect on the head measurements; the peak head linear accelerations were reduced on average by 39 g (HBM3) and 44 g (SID-IIs). The high stiffness side structure increased the SID-IIs' head acceleration, whereas it had marginal effect on the HBM3. The vehicle mass had a marginal effect on SID-IIs' head accelerations, whereas the lower vehicle mass caused 18 g higher head acceleration for HBM3 and the greatest rotational acceleration. The thorax-pelvis air bag, vehicle mass, and seat belt pretensioner affected the chest measurements the most. The presence of a thorax-pelvis air bag, high vehicle mass, and a seat belt pretensioner all reduced the chest viscous criterion (VC) and peak rib deflection in the SID-IIs. The head and thorax-pelvis air bags have the potential to reduce injury measurements for both the SID-IIs and the HBM3, provided that the air bag properties are designed to consider these occupant sizes also. The seat belt pretensioner is also effective, provided that the lateral translation of the torso is managed by other features. The importance of lateral movement management is greater the smaller the occupant is. Light vehicles require interior restraint systems of higher performance than heavy vehicles do to achieve the same level of injury measures for a given side structure. Copyright © 2012 Taylor & Francis Group, LLC

  1. Securing a (New) Seat at the Table: Distributed Leadership and School Psychologists

    ERIC Educational Resources Information Center

    Enz, Ashley; McCullum, Charcelor

    2018-01-01

    In a time of greater demands on school systems and increased strain on human and material resources, the need for expanded leadership models is becoming increasingly apparent. As a result, educational stakeholders are investing in leadership roles beyond the traditional school administrators, engaging various educators' leadership capacities at…

  2. Evaluation of kinematics and injuries to restrained occupants in far-side crashes using full-scale vehicle and human body models.

    PubMed

    Arun, Mike W J; Umale, Sagar; Humm, John R; Yoganandan, Narayan; Hadagali, Prasanaah; Pintar, Frank A

    2016-09-01

    The objective of the current study was to perform a parametric study with different impact objects, impact locations, and impact speeds by analyzing occupant kinematics and injury estimations using a whole-vehicle and whole-body finite element-human body model (FE-HBM). To confirm the HBM responses, the biofidelity of the model was validated using data from postmortem human surrogate (PMHS) sled tests. The biofidelity of the model was validated using data from sled experiments and correlational analysis (CORA). Full-scale simulations were performed using a restrained Global Human Body Model Consortium (GHBMC) model seated on a 2001 Ford Taurus model using a far-side lateral impact condition. The driver seat was placed in the center position to represent a nominal initial impact condition. A 3-point seat belt with pretensioner and retractor was used to restrain the GHBMC model. A parametric study was performed using 12 simulations by varying impact locations, impacting object, and impact speed using the full-scale models. In all 12 simulations, the principal direction of force (PDOF) was selected as 90°. The impacting objects were a 10-in.-diameter rigid vertical pole and a movable deformable barrier. The impact location of the pole was at the C-pillar in the first case, at the B-pillar in the second case, and, finally, at the A-pillar in the third case. The vehicle and the GHBMC models were defined an initial velocity of 35 km/h (high speed) and 15 km/h (low speed). Excursion of the head center of gravity (CG), T6, and pelvis were measured from the simulations. In addition, injury risk estimations were performed on head, rib cage, lungs, kidneys, liver, spleen, and pelvis. The average CORA rating was 0.7. The shoulder belt slipped in B- and C-pillar impacts but somewhat engaged in the A-pillar case. In the B-pillar case, the head contacted the intruding struck-side structures, indicating higher risk of injury. Occupant kinematics depended on interaction with restraints and internal structures-especially the passenger seat. Risk analysis indicated that the head had the highest risk of sustaining an injury in the B-pillar case compared to the other 2 cases. Higher lap belt load (3.4 kN) may correspond to the Abbreviated Injury Scale (AIS) 2 pelvic injury observed in the B-pillar case. Risk of injury to other soft anatomical structures varied with impact configuration and restraint interaction. The average CORA rating was 0.7. In general, the results indicated that the high-speed impacts against the pole resulted in severe injuries, higher excursions followed by low-speed pole, high-speed moving deformable barrier (MDB), and low-speed MDB impacts. The vehicle and occupant kinematics varied with different impact setups and the latter kinematics were likely influenced by restraint effectiveness. Increased restraint engagement increased the injury risk to the corresponding anatomic structure, whereas ineffective restraint engagement increased the occupant excursion, resulting in a direct impact to the struck-side interior structures.

  3. Multilevel Vehicle Design: Fuel Economy, Mobility and Safety Considerations, Part B. Ground Vehicle Weight and Occupant Safety Under Blast Loading

    DTIC Science & Technology

    2010-05-11

    UNCLASSIFIED 11 Occupant Model Inputs: Blast Pulse (apeak) Seat Cushion Foam Stiffness (sc) Seat EA System Stiffness (sEA) Outputs: Upper Neck Axial Force...Floor Pad Surrogate model from linear regression on 300 data points: Inputs: Blast Pulse (apeak) Seat Cushion Foam Stiffness (sc) Seat EA System...B Ground Vehicle Weight and Occupant Safety Under Blast Loading Steven Hoffenson, presenter (U of M) Panos Papalambros, PI (U of M) Michael

  4. 77 FR 16910 - Special Conditions: Boeing Model 787 Series Airplanes; Single-place Side-facing Seats With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ...-0311; Special Conditions No. 25-458-SC] Special Conditions: Boeing Model 787 Series Airplanes; Single... associated with single-place side-facing seats with inflatable lapbelts. The applicable airworthiness... have a novel or unusual design feature associated with single-place side-facing seats with inflatable...

  5. Vibration control of an energy regenerative seat suspension with variable external resistance

    NASA Astrophysics Data System (ADS)

    Ning, Donghong; Sun, Shuaishuai; Du, Haiping; Li, Weihua; Zhang, Nong

    2018-06-01

    In this paper, an energy regenerative seat suspension with a variable external resistance is proposed and built, and a semi-active controller for its vibration control is also designed and validated. The energy regenerative seat suspension is built with a three-phase generator and a gear reducer, which are installed in the scissors structure centre of the seat suspension, and the vibration energy is directly harvested from the rotary movement of suspension's scissors structure. The electromagnetic torque of the semi-active seat suspension actuator is controlled by an external variable resistor. An integrated model including the seat suspension's kinematics and the generator is built and proven to match the test result very well. A simplified experimental phenomenon model is also built based on the test results for the controller design. A state feedback H∞ controller is proposed for the regenerative seat suspension's semi-active vibration control. The proposed regenerative seat suspension and its controller are validated with both simulations and experiments. A well-tuned passive seat suspension is applied to evaluate the regenerative seat's performance. Based on ISO 2631-1, the frequency-weighted root mean square (FW-RMS) acceleration of the proposed seat suspension has a 22.84% reduction when compared with the passive one, which indicates the improvement of ride comfort. At the same time, the generated RMS power is 1.21 W. The proposed regenerative seat suspension can greatly improve the driver's ride comfort and has the potential to be developed to a self-powered semi-active system.

  6. The effect of seat position on manual wheelchair propulsion biomechanics: a quasi-static model-based approach.

    PubMed

    Richter, W M

    2001-12-01

    The position of the seat relative to the rear wheels is generally adjusted to modify the rearward stability of the wheelchair. Recent studies have shown that seat position also has an effect on propulsion biomechanics and suggest that seat position can be optimized. A quasi-static wheelchair propulsion model was developed to investigate the mechanism by which seat position affects propulsion biomechanics. Inputs to the model include the length of the user's arm segments, the position of the user's shoulder, the size of handrim used and the force profile on the handrim. Outputs from the model include joint kinematics, joint torques, push angle, and push frequency. Handrim force profile was determined by averaging the force profile of five wheelchair users. Force profiles were measured using the SMARTWheel. The effect of seat position on push angle was found to be directly affected by the length of the position vector from the hub of the wheel to the shoulder and indirectly affected by the angular orientation of the vector. Decreasing hub to shoulder length was found to increase push angle, decrease push frequency, decrease shoulder torque and increase elbow extension torque. It is suggested that future research investigating the role of seat position on propulsion biomechanics include both the kinematics and kinetics of the upper extremity.

  7. Experimental investigation of biodynamic human body models subjected to whole-body vibration during a vehicle ride.

    PubMed

    Taskin, Yener; Hacioglu, Yuksel; Ortes, Faruk; Karabulut, Derya; Arslan, Yunus Ziya

    2018-02-06

    In this study, responses of biodynamic human body models to whole-body vibration during a vehicle ride were investigated. Accelerations were acquired from three different body parts, such as the head, upper torso and lower torso, of 10 seated passengers during a car ride while two different road conditions were considered. The same multipurpose vehicle was used during all experiments. Additionally, by two widely used biodynamic models in the literature, a set of simulations were run to obtain theoretical accelerations of the models and were compared with those obtained experimentally. To sustain a quantified comparison between experimental and theoretical approaches, the root mean square acceleration and acceleration spectral density were calculated. Time and frequency responses of the models demonstrated that neither of the models showed the best prediction performance of the human body behaviour in all cases, indicating that further models are required for better prediction of the human body responses.

  8. Dynamic Characteristics and Human Perception of Vibration Aboard a Military Propeller Aircraft

    DTIC Science & Technology

    2007-09-01

    a significant reduction in the X-axis seat pan vibration as compared to the original operational seat cushion at the blade passage frequency ( BPF ...system characteristics at higher frequencies. A body region perception survey suggested that the subjects were most sensitive to the BPF component of...perception of the exposure. Current human exposure guidelines may not optimally reflect these relationships for assessing higher frequency propeller

  9. Establishing the Biodynamics Data Resource (BDR): Human Volunteer Impact Acceleration Research Data in the BDR

    DTIC Science & Technology

    2009-10-01

    accelerations (+Z) were applied to HRVs in the supine position to mimic the acceleration of an ejection seat , while runs simulating aircraft crashes were...Naval Biodynamics Laboratory, 1985). The vertical testing provided a more authentic ejection seat simulation than was achievable using axial...impact acceleration exposures with hundreds of human research volunteers. The resulting volumes of kinematic and physiological data serve as a

  10. A comparison of self-report and direct observation of booster seat use in Latino families.

    PubMed

    Quistberg, D Alex; Lozano, Paula; Mack, Christopher D; Schwartz, Rachel; Ebel, Beth E

    2010-08-01

    To develop a reliable self-report tool for measuring child booster seat use among Latino families. Cross-sectional and observational survey of a convenience sample. Five retail stores in King County, Washington. 50 parents of children 4-8 years old that self-identified as Latino or Hispanic. Parent-reported measures of how often the child uses a booster seat, if the child used a booster seat on the last trip, how often the child complains about using a booster seat, how often the child asks to not use a booster seat, and how often other families they know use a booster seat. Observed booster seat use by child. 26 children (52%) were observed using a booster seat. Parent-reported booster seat use was a poor predictor of observed booster seat use. Although 34 parents reported that their child 'always' uses a booster seat, 8 (24%) of these children were not using a booster seat. A logistic model to predict booster seat use had a sensitivity of 81% and a specificity of 71%, and misclassified 24% of the participants' observed use. Reliance on parent-reported booster seat use significantly overstated observed booster seat use in the study. Among this study population, accurate determination of booster seat use required direct observation.

  11. Biomechanical considerations for assessing interactions of children and small occupants with inflatable seat belts.

    PubMed

    Rouhana, Stephen W; Sundararajan, Srinivasan; Board, Derek; Prasad, Priya; Rupp, Jonathan D; Miller, Carl S; Jeffreys, Thomas A; Schneider, Lawrence W

    2013-11-01

    NHTSA estimates that more than half of the lives saved (168,524) in car crashes between 1960 and 2002 were due to the use of seat belts. Nevertheless, while seat belts are vital to occupant crash protection, safety researchers continue efforts to further enhance the capability of seat belts in reducing injury and fatality risk in automotive crashes. Examples of seat belt design concepts that have been investigated by researchers include inflatable, 4-point, and reverse geometry seat belts. In 2011, Ford Motor Company introduced the first rear seat inflatable seat belts into production vehicles. A series of tests with child and small female-sized Anthropomorphic Test Devices (ATD) and small, elderly female Post Mortem Human Subjects (PMHS) was performed to evaluate interactions of prototype inflatable seat belts with the chest, upper torso, head and neck of children and small occupants, from infants to young adolescents. Tests simulating a 6-year-old child asleep in a booster seat, with its head lying directly on its shoulder on top of the inflatable seat belt, were considered by engineering judgment, to represent a worst case scenario for interaction of an inflating seat belt with the head and neck of a child and/or small occupant. All evaluations resulted in ATD responses below Injury Assessment Reference Values reported by Mertz et al. (2003). In addition, the tests of the PMHS subjects resulted in no injuries from interaction of the inflating seat belt with the heads, necks, and chests of the subjects. Given the results from the ATD and PMHS tests, it was concluded that the injury risk to children and small occupants from deployment of inflatable seat belt systems is low.

  12. Energy absorption of seated occupants exposed to horizontal vibration and role of back support condition.

    PubMed

    Rakheja, Subhash; Mandapuram, Santosh; Dong, Ren G

    2008-12-01

    Absorbed power characteristics of seated human subjects under fore-aft (x-axis) and lateral (y-axis) vibration are investigated through measurements of dynamic interactions at the two driving-points formed by the body and the seat pan, and upper body and the backrest. The experiments involved: (i) three back support conditions (no back support, and back supported against a vertical and an inclined backrest); (ii) three seat pan heights (425, 390 and 350 mm); and three magnitudes (0.25, 0.5 and 1.0 m/s2 rms acceleration) of band limited random excitations in 0.5-10 Hz frequency range, applied independently along the x- and y- axes. The force responses, measured at the seat pan and the backrest are applied to characterize total energy transfer reflected on the seat pan and the backrest. The mean responses suggest strong contributions due to back support, and direction and magnitude of vibration. In the absence of a back support, the seat pan responses dominated in lower frequency bands centered at 0.63 and 1.25 Hz under both directions of motion. Most significant interactions of the upper body against the back support was observed under fore-aft vibration. The addition of back support caused the seat pan response to converge to a single primary peak near a higher frequency of 4 Hz under x- axis, with only little effect on the y-axis responses. The back support serves as an additional source of vibration to the occupant and an important constraint to limit the fore-aft movement of the upper body and thus relatively higher energy transfer under. The mean responses were further explored to examine the Wd frequency-weighting used for assessing exposure to horizontal vibration. The results show that the current weighting is suited for assessing the vibration exposure of human subjects seated only without a back support.

  13. 76 FR 65101 - Special Conditions: Embraer S.A.; Model EMB 500; Single-Place Side Facing Seat Dynamic Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... anthropomorphic test dummy (ATD) or its equivalent, undeformed floor, no yaw, and with all lateral structural... Side Facing Seat Dynamic Test Requirements AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... installation of a single-place side facing seat on Embraer S.A. EMB 500 aircraft. Side- facing seats are...

  14. Nonconformities in real-world fatal crashes--electronic stability control and seat belt reminders.

    PubMed

    Lie, Anders

    2012-01-01

    Many new safety systems are entering the market. Vision Zero is a safety strategy aiming at the elimination of fatalities and impairing injuries by the use of a holistic model for safe traffic to develop a safe system. The aim of this article is to analyze fatalities in modern cars with respect to the Vision Zero model with special respect to electronic stability control (ESC) systems and modern seat belt reminders (SBRs). The model is used to identify and understand cases where cars with ESC systems lost control and where occupants were unbelted in a seat with seat belt reminders under normal driving conditions. The model for safe traffic was used to analyze in-depth studies of fatal crashes with respect to seat belt use and loss of control. Vehicles from 2003 and later in crashes from January 2004 to mid-2010 were analyzed. The data were analyzed case by case. Cars that were equipped with ESC systems and lost control and occupants not using the seat belt in a seat with a seat belt reminder were considered as nonconformities. A total of 138 fatal crashes involving 152 fatally injured occupants were analyzed. Cars with ESC systems had fewer loss-of-control-relevant cases than cars without ESC systems. Thirteen percent of the ESC-equipped vehicles had loss-of-control-relevant crashes and 36 percent of the cars without ESC systems had loss-of-control-relevant crashes. The analysis indicates that only one car of the 9 equipped with ESC that lost control did it on a road surface with relevant friction when driving within the speed restriction of the road. In seats with seat belt reminders that are in accordance with the European New Car Assessment Programme's (Euro NCAP) protocol, 93 percent of the occupants were using a seat belt. In seats without reminders this number was 74 percent. This study shows that ESC systems result in a very significant reduction in fatal crashes, especially under normal driving conditions. Under extreme driving conditions such as speeding or extremely low friction (snow or on the side of the road), ESC systems can fail in keeping the car under control. Seat belt reminders result in higher seat belt use rates but the level of unbelted occupants is higher than roadside studies have indicated. The holistic Vision Zero approach helped in the analysis by identifying nonconformities and putting these into the safe systems perspective.

  15. Strategies to increase the use of child safety seats : an assessment of current knowledge

    DOT National Transportation Integrated Search

    1986-12-01

    This analytic literature research reports on characteristics of child-safety-seat (CSS) users and nonusers, and on the efficacy of approaches to increasing CSS use. It concentrates on human factors issues in CSS use, excluding technical studies on de...

  16. 75 FR 28478 - Airworthiness Directives; Eurocopter France (ECF) Model AS332L1 and AS332L2 Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... fully tilted the seat shoulder harness could become jammed between the seat and bulkhead. This condition, if not corrected, could result in the shoulder harness binding and causing the inertial reel to... seat backrest is fully tilted, there is a risk of the shoulder harness jamming between the seat and...

  17. Microenvironment temperature prediction between body and seat interface using autoregressive data-driven model.

    PubMed

    Liu, Zhuofu; Wang, Lin; Luo, Zhongming; Heusch, Andrew I; Cascioli, Vincenzo; McCarthy, Peter W

    2015-11-01

    There is a need to develop a greater understanding of temperature at the skin-seat interface during prolonged seating from the perspectives of both industrial design (comfort/discomfort) and medical care (skin ulcer formation). Here we test the concept of predicting temperature at the seat surface and skin interface during prolonged sitting (such as required from wheelchair users). As caregivers are usually busy, such a method would give them warning ahead of a problem. This paper describes a data-driven model capable of predicting thermal changes and thus having the potential to provide an early warning (15- to 25-min ahead prediction) of an impending temperature that may increase the risk for potential skin damages for those subject to enforced sitting and who have little or no sensory feedback from this area. Initially, the oscillations of the original signal are suppressed using the reconstruction strategy of empirical mode decomposition (EMD). Consequentially, the autoregressive data-driven model can be used to predict future thermal trends based on a shorter period of acquisition, which reduces the possibility of introducing human errors and artefacts associated with longer duration "enforced" sitting by volunteers. In this study, the method had a maximum predictive error of <0.4 °C when used to predict the temperature at the seat and skin interface 15 min ahead, but required 45 min data prior to give this accuracy. Although the 45 min front loading of data appears large (in proportion to the 15 min prediction), a relative strength derives from the fact that the same algorithm could be used on the other 4 sitting datasets created by the same individual, suggesting that the period of 45 min required to train the algorithm is transferable to other data from the same individual. This approach might be developed (along with incorporation of other measures such as movement and humidity) into a system that can give caregivers prior warning to help avoid exacerbating the skin disorders of patients who suffer from low body insensitivity and disability requiring them to be immobile in seats for prolonged periods. Copyright © 2015 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  18. WHIPS seat and occupant motions during simulated rear crashes.

    PubMed

    Xiao, Ming; Ivancic, Paul C

    2010-10-01

    Objectives of this study were to investigate the motions of Volvo's Whiplash Protection System (WHIPS) seat and occupant during simulated rear crashes of a human model of the neck (HUMON). HUMON consisted of a human neck specimen (n = 6) mounted to the torso of BioRID II and carrying an anthropometric head stabilized with muscle force replication. HUMON was seated and secured in a 2005 Volvo XC90 minivan seat that included WHIPS and a fixed head restraint. Rear crashes of 9.9 g (ΔV 9.2 kph), 12.0 g (ΔV 11.4 kph), and 13.3 g (ΔV 13.4 kph) were simulated and WHIPS and occupant motions were monitored. Linear regression analyses (P < .05) were used to determine relationships between WHIPS and occupant motion peaks using data from all crashes combined. WHIPS motions consisted of simultaneous rearward and downward translations and extension of the seatback and plastic deformation of the bilateral WHIPS energy-absorbing components. Peak WHIPS motions were linearly correlated only with peak rearward occupant translations. Less rearward pelvis translation was required to cause WHIPS activation as compared to T1 translation. WHIPS reduced peak T1 horizontal acceleration by 39 percent compared to sled acceleration. This was within the range previously reported for WHIPS, between 30 and 60 percent, but higher than the 16 percent reduction previously reported due to active head restraint. Absorption of crash energy occurred during the initial 75 ms and the onset of head support occurred at 114 ms. Differential head-torso motions occurred prior to and during head support, indicating the potential for neck injury even with WHIPS.

  19. Thermal comfort of seats as visualized by infrared thermography.

    PubMed

    Sales, Rosemary Bom Conselho; Pereira, Romeu Rodrigues; Aguilar, Maria Teresa Paulino; Cardoso, Antônio Valadão

    2017-07-01

    Published studies that deal with the question of how the temperature of chair seats influences human activities are few, but the studies considering such a factor, a function of the type of material, could contribute to improvements in the design of chairs. This study evaluates seat temperatures of 8 types of chairs made of different materials. The parts of the furniture that people come into contact with, and the thermal response of the material to heating and cooling have been evaluated. Infrared thermography was used for this, as it is a non-contact technique that does not present any type of risk in the measurement of temperatures. Seats made of synthetic leather (leatherette), wood and polyester fabric were found to have the highest temperatures, and the plywood seat showed the lowest. The study has also revealed that thermography can contribute to studies of thermal comfort of chair seats in addition to determining the most suitable material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Lumbar load attenuation for rotorcraft occupants using a design methodology for the seat impact energy-absorbing system

    NASA Astrophysics Data System (ADS)

    Moradi, Rasoul; Beheshti, Hamid K.; Lankarani, Hamid M.

    2012-12-01

    Aircraft occupant crash-safety considerations require a minimum cushion thickness to limit the relative vertical motion of the seat-pelvis during high vertical impact loadings in crash landings or accidents. In military aircraft and helicopter seat design, due to the potential for high vertical accelerations in crash scenarios, the seat system must be provided with an energy absorber to attenuate the acceleration level sustained by the occupants. Because of the limited stroke available for the seat structure, the design of the energy absorber becomes a trade-off problem between minimizing the stroke and maximizing the energy absorption. The available stroke must be used to prevent bottoming out of the seat as well as to absorb maximum impact energy to protect the occupant. In this study, the energy-absorbing system in a rotorcraft seat design is investigated using a mathematical model of the occupant/seat system. Impact theories between interconnected bodies in multibody mechanical systems are utilized to study the impact between the seat pan and the occupant. Experimental responses of the seat system and the occupant are utilized to validate the results from this study for civil and military helicopters according to FAR 23 and 25 and MIL-S-58095 requirements. A model for the load limiter is proposed to minimize the lumbar load for the occupant by minimizing the relative velocity between the seat pan and the occupant's pelvis. The modified energy absorber/load limiter is then implemented for the seat structure so that it absorbs the energy of impact in an effective manner and below the tolerable limit for the occupant in a minimum stroke. Results show that for a designed stroke, the level of occupant lumbar spine injury would be significantly attenuated using this modified energy-absorber system.

  1. Effect of crash pulse shape on seat stroke requirements for limiting loads on occupants of aircraft

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.

    1992-01-01

    An analytical study was made to provide comparative information on various crash pulse shapes that potentially could be used to test seats under conditions included in Federal Regulations Part 23 Paragraph 23.562(b)(1) for dynamic testing of general aviation seats, show the effects that crash pulse shape can have on the seat stroke requirements necessary to maintain a specified limit loading on the seat/occupant during crash pulse loadings, compare results from certain analytical model pulses with approximations of actual crash pulses, and compare analytical seat results with experimental airplace crash data. Structural and seat/occupant displacement equations in terms of the maximum deceleration, velocity change, limit seat pan load, and pulse time for five potentially useful pulse shapes were derived; from these, analytical seat stroke data were obtained for conditions as specified in Federal Regulations Part 23 Paragraph 23.562(b)(1) for dynamic testing of general aviation seats.

  2. Modeling study of seated reach envelopes based on spherical harmonics with consideration of the difficulty ratings.

    PubMed

    Yu, Xiaozhi; Ren, Jindong; Zhang, Qian; Liu, Qun; Liu, Honghao

    2017-04-01

    Reach envelopes are very useful for the design and layout of controls. In building reach envelopes, one of the key problems is to represent the reach limits accurately and conveniently. Spherical harmonics are proved to be accurate and convenient method for fitting of the reach capability envelopes. However, extensive study are required on what components of spherical harmonics are needed in fitting the envelope surfaces. For applications in the vehicle industry, an inevitable issue is to construct reach limit surfaces with consideration of the seating positions of the drivers, and it is desirable to use population envelopes rather than individual envelopes. However, it is relatively inconvenient to acquire reach envelopes via a test considering the seating positions of the drivers. In addition, the acquired envelopes are usually unsuitable for use with other vehicle models because they are dependent on the current cab packaging parameters. Therefore, it is of great significance to construct reach envelopes for real vehicle conditions based on individual capability data considering seating positions. Moreover, traditional reach envelopes provide little information regarding the assessment of reach difficulty. The application of reach envelopes will improve design quality by providing difficulty-rating information about reach operations. In this paper, using the laboratory data of seated reach with consideration of the subjective difficulty ratings, the method of modeling reach envelopes is studied based on spherical harmonics. The surface fitting using spherical harmonics is conducted for circumstances both with and without seat adjustments. For use with adjustable seat, the seating position model is introduced to re-locate the test data. The surface fitting is conducted for both population and individual reach envelopes, as well as for boundary envelopes. Comparison of the envelopes of adjustable seat and the SAE J287 control reach envelope shows that the latter is nearly at the middle difficulty level. It is also found that the abilities of reach envelope models in expressing the shape of the reach limits based on spherical harmonics depends both on the terms in the model expression and on the data used to fit the envelope surfaces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Power absorbed during whole-body vertical vibration: Effects of sitting posture, backrest, and footrest

    NASA Astrophysics Data System (ADS)

    Nawayseh, Naser; Griffin, Michael J.

    2010-07-01

    Previous studies have quantified the power absorbed in the seated human body during exposure to vibration but have not investigated the effects of body posture or the power absorbed at the back and the feet. This study investigated the effects of support for the feet and back and the magnitude of vibration on the power absorbed during whole-body vertical vibration. Twelve subjects were exposed to four magnitudes (0.125, 0.25, 0.625, and 1.25 m s -2 rms) of random vertical vibration (0.25-20 Hz) while sitting on a rigid seat in four postures (feet hanging, maximum thigh contact, average thigh contact, and minimum thigh contact) both with and without a rigid vertical backrest. Force and acceleration were measured at the seat, the feet, and the backrest to calculate the power absorbed at these three locations. At all three interfaces (seat, feet, and back) the absorbed power increased in proportion to the square of the magnitude of vibration, with most power absorbed from vibration at the seat. Supporting the back with the backrest decreased the power absorbed at the seat at low frequencies but increased the power absorbed at high frequencies. Supporting the feet with the footrest reduced the total absorbed power at the seat, with greater reductions with higher footrests. It is concluded that contact between the thighs and the seat increases the power absorbed at the seat whereas a backrest can either increase or decrease the power absorbed at the seat.

  4. Reliability of assessing postural control during seated balancing using a physical human-robot interaction.

    PubMed

    Ramadan, Ahmed; Cholewicki, Jacek; Radcliffe, Clark J; Popovich, John M; Reeves, N Peter; Choi, Jongeun

    2017-11-07

    This study evaluated the within- and between-visit reliability of a seated balance test for quantifying trunk motor control using input-output data. Thirty healthy subjects performed a seated balance test under three conditions: eyes open (EO), eyes closed (EC), and eyes closed with vibration to the lumbar muscles (VIB). Each subject performed three trials of each condition on three different visits. The seated balance test utilized a torque-controlled robotic seat, which together with a sitting subject resulted in a physical human-robot interaction (pHRI) (two degrees-of-freedom with upper and lower body rotations). Subjects balanced the pHRI by controlling trunk rotation in response to pseudorandom torque perturbations applied to the seat in the coronal plane. Performance error was expressed as the root mean square (RMSE) of deviations from the upright position in the time domain and as the mean bandpass signal energy (E mb ) in the frequency domain. Intra-class correlation coefficients (ICC) quantified the between-visit reliability of both RMSE and E mb . The empirical transfer function estimates (ETFE) from the perturbation input to each of the two rotational outputs were calculated. Coefficients of multiple correlation (CMC) quantified the within- and between-visit reliability of the averaged ETFE. ICCs of RMSE and E mb for all conditions were ≥0.84. The mean within- and between-visit CMCs were all ≥0.96 for the lower body rotation and ≥0.89 for the upper body rotation. Therefore, our seated balance test consisting of pHRI to assess coronal plane trunk motor control is reliable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Vibration energy absorption in the whole-body system of a tractor operator.

    PubMed

    Szczepaniak, Jan; Tanaś, Wojciech; Kromulski, Jacek

    2014-01-01

    Many people are exposed to whole-body vibration (WBV) in their occupational lives, especially drivers of vehicles such as tractor and trucks. The main categories of effects from WBV are perception degraded comfort interference with activities-impaired health and occurrence of motion sickness. Absorbed power is defined as the power dissipated in a mechanical system as a result of an applied force. The vibration-induced injuries or disorders in a substructure of the human system are primarily associated with the vibration power absorption distributed in that substructure. The vibration power absorbed by the exposed body is a measure that combines both the vibration hazard and the biodynamic response of the body. The article presents measurement method for determining vibration power dissipated in the human whole body system called Vibration Energy Absorption (VEA). The vibration power is calculated from the real part of the force-velocity cross-spectrum. The absorbed power in the frequency domain can be obtained from the cross-spectrum of the force and velocity. In the context of the vibration energy transferred to a seated human body, the real component reflects the energy dissipated in the biological structure per unit of time, whereas the imaginary component reflects the energy stored/released by the system. The seated human is modeled as a series/parallel 4-DOF dynamic models. After introduction of the excitation, the response in particular segments of the model can be analyzed. As an example, the vibration power dissipated in an operator has been determined as a function of the agricultural combination operating speed 1.39 - 4.16 ms(-1).

  6. Preliminary Anthropometric Specification for Land Vehicles

    DTIC Science & Technology

    2012-05-01

    Conducted at 1 BDE Melbourne. Gordon, C. C. (2002). Multivariate anthropometric models for seated workstation design . Contemporary Ergonomics . Gordon...Ideally, the vehicle should safely accommodate (both as operator and passenger ) a large proportion of ADF personnel. Historically, when designing ...key advantage of using human subjects in the ergonomic assessment of a vehicle design is that a full range of tasks, such as vehicle ingress/egress

  7. Evaluation of lumbar vertebra injury risk to the seated human body when exposed to vertical vibration

    NASA Astrophysics Data System (ADS)

    Ayari, H.; Thomas, M.; Doré, S.; Serrus, O.

    2009-03-01

    The objective of this research is to numerically determine the levels of vibration not to exceed accordingly to the corresponding dynamic stresses in the lumbar rachis when exposed to whole-body vibrations in order to identify the risk of adverse health effect to which professional heavy equipment drivers are particularly prone. A parametric finite element model of the lumbar rachis is generated in order to compute the modal parameters, the dynamic stresses and forces under harmonic excitations in a seated posture. The stress analysis reveals that the areas exposed to the highest fracture risk are the cancellous bone of the vertebral body as well as the vertebral endplate when vertical vibrations are transmitted from a seat to the lumbar spine of a driver. An injury risk factor has been developed in order to estimate the risk of adverse health effect arising from mechanical vibrations. It is shown that the injury risk factor increases with the age and consequently that the excitation amplitude must be limited to lower levels when age increases.

  8. Seat belt and child seat use in Lipetskaya Oblast, Russia: frequencies, attitudes, and perceptions.

    PubMed

    Ma, Sai; Tran, Nhan; Klyavin, Vladimir E; Zambon, Francesco; Hatcher, Kristin W; Hyder, Adnan A

    2012-01-01

    Despite the importance of understanding seat belt use patterns among drivers and passengers for the purpose of direct interventions or monitoring improvements, no study has described wearing rates for all seat positions in Russia. This study describes observed seat belt use and knowledge, attitudes, and perceptions of seat belt use in Lipetskaya Oblast, Russia. An observational study on the use of seat belts and child restraints in the Lipetskaya region conducted during October 2010 collected data in 6 districts and on 3 different road types. A roadside survey gathered information on knowledge, attitudes, and perceptions toward the use of seat belts from randomly selected drivers. Frequencies of seat belt use by seat position, gender, and road type were calculated. A multivariable logit model disclosed the associations between seat belt use and sociodemographic factors. The study design permitted comparison of observed seat belt use to self-reported seat belt use. A total of 25,795 vehicles and 39,833 drivers and passengers contributed observations. Overall, 55 percent of drivers were observed to be using seat belts. More than half (58%) of front seat passengers wore seat belts and only 9 percent of back seat passengers were observed to be wearing seat belts; 11 percent of cars with children had any type of child safety measure. Drivers on urban roads were less likely to wear seat belts compared to those on main highways and rural roads. Nearly 60 percent of survey respondents mentioned "seat belts save lives," and more than half mentioned law requirements and fines. Although the observed seat belt use in Lipetskaya Oblast is much higher than previous estimates in Russia, overall wearing rates remain far from universal. Rear seat passengers and children are particularly at risk. Because combined education and enforcement has proven to be effective elsewhere, such interventions are needed to improve seat belt use.

  9. Injury risk for matched front and rear seat car passengers by injury severity and crash type: An exploratory study.

    PubMed

    Mitchell, R J; Bambach, M R; Toson, Barbara

    2015-09-01

    The risk of serious injury or death has been found to be reduced for some front compared to rear seat car passengers in newer vehicles. However, differences in injury severity between car occupants by seating position has not been examined. This study examines the injury severity risk for rear compared to front seat car passengers. A retrospective matched-cohort analysis was conducted of vehicle crashes involving injured rear vs front seat car passengers identified in linked police-reported, hospitalisation and emergency department (ED) presentation records during 2001-2011 in New South Wales (NSW), Australia. Odds ratios were estimated using an ordinal logistic mixed model and logistic mixed models. There were 5419 front and 4588 rear seat passengers in 3681 vehicles. There was a higher odds of sustaining a higher injury severity as a rear-compared to a front seat car passenger, with a higher odds of rear seat passengers sustaining serious injuries compared to minimal injuries. Where the vehicle occupant was older, travelling in a vehicle manufactured between 1990 and 1996 or after 1997, where the airbag deployed, and where the vehicle was driven where the speed limit was ≥70km/h there was a higher odds of the rear passenger sustaining a higher injury severity then a front seated occupant. Rear seat car passengers are sustaining injuries of a higher severity compared to front seat passengers travelling in the same vehicle, as well as when travelling in newer vehicles and where the front seat occupant is shielded by an airbag deployed in the crash. Rear seat occupant protective mechanisms should be examined. Pre-hospital trauma management policies could influence whether an individual is transported to a hospital ED, thus it would be beneficial to have an objective measure of injury severity routinely available in ED records. Further examination of injury severity between rear and front seat passengers is warranted to examine less severe non-fatal injuries by car seating position and vehicle intrusion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Prediction of seat belt use among Iranian automobile drivers: application of the theory of planned behavior and the health belief model.

    PubMed

    Tavafian, Sedigheh Sadat; Aghamolaei, Teamur; Gregory, David; Madani, Abdoulhossain

    2011-02-01

    Seat belt use plays an important role in traffic safety by reducing the severity of injuries and fatality rates during vehicle accidents. The aim of this study was to investigate predictors of self-reported seat belt use in a sample of automobile drivers in Bandar Abbas, Iran. The theory of planed behavior and the health belief model served as the conceptual framework for the study. The convenience sample consisted of 284 eligible automobile drivers who frequented 8 petrol stations in different geographical areas of the city. Of the drivers approached to participate in the study, 21 declined to take part in the study and 12 other questionnaires were incomplete. Thus, a total of 251 questionnaires were analyzed (response rate=88.4%). A self-administered questionnaire including demographic characteristics and items arising from the theory of planed behavior and health belief model constructs were used to collect data. Data were analyzed using SPSS 16 (version 16, Chicago, IL, USA). The subjects' mean age was 31.6 years (SD=8.7), mostly male (72.9%), and 53.4 percent of them reported that they used their seat belt "often." Multiple regression analyses revealed that from the theory of planed behavior, attitude, subjective norms, and perceived behavioral control significantly predicted intention to use a seat belt (R2=0.38, F=51.1, p<.001); and subjective norms, perceived behavioral control, and behavioral intention significantly predicted seat belt use (R2=0.43, F=45.7, p<.001). Arising from the health belief model, perceived benefits and perceived barriers significantly predicted seat belt use (R2=0.39, F=26.2, p<.001). This study revealed that automobile drivers who perceived more subjective norms, more behavioral control, greater intention to use seat belts as well as more benefits and fewer barriers were more likely to use their seat belts.

  11. NASA general aviation crashworthiness seat development

    NASA Technical Reports Server (NTRS)

    Fasanella, E. L.; Alfaro-Bou, E.

    1979-01-01

    Three load limiting seat concepts for general aviation aircraft designed to lower the deceleration of the occupant in the event of a crash were sled tested and evaluated with reference to a standard seat. Dummy pelvis accelerations were reduced up to 50 percent with one of the concepts. Computer program MSOMLA (Modified Seat Occupant Model for Light Aircraft) was used to simulate the behavior of a dummy passenger in a NASA full-scale crash test of a twin engine light aircraft. A computer graphics package MANPLOT was developed to pictorially represent the occupant and seat motion.

  12. A statistical mechanics model for free-for-all airplane passenger boarding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steffen, Jason H.; /Fermilab

    2008-08-01

    I discuss a model for free-for-all passenger boarding which is employed by some discount air carriers. The model is based on the principles of statistical mechanics where each seat in the aircraft has an associated energy which reflects the preferences of travelers. As each passenger enters the airplane they select their seats using Boltzmann statistics, proceed to that location, load their luggage, sit down, and the partition function seen by remaining passengers is modified to reflect this fact. I discuss the various model parameters and make qualitative comparisons of this passenger boarding model with those that involve assigned seats. Themore » model can be used to predict the probability that certain seats will be occupied at different times during the boarding process. These results might provide a useful description of this boarding method. The model is a relatively unusual application of undergraduate level physics and describes a situation familiar to many students and faculty.« less

  13. 76 FR 27865 - Airworthiness Directives; Cessna Aircraft Company Models 150, 152, 170, 172, 175, 177, 180, 182...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... months, whichever occurs first: (1) Visually inspect the pilot and copilot seat rails for dirt and debris... dirt or debris is found, remove the dirt or debris found. (2) Remove the seat from the seat rail. (i...

  14. Seat strength in rear body block tests.

    PubMed

    Viano, David C; White, Samuel D

    2016-07-03

    This study collected and analyzed available testing of motor vehicle seat strength in rearward loading by a body block simulating the torso of an occupant. The data were grouped by single recliner, dual recliner, and all belts to seat (ABTS) seats. The strength of seats to rearward loading has been evaluated with body block testing from 1964 to 2008. The database of available tests includes 217 single recliner, 65 dual recliner, and 18 ABTS seats. The trends in seat strength were determined by linear regression and differences between seat types were evaluated by Student's t-test. The average peak moment and force supported by the seat was determined by decade of vehicle model year (MY). Single recliner seats were used in motor vehicles in the 1960s to 1970s. The average strength was 918 ± 224 Nm (n = 26) in the 1960s and 1,069 ± 293 Nm (n = 65) in the 1980s. There has been a gradual increase in strength over time. Dual recliner seats started to phase into vehicles in the late 1980s. By the 2000s, the average strength of single recliner seats increased to 1,501 ± 335 Nm (n = 14) and dual recliner seats to 2,302 ± 699 Nm (n = 26). Dual recliner seats are significantly stronger than single recliner seats for each decade of comparison (P < .001). The average strength of ABTS seats was 4,395 ± 1,185 in-lb for 1989-2004 MY seats (n = 18). ABTS seats are significantly stronger than single or dual recliner seats (P < .001). The trend in ABTS strength is decreasing with time and converging toward that of dual recliner seats. Body block testing is an quantitative means of evaluating the strength of seats for occupant loading in rear impacts. There has been an increase in conventional seat strength over the past 50 years. By the 2000s, most seats are 1,700-3,400 Nm moment strength. However, the safety of a seat is more complex than its strength and depends on many other factors.

  15. Retractor-Based Stroking Seat System and Energy-Absorbing Floor to Mitigate High Shock and Vertical Acceleration

    DTIC Science & Technology

    2014-04-15

    Seat stroke, Lumbar loads, Accelerative load, M&S analysis, Blast , UBB, LS- DYNA , ATD 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...typical blast input load to the seat . Resulting crew injuries are monitored for various vertical accelerative loading scenarios. The retractor load...an enforced blast pulse, this hull structural thickness does not have any effect on the results. 2.2 Seatbelt model Automotive seat belts with

  16. Biomechanical responses of PMHS in moderate-speed rear impacts and development of response targets for evaluating the internal and external biofidelity of ATDS.

    PubMed

    Kang, Yun-Seok; Bolte, John H; Moorhouse, Kevin; Donnelly, Bruce; Herriott, Rodney; Mallory, Ann

    2012-10-01

    The objectives of this study were to obtain biomechanical responses of post mortem human subjects (PMHS) by subjecting them to two moderate-speed rear impact sled test conditions (8.5g, 17 km/h; 10.5g, 24 km/h) while positioned in an experimental seat system, and to create biomechanical targets for internal and external biofidelity evaluation of rear impact ATDs. The experimental seat was designed to measure external loads on the head restraint (4 load cells), seat back (6 load cells), and seat pan (4 load cells) such that subject dynamic interaction with the seat could be evaluated. This seat system was capable of simulating the dynamic characteristics of modern vehicle seat backs by considering the moment-rotation properties of a typical passenger vehicle, thus providing a more realistic test environment than using a rigid seat with a non-rotating seat back as done in previous studies. Instrumentation used to measure biomechanical responses of the PMHS included both accelerometers and angular rate sensors (ARS). A total of fourteen sled tests using eight PMHS (males 175.8 ± 6.2 cm of stature and 78.4 ± 7.2 kg of weight) provided data sets of seven PMHS for both test conditions. The biomechanical responses are described at both speeds, and cervical spine injuries are documented. Biomechanical targets are also created for internal and external biofidelity evaluation of rear impact anthropomorphic test devices (ATDs).

  17. 78 FR 54726 - Notice of Buy America Waiver

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... Navette infant car seats by the Maryland Highway Safety Office (MHSO), using Federal grant funds. NHTSA has determined that a waiver is appropriate because there are no comparable car seats produced in the... Maryland Highway Safety Office (MHSO) to purchase Combi Navette infant car seats, Model No.836584, using...

  18. Rear seat safety: Variation in protection by occupant, crash and vehicle characteristics.

    PubMed

    Durbin, Dennis R; Jermakian, Jessica S; Kallan, Michael J; McCartt, Anne T; Arbogast, Kristy B; Zonfrillo, Mark R; Myers, Rachel K

    2015-07-01

    Current information on the safety of rear row occupants of all ages is needed to inform further advances in rear seat restraint system design and testing. The objectives of this study were to describe characteristics of occupants in the front and rear rows of model year 2000 and newer vehicles involved in crashes and determine the risk of serious injury for restrained crash-involved rear row occupants and the relative risk of fatal injury for restrained rear row vs. front passenger seat occupants by age group, impact direction, and vehicle model year. Data from the National Automotive Sampling System Crashworthiness Data System (NASS-CDS) and Fatality Analysis Reporting System (FARS) were queried for all crashes during 2007-2012 involving model year 2000 and newer passenger vehicles. Data from NASS-CDS were used to describe characteristics of occupants in the front and rear rows and to determine the risk of serious injury (AIS 3+) for restrained rear row occupants by occupant age, vehicle model year, and impact direction. Using a combined data set containing data on fatalities from FARS and estimates of the total population of occupants in crashes from NASS-CDS, logistic regression modeling was used to compute the relative risk (RR) of death for restrained occupants in the rear vs. front passenger seat by occupant age, impact direction, and vehicle model year. Among all vehicle occupants in tow-away crashes during 2007-2012, 12.3% were in the rear row where the overall risk of serious injury was 1.3%. Among restrained rear row occupants, the risk of serious injury varied by occupant age, with older adults at the highest risk of serious injury (2.9%); by impact direction, with rollover crashes associated with the highest risk (1.5%); and by vehicle model year, with model year 2007 and newer vehicles having the lowest risk of serious injury (0.3%). Relative risk of death was lower for restrained children up to age 8 in the rear compared with passengers in the right front seat (RR=0.27, 95% CI 0.12-0.58 for 0-3 years, RR=0.55, 95% CI 0.30-0.98 for 4-8 years) but was higher for restrained 9-12-year-old children (RR=1.83, 95% CI 1.18-2.84). There was no evidence for a difference in risk of death in the rear vs. front seat for occupants ages 13-54, but there was some evidence for an increased relative risk of death for adults age 55 and older in the rear vs. passengers in the right front seat (RR=1.41, 95% CI 0.94-2.13), though we could not exclude the possibility of no difference. After controlling for occupant age and gender, the relative risk of death for restrained rear row occupants was significantly higher than that of front seat occupants in model year 2007 and newer vehicles and significantly higher in rear and right side impact crashes. Results of this study extend prior research on the relative safety of the rear seat compared with the front by examining a more contemporary fleet of vehicles. The rear row is primarily occupied by children and adolescents, but the variable relative risk of death in the rear compared with the front seat for occupants of different age groups highlights the challenges in providing optimal protection to a wide range of rear seat occupants. Findings of an elevated risk of death for rear row occupants, as compared with front row passengers, in the newest model year vehicles provides further evidence that rear seat safety is not keeping pace with advances in the front seat. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Assessing the Risk of Crew Injury Due to Dynamic Loads During Spaceflight

    NASA Technical Reports Server (NTRS)

    Somers, J. T.; Gernhardt, M.; Newby, N.

    2014-01-01

    Spaceflight requires tremendous amounts of energy to achieve Earth orbit and to attain escape velocity for interplanetary missions. Although the majority of the energy is managed in such a way as to limit the accelerations on the crew, several mission phases may result in crew exposure to dynamic loads. In the automotive industry, risk of serious injury can be tolerated because the probability of a crash is remote each time a person enters a vehicle, resulting in a low total risk of injury. For spaceflight, the level of acceptable injury risk must be lower to achieve a low total risk of injury because the dynamic loads are expected on each flight. To mitigate the risk of injury due to dynamic loads, the NASA Human Research Program has developed a research plan to inform the knowledge gaps and develop relevant tools for assessing injury risk. The risk of injury due to dynamic loads can be further subdivided into extrinsic and intrinsic risk factors. Extrinsic risk factors include the vehicle dynamic profile, seat and restraint design, and spacesuit design. Human tolerance to loads varies considerably depending on the direction, amplitude, and rise-time of acceleration therefore the orientation of the body to the dynamic vector is critical to determining crew risk of injury. Although a particular vehicle dynamic profile may be safe for a particular design, the seat, restraint, and suit designs can affect the risk of injury due to localized effects. In addition, characteristics intrinsic to the crewmember may also contribute to the risk of injury, such as crewmember sex, age, anthropometry, and deconditioning due to spaceflight, and each astronaut may have a different risk profile because of these factors. The purpose of the research plan is to address any knowledge gaps in the risk factors to mitigate injury risk. Methods for assessing injury risk have been well documented in other analogous industries and include human volunteer testing, human exposure to dynamic environments, post-mortem human subject (PMHS) testing, animal testing, anthropomorphic test devices (ATD), dynamic models of the human, numerical models of ATDs, and numerical models of the human. Each has inherent strengths and limitations. For example, human volunteer testing is advantageous because a population can be selected that is similar to the astronaut corps; however, because of the inherent ethical limitations, only sub-injurious conditions can be tested. PMHSs can be tested in a variety of conditions including injurious levels, but the responses are not completely analogous to living human subjects. In addition, it is exceedingly difficult to select a PMHS population that is similar to the astronaut corps. ATDs are currently widely used in the automotive industry and military because they are highly repeatable and durable. Unfortunately, because they are mechanical models of the human body, the biofidelity of the responses are limited to dynamic conditions used to validate the ATD. Numerical models of the ATD, in addition to the strengths and limitations for ATDs, are easy to use for a variety of designs before a design is fabricated, but also have additional limitations for ATDs, are easy to use for a variety of designs before a design is fabricated, but also have additional uncertainty. Dynamic models are simple and easy to use, but do not account for localized effects of the seat and suit. Finally, numerical models of the human have the potential to have the most advantages; however, the current models are not validated for the conditions expected during spaceflight. To properly assess spaceflight conditions with numerical human models, human data would be needed to optimize the model responses for those conditions. Using the appropriate assessment method with the knowledge gained for each risk factor, an appropriate approach for mitigating the risk of injury due to dynamic loads can be developed ensuring crew safety in future NASA vehicles.

  20. Development of a new eyellipse and seating accommodation model for trucks and buses.

    DOT National Transportation Integrated Search

    2005-11-01

    Driver posture data from a laboratory study and an in-vehicle test-track study were used to develop and to : evaluate a new seating accommodation model and eyellipse for SAE Class-B vehicles. The new statistical : models are configurable for populati...

  1. Does knowledge of seat design and whiplash injury mechanisms translate to understanding outcomes?

    PubMed

    Ivancic, Paul C

    2011-12-01

    Review of whiplash injury mechanisms and effects of anti-whiplash systems including active head restraint (AHR) and Whiplash Protection System (WHIPS). This article provides an overview of previous biomechanical and epidemiological studies of AHR and WHIPS and investigates whether seat design and biomechanical knowledge of proposed whiplash injury mechanisms translates to understanding outcomes of rear crash occupants. In attempt to reduce whiplash injuries, some newer automobiles incorporate anti-whiplash systems such as AHR or WHIPS. During a rear crash, mechanically based systems activate by occupant momentum pressing into the seatback whereas electronically based systems activate using crash sensors and an electronic control unit linked to the head restraint. To investigate the effects of AHR and WHIPS on occupant responses including head and neck loads and motions, biomechanical studies of simulated rear crashes have been performed using human volunteers, mathematical models, crash dummies, whole cadavers, and hybrid cadaveric/surrogate models. Epidemiological studies have evaluated the effects of AHR and WHIPS on reducing whiplash injury claims and lessening subjective complaints of neck pain after rear crashes. RESULTS.: Biomechanical studies indicate that AHR and WHIPS reduced the potential for some whiplash injuries but did not completely eliminate the injury risk. Epidemiological outcomes indicate reduced whiplash injury claims or subjective complaints of crash-related neck pain between 43 and 75% due to AHR and between 21% and 49% due to WHIPS as compared to conventional seats and head restraints. Yielding energy-absorbing seats aim to reduce occupant loads and accelerations whereas AHRs aim to provide early head support to minimize head and neck motions. Continued objective biomechanical and epidemiological studies of anti-whiplash systems together with industry, governmental, and clinical initiatives will ultimately lead to reduced whiplash injuries through improved prevention strategies.

  2. Comparative Assessment of Torso and Seat Mounted Restraint Systems using Manikins on the Vertical Deceleration Tower

    DTIC Science & Technology

    2017-03-01

    experimental effort involving a series of +z-axis impact tests was conducted on the 711th Human Performance Wing’s Vertical Deceleration Tower (VDT...parameters) and a JSF-styled ejection seat configuration (combined non -baseline test parameters) produced similar biodynamic response parameters for the LOIS...Photography .............................................................................. 12 6.0 EXPERIMENTAL DESIGN

  3. Effectiveness of child safety seats vs seat belts in reducing risk for death in children in passenger vehicle crashes.

    PubMed

    Elliott, Michael R; Kallan, Michael J; Durbin, Dennis R; Winston, Flaura K

    2006-06-01

    To provide an estimate of benefit, if any, of child restraint systems over seat belts alone for children aged from 2 through 6 years. Cohort study. A sample of children in US passenger vehicle crashes was obtained from the National Highway Transportation Safety Administration by combining cases involving a fatality from the US Department of Transportation Fatality Analysis Reporting System with a probability sample of cases without a fatality from the National Automotive Sampling System. Children in tow-away [corrected] crashes occurring between 1998 and 2003. Use of child restraint systems (rear-facing and forward-facing car seats, and shield and belt-positioning booster seats) vs seat belts. Potentially confounding variables included seating position, vehicle type, model year, driver and passenger ages, and driver survival status. Death of child passengers from injuries incurred during the crash. Compared with seat belts, child restraints, when not seriously misused (eg, unattached restraint, child restraint system harness not used, 2 children restrained with 1 seat belt) were associated with a 28% reduction in risk for death (relative risk, 0.72; 95% confidence interval, 0.54-0.97) in children aged 2 through 6 years after adjusting for seating position, vehicle type, model year, driver and passenger ages, and driver survival status. When including cases of serious misuse, the effectiveness estimate was slightly lower (21%) (relative risk, 0.79; 95% confidence interval, 0.59-1.05). Based on these findings as well as previous epidemiological and biomechanical evidence for child restraint system effectiveness in reducing nonfatal injury risk, efforts should continue to promote use of child restraint systems through improved laws and with education and disbursement programs.

  4. The effects of wheelchair-seating stiffness and energy absorption on occupant frontal impact kinematics and submarining risk using computer simulation.

    PubMed

    Bertocci, Gina; Souza, Aaron L; Szobota, Stephanie

    2003-01-01

    Many wheelchair users must travel in motor vehicles while seated in their wheelchairs. The safety features of seat assemblies are key to motor vehicle occupant crash protection. Seating system properties such as strength, stiffness, and energy absorbance have been shown to have significant influence on risk of submarining. This study investigated the effects of wheelchair seat stiffness and energy absorption properties on occupant risk of submarining during a frontal motor vehicle 20 g/30 mph impact using a validated computer crash simulation model. The results indicate that wheelchair-seating stiffness and energy absorption characteristics influence occupant kinematics associated with the risk of submarining. Softer seat surfaces and relatively high energy absorption/permanent deformation were found to produce pelvis excursion trajectories associated with increased submarining risk. Findings also suggest that the current American National Standards Institute/Rehabilitation Engineering and Assistive Technology Society of North America (ANSI/RESNA) WC-19 seating integrity may not adequately assess submarining risk.

  5. 77 FR 57481 - Special Conditions: Embraer S.A., Models EMB-135 and EMB-145 Series; Airplane Seats with Non...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ... Series; Airplane Seats with Non-Traditional, Large, Non-Metallic Panels AGENCY: Federal Aviation... have a novel or unusual design feature associated with the airplane seats that have non-traditional, large, non-metallic panels that would affect survivability during a post-crash fire event. The...

  6. 75 FR 46840 - Special Conditions: Bombardier Inc. Model CL-600-2E25 Series Airplane; Passenger Seats With Non...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-04

    ... that incorporate non-traditional, large, non-metallic panels. To provide a level of safety equivalent...; Passenger Seats With Non-Traditional, Large, Non-Metallic Panels AGENCY: Federal Aviation Administration... novel or unusual design feature associated with seats that include non- traditional, large, non-metallic...

  7. Assessment of Prone Positioning of Restrained, Seated Crewmembers in a Post Landing Stable 2 Orion Configuration

    NASA Technical Reports Server (NTRS)

    Barr, Yael; Fogarty, Jennifer

    2010-01-01

    During the Orion landing and recovery subsystem design review, June 2009, it was noted that the human system and various vehicle systems, the environmental control and life support (ECLSS) and guidance, navigation and control (GN&C) systems for example, are negatively affected by Orion assuming a stable 2 (upside down; Figure A) configuration post landing. The stable 2 configuration is predicted to occur about 50% of the time based on Apollo landing data and modeling of the current capsule. The stable 2 configuration will be countered by an active up-righting system (crew module up-righting system; CMUS). Post landing balloons will deploy and inflate causing the vehicle to assume or maintain the stable 1 (up-right; Figure B) configuration. During the design review it was proposed that the up-righting system could be capable of righting the vehicle within 60 seconds. However, this time limit posed a series of constraints on the design which made it less robust than desired. The landing and recovery subsystem team requested an analysis of Orion vehicle systems as well as the human system with regard to the effect of stable 2 in order to determine if an up-righting response time greater than 60 seconds could be tolerated. The following report focuses on the assessment of the human system in the posture assumed when Orion is in the stable 2 configuration. Stable 2 will place suited, seated, and restrained crewmembers in a prone (facedown), head-up position for a period of time dependent on the functionality of the up-righting systems, ability of the crew to release themselves from the seat and restraints, and/or time to arrival of rescue forces. Given that the Orion seat and restraint system design is not complete and therefore, not available for evaluation, Space Medicine assessed how long a healthy but deconditioned crewmember could stay in this prone, restrained position and the physiological consequences of this posture by researching terrestrial analogs and considered the known physiological alterations and deconditioning experienced by long duration crewmembers.

  8. Design of a portable powered seat lift

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1993-01-01

    People suffering from degenerative hip or knee joints find sitting and rising from a seated position very difficult. These people can rely on large stationary chairs at home, but must ask others for assistance when rising from any other chair. An orthopedic surgeon identified to the MSFC Technology Utilization Office the need for development of a portable device that could perform a similar function to the stationary lift chairs. The MSFC Structural Development Branch answered the Technology Utilization Office's request for design of a portable powered seat lift. The device is a seat cushion that opens under power, lifting the user to near-standing positions. The largest challenge was developing a mechanism to provide a stable lift over the large range of motion needed, and fold flat enough to be comfortable to sit on. CAD 3-D modeling was used to generate complete drawings for the prototype, and a full-scale working model of the Seat lift was made based on the drawings. The working model is of low strength, but proves the function of the mechanism and the concept.

  9. A review of the analytical simulation of aircraft crash dynamics

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Carden, Huey D.; Boitnott, Richard L.; Hayduk, Robert J.

    1990-01-01

    A large number of full scale tests of general aviation aircraft, helicopters, and one unique air-to-ground controlled impact of a transport aircraft were performed. Additionally, research was also conducted on seat dynamic performance, load-limiting seats, load limiting subfloor designs, and emergency-locator-transmitters (ELTs). Computer programs were developed to provide designers with methods for predicting accelerations, velocities, and displacements of collapsing structure and for estimating the human response to crash loads. The results of full scale aircraft and component tests were used to verify and guide the development of analytical simulation tools and to demonstrate impact load attenuating concepts. Analytical simulation of metal and composite aircraft crash dynamics are addressed. Finite element models are examined to determine their degree of corroboration by experimental data and to reveal deficiencies requiring further development.

  10. Trunk muscle recruitment patterns in simulated precrash events.

    PubMed

    Ólafsdóttir, Jóna Marín; Fice, Jason B; Mang, Daniel W H; Brolin, Karin; Davidsson, Johan; Blouin, Jean-Sébastien; Siegmund, Gunter P

    2018-02-28

    To quantify trunk muscle activation levels during whole body accelerations that simulate precrash events in multiple directions and to identify recruitment patterns for the development of active human body models. Four subjects (1 female, 3 males) were accelerated at 0.55 g (net Δv = 4.0 m/s) in 8 directions while seated on a sled-mounted car seat to simulate a precrash pulse. Electromyographic (EMG) activity in 4 trunk muscles was measured using wire electrodes inserted into the left rectus abdominis, internal oblique, iliocostalis, and multifidus muscles at the L2-L3 level. Muscle activity evoked by the perturbations was normalized by each muscle's isometric maximum voluntary contraction (MVC) activity. Spatial tuning curves were plotted at 150, 300, and 600 ms after acceleration onset. EMG activity remained below 40% MVC for the three time points for most directions. At the 150- and 300 ms time points, the highest EMG amplitudes were observed during perturbations to the left (-90°) and left rearward (-135°). EMG activity diminished by 600 ms for the anterior muscles, but not for the posterior muscles. These preliminary results suggest that trunk muscle activity may be directionally tuned at the acceleration level tested here. Although data from more subjects are needed, these preliminary data support the development of modeled trunk muscle recruitment strategies in active human body models that predict occupant responses in precrash scenarios.

  11. Preventive Effects of Seat Belt on Clinical Outcomes for Road Traffic Injuries

    PubMed Central

    2015-01-01

    Proper seat belt use saves lives; however, the use rate decreased in Korea. This study aimed to measure the magnitude of the preventive effect of seat belt on case-fatality across drivers and passengers. We used the Emergency Department based Injury In-depth Surveillance (EDIIS) database from 17 EDs between 2011 and 2012. All of adult injured patients from road traffic injuries (RTI) in-vehicle of less than 10-seat van were eligible, excluding cases with unknown seat belt use and outcomes. Primary and secondary endpoints were in-hospital mortality and intracranial injury. We calculated adjusted odds ratios (AORs) of seat belt use and driving status for study outcomes adjusting for potential confounders. Among 23,698 eligible patients, 15,304 (64.6%) wore seat belts. Driver, middle aged (30-44 yr), male, daytime injured patients were more likely to use seat belts (all P < 0.001). In terms of clinical outcome, no seat belt group had higher proportions of case-fatality and intracranial injury compared to seat belt group (both P < 0.001). Compared to seat belt group, AORs (95% CIs) of no seat belt group were 10.43 (7.75-14.04) for case-fatality and 2.68 (2.25-3.19) for intracranial injury respectively. In the interaction model, AORs (95% CIs) of no seat belt use for case-fatality were 11.71 (8.45-16.22) in drivers and 5.52 (2.83-14.76) in non-driving passengers, respectively. Wearing seat belt has significantly preventive effects on case-fatality and intracranial injury. Public health efforts to increase seat belt use are needed to reduce health burden from RTIs. PMID:26713066

  12. Evaluation of give kids a boost: A school-based program to increase booster seat use among urban children in economically disadvantaged areas.

    PubMed

    Yellman, Merissa A; Rodriguez, Marissa A; Colunga, Maria Isabel; McCoy, Mary A; Stephens-Stidham, Shelli; Brown, L Steven; Istre, Gregory R

    2018-05-19

    This study evaluated the effectiveness of a series of 1-year multifaceted school-based programs aimed at increasing booster seat use among urban children 4-7 years of age in economically disadvantaged areas. During 4 consecutive school years, 2011-2015, the Give Kids a Boost (GKB) program was implemented in a total of 8 schools with similar demographics in Dallas County. Observational surveys were conducted at project schools before project implementation (P 0 ), 1-4 weeks after the completion of project implementation (P 1 ), and 4-5 months later (P 2 ). Changes in booster seat use for the 3 time periods were compared for the 8 project and 14 comparison schools that received no intervention using a nonrandomized trial process. The intervention included (1) train-the-trainer sessions with teachers and parents; (2) presentations about booster seat safety; (3) tailored communication to parents; (4) distribution of fact sheets/resources; (5) walk-around education; and (6) booster seat inspections. The association between the GKB intervention and proper booster seat use was determined initially using univariate analysis. The association was also estimated using a generalized linear mixed model predicting a binomial outcome (booster seat use) for those aged 4 to 7 years, adjusted for child-level variables (age, sex, race/ethnicity) and car-level variables (vehicle type). The model incorporated the effects of clustering by site and by collection date to account for the possibility of repeated sampling. In the 8 project schools, booster seat use for children 4-7 years of age increased an average of 20.9 percentage points between P 0 and P 1 (P 0 = 4.8%, P 1 = 25.7%; odds ratio [OR] = 6.9; 95% confidence interval [CI], 5.5, 8.7; P < .001) and remained at that level in the P 2 time period (P 2 = 25.7%; P < .001, for P 0 vs. P 2 ) in the univariate analysis. The 14 comparison schools had minimal change in booster seat use. The multivariable model showed that children at the project schools were significantly more likely to be properly restrained in a booster seat after the intervention (OR = 2.7; 95% CI, 2.2, 3.3) compared to the P 0 time period and compared to the comparison schools. Despite study limitations, the GKB program was positively associated with an increase in proper booster seat use for children 4-7 years of age in school settings among diverse populations in economically disadvantaged areas. These increases persisted into the following school year in a majority of the project schools. The GKB model may be a replicable strategy to increase booster seat use among school-age children in similar urban settings.

  13. Association Between NCAP Ratings and Real-World Rear Seat Occupant Risk of Injury.

    PubMed

    Metzger, Kristina B; Gruschow, Siobhan; Durbin, Dennis R; Curry, Allison E

    2015-01-01

    Several studies have evaluated the correlation between U.S. or Euro New Car Assessment Program (NCAP) ratings and injury risk to front seat occupants, in particular driver injuries. Conversely, little is known about whether NCAP 5-star ratings predict real-world risk of injury to restrained rear seat occupants. The NHTSA has identified rear seat occupant protection as a specific area under consideration for improvements to its NCAP. In order to inform NHTSA's efforts, we examined how NCAP's current 5-star rating system predicts risk of moderate or greater injury among restrained rear seat occupants in real-world crashes. We identified crash-involved vehicles, model year 2004-2013, in NASS-CDS (2003-2012) with known make and model and nonmissing occupant information. We manually matched these vehicles to their NCAP star ratings using data on make, model, model year, body type, and other identifying information. The resultant linked NASS-CDS and NCAP database was analyzed to examine associations between vehicle ratings and rear seat occupant injury risk; risk to front seat occupants was also estimated for comparison. Data were limited to restrained occupants and occupant injuries were defined as any injury with a maximum Abbreviated Injury Scale (AIS) score of 2 or greater. We linked 95% of vehicles in NASS-CDS to a specific vehicle in NCAP. The 18,218 vehicles represented an estimated 6 million vehicles with over 9 million occupants. Rear seat passengers accounted for 12.4% of restrained occupants. The risk of injury in all crashes for restrained rear seat occupants was lower in vehicles with a 5-star driver rating in frontal impact tests (1.4%) than with 4 or fewer stars (2.6%, P =.015); results were similar for the frontal impact passenger rating (1.3% vs. 2.4%, P =.024). Conversely, side impact driver and passenger crash tests were not associated with rear seat occupant injury risk (driver test: 1.7% for 5-star vs. 1.8% for 1-4 stars; passenger test: 1.6% for 5 stars vs 1.8% for 1-4 stars). Current frontal impact test procedures provide some degree of discrimination in real-world rear seat injury risk among vehicles with 5 compared to fewer than 5 stars. However, there is no evidence that vehicles with a 5-star side impact passenger rating, which is the only crash test procedure to include an anthropomorphic test dummy (ATD) in the rear, demonstrate lower risks of injury in the rear than vehicles with fewer than 5 stars. These results support prioritizing modifications to the NCAP program that specifically evaluate rear seat injury risk to restrained occupants of all ages.

  14. The influence of vibration on seated human drowsiness

    PubMed Central

    AZIZAN, Amzar; FARD, Mohammad; AZARI, Michael F.; BENEDIKTSDÓTTIR, Bryndís; ARNARDÓTTIR, Erna Sif; JAZAR, Reza; MAEDA, Setsuo

    2016-01-01

    Although much is known about human body vibration discomfort, there is little research data on the effects of vibration on vehicle occupant drowsiness. A laboratory experimental setup has been developed. Vibration was applied to the volunteers sitting on the vehicle seat mounted on the vibration platform. Seated volunteers were exposed to a Gaussian random vibration, with 1–15 Hz frequency bandwidth at 0.2 ms−2 r.m.s., for 20-minutes. Two drowsiness measurement methods were used, Psychomotor Vigilance Test (PVT) and Karolinska Sleepiness Scale (KSS). Significant changes in PVT (p<0.05) and KSS (p<0.05) were detected in all eighteen volunteers. Furthermore, a moderate correlation (r>0.4) was observed between objective measurement (PVT) and subjective measurement (KSS). The results suggest that exposure to vibration even for 20-minutes can cause significant drowsiness impairing psychomotor performance. This finding has important implications for road safety. PMID:26829971

  15. Characterization of the frequency and muscle responses of the lumbar and thoracic spines of seated volunteers during sinusoidal whole body vibration.

    PubMed

    Baig, Hassam A; Dorman, Daniel B; Bulka, Ben A; Shivers, Bethany L; Chancey, Valeta C; Winkelstein, Beth A

    2014-10-01

    Whole body vibration has been postulated to contribute to the onset of back pain. However, little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to measure the frequency and corresponding muscle responses of seated male volunteers during whole body vibration exposures along the vertical and anteroposterior directions to define the transmissibility and associated muscle activation responses for relevant whole body vibration exposures. Seated human male volunteers underwent separate whole body vibration exposures in the vertical (Z-direction) and anteroposterior (X-direction) directions using sinusoidal sweeps ranging from 2 to 18 Hz, with a constant amplitude of 0.4 g. For each vibration exposure, the accelerations and displacements of the seat and lumbar and thoracic spines were recorded. In addition, muscle activity in the lumbar and thoracic spines was recorded using electromyography (EMG) and surface electrodes in the lumbar and thoracic region. Transmissibility was determined, and peak transmissibility, displacement, and muscle activity were compared in each of the lumbar and thoracic regions. The peak transmissibility for vertical vibrations occurred at 4 Hz for both the lumbar (1.55 ± 0.34) and thoracic (1.49 ± 0.21) regions. For X-directed seat vibrations, the transmissibility ratio in both spinal regions was highest at 2 Hz but never exceeded a value of 1. The peak muscle response in both spinal regions occurred at frequencies corresponding to the peak transmissibility, regardless of the direction of imposed seat vibration: 4 Hz for the Z-direction and 2-3 Hz for the X-direction. In both vibration directions, spinal displacements occurred primarily in the direction of seat vibration, with little off-axis motion. The occurrence of peak muscle responses at frequencies of peak transmissibility suggests that such frequencies may induce greater muscle activity, leading to muscle fatigue, which could be a contributing mechanism of back pain.

  16. Development and Validation of the Total HUman Model for Safety (THUMS) Toward Further Understanding of Occupant Injury Mechanisms in Precrash and During Crash.

    PubMed

    Iwamoto, Masami; Nakahira, Yuko; Kimpara, Hideyuki

    2015-01-01

    Active safety devices such as automatic emergency brake (AEB) and precrash seat belt have the potential to accomplish further reduction in the number of the fatalities due to automotive accidents. However, their effectiveness should be investigated by more accurate estimations of their interaction with human bodies. Computational human body models are suitable for investigation, especially considering muscular tone effects on occupant motions and injury outcomes. However, the conventional modeling approaches such as multibody models and detailed finite element (FE) models have advantages and disadvantages in computational costs and injury predictions considering muscular tone effects. The objective of this study is to develop and validate a human body FE model with whole body muscles, which can be used for the detailed investigation of interaction between human bodies and vehicular structures including some safety devices precrash and during a crash with relatively low computational costs. In this study, we developed a human body FE model called THUMS (Total HUman Model for Safety) with a body size of 50th percentile adult male (AM50) and a sitting posture. The model has anatomical structures of bones, ligaments, muscles, brain, and internal organs. The total number of elements is 281,260, which would realize relatively low computational costs. Deformable material models were assigned to all body parts. The muscle-tendon complexes were modeled by truss elements with Hill-type muscle material and seat belt elements with tension-only material. The THUMS was validated against 35 series of cadaver or volunteer test data on frontal, lateral, and rear impacts. Model validations for 15 series of cadaver test data associated with frontal impacts are presented in this article. The THUMS with a vehicle sled model was applied to investigate effects of muscle activations on occupant kinematics and injury outcomes in specific frontal impact situations with AEB. In the validations using 5 series of cadaver test data, force-time curves predicted by the THUMS were quantitatively evaluated using correlation and analysis (CORA), which showed good or acceptable agreement with cadaver test data in most cases. The investigation of muscular effects showed that muscle activation levels and timing had significant effects on occupant kinematics and injury outcomes. Although further studies on accident injury reconstruction are needed, the THUMS has the potential for predictions of occupant kinematics and injury outcomes considering muscular tone effects with relatively low computational costs.

  17. Modeling 3-D Slope Stability of Coastal Bluffs Using 3-D Ground-Water Flow, Southwestern Seattle, Washington

    USGS Publications Warehouse

    Brien, Dianne L.; Reid, Mark E.

    2007-01-01

    Landslides are a common problem on coastal bluffs throughout the world. Along the coastal bluffs of the Puget Sound in Seattle, Washington, landslides range from small, shallow failures to large, deep-seated landslides. Landslides of all types can pose hazards to human lives and property, but deep-seated landslides are of significant concern because their large areal extent can cause extensive property damage. Although many geomorphic processes shape the coastal bluffs of Seattle, we focus on large (greater than 3,000 m3), deepseated, rotational landslides that occur on the steep bluffs along Puget Sound. Many of these larger failures occur in advance outwash deposits of the Vashon Drift (Qva); some failures extend into the underlying Lawton Clay Member of the Vashon Drift (Qvlc). The slope stability of coastal bluffs is controlled by the interplay of three-dimensional (3-D) variations in gravitational stress, strength, and pore-water pressure. We assess 3-D slope-stability using SCOOPS (Reid and others, 2000), a computer program that allows us to search a high-resolution digital-elevation model (DEM) to quantify the relative stability of all parts of the landscape by computing the stability and volume of thousands of potential spherical failures. SCOOPS incorporates topography, 3-D strength variations, and 3-D pore pressures. Initially, we use our 3-D analysis methods to examine the effects of topography and geology by using heterogeneous material properties, as defined by stratigraphy, without pore pressures. In this scenario, the least-stable areas are located on the steepest slopes, commonly in Qva or Qvlc. However, these locations do not agree well with observations of deep-seated landslides. Historically, both shallow colluvial landslides and deep-seated landslides have been observed near the contact between Qva and Qvlc, and commonly occur in Qva. The low hydraulic conductivity of Qvlc impedes ground-water flow, resulting in elevated pore pressures at the base of Qva, thereby increasing the potential for landslides. Our analysis simulates the ground-water flow using the results of a 3-D ground-water flow model, MODFLOW-2000 (Harbaugh and others, 2000), to generate a 3-D pore-pressure field. Areas of elevated pore pressure reflect the influence of a perched ground-water table in Qva, as well as ground-water convergence in the coastal re-entrants. We obtain a realistic model of deep-seated landsliding by combining 3-D pore pressures with heterogeneous strength properties. The results show the least-stable areas where pore pressures are locally elevated in Qva. We compare our results with records of past landslides. The predicted leaststable areas include two historically active deep-seated landslides and areas adjacent to these landslides.

  18. An overview of Space Shuttle anthropometry and biomechanics research with emphasis on STS/Mir recumbent seat system design

    NASA Technical Reports Server (NTRS)

    Klute, Glenn K.; Stoycos, Lara E.

    1994-01-01

    The Anthropometry and Biomechanics Laboratory (ABL) at JSC conducts multi-disciplinary research focusing on maximizing astronaut intravehicular (IVA) and extravehicular (EVA) capabilities to provide the most effective work conditions for manned space flight and exploration missions. Biomechanics involves the measurement and modeling of the strength characteristics of the human body. Current research for the Space Shuttle Program includes the measurement of torque wrench capability during weightlessness, optimization of foot restraint, and hand hold placement, measurements of the strength and dexterity of the pressure gloved hand to improve glove design, quantification of the ability to move and manipulate heavy masses (6672 N or 1500 lb) in weightlessness, and verification of the capability of EVA crewmembers to perform Hubble Space Telescope repair tasks. Anthropometry is the measurement and modeling of the dimensions of the human body. Current research for the Space Shuttle Program includes the measurement of 14 anthropometric parameters of every astronaut candidate, identification of EVA finger entrapment hazards by measuring the dimensions of the gloved hand, definition of flight deck reach envelopes during launch and landing accelerations, and measurement of anthropometric design parameters for the recumbent seat system required for the Shuttle/Mir mission (STS-71, Spacelab M) scheduled for Jun. 1995.

  19. 78 FR 76734 - Special Conditions: Bombardier Inc., Models BD-500-1A10 and BD-500-1A11 Series Airplanes; Seats...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... Series Airplanes; Seats With Non-Traditional, Large, Non- Metallic Panels AGENCY: Federal Aviation... airplanes will have a novel or unusual design feature associated with seats that include non-traditional, large, non-metallic panels that would affect survivability during a post-crash fire event. The...

  20. Possible causes of socioeconomic and ethnic differences in seat belt use among high school students.

    PubMed

    Shin, D; Hong, L; Waldron, I

    1999-09-01

    This study has assessed seat belt use and factors which may influence seat belt use among high school students from three types of schools. The inner city schools had high proportions of African American and Hispanic American students from low income families, whereas the middle class school and private schools had high proportions of non-Hispanic white students from middle class families with college educated parents. Students from the inner city schools reported less seat belt use than students from the middle class school or private schools. Our analyses evaluated several hypotheses concerning possible reasons why inner city youth had lower rates of seat belt use. In accord with the social influences hypothesis, inner city youth reported lower rates of parental seat belt use and less often being told by parents to use their seat belts, and our regression results indicate that less parental modeling and encouragement of seat belt use was an important cause of inner city youth's lower rates of seat belt use. Our other hypotheses received weaker support, but we did find evidence for two hypothesized differences in attitudes which influence seat belt use. Specifically, inner city youth were more likely to agree with the statement, 'there is no point in wearing seat belts since you have no control over your fate or destiny', and inner city youth attributed less importance to safety concerns as a motivation for seat belt use. These attitudes appeared to contribute to lower rates of seat belt use by inner city youth.

  1. Optimization of vehicle deceleration to reduce occupant injury risks in frontal impact.

    PubMed

    Mizuno, Koji; Itakura, Takuya; Hirabayashi, Satoko; Tanaka, Eiichi; Ito, Daisuke

    2014-01-01

    In vehicle frontal impacts, vehicle acceleration has a large effect on occupant loadings and injury risks. In this research, an optimal vehicle crash pulse was determined systematically to reduce injury measures of rear seat occupants by using mathematical simulations. The vehicle crash pulse was optimized based on a vehicle deceleration-deformation diagram under the conditions that the initial velocity and the maximum vehicle deformation were constant. Initially, a spring-mass model was used to understand the fundamental parameters for optimization. In order to investigate the optimization under a more realistic situation, the vehicle crash pulse was also optimized using a multibody model of a Hybrid III dummy seated in the rear seat for the objective functions of chest acceleration and chest deflection. A sled test using a Hybrid III dummy was carried out to confirm the simulation results. Finally, the optimal crash pulses determined from the multibody simulation were applied to a human finite element (FE) model. The optimized crash pulse to minimize the occupant deceleration had a concave shape: a high deceleration in the initial phase, low in the middle phase, and high again in the final phase. This crash pulse shape depended on the occupant restraint stiffness. The optimized crash pulse determined from the multibody simulation was comparable to that from the spring-mass model. From the sled test, it was demonstrated that the optimized crash pulse was effective for the reduction of chest acceleration. The crash pulse was also optimized for the objective function of chest deflection. The optimized crash pulse in the final phase was lower than that obtained for the minimization of chest acceleration. In the FE analysis of the human FE model, the optimized pulse for the objective function of the Hybrid III chest deflection was effective in reducing rib fracture risks. The optimized crash pulse has a concave shape and is dependent on the occupant restraint stiffness and maximum vehicle deformation. The shapes of the optimized crash pulse in the final phase were different for the objective functions of chest acceleration and chest deflection due to the inertial forces of the head and upper extremities. From the human FE model analysis it was found that the optimized crash pulse for the Hybrid III chest deflection can substantially reduce the risk of rib cage fractures. Supplemental materials are available for this article. Go to the publisher's online edition of Traffic Injury Prevention to view the supplemental file.

  2. Booster Seat Effectiveness Among Older Children: Evidence From Washington State.

    PubMed

    Anderson, D Mark; Carlson, Lindsay L; Rees, Daniel I

    2017-08-01

    The American Academy of Pediatrics has recommended that children as old as 12 years use a booster seat when riding in motor vehicles, yet little is known about booster seat effectiveness when used by older children. This study estimated the association between booster use and injuries among children aged 8-12 years who were involved in motor vehicle crashes. Researchers analyzed data on all motor vehicle crashes involving children aged 8-12 years reported to the Washington State Department of Transportation from 2002 to 2015. Data were collected in 2015 and analyzed in 2016. Children who were in a booster seat were compared with children restrained by a seat belt alone. Logistic regression was used to adjust for potential confounders. In unadjusted models, booster use was associated with a 29% reduction in the odds of experiencing any injury versus riding in a seat belt alone (OR=0.709, 95% CI=0.675, 0.745). In models adjusted for potential confounders, booster use was associated with a 19% reduction in the odds of any injury relative to riding in a seat belt alone (OR=0.814, 95% CI=0.749, 0.884). The risk of experiencing an incapacitating/fatal injury was not associated with booster use. Children aged 8-12 years involved in a motor vehicle crash are less likely to be injured if in a booster than if restrained by a seat belt alone. Because only 10% of U.S. children aged 8-12 years use booster seats, policies encouraging their use could lead to fewer injuries. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  3. 75 FR 68543 - Airworthiness Directives; Cessna Aircraft Company Models 150, 152, 170, 172, 175, 177, 180, 182...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... first: (1) Visually inspect the pilot and copilot seat rails for dirt and debris that may prevent engagement of the seat locking pins. Before further flight, after any inspection where dirt or debris is found, remove the dirt or debris found. (2) Lift up the forward edge of each seat to eliminate vertical...

  4. 75 FR 12965 - Special Conditions: Airbus Model A318, A319, A320, and A321 Series Airplanes; Seats With Non...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ...-traditional, large, non-metallic panels. In order to provide a level of safety that is equivalent to that... Airplanes; Seats With Non-Traditional, Large, Non-Metallic Panels AGENCY: Federal Aviation Administration... a novel or unusual design feature(s) associated with seats that include non-traditional, large, non...

  5. Postural stability of sitting women.

    PubMed

    Nag, Pranab K; Vyas, Heer; Nag, Anjali; Pal, Swati

    2013-01-01

    The study examined the utility of stabilometric dimensions and explored whether the changes in sitting postures were manifested in functional measures of postural control. Eleven women participated in the study, which used 11 chair sitting postures: arms on laps or arms right angled; armrest at a height of 17, 20 and 23 cm; with or without backrest; slouch or straight back; legs right angled at knees or crossed legs. The backrest and armrest shifted 16.3% of body weight from a seat pan. The characteristics of stabilometric dimensions evaluated the influence of seat components and sitting behaviour on postural balance. The study attempted to evaluate stability and its application in human-seat interface design.

  6. A statistical analysis of seat belt effectiveness in 1973-1975 model cars involved in towaway crashes. Volume 1

    DOT National Transportation Integrated Search

    1976-09-01

    Standardized injury rates and seat belt effectiveness measures are derived from a probability sample of towaway accidents involving 1973-1975 model cars. The data were collected in five different geographic regions. Weighted sample size available for...

  7. Evaluation of the vibration attenuation properties of an air-inflated cushion with two different heavy machinery seats in multi-axis vibration environments including jolts.

    PubMed

    Ji, Xiaoxu; Eger, Tammy R; Dickey, James P

    2017-03-01

    Seats and cushions can attenuate whole-body vibration (WBV) exposures and minimize health risks for heavy machine operators. We successfully developed neural network (NN) algorithms to identify the vibration attenuation properties for four different seating conditions (seat/cushion combinations), and implemented each of the NN models to predict the equivalent daily exposure A(8) values for various vehicles in the forestry and mining environments. We also evaluated the performance of the new prototype No-Jolt™ air-inflated cushion and the original cushion of each seat with jolt exposures. We observed that the air cushion significantly improved the vibration attenuation properties of the seat that initially had good performance, but not for the seat that had relatively poor vibration attenuation properties. In addition, operator's anthropometrics and sex influenced the performance of the air-inflated cushion when the vibration environment included jolt exposures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Analysing of critical force effects of aircraft seat belt using truss elements

    NASA Astrophysics Data System (ADS)

    Klemenc, Marek; Markopoulos, Alexandros; Maršálek, Pavel

    2017-07-01

    This paper deals with the mathematical modelling of an aircraft seat belt crash test. The main goal is determination of a time course of the reactions in a lap belt anchoring points and their maximum values. This work was created on the basis of practical requirements from industry. Results are going to be reflected in developing a new type of aircraft seats. We mainly focus on the mathematical modelling of dynamic problems using the finite element method (FEM). Derived procedures are implemented in the Python programming language and are verified by several examples. A final calculation algorithm is applied on the analysis of the safety belt. We consider that a seat belt bending stiffness is very small compared to a tensile stiffness, therefore we used a 2D plane truss element.

  9. Centrifuge modeling of cyclic lateral response of pile-cap systems and seat-type abutments in dry sands

    DOT National Transportation Integrated Search

    1998-10-02

    This report presents the results of slow, cyclic, lateral-loading centrifuge tests performed on models of pile-cap foundation systems and seat-type bridge abutements in dry Neveda sand of 75% relative density to study the lateral response of these sy...

  10. A controlled evaluation of the WHO Safe Communities model approach to injury prevention: increasing child restraint use in motor vehicles.

    PubMed

    Istre, Gregory R; Stowe, Martha; McCoy, Mary A; Moore, Billy J; Culica, Dan; Womack, Katie N; Anderson, Ron J

    2011-02-01

    To measure the effect of the WHO Safe Communities model approach to increasing child restraint use in motor vehicles. Pre- and post-intervention observations of restraint use in motor vehicles in several sites in the target area, and in a comparison area community. Community; southeast Dallas, Texas, 2003-2005. A multifaceted approach to increasing use of child safety seats, booster seats and seat belts that included efforts in schools, day care centres, neighbourhoods and a local public clinic, along with child safety seat classes and a low-cost distribution programme. Prevalence of restraint use among children 0-8 years old riding in motor vehicles. In the target area, the adjusted child restraint use increased by 23.9 percentage points versus 11.8 in the comparison area (difference 12.1; 95% CI 9.9 to 14.3), and adjusted driver seat belt use increased by 16.3 percentage points in the target area versus 4.9 in the comparison area (difference 11.4; 95% CI 11.0 to 11.7). Multivariable multilevel analysis showed that the increase in the target area was significantly greater than in the comparison area for child restraint use (OR 1.6; 95% CI 1.2 to 2.2), as well as for driver seat belt use and proportion of children riding in the back seat. The Safe Communities approach was successful in promoting the use of child restraints in motor vehicles through a multifaceted intervention that included efforts in various community settings, instructional classes and child safety seat distribution.

  11. Modeling the impact of rescinding Michigan's primary and secondary seat belt laws on death and injury from passenger vehicle crashes.

    PubMed

    Carter, Patrick M; Flannagan, Carol A C; Bingham, C Raymond; Cunningham, Rebecca M; Rupp, Jonathan D

    2014-01-01

    Seat belts are the most effective method of decreasing fatal and nonfatal motor vehicle crash injury. Advocacy groups have recently been successful in enacting repeals of mandatory motorcycle helmet laws in several states. In some states, this has prompted renewed efforts aimed at repealing mandatory seat belt laws. To evaluate and quantify the potential impact of rescinding seat belt laws on annual crash-related fatalities, nonfatal injuries, and associated economic costs, using Michigan as a model, to inform the national debate. Proportional injury rates were calculated utilizing police-reported statewide passenger vehicle crash data from 1999 and 2002, where belt use rates approximate estimates associated with repeal of primary and secondary seat belt laws. Proportional rates were applied to the most recent year of crash data (2011) to estimate changes in statewide fatalities and nonfatal injuries. National cost estimates were applied to injury data to calculate associated economic costs. Full repeal of the seat belt law is estimated to result in an additional 163 fatalities, 13,722 nonfatal injuries, and an associated societal cost of $1.6 billion annually. Repeal of the primary seat belt law only is estimated to result in an additional 95 fatalities, 9156 nonfatal injuries, and an associated societal cost of $1.0 billion annually. This analysis suggests that repealing the either the primary or full seat belt law would have a substantial and negative impact on public health, increasing motor vehicle crash related fatality, nonfatal injury, and associated economic costs.

  12. Modal analysis of human body vibration model for Indian subjects under sitting posture.

    PubMed

    Singh, Ishbir; Nigam, S P; Saran, V H

    2015-01-01

    Need and importance of modelling in human body vibration research studies are well established. The study of biodynamic responses of human beings can be classified into experimental and analytical methods. In the past few decades, plenty of mathematical models have been developed based on the diverse field measurements to describe the biodynamic responses of human beings. In this paper, a complete study on lumped parameter model derived from 50th percentile anthropometric data for a seated 54- kg Indian male subject without backrest support under free un-damped conditions has been carried out considering human body segments to be of ellipsoidal shape. Conventional lumped parameter modelling considers the human body as several rigid masses interconnected by springs and dampers. In this study, concept of mass of interconnecting springs has been incorporated and eigenvalues thus obtained are found to be closer to the values reported in the literature. Results obtained clearly establish decoupling of vertical and fore-and-aft oscillations. The mathematical modelling of human body vibration studies help in validating the experimental investigations for ride comfort of a sitting subject. This study clearly establishes the decoupling of vertical and fore-and-aft vibrations and helps in better understanding of possible human response to single and multi-axial excitations.

  13. Investigation on occupant ejection in high severity rear impact based on post mortem human subject sled tests.

    PubMed

    Petit, Philippe; Luet, Carole; Potier, Pascal; Vallancien, Guy

    2011-11-01

    Occupant protection in rear impact involves two competing challenges. On one hand, allowing a deformation of the seat would act as an energy absorber in low severity impacts and would consequently decrease the risk of neck injuries. However, on the other hand, large deformations of the seat may increase the likelihood of occupant ejection in high severity cases. Green et al. 1987 analyzed a total of 919 accidents in Great Britain. They found that occupant ejection resulted in a risk of severe injuries and fatalities between 3.6 and 4.5 times higher than those cases where no ejection was observed. The sample included single front, side and rear impacts as well as multiple impacts and rollover. The rate of belt use in the sample was 50%. While this analysis included all forms of impact scenarios, nevertheless, it highlights the relative injury severity of occupant ejection. Extensive literature search has found no full-scale rear impact tests involving Post Mortem Human Subjects (PMHS) conducted in a laboratory environment and resulting in ejection. This paper describes a total of 10 sled tests conducted on 3 belted PMHS using a simplified seat design composed of rigid plates assembled such that the angular and linear stiffness of the seatback (including the foam) was modeled. The initial angular position and the range of motion of the seatback, the size of the PMHS, the slack length of the seatbelt, the angular stiffness of the seatback, and the use of headrest were varied in the test matrix while the pulse was kept constant (triangular acceleration with a peak of 17 G at 30 ms and a duration of 95 ms). In the test series, the tests were not run randomly but the likelihood of occupant ejection was increased systematically until ejection occurred. PMHS seat ejection was observed only for the 95th percentile, initially positioned with a seatback angle relative to the vertical equal to 22°, a range of seatback angular motion equal to 44° and no headrest. Repeating the test under the same conditions but with the pretentionner fired did not prevent the ejection. In addition, the 50th percentile belted specimen were not observed to sustain rearward seat ejection under realistic conditions including the use of head-rest.

  14. Analysis of Potential Deep-Seated Landslide in Hekeng Watershed by Environment Indices

    NASA Astrophysics Data System (ADS)

    Hsieh, C. J.; Chompuchan, C.

    2014-12-01

    Landslides are a major natural disaster in Taiwan relevant to the human life. After the catastrophic Xiaolin landslide during Typhoon Morakot in August 2009 caused around 400 casualties, the deep-seated landslide has become a serious issue. This study explored the potential deep-seated landslide in Hekeng watershed extracted from SPOT-5 imageries. The empirical topographic correction was applied to minimize effect of the mountain shaded area due to the difference of sun elevation and terrain angle. Consequently the multi-temporal environmental indices, i.e., modified Normalized Difference Vegetation Index (mNDVI) and modified Normalized Difference Water Index (mNDWI) were corrected. Seasonal vegetation cover and surface moisture change were analyzed incorporate with a slope which obtain from DEM data. The result showed that the distribution of potential deep-seated landslide vulnerable area mainly located at headstream watershed. It could be explained that the headstream watershed has less human interference, therefore the environmental indices interpreted those area as deep soil layer and dense vegetation coverage. However, the upstream canal could suffer from the long-term erosion and possibly cause slope toe collapse. In addition, the western watershed is the afforestation zone whereas the eastern watershed is natural forest zone with higher development ratio. The upslope forest management of eastern and western watershed should be discussed variously.

  15. Mapping the zone of eye-height utility for seated and standing observers

    NASA Technical Reports Server (NTRS)

    Wraga, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    2000-01-01

    In a series of experiments, we delimited a region within the vertical axis of space in which eye height (EH) information is used maximally to scale object heights, referred to as the "zone of eye height utility" (Wraga, 1999b Journal of Experimental Psychology, Human Perception and Performance 25 518-530). To test the lower limit of the zone, linear perspective (on the floor) was varied via introduction of a false perspective (FP) gradient while all sources of EH information except linear perspective were held constant. For seated (experiment 1a) observers, the FP gradient produced overestimations of height for rectangular objects up to 0.15 EH tall. This value was taken to be just outside the lower limit of the zone. This finding was replicated in a virtual environment, for both seated (experiment 1b) and standing (experiment 2) observers. For the upper limit of the zone, EH information itself was manipulated by lowering observers' center of projection in a virtual scene. Lowering the effective EH of standing (experiment 3) and seated (experiment 4) observers produced corresponding overestimations of height for objects up to about 2.5 EH. This zone of approximately 0.20-2.5 EH suggests that the human visual system weights size information differentially, depending on its efficacy.

  16. Effectiveness of Booster Seats Compared With No Restraint or Seat Belt Alone for Crash Injury Prevention

    PubMed Central

    Ma, Xiaoguang; Griffin, Russell; McGwin, Gerald; Allison, David B.; Heymsfield, Steven B.; He, Wei; Zhu, Shankuan

    2013-01-01

    Objectives The objective was to evaluate the effectiveness of belt-positioning booster seats, compared with no restraint use and with seat belt use only, during motor vehicle crashes among U.S. children. Methods This was a retrospective matched cohort study with data from the 1998 through 2009 National Automotive Sampling System (NASS) Crashworthiness Data System (CDS). The study sample consisted of children aged 0 to 10 years who were not seated in the front seat of the vehicle. We used Cox proportional hazards models to estimate the risk of overall, fatal, and regional body injury. Results Children using seat belts in belt-positioning booster seats experienced less overall injury (Injury Severity Score [ISS] > 0, adjusted risk ratio [RR] = 0.73, 95% confidence interval [CI] = 0.55 to 0.96; Abbreviated Injury Scale [AIS] score of 2 or higher, adjusted RR = 0.30, 95% CI = 0.16 to 0.58; ISS > 8, adjusted RR = 0.19, 95% CI = 0.06 to 0.56), and less injury in most body regions except the neck (adjusted RR = 4.79, 95% CI = 1.43 to 16.00) than did children with no restraint use. Children using seat belts in belt-positioning booster seats had an equal risk of injury but higher risks of neck (adjusted RR = 1.86, 95% CI = 1.02 to 3.40) and thorax (adjusted RR = 2.86, 95% CI = 1.33 to 6.15) injury than did children restrained by seat belts only. Conclusions Children using belt-positioning booster seats appear to experience a higher risk of AIS > 0 injury to the neck and thorax than do children using seat belts only. Future research should examine whether the observed increase in neck and thorax injuries can be attributed to improper use of booster seats. PMID:24050794

  17. 75 FR 39 - Special Conditions: Boeing Model 757 Series Airplanes; Seats With Non-Traditional, Large, Non...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ...-traditional, large, non-metallic panels in their designs. To provide a level of safety that is equivalent to...; Special Conditions No. 25-397-SC] Special Conditions: Boeing Model 757 Series Airplanes; Seats With Non-Traditional, Large, Non-Metallic Panels AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final...

  18. An energy-absorbing sliding seat for reducing neck injury risks in rear impact--analysis for prototype built.

    PubMed

    Zhang, Xiaowei; Zhou, Qing

    2016-01-01

    This study investigated overall performance of an energy-absorbing sliding seat concept for whiplash neck injury prevention. The sliding seat allows its seat pan to slide backward for some distance under certain restraint force to absorb crash energy in rear impacts. A numerical model that consisted of vehicle interior, seat, seat belt, and BioRID II dummy was built in MADYMO to evaluate whiplash neck injury in rear impact. A parametric study of the effects of sliding seat parameters, including position and cushion stiffness of head restraint, seatback cushion stiffness, recliner characteristics, and especially sliding energy-absorbing (EA) restraint force, on neck injury criteria was conducted in order to compare the effectiveness of the sliding seat concept with that of other existing anti-whiplash mechanisms. Optimal sliding seat design configurations in rear crashes of different severities were obtained. A sliding seat prototype with bending of a steel strip as an EA mechanism was fabricated and tested in a sled test environment to validate the concept. The performance of the sliding seat under frontal and rollover impacts was checked to make sure the sliding mechanism did not result in any negative effects. The protective effect of the sliding seat with EA restraint force is comparable to that of head restraint-based and recliner stiffness-based anti-whiplash mechanisms. EA restraint force levels of 3 kN in rear impacts of low and medium severities and 6 kN in impacts of high severity were obtained from optimization. In frontal collision and rollover, compared to the nonsliding seat, the sliding seat does not result in any negative effects on occupant protection. The sled test results of the sliding seat prototype have shown the effectiveness of the concept for reducing neck injury risks. As a countermeasure, the sliding seat with appropriate restraint forces can significantly reduce whiplash neck injury risk in rear impacts of low, medium, and high severities with no negative effects on other crash load cases.

  19. An on-the-road experiment into the thermal comfort of car seats.

    PubMed

    Cengiz, Tülin Gündüz; Babalik, Fatih C

    2007-05-01

    This paper presents an evaluation of thermal comfort in an extended road trial study. Automobile seats play an important role in improving the thermal comfort. In the assessment of thermal comfort in autos, in general subjective and objective measurements are used. Testing on the road is very difficult but real traffic conditions affect the comfort level directly, as well as the driver's experience to real conditions. Thus, for such cases real traffic situations should not be neglected in the evaluation of comfort. The aim of this study was to carry out, on an extended road trial study, an evaluation of thermal comfort using human subjects. In the experiments used, the 100% polyester seat cover had three different cover materials, which were velvet, jacquard and micro fiber. All experiments were carried out on a sunny day with ten participants over 1h. They were carried out at air temperatures of 25 degrees C in a Fiat Marea 2004, which had an automatic climate function. Skin temperature at eight points and skin wettedness at two points on the human body were measured during the trials. Participants were required to complete a questionnaire of 15 questions, every 5 min. It can be concluded that there was negligible difference in participants' reported thermal sensation between the three seats. According to objective measurement results, all seat cover materials have the same degree of thermal comfort. On the road the participants feel warmer around their waist than any other area of the body. It was suggested that the effects of real traffic conditions must be accounted for in comfort predictions.

  20. Injury Risk for Rear-Seated Occupants in Small Overlap Crashes

    PubMed Central

    Arbogast, Kristy B.; Locey, Caitlin M.; Hammond, Rachel; Belwadi, Aditya

    2013-01-01

    Small overlap crashes, where the primary crash engagement is outboard from the longitudinal energy absorbing structures of the vehicle, have received recent interest as a crash dynamic that results in high likelihood of injury. Previous analyses of good performing vehicles showed that 24% of crashes with AIS 3+ injuries to front seat occupants were small overlap crashes. However, similar evaluations have not been conducted for those rear seated. Vehicle dynamics suggest that rear seat occupants may be at greater risk due to lack of lateral seating support and a steering wheel to hold, making them more sensitive to lateral movement seen in these crashes. Thus, the objective was to calculate injury risk for rear-seated occupants in small overlap collisions. AIS 2+ and AIS 3+ injury risk was calculated from NASS-CDS data from 2000–2011. Inclusion criteria were vehicles of model year 2000 or later, with CDC codes of “FL” or “FR”, and an occupant in the second or third row. AIS2+ injury risk was 5.1%, and AIS3+ injury risk was 2.4%. Of note, half of the occupants were <15 years of age indicating rear seat protection should emphasize the young. Occupants seated near side were nearly three times as likely to sustain an AIS2+ injury than occupants seated far side. Particular attention should be paid to the prominence of head injuries in this crash dynamic and consideration given to their mitigation. Additional research should determine whether countermeasures being implemented for front seat occupants can be beneficial to rear seat occupants. PMID:24406964

  1. IIHS head restraint ratings and insurance injury claim rates.

    PubMed

    Trempel, Rebecca E; Zuby, David S; Edwards, Marcy A

    2016-08-17

    The Insurance Institute for Highway Safety (IIHS) rates front seat/head restraint designs using a combination of static and dynamic measurements following RCAR-IIWPG procedures. The purpose of this study was to determine whether vehicles with better IIHS-rated seats/head restraints had lower injury risk in rear-end collisions and how the effect of better rated seats interacted with driver gender and age. The presence of an associated insurance injury claim was determined for rear-impact crashes using 2001-2014 model year cars and SUVs. Logistic regression was used to compare injury risk for vehicles with good, acceptable, and marginal IIHS-rated seats/head restraints with poor-rated seats/head restraints. Analyses were run by gender and driver age and also by the rate of more severe injury claims. Injury rates were 11.2% lower for vehicles with seats/head restraints rated good compared to vehicles with seats/head restraints rated poor. The percentage reduction for good- versus poor-rated seats was greater for females (12.7%) than males (8.9%). Comparing good- with poor-rated seats, driver ages 15-24 had the largest reduction at 19.8%, followed by 10.7% for driver ages 45-64 and 10.4% for driver ages 25-44. Seats/head restraints with better IIHS ratings are associated with lower injury rates in rear-impact collisions than seats rated poor. The reductions in injury rates were strongest for females and for young-to-middle-age drivers. The strong reductions in injury rates for these groups are encouraging given their high initial injury rates.

  2. Human Interactive Triboelectric Nanogenerator as a Self-Powered Smart Seat.

    PubMed

    Chandrasekhar, Arunkumar; Alluri, Nagamalleswara Rao; Saravanakumar, Balasubramaniam; Selvarajan, Sophia; Kim, Sang-Jae

    2016-04-20

    A lightweight, flexible, cost-effective, and robust, single-electrode-based Smart Seat-Triboelectric Nanogenerator (SS-TENG) is introduced as a promising eco-friendly approach for harvesting energy from the living environment, for use in integrated self-powered systems. An effective method for harvesting biomechanical energy from human motion such as walking, running, and sitting, utilizing widely adaptable everyday contact materials (newspaper, denim, polyethylene covers, and bus cards) is demonstrated. The working mechanism of the SS-TENG is based on the generation and transfer of triboelectric charge carriers between the active layer and user-friendly contact materials. The performance of SS-TENG (52 V and 5.2 μA for a multiunit SS-TENG) is systematically studied and demonstrated in a range of applications including a self-powered passenger seat number indicator and a STOP-indicator using LEDs, using a simple logical circuit. Harvested energy is used as a direct power source to drive 60 blue and green commercially available LEDs and a monochrome LCD. This feasibility study confirms that triboelectric nanogenerators are a suitable technology for energy harvesting from human motion during transportation, which could be used to operate a variety of wireless devices, GPS systems, electronic devices, and other sensors during travel.

  3. Tractor seating for operators with paraplegia.

    PubMed

    Wilhite, C S; Field, W E; Jaramillo, M

    2017-01-01

    This feasibility study explored the utility of using a pressure mapping instrument to explore the variable of pressure under subjects sitting on a commonly used tractor seat, and four other cushion interventions. The research model used single-subject with repeated measures during simulated tractor operation. In examining the graphical images and pressure mapping data available from the instrument; the contour tractor seat used in this study was not sufficient in redistributing pressure for people with paraplegia operating tractors, putting them at greater risk for acquiring a pressure ulcer. The use of pressure mapping equipment to study seated pressure within dynamic environments is achievable, and further studies need to be performed and replicated in simulated or in vivo environments. The data in this study suggest people with paraplegia operating agricultural equipment may not have acceptable pressure distribution using the manufacturer's installed seat and must rely on adding wheelchair cushions or other materials to the seat surface to create acceptable pressure distribution. However, doing so changes other aspects of the seating micro or macro climate that can also be problematic.

  4. Injury pattern as an indication of seat belt failure in ejected vehicle occupants.

    PubMed

    Freeman, Michael D; Eriksson, Anders; Leith, Wendy

    2014-09-01

    Prior authors have suggested that when occupant ejection occurs in association with a seat belt failure, entanglement of the outboard upper extremity (OUE) with the retracting shoulder belt will invariably occur, leaving injury pattern evidence of belt use. In the present investigation, the authors assessed this theory using data accessed from the NASS-CDS for ejected front seat occupants of passenger vehicles. Logistic regression models were used to assess the associations between seat belt failure status and injuries. Injury types associated with seat belt failure were significant OUE and head injuries (OR = 3.87, [95% CI 1.2, 13.0] and 3.1, [95% CI 1.0, 9.7], respectively). The two injury types were found to be a predictor of seat belt use and subsequent failure only if combined with a high (≥0.8) precrash probability of belt use. The injury pattern associated with a seat belt failure-related ejection has limited use in the forensic investigation of crash-related ejections. © 2014 American Academy of Forensic Sciences.

  5. A joint econometric analysis of seat belt use and crash-related injury severity.

    PubMed

    Eluru, Naveen; Bhat, Chandra R

    2007-09-01

    This paper formulates a comprehensive econometric structure that recognizes two important issues in crash-related injury severity analysis. First, the impact of a factor on injury severity may be moderated by various observed and unobserved variables specific to an individual or to a crash. Second, seat belt use is likely to be endogenous to injury severity. That is, it is possible that intrinsically unsafe drivers do not wear seat belts and are the ones likely to be involved in high injury severity crashes because of their unsafe driving habits. The preceding issues are considered in the current research effort through the development of a comprehensive model of seat belt use and injury severity that takes the form of a joint correlated random coefficients binary-ordered response system. To our knowledge, this is the first instance of such a model formulation and application not only in the safety analysis literature, but in the econometrics literature in general. The empirical analysis is based on the 2003 General Estimates System (GES) data base. Several types of variables are considered to explain seat belt use and injury severity levels, including driver characteristics, vehicle characteristics, roadway design attributes, environmental factors, and crash characteristics. The results, in addition to confirming the effects of various explanatory variables, also highlight the importance of (a) considering the moderating effects of unobserved individual/crash-related factors on the determinants of injury severity and (b) seat belt use endogeneity. From a policy standpoint, the results suggest that seat belt non-users, when apprehended in the act, should perhaps be subjected to both a fine (to increase the chances that they wear seat belts) as well as mandatory enrollment in a defensive driving course (to attempt to change their aggressive driving behaviors).

  6. Cardiac output by pulse contour analysis does not match the increase measured by rebreathing during human spaceflight.

    PubMed

    Hughson, Richard L; Peterson, Sean D; Yee, Nicholas J; Greaves, Danielle K

    2017-11-01

    Pulse contour analysis of the noninvasive finger arterial pressure waveform provides a convenient means to estimate cardiac output (Q̇). The method has been compared with standard methods under a range of conditions but never before during spaceflight. We compared pulse contour analysis with the Modelflow algorithm to estimates of Q̇ obtained by rebreathing during preflight baseline testing and during the final month of long-duration spaceflight in nine healthy male astronauts. By Modelflow analysis, stroke volume was greater in supine baseline than seated baseline or inflight. Heart rate was reduced in supine baseline so that there were no differences in Q̇ by Modelflow estimate between the supine (7.02 ± 1.31 l/min, means ± SD), seated (6.60 ± 1.95 l/min), or inflight (5.91 ± 1.15 l/min) conditions. In contrast, rebreathing estimates of Q̇ increased from seated baseline (4.76 ± 0.67 l/min) to inflight (7.00 ± 1.39 l/min, significant interaction effect of method and spaceflight, P < 0.001). Pulse contour analysis utilizes a three-element Windkessel model that incorporates parameters dependent on aortic pressure-area relationships that are assumed to represent the entire circulation. We propose that a large increase in vascular compliance in the splanchnic circulation invalidates the model under conditions of spaceflight. Future spaceflight research measuring cardiac function needs to consider this important limitation for assessing absolute values of Q̇ and stroke volume. NEW & NOTEWORTHY Noninvasive assessment of cardiac function during human spaceflight is an important tool to monitor astronaut health. This study demonstrated that pulse contour analysis of finger arterial blood pressure to estimate cardiac output failed to track the 46% increase measured by a rebreathing method. These results strongly suggest that alternative methods not dependent on pulse contour analysis are required to track cardiac function in spaceflight. Copyright © 2017 the American Physiological Society.

  7. Analysis of the Influence of Cracked Sleepers under Static Loading on Ballasted Railway Tracks

    PubMed Central

    Montalbán Domingo, Laura; Zamorano Martín, Clara; Palenzuela Avilés, Cristina; Real Herráiz, Julia I.

    2014-01-01

    The principal causes of cracking in prestressed concrete sleepers are the dynamic loads induced by track irregularities and imperfections in the wheel-rail contact and the in-phase and out-of-phase track resonances. The most affected points are the mid-span and rail-seat sections of the sleepers. Central and rail-seat crack detection require visual inspections, as legislation establishes, and involve sleepers' renewal even though European Normative considers that thicknesses up to 0.5 mm do not imply an inadequate behaviour of the sleepers. For a better understanding of the phenomenon, the finite element method constitutes a useful tool to assess the effects of cracking from the point of view of structural behaviour in railway track structures. This paper intends to study how the cracks at central or rail-seat section in prestressed concrete sleepers influence the track behaviour under static loading. The track model considers three different sleeper models: uncracked, cracked at central section, and cracked at rail-seat section. These models were calibrated and validated using the frequencies of vibration of the first three bending modes obtained from an experimental modal analysis. The results show the insignificant influence of the central cracks and the notable effects of the rail-seat cracks regarding deflections and stresses. PMID:25530998

  8. 75 FR 32 - Special Conditions: Airbus Model A340 Series Airplanes; Seats With Non-Traditional, Large, Non...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... incorporate non-traditional, large, non-metallic panels. To provide a level of safety that is equivalent to...; Special Conditions No. 25-399-SC] Special Conditions: Airbus Model A340 Series Airplanes; Seats With Non-Traditional, Large, Non-Metallic Panels AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final...

  9. 75 FR 37 - Special Conditions: Airbus Model A330 Series Airplanes; Seats with Non-Traditional, Large, Non...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ...-traditional, large, non-metallic panels. To provide a level of safety that is equivalent to that provided by...; Special Conditions No. 25-400-SC] Special Conditions: Airbus Model A330 Series Airplanes; Seats with Non-Traditional, Large, Non-Metallic Panels AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final...

  10. Active control of an innovative seat suspension system with acceleration measurement based friction estimation

    NASA Astrophysics Data System (ADS)

    Ning, Donghong; Sun, Shuaishuai; Li, Hongyi; Du, Haiping; Li, Weihua

    2016-12-01

    In this paper, an innovative active seat suspension system for vehicles is presented. This seat suspension prototype is built with two low cost actuators each of which has one rotary motor and one gear reducer. A H∞ controller with friction compensation is designed for the seat suspension control system where the friction is estimated and compensated based on the measurement of seat acceleration. This principal aim of this research was to control the low frequency vibration transferred or amplified by the vehicle (chassis) suspension, and to maintain the passivity of the seat suspension at high frequency (isolation vibration) while taking into consideration the trade-off between the active seat suspension cost and its high frequency performance. Sinusoidal excitations of 1-4.5 Hz were applied to test the active seat suspension both when controlled and when uncontrolled and this is compared with a well-tuned passive heavy duty vehicle seat suspension. The results indicate the effectiveness of the proposed control algorithm within the tested frequencies. Further tests were conducted using the excitations generated from a quarter-car model under bump and random road profiles. The bump road tests indicate the controlled active seat suspension has good transient response performance. The Power Spectral Density (PSD) method and ISO 2631-1 standards were applied to analyse the seat suspension's acceleration under random road conditions. Although some low magnitude and high frequency noise will inevitably be introduced by the active system, the weighted-frequency Root Mean Square (RMS) acceleration shows that this may not have a large effect on ride comfort. In fact, the ride comfort is improved from being an 'a little uncomfortable' to a 'not uncomfortable' level when compared with the well-tuned passive seat suspension. This low cost active seat suspension design and the proposed controller with the easily measured feedback signals are very practical for real applications.

  11. Impact of Active Climate Control Seats on Energy Use, Fuel Use, and CO2 Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreutzer, Cory J; Rugh, John P; Titov, Eugene V

    A project was developed through collaboration between Gentherm and NREL to determine the impact of climate control seats for light-duty vehicles in the United States. The project used a combination of experimentation and analysis, with experimental results providing critical input to the analysis process. First, outdoor stationary vehicle testing was performed at NREL's facility in Golden, CO using multiple occupants. Two pre-production Ford Focus electric vehicles were used for testing; one containing a standard inactive seat and the second vehicle containing a Gentherm climate control seat. Multiple maximum cool-down and steady-state cooling tests were performed in late summer conditions. Themore » two vehicles were used to determine the increase in cabin temperature when using the climate control seat in comparison to the baseline vehicle cabin temperature with a standard seat at the equivalent occupant whole-body sensation. The experiments estimated that on average, the climate control seats allowed for a 2.61 degrees Celsius increase in vehicle cabin temperature at equivalent occupant body sensation compared to the baseline vehicle. The increased cabin air temperature along with their measured energy usage were then used as inputs to the national analysis process. The national analysis process was constructed from full vehicle cabin, HVAC, and propulsion models previously developed by NREL. In addition, three representative vehicle platforms, vehicle usage patterns, and vehicle registration weighted environmental data were integrated into the analysis process. Both the baseline vehicle and the vehicle with climate control seats were simulated, using the experimentally determined cabin temperature offset of 2.61degrees Celsius and added seat energy as inputs to the climate control seat vehicle model. The U.S. composite annual fuel use savings for the climate control seats over the baseline A/C system was determined to be 5.1 gallons of gasoline per year per vehicle, corresponding to 4.0 grams of CO2/mile savings. Finally, the potential impact of 100 percent adoption of climate control seats on U.S. light-duty fleet A/C fuel use was calculated to be 1.3 billion gallons of gasoline annually with a corresponding CO2 emissions reduction of 12.7 million tons. Direct comparison of the impact of the CCS to the ventilated seat off-cycle credit was not possible because the NREL analysis calculated a combined car/truck savings and the baseline A/C CO2 emissions were higher than EPA. To enable comparison, the CCS national A/C CO2 emissions were split into car/truck components and the ventilated seat credit was scaled up. The split CO2 emissions savings due to the CCS were 3.5 g/mi for a car and 4.4 g/mi for a truck. The CCS saved an additional 2.0 g/mi and 2.5 g/mi over the adjusted ventilated seat credit for a car and truck, respectively.« less

  12. Experimental study on occupant evacuation in narrow seat aisle

    NASA Astrophysics Data System (ADS)

    Huang, Shenshi; Lu, Shouxiang; Lo, Siuming; Li, Changhai; Guo, Yafei

    2018-07-01

    Narrow seat aisle is an important area in the train car interior due to the large passenger population, however evacuation therein has not gained enough concerns. In this experimental study, the occupant evacuation of the narrow seat aisle area is investigated, with the aisle width of 0.4-0.6 m and the evacuation direction of forward and backward. The evacuation behaviors are analyzed based on the video record, and the discussion is carried out in the aspect of evacuation time, crowdedness, evacuation order, and aisle conflicts. The result shows that with the increasing aisle width, total evacuation time and the average specific evacuation rate decrease. The aisle is crowded for some time, with a large linear occupant densities. The evacuation order of each occupant is mainly related to the seat position. Moreover, it is found that the aisle conflicts can be well described by Burstedde's model. This study gives a useful benchmark for evacuation simulation of narrow seat aisle, and provides reference to safety design of seat area in train cars.

  13. In-situ electric field in human body model in different postures for wireless power transfer system in an electrical vehicle.

    PubMed

    Shimamoto, Takuya; Laakso, Ilkka; Hirata, Akimasa

    2015-01-07

    The in-situ electric field of an adult male model in different postures is evaluated for exposure to the magnetic field leaked from a wireless power transfer system in an electrical vehicle. The transfer system is located below the centre of the vehicle body and the transferred power and frequency are 7 kW and 85 kHz, respectively. The in-situ electric field is evaluated for a human model (i) crouching near the vehicle, (ii) lying on the ground with or without his arm stretched, (iii) sitting in the driver's seat, and (iv) standing on a transmitting coil without a receiving coil. In each scenario, the maximum in-situ electric fields are lower than the allowable limit prescribed by international guidelines, although the local magnetic field strength in regions of the human body is higher than the allowable external magnetic field strength. The highest in-situ electric field is observed when the human body model is placed on the ground with his arm extended toward the coils, because of a higher magnetic field around the arm.

  14. Digital evaluation of sitting posture comfort in human-vehicle system under Industry 4.0 framework

    NASA Astrophysics Data System (ADS)

    Tao, Qing; Kang, Jinsheng; Sun, Wenlei; Li, Zhaobo; Huo, Xiao

    2016-09-01

    Most of the previous studies on the vibration ride comfort of the human-vehicle system were focused only on one or two aspects of the investigation. A hybrid approach which integrates all kinds of investigation methods in real environment and virtual environment is described. The real experimental environment includes the WBV(whole body vibration) test, questionnaires for human subjective sensation and motion capture. The virtual experimental environment includes the theoretical calculation on simplified 5-DOF human body vibration model, the vibration simulation and analysis within ADAMS/VibrationTM module, and the digital human biomechanics and occupational health analysis in Jack software. While the real experimental environment provides realistic and accurate test results, it also serves as core and validation for the virtual experimental environment. The virtual experimental environment takes full advantages of current available vibration simulation and digital human modelling software, and makes it possible to evaluate the sitting posture comfort in a human-vehicle system with various human anthropometric parameters. How this digital evaluation system for car seat comfort design is fitted in the Industry 4.0 framework is also proposed.

  15. Evaluation of the influence of velocity on dynamic passenger loads during a frontal minibus impact against an obstacle

    NASA Astrophysics Data System (ADS)

    Prochowski, L.; Dębowski, A.; Żuchowski, A.; Zielonka, K.

    2016-09-01

    The safety of people travelling by minibus is a very complex issue, in which the decisive role is played by load-bearing vehicle structure, passenger seats, and personal protection means. In order to maximize the number of people transported, the seats are spaced very closely to each other and this may pose a hazard to the passengers. Based on an analysis of experimental test results, a computer model representing a system composed of a minibus floor segment, seats, and dummies was built. For the analysis, seats integrated with seat belts were adopted. A seat of this type was based on a high-rigidity frame necessary to bear, inter alia, the strong force exerted (during a collision) by passenger's torso on the shoulder seat belt and transmitted to the upper seat belt anchorage point on the seat backrest. Within this work, the frontal minibus impact against an obstacle with velocities ranging from 20 km/h to 70 km/h was considered. The analysis covered the motion of, and dynamic loads on, a test dummy representing a 50th percentile adult male (Hybrid III dummy). Within the analysis, realizations of dynamic loads caused by inertial forces and reactions exerted by a three-point seat belt were taken into account. Special attention was paid to the extreme values of the loads that acted on dummy's head, neck, and torso when the head hit the backrest of the preceding seat in the culminating phase of the vehicle impact against an obstacle. The values of biomechanical indicators HIC, ThAC, Nij , and FAC and of the joint injury risk indicator were calculated.

  16. Teaching infant car seat installation via interactive visual presence: An experimental trial.

    PubMed

    Schwebel, David C; Johnston, Anna; Rouse, Jenni

    2017-02-17

    A large portion of child restraint systems (car seats) are installed incorrectly, especially when first-time parents install infant car seats. Expert instruction greatly improves the accuracy of car seat installation but is labor intensive and difficult to obtain for many parents. This study was designed to evaluate the efficacy of 3 ways of communicating instructions for proper car seat installation: phone conversation; HelpLightning, a mobile application (app) that offers virtual interactive presence permitting both verbal and interactive (telestration) visual communication; and the manufacturer's user manual. A sample of 39 young adults of child-bearing age who had no previous experience installing car seats were recruited and randomly assigned to install an infant car seat using guidance from one of those 3 communication sources. Both the phone and interactive app were more effective means to facilitate accurate car seat installation compared to the user manual. There was a trend for the app to offer superior communication compared to the phone, but that difference was not significant in most assessments. The phone and app groups also installed the car seat more efficiently and perceived the communication to be more effective and their installation to be more accurate than those in the user manual group. Interactive communication may help parents install car seats more accurately than using the manufacturer's manual alone. This was an initial study with a modestly sized sample; if results are replicated in future research, there may be reason to consider centralized "call centers" that provide verbal and/or interactive visual instruction from remote locations to parents installing car seats, paralleling the model of centralized Poison Control centers in the United States.

  17. NASA Occupant Protection Standards Development

    NASA Technical Reports Server (NTRS)

    Somers, Jeffrey T.; Gernhardt, Michael A.; Lawrence, Charles

    2011-01-01

    Current National Aeronautics and Space Administration (NASA) occupant protection standards and requirements are based on extrapolations of biodynamic models, which were based on human tests performed under pre-Space Shuttle human flight programs where the occupants were in different suit and seat configurations than is expected for the Multi Purpose Crew Vehicle (MPCV) and Commercial Crew programs. As a result, there is limited statistical validity to the occupant protection standards. Furthermore, the current standards and requirements have not been validated in relevant spaceflight suit, seat configurations or loading conditions. The objectives of this study were to develop new standards and requirements for occupant protection and rigorously validate these new standards with sub-injurious human testing. To accomplish these objectives we began by determining which critical injuries NASA would like to protect for. We then defined the anthropomorphic test device (ATD) and the associated injury metrics of interest. Finally, we conducted a literature review of available data for the Test Device for Human Occupant Restraint New Technology (THOR-NT) ATD to determine injury assessment reference values (IARV) to serve as a baseline for further development. To better understand NASA s environment, we propose conducting sub-injurious human testing in spaceflight seat and suit configurations with spaceflight dynamic loads, with a sufficiently high number of subjects to validate no injury during nominal landing loads. In addition to validate nominal loads, the THOR-NT ATD will be tested in the same conditions as the human volunteers, allowing correlation between human and ATD responses covering the Orion nominal landing environment and commercial vehicle expected nominal environments. All testing will be conducted without the suit and with the suit to ascertain the contribution of the suit to human and ATD responses. In addition to the testing campaign proposed, additional data analysis is proposed to mine existing human injury and response data from other sources, including military volunteer testing, automotive Crash Injury Research Engineering Network (CIREN), and IndyCar impact and injury data. These data sources can allow a better extrapolation of the ATD responses to off-nominal conditions above the nominal range that can safely be tested. These elements will be used to develop injury risk functions for each of the injury metrics measured from the ATD. These risk functions would serve as the basis for the NASA standards. Finally, we propose defining standard test methodology for evaluating future spacecraft designs against the IARVs, including developing a star-rating system to allow crew safety comparisons between vehicles.

  18. Improved Seat, Console, and Workplace Design: Annotated Bibliography, Integration of the Literature, Accommodation Model, and Seated Operator Reach Profiles

    DTIC Science & Technology

    1976-12-31

    PROCEDURES: Several measursments were taken (e.g. seat height, height of keyboard, etc.), along with responses to a questionnaire. APPARATUS: The chairs...4) It was concluded that extremes of anthropometric measurements are responsible in only a few instances of significant injury, and that poor body...position and unfavorable ejection conditions, rather than body measurements, are responsible for egress injuries in the majority of ejections. A-119

  19. Quantification of the Design Relationship Between Ground Vehicle Weight and Occupant Safety Under Blast Loading

    DTIC Science & Technology

    2011-04-01

    particular, we examine the opportunity to tune the seating system design parameters with a prescribed vehicle mass and blast pulse to minimize the...behavior of the physical vertical drop tower tests used to study aircraft seat ejection and ground vehicle blast events. This model was created and...driver’s seat , though it is expected that passengers should experience a comparable range of acceleration pulses given that the blast positioning is uniform

  20. 75 FR 74665 - Airworthiness Directives; Airbus Model A310 Airplanes, and Airbus Model A300 B4-600, B4-600R, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... landing gear retraction. * * * * * Uncommanded movement of the pilot and co-pilot seats during takeoff or... landing gear retraction. AD 2009-0084 required the deactivation of the electrical power of SOGERMA pilot... retraction. * * * * * Uncommanded movement of the pilot and co-pilot seats during takeoff or landing could...

  1. Effects of vehicle front-end stiffness on rear seat dummies in NCAP and FMVSS208 tests.

    PubMed

    Sahraei, Elham; Digges, Kennerly; Marzougui, Dhafer

    2013-01-01

    This study is devoted to quantifying changes in mass and stiffness of vehicles tested by the National Highway Traffic Safety Administration (NHTSA) over the past 3 decades (model years 1982 to 2010) and understanding the effect of those changes on protection of rear seat occupants. A total of 1179 tests were used, and the changes in their mass and stiffness versus their model year was quantified. Additionally, data from 439 dummies tested in rear seats of NHTSA's full frontal crashes were analyzed. Dummies were divided into 3 groups based on their reference injury criteria. Multiple regressions were performed with speed, stiffness, and mass as predicting variables for head, neck, and chest injury criteria. A significant increase in mass and stiffness over model year of vehicles was observed, for passenger cars as well as large platform vehicles. The result showed a significant correlation (P-value < .05) between the increase in stiffness of the vehicles and increase in head and chest injury criteria for all dummy sizes. These results explain that stiffness is a significant contributor to previously reported decreases in protection of rear seat occupants over model years of vehicles.

  2. The 2007 click it or ticket high-visibility seat belt mobilization : traffic tech.

    DOT National Transportation Integrated Search

    2010-09-01

    In May 2007 the National Highway Traffic Safety Administration : sponsored the fifth national Click It or Ticket (CIOT) : high-visibility seat belt enforcement mobilization, which followed : the CIOT program model of earned and paid media : publicizi...

  3. "He's the Number One Thing in My World": Application of the PRECEDE-PROCEED Model to Explore Child Car Seat Use in a Regional Community in New South Wales.

    PubMed

    Hunter, Kate; Keay, Lisa; Clapham, Kathleen; Brown, Julie; Bilston, Lynne E; Lyford, Marilyn; Gilbert, Celeste; Ivers, Rebecca Q

    2017-10-10

    We explored the factors influencing the use of age-appropriate car seats in a community with a high proportion of Aboriginal families in regional New South Wales. We conducted a survey and three focus groups with parents of children aged 3-5 years enrolled at three early learning centres on the Australian south-east coast. Survey data were triangulated with qualitative data from focus groups and analysed using the PRECEDE-PROCEED conceptual framework. Of the 133 eligible families, 97 (73%) parents completed the survey including 31% of parents who reported their children were Aboriginal. Use of age-appropriate car seats was reported by 80 (83%) of the participants, and awareness of the child car seat legislation was high (91/97, 94%). Children aged 2-3 years were less likely reported to be restrained in an age-appropriate car seat than were older children aged 4-5 years (60% versus 95%: χ² = 19.14, p < 0.001). Focus group participants highlighted how important their child's safety was to them, spoke of the influence grandparents had on their use of child car seats and voiced mixed views on the value of authorised child car seat fitters. Future programs should include access to affordable car seats and target community members as well as parents with clear, consistent messages highlighting the safety benefits of using age-appropriate car seats.

  4. “He’s the Number One Thing in My World”: Application of the PRECEDE-PROCEED Model to Explore Child Car Seat Use in a Regional Community in New South Wales

    PubMed Central

    Hunter, Kate; Keay, Lisa; Clapham, Kathleen; Brown, Julie; Lyford, Marilyn; Gilbert, Celeste; Ivers, Rebecca Q.

    2017-01-01

    We explored the factors influencing the use of age-appropriate car seats in a community with a high proportion of Aboriginal families in regional New South Wales. We conducted a survey and three focus groups with parents of children aged 3–5 years enrolled at three early learning centres on the Australian south-east coast. Survey data were triangulated with qualitative data from focus groups and analysed using the PRECEDE-PROCEED conceptual framework. Of the 133 eligible families, 97 (73%) parents completed the survey including 31% of parents who reported their children were Aboriginal. Use of age-appropriate car seats was reported by 80 (83%) of the participants, and awareness of the child car seat legislation was high (91/97, 94%). Children aged 2–3 years were less likely reported to be restrained in an age-appropriate car seat than were older children aged 4–5 years (60% versus 95%: χ2 = 19.14, p < 0.001). Focus group participants highlighted how important their child’s safety was to them, spoke of the influence grandparents had on their use of child car seats and voiced mixed views on the value of authorised child car seat fitters. Future programs should include access to affordable car seats and target community members as well as parents with clear, consistent messages highlighting the safety benefits of using age-appropriate car seats. PMID:28994725

  5. Development of a Methodology to Gather Seated Anthropometry in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Young, Karen; Mesloh, Miranda

    2009-01-01

    The Constellation Program's Crew Exploration Vehicle (CEV) is required to accommodate the full population range of crewmembers according to the anthropometry requirements stated in the Human-Systems Integration Requirement (HSIR) document (CxP70024). Seated height is one of many critical dimensions of importance to the CEV designers in determining the optimum seat configuration in the vehicle. Changes in seated height may have a large impact to the design, accommodation, and safety of the crewmembers. Seated height can change due to elongation of the spine when crewmembers are exposed to microgravity. Spinal elongation is the straightening of the natural curvature of the spine and the expansion of inter-vertebral disks. This straightening occurs due to fluid shifts in the body and the lack of compressive forces on the spinal vertebrae. Previous studies have shown that as the natural curvature of the spine straightens, an increase in overall height of 3% of stature occurs which has been the basis of the current HSIR requirements. However due to variations in the torso/leg ratio and impact of soft tissue, data is nonexistent as to how spinal elongation specifically affects the measurement of seated height. In order to obtain this data, an experiment was designed to collect spinal elongation data while in a seated posture in microgravity. The purpose of this study was to provide quantitative data that represents the amount of change that occurs in seated height due to spinal elongation in microgravity environments. Given the schedule and budget constraints of ISS and Shuttle missions and the uniqueness of the problem, a methodology had to be developed to ensure that the seated height measurements were accurately collected. Therefore, simulated microgravity evaluations were conducted to test the methodology and procedures of the experiment. This evaluation obtained seat pan pressure and seated height data to a) ensure that the lap restraint provided sufficient restraint to eliminate any gap between the subject s gluteal surface and the seat pan and b) to document any necessary design and procedural changes needed due to the microgravity environment. The methodology and setup used during the simulated microgravity evaluations was replicable to the proposed methodology and setup for in-space missions. A flight-like Shuttle seat, pressure sensors, anthropometer, and existing hardware was used to measure seated height and contact area while experiencing microgravity. The outlying buttock and thigh surface contact areas were collected to determine if the subjects were in contact with the seat pan, while a measurer recorded their seated height with an anthropometer. The Anthropometry and Biomechanics Facility (ABF) completed data collection from three microgravity flights to assess the restraint methods and techniques to be used for the in-flight procedures performed by the crewmembers in orbit. The first flight demonstrated that the restraint system on the seat, used in a nominal configuration, did not sufficiently restrain a person in the seat. The results showed the subjects were not in full contact with the seat pan, resulting in inaccurate sitting height data. Thus, a second flight was conducted to test different restraint system options. The results showed that by 1) changing the restraint system from the nominal 3-points of the 5-point harness, which is used for crewmembers when fully suited with emergency equipment, and 2) rerouting the lap straps around the joint of the backrest, where the backrest and seat pan are joined, resulted in the optimal method to restrain a subject. This rerouting method allowed for the anchor location to change and pull the subjects back into the seat instead of being anchored at the side of the subjects thighs. The results from the third flight validated the final restraint system, which resulted in a verified methodology for collecting seated anthropometry to ultimately determine the amount of spil elongation in a microgravity environment.

  6. Experimental studies for determining human discomfort response to vertical sinusoidal vibration

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Leatherwood, J. D.

    1975-01-01

    A study was conducted to investigate several problems related to methodology and design of experiments to obtain human comfort response to vertical sinusoidal vibration. Specifically, the studies were directed to the determination of (1) the adequacy of frequency averaging of vibration data to obtain discomfort predictors, (2) the effect of practice on subject ratings, (3) the effect of the demographic factors of age, sex, and weight, and (4) the relative importance of seat and floor vibrations in the determination of measurement and criteria specification location. Results indicate that accurate prediction of discomfort requires knowledge of both the acceleration level and frequency content of the vibration stimuli. More importantly, the prediction of discomfort was shown to be equally good based upon either floor accelerations or seat accelerations. Furthermore, it was demonstrated that the discomfort levels in different seats resulting from similar vibratory imputs were equal. Therefore, it was recommended that criteria specifications and acceleration measurements be made at the floor location. The results also indicated that practice did not systematically influence discomfort responses nor did the demographic factors of age, weight, and sex contribute to the discomfort response variation.

  7. The Use of a Vehicle Acceleration Exposure Limit Model and a Finite Element Crash Test Dummy Model to Evaluate the Risk of Injuries During Orion Crew Module Landings

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Fasanella, Edwin L.; Tabiei, Ala; Brinkley, James W.; Shemwell, David M.

    2008-01-01

    A review of astronaut whole body impact tolerance is discussed for land or water landings of the next generation manned space capsule named Orion. LS-DYNA simulations of Orion capsule landings are performed to produce a low, moderate, and high probability of injury. The paper evaluates finite element (FE) seat and occupant simulations for assessing injury risk for the Orion crew and compares these simulations to whole body injury models commonly referred to as the Brinkley criteria. The FE seat and crash dummy models allow for varying the occupant restraint systems, cushion materials, side constraints, flailing of limbs, and detailed seat/occupant interactions to minimize landing injuries to the crew. The FE crash test dummies used in conjunction with the Brinkley criteria provides a useful set of tools for predicting potential crew injuries during vehicle landings.

  8. Human Robotic Study at Houghton Crater - virtual reality study from NASA Ames (FFC) Future Fight

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Human Robotic Study at Houghton Crater - virtual reality study from NASA Ames (FFC) Future Fight Central simulator tower L-R: Dr Geoffrey Briggs; Jen Jasper (seated); Dr Jan Akins and Mr. Tony Gross, Ames

  9. NASA Occupant Protection Standards Development

    NASA Technical Reports Server (NTRS)

    Somers, Jeffrey; Gernhardt, Michael; Lawrence, Charles

    2012-01-01

    Historically, spacecraft landing systems have been tested with human volunteers, because analytical methods for estimating injury risk were insufficient. These tests were conducted with flight-like suits and seats to verify the safety of the landing systems. Currently, NASA uses the Brinkley Dynamic Response Index to estimate injury risk, although applying it to the NASA environment has drawbacks: (1) Does not indicate severity or anatomical location of injury (2) Unclear if model applies to NASA applications. Because of these limitations, a new validated, analytical approach was desired. Leveraging off of the current state of the art in automotive safety and racing, a new approach was developed. The approach has several aspects: (1) Define the acceptable level of injury risk by injury severity (2) Determine the appropriate human surrogate for testing and modeling (3) Mine existing human injury data to determine appropriate Injury Assessment Reference Values (IARV). (4) Rigorously Validate the IARVs with sub-injurious human testing (5) Use validated IARVs to update standards and vehicle requirement

  10. Modeling occupants in far-side impacts.

    PubMed

    Douglas, Clay; Fildes, Brian; Gibson, Tom

    2011-10-01

    Far-side impacts are not part of any regulated NCAP, FMVSS, or similar test regime despite accounting for 43 percent of the seriously injured persons and 30 percent of the harm in U.S. side impact crashes. Furthermore, injuries to the head and thorax account for over half of the serious injuries sustained by occupants in far-side crashes. Despite this, there is no regulated or well-accepted anthropomorphic test device (ATD) or computer model available to investigate far-side impacts. As such, this presents an opportunity to assess a computer model that can be used to measure the effect of varying restraint parameters on occupant biomechanics in far-side impacts. This study sets out to demonstrate the modified TASS human facet model's (MOTHMO) capabilities in modeling whole-body response in far-side impacts. MOTHMO's dynamic response was compared to that of postmortem human subjects (PMHS), WorldSID, and Thor-NT in a series of far-side sled tests. The advantages, disadvantages, and differences of using MOTHMO compared to ATDs were highlighted and described in terms of model design and instrumentation. Potential applications and improvements for MOTHMO were also recommended. The results showed that MOTHMO is capable of replicating the seat belt-to-shoulder complex interaction, pelvis impacts, head displacement, neck and shoulder belt loading from inboard mounted belts, and impacts from multiple directions. Overall, the model performed better than Thor-NT and at least as well as WorldSID when compared to PMHS results. Though WorldSID and Thor-NT ATDs were capable of reproducing many of these impact loads, measuring the seat belt-to-shoulder complex interaction and thoracic deflection at multiple sites and directions was less accurately handled. This study demonstrated that MOTHMO is capable of modeling whole-body response in far-side impacts. Furthermore, MOTHMO can be used as a virtual design tool to explore the effect of varying restraint parameters on occupant kinematics in far-side crash configurations.

  11. Seating Arrangement, Group Composition and Competition-driven Interaction: Effects on Students' Performance in Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roxas, R. M.; Monterola, C.; Carreon-Monterola, S. L.

    2010-07-28

    We probe the effect of seating arrangement, group composition and group-based competition on students' performance in Physics using a teaching technique adopted from Mazur's peer instruction method. Ninety eight lectures, involving 2339 students, were conducted across nine learning institutions from February 2006 to June 2009. All the lectures were interspersed with student interaction opportunities (SIO), in which students work in groups to discuss and answer concept tests. Two individual assessments were administered before and after the SIO. The ratio of the post-assessment score to the pre-assessment score and the Hake factor were calculated to establish the improvement in student performance.more » Using actual assessment results and neural network (NN) modeling, an optimal seating arrangement for a class was determined based on student seating location. The NN model also provided a quantifiable method for sectioning students. Lastly, the study revealed that competition-driven interactions increase within-group cooperation and lead to higher improvement on the students' performance.« less

  12. Geometry of rear seats and child restraints compared to child anthropometry.

    PubMed

    Bilston, Lynne E; Sagar, Nipun

    2007-10-01

    The objective of this study was to evaluate the geometry of a wide range of restraints (child restraints, booster seats and rear seats) used by children, and how these match their anthropometry, and to determine limitations to restraint size for the population of children using them. The study is motivated by the widespread premature graduation from one restraint type to another, which parents often attribute to children outgrowing their previous restraint. Currently, recommended transitions are based on a small sample of vehicles and children. Outboard rear seat and seat belt geometry (anchorage locations, sash belt angles) from 50 current model vehicles were measured using a custom-developed measuring jig. For 17 child restraints, a 3-dimensional measuring arm was used to measure the geometry of the restraint including interior size and strap slot locations (where relevant). These measurements were compared to anthropometric measurements, to determine the suitability of a given restraint for children of particular ages. The results for the rear seat geometry indicate that all seat cushions were too deep for a child whose upper leg length is at the 50th percentile until approximately 11.5 years, and half of vehicle seat cushions were too deep for a 15 year old child whose upper leg length is at the 50th percentile. Sash belt geometry was more variable, with approximately a third of vehicles accommodating 6-8 year olds who approximate the shoulder geometry measurements at the 50th percentile. Dedicated child restraints accommodated most children within recommended age groups, with two exceptions. Several high back booster seats were not tall enough for a child whose seated height is at the 50th percentile for 8 year olds (who is still too short for an adult belt according to current guidelines and the results from the rear seat geometry study), and a small number of forward facing restraints and high back boosters were too narrow for children at the upper end of the recommended age ranges. Analysis of the results from this study indicates that alterations in restraint geometry, particularly shortening the seat cushion, allowing for adjustable upper sash belt anchorages in the rear seat of vehicles, and increasing the height of high back booster seats would substantially improve the fit of restraints for child occupants. This data confirms findings from a recent study that looked only at rear seat cushion depths and provides new data on seat belt and child restraint geometry for child occupants.

  13. Design of a rib impactor equipment

    NASA Astrophysics Data System (ADS)

    Torres, C. R.; García, G.; Aguilar, L. A.; Martínez, L.

    2017-01-01

    The human ribs must be analyzed as long and as curved bones, due to their physiology. For the development of an experimental equipment that simulate the application of loads, over the rib in the moment of a frontal collision in an automobile with seat belt, it was applied a methodology that constituted in the identification of needs and the variables which led the design of 3D model, from this it was used the technique of fused deposition modeling for the development of the equipment pieces. The supports that hold the rib ends were design with two and three degrees of freedom that allows the simulation of rib movement with the spine and the breastbone in the breathing. For the simulation of the seat belt, it was determined to applied two loads over the front part of the rib from the sagittal and lateral plane respectively, for this it was made a displacement through a lineal actuator with a speed of 4mm/s. The outcomes shown a design of an equipment able to obtain the load parameters required to generate fractures in rib specimens. The equipment may be used for the study of specimens with nearby geometries to the rib taken as a reference.

  14. Numerical simulations of the occupant head response in an infantry vehicle under blunt impact and blast loading conditions.

    PubMed

    Sevagan, Gopinath; Zhu, Feng; Jiang, Binhui; Yang, King H

    2013-07-01

    This article presents the results of a finite element simulation on the occupant head response in an infantry vehicle under two separated loading conditions: (1) blunt impact and (2) blast loading conditions. A Hybrid-III dummy body integrated with a previously validated human head model was used as the surrogate. The biomechanical response of the head was studied in terms of head acceleration due to the impact by a projectile on the vehicle and intracranial pressure caused by blast wave. A series of parametric studies were conducted on the numerical model to analyze the effect of some key parameters, such as seat configuration, impact velocity, and boundary conditions. The simulation results indicate that a properly designed seat and internal surface of the infantry vehicle can play a vital role in reducing the risk of head injury in the current scenarios. Comparison of the kinematic responses under the blunt impact and blast loading conditions reveals that under the current loading conditions, the acceleration pulse in the blast scenario has much higher peak values and frequency than blunt impact case, which may reflect different head response characteristics.

  15. Theory and application of a three-dimensional model of the human spine.

    PubMed

    Belytschko, T; Schwer, L; Privitzer, E

    1978-01-01

    A three-dimensional, discrete model of the human spine, torso, and head was developed for the purpose of evaluating mechanical response in pilot ejection. However, it was developed in sufficient generality to be applicable to other body response problems, such as occupant response in aircraft crash and arbitrary loads on the head-spine system. The anatomy is modelled by a collection of rigid bodies, which represent skeletal segments such as the vertebrae, pelvis, head, and ribs, interconnected by deformable elements, which represent ligaments, cargilagenous joints, viscera and connective tissues. Results are presented for several conditions: different rates of onset, ejection at angles, preejection alignment, and eccentric head loadings. It is shown that slow rates of onset and angling the seat reduce both the peak axial loads and bending moments. In the presence of eccentric head masses, such as helmet-mounted devices, the reflected flexural wave is shown to be the key injury mechanism.

  16. Frontal and oblique crash tests of HIII 6-year-old child ATD using real-world, observed child passenger postures.

    PubMed

    Bohman, Katarina; Arbogast, Kristy B; Loeb, Helen; Charlton, Judith L; Koppel, Sjaan; Cross, Suzanne L

    2018-02-28

    The aim of this study was to evaluate the consequences of frontal and oblique crashes when positioning a Hybrid III (HIII) 6-year-old child anthropometric test device (ATD) using observed child passenger postures from a naturalistic driving study (NDS). Five positions for booster-seated children aged 4-7 years were selected, including one reference position according to the FMVSS 213 ATD seating protocol and 4 based on real-world observed child passenger postures from an NDS including 2 user positions with forward tilting torso and 2 that combined both forward and lateral inboard tilting of the torso. Seventeen sled tests were conducted in a mid-sized vehicle body at 64 km/h (European New Car Assessment Programme [Euro NCAP] Offset Deformable Barrier [ODB] pulse), in full frontal and oblique (15°) crash directions. The rear-seated HIII 6-year-old child ATD was restrained on a high-back booster seat. In 10 tests, the booster seat was also attached with a top tether. In the oblique tests, the ATD was positioned on the far side. Three camera views and ATD responses (head, neck, and chest) were analyzed. The shoulder belt slipped off the shoulder in all ATD positions in the oblique test configuration. In full frontal tests, the shoulder belt stayed on the shoulder in 3 out of 9 tests. Head acceleration and neck tension were decreased in the forward leaning positions; however, the total head excursion increased up to 210 mm compared to te reference position, due to belt slip-off and initial forward leaning position. These results suggest that real-world child passenger postures may contribute to shoulder belt slip-off and increased head excursion, thus increasing the risk of head injury. Restraint system development needs to include a wider range of sitting postures that children may choose, in addition to the specified postures of ATDs in seating test protocols, to ensure robust performance across diverse use cases. In addition, these tests revealed that the child ATD is limited in its ability to mimic real-world child passenger postures. There is a need to develop child human body models that may offer greater flexibility for these types of crash evaluations.

  17. Effects of motion base and g-seat cueing of simulator pilot performance

    NASA Technical Reports Server (NTRS)

    Ashworth, B. R.; Mckissick, B. T.; Parrish, R. V.

    1984-01-01

    In order to measure and analyze the effects of a motion plus g-seat cueing system, a manned-flight-simulation experiment was conducted utilizing a pursuit tracking task and an F-16 simulation model in the NASA Langley visual/motion simulator. This experiment provided the information necessary to determine whether motion and g-seat cues have an additive effect on the performance of this task. With respect to the lateral tracking error and roll-control stick force, the answer is affirmative. It is shown that presenting the two cues simultaneously caused significant reductions in lateral tracking error and that using the g-seat and motion base separately provided essentially equal reductions in the pilot's lateral tracking error.

  18. Development of Accommodation Models for Soldiers in Vehicles: Squad

    DTIC Science & Technology

    2014-09-01

    average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed...unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Data from a previous study of Soldier posture and position were analyzed to develop statistical...range of seat height and seat back angle. All of the models include the effects of body armor and body borne gear. 15. SUBJECT TERMS Anthropometry

  19. Some Aspects of the Investigation of Random Vibration Influence on Ride Comfort

    NASA Astrophysics Data System (ADS)

    DEMIĆ, M.; LUKIĆ, J.; MILIĆ, Ž.

    2002-05-01

    Contemporary vehicles must satisfy high ride comfort criteria. This paper attempts to develop criteria for ride comfort improvement. The highest loading levels have been found to be in the vertical direction and the lowest in lateral direction in passenger cars and trucks. These results have formed the basis for further laboratory and field investigations. An investigation of the human body behaviour under random vibrations is reported in this paper. The research included two phases; biodynamic research and ride comfort investigation. A group of 30 subjects was tested. The influence of broadband random vibrations on the human body was examined through the seat-to-head transmissibility function (STHT). Initially, vertical and fore and aft vibrations were considered. Multi-directional vibration was also investigated. In the biodynamic research, subjects were exposed to 0·55, 1·75 and 2·25 m/s2 r.m.s. vibration levels in the 0·5- 40 Hz frequency domain. The influence of sitting position on human body behaviour under two axial vibrations was also examined. Data analysis showed that the human body behaviour under two-directional random vibrations could not be approximated by superposition of one-directional random vibrations. Non-linearity of the seated human body in the vertical and fore and aft directions was observed. Seat-backrest angle also influenced STHT. In the second phase of experimental research, a new method for the assessment of the influence of narrowband random vibration on the human body was formulated and tested. It included determination of equivalent comfort curves in the vertical and fore and aft directions under one- and two-directional narrowband random vibrations. Equivalent comfort curves for durations of 2·5, 4 and 8 h were determined.

  20. Cerebral blood flow velocity in humans exposed to 24 h of head-down tilt

    NASA Technical Reports Server (NTRS)

    Kawai, Y.; Murthy, G.; Watenpaugh, D. E.; Breit, G. A.; Deroshia, C. W.; Hargens, A. R.

    1993-01-01

    This study investigates cerebral blood flow (CBF) velocity in humans before, during, and after 24 h of 6 deg head-down tilt (HDT), which is a currently accepted experimental model to simulate microgravity. CBF velocity was measured by use of the transcranial Doppler technique in the right middle cerebral artery of eight healthy male subjects. Mean CBF velocity increased from the pre-HDT upright seated baseline value of 55.5 +/- 3.7 (SE) cm/s to 61.5 +/- 3.3 cm/s at 0.5 h of HDT, reached a peak value of 63.2 +/- 4.1 cm/s at 3 h of HDT, and remained significantly above the pre-HDT baseline for over 6 h of HDT. During upright seated recovery, mean CBF velocity decreased to 87 percent of the pre-HDT baseline value. Mean CBF velocity correlated well with calculated intracranial arterial pressure (IAP). As analyzed by linear regression, mean CBF velocity = 29.6 + 0.32IAP. These results suggest that HDT increases CBF velocity by increasing IAP during several hours after the onset of microgravity. Importantly, the decrease in CBF velocity after HDT may be responsible, in part, for the increased risk of syncope observed in subjects after prolonged bed rest and also in astronauts returning to Earth.

  1. Human Kinematics During Non-Collinear Low Velocity Rear End Collisions

    PubMed Central

    McConnell, Whitman E.; Guzman, Herbert M.; Krenrich, Scott W.; Bomar, John B.; Harding, Richard M.; Raddin, James H.; Funk, James R.; Smith, Darrin A.

    2003-01-01

    Non-collinear low velocity rear end (LVRE) collision human kinematics have not previously been studied. Occupant head and neck motions during twenty similar non-collinear (15 and 30 degree angle) left rear end collisions were analyzed for five male test subjects alternately positioned in the left and right front seats of the struck vehicle. Displacement-time and acceleration data for occupant, seat, and vehicles were determined by 3D motion analyses and linear accelerometer outputs. The dynamics of the struck vehicle at 6.0 to 9.3 kph (3.8 to 5.8 mph) delta-V showed an initial period of yaw, even when the rear tires did not lose traction with the pavement. The brief yaw seen during the 15 degree impacts was accompanied by early relative rightward movement of the vehicle’s seat and seatback behind the stationary test subject: the subjects subsequently engaged the left region of the seatback and head restraint. A more pronounced yaw accompanied the loss of rear tire traction during the 30 degree tests, and resulted in occupant contact/loading further toward the left edge of the seat back and head restraint. For a given striking vehicle velocity, the impact severity in terms of head acceleration and changes in head velocity were significantly lower (p<0.05) at vehicle impact angles of 30 degrees compared with 15 degrees. Clinically, there were only minor short-term symptoms and no long-term symptoms observed in these angled impacts. PMID:12941242

  2. Elderly road collision injury outcomes associated with seat positions and seatbelt use in a rapidly aging society-A case study in South Korea.

    PubMed

    Noh, Yuna; Yoon, Yoonjin

    2017-01-01

    Aging has long been regarded as one of the most critical factors affecting crash injury outcomes. In South Korea, where the elderly population is projected to reach 35.9% by 2050, the implications of an increasing number of elderly vehicle users on road safety are evident. In this research, the confounding effect of occupant age in a vehicle in terms of seat position and seatbelt use was investigated. In addition, elderly occupants were divided into a younger-old group aged between 65 and 74 years and an older-old group aged 75 years and older in an effort to assess whether the conventional elderly age standard of 65 years should be reconsidered. A multinomial logit framework was adopted to predict two-level injury severity using collision data between 2008 and 2015. Predictor variables included gender, age group, seat position, seatbelt, road type, road slope, road surface, road line, and type of vehicle. Five models, a base model with no interactions and four interaction models which were combinations of age group, seatbelt use and seat position, were devised and evaluated. With no interacting term, age was the most prominent predictor. Elderly occupants were most likely to suffer from severe injury without a seatbelt in all seat positions, and the use of a seatbelt reduced this likelihood the most in the elderly group as well. Front passenger seats had the highest risk to elderly occupants, while the driver seat was statistically insignificant. When the elderly group was divided into the younger-old group and the older-old group, the older-olds were found to be much more vulnerable compared to the younger-olds. In particular, older drivers were five times more likely to suffer a severe injury without a seatbelt. The degree of injury severity of elderly occupants was reduced the most with the use of a seatbelt, demonstrating the importance of using seat restraints. The sharp increase in the risk of injury of the older-old group suggests that the age standard of 65 years as the elderly group with regard to traffic safety may require reconsideration due to the growing number of elderly vehicle users on the road. Our results provide practical evidence with which to formulate new safety policies, including mandatory seatbelt use, driving age limits and insurance pricing.

  3. Comparative Performance of Rear Facing Child Restraint Systems on the CMVSS 213 Bench and Vehicle Seats

    PubMed Central

    Tylko, Suzanne; Locey, Caitlin M.; Garcia-Espana, J. Felipe; Arbogast, Kristy B.; Maltese, Matthew R.

    2013-01-01

    The purpose of this study was to compare the dynamic response of rear-facing child restraint systems (RFCRS) installed on the CMVSS 213 sled bench and a selection of vehicle seats. Thirty-six sled tests were conducted: three models of rear facing CRS with an anthropomorphic test device (ATD) representing a 12 month old child (CRABI) were affixed via lower anchors (LATCH), 3 point belt without CRS base, and 3 point belt with CRS base to one of three vehicle seats or the CMVSS 213 bench seat. All CRS were subjected to an identical sled acceleration pulse. Two types of matched pair analysis: “bench-to-vehicle” and “method of attachment” were conducted. Statistically significant differences were observed in the kinematic responses of the ATD and the CRS. This is the first study to quantify differences between the regulatory bench and vehicle seats on a system level and evaluate the influence of attachment method. Our results show that the difference in RFCRS forward excursion between 3-point belt with base and LATCH installations was between 1 and 7 percent on the bench and 22 to 76 percent on the vehicle seats. When evaluating the dynamic performance of RFCRS, the use of real vehicle seats from vehicles that commonly carry children may provide valuable insight. The findings would require further confirmation using a broader selection of RFCRS and vehicle seats, before generalizable conclusions can be drawn. PMID:24406967

  4. Test-retest reliability and cross validation of the functioning everyday with a wheelchair instrument.

    PubMed

    Mills, Tamara L; Holm, Margo B; Schmeler, Mark

    2007-01-01

    The purpose of this study was to establish the test-retest reliability and content validity of an outcomes tool designed to measure the effectiveness of seating-mobility interventions on the functional performance of individuals who use wheelchairs or scooters as their primary seating-mobility device. The instrument, Functioning Everyday With a Wheelchair (FEW), is a questionnaire designed to measure perceived user function related to wheelchair/scooter use. Using consumer-generated items, FEW Beta Version 1.0 was developed and test-retest reliability was established. Cross-validation of FEW Beta Version 1.0 was then carried out with five samples of seating-mobility users to establish content validity. Based on the content validity study, FEW Version 2.0 was developed and administered to seating-mobility consumers to examine its test-retest reliability. FEW Beta Version 1.0 yielded an intraclass correlation coefficient (ICC) Model (3,k) of .92, p < .001, and the content validity results revealed that FEW Beta Version 1.0 captured 55% of seating-mobility goals reported by consumers across five samples. FEW Version 2.0 yielded ICC(3,k) = .86, p < .001, and captured 98.5% of consumers' seating-mobility goals. The cross-validation study identified new categories of seating-mobility goals for inclusion in FEW Version 2.0, and the content validity of FEW Version 2.0 was confirmed. FEW Beta Version 1.0 and FEW Version 2.0 were highly stable in their measurement of participants' seating-mobility goals over a 1-week interval.

  5. Reduction of low frequency vibration of truck driver and seating system through system parameter identification, sensitivity analysis and active control

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Bi, Fengrong; Du, Haiping

    2018-05-01

    This paper aims to develop an 5-degree-of-freedom driver and seating system model for optimal vibration control. A new method for identification of the driver seating system parameters from experimental vibration measurement has been developed. The parameter sensitivity analysis has been conducted considering the random excitation frequency and system parameter uncertainty. The most and least sensitive system parameters for the transmissibility ratio have been identified. The optimised PID controllers have been developed to reduce the driver's body vibration.

  6. Descriptive analysis of combine cabin vibrations and their effect on the human body

    NASA Astrophysics Data System (ADS)

    Hostens, I.; Ramon, H.

    2003-09-01

    All on- and off-road vehicles are exposed to vibrations caused by unevenness of road or soil profile, moving elements within the machine or implements. A higher prevalence of low back pain is found in drivers of off-road machinery than in other drivers. In this study, significantly higher levels of low-frequency vibrations are found in the cabin of a combine, driving at high speed (20 km/h) on a concrete surface, compared to driving slower on field road. Comfort values indicate that injury can result from long-term driving on the field as well as on a concrete road. As seats with suspension systems are the main transmission paths of vibration towards the spine of the driver, their vibration attenuating characteristics play an important role in comfort assessment. The resonant frequency of seats with passive suspension system, used in agricultural machinery, lies in the low-frequency range most excited in agricultural machinery. A seat with air suspension is found to attenuate better frequencies above 4 Hz and provide more comfort to the driver than a seat with a mechanical suspension.

  7. Biomechanical assessment of a rear-seat inflatable seatbelt in frontal impacts.

    PubMed

    Sundararajan, Srinivasan; Rouhana, Stephen W; Board, Derek; DeSmet, Ed; Prasad, Priya; Rupp, Jonathan D; Miller, Carl S; Schneider, Lawrence W

    2011-11-01

    This study evaluated the biomechanical performance of a rear-seat inflatable seatbelt system and compared it to that of a 3-point seatbelt system, which has a long history of good real-world performance. Frontal-impact sled tests were conducted with Hybrid III anthropomorphic test devices (ATDs) and with post mortem human subjects (PMHS) using both restraint systems and a generic rear-seat configuration. Results from these tests demonstrated: a) reduction in forward head excursion with the inflatable seatbelt system when compared to that of a 3-point seatbelt and; b) a reduction in ATD and PMHS peak chest deflections and the number of PMHS rib fractures with the inflatable seatbelt system and c) a reduction in PMHS cervical-spine injuries, due to the interaction of the chin with the inflated shoulder belt. These results suggest that an inflatable seatbelt system will offer additional benefits to some occupants in the rear seats. Further research is needed to assess the field effectiveness, customer comfort and acceptance and change in the belt usage rate with the inflatable seatbelt system.

  8. KSC-08pd1900

    NASA Image and Video Library

    2008-07-02

    CAPE CANAVERAL, Fla. –David Voci, NYIT MOCAP (Motion Capture) team co-director (seated at the workstation in the background) prepares to direct a motion capture session assisted by Kennedy Advanced Visualizations Environment staff led by Brad Lawrence (not pictured) and by Lora Ridgwell from United Space Alliance Human Factors (foreground, left). Ridgwell will help assemble the Orion Crew Module mockup. The motion tracking aims to improve efficiency of assembly processes and identify potential ergonomic risks for technicians assembling the mockup. The work is being performed in United Space Alliance's Human Engineering Modeling and Performance Lab in the RLV Hangar at NASA's Kennedy Space Center. Part of NASA's Constellation Program, the Orion spacecraft will return humans to the moon and prepare for future voyages to Mars and other destinations in our solar system.

  9. Application of Mathematical Modeling in Potentially Survivable Blast Threats in Military Vehicles

    DTIC Science & Technology

    2008-12-01

    elastic – compression and tension of body under loading if elastic tolerances are exceeded, (b) viscous – when fluid matter is involved in the...lumbar spine biomechanical response. The model is a simple spring and damper system and its equation of motion is represented as: 2...dynamic motion. The seat structural management system was represented using Kelvin spring damper element provided in MADYMO. In the actual seat system

  10. Characterization of specific anti-Candida IgM, IgA and IgE: diagnostic value in deep-seated infections.

    PubMed

    Aubert, D; Puygauthier-Toubas, D; Leon, P; Pignon, B; Foudrinier, F; Marnef, F; Boulant, J; Pinon, J M

    1996-01-01

    The proposed serological diagnosis of systemic Candida infections is based on a microplate immunocapture technique detecting IgM, IgA and IgE anti-Candida antibodies. Activity is revealed with a suspension of human erythrocytes sensitized with somatic antigen of Candida albicans, and is quantified on an automated plate reader. The sera were obtained from patients with deep-seated (n = 56) and superficial (n = 193) candidosis. We compared this immunological method with a combination of indirect immunofluorescence and co-immunoelectrodiffusion. The immunocapture method was more sensitive (80.4% vs. 48.2% with indirect immunofluorescence and 58.9% with co-immunoelectrodiffusion), and often provided the diagnosis at an earlier stage, with clear therapeutic advantages. The IgA isotype was a particularly valuable marker of deep-seated Candida infections.

  11. Tilting table for ergometer and for other biomedical devices

    NASA Technical Reports Server (NTRS)

    Gause, R. L.; Spier, R. A. (Inventor)

    1973-01-01

    The apparatus is for testing the human body in a variety of positions, ranging from the vertical to the supine, while exercising on an ergometer; and can also be used for angular positioning of other biomedical devices. It includes a floor plate and a hinged plate upon which to fix the ergometer, a back rest and a head rest attached at right angles to said hinged plate and behind the seat of the ergometer, dual hydraulic cylinders for raising and lowering the hinged plate through 90 deg by means of a self contained hydraulic system, with valve means for control and positive stops on the apparatus to prevent over travel. Tests can be made with the subject positioned on the seat of the ergometer, through the various angles, with a substantially normal body attitude relative to the seat and ergometer.

  12. A study of the comparative effects of various means of motion cueing during a simulated compensatory tracking task

    NASA Technical Reports Server (NTRS)

    Mckissick, B. T.; Ashworth, B. R.; Parrish, R. V.; Martin, D. J., Jr.

    1980-01-01

    NASA's Langley Research Center conducted a simulation experiment to ascertain the comparative effects of motion cues (combinations of platform motion and g-seat normal acceleration cues) on compensatory tracking performance. In the experiment, a full six-degree-of-freedom YF-16 model was used as the simulated pursuit aircraft. The Langley Visual Motion Simulator (with in-house developed wash-out), and a Langley developed g-seat were principal components of the simulation. The results of the experiment were examined utilizing univariate and multivariate techniques. The statistical analyses demonstrate that the platform motion and g-seat cues provide additional information to the pilot that allows substantial reduction of lateral tracking error. Also, the analyses show that the g-seat cue helps reduce vertical error.

  13. A Consistent Wave Impact Load Model for Studying Structure, Equipment Ruggedness, Shock Isolation Seats, and Human Comfort in Small High Speed Craft

    DTIC Science & Technology

    2016-11-01

    acceleration at a cross-section was used as a measure of the wave impact load in units of g. Later developments included publication of the envelope...Republic, 4 – 7 October 2004. PICKFORD, E.V., MAHONE, R.R., WOLK, H.L. (1975). Slam/Shock Isolation Pedestal, United States Patent Number, 3,912,248, 14...accelerations. The rigid body peak acceleration is a measure of the impact load in units of g. In the following plots the data corresponds to head-sea

  14. Disturbance observer based Takagi-Sugeno fuzzy control for an active seat suspension

    NASA Astrophysics Data System (ADS)

    Ning, Donghong; Sun, Shuaishuai; Zhang, Fei; Du, Haiping; Li, Weihua; Zhang, Bangji

    2017-09-01

    In this paper, a disturbance observer based Takagi-Sugeno (TS) fuzzy controller is proposed for an active seat suspension; both simulations and experiments have been performed verifying the performance enhancement and stability of the proposed controller. The controller incorporates closed-loop feedback control using the measured acceleration of the seat and deflection of the suspension; these two variables can be easily measured in practical applications, thus allowing the proposed controller to be robust and adaptable. A disturbance observer that can estimate the disturbance caused by friction, model simplification, and controller output error has also been used to compensate a H∞ state feedback controller. The TS fuzzy control method is applied to enhance the controller's performance by considering the variation of driver's weight during operation. The vibration of a heavy duty vehicle seat is largest in the frequency range between 2 Hz and 4 Hz, in the vertical direction; therefore, it is reasonable to focus on controlling low frequency vibration amplitudes and maintain the seat suspensions passivity at high frequency. Moreover, both the simulation and experimental results show that the active seat suspension with the proposed controller can effectively isolate unwanted vibration amplitudes below 4.5 Hz, when compared with a well-tuned passive seat suspension. The active controller has been further validated under bump and random road tests with both a 55 kg and a 70 kg loads. The bump road test demonstrated the controller has good transient response capabilities. The random road test result has been presented both in the time domain and the frequency domain. When with the above two loads, the controlled seat suspensions root-mean-square (RMS) accelerations were reduced by 45.5% and 49.5%, respectively, compared with a well-tuned passive seat suspension. The proposed active seat suspension controller has great potential and is very practical for application as it can significantly improve heavy duty driver's ride comfort.

  15. U in the driver seat : a peer-to-peer pilot program for decreasing car crashes by college students.

    DOT National Transportation Integrated Search

    2013-09-01

    The goal of this project was to build a peer-to-peer (P2P) model, U in the Driver Seat, targeted toward the : college-aged audience at two college campuses. Researchers performed the following tasks: : conducted pre- and post-assessments of drivi...

  16. 75 FR 52614 - Special Conditions: Embraer Model ERJ 170-100 SU Series Airplanes; Seats With Non-Traditional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... that incorporate non-traditional, large, non-metallic panels. To provide a level of safety equivalent... With Non-Traditional, Large, Non-Metallic Panels AGENCY: Federal Aviation Administration (FAA), DOT...., will have a novel or unusual design feature associated with seats that include non-traditional, large...

  17. 77 FR 67251 - Special Conditions: Boeing Model 757 Series Airplanes; Seats with Non-Traditional, Large, Non...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ..., large, non-metallic panels in their designs. In order to provide a level of safety that is equivalent to... with Non-Traditional, Large, Non-Metallic Panels AGENCY: Federal Aviation Administration (FAA), DOT... have novel or unusual design features associated with seats that include non-traditional, large, non...

  18. 76 FR 35324 - Special Conditions: Boeing Model 787 Series Airplanes; Seats With Inflatable Lapbelts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... performance. Because the inflatable lapbelt is essentially a single use device, there is the potential that it... regulations. Similarly, if the seat is occupied by a pregnant woman, the installation needs to address such... is a pregnant woman. 2. The inflatable lapbelt must provide adequate protection for each occupant...

  19. Polymer Optical Fiber Sensor and the Prediction of Sensor Response Utilizing Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Haroglu, Derya

    The global market researches showed that there is a growing trend in the field of polymer optical fiber (POF) and POF sensors. Telecommunications, medicine, defense, aerospace, and automotive are the application areas of fiber optic sensors, where the automotive industry is the most promising application area for innovations in the field of POF sensors. The POF sensors in automobiles are particularly for detection of seat occupancy, and intelligent pedestrian protection systems. This dissertation investigates graded index perfluorinated polymer optical fiber as an intensity modulated intrinsic sensor for application in automotive seat occupancy sensing. Since a fiber optic sensor has a high bandwidth, is small in size, is lightweight, and is immune to electromagnetic interference (EMI) it offers higher performance than that of its electrical based counterparts such as strain gauge, elastomeric bladder, and resistive sensor systems. This makes the fiber optic sensor a potential suitable material for seat occupancy sensing. A textile-based fiber optic sensor was designed to be located in the area beneath the typical seated human's thighs. The pressure interval under which the proposed POF sensor design could perform well was found to be between 0.18 and 0.21 N/cm2, where perfluorinated (PF) graded index (GI) POF (62.5/750 mum) was used as the POF material. In addition, the effect of the automotive seat covering including face material (fabric) and foam backing to the sensor's performance was analyzed. The face fabric structure and the thickness of foam backing were not found to be significant factors to change the sensor results. A research study, survey, was conducted of which purpose was to better understand market demands in terms of sensor performance characteristics for automotive seat weight sensors, as a part of the Quality Function Deployment (QFD) House of Quality analysis. The companies joined the survey agreed on the first 5 most important sensor characteristics: reproducibility, accuracy, selectivity, aging, and resolution. Artificial neural network (ANN), a mathematical model formed by mimicking the human nervous system, was used to predict the sensor response. Qwiknet (version 2.23) software was used to develop ANNs and according to the results of Qwiknet the prediction performances for training and testing data sets were 75%, and 83.33% respectively. In this dissertation, Chapter 1 describes the worldwide plastic optical fiber (POF) and fiber optic sensor markets, and the existing textile structures used in fiber optic sensing design particularly for the applications of biomedical and structural health monitoring (SHM). Chapter 2 provides a literature review in detail on polymer optical fibers, fiber optic sensors, and occupancy sensing in the passenger seats of automobiles. Chapter 3 includes the research objectives. Chapter 4 presents the response of POF to tensile loading, bending, and cyclic tensile loading with discussion parts. Chapter 5 includes an e-mail based survey to prioritize customer needs in a Quality Function Deployment (QFD) format utilizing Analytic Hierarchy Process (AHP) and survey results. Chapter 6 describes the POF sensor design and the behavior of it under pressure. Chapter 7 provides a data analysis based on the experimental results of Chapter 6. Chapter 8 presents the summary of this study and recommendations for future work.

  20. An image-based method to measure all-terrain vehicle dimensions for engineering safety purposes.

    PubMed

    Jennissen, Charles A; Miller, Nathan S; Tang, Kaiyang; Denning, Gerene M

    2014-04-01

    All-terrain vehicle (ATV) crashes are a serious public health and safety concern. Engineering approaches that address ATV injury prevention are critically needed. Avenues to pursue include evidence-based seat design that decreases risky behaviours, such as carrying passengers and operation of adult-size vehicles by children. The goal of this study was to create and validate an image-based method to measure ATV seat length and placement. Publicly available ATV images were downloaded. Adobe Photoshop was then used to generate a vertical grid through the centre of the vehicle, to define the grid scale using the manufacturer's reported wheelbase, and to determine seat length and placement relative to the front and rear axles using this scale. Images that yielded a difference greater than 5% between the calculated and the manufacturer's reported ATV lengths were excluded from further analysis. For the 77 images that met inclusion criteria, the mean±SD for the difference in calculated versus reported vehicle length was 1.8%±1.2%. The Pearson correlation coefficient for comparing image-based seat lengths determined by two independent measurers (20 models) and image-based lengths versus lengths measured at dealerships (12 models) were 0.95 and 0.96, respectively. The image-based method provides accurate and reproducible results for determining ATV measurements, including seat length and placement. This method greatly expands the number of ATV models that can be studied, and may be generalisable to other motor vehicle types. These measurements can be used to guide engineering approaches that improve ATV safety design.

  1. Decision Analysis Model for Passenger-Aircraft Fire Safety with Application to Fire-Blocking of Seats

    DTIC Science & Technology

    1984-04-01

    50] Collision Aeronaves - Boeing 747 PH-BUF de KLI y Boeing N737PA de Pan Amt en los rodeos (Tenerife) el 27 Marzo de 1977, Joint Accident Report...SAMPLE APPLICATION: FIRE-BLOCKING OF SEATS .......................... 24 4.1 Expected Losses and Savings with Seat Blocking ................... 26 4.2...analyzed to examine the sensitivity of the results on the existing materials. 24 MI ɚ C0 .04 4 0 Cc00 C 0 CU 4’.4 .. c o 90 𔃾.~w - -J 440 c 0 0 cq I04 C.0

  2. Mapping Prefrontal Cortex Functions in Human Infancy

    ERIC Educational Resources Information Center

    Grossmann, Tobias

    2013-01-01

    It has long been thought that the prefrontal cortex, as the seat of most higher brain functions, is functionally silent during most of infancy. This review highlights recent work concerned with the precise mapping (localization) of brain activation in human infants, providing evidence that prefrontal cortex exhibits functional activation much…

  3. Development and validation of rear impact computer simulation model of an adult manual transit wheelchair with a seated occupant.

    PubMed

    Salipur, Zdravko; Bertocci, Gina

    2010-01-01

    It has been shown that ANSI WC19 transit wheelchairs that are crashworthy in frontal impact exhibit catastrophic failures in rear impact and may not be able to provide stable seating support and thus occupant protection for the wheelchair occupant. Thus far only limited sled test and computer simulation data have been available to study rear impact wheelchair safety. Computer modeling can be used as an economic and comprehensive tool to gain critical knowledge regarding wheelchair integrity and occupant safety. This study describes the development and validation of a computer model simulating an adult wheelchair-seated occupant subjected to a rear impact event. The model was developed in MADYMO and validated rigorously using the results of three similar sled tests conducted to specifications provided in the draft ISO/TC 173 standard. Outcomes from the model can provide critical wheelchair loading information to wheelchair and tiedown manufacturers, resulting in safer wheelchair designs for rear impact conditions. (c) 2009 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Measuring and Modeling Sound Interference and Reverberation Time in Classrooms

    NASA Astrophysics Data System (ADS)

    Gumina, Kaitlyn; Martell, Eric

    2015-04-01

    Research shows that children, even those without hearing difficulties, are affected by poor classroom acoustics, especially children with hearing loss, learning disabilities, speech delay, and attention problems. Poor acoustics can come in a variety of forms, including destructive interference causing ``dead spots'' and extended Reverberation Times (RT), where echoes persist too long, interfering with further speech. In this research, I measured sound intensity at locations throughout three different types of classrooms at frequencies commonly associated with human speech to see what effect seating position has on intensity. I also used a program called Wave Cloud to model the time necessary for intensity to decrease by 60 decibels (RT50), both in idealized classrooms and in classrooms modeled on the ones I studied.

  5. 49 CFR 393.93 - Seats, seat belt assemblies, and seat belt assembly anchorages.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Seats, seat belt assemblies, and seat belt assembly anchorages. 393.93 Section 393.93 Transportation Other Regulations Relating to Transportation... § 393.93 Seats, seat belt assemblies, and seat belt assembly anchorages. (a) Buses—(1) Buses...

  6. 49 CFR 393.93 - Seats, seat belt assemblies, and seat belt assembly anchorages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Seats, seat belt assemblies, and seat belt assembly anchorages. 393.93 Section 393.93 Transportation Other Regulations Relating to Transportation... § 393.93 Seats, seat belt assemblies, and seat belt assembly anchorages. (a) Buses—(1) Buses...

  7. 49 CFR 393.93 - Seats, seat belt assemblies, and seat belt assembly anchorages.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Seats, seat belt assemblies, and seat belt assembly anchorages. 393.93 Section 393.93 Transportation Other Regulations Relating to Transportation... § 393.93 Seats, seat belt assemblies, and seat belt assembly anchorages. (a) Buses—(1) Buses...

  8. 49 CFR 393.93 - Seats, seat belt assemblies, and seat belt assembly anchorages.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Seats, seat belt assemblies, and seat belt assembly anchorages. 393.93 Section 393.93 Transportation Other Regulations Relating to Transportation... § 393.93 Seats, seat belt assemblies, and seat belt assembly anchorages. (a) Buses—(1) Buses...

  9. 49 CFR 393.93 - Seats, seat belt assemblies, and seat belt assembly anchorages.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Seats, seat belt assemblies, and seat belt assembly anchorages. 393.93 Section 393.93 Transportation Other Regulations Relating to Transportation... § 393.93 Seats, seat belt assemblies, and seat belt assembly anchorages. (a) Buses—(1) Buses...

  10. Elderly road collision injury outcomes associated with seat positions and seatbelt use in a rapidly aging society—A case study in South Korea

    PubMed Central

    Noh, Yuna

    2017-01-01

    Introduction Aging has long been regarded as one of the most critical factors affecting crash injury outcomes. In South Korea, where the elderly population is projected to reach 35.9% by 2050, the implications of an increasing number of elderly vehicle users on road safety are evident. In this research, the confounding effect of occupant age in a vehicle in terms of seat position and seatbelt use was investigated. In addition, elderly occupants were divided into a younger-old group aged between 65 and 74 years and an older-old group aged 75 years and older in an effort to assess whether the conventional elderly age standard of 65 years should be reconsidered. Methods A multinomial logit framework was adopted to predict two-level injury severity using collision data between 2008 and 2015. Predictor variables included gender, age group, seat position, seatbelt, road type, road slope, road surface, road line, and type of vehicle. Five models, a base model with no interactions and four interaction models which were combinations of age group, seatbelt use and seat position, were devised and evaluated. Results With no interacting term, age was the most prominent predictor. Elderly occupants were most likely to suffer from severe injury without a seatbelt in all seat positions, and the use of a seatbelt reduced this likelihood the most in the elderly group as well. Front passenger seats had the highest risk to elderly occupants, while the driver seat was statistically insignificant. When the elderly group was divided into the younger-old group and the older-old group, the older-olds were found to be much more vulnerable compared to the younger-olds. In particular, older drivers were five times more likely to suffer a severe injury without a seatbelt. Conclusions The degree of injury severity of elderly occupants was reduced the most with the use of a seatbelt, demonstrating the importance of using seat restraints. The sharp increase in the risk of injury of the older-old group suggests that the age standard of 65 years as the elderly group with regard to traffic safety may require reconsideration due to the growing number of elderly vehicle users on the road. Our results provide practical evidence with which to formulate new safety policies, including mandatory seatbelt use, driving age limits and insurance pricing. PMID:28800595

  11. 76 FR 22828 - Airworthiness Directives; The Boeing Company Model 737-700 Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... results from reports that the aft seat leg fittings span the station (STA) 521.45 stay-out zone. We are... identified in this proposed AD, contact Boeing Commercial Airplanes, Attention: Data & Services Management, P... proposed AD. Discussion We have received a report that the aft seat leg fittings span the station (STA) 521...

  12. 78 FR 26280 - Special Conditions: Embraer, S.A., Model EMB-550 Airplane; Side-Facing Seats; Installation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... be active during all dynamic tests conducted to show compliance with Sec. 25.562. (2) The design and... novel or unusual design feature(s) associated with multiple place and single place side- facing seats... not contain adequate or appropriate safety standards for this design feature. These proposed special...

  13. 77 FR 1618 - Special Conditions: The Boeing Company, Model 767-300; Seats With Inflatable Lapbelts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... series airplanes. These airplanes will have a novel or unusual design feature associated with seats with... standards for this design feature. These special conditions contain the additional safety standards that the....regulations.gov/ at any time. Follow the online instructions for accessing the docket or go to the Docket...

  14. 78 FR 22944 - Notice of Receipt of Petition for Decision That Nonconforming 1991 Volkswagen Transporter Multi...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-17

    ..., installation of a seat belt warning lamp, and recalibration of the speedometer/odometer to show speed in miles... Theft Protection and Rollaway Prevention: installation of a U.S.-model micro switch in the steering lock...: installation of an information placard containing manufacturer specifications for seating capacity and loading...

  15. 77 FR 22386 - Hyundai Motor Company, Receipt of Petition for Decision of Inconsequential Noncompliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... approximately 14,728 model year 2011 and 2012 Hyundai Sonata Hybrid vehicles produced beginning on December 2... Hybrid vehicle was simply capable of being folded, which would have no effect upon seat belt performance... the vehicle owner's manual that the seat belt should not be detached. Further, in the Sonata Hybrid...

  16. Vibration isolation of a ship's seat

    NASA Astrophysics Data System (ADS)

    Agahi, Maryam; Samani, Mehrdad B.; Behzad, Mehdi

    2005-05-01

    Different factors cause vibration. These vibrations make the voyages difficult and reduce comfort and convenience in passenger ships. In this paper, the creating factors of vibration have discussed first, then with mathematical modelling it will be attempted to minimize the vibration over the crew's seat. The modelling consists of a system with two degrees of freedom and by using vibrationisolation with passive method of Tuned Mass Damper (TMD) it will be tried to reduce the vibration over personnel. Moreover using active control systems will be compared with passive systems.

  17. Orion Crew Member Injury Predictions during Land and Water Landings

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Littell, Justin D.; Fasanella, Edwin L.; Tabiei, Ala

    2008-01-01

    A review of astronaut whole body impact tolerance is discussed for land or water landings of the next generation manned space capsule named Orion. LS-DYNA simulations of Orion capsule landings are performed to produce a low, moderate, and high probability of injury. The paper evaluates finite element (FE) seat and occupant simulations for assessing injury risk for the Orion crew and compares these simulations to whole body injury models commonly referred to as the Brinkley criteria. The FE seat and crash dummy models allow for varying the occupant restraint systems, cushion materials, side constraints, flailing of limbs, and detailed seat/occupant interactions to minimize landing injuries to the crew. The FE crash test dummies used in conjunction with the Brinkley criteria provides a useful set of tools for predicting potential crew injuries during vehicle landings.

  18. Finite Element Simulations of Two Vertical Drop Tests of F-28 Fuselage Sections

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Littell, Justin D.; Annett, Martin S.; Haskin, Ian M.

    2018-01-01

    In March 2017, a vertical drop test of a forward fuselage section of a Fokker F-28 MK4000 aircraft was conducted as part of a joint NASA/FAA project to investigate the performance of transport aircraft under realistic crash conditions. In June 2017, a vertical drop test was conducted of a wing-box fuselage section of the same aircraft. Both sections were configured with two rows of aircraft seats, in a triple-double configuration. A total of ten Anthropomorphic Test Devices (ATDs) were secured in seats using standard lap belt restraints. The forward fuselage section was also configured with luggage in the cargo hold. Both sections were outfitted with two hat racks, each with added ballast mass. The drop tests were performed at the Landing and Impact Research facility located at NASA Langley Research Center in Hampton, Virginia. The measured impact velocity for the forward fuselage section was 346.8-in/s onto soil. The wing-box section was dropped with a downward facing pitch angle onto a sloping soil surface in order to create an induced forward acceleration in the airframe. The vertical impact velocity of the wing-box section was 349.2-in/s. A second objective of this project was to assess the capabilities of finite element simulations to predict the test responses. Finite element models of both fuselage sections were developed for execution in LS-DYNA(Registered Trademark), a commercial explicit nonlinear transient dynamic code. The models contained accurate representations of the airframe structure, the hat racks and hat rack masses, the floor and seat tracks, the luggage in the cargo hold for the forward section, and the detailed under-floor structure in the wing-box section. Initially, concentrated masses were used to represent the inertial properties of the seats, restraints, and ATD occupants. However, later simulations were performed that included finite element representations of the seats, restraints, and ATD occupants. These models were developed to more accurately replicate the seat loading of the floor and to enable prediction of occupant impact responses. Models were executed to generate analytical predictions of airframe responses, which were compared with test data to validate the model. Comparisons of predicted and experimental structural deformation and failures were made. Finally, predicted and experimental soil deformation and crater depths were also compared for both drop test configurations.

  19. Vehicular Causation Factors and Conceptual Design Modifications to Reduce Aortic Strain in Numerically Reconstructed Real World Nearside Lateral Automotive Crashes

    PubMed Central

    Yang, King H.

    2015-01-01

    Aortic injury (AI) leading to disruption of the aorta is an uncommon but highly lethal consequence of trauma in modern society. Most recent estimates range from 7,500 to 8,000 cases per year from a variety of causes. It is observed that more than 80% of occupants who suffer an aortic injury die at the scene due to exsanguination into the chest cavity. It is evident that effective means of substantially improving the outcome of motor vehicle crash-induced AIs is by preventing the injury in the first place. In the current study, 16 design of computer experiments (DOCE) were carried out with varying levels of principal direction of force (PDOF), impact velocity, impact height, and impact position of the bullet vehicle combined with occupant seating positions in the case vehicle to determine the effects of these factors on aortic injury. Further, a combination of real world crash data reported in the Crash Injury Research and Engineering Network (CIREN) database, Finite Element (FE) vehicle models, and the Wayne State Human Body Model-II (WSHBM-II) indicates that occupant seating position, impact height, and PDOF, in that order play, a primary role in aortic injury. PMID:26448781

  20. Application of a bus seat buffer to mitigate frontal crash effects

    NASA Astrophysics Data System (ADS)

    Stanisławek, Sebastian; Dziewulski, Paweł; Sławiński, Grzegorz

    2018-01-01

    The paper considers the problem of coach occupant safety during crash events. The authors present a simple low-cost seat buffer concept which may mitigate the effects of frontal impact. The method of computer simulation was chosen to solve the problem efficiently. The Finite Element Method (FEM) implemented in the LS-DYNA commercial code was used. The testing procedure was based on European Commission regulations, under which vehicles move at a defined speed. Simulations have shown that seat occupants suffer serious trauma during a crash, with the head experiencing relatively high acceleration, thus resulting in an HIC36 of 1490. The installation of a protective buffer mounted on the upper part of the seat reduced the HIC36 to only 510. However, in its current form it does not meet the requirements of the regulations. Further modifications to the overlay shape and structure are essential in order to better improve the deceleration of passengers' bodies. Moreover, a detailed model of seats and their anchorage should be taken into account. A more flexible structure should provide more positive and more accurate results.

  1. The association between booster seat use and risk of death among motor vehicle occupants aged 4-8: a matched cohort study.

    PubMed

    Rice, T M; Anderson, C L; Lee, A S

    2009-12-01

    To estimate the effectiveness of booster seats and of seatbelts in reducing the risk of child death during traffic collisions and to examine possible effect modification by various collision and vehicle characteristics. A matched cohort study was conducted using data from the Fatality Analysis Reporting System. Death risk ratios were estimated with conditional Poisson regression, bootstrapped coefficient standard errors, and multiply imputed missing values using chained equations. Estimated death risk ratios for booster seats used with seatbelts were 0.33 (95% CI 0.28 to 0.40) for children age 4-5 years and 0.45 (0.31 to 0.63) for children aged 6-8 years (Wald test of homogeneity p<0.005). The estimated risk ratios for seatbelt used alone were similar for the two age groups, 0.37 (0.32 to 0.43) and 0.39 (0.34 to 0.44) for ages 4-5 and 6-8, respectively (Wald p = 0.61). Estimated booster seat effectiveness was significantly greater for inbound seating positions (Wald p = 0.05) and during rollovers collisions (Wald p = 0.01). Significant variability in risk ratio estimates was not observed across levels of calendar year, vehicle model year, vehicle type, or land use. Seatbelts, used with or without booster seats, are highly effective in preventing death among motor vehicle occupants aged 4-8 years. Booster seats do not appear to improve the performance of seatbelts with respect to preventing death (risk ratio 0.92, 95% CI 0.79 to 1.08, comparing seatbelts with boosters to seatbelts alone), but because several studies have found that booster seats reduce non-fatal injury severity, clinicians and injury prevention specialists should continue to recommend the use of boosters to parents of young children.

  2. The application of SEAT values for predicting how compliant seats with backrests influence vibration discomfort.

    PubMed

    Basri, Bazil; Griffin, Michael J

    2014-11-01

    The extent to which a seat can provide useful attenuation of vehicle vibration depends on three factors: the characteristics of the vehicle motion, the vibration transmissibility of the seat, and the sensitivity of the body to vibration. The 'seat effective amplitude transmissibility' (i.e., SEAT value) reflects how these three factors vary with the frequency and the direction of vibration so as to predict the vibration isolation efficiency of a seat. The SEAT value is mostly used to select seat cushions or seat suspensions based on the transmission of vertical vibration to the principal supporting surface of a seat. This study investigated the accuracy of SEAT values in predicting how seats with backrests influence the discomfort caused by multiple-input vibration. Twelve male subjects participated in a four-part experiment to determine equivalent comfort contours, the relative discomfort, the location of discomfort, and seat transmissibility with three foam seats and a rigid reference seat at 14 frequencies of vibration in the range 1-20 Hz at magnitudes of vibration from 0.2 to 1.6 ms(-2) r.m.s. The 'measured seat dynamic discomfort' (MSDD) was calculated for each foam seat from the ratio of the vibration acceleration required to cause similar discomfort with the foam seat and with the rigid reference seat. Using the frequency weightings in current standards, the SEAT values of each seat were calculated from the ratio of overall ride values with the foam seat to the overall ride values with the rigid reference seat, and compared to the corresponding MSDD at each frequency. The SEAT values provided good predictions of how the foam seats increased vibration discomfort at frequencies around the 4-Hz resonance but reduced vibration discomfort at frequencies greater than about 6.3 Hz, with discrepancies explained by a known limitation of the frequency weightings. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  3. Computational fluid dynamics modeling of transport and deposition of pesticides in an aircraft cabin

    PubMed Central

    Isukapalli, Sastry S.; Mazumdar, Sagnik; George, Pradeep; Wei, Binnian; Jones, Byron; Weisel, Clifford P.

    2015-01-01

    Spraying of pesticides in aircraft cabins is required by some countries as part of a disinsection process to kill insects that pose a public health threat. However, public health concerns remain regarding exposures of cabin crew and passengers to pesticides in aircraft cabins. While large scale field measurements of pesticide residues and air concentrations in aircraft cabins scenarios are expensive and time consuming, Computational Fluid Dynamics (CFD) models provide an effective alternative for characterizing concentration distributions and exposures. This study involved CFD modeling of a twin-aisle 11 row cabin mockup with heated manikins, mimicking a part of a fully occupied Boeing 767 cabin. The model was applied to study the flow and deposition of pesticides under representative scenarios with different spraying patterns (sideways and overhead) and cabin air exchange rates (low and high). Corresponding spraying experiments were conducted in the cabin mockup, and pesticide deposition samples were collected at the manikin’s lap and seat top for a limited set of five seats. The CFD model performed well for scenarios corresponding to high air exchange rates, captured the concentration profiles for middle seats under low air exchange rates, and underestimated the concentrations at window seats under low air exchange rates. Additionally, both the CFD and experimental measurements showed no major variation in deposition characteristics between sideways and overhead spraying. The CFD model can estimate concentration fields and deposition profiles at very high resolutions, which can be used for characterizing the overall variability in air concentrations and surface loadings. Additionally, these model results can also provide a realistic range of surface and air concentrations of pesticides in the cabin that can be used to estimate potential exposures of cabin crew and passengers to these pesticides. PMID:25642134

  4. Tolerances of the human face to crash impact.

    DOT National Transportation Integrated Search

    1965-07-01

    Evaluation of the injury potentials of commercial airline seat structures, light-aircraft instrument panels, and other deforming structures requires data on forces that produce fractures, lacerations, or unconsciousness when applied to different part...

  5. An experimental study for determining human discomfort response to roll vibration

    NASA Technical Reports Server (NTRS)

    Leatherwood, J. D.; Dempsey, T. K.; Clevenson, S. A.

    1976-01-01

    An experimental study using a passenger ride quality apparatus (PRQA) was conducted to determine the subjective reactions of passengers to roll vibrations. The data obtained illustrate the effect upon human comfort of several roll-vibration parameters: namely, roll acceleration level, roll frequency, and seat location (i.e., distance from axis of rotation). Results of an analysis of variance indicated that seat location had no effect on discomfort ratings of roll vibrations. The effect of roll acceleration level was significant, and discomfort ratings increased markedly with increasing roll acceleration level at all roll frequencies investigated. Of particular interest, is the fact that the relationship between discomfort ratings and roll acceleration level was linear in nature. The effect of roll frequency also was significant as was the interaction between roll acceleration level and roll frequency.

  6. Environmental and psychosocial factors affecting seat belt use among Turkish front-seat occupants in Ankara: two observation studies.

    PubMed

    Simşekoğlu, Ozlem; Lajunen, Timo

    2008-01-01

    Low seat belt use rate among car occupants is one of the main problems contributing to low driver and passenger safety in Turkey, where injury and fatality rates of car occupants are very high in traffic crashes. The present article consists of two observation studies, which were conducted in Ankara. The first study aimed at investigating environmental factors and occupant characteristics affecting seat belt use among front-seat occupants, and the objective of the second study was to investigate the relationship between driver and front-seat passenger seat belt use. In the first study, 4, 227 front-seat occupants (drivers or front seat passengers) were observed on four different road sides and, in the second study 1, 398 front seat occupants were observed in car parks of five different shopping centers in Ankara. In both observations, front-seat occupants' seat bet use (yes, no), sex (male, female), and age (< 30 years, 30-50 years, > 50 years) were recorded. The data were analyzed using chi-square statistics and binary logistic regression techniques. Results of the first study showed that seat belt use proportion among observed front seat occupants was very low (25%). Being female and traveling on intercity roads were two main factors positively related to use a seat belt among front-seat occupants. High correlations between seat belt use of the drivers and front-seat passengers were found in the second study. Overall, low seat belt use rate (25%) among the front-seat occupants should be increased urgently for an improved driver and passenger safety in Turkey. Seat belt campaigns especially tailored for male front-seat occupants and for the front-seat occupants traveling on city roads are needed to increase seat belt use rates among them. Also, both drivers and passengers may have an important role in enforcing seat belt use among themselves.

  7. Effect of Seating on Exposures to Whole-Body Vibration in Vehicles

    NASA Astrophysics Data System (ADS)

    PADDAN, G. S.; GRIFFIN, M. J.

    2002-05-01

    The vibration isolation efficiency of seating has been evaluated in 100 work vehicles in 14 categories (cars, vans, lift trucks, lorries, tractors, buses, dumpers, excavators, helicopters, armoured vehicles, mobile cranes, grass rollers, mowers and milk floats). Seat isolation efficiency, expressed by the SEAT value, was determined for all seats (67 conventional seats and 33 suspension seats) from the vertical acceleration measured on the floors and on the seats of the vehicles.For most categories of vehicle, the average SEAT value was less than 100%, indicating that the average seat provided some attenuation of vibration. However, there were large variations in SEAT values between vehicles within categories. Two alternative vibration frequency weightings (Wb from BS 6841, 1987; Wk from ISO 2631, 1997) yielded SEAT values that differed by less than 6%. Overall, the SEAT values determined by two alternative methods (the ratio of r.m.s. values and the ratio of vibration dose values) differed by less than 4·5% when using weighting Wb, although larger differences may be expected in some situations. The median SEAT value for the suspension seats was 84·6%; the median SEAT value for the conventional seats was 86·9% (based on weighting Wb and the ratio of r.m.s. values).Predicted SEAT values were obtained assuming that each seat could be interchanged between vehicles without altering its transmissibility. The calculations suggest that 94% of the vehicles investigated might benefit from changing the current seat to a seat from one of the other vehicles investigated. Although the predictions are based on assumptions that will not always apply, it is concluded that the severity of whole-body vibration exposures in many work environments can be lessened by improvements to seating dynamics.

  8. Development of a Scientific Basis for Analysis of Aircraft Seating Systems

    DTIC Science & Technology

    1975-01-01

    JOINT MOVEMENTS IN NORMAL MALE HUMAN ADULTS, Human Biology , Vol. 9, pp. 197-211, 1937. 10. Brinkley, J. W., DEVELOPMENT OF AEROSPACE ESCAPE SYSTEMS...Resisting Torque 21 8 Human Joint Resisting Torques: (a) Displacement- Limiting Moment; (b) Muscular Resistance 22 9 Fxternal Forces of Cushions, Floor...head strike on rigid cockpit structure. Also, the relatively low tolerance of the human b.ody to accelerations in a direction parallel to the spine

  9. 16 CFR 1512.15 - Requirements for seat.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....) above the top of the seat surface at the point where the seat surface is intersected by the seat post axis. (b) Seat post. The seat post shall contain a permanent mark or ring that clearly indicates the... integrity of the seat post. This mark shall be located no less than two seat-post diameters from the lowest...

  10. 16 CFR 1512.15 - Requirements for seat.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....) above the top of the seat surface at the point where the seat surface is intersected by the seat post axis. (b) Seat post. The seat post shall contain a permanent mark or ring that clearly indicates the... integrity of the seat post. This mark shall be located no less than two seat-post diameters from the lowest...

  11. 78 FR 20093 - Extension of Application Period for Seats for the Monterey Bay National Marine Sanctuary Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... Business and Tourism Activity Panel (``BTAP'') co-chaired by the Business/Industry Representative and Tourism Representative, each dealing with matters concerning research, education, conservation and human...

  12. Validation of a Functional Pyelocalyceal Renal Model for the Evaluation of Renal Calculi Passage While Riding a Roller Coaster.

    PubMed

    Mitchell, Marc A; Wartinger, David D

    2016-10-01

    The identification and evaluation of activities capable of dislodging calyceal renal calculi require a patient surrogate or validated functional pyelocalyceal renal model. To evaluate roller coaster facilitation of calyceal renal calculi passage using a functional pyelocalyceal renal model. A previously described adult ureteroscopy and renoscopy simulator (Ideal Anatomic) was modified and remolded to function as a patient surrogate. Three renal calculi of different sizes from the patient who provided the original computed tomographic urograph on which the simulator was based were used. The renal calculi were suspended in urine in the model and taken for 20 rides on the Big Thunder Mountain Railroad roller coaster at Walt Disney World in Orlando, Florida. The roller coaster rides were analyzed using variables of renal calculi volume, calyceal location, model position on the roller coaster, and renal calculi passage. Sixty renal calculi rides were analyzed. Independent of renal calculi volume and calyceal location, front seating on the roller coaster resulted in a passage rate of 4 of 24. Independent of renal calculi volume and calyceal location, rear seating on the roller coaster resulted in a passage rate of 23 of 36. Independent of renal calculi volume in rear seating, calyceal location differed in passage rates, with an upper calyceal calculi passage rate of 100%; a middle calyceal passage rate of 55.6%; and a lower calyceal passage rate of 40.0%. The functional pyelocalyceal renal model serves as a functional patient surrogate to evaluate activities that facilitate calyceal renal calculi passage. The rear seating position on the roller coaster led to the most renal calculi passages.

  13. 77 FR 19155 - Federal Motor Vehicle Safety Standards; Seat Belt Assembly Anchorages; Incorporation by Reference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... representative of a human form than the upper torso and pelvic body blocks. As noted in the docketed test reports... anchorage system during compliance tests of anchorage strength. The device represents a human torso and... proposing this amendment because the devices are significantly easier to use than the current body blocks...

  14. Manikin families representing obese airline passengers in the US.

    PubMed

    Park, Hanjun; Park, Woojin; Kim, Yongkang

    2014-01-01

    Aircraft passenger spaces designed without proper anthropometric analyses can create serious problems for obese passengers, including: possible denial of boarding, excessive body pressures and contact stresses, postural fixity and related health hazards, and increased risks of emergency evacuation failure. In order to help address the obese passenger's accommodation issues, this study developed male and female manikin families that represent obese US airline passengers. Anthropometric data of obese individuals obtained from the CAESAR anthropometric database were analyzed through PCA-based factor analyses. For each gender, a 99% enclosure cuboid was constructed, and a small set of manikins was defined on the basis of each enclosure cuboid. Digital human models (articulated human figures) representing the manikins were created using a human CAD software program. The manikin families were utilized to develop design recommendations for selected aircraft seat dimensions. The manikin families presented in this study would greatly facilitate anthropometrically accommodating large airline passengers.

  15. Vibration analysis of the SA349/2 helicopter

    NASA Technical Reports Server (NTRS)

    Heffernan, Ruth; Precetti, Dominique; Johnson, Wayne

    1991-01-01

    Helicopter airframe vibration is examined using calculations and measurements for the SA349/2 research helicopter. The hub loads, which transmit excitations to the fuselage, are predicted using a comprehensive rotorcraft analysis and correlated with measuring hub loads. The predicted and measured hub loads are then coupled with finite element models representing the SA349/2 fuselage. The resulting vertical acceleration at the pilot seat is examined. Adjustments are made to the airframe structural models to examine the sensitivity of predicted vertical acceleration to the model. Changes of a few percent to the damping and frequency of specific models lead to large reductions in predicted vibration, and to major improvements in the correlations with measured pilot-seat vertical acceleration.

  16. Reducing death on the road: the effects of minimum safety standards, publicized crash tests, seat belts, and alcohol.

    PubMed Central

    Robertson, L S

    1996-01-01

    OBJECTIVES. Two phases of attempts to improve passenger car crash worthiness have occurred: minimum safety standards and publicized crash tests. This study evaluated these attempts, as well as changes in seat belt and alcohol use, in terms of their effect on occupant death and fatal crash rates. METHODS. Data on passenger car occupant fatalities and total involvement in fatal crashes, for 1975 through 1991, were obtained from the Fatal Accident Reporting System. Rates per mile were calculated through published sources on vehicle use by vehicle age. Regression estimates of effects of regulation, publicized crash tests, seat belt use and alcohol involvement were obtained. RESULTS. Substantial reductions in fatalities occurred in the vehicle model years from the late 1960s through most of the 1970s, when federal standards were applied. Some additional increments in reduced death rates, attributable to additional improved vehicle crashworthiness, occurred during the period of publicized crash tests. Increased seat belt use and reduced alcohol use also contributed significantly to reduced deaths. CONCLUSIONS. Minimum safety standards, crashworthiness improvements, seat belt use laws, and reduced alcohol use each contributed to a large reduction in passenger car occupant deaths. PMID:8561238

  17. Seat Capacity Selection for an Advanced Short-Haul Aircraft Design

    NASA Technical Reports Server (NTRS)

    Marien, Ty V.

    2016-01-01

    A study was performed to determine the target seat capacity for a proposed advanced short-haul aircraft concept projected to enter the fleet by 2030. This analysis projected the potential demand in the U.S. for a short-haul aircraft using a transportation theory approach, rather than selecting a target seat capacity based on recent industry trends or current market demand. A transportation systems model was used to create a point-to-point network of short-haul trips and then predict the number of annual origin-destination trips on this network. Aircraft of varying seat capacities were used to meet the demand on this network, assuming a single aircraft type for the entire short-haul fleet. For each aircraft size, the ticket revenue and operational costs were used to calculate a total market profitability metric for all feasible flights. The different aircraft sizes were compared, based on this market profitability metric and also the total number of annual round trips and markets served. Sensitivity studies were also performed to determine the effect of changing the aircraft cruise speed and maximum trip length. Using this analysis, the advanced short-haul aircraft design team was able to select a target seat capacity for their design.

  18. 76 FR 25699 - Eunice Kennedy Shriver National Institute of Child Health & Human Development; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ... to make your reservation. Additional seating will be available in the meeting overflow rooms... Federal Domestic Assistance Program Nos. 93.864, Population Research; 93.865, Research for Mothers and...

  19. 75 FR 1067 - Eunice Kennedy Shriver National Institute of Child Health and Human Development; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... your reservation. Additional seating will be available in the meeting overflow rooms, Conference Rooms..., Research for Mothers and Children; 93.929, Center for Medical Rehabilitation Research; 93.209...

  20. 16 CFR 1512.15 - Requirements for seat.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) above the top of the seat surface at the point where the seat surface is intersected by the seat post axis. This requirement does not apply to recumbent bicycles. (b) Seat post. The seat post shall contain... adjustment); the mark shall not affect the structural integrity of the seat post. This mark shall be located...

  1. 16 CFR § 1512.15 - Requirements for seat.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) above the top of the seat surface at the point where the seat surface is intersected by the seat post axis. This requirement does not apply to recumbent bicycles. (b) Seat post. The seat post shall contain... adjustment); the mark shall not affect the structural integrity of the seat post. This mark shall be located...

  2. 16 CFR 1512.15 - Requirements for seat.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) above the top of the seat surface at the point where the seat surface is intersected by the seat post axis. This requirement does not apply to recumbent bicycles. (b) Seat post. The seat post shall contain... adjustment); the mark shall not affect the structural integrity of the seat post. This mark shall be located...

  3. 76 FR 64795 - Airworthiness Directives; Sicma Aero Seat Passenger Seat Assemblies Installed on Various...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... Airworthiness Directives; Sicma Aero Seat Passenger Seat Assemblies Installed on Various Transport Category..., 91xx, 92xx, 93xx, 95xx, and 96xx series passenger seat assemblies, installed on various transport... seat assemblies identified in Annex 1, Issue 2, dated March 19, 2004, of Sicma Aero Seat Service...

  4. Effects of thermal stress and exercise on blood volume in humans

    NASA Technical Reports Server (NTRS)

    Harrison, M. H.

    1985-01-01

    The available experimental data base on the effects of exercise, posture and the environment (heat) on the blood volume, composition and concentration in humans is surveyed in depth to synthesize supportable conclusions. A large disparity is noted in the effective controls which were initiated in previous experimental conditions, resulting in contradictory findings regarding, e.g., hemoconcentrations and hemodilution in response to exercise. Comparisons between the results of exercise and of supine, seated and upright subjects has underscored the importance of gravity in hemoconcentration, particularly in the legs, and the generation of aldotestosterone. Hemoconcentration has been confirmed to increase with exercise in a seated or supine position. Exercise in a heated environment transfers cardiac output from core areas and reduces filtration efficiencies. Also, plasma volume increases, an action which cannot yet be associated with crystalloidal or colloidal influences on the osmotic behavior of cell walls.

  5. Bringing human resources to the table: utilization of an HR balanced scorecard at Mayo Clinic.

    PubMed

    Fottler, Myron D; Erickson, Eric; Rivers, Patrick A

    2006-01-01

    Rather than viewing HR as a critical driver of organizational strategy and outcomes, most health care organizations see HR as a drain on the organization's bottom line. Only by aligning HR with the organizational strategy will HR leaders truly get a seat at the leadership table. HR professionals can overcome impediments and gain a seat at the table by learning the language of business and the ways in which organizational leaders use data to drive their decisions. This article shows how Mayo Clinic uses the popular Balanced Scorecard approach to align its measures of HR performance to the organization's strategic plan.

  6. Comparison of car seats in low speed rear-end impacts using the BioRID dummy and the new neck injury criterion (NIC).

    PubMed

    Boström, O; Fredriksson, R; Håland, Y; Jakobsson, L; Krafft, M; Lövsund, P; Muser, M H; Svensson, M Y

    2000-03-01

    Long-term whiplash associated disorders (WAD) 1-3 sustained in low velocity rear-end impacts is the most common disability injury in Sweden. Therefore, to determine neck injury mechanisms and develop methods to measure neck-injury related parameters are of importance for current crash-safety research. A new neck injury criterion (NIC) has previously been proposed and evaluated by means of dummy, human and mathematical rear-impact simulations. So far, the criterion appears to be sensitive to the major car and collision related risk factors for injuries with long-term consequences. To further evaluate the applicability of NIC, four seats were tested according to a recently proposed sled-test procedure. 'Good' as well as 'bad' seats were chosen on the basis of a recently presented disability risk ranking list. The dummy used in the current tests was the Biofidelic Rear Impact Dummy (BioRID). The results of this study showed that NICmax values were generally related to the real-world risk of long-term WAD 1-3. Furthermore, these results suggested that NICmax calculated from sled tests using the BioRID dummy can be used for evaluating the neck injury risk of different car seats.

  7. Hair and fiber transfer in an abduction case--evidence from different levels of trace evidence transfer.

    PubMed

    Taupin, J M

    1996-07-01

    Levels of trace evidence transfer were examined in a casework context. A girl was allegedly abducted in a car and rape attempted by the accused, who denied any contact with the victim. Clothing worn by the victim and the accused, and the covers from the front seats of the car, were analyzed for trace evidence. Three types of corresponding fibers and four possible pathways of transfer were identified. Synthetic fibers similar to those composing the car seat covers were located on the victim's clothing, consistent with direct transfer. Secondary transfer was indicated by dyed brown human head-type hairs (possibly originating from the accused's wife) located on the seat covers and on the victim's clothing. Secondary and possibly tertiary transfer was indicated by pink synthetic material and associated fibers (possibly originating from the victim's mother) located on the victim's clothing, a car seat cover and the accused's clothing. Light microscopy, comparison microscopy, and cross-sectioning techniques were used. The multiple fiber matches and the differing pathways and levels of transfer increased the strength of the association between the accused and the victim. After the fiber evidence was led at the trial, the accused pleaded guilty, thereby affirming the value of secondary transfer evidence.

  8. Compliance with seat belt use in Benin City, Nigeria.

    PubMed

    Iribhogbe, Pius Ehiawaguan; Osime, Clement Odigie

    2008-01-01

    Trauma is a major cause of death and disability worldwide. A quarter of all fatalities due to injury occur due to road traffic crashes with 90% of the fatalities occurring in low- and medium-income countries. Poor compliance with the use of seat belts is a problem in many developing countries. The aim of this study was to evaluate the level of seatbelt compliance in motor vehicles in Benin City, Nigeria. A five-day, observational study was conducted in strategic locations in Benin City. The compliance rates of drivers, front seat passengers, and rear seat passengers in the various categories of vehicles were evaluated, and the data were subjected to statistical processing using the Program for Epidemiology. A total of 369 vehicles were observed. This consisted of 172 private cars, 64 taxis, 114 buses, 15 trucks, and four other vehicles. The seat belt compliance rate for drivers was 52.3%, front seat passengers 18.4%, and rear seat passengers 6.1%. Drivers of all categories of vehicles were more likely to use the seat belt compared to front seat passengers (p = 0.000) and rear seat passengers (p = 0.000). Drivers of private cars were more likely to use seat belts compared to taxi drivers (p = 0.000) and bus drivers (p = 0.000). Front seat passengers in private cars were more likely to use the seat belt compared to front seat passengers in taxis (p = 0.000) and buses (p = 0.000). Rear seat passengers in private cars also were more likely to use seat belts compared to rear seat passengers in taxis (p = 0.000) and buses (p = 0.000). Compliance with seat belt use in Benin City is low. Legislation, educational campaigns, and enforcement of seat belt use are needed.

  9. A biomechanical and physiological study of office seat and tablet device interaction.

    PubMed

    Weston, Eric; Le, Peter; Marras, William S

    2017-07-01

    Twenty subjects performed typing tasks on a desktop computer and touch-screen tablet in two chairs for an hour each, and the effects of chair, device, and their interactions on each dependent measure were recorded. Biomechanical measures of muscle force, spinal load, and posture were examined, while discomfort was measured via heart rate variability (HRV) and subjective reports. HRV was sensitive enough to differentiate between chair and device interactions. Biomechanically, a lack of seat back mobility forced individuals to maintain an upright seating posture with increased extensor muscle forces and increased spinal compression. Effects were exacerbated by forward flexion upon interaction with a tablet device or by slouching. Office chairs should be designed with both the human and workplace task in mind and allow for reclined postures to off-load the spine. The degree of recline should be limited, however, to prevent decreased lumbar lordosis resulting from posterior hip rotation in highly reclined postures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. To Err is Human Case Reports of Two Military Aircraft Accidents

    PubMed Central

    Dikshit, Mohan B

    2010-01-01

    It has been postulated that pilot error or in-flight incapacitation may be the main contributory factors to 70–80% of aircraft accidents. Two fatal aircraft accidents are presented in which either of the above possibilities may have played a role. The first case report describes an erroneous decision by a fighter pilot to use a seat position adjustment of the ejection seat leading to fatal injuries when he had to eject from his aircraft. Injuries to the body of the pilot, and observations on the state of his flying clothing and the ejection seat were used to postulate the mechanism of fatal injury and establish the cause of the accident. The second case report describes the sequence of events which culminated in the incapacitation of a fighter pilot while executing a routine manouevre. This resulted in a fatal air crash. Possible contributions of environmental factors which may have resulted in failure of his physiological mechanisms are discussed. PMID:21509093

  11. Avoiding the Health Hazard of People from Construction Vehicles: A Strategy for Controlling the Vibration of a Wheel Loader

    PubMed Central

    Chi, Feng; Zhou, Jun; Zhang, Qi; Wang, Yong; Huang, Panling

    2017-01-01

    The vibration control of a construction vehicle must be carried out in order to meet the aims of sustainable environmental development and to avoid the potential human health hazards. In this paper, based on market feedback, the driver seat vibration of a type of wheel loader in the left and right direction, is found to be significant over a certain speed range. In order to find abnormal vibration components, the order tracking technique (OTT) and transmission path analysis (TPA) were used to analyze the vibration sources of the wheel loader. Through this analysis, it can be seen that the abnormal vibration comes from the interaction between the tire tread and the road, and this is because the vibration was amplified by the cab mount, which was eventually transmitted to the cab seat. Finally, the seat vibration amplitudes were decreased by up to 50.8%, after implementing the vibration reduction strategy. PMID:28282849

  12. Avoiding the Health Hazard of People from Construction Vehicles: A Strategy for Controlling the Vibration of a Wheel Loader.

    PubMed

    Chi, Feng; Zhou, Jun; Zhang, Qi; Wang, Yong; Huang, Panling

    2017-03-08

    The vibration control of a construction vehicle must be carried out in order to meet the aims of sustainable environmental development and to avoid the potential human health hazards. In this paper, based on market feedback, the driver seat vibration of a type of wheel loader in the left and right direction, is found to be significant over a certain speed range. In order to find abnormal vibration components, the order tracking technique (OTT) and transmission path analysis (TPA) were used to analyze the vibration sources of the wheel loader. Through this analysis, it can be seen that the abnormal vibration comes from the interaction between the tire tread and the road, and this is because the vibration was amplified by the cab mount, which was eventually transmitted to the cab seat. Finally, the seat vibration amplitudes were decreased by up to 50.8%, after implementing the vibration reduction strategy.

  13. Effects of elastic seats on seated body apparent mass responses to vertical whole body vibration.

    PubMed

    Dewangan, K N; Rakheja, S; Marcotte, Pierre; Shahmir, A

    2015-01-01

    Apparent mass (AM) responses of the body seated with and without a back support on three different elastic seats (flat and contoured polyurethane foam (PUF) and air cushion) and a rigid seat were measured under three levels of vertical vibration (overall rms acceleration: 0.25, 0.50 and 0.75 m/s(2)) in the 0.5 to 20 Hz range. A pressure-sensing system was used to capture biodynamic force at the occupant-seat interface. The results revealed strong effects of visco-elastic and vibration transmissibility characteristics of seats on AM. The response magnitudes with the relatively stiff air seat were generally higher than those with the PUF seats except at low frequencies. The peak magnitude decreased when sitting condition was changed from no back support to a vertical support; the reduction however was more pronounced with the air seat. Further, a relatively higher frequency shift was evident with soft seat compared with stiff elastic seat with increasing excitation. The effects of visco-elastic properties of the body-seat interface on the apparent mass responses of the seated body are measured under vertical vibration. The results show considerable effects of the coupling stiffness on the seated body apparent mass, apart from those of excitation magnitude and back support.

  14. Evaluation of reaction time performance and subjective drowsiness during whole-body vibration exposure

    NASA Astrophysics Data System (ADS)

    Azizan, A.; Zali, Z.; Padil, H.

    2018-05-01

    Despite the automotive industry’s interest in how vibration affects the level of human comfort, there is little focus on the effect of vibration on drowsiness level. Thus, this study involves eighteen healthy male participants to study the effect of exposure to vibration on the drowsiness level. Prior to the experiment, the total transmitted vibration measured at interfaces between the seat pan and seat back to the human body for each participant was modified to become 0.2 ms-2 r.m.s and 0.4 ms-2 r.m.s. During the experiment, the participants were seated and exposed to 20-minutes of Gaussian random vibration with frequency band 1-15 Hz at two level of amplitude (low vibration amplitude and medium vibration amplitude) on separate days. The level of drowsiness was measured using a PVT test prior and after exposure to the vibration while participants rated their subjective drowsiness by using the Karolinska Sleepiness Scale (KSS). The significant increase in the number of lapse and reaction time because of the exposure to vibration in both conditions provide strong evidence of drowsiness. In this regard, the medium vibration amplitude shows a more prominent effect. All participants have shown a steady increase of drowsiness level in KSS. Meanwhile, there are no significant differences found between low vibration amplitude and medium vibration amplitude in the KSS. These findings suggest that human alertness level is greatly affected by the exposure to vibration and these effects are more pronounced at higher vibration amplitude. Both findings indicate that the presence of vibration promotes drowsiness, especially at higher vibration amplitude.

  15. Seat vibration in military propeller aircraft: characterization, exposure assessment, and mitigation.

    PubMed

    Smith, Suzanne D

    2006-01-01

    There have been increasing reports of annoyance, fatigue, and even neck and back pain during prolonged operation of military propeller aircraft, where persistent multi-axis vibration occurs at higher frequencies beyond human whole-body resonance. This paper characterizes and assesses the higher frequency vibration transmitted to the occupants onboard these aircraft. Multi-axis accelerations were measured at the occupied seating surfaces onboard the WC/C-130J, C-130H3, and E-2C Hawkeye. The effects of the vibration were assessed in accordance with current international guidelines (ISO 2631-1:1997). The relative psychophysical effects of the frequency components and the effects of selected mitigation strategies were also investigated. The accelerations associated with the blade passage frequency measured on the passenger seat pans located on the side of the fuselage near the propeller plane of the C-130J (102 Hz) and C-130H3 (68 Hz) were noteworthy (5.19 +/- 1.72 ms(-2) rms and 7.65 +/- 0.71 ms(-2) rms, respectively, in the lateral direction of the aircraft). The psychophysical results indicated that the higher frequency component would dominate the side passengers' perception of the vibration. Balancing the props significantly reduced the lower frequency propeller rotation vibration (17 Hz), but had little effect on the blade passage frequency vibration. The relationships among the frequency, vibration direction, and seat measurement sites were complex, challenging the development of seating systems and mitigation strategies. Psychophysical metrics could provide a tool for optimizing mitigation strategies, but the current international vibration standard may not provide optimum assessment methods for evaluating higher frequency operational exposures.

  16. Effects of posture on shear rates in human brachial and superficial femoral arteries

    PubMed Central

    Newcomer, S. C.; Sauder, C. L.; Kuipers, N. T.; Laughlin, M. H.; Ray, C. A.

    2012-01-01

    Shear rate is significantly lower in the superficial femoral compared with the brachial artery in the supine posture. The relative shear rates in these arteries of subjects in the upright posture (seated and/or standing) are unknown. The purpose of this investigation was to test the hypothesis that upright posture (seated and/or standing) would produce greater shear rates in the superficial femoral compared with the brachial artery. To test this hypothesis, Doppler ultrasound was used to measure mean blood velocity (MBV) and diameter in the brachial and superficial femoral arteries of 21 healthy subjects after being in the supine, seated, and standing postures for 10 min. MBV was significantly higher in the brachial compared with the superficial femoral artery during upright postures. Superficial femoral artery diameter was significantly larger than brachial artery diameter. However, posture had no significant effect on either brachial or superficial femoral artery diameter. The calculated shear rate was significantly greater in the brachial (73 ± 5, 91 ± 11, and 97 ± 13 s−1) compared with the superficial femoral (53 ± 4, 39 ± 77, and 44 ± 5 s−1) artery in the supine, seated, and standing postures, respectively. Contrary to our hypothesis, our current findings indicate that mean shear rate is lower in the superficial femoral compared with the brachial artery in the supine, seated, and standing postures. These findings of lower shear rates in the superficial femoral artery may be one mechanism for the higher propensity for atherosclerosis in the arteries of the leg than of the arm. PMID:18245564

  17. Occupant Protection during Orion Crew Exploration Vehicle Landings

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Jones, J. A.; Granderson, B. K.; Somers, J. T.

    2009-01-01

    The constellation program is evaluating current vehicle design capabilities for nominal water landings and contingency land landings of the Orion Crew Exploration vehicle. The Orion Landing Strategy tiger team was formed to lead the technical effort for which associated activities include the current vehicle design, susceptibility to roll control and tip over, reviewing methods for assessing occupant injury during ascent / aborts /landings, developing an alternate seat/attenuation design solution which improves occupant protection and operability, and testing the seat/attenuation system designs to ensure valid results. The EVA physiology, systems and Performance (EPSP) project is leading the effort under the authority of the Tiger Team Steering committee to develop, verify, validate and accredit biodynamics models using a variety of crash and injury databases including NASCAR, Indy Car and military aircraft. The validated biodynamics models will be used by the Constellation program to evaluate a variety of vehicle, seat and restraint designs in the context of multiple nominal and off-nominal landing scenarios. The models will be used in conjunction with Acceptable Injury Risk definitions to provide new occupant protection requirements for the Constellation Program.

  18. GPSS computer simulation of aircraft passenger emergency evacuations.

    DOT National Transportation Integrated Search

    1978-06-01

    The costs of civil air transport emergency evacuation demonstrations using human subjects have risen as seating capacities of these aircraft have increased. Repeated tests further increase the costs and also the risks of injuries to participants. A m...

  19. Kinematic behavior of the human body during deceleration.

    DOT National Transportation Integrated Search

    1962-06-01

    The geometry of motion of the head, trunk and appendages was established for one hundred male subjects restrained by a safety belt during forward and side dynamic loadings. Lethal structures of present aircraft seating and cockpit arrangements are re...

  20. Occupant responses in conventional and ABTS seats in high-speed rear sled tests.

    PubMed

    Viano, David C; Parenteau, Chantal S; Burnett, Roger; Prasad, Priya

    2018-01-02

    This study compared biomechanical responses of a normally seated Hybrid III dummy on conventional and all belts to seat (ABTS) seats in 40.2 km/h (25 mph) rear sled tests. It determined the difference in performance with modern (≥2000 MY) seats compared to older (<2000 MY) seats and ABTS seats. The seats were fixed in a sled buck subjected to a 40.2 km/h (25 mph) rear sled test. The pulse was a 15 g double-peak acceleration with 150 ms duration. The 50th percentile Hybrid III was lap-shoulder belted in the FMVSS 208 design position. The testing included 11 <2000 MY, 8 ≥2000 MY, and 7 ABTS seats. The dummy was fully instrumented, including head accelerations, upper and lower neck 6-axis load cells, chest acceleration, thoracic and lumbar spine load cells, and pelvis accelerations. The peak responses were normalized by injury assessment reference values (IARVs) to assess injury risks. Statistical analysis was conducted using Student's t test. High-speed video documented occupant kinematics. Biomechanical responses were lower with modern (≥2000 MY) seats than older (<2000 MY) designs. The lower neck extension moment was 32.5 ± 9.7% of IARV in modern seats compared to 62.8 ± 31.6% in older seats (P =.01). Overall, there was a 34% reduction in the comparable biomechanical responses with modern seats. Biomechanical responses were lower with modern seats than ABTS seats. The lower neck extension moment was 41.4 ± 7.8% with all MY ABTS seats compared to 32.5 ± 9.7% in modern seats (P =.07). Overall, the ABTS seats had 13% higher biomechanical responses than the modern seats. Modern (≥2000 MY) design seats have lower biomechanical responses in 40.2 km/h rear sled tests than older (<2000 MY) designs and ABTS designs. The improved performance is consistent with an increase in seat strength combined with improved occupant kinematics through pocketing of the occupant into the seatback, higher and more forward head restraint, and other design changes. The methods and data presented here provide a basis for standardized testing of seats. However, a complete understanding of seat safety requires consideration of out-of-position (OOP) occupants in high-speed impacts and consideration of the much more common, low-speed rear impacts.

  1. Selecting seats for steel industry mobile machines based on seat effective amplitude transmissibility and comfort.

    PubMed

    Conrad, Leanne F; Oliver, Michele L; Jack, Robert J; Dickey, James P; Eger, Tammy R

    2014-01-01

    The purpose of this work was to help a steel industry partner select the most appropriate of three high end heavy equipment seats to retrofit a number of their heavy mobile machines used in the steel making process. The participants included 8 males (22.3 ± 2.0 yrs.) and 8 females (23.5 ± 1.8 yrs.) with no experience operating heavy mobile equipment. Previously recorded 6-DOF chassis acceleration data from a Pot Hauler (a machine which picks up and transports pots of slag) were used to extract six, 20 second representative profiles for implementation on a lab-based heavy machine simulator (6-DOF Parallel Robotics System Corporation robot). Subjects sat on three heavy equipment seats (BeGe7150, Grammar MSG 95G1721, and a 6801 Isringhausen with the seat pan cushion retrofitted with a Skydex cushion) mounted on the simulator. Each subject completed three trials for each combination of seat (n=3) and vibration profile (n=6). Chassis and operator/seat interface vibration were measured by 2, 6-DOF vibration transducers. Variables included Seat Effective Amplitude Transmissibility (SEAT) (X,Y,Z,Roll,Pitch,Yaw,6DOF Vector Sum) to determine if the seat was attenuating or amplifying the vibration, 6-degree of freedom (DOF) vibration total value weighted predicted comfort (Avc) (according to ISO 2631-1) and operator reported comfort (ORC). Factorial ANOVAs revealed significant differences (p < or = 0.05) between seats for all SEAT variables but different seats performed better than others depending on the axis. Significant differences between males and females were observed for SEAT in X,Y, and Pitch as well as for Avs. As expected there were significant differences between vibration profiles for all assessed variables. A number of interaction effects were observed, the most frequently occurring of which was between seat and vibration profile. Based upon the number of seat and vibration profile interactions, results suggest that a single seat is not suited for all tested conditions. However, SEAT values for all of the seats tested were extremely low (e.g., 6-DOF SEAT < 30%) indicating that all of the seats were capable of providing good vibration attenuation.

  2. Holocene history of deep-seated landsliding in the North Fork Stillaguamish River valley from surface roughness analysis, radiocarbon dating, and numerical landscape evolution modeling

    NASA Astrophysics Data System (ADS)

    Booth, Adam M.; LaHusen, Sean R.; Duvall, Alison R.; Montgomery, David R.

    2017-02-01

    Documenting spatial and temporal patterns of past landsliding is a challenging step in quantifying the effect of landslides on landscape evolution. While landslide inventories can map spatial distributions, lack of dateable material, landslide reactivations, or time, access, and cost constraints generally limit dating large numbers of landslides to analyze temporal patterns. Here we quantify the record of the Holocene history of deep-seated landsliding along a 25 km stretch of the North Fork Stillaguamish River valley, Washington State, USA, including the 2014 Oso landslide, which killed 43 people. We estimate the ages of more than 200 deep-seated landslides in glacial sediment by defining an empirical relationship between landslide deposit age from radiocarbon dating and landslide deposit surface roughness. We show that roughness systematically decreases with age as a function of topographic wavelength, consistent with models of disturbance-driven soil transport. The age-roughness model predicts a peak in landslide frequency at 1000 calibrated (cal) years B.P., with very few landslide deposits older than 7000 cal years B.P. or younger than 100 cal years B.P., likely reflecting a combination of preservation bias and a complex history of changing climate, base level, and seismic shaking in the study area. Most recent landslides have occurred where channels actively interact with the toes of hillslopes composed of glacial sediments, suggesting that lateral channel migration is a primary control on the location of large deep-seated landslides in the valley.

  3. High-risk behaviors while driving: A population-based study from Iran.

    PubMed

    Khadem-Rezaiyan, Majid; Moallem, Seyed Reza; Vakili, Veda

    2017-04-03

    Traffic injuries are becoming one of the most important challenges of public health systems. Because these injuries are mostly preventable, the aim of this study is to evaluate the four main high-risk behaviors while driving. This cross-sectional study was conducted on a random sample from the population of Mashhad, Iran, in 2014. A checklist and a previously validated questionnaire for the transtheoretical stages of change model (TTM) were used for data collection. Statistical analyses were performed using SPSS 11.5 software with P <.05 statistically significant. Totally 431 individuals were included with a mean age of 30 ± 11.3 years. Forty-three percent (183) were male. The TTM model revealed that participants were mostly in pre-actional phases regarding not using a cell phone while driving (80%), fastening the driver's seat belt (66%), front seat belt (68%), and rear seat belt (85%) The penalty was a protective factor only for using cellphone (odd ratio [OR] = 0.82, 95% confidence interval [CI], 0.68-0.98). Lower education (OR = 0.12, 95% CI, 0.01-0.94) and male gender (OR = 0.35, 95% CI, 0.14-0.83) were indicative of lower rates of fastening the front and rear seat belts. The stages of change model among study participants is a proper reflection of the effectiveness of the current policies. More serious actions regarding these high-risk behaviors should be considered in legislation.

  4. The Effects of Ejection Seat Cushion Design on Physical Fatigue and Cognitive Performance

    DTIC Science & Technology

    2006-11-01

    Protection Division Biomechanics Branch Wright-Patterson AFB Ohio 45433-7947 Approved for public release; distribution is unlimited. NOTICE...ADDRESS(ES *Air Force Materiel Command Air Force Research Laboratory Human Effectiveness Directorate Biosciences & Protection Division Biomechanics ...Dayton, Ohio. Analyses of the data were accomplished by the Biomechanics Branch, Human Effectiveness Directorate of the Air Force Research Laboratory

  5. An Ergonomic Evaluation of Aircraft Pilot Seats

    NASA Astrophysics Data System (ADS)

    Andrade, Yolanda Nicole

    Seat comfort has become increasingly important in today's society as we spend more time at consoles, instrument panels, or just online. However, seat comfort is hard to define and difficult to measure. Several measures both objective and subjective were used to evaluate seat comfort in commercially available average pilot seats. Three pilot seats, which had the same material and similar adjustments but different physical attributes, and a universal classroom seat, with different material and no adjustments, were compared by 20 volunteers using subjective and objective measures in a Latin square controlled repeated measures design. A Friedman's test was used to determine that both the comfort questionnaire and the body-map rating results were able to discriminate objective comfort levels between the seats. One-way repeated measures ANOVA tests were used to analyze both the objective tests, actigraph and pressure pad data. All results indicated that one seat was clearly the most comfortable and another, the classroom seat was clearly the most uncomfortable seat. Furthermore, the overall comments per seat were compiled and compared to Fazlollahtabar's 2010) predictive automobile seat comfort theory to determine which factors influence comfort perception. The use of both subjective and objective data can better distinguish comfort from one seat over the other. These results have implications for future tests of seats that will be used for long durations. Limitations and future recommendations are discussed later in the paper. An interesting finding may explain why pressure pad data are typically seemingly at odds with subjective measures of seat comfort.

  6. Radiosynthesis and Biodistribution of 99mTc-Metronidazole as an Escherichia coli Infection Imaging Radiopharmaceutical.

    PubMed

    Iqbal, Anam; Naqvi, Syed Ali Raza; Rasheed, Rashid; Mansha, Asim; Ahmad, Matloob; Zahoor, Ameer Fawad

    2018-05-01

    Bacterial infection poses life-threatening challenge to humanity and stimulates to the researchers for developing better diagnostic and therapeutic agents complying with existing theranostic techniques. Nuclear medicine technique helps to visualize hard-to-diagnose deep-seated bacterial infections using radionuclide-labeled tracer agents. Metronidazole is an antiprotozoal antibiotic that serves as a preeminent anaerobic chemotherapeutic agent. The aim of this study was to develop technetium-99m-labeled metronidazole radiotracer for the detection of deep-seated bacterial infections. Radiosynthesis of 99m Tc-metronidazole was carried by reacting reduced technetium-99m and metronidazole at neutral pH for 30 min. The stannous chloride dihydrate was used as the reducing agent. At optimum radiolabeling conditions, ~ 94% radiochemical was obtained. Quality control analysis was carried out with a chromatographic paper and instant thin-layer chromatographic analysis. The biodistribution study of radiochemical was performed using Escherichia coli bacterial infection-induced rat model. The scintigraphic study was performed using E. coli bacterial infection-induced rabbit model. The results showed promising accumulation at the site of infection and its rapid clearance from the body. The tracer showed target-to-non-target ratio 5.57 ± 0.04 at 1 h post-injection. The results showed that 99m Tc-MNZ has promising potential to accumulate at E. coli bacterial infection that can be used for E. coli infection imaging.

  7. Securing Public Safety Vehicles: Reducing Vulnerabilities by Leveraging Smart Technology and Design Strategies

    DTIC Science & Technology

    2013-12-01

    Protective Equipment Sizing and Design ,” Human Factors: The Journal of the Human Factors and Ergonomics Society 55, no. 1 (2013): 6–35; Hsiao...firefighters. The information will be used to improve apparatus design , revise NFPA 1901 Standard for Automotive Fire Apparatus, and improve cab, seat ... Design .” Human Factors: The Journal of the Human Factors and Ergonomics Society 55, no. 1 (2013): 6–35. ———. Sizing Firefighters and Fire Apparatus

  8. Determining Exercise Strength Requirements for Astronaut Critical Mission Tasks: Reaching Under G-Load

    NASA Technical Reports Server (NTRS)

    Schaffner, Grant; Bentley, Jason

    2008-01-01

    The critical mission tasks assessments effort seeks to determine the physical performance requirements that astronauts must meet in order to safely and successfully accomplish lunar exploration missions. These assessments will determine astronaut preflight strength, fitness, and flexibility requirements, and the extent to which exercise and other countermeasures must prevent the physical deconditioning associated with prolonged weightlessness. The purpose is to determine the flexibility and strength that crewmembers must possess in order to reach Crew Exploration Vehicle controls during maneuvers that result in sustained acceleration levels ranging from 3.7G to 7.8G. An industry standard multibody dynamics application was used to create human models representing a 5th percentile female, a 50th percentile male, and a 95th percentile male. The additional mass of a space suit sleeve was added to the reaching arm to account for the influence of the suit mass on the reaching effort. The human model was merged with computer models of a pilot seat and control panel for the Crew Exploration Vehicle. Three dimensional paths were created that guided the human models hand from a starting position alongside its thigh to three control targets: a joystick, a keyboard, and an overhead switch panel. The reaching motion to each target was repeated under four vehicle acceleration conditions: nominal ascent (3.7G), two ascent aborts (5.5G and 7.8G) and lunar reentry (4.6G). Elbow and shoulder joint angular excursions were analyzed to assess range of motion requirements. Mean and peak elbow and shoulder joint torques were determined and converted to equivalent resistive exercise loads to assess strength requirements. Angular excursions for the 50th and 95th percentile male models remained within joint range of motion limits. For the 5th percentile female, both the elbow and the shoulder exceeded range of motion limits during the overhead reach. Elbow joint torques ranged from 10 N-m (nominal ascent) to 60 N-m (ascent abort). Shoulder joint torques ranged from 65 N-m (nominal ascent) to 280 N-m (ascent abort). Maximal equivalent exercise loads reached 30 lb in tricep extension, 9 lb in bicep curl, 110 lb in unilateral pullover and unilateral bench press for nominal conditions (lunar reentry), and 188 lb in unilateral pullover and unilateral bench press. The location of the pilot seat was found to be inadequately located to allow a 5th percentile female to reach the switches on the overhead panel. Elbow strength requirements were found to be well within population norms. Shoulder strength was found to be a limiting factor. Reaching under nominal ascent and lunar reentry conditions was found to require near maximal shoulder strength. Reaching under ascent abort conditions requires shoulder strength well beyond population norms. Pilot seats must adjust to accomodate a 5th percentile female. Exercise countermeasures must maintain maximal pullover and bench press strength to allow pilots to reach and operate controls during lunar reentry. Reaching will not be possible during ascent abort conditions. Flight controls should be built into armrests or flight control must be accomplished by autonomous systems during acceleration exceeding 4.6G.

  9. The seating mechanics of head-neck modular tapers in vitro: Load-displacement measurements, moisture, and rate effects.

    PubMed

    Ouellette, Eric S; Shenoy, Aarti A; Gilbert, Jeremy L

    2018-04-01

    The mechanically assisted crevice corrosion performance of head-neck modular tapers is a significant concern in orthopedic biomaterials. Fretting crevice corrosion processes in modular tapers are thought to be influenced by a wide array of factors including seating mechanics of the junction, hence there is a need for in vitro test methods that can assess their performance. This study presented a test method to directly measure the load-displacement seating mechanics of modular tapers and used this method to compare the seating mechanics for different tapers, moisture, seating loads and seating rates. Seating mechanics were explored whereby the instantaneous load-displacement behavior of the head seating onto the neck is captured and used to define the mechanics of seating. Two distinct taper design/material combinations were assembled wet or dry using axially applied loads (500, 1,000, 2,000, and 4,000 N) at two loading rates of 100 and 10 4  N/s (n = 5 for each condition) using a servohydraulic test frame. The results showed that pull-off strength scaled with seating load and ranged between 43% and 68% of seating load depending on sample and wetness. Tapers seated wet had higher pull-off strengths (2,200 ± 300 N) than those seated dry (1,800 ± 200 N, p < 0.05). Seating mechanics (load-displacement plots) varied due to sample type and due to wetness with differences in seating energy, seating stiffness, and seating displacement. These results show the detailed mechanics of seating during assembly and provide significant insight into the complex interplay of factors associated with even "ideal" seating (axial, quasistatic) loading. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1164-1172, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. A fundamental model of quasi-static wheelchair biomechanics.

    PubMed

    Leary, M; Gruijters, J; Mazur, M; Subic, A; Burton, M; Fuss, F K

    2012-11-01

    The performance of a wheelchair system is a function of user anatomy, including arm segment lengths and muscle parameters, and wheelchair geometry, in particular, seat position relative to the wheel hub. To quantify performance, researchers have proposed a number of predictive models. In particular, the model proposed by Richter is extremely useful for providing initial analysis as it is simple to apply and provides insight into the peak and transient joint torques required to achieve a given angular velocity. The work presented in this paper identifies and corrects a critical error; specifically that the Richter model incorrectly predicts that shoulder torque is due to an anteflexing muscle moment. This identified error was confirmed analytically, graphically and numerically. The authors have developed a corrected, fundamental model which identifies that the shoulder anteflexes only in the first half of the push phase and retroflexes in the second half. The fundamental model has been extended by the authors to obtain novel data on joint and net power as a function of push progress. These outcomes indicate that shoulder power is positive in the first half of the push phase (concentrically contracting anteflexors) and negative in the second half (eccentrically contracting retroflexors). As the eccentric contraction introduces adverse negative power, these considerations are essential when optimising wheelchair design in terms of the user's musculoskeletal system. The proposed fundamental model was applied to assess the effect of vertical seat position on joint torques and power. Increasing the seat height increases the peak positive (concentric) shoulder and elbow torques while reducing the associated (eccentric) peak negative torque. Furthermore, the transition from positive to negative shoulder torque (as well as from positive to negative power) occurs later in the push phase with increasing seat height. These outcomes will aid in the optimisation of manual wheelchair propulsion biomechanics by minimising adverse negative muscle power, and allow joint torques to be manipulated as required to minimise injury or aid in rehabilitation. Copyright © 2012. Published by Elsevier Ltd.

  11. Robust human body model injury prediction in simulated side impact crashes.

    PubMed

    Golman, Adam J; Danelson, Kerry A; Stitzel, Joel D

    2016-01-01

    This study developed a parametric methodology to robustly predict occupant injuries sustained in real-world crashes using a finite element (FE) human body model (HBM). One hundred and twenty near-side impact motor vehicle crashes were simulated over a range of parameters using a Toyota RAV4 (bullet vehicle), Ford Taurus (struck vehicle) FE models and a validated human body model (HBM) Total HUman Model for Safety (THUMS). Three bullet vehicle crash parameters (speed, location and angle) and two occupant parameters (seat position and age) were varied using a Latin hypercube design of Experiments. Four injury metrics (head injury criterion, half deflection, thoracic trauma index and pelvic force) were used to calculate injury risk. Rib fracture prediction and lung strain metrics were also analysed. As hypothesized, bullet speed had the greatest effect on each injury measure. Injury risk was reduced when bullet location was further from the B-pillar or when the bullet angle was more oblique. Age had strong correlation to rib fractures frequency and lung strain severity. The injuries from a real-world crash were predicted using two different methods by (1) subsampling the injury predictors from the 12 best crush profile matching simulations and (2) using regression models. Both injury prediction methods successfully predicted the case occupant's low risk for pelvic injury, high risk for thoracic injury, rib fractures and high lung strains with tight confidence intervals. This parametric methodology was successfully used to explore crash parameter interactions and to robustly predict real-world injuries.

  12. Advanced Infant Car Seat Would Increase Highway Safety

    NASA Technical Reports Server (NTRS)

    Dabney, Richard; Elrod, Susan

    2004-01-01

    An advanced infant car seat has been proposed to increase highway safety by reducing the incidence of crying, fussy behavior, and other child-related distractions that divert an adult driver s attention from driving. In addition to a conventional infant car seat with safety restraints, the proposed advanced infant car seat would include a number of components and subsystems that would function together as a comprehensive infant-care system that would keep its occupant safe, comfortable, and entertained, and would enable the driver to monitor the baby without having to either stop the car or turn around to face the infant during driving. The system would include a vibrator with bulb switch to operate; the switch would double as a squeeze toy that would make its own specific sound. A music subsystem would include loudspeakers built into the seat plus digital and analog circuitry that would utilize plug-in memory modules to synthesize music or a variety of other sounds. The music subsystem would include a built-in sound generator that could synthesize white noise or a human heartbeat to calm the baby to sleep. A second bulb switch could be used to control the music subsystem and would double as a squeeze toy that would make a distinct sound. An anti-noise sound-suppression system would isolate the baby from potentially disturbing ambient external noises. This subsystem would include small microphones, placed near the baby s ears, to detect ambient noise. The outputs of the microphone would be amplified and fed to the loudspeakers at appropriate amplitude and in a phase opposite that of the detected ambient noise, such that the net ambient sound arriving at the baby s ears would be almost completely cancelled. A video-camera subsystem would enable the driver to monitor the baby visually while continuing to face forward. One or more portable miniature video cameras could be embedded in the side of the infant car seat (see figure) or in a flip-down handle. The outputs of the video cameras would be transmitted by radio or infrared to a portable, miniature receiver/video monitor unit that would be attached to the dashboard of the car. The video-camera subsystem can also be used within transmission/reception range when the seat was removed from the car. The system would include a biotelemetric and tracking subsystem, which would include a Global Positioning System receiver for measuring its location. This subsystem would transmit the location of the infant car seat (even if the seat were not in a car) along with such biometric data as the baby s heart rate, perspiration rate, urinary status, temperature, and rate of breathing. Upon detecting any anomalies in the biometric data, this subsystem would send a warning to a paging device installed in the car or carried by the driver, so that the driver could pull the car off the road to attend to the baby. A motion detector in this subsystem would send a warning if the infant car seat were to be moved or otherwise disturbed unexpectedly while the infant was seated in it: this warning function, in combination with the position- tracking function, could help in finding a baby who had been kidnapped with the seat. Removable rechargeable batteries would enable uninterrupted functioning of all parts of the system while transporting the baby to and from the car. The batteries could be recharged via the cigarette-lighter outlet in the car or by use of an external AC-powered charger.

  13. Multi-Variant/Capability Next Generation Troop Seat (M-V/C NGTS)

    DTIC Science & Technology

    2009-01-01

    John Plaga , Work Unit Manager MARK M. HOFFMAN Deputy Chief Biomechanics Branch Biosciences and Protection Division Human...John A. Plaga a. REPORT U b. ABSTRACT U c. THIS PAGE U SAR 20 19b. TELEPHONE NUMBER (include area

  14. 78 FR 50425 - Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD); Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ..., NICHD, at 301- 496-0536 to make your reservation, additional seating will be available in the meeting.... 93.864, Population Research; 93.865, Research for Mothers and Children; 93.929, Center for Medical...

  15. 76 FR 55076 - Eunice Kennedy Shriver National Institute of Child Health & Human Development Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... Liaison Office, NICHD, at 301-496-0536 to make your reservation. Additional seating will be available in....865, Research for Mothers and Children; 93.929, Center for Medical Rehabilitation Research; 93.209...

  16. Normative Misperceptions of Peer Seat Belt Use Among High School Students and Their Relationship to Personal Seat Belt Use

    PubMed Central

    LITT, DANA M.; LEWIS, MELISSA A.; LINKENBACH, JEFFREY W.; LANDE, GARY; NEIGHBORS, CLAYTON

    2016-01-01

    Objectives This research examined gender-specific perceptions of peer seat belt use norms among high school students and their relationship with one’s own seat belt use. We expected that students would underestimate the seat belt use of their peers and that these perceptions would be positively associated with their own seat belt use. Methods High school students from 4 schools (N = 3348; 52% male) completed measures assessing perceived seat belt use and personal seat belt use. Results Findings demonstrated that students perceived that others engaged in less seat belt use than they do and that perceived norms were positively associated with one’s own seat belt use. Conclusions Peer influences are a strong predictor of behavior, especially among adolescents. Ironically, adolescents’ behaviors are often influenced by inaccurate perceptions of their peers. This research establishes the presence of a misperception related to seat belt use and suggests that misperception is associated with own behaviors. This research provides a foundation for social norms–based interventions designed to increase seat belt use by correcting normative misperceptions among adolescents. PMID:24628560

  17. Car Seat Safety

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Car Seat Safety KidsHealth / For Parents / Car Seat Safety ... certified child passenger safety technician.) Guidelines for Choosing Car Seats Choose a seat with a label that ...

  18. 75 FR 30775 - Availability of Seats for the Monitor National Marine Sanctuary Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... to fill existing seats for the following vacant seats: Heritage Tourism seat, Citizen-at-Large seat... stakeholders, including: Citizen-at-Large, Conservation, Economic Development, Education, Heritage Tourism...

  19. Exploring the design of a lightweight, sustainable and comfortable aircraft seat.

    PubMed

    Kokorikou, A; Vink, P; de Pauw, I C; Braca, A

    2016-07-19

    Making a lightweight seat that is also comfortable can be contradictory because usually comfort improvement means adding a feature (e.g. headrest, adjustable lumbar support, movable armrests, integrated massage systems, etc.), which makes seats heavier. This paper explores the design of an economy class aircraft seat that aims to be lightweight, comfortable and sustainable. Theory about comfort in seats, ergonomics, lightweight design, Biomimicry and Cradle to cradle was studied and resulted in a list of requirements that the new seat should satisfy. The design process resulted in a new seat that is 36% lighter than the reference seat, which showed that a significant weight reduction can be achieved. This was completed by re-designing the backrest and seat pan and integrating their functions into a reduced number of parts. Apart from the weight reduction that helps in reducing the airplane's environmental impact, the seat also satisfies most of the other sustainability requirements such as the use of recyclable materials, design for disassembly, easy to repair. A user test compared the new seat with a premium economy class aircraft seat and the level of comfort was similar. Strong points of the new design were identified such as the lumbar support and the cushioning material, as well as shortcomings on which the seat needs to be improved, like the seat pan length and the first impression. Long term comfort tests are still needed as the seat is meant for long-haul flights.

  20. Seat belt use to save face: impact on drivers' body region and nature of injury in motor vehicle crashes.

    PubMed

    Han, Guang-Ming; Newmyer, Ashley; Qu, Ming

    2015-01-01

    Seat belt use is the single most effective way to save lives and reduce injuries in motor vehicle crashes. However, some case reports described seat belt use as a double-edged sword because some injuries are related to seat belt use in motor vehicle crashes. To comprehensively understand the effects of seat belt use, we systemically investigated the association between seat belt use and injuries based on anatomic body region and type of injury in drivers involved in motor vehicle crashes. The injury information was obtained by linking crash reports with hospital discharge data and categorized by using the diagnosis codes based on the Barell injury diagnosis matrix. A total of 10,479 drivers (≥15 years) in passenger vehicles involved in motor vehicle crashes from 2006 to 2011 were included in this study. Seat belt use significantly reduced the proportions of traumatic brain injury (10.4% non-seat belt; 4.1% seat belt) and other head, face, and neck injury (29.3% non-seat belt; 16.6% seat belt) but increased the proportion of spine: thoracic to coccyx injury (17.9% non-seat belt; 35.5% seat belt). Although the proportion of spine: thoracic to coccyx injury was increased in drivers with seat belt use, the severity of injury was decreased, such as fracture (4.2% with seat belt use; 22.0% without seat belt use). Furthermore, the total medical charges decreased due to the change of injury profiles in drivers with seat belt use from a higher percentage of fractures (average cost for per case $26,352) to a higher percentage of sprains and/or strains ($1,897) with spine: thoracic to coccyx injury. This study provide a comprehensive picture for understanding the protective effect of seat belt use on injuries based on anatomic body region and type of injury in drivers involved in motor vehicle crashes.

  1. The repeatability and reproducibility of the BioRID IIg in a repeatable laboratory seat based on a production car seat.

    PubMed

    Hynd, David; Depinet, Paul; Lorenz, Bernd

    2013-01-01

    The United Nations Economic Commission for Europe Informal Group on GTR No. 7 Phase 2 are working to define a build level for the BioRID II rear impact (whiplash) crash test dummy that ensures repeatable and reproducible performance in a test procedure that has been proposed for future legislation. This includes the specification of dummy hardware, as well as the development of comprehensive certification procedures for the dummy. This study evaluated whether the dummy build level and certification procedures deliver the desired level of repeatability and reproducibility. A custom-designed laboratory seat was made using the seat base, back, and head restraint from a production car seat to ensure a representative interface with the dummy. The seat back was reinforced for use in multiple tests and the recliner mechanism was replaced by an external spring-damper mechanism. A total of 65 tests were performed with 6 BioRID IIg dummies using the draft GTR No.7 sled pulse and seating procedure. All dummies were subject to the build, maintenance, and certification procedures defined by the Informal Group. The test condition was highly repeatable, with a very repeatable pulse, a well-controlled seat back response, and minimal observed degradation of seat foams. The results showed qualitatively reasonable repeatability and reproducibility for the upper torso and head accelerations, as well as for T1 Fx and upper neck Fx . However, reproducibility was not acceptable for T1 and upper neck Fz or for T1 and upper neck My . The Informal Group has not selected injury or seat assessment criteria for use with BioRID II, so it is not known whether these channels would be used in the regulation. However, the ramping-up behavior of the dummy showed poor reproducibility, which would be expected to affect the reproducibility of dummy measurements in general. Pelvis and spine characteristics were found to significantly influence the dummy measurements for which poor reproducibility was observed. It was also observed that the primary neck response in these tests was flexion, not extension. This correlates well with recent findings from Japan and the United States showing a correlation between neck flexion and injury in accident replication simulations and postmortem human subjects (PMHS) studies, respectively. The present certification tests may not adequately control front cervical spine bumper characteristics, which are important for neck flexion response. The certification sled test also does not include the pelvis and so cannot be used to control pelvis response and does not substantially load the lumbar bumpers and so does not control these parts of the dummy. The stiffness of all spine bumpers and of the pelvis flesh should be much more tightly controlled. It is recommended that a method for certifying the front cervical bumpers should be developed. Recommendations are also made for tighter tolerance on the input parameters for the existing certification tests.

  2. Car Seats for Growing Children: Guidelines for Counselling Parents on Which Type of Car Seat To Use.

    ERIC Educational Resources Information Center

    Illinois State Dept. of Transportation, Springfield. Div. of Traffic Safety.

    Children's car seats provide protection from the types of injury with the worst consequences. This document presents guidelines for selecting and installing child car seats, booster seats, and seat belts. The document includes suggestions for identifying when a child's safety restraint system should be changed, for determining if the restraint…

  3. 76 FR 13620 - Opportunity to Partner; Testing of Patient Compartment Seating and Restraints to Proposed Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... current or comparable pre-test or pre-standard seat, seat retention device, and occupant restraint and its... Partner; Testing of Patient Compartment Seating and Restraints to Proposed Test Standard Authority: 29 U.S... proposed ambulance component test standards. One such standard, AMD STANDARD 026--Seat, Seat Mount and...

  4. Seat belt use among rear passengers: validity of self-reported versus observational measures

    PubMed Central

    Zambon, Francesco; Fedeli, Ugo; Marchesan, Maria; Schievano, Elena; Ferro, Antonio; Spolaore, Paolo

    2008-01-01

    Background The effects of seat belt laws and public education campaigns on seat belt use are assessed on the basis of observational or self-reported data on seat belt use. Previous studies focusing on front seat occupants have shown that self-reports indicate a greater seat belt usage than observational findings. Whether this over-reporting in self reports applies to rear seat belt usage, and to what extent, have yet to be investigated. We aimed to evaluate the over-reporting factor for rear seat passengers and whether this varies by gender and under different compulsory seat belt use conditions. Methods The study was conducted in the Veneto Region, an area in the North-East of Italy with a population of 4.7 million. The prevalence of seat belt use among rear seat passengers was determined by means of a cross-sectional self-report survey and an observational study. Both investigations were performed in two time periods: in 2003, when rear seat belt use was not enforced by primary legislation, and in 2005, after rear seat belt use had become compulsory (June 2003). Overall, 8138 observations and 7902 interviews were recorded. Gender differences in the prevalence of rear seat belt use were examined using the chi-square test. The over-reporting factor, defined as the ratio of the self-reported to the observed prevalence of rear seat belt use, was calculated by gender before and after the rear seat belt legislation came into effect. Results Among rear seat passengers, self-reported rates were always higher than the observational findings, with an overall over-reporting factor of 1.4. We registered no statistically significant changes over time in the over-reporting factor, nor any major differences between genders. Conclusion Self-reported seat belt usage by rear passengers represents an efficient alternative to observational studies for tracking changes in actual behavior, although the reported figures need to be adjusted using an appropriate over-reporting factor in order to gain an idea of genuine seat belt use. PMID:18613955

  5. Viewpoint: linking professionalism to humanism: what it means, why it matters.

    PubMed

    Cohen, Jordan J

    2007-11-01

    The terms professionalism and humanism are sometimes confused as being synonymous; even more confusing, each is sometimes regarded as a component feature of the other. The author argues that, in the context of medicine, the two terms describe distinctly different, albeit intimately linked attributes of the good doctor. Professionalism denotes a way of behaving in accordance with certain normative values, whereas humanism denotes an intrinsic set of deep-seated convictions about one's obligations toward others. Viewed in this way, humanism is seen as the passion that animates professionalism. Nurturing the humanistic predispositions of entering medical students is key to ensuring that future physicians manifest the attributes of professionalism. Medical educators are encouraged to recognize the role of humanism in professional development and to incorporate into their curricula and learning environments explicit means to reinforce whatever inclinations their students have to be caring human beings. Chief among those means are respected role models who unfailingly provide humanistic care, ceremonies that celebrate the attributes of humanism, awards that honor exemplars of the caring physician, and serious engagement with the medical humanities to provide vivid insights into what a humanistic professional is.

  6. RF Loading Effects of Aircraft Seats in an Electromagnetic Reverberating Environment

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong

    2000-01-01

    Loading effects of aircraft seats in an electromagnetic reverberating environment are investigated. The effects are determined by comparing the reverberation chamber s insertion losses with and without the seats. The average per-seat absorption cross-sections are derived for coach and first class seats, and the results are compared for several seat configurations. An example is given for how the seat absorption cross-sections can be used to estimate the loading effects on the RF environment in an aircraft passenger cabin.

  7. RF Loading Effects of Aircraft Seats in an Electromagnetic Reverberating Environment

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.

    2000-01-01

    Loading effects of aircraft seats in an electromagnetic reverberating environment are investigated. The effects are determined by comparing the reverberation chamber's insertion losses with and without the seats. The average per-seat absorption cross-sections are derived for coach and first class seats, and the results are compared for several seat configurations. An example is given for how the seat absorption cross-sections can be used to estimate the loading effects on the RF environment in an aircraft passenger cabin.

  8. NASA space shuttle lightweight seat

    NASA Technical Reports Server (NTRS)

    Hansen, Chris; Jermstad, Wayne; Lewis, James; Colangelo, Todd

    1996-01-01

    The Space Shuttle Lightweight Seat-Mission Specialist (LWS-MS) is a crew seat for the mission specialists who fly aboard the Space Shuttle. The LWS-MS is a lightweight replacement for the mission specialist seats currently flown on the Shuttle. Using state-of-the-art analysis techniques, a team of NASA and Lockheed engineers from the Johnson Space Center (JSC) designed a seat that met the most stringent requirements demanded of the new seats by the Shuttle program, and reduced the weight of the seats by 52%.

  9. A lower body negative pressure box for +Gz simulation in the upright seated position.

    DOT National Transportation Integrated Search

    1979-02-01

    The cost of purchasing and operating a human centrifuge is substantial. Lower body negative pressure (LBNP) is considered an acceptable experimental substitute for the +Gz stress of the centrifuge. Since civil aviation pilots are usually subjected to...

  10. The Influences of Arm Resist Motion on a CAR Crash Test Using Hybrid III Dummy with Human-Like Arm

    NASA Astrophysics Data System (ADS)

    Kim, Yongchul; Youm, Youngil; Bae, Hanil; Choi, Hyeonki

    Safety of the occupant during the crash is very essential design element. Many researches have been investigated in reducing the fatal injury of occupant. They are focusing on the development of a dummy in order to obtain the real human-like motion. However, they have not considered the arm resist motion during the car accident. In this study, we would like to suggest the importance of the reactive force of the arm in a car crash. The influences of reactive force acting on the human upper extremity were investigated using the impedance experimental method with lumped mass model of hand system and a Hybrid III dummy with human-like arm. Impedance parameters (e.g. inertia, spring constant and damping coefficient) of the elbow joint in maximum activation level were measured by free oscillation test using single axis robot. The results showed that without seat belt, the reactive force of human arm reduced the head, chest, and femur injury, and the flexion moment of the neck is higher than that of the conventional dummy.

  11. Whole-body Vibration Exposure Intervention among Professional Bus and Truck Drivers: A Laboratory Evaluation of Seat-suspension Designs.

    PubMed

    Blood, Ryan P; Yost, Michael G; Camp, Janice E; Ching, Randal P

    2015-01-01

    Long-term exposure to seated whole-body vibration (WBV) is one of the leading risk factors for the development of low back disorders. Professional bus and truck drivers are regularly exposed to continuous WBV, since they spend the majority of their working hours driving heavy vehicles. This study measured WBV exposures among professional bus and truck drivers and evaluated the effects of seat-suspension designs using simulated field-collected data on a vibration table. WBV exposures were measured and compared across three different seat designs: an air-ride bus seat, an air-ride truck seat, and an electromagnetically active (EM-active) seat. Air-ride seats use a compressed-air bladder to attenuate vibrations, and they have been in operation throughout the transportation industry for many years. The EM-active seat is a relatively new design that incorporates a microprocessor-controlled actuator to dampen vibration. The vibration table simulated seven WBV exposure scenarios: four segments of vertical vibration and three scenarios that used field-collected driving data on different road surfaces-a city street, a freeway, and a section of rough roadway. The field scenarios used tri-axial WBV data that had been collected at the seat pan and at the driver's sternum, in accordance with ISO 2631-1 and 2631-5. This study found that WBV was significantly greater in the vertical direction (z-axis) than in the lateral directions (x-and y-axes) for each of the three road types and each of the three types of seats. Quantitative comparisons of the results showed that the floor-to-seat-pan transmissibility was significantly lower for the EM-active seat than for either the air-ride bus seat or the air-ride truck seat, across all three road types. This study also demonstrated that seat-suspension designs have a significant effect on the vibrations transmitted to vehicle operators, and the study's results may prove useful in designing future seat suspensions.

  12. Assessment of potential catastrophic landslides in Taiwan by airborne LiDAR-derived DEM

    NASA Astrophysics Data System (ADS)

    Hou, Chin-Shyong; Hsieh, Yu-Chung; Hu, Jyr-Ching; Chiu, Cheng-Lung; Chen, Hung-Jen; Fei, Li-Yuan

    2013-04-01

    The heavy rainfall of Typhoon Morakot caused severe damage to infrastructures, property and human lives in southern Taiwan in 2009. The most atrocious incident was the Hsiaolin landslide, which buried more than 400 victims. After this catastrophic event, the recognition of localities of deep-seated landslides becomes a critical issue in landslide hazard mitigation induced from extreme climate events. Consequently the airborne LiDAR survey was carried out in first phase from 2010 to 2012 by Central Geological Survey, MOEA in Taiwan in order to assess the potential catastrophic deep-seated landslides in the steep and rocky terrain in south-central Taiwan. The second phase of LiDAR survey is ongoing from 2013 to 2015 for the recognition and the assessment of possible impact area induced by deep-seated landslide in the mountainous area of whole Taiwan. Transitionally, the recognition of potential deep-seated landslide sites is adopted in term of landslide inventories from space-borne images, aerial photographs and field investigation. However, it is difficult to produce robust landslide inventories due to the poor spatial resolution of ground elevation and highly dense vegetation in mountainous area in Taiwan. In this study, the 1 m LiDAR-derived DEM is used to extract key geomorphological features such as crown cracks, minor scarps, toe of surface rupture at meter to sub-meter scale hidden under forests with high degree of accuracy. Preliminary result shows that about 400 potential landslide sites have been recognized to improve the quality of landslide inventories. In addition, detailed contour maps and visualized images are reproduced to outline the shape of potential deep-seated landslides. Further geomorphometric analyses based on hillshade, aspect, slope, eigenvalue ratio (ER) and openness will be integrated to easily create landslide inventories to mitigate landslide disasters in Taiwan mountainous area.

  13. Study of materials performance model for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Leary, K.; Skratt, J.

    1980-01-01

    A demonstration version of an aircraft interior materials computer data library was developed and contains information on selected materials applicable to aircraft seats and wall panels, including materials for the following: panel face sheets, bond plies, honeycomb, foam, decorative film systems, seat cushions, adhesives, cushion reinforcements, fire blocking layers, slipcovers, decorative fabrics and thermoplastic parts. The information obtained for each material pertains to the material's performance in a fire scenario, selected material properties and several measures of processability.

  14. Tutorial Guide: Computer Aided Structural Modeling (CASM). Version 1.01, Release Date - February 1990

    DTIC Science & Technology

    1990-09-01

    seats Dining room Parking garage (1 story) Kitchen Required: Prepare a list of live loads for the project. Live load reductions are to be taken for all...Corridor (main) 100 Office: Lobbies 100 Assembly: Mouable seats 100 Dining rooms 100 Garages (passenger cars) 50 Kitchens (non domestic) 150a AI...rooms 100 Garages (passenger cars) 50 Kitchens (non domestic) 150a a. Variable design load. Increase may be necessary. Notes Uniformly distributed live

  15. An Efficient Optimal Design Methodology for Nonlinear Multibody Dynamics Systems with Application to Vehicle Occupant Restraint Systems

    DTIC Science & Technology

    2011-04-01

    Lai, W., Carhart, M., Richards, D., Brown, J. and Raasch, C., (2006), Modeling the Effects of Seat Belt Pretensioners on Occupant Kinematics During...from being ejected from the vehicle but also be able to assist rapid entry into the vehicle during a rollover or other accidents to avoid injury or...vehicles, such as gunner restraint systems, blast-protective seating systems and other restraint systems, and commercial applications, such as

  16. 49 CFR 571.202a - Standard No. 202a; Head restraints; Mandatory applicability begins on September 1, 2009.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... restraints in rear outboard seats. Measure the height of the top of a rear seat back or the top of any independently adjustable seat component attached to or adjacent to the rear seat back in its highest position of... seat back inclination position less than the design seat back angle. (a)(1) For head restraints in...

  17. Development of a crashworthy seat for commuter aircraft.

    DOT National Transportation Integrated Search

    1990-09-01

    A series of dynamic impact tests were conducted using a prototype seat with an energy absorbing mechanism as part of the seat pan. The seat frame was designed to represent a typical commuter aircraft passenger seat. Tests were conducted in an orienta...

  18. MOCR activity during Day 6 of STS-3 mission

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Andrew A. Fullerton, the six-year-old son of STS-3 pilot C. Gordon Fullerton, watches a television monitor in the mission control center's viewing room (28802); Mrs. Marie J. Fullerton in the mission control center's viewing room. Other members of the STS-3 pilot's family are seated on each side of Mrs. Fullerton. His sister, Jeanne Dockham, is at left foreground; son Andrew A., at right foreground. Mr. and Mrs. E. G. Buettner, Mrs. Fullerton's parents, are seated at center, and beyond them is Mrs. Charles R. Fullerton, the astronaut's mother (28803); Mary Ann Austin seated at the remote manipulator sytem (RMS) console in the mission operations control room (MOCR) shares the scene with a representation of a 1/15-scale model of the Canadian-built remote manipulator system arm (28804).

  19. Design and evaluation of a suspension seat to reduce vibration exposure of subway operators: a case study.

    PubMed

    Marcotte, Pierre; Beaugrand, Sylvie; Boutin, Jérôme; Larue, Christian

    2010-01-01

    Subway operators have complained about discomfort caused by whole-body vibration. To address this problem, a suspension seat with extensive ergonomic features has been adapted to the confined space of the subway operator cab. The suspension was modified from an existing suspension in order to reduce the dominant frequency of the subway vertical vibration (2.4 Hz). The suspension seat has been extensively tested on a vertical hydraulic shaker. These tests have shown that the SEAT value was lower for a higher vibration level, for higher subject weight, and for the suspension adjusted at median height. The seat also produces a lower SEAT value when there was a predominance of the 6 Hz vibration component. The horizontal seat adjustments had no influence on the suspension SEAT value. Removing the suspension damper also decreases the SEAT value for all the tested configurations. The final version of the suspension seat prototype was validated during normal subway operation with 19 different operators having weight in the 5th, 50th and 95th percentile of the operator population. Accelerations were measured with triaxial accelerometers at the seat cushion, above the suspension and on the floor. In addition to the vibration measurements, each operator was asked about his perceived discomfort from vibration exposure. Globally, the suspension seat attenuated the vertical vibration (SEAT values from 0.86 to 0.99), but discomfort due to amplification of the 2.4 Hz component occurred when the suspension height was adjusted at the minimum, even when the global weighted acceleration was lower (SEAT value < 1). These results suggest that in order to reduce the discomfort caused by whole-body vibration, the transmissibility of the seat should also be considered, in particular when there is a dominant frequency in the vibration spectra.

  20. 76 FR 66274 - Availability of Seats for the Cordell Bank National Marine Sanctuary Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ...The ONMS is seeking applications for the following vacant seats on the Cordell Bank National Marine Sanctuary Advisory Council: Education, Primary and Alternate seats; Fishing, Primary and Alternate seats; Research, Alternate seat; Community-at-Large Mann County, Alternate seat; Community-at-Large Sonoma County, Alternate seat. Applicants are chosen based upon their particular expertise and experience in relation to the seat for which they are applying; community and professional affiliations; philosophy regarding the protection and management of marine resources; and possibly the length of residence in the area affected by the sanctuary. Applicants who are chosen as members should expect to serve three-year terms, pursuant to the council's Charter.

  1. Motor Vehicle Crashes, Medical Outcomes, and Hospital Charges Among Children Aged 1-12 Years - Crash Outcome Data Evaluation System, 11 States, 2005-2008.

    PubMed

    Sauber-Schatz, Erin K; Thomas, Andrea M; Cook, Lawrence J

    2015-10-02

    Motor vehicle crashes are a leading cause of death among children. Age- and size-appropriate restraint use is an effective way to prevent motor vehicle-related injuries and deaths. However, children are not always properly restrained while riding in a motor vehicle, and some are not restrained at all, which increases their risk for injury and death in a crash. 2005-2008. The Crash Outcome Data Evaluation System (CODES) is a multistate program facilitated by the National Highway Traffic Safety Administration to probabilistically link police crash reports and hospital databases for traffic safety analyses. Eleven participating states (Connecticut, Georgia, Kentucky, Maryland, Minnesota, Missouri, Nebraska, New York, Ohio, South Carolina, and Utah) submitted data to CODES during the reporting period. Descriptive analysis was used to describe drivers and child passengers involved in motor vehicle crashes and to summarize crash and medical outcomes. Odds ratios and 95% confidence intervals were used to compare a child passenger's likelihood of sustaining specific types of injuries by restraint status (optimal, suboptimal, or unrestrained) and seating location (front or back seat). Because of data constraints, optimal restraint use was defined as a car seat or booster seat use for children aged 1-7 years and seat belt use for children aged 8-12 years. Suboptimal restraint use was defined as seat belt use for children aged 1-7 years. Unrestrained was defined as no use of car seat, booster seat, or seat belt for children aged 1-12 years. Optimal restraint use in the back seat declined with child's age (1 year: 95.9%, 5 years: 95.4%, 7 years: 94.7%, 8 years: 77.4%, 10 years: 67.5%, 12 years: 54.7%). Child restraint use was associated with driver restraint use; 41.3% of children riding with unrestrained drivers also were unrestrained compared with 2.2% of children riding with restrained drivers. Child restraint use also was associated with impaired driving due to alcohol or drug use; 16.4% children riding with drivers suspected of alcohol or drug use were unrestrained compared with 2.9% of children riding with drivers not suspected of such use. Optimally restrained and suboptimally restrained children were less likely to sustain a traumatic brain injury than unrestrained children. The 90th percentile hospital charges for children aged 4-7 years who were in motor vehicle crashes were $1,630.00 and $1,958.00 for those optimally restrained in a back seat and front seat, respectively; $2,035.91 and $3,696.00 for those suboptimally restrained in a back seat and front seat, respectively; and $9,956.60 and $11,143.85 for those unrestrained in a back seat and front seat, respectively. Proper car seat, booster seat, and seat belt use among children in the back seat prevents injuries and deaths, as well as averts hospital charges. However, the number, severity, and cost of injuries among children in crashes who were not optimally restrained or who were seated in a front seat indicates the need for improvements in proper use of age- and size-appropriate car seats, booster seats, and seat belts in the back seat. Effective interventions for increasing proper child restraint use could be universally implemented by states and communities to prevent motor vehicle-related injuries among children and their resulting costs.

  2. Prediction of moment-rotation characteristic of top- and seat-angle bolted connection incorporating prying action

    NASA Astrophysics Data System (ADS)

    Ahmed, Ali

    2017-03-01

    Finite element (FE) analyses were performed to explore the prying influence on moment-rotation behaviour and to locate yielding zones of top- and seat-angle connections in author's past research studies. The results of those FE analyses with experimental failure strategies of the connections were used to develop failure mechanisms of top- and seat-angle connections in the present study. Then a formulation was developed based on three simple failure mechanisms considering bending and shear deformations, effects of prying action on the top angle and stiffness of the tension bolts to estimate rationally the ultimate moment M u of the connection, which is a vital parameter of the proposed four-parameter power model. Applicability of the proposed formulation is assessed by comparing moment-rotation ( M- θ r ) curves and ultimate moment capacities with those measured by experiments and estimated by FE analyses and three-parameter power model. This study shows that proposed formulation and Kishi-Chen's method both achieved close approximation driving M- θ r curves of all given connections except a few cases of Kishi-Chen model, and M u estimated by the proposed formulation is more rational than that predicted by Kishi-Chen's method.

  3. Discomfort during lateral acceleration: influence of seat cushion and backrest.

    PubMed

    Beard, George F; Griffin, Michael J

    2013-07-01

    Lateral acceleration causes discomfort but how the discomfort depends on the frequency of acceleration or characteristics of seating is poorly understood. Using magnitude estimation, twelve male subjects rated the discomfort caused by lateral oscillation at eight frequencies (0.2-1.0 Hz) across four seating conditions (a rigid seat and a train seat, both with and without backrests). Discomfort increased with increasing frequency of lateral acceleration in a similar manner for all four seating conditions. However, at all frequencies and with both seats there was less discomfort when sitting with backrest support than without. Least discomfort occurred on the train seat with backrest and greatest discomfort on the rigid seat without backrest. Current standards predict an additive effect of backrest on vibration discomfort, but the findings show that low frequency lateral acceleration can cause less discomfort when sitting with a backrest than when sitting on the same seat without a backrest. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. Delineation of potential deep seated landslides in a watershed using environmental index

    NASA Astrophysics Data System (ADS)

    Lai, Siao Ying; Lin, Chao Yuan; Lin, Cheng Yu

    2016-04-01

    The extreme rainfall induced deep seated landslides cause more attentions recently. Extreme rainfall can accelerate soil moisture content and surface runoff in slopeland which usually results in severe headward erosion and slope failures in an upstream watershed. It's a crucial issue for disaster prevention to extract the sites of potential deep seated landslide dynamically. Landslide risk and scale in a watershed were well discussed in this study. Risk of landslide occurrence in a watershed can be calculated from the multiplication of hazard and vulnerability for a certain event. A synthesis indicator derived from the indices of inverted extreme rainfall, road development and inverted normalized difference vegetation index can be effectively used as vulnerability for a watershed before the event. Landslide scale estimated from the indices of soil depth, headward erosion, river concave and dip slope could be applied to locate the hotspots of deep seated landslide in a watershed. The events of Typhoon Morakot in 2009 and Soudelor in 2015 were also selected in this study to verify the delineation accuracy of the model for the references of related authorities.

  5. Functional seating for school-age children with cerebral palsy: an evidence-based tutorial.

    PubMed

    Costigan, F Aileen; Light, Janice

    2011-04-01

    This tutorial is designed to teach speech-language pathologists (SLPs) best practices to support functional seating of children with cerebral palsy (CP) in the classroom and in school-based therapy sessions. This tutorial teaches SLPs to (a) recognize the positive effects of seating intervention, (b) identify the characteristics of functional seating that may produce these positive effects, and (c) realize their role in supporting functional seating for school-age children with CP. The research reporting positive effects of seating intervention for school-age children with CP is presented according to the International Classification of Functioning, Disability and Health (World Health Organization, 2001). Recommended guidelines for functional seating for school-age children with CP are gleaned from the research evidence. The specific role of the SLP in providing functional seating for children with CP is then discussed. Seating intervention may produce positive body structure and function, activities, and participation effects for school-age children with CP when appropriate equipment is provided for weight bearing, the pelvis is positioned for stability and mobility, and the body is properly aligned. SLPs can support functional seating for school-age children with CP by communicating with professionals with seating expertise and by invoking and monitoring recommended guidelines for children with basic and complex seating needs, respectively.

  6. Promoting booster seat use for young children: A school-based intervention pilot study.

    PubMed

    Bruce, Beth S; Mundle, Kim; Cramm, Camille F; Williams, Devon P

    2017-05-01

    Misuse and/or lack of booster seat use are often associated with high rates of injury and death among school-aged children. This pilot study examined the efficacy and the potential effectiveness of a booster seat intervention in the classroom. Two elementary schools participated (randomly assigned as one intervention school and one control school). At the intervention school, a certified car seat specialist and a police officer held an interactive booster seat session. The height and age for each child were recorded. Children received a certificate indicating whether they met the requirements for booster seat use and a postcard with car seat restraint specifications. Children in the control school received a brochure on car seat safety. Pre- and post-intervention self-reports were collected and booster seat use was observed. Observational findings showed a decline in booster seat use at the control school and an increase in use at the intervention school. Self-reports of booster seat use indicated a decline at both schools; however, cell sizes were too small to permit statistical analyses. Anecdotally researchers found the sessions were easy to conduct and were well received by the children and could be easily integrated into programming in schools. Classroom sessions may have the potential to positively influence booster seat use among 6- to 8-year-olds.

  7. Hemodynamic and ADH responses to central blood volume shifts in cardiac-denervated humans

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Thompson, C. A.; Benjamin, B. A.; Keil, L. C.; Savin, W. M.; Gordon, E. P.; Haskell, W. L.; Schroeder, J. S.; Sandler, H.

    1990-01-01

    Hemodynamic responses and antidiuretic hormone (ADH) were measured during body position changes designed to induce blood volume shifts in ten cardiac transplant recipients to assess the contribution of cardiac and vascular volume receptors in the control of ADH secretion. Each subject underwent 15 min of a control period in the seated posture, then assumed a lying posture for 30 min at 6 deg head down tilt (HDT) followed by 20 min of seated recovery. Venous blood samples and cardiac dimensions (echocardiography) were taken at 0 and 15 min before HDT, 5, 15, and 30 min of HDT, and 5, 15, and 30 min of seated recovery. Blood samples were analyzed for hematocrit, plasma osmolality, plasma renin activity (PRA), and ADH. Resting plasma volume (PV) was measured by Evans blue dye and percent changes in PV during posture changes were calculated from changes in hematocrit. Heart rate (HR) and blood pressure (BP) were recorded every 2 min. Results indicate that cardiac volume receptors are not the only mechanism for the control of ADH release during acute blood volume shifts in man.

  8. Teens and seat belt use: What makes them click?

    PubMed

    Shults, Ruth A; Haegerich, Tamara M; Bhat, Geeta; Zhang, Xinjian

    2016-06-01

    Motor vehicle crashes kill more adolescents in the United States than any other cause, and often the teen is not wearing a seat belt. Using data from the 2011 Youth Risk Behavior Surveys from 38 states, we examined teens' self-reported seat belt use while riding as a passenger and identified individual characteristics and environmental factors associated with always wearing a seat belt. Only 51% of high school students living in 38 states reported always wearing a seat belt when riding as a passenger; prevalence varied from 32% in South Dakota to 65% in Delaware. Seat belt use was 11 percentage points lower in states with secondary enforcement seat belt laws compared to states with primary enforcement laws. Racial/ethnic minorities, teens living in states with secondary enforcement seat belt laws, and those engaged in substance use were least likely to always wear their seat belts. The likelihood of always being belted declined steadily as the number of substance use behaviors increased. Seat belt use among teens in the United States remains unacceptably low. Results suggest that environmental influences can compound individual risk factors, contributing to even lower seat belt use among some subgroups. This study provides the most comprehensive state-level estimates to date of seat belt use among U.S. teens. This information can be useful when considering policy options to increase seat belt use and for targeting injury prevention interventions to high-risk teens. States can best increase teen seat belt use by making evidence-informed decisions about state policy options and prevention strategies. Published by Elsevier Ltd.

  9. 77 FR 34387 - Proposed Information Collection Activity; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Administration for Children and Families Proposed... transportation requirement provides the requirement that each child be seated in a child restraint system while... in the best interest of the children involved. Respondents: Head Start and Early Head Start program...

  10. Lumbar vertebrae fracture injury risk in finite element reconstruction of CIREN and NASS frontal motor vehicle crashes.

    PubMed

    Jones, Derek A; Gaewsky, James P; Kelley, Mireille E; Weaver, Ashley A; Miller, Anna N; Stitzel, Joel D

    2016-09-01

    The objective of this study was to reconstruct 4 real-world motor vehicle crashes (MVCs), 2 with lumbar vertebral fractures and 2 without vertebral fractures in order to elucidate the MVC and/or restraint variables that increase this injury risk. A finite element (FE) simplified vehicle model (SVM) was used in conjunction with a previously developed semi-automated tuning method to arrive at 4 SVMs that were tuned to mimic frontal crash responses of a 2006 Chevrolet Cobalt, 2012 Ford Escape, 2007 Hummer H3, and 2002 Chevrolet Cavalier. Real-world crashes in the first 2 vehicles resulted in lumbar vertebrae fractures, whereas the latter 2 did not. Once each SVM was tuned to its corresponding vehicle, the Total HUman Model for Safety (THUMS) v4.01 was positioned in 120 precrash configurations in each SVM by varying 5 parameters using a Latin hypercube design (LHD) of experiments: seat track position, seatback angle, steering column angle, steering column telescoping position, and d-ring height. For each case, the event data recorder (EDR) crash pulse was used to apply kinematic boundary conditions to the model. By analyzing cross-sectional vertebral loads, vertebral bending moments, and maximum principal strain and stress in both cortical and trabecular bone, injury metric response as a function of posture and restraint parameters was computed. Tuning the SVM to specific vehicle models produced close matches between the simulated and experimental crash test responses for head, T6, and pelvis resultant acceleration; left and right femur loads; and shoulder and lap belt loads. Though vertebral load in the THUMS simulations was highly similar between injury cases and noninjury cases, the amount of bending moment was much higher for the injury cases. Seatback angle had a large effect on the maximum compressive load and bending moment in the lumbar spine, indicating the upward tilt of the seat pan in conjunction with precrash positioning may increase the likelihood of suffering lumbar injury even in frontal, planar MVCs. In conclusion, precrash positioning has a large effect on lumbar injury metrics. The lack of lumbar injury criteria in regulatory crash tests may have led to inadvertent design of seat pans that work to apply axial force to the spinal column during frontal crashes.

  11. Human heart rate variability relation is unchanged during motion sickness

    NASA Technical Reports Server (NTRS)

    Mullen, T. J.; Berger, R. D.; Oman, C. M.; Cohen, R. J.

    1998-01-01

    In a study of 18 human subjects, we applied a new technique, estimation of the transfer function between instantaneous lung volume (ILV) and instantaneous heart rate (HR), to assess autonomic activity during motion sickness. Two control recordings of ILV and electrocardiogram (ECG) were made prior to the development of motion sickness. During the first, subjects were seated motionless, and during the second they were seated rotating sinusoidally about an earth vertical axis. Subjects then wore prism goggles that reverse the left-right visual field and performed manual tasks until they developed moderate motion sickness. Finally, ILV and ECG were recorded while subjects maintained a relatively constant level of sickness by intermittent eye closure during rotation with the goggles. Based on analyses of ILV to HR transfer functions from the three conditions, we were unable to demonstrate a change in autonomic control of heart rate due to rotation alone or due to motion sickness. These findings do not support the notion that moderate motion sickness is manifested as a generalized autonomic response.

  12. Car Seat Inspection Among Children Older Than Three: Using Data to Drive Practice in Child Passenger Safety

    PubMed Central

    Kroeker, Amber M.; Teddy, Amy J.; Macy, Michelle L.

    2015-01-01

    Background Motor vehicle crashes (MVCs) are a leading cause of unintentional death and disability among children ages 4-12 in the United States. Despite this high risk of injury from MVCs in this age group, parental awareness, and child passenger safety programs in particular may lack focus on this age group. Methods Retrospective cross-sectional analysis of child passenger safety seat checklist forms from two Safe Kids coalitions in Michigan (2013) to identify restraint type upon arrival to car seat inspections. Other variables included, if the coalition provided a new child safety seat and if the child had a sibling who underwent a car seat inspection. Chi-square statistics were used to compare change in restraint use upon arrival and at departure, the proportion of children attending a car seat inspection event by age, the age category of children by site, the proportion of children with siblings also undergoing a car seat inspection by age, and the distribution of a new child safety seat by age. Results Data were available from 1,316 Safe Kids Huron Valley and 3,215 Safe Kids Greater Grand Rapids car seat inspections. Just 10.8% of total seats inspected were booster seats. Child safety seats for infant and young children were more commonly inspected [rear-facing carrier (40.3%), rear-facing convertible (10.2%), and forward-facing (19.3%) car seats]. Few children at inspections used a seat belt only (5.4%) or had no restraint (13.8%). Children age 4 and above were found to be in a sub-optimal restraint at least 30% of the time. Conclusion Low proportions of parents use car seat inspections for children in the booster seat age group. The proportion of children departing the inspection in a more protective restraint increased with increasing age. This highlights an area of weakness in child passenger safety programs and signals an opportunity to strengthen efforts on The Forgotten Child. Level of Evidence Level III PMID:26308122

  13. Ingress clearance requirements and seat positioning for automatic belt systems

    DOT National Transportation Integrated Search

    1981-06-01

    The purposes of this study were (1) to determine how much clearance between a seat belt and seat cushion is needed for a driver to enter the front seat of an automobile equipped with automatic seat belts---without his/her having to lift the webbing, ...

  14. 49 CFR 571.207 - Standard No. 207; Seating systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... standard establishes requirements for seats, their attachment assemblies, and their installation to... longitudinal direction; (c) For a seat belt assembly attached to the seat—the force specified in paragraph (a... applied simultaneously with the forces imposed on the seat by the seat belt assembly when it is loaded in...

  15. 28 CFR 36.308 - Seating in assembly areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Seating in assembly areas. 36.308 Section... PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Specific Requirements § 36.308 Seating in assembly... in assembly areas shall— (i) Provide a reasonable number of wheelchair seating spaces and seats with...

  16. 14 CFR 125.317 - Inspector's credentials: Admission to pilots' compartment: Forward observer's seat.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pilots' compartment: Forward observer's seat. 125.317 Section 125.317 Aeronautics and Space FEDERAL... pilots' compartment: Forward observer's seat. (a) Whenever, in performing the duties of conducting an... of safety. (b) A forward observer's seat on the flight deck, or forward passenger seat with headset...

  17. 14 CFR 135.75 - Inspectors credentials: Admission to pilots' compartment: Forward observer's seat.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...' compartment: Forward observer's seat. 135.75 Section 135.75 Aeronautics and Space FEDERAL AVIATION...' compartment: Forward observer's seat. (a) Whenever, in performing the duties of conducting an inspection, an.... (b) A forward observer's seat on the flight deck, or forward passenger seat with headset or speaker...

  18. Alternative seating for young children with Autism Spectrum Disorder: effects on classroom behavior.

    PubMed

    Schilling, Denise Lynn; Schwartz, Ilene S

    2004-08-01

    A single subject, withdrawal design was used to investigate the effects of therapy balls as seating on engagement and in-seat behavior of young children with Autism Spectrum Disorder (ASD). In addition, social validity was assessed to evaluate teachers' opinions regarding the intervention. During baseline and withdrawal (A phases) participants used their typical classroom seating device (chair, bench or carpet square). During the intervention (B phases) participants sat on therapy balls. Results indicated substantial improvements in engagement and in-seat behavior when participants were seated on therapy balls. Social validity findings indicated that the teachers' preferred the therapy balls. This study suggests therapy balls as classroom seating may facilitate engagement and in-seat behavior and create opportunities to provide effective instruction.

  19. Active vibration attenuating seat suspension for an armored helicopter crew seat

    NASA Astrophysics Data System (ADS)

    Sztein, Pablo Javier

    An Active Vibration Attenuating Seat Suspension (AVASS) for an MH-60S helicopter crew seat is designed to protect the occupants from harmful whole-body vibration (WBV). Magnetorheological (MR) suspension units are designed, fabricated and installed in a helicopter crew seat. These MR isolators are built to work in series with existing Variable Load Energy Absorbers (VLEAs), have minimal increase in weight, and maintain crashworthiness for the seat system. Refinements are discussed, based on testing, to minimize friction observed in the system. These refinements include the addition of roller bearings to replace friction bearings in the existing seat. Additionally, semi-active control of the MR dampers is achieved using special purpose built custom electronics integrated into the seat system. Experimental testing shows that an MH-60S retrofitted with AVASS provides up to 70.65% more vibration attenuation than the existing seat configuration as well as up to 81.1% reduction in vibration from the floor.

  20. Car seat safety: literature review.

    PubMed

    Lincoln, Michelle

    2005-01-01

    After staggering numbers of infants were killed in automotive crashes in the 1970s, the American Academy of Pediatrics (AAP) recommended in 1974 universal use of car seats for all infants. However, positional problems were reported when car seats are used with premature infants less than 37 weeks gestational age as a result of head slouching and its sequelae. In 1990, the AAP responded with another policy statement introducing car seat testing. It recommended that any infant at or under 37 weeks gestational age be observed in a car seat prior to discharge from the hospital. The AAP did not give specific guidelines on type of car seat, length of testing, equipment, or personnel proficiency, however. Few nurseries have standard policies to evaluate car seats, to teach parents about car seats, or to position newborns in them, and not all hospitals actually conduct car seat challenges or have common standards for testing that is performed.

  1. Development of an MR seat suspension with self-powered generation capability

    NASA Astrophysics Data System (ADS)

    Sun, S. S.; Ning, D. H.; Yang, J.; Du, H.; Zhang, S. W.; Li, W. H.; Nakano, M.

    2017-08-01

    This paper proposes a self-powered magnetorheological (MR) seat suspension on the basis of a rotary MR damper and an electromagnetic induction device. By applying the self-powering component to the MR seat suspension, the operation cost of the semi-active seat is much cheaper because no external energy is required to control the MR damper. In this paper, the structure, design and analysis of the seat suspension were presented following the introduction section. The property tests of the self-powered seat suspension were conducted using an MTS machine. A robust control algorithm was developed to control the self-powered MR seat suspension and the vibration attenuation performance of the seat suspension was tested under two different vibration excitations, i.e. harmonic excitation and random excitation. The testing result verifies that the self-powered MR seat suspension under proper control can improve the ride comfort for passengers and drivers.

  2. The effect of rear-seat overloading in a car crash: pathological and kinematics evidences.

    PubMed

    Luchini, Duccio; Sammicheli, Michele; Cortucci, Cristiano

    2013-09-01

    Seat belts have been shown to decrease the incidence of lethal lesions to the head, chest, and abdomen. Since the introduction of seat belts, it is reported that the incidence of traumatic lesions in these body parts is reduced. In the meantime, the characteristic lesions to the chest and abdomen caused by the use of seat belts are described (J Trauma. 2007;62(6):1473-1480).Reported is a peculiar case of an oblique front-to-rear car collision, in which overloading of the rear seat with packages pushed forward the passenger front seat in an abnormal way, causing fatal thoracic and abdominal lesions.The authors underline that the seat belt protection device is defeated if front seats are damaged by heavy unanchored bags on the rear seat or on the rear parcel shelf of a motor vehicle.

  3. Carpooling and booster seats: a national survey of parents.

    PubMed

    Macy, Michelle L; Clark, Sarah J; Freed, Gary L; Butchart, Amy T; Singer, Dianne C; Sasson, Comilla; Meurer, William J; Davis, Matthew M

    2012-02-01

    Booster seat use among school-aged children has been consistently lower than national goals. In this study, we sought to explore associations between parental experiences with booster seats and carpooling. We conducted a cross-sectional Web-based survey of a nationally representative panel of US parents in January 2010. As part of a larger survey, parents of 4- to 8-year-old children responded to 12 questions related to booster seats and carpooling. Of 1612 parents responding to the full survey (response rate = 71%), 706 had a 4- to 8-year-old child and 681 met inclusion rules. Most parents (76%) reported their child used a safety seat when riding in the family car. Of children reported to use seat belts, 74% did so in accordance with their state law. Parent report of child safety seat use was associated with younger child age and with the presence of state booster seat laws. Sixty-four percent of parents carpool. Among parents who carpool and whose children use a child safety seat: 79% indicated they would always ask another driver to use a booster seat for their child and 55% reported they always have their child use their booster seat when driving friends who do not have boosters. Carpooling is a common driving situation during which booster seat use is inconsistent. Social norms and self-efficacy are associated with booster seat use. Clinicians who care for children should increase efforts to convey the importance of using the size-appropriate restraint for every child on every trip.

  4. Evaluation of ISO CRS Envelopes Relative to U.S. Vehicles and Child Restraint Systems.

    PubMed

    Hu, Jingwen; Manary, Miriam A; Klinich, Kathleen D; Reed, Matthew P

    2015-01-01

    The objectives of this study are to use computer simulation to evaluate the International Organization for Standardization (ISO) 13216-3:2006(E) child restraint system (CRS) envelopes relative to rear seat compartments from vehicles and CRSs in the U.S. market, investigate the potential compatibility issues of U.S. vehicles and CRSs, and demonstrate whether necessary modifications can be made to introduce such a system into compatibility evaluations between U.S. vehicles and CRSs. Three-dimensional geometry models for 26 vehicles and 16 convertible CRS designs developed previously were used. Geometry models of 3 forward-facing and 3 rear-facing CRS envelopes provided by the ISO were built in the current study. The virtual fit process closely followed the physical procedures described in the ISO standards. The results showed that the current ISO rear-facing envelopes can provide reasonable classifications for CRSs and vehicles, but the forward-facing envelopes do not represent products currently in the U.S. market. In particular, all of the selected vehicles could accommodate the largest forward-facing CRS envelope at the second-row seat location behind the driver seat. In contrast, half of the selected CRSs could not fit within any of the forward-facing ISO CRS envelopes, mainly due to protrusion at the rear-top corner of the envelope. The results also indicate that the rear seat compartment in U.S. vehicles often cannot accommodate a large portion of convertible CRSs in the rear-facing position. The increased demand for vehicle fuel economy and the recommendation to keep children rear-facing longer may lead to smaller cars and larger CRSs, which may increase the potential for fit problems. The virtual classifications indicated that contact between the forward-facing CRSs and the head restraints in the rear seats as well as that between the rear-facing CRSs and the back of the front seats is a main concern regarding the compatibility between the vehicles and the CRSs. Therefore, modification of the current ISO forward-facing CRS envelopes will likely to be necessary to ensure that they are useful for the U.S. market.

  5. Defense of Defense Human Factors Engineering Technical Advisory Group Meeting Summary

    DTIC Science & Technology

    2012-07-01

    Survivability ( Plaga ) • Wright, N; OSD and DSOC Helicopter Seating Studies Zehner, G; An Overview of USAF Anthropometry Plaga , J & Hill; SAFE Association...predictions. – 1230 - 1430 Standardization - 1472H (Poston) – 1230 - 1430 Human Factors in Extreme Environments & SS ( Plaga ) • Ganey, HCN...Classification (Personnel) LT Chris Foster Dr. Hector Acosta System Safety/Health Hazards/ Survivability (SS/HH/Sv) Mr. John Plaga Technical Society

  6. Driver Injury Risk Variability in Finite Element Reconstructions of Crash Injury Research and Engineering Network (CIREN) Frontal Motor Vehicle Crashes.

    PubMed

    Gaewsky, James P; Weaver, Ashley A; Koya, Bharath; Stitzel, Joel D

    2015-01-01

    A 3-phase real-world motor vehicle crash (MVC) reconstruction method was developed to analyze injury variability as a function of precrash occupant position for 2 full-frontal Crash Injury Research and Engineering Network (CIREN) cases. Phase I: A finite element (FE) simplified vehicle model (SVM) was developed and tuned to mimic the frontal crash characteristics of the CIREN case vehicle (Camry or Cobalt) using frontal New Car Assessment Program (NCAP) crash test data. Phase II: The Toyota HUman Model for Safety (THUMS) v4.01 was positioned in 120 precrash configurations per case within the SVM. Five occupant positioning variables were varied using a Latin hypercube design of experiments: seat track position, seat back angle, D-ring height, steering column angle, and steering column telescoping position. An additional baseline simulation was performed that aimed to match the precrash occupant position documented in CIREN for each case. Phase III: FE simulations were then performed using kinematic boundary conditions from each vehicle's event data recorder (EDR). HIC15, combined thoracic index (CTI), femur forces, and strain-based injury metrics in the lung and lumbar vertebrae were evaluated to predict injury. Tuning the SVM to specific vehicle models resulted in close matches between simulated and test injury metric data, allowing the tuned SVM to be used in each case reconstruction with EDR-derived boundary conditions. Simulations with the most rearward seats and reclined seat backs had the greatest HIC15, head injury risk, CTI, and chest injury risk. Calculated injury risks for the head, chest, and femur closely correlated to the CIREN occupant injury patterns. CTI in the Camry case yielded a 54% probability of Abbreviated Injury Scale (AIS) 2+ chest injury in the baseline case simulation and ranged from 34 to 88% (mean = 61%) risk in the least and most dangerous occupant positions. The greater than 50% probability was consistent with the case occupant's AIS 2 hemomediastinum. Stress-based metrics were used to predict injury to the lower leg of the Camry case occupant. The regional-level injury metrics evaluated for the Cobalt case occupant indicated a low risk of injury; however, strain-based injury metrics better predicted pulmonary contusion. Approximately 49% of the Cobalt occupant's left lung was contused, though the baseline simulation predicted 40.5% of the lung to be injured. A method to compute injury metrics and risks as functions of precrash occupant position was developed and applied to 2 CIREN MVC FE reconstructions. The reconstruction process allows for quantification of the sensitivity and uncertainty of the injury risk predictions based on occupant position to further understand important factors that lead to more severe MVC injuries.

  7. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury

    PubMed Central

    Smith, Andrew C.; Mummidisetty, Chaithanya K.

    2015-01-01

    Pathologic reorganization of spinal networks and activity-dependent plasticity are common neuronal adaptations after spinal cord injury (SCI) in humans. In this work, we examined changes of reciprocal Ia and nonreciprocal Ib inhibition after locomotor training in 16 people with chronic SCI. The soleus H-reflex depression following common peroneal nerve (CPN) and medial gastrocnemius (MG) nerve stimulation at short conditioning-test (C-T) intervals was assessed before and after training in the seated position and during stepping. The conditioned H reflexes were normalized to the unconditioned H reflex recorded during seated. During stepping, both H reflexes were normalized to the maximal M wave evoked at each bin of the step cycle. In the seated position, locomotor training replaced reciprocal facilitation with reciprocal inhibition in all subjects, and Ib facilitation was replaced by Ib inhibition in 13 out of 14 subjects. During stepping, reciprocal inhibition was decreased at early stance and increased at midswing in American Spinal Injury Association Impairment Scale C (AIS C) and was decreased at midstance and midswing phases in AIS D after training. Ib inhibition was decreased at early swing and increased at late swing in AIS C and was decreased at early stance phase in AIS D after training. The results of this study support that locomotor training alters postsynaptic actions of Ia and Ib inhibitory interneurons on soleus motoneurons at rest and during stepping and that such changes occur in cases with limited or absent supraspinal inputs. PMID:25609110

  8. Demonstration of Corrosion-Resistant Fire Hydrant Retrofits for Military Installations

    DTIC Science & Technology

    2013-10-01

    diene M-class rubber ( EPDM )/powder coated steel sleeve inserted into the top of the hy- drant barrel at the traffic breakaway allowing the seat for...The insert seat of the valve shall be made of a ethylene propylene diene M-class rubber ( EPDM )/powder coated steel sleeve in- serted into the top of...intentional water-supply contamination. The technology was installed on 90 fire hy- drants of various makes, models, and ages at Fort Leonard Wood, MO. To

  9. Blast Mitigation Seat Analysis - Assessment of the Effect of Personal Protective Equipment on the 5th Percentile Female Anthropomorphic Test Devices Performance in Drop Tower Evaluations (Briefing Charts)

    DTIC Science & Technology

    2015-08-01

    for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data ...sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden...UNCLASSIFIED UNCLASSIFIED • Baseline drop tower data collected from Anthropomorphic Test Devices (ATDs) seated in 12 models of Commercial Off-The-Shelf

  10. Assessment of dental student posture in two seating conditions using RULA methodology - a pilot study.

    PubMed

    Gandavadi, A; Ramsay, J R E; Burke, F J T

    2007-11-24

    To assess dental students' posture on two different seats in order to determine if one seat predisposes to a difference in working posture. A between-subject experimental design was selected. The study was undertaken at the University of Birmingham School of Dentistry in 2006. Subjects (materials) and methods Sixty second year dental students at the University of Birmingham who were attending their fi rst classes in the phantom head laboratory were randomly selected and allocated to two different seats (30 Bambach Saddle Seats and 30 conventional seats). Students were trained in the use of the seats. After ten weeks, the students were observed, photographs were taken by the researcher and these were assessed using Rapid Upper Limb Assessment (RULA). The posture of the students was assessed using the RULA. Each student was given a risk score. A Mann Whitney test was used for statistical analysis. The results indicated that the students using the conventional seat recorded significantly higher risk scores (p <0.05) when compared with the students using Bambach Saddle Seat, suggesting an improvement in posture when using the Bambach Saddle Seat. RULA has identified that dental students using a Bambach Saddle Seat were able to maintain an acceptable working posture during simulated dental treatment and this seating may reduce the development of work-related musculoskeletal disorders.

  11. Promoting booster seat use for young children: A school-based intervention pilot study

    PubMed Central

    Mundle, Kim; Cramm, Camille F.; Williams, Devon P.

    2017-01-01

    Abstract Purpose: Misuse and/or lack of booster seat use are often associated with high rates of injury and death among school-aged children. This pilot study examined the efficacy and the potential effectiveness of a booster seat intervention in the classroom. Methods: Two elementary schools participated (randomly assigned as one intervention school and one control school). At the intervention school, a certified car seat specialist and a police officer held an interactive booster seat session. The height and age for each child were recorded. Children received a certificate indicating whether they met the requirements for booster seat use and a postcard with car seat restraint specifications. Children in the control school received a brochure on car seat safety. Pre- and post-intervention self-reports were collected and booster seat use was observed. Results: Observational findings showed a decline in booster seat use at the control school and an increase in use at the intervention school. Self-reports of booster seat use indicated a decline at both schools; however, cell sizes were too small to permit statistical analyses. Conclusion: Anecdotally researchers found the sessions were easy to conduct and were well received by the children and could be easily integrated into programming in schools. Classroom sessions may have the potential to positively influence booster seat use among 6- to 8-year-olds. PMID:29479188

  12. Evaluation of an Energy Absorbing Truck Seat for Increased Protection from Landmine Blasts.

    DTIC Science & Technology

    1996-01-01

    acceleration (top curve, Figure 4) reveals the wire bending action of the passenger seat as it absorbs energy. No data from the standard (driver) seat...Vertical accelerations were limited by the wire bending action. 17 Passenger seat velocities 120894 Demo (8 Dec 94) - center blast, EA passenger seat

  13. Multiposition Seat

    NASA Technical Reports Server (NTRS)

    Macconochie, Ian O.

    1994-01-01

    Back of seat pivots about either of two axes: one axis for folding back to form bed and second, higher axis for folding forward to form compact ottoman, even when seat thickly padded. Long and short links used to adjust back of seat to variety of positions. Multiposition seat designed for use in spacecraft also adapted to airplanes and land vehicles.

  14. 14 CFR 135.113 - Passenger occupancy of pilot seat.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Passenger occupancy of pilot seat. 135.113... Operations § 135.113 Passenger occupancy of pilot seat. No certificate holder may operate an aircraft type certificated after October 15, 1971, that has a passenger seating configuration, excluding any pilot seat, of...

  15. 14 CFR 135.113 - Passenger occupancy of pilot seat.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Passenger occupancy of pilot seat. 135.113... Operations § 135.113 Passenger occupancy of pilot seat. No certificate holder may operate an aircraft type certificated after October 15, 1971, that has a passenger seating configuration, excluding any pilot seat, of...

  16. Marketing Classroom Spaces: Is It Really Better at the Front?

    ERIC Educational Resources Information Center

    Vander Schee, Brian A.

    2011-01-01

    Students spend much of their time in college seated in a classroom. Their seating choice can indicate something about students' general perceptions regarding seat selection and academic achievement. However, actual seat location may also play a role in student performance. This preliminary research focused on the seating choices of 373…

  17. 36 CFR 1192.27 - Priority seating signs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Priority seating signs. 1192... Buses, Vans and Systems § 1192.27 Priority seating signs. (a) Each vehicle shall contain sign(s) which indicate that seats in the front of the vehicle are priority seats for persons with disabilities, and that...

  18. 49 CFR 38.27 - Priority seating signs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Priority seating signs. 38.27 Section 38.27... SPECIFICATIONS FOR TRANSPORTATION VEHICLES Buses, Vans and Systems § 38.27 Priority seating signs. (a) Each vehicle shall contain sign(s) which indicate that seats in the front of the vehicle are priority seats for...

  19. Seating position, seat belt wearing, and the consequences in facial fractures in car occupants.

    PubMed

    Fonseca, Alexandre Siqueira Franco; Goldenberg, Dov; Alonso, Nivaldo; Bastos, Endrigo; Stocchero, Guilherme; Ferreira, Marcus Castro

    2007-06-01

    Trauma caused by traffic accidents is among the main etiologies involved in the occurrence of facial fractures throughout the world. However, the trauma mechanisms involved are different according to the location where the study was performed, due to different conditions of development, legislation, and culture. A retrospective study was done between February 2001 and July 2006, with the purpose of determining the epidemiology and the mechanisms involved in the occurrence of facial fractures among car occupants in the metropolitan area of São Paulo. Data were collected from 297 patients admitted with facial fractures to the emergency room of the Hospital das Clínicas, São Paulo University Medical School. Within this period, 151 individuals had been involved in traffic accidents, among which 56 (37.08%) were inside passenger cars. These were grouped based on the seating position that they were occupying at the time of the accident and the wearing of seat belts. Data concerning the number and location of fracture lines were obtained from the different groups, and a fracture/patient index (F/P I) was calculated to compare and make reference to the impact energy among these groups, for subsequent analysis and discussion. 323 fracture lines occurred among 56 patients who were car occupants. By applying the F/P I, we obtained higher values in the group of rear-seat passengers who were not wearing seat belts (7.23 fractures per patient), followed by the group of drivers not wearing seat belts (6.33 fractures per patient), the group of front-seat passengers not wearing seat belts (5.58 fractures per patient), the group of drivers wearing seat belts (5.54 fractures per patient) and, finally, the group of front-seat passengers wearing seat belts (4.00 fractures per patient). None of the rear-seat passengers was wearing seat belts. The data collected indicate that the driver position shows a high incidence of facial fractures, not being effectively protected by the seat belt, although the wearing of seat belts seems to have a protective role against the occurrence of facial fractures in front-seat passengers. It was not possible to evaluate the wearing of seat belts among rear-seat passengers, even though the high incidence of fractures in this group showed its high susceptibility to the occurrence of facial fractures, which highlights the need of taking protective measures against this situation.

  20. 77 FR 46762 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... children involved. Respondents: Head Start and Early Head Start program grants recipients. Annual Burden... DEPARTMENT OF HEALTH AND HUMAN SERVICES Administration for Children and Families Submission for... requirement that each child be seated in a child restraint system while the vehicle is in motion, and the...

  1. Injury and violence prevention: a primer.

    PubMed

    Gielen, Andrea Carlson

    2002-03-01

    Unintentional and intentional injuries cause a great deal of human suffering throughout the world. They exact a huge toll on societies in terms of mortality, years of potential life lost, disability, and health care costs. The good news is that great strides have been made in understanding the causes of injuries and how to prevent them. Using seat belts and car seats, installing air bags in cars, replacing dangerous playground equipment, enforcing drinking and driving laws are but a few examples of modifying behavior, products, and environments to reduce injury risk. This paper provides an overview of the science of injury control and selected examples of how professionals in the field of patient education and counseling can contribute to enhancing the safety of the public.

  2. Comparison of water immersion and saline infusion as a means of inducing volume expansion in man

    NASA Technical Reports Server (NTRS)

    Epstein, M.; Pins, D. S.; Arrington, R.; Denunzio, A. G.; Engstrom, R.

    1975-01-01

    The study compares the natriuresis induced by head-out water immersion to that of a standard saline infusion and assesses the relative effectiveness of these two techniques as volume determinants of renal sodium and water handling in humans in a seated posture. The data obtained show that the volume stimulus of immersion is identical to that of standard saline-induced extracellular fluid volume expansion (ECVE) in normal seated subjects. The ability of head-out water immersion to induce a natriuresis without a concomitant increase in total blood volume and with a decrease in body weight suggests that water immersion may be preferred as an investigative tool for assessing the effects of ECVE in man.

  3. 76 FR 9551 - Availability of Seats for the Monitor National Marine Sanctuary Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... (2) Recreational/Commercial Fishing seats, Heritage Tourism seat, and Economic Development seat...-at-Large, Conservation, Economic Development, Education, Heritage Tourism, Maritime Archaeological...

  4. Auto Safety

    MedlinePlus

    ... certified child passenger safety technician to assist you.) Guidelines for Choosing a Safety Seat Choose a seat ... and are between 8 and 12 years old. Guidelines for Choosing a Booster Seat Choose a seat ...

  5. Integrated seat frame and back support

    DOEpatents

    Martin, Leo

    1999-01-01

    An integrated seating device comprises a seat frame having a front end and a rear end. The seat frame has a double wall defining an exterior wall and an interior wall. The rear end of the seat frame has a slot cut therethrough both the exterior wall and the interior wall. The front end of the seat frame has a slot cut through just the interior wall thereof. A back support comprising a generally L shape has a horizontal member, and a generally vertical member which is substantially perpendicular to the horizontal member. The horizontal member is sized to be threaded through the rear slot and is fitted into the front slot. Welded slat means secures the back support to the seat frame to result in an integrated seating device.

  6. Impact Test of a NACA-Designed Pilot Seat and Harness

    NASA Image and Video Library

    1955-02-21

    This time-lapse photograph shows the test of a pilot seat and restraint designed by researchers at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The laboratory had undertaken a multi-year investigation into the causes and preventative measures for fires resulting from low altitude aircraft crashes. The program was expanded in the mid-1950s to include the study of crash impact on passengers, new types of types of seat restraints, and better seat designs. The impact program began by purposely wrecking surplus transport Fairchild C-82 Packet and Piper Cub aircraft into barricades at the end of a test runway. Instrumented dummies and cameras were installed in the pilot and passenger areas. After determining the different loads experienced during a crash and the effects on the passengers, the NACA researchers began designing new types of seats and restraints. The result was an elastic seat that flexed upon impact, absorbing 75 percent of the loads before it slowly recoiled. This photograph shows the seats mounted on a pendulum with a large spring behind the platform to provide the jolt that mimicked the forces of a crash. The seat was constructed without any potentially damaging metal parts and included rubber-like material, an inflated back and arms, and a seat cushion. After the pendulum tests, the researchers compared the flexible seats to the rigid seats during a crash of a transport aircraft. They found the passengers in the rigid seats received 66 percent higher g-forces than the NACA-designed seats.

  7. NACA Researcher Sets up a Test of a New Seat Design

    NASA Image and Video Library

    1954-05-21

    A researcher at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory prepares for a test of an NACA-designed aircraft seat. The laboratory had undertaken a multi-year investigation into the causes and prevention of fires on low altitude aircraft crashes. The program was expanded in the mid-1950s to include the study of impact on passengers, types of seat restraints, and seat design. The crash impact portion of the program began by purposely wrecking surplus Fairchild C-82 Packet and Piper Cub aircraft into barricades at the end of a test runway at the Ravenna Arsenal, located approximately 40 miles south of the Lewis lab in Cleveland. Instrumented dummies and cameras were installed in the pilot and passenger areas. After determining the different loads and their effects on the passengers, the NACA researchers began designing new types of seats and restraints. The result was an elastic seat that flexed upon impact, absorbing 75 percent of the loads before it slowly recoiled. This photograph shows the seats mounted on a pendulum with a large spring behind the platform to provide the jolt that mimicked the forces of a crash. The seat was constructed without any potentially damaging metal parts and included rubber-like material, an inflated back and arms, and a seat cushion. After the pendulum tests, the researchers compared the flexible seats to the rigid seats during a crash of a transport aircraft. They found the passengers in the rigid seats received 66 percent higher g-forces than the NACA-designed seats.

  8. Pattern of seat belt use by drivers in Trinidad and Tobago, West Indies

    PubMed Central

    2011-01-01

    Background In Trinidad and Tobago, the law on the mandatory use of seat belts was passed in 1995, but this law is hardly enforced. The objective of this study was to determine the frequency and predictors of seat belt use by motor vehicle drivers in the country. Findings A cross-sectional study of 959 motor vehicle drivers using a self-administered questionnaire. Data analysis included Pearson Chi square test and multinomial logistic regression analysis in order to determine the possible predictors of seat belt use by the drivers in Trinidad and Tobago. A majority of the drivers sometimes (51.8%) or always (31.6%) use a seat belt. About 16.7%, 29% and 54.2% of the drivers perceived that the other drivers use their seat belts more frequently, with the same frequency and less frequently respectively compared to themselves. The main reason for not using seat belt by the drivers was given as frequent stops (40.7%) and the main motivation to use seat belt by the drivers was given as stiffer penalties for non-compliance with the seat belt law (44.5%). The predictors of seat belt use were male driver, no formal or lower level of education, driving for less than 10 years, and the perception that the other drivers use seat belts with the same or higher frequency compared to the respondents. Conclusion Only a small proportion of the drivers in Trinidad and Tobago always use a seat belt when driving. There is the need to enforce the seat belt legislation in the country. PMID:21679410

  9. G-cueing microcontroller (a microprocessor application in simulators)

    NASA Technical Reports Server (NTRS)

    Horattas, C. G.

    1980-01-01

    A g cueing microcontroller is described which consists of a tandem pair of microprocessors, dedicated to the task of simulating pilot sensed cues caused by gravity effects. This task includes execution of a g cueing model which drives actuators that alter the configuration of the pilot's seat. The g cueing microcontroller receives acceleration commands from the aerodynamics model in the main computer and creates the stimuli that produce physical acceleration effects of the aircraft seat on the pilots anatomy. One of the two microprocessors is a fixed instruction processor that performs all control and interface functions. The other, a specially designed bipolar bit slice microprocessor, is a microprogrammable processor dedicated to all arithmetic operations. The two processors communicate with each other by a shared memory. The g cueing microcontroller contains its own dedicated I/O conversion modules for interface with the seat actuators and controls, and a DMA controller for interfacing with the simulation computer. Any application which can be microcoded within the available memory, the available real time and the available I/O channels, could be implemented in the same controller.

  10. Design and Evaluation Methods for Optimizing Ejection Seat Cushions for Comfort and Safety

    DTIC Science & Technology

    1977-02-01

    buttocks to the seat cushion or seat pan. Kohara , a Japaners Investigator discussed the problems of seating comfort and the measuren.ent of buttock/seat...loads In an unpublished report in 1965 (23) and subsequently In a magazine article In 1966 (24). Kohara was able to weasure pressures by means of...Isolation. Kohara has also studied the vibration Isolation requirements in high speed trains (23, 2’). Howeveri the seat cushion has been used only rarely in

  11. Dynamic models to analyse the influence of the seat belt in a frontal collision

    NASA Astrophysics Data System (ADS)

    Oana, Oţăt; Nicolae, Dumitru; Ilie, Dumitru

    2017-10-01

    Traffic accidents are influenced by various factors, yet, the highest impacting ones are related to vehicle impact speed and collision type. Also, passive vehicle safety systems play a significant role upon the injuries suffered by vehicle occupants. Under the circumstances, a particularly important aspect to consider when using such systems is the position of the vehicle’s driver and its occupants. In what follows we embark upon an in-depth analysis in order to investigate the contact effects between the seat belt and the driver, under a dynamic regime. We set out to identify the variation of the kinematic and dynamic parameters for both the driver and the seat belt via comparative analyses between the normal position of the driver and some other out of position instances, considered as critical.

  12. Survey of NASA research on crash dynamics

    NASA Technical Reports Server (NTRS)

    Thomson, R. G.; Carden, H. D.; Hayduk, R. J.

    1984-01-01

    Ten years of structural crash dynamics research activities conducted on general aviation aircraft by the National Aeronautics and Space Administration (NASA) are described. Thirty-two full-scale crash tests were performed at Langley Research Center, and pertinent data on airframe and seat behavior were obtained. Concurrent with the experimental program, analytical methods were developed to help predict structural behavior during impact. The effects of flight parameters at impact on cabin deceleration pulses at the seat/occupant interface, experimental and analytical correlation of data on load-limiting subfloor and seat configurations, airplane section test results for computer modeling validation, and data from emergency-locator-transmitter (ELT) investigations to determine probable cause of false alarms and nonactivations are assessed. Computer programs which provide designers with analytical methods for predicting accelerations, velocities, and displacements of collapsing structures are also discussed.

  13. Car seat inspection among children older than 3 years: Using data to drive practice in child passenger safety.

    PubMed

    Kroeker, Amber M; Teddy, Amy J; Macy, Michelle L

    2015-09-01

    Motor vehicle crashes are the leading cause of unintentional death and disability among children 4 years to 12 years of age in the United States. Despite the high risk of injury from motor vehicle crashes in this age group, parental awareness and child passenger safety programs in particular may lack focus on this age group. This is a retrospective cross-sectional analysis of child passenger safety seat checklist forms from two Safe Kids coalitions in Michigan (2013) to identify restraint type upon arrival to car seat inspections. Other variables were included if the coalition provided a new child safety seat and if the child had a sibling who underwent a car seat inspection. χ statistics were used to compare change in restraint use on arrival and at departure, the proportion of children attending a car seat inspection event by age, the age category of children by site, the proportion of children with siblings also undergoing a car seat inspection by age, and the distribution of a new child safety seat by age. Data were available from 1,316 Safe Kids Huron Valley and 3,215 Safe Kids Greater Grand Rapids car seat inspections. Just 10.8% of the total seats inspected were booster seats. Child safety seats for infant and young children were more commonly inspected (rear-facing carrier [40.3%], rear-facing convertible [10.2%], and forward-facing [19.3%] car seats). Few children at inspections used a seat belt only (5.4%) or had no restraint (13.8%). Children 4 years and older were found to be in a suboptimal restraint at least 30% of the time. Low proportions of parents use car seat inspections for children in the booster seat age group. The proportion of children departing the inspection in a more protective restraint increased with increasing age. This highlights an area of weakness in child passenger safety programs and signals an opportunity to strengthen efforts on The Booster Age Child. Epidemiologic/prognostic study, level III.

  14. 49 CFR 571.10 - Designation of seating positions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... positions (N) for any seat location with a seating surface width greater than 330 mm (13 inches) is as... 1400 mm (55.2 inches): N = [Seating surface width (in mm)/350] round down to the nearest whole number... equal to 1400 mm (55.2 inches): N = [Seating surface width (in mm)/450] round down to the nearest whole...

  15. 49 CFR 571.10 - Designation of seating positions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... positions (N) for any seat location with a seating surface width greater than 330 mm (13 inches) is as... 1400 mm (55.2 inches): N = [Seating surface width (in mm)/350] round down to the nearest whole number... equal to 1400 mm (55.2 inches): N = [Seating surface width (in mm)/450] round down to the nearest whole...

  16. A preliminary study of MR sickness evaluation using visual motion aftereffect for advanced driver assistance systems.

    PubMed

    Nakajima, Sawako; Ino, Shuichi; Ifukube, Tohru

    2007-01-01

    Mixed Reality (MR) technologies have recently been explored in many areas of Human-Machine Interface (HMI) such as medicine, manufacturing, entertainment and education. However MR sickness, a kind of motion sickness is caused by sensory conflicts between the real world and virtual world. The purpose of this paper is to find out a new evaluation method of motion and MR sickness. This paper investigates a relationship between the whole-body vibration related to MR technologies and the motion aftereffect (MAE) phenomenon in the human visual system. This MR environment is modeled after advanced driver assistance systems in near-future vehicles. The seated subjects in the MR simulator were shaken in the pitch direction ranging from 0.1 to 2.0 Hz. Results show that MAE is useful for evaluation of MR sickness incidence. In addition, a method to reduce the MR sickness by auditory stimulation is proposed.

  17. Evaluation of wheelchair seating system crashworthiness: "drop hook"-type seat attachment hardware.

    PubMed

    Bertocci, G; Ha, D; Deemer, E; Karg, P

    2001-04-01

    To evaluate the crashworthiness of commercially available hardware that attaches seat surfaces to the wheelchair frame. A low cost static crashworthiness test procedure that simulates a frontal impact motor vehicle crash. Safety testing laboratory. Eleven unique sets of drop-hook hardware made of carbon steel (4), stainless steel (4), and aluminum (3). Replicated seat-loading conditions associated with a 20g/48 kph frontal impact. Test criterion for seat loading was 16,680 N (3750 lb). Failure load and deflection of seat surface. None of the hardware sets tested met the crashworthiness test criterion. All failed at less than 50% of the load that seating hardware could be exposed to in a 20g/48 kph frontal impact. The primary failure mode was excessive deformation, leading to an unstable seat support surface. Results suggest that commercially available seating drop hooks may be unable to withstand loading associated with a frontal crash and may not be the best option for use with transport wheelchairs.

  18. Do parental decision-making patterns predict compliance with use of child booster seats?

    PubMed

    Shimony-Kanat, Sarit; Gofin, Rosa; Kienski Woloski Wruble, Anna C; Mann, Leon

    2018-03-01

    Booster seat use for 4-9 year olds remains the lowest of all age groups in many countries. The objective of this study is to examine whether parents' decision-making patterns, as measured by the Melbourne Decision Making Questionnaire, relate to car booster seat use. Israeli parents of 4-7 years old children (n = 398) answered a questionnaire about car safety and decision-making habits. Ninety per cent of parents reported having a booster seat; 70.5% reported consistent booster seat use in general and on short drives during the last month (booster seat use compliance index). Greater compliance index was positively related to a vigilant decision-making pattern, passenger compliance with rear seat belts and families with fewer children. Lower booster seat use compliance index was associated with buck-passing decision-making pattern. Health professionals and policy-makers should take into account parents' habitual decision-making patterns when designing interventions for car booster seat compliance.

  19. Structural loads preliminary results

    NASA Technical Reports Server (NTRS)

    Alfaro-Bou, E.

    1986-01-01

    From a total of 351 instrumentation channels, 341 channels (97%) were in operation during the initial impact of the airplane. Both NASA seats, the energy absorbing seat and the standard seat, maintained their integrity during the impact. The floor accelerations at the seat locations were lower than the accelerations required for the energy absorbers to stroke; consequently, the energy absorbing seat did not stroke. The two seats remained firm in place during the crash and no seat attachment failures were observed. Due to the low accelerations experienced during the crash, both seats performed as standard seats. In the airplane structure, the accelerations were higher at both the point of impact in the left wing and at the forward end of the fuselage. The accelerations on the floor were higher toward the front than toward the rear and the floor accelerations on the left side were higher than on the right side at the front of the fuselage, but toward the rear they evened out.

  20. Effects of whole spine alignment patterns on neck responses in rear end impact.

    PubMed

    Sato, Fusako; Odani, Mamiko; Miyazaki, Yusuke; Yamazaki, Kunio; Östh, Jonas; Svensson, Mats

    2017-02-17

    The aim of this study was to investigate the whole spine alignment in automotive seated postures for both genders and the effects of the spinal alignment patterns on cervical vertebral motion in rear impact using a human finite element (FE) model. Image data for 8 female and 7 male subjects in a seated posture acquired by an upright open magnetic resonance imaging (MRI) system were utilized. Spinal alignment was determined from the centers of the vertebrae and average spinal alignment patterns for both genders were estimated by multidimensional scaling (MDS). An occupant FE model of female average size (162 cm, 62 kg; the AF 50 size model) was developed by scaling THUMS AF 05. The average spinal alignment pattern for females was implemented in the model, and model validation was made with respect to female volunteer sled test data from rear end impacts. Thereafter, the average spinal alignment pattern for males and representative spinal alignments for all subjects were implemented in the validated female model, and additional FE simulations of the sled test were conducted to investigate effects of spinal alignment patterns on cervical vertebral motion. The estimated average spinal alignment pattern was slight kyphotic, or almost straight cervical and less-kyphotic thoracic spine for the females and lordotic cervical and more pronounced kyphotic thoracic spine for the males. The AF 50 size model with the female average spinal alignment exhibited spine straightening from upper thoracic vertebra level and showed larger intervertebral angular displacements in the cervical spine than the one with the male average spinal alignment. The cervical spine alignment is continuous with the thoracic spine, and a trend of the relationship between cervical spine and thoracic spinal alignment was shown in this study. Simulation results suggested that variations in thoracic spinal alignment had a potential impact on cervical spine motion as well as cervical spinal alignment in rear end impact condition.

  1. High levels of incorrect use of car seat belts and child restraints in Fife--an important and under-recognised road safety issue.

    PubMed

    Campbell, H; Macdonald, S; Richardson, P

    1997-03-01

    To pilot data collection instruments and to make a preliminary estimate of the level of incorrect use of car seat belts and child restraints in Fife, Scotland. Cross sectional survey of cars containing adults and children at a number of public sites across Fife in 1995 to assess use of car occupant restraints. Trained road safety officers assessed whether seat restraints were appropriate for the age of the passengers and whether restraints were used correctly. These assessments were based on standards published by the Child Accident Prevention Trust. The survey gathered data from 596 occupants in 180 cars: 327 adults and 269 children. Ten per cent of drivers who were approached refused to participate. Car occupant restraint was assessed in 180 drivers, 151 front seat passengers, and 265 rear seat passengers. Three hundred and sixty one occupants wore seat belts, 68 were restrained by a seat belt and booster cushion, 63 in toddler seats, 25 in two way seats, and 18 in rear facing infant carriers. Ninety seven per cent of drivers, 95% of front seat passengers, and 77% of rear seat passengers were restrained. However, in 98 (52%) vehicles at least one passenger was restrained by a device that was used incorrectly. Seven per cent of adults and 28% of children were secured incorrectly. The commonest errors were loose seat belts and restraint devices not adequately secured to the seat. Rates of incorrect use were highest in child seat restraints, reaching 60% with two way seats and 44% with rear facing infant seats. The incorrect use of car occupant restraints is an under-recognised problem, both by health professionals, and the general public. Incorrect use has been shown to reduce the effectiveness of restraints, can itself result in injury, and is likely to be an important factor in child passenger injuries. The correct use of car seat restraints merits greater attention in strategies aiming to reduce road traffic casualties. Areas of intervention that could be considered include raising public awareness of this problem, improving information and instruction given to those who purchase child restraints, and encouraging increased collaboration between manufacturers of cars and child restraints, in considering safety issues.

  2. High levels of incorrect use of car seat belts and child restraints in Fife--an important and under-recognised road safety issue.

    PubMed Central

    Campbell, H.; Macdonald, S.; Richardson, P.

    1997-01-01

    OBJECTIVE: To pilot data collection instruments and to make a preliminary estimate of the level of incorrect use of car seat belts and child restraints in Fife, Scotland. DESIGN: Cross sectional survey of cars containing adults and children at a number of public sites across Fife in 1995 to assess use of car occupant restraints. Trained road safety officers assessed whether seat restraints were appropriate for the age of the passengers and whether restraints were used correctly. These assessments were based on standards published by the Child Accident Prevention Trust. PARTICIPANTS: The survey gathered data from 596 occupants in 180 cars: 327 adults and 269 children. Ten per cent of drivers who were approached refused to participate. Car occupant restraint was assessed in 180 drivers, 151 front seat passengers, and 265 rear seat passengers. MAIN RESULTS: Three hundred and sixty one occupants wore seat belts, 68 were restrained by a seat belt and booster cushion, 63 in toddler seats, 25 in two way seats, and 18 in rear facing infant carriers. Ninety seven per cent of drivers, 95% of front seat passengers, and 77% of rear seat passengers were restrained. However, in 98 (52%) vehicles at least one passenger was restrained by a device that was used incorrectly. Seven per cent of adults and 28% of children were secured incorrectly. The commonest errors were loose seat belts and restraint devices not adequately secured to the seat. Rates of incorrect use were highest in child seat restraints, reaching 60% with two way seats and 44% with rear facing infant seats. CONCLUSIONS: The incorrect use of car occupant restraints is an under-recognised problem, both by health professionals, and the general public. Incorrect use has been shown to reduce the effectiveness of restraints, can itself result in injury, and is likely to be an important factor in child passenger injuries. The correct use of car seat restraints merits greater attention in strategies aiming to reduce road traffic casualties. Areas of intervention that could be considered include raising public awareness of this problem, improving information and instruction given to those who purchase child restraints, and encouraging increased collaboration between manufacturers of cars and child restraints, in considering safety issues. PMID:9113842

  3. Conical Seat Shut-Off Valve

    NASA Technical Reports Server (NTRS)

    Farner, Bruce

    2013-01-01

    A moveable valve for controlling flow of a pressurized working fluid was designed. This valve consists of a hollow, moveable floating piston pressed against a stationary solid seat, and can use the working fluid to seal the valve. This open/closed, novel valve is able to use metal-to-metal seats, without requiring seat sliding action; therefore there are no associated damaging effects. During use, existing standard high-pressure ball valve seats tend to become damaged during rotation of the ball. Additionally, forces acting on the ball and stem create large amounts of friction. The combination of these effects can lead to system failure. In an attempt to reduce damaging effects and seat failures, soft seats in the ball valve have been eliminated; however, the sliding action of the ball across the highly loaded seat still tends to scratch the seat, causing failure. Also, in order to operate, ball valves require the use of large actuators. Positioning the metal-to-metal seats requires more loading, which tends to increase the size of the required actuator, and can also lead to other failures in other areas such as the stem and bearing mechanisms, thus increasing cost and maintenance. This novel non-sliding seat surface valve allows metal-to-metal seats without the damaging effects that can lead to failure, and enables large seating forces without damaging the valve. Additionally, this valve design, even when used with large, high-pressure applications, does not require large conventional valve actuators and the valve stem itself is eliminated. Actuation is achieved with the use of a small, simple solenoid valve. This design also eliminates the need for many seals used with existing ball valve and globe valve designs, which commonly cause failure, too. This, coupled with the elimination of the valve stem and conventional valve actuator, improves valve reliability and seat life. Other mechanical liftoff seats have been designed; however, they have only resulted in increased cost, and incurred other reliability issues. With this novel design, the seat is lifted by simply removing the working fluid pressure that presses it against the seat and no external force is required. By eliminating variables associated with existing ball and globe configurations that can have damaging effects upon a valve, this novel design reduces downtime in rocket engine test schedules and maintenance costs.

  4. AAP Updates Recommendations on Car Seats

    MedlinePlus

    ... Size Email Print Share AAP Updates Recommendations on Car Seats Page Content Article Body Children should ride ... of approved car safety seats. Healthy Children Radio: Car Seat Safety Dennis Durbin, MD, FAAP, lead author ...

  5. CDC Vital Signs: Motor Vehicle Crash Deaths

    MedlinePlus

    ... those that address: Primary enforcement of seat belt laws that cover everyone in every seat. Police officers ... seat belt use with primary enforcement seat belt laws that cover everyone in the vehicle. www.cdc. ...

  6. 14 CFR 135.155 - Fire extinguishers: Passenger-carrying aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT... passenger seating configuration, excluding any pilot seat, of at least 10 seats but less than 31 seats. ...

  7. 14 CFR 135.155 - Fire extinguishers: Passenger-carrying aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT... passenger seating configuration, excluding any pilot seat, of at least 10 seats but less than 31 seats. ...

  8. Evaluation of wheelchair drop seat crashworthiness.

    PubMed

    Bertocci, G; Ha, D; van Roosmalen, L; Karg, P; Deemer, E

    2001-05-01

    Wheelchair seating crash performance is critical to protecting wheelchair users who remain seated in their wheelchairs during transportation. Relying upon computer simulation and sled testing seat loads associated with a 20 g/48 kph (20 g/30 mph) frontal impact and 50th percentile male occupant were estimated to develop test criteria. Using a static test setup we evaluated the performance of various types of commercially available drop seats against the loading test criteria. Five different types of drop seats (two specimens each) constructed of various materials (i.e. plastics, plywood, metal) were evaluated. Two types of drop seats (three of the total 10 specimens) met the 16650 N (3750 lb) frontal impact test criteria. While additional validation of the test protocol is necessary, this study suggests that some drop seat designs may be incapable of withstanding crash level loads.

  9. Effectiveness of media and enforcement campaigns in increasing seat belt usage rates in a state with a secondary seat belt law.

    PubMed

    Vasudevan, Vinod; Nambisan, Shashi S; Singh, Ashok K; Pearl, Traci

    2009-08-01

    In 2005, in terms of seat belt usage rates, Nevada ranked third nationally and first among states with secondary seat belt use enforcement laws in the United States. An effective combination of a media-based education and enforcement campaign helped in this regard. The objective of this article is to document the effectiveness of enforcement and media-based education and outreach campaigns on the seat belt usage rates in Nevada, a state with a secondary seat belt usage law. Observational data on seat belt usage and passenger fatality data are used to evaluate the effectiveness of enforcement campaigns and media-based education and outreach campaigns. Data based on observations of about 40,000 vehicles in each of the years 2003 to 2005 were analyzed. Statistical analyses show that a significant increase in seat belt usage rates among both drivers and passengers for both genders resulted from the accompanying the media and enforcement campaigns. The results from this study indicate that effective and well-planned media/enforcement campaigns can have a significant impact on seat belt usage rates even in a state where the enforcement of seat belt laws can only be as a secondary violation. They validate and expand on findings from other efforts documented in the literature. These results demonstrate that, if coordinated properly, media and enforcement campaigns work very effectively in increasing seat belt usage rates even in states with secondary seat belt laws.

  10. Number Meaning and Number Grammar in English and Spanish

    ERIC Educational Resources Information Center

    Bock, Kathryn; Carreiras, Manuel; Meseguer, Enrique

    2012-01-01

    Grammatical agreement makes different demands on speakers of different languages. Being widespread in the languages of the world, the features of agreement systems offer valuable tests of how language affects deep-seated domains of human cognition and categorization. Number agreement is one such domain, with intriguing evidence that typological…

  11. Intimacy and Ethical Action in Adult Education

    ERIC Educational Resources Information Center

    Plumb, Donovan

    2009-01-01

    This article suggests that thinking about the nature of intimacy, especially sexual intimacy, is a good way of deepening our understanding of how deep-seated psychic vulnerabilities play an important role in adult education contexts. Drawing on psychoanalytic accounts of human development, the paper outlines how the capacity for ethical action in…

  12. 49 CFR 571.207 - Standard No. 207; Seating systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... means the part of the seat that provides forward and rearward positioning of the seat bench and back... than a school bus; a passenger seat on a school bus with a GVWR greater than 4,536 kilograms (10,000 pounds); and, a passenger seat on a school bus with a GVWR less than or equal to 4,536 kg manufactured...

  13. 49 CFR 571.207 - Standard No. 207; Seating systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... means the part of the seat that provides forward and rearward positioning of the seat bench and back... than a school bus; a passenger seat on a school bus with a GVWR greater than 4,536 kilograms (10,000 pounds); and, a passenger seat on a school bus with a GVWR less than or equal to 4,536 kg manufactured...

  14. 49 CFR 571.207 - Standard No. 207; Seating systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... means the part of the seat that provides forward and rearward positioning of the seat bench and back... than a school bus; a passenger seat on a school bus with a GVWR greater than 4,536 kilograms (10,000 pounds); and, a passenger seat on a school bus with a GVWR less than or equal to 4,536 kg manufactured...

  15. 49 CFR 571.222 - Standard No. 222; School bus passenger seating and crash protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., comprised of at least a frame, seat, and wheels. Wheelchair occupant restraint anchorage means the provision... passenger seat that has another seat behind it is subjected to the application of force as specified in S5.1.3.1 and S5.1.3.2, and subsequently, the application of additional force to the seat back as...

  16. 49 CFR 571.222 - Standard No. 222; School bus passenger seating and crash protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., comprised of at least a frame, seat, and wheels. Wheelchair occupant restraint anchorage means the provision... passenger seat that has another seat behind it is subjected to the application of force as specified in S5.1.3.1 and S5.1.3.2, and subsequently, the application of additional force to the seat back as...

  17. 49 CFR 571.222 - Standard No. 222; School bus passenger seating and crash protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., comprised of at least a frame, seat, and wheels. Wheelchair occupant restraint anchorage means the provision... passenger seat that has another seat behind it is subjected to the application of force as specified in S5.1.3.1 and S5.1.3.2, and subsequently, the application of additional force to the seat back as...

  18. 49 CFR 571.222 - Standard No. 222; School bus passenger seating and crash protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., comprised of at least a frame, seat, and wheels. Wheelchair occupant restraint anchorage means the provision... passenger seat that has another seat behind it is subjected to the application of force as specified in S5.1.3.1 and S5.1.3.2, and subsequently, the application of additional force to the seat back as...

  19. Car Safety Seat Usage and Selection Among Families Attending University Hospital Limerick.

    PubMed

    Scully, P; Finner, N; Letshwiti, J B; O'Gorman, C

    2016-05-10

    The safest way for children to travel within a car is by provision of a weight-appropriate safety-seat. To investigate this, we conducted a cross-sectional study of adult parents who had children under 12 years, and collected information related to: car use, safety-seat legislation, and type of safety-seat employed. Data were reviewed on 120 children from 60 respondents. Ninety-eight (81.7%) children were transported daily by car. Forty-eight (81.4%) respondents were aware that current safety-seat legislation is based on the weight of the child. One hundred and seven (89.9%) children were restrained during travel using a car safety-seat. One hundred and two (96.2%) safety seats were newly purchased, installed in 82.3% (88) cases by family members with installation instructions fully read in 58 (55.2%) cases. Ninety-nine (83.2%) children were restrained using an appropriate safety-seat for their weight. The results show that four out of five families are employing the most appropriate safety-seat for their child, so providing an effective mechanism to reduce car-related injury. However, the majority of safety-seats are installed by family members, which may have child safety consequences.

  20. The scope and nature of injuries to rear seat passengers in NSW using linked hospital admission and police data.

    PubMed

    Brown, Julie; Bilston, Lynne E

    2014-01-01

    To compare the pattern of injuries to front and rear seat occupants and test the hypothesis that rear seat passengers of different ages sustain different patterns of injury. Patients admitted to a hospital following involvement in a crash in New South Wales (NSW) Australia between 2005 and 2007 were identified using International Classification of Diseases (10th edition [ICD10]) codes. Hospital admissions data were linked with NSW police crash data using probabilistic techniques. The profiles and patterns of injury of front and rear seat passengers were compared. Logistic regression was used to examine how age influenced the pattern of injury among rear seat passengers. Sixty-three percent of hospital admissions were linked with police records. One in 5 passengers were rear seat passengers. There were more unrestrained occupants in the rear (7%) compared to drivers (3%) and front seat passengers (2%). Younger (9-15 years) injured passengers were seated in the rear more often than in the front passenger position and older injured passengers (>50 years) were seated more often in the front passenger position than in the rear (15% rear compared to 5% front aged 9-15 years; 22% rear compared to 37% front aged >50 years; χ(2), P < .001). There were proportionally more fatal injuries among rear seat passengers (10%) than among drivers (5%) and front seat passengers (6%), and the pattern of injury between front and rear passengers also varied. Rear seat passengers had more head and abdominal injuries and fewer thoracic and knee/lower leg injuries than front seat passengers. After adjusting for vehicle age, restraint status, travel speed, and whether or not a fatality occurred in the crash, older (>50 years) rear passengers had 6.3 times the odds of sustaining thoracic injuries (95% confidence interval [CI], 2.6-15.0) and lower odds (odds ratio [OR] = 0.4, 95% CI, 0.2-0.9) of sustaining abdominal/lumbar injuries than the youngest occupants (9-15 years).The odds of sustaining a head injury did not vary with age, and the odds of sustaining thoracic, abdominal, or lower extremity injuries did not differ significantly between rear seat passengers aged 16-50 years and 9-15 years. The findings suggest that there is a need for enhanced protection for rear seat passengers, because they have proportionally more fatal injuries than front-seated occupants. The frequency of abdominal injury and the differences between injury patterns observed in front seat passengers suggests a potential benefit from adding abdominal injury risk assessment to rear seat occupant protection test protocols. There is also scope to improve chest protection for older rear seat passengers.

  1. [Numerical finite element modeling of custom car seat using computer aided design].

    PubMed

    Huang, Xuqi; Singare, Sekou

    2014-02-01

    A good cushion can not only provide the sitter with a high comfort, but also control the distribution of the hip pressure to reduce the incidence of diseases. The purpose of this study is to introduce a computer-aided design (CAD) modeling method of the buttocks-cushion using numerical finite element (FE) simulation to predict the pressure distribution on the buttocks-cushion interface. The buttock and the cushion model geometrics were acquired from a laser scanner, and the CAD software was used to create the solid model. The FE model of a true seated individual was developed using ANSYS software (ANSYS Inc, Canonsburg, PA). The model is divided into two parts, i.e. the cushion model made of foam and the buttock model represented by the pelvis covered with a soft tissue layer. Loading simulations consisted of imposing a vertical force of 520N on the pelvis, corresponding to the weight of the user upper extremity, and then solving iteratively the system.

  2. A seat cushion to provide realistic acceleration cues for aircraft simulators

    NASA Technical Reports Server (NTRS)

    Ashworth, B. R.

    1976-01-01

    A seat cushion to provide acceleration cues for aircraft simulator pilots was built, performance tested, and evaluated. The four cell seat, using a thin air cushion with highly responsive pressure control, attempts to reproduce the same events which occur in an aircraft seat under acceleration loading. The pressure controller provides seat cushion responses which are considered adequate for current high performance aircraft simulations. The initial tests of the seat cushions have resulted in excellent pilot opinion of the cushion's ability to provide realistic and useful cues to the simulator pilot.

  3. Pattern of seat belt wearing in Nanjing, China

    PubMed Central

    Routley, V; Ozanne‐Smith, J; Li, D; Hu, X; Wang, P; Qin, Y

    2007-01-01

    Objective To describe the patterns of seat belt wearing in Nanjing, China for drivers, front seat passengers, and rear occupants of motor vehicles. Design Roadside observational study. Setting Four sites in central and northern Nanjing during daylight hours over 1 week in April 2005. Subjects Drivers and passengers of 17 147 cars, taxis, goods vans, and pickups, which traveled in the inside traffic lane. Main outcome measures Percentage seat belt wearing for each of seating position, age/sex, time of day, vehicle type, day of week. Results The rate of seat belt wearing was significantly higher in drivers (67.3%, 95% CI 66.6 to 68.0) than front seat passengers (18.9%, 95% CI, 18.0 to 19.8). It was negligible for second front seat passengers (2.6%, 95% CI 0.3 to 4.9) and rear seat passengers (0.5%, 95% CI 0.3 to 0.7). Belt tampering, such that protection would be reduced in the event of a crash, was observed for 18.5% of taxi drivers. Drivers were most likely to wear seat belts in cars and vans and at a city roundabout; front seat passengers were most likely to wear seat belts in non‐taxi vehicles, during the evening rush hour, if the driver was wearing a belt, and on the local north road. Drivers were least likely to wear a belt in the early morning, in pickups and taxis, on Tuesday (or the following week), and on the local north road; front seat passengers were least likely to wear a belt in taxis and if the driver was not wearing a belt. Conclusions Rates of seat belt wearing by passengers were low despite national legislation and provincial regulations coming into effect several months before the survey. Combined education and enforcement are necessary accompaniments to legislation. PMID:18056315

  4. The Effects of Microgravity on Seated Height (Spinal Elongation)

    NASA Technical Reports Server (NTRS)

    Young, K. S.; Rajulu, S.

    2011-01-01

    ABSTRACT Many physiological factors, such as spinal elongation, fluid shifts, bone atrophy, and muscle loss, occur during an exposure to a microgravity environment. Spinal elongation is just one of the factors that can also affect the safety and performance of a crewmember while in space. Spinal elongation occurs due to the lack of gravity/compression on the spinal column. This allows for the straightening of the natural spinal curve. There is a possible fluid shift in the inter-vertebral disks that may also result in changes in height. This study aims at collecting the overall change in seated height for crewmembers exposed to a microgravity environment. During previous Programs, Apollo-Soyuz Test Project (ASTP) and Skylab, spinal elongation data was collected from a small number of subjects in a standing posture but were limited in scope. Data from these studies indicated a quick increase in stature during the first few days of weightlessness, after which stature growth reached a plateau resulting in up to a 3% increase of the original measurement [1-5]. However, this data was collected only for crewmembers in standing posture and not in a seated posture. Seated height may have a different effect than standing height due to a change in posture as well as due to a compounded effect of wearing restraints and a potential compression of the gluteal area. Seated height was deemed as a critical measurement in the design of the Constellation Program s (CxP) Crew Exploration Vehicle (CEV), called Orion which is now the point-of-departure vehicle for the Multi-Purpose Crew Vehicle (MPCV) Program; therefore a better understanding of the effects of microgravity on seated height is necessary. Potential changes in seated height that may not have impacted crew accommodation in previous Programs will have significant effects on crew accommodation due to the layout of seats in the Orion.. The current and existing configuration is such that the four crewmembers are stacked two by two with the commander and pilot seats on the top and the two remaining seats underneath, thereby limiting the amount of clearance for the crewmembers seated in the bottom seat. The inner mold line of these types of vehicles are fixed due to other design constraints; therefore, it is essential that all seats incorporate additional clearance to account for adequate spinal growth thereby ensuring that the crew can safely ingress the seat and be strapped in prior to its return to earth. If there is not enough clearance to account for spinal growth deltas between seats then there is the potential that crewmembers will not be able to comfortably and safely fit into their seats. The crewmember in the bottom stacked seat may even have negative clearance with the seat above him or her which could lead to potential ingress/egress issues or potentially injury of the crewmember during landing. These impacts are specific to these types of vehicles with stacked seat configuration. Without proper knowledge of the amount of spinal elongation, or growth, which occurs due to microgravity and space flight, the design of future vehicle(s) or suits may cause injury, discomfort, and limit crew accommodation and crew complements. The experiment primarily aimed to collect seated height data for subjects exposed to microgravity environments, and feed new information regarding the effect of elongation of the spine forward into the design of the Orion. The data collected during the experiment included, two seated height measurement and two digital pictures of seated height pre-, in-, and post-flight. In addition to seated height, crewmembers had an optional task of collecting stature , standing height. Seated height data was obtained from 29 crewmembers that included 8 ISS increment crew (2 females and 6 males) and 21 Shuttle crew (1 female, 20 males), and whose mean age was 48 years ( 4 years). This study utilized the last six Shuttle flights, STS-128 to STS-134. The results show that partipating crewmembers experienced growth up to 6% in seated height and up to 3% in stature. Based on the worst case statistical analysis of the subject data, the recommended seated height growth of 6% will be provided to the designers as the necessary seated height adjustment.

  5. Using haptic feedback to increase seat belt use : traffic tech.

    DOT National Transportation Integrated Search

    2011-07-01

    The legacy of research on increasing seat belt use has : focused on enactment of seat belt legislation, public education, : high-visibility police enforcement, and seat belt : reminder systems. Several behavioral programs have : produced large, susta...

  6. Factors Affecting Booster Seat Use.

    PubMed

    Aita-Levy, Jerussa; Henderson, Lauren

    2016-10-01

    Objective To identify general awareness of booster seats as well as reasons for use and nonuse in an urban pediatric emergency room. Methods A total of 100 questionnaires were completed consisting of 24 questions each. Questions included knowledge of booster seat guidelines, source of knowledge, awareness of risks, and confidence in booster seats. Afterward, participants were provided an educational handout. Results Majority of parents reported currently using or having used a booster seat. The most popular reason was to protect from injury (78%), and reason for nonuse was size (44%). Majority of parents agreed that motor vehicle crashes were the leading cause of death in children. However, 56% of parents prematurely transitioned child out of a booster seat. Only 20% reported learning about booster seats from their pediatrician. Conclusion Parents continue to transition their children prematurely from booster seats. Current state laws need revision as well as further education using simplified illustrated guidelines. © The Author(s) 2015.

  7. Seat Experiment Results of Full-Scale Transport Aircraft Controlled Impact Demonstration.

    DTIC Science & Technology

    1986-07-01

    31 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . .. .. .. .... 31 APPENDIX A - FLOOR, SEAT, AND PELVIS VERTICAL...ACCELERATIONS . ... A-1 APPENDIX B - FLOOR, SEAT, AND PELVIS LONGITUDINAL ACCELERATIONS .B-1 APPENDIX C - FLOOR, SEAT, AND PELVIS LATERAL ACCELERATIONS ... . C...The current asymmetry of the tracks in the 8720 and 727 causes the window-side legs of the triple- passenger seat to support twice as much load as the

  8. The Seated Soldier Study: Posture and Body Shape in Vehicle Seats

    DTIC Science & Technology

    2013-10-31

    ergonomics and safety assessments. UNCLASSIFIED UNCLASSIFIED 3 INTRODUCTION The design of seats and interiors for a wide variety of...DHMs) began to be used for ergonomic assessments and design of vehicle interiors and seats , particularly for driver workstation layout (Chaffin 2001...in a vehicle mockup by varying the steering wheel position relative to the pedals. The participants adjusted the seat to obtain a comfortable

  9. Contact dermatitis to training toilet seat (potty seat dermatitis).

    PubMed

    Dorfman, Claire O; Barros, Mark A; Zaenglein, Andrea L

    2018-05-29

    Allergic contact dermatitis from various components of toilet seats has been well described. We report a case of a young boy presenting with an atypical pattern of dermatitis who was found to be allergic to his training toilet seat. This case highlights the importance of recognizing this diagnosis and the role of potty seats as the causative factor. © 2018 Wiley Periodicals, Inc.

  10. Association between exposure/non-exposure to the mandatory seat belt law with regards to compliance in vehicle accident victims--a hospital review.

    PubMed

    Williams, E W; Reid, M; Lindo, J L M; Williams-Johnson, J; French, S; Singh, P; McDonald, A H

    2007-06-01

    Injuries sustained in motor vehicle accidents (MVAs) are a major challenge to the Jamaican healthcare system. In November 1999, Jamaica enacted legislation to make seat belt usage in motor vehicles compulsory. The effect of this policy change on seat belt usage is unclear. This study therefore sought to determine the prevalence of seat belt usage and to determine the association between exposure/non-exposure to the mandatory seat belt law and seat belt use in subjects who presented to the Accident and Emergency Department (A&E) of the University Hospital of the West Indies (UHWI) as a result of motor vehicle accidents. Subjects were recruited from June to November 2003, post-seat belt law (POBL) period, and May to October 1999, pre-seat belt law (PRBL) period. Data collected included demographic variables, seat belt use and position of the occupants in the vehicle. Of the 277 patients who were eligible for inclusion, data were complete in 258 subjects, 87 in the PRBL period and 171 in the POBL period. The prevalence of seat belt use was 47% (PRBL) and 63% (POBL) respectively. There was no significant gender difference at each period. The odds of wearing seat belt in the rear of a motor vehicle were significantly lower than that of a driver (Table 3, OR 0.19, 95% CI 0.07, 0.48). Adjusting for age, gender and position in vehicle exposure, there was about 100% increase in the odds of seat belt use during the post seat belt law era (OR = 2.09, 95% CI 1.21, 3.61). It is concluded from this hospital-based study that the mandatory seat belt law legislature was associated with increased seat belt use in motor vehicle accident victims. However, current data from the Road Traffic Agency indicate that there is still an alarming number of fatalities. This clearly suggests that additional public health measures are needed to address the epidemic of motor vehicle trauma in Jamaica.

  11. Effect of Booster Seat Design on Children’s Choice of Seating Positions During Naturalistic Riding

    PubMed Central

    Andersson, Marianne; Bohman, Katarina; Osvalder, Anna-Lisa

    2010-01-01

    The purpose of this naturalistic study was to investigate the effect of booster seat design on the choice of children’s seating positions during naturalistic riding. Data was collected through observations of children during in-vehicle riding by means of a film camera. The children were positioned in high back boosters in the rear seat while a parent drove the car. The study included two different booster designs: one with large head and torso side supports, and one with small head side supports and no torso side supports. Six children between three and six years of age participated in the study. Each child was observed in both boosters. The duration of the seating positions that each child assumed was quantified. The design with large side head supports resulted more often in seating positions without head and shoulder contact with the booster’s back. There was shoulder-to-booster back contact during an average of 45% of riding time in the seat with the large head side supports compared to 75% in the seat with the small head supports. The children in the study were seated with the head in front of the front edge of the head side supports more than half the time, in both boosters. Laterally, the children were almost constantly positioned between the side supports of the booster in both seats. The observed seating positions probably reduce the desired protective effect by the side supports in side impact, and may increase the probability of head impact with the vehicle interior in frontal impact. PMID:21050601

  12. A quantitative approach to assessing the efficacy of occupant protection programs: A case study from Montana.

    PubMed

    Manlove, Kezia; Stanley, Laura; Peck, Alyssa

    2015-10-01

    Quantitative evaluation of vehicle occupant protection programs is critical for ensuring efficient government resource allocation, but few methods exist for conducting evaluation across multiple programs simultaneously. Here we present an analysis of occupant protection efficacy in the state of Montana. This approach relies on seat belt compliance rates as measured by the National Occupant Protection Usage Survey (NOPUS). A hierarchical logistic regression model is used to estimate the impacts of four Montana Department of Transportation (MDT)-funded occupant protection programs used in the state of Montana, following adjustment for a suite of potential confounders. Activity from two programs, Buckle Up coalitions and media campaigns, are associated with increased seat belt use in Montana, whereas the impact of another program, Selective Traffic Enforcement, is potentially masked by other program activity. A final program, Driver's Education, is not associated with any shift in seat belt use. This method allows for a preliminary quantitative estimation of program impacts without requiring states to obtain any new seat belt use data. This approach provides states a preliminary look at program impacts, and a means for carefully planning future program allocation and investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A program to increase seat belt use along the Texas-Mexico border.

    PubMed

    Cohn, Lawrence D; Hernandez, Delia; Byrd, Theresa; Cortes, Miguel

    2002-12-01

    A school-based, bilingual intervention was developed to increase seat belt use among families living along the Texas-Mexico border. The intervention sought to increase seat belt use by changing perceived norms within the community (i.e., making the nonuse of seat belts less socially acceptable). The intervention was implemented in more than 110 classrooms and involved more than 2100 children. Blind coding, validity checks, and reliability estimates contributed to a rigorous program evaluation. Seat belt use increased by 10% among children riding in the front seat of motor vehicles in the intervention community, as compared with a small but nonsignificant decline in use among control community children. Seat belt use among drivers did not increase.

  14. 75 FR 34172 - Lordstown Seating Systems, a Subsidiary of Magna Seating, Including Workers Whose Unemployment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... certification for workers of the subject firm. The workers produce seating for automobiles. New information... secondarily affected as a supplier of seating for automobiles to a TAA certified firm. The amended notice...

  15. Guidelines for observing child safety seat use

    DOT National Transportation Integrated Search

    1987-06-01

    This manual provides guidelines for collecting observational data needed to assess the use of child safety seats. Specific directions are included for (a) observing child safety seat use, (b) child seats, and (c) instructing observers on how to use s...

  16. Stadium seating--a market analysis.

    Treesearch

    Jerry A. Sesco; Edwin Kallio

    1967-01-01

    This report describes the characteristics of stadiums and seating in six North Central States; summarizes the purchasing methods for stadium seats; presents estimates of the present and future market; and points out the increasing competition to wood stadium seating form substitute materials.

  17. 76 FR 23793 - Extension of Application Period for Seats for the Stellwagen Bank National Marine Sanctuary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... seats on the Stellwagen Bank National Marine Sanctuary Advisory Council: (1) Research Member seat and (2... relation to the seat for which they are applying; community and professional affiliations; philosophy...

  18. Seat-belt use still low in Kuwait: self-reported driving behaviours among adult drivers.

    PubMed

    Raman, Sudha R; Ottensmeyer, C Andrea; Landry, Michel D; Alfadhli, Jarrah; Procter, Steven; Jacob, Susan; Hamdan, Elham; Bouhaimed, Manal

    2014-01-01

    Kuwait mandated seat-belt use by drivers in 1976 and by front seat passengers in 1994. The study objectives were to identify and estimate current factors associated with seat-belt use and levels of potentially unsafe driving behaviours in Kuwait. In 2010, 741 adults were surveyed regarding driving habits and history. Only 41.6% of drivers reported always using a seat belt. Front seat passenger belt use was more common (30.5%) than rear seat belt use (6.5%). Distracted driving behaviours were common, including mobile phone use ('always' or 'almost always': 51.1%) and texting/SMS (32.4%). Logistic regression indicated that drivers who were young (18-19 years), male, Kuwaiti nationals or non-Kuwaiti Arabs, drove over the speed limit, had traffic violation tickets or >1 car crashes in the last year, were less likely to use seat belts. Targeted initiatives to increase public awareness and to enforce car-safety legislation, including use of seat belts, are necessary to decrease the health burden of car crashes in Kuwait.

  19. Evaluation of Chest Injury Mechanisms in Nearside Oblique Frontal Impacts

    PubMed Central

    Iraeus, Johan; Lindquist, Mats; Wistrand, Sofie; Sibgård, Elin; Pipkorn, Bengt

    2013-01-01

    Despite the use of seat belts and modern safety systems, many automobile occupants are still seriously injured or killed in car crashes. Common configurations in these crashes are oblique and small overlap frontal impacts that often lead to chest injuries. To evaluate the injury mechanism in these oblique impacts, an investigation was carried out using mathematical human body model simulations. A model of a simplified vehicle interior was developed and validated by means of mechanical sled tests with the Hybrid III dummy. The interior model was then combined with the human body model THUMS and validated by means of mechanical PMHS sled tests. Occupant kinematics as well as rib fracture patterns were predicted with reasonable accuracy. The final model was updated to conform to modern cars and a simulation matrix was run. In this matrix the boundary conditions, ΔV and PDOF, were varied and rib fracture risk as a function of the boundary conditions was evaluated using a statistical framework. In oblique frontal impacts, two injury producing mechanisms were found; (i) diagonal belt load and (ii) side structure impact. The second injury mechanism was found for PDOFs of 25°–35°, depending on ΔV. This means that for larger PDOFs, less ΔV is needed to cause a serious chest injury. PMID:24406957

  20. Estimating seat belt effectiveness using matched-pair cohort methods.

    PubMed

    Cummings, Peter; Wells, James D; Rivara, Frederick P

    2003-01-01

    Using US data for 1986-1998 fatal crashes, we employed matched-pair analysis methods to estimate that the relative risk of death among belted compared with unbelted occupants was 0.39 (95% confidence interval (CI) 0.37-0.41). This differs from relative risk estimates of about 0.55 in studies that used crash data collected prior to 1986. Using 1975-1998 data, we examined and rejected three theories that might explain the difference between our estimate and older estimates: (1) differences in the analysis methods; (2) changes related to car model year; (3) changes in crash characteristics over time. A fourth theory, that the introduction of seat belt laws would induce some survivors to claim belt use when they were not restrained, could explain part of the difference in our estimate and older estimates; but even in states without seat belt laws, from 1986 through 1998, the relative risk estimate was 0.45 (95% CI 0.39-0.52). All of the difference between our estimate and older estimates could be explained by some misclassification of seat belt use. Relative risk estimates would move away from 1, toward their true value, if misclassification of both the belted and unbelted decreased over time, or if the degree of misclassification remained constant, as the prevalence of belt use increased. We conclude that estimates of seat belt effects based upon data prior to 1986 may be biased toward 1 by misclassification.

  1. Alluvium-Buttressed Landslides: Conceptual Model and Examples from California

    NASA Astrophysics Data System (ADS)

    Johnson, P. L.; Cotton, W. R., Sr.; Shires, P. O.

    2016-12-01

    Large, deep-seated landslides typically occur in hillside settings without any natural buttressing, and many of these landslides have relatively low factors of safety (FS), the ratio of driving to resisting forces. However, where deep-seated landslides failed millennia ago into valleys that subsequently experienced alluvial aggradation, a natural buttress of alluvium may be deposited over the landslide toe, increasing the FS of these landslides. The eustatic model for alluvial buttressing of Quaternary landslides involves failure of slopes during sea level low stand at or near the late Pleistocene last glacial maximum (LGM, approximately 20 ka). Following LGM, mean sea level rose by over 120m to its present elevation. This rise in base level resulted in deposition of alluvial sediment in coastal valleys that had been v-shaped and downcutting prior to and during LGM. These valleys now have broad, low gradient floors formed by alluvial sediment, and the thick alluvial strata filling these valleys cover the toes of late Pleistocene landslides. In this study, three examples of large, deep-seated Pleistocene landslides that are buttressed by alluvium are presented. The McCracken Hill Landslide in Orange County and the Potrero Canyon Landslide Complex in Monterey County are located approximately 1.5 and 6 km, respectively, from the modern Pacific shore and closely fit the eustatic model of alluvial buttressing. At Knights Valley, in the upper Russian River watershed of eastern Sonoma County, a deep-seated alluvium-buttressed landslide is located approximately 65 km from the modern shore (measured along the Russian River and its tributary stream). The alluvium in Knights Valley may have ponded due to late Quaternary tectonic uplift of hills west of the valley. Streams that cross these hills are incised into bedrock downstream from Knights Valley and approaching the Russian River. Thus, the Knights Valley example (of an alluvium-buttressed landslide) demonstrates a rare exception to the broadly applicable eustatic model.

  2. Seat belt use-inducing system effectiveness

    DOT National Transportation Integrated Search

    1975-04-01

    Seat belt use inducing system effectiveness was measured in fleet automobiles of a private business and in rental automobiles at a large airport. There were three parts to the activity: 1. Seat belt use inducing systems and seat belt use counting sys...

  3. Restraint use (seat belt and child passenger seat) survey

    DOT National Transportation Integrated Search

    2008-12-01

    In Arizona, lack of restraint usage (seat belts and child passenger seats) was a contributing factor to an average of 687 fatalities per year which is nearly 60% of total fatalities. These tragic statistics could be dramatically decreased if effectiv...

  4. Commuter rail seat testing and analysis of facing seats

    DOT National Transportation Integrated Search

    2003-12-01

    Tests have been conducted on the Bombardier back-to-back commuter rail car seat in a facing-seat configuration to evaluate its performance under static and dynamic loading conditions. Quasi-static tests have been conducted to establish the load defle...

  5. 49 CFR 571.202a - Standard No. 202a; Head restraints; Mandatory applicability begins on September 1, 2009.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., representing the head position of a seated 50th percentile male, with sliding scale at the back of the head for... any rear outboard designated seating position, a rear seat back, or any independently adjustable seat component attached to or adjacent to a seat back, that has a height equal to or greater than 700 mm, in any...

  6. 49 CFR 571.202a - Standard No. 202a; Head restraints; Mandatory applicability begins on September 1, 2009.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., representing the head position of a seated 50th percentile male, with sliding scale at the back of the head for... any rear outboard designated seating position, a rear seat back, or any independently adjustable seat component attached to or adjacent to a seat back, that has a height equal to or greater than 700 mm, in any...

  7. 49 CFR 571.202a - Standard No. 202a; Head restraints; Mandatory applicability begins on September 1, 2009.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., representing the head position of a seated 50th percentile male, with sliding scale at the back of the head for... any rear outboard designated seating position, a rear seat back, or any independently adjustable seat component attached to or adjacent to a seat back, that has a height equal to or greater than 700 mm, in any...

  8. The Seated Soldier Study: Posture and Body Shape in Vehicle Seats

    DTIC Science & Technology

    2014-01-28

    vehicle interior layout Current design guidance is based on outdated anthropometry Previous studies of seated anthropometry have not included the...personal protective equipment (PPE) for seat and vehicle interior layout • Current design guidance is based on outdated anthropometry • Previous...studies of seated anthropometry have not included the effects of PPE on posture and body shape • Detailed anthropometric data needed for the design

  9. Blast resistant vehicle seat

    DOEpatents

    Ripley, Edward B

    2013-02-12

    Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

  10. Effects of Wheelchair Seat-height Settings on Alternating Lower Limb Propulsion With Both Legs.

    PubMed

    Murata, Tomoyuki; Asami, Toyoko; Matsuo, Kiyomi; Kubo, Atsuko; Okigawa, Etsumi

    2014-01-01

    This study investigated the effects of seat-height settings of wheelchairs with alternating propulsion with both legs. Seven healthy individuals with no orthopedic disease participated. Flexion angles at initial contact (FA-IC) of each joint, range of motion during propulsion period (ROM-PP), and ground reaction force (GRF) were measured using a three dimensional motion capture system and force plates, and compared with different seat-height settings. Statistically significant relationships were found between seat-height and speed, stride length, knee FA-IC, ankle FA-IC, hip ROM-PP, vertical ground reaction force (VGRF), and anterior posterior ground reaction force (APGRF). Speed, hip ROM-PP, VGRF and APGRF increased as the seat-height was lowered. This effect diminished when the seat-height was set below -40 mm. VGRF increased as the seat-height was lowered. The results suggest that the seat-height effect can be attributed to hip ROM-PP; therefore, optimal foot propulsion cannot be achieved when the seat height is set either too high or too low. Efficient foot propulsion of the wheelchair can be achieved by setting the seat height to lower leg length according to a combination of physical characteristics, such as the user's physical functions, leg muscles, and range of motion.

  11. Evaluation of Safe Kids Week 2004: age 4 to 9? It's booster seat time!

    PubMed

    Howard, A; Beben, N; Rothman, L; Fiissel, D; MacArthur, C

    2006-10-01

    To assess the effectiveness of a national one week media campaign promoting booster seat use. Pre-test, post-test design based on nationally representative random digit dialing telephone survey, with control for exposure to campaign. Canada. Parents of children aged 4-9 years. During a one week campaign in May 2004, information on booster seat use was distributed via a national media campaign, retail stores, medical clinics, and community events. Information included pamphlets with guidelines for booster seat use, as well as a growth chart (designed by Safe Kids Canada) to assist parents in determining if their child should be using a booster seat. Assessing seat belt fit was described in detail on the growth chart. Knowledge, attitudes, and self-reported behaviors regarding booster seat use. Respondents in the group exposed to the campaign were twice as likely to report using a booster seat with lap and shoulder belt for their child (47%), compared to those in the pre-test (24%) and the unexposed (23%) groups (p<0.001). However, only small differences in general knowledge regarding booster seat use were found between the groups. A one week national media campaign substantially increased self-reported use of booster seats. Parents did not remember details of the campaign content, but did remember implications for their own child.

  12. Seat design principles to reduce neck injuries in rear impacts.

    PubMed

    Viano, David C

    2008-12-01

    In the 1990s, research was conducted at General Motors R&D Center on seat safety in rear impacts. It led to the development of high retention seats and an active head restraint to improve occupant safety. This article provides an overview of the design principles found from that research and focuses on seat characteristics that lower whiplash risks. Sled and quasistatic seat testing showed how occupants interact with the seat in rear impacts and what seat characteristics improve occupant retention, energy management, and support of the head-neck, lowering injury risks. Neck displacements, moments, and forces were used to assess whiplash and more severe injury risks. A QST test was developed to quasi-statically push a dummy rearward into the seat to determine seat stiffness (k), frame strength (j), and peak bending moment (M(Hpt)). These parameters were related to neck displacements associated with whiplash. Sled tests were run with in-position and out-of-position male and female Hybrid III dummies to assess performance. A high retention seat and active head restraint were developed and put into production in 1997. High retention seats have 2.3 times greater moment, develop 2.2 times greater load, but have the same stiffness as earlier yielding seats. Seat stiffness was found to be a principle characteristic related to neck displacements associated with whiplash. The combination of a stronger frame, yielding seatback, and high-forward head restraint in the high retention seat provides early head support and low neck displacements in rear impacts. Larger reductions in neck displacement were obtained by adding an active head restraint that moves the head restraint forward and upward by occupant penetration into the seatback. This substantially reduces head contact time, neck displacements, and loads. Whiplash risks are related to seat stiffness, the position of the head restraint, and frame strength. Low seat stiffness allows the occupant to move into the seatback without high loads on the torso until the head-neck is supported by the head restraint. A strong seat frame reduces early seatback rotation that increases the gap to the head restraint and drops it in relation to the occupant's head. A high and forward head restraint provides support of the head and neck. Large forces can be applied to the occupant once the head, neck, and torso are supported by the seat and head restraint without adverse loading of the spine. The addition of an active head restraint closes the gap behind the head before significant load develops on the neck. The movement provides a more upward trajectory of the head restraint. Low-speed rear crashes are not just a matter of whiplash; older occupants, some with cervical stenosis, are at risk for paralyzing spinal cord injury.

  13. Women's Political Empowerment and Investments in Primary Schooling in India.

    PubMed

    Halim, Nafisa; Yount, Kathryn M; Cunningham, Solveig A; Pande, Rohini P

    2016-02-01

    Using a national district-level dataset of India composed of information on investments in primary schooling (data from the District Information Survey for Education [DISE, 2007/8]) and information on demographic characteristics of elected officials (data from the Election Commission of India [ECI, 2000/04]), we examined the relationship between women's representation in State Legislative Assembly (SLA) seats and district-level investments in primary schooling. We used OLS regressions adjusting for confounders and spatial autocorrelation, and estimated separate models for North and South India. Women's representation in general SLA seats typically was negatively associated with investments in primary-school amenities and teachers; women's representation in SLA seats reserved for under-represented minorities, i.e., scheduled castes and scheduled tribes, typically was positively associated with investments in primary schooling, especially in areas addressing the basic needs of poor children. Women legislators' gender and caste identities may shape their decisions about redistributive educational policies.

  14. Adaptive magnetorheological seat suspension for shock mitigation

    NASA Astrophysics Data System (ADS)

    Singh, Harinder J.; Wereley, Norman M.

    2013-04-01

    An adaptive magnetorheological seat suspension (AMSS) was analyzed for optimal protection of occupants from shock loads caused by the impact of a helicopter with the ground. The AMSS system consists of an adaptive linear stroke magnetorheological shock absorber (MRSA) integrated into the seat structure of a helicopter. The MRSA provides a large controllability yield force to accommodate a wide spectrum for shock mitigation. A multiple degrees-of-freedom nonlinear biodynamic model for a 50th percentile male occupant was integrated with the dynamics of MRSA and the governing equations of motion were investigated theoretically. The load-stroke profile of MRSA was optimized with the goal of minimizing the potential for injuries. The MRSA yield force and the shock absorber stroke limitations were the most crucial parameters for improved biodynamic response mitigation. An assessment of injuries based on established injury criteria for different body parts was carried out.

  15. The role of anthropometry in designing for sustainability.

    PubMed

    Nadadur, Gopal; Parkinson, Matthew B

    2013-01-01

    An understanding of human factors and ergonomics facilitates the design of artefacts, tasks and environments that fulfil their users' physical and cognitive requirements. Research in these fields furthers the goal of efficiently accommodating the desired percentage of user populations through enhanced awareness and modelling of human variability. Design for sustainability (DfS) allows for these concepts to be leveraged in the broader context of designing to minimise negative impacts on the environment. This paper focuses on anthropometry and proposes three ways in which its consideration is relevant to DfS: reducing raw material consumption, increasing usage lifetimes and ethical human resource considerations. This is demonstrated through the application of anthropometry synthesis, virtual fitting, and sizing and adjustability allocation methods in the design of an industrial workstation seat for use in five distinct global populations. This work highlights the importance of and opportunities for using ergonomic design principles in DfS efforts. This research demonstrates the relevance of some anthropometry-based ergonomics concepts to the field of design for sustainability. A global design case study leverages human variability considerations in furthering three sustainable design goals: reducing raw material consumption, increasing usage lifetimes and incorporating ethical human resource considerations in design.

  16. Evaluation of seatback vibration based on ISO 2631-1 (1997) standard method: The influence of vehicle seat structural resonance.

    PubMed

    Ittianuwat, R; Fard, M; Kato, K

    2017-01-01

    Although much research has been done in developing the current ISO 2631-1 (1997) standard method for assessment seat vibration comfort, little consideration has been given to the influence of vehicle seat structural dynamics on comfort assessment. Previous research has shown that there are inconsistencies between standard methods and subjective evaluation of comfort at around vehicle seat twisting resonant frequencies. This study reports the frequency-weighted r.m.s. accelerations in [Formula: see text], [Formula: see text] and [Formula: see text] axes and the total vibration (point vibration total value) at five locations on seatback surface at around vehicle seat twisting resonant frequencies. The results show that the vibration measured at the centre of seatback surface, suggested by current ISO 2631-1 (1997), at around twisting resonant frequencies was the least for all tested vehicle seats. The greatest point vibration total value on the seatback surface varies among vehicle seats. The variations in vibration measured at different locations on seatback surface at around twisting resonant frequencies were sufficiently great that might affect the comfort assessment of vehicle seat.Practitioner Summary: The influence of vehicle seat structural dynamics has not been considered in current ISO 2631-1 (1997). The results of this study show that the vibration measures on seatback surface at around vehicle seat twisting resonant frequency depends on vehicle seats and dominate at the top or the bottom of seatback but not at the centre.

  17. Design of Mechanism for Assisting Standing Movement Using Planar Linkage and Gear Train

    NASA Astrophysics Data System (ADS)

    Nango, Jun; Yoshizawa, Hisato; Liu, Jiajun

    The number of people who are in need of nursing care due to difficulties they experience with performing various activities of daily living is increasing. In particular, the action of standing up is performed frequently in daily life, and this action starts to induce pain in joints as people age. In this research, we develop a device whose seat plate follows the movement of the thigh in the action of standing up for the purpose of relieving the burden from the joints and reducing the effort associated with nursing care. The device is designed by using a planar five-link mechanism and a gear train, and only a single input is needed to drive the device. The respective lengths of the links are determined by comparing the movement of the seat plate of the device with the movement of the human thigh in the action of standing up. In addition, this device is expected to be useful for assisting users in standing up in a natural manner, including in the case when the body remains supported by the seat plate, as well as for guiding the individual movements of users in the action of standing up.

  18. KSC-2014-2730

    NASA Image and Video Library

    2014-05-29

    HAWTHORNE, Calif. - The Dragon V2 spacecraft's seating arrangement with the control panel swung up to allow crewmembers to get into their seats. Once the crew is in place, the control panel swings down and locks in launch position. SpaceX unveiled the new spacecraft during a ceremony at its headquarters in Hawthorne, Calif. The Dragon V2 is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis

  19. Factors related to nonuse of seat belts in Michigan.

    DOT National Transportation Integrated Search

    1987-09-01

    This study combined direct observation of seat belt use with interview methods to : identify factors related to seat belt use in a state with a mandatory seat belt use law. Trained : observers recorded restraint use for a probability sample of motori...

  20. Seat belt use increases in Maine following change to primary enforcement : traffic tech.

    DOT National Transportation Integrated Search

    2010-04-01

    Primary seat belt laws are associated with higher selfreported : seat belt use rates and fewer traffic fatalities following : enactment. Primary laws allow police to issue a citation : solely upon observation of a seat belt violation. In contrast, : ...

  1. Portable seat lift

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce (Inventor)

    1994-01-01

    A portable seat lift that can help individuals either (1) lower themselves to a sitting position or (2) raise themselves to a standing position is presented. The portable seat lift consists of a seat mounted on a base with two levers, which are powered by a drive unit.

  2. Injuries to seat occupants of light airplanes.

    DOT National Transportation Integrated Search

    1989-02-01

    A series of 55 light-airplane accidents was examined in an effort to demonstrate the role of seats in the genesis of injury in seat occupants. Good engineering, design of airplane seats is an important related issue which is not treated in this study...

  3. NASA experiments on the B-720 structure and seats

    NASA Astrophysics Data System (ADS)

    Alfaro-Bou, E.

    1986-01-01

    Two experiments onboard a remotely piloted transport aircraft that was crashed on landing are discussed. The structural experiment deals with the location and distribution of the instrumentation throughout the airplane structure. In the seat experiment, the development and testing of an energy absorbing seat are discussed. The objective of the structural experiment was to obtain a data base of structural crash loads for use in the advancement of crashworthy technology of materials (such as composites) in structural design and for use in the comparison between computer and experimental results. The objective of the seat experiment was to compare the performance of an energy absorbing transport seat and a standard seat when subjected to similar crash pulses. Details are given on the location of instrumentation, on the dynamic seat test pulse and headward acceleration limits.

  4. Muscle activity of the core during bilateral, unilateral, seated and standing resistance exercise.

    PubMed

    Saeterbakken, Atle Hole; Fimland, Marius Steiro

    2012-05-01

    Little is known about the effect of performing common resistance exercises standing compared to seated and unilaterally compared to bilaterally on muscle activation of the core. Thus, the purpose of this study was to compare the electromyographic activity (EMG) of the superficial core muscles (i.e. rectus abdominis, external oblique and erector spinae) between seated, standing, bilateral and unilateral dumbbell shoulder presses. 15 healthy males performed five repetitions at 80% of one-repetition maximum of the exercises in randomized order. Results were analyzed with a two-way analysis of variance and a Bonferroni post hoc test. The position × exercise interaction was significantly different for rectus abdominis (P = 0.016), but not for external oblique (P = 0.100) and erector spinae (P = 0.151). The following EMG results were observed: For rectus abdominis: ~49% lower in seated bilateral versus unilateral (P < 0.001), similar in standing bilateral versus unilateral (P = 0.408), ~81% lower in bilateral seated versus standing (P < 0.001), ~59% lower in unilateral seated versus standing (P < 0.001); For external oblique: ~81% lower in seated bilateral versus unilateral (P < 0.001), ~68% lower in standing bilateral than unilateral (P < 0.001), ~58% lower in bilateral seated versus standing (P < 0.001), ~28% lower in unilateral seated versus standing (P = 0.002); For erector spinae: similar in seated bilateral versus unilateral (P = 0.737), ~18% lower in standing bilateral versus unilateral (P = 0.001), similar in seated versus standing bilateral (P = 0.480) and unilateral (P = 0.690). In conclusion, to enhance neuromuscular activation of the superficial core muscles, standing exercises should be used instead of seated exercises, and unilateral exercises should be used instead of bilateral exercises.

  5. Study to develop improved fire resistant aircraft passenger seat materials

    NASA Technical Reports Server (NTRS)

    Duskin, F. E.; Schutter, K. J.; Sieth, H. H.; Trabold, E. L.

    1980-01-01

    The Phase 3 study of the NASA 'Improved Fire Resistant Aircraft Seat Materials' involved fire tests of improved materials in multilayered combinations representative of cushion configurations. Tests were conducted to determine their thermal, smoke, and fire resistance characteristics. Additionally, a 'Design Guideline' for Fire Resistant Passenger Seats was written outlining general seat design considerations. Finally, a three-abreast 'Tourist Class' passenger seat assembly fabricated from the most advanced fire-resistant materials was delivered.

  6. H-60A/L Passenger Airbag Protection: Vertical and Horizontal Impact Tests

    DTIC Science & Technology

    2013-04-30

    aft facing seating . While impact testing has been widely performed on ejection seats , only limited testing has been done on helicopter seating ...manikins with the LARD scaled to represent large occupants in the aerospace environment. LARD is also used by the Air Force and JSF in ejection seat ...for all rigid seat tests, resulting in no notable differences (manikin motion , manikin response) between the standard and airbag restraints. The

  7. [Use of seat belts and mobile phone while driving in Florence: trend from 2005 to 2009].

    PubMed

    Lorini, Chiara; Pellegrino, Elettra; Mannocci, Federico; Allodi, Guendalina; Indiani, Laura; Mersi, Anna; Petrioli, Giuseppe; Santini, Maria Grazia; Garofalo, Giorgio; Bonaccorsi, Guglielmo

    2012-01-01

    to evaluate the trend over time of the use of seat belts by drivers and passengers of cars and vans and the use of hand held mobile phone while driving in Florence from 2005 to 2009. DESIGN, SETTING AND PARTICIPANTS AND MAIN OUTCOME MEASURES: direct observations (58,773 vehicles) have been conducted to detect the use of seat belts by occupants of cars and vans, and the use of mobile phone while driving. It has been carried out correlation analysis between the use of the seat belt by occupants of vehicles and between the simultaneous use of this device and mobile phone while driving.Moreover, it has been carried out time series analysis (ARIMA Box Jenkins) of in the prevalence of the use of seat belts by occupants of vehicles observed, of mobile phone by drivers and the trend of the risk to drive using the mobile phone with unfastened seat belt rather than to drive using the mobile phone with fastened seat belt. seat belts were used on average by 75.7% of drivers, 75.5% of front passengers and 25.1% of rear passengers. The average mobile phone use while driving was 4.5%. Drivers most frequently fasten seat belt if front passengers use it and while they do not use mobile phone. The use of seat belts by drivers and front passengers has not changed over time, whereas the use of mobile phone while driving has significantly increased. The prevalence of using mobile phone with unfastened seat belt rather than to use it with fastened seat belt while driving has significantly decreased over the years, indicating an increase in the use of mobile phone, especially among those who fasten the seat belt. it is necessary to plan and realize stronger interventions in the whole area.

  8. Residence Hall Seating That Works.

    ERIC Educational Resources Information Center

    Wiens, Janet

    2003-01-01

    Describes the seating chosen for residence halls at the Massachusetts Institute of Technology and the University of New England. The seating required depends on ergonomics, aesthetics, durability, cost, and code requirements. In addition, residence halls must have a range of seating types to accommodate various uses. (SLD)

  9. Observations of seating position of front seat occupants relative to the side of the vehicle.

    PubMed

    Dinas, Arthur; Fildes, Brian N

    2002-01-01

    This study was an on-road observational study of the seating position and limb position of front seat occupants relevant to the side of the car for a representative sample of occupants during straight road driving and turning manoeuvres. A video camera captured over 650 front-on images of passenger car occupants in Metropolitan Melbourne. Results showed a significant numbers of occupants were seated out-of-position while travelling on the road and that a number of these were seated in a manner that may possibly result in injury from the deployment of a side airbag. This was particularly so while turning, a situation common in many side impacts. A substantial number of front seat occupants' arms were exposed to severe injury in the event of a side impact crash. These findings highlight a number of aspects of seating behaviour of driver and front passengers that need to be taken into account when designing side impact airbags.

  10. Coach design for the Korean high-speed train: a systematic approach to passenger seat design and layout.

    PubMed

    Jung, E S; Han, S H; Jung, M; Choe, J

    1998-12-01

    Proper ergonomic design of a passenger seat and coach layout for a high-speed train is an essential component that is directly related to passenger comfort. In this research, a systematic approach to the design of passenger seats was described and the coach layout which reflected the tradeoff between transportation capacity and passenger comfort was investigated for the Korean high-speed train. As a result, design recommendations and specifications of the passenger seat and its layout were suggested. The whole design process is composed of four stages. A survey and analysis of design requirement was first conducted, which formed the base for designing the first and second class passenger seats. Prototypes were made and evaluated iteratively, and seat arrangement and coach layout were finally obtained. The systematic approach and recommendations suggested in this study are expected to be applicable to the seat design for public transportations and to help modify and redesign existing vehicular seats.

  11. Proposed test method for and evaluation of wheelchair seating system (WCSS) crashworthiness.

    PubMed

    van Roosmalen, L; Bertocci, G; Ha, D R; Karg, P; Szobota, S

    2000-01-01

    Safety of motor vehicle seats is of great importance in providing crash protection to the occupant. An increasing number of wheelchair users use their wheelchairs as motor vehicle seats when traveling. A voluntary standard requires that compliant wheelchairs be dynamically sled impact tested. However, testing to evaluate the crashworthiness of add-on wheelchair seating systems (WCSS) independent of their wheelchair frame is not addressed by this standard. To address this need, this study developed a method to evaluate the crash-worthiness of WCSS with independent frames. Federal Motor Vehicle Safety Standards (FMVSS) 207 test protocols, used to test the strength of motor vehicle seats, were modified and used to test the strength of three WCSS. Forward and rearward loads were applied at the WCSS center of gravity (CGSS), and a moment was applied at the uppermost point of the seat back. Each of the three tested WCSS met the strength requirements of FMVSS 207. Wheelchair seat-back stiffness was also investigated and compared to motor vehicle seat-back stiffness.

  12. Seat belts are more effective than airbags in reducing thoracic aortic injury in frontal motor vehicle crashes.

    PubMed

    Brasel, Karen J; Quickel, Robert; Yoganandan, Narayan; Weigelt, John A

    2002-08-01

    Airbags reduce the probability of death in frontal collisions, but the effect is small compared with seat belts. Little is known about the influence of seat belts and airbags on the incidence of thoracic aortic injury (TAI). The National Automotive Sampling System database was queried for the years 1993 to 1998 to determine the impact of seat belts and airbags on the incidence of TAI in survivors of frontal motor vehicle crashes. Proportions were compared using the two-sample Z test. Seat belts prevent TAI regardless of airbag deployment. The effect of airbags is limited to those wearing seat belts. In frontal collisions without seat belt use, airbag deployment does not alter TAI incidence. Seat belts are considerably more effective in preventing TAI than airbags after frontal motor vehicle crashes. Prevention efforts should continue to emphasize the use of active restraints. Restraint use should be considered a risk factor in evaluating patients for potential TAI.

  13. Idea Bank.

    ERIC Educational Resources Information Center

    Science Teacher, 1989

    1989-01-01

    Describes classroom activities and models for migration, mutation, and isolation; a diffusion model; Bernoulli's principle; sound in a vacuum; time regression mystery of DNA; seating chart lesson plan; algae mystery laboratory; water as mass; science fair; flipped book; making a cloud; wet mount slide; timer adaptation; thread slide model; and…

  14. Integrating Human Factors into Crew Exploration Vehicle Design

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Baggerman, Susan; Campbell, paul

    2007-01-01

    With NASA's new Vision for Exploration to send humans beyond Earth orbit, it is critical to consider the human as a system that demands early and continuous user involvement, and an iterative prototype/test/redesign process. Addressing human-system interface issues early on can be very cost effective even cost reducing when performed early in the design and development cycle. To achieve this goal within Crew Exploration Vehicle (CEV) Project Office, human engineering (HE) team is formed. Key tasks are to apply HE requirements and guidelines to hardware/software, and provide HE design, analysis and evaluation of crew interfaces. Initial activities included many practice-orientated evaluations using low-fidelity CEV mock-ups. What follows is a description of such evaluations that focused on a HE requirement regarding Net Habitable Volume (NHV). NHV is defined as the total remaining pressurized volume available to on-orbit crew after accounting for the loss of volume due to deployed hardware and structural inefficiencies which decrease functional volume. The goal of the NHV evaluations was to develop requirements providing sufficient CEV NHV for crewmembers to live and perform tasks in support of mission goals. Efforts included development of a standard NHV calculation method using computer models and physical mockups, and crew/ stakeholder evaluations. Nine stakeholders and ten crewmembers participated in the unsuited evaluations. Six crewmembers also participated in a suited evaluation. The mock-up was outfitted with volumetric representation of sub-systems such as seats, and stowage bags. Thirteen scenarios were developed to represent mission/crew tasks and considered to be primary volume drivers (e.g., suit donning) for the CEV. Unsuited evaluations included a structured walkthrough of these tasks. Suited evaluations included timed donning of the existing launch and entry suit to simulate a contingency scenario followed by doffing/ stowing of the suits. All mockup evaluations were videotaped. Structured questionnaires were used to document user interface issues and volume impacts of layout configuration. Computer model and physical measures of the NHV agreed within 1 percent. This included measurement of the gross habitable volume, subtraction of intrusive volumes, and other non-habitable spaces. Calculation method developed was validated as a standard means of measuring NHV, and was recommended as a verification method for the NHV requirements. Evaluations confirmed that there was adequate volume for unsuited scenarios and suit donning/ doffing activity. Seats, suit design stowage and waste hygiene system noted to be critical volume drivers. The low-fidelity mock-up evaluations along with human modeling analysis generated discussions that will lead to high-level systems requirements and human-centered design decisions. This approach allowed HE requirements and operational concepts to evolve in parallel with engineering system concepts and design requirements. As the CEV design matures, these evaluations will continue and help with design decisions, and assessment, verification and validation of HE requirements.

  15. Experimental injury study of children seated behind collapsing front seats in rear impacts.

    PubMed

    Saczalski, Kenneth J; Sances, Anthony; Kumaresan, Srirangam; Burton, Joseph L; Lewis, Paul R

    2003-01-01

    In the mid 1990's the U.S. Department of Transportation made recommendations to place children and infants into the rear seating areas of motor vehicles to avoid front seat airbag induced injuries and fatalities. In most rear-impacts, however, the adult occupied front seats will collapse into the rear occupant area and pose another potentially serious injury hazard to the rear-seated children. Since rear-impacts involve a wide range of speeds, impact severity, and various sizes of adults in collapsing front seats, a multi-variable experimental method was employed in conjunction with a multi-level "factorial analysis" technique to study injury potential of rear-seated children. Various sizes of Hybrid III adult surrogates, seated in a "typical" average strength collapsing type of front seat, and a three-year-old Hybrid III child surrogate, seated on a built-in booster seat located directly behind the front adult occupant, were tested at various impact severity levels in a popular "minivan" sled-buck test set up. A total of five test configurations were utilized in this study. Three levels of velocity changes ranging from 22.5 to 42.5 kph were used. The average of peak accelerations on the sled-buck tests ranged from approximately 8.2 G's up to about 11.1 G's, with absolute peak values of just over 14 G's at the higher velocity change. The parameters of the test configuration enabled the experimental data to be combined into a polynomial "injury" function of the two primary independent variables (i.e. front seat adult occupant weight and velocity change) so that the "likelihood" of rear child "injury potential" could be determined over a wide range of the key parameters. The experimentally derived head injury data was used to obtain a preliminary HIC (Head Injury Criteria) polynomial fit at the 900 level for the rear-seated child. Several actual accident cases were compared with the preliminary polynomial fit. This study provides a test efficient, multi-variable, method to compare the injury biomechanical data with actual accident cases.

  16. A New Frontier in a New Domain of Space

    NASA Astrophysics Data System (ADS)

    Mann, Alfred K.

    2004-07-01

    A deep-seated belief in the existence of a primordial atomistic structure of matter has not always been present in human thinking. The religions of ancient eastern civilizations---essentially spiritual in nature---did not concern themselves with such a speculation, and Christianity of the Middle Ages---essentially rational and deistic in nature---repudiated it.

  17. Patterns of severe injury in pediatric car crash victims: Crash Injury Research Engineering Network database.

    PubMed

    Brown, J Kristine; Jing, Yuezhou; Wang, Stewart; Ehrlich, Peter F

    2006-02-01

    Motor vehicle crashes (MVCs) account for 50% of pediatric trauma. Safety improvements are typically tested with child crash dummies using an in vitro model. The Crash Injury Research Engineering Network (CIREN) provides an in vivo validation process. Previous research suggest that children in lateral crashes or front-seat locations have higher Injury Severity Scale scores and lower Glasgow Coma Scale scores than those in frontal-impact crashes. However, specific injury patterns and crash characteristics have not been characterized. Data were collected from the CIREN multidisciplinary crash reconstruction network (10 pediatric trauma centers). Injuries were examined with regard to crash direction (frontal/lateral), restraint use, seat location, and change in velocity at impact (DeltaV). Injuries were limited to Abbreviated Injury Scale (AIS) scores of 3 or higher and included head, thoracic, abdominal, pelvic, spine, and long bone (orthopedic) injuries. Standard age groupings (0-4, 5-9, 10-14, and 15-18 years) were used. Statistical analyses used Fisher's Exact test and multiple logistic regressions. Four hundred seventeen MVCs with 2500 injuries were analyzed (males = 219, females = 198). Controlling for DeltaV and age, children in lateral-impact crashes (n = 232) were significantly more likely to suffer severe injuries to the head and thorax as compared with children in frontal crashes (n = 185), who were more likely to suffer severe spine and orthopedic injuries. Children in a front-seat (n = 236) vs those in a back-seat (n = 169) position had more injuries to the thoracic (27% vs 17%), abdominal (21% vs 13%), pelvic (11% vs 1%), and orthopedic (28% vs 10%) regions (P < .05 for all). Seat belts were protective for pelvic (5% vs 12% unbelted) and orthopedic (15% vs 40%) injuries (odds ratio = 3, P < .01 for both). A reproducible pattern of injury is noted for children involved in lateral-impact crashes characterized by head and chest injuries. The Injury Severity Scale scores were higher for children in front-seat positions. Increased lateral-impact safety measures such as mandatory side curtain airbags may decrease morbidity. Furthermore, continued public education for positioning children in the back seat of cars is warranted.

  18. 75 FR 9390 - Availability of Seats for the Cordell Bank National Marine Sanctuary Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ...The ONMS is seeking applications for the following vacant seats on the Cordell Bank National Marine Sanctuary Advisory Council: Fishing, Primary and Alternate seats; Maritime Activities, Primary and Alternate seats; Community-at-Large Sonoma County, Primary and Alternate seats. Applicants are chosen based upon their particular expertise and experience in relation to the seat for which they are applying; community and professional affiliations; philosophy regarding the protection and management of marine resources; and possibly the length of residence in the area affected by the sanctuary. Applicants who are chosen as members should expect to serve three-year terms, pursuant to the council's Charter.

  19. 76 FR 12069 - Availability of Seats for the Cordell Bank National Marine Sanctuary Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ...The ONMS is seeking applications for the following vacant seats on the Cordell Bank National Marine Sanctuary Advisory Council: Fishing, Primary and Alternate seats; Research, Primary and Alternate seats; Community-at-Large Mann County, Primary and Alternate seats. Applicants are chosen based upon their particular expertise and experience in relation to the seat for which they are applying; community and professional affiliations; philosophy regarding the protection and management of marine resources; and possibly the length of residence in the area affected by the sanctuary. Applicants who are chosen as members should expect to serve three-year terms, pursuant to the council's Charter.

  20. Development of crashworthy passenger seats for general-aviation aircraft

    NASA Technical Reports Server (NTRS)

    Reilly, M. J.; Tanner, A. E.

    1979-01-01

    Two types of energy absorbing passenger seat concepts suitable for installation in light twin-engine fixed wing aircraft were developed. An existing passenger seat for such an aircraft was used to obtain the envelope constraints. Ceiling suspended and floor supported seat concept designs were developed. A restraint system suitable for both concepts was designed. Energy absorbing hardware for both concepts was fabricated and tension and compression tests were conducted to demonstrate the stroking capability and the force deflection characteristics. Crash impact analysis was made and seat loads developed. The basic seat structures were analyzed to determine the adequacy of their strength under impact loading.

  1. The effect of shaped wheelchair cushion and lumbar supports on under-seat pressure, comfort, and pelvic rotation.

    PubMed

    Samuelsson, Kersti; Björk, Maarit; Erdugan, Ann-Marie; Hansson, Anna-Karin; Rustner, Birgitta

    2009-09-01

    A wheelchair seat and position help clients perform daily activities. The comfort of the wheelchair can encourage clients to participate in daily activities and can help prevent future complications. This study evaluates how a shaped seat-cushion and two different back supports affect under-seat pressure, comfort, and pelvic rotation. Thirty healthy subjects were tested using two differently equipped manual wheelchairs. One wheelchair had a Velcro adjustable back seat and a plane seat-cushion. The other wheelchair had a non-adjustable sling-back seat and a plane cushion. The second wheelchair was also equipped with a shaped cushion and/or a detachable lumbar support. Under-seat pressure, estimated comfort, and pelvic rotation were measured after 10 min in each wheelchair outfit. Peak pressure increased with the shaped cushion compared to the plane cushion. No significant difference in estimated comfort was found. Pelvic posterior-rotation was reduced with the adjustable or detachable back-support irrespective of the shape of the seat cushion. To support a neutral pelvic position and spinal curvature, a combination of a shaped cushion and a marked lumbar support is most effective.

  2. Design and testing of an energy-absorbing crewseat for the F/FB-111 aircraft. Volume 2: Data from seat testing

    NASA Technical Reports Server (NTRS)

    Shane, S. J.

    1985-01-01

    The unacceptably high injury rate during the escape sequence (including the ejection and ground impact) of the crew module for F/FB-111 aircraft is reviewed. A program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats is presented. An energy absorbing test seat is designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions is conducted at a sled test facility. Comparative tests with operational F-111 crewseats are also conducted. After successful dynamic testing of the seat, more testing is conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests are conducted. The vertical drop tests are used to obtain comparative data between the energy absorbing and operational seats. Volume 1 describes the energy absorbing test seat and testing conducted, and evaluates the data from both test series. Volume 2 presents the data obtained during the seat test series, while Volume 3 presents the data from the crew module test series.

  3. Computer Simulation of an Aircraft Seat and Occupant in a Crash Environment. Volume 2. Program SOM-LA (Seat/Occupant Model - Light Aircraft) User Manual

    DTIC Science & Technology

    1983-03-01

    349A9 3 Figure A-8. Program SOM-LA body segment dimensions. _ t m • •m v m--, • v_ ,• W:•---:x:--:’ ,•-•• •--" ..- • % ’"•Z>L r -L.J :•":’. 7=- 2 J7.ŗZ...offset from the mid-saggital plane, and the anterior offset of the major upper body segment (lower torso, upper torso, and head) center of masses from... body rotation) energy-absorbing scat model. (See figure A-lI for a detailed de- scription of the parameters.) FORMAT AND EXAMPLE: 2 3 4 6 6 7 1 0123 4

  4. Factors associated with rear seating of children in motor vehicles: a study in two low-income, predominantly Hispanic communities.

    PubMed

    Greenberg-Seth, Jennifer; Hemenway, David; Gallagher, Susan S; Lissy, Karen S; Ross, Julie B

    2004-07-01

    This study examined child seating patterns in two predominantly low-income, Hispanic communities in Massachusetts. The purpose was to determine the factors associated with child rear seating in the community as a whole and for a subset of Hispanic motorists. Five hundred and five vehicles carrying child passengers and no adult other than the driver were observed in parking lots of fast food restaurants and grocery stores. Four hundred and thirty-two vehicle drivers agreed to be interviewed. A child was defined as a passenger younger than age 12 as determined by appearance and height (head below the vehicle headrest when seated). Variables under study included driver gender, age, ethnicity, and educational attainment; driver shoulder belt use; driver perception of passenger-side airbag presence; and the number and ages of children in the car. Overall, 51% of vehicles were observed with all children seated in the rear. In a bivariate analysis, child rear seating was strongly associated with female drivers ( P = 0.01), younger drivers ( P = 0.02) driver shoulder belt use ( P < 0.00), perceived presence of a passenger-side airbag ( P < 0.00), all children in the vehicle

  5. Trends in child passenger safety practices in Indiana from 2009 to 2015.

    PubMed

    O'Neil, Joseph; Bull, Marilyn J; Talty, Judith

    2018-02-28

    This study reviews trends in rear-facing direction, top tether use, booster seat use, and seating position for children 12 years or younger among motor vehicle passengers in Indiana. This is an observational, cross-sectional survey of drivers transporting children 15 years and younger collected at 25 convenience locations randomly selected in Indiana during summers of 2009-2015. Observations were conducted by certified child passenger safety technicians (CPST). As the driver completed a written survey collecting demographic data on the driver, the CPST recorded the child demographic data, vehicle seating location, the type of restraint, direction the car safety seat (CSS) was facing, and use of the CSS harness or safety belt as appropriate. Data were analyzed for infants and toddlers younger than 24 months, children in forward-facing CSS, booster seat use, and seating position for children 12 years or younger. During the study period, 4,876 drivers were queried, and 7,725 children 15 years and younger were observed in motor vehicles. Between 2009 and 2015, 1,115 infants and toddlers (age birth to 23 months) were observed in motor vehicles. For infants <1 year, rear-facing increased from 84% to 91%. During the study years the greatest increase in rear facing was for toddlers age 12-17 months (12-61%). Rear facing for those from 18-23 months did not significantly change. Of the 1,653 vehicles observed with a forward-facing car seat, using either the seat belt system or lower anchors, an average of 27% had the top tether attached. For installations of forward-facing seats using the lower anchor, 66% employed the top tether. Among children age 4-7 years observed booster seat use decreased from 72% to 65% during the observation period. Finally, for vehicle seating position, in our sample, more than 85% of children 12 years or younger were seated in a rear seat vehicle position. Unfortunately, 31% of 8- to 12-year-old children were observed in the front seat. Overall, these trends demonstrate an improvement in child passenger safety practices among Indiana drivers. However, this study illuminates areas to improve child passenger safety, such as rear facing for toddlers 18 to 23 months, increasing top tether use, booster seat use, and an emphasis on rear seat position for children 8 to 12 years. This information can be used by primary care providers and child passenger safety technicians and other child passenger safety advocates to develop counseling points and targeted educational campaigns.

  6. Shock Mitigating Seat Single Impact Program

    DTIC Science & Technology

    2014-04-24

    new seats from Shockwave, SHOXS and Zodiac , were tested during the third and fourth phases of the final test program and these were conducted between...test program to the four single jockey style seats from Shockwave, SHOXS, Ullman and Zodiac because of budget and time constraints. The program...along with the Zodiac jockey pod seat that replaced the Ullman seat. 2711 (NETE CS) ZT4110-R 23 April 2014 QF035 32/39 Rev. 05/2011.11.14 69. The

  7. Simulation of Adaptive Seat Energy Absorber for Military Rotorcraft Crash Safety Enhancement

    DTIC Science & Technology

    2014-04-01

    design guidelines and detailed requirements were developed for military crew seats as defined in MIL-S-85510(AS) (12) and for civil rotorcraft seats in...rotorcraft vertical crash pulse as stipulated in military design standards was used to evaluate the performance of MREA seat energy absorber with a...Desjardins, S. P.; Zimmerman, R. E.; Bolukbasi, A. O.; Merritt, N. A. Aircraft Crash Survival Design Guide Vol. IV – Aircraft Seats , Restraints, Litters

  8. Evaluation of Safe Kids Week 2004: Age 4 to 9? It's Booster Seat Time!

    PubMed Central

    Howard, A; Beben, N; Rothman, L; Fiissel, D; MacArthur, C

    2006-01-01

    Objective To assess the effectiveness of a national one week media campaign promoting booster seat use. Design Pre‐test, post‐test design based on nationally representative random digit dialing telephone survey, with control for exposure to campaign. Setting Canada. Subjects Parents of children aged 4–9 years. Interventions During a one week campaign in May 2004, information on booster seat use was distributed via a national media campaign, retail stores, medical clinics, and community events. Information included pamphlets with guidelines for booster seat use, as well as a growth chart (designed by Safe Kids Canada) to assist parents in determining if their child should be using a booster seat. Assessing seat belt fit was described in detail on the growth chart. Main outcome measures Knowledge, attitudes, and self‐reported behaviors regarding booster seat use. Results Respondents in the group exposed to the campaign were twice as likely to report using a booster seat with lap and shoulder belt for their child (47%), compared to those in the pre‐test (24%) and the unexposed (23%) groups (p<0.001). However, only small differences in general knowledge regarding booster seat use were found between the groups. Conclusions A one week national media campaign substantially increased self‐reported use of booster seats. Parents did not remember details of the campaign content, but did remember implications for their own child. PMID:17018673

  9. Thirty years of anthropometric changes relevant to the width and depth of transportation seating spaces, present and future.

    PubMed

    Molenbroek, J F M; Albin, T J; Vink, P

    2017-11-01

    This paper reports the results of an investigation into changes in body shape anthropometry over the past several decades and discusses the impact of those changes on seating in transport, especially airliners. Changes in some body shape dimensions were confirmed in a sample of students at TU Delft; several of the changes, e.g. hip breadth, seated, are relevant to the ongoing design of seating. No change in buttock knee length was observed. The fit between current user anthropometry and current airline seat design, especially regarding seat width, was investigated. A comparison of the average current seat breadth with global anthropometric data suggests that accommodation may be problematic, with less than optimal width for passengers' shoulder and elbow widths. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. All metal valve structure for gas systems

    DOEpatents

    Baker, Ray W.; Pawlak, Donald A.; Ramey, Alford J.

    1984-11-13

    A valve assembly with a resilient metal seat member is disclosed for providing a gas-tight seal in a gas handling system. The valve assembly also includes a valve element for sealing against the valve seat member; and an actuating means for operating the valve element. The valve seat member is a one-piece stainless steel ring having a central valve port and peripheral mounting flange, and an annular corrugation in between. A groove between the first and second ridges serves as a flexure zone during operation of the valve member and thus provides the seating pressure between the inner ridge or valve seat and the valve element. The outer annular ridge has a diameter less than said valve element to limit the seating motion of the valve element, preventing non-elastic deformation of the seat member.

  11. Design and testing of an energy-absorbing crewseat for the F/FB-111 aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Shane, S. J.

    1985-01-01

    A program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats is explored. An energy-absorbing test seat was designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions, was conducted at a sled test facility. Comparative tests with operational F-111 crewseats were also conducted. After successful dynamic testing of the seat, more testing was conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests were conducted. The vertical drop tests were used to obtain comparative data between the energy-absorbing and operational seats. Volume 1 describes the energy absorbing test seat and testing conducted, and evaluates the data from both test series.

  12. All-metal valve structure for gas systems

    DOEpatents

    Baker, R.W.; Pawlak, D.A.; Ramey, A.J.

    1982-06-10

    A valve assembly with a resilient metal seat member is disclosed for providing a gas-tight seal in a gas handling system. The valve assembly also includes a valve element for sealing against the valve seat member; and an actuating means for operating the valve element. The valve seat member is a one-piece stainless steel ring having a central valve port and peripheral mounting flange, and an annular corrugation in between. A groove between the first and second ridges serves as a flexure zone during operation of the valve member and thus provides the seating pressure between the inner ridge or valve seat and the valve element. The outer annular ridge has a diameter less than said valve element to limit the seating motion of the valve element, preventing non-elastic deformation of the seat member.

  13. A kinematic and kinetic analysis of the sit-to-stand transfer using an ejector chair: implications for elderly rheumatoid arthritic patients.

    PubMed

    Munro, B J; Steele, J R; Bashford, G M; Ryan, M; Britten, N

    1998-03-01

    Twelve elderly female rheumatoid arthritis patients (mean age = 65.5 +/- 8.6 yr) were assessed rising from an instrumented Eser Ejector chair under four conditions: high seat (540 mm), low seat (450 mm), with and without the ejector mechanism operating. Sagittal plane motion, ground reaction forces, and vertical chair arm rest forces were recorded during each trial with the signals synchronised at initial subject head movement. When rising from a high seat, subjects displayed significantly (p < 0.05) greater time to seat off; greater trunk, knee and ankle angles at seat off; increased ankle angular displacement; decreased knee angular displacement; and decreased total net and normalised arm rest forces compared to rising from a low seat. When rising using the ejector mechanism, time to seat off and trunk and knee angle at seat off significantly increased, whereas trunk and knee angular displacement, and total net and normalised arm rest forces significantly decreased compared to rising unassisted. Regardless of seat height or ejector mechanism use, there were no significant differences in the peak, or time to peak horizontal velocity of the subjects' total body centre of mass, or net knee and ankle moments. It was concluded that increased seat height and use of the ejector mechanism facilitated sit-to-stand transfers performed by elderly female rheumatoid arthritic patients. However, using the ejector chair may be preferred by these patients compared to merely raising seat height because it does not necessitate the use of a footstool, a possible obstacle contributing to falls.

  14. Seating type and cognitive performance after 3 hours travel by high-speed boat in sea states 2-3.

    PubMed

    McMorris, Terry; Myers, Stephen; Dobbins, Trevor; Hall, Ben; Dyson, Rosemary

    2009-01-01

    Transit in high-speed marine craft subjects occupants to a rough ride as the boat impacts the waves. This induces high levels of physical stress, which may inhibit cognitive performance during military operations and life-saving activities. Land-based research suggests that suspension seats reduce vibration and, therefore, stress. We hypothesized that subjects using suspension seats would demonstrate better cognitive performance, lower perceptions of exertion, fatigue, and sleepiness, and lower salivary concentrations of cortisol than those using fixed seats. Subjects, naval personnel, were divided into fixed (N = 6) and suspension seat (N = 6) groups. Subjects undertook forward and backward number recall and random number generation tests pre- and post-transit (3 h in sea states 2-3). Salivary cortisol concentrations were sampled pre- (1100 h) and post-transit (1700 h) and at the same times on a control day. Post-transit perceptions of exertion, fatigue, and sleepiness were measured subjectively. The suspension seat group demonstrated better performance post-transit than the fixed seat group for forward number recall and showed a significant pre- to post-transit improvement in backward number recall. The suspension seat group reported less fatigue and sleepiness. The suspension seat group had significantly higher salivary cortisol concentrations than the fixed seat group post-transit. Regression analyses found a quadratic correlation between delta cortisol concentrations and delta random number generation scores (R2 = 0.68). Results show that the use of suspension seats during transit in high-speed marine craft may be advantageous with regard to cognitive performance.

  15. Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes.

    PubMed

    Wen, Liewei; Ding, Wenzheng; Yang, Sihua; Xing, Da

    2016-01-01

    The ultra-short pulse microwave could excite to the strong thermoacoustic (TA) shock wave and deeply penetrate in the biological tissues. Based on this, we developed a novel deep-seated tumor therapy modality with mitochondria-targeting single wall carbon nanotubes (SWNTs) as microwave absorbing agents, which act efficiently to convert ultra-short microwave energy into TA shock wave and selectively destroy the targeted mitochondria, thereby inducing apoptosis in cancer cells. After the treatment of SWNTs (40 μg/mL) and ultra-short microwave (40 Hz, 1 min), 77.5% of cancer cells were killed and the vast majority were caused by apoptosis that initiates from mitochondrial damage. The orthotopic liver cancer mice were established as deep-seated tumor model to investigate the anti-tumor effect of mitochondria-targeting TA therapy. The results suggested that TA therapy could effectively inhibit the tumor growth without any observable side effects, while it was difficult to achieve with photothermal or photoacoustic therapy. These discoveries implied the potential application of TA therapy in deep-seated tumor models and should be further tested for development into a promising therapeutic modality for cancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Reconfiguration of the upper extremity relative to the pushrim affects load distribution during wheelchair propulsion.

    PubMed

    Munaretto, Joseph M; McNitt-Gray, Jill L; Flashner, Henryk; Requejo, Philip S

    2013-08-01

    Repetitive loading during manual wheelchair propulsion (WCP) is associated with overuse injury to the upper extremity (UE). The aim of this study was to determine how RF redirection and load distribution are affected by changes upper extremity kinematic modifications associated with modifications in seat positions during a WCP task. The aim of this study was to determine how RF redirection and load distribution are affected by upper extremity kinematic changes associated with seat position adjustment during a WCP task. Dynamic simulations using an experiment-based multi-link inverse dynamics model were used to generate solutions for redistributing UE mechanical load in different seating positions without decrements in WCP task performance. Experimental RF and kinematic data were collected for one subject propelling at a self-selected speed and used as input into the model. Shoulder/axle distance, wrist angular position, and RF direction were systematically modified to simulate how the mechanical demand imposed on the upper extremity (elbow and shoulder net joint moments (NJMs) and net joint forces) may vary. Load distribution depended on UE orientation relative to the wheel. At peak force, lower shoulder/axle distances and more anterior wrist positions on the pushrim allowed for more extended elbow positions and reduced total NJM load. Simulation results incorporating subject-specific data may provide mechanically based information to guide clinical interventions that aim to maintain WCP performance and redistribute load by modifying RF direction, seat configuration and hand/rim interaction. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Match between classroom dimensions and students' anthropometry: re-equipment according to European educational furniture standard.

    PubMed

    Macedo, Angela C; Morais, André V; Martins, Henriqueta F; Martins, João C; Pais, Silvina M; Mayan, Olga S

    2015-02-01

    The aim of this study was to investigate mismatch between students and classroom furniture dimensions and evaluate the improvement in implementing the European furniture standard. In Portugal, school furniture does not meet any national ergonomic criteria, so it cannot fit students' anthropometric measures. A total of 893 students belonging to third (7th through 9th grades) and secondary (10th through 12th grades) cycles participated in the study. Anthropometric measurements of the students were gathered in several physical education classes. The furniture dimensions were measured for two models of tables and seats. Several two-way equations for match criteria based on published studies were applied to data. The percentage of students who match with classroom furniture dimensions is low (24% and 44% between table and students, 4% and 9% between seat and students at 7th and 12th grades, respectively). Table is high for the third cycle, seat is high for both cycles, and seat depth fits well to students. No significant relationship was found between ergonomic mismatch and prevalence of pain. For each cycle, at least two different sizes indicated in the European standard should be available to students, considering the large variability in body dimensions within each cycle. The match criteria used gives a large percentage of students without pain in a mismatch situation. Future measures applying to secondary schools should revise the decision of selecting a single size of classroom furniture and improve the implementation of the European standard. New criteria for ergonomic mismatch are needed that more closely model the responses about discomfort/pain.

  18. Correlates of front-seat passengers' non-use of seatbelts at night.

    PubMed

    Boakye, Kwaku F; Khattak, Asad; Everett, Jerry; Nambisan, Shashi

    2018-04-18

    When properly worn, seatbelts can save lives. They are designed to prevent occupants from hitting objects inside their vehicle and from being ejected out of their vehicle in the event of a crash. Despite their proven effectiveness in reducing the severity of injuries, seatbelt non-use among passengers still remains a problem, especially at night. Although the factors associated with not using a seatbelt have been widely studied, research studies documenting this behavior at night are limited in the literature. The primary objective of this paper is to explore the factors related to front-seat passengers' seatbelt non-use at night using a 2015-2016 longitudinal observation survey conducted in five counties in East Tennessee. The Generalized Estimating Equation, a rigorous modeling technique, is employed for the data analysis. The findings show that front-seat passengers who are most likely to not wear seatbelts at night are males, traveling in passenger cars and pickup trucks, traveling during the first half of the year (January to June), traveling late at night (after 10 p.m) and on local streets. The findings also indicate that drivers may have the greatest influence on their accompanying passengers' seatbelt use. That is, when drivers fail to wear seatbelts at night, their accompanying front-seat passengers are more likely to fail as well. The model results show that there are many consistent correlations between the non-use of seatbelts and personal, vehicle and environmental characteristics. Accounting for these factors may be important when developing intervention strategies that promote nighttime seatbelt use. Published by Elsevier Ltd.

  19. Pilot tests of a seat belt gearshift delay on the belt use of commercial fleet drivers.

    DOT National Transportation Integrated Search

    2009-12-01

    the seat belt was buckled. Participants, commercial drivers from the United States and Canada who did not consistently wear their seat belts, could avoid the delay by fastening their seat belts. Unbelted participants experienced a delay of either a c...

  20. Video monitoring system for car seat

    NASA Technical Reports Server (NTRS)

    Elrod, Susan Vinz (Inventor); Dabney, Richard W. (Inventor)

    2004-01-01

    A video monitoring system for use with a child car seat has video camera(s) mounted in the car seat. The video images are wirelessly transmitted to a remote receiver/display encased in a portable housing that can be removably mounted in the vehicle in which the car seat is installed.

Top