Hong, Huixiao; Branham, William S; Ng, Hui Wen; Moland, Carrie L; Dial, Stacey L; Fang, Hong; Perkins, Roger; Sheehan, Daniel; Tong, Weida
2015-02-01
One endocrine disruption mechanism is through binding to nuclear receptors such as the androgen receptor (AR) and estrogen receptor (ER) in target cells. The concentration of a chemical in serum is important for its entry into the target cells to bind the receptors, which is regulated by the serum proteins. Human sex hormone-binding globulin (SHBG) is the major transport protein in serum that can bind androgens and estrogens and thus change a chemical's availability to enter the target cells. Sequestration of an androgen or estrogen in the serum can alter the chemical elicited AR- and ER-mediated responses. To better understand the chemical-induced endocrine activity, we developed a competitive binding assay using human pregnancy plasma and measured the binding to the human SHBG for 125 structurally diverse chemicals, most of which were known to bind AR and ER. Eighty seven chemicals were able to bind the human SHBG in the assay, whereas 38 chemicals were nonbinders. Binding data for human SHBG are compared with that for rat α-fetoprotein, ER and AR. Knowing the binding profiles between serum and nuclear receptors will improve assessment of a chemical's potential for endocrine disruption. The SHBG binding data reported here represent the largest data set of structurally diverse chemicals tested for human SHBG binding. Utilization of the SHBG binding data with AR and ER binding data could enable better evaluation of endocrine disrupting potential of chemicals through AR- and ER-mediated responses since sequestration in serum could be considered. Published by Oxford University Press on behalf of the Society of Toxicology 2014. This work is written by US Government employees and is in the public domain in the US.
Adams, Ralph; Griffin, Laura; Compson, Joanne E; Jairaj, Mark; Baker, Terry; Ceska, Tom; West, Shauna; Zaccheo, Oliver; Davé, Emma; Lawson, Alastair Dg; Humphreys, David P; Heywood, Sam
2016-10-01
We generated an anti-albumin antibody, CA645, to link its Fv domain to an antigen-binding fragment (Fab), thereby extending the serum half-life of the Fab. CA645 was demonstrated to bind human, cynomolgus, and mouse serum albumin with similar affinity (1-7 nM), and to bind human serum albumin (HSA) when it is in complex with common known ligands. Importantly for half-life extension, CA645 binds HSA with similar affinity within the physiologically relevant range of pH 5.0 - pH 7.4, and does not have a deleterious effect on the binding of HSA to neonatal Fc receptor (FcRn). A crystal structure of humanized CA645 Fab in complex with HSA was solved and showed that CA645 Fab binds to domain II of HSA. Superimposition with the crystal structure of FcRn bound to HSA confirmed that CA645 does not block HSA binding to FcRn. In mice, the serum half-life of humanized CA645 Fab is 84.2 h. This is a significant extension in comparison with < 1 h for a non-HSA binding CA645 Fab variant. The Fab-HSA structure was used to design a series of mutants with reduced affinity to investigate the correlation between the affinity for albumin and serum half-life. Reduction in the affinity for MSA by 144-fold from 2.2 nM to 316 nM had no effect on serum half-life. Strikingly, despite a reduction in affinity to 62 µM, an extension in serum half-life of 26.4 h was still obtained. CA645 Fab and the CA645 Fab-HSA complex have been deposited in the Protein Data Bank (PDB) with accession codes, 5FUZ and 5FUO, respectively.
NASA Astrophysics Data System (ADS)
Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka-Zubik, J.; Szkudlarek-Haśnik, A.; Zubik-Skupień, I.; Góra, A.; Dubas, M.; Korzonek-Szlacheta, I.; Wielkoszyński, T.; Żurawiński, W.; Sosada, K.
2012-04-01
Theophylline, popular diuretic, is used to treat asthma and bronchospasm. In blood it forms complexes with albumin, which is also the main transporter of fatty acids. The aim of the present study was to describe the influence of fatty acids (FA) on binding of theophylline (Th) to human serum albumin (HSA) in the high affinity binding sites. Binding parameters have been obtained on the basis of the fluorescence analysis. The data obtained for the complex of Th and natural human serum albumin (nHSA) obtained from blood of obese patients qualified for surgical removal of stomach was compared with our previous studies on the influence of FA on the complex of Th and commercially available defatted human serum albumin (dHSA).
The impact of serum incubation time on IgM/IgG binding to porcine aortic endothelial cells.
Zhang, Zhongqiang; Gao, Bingsi; Zhao, Chengjiang; Long, Cassandra; Qi, Haizhi; Ezzelarab, Mohamed; Cooper, David Kc; Hara, Hidetaka
2017-07-01
The results of the assay for measuring anti-non-Gal antibodies (which affect pig xenograft survival) in recipients are important. Serum incubation time and concentration may be important factors in the extent of antibody binding to the graft. The aim of this in vitro study was to determine the optimal incubation time and serum concentration for measuring anti-non-Gal antibody binding to porcine aortic endothelial cells (pAECs). Pooled human, naive, and sensitized baboon sera were incubated with wild-type, α1,3-galactosyltransferase gene-knockout (GTKO), and GTKO/human CD55 pAECs. IgM/IgG binding to pAECs after varying serum incubation times (0.5, 1, 2, and 3 hour) and concentrations (5, 10, 20, and 40 μL) was determined by flow cytometry. An increase in incubation time from 30 minutes to 2 hour was associated with increases in anti-non-Gal IgM/IgG binding to GTKO and GTKO/hCD55 pAECs of pooled human, naive and sensitized baboon sera (P<.05). Pooled human serum showed a significant increase in anti-non-Gal IgM (1.5 times) and a minimal increase in anti-non-Gal IgG antibody binding. IgM/IgG binding of sensitized baboon serum to GTKO pAECs after 2-hour incubation was 1.5 times and 2 times greater than after 30-minutes incubation, respectively, whereas naïve baboon sera showed minimal (non-significant) increase in anti-non-Gal IgM/IgG antibody binding. With 2-hour incubation, increasing the serum concentration from 5 μL to 20 μL significantly increased antibody binding to non-Gal antigens in pooled human and sensitized baboon serum. With naïve baboon serum, only IgG was significantly increased. Increasing the serum incubation time contributed to improve the sensitivity of detecting anti-non-Gal antibodies, without affecting cell viability in vitro. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Orlov, Sergey; Goncharova, Iryna; Urbanová, Marie
Although recent investigations have shown that bilirubin not only has a negative role in the organism but also exhibits significant antimutagenic properties, the mechanisms of interactions between bilirubin and mutagens are not clear. In this study, interaction between bilirubin bound to different binding sites of mammalian serum albumins with structural analogues of the mutagens 2-aminofluorene, 2,7-diaminofluorene and mutagen 2,4,7-trinitrofluorenone were investigated by circular dichroism and absorption spectroscopy. Homological human and bovine serum albumins were used as chiral matrices, which preferentially bind different conformers of bilirubin in the primary binding sites and make it observable by circular dichroism. These molecular systems approximated a real system for the study of mutagens in blood serum. Differences between the interaction of bilirubin bound to primary and to secondary binding sites of serum albumins with mutagens were shown. For bilirubin bound to secondary binding sites with low affinity, partial displacement and the formation of self-associates were observed in all studied mutagens. The associates of bilirubin bound to primary binding sites of serum albumins are formed with 2-aminofluorene and 2,4,7-trinitrofluorenone. It was proposed that 2,7-diaminofluorene does not interact with bilirubin bound to primary sites of human and bovine serum albumins due to the spatial hindrance of the albumins binding domains. The spatial arrangement of the bilirubin bound to serum albumin along with the studied mutagens was modelled using ligand docking, which revealed a possibility of an arrangement of the both bilirubin and 2-aminofluorene and 2,4,7-trinitrofluorenone in the primary binding site of human serum albumin.
Daughaday, W H; Trivedi, B
1987-07-01
It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, we have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of 125I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Nonspecific binding was determined when 125I-hGH was incubated with serum in the presence of an excess of GH. Results are expressed as percent of specifically bound 125I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. We suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor.
Daughaday, W H; Trivedi, B
1987-01-01
It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, we have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of 125I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Nonspecific binding was determined when 125I-hGH was incubated with serum in the presence of an excess of GH. Results are expressed as percent of specifically bound 125I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. We suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor. PMID:3474620
Binding of Soluble Yeast β-Glucan to Human Neutrophils and Monocytes is Complement-Dependent
Bose, Nandita; Chan, Anissa S. H.; Guerrero, Faimola; Maristany, Carolyn M.; Qiu, Xiaohong; Walsh, Richard M.; Ertelt, Kathleen E.; Jonas, Adria Bykowski; Gorden, Keith B.; Dudney, Christine M.; Wurst, Lindsay R.; Danielson, Michael E.; Elmasry, Natalie; Magee, Andrew S.; Patchen, Myra L.; Vasilakos, John P.
2013-01-01
The immunomodulatory properties of yeast β-1,3/1,6 glucans are mediated through their ability to be recognized by human innate immune cells. While several studies have investigated binding of opsonized and unopsonized particulate β-glucans to human immune cells mainly via complement receptor 3 (CR3) or Dectin-1, few have focused on understanding the binding characteristics of soluble β-glucans. Using a well-characterized, pharmaceutical-grade, soluble yeast β-glucan, this study evaluated and characterized the binding of soluble β-glucan to human neutrophils and monocytes. The results demonstrated that soluble β-glucan bound to both human neutrophils and monocytes in a concentration-dependent and receptor-specific manner. Antibodies blocking the CD11b and CD18 chains of CR3 significantly inhibited binding to both cell types, establishing CR3 as the key receptor recognizing the soluble β-glucan in these cells. Binding of soluble β-glucan to human neutrophils and monocytes required serum and was also dependent on incubation time and temperature, strongly suggesting that binding was complement-mediated. Indeed, binding was reduced in heat-inactivated serum, or in serum treated with methylamine or in serum reacted with the C3-specific inhibitor compstatin. Opsonization of soluble β-glucan was demonstrated by detection of iC3b, the complement opsonin on β-glucan-bound cells, as well as by the direct binding of iC3b to β-glucan in the absence of cells. Binding of β-glucan to cells was partially inhibited by blockade of the alternative pathway of complement, suggesting that the C3 activation amplification step mediated by this pathway also contributed to binding. PMID:23964276
Binding of human serum proteins to titanium dioxide particles in vitro.
Zaqout, Mazen S K; Sumizawa, Tomoyuki; Igisu, Hideki; Higashi, Toshiaki; Myojo, Toshihiko
2011-01-01
To determine the capacity of human serum proteins to bind to titanium dioxide (TiO(2)) particles of different polymorphs and sizes. TiO(2) particles were mixed with diluted human serum, purified human serum albumin (HSA) or purified human serum gamma-globulin (HGG) solutions. After incubation at 37°C for 1 h, the particles were sedimented by centrifugation, and proteins in the supernatant, as well as those bound to the particles, were analyzed. The total protein concentration in the supernatant was lowered by TiO(2), whereas the albumin/globulin ratio was elevated by the particles. Incubation with TiO(2) also lowered the immunoglobulin, pre-albumin, beta2-microglobulin, ceruloplasmin and retinol-binding protein levels, but not ferritin levels, in the supernatant. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), proteins in the supernatant, especially HGG, were observed to decrease, while those released from the particles (after adding 1% SDS and heating) increased, depending on the dose of TiO(2). Purified HGG and HSA were also bound to TiO(2), although the former appeared to have a higher affinity. All the proteins tested showed the highest binding potency to the amorphous particles (<50 nm) and the lowest to the rutile particles (<5,000 nm), while binding to anatase particles was intermediate. The affinity to the larger anatase was higher than that to smaller anatase particles in most cases. Human serum proteins, including the two major components, HSA and HGG, are bound by TiO(2) particles. The polymorph of the particles seems to be important for determining the binding capacity of the particles and it may affect distribution of the particles in the body.
Human CRISP-3 binds serum alpha(1)B-glycoprotein across species.
Udby, Lene; Johnsen, Anders H; Borregaard, Niels
2010-04-01
CRISP-3 was previously shown to be bound to alpha(1)B-glycoprotein (A1BG) in human serum/plasma. All mammalian sera are supposed to contain A1BG, although its presence in rodent sera is not well-documented. Since animal sera are often used to supplement buffers in experiments, in particular such that involve cell cultures, binding proteins present in sera might interfere in the experiments. We examined sera from five different animal species for CRISP-3 binding proteins using gel filtration and ligand blotting. We developed a rapid method for isolation of proteins that bind to human CRISP-3 and identified the isolated proteins by mass spectrometry and N-terminal sequencing. We identified A1BG as a CRISP-3 binding protein in sera from cow, horse and rabbit. CRISP-3 bound kininogen 1 in mouse serum, whereas rat serum showed no CRISP-3 binding activity. In equine serum, we furthermore detected a possible CRISP, already bound to A1BG. It seems to be a common mechanism that A1BGs bind CRISPs, also across species. Apart from the possible physiological implications hereof, complex binding of CRISPs by A1BG (and other proteins) may interfere with the detection and function of CRISPs, when these are studied in the presence of animal sera. Copyright 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Abdullah, Saleh M. S.; Fatma, Sana; Rabbani, Gulam; Ashraf, Jalaluddin M.
2017-01-01
Protein bound toxins are poorly removed by conventional extracorporeal therapies. Venous thromboembolism (VTE) is a major cause of morbidity and mortality in patients with cancer. The interaction between tinzaparin, an inhibitor of angiotensin converting enzyme and human serum albumin, a principal plasma protein in the liver has been investigated in vitro under a simulated physiological condition by UV-vis spectrophotometry and fluorescence spectrometry. The intrinsic fluorescence intensity of human serum albumin was strongly quenched by tinzaparin (TP). The binding constants and binding stoichiometry can be calculated from the data obtained from fluorescence quenching experiments. The negative value of ΔG° reveals that the binding process is a spontaneous process. Thermodynamic analysis shows that the HSA-TP complex formation occurs via hydrogen bonds, hydrophobic interactions and undergoes slight structural changes as evident by far-UV CD. It indicated that the hydrophobic interactions play a main role in the binding of TP to human serum albumin. In addition, the distance between TP (acceptor) and tryptophan residues of human serum albumin (donor) was estimated to be 2.21 nm according to the Förster's resonance energy transfer theory. For the deeper understanding of the interaction, thermodynamic, and molecular docking studies were performed as well. Our docking results suggest that TP forms stable complex with HSA (Kb ∼ 104) and its primary binding site is located in subdomain IIA (Sudlow Site I). The results obtained herein will be of biological significance in pharmacology and clinical medicine.
Alteration of human serum albumin binding properties induced by modifications: A review
NASA Astrophysics Data System (ADS)
Maciążek-Jurczyk, Małgorzata; Szkudlarek, Agnieszka; Chudzik, Mariola; Pożycka, Jadwiga; Sułkowska, Anna
2018-01-01
Albumin, a major transporting protein in the blood, is the main target of modification that affects the binding of drugs to Sudlow's site I and II. These modification of serum protein moderates its physiological function, and works as a biomarker of some diseases. The main goal of the paper was to explain the possible alteration of human serum albumin binding properties induced by modifications such as glycation, oxidation and ageing, their origin, methods of evaluation and positive and negative meaning described by significant researchers.
Probing Cocaine-Antibody Interactions in Buffer and Human Serum
Ramakrishnan, Muthu; Alves De Melo, Fernando; Kinsey, Berma M.; Ladbury, John E.; Kosten, Thomas R.; Orson, Frank M.
2012-01-01
Background Despite progress in cocaine immunotherapy, the kinetic and thermodynamic properties of antibodies which bind to cocaine and its metabolites are not well understood. It is also not clear how the interactions between them differ in a complex matrix such as the serum present in the human body. In the present study, we have used microscale thermophoresis (MST), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) we have evaluated the affinity properties of a representative mouse monoclonal (mAb08) as well as those of polyclonal antibodies purified from vaccinated mouse and human patient serum. Results MST analysis of fluorescently tagged mAb08 binding to cocaine reveals an approximately 15 fold decrease in its equilibrium dissociation constant in 20–50% human serum compared with that in saline buffer. A similar trend was also found using enriched polyclonal antibodies purified from vaccinated mice and patient serum, for which we have used fluorescently tagged bovine serum albumin conjugated to succinyl norcocaine (BSA-SNC). This conjugate closely mimics both cocaine and the hapten used to raise these antibodies. The ITC data also revealed that cocaine has a moderate affinity of about 2 µM to 20% human serum and very little interaction with human serum albumin or nonspecific human IgG at that concentration range. In a SPR inhibition experiment, the binding of mAb08 to immobilized BSA-SNC was inhibited by cocaine and benzoylecgonine in a highly competitive manner, whereas the purified polyclonal antibodies from vaccinated humans and mice, revealed preferential selectivity to pharmacologically active cocaine but not to the inactive metabolite benzoylecgonine. We have also developed a simple binding model to simulate the challenges associated with cocaine immunotherapy using the variable quantitative and kinetic properties of the antibodies. Conclusions High sensitivity calorimetric determination of antibody binding to cocaine and its metabolites provide valuable information for characterization of their interactions and thermodynamic properties. In addition MST measurements of antibody affinity in the presence of biological fluids will provide a better opportunity to make reliable decisions and facilitate the design of cocaine vaccines and immunization conditions. The methods should be more widely adopted in characterization of antibody complexes. PMID:22859949
Shuh, Maureen; Derse, David
2000-01-01
The human T-cell leukemia virus type 1 Tax protein activates the expression of cellular immediate early genes controlled by the serum response element (SRE), which contains both the serum response factor (SRF) binding element (CArG box) and the ternary complex factor (TCF) binding element (Ets box). We show that TCF binding is necessary for Tax activation of the SRE and that Tax directly interacts with TCFs in vitro. In addition, Tax interactions with CREB binding protein (CBP) and p300- and CBP-associated factor were found to be essential for Tax activation of SRF-mediated transcription. PMID:11070040
NASA Astrophysics Data System (ADS)
Tran, Quang Huy; Hanh Nguyen, Thi Hong; Mai, Anh Tuan; Thuy Nguyen, Thi; Khue Vu, Quang; Nga Phan, Thi
2012-03-01
This paper describes the development of electrochemical immunosensors based on human serum antibodies with different immobilization methods for detection of Japanese encephalitis virus (JEV). Human serum containing anti-JEV antibodies was used to immobilize onto the surface of silanized interdigitated electrodes by four methods: direct adsorption (APTES-serum), covalent binding with a cross linker of glutaraldehyde (APTES-GA-serum), covalent binding with a cross linker of glutaraldehyde combined with anti-human IgG (APTES-GA-anti-HIgG-serum) and covalent binding with a cross linker of glutaraldehyde combined with a bioaffinity of protein A (APTES-GA-PrA-serum). Atomic force microscopy was used to verify surface characteristics of the interdigitated electrodes before and after treatment with serum antibodies. The output signal of the immunosensors was measured by the change of conductivity resulting from the specific binding of JEV antigens and serum antibodies immobilized on the electrodes, with the help of horseradish peroxidase (HRP)-labeled secondary antibody against JEV. The results showed that the APTES-GA-PrA-serum method provided the highest signal of the electrochemical immunosensor for detection of JEV antigens, with the linear range from 25 ng ml-1 to 1 μg ml-1, and the limit of detection was about 10 ng ml-1. This study shows a potential development of novel electrochemical immunosensors applied for virus detection in clinical samples in case of possible outbreaks.
NASA Astrophysics Data System (ADS)
Budzisz, Elzbieta; Paneth, Piotr; Geromino, Inacrist; Muzioł, Tadeusz; Rozalski, Marek; Krajewska, Urszula; Pipiak, Paulina; Ponczek, Michał B.; Małecka, Magdalena; Kupcewicz, Bogumiła
2017-06-01
This paper examines the cytotoxic effect of nine compounds with spiropyrazoline structures, and determines the reaction mechanism between diazomethane and selected benzylideneflavanones, their lipophilicity, and their binding ability to human serum albumin. The cytotoxic effect was determined on two human leukaemia cell lines (HL-60 and NALM-6) and melanoma WM-115 cells, as well as on normal human umbilical vein endothelial cells (HUVEC). The highest cytotoxicity was exhibited by compound B7: it was found to have an IC50 of less than 10 μM for all three cancer cell lines, with five to 12-fold lower sensitivity against normal cells (HUVEC). All the compounds exhibit comparable affinity energy in human serum albumin binding (from -8.1 to -8.6 kcal mol-1) but vary in their binding sites depending on the substituent. X-ray crystallography of two derivatives confirmed their synthetic pathway, and their structures were carefully examined.
Borcard, Françoise; Staedler, Davide; Comas, Horacio; Juillerat, Franziska Krauss; Sturzenegger, Philip N; Heuberger, Roman; Gonzenbach, Urs T; Juillerat-Jeanneret, Lucienne; Gerber-Lemaire, Sandrine
2012-09-27
To control the selective adhesion of human endothelial cells and human serum proteins to bioceramics of different compositions, a multifunctional ligand containing a cyclic arginine-glycine-aspartate (RGD) peptide, a tetraethylene glycol spacer, and a gallate moiety was designed, synthesized, and characterized. The binding of this ligand to alumina-based, hydroxyapatite-based, and calcium phosphate-based bioceramics was demonstrated. The conjugation of this ligand to the bioceramics induced a decrease in the nonselective and integrin-selective binding of human serum proteins, whereas the binding and adhesion of human endothelial cells was enhanced, dependent on the particular bioceramics.
Beesoon, Sanjay; Martin, Jonathan W
2015-05-05
Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are among the most prominent contaminants in human serum, and these were historically manufactured as technical mixtures of linear and branched isomers. The isomers display unique pharmacokinetics in humans and in animal models, but molecular mechanisms underlying isomer-specific PFOS and PFOA disposition have not previously been studied. Here, ultrafiltration devices were used to examine (i) the dissociation constants (Kd) of individual PFOS and PFOA isomers with human serum albumin (HSA) and (ii) relative binding affinity of isomers in technical mixtures spiked to whole calf serum and human serum. Measurement of HSA Kd's demonstrated that linear PFOS (Kd=8(±4)×10(-8) M) was much more tightly bound than branched PFOS isomers (Kd range from 8(±1)×10(-5) M to 4(±2)×10(-4) M). Similarly, linear PFOA (Kd=1(±0.9)×10(-4) M) was more strongly bound to HSA compared to branched PFOA isomers (Kd range from 4(±2)×10(-4) M to 3(±2)×10(-4) M). The higher binding affinities of linear PFOS and PFOA to total serum protein were confirmed when both calf serum and human serum were spiked with technical mixtures. Overall, these data provide a mechanistic explanation for the longer biological half-life of PFOS in humans, compared to PFOA, and for the higher transplacental transfer efficiencies and renal clearance of branched PFOS and PFOA isomers, compared to the respective linear isomer.
On the interaction of luminol with human serum albumin: Nature and thermodynamics of ligand binding
NASA Astrophysics Data System (ADS)
Moyon, N. Shaemningwar; Mitra, Sivaprasad
2010-09-01
The mechanism and thermodynamic parameters for the binding of luminol (LH 2) with human serum albumin was explored by steady state and picosecond time-resolved fluorescence spectroscopy. It was shown that out of two possible LH 2 conformers present is solution, only one is accessible for binding with HSA. The thermodynamic parameters like enthalpy (Δ H) and entropy (Δ S) change corresponding to the ligand binding process were also estimated by performing the experiment at different temperatures. The ligand replacement experiment with bilirubin confirms that LH 2 binds into the sub-domain IIA of the protein.
NASA Astrophysics Data System (ADS)
Pronkin, P. G.; Tatikolov, A. S.
2015-07-01
The spectral fluorescence properties of the anionic oxacarbocyanine dye 3,3'-di-(γ-sulfopropyl)-5,5'-diphenyl-9-ethyloxacarbocyanine betaine (OCC) were studied in solutions and in complexes with human serum albumin (HSA). Interaction with HSA leads to a significant increase in the fluorescence of the dye. We studied quenching of the fluorescence of OCC in a complex with HSA by ibuprofen and warfarin. Data on quenching of fluorescence by ibuprofen indicate binding of the dye to binding site II of subdomain IIIA in the HSA molecule. Synchronous fluorescence spectra of human serum albumin in the presence of OCC showed that complexation with OCC does not lead to appreciable rearrangement of the protein molecule at the binding site.
Harmon, Andrew W.; Moitra, Rituparna; Xu, Zhili
2018-01-01
Adenovirus vectors are widely used in gene therapy clinical trials, and preclinical studies with these vectors are often conducted in mice. It is therefore critical to understand whether mouse studies adequately predict the behavior of adenovirus vectors in humans. The most commonly-used adenovirus vectors are derived from adenovirus serotype 5 (Ad5). The Ad5 hexon protein can bind coagulation factor X (FX), and binding of FX has a major impact on vector interactions with other blood proteins. In mouse serum, FX protects Ad5 vectors from neutralization by natural antibodies and complement. In the current study, we similarly find that human FX inhibits neutralization of Ad5 vectors by human serum, and this finding is consistent among individual human sera. We show that human IgM and human IgG can each induce complement-mediated neutralization when Ad5 vectors are not protected by FX. Although mouse and human serum had similar effects on Ad5 vectors, we found that this was not true for a chimeric Ad5 vector that incorporated hexon regions from adenovirus serotype 48. Interestingly, this hexon-chimeric vector was neutralized by human serum, but not by mouse serum. These findings indicate that studies in mouse serum accurately predict the behavior of Ad5 vectors in human serum, but mouse serum is not an accurate model system for all adenovirus vectors. PMID:29401488
NASA Astrophysics Data System (ADS)
Huy, Tran Quang; Hanh, Nguyen Thi Hong; Van Chung, Pham; Anh, Dang Duc; Nga, Phan Thi; Tuan, Mai Anh
2011-06-01
In this paper, we describes different methods to immobilize Japanese encephalitis virus (JEV) antibodies in human serum onto the interdigitated surface of a microelectrode sensor for optimizing electrochemical detection: (1) direct covalent binding to the silanized surface, (2) binding to the silanized surface via a cross-linker of glutaraldehyde (GA), (3) binding to glutaraldehyde/silanized surface via goat anti-human IgG polyclonal antibody and (4) binding to glutaraldehyde/silanized surface via protein A (PrA). Field emission scanning electron microscopy, Fourier transform infrared spectrometry, and fluorescence microscopy are used to verify the characteristics of antibodies on the interdigitated surface after the serum antibodies immobilization. The analyzed results indicate that the use of protein A is an effective choice for immobilization and orientation of antibodies in serum for electrochemical biosensors. This study provides an advantageous immobilization method of serum containing antiviral antibodies to develop electrochemical biosensors for preliminary screening of viruses in clinical samples from outbreaks.
Detection of α-fetoprotein in human serum using carbon nanotube transistor
NASA Astrophysics Data System (ADS)
So, Hye-Mi; Park, Dong-Won; Lee, Seong-Kyu; Kim, Beom Soo; Chang, Hyunju; Lee, Jeong-O.
2009-03-01
We have fabricated antibody-coated carbon nanotube field effect transistor (CNT-FET) sensor for the detection of α-fetoprotein (AFP), single chain glycoprotein of 70 kDa that is normally expressed in the fetal liver, in human serum. The AFP-specific antibodies were immobilized on CNT with linker molecule such as pyrenebutyric acid N-hydroxysuccinimide ester. To prevent nonspecific adsorption of antigen, we performed blocking procedure using bovine serum albumin (BSA). Antibody-antigen binding was determined by measuring electrical conductance change of FET and took an average of thereshold voltage change before and after binding. Also we checked concentration-dependent conductance change in human serum using both p-type SWNT-FETs and n-type SWNT-FETs.
Moeinpour, Farid; Mohseni-Shahri, Fatemeh S; Malaekeh-Nikouei, Bizhan; Nassirli, Hooriyeh
2016-09-25
The interaction between losartan and human serum albumin (HSA), as well as its glycated form (gHSA) was studied by multiple spectroscopic techniques and molecular dynamics simulation under physiological conditions. The binding information, including the binding constants, effective quenching constant and number of binding sites showed that the binding partiality of losartan to HSA was higher than to gHSA. The findings of three-dimensional fluorescence spectra demonstrated that the binding of losartan to HSA and gHSA would alter the protein conformation. The distances between Trp residue and the binding sites of the drug were evaluated on the basis of the Förster theory, and it was indicated that non-radiative energy transfer from HSA and gHSA to the losartan happened with a high possibility. According to molecular dynamics simulation, the protein secondary and tertiary structure changes were compared in HSA and gHSA for clarifying the obtained results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhdanova, Nadezda; Shirshin, Evgeny; Fadeev, Victor; Priezzhev, Alexander
2016-04-01
Among all plasma proteins human serum albumin (HSA) is the most studied one as it is the main transport protein and can bind a wide variety of ligands especially fatty acids (FAs). The concentration of FAs bound to HSA in human blood plasma differs by three times under abnormal conditions (fasting, physical exercises or in case of social important diseases). In the present study a surfactant sodium dodecyl sulfate (SDS) was used to simulate FAs binding to HSA. It was shown that the increase of Tyr fluorescence of human blood plasma due to SDS addition can be completely explained by HSA-SDS complex formation. Binding parameters of SDS-HSA complex (average number of sites and apparent constant of complex formation) were determined from titration curves based on tyrosine (Tyr) fluorescence.
An, Jang-Hyun; Kurokawa, Kenji; Jung, Dong-Jun; Kim, Min-Jung; Kim, Chan-Hee; Fujimoto, Yukari; Fukase, Koichi; Coggeshall, K. Mark; Lee, Bok Luel
2014-01-01
The human pathogen Staphylococcus aureus is responsible for many community-acquired and hospital-associated infections and is associated with high mortality. Concern over the emergence of multidrug-resistant strains has renewed interest in the elucidation of host mechanisms that defend against S. aureus infection. We recently demonstrated that human serum mannose-binding lectin (MBL) binds to S. aureus wall teichoic acid (WTA), a cell wall glycopolymer, a discovery that prompted further screening to identify additional serum proteins that recognize S. aureus cell wall components. In this report, we incubated human serum with 10 different S. aureus mutants and determined that serum amyloid P component (SAP) bound specifically to a WTA-deficient S. aureus ΔtagO mutant, but not to tagO-complemented, WTA-expressing cells. Biochemical characterization revealed that SAP recognizes bacterial peptidoglycan as a ligand and that WTA inhibits this interaction. Although SAP binding to peptidoglycan was not observed to induce complement activation, SAP-bound ΔtagO cells were phagocytosed by human polymorphonuclear leukocytes in an Fcγ receptor-dependent manner. These results indicate that SAP functions as a host defense factor, similar to other peptidoglycan recognition proteins and nucleotide-binding oligomerization domain (NOD)-like receptors. PMID:23966633
Reversible covalent binding of neratinib to human serum albumin in vitro.
Chandrasekaran, Appavu; Shen, Li; Lockhead, Susan; Oganesian, Aram; Wang, Jianyao; Scatina, JoAnn
2010-12-01
Neratinib (HKI-272), an irreversible inhibitor of Her 2 tyrosine kinase, is currently in development as an alternative for first and second line therapy in metastatic breast cancer patients who overexpress Her 2. Following incubation of [(14)C]neratinib in control human plasma at 37°C for 6 hours, about 60% to 70% of the radioactivity was not extractable, due to covalent binding to albumin. In this study, factors that could potentially affect the covalent binding of neratinib to plasma proteins, specifically to albumin were investigated. When [(14)C]neratinib was incubated at 10 μg/mL in human serum albumin (HSA) or control human plasma, the percent binding increased with time; the highest percentages of binding (46 and 67%, respectively) were observed at 6 hours, the longest duration of incubation examined. Binding increased with increasing temperature; the highest percentages of binding to HSA or human plasma (59 and 78%) were observed at 45°C, the highest temperature tested. The binding also increased with increasing pH of incubation; the highest percentages of binding (56 and 65%) were observed at pH 8.5, the highest pH value tested. The percentages of binding were similar (53% to 57%) when a wide range of concentrations of [(14)C]neratinib (50 ng/mL to 10 μg/mL) were incubated with human plasma at 37°C for 6 hours, indicating that the binding was independent of the substrate concentration, especially in the therapeutic range (50 to 200 ng/mL). When human plasma proteins containing covalently bound [(14)C]neratinb were suspended in a 10 fold volume of phosphate buffer at pH 4.0, 6.0, 7.4, and 8.5, and further incubated at 37°C for ~ 16 hours, about 45%, 44%, 32%, and 12% of the total radioactivity, respectively, was released as unchanged [(14)C]neratinib, indicating that the binding is reversible in nature, with more released at pH 7.4 and below. In conclusion, the covalent binding of neratinib to serum albumin is pH, time and temperature dependent, but not substrate concentration dependent, especially in the therapeutic range. Acidification and incubation of human plasma proteins that contained covalently bound [(14)C]neratinib leads to the release of the drug, indicating that the binding is reversible in nature. It is reasonable to speculate that the release of neratinib from human serum albumin provides a transport system leading to release of neratinib in the more acidic environment of the tumor.
Determination of the binding properties of p-cresyl glucuronide to human serum albumin.
Yi, Dan; Monteiro, Elisa Bernardes; Chambert, Stéphane; Soula, Hédi A; Daleprane, Julio B; Soulage, Christophe O
2018-04-26
p-Cresyl glucuronide (p-CG) is a by-product of tyrosine metabolism that accumulates in patients with end-stage renal disease. p-CG binding to human serum albumin in physiological conditions (37°C, pH 7.40) was studied by ultrafiltration (MWCO 10 kDa) and data were analyzed assuming one binding site. The estimated value of the association constant was 2.77×10 3 M -1 and a maximal stoichiometry of 3.80 mol per mole. At a concentration relevant for end-stage renal patients, p-CG was 23% bound to albumin. Competition experiments, using fluorescent probes, demonstrated that p-CG did not bind to Sudlow's site I or site II. The p-CG did not interfere with the binding of p-cresyl-sulfate or indoxyl sulfate to serum albumin. Copyright © 2018. Published by Elsevier B.V.
Effect of molecular parameters on the binding of phenoxyacetic acid derivatives to albumins.
Cserháti, T; Forgács, E; Deyl, Z; Miksík, I
2001-03-25
The interaction of 12 phenoxyacetic acid derivatives with human and serum albumin as well as with egg albumin was studied by charge-transfer reversed-phase (RP) thin-layer chromatography (TLC) and the relative strength of interaction was calculated. Each phenoxyacetic acid derivative interacted with human and bovine serum albumins whereas no interaction was observed with egg albumin. Stepwise regression analysis proved that the lipophilicity of the derivatives exert a significant impact on their capacity to bind to serum albumins. This result supports the hypothesis that the binding of phenoxyacetic acid derivatives to albumins may involve hydrophobic forces occurring between the corresponding apolar substructures of these derivatives and the amino acid side chains.
Nagaoka, Megumi Hamano; Maitani, Tamio
2005-09-01
Aluminium (Al) in the blood is bound to transferrin (Tf), a glycoprotein of about 80kDa that is characterized by its need for a synergistic anion. In this focused review, the binding affinity of Al to Tf is surveyed in the context of our recent studies using on-line high-performance liquid chromatography/high-resolution inductively coupled plasma mass spectrometry (HPLC/HR-ICP-MS). Al in human serum without any in vitro Al-spikes was present in a form bound to the N-lobe site of Tf. The influences of sialic acid in the carbohydrate chain of human serum Tf (hTf) were studied using asialo-hTf, obtained by treatment with sialidase. The binding affinity of Fe was similar between asialo-hTf and native-hTf, while that of Al for asialo-hTf was larger than that for native-hTf, especially in the presence of oxalate, a synergistic anion. The above findings are discussed in relation to diseases in which the serum concentrations of carbohydrate-deficient Tf and oxalate are augmented.
Pharmaceutical-grade albumin: impaired drug-binding capacity in vitro
Olsen, Harald; Andersen, Anders; Nordbø, Arve; Kongsgaard, Ulf E; Børmer, Ole P
2004-01-01
Background Albumin is the most abundant protein in blood plasma, and due to its ligand binding properties, serves as a circulating depot for endogenous and exogenous (e.g. drugs) compounds. Hence, the unbound drug is the pharmacologically active drug. Commercial human albumin preparations are frequently used during surgery and in critically ill patients. Recent studies have indicated that the use of pharmaceutical-grade albumin is controversial in critically ill patients. In this in vitro study we investigated the drug binding properties of pharmaceutical-grade albumins (Baxter/Immuno, Octapharma, and Pharmacia & Upjohn), native human serum, and commercially available human serum albumin from Sigma Chemical Company. Methods The binding properties of the various albumin solutions were tested in vitro by means of ultrafiltration. Naproxen, warfarin, and digitoxin were used as ligands. HPLC was used to quantitate the total and free drug concentrations. The data were fitted to a model of two classes of binding sites for naproxen and warfarin and one class for digitoxin, using Microsoft Excel and Graphpad Prism. Results The drugs were highly bound to albumin (95–99.5%). The highest affinity (lowest K1) was found with naproxen. Pharmaceutical-grade albumin solutions displayed significantly lower drug-binding capacity compared to native human serum and Sigma albumin. Thus, the free fraction was considerably higher, approximately 40 times for naproxen and 5 and 2 times for warfarin and digitoxin, respectively. The stabilisers caprylic acid and N-acetyl-DL-tryptophan used in the manufacturing procedure seem to be of importance. Adding the stabilisers to human serum and Sigma albumin reduced the binding affinity whereas charcoal treatment of the pharmaceutical-grade albumin from Octapharma almost restored the specific binding capacity. Conclusion This in vitro study demonstrates that the specific binding for warfarin and digitoxin is significantly reduced and for naproxen no longer detectable in pharmaceutical-grade albumin. It further shows that the addition of stabilisers may be of major importance for this effect. PMID:15046641
NASA Astrophysics Data System (ADS)
Maciążek-Jurczyk, M.; Sułkowska, A.; Równicka-Zubik, J.
2016-01-01
Changes of oxidative modified albumin conformation by comparison of non-modified (HSA) and modified (oHSA) human serum albumin absorption spectra, Red Edge Excitation Shift (REES) effect and fluorescence synchronous spectra were investigated. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region from 200 to 250 nm involve structural alterations related to variations in peptide backbone conformation. Analysis of the REES effect allowed for the observation of changes caused by oxidation in the region of the hydrophobic pocket containing the tryptophanyl residue. Synchronous fluorescence spectroscopy confirmed changes of the position of the tryptophanyl and tyrosil residues fluorescent band. Effect of oxidative stress on binding of methotrexate (MTX) was investigated by spectrofluorescence, UV-VIS and 1HNMR spectroscopy. MTX caused the fluorescence quenching of non-modified (HSA) and modified (oHSA) human serum albumin molecule. The values of binding constants, Hill's coefficients and a number of binding sites in the protein molecule in the high affinity binding site were calculated for the binary MTX-HSA and MTX-oHSA systems. For these systems, qualitative analysis in the low affinity binding sites was performed with the use of the 1HNMR technique.
NASA Astrophysics Data System (ADS)
Bojko, B.; Sułkowska, A.; Maciążek-Jurczyk, M.; Równicka, J.; Sułkowski, W. W.
2010-06-01
Fluorescence studies on furosemide (FUR) binding to bovine serum albumin (BSA) showed the existence of three or four binding sites in the tertiary structure of the protein. Two of them are located in subdomain IIA, while the others in subdomains IB and/or IIIA. Furosemide binding in subdomain IB is postulated on the basis of run of Stern-Volmer plot indicating the existence of two populations of tryptophans involved in the interaction with FUR. In turn, the significant participation of tyrosil residues in complex formation leads to the consideration of the subdomain IIIA as furosemide low-affinity binding site. The effect of increasing concentration of fatty acid on FUR binding in all studied binding sites was also investigated and compared with the previous results obtained for human serum albumin (HSA). For BSA the lesser impact of fatty acid on affinity between drug and albumin was observed. This is probably a result of more significant role of tyrosines in the complex formation and different polarity of microenvironment of the fluorophores when compared HSA and BSA. The most distinct differences between FUR-BSA and FUR-HSA binding parameters are observed when third fatty acid molecule is bound with the protein and rotation of domains I and II occurs. However these structural changes mostly affect FUR low affinity binding sites.
Structural studies of bovine, equine, and leporine serum albumin complexes with naproxen.
Bujacz, Anna; Zielinski, Kamil; Sekula, Bartosz
2014-09-01
Serum albumin, a protein naturally abundant in blood plasma, shows remarkable ligand binding properties of numerous endogenous and exogenous compounds. Most of serum albumin binding sites are able to interact with more than one class of ligands. Determining the protein-ligand interactions among mammalian serum albumins is essential for understanding the complexity of this transporter. We present three crystal structures of serum albumins in complexes with naproxen (NPS): bovine (BSA-NPS), equine (ESA-NPS), and leporine (LSA-NPS) determined to 2.58 Å (C2), 2.42 Å (P61), and 2.73 Å (P2₁2₁2₁) resolutions, respectively. A comparison of the structurally investigated complexes with the analogous complex of human serum albumin (HSA-NPS) revealed surprising differences in the number and distribution of naproxen binding sites. Bovine and leporine serum albumins possess three NPS binding sites, but ESA has only two. All three complexes of albumins studied here have two common naproxen locations, but BSA and LSA differ in the third NPS binding site. None of these binding sites coincides with the naproxen location in the HSA-NPS complex, which was obtained in the presence of other ligands besides naproxen. Even small differences in sequences of serum albumins from various species, especially in the area of the binding pockets, influence the affinity and the binding mode of naproxen to this transport protein. © 2014 Wiley Periodicals, Inc.
Monoclonal antibodies to human vitamin D-binding protein.
Pierce, E A; Dame, M C; Bouillon, R; Van Baelen, H; DeLuca, H F
1985-01-01
Monoclonal antibodies to vitamin D-binding protein isolated from human serum have been produced. The antibodies obtained have been shown to be specific for human vitamin D-binding protein by three independent assays. The antibodies recognize human vitamin D-binding protein specifically in an enzyme-linked immunosorbent assay. Human vitamin D-binding protein is detected specifically in both pure and crude samples by a radiometric immunosorbent assay (RISA) and by an immunoprecipitation assay. The anti-human vitamin D-binding protein antibodies cross-react with monkey and pig vitamin D-binding protein, but not with vitamin D-binding protein from rat, mouse, or chicken, as determined by the RISA and immunoprecipitation assays. Images PMID:3936035
NASA Astrophysics Data System (ADS)
Maciążek-Jurczyk, M.; Sułkowska, A.
2015-02-01
Oxygen metabolism has an important role in the pathogenesis of rheumatoid arthritis (RA). Reactive oxygen species (ROS) are produced in the course of cellular oxidative phosphorylation and by activated phagocytic cells during oxidative bursts, exceed the physiological buffering capacity and result in oxidative stress. ROS result in oxidation of serum albumin, which causes a number of structural changes in the spatial structure, may influence the binding and cause significant drug interactions, particularly in polytherapy. During the oxidation modification of amino acid residues, particularly cysteine and methionine may occur. The aim of the study was to investigate the influence of oxidative stress on human serum albumin (HSA) structure and evaluate of possible alterations in the binding of the drug to oxidized human serum albumin (oHSA). HSA was oxidized by a chloramine-T (CT). CT reacts rapidly with sulfhydryl groups and at pH 7.4 the reaction was monitored by spectroscopic techniques. Modification of free thiol group in the Cys residue in HSA was quantitatively determined by the use of Ellman's reagent. Changes of albumin conformation were examined by comparison of modified (oHSA) and nonmodified human serum albumin (HSA) absorption spectra, emission spectra, red-edge shift (REES) and synchronous spectroscopy. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region of 200-250 nm involve structural alterations in peptide backbone conformation. Synchronous fluorescence spectroscopy technique confirmed changes of position of tryptophanyl and tyrosyl residues fluorescent band caused by CT. Moreover analysis of REES effect allowed to observe structural changes caused by CT in the region of the hydrophobic pocket containing the tryptophanyl residue. Effect of oxidative stress on binding of anti-rheumatic drugs, sulfasalazine (SSZ) and sulindac (SLD) in the high and low affinity binding sites was investigated by spectrofluorescence, ITC and 1H NMR spectroscopy, respectively. SSZ and SLD change the affinity of each other to the binding site in non- and modified human serum albumin. The presence of SLD causes the increase of association constant (Ka) of SSZ-oHSA system and the strength of binding and the stability of the complexes has been observed while in the presence of SSZ a displacement of SLD from the SLD-HSA has been recorded. The analysis of 1H NMR spectral parameters i.e. changes of chemical shifts of the drug indicate that the presence of SSZ and SLD have a mutual influence on changes in the affinity of human serum albumin binding site and this competition takes place not only due to the additional drug but also to the oxidation of HSA.
Locating the Binding Sites of Pb(II) Ion with Human and Bovine Serum Albumins
Belatik, Ahmed; Hotchandani, Surat; Carpentier, Robert; Tajmir-Riahi, Heidar-Ali
2012-01-01
Lead is a potent environmental toxin that has accumulated above its natural level as a result of human activity. Pb cation shows major affinity towards protein complexation and it has been used as modulator of protein-membrane interactions. We located the binding sites of Pb(II) with human serum (HSA) and bovine serum albumins (BSA) at physiological conditions, using constant protein concentration and various Pb contents. FTIR, UV-visible, CD, fluorescence and X-ray photoelectron spectroscopic (XPS) methods were used to analyse Pb binding sites, the binding constant and the effect of metal ion complexation on HSA and BSA stability and conformations. Structural analysis showed that Pb binds strongly to HSA and BSA via hydrophilic contacts with overall binding constants of KPb-HSA = 8.2 (±0.8)×104 M−1 and KPb-BSA = 7.5 (±0.7)×104 M−1. The number of bound Pb cation per protein is 0.7 per HSA and BSA complexes. XPS located the binding sites of Pb cation with protein N and O atoms. Pb complexation alters protein conformation by a major reduction of α-helix from 57% (free HSA) to 48% (metal-complex) and 63% (free BSA) to 52% (metal-complex) inducing a partial protein destabilization. PMID:22574219
Robert, L; Migne, J; Santonja, R; Zini, R; Schmid, K; Tillement, J P
1983-06-01
The binding of nicergoline, an alpha-blocking drug, by human plasma proteins was studied using gel filtration, polyacrylamide gel electrophoresis, and equilibrium dialysis techniques. 3H-labeled nicergoline added to plasma was eluted together with two major protein fractions, one containing mainly serum albumin, the other glycoproteins such as alpha 1-acid glycoprotein (alpha 1-AG). Equilibrium dialysis experiments with pure human serum albumin and alpha 1-AG as well as with its chemically modified forms, desialylated, carboxymethylated, and both desialylated and carboxymethylated alpha 1-AG gave the following results: nicergoline has about a 4-fold higher affinity for alpha 1-AG than for serum albumin. There are two binding sites per molecule on serum albumin and one on alpha 1-AG. The binding parameters of alpha 1-AG were not significantly modified by desialylation or carboxymethylation. Only desialylated and carboxymethylated alpha 1-AG showed a decreased binding for nicergoline, suggesting conformational modifications induced by these combined treatments. The fact that desialylated alpha 1-AG keeps its affinity for nicergoline suggests the possibility of a selective introduction of this drug in cells possessing the Ashwell-type specific receptor for desialylated alpha 1-AG, for instance hepatocytes. Increased serum alpha 1-AG concentration induced by inflammatory reactions will also modify the distribution of bound nicergoline between serum albumin and alpha 1-AG and as a consequence its half-life and cell distribution.
Cui, Fengling; Wang, Junli; Yao, Xiaojun; Wang, Li; Zhang, Qiangzhai; Qu, Guirong
In this study, the interaction between cytidine and human serum albumin (HSA) was investigated for the first time by fluorescence spectroscopy in combination with UV absorption spectrum and molecular modeling under simulative physiological conditions. Experimental results indicated that cytidine had a strong ability to quench the intrinsic fluorescence of human serum albumin. The binding constants (K) at different temperatures, thermodynamic parameter enthalpy changes (DeltaH) and entropy changes (DeltaS) of HSA-cytidine had been calculated according to the relevant fluorescence data, which indicated that the hydrophobic and electrostatic interactions played a major role, which was in agreement with the results of molecular modeling study. In addition, the effects of other ions on the binding constants were also studied. Furthermore, synchronous fluorescence technology was successfully applied to the determination of human serum albumin added into the cytidine solution.
Bose, Debosreeta; Sarkar, Deboleena; Chattopadhyay, Nitin
2010-01-01
In the present investigation, an attempt has been made to study the interaction of phenosafranin (PSF), a cationic phenazinium dye with the transport proteins, bovine serum albumin (BSA) and human serum albumin (HSA), employing steady-state and time-resolved fluorometric and circular dichroism (CD) techniques. The photophysical properties of the dye are altered on binding with the serum proteins. An explicit study with respect to the modification of the fluorescence and fluorescence anisotropy upon binding, effect of denaturant, fluorescence lifetime and CD measurements reveal that the dye binds to both BSA and HSA with almost the same affinity. Far-UV CD spectra indicate a decrease in the percentage of alpha-helicity only for BSA upon binding with the probe. Near-UV CD responses indicate an alteration in the tertiary structure of both the transport proteins because of binding.
Increased (/sup 125/I)trypsin-binding in serum from cystic fibrosis patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, K.L.; Frates, R.C. Jr.; Sheikholislam, B.M.
1982-01-01
The capacities of normal and cystic fibrosis (CF) sera to bind to exogenous human (/sup 125/I)trypsin were compared. Sera from eight older CF patients bound significantly more exogenous human (/sup 125/I)trypsin than did sera from eight normal subjects (p less than 0.001). Disregarding the increased trypsin-binding (TB) of CF sera, serum immunoreactive trypsinogen (SIRT) levels were not detectable in these eight older CF patients. However, when SIRT levels were corrected for TB, four CF patients had normal SIRT concentrations and four had low but detectable SIRT levels. As compared to five normal newborns' sera, serum from a newborn with CFmore » had normal TB and the SIRT levels were very high. In conclusion, increased TB in CF serum lowers results of SIRT assays. Therefore, unless SIRT levels are corrected for TB, results obtained from currently available SIRT kits may be invalid.« less
Understanding the interaction between human serum albumin and anti-bacterial/ anti-cancer compounds.
Rehman, Md Tabish; Khan, Asad U
2015-01-01
Human serum albumin (HSA) is the most important carrier of exogenous and endogenous molecules in human plasma. Understanding and characterizing the interaction of drugs with HSA has attracted enormous research interests from decades. The nature and magnitude of these bindings have direct consequence on drug delivery, pharmacokinetics, pharmacodynamics, therapeutic efficacy and drug designing. An overview of HSA and antibacterial/ anti-cancer ligands interaction is the need of the hour as these drugs together constitute more than half of the total drug consumption in the world. In this review, the information on the number of binding sites, binding strength, the nature of binding interactions and the location of binding sites of such drugs on the HSA are summarised. The effect of such drugs on the overall conformation, stability and function of HSA is also reviewed. This review will help to gain useful insights into the significance of the binding of anti-bacterial and anti-cancer drugs with plasma protein and the effect of binding on its overall distribution and pharmacological activities.
Rimac, Hrvoje; Debeljak, Željko; Bojić, Mirza; Miller, Larisa
2017-01-01
Human serum albumin (HSA) is the most abundant protein in human serum. It has numerous functions, one of which is transport of small hydrophobic molecules, including drugs, toxins, nutrients, hormones and metabolites. HSA has the ability to interact with a wide variety of structurally different compounds. This promiscuous, nonspecific affinity can lead to sudden changes in concentrations caused by displacement, when two or more compounds compete for binding to the same molecular site. It is important to consider drug combinations and their binding to HSA when defining dosing regimens, as this can directly influence drug's free, active concentration in blood. In present paper we review drug interactions with potential for displacement from HSA, situations in which they are likely to occur and their clinical significance. We also offer guidelines in designing drugs with decreased binding to HSA. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Grosso, D S; Boyden, T W; Pamenter, R W; Johnson, D G; Stevens, D A; Galgiani, J N
1983-01-01
In vivo perfusion of canine testes with ketoconazole inhibited the stimulation of testosterone production by human chorionic gonadotropin in a dose-dependent manner. Ketoconazole also selectively displaced steroids from serum-binding globulins. Dihydrotestosterone and estradiol binding to sex hormone-binding globulin were inhibited by ketoconazole. Cortisol binding to corticosteroid-binding globulin was unaffected. The concentrations of ketoconazole that inhibited human chorionic gonadotropin stimulation of testicular androgen production and displaced sex steroids from sex hormone-binding globulin were in the range of blood levels found in patients on higher therapeutic dosage regimens. Suppression of testicular testosterone synthesis and displacement of estrogens from sex hormone-binding globulin may decrease the androgen/estrogen ratio of the blood and contribute to the development of gynecomastia that has been reported in some ketoconazole-treated patients. PMID:6301363
Xu, Zhicheng; Yang, Weibing; Dong, Chuan
2005-09-15
A new intramolecular charge transfer fluorescence probe, namely, 4'-dimethylamino-2,5-dihydroxychalcone (DMADHC), exhibited dramatic enhancement of fluorescence intensity with an accompanying blue shift of the emission maximum when the concentration of human serum albumin (HSA) was increased. Binding to HSA also caused a progressive shift in the absorption spectrum of DMADHC, and a clear isosbestic point appeared. The binding site number and binding constant were calculated. Thermodynamic parameters were given and possible binding site was speculated. The optimum conditions for the determination of HSA were also investigated. A new, fast, and simple spectrofluorimetric method for the determination of HSA was developed. In the detection of HSA in samples of human plasma, this method gave values close to that of the Erythrosin B method.
Dereven'kov, Ilia A; Hannibal, Luciana; Makarov, Sergei V; Makarova, Anna S; Molodtsov, Pavel A; Koifman, Oskar I
2018-05-02
Serum albumin binds to a variety of endogenous ligands and drugs. Human serum albumin (HSA) binds to heme via hydrophobic interactions and axial coordination of the iron center by protein residue Tyr161. Human serum albumin binds to another tetrapyrrole, cobalamin (Cbl), but the structural and functional properties of this complex are poorly understood. Herein, we investigate the reaction between aquacobalamin (H 2 OCbl) and bovine serum albumin (BSA, the bovine counterpart of HSA) using Ultraviolet-Visible and fluorescent spectroscopy, and electron paramagnetic resonance. The reaction between H 2 OCbl and BSA led to the formation of a BSA-Cbl(III) complex consistent with N-axial ligation (amino). Prior to the formation of this complex, the reactants participate in an additional binding event that has been examined by fluorescence spectroscopy. Binding of BSA to Cbl(III) reduced complex formation between the bound cobalamin and free cyanide to form cyanocobalamin (CNCbl), suggesting that the β-axial position of the cobalamin may be occupied by an amino acid residue from the protein. Reaction of BSA containing reduced disulfide bonds with H 2 OCbl produces cob(II)alamin and disulfide with intermediate formation of thiolate Cbl(III)-BSA complex and its decomposition. Finally, in vitro studies showed that cobalamin binds to BSA only in the presence of an excess of protein, which is in contrast to heme binding to BSA that involves a 1:1 stoichiometry. In vitro formation of BSA-Cbl(III) complex does not preclude subsequent heme binding, which occurs without displacement of H 2 OCbl bound to BSA. These data suggest that the two tetrapyrroles interact with BSA in different binding pockets.
Effects of non-enzymatic glycation in human serum albumin. Spectroscopic analysis
NASA Astrophysics Data System (ADS)
Szkudlarek, A.; Sułkowska, A.; Maciążek-Jurczyk, M.; Chudzik, M.; Równicka-Zubik, J.
2016-01-01
Human serum albumin (HSA), transporting protein, is exposed during its life to numerous factors that cause its functions become impaired. One of the basic factors - glycation of HSA - occurs in diabetes and may affect HSA-drug binding. Accumulation of advanced glycation end-products (AGEs) leads to diseases e.g. diabetic and non-diabetic cardiovascular diseases, Alzheimer disease, renal disfunction and in normal aging. The aim of the present work was to estimate how non-enzymatic glycation of human serum albumin altered its tertiary structure using fluorescence technique. We compared glycated human serum albumin by glucose (gHSAGLC) with HSA glycated by fructose (gHSAFRC). We focused on presenting the differences between gHSAFRC and nonglycated (HSA) albumin used acrylamide (Ac), potassium iodide (KI) and 2-(p-toluidino)naphthalene-6-sulfonic acid (TNS). Changes of the microenvironment around the tryptophan residue (Trp-214) of non-glycated and glycated proteins was investigated by the red-edge excitation shift method. Effect of glycation on ligand binding was examined by the binding of phenylbutazone (PHB) and ketoprofen (KP), which a primary high affinity binding site in serum albumin is subdomain IIA and IIIA, respectively. At an excitation and an emission wavelength of λex 335 nm and λem 420 nm, respectively the increase of fluorescence intensity and the blue-shift of maximum fluorescence was observed. It indicates that the glycation products decreases the polarity microenvironment around the fluorophores. Analysis of red-edge excitation shift method showed that the red-shift for gHSAFRC is higher than for HSA. Non-enzymatic glycation also caused, that the Trp residue of gHSAFRC becomes less accessible for the negatively charged quencher (I-), KSV value is smaller for gHSAFRC than for HSA. TNS fluorescent measurement demonstrated the decrease of hydrophobicity in the glycated albumin. KSV constants for gHSA-PHB systems are higher than for the unmodified serum albumin, while KSV values for gHSA-KP systems are only slightly lower than that obtained for HSA-KP. The affinity of PHB to the glycated HSA is stronger than to the non-glycated in the first class binding sites within subdomain IIA, in the vicinity of Trp-214. Ketoprofen bound to unmodified human serum albumin stronger than for glycated albumin and one class of binding sites is observed (Scatchard linear plots).
NASA Astrophysics Data System (ADS)
Bi, Shuyun; Song, Daqian; Kan, Yuhe; Xu, Dong; Tian, Yuan; Zhou, Xin; Zhang, Hanqi
2005-11-01
The interactions of serum albumins such as human serum albumin (HSA) and bovine serum albumin (BSA) with emodin, rhein, aloe-emodin and aloin were assessed employing fluorescence quenching and absorption spectroscopic techniques. The results obtained revealed that there are relatively strong binding affinity for the four anthraquinones with HSA and BSA and the binding constants for the interactions of anthraquinones with HSA or BSA at 20 °C were obtained. Anthraquinone-albumin interactions were studied at different temperatures and in the presence of some metal ions. And the competition binding of anthraquinones with serum albumins was also discussed. The Stern-Volmer curves suggested that the quenching occurring in the reactions was the static quenching process. The binding distances and transfer efficiencies for each binding reactions were calculated according to the Föster theory of non-radiation energy transfer. Using thermodynamic equations, the main action forces of these reactions were also obtained. The reasons of the different binding affinities for different anthraquinone-albumin reactions were probed from the point of view of molecular structures.
Cho, Jinhwan; Lim, Sung In; Yang, Byung Seop; Hahn, Young S; Kwon, Inchan
2017-12-21
Extension of the serum half-life is an important issue in developing new therapeutic proteins and expanding applications of existing therapeutic proteins. Conjugation of fatty acid, a natural human serum albumin ligand, to a therapeutic protein/peptide was developed as a technique to extend the serum half-life in vivo by taking advantages of unusually long serum half-life of human serum albumin (HSA). However, for broad applications of fatty acid-conjugation, several issues should be addressed, including a poor solubility of fatty acid and a substantial loss in the therapeutic activity. Therefore, herein we systematically investigate the conditions and components in conjugation of fatty acid to a therapeutic protein resulting in the HSA binding capacity without compromising therapeutic activities. By examining the crystal structure and performing dye conjugation assay, two sites (W160 and D112) of urate oxidase (Uox), a model therapeutic protein, were selected as sites for fatty acid-conjugation. Combination of site-specific incorporation of a clickable p-azido-L-phenylalanine to Uox and strain-promoted azide-alkyne cycloaddition allowed the conjugation of fatty acid (palmitic acid analog) to Uox with the HSA binding capacity and retained enzyme activity. Deoxycholic acid, a strong detergent, greatly enhanced the conjugation yield likely due to the enhanced solubility of palmitic acid analog.
Possibility of using Rhodamine B dye in diagnosis of some men's diseases
NASA Astrophysics Data System (ADS)
Khodjayev, Gayrat; Ismailov, Zafar F.; Kurtaliev, Eldar N.; Nizomov, Negmat; Khaydarova, Feruza U.; Hamidov, Zariddin; Khakimova, Dilorom P.
2007-09-01
The functional differences of human blood serum albumin in norm and at different patologic process were studied by spectral-luminescent method by comparison of binding constant (K) and concentration of binding sites (N) values of rhodamine B dye with blood serum. It was shown that K and N of rhodamine B dye with blood serum of sick men is decreased as compared to that for healthy men.
Naik, Praveen N; Nandibewoor, Sharanappa T; Chimatadar, Shivamurthi A
2015-06-01
This study was designed to examine the interaction of sulfamethoxazole (SMZ) with human serum albumin(HSA). Spectroscopic analysis of the emission quenching at different temperatures revealed that the quenching mechanism of human serum albumin by SMZ was static mechanism. The binding constant values for the SMZ-HSA system were obtained to be 22,500 L/mol at 288 K, 15,600 L/mol at 298 K, and 8500 L/mol at 308 K. The distance r between donor and acceptor was evaluated according to the theory of Föster energy transfer. The results of spectroscopic analysis and molecular modeling techniques showed that the conformation of human serum albumin had been changed in the presence of SMZ. The thermodynamic parameters, namely enthalpy change (∆ H 0 ) -36.0 kJ/mol, entropy change (∆ S 0 ) -41.3 J/mol K and free energy change (∆ G 0 ) -23.7 kJ/mol, were calculated by using van׳t Hoff equation. The effect of common ions on the binding of SMZ to HSA was tested.
Yang, Hongqin; Huang, Yanmei; Liu, Jiuyang; Tang, Peixiao; Sun, Qiaomei; Xiong, Xinnuo; Tang, Bin; He, Jiawei; Li, Hui
2017-09-11
Given that bisphenols have an endocrine-disrupting effect on human bodies, thoroughly exposing their potential effects at the molecular level is important. Saturation transfer difference (STD) NMR-based binding studies were performed to investigate the binding potential of two bisphenol representatives, namely, bisphenol B (BPB) and bisphenol E (BPE), toward human serum albumin (HSA). The relative STD (%) suggested that BPB and BPE show similar binding modes and orientations, in which the phenolic rings were spatially close to HSA binding site. ITC analysis results showed that BPB and BPE were bound to HSA with moderately strong binding affinity through electrostatic interactions and hydrogen bonds. The order of binding affinity of HSA for two test bisphenols is as follows: BPE > BPB. The results of fluorescence competitive experiments using 5-dimethylaminonaphthalene-1-sulfonamide and dansylsarcosine as competitors, combined with molecular docking indicated that both bisphenols are prone to attach to the binding site II in HSA. Spectroscopic results (FT-IR, CD, synchronous and 3D fluorescence spectra) showed that BPB/BPE induces different degrees of microenvironmental and conformational changes to HSA.
Cheng, Li-Yang; Fang, Min; Bai, Ai-Min; Ouyang, Yu; Hu, Yan-Jun
2017-08-01
In this study, fluorescence spectroscopy and molecular modeling approaches were employed to investigate the binding of methotrexate to human serum albumin (HSA) under physiological conditions. From the mechanism, it was demonstrated that fluorescence quenching of HSA by methotrexate results from the formation of a methotrexate/HSA complex. Binding parameters calculated using the Stern-Volmer method and the Scatchard method showed that methotrexate binds to HSA with binding affinities in the order 10 4 L·mol -1 . Thermodynamic parameter studies revealed that the binding reaction is spontaneous, and that hydrogen bonds and van der Waals interactions play a major role in the reaction. Site marker competitive displacement experiments and a molecular modeling approach demonstrated that methotrexate binds with appropriate affinity to site I (subdomain IIA) of HSA. Furthermore, we discuss some factors that influence methotrexate binding to HSA. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Naveenraj, Selvaraj; Solomon, Rajadurai Vijay; Mangalaraja, Ramalinga Viswanathan; Venuvanalingam, Ponnambalam; Asiri, Abdullah M.; Anandan, Sambandam
2018-03-01
The interaction of Acid Orange 10 (AO10) with bovine serum albumin (BSA) was investigated comparatively with that of human serum albumin (HSA) using multispectroscopic techniques for understanding their toxic mechanism. Further, density functional theory calculations and docking studies have been carried out to gain more insights into the nature of interactions existing between AO10 and serum albumins. The fluorescence results suggest that AO10 quenched the fluorescence of BSA through the combination of static and dynamic quenching mechanism. The same trend was followed in the interaction of AO10 with HSA. In addition to the type of quenching mechanism, the fluorescence spectroscopic results suggest that the binding occurs near the tryptophan moiety of serum albumins and the binding. AO10 has more binding affinity towards BSA than HSA. An AO10-Trp model has been created to explicitly understand the Csbnd Htbnd π interactions from Bader's quantum theory of atoms in molecules analysis which confirmed that AO10 bind more strongly with BSA than that of HSA due to the formation of three hydrogen bonds with BSA whereas it forms two hydrogen bonds in the case of HSA. These obtained results provide an in-depth understanding of the interaction of the acid azo dye AO10 with serum albumins. This interaction study provides insights into the underlying reasons for toxicity of AO10 relevant to understand its effect on bovids and humans during the blood transportation process.
Tang, Xiaosheng; Tang, Ping; Liu, Liangliang
2017-06-23
Lotus leaf has gained growing popularity as an ingredient in herbal formulations due to its various activities. As main functional components of lotus leaf, the difference in structure of flavonoids affected their binding properties and activities. In this paper, the existence of 11 flavonoids in lotus leaf extract was confirmed by High Performance Liquid Chromatography (HPLC) analysis and 11 flavonoids showed various contents in lotus leaf. The interactions between lotus leaf extract and two kinds of serum albumins (human serum albumin (HSA) and bovine serum albumin (BSA)) were investigated by spectroscopic methods. Based on the fluorescence quenching, the interactions between these flavonoids and serum albumins were further checked in detail. The relationship between the molecular properties of flavonoids and their affinities for serum albumins were analyzed and compared. The hydroxylation on 3 and 3' position increased the affinities for serum albumins. Moreover, both of the methylation on 3' position of quercetin and the C₂=C₃ double bond of apigenin and quercetin decreased the affinities for HSA and BSA. The glycosylation lowered the affinities for HSA and BSA depending on the type of sugar moiety. It revealed that the hydrogen bond force played an important role in binding flavonoids to HSA and BSA.
Suzuki, Takuo; Ishii-Watabe, Akiko; Tada, Minoru; Kobayashi, Tetsu; Kanayasu-Toyoda, Toshie; Kawanishi, Toru; Yamaguchi, Teruhide
2010-02-15
The neonatal FcR (FcRn) binds to the Fc domain of IgG at acidic pH in the endosome and protects IgG from degradation, thereby contributing to the long serum half-life of IgG. To date, more than 20 mAb products and 5 Fc-fusion protein products have received marketing authorization approval in the United States, the European Union, or Japan. Many of these therapeutic proteins have the Fc domain of human IgG1; however, the serum half-lives differ in each protein. To elucidate the role of FcRn in the pharmacokinetics of Fc domain-containing therapeutic proteins, we evaluated the affinity of the clinically used human, humanized, chimeric, or mouse mAbs and Fc-fusion proteins to recombinant human FcRn by surface plasmon resonance analysis. The affinities of these therapeutic proteins to FcRn were found to be closely correlated with the serum half-lives reported from clinical studies, suggesting the important role of FcRn in regulating their serum half-lives. The relatively short serum half-life of Fc-fusion proteins was thought to arise from the low affinity to FcRn. The existence of some mAbs having high affinity to FcRn and a short serum half-life, however, suggested the involvement of other critical factor(s) in determining the serum half-life of such Abs. We further investigated the reason for the relatively low affinity of Fc-fusion proteins to FcRn and suggested the possibility that the receptor domain of Fc-fusion protein influences the structural environment of the FcRn binding region but not of the FcgammaRI binding region of the Fc domain.
Basken, Nathan E.; Mathias, Carla J.; Green, Mark A.
2008-01-01
The Cu-PTSM (pyruvaldehyde bis(N4-methylthiosemicarbazonato)copper(II)) and Cu-ATSM (diacetyl bis(N4-methylthiosemicarbazonato)copper(II)) radiopharmaceuticals exhibit strong, species-dependent binding to human serum albumin (HSA), while Cu-ETS (ethylglyoxal bis(thiosemicarbazonato)copper(II)) appears to only exhibit non-specific binding to human and animal serum albumins. This study examines the structural basis for HSA binding of Cu-PTSM and Cu-ATSM via competition with drugs having known albumin binding sites. Warfarin, furosemide, ibuprofen, phenylbutazone, benzylpenicillin, and cephmandole were added to HSA solutions at drug:HSA mole ratios from 0 to 8:1, followed by quantification of radiopharmaceutical binding to HSA by ultrafiltration. Warfarin, a site IIA drug, progressively displaced both [64Cu]Cu-PTSM and [64Cu]Cu-ATSM from HSA. At 8:1 warfarin:HSA mole ratios, free [64Cu]Cu-PTSM and [64Cu]Cu-ATSM levels increased 300–500%. This was in contrast to solutions containing ibuprofen, a site IIIA drug; no increase in free [64Cu]Cu-PTSM or [64Cu]Cu-ATSM was observed except at high ibuprofen:HSA ratios, where secondary ibuprofen binding to the IIA site may cause modest radiopharmaceutical displacement. By contrast, and consistent with earlier findings suggesting Cu-ETS exhibits only non-specific associations, [64Cu]Cu-ETS binding to HSA was unaffected by the addition of drugs that bind in either site. We conclude that the species-dependence of Cu-PTSM and Cu-ATSM albumin binding arises from interaction(s) with the IIA site of HSA. PMID:18937368
Serum or breast milk immunoglobulins mask the self-reactivity of human natural IgG antibodies.
Djoumerska-Alexieva, Iglika; Manoylov, Iliyan; Dimitrov, Jordan D; Tchorbanov, Andrey
2014-04-01
B cells producing IgG antibodies specific to a variety of self- or foreign antigens are a normal constituent of the immune system of all healthy individuals. These naturally occurring IgG antibodies are found in the serum, external secretions, and pooled human immunoglobulin preparations. They bind with low affinity to antigens, which can also be targets for pathologic autoantibodies. An enhancement of naturally occurring IgG autoantibody activity was observed after treatment of human IgG molecules with protein-destabilizing agents. We have investigated the interactions of human immunoglobulins that were obtained from serum or from breast milk of healthy individuals or IVIg with human liver antigens. Proteins from an individual serum or milk were isolated by two methods, one of which included exposure to low pH and the other did not. Purified serum, mucosal IgM, IgA, and the fraction containing immunoglobulin G F(ab')2 fragments each inhibited the binding of a single donor or pooled IgG to human liver antigens. Our study presents findings regarding the role of the breast milk or serum antibodies in blocking the self-reactivity of IgG antibodies. It supports the suggestion that not IVIg only, but also the pooled human IgM and IgA might possess a potent beneficial immunomodulatory activity in autoimmune patients. © 2013 APMIS. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wang, Weinan; Zhang, Wei; Duan, Yaokai; Jiang, Yong; Zhang, Liangren; Zhao, Bing; Tu, Pengfei
2013-11-01
Fluorescence, normal Raman and surface-enhanced Raman scattering (SERS) were introduced to explore the absorptive geometry of caffeine on Human Serum Albumin (HSA) at physiological condition. The molecular docking was also employed to make a better understanding of the interaction between caffeine and HSA as well as to elucidate the detailed information of the major binding site. The results showed that caffeine could bind to HSA via the hydrophobic force of aromatic stacking and the main binding group on caffeine could be the pyrimidine ring. In addition, a consecutive set of changes in the orientation of caffeine molecule had been demonstrated during the process of caffeine binding to HSA, and the primary binding site was considered to be a hydrophobic cavity formed by Leu198, Lys199, Ser202, Phe211, Trp214, Val344, Ser454 and Leu481 in domain II.
Perry, Jennifer L; Goldsmith, Michael R; Williams, T Richard; Radack, Kyle P; Christensen, Trine; Gorham, Justin; Pasquinelli, Melissa A; Toone, Eric J; Beratan, David N; Simon, John D
2006-01-01
Sudlow Site I of human serum albumin (HSA) is located in subdomain IIA of the protein and serves as a binding cavity for a variety of ligands. In this study, the binding of warfarin (W) is examined using computational techniques and isothermal titration calorimetry (ITC). The structure of the docked warfarin anion (W-) to Site I is similar to that revealed by X-ray crystallography, with a calculated binding constant of 5.8 x 10(5) M(-1). ITC experiments (pH 7.13 and I = 0.1) carried out in three different buffers (MOPs, phosphate and Tris) reveal binding of W- is accompanied by uptake of 0.30+/-0.02 protons from the solvent. This measurement suggests that the binding of W- is stabilized by an ion-pair interaction between protonated H242 and the phenoxide group of W-.
Binding of ring-substituted indole-3-acetic acids to human serum albumin.
Soskić, Milan; Magnus, Volker
2007-07-01
The plant hormone, indole-3-acetic acid (IAA), and its ring-substituted derivatives have recently attracted attention as promising pro-drugs in cancer therapy. Here we present relative binding constants to human serum albumin for IAA and 34 of its derivatives, as obtained using the immobilized protein bound to a support suitable for high-performance liquid chromatography. We also report their octanol-water partition coefficients (logK(ow)) computed from retention data on a C(18) coated silica gel column. A four-parameter QSPR (quantitative structure-property relationships) model, based on physico-chemical properties, is put forward, which accounts for more than 96% of the variations in the binding affinities of these compounds. The model confirms the importance of lipophilicity as a global parameter governing interaction with serum albumin, but also assigns significant roles to parameters specifically related to the molecular topology of ring-substituted IAAs. Bulky substituents at ring-position 6 increase affinity, those at position 2 obstruct binding, while no steric effects were noted at other ring-positions. Electron-withdrawing substituents at position 5 enhance binding, but have no obvious effect at other ring positions.
Atomic structure and chemistry of human serum albumin
NASA Technical Reports Server (NTRS)
He, Xiao M.; Carter, Daniel C.
1992-01-01
The three-dimensional structure of human serum albumin has been determined crystallographically to a resolution of 2.8 A. It comprises three homologous domains that assemble to form a heart-shaped molecule. Each domain is a product of two subdomains that possess common structural motifs. The principal regions of ligand binding to human serum albumin are located in hydrophobic cavities in subdomains IIA and ILIA, which exhibit similar chemistry. The structure explains numerous physical phenomena and should provide insight into future pharmacokinetic and genetically engineered therapeutic applications of serum albumin.
Atomic structure and chemistry of human serum albumin
NASA Astrophysics Data System (ADS)
He, Xiao Min; Carter, Daniel C.
1992-07-01
The three-dimensional structure of human serum albumin has been determined crystallographically to a resolution of 2.8 Å. It comprises three homologous domains that assemble to form a heart-shaped molecule. Each domain is a product of two subdomains that possess common structural motifs. The principal regions of ligand binding to human serum albumin are located in hydrophobic cavities in subdomains IIA and IIIA, which exhibit similar chemistry. The structure explains numerous physical phenomena and should provide insight into future pharmacokinetic and genetically engineered therapeutic applications of serum albumin.
Granoff, Dan M.; Costa, Isabella; Konar, Monica; Giuntini, Serena; Van Rompay, Koen K. A.; Beernink, Peter T.
2015-01-01
Background. The meningococcal vaccine antigen, factor H (FH)–binding protein (FHbp), binds human complement FH. In human FH transgenic mice, binding decreased protective antibody responses. Methods. To investigate the effect of primate FH binding, we immunized rhesus macaques with a 4-component serogroup B vaccine (4CMenB). Serum FH in 6 animals bound strongly to FHbp (FHbp-FHhigh) and, in 6 animals, bound weakly to FHbp (FHbp-FHlow). Results. There were no significant differences between the respective serum bactericidal responses of the 2 groups against meningococcal strains susceptible to antibody to the NadA or PorA vaccine antigens. In contrast, anti-FHbp bactericidal titers were 2-fold lower in FHbp-FHhigh macaques against a strain with an exact FHbp match to the vaccine (P = .08) and were ≥4-fold lower against 4 mutants with other FHbp sequence variants (P ≤ .005, compared with FHbp-FHlow macaques). Unexpectedly, postimmunization sera from all 12 macaques enhanced FH binding to meningococci. In contrast, serum anti-FHbp antibodies elicited by 4CMenB in mice whose mouse FH did not bind to the vaccine antigen inhibited FH binding. Conclusions. Binding of FH to FHbp decreases protective anti-FHbp antibody responses of macaques to 4CMenB. Even low levels of FH binding skew the antibody repertoire to FHbp epitopes outside of the FH-binding site, which enhance FH binding. PMID:25676468
Molecularly imprinted composite cryogel for albumin depletion from human serum.
Andaç, Müge; Baydemir, Gözde; Yavuz, Handan; Denizli, Adil
2012-11-01
A new composite protein-imprinted macroporous cryogel was prepared for depletion of albumin from human serum prior to use in proteom applications. Polyhydroxyethyl-methacylate-based molecularly imprinted polymer (MIP) composite cryogel was prepared with high gel fraction yields up to 83%, and its morphology and porosity were characterized by Fourier transform infrared, scanning electron microscopy, swelling studies, flow dynamics, and surface area measurements. Selective binding experiments were performed in the presence of competitive proteins human transferrin (HTR) and myoglobin (MYB). MIP composite cryogel exhibited a high binding capacity and selectivity for human serum albumin (HSA) in the presence of HTR and MYB. The competitive adsorption amount for HSA in MIP composite cryogel is 722.1 mg/dL in the presence of competitive proteins (HTR and MYB). MIP composite cryogel column was successfully applied in the fast protein liquid chromatography system for selective depletion of albumin in human serum. The depletion ratio was highly increased by embedding beads into cryogel (85%). Finally, MIP composite cryogel can be reused many times with no apparent decrease in HSA adsorption capacity. Copyright © 2012 John Wiley & Sons, Ltd.
Nagaoka, Megumi Hamano; Yamazaki, Takeshi; Maitani, Tamio
2002-09-06
Vanadium (V) is an essential metal for mammals and has different valence states. In blood, V is bound to serum transferrin (Tf), a glycoprotein which has two metal-binding sites, and carbonate is generally required for the binding. In this study, the binding patterns of V(III), V(IV), and V(V) to human serum Tf (hTf) were analyzed using an HPLC system equipped with an anion-exchange column and directly connected to a high-resolution inductively coupled plasma-mass spectrometer for metal detection (51V). In affinity to hTf, the three ions were ranked V(III)>V(IV)>V(V) in the presence of bicarbonate and V(III) reverse congruent V(IV)>V(V) in the absence. Intermediates in the "open forms" binding to the respective sites were detected at the initial stage. V(IV) and V(V) were bound to the N-lobe site in the "closed form" and "open form," respectively. In the absence of bicarbonate, V ions with respective valence states were bound to hTf in the "open form." In terms of binding to hTf, tri-valent V was most favorable in the presence of bicarbonate.
Rimac, Hrvoje; Dufour, Claire; Debeljak, Željko; Zorc, Branka; Bojić, Mirza
2017-07-11
Human serum albumin (HSA) binds a variety of xenobiotics, including flavonoids and warfarin. The binding of another ligand to the IIA binding site on HSA can cause warfarin displacement and potentially the elevation of its free concentration in blood. Studies dealing with flavonoid-induced warfarin displacement from HSA provided controversial results: estimated risk of displacement ranged from none to serious. To resolve these controversies, in vitro study of simultaneous binding of warfarin and eight different flavonoid aglycons and glycosides to HSA was carried out by fluorescence spectroscopy as well as molecular docking. Results show that warfarin and flavonoids do not share the same binding region in binding to HSA. Interactions were only observed at high warfarin concentrations not attainable under recommended dosing regimes. Docking experiments show that flavonoid aglycons and glycosides do not bind at warfarin high affinity sites, but rather to different regions within the IIA HSA subdomain. Thus, the risk of clinically significant warfarin-flavonoid interaction in binding to HSA should be regarded as negligible.
Pan, Fang; Xu, Tianci; Yang, Lijun; Jiang, Xiaoqing; Zhang, Lei
2014-11-11
Bisphenol F (BPF) as an endocrine disrupting compounds (EDCs) pollutant in the environment poses a great threat to human health. To evaluate the toxicity of BPF at the protein level, the effects of BPF on human serum albumin (HSA) were investigated at three temperatures 283, 298, and 308 K by multiple spectroscopic techniques. The experimental results showed that BPF effectively quenched the intrinsic fluorescence of HSA via static quenching. The number of binding sites, the binding constant, the thermodynamic parameters and the binding subdomain were measured, and indicated that BPF could spontaneously bind with HSA on subdomain IIA through H-bond and van der Waals interactions. Furthermore, the conformation of HSA was demonstrably changed in the presence of BPF. The work provides accurate and full basic data for clarifying the binding mechanisms of BPF with HSA in vivo and is helpful for understanding its effect on protein function during its transportation and distribution in blood. Copyright © 2014 Elsevier B.V. All rights reserved.
Three-dimensional structure of human serum albumin
NASA Technical Reports Server (NTRS)
Carter, Daniel C.; He, Xiao-Min; Twigg, Pamela D.; Casale, Elena
1991-01-01
The binding locations to human serum albumin (HSA) of several drug molecules were determined at low resolution using crystallographic methods. The principal binding sites are located within subdomains IIA and IIIA. Preliminary studies suggest that an approach to increasing the in vivo efficacy of drugs which are rendered less effective or ineffective by virtue of their interaction with HSA, would be the use of competitive displacement in drug therapies and/or the development of a general inhibitor to the site within subdomain IIIA. These findings also suggest that the facilitated transfer of various ligands across organ/circulatory interfaces such as liver, kidney, and brain may be associated with binding to the IIIA subdomain.
Giuntini, Serena; Beernink, Peter T; Granoff, Dan M
2015-12-16
FHbp is a major serogroup B meningococcal vaccine antigen. Binding of complement Factor H (FH) to FHbp is specific for human and some non-human primate FH. In previous studies, FH binding to FHbp vaccines impaired protective anti-FHbp antibody responses. In this study we investigated anti-FHbp antibody responses to a third dose of a licensed serogroup B vaccine (MenB-4C) in infant macaques vaccinated in a previous study with MenB-4C. Six macaques with high binding of FH to FHbp (FH(high)), and six with FH(low) baseline phenotypes, were immunized three months after dose 2. After dose 2, macaques with the FH(low) baseline phenotype had serum anti-FHbp antibodies that enhanced FH binding to FHbp (functionally converting them to a FH(high) phenotype). In this group, activation of the classical complement pathway (C4b deposition) by serum anti-FHbp antibody, and anti-FHbp serum bactericidal titers were lower after dose 3 than after dose 2 (p<0.02). In macaques with the FH(high) baseline phenotype, the respective anti-FHbp C4b deposition and bactericidal titers were similar after doses 2 and 3. Two macaques developed serum anti-FH autoantibodies after dose 2, which were not detected after dose 3. In conclusion, in macaques with the FH(low) baseline phenotype whose post-dose 2 serum anti-FHbp antibodies had converted them to FH(high), the anti-FHbp antibody repertoire to dose 3 was skewed to less protective epitopes than after dose 2. Mutant FHbp vaccines that eliminate FH binding may avoid eliciting anti-FHbp antibodies that enhance FH binding, and confer greater protection with less risk of inducing anti-FH autoantibodies than FHbp vaccines that bind FH. Copyright © 2015 Elsevier Ltd. All rights reserved.
Identification and therapeutic potential of a vitronectin binding region of meningococcal msf.
Hill, Darryl J; Griffiths, Natalie J; Borodina, Elena; Andreae, Clio A; Sessions, Richard B; Virji, Mumtaz
2015-01-01
The human pathogen Neisseria meningitides (Nm) attains serum resistance via a number of mechanisms, one of which involves binding to the host complement regulator protein vitronectin. We have shown previously that the Meningococcal surface fibril (Msf), a trimeric autotransporter, binds to the activated form of vitronectin (aVn) to increase Nm survival in human serum. In this study, we aimed to identify the aVn-binding region of Msf to assess its potential as an antigen which can elicit antibodies that block aVn binding and/or possess bactericidal properties. Using several recombinant Msf fragments spanning its surface-exposed region, the smallest aVn-binding recombinants were found to span residues 1-86 and 39-124. The use of further deletion constructs and overlapping recombinant Msf fragments suggested that a region of Msf comprising residues 39-82 may be primarily important for aVn binding and that other regions may also be involved but to a lesser extent. Molecular modelling implicated K66 and K68, conserved in all available Msf sequences, to be involved in the interaction. Recombinant fragments which bound to aVn were able to reduce the survival advantage conveyed by aVn-interaction in serum bactericidal assays. Antibodies raised against one such fragment inhibited aVn binding to Msf. In addition, the antibodies enhanced specific killing of Msf-expressing Nm in a dose-dependent manner. Overall, this study identifies an aVn-binding region of Msf, an adhesin known to impart serum resistance properties to the pathogen; and shows that this region of Msf can elicit antibodies with dual properties which reduce pathogen survival within the host and thus has potential as a vaccine antigen.
Identification and Therapeutic Potential of a Vitronectin Binding Region of Meningococcal Msf
Hill, Darryl J.; Griffiths, Natalie J.; Borodina, Elena; Andreae, Clio A.; Sessions, Richard B.; Virji, Mumtaz
2015-01-01
The human pathogen Neisseria meningitides (Nm) attains serum resistance via a number of mechanisms, one of which involves binding to the host complement regulator protein vitronectin. We have shown previously that the Meningococcal surface fibril (Msf), a trimeric autotransporter, binds to the activated form of vitronectin (aVn) to increase Nm survival in human serum. In this study, we aimed to identify the aVn-binding region of Msf to assess its potential as an antigen which can elicit antibodies that block aVn binding and/or possess bactericidal properties. Using several recombinant Msf fragments spanning its surface-exposed region, the smallest aVn-binding recombinants were found to span residues 1-86 and 39-124. The use of further deletion constructs and overlapping recombinant Msf fragments suggested that a region of Msf comprising residues 39-82 may be primarily important for aVn binding and that other regions may also be involved but to a lesser extent. Molecular modelling implicated K66 and K68, conserved in all available Msf sequences, to be involved in the interaction. Recombinant fragments which bound to aVn were able to reduce the survival advantage conveyed by aVn-interaction in serum bactericidal assays. Antibodies raised against one such fragment inhibited aVn binding to Msf. In addition, the antibodies enhanced specific killing of Msf-expressing Nm in a dose-dependent manner. Overall, this study identifies an aVn-binding region of Msf, an adhesin known to impart serum resistance properties to the pathogen; and shows that this region of Msf can elicit antibodies with dual properties which reduce pathogen survival within the host and thus has potential as a vaccine antigen. PMID:25826209
Development of peptoid-based ligands for the removal of cadmium from biological media
Knight, Abigail S.; Zhou, Effie Y.; Francis, Matthew B.
2015-05-14
Cadmium poisoning poses a serious health concern due to cadmium's increasing industrial use, yet there is currently no recommended treatment. The selective coordination of cadmium in a biological environment—i.e. in the presence of serum ions, small molecules, and proteins—is a difficult task. To address this challenge, a combinatorial library of peptoid-based ligands has been evaluated to identify structures that selectively bind to cadmium in human serum with minimal chelation of essential metal ions. Eighteen unique ligands were identified in this screening procedure, and the binding affinity of each was measured using metal titrations monitored by UV-vis spectroscopy. To evaluate themore » significance of each chelating moiety, sequence rearrangements and substitutions were examined. Analysis of a metal–ligand complex by NMR spectroscopy highlighted the importance of particular residues. Depletion experiments were performed in serum mimetics and human serum with exogenously added cadmium. These depletion experiments were used to compare and demonstrate the ability of these peptoids to remove cadmium from blood-like mixtures. In one of these depletion experiments, the peptoid sequence was able to deplete the cadmium to a level comparable to the reported acute toxicity limit. Evaluation of the metal selectivity in buffered solution and in human serum was performed to verify minimal off-target binding. These studies highlight a screening platform for the identification of metal–ligands that are capable of binding in a complex environment. They additionally demonstrate the potential utility of biologically-compatible ligands for the treatment of heavy metal poisoning.« less
Development of peptoid-based ligands for the removal of cadmium from biological media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Abigail S.; Zhou, Effie Y.; Francis, Matthew B.
Cadmium poisoning poses a serious health concern due to cadmium's increasing industrial use, yet there is currently no recommended treatment. The selective coordination of cadmium in a biological environment—i.e. in the presence of serum ions, small molecules, and proteins—is a difficult task. To address this challenge, a combinatorial library of peptoid-based ligands has been evaluated to identify structures that selectively bind to cadmium in human serum with minimal chelation of essential metal ions. Eighteen unique ligands were identified in this screening procedure, and the binding affinity of each was measured using metal titrations monitored by UV-vis spectroscopy. To evaluate themore » significance of each chelating moiety, sequence rearrangements and substitutions were examined. Analysis of a metal–ligand complex by NMR spectroscopy highlighted the importance of particular residues. Depletion experiments were performed in serum mimetics and human serum with exogenously added cadmium. These depletion experiments were used to compare and demonstrate the ability of these peptoids to remove cadmium from blood-like mixtures. In one of these depletion experiments, the peptoid sequence was able to deplete the cadmium to a level comparable to the reported acute toxicity limit. Evaluation of the metal selectivity in buffered solution and in human serum was performed to verify minimal off-target binding. These studies highlight a screening platform for the identification of metal–ligands that are capable of binding in a complex environment. They additionally demonstrate the potential utility of biologically-compatible ligands for the treatment of heavy metal poisoning.« less
Steady-State Fluorescence Anisotropy to Investigate Flavonoids Binding to Proteins
ERIC Educational Resources Information Center
Ingersoll, Christine M.; Strollo, Christen M.
2007-01-01
The steady-state fluorescence anisotropy is employed to study the binding of protein of a model protein, human serum albumin, to a commonly used flavonoid, quercetin. The experiment describes the thermodynamics, as well as the biochemical interactions of such binding effectively.
Protein microarray analysis reveals BAFF-binding autoantibodies in systemic lupus erythematosus
Price, Jordan V.; Haddon, David J.; Kemmer, Dodge; Delepine, Guillaume; Mandelbaum, Gil; Jarrell, Justin A.; Gupta, Rohit; Balboni, Imelda; Chakravarty, Eliza F.; Sokolove, Jeremy; Shum, Anthony K.; Anderson, Mark S.; Cheng, Mickie H.; Robinson, William H.; Browne, Sarah K.; Holland, Steven M.; Baechler, Emily C.; Utz, Paul J.
2013-01-01
Autoantibodies against cytokines, chemokines, and growth factors inhibit normal immunity and are implicated in inflammatory autoimmune disease and diseases of immune deficiency. In an effort to evaluate serum from autoimmune and immunodeficient patients for Abs against cytokines, chemokines, and growth factors in a high-throughput and unbiased manner, we constructed a multiplex protein microarray for detection of serum factor–binding Abs and used the microarray to detect autoantibody targets in SLE. We designed a nitrocellulose-surface microarray containing human cytokines, chemokines, and other circulating proteins and demonstrated that the array permitted specific detection of serum factor–binding probes. We used the arrays to detect previously described autoantibodies against cytokines in samples from individuals with autoimmune polyendocrine syndrome type 1 and chronic mycobacterial infection. Serum profiling from individuals with SLE revealed that among several targets, elevated IgG autoantibody reactivity to B cell–activating factor (BAFF) was associated with SLE compared with control samples. BAFF reactivity correlated with the severity of disease-associated features, including IFN-α–driven SLE pathology. Our results showed that serum factor protein microarrays facilitate detection of autoantibody reactivity to serum factors in human samples and that BAFF-reactive autoantibodies may be associated with an elevated inflammatory disease state within the spectrum of SLE. PMID:24270423
The complexity of minocycline serum protein binding.
Zhou, Jian; Tran, Brian T; Tam, Vincent H
2017-06-01
Serum protein binding is critical for understanding the pharmacology of antimicrobial agents. Tigecycline and eravacycline were previously reported to have atypical non-linear protein binding; the percentage of free fraction decreased with increasing total concentration. In this study, we extended the investigation to other tetracyclines and examined the factors that might impact protein binding. Different minocycline concentrations (0.5-50 mg/L) and perfusion media (saline, 0.1 M HEPES buffer and 0.1 and 1 M PBS) were examined by in vitro microdialysis. After equilibration, two dialysate samples were taken from each experiment and the respective antimicrobial agent concentrations were analysed by validated LC-MS/MS methods. For comparison, the serum protein bindings of doxycycline and levofloxacin were also determined. The free fraction of minocycline decreased with increasing total concentration, and the results depended on the perfusion media used. The trends of minocycline protein binding in mouse and human sera were similar. In addition, serum protein binding of doxycycline showed the same concentration-dependent trend as minocycline, while the results of levofloxacin were concentration independent. The serum protein bindings of minocycline and doxycycline are negatively correlated with their total concentrations. It is possible that all tetracyclines share the same pharmacological property. Moreover, the specific perfusion media used could also impact the results of microdialysis. Additional studies are warranted to understand the mechanism(s) and clinical implications of serum protein binding of tetracyclines. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Vukićević, Milica; Tønnesen, Hanne Hjorth
2016-01-01
Curcumin (Cur) is known to bind to human serum albumin (HSA) which may lead to a reduced phototoxic effect of the compound in the presence of serum or saliva. The influence of excipients on the Cur-HSA binding was studied by HSA florescence quenching and Cur absorption and emission spectroscopy in the presence and absence of the selected excipients. Photostabilty of Cur in the presence of HSA was evaluated, as well as the effect of excipients on HSA bound Cur photodegradation. Cyclodextrins (CDs) (2-hydroxypropyl-β-cyclodextrin and 2-hydroxypropyl-γ-cyclodextrin) and polymers (polyethylene glycol 400, PEG 400 and Pluronic F-127, PF-127) were selected for the study. CDs and PF-127 seem to decrease Cur binding to HSA, probably through competitive binding. Cur was still bound to HSA in polyethylene glycol (PEG) solutions at the highest investigated concentration (5% w/v). However, high PEG concentration appears to have effect on the protein conformation, as shown by the fluorescence quenching study. Low Cur photostability in the presence of HSA could be improved by the addition of hydroxylpropyl-γ-cyclodextrin (HPγCD) to the samples, whereas PEG and PF-127 showed no effect.
Calcium-dependent interaction of monomeric S100P protein with serum albumin.
Kazakov, Alexei S; Shevelyova, Marina P; Ismailov, Ramis G; Permyakova, Maria E; Litus, Ekaterina A; Permyakov, Eugene A; Permyakov, Sergei E
2018-03-01
S100 proteins are multifunctional (intra/extra)cellular mostly dimeric calcium-binding proteins engaged into numerous diseases. We have found that monomeric recombinant human S100P protein interacts with intact human serum albumin (HSA) in excess of calcium ions with equilibrium dissociation constant of 25-50nM, as evidenced by surface plasmon resonance spectroscopy and fluorescent titration by HSA of S100P labelled by fluorescein isothiocyanate. Calcium removal or S100P dimerization abolish the S100P-HSA interaction. The interaction is selective, since S100P does not bind bovine serum albumin and monomeric human S100B lacks interaction with HSA. In vitro glycation of HSA disables its binding to S100P. The revealed selective and highly specific conformation-dependent interaction between S100P and HSA shows that functional properties of monomeric and dimeric forms of S100 proteins are different, and raises concerns on validity of cell-based assays and animal models used for studies of (patho)physiological roles of extracellular S100 proteins. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Katrahalli, Umesha; Jaldappagari, Seetharamappa; Kalanur, Shankara S.
2010-01-01
The interaction between human serum albumin (HSA) and fluoxetine hydrochloride (FLX) have been studied by using different spectroscopic techniques viz., fluorescence, UV-vis absorption, circular dichroism and FTIR under simulated physiological conditions. Fluorescence results revealed the presence of static type of quenching mechanism in the binding of FLX to HSA. The values of binding constant, K of FLX-HSA were evaluated at 289, 300 and 310 K and were found to be 1.90 × 10 3, 1.68 × 10 3 and 1.45 × 10 3 M -1, respectively. The number of binding sites, n was noticed to be almost equal to unity thereby indicating the presence of a single class of binding site for FLX on HSA. Based on the thermodynamic parameters, Δ H0 and Δ S0 nature of binding forces operating between HSA and FLX were proposed. Spectral results revealed the conformational changes in protein upon interaction. Displacement studies indicated the site I as the main binding site for FLX on HSA. The effect of common ions on the binding of FLX to HSA was also investigated.
Hauenschild, Till; Reichenwallner, Jörg; Enkelmann, Volker; Hinderberger, Dariush
2016-08-26
Drug binding to human serum albumin (HSA) has been characterized by a spin-labeling and continuous-wave (CW) EPR spectroscopic approach. Specifically, the contribution of functional groups (FGs) in a compound on its albumin-binding capabilities is quantitatively described. Molecules from different drug classes are labeled with EPR-active nitroxide radicals (spin-labeled pharmaceuticals (SLPs)) and in a screening approach CW-EPR spectroscopy is used to investigate HSA binding under physiological conditions and at varying ratios of SLP to protein. Spectral simulations of the CW-EPR spectra allow extraction of association constants (KA ) and the maximum number (n) of binding sites per protein. By comparison of data from 23 SLPs, the mechanisms of drug-protein association and the impact of chemical modifications at individual positions on drug uptake can be rationalized. Furthermore, new drug modifications with predictable protein binding tendency may be envisaged. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Calorimetric and spectroscopic studies of the interaction between zidovudine and human serum albumin
NASA Astrophysics Data System (ADS)
Pîrnău, Adrian; Mic, Mihaela; Neamţu, Silvia; Floare, Călin G.; Bogdan, Mircea
2018-02-01
A quantitative analysis of the interaction between zidovudine (AZT) and human serum albumin (HSA) was achieved using Isothermal titration calorimetry (ITC) in combination with fluorescence and 1H NMR spectroscopy. ITC directly measure the heat during a biomolecular binding event and gave us thermodynamic parameters and the characteristic association constant. By fluorescence quenching, the binding parameters of AZT-HSA interaction was determined and location to binding site I of HSA was confirmed. Via T1 NMR selective relaxation time measurements the drug-protein binding extent was evaluated as dissociation constants Kd and the involvement of azido moiety of zidovudine in molecular complex formation was put in evidence. All three methods indicated a very weak binding interaction. The association constant determined by ITC (3.58 × 102 M- 1) is supported by fluorescence quenching data (2.74 × 102 M- 1). The thermodynamic signature indicates that at least hydrophobic and electrostatic type interactions played a main role in the binding process.
Kinetic Analyses of Data from a Human Serum Albumin Assay Using the liSPR System.
Henseleit, Anja; Pohl, Carolin; Kaltenbach, Hans-Michael; Hettwer, Karina; Simon, Kirsten; Uhlig, Steffen; Haustein, Natalie; Bley, Thomas; Boschke, Elke
2015-01-19
We used the interaction between human serum albumin (HSA) and a high-affinity antibody to evaluate binding affinity measurements by the bench-top liSPR system (capitalis technology GmbH). HSA was immobilized directly onto a carboxylated sensor layer, and the mechanism of interaction between the antibody and HSA was investigated. The bivalence and heterogeneity of the antibody caused a complex binding mechanism. Three different interaction models (1:1 binding, heterogeneous analyte, bivalent analyte) were compared, and the bivalent analyte model best fit the curves obtained from the assay. This model describes the interaction of a bivalent analyte with one or two ligands (A + L ↔ LA + L ↔ LLA). The apparent binding affinity for this model measured 37 pM for the first reaction step, and 20 pM for the second step.
Kinetic Analyses of Data from a Human Serum Albumin Assay Using the liSPR System
Henseleit, Anja; Pohl, Carolin; Kaltenbach, Hans-Michael; Hettwer, Karina; Simon, Kirsten; Uhlig, Steffen; Haustein, Natalie; Bley, Thomas; Boschke, Elke
2015-01-01
We used the interaction between human serum albumin (HSA) and a high-affinity antibody to evaluate binding affinity measurements by the bench-top liSPR system (capitalis technology GmbH). HSA was immobilized directly onto a carboxylated sensor layer, and the mechanism of interaction between the antibody and HSA was investigated. The bivalence and heterogeneity of the antibody caused a complex binding mechanism. Three different interaction models (1:1 binding, heterogeneous analyte, bivalent analyte) were compared, and the bivalent analyte model best fit the curves obtained from the assay. This model describes the interaction of a bivalent analyte with one or two ligands (A + L ↔ LA + L ↔ LLA). The apparent binding affinity for this model measured 37 pM for the first reaction step, and 20 pM for the second step. PMID:25607476
Epps, D E; Raub, T J; Caiolfa, V; Chiari, A; Zamai, M
1999-01-01
Binding of new chemical entities to serum proteins is an issue confronting pharmaceutical companies during development of potential therapeutic agents. Most drugs bind to the most abundant plasma protein, human serum albumin (HSA), at two major binding sites. Excepting fluorescence spectroscopy, existing methods for assaying drug binding to serum albumin are insensitive to higher-affinity compounds and can be labour-intensive, time-consuming, and usually require compound-specific assays. This led us to examine alternative ways to measure drug-albumin interaction. One method described here uses fluorescence quenching of the single tryptophan (Trp) residue in HSA excited at 295 nm to measure drug-binding affinity. Unfortunately, many compounds absorb, fluoresce, or both, in this UV wavelength region of the spectrum. Several types of binding phenomenon and spectral interference were identified by use of six structurally unrelated compounds and the equations necessary to make corrections mathematically were derived and applied to calculate binding constants accurately. The general cases were: direct quenching of Trp fluorescence by optically transparent ligands with low or high affinities; binding of optically transparent, non-fluorescent ligands to two specific sites where both sites or only one site result in Trp fluorescence quenching; and chromophores whose absorption either overlaps the Trp emission and quenches by energy transfer or absorbs light at the Trp fluorescence excitation wavelength producing absorptive screening as well as fluorescence quenching. Unless identification of the site specificity of drug binding to serum albumin is desired, quenching of the Trp fluorescence of albumin by titration with ligand is a rapid and facile method for determining the binding affinities of drugs for serum albumin.
Influence of heat inactivation of human serum on the opsonization of Streptococcus mutans.
Moore, M A; Hakki, Z W; Gregory, R L; Gfell, L E; Kim-Park, W K; Kowolik, M J
1997-12-15
Phagocytosis of bacteria, such as Streptococcus mutans, is important to host defense. One mechanism by which phagocytosis can be enhanced is by antibody or complement-mediated opsonization of bacteria. Many studies utilize opsonization of bacteria to enhance a cellular response, but little information has been found examining methodology or validity of the opsonization process following the denaturization of the serum. Human serum was inactivated by heat in order to disrupt the classical and alternative pathways of the complement cascade. S. mutans isolated from human subjects were opsonized with heat-inactivated human serum before exposing them to viable neutrophils in vitro. Luminol-dependent chemiluminescence (CL) was used to measure neutrophil activation. Human serum used to opsonize the bacteria was denatured by incubation at 57 degrees C for intervals of 30 and 60 min to inactivate complement. The results from the opsonization data indicated that there was significantly increased CL with 60-min inactivation of the serum (34% increase in mean integration mV.min; p < or = 0.05) over the nonopsonized control. This indicated a successful opsonization of the bacteria. In addition, the data demonstrate that the inactivation of serum requires a minimum of 60 min at 57 degrees C to disrupt the complement cascade, while 30- and 15-min inactivations produced no significant increase in CL activity over the control. Standard sandwich ELISA assays, detecting complement binding to S. mutans, confirmed successful heat inactivation of serum showing a significant decrease (p < or = 0.001) in complement binding to S. mutans after 30 min, but could not explain the increased CL response after 60-min heat deactivation of the serum.
NASA Astrophysics Data System (ADS)
Wang, Ran; Huang, Shuai; Li, Jing; Chae, Junseok
2014-10-01
Thyroglobulin (Tg) is a sensitive indicator of persistent or recurrent differentiated thyroid cancer of follicular cell origin. Detection of Tg in human serum is challenging as bio-receptors, such as anti-Tg, used in immunoassay have relatively weak binding affinity. We engineer sensing surfaces using the competitive adsorption of proteins, termed the Vroman Effect. Coupled with Surface Plasmon Resonance, the "cross-responsive" interactions of Tg on the engineered surfaces produce uniquely distinguishable multiple signature patterns, which are discriminated using Linear Discriminant Analysis. Tg-spiked samples, down to 2 ng/ml Tg in undiluted human serum, are sensitively and selectively discriminated from the control (undiluted human serum).
Domonkos, Celesztina; Fitos, Ilona; Visy, Júlia; Zsila, Ferenc
2013-12-02
Harmane and norharmane are representative members of the large group of natural β-carboline alkaloids featured with diverse pharmacological activities. In blood, these agents are transported by human serum albumin (HSA) which has a profound impact on the pharmacokinetic and pharmacodynamic properties of many therapeutic drugs and xenobiotics. By combination of various spectroscopic methods, the present contribution is aimed to elucidate how nonesterified fatty acids (FAs), the primary endogenous ligands of HSA, affect the binding properties of harmane and norharmane. Analysis of induced circular dichroism (CD) and fluorescence spectroscopic data indicates the inclusion of the neutral form of both molecules into the binding pocket of subdomain IIIA, which hosts two FA binding sites, too. The induced CD and UV absorption spectra of harmane and norharmane exhibit peculiar changes upon addition of FAs, suggesting the formation of ternary complexes in which the lipid ligands significantly alter the binding mode of the alkaloids via cooperative allosteric mechanism. To our knowledge, it is the first instance of the demonstration of drug-FA cobinding at site IIIA. In line with these results, molecular docking calculations showed two distinct binding positions of norharmane within subdomain IIIA. The profound increase in the affinity constants of β-carbolines estimated in the presence of FAs predicts that the unbound, pharmacologically active serum fraction of these compounds strongly depends on the actual lipid binding profile of HSA.
Smith, A; Neuschatz, T
1983-01-01
Haematoporphyrin derivative (HpD), a mixture of porphyrins, is currently used as a photochemotherapeutic agent in the treatment of neoplasias. The interaction of purified components of HpD with serum and cellular proteins was investigated using absorption and fluorescence spectroscopy. The interactions of haematoporphyrin and OO'-diacetylhaematoporphyrin with human albumin and with haemopexin, the two major serum porphyrin-binding proteins, show stoichiometries of 1 mol of porphyrin bound per mol of protein. The apparent dissociation constants, Kd, are in the range of 1-2 microM for albumin and 3-4 microM for haemopexin. These two major components of HpD would, after intravenous injection, bind to albumin and circulate in serum as albumin complexes. Free porphyrin rather than porphyrin bound to albumin interacts with Morris hepatoma tissue culture cells. A rapid high-affinity saturable transport system operates at free porphyrin concentrations of less than 2 microM. In addition, fluorescence spectra show that components in rat liver cytosol can bind haematoporphyrin and OO'-diacetylhaematoporphyrin and distinguish these binders from those present in rat serum. PMID:6225429
Fab-dsFv: A bispecific antibody format with extended serum half-life through albumin binding.
Davé, Emma; Adams, Ralph; Zaccheo, Oliver; Carrington, Bruce; Compson, Joanne E; Dugdale, Sarah; Airey, Michael; Malcolm, Sarah; Hailu, Hanna; Wild, Gavin; Turner, Alison; Heads, James; Sarkar, Kaushik; Ventom, Andrew; Marshall, Diane; Jairaj, Mark; Kopotsha, Tim; Christodoulou, Louis; Zamacona, Miren; Lawson, Alastair D; Heywood, Sam; Humphreys, David P
2016-10-01
An antibody format, termed Fab-dsFv, has been designed for clinical indications that require monovalent target binding in the absence of direct Fc receptor (FcR) binding while retaining substantial serum presence. The variable fragment (Fv) domain of a humanized albumin-binding antibody was fused to the C-termini of Fab constant domains, such that the VL and VH domains were individually connected to the Cκ and CH1 domains by peptide linkers, respectively. The anti-albumin Fv was selected for properties thought to be desirable to ensure a durable serum half-life mediated via FcRn. The Fv domain was further stabilized by an inter-domain disulfide bond. The bispecific format was shown to be thermodynamically and biophysically stable, and retained good affinity and efficacy to both antigens simultaneously. In in vivo studies, the serum half-life of Fab-dsFv, 2.6 d in mice and 7.9 d in cynomolgus monkeys, was equivalent to Fab'-PEG.
Fab-dsFv: A bispecific antibody format with extended serum half-life through albumin binding
Davé, Emma; Adams, Ralph; Zaccheo, Oliver; Carrington, Bruce; Compson, Joanne E.; Dugdale, Sarah; Airey, Michael; Malcolm, Sarah; Hailu, Hanna; Wild, Gavin; Turner, Alison; Heads, James; Sarkar, Kaushik; Ventom, Andrew; Marshall, Diane; Jairaj, Mark; Kopotsha, Tim; Christodoulou, Louis; Zamacona, Miren; Lawson, Alastair D.; Heywood, Sam; Humphreys, David P.
2016-01-01
ABSTRACT An antibody format, termed Fab-dsFv, has been designed for clinical indications that require monovalent target binding in the absence of direct Fc receptor (FcR) binding while retaining substantial serum presence. The variable fragment (Fv) domain of a humanized albumin-binding antibody was fused to the C-termini of Fab constant domains, such that the VL and VH domains were individually connected to the Cκ and CH1 domains by peptide linkers, respectively. The anti-albumin Fv was selected for properties thought to be desirable to ensure a durable serum half-life mediated via FcRn. The Fv domain was further stabilized by an inter-domain disulfide bond. The bispecific format was shown to be thermodynamically and biophysically stable, and retained good affinity and efficacy to both antigens simultaneously. In in vivo studies, the serum half-life of Fab-dsFv, 2.6 d in mice and 7.9 d in cynomolgus monkeys, was equivalent to Fab'-PEG. PMID:27532598
Ali, Youssif M; Kenawy, Hany I; Muhammad, Adnan; Sim, Robert B; Andrew, Peter W; Schwaeble, Wilhelm J
2013-01-01
The complement system is an essential component of the immune response, providing a critical line of defense against different pathogens including S. pneumoniae. Complement is activated via three distinct pathways: the classical (CP), the alternative (AP) and the lectin pathway (LP). The role of Pneumolysin (PLY), a bacterial toxin released by S. pneumoniae, in triggering complement activation has been studied in vitro. Our results demonstrate that in both human and mouse sera complement was activated via the CP, initiated by direct binding of even non-specific IgM and IgG3 to PLY. Absence of CP activity in C1q(-/-) mouse serum completely abolished any C3 deposition. However, C1q depleted human serum strongly opsonized PLY through abundant deposition of C3 activation products, indicating that the LP may have a vital role in activating the human complement system on PLY. We identified that human L-ficolin is the critical LP recognition molecule that drives LP activation on PLY, while all of the murine LP recognition components fail to bind and activate complement on PLY. This work elucidates the detailed interactions between PLY and complement and shows for the first time a specific role of the LP in PLY-mediated complement activation in human serum.
Ali, Youssif M.; Kenawy, Hany I.; Muhammad, Adnan; Sim, Robert B.
2013-01-01
The complement system is an essential component of the immune response, providing a critical line of defense against different pathogens including S. pneumoniae. Complement is activated via three distinct pathways: the classical (CP), the alternative (AP) and the lectin pathway (LP). The role of Pneumolysin (PLY), a bacterial toxin released by S. pneumoniae, in triggering complement activation has been studied in vitro. Our results demonstrate that in both human and mouse sera complement was activated via the CP, initiated by direct binding of even non-specific IgM and IgG3 to PLY. Absence of CP activity in C1q−/− mouse serum completely abolished any C3 deposition. However, C1q depleted human serum strongly opsonized PLY through abundant deposition of C3 activation products, indicating that the LP may have a vital role in activating the human complement system on PLY. We identified that human L-ficolin is the critical LP recognition molecule that drives LP activation on PLY, while all of the murine LP recognition components fail to bind and activate complement on PLY. This work elucidates the detailed interactions between PLY and complement and shows for the first time a specific role of the LP in PLY-mediated complement activation in human serum. PMID:24349316
Alteration of human serum albumin tertiary structure induced by glycation. Spectroscopic study
NASA Astrophysics Data System (ADS)
Szkudlarek, A.; Maciążek-Jurczyk, M.; Chudzik, M.; Równicka-Zubik, J.; Sułkowska, A.
2016-01-01
The modification of human serum albumin (HSA) structure by non-enzymatic glycation is one of the underlying factors that contribute to the development of complications of diabetes and neurodegenerative diseases. The aim of the present work was to estimate how glycation of HSA altered its tertiary structure. Changes of albumin conformation were investigated by comparison of glycated (gHSA) and non-glycated human serum albumin (HSA) absorption spectra, red edge excitation shift (REES) and synchronous spectra. Effect of glycation on human serum albumin tertiary structure was also investigated by 1H NMR spectroscopy. Formation of gHSA Advanced Glycation End-products (AGEs) caused absorption of UV-VIS light between 310 nm and 400 nm while for non-glycated HSA in this region no absorbance has been registered. Analysis of red edge excitation shift effect allowed for observation of structural changes of gHSA in the hydrophobic pocket containing the tryptophanyl residue. Moreover changes in the microenvironment of tryptophanyl and tyrosyl residues brought about AGEs on the basis of synchronous fluorescence spectroscopy have been confirmed. The influence of glycation process on serum albumin binding to 5-dimethylaminonaphthalene-1-sulfonamide (DNSA), 2-(p-toluidino) naphthalene-6-sulfonic acid (TNS), has been studied. Fluorescence analysis showed that environment of both binding site I and II is modified by galactose glycation.
Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László
2009-01-01
There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed.
NASA Astrophysics Data System (ADS)
Kabir, Md. Zahirul; Tee, Wei-Ven; Mohamad, Saharuddin B.; Alias, Zazali; Tayyab, Saad
2017-06-01
Binding studies between a multi-targeted anticancer drug, sunitinib (SU) and human serum albumin (HSA) were made using fluorescence, UV-vis absorption, circular dichroism (CD) and molecular docking analysis. Both fluorescence quenching data and UV-vis absorption results suggested formation of SU-HSA complex. Moderate binding affinity between SU and HSA was evident from the value of the binding constant (3.04 × 104 M-1), obtained at 298 K. Involvement of hydrophobic interactions and hydrogen bonds as the leading intermolecular forces in the formation of SU-HSA complex was predicted from the thermodynamic data of the binding reaction. These results were in good agreement with the molecular docking analysis. Microenvironmental perturbations around Tyr and Trp residues as well as secondary and tertiary structural changes in HSA upon SU binding were evident from the three-dimensional fluorescence and circular dichroism results. SU binding to HSA also improved the thermal stability of the protein. Competitive displacement results and molecular docking analysis revealed the binding locus of SU to HSA in subdomain IIA (Sudlow's site I). The influence of a few common ions on the binding constant of SU-HSA complex was also noticed.
Beckford, Garfield; Owens, Eric; Henary, Maged; Patonay, Gabor
2012-04-15
The effects of solvatochromism on protein-ligand interactions have been studied by absorbance and near-infrared laser induced fluorescence (NIR-LIF) spectroscopy. The utility of three novel classes of cyanine dyes designed for this purpose illustrates that the affinity interactions of ligands at the hydrophobic binding pockets of Human Serum Albumin (HSA) are not only dependent on the overall hydrophobic characteristics of the molecules but are highly influenced by the size of the ligands as well. Whereas changes to the chromophore moiety exhibited slight to moderate changes to the hydrophobic nature of these molecules, substitution at the alkyl indolium side chain has enabled us to vary the binding affinity towards serum albumin. Substitution at the indolium side chain among an ethyl to butyl group results in improved binding characteristics and an almost three-fold increase in affinity constant. In addition, replacement of the ethyl side chain with a phenylpropyl group also yielded unique solvotachromic patterns such as increased hydrophobicity and subsequent biocompatibility with the HSA binding regions. Ligand interaction was however inhibited by steric hindrance associated with the bulky phenyl ring system thus affecting the increased binding that could be realized from the improved hydrophobic nature of the molecules. This characteristic change in binding affinity is of potential interest to developing a methodology which reveals information on the hydrophobic character and steric specificity of the binding cavities. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka, J.; Sułkowski, W. W.
2009-04-01
Combination of several drugs is often necessary especially during long-them therapy. The competition between drugs can cause a decrease of the amount of a drug bound to albumin. This results in an increase of the free, biological active fraction of the drug. The aim of the presented study was to describe the competition between phenylbutazone (Phe) and methotrexate (MTX), two drugs recommended for the treatment of rheumatology in binding to bovine (BSA) and human (HSA) serum albumin in the high affinity binding site. Fluorescence analysis was used to estimate the effect of drugs on the protein fluorescence and to define the binding and quenching properties of drugs-serum albumin complexes. The effect of the displacement of one drug from the complex of the other with serum albumin has been described on the basis of the comparison of the quenching curves and binding constants for the binary and ternary systems. The conclusion that both Phe and MTX form a binding site in the same subdomain (IIA) points to the necessity of using a monitoring therapy owning to the possible increase of the uncontrolled toxic effects.
Eaton, Joshua D.
2017-01-01
The affinity of epigallocatechin gallate (EGCG) for human serum albumin (HSA) was measured in physiological conditions using NMR and isothermal titration calorimetry (ITC). NMR estimated the Ka (self-dissociation constant) of EGCG as 50 mM. NMR showed two binding events: strong (n1=1.8 ± 0.2; Kd1 =19 ± 12 μM) and weak (n2∼20; Kd2 =40 ± 20 mM). ITC also showed two binding events: strong (n1=2.5 ± 0.03; Kd1 =21.6 ± 4.0 μM) and weak (n2=9 ± 1; Kd2 =22 ± 4 mM). The two techniques are consistent, with an unexpectedly high number of bound EGCG. The strong binding is consistent with binding in the two Sudlow pockets. These results imply that almost all EGCG is transported in the blood bound to albumin and explains the wide tissue distribution and chemical stability of EGCG in vivo. PMID:28424370
Zhang, Guowen; Ma, Yadi
2013-01-15
The mechanism of interaction between food dye amaranth and human serum albumin (HSA) in physiological buffer (pH 7.4) was investigated by fluorescence, UV-vis absorption, circular dichroism (CD), and Fourier transform infrared (FT-IR) spectroscopy. Results obtained from analysis of fluorescence spectra indicated that amaranth had a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. The negative value of enthalpy change and positive value of entropy change elucidated that the binding of amaranth to HSA was driven mainly by hydrophobic and hydrogen bonding interactions. The surface hydrophobicity of HSA increased after binding with amaranth. The binding distance between HSA and amaranth was estimated to be 3.03 nm and subdomain IIA (Sudlow site I) was the primary binding site for amaranth on HSA. The results of CD and FT-IR spectra showed that binding of amaranth to HSA induced conformational changes of HSA. Copyright © 2012 Elsevier Ltd. All rights reserved.
Deng, Ge; Wu, Kristi; Cruce, Alex A; Bowman, Michael K; Vincent, John B
2015-02-01
Transferrin, the major iron transport protein in the blood, also transports trivalent chromium in vivo. Recent in vitro studies have, however, suggested that the binding of chromic ions to apotransferrin is too slow to be biologically relevant. Nevertheless, the in vitro studies have generally failed to adequately take physiological bicarbonate concentrations into account. In aqueous buffer (with ambient (bi)carbonate concentrations), the binding of chromium to transferrin is too slow to be physiologically relevant, taking days to reach equilibrium with the protein's associated conformational changes. However, in the presence of 25mM (bi)carbonate, the concentration in human blood, chromic ions bind rapidly and tightly to transferrin. Details of the kinetics of chromium binding to human serum transferrin and conalbumin (egg white transferrin) in the presence of bicarbonate and other major potential chromium ligands are described and are consistent with transferrin being the major chromic ion transporter from the blood to tissues. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shahabadi, Nahid; Khorshidi, Aref; Moghadam, Neda Hossinpour
2013-10-01
In the present investigation, an attempt has been made to study the interaction of zonisamide (ZNS) with the transport protein, human serum albumin (HSA) employing UV-Vis, fluorometric, circular dichroism (CD) and molecular docking techniques. The results indicated that binding of ZNS to HSA caused strong fluorescence quenching of HSA through static quenching mechanism, hydrogen bonds and van der Waals contacts are the major forces in the stability of protein ZNS complex and the process of the binding of ZNS with HSA was driven by enthalpy (ΔH = -193.442 kJ mol-1). The results of CD and UV-Vis spectroscopy showed that the binding of this drug to HSA induced conformational changes in HSA. Furthermore, the study of molecular docking also indicated that zonisamide could strongly bind to the site I (subdomain IIA) of HSA mainly by hydrophobic interaction and there were hydrogen bond interactions between this drug and HSA, also known as the warfarin binding site.
Mencarelli, Chiara; Bode, Gerard H.; Losen, Mario; Kulharia, Mahesh; Molenaar, Peter C.; Veerhuis, Robert; Steinbusch, Harry W. M.; De Baets, Marc H.; Nicolaes, Gerry A. F.; Martinez-Martinez, Pilar
2012-01-01
Serum amyloid P component (SAP) is a non-fibrillar glycoprotein belonging to the pentraxin family of the innate immune system. SAP is present in plasma, basement membranes, and amyloid deposits. This study demonstrates, for the first time, that the Goodpasture antigen-binding protein (GPBP) binds to human SAP. GPBP is a nonconventional Ser/Thr kinase for basement membrane type IV collagen. Also GPBP is found in plasma and in the extracellular matrix. In the present study, we demonstrate that GPBP specifically binds SAP in its physiological conformations, pentamers and decamers. The START domain in GPBP is important for this interaction. SAP and GPBP form complexes in blood and partly colocalize in amyloid plaques from Alzheimer disease patients. These data suggest the existence of complexes of SAP and GPBP under physiological and pathological conditions. These complexes are important for understanding basement membrane, blood physiology, and plaque formation in Alzheimer disease. PMID:22396542
Serum amyloid A is a retinol binding protein that transports retinol during bacterial infection
Derebe, Mehabaw G; Zlatkov, Clare M; Gattu, Sureka; Ruhn, Kelly A; Vaishnava, Shipra; Diehl, Gretchen E; MacMillan, John B; Williams, Noelle S; Hooper, Lora V
2014-01-01
Retinol plays a vital role in the immune response to infection, yet proteins that mediate retinol transport during infection have not been identified. Serum amyloid A (SAA) proteins are strongly induced in the liver by systemic infection and in the intestine by bacterial colonization, but their exact functions remain unclear. Here we show that mouse and human SAAs are retinol binding proteins. Mouse and human SAAs bound retinol with nanomolar affinity, were associated with retinol in vivo, and limited the bacterial burden in tissues after acute infection. We determined the crystal structure of mouse SAA3 at a resolution of 2 Å, finding that it forms a tetramer with a hydrophobic binding pocket that can accommodate retinol. Our results thus identify SAAs as a family of microbe-inducible retinol binding proteins, reveal a unique protein architecture involved in retinol binding, and suggest how retinol is circulated during infection. DOI: http://dx.doi.org/10.7554/eLife.03206.001 PMID:25073702
Seib, Kate L; Brunelli, Brunella; Brogioni, Barbara; Palumbo, Emmanuelle; Bambini, Stefania; Muzzi, Alessandro; DiMarcello, Federica; Marchi, Sara; van der Ende, Arie; Aricó, Beatrice; Savino, Silvana; Scarselli, Maria; Comanducci, Maurizio; Rappuoli, Rino; Giuliani, Marzia M; Pizza, Mariagrazia
2011-02-01
Neisseria meningitidis is a commensal of the human nasopharynx but is also a major cause of septicemia and meningitis. The meningococcal factor H binding protein (fHbp) binds human factor H (fH), enabling downregulation of complement activation on the bacterial surface. fHbp is a component of two serogroup B meningococcal vaccines currently in clinical development. Here we characterize 12 fHbp subvariants for their level of surface exposure and ability to bind fH, to mediate serum resistance, and to induce bactericidal antibodies. Flow cytometry and Western analysis revealed that all strains examined expressed fHbp on their surface to different extents and bound fH in an fHbp-dependent manner. However, differences in fH binding did not always correlate with the level of fHbp expression, indicating that this is not the only factor affecting the amount of fH bound. To overcome the issue of strain variability in fHbp expression, the MC58ΔfHbp strain was genetically engineered to express different subvariants from a constitutive heterologous promoter. These recombinant strains were characterized for fH binding, and the data confirmed that each subvariant binds different levels of fH. Surface plasmon resonance revealed differences in the stability of the fHbp-fH complexes that ranged over 2 orders of magnitude, indicating that differences in residues between and within variant groups can influence fH binding. Interestingly, the level of survival in human sera of recombinant MC58 strains expressing diverse subvariants did not correlate with the level of fH binding, suggesting that the interaction of fHbp with fH is not the only function of fHbp that influences serum resistance. Furthermore, cross-reactive bactericidal activity was seen within each variant group, although the degree of activity varied, suggesting that amino acid differences within each variant group influence the bactericidal antibody response.
NASA Astrophysics Data System (ADS)
Wang, Jiaman; Ma, Liang; Zhang, Yuhao; Jiang, Tao
2017-02-01
The interaction of Deltamethrin (DM) with human serum albumin (HSA) under the condition of simulating human blood pH environment (pH = 7.4) was investigated by fluorescence, UV-Vis absorbance and circular dichroism (CD) spectroscopy. It was shown that DM was a static quencher of HSA. The binding constants (Ka) are 3.598 × 104 L mol-1 (25 °C); the thermodynamic parameters (ΔH = -3.269 × 104 kJ mol-1, ΔS = -22.81 kJ mol-1 k-1, ΔG = -25889.8 kJ mol-1) obtained with the thermodynamic equation. The hydrogen bond and Vander Waals were the main driving force. The effect of DM on the conformation of HSA was observed by three-dimensional (3D) fluorescence and circular dichroism spectra, indicating that the interaction between DM and HSA was achieved through the binding of DM with the tryptophan and tyrosine residues of HSA. The study on the interaction of DM and Bovine Serum Albumin (BSA) was researched and compared. Difference exists in the interactions of with each of the serum albumins. We will verify and supplement that DM residue in animals and human metabolism, toxicology and other mechanisms are different.
Human serum albumin binding of certain antimalarials
NASA Astrophysics Data System (ADS)
Marković, Olivera S.; Cvijetić, Ilija N.; Zlatović, Mario V.; Opsenica, Igor M.; Konstantinović, Jelena M.; Terzić Jovanović, Nataša V.; Šolaja, Bogdan A.; Verbić, Tatjana Ž.
2018-03-01
Interactions between eight in-house synthesized aminoquinolines, along with well-known chloroquine, and human serum albumin (HSA) have been studied by fluorescence spectroscopy. The synthesized aminoquinolines, despite being structurally diverse, were found to be very potent antimalarials. Fluorescence measurements indicate that three compounds having additional thiophene or benzothiophene substructure bind more strongly to HSA than other studied compounds. Competitive binding experiments indicate that these three compounds bind significantly stronger to warfarin compared to diazepam binding site. Fluorescence quenching at three temperatures (20, 25, and 37 °C) was analyzed using classical Stern-Volmer equation, and a static quenching mechanism was proposed. The enthalpy and entropy changes upon sulphur-containing compound-HSA interactions were calculated using Van't Hoff equation. Positive values of enthalpy and entropy changes indicate that non-specific, hydrophobic interactions are the main contributors to HSA-compound interaction. Molecular docking and calculated lipophilicity descriptors indicate the same, pointing out that the increased lipophilicity of sulphur-containing compounds might be a reason for their better binding to HSA. Obtained results might contribute to design of novel derivatives with improved pharmacokinetic properties and drug efficacy.
Seib, K L; Serruto, D; Oriente, F; Delany, I; Adu-Bobie, J; Veggi, D; Aricò, B; Rappuoli, R; Pizza, M
2009-01-01
Factor H-binding protein (fHBP; GNA1870) is one of the antigens of the recombinant vaccine against serogroup B Neisseria meningitidis, which has been developed using reverse vaccinology and is the basis of a meningococcal B vaccine entering phase III clinical trials. Binding of factor H (fH), an inhibitor of the complement alternative pathway, to fHBP enables N. meningitidis to evade killing by the innate immune system. All fHBP null mutant strains analyzed were sensitive to killing in ex vivo human whole blood and serum models of meningococcal bacteremia with respect to the isogenic wild-type strains. The fHBP mutant strains of MC58 and BZ83 (high fHBP expressors) survived in human blood and serum for less than 60 min (decrease of >2 log(10) CFU), while NZ98/254 (intermediate fHBP expressor) and 67/00 (low fHBP expressor) showed decreases of >1 log(10) CFU after 60 to 120 min of incubation. In addition, fHBP is important for survival in the presence of the antimicrobial peptide LL-37 (decrease of >3 log(10) CFU after 2 h of incubation), most likely due to electrostatic interactions between fHBP and the cationic LL-37 molecule. Hence, the expression of fHBP by N. meningitidis strains is important for survival in human blood and human serum and in the presence of LL-37, even at low levels. The functional significance of fHBP in mediating resistance to the human immune response, in addition to its widespread distribution and its ability to induce bactericidal antibodies, indicates that it is an important component of the serogroup B meningococcal vaccine.
Complement Interaction with Trypanosomatid Promastigotes in Normal Human Serum
Domínguez, Mercedes; Moreno, Inmaculada; López-Trascasa, Margarita; Toraño, Alfredo
2002-01-01
In normal human serum (NHS), axenic promastigotes of Crithidia, Phytomonas, and Leishmania trigger complement activation, and from 1.2 to 1.8 × 105 C3 molecules are deposited per promastigote within 2.5 min. In Leishmania, promastigote C3 binding capacity remains constant during in vitro metacyclogenesis. C3 deposition on promastigotes activated through the classical complement pathway reaches a 50% maximum after ∼50 s, and represents >85% of total C3 bound. In C1q- and C2-deficient human sera, promastigotes cannot activate the classical pathway (CP) unless purified C1q or C2 factors, respectively, are supplemented, demonstrating a requirement for CP factor in promastigote C3 opsonization. NHS depleted of natural anti-Leishmania antibodies cannot trigger promastigote CP activation, but IgM addition restores C3 binding. Furthermore, Leishmania binds natural antibodies in ethylenediaminetetracetic acid (EDTA)-treated NHS; after EDTA removal, promastigote-bound IgM triggers C3 deposition in natural antibody-depleted NHS. Serum collectins and pentraxins thus do not participate significantly in NHS promastigote C3 opsonization. Real-time kinetic analysis of promastigote CP-mediated lysis indicates that between 85–95% of parasites are killed within 2.5 min of serum contact. These data indicate that successful Leishmania infection in man must immediately follow promastigote transmission, and that Leishmania evasion strategies are shaped by the selective pressure exerted by complement. PMID:11854358
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nydegger, U.E.; Corvetta, A.; Spaeth, P.J.
1983-01-01
During solubilization of immune complexes C3b becomes fixed to the immunoglobulin part and serves as a receptor for the alternative complement pathway control protein H. The H-C3b immune complex interaction can be made detectable using 4% polyethyleneglycol to separate free from bound /sup 125/I-H. Tetanus toxoid (Te)/anti-Te complexes kept soluble with fresh serum and containing 125 IU of specific antibody bound 18% of /sup 125/I-H; when fresh serum was chelated with 10 mM EDTA, /sup 125/I-H binding was only 5%. On sucrose density gradients, the H-binding material sedimented in the range of 12 to 30 S. In 36 serum samplesmore » from rheumatoid arthritis (RA) patients and in 12 serum samples from patients with systemic lupus erythematosus (SLE), /sup 125/I-H binding was significantly elevated to 9.5 +/- 4.7% (mean +/- 1 SD) and 13.3 +/- 5.6%, respectively, while /sup 125/I-H binding by 36 normal human sera was 4 +/- 2%. RA samples (17/36, 47%) and SLE samples (9/12, 75%) had H-binding values increased by more than 2 SD above the normal mean. The serum samples were also assessed for conglutinin- and C1q-binding activities; a significant correlation between H and C1q binding was observed (P less than 0.001); there was no correlation between H and conglutinin binding. Although binding to immune complexes through its interaction with C3b, H clearly detects a population of complexes other than conglutinin, thus expanding the possibilities of further characterizing pathological complexes.« less
DNA binding and adduct formation of aflatoxin B1 (AFB1) was studied in cultured bladder and tracheobronchial explants from human, monkey, dog, hamster and rat. Explants were exposed to (3H)AFB1 (1 micrometer final concentration) in PFHR-4 medium (pH 7.4) without serum for 24 h, a...
Zhou, Yihua; Xu, Bixiong C.; Maheshwari, Hiralal G.; He, Li; Reed, Michael; Lozykowski, Maria; Okada, Shigeru; Cataldo, Lori; Coschigamo, Karen; Wagner, Thomas E.; Baumann, Gerhard; Kopchick, John J.
1997-01-01
Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans. PMID:9371826
Zhou, Y; Xu, B C; Maheshwari, H G; He, L; Reed, M; Lozykowski, M; Okada, S; Cataldo, L; Coschigamo, K; Wagner, T E; Baumann, G; Kopchick, J J
1997-11-25
Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans.
NASA Astrophysics Data System (ADS)
Wu, Hai; Chen, Miaomiao; Shang, Mengting; Li, Xiang; Mu, Kui; Fan, Suhua; Jiang, Shuanglin; Li, Wenyong
2018-07-01
Black carbon (BC) is a main component of particulate matter (PM2.5). Due to their small size (<100 nm), inhaled ultrafine BC nanoparticles may penetrate the lung alveoli, where they interact with surfactant proteins and lipids, causing more serious damage to human health. Here, BC was analyzed to investigate the binding mechanism of its interaction with protein and induction of cytotoxicity changes. The binding process and protein conformation between BC and a serum protein (bovine serum albumin, BSA) were monitored by using a fluorescence quenching technique and UV-vis absorption, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopies. The experimental results revealed that the fluorescence quenching of BSA induced by BC was a static quenching process and the hydrophobic force played the critical role in the interaction. The native conformation of BSA on the BC surface was slightly disturbed but obvious structural unfolding of the secondary structure did not occur. In the cytotoxicity study, BC nanoparticles with low concentrations exhibited strong toxicity towards BEAS-2B cells. However, the toxicity of BC nanoparticles could be mitigated by the presence of BSA. Therefore, proteins in biological fluids likely reduce the toxic effect of BC on human health. These findings delineated the binding mechanism and the toxicity between BC and the BSA-BC system, contributing to the understanding of the biological effects of BC exposure on human health in polluted atmospheres.
Glew, Richard H.; Moellering, Robert C.
1979-01-01
To assess the effect of protein binding by human serum on the synergistic interaction of penicillins with gentamicin, time-kill curves were determined for four penicillins alone and in combination with gentamicin against 10 blood isolates of enterococci. Killing curves demonstrated synergism with penicillin G plus gentamicin against all 10 strains in either broth or 50% human serum. In broth the combinations of nafcillin plus gentamicin and oxacillin plus gentamicin were synergistic against 10 of 10 strains and 4 of 10 strains, respectively. However, in serum, nafcillin plus gentamicin was synergistically bactericidal against only two strains and oxacillin plus gentamicin against none. Methicillin plus gentamicin was synergistic against none of the enterococci in either medium. Thus, the semisynthetic, penicillinase-resistant penicillins are unlikely to be effective in the therapy of patients with enterococcal endocarditis. PMID:426508
Giuntini, Serena; Reason, Donald C; Granoff, Dan M
2011-09-01
Binding of the complement-downregulating protein factor H (fH) to the surface of the meningococcus is important for survival of the organism in human serum. The meningococcal vaccine candidate factor H binding protein (fHbp) is an important ligand for human fH. While some fHbp-specific monoclonal antibodies (MAbs) block binding of fH to fHbp, the stoichiometry of blocking in the presence of high serum concentrations of fH and its effect on complement-mediated bactericidal activity are unknown. To investigate this question, we constructed chimeric antibodies in which the human IgG1 constant region was paired with three murine fHbp-specific binding domains designated JAR 3, JAR 5, and MAb502. By surface plasmon resonance, the association rates for binding of all three MAbs to immobilized fHbp were >50-fold higher than that for binding of fH to fHbp, and the MAb dissociation rates were >500-fold lower than that for fH. While all three MAbs elicited similar C1q-dependent C4b deposition on live bacteria (classical complement pathway), only those antibodies that inhibited binding of fH to fHbp (JAR 3 and JAR 5) had bactericidal activity with human complement. MAb502, which did not inhibit fH binding, had complement-mediated bactericidal activity only when tested with fH-depleted human complement. When an IgG1 anti-fHbp MAb binds to sparsely exposed fHbp on the bacterial surface, there appears to be insufficient complement activation for bacteriolysis unless fH binding also is inhibited. The ability of fHbp vaccines to elicit protective antibodies, therefore, is likely to be enhanced if the antibody repertoire is of high avidity and includes fH-blocking activity.
The investigation of the binding of 6-mercaptopurine to site I on human serum albumin.
Sochacka, Jolanta; Baran, Wojciech
2012-12-01
6-Mercaptopurine (6-MP) is one of a large series of purine analogues which has been found active against human leukemias. The equilibrium dialysis, circular dichroism (CD) and molecular docking were employed to study the binding of 6-MP to human serum albumin (HSA). The binding of 6-MP to HSA in the equilibrium dialysis experiment was detected by measuring the displacement of 6-MP by specific markers for site I on HSA, warfarin (RWF), phenylbutazone (PhB) and n-butyl p-aminobenzoate (ABE). It was shown, according to CD data, that binding of 6-MP to HSA leads to alteration of HSA secondary structure. Based on the findings from displacement experiment and molecular docking simulation it was found that 6-MP was located within binding cavity of subdomain IIA and the space occupied by site markers overlapped with that of 6-MP. Displacement of 6-MP by the RWF or PhB was not up the level expected for a competitive mechanism, therefore displacement of 6-MP was rather by non-cooperative than that the direct competition. Instead, in case of the interaction between ABE and 6-MP, when the little enhancement of the binding of ABE by 6-MP was found, the interaction could be via a positively cooperative mechanism.
Sa E Cunha, Claudia; Griffiths, Natalie J; Virji, Mumtaz
2010-05-20
The host vasculature is believed to constitute the principal route of dissemination of Neisseria meningitidis (Nm) throughout the body, resulting in septicaemia and meningitis in susceptible humans. In vitro, the Nm outer membrane protein Opc can enhance cellular entry and exit, utilising serum factors to anchor to endothelial integrins; but the mechanisms of binding to serum factors are poorly characterised. This study demonstrates that Nm Opc expressed in acapsulate as well as capsulate bacteria can increase human brain endothelial cell line (HBMEC) adhesion and entry by first binding to serum vitronectin and, to a lesser extent, fibronectin. This study also demonstrates that Opc binds preferentially to the activated form of human vitronectin, but not to native vitronectin unless the latter is treated to relax its closed conformation. The direct binding of vitronectin occurs at its Connecting Region (CR) requiring sulphated tyrosines Y(56) and Y(59). Accordingly, Opc/vitronectin interaction could be inhibited with a conformation-dependent monoclonal antibody 8E6 that targets the sulphotyrosines, and with synthetic sulphated (but not phosphorylated or unmodified) peptides spanning the vitronectin residues 43-68. Most importantly, the 26-mer sulphated peptide bearing the cell-binding domain (45)RGD(47) was sufficient for efficient meningococcal invasion of HBMECs. To our knowledge, this is the first study describing the binding of a bacterial adhesin to sulphated tyrosines of the host receptor. Our data also show that a single region of Opc is likely to interact with the sulphated regions of both vitronectin and of heparin. As such, in the absence of heparin, Opc-expressing Nm interact directly at the CR but when precoated with heparin, they bind via heparin to the heparin-binding domain of the activated vitronectin, although with a lower affinity than at the CR. Such redundancy suggests the importance of Opc/vitronectin interaction in meningococcal pathogenesis and may enable the bacterium to harness the benefits of the physiological processes in which the host effector molecule participates.
Effect of the Protein Corona on Antibody-Antigen Binding in Nanoparticle Sandwich Immunoassays.
de Puig, Helena; Bosch, Irene; Carré-Camps, Marc; Hamad-Schifferli, Kimberly
2017-01-18
We investigated the effect of the protein corona on the function of nanoparticle (NP) antibody (Ab) conjugates in dipstick sandwich immunoassays. Ab specific for Zika virus nonstructural protein 1 (NS1) were conjugated to gold NPs, and another anti-NS1 Ab was immobilized onto the nitrocellulose membrane. Sandwich immunoassay formation was influenced by whether the strip was run in corona forming conditions, i.e., in human serum. Strips run in buffer or pure solutions of bovine serum albumin exhibited false positives, but those run in human serum did not. Serum pretreatment of the nitrocellulose also eliminated false positives. Corona formation around the NP-Ab in serum was faster than the immunoassay time scale. Langmuir binding analysis determined how the immobilized Ab affinity for the NP-Ab/NS1 was impacted by corona formation conditions, quantified as an effective dissociation constant, K D eff . Results show that corona formation mediates the specificity and sensitivity of the antibody-antigen interaction of Zika biomarkers in immunoassays, and plays a critical but beneficial role.
Sengupta, Abhigyan; Sasikala, Wilbee D; Mukherjee, Arnab; Hazra, Partha
2012-06-04
Flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are derivatives of riboflavin (RF), a water-soluble vitamin, more commonly known as vitamin B(2). Flavins have attracted special attention in the last few years because of the recent discovery of a large number of flavoproteins. In this work, these flavins are used as extrinsic fluorescence markers for probing the microheterogeneous environment of a well-known transport protein, human serum albumin (HSA). Steady-state and time-resolved fluorescence experiments confirm that both FMN and FAD bind to the Sudlow's site-1 (SS1) binding pocket of HSA, where Trp214 resides. In the case of RF, a fraction of RF molecules binds at the SS1, whereas the major fraction of RF molecules remains unbound or surface bound to the protein. Moreover, flavin(s)-HSA interactions are monitored with the help of isothermal titration calorimetry, which provides free energy, enthalpy, and entropy changes of binding along with the binding constants. The molecular picture of binding interaction between flavins and HSA is well explored by docking and molecular dynamics studies. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mi, Ran; Hu, Yan-Jun; Fan, Xiao-Yang; Ouyang, Yu; Bai, Ai-Min
2014-01-03
This paper exploring the site-selective binding of jatrorrhizine to human serum albumin (HSA) under physiological conditions (pH=7.4). The investigation was carried out using fluorescence spectroscopy, UV-vis spectroscopy, and molecular modeling. The results of fluorescence quenching and UV-vis absorption spectra experiments indicated the formation of the complex of HSA-jatrorrhizine. Binding parameters calculating from Stern-Volmer method and Scatchard method were calculated at 298, 304 and 310 K, with the corresponding thermodynamic parameters ΔG, ΔH and ΔS as well. Binding parameters calculating from Stern-Volmer method and Scatchard method showed that jatrorrhizine bind to HSA with the binding affinities of the order 10(4) L mol(-1). The thermodynamic parameters studies revealed that the binding was characterized by negative enthalpy and positive entropy changes and the electrostatic interactions play a major role for jatrorrhizine-HSA association. Site marker competitive displacement experiments and molecular modeling calculation demonstrating that jatrorrhizine is mainly located within the hydrophobic pocket of the subdomain IIIA of HSA. Furthermore, the synchronous fluorescence spectra suggested that the association between jatrorrhizine and HSA changed molecular conformation of HSA. Copyright © 2013. Published by Elsevier B.V.
Xu, Yujing; Hong, Tingting; Chen, Xueping; Ji, Yibing
2017-05-01
Baseline separation of omeprazole (OME) enantiomers was achieved by affinity capillary electrophoresis (ACE), using human serum albumin (HSA) as the chiral selector. The influence of several experimental variables such as HSA concentration, the type and content of organic modifiers, applied voltage and running buffer concentration on the separation was evaluated. The binding of esomeprazole (S-omeprazole, S-OME) and its R-enantiomer (R-omeprazole, R-OME) to HSA under simulated physiological conditions was studied by ACE and fluorescence spectroscopy which was considered as a reference method. ACE studies demonstrated that the binding constants of the two enantiomers and HSA were 3.18 × 10 3 M -1 and 5.36 × 10 3 M -1 , respectively. The binding properties including the fluorescence quenching mechanisms, binding constants, binding sites and the number of binding sites were obtained by fluorescence spectroscopy. Though the ACE method could not get enough data when compared with the fluorescence spectrum method, the separation and binding studies of chiral drugs could be achieved simultaneously via this method. This study is of great significance for the investigation and clinical application of chiral drugs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Human autoantibody to topoisomerase II.
Hoffmann, A; Heck, M M; Bordwell, B J; Rothfield, N F; Earnshaw, W C
1989-02-01
The rheumatic diseases are characterized by the production of autoantibodies that are usually directed against components of the cell nucleus. In this communication, we describe autoantibodies that recognize DNA topoisomerase II (anti-topoII) present in the serum of a patient with systemic lupus erythematosus. Several lines of evidence indicate that this antibody recognizes topoisomerase II. First, it binds to the native enzyme in soluble extracts prepared from isolated chromosomes and effectively depletes such extracts of active enzyme. Second, the serum binds to topoisomerase II in immunoblots of mitotic chromosomes and chromosome scaffolds. Finally, the antiserum binds strongly to a fusion protein encoded by a cloned cDNA and expressed in Escherichia coli that (based on immunological evidence) represents the carboxy-terminal portion of chicken topoisomerase II. Autoantibodies such as the one described here may provide useful reagents for the study of human topoisomerase II.
Das, Pratyusa; Chaudhari, Sunil Kumar; Das, Asmita; Kundu, Somashree; Saha, Chabita
2018-04-24
Binding affinities of flavonols namely quercetin, myricetin, and kaempferol to human serum albumin (HSA) were determined fluorimetrically and the order was observed to be myricetin > quercetin > kaempferol demonstrating structure-activity relationship. Quercetin-coated silver nanoparticles (AgNPs) show higher binding affinity to HSA compared to free quercetin with binding constants 6.04 × 10 7 M -1 and 4.2 × 10 6 M -1 , respectively. Using site-specific markers it is concluded that free quercetin and that coated on AgNPs bind at different sites. Significant structural changes in circular dichroism (CD) spectra of HSA were recorded with quercetin-coated AgNPs compared to free quercetin. These results were further substantiated by time-resolved fluorescence spectroscopy where fluorescence life time of the tryptophan residue in HSA-quercetin-coated AgNPs complex decreased to 3.63 ns from 4.22 ns in HSA-quercetin complex. Isothermal calorimetric studies reveal two binding modes for quercetin-coated AgNPs and also higher binding constants compared to free quercetin. These higher binding affinities are attributed to altered properties of quercetin when coated on AgNPs enabling it to reach the binding sites other than site II where free quercetin mainly binds.
A spectroscopic study of phenylbutazone and aspirin bound to serum albumin in rheumatoid diseases
NASA Astrophysics Data System (ADS)
Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka-Zubik, J.; Sułkowski, W. W.
2011-11-01
Interaction of phenylbutazone (PBZ) and aspirin (ASA), two drugs recommended in rheumatoid diseases (RDs), when binding to human (HSA) and bovine (BSA) serum albumins, has been studied by quenching of fluorescence and proton nuclear magnetic resonance ( 1HNMR) techniques. On the basis of spectrofluorescence measurements high affinity binding sites of PBZ and ASA on albumin as well as their interaction within the binding sites were described. A low affinity binding site has been studied by proton nuclear magnetic resonance spectroscopy. Using fluorescence spectroscopy the location of binding site in serum albumin (SA) for PBZ and ASA was found. Association constants Ka were determined for binary (i.e. PBZ-SA and ASA-SA) and ternary complexes (i.e. PBZ-[ASA]-SA and ASA-[PBZ]-SA). PBZ and ASA change the affinity of each other to the binding site in serum albumin (SA). The presence of ASA causes the increase of association constants KaI of PBZ-SA complex. Similarly, PBZ influences KaI of ASA-SA complex. This phenomenon shows that the strength of binding and the stability of the complexes increase in the presence of the second drug. The decrease of KaII values suggests that the competition between PBZ and ASA in binding to serum albumin in the second class of binding sites occurs. The analysis of 1HNMR spectral parameters i.e. changes of chemical shifts and relaxation times of the drug indicate that the presence of ASA weakens the interaction of PBZ with albumin. Similarly PBZ weakens the interaction of ASA with albumin. This conclusion points to the necessity of using a monitoring therapy owning to the possible increase of uncontrolled toxic effects.
Grimberg, Brian T; Udomsangpetch, Rachanee; Xainli, Jia; McHenry, Amy; Panichakul, Tasanee; Sattabongkot, Jetsumon; Cui, Liwang; Bockarie, Moses; Chitnis, Chetan; Adams, John; Zimmerman, Peter A; King, Christopher L
2007-01-01
Background Plasmodium vivax invasion requires interaction between the human Duffy antigen on the surface of erythrocytes and the P. vivax Duffy binding protein (PvDBP) expressed by the parasite. Given that Duffy-negative individuals are resistant and that Duffy-negative heterozygotes show reduced susceptibility to blood-stage infection, we hypothesized that antibodies directed against region two of P. vivax Duffy binding protein (PvDBPII) would inhibit P. vivax invasion of human erythrocytes. Methods and Findings Using a recombinant region two of the P. vivax Duffy binding protein (rPvDBPII), polyclonal antibodies were generated from immunized rabbits and affinity purified from the pooled sera of 14 P. vivax–exposed Papua New Guineans. It was determined by ELISA and by flow cytometry, respectively, that both rabbit and human antibodies inhibited binding of rPvDBPII to the Duffy antigen N-terminal region and to Duffy-positive human erythrocytes. Additionally, using immunofluorescent microscopy, the antibodies were shown to attach to native PvDBP on the apical end of the P. vivax merozoite. In vitro invasion assays, using blood isolates from individuals in the Mae Sot district of Thailand, showed that addition of rabbit anti-PvDBPII Ab or serum (antibodies against, or serum containing antibodies against, region two of the Plasmodium vivax Duffy binding protein) (1:100) reduced the number of parasite invasions by up to 64%, while pooled PvDBPII antisera from P. vivax–exposed people reduced P. vivax invasion by up to 54%. Conclusions These results show, for what we believe to be the first time, that both rabbit and human antibodies directed against PvDBPII reduce invasion efficiency of wild P. vivax isolated from infected patients, and suggest that a PvDBP-based vaccine may reduce human blood-stage P. vivax infection. PMID:18092885
Enokida, Taisuke; Yamasaki, Keishi; Okamoto, Yuko; Taguchi, Kazuaki; Ishiguro, Takako; Maruyama, Toru; Seo, Hakaru; Otagiri, Masaki
2016-06-01
Sodium 4-phenylbutyrate (PB) has many pharmacological activities; therefore extending its clinical use to the treatment of a wider variety of diseases would be desirable. However, our knowledge of the binding of PB to plasma proteins is not extensive. To address this issue in more detail, we characterized the protein binding of PB. Binding experiments showed that PB mainly binds to human serum albumin (HSA) in plasma. PB was also found to bind to a single site on HSA, which was identified as site II by fluorescent probe displacement experiment. Furthermore, an appropriate alkyl chain length and a carboxylic group in the PB structure were required for PB binding to HSA, suggesting that hydrophobic (and van der Waals) and electrostatic interactions are involved as binding modes. The contributions of hydrogen bonding and/or van der Waals interactions were also indicated by thermodynamic analyses. Tyrosine411 and arginine410 were identified as being involved in the binding of PB to site II, based on binding experiments using chemically modified- and mutant-HSA preparations. In conclusion, the available evidence indicates that PB binds to site II of HSA with assistance by multiple forces and that tyrosine411 and arginine410 both play important roles in this phenomenon. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Duman, Osman; Tunç, Sibel; Kancı Bozoğlan, Bahar
2013-07-01
The interactions of metoprolol tartrate (MPT) and guaifenesin (GF) drugs with human serum albumin (HSA) and human hemoglobin (HMG) proteins at pH 7.4 were studied by fluorescence and circular dichroism (CD) spectroscopy. Drugs quenched the fluorescence spectra of HSA and HMG proteins through a static quenching mechanism. For each protein-drug system, the values of Stern-Volmer quenching constant, bimolecular quenching constant, binding constant and number of binding site on the protein molecules were determined at 288.15, 298.15, 310.15 and 318.15 K. It was found that the binding constants of HSA-MPT and HSA-GF systems were smaller than those of HMG-MPT and HMG-GF systems. For both drugs, the affinity of HMG was much higher than that of HSA. An increase in temperature caused a negative effect on the binding reactions. The number of binding site on blood proteins for MPT and GF drugs was approximately one. Thermodynamic parameters showed that MPT interacted with HSA through electrostatic attraction forces. However, hydrogen bonds and van der Waals forces were the main interaction forces in the formation of HSA-GF, HMG-MPT and HMG-GF complexes. The binding processes between protein and drug molecules were exothermic and spontaneous owing to negative ∆H and ∆G values, respectively. The values of binding distance between protein and drug molecules were calculated from Förster resonance energy transfer theory. It was found from CD analysis that the bindings of MPT and GF drugs to HSA and HMG proteins altered the secondary structure of HSA and HMG proteins.
Zhang, Yunyue; Wu, Simin; Qin, Yinghui; Liu, Jiaxin; Liu, Jingwen; Wang, Qingyu; Ren, Fazheng; Zhang, Hao
2018-02-01
In this study, 111 phenolic acids and their derivatives were chosen to investigate their structure-affinity relationships when binding to human serum albumin (HSA), and effects on their antioxidant activity. A comprehensive mathematical model was employed to calculate the binding constants, using a fluorescence quenching method, and this was corrected for the inner-filter effect to improve accuracy. We found that a hydroxy group at the 2-position of the benzene ring exerted a positive effect on the affinities, while a 4-hydroxy substituent had a negative influence. Both methylation of the hydroxy groups and replacing the hydroxy groups with methyl groups at the 3- and 4-positions of the benzene ring enhanced the binding affinities. Hydrophobic force and hydrogen bonding were binding forces for the phenolic acids, and their methyl esters, respectively. The antioxidant activity of the HSA-phenolic acid interaction compounds was higher than that of the phenolic acids alone. Copyright © 2017. Published by Elsevier Ltd.
Jurasekova, Zuzana; Marconi, Giancarlo; Sanchez-Cortes, Santiago; Torreggiani, Armida
2009-11-01
Luteolin (LUT) is a polyphenolic compound, found in a variety of fruits, vegetables, and seeds, which has a variety of pharmacological properties. In the present contribution, binding of LUT to human serum albumin (HSA), the most abundant carrier protein in the blood, was investigated with the aim of describing the binding mode and parameters of the interaction. The application of circular dichroism, UV-Vis absorption, fluorescence, Raman and surface-enhanced Raman scattering spectroscopy combined with molecular modeling afforded a clear picture of the association mode of LUT to HSA. Specific interactions with protein amino acids were evidenced. LUT was found to be associated in subdomain IIA where an interaction with Trp-214 is established. Hydrophobic and electrostatic interactions are the major acting forces in the binding of LUT to HSA. The HSA conformations were slightly altered by the drug complexation with reduction of alpha-helix and increase of beta-turns structures, suggesting a partial protein unfolding. Also the configuration of at least two disulfide bridges were altered. Furthermore, the study of molecular modeling afforded the binding geometry. 2009 Wiley Periodicals, Inc.
Ma, Xiaoli; He, Jiawei; Yan, Jin; Wang, Qing; Li, Hui
2016-03-25
Mycophenolic sodium is an immunosuppressive agent that is always combined administration with corticosteroid in clinical practice. Considering the distribution and side-effect of the drug may change when co-administrated drug exist, this paper comparatively analyzed the binding ability of mycophenolic sodium and meprednisone toward human serum albumin by nuclear magnetic resonance relaxation data and docking simulation. The nuclear magnetic resonance approach was based on the analysis of proton selective and non-selective relaxation rate enhancement of the ligand in the absence and presence of macromolecules. The contribution of the bound ligand fraction to the observed relaxation rate in relation to protein concentration allowed the calculation of the affinity index. This approach allowed the comparison of the binding affinity of mycophenolic sodium and meprednisone. Molecular modeling was operated to simulate the binding model of ligand and albumin through Autodock 4.2.5. Competitive binding of mycophenolic sodium and meprednisone was further conducted through fluorescence spectroscopy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Interaction between Saikosaponin D, Paeoniflorin, and Human Serum Albumin.
Liang, Guo-Wu; Chen, Yi-Cun; Wang, Yi; Wang, Hong-Mei; Pan, Xiang-Yu; Chen, Pei-Hong; Niu, Qing-Xia
2018-01-27
Saikosaponin D (SSD) and paeoniflorin (PF) are the major active constituents of Bupleuri Radix and Paeonia lactiflora Pall , respectively, and have been widely used in China to treat liver and other diseases for many centuries. We explored the binding of SSD/PF to human serum albumin (HSA) by using fluorospectrophotometry, circular dichroism (CD) and molecular docking. Both SSD and PF produced a conformational change in HSA. Fluorescence quenching was accompanied by a blue shift in the fluorescence spectra. Co-binding of PF and SSD also induced quenching and a conformational change in HSA. The Stern-Volmer equation showed that quenching was dominated by static quenching. The binding constant for ternary interaction was below that for binary interaction. Site-competitive experiments demonstrated that SSD/PF bound to site I (subdomain IIA) and site II (subdomain IIIA) in HSA. Analysis of thermodynamic parameters indicated that hydrogen bonding and van der Waals forces were mostly responsible for the binary association. Also, there was energy transfer upon binary interaction. Molecular docking supported the experimental findings in conformation, binding sites and binding forces.
Biological and protein-binding studies of newly synthesized polymer-cobalt(III) complexes.
Vignesh, G; Pradeep, I; Arunachalam, S; Vignesh, S; Arthur James, R; Arun, R; Premkumar, K
2016-03-01
The polymer-cobalt(III) complexes, [Co(bpy)(dien)BPEI]Cl3 · 4H2O (bpy = 2,2'-bipyridine, dien = diethylentriamine, BPEI = branched polyethyleneimine) were synthesized and characterized. The interaction of these complexes with human serum albumin (HSA) and bovine serum albumin (BSA) was investigated under physiological conditions using various physico-chemical techniques. The results reveal that the fluorescence quenching of serum albumins by polymer-cobalt(III) complexes took place through static quenching. The binding of these complexes changed the molecular conformation of the protein considerably. The polymer-cobalt(III) complex with x = 0.365 shows antimicrobial activity against several human pathogens. This complex also induces cytotoxicity against MCF-7 through apoptotic induction. However, further studies are needed to decipher the molecular mode of action of polymer-cobalt(III) complex and for its possible utilization in anticancer therapy. Copyright © 2015 John Wiley & Sons, Ltd.
Evaluation of the binding effect of human serum albumin on the properties of granules.
Kristó, Katalin; Bajdik, János; Eros, István; Pintye-Hódi, Klára
2008-11-01
The main objective of this study was the application of a solution of human serum albumin as a granulating fluid. The properties of the granules formed were evaluated and compared with those when a conventional binder was applied in the same concentration. The powder mixture contained a soluble (mannitol) and an insoluble component (different types of cellulose). The protein solution applied exerted an appropriate aggregating effect if the system contained microcrystalline celluloses. Powdered cellulose was not suitable for the granulation with human serum albumin solution. As compared with the same concentration of the conventionally applied cellulose ethers as binder, the prepared granules exhibited a larger particle size, a significantly better compressibility, a higher breaking hardness and a favourable deformation process. These findings mainly reflect the good adhesive properties of the protein. The best compressibility and mechanical behaviour were attained on the application of the microcrystalline cellulose Vivapur type 105. This favourable behaviour may be connected with the wettability of cellulose. These results suggest that the formulation of tablets may be easier from an active agent in the serum that binds to albumin (e.g. interferon) since the amount of additives (binder) can be reduced.
Rajak, Poonam; Vijayalakshmi, M A; Jayaprakash, N S
2013-05-05
Proteins present in human serum are of immense importance in the field of biomarker discovery. But, the presence of high-abundant proteins like albumin makes the analysis more challenging because of masking effect on low-abundant proteins. Therefore, removal of albumin using highly specific monoclonal antibodies (mAbs) can potentiate the discovery of low-abundant proteins. In the present study, mAbs against human serum albumin (HSA) were developed and integrated in to an immunoaffinity based system for specific removal of albumin from the serum. Hybridomas were obtained by fusion of Sp2/0 mouse myeloma cells with spleen cells from the mouse immunized with HSA. Five clones (AHSA1-5) producing mAbs specific to HSA were established and characterized by enzyme linked immunosorbent assay (ELISA) and immunoblotting for specificity, sensitivity and affinity in terms of antigen binding. The mAbs were able to bind to both native albumin as well as its glycated isoform. Reactivity of mAbs with different mammalian sera was tested. The affinity constant of the mAbs ranged from 10(8) to 10(9)M(-1). An approach based on oriented immobilization was followed to immobilize purified anti-HSA mAbs on hydrazine activated agarose gel and the dynamic binding capacity of the column was determined. Copyright © 2013 Elsevier B.V. All rights reserved.
A computational study of the open and closed forms of the N-lobe human serum transferrin apoprotein.
Rinaldo, David; Field, Martin J
2003-12-01
Human serum transferrin tightly binds ferric ions in the blood stream but is able to release them in cells by a process involving receptor-mediated endocytosis and decrease in pH. Iron binding and release are accompanied by a large conformation change. In this study, we investigate theoretically the open and closed forms of the N-lobe human serum transferrin apoprotein by performing pKa calculations and molecular dynamics and free-energy simulations. In agreement with the hypothesis based on the x-ray crystal structures, our calculations show that there is a shift in the pKa values of the lysines forming the dilysine trigger when the conformation changes. We argue, however, that simple electrostatic repulsion between the lysines is not sufficient to trigger domain opening and, instead, propose an alternative explanation for the dilysine-trigger effect. Analysis of the molecular dynamics and free-energy results indicate that the open form is more mobile than the closed form and is much more stable at pH 5.3, in large part due to entropic effects. Despite a lower free energy, the dynamics simulation of the open form shows that it is flexible enough to sample conformations that are consistent with iron binding.
Abdiche, Yasmina Noubia; Yeung, Yik Andy; Chaparro-Riggers, Javier; Barman, Ishita; Strop, Pavel; Chin, Sherman Michael; Pham, Amber; Bolton, Gary; McDonough, Dan; Lindquist, Kevin; Pons, Jaume; Rajpal, Arvind
2015-01-01
The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgG's variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgG's serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates.
Naik, Keerti M; Nandibewoor, Sharanappa T
2016-03-01
In this paper, the interaction of methylparaben and erythromycin with human serum albumin (HSA) was studied for the first time using spectroscopic methods including Fourier transform infrared (FTIR) spectroscopy and UV absorption spectroscopy in combination with fluorescence quenching under physiological conditions. The binding parameters were evaluated using a fluorescence quenching method. Based on Förster's theory of non-radiation energy transfer, the binding average distance, r between the donor (HSA) and the acceptor (methylparaben and erythromycin) was evaluated. UV/vis absorption, FTIR, synchronous and 3D spectral results showed that the conformation of HSA was changed in the presence of methylparaben and erythromycin. The thermodynamic parameters were calculated according to the van't Hoff equation and are discussed. The effect of some biological metal ions and site probes on the binding of methylparaben and erythromycin to HSA were further examined. Copyright © 2015 John Wiley & Sons, Ltd.
Wu, Hai; Chen, Miaomiao; Shang, Mengting; Li, Xiang; Mu, Kui; Fan, Suhua; Jiang, Shuanglin; Li, Wenyong
2018-07-05
Black carbon (BC) is a main component of particulate matter (PM 2.5 ). Due to their small size (<100nm), inhaled ultrafine BC nanoparticles may penetrate the lung alveoli, where they interact with surfactant proteins and lipids, causing more serious damage to human health. Here, BC was analyzed to investigate the binding mechanism of its interaction with protein and induction of cytotoxicity changes. The binding process and protein conformation between BC and a serum protein (bovine serum albumin, BSA) were monitored by using a fluorescence quenching technique and UV-vis absorption, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopies. The experimental results revealed that the fluorescence quenching of BSA induced by BC was a static quenching process and the hydrophobic force played the critical role in the interaction. The native conformation of BSA on the BC surface was slightly disturbed but obvious structural unfolding of the secondary structure did not occur. In the cytotoxicity study, BC nanoparticles with low concentrations exhibited strong toxicity towards BEAS-2B cells. However, the toxicity of BC nanoparticles could be mitigated by the presence of BSA. Therefore, proteins in biological fluids likely reduce the toxic effect of BC on human health. These findings delineated the binding mechanism and the toxicity between BC and the BSA-BC system, contributing to the understanding of the biological effects of BC exposure on human health in polluted atmospheres. Copyright © 2018 Elsevier B.V. All rights reserved.
Yun, Soi; Ryu, Hyunmin; Lee, E K
2017-09-10
Phage display biopanning is a powerful in vitro selection process for screening and identifying peptides that bind to a target protein of interest. With the aim of replacing antibodies in immuno-diagnostic applications, we identified peptides whose binding characteristics mimicked those of anti-human myeloperoxidase (hMPO), a biomarker for acute cardiac diseases. Based on ELISA results from four phage clones, we selected and chemically synthesized a 12-mer peptide (SYIEPPERHRHR). Quartz crystal microbalance and surface plasmon resonance analyses revealed that the molar binding equilibrium ratio of the synthesized peptide was 0.023, approximately 43-fold lower than that of the anti-hMPO antibody. The dissociation constant (K d ) was 57nM, which was comparable to that of the native antibody (83nM). Next, we biotinylated the peptide at its N-terminus and attached the biotinylated peptide to the surface of streptavidin-coated magnetic particles to assess its ability to selectively capture hMPO. The binding equilibrium data were similar to the previous analyses; specifically, around 0.021mol peptide bound to 1mol of hMPO. Antigen capture was found to be selective and to be relatively little influenced by the presence of human serum albumin (HSA), an abundant constituent of serum. Our work demonstrates the potential of immunomagnetic isolation to achieve selective capture of a low-concentration antigen from complex solutions such as serum. Copyright © 2016 Elsevier B.V. All rights reserved.
Temperature-responsive release of cortisol from its binding globulin: a protein thermocouple.
Cameron, Angus; Henley, David; Carrell, Robin; Zhou, Aiwu; Clarke, Anthony; Lightman, Stafford
2010-10-01
Only 5% of circulating cortisol is active and unbound to carrier proteins. Because cortisol levels vary rapidly due to the pulsatile nature of cortisol secretion, the dynamics of cortisol binding are critical determinants of tissue levels of free cortisol and consequent hormonal signaling. The major glucocorticoid carrier protein is corticosteroid binding globulin (CBG), a member of the serpin family that undergoes conformational changes to bind and release hormones. This mechanism has been noted to be temperature responsive, and we have now investigated the effects of temperature on the binding of human CBG to both cortisol and progesterone. Recombinant human CBG was synthesized and used for binding studies with cortisol and progesterone between 34 and 43 C. Binding was monitored by recording the change in intrinsic protein fluorescence. Binding of the steroids to the other major carrier, serum albumin, was measured in a similar manner. There was no effect of temperature on the interaction between human serum albumin and either cortisol or progesterone. The association of both cortisol and progesterone with CBG is more than three orders of magnitude greater than that with HSA, and this interaction was extremely responsive to changes in temperature. The affinity of both cortisol and progesterone for CBG drops approximately 16-fold as temperature increases from 35 to 42 C. This study clearly shows that even within the clinically relevant range of temperatures found in humans, CBG acts as a protein thermocouple that is exquisitely sensitive to temperature change and will release cortisol in response to fever or external sources of heat. This has major implications for our understanding of cortisol regulation in febrile patients.
[Study on the interaction of doxycycline with human serum albumin].
Hu, Tao-Ying; Chen, Lin; Liu, Ying
2014-05-01
The present study was designed to investigate the interaction of doxycycline (DC) with human serum albumin (HSA) by the inner filter effects, displacement experiments and molecular docking methods, based on classic multi-spectroscopy. With fluorescence quenching method at 298 and 310 K, the binding constants Ka, were determined to be 2. 73 X 10(5) and 0. 74X 10(5) L mol-1, respectively, and there was one binding site between DC and HSA, indicating that the binding of DC to HSA was strong, and the quenching mechanism was a static quenching. The thermodynamic parameters (enthalpy change, AH and enthropy change, delta S) were calculated to be -83. 55 kJ mol-1 and -176. 31 J mol-1 K-1 via the Vant' Hoff equation, which indicated that the interaction of DC with HSA was driven mainly by hydrogen bonding and van der Waals forces. Based on the Föster's theory of non-radiation energy transfer, the specific binding distance between Trp-214 (acceptor) and DC (donor) was 4. 98 nm, which was similar to the result confirmed by molecular docking. Through displacement experiments, sub-domain IIA of HSA was assigned to possess the high-affinity binding site of DC. Three-dimensional fluorescence spectra indicated that the binding of DC to HSA induced the conformation change of HSA and increased the disclosure of some part of hydrophobic regions that had been buried before. The results of FTIR spectroscopy showed that DC bound to HSA led to the slight unfolding of the polypeptide chain of HSA. Furthermore, the binding details between DC and HSA were further confirmed by molecular docking methods, which revealed that DC was bound at sub-domain IIA through multiple interactions, such as hydrophobic effect, polar forces and pi-pi interactions. The experimental results provide theoretical basis and reliable data for the study of the interaction between small drug molecule and human serum albumin
Stanic-Vucinic, Dragana; Nikolic, Milan; Milcic, Milos; Cirkovic Velickovic, Tanja
2016-01-01
Phycocyanobilin (PCB) binds with high affinity (2.2 x 106 M-1 at 25°C) to human serum albumin (HSA) at sites located in IB and IIA subdomains. The aim of this study was to examine effects of PCB binding on protein conformation and stability. Using 300 ns molecular dynamics (MD) simulations, UV-VIS spectrophotometry, CD, FT-IR, spectrofluorimetry, thermal denaturation and susceptibility to trypsin digestion, we studied the effects of PCB binding on the stability and rigidity of HSA, as well as the conformational changes in PCB itself upon binding to the protein. MD simulation results demonstrated that HSA with PCB bound at any of the two sites showed greater rigidity and lower overall and individual domain flexibility compared to free HSA. Experimental data demonstrated an increase in the α-helical content of the protein and thermal and proteolytic stability upon ligand binding. PCB bound to HSA undergoes a conformational change to a more elongated conformation in the binding pockets of HSA. PCB binding to HSA stabilizes the structure of this flexible transport protein, making it more thermostable and resistant to proteolysis. The results from this work explain at molecular level, conformational changes and stabilization of HSA structure upon ligand binding. The resultant increased thermal and proteolytic stability of HSA may provide greater longevity to HSA in plasma. PMID:27959940
Effects of glycation on meloxicam binding to human serum albumin
NASA Astrophysics Data System (ADS)
Trynda-Lemiesz, Lilianna; Wiglusz, Katarzyna
2011-05-01
The current study reports a binding of meloxicam a pharmacologically important new generation, non-steroidal anti-inflammatory drug to glycated form of the human serum albumin (HSA). The interaction of the meloxicam with nonglycated and glycated albumin has been studied at pH 7.4 in 0.05 M sodium phosphate buffer with 0.1 M NaCl, using fluorescence quenching technique and circular dichroism spectroscopy. Results of the present study have shown that the meloxicam could bind both forms of albumin glycated and nonglycated at a site, which was close to the tryptophan residues. Similarly, how for native albumin glycated form has had one high affinity site for the drug with association constants of the order of 10 5 M -1. The glycation process of the HSA significantly has affected the impact of the meloxicam on the binding of other ligands such as warfarin and bilirubin. The affinity of the glycated albumin for bilirubin as for native albumin has been reduced by meloxicam but observed effect was weaker by half (about 20%) compared with nonglycated albumin. In contrast to the native albumin meloxicam binding to glycated form of the protein only slightly affected the binding of warfarin. It seemed possible that the effects on warfarin binding might be entirely attributable to the Lys 199 modification which was in site I.
Binding of puerarin to human serum albumin: a spectroscopic analysis and molecular docking.
He, Yang; Wang, Yiwei; Tang, Lifei; Liu, Hui; Chen, Wei; Zheng, Zhongliang; Zou, Guolin
2008-03-01
Puerarin is a widely used compound in Chinese traditional medicine and exhibits many pharmacological activities. Binding of puerarin to human serum albumin (HSA) was investigated by ultraviolet absorbance, fluorescence, circular dichroism and molecular docking. Puerarin caused a static quenching of intrinsic fluorescence of HSA, the quenching data was analyzed by Stern-Volmer equation. There was one primary puerarin binding site on HSA with a binding constant of 4.12 x 10(4) M(-1) at 298 K. Thermodynamic analysis by Van Hoff equation found enthalpy change (DeltaH(0)) and entropy change (DeltaS(0)) were -28.01 kJ/mol and -5.63 J/mol K respectively, which indicated the hydrogen bond and Van der Waas interaction were the predominant forces in the binding process. Competitive experiments showed a displacement of warfarin by puerarin, which revealed that the binding site was located at the drug site I. Puerarin was about 2.22 nm far from the tryptophan according to the observed fluorescence resonance energy transfer between HSA and puerarin. Molecular docking suggested the hydrophobic residues such as tyrosine (Tyr) 150, Tyr 148, Tyr 149 and polar residues such as lysine (Lys) 199, Lys 195, arginine 257 and histidine 242 played an important role in the binding reaction.
Aidas, Kęstutis; Olsen, Jógvan Magnus H; Kongsted, Jacob; Ågren, Hans
2013-02-21
Attempting to unravel mechanisms in optical probing of proteins, we have performed pilot calculations of two cationic chromophores-acridine yellow and proflavin-located at different binding sites within human serum albumin, including the two primary drug binding sites as well as a heme binding site. The computational scheme adopted involves classical molecular dynamics simulations of the ligands bound to the protein and subsequent linear response polarizable embedding density functional theory calculations of the excitation energies. A polarizable embedding potential consisting of point charges fitted to reproduce the electrostatic potential and isotropic atomic polarizabilities computed individually for every residue of the protein was used in the linear response calculations. Comparing the calculated aqueous solution-to-protein shifts of maximum absorption energies to available experimental data, we concluded that the cationic proflavin chromophore is likely not to bind albumin at its drug binding site 1 nor at its heme binding site. Although agreement with experimental data could only be obtained in qualitative terms, our results clearly indicate that the difference in optical response of the two probes is due to deprotonation, and not, as earlier suggested, to different binding sites. The ramifications of this finding for design of molecular probes targeting albumin or other proteins is briefly discussed.
Hmama, Z; Mey, A; Normier, G; Binz, H; Revillard, J P
1994-01-01
A water-soluble acylpolygalactosyl (APG) of 34 kDa was obtained from the Klebsiella pneumoniae membrane by alkaline hydrolysis and delipidation. APG comprises a poly(1,3)galactose chain, a core, and a lipid moiety made of a glucosamine disaccharide with two N-linked beta OH-myristates. The monocyte binding sites for APG were investigated by flow cytometry. Biotin-labelled APG (Biot-APG) bound to monocytes at 4 degrees C in the absence of serum, calcium, and magnesium. The binding was dose dependent, saturable, and displaced by unlabelled APG. Neither the polysaccharide chain present in APG-related molecules nor the PPi group or additional ester-linked myristates and palmitates were required for APG binding. The role of CD11b and CD14 was demonstrated by competitive inhibition with monoclonal antibodies and by the uptake of APG by these solubilized proteins. APG was rapidly internalized into monocytes at 37 degrees C while CD14 and CD11b/CD18 molecules were partially down-modulated. Lipopolysaccharides (LPS) from the same K. pneumoniae strain and from Escherichia coli and Salmonella minnesota partially competed for Biot-APG binding in the absence but not in the presence of serum. When altered by alkaline hydrolysis, those LPS became strong competitors for APG binding. It was concluded that alkaline hydrolysis of the K. pneumoniae membrane yielded molecules structurally related to LPS which bind to LPS membrane receptors in the absence of serum. Images PMID:7513300
Thermometric enzyme linked immunosorbent assay: TELISA.
Mattiasson, B; Borrebaeck, C; Sanfridson, B; Mosbach, K
1977-08-11
A new method, thermometric enzyme linked immunosorbent assay (TELISA), for the assay of endogenous and exogenous compounds in biological fluids is described. It is based on the previously described enzyme linked immunosorbent assay technique, ELISA, but utilizes enzymic heat formation which is measured in an enzyme thermistor unit. In the model system studied determination of human serum albumin down to a concentration of 10(-10) M (5 ng/ml) was achieved, with both normal and catalase labelled human serum albumin competing for the binding sites on the immunosorbent, which was rabbit antihuman serum albumin immobilized onto Sepharose CL-4B.
Extending Serum Half-life of Albumin by Engineering Neonatal Fc Receptor (FcRn) Binding*
Andersen, Jan Terje; Dalhus, Bjørn; Viuff, Dorthe; Ravn, Birgitte Thue; Gunnarsen, Kristin Støen; Plumridge, Andrew; Bunting, Karen; Antunes, Filipa; Williamson, Rebecca; Athwal, Steven; Allan, Elizabeth; Evans, Leslie; Bjørås, Magnar; Kjærulff, Søren; Sleep, Darrell; Sandlie, Inger; Cameron, Jason
2014-01-01
A major challenge for the therapeutic use of many peptides and proteins is their short circulatory half-life. Albumin has an extended serum half-life of 3 weeks because of its size and FcRn-mediated recycling that prevents intracellular degradation, properties shared with IgG antibodies. Engineering the strictly pH-dependent IgG-FcRn interaction is known to extend IgG half-life. However, this principle has not been extensively explored for albumin. We have engineered human albumin by introducing single point mutations in the C-terminal end that generated a panel of variants with greatly improved affinities for FcRn. One variant (K573P) with 12-fold improved affinity showed extended serum half-life in normal mice, mice transgenic for human FcRn, and cynomolgus monkeys. Importantly, favorable binding to FcRn was maintained when a single-chain fragment variable antibody was genetically fused to either the N- or the C-terminal end. The engineered albumin variants may be attractive for improving the serum half-life of biopharmaceuticals. PMID:24652290
Votano, Joseph R; Parham, Marc; Hall, L Mark; Hall, Lowell H; Kier, Lemont B; Oloff, Scott; Tropsha, Alexander
2006-11-30
Four modeling techniques, using topological descriptors to represent molecular structure, were employed to produce models of human serum protein binding (% bound) on a data set of 1008 experimental values, carefully screened from publicly available sources. To our knowledge, this data is the largest set on human serum protein binding reported for QSAR modeling. The data was partitioned into a training set of 808 compounds and an external validation test set of 200 compounds. Partitioning was accomplished by clustering the compounds in a structure descriptor space so that random sampling of 20% of the whole data set produced an external test set that is a good representative of the training set with respect to both structure and protein binding values. The four modeling techniques include multiple linear regression (MLR), artificial neural networks (ANN), k-nearest neighbors (kNN), and support vector machines (SVM). With the exception of the MLR model, the ANN, kNN, and SVM QSARs were ensemble models. Training set correlation coefficients and mean absolute error ranged from r2=0.90 and MAE=7.6 for ANN to r2=0.61 and MAE=16.2 for MLR. Prediction results from the validation set yielded correlation coefficients and mean absolute errors which ranged from r2=0.70 and MAE=14.1 for ANN to a low of r2=0.59 and MAE=18.3 for the SVM model. Structure descriptors that contribute significantly to the models are discussed and compared with those found in other published models. For the ANN model, structure descriptor trends with respect to their affects on predicted protein binding can assist the chemist in structure modification during the drug design process.
Immunocytochemical Studies of Neurofibrillary Tangles
Yen, Shu-Hui C.; Gaskin, Felicia; Terry, Robert D.
1981-01-01
The molecular nature of neurofibrillary tangles of senile dementia of the Alzheimer type (SDAT) was studied by immunoperoxidase and immunofluorescence techniques. Five antiserums, including anti-humanbrain-2-cycle-purified-microtubule-fractions (2 × MT), anti-calf-brain-2 × MT, anti-sea-urchin-egg-tubulin, antibeef-brain-tubulin, and anti-human-brain-neurofilament(NF)-210-kilodalton(kd)-protein were tested for their binding to neurofibrillary tangles. The antihuman-2 × MT serum stained structures resembling neurofibrillary tangles, neurites of neuritic plaques, and microglialike cells in SDAT brains, but no such staining pattern was detected in normal brain sections. In neurons isolated from SDAT brains, about 40% of the tangles were labeled by the anti-human-2×MT serum with an identical pattern. Other antiserums tested did not preferentially bind tanglelike structures in tissue sections and bound to less than 5% of the tangles in isolated neurons. These results suggest that the antigenic sites of tubulin and NF proteins are not shared by neurofibrillary tangles. Different from the calf preparation, the human-2 × MT fractions contained a prominent protein band that was identical to ferritin in molecular weight and cross-reacted with anti-human-2 × MT and anti-human-ferritin serums. However, antiserums to this ferritinlike protein, or anti-ferritin, did not stain neurofibrillary tangles. Although neither the calf 2 × MT nor two other human MT fractions failed to elicit an antiserum that stained tangles, these fractions were able to remove the antihuman-2 × MT serum activity that binds to tangles. The data suggest that the protein (or proteins) that makes up neurofibrillary tangles of SDAT is present in various quantities in microtubule fractions of normal brain. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7Figure 8Figure 9Figure 10Figure 11Figure 12Figure 13Figure 14Figure 15Figure 16 PMID:7020426
Ketelslegers, J M; Catt, K J
1978-07-03
The interaction between enzymatically radioiodinated human follitropin and the follitropin receptors in testis homogenate was investigated in immature and adult rats. The 125I-labeled human follitropin exhibited high binding activity with specific binding of up to 17% in the presence of an excess of testis homogenate. Approx. 50% of the bound hormone could be eluted at pH 5, and the receptor purified tracer exhibited a 3.6-fold increase in binding activity when compared with the original tracer preparation. Quantitative analysis of equilibrium binding data was performed with corrections for the measured specific activity and maximum binding activity of the tracer hormone. The equilibrium association constants (Ka) determined 24 degrees C were not significantly different in immature and adult rat testis, and the mean value for Ka was 3.9 . 10(9) M-1. At 37 degrees C, the Ka value obtained using immature rat testis was 1.3 . 10(10) M-1. The association of 125I-labeled human follitropin with immature rat testis homogenate was time and temperature dependent. In the presence of an excess of unlabeled hormone, 30--60% of the preformed hormone . receptor complex was dissociated after 24 h incubation. A specific and sensitive radioligand-receptor assay for follitropin was developed using immature rat testis homogenate. The minimum detectable dose of purified human follitropin was 0.6 ng, and human urinary and pituitary follitropin, ovine follitropin and pregnant mare serum gonadotropin reacted in the assay with equivalent slopes. The potencies of highly purified pregnent mare serum gonadotropin and highly purified human follitropin were similar in the radioligand-receptor assay, consistent with the follitropin bioactivity of the equine gonadotropin.
Surface imprinted beads for the recognition of human serum albumin.
Bonini, Francesca; Piletsky, Sergey; Turner, Anthony P F; Speghini, Adolfo; Bossi, Alessandra
2007-04-15
The synthesis of poly-aminophenylboronic acid (ABPA) imprinted beads for the recognition of the protein human serum albumin (HSA) is reported. In order to create homogeneous recognition sites, covalent immobilisation of the template HSA was exploited. The resulting imprinted beads were selective for HSA. The indirect imprinting factor (IF) calculated from supernatant was 1.6 and the direct IF, evaluated from the protein recovered from the beads, was 1.9. The binding capacity was 1.4 mg/g, which is comparable to commercially available affinity materials. The specificity of the HSA recognition was evaluated with competitive experiments, indicating a molar ratio 4.5/1 of competitor was necessary to displace half of the bound HSA. The recognition and binding of the imprinted beads was also tested with a complex sample, human serum and targeted removal of HSA without a loss of the other protein components was demonstrated. The easy preparation protocol of derivatised beads and a good protein recognition properties make the approach an attractive solution to analytical and bio-analytical problems in the field of biotechnology.
Zhang, Juling; Gu, Huaimin; Zhang, Xiaohui
2014-01-30
The interaction of 4-thiothymidine (S(4)TdR) with human serum albumin (HSA) was studied by equilibrium dialysis under normal physiological conditions. In this work, the mechanism of the interaction between S(4)TdR and human serum albumin (HSA) was exploited by fluorescence, UV, CD circular, and SERS spectroscopic. Fluorescence and UV spectroscopy suggest that HSA intensities are significantly decreased when adding S(4)TdR to HAS, and the quenching mechanism of the fluorescence is static. Also, the ΔG, ΔH, and ΔS values across temperature indicated that hydrophobic interaction was the predominant binding force. The CD circular results show that there is little change in the secondary structure of HSA except the environment of amino acid changes when adding S(4)TdR to HSA. The surface-enhanced Raman scattering (SERS) shows that the interaction between S(4)TdR and HSA can be achieved through different binding sites which are probably located in the II A and III A hydrophobic pockets of HSA which correspond to Sudlow's I and II binding sites. In addition, the molecular modeling displays that S(4)TdR-HSA complex is stabilized by hydrophobic forces, which result from amino acid residues. The atomic force microscopy results revealed that the single HSA molecular dimensions were larger after interaction of 4-thiothymidine. This work would be useful to understand the state of the transportation, distribution, and metabolism of the anticancer drugs in the human body, and it could provide a useful biochemistry parameter for the development of new anti-cancer drugs and research of pharmacology mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Use of procainamide gels in the purification of human and horse serum cholinesterases.
Ralston, J S; Main, A R; Kilpatrick, B F; Chasson, A L
1983-01-01
Two large-scale methods based primarily on the use of procainamide-Sepharose gels were developed for the purification of horse and human serum non-specific cholinesterases. With method I, the procainamide-Sepharose 4B gel was used in the first step to handle large volumes of serum. With method II, the procainamide-Sepharose 4B gel was used in the final step to obtain pure enzyme. Although both methods gave electrophoretically pure cholinesterase preparations in good yields, they were significantly more efficient at purifying the horse enzyme than the human enzyme. To study this problem, the relative binding of human and horse cholinesterases to procainamide-, methylacridinium (MAC)-, m-trimethylammoniophenyl (m-PTA)- and p-trimethylammoniophenyl (p-PTA)-Sepharose 4B gels were measured, by using two approaches. In one, binding was measured by a procedure involving equilibration of pure cholinesterase in a small volume of diluted gel slurry (4%, v/v). A partially purified preparation of Electrophorus acetylcholinesterase was included. Pure human cholinesterase bound consistently more tightly to each of the gels than did horse cholinesterase, and the acetylcholinesterase appeared to bind the gels 10-100 times more tightly than did the non-specific cholinesterases. The order of binding for the cholinesterases, beginning with the tightest, was: procainamide-Sepharose 4B, MAC-Sepharose 4B, p-PTA-Sepharose 4B and m-PTA-Sepharose 4B. For the acetylcholinesterase the order was: MAC-Sepharose 4B, procainamide-Sepharose 4B, p-PTA-Sepharose 4B and m-PTA-Sepharose 4B. The second approach involved passing native sera or partially purified sera fractions through 1 ml test columns of each of the four affinity gels to determine their retention capacity for the cholinesterases. With these impure samples, the MAC-Sepharose 4B gels proved superior to the procainamide-Sepharose 4B gels at retaining human cholinesterase, but the opposite was true for the horse cholinesterase. PMID:6870822
Aramesh-Boroujeni, Zahra; Bordbar, Abdol-Khalegh; Khorasani-Motlagh, Mozhgan; Sattarinezhad, Elham; Fani, Najme; Noroozifar, Meissam
2018-05-18
In this work, the terbium(III), dysprosium(III), and ytterbium(III) complexes containing 2, 2'-bipyridine (bpy) ligand have been synthesized and characterized using CHN elemental analysis, FT-IR, UV-Vis and 1 H-NMR techniques and their binding behavior with human serum albumin (HSA) was studied by UV-Vis, fluorescence and molecular docking examinations. The experimental data indicated that all three lanthanide complexes have high binding affinity to HSA with effective quenching of HSA fluorescence via static mechanism. The binding parameters, the type of interaction, the value of resonance energy transfer, and the binding distance between complexes and HSA were estimated from the analysis of fluorescence measurements and Förster theory. The thermodynamic parameters suggested that van der Waals interactions and hydrogen bonds play an important role in the binding mechanism. While, the energy transfer from HSA molecules to all these complexes occurs with high probability, the order of binding constants (BpyTb > BpyDy > BpyYb) represents the importance of radius of Ln 3+ ion in the complex-HSA interaction. The results of molecular docking calculation and competitive experiments assessed site 3 of HSA, located in subdomain IB, as the most probable binding site for these ligands and also indicated the microenvironment residues around the bound mentioned complexes. The computational results kept in good agreement with experimental data.
Multifaceted Mechanisms of HIV-1 Entry Inhibition by Human α-Defensin*♦
Demirkhanyan, Lusine H.; Marin, Mariana; Padilla-Parra, Sergi; Zhan, Changyou; Miyauchi, Kosuke; Jean-Baptiste, Maikha; Novitskiy, Gennadiy; Lu, Wuyuan; Melikyan, Gregory B.
2012-01-01
The human neutrophil peptide 1 (HNP-1) is known to block the human immunodeficiency virus type 1 (HIV-1) infection, but the mechanism of inhibition is poorly understood. We examined the effect of HNP-1 on HIV-1 entry and fusion and found that, surprisingly, this α-defensin inhibited multiple steps of virus entry, including: (i) Env binding to CD4 and coreceptors; (ii) refolding of Env into the final 6-helix bundle structure; and (iii) productive HIV-1 uptake but not internalization of endocytic markers. Despite its lectin-like properties, HNP-1 could bind to Env, CD4, and other host proteins in a glycan- and serum-independent manner, whereas the fusion inhibitory activity was greatly attenuated in the presence of human or bovine serum. This demonstrates that binding of α-defensin to molecules involved in HIV-1 fusion is necessary but not sufficient for blocking the virus entry. We therefore propose that oligomeric forms of defensin, which may be disrupted by serum, contribute to the anti-HIV-1 activity perhaps through cross-linking virus and/or host glycoproteins. This notion is supported by the ability of HNP-1 to reduce the mobile fraction of CD4 and coreceptors in the plasma membrane and to precipitate a core subdomain of Env in solution. The ability of HNP-1 to block HIV-1 uptake without interfering with constitutive endocytosis suggests a novel mechanism for broad activity against this and other viruses that enter cells through endocytic pathways. PMID:22733823
Pan, Xingren; Qin, Pengfei; Liu, Rutao; Wang, Jing
2011-06-22
Tartrazine is an artificial azo dye commonly used in food products. The present study evaluated the interaction of tartrazine with two serum albumins (SAs), human serum albumin (HSA) and bovine serum albumin (BSA), under physiological conditions by means of fluorescence, three-dimensional fluorescence, UV-vis absorption, and circular dichroism (CD) techniques. The fluorescence data showed that tartrazine could bind to the two SAs to form a complex. The binding process was a spontaneous molecular interaction procedure, in which van der Waals and hydrogen bond interactions played a major role. Additionally, as shown by the UV-vis absorption, three-dimensional fluorescence, and CD results, tartrazine could lead to conformational and some microenvironmental changes of both SAs, which may affect the physiological functions of SAs. The work provides important insight into the mechanism of toxicity of tartrazine in vivo.
The Binding of Silibinin, the Main Constituent of Silymarin, to Site I on Human Serum Albumin.
Yamasaki, Keishi; Sato, Hiroki; Minagoshi, Saori; Kyubun, Karin; Anraku, Makoto; Miyamura, Shigeyuki; Watanabe, Hiroshi; Taguchi, Kazuaki; Seo, Hakaru; Maruyama, Toru; Otagiri, Masaki
2017-01-01
Silibinin is the main constituent of silymarin, an extract from the seeds of milk thistle (Silybum marianum). Because silibinin has many pharmacological activities, extending its clinical use in the treatment of a wider variety of diseases would be desirable. In this study, we report on the binding of silibinin to plasma proteins, an issue that has not previously been extensively studied. The findings indicated that silibinin mainly binds to human serum albumin (HSA). Mutual displacement experiments using ligands that primarily bind to sites I and II clearly revealed that silibinin binds tightly and selectively to site I (subsites Ia and/or Ic) of HSA, which is located in subdomain IIA. Thermodynamic analyses suggested that hydrogen bonding and van der Waals interactions are major contributors to silibinin-HSA interactions. Furthermore, the binding of silibinin to HSA was found to be decreased with increasing ionic strength and detergent concentration of the media, suggesting that electrostatic and hydrophobic interactions are involved in the binding. Trp214 and Arg218 were identified as being involved in the binding of silibinin to site I, based on binding experiments using chemically modified- and mutant-HSAs. In conclusion, the available evidence indicates that silibinin binds to the region close to Trp214 and Arg218 in site I of HSA with assistance by multiple forces and can displace site I drugs (e.g., warfarin or iodipamide), but not site II drugs (e.g., ibuprofen).
Natraj, U; George, S; Kadam, P
1988-06-01
Human cord serum contains protein(s) capable of binding to [14C]-riboflavin. Riboflavin-bound protein cross-reacts with anti-serum to chicken riboflavin carrier protein (cRCP). The carrier protein was isolated using affinity chromatography on a riboflavin AH Sepharose column. Bulk isolation and purification was also attempted by a combination of ion exchange, gel filtration and gel permeation chromatography on HPLC. The protein so isolated had a molecular weight of 36,000 +/- 2,000 daltons with an isoelectric point of 4.1. The levels of RCP in maternal serum during pregnancy were monitored using a sensitive heterologous radioimmunoassay system, using cRCP as standard and anti serum to cRCP. The levels of the protein increased after 4 months and remained significantly elevated up to 8 months. Although the level of the protein in the maternal serum remained low until 4 months, its level in amniotic fluid was elevated 2-3-fold as compared to that in serum.
Human serum albumin binding assay based on displacement of a non selective fluorescent inhibitor.
Thorarensen, Atli; Sarver, Ronald W; Tian, Fang; Ho, Andrea; Romero, Donna L; Marotti, Keith R
2007-08-15
In this paper, we describe a fluorescent antibacterial analog, 6, with utility as a competition probe to determine affinities of other antibacterial analogs for human serum albumin (HSA). Analog 6 bound to HSA with an affinity of 400+/-100 nM and the fluorescence was environmentally sensitive. With 370 nm excitation, environmental sensitivity was indicated by a quenching of the 530 nm emission when the probe bound to HSA. Displacement of dansylsarcosine from HSA by 6 indicated it competed with compounds that bound at site II (ibuprofen binding site) on HSA. Analog 6 also shifted the NMR peaks of an HSA bound oleic acid molecule that itself was affected by compounds that bound at site II. In addition to binding at site II, 6 interacted at site I (warfarin binding site) as indicated by displacement of dansylamide and the shifting of NMR peaks of an HSA bound oleic acid molecule affected by warfarin site binding. Additional evidence for multiple site interaction was discovered when a percentage of 6 could be displaced by either ibuprofen or phenylbutazone. A competition assay was established using 6 to determine relative affinities of other antibacterial inhibitors for HSA.
Potential Protein Toxicity of Synthetic Pigments: Binding of Poncean S to Human Serum Albumin☆
Gao, Hong-Wen; Xu, Qing; Chen, Ling; Wang, Shi-Long; Wang, Yuan; Wu, Ling-Ling; Yuan, Yuan
2008-01-01
Using various methods, e.g., spectrophotometry, circular dichroism, and isothermal titration calorimetry, the interaction of poncean S (PS) with human serum albumin (HSA) was characterized at pH 1.81, 3.56, and 7.40 using the spectral correction technique, and Langmuir and Temkin isothermal models. The consistency among results concerning, e.g., binding number, binding energy, and type of binding, showed that ion pair electrostatic attraction fixed the position of PS in HSA and subsequently induced a combination of multiple noncovalent bonds such as H-bonds, hydrophobic interactions, and van der Waals forces. Ion pair attraction and H-bonds produced a stable PS-HSA complex and led to a marked change in the secondary structure of HSA in acidic media. The PS-HSA binding pattern and the process of change in HSA conformation were also investigated. The potentially toxic effect of PS on the transport function of HSA in a normal physiological environment was analyzed. This work provides a useful experimental strategy for studying the interaction of organic substances with biomacromolecules, helping us to understand the activity or mechanism of toxicity of an organic compound. PMID:17905844
Computer Model of Aspirin bound to Human Serum Albumin
NASA Technical Reports Server (NTRS)
1989-01-01
Contributes to many transport and regulatory processes and has multifunctional binding properties which range form various metals, to fatty acids, hormones, and a wide spectrum of therapeutic drugs. The most abundant protein of the circulatory system. It binds and transports an incredible variety of biological and pharmaceutical ligands throughout the blood stream.
Wu, Di; Yan, Jin; Wang, Jing; Wang, Qing; Li, Hui
2015-03-01
Binding interaction of human serum albumin (HSA) with allura red AC, a food colourant, was investigated at the molecular level through fluorescence, ultraviolet-visible, circular dichroism (CD) and Raman spectroscopies, as well as protein-ligand docking studies to better understand the chemical absorption, distribution and transportation of colourants. Results show that allura red AC has the ability to quench the intrinsic fluorescence of HSA through static quenching. The negative values of the thermodynamic parameters ΔG, ΔH, and ΔS indicated that hydrogen bond and van der Waals forces are dominant in the binding between the food colourant and HSA. The CD and Raman spectra showed that the binding of allura red AC to HSA induces the rearrangement of the carbonyl hydrogen-bonding network of polypeptides, which changes the HSA secondary structure. This colourant is bound to HSA in site I, and the binding mode was further analysed with the use of the CDOCKER algorithm in Discovery Studio. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Murugesan, Arul; Gengan, Robert Moonsamy; Rajamanikandan, Ramar; Ilanchelian, Malaichamy
2017-12-01
A series of novel dispiro piperazinyl-quinolinyl-thioxothiazolidin-2, 4-dione derivatives were synthesised and characterised by FT-IR 1H, 13C, 2D NMR and HRMS spectroscopic techniques. A representative compound 1'-(2-(4-methylpiperazin-1-yl)quinolin-3-yl)-2″-thioxo-5‧,6‧,7‧,7a'-tetrahydro-1‧H,2H-dispiro[acenaphthylene-1,3‧-pyrrolizine-2‧,5″-thiazolidine]-2,4″-dione was studied for its binding ability with human serum albumin (HSA) using the fluorescence quench titration method. Addition of the compound to HSA produced slight fluorescence quenching and red shift. The free energy change for the complexation process was evaluated as -29.98 kJ mol-1 thereby indicating a spontaneous and highly favourable reaction. Molecular docking analyses revealed the binding as -20.79 kJ mol-1 which was analogous with the experimental value obtained from emission data. It was concluded that TYR-263 is the moiety responsible for the binding in the complex.
Gökoğlu, Elmas; Kıpçak, Fulya; Seferoğlu, Zeynel
2014-11-01
This study reports the preparation and investigation of the modes of binding of the two symmetric 3,6-diaminoacridine derivatives obtained from proflavine, which are 3,6-diphenoxycarbonyl aminoacridine and 3,6-diethoxycarbonyl aminoacridine to human serum albumin (HSA). The interaction of HSA with the derivatives was investigated using fluorescence quenching and ultraviolet-visible absorption spectra at pH 7.2 and different temperatures. The results suggest that the derivatives used can interact strongly with HSA and are the formation of HSA-derivative complexes and hydrophobic interactions as the predominant intermolecular forces in stabilizing for each complex. The Stern-Volmer quenching constants, binding constants, binding sites and corresponding thermodynamic parameters ΔH, ΔS and ΔG were calculated at different temperatures. The binding distance (r) ~ 3 nm between the donor (HSA) and acceptors (3,6-diethoxycarbonyl aminoacridine, 3,6-diphenoxycarbonyl aminoacridine and proflavine) was obtained according to Förster's non-radiative energy transfer theory. Moreover, the limit of detection and limit of quantification of derivatives were calculated in the presence of albumin. Copyright © 2014 John Wiley & Sons, Ltd.
Peng, Xian-E; Wu, Yun-Li; Zhu, Yi-Bing; Huang, Rong-Dong; Lu, Qing-Qing; Lin, Xu
2015-01-01
Liver fatty acid-binding protein (L-FABP), also known as fatty acid-binding protein 1 (FABP1), is a key regulator of hepatic lipid metabolism. Elevated FABP1 levels are associated with an increased risk of cardiovascular disease (CVD) and metabolic syndromes. In this study, we examine the association of FABP1 gene promoter variants with serum FABP1 and lipid levels in a Chinese population. Four promoter single-nucleotide polymorphisms (SNPs) of FABP1 gene were genotyped in a cross-sectional survey of healthy volunteers (n = 1,182) from Fuzhou city of China. Results showed that only the rs2919872 G>A variant was significantly associated with serum TG concentration(P = 0.032).Compared with the rs2919872 G allele, rs2919872 A allele contributed significantly to reduced serum TG concentration, and this allele dramatically decreased the FABP1 promoter activity(P < 0.05). The rs2919872 A allele carriers had considerably lower serum FABP1 levels than G allele carriers (P < 0.01). In the multivariable linear regression analysis, the rs2919872 A allele was negatively associated with serum FABP1 levels (β = -0.320, P = 0.003), while serum TG levels were positively associated with serum FABP1 levels (β = 0.487, P = 0.014). Our data suggest that compared with the rs2919872 G allele, the rs2919872 A allele reduces the transcriptional activity of FABP1 promoter, and thereby may link FABP1 gene variation to TG level in humans.
Zhu, Yi-bing; Huang, Rong-dong; Lu, Qing-Qing; Lin, Xu
2015-01-01
Liver fatty acid-binding protein (L-FABP), also known as fatty acid-binding protein 1 (FABP1), is a key regulator of hepatic lipid metabolism. Elevated FABP1 levels are associated with an increased risk of cardiovascular disease (CVD) and metabolic syndromes. In this study, we examine the association of FABP1 gene promoter variants with serum FABP1 and lipid levels in a Chinese population. Four promoter single-nucleotide polymorphisms (SNPs) of FABP1 gene were genotyped in a cross-sectional survey of healthy volunteers (n = 1,182) from Fuzhou city of China. Results showed that only the rs2919872 G>A variant was significantly associated with serum TG concentration(P = 0.032).Compared with the rs2919872 G allele, rs2919872 A allele contributed significantly to reduced serum TG concentration, and this allele dramatically decreased the FABP1 promoter activity(P < 0.05). The rs2919872 A allele carriers had considerably lower serum FABP1 levels than G allele carriers (P < 0.01). In the multivariable linear regression analysis, the rs2919872 A allele was negatively associated with serum FABP1 levels (β = —0.320, P = 0.003), while serum TG levels were positively associated with serum FABP1 levels (β = 0.487, P = 0.014). Our data suggest that compared with the rs2919872 G allele, the rs2919872 A allele reduces the transcriptional activity of FABP1 promoter, and thereby may link FABP1 gene variation to TG level in humans. PMID:26439934
Seal, Ruth; Temperley, Richard; Wilusz, Jeffrey; Lightowlers, Robert N.; Chrzanowska-Lightowlers, Zofia M. A.
2005-01-01
PARN, a poly(A)-specific ribonuclease, binds the 5′ cap-structure of mRNA and initiates deadenylation-dependent decay. Eukaryotic initiation factor 4E (eIF4E) also binds to the cap structure, an interaction that is critical for initiating cap-dependent translation. The stability of various mRNA transcripts in human cell lines is reduced under conditions of serum starvation as determined by both functional and chemical half-lives. Serum starvation also leads to enhanced cap association by PARN. In contrast, the 5′ cap occupancy by eIF4E decreases under serum-deprivation, as does the translation of reporter transcripts. Further, we show that PARN is a phosphoprotein and that this modification can be modulated by serum status. Taken together, these data are consistent with a natural competition existing at the 5′ cap structure between PARN and eIF4E that may be regulated by changes in post-translational modifications. These phosphorylation-induced changes in the interplay of PARN and eIF4E may determine whether the mRNA is translated or decayed. PMID:15653638
Depigmented allergoids reveal new epitopes with capacity to induce IgG blocking antibodies.
López-Matas, M Angeles; Gallego, Mayte; Iraola, Víctor; Robinson, Douglas; Carnés, Jerónimo
2013-01-01
The synthesis of allergen-specific blocking IgGs that interact with IgE after allergen immunotherapy (SIT) has been related to clinical efficacy. The objectives were to investigate the epitope specificity of IgG-antibodies induced by depigmented-polymerized (Dpg-Pol) allergoids and unmodified allergen extracts, and examine IgE-blocking activity of induced IgG-antibodies. Rabbits were immunized with native and Dpg-Pol extracts of birch pollen, and serum samples were obtained. Recognition of linear IgG-epitopes of Bet v 1 and Bet v 2 and the capacity of these IgG-antibodies to block binding of human-IgE was determined. Serum from rabbits immunized with native extracts recognised 11 linear epitopes from Bet v 1, while that from Dpg-Pol-immunized animals recognised 8. For Bet v 2, 8 epitopes were recognized by IgG from native immunized animals, and 9 from Dpg-Pol immunized one. Dpg-Pol and native immunized serum did not always recognise the same epitopes, but specific-IgG from both could block human-IgE binding sites for native extract. Depigmented-polymerized birch extract stimulates the synthesis of specific IgG-antibodies which recognize common but also novel epitopes compared with native extracts. IgG-antibodies induced by Dpg-Pol effectively inhibit human-IgE binding to allergens which may be part of the mechanism of action of SIT.
Abou-Zied, Osama K
2015-01-01
Human serum albumin (HSA) is one of the major carrier proteins in the body and constitutes approximately half of the protein found in blood plasma. It plays an important role in lipid metabolism, and its ability to reversibly bind a large variety of pharmaceutical compounds makes it a crucial determinant of drug pharmacokinetics and pharmacodynamics. This review deals with one of the protein's major binding sites "Sudlow I" which includes a binding pocket for the drug warfarin (WAR). The binding nature of this important site can be characterized by measuring the spectroscopic changes when a ligand is bound. Using several drugs, including WAR, and other drug-like molecules as ligands, the results emphasize the nature of Sudlow I as a flexible binding site, capable of binding a variety of ligands by adapting its binding pockets. The high affinity of the WAR pocket for binding versatile molecular structures stems from the flexibility of the amino acids forming the pocket. The binding site is shown to have an ionization ability which is important to consider when using drugs that are known to bind in Sudlow I. Several studies point to the important role of water molecules trapped inside the binding site in molecular recognition and ligand binding. Water inside the protein's cavity is crucial in maintaining the balance between the hydrophobic and hydrophilic nature of the binding site. Upon the unfolding and refolding of HSA, more water molecules are trapped inside the binding site which cause some swelling that prevents a full recovery from the denatured state. Better understanding of the mechanism of binding in macromolecules such as HSA and other proteins can be achieved by combining experimental and theoretical studies which produce significant synergies in studying complex biochemical phenomena.
Wanke, Riccardo; Harjivan, Shrika G; Pereira, Sofia A; Marques, M Matilde; Antunes, Alexandra M M
2013-11-01
The potential for co-prescription of the anti-human immunodeficiency virus (anti-HIV) drug efavirenz (EFV) and the oral anticoagulant warfarin (WAR) is currently high as EFV is a drug of choice for HIV type 1 infection and because cardiovascular disease is increasing among HIV-infected individuals. However, clinical reports of EFV-WAR interaction, leading to WAR overdosing, call for elucidation of the mechanisms involved in this drug-drug interaction. Here we present the first report demonstrating competition of the two drugs for the same binding site of human serum albumin. Using ligand-based nuclear magnetic resonance experiments, this study proves that EFV has an effect on the concentration of free WAR. This previously unidentified EFV-WAR interaction represents a potential risk factor that should be taken into account when considering treatment options. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Matrix interference from Fc-Fc interactions in immunoassays for detecting human IgG4 therapeutics.
Partridge, Michael A; Karayusuf, Elif Kabuloglu; Dhulipala, Gangadhar; Dreyer, Robert; Daly, Thomas; Sumner, Giane; Pyles, Erica; Torri, Albert
2015-01-01
An assay measuring an IgG4 biotherapeutic in human serum used a drug-specific monoclonal antibody (mAb) capture reagent and an antihuman IgG4 mAb as detection reagent. However, serum IgG4 binding to the capture mAb via Fc-interactions was detected by the anti-IgG4 mAb, causing high background. Two approaches were developed to minimize background; incorporating a mild acid sample preparation step or using the Fab of the capture antibody. Either strategy improved signal:noise dramatically, increasing assay sensitivity >20-fold. Biophysical analyses of antibody domains indicated that noncovalent Fc oligomers could inhibit the background. Matrix interference from human IgG4 binding to the capture mAb was reduced with a Fab fragment of the drug-specific capture antibody or by incorporating a mild acid sample treatment into the assay.
Allosteric effects of gold nanoparticles on human serum albumin.
Shao, Qing; Hall, Carol K
2017-01-07
The ability of nanoparticles to alter protein structure and dynamics plays an important role in their medical and biological applications. We investigate allosteric effects of gold nanoparticles on human serum albumin protein using molecular simulations. The extent to which bound nanoparticles influence the structure and dynamics of residues distant from the binding site is analyzed. The root mean square deviation, root mean square fluctuation and variation in the secondary structure of individual residues on a human serum albumin protein are calculated for four protein-gold nanoparticle binding complexes. The complexes are identified in a brute-force search process using an implicit-solvent coarse-grained model for proteins and nanoparticles. They are then converted to atomic resolution and their structural and dynamic properties are investigated using explicit-solvent atomistic molecular dynamics simulations. The results show that even though the albumin protein remains in a folded structure, the presence of a gold nanoparticle can cause more than 50% of the residues to decrease their flexibility significantly, and approximately 10% of the residues to change their secondary structure. These affected residues are distributed on the whole protein, even on regions that are distant from the nanoparticle. We analyze the changes in structure and flexibility of amino acid residues on a variety of binding sites on albumin and confirm that nanoparticles could allosterically affect the ability of albumin to bind fatty acids, thyroxin and metals. Our simulations suggest that allosteric effects must be considered when designing and deploying nanoparticles in medical and biological applications that depend on protein-nanoparticle interactions.
Interaction of imatinib mesylate with human serum transferrin: The comparative spectroscopic studies
NASA Astrophysics Data System (ADS)
Śliwińska-Hill, Urszula
2017-02-01
Imatinib mesylate (Imt) is a tyrosine kinase inhibitor mainly used in the treatment of Philadelphia chromosome-positive chronic myelogenous leukemia (Ph + CML). Human serum transferrin is the most abundant serum protein responsible for the transport of iron ions and many endogenous and exogenous ligands. In this study the mechanism of interactions between the imatinib mesylate and all states of transferrin (apo-Tf, Htf and holo-Tf) has been investigated by fluorescence, ultraviolet-visible (UV-vis), circular dichroism (CD) and zeta potential spectroscopic methods. Based on the experimental results it was proved that under physiological conditions the imatinib mesylate binds to the each form of transferrin with a binding constant c.a. 105 M- 1. The thermodynamic parameters indicate that hydrogen bonds and van der Waals were involved in the interaction of apo-Tf with the drug and hydrophobic and ionic strength participate in the reaction of Htf and holo-Tf with imatinib mesylate. Moreover, it was shown that common metal ions, Zn2 + and Ca2 + strongly influenced apo-Tf-Imt binding constant. The CD studies showed that there are no conformational changes in the secondary structure of the proteins. No significant changes in secondary structure of the proteins upon binding with the drug and instability of apo-Tf-Imt system are the desirable effects from pharmacological point of view.
NASA Astrophysics Data System (ADS)
Yuan, Lixia; Liu, Min; Liu, Guiqin; Li, Dacheng; Wang, Zhengping; Wang, Bingquan; Han, Jun; Zhang, Min
2017-02-01
Combination therapy with more than one therapeutic agent can improve therapeutic efficiency and decrease drug resistance. In this study, the interactions of human serum albumin (HSA) with individual or combined anticancer drugs, (-)-epigallocatechin-3-gallate (EGCG) and 5-fluorouracil (FU), were investigated by fluorescence and circular dichroism (CD) spectroscopy. The results demonstrated that the interaction of EGCG or FU with HSA is a process of static quenching and EGCG formed a more stable complex. The competitive experiments of site markers suggested that both anti-carcinogens mainly bound to site I (subdomain IIA). The interaction forces which play important roles in the binding process were discussed based on enthalpy and entropy changes. Moreover, the competition binding model for a ternary system was proposed so as to precisely calculate the binding parameters. The results demonstrated that one drug decreased the binding affinity of another drug with HSA, resulting in the increasing free drug concentration at the action sites. CD studies indicated that there was an alteration in HSA secondary structure due to the binding of EGCG and FU. It can be concluded that the combination of EGCG with FU may enhance anticancer efficacy. This finding may provide a theoretical basis for clinical treatments.
Hu, Liang; Chen, Dong-ying
2009-01-01
Aim: To investigate noncovalent interactions between borneol and human serum albumin (HSA) under near-physiological conditions. Methods: A 65-μm polydimethylsiloxane (PDMS) fiber was selected for sampling. The extraction temperature was kept at 37 °C, and the extraction time was optimized at 10 min. Borneol solutions of different concentrations were equilibrated in 600 μmol/L HSA and 67 mmol/L phosphate buffer solution (pH 7.4, 37 °C) for 24 h prior to solid phase microextraction (SPME) using headspace mode. The binding properties were obtained based on the calculation of extracted borneol amount using gas chromatography (GC) determination. Results: The headspace SPME extraction method avoided disturbance from the HSA binding matrix. The recovery showed good linearity for the borneol concentrations over the range of 0.4–16.3 μmol/L with a regression coefficient (R2) of 0.9998. The limit of detection and lower limit of quantitation were determined to be 0.01 μmol/L and 0.4 μmol/L, respectively. The binding constant and the percentage binding rate were estimated to be 2.4×103(mol/L)-1 and 59.5%, respectively. Conclusion: Headspace SPME coupled to GC is a simple, sensitive and rapid method for the study of borneol binding to HSA. The method may be applied in the determination of other protein binding properties in human plasma. PMID:19890364
Oshiro, Satoshi; Honda, Shinya
2014-04-18
Attachment of a bacterial albumin-binding protein module is an attractive strategy for extending the plasma residence time of protein therapeutics. However, a protein fused with such a bacterial module could induce unfavorable immune reactions. To address this, we designed an alternative binding protein by imparting albumin-binding affinity to a human protein using molecular surface grafting. The result was a series of human-derived 6 helix-bundle proteins, one of which specifically binds to human serum albumin (HSA) with adequate affinity (KD = 100 nM). The proteins were designed by transferring key binding residues of a bacterial albumin-binding module, Finegoldia magna protein G-related albumin-binding domain (GA) module, onto the human protein scaffold. Despite 13-15 mutations, the designed proteins maintain the original secondary structure by virtue of careful grafting based on structural informatics. Competitive binding assays and thermodynamic analyses of the best binders show that the binding mode resembles that of the GA module, suggesting that the contacting surface of the GA module is mimicked well on the designed protein. These results indicate that the designed protein may act as an alternative low-risk binding module to HSA. Furthermore, molecular surface grafting in combination with structural informatics is an effective approach for avoiding deleterious mutations on a target protein and for imparting the binding function of one protein onto another.
Assessment of the nickel-albumin binding assay for diagnosis of acute coronary syndrome.
da Silva, Sandra Huber; Pereira, Renata da Silva; Hausen, Bruna dos Santos; Signor, Cristiane; Gomes, Patrícia; de Campos, Marli Matiko Anraku; Moresco, Rafael Noal
2011-03-01
Myocardial ischemia may alter the metal binding capacity of circulating serum albumin. Thus, the aim of this study was to describe an automated method to measure ischemia-induced alterations in the binding capacity of serum albumin for exogenous nickel, and to evaluate the diagnostic characteristics of this assay for the assessment of acute coronary syndrome (ACS) in patients presenting to the emergency room (ER) with acute chest pain. We assessed the concentrations of cardiac troponin I (cTnI), serum albumin, ischemia-modified albumin (IMA) measured by the cobalt-albumin binding assay (CABA), and by an automated nickel-albumin binding assay (NABA) in the following groups: ACS (n=63) and non-ischemic chest pain (NICP, n=26). Biochemical markers were determined in blood samples obtained from patients within 3 h of ER admission. cTnI, CABA and NABA concentrations were higher in ACS group in comparison to the NICP group. A significant correlation between NABA and CABA was observed (r=0.5387, p<0.001). Areas under the curve for CABA and NABA were 0.7289 and 0.7582, respectively. Both CABA and NABA have the ability to discriminate patients with ACS. However, NABA has a slightly higher ability to discriminate ACS compared with CABA. Patients with ACS have reduced nickel binding to human serum albumin, and NABA may have an important role as an early marker of myocardial ischemia, particularly in patients presenting to the ER with acute chest pain.
Krayukhina, Elena; Noda, Masanori; Ishii, Kentaro; Maruno, Takahiro; Wakabayashi, Hirotsugu; Tada, Minoru; Suzuki, Takuo; Ishii-Watabe, Akiko; Kato, Masahiko; Uchiyama, Susumu
2017-01-01
ABSTRACT A number of studies have attempted to elucidate the binding mechanism between tumor necrosis factor (TNF) and clinically relevant antagonists. None of these studies, however, have been conducted as close as possible to physiologic conditions, and so the relationship between the size distribution of TNF-antagonist complexes and the antagonists' biological activity or adverse effects remains elusive. Here, we characterized the binding stoichiometry and sizes of soluble TNF-antagonist complexes for adalimumab, infliximab, and etanercept that were formed in human serum and in phosphate-buffered saline (PBS). Fluorescence-detected sedimentation velocity analytical ultracentrifugation analyses revealed that adalimumab and infliximab formed a range of complexes with TNF, with the major complexes consisting of 3 molcules of the respective antagonist and one or 2 molcules of TNF. Considerably greater amounts of high-molecular-weight complexes were detected for infliximab in human serum. The emergence of peaks with higher sedimentation coefficients than the adalimumab monomer as a function of added human serum albumin (HSA) concentration in PBS suggested weak reversible interactions between HSA and immunoglobulins. Etanerept exclusively formed 1:1 complexes with TNF in PBS, and a small amount of complexes with higher stoichiometry was detected in human serum. Consistent with these biophysical characterizations, a reporter assay showed that adalimumab and infliximab, but not etanercept, exerted FcγRIIa- and FcγRIIIa-mediated cell signaling in the presence of TNF and that infliximab exhibited higher potency than adalimumab. This study shows that assessing distribution profiles in serum will contribute to a more comprehensive understanding of the in vivo behavior of therapeutic proteins. PMID:28387583
Nilsson, O Rickard; Lannergård, Jonas; Morgan, B Paul; Lindahl, Gunnar; Gustafsson, Mattias C U
2013-01-01
Recent studies indicate that defective activity of complement factor H (FH) is associated with several human diseases, suggesting that pure FH may be used for therapy. Here, we describe a simple method to isolate human FH, based on the specific interaction between FH and the hypervariable region (HVR) of certain Streptococcus pyogenes M proteins. Special interest was focused on the FH polymorphism Y402H, which is associated with the common eye disease age-related macular degeneration (AMD) and has also been implicated in the binding to M protein. Using a fusion protein containing two copies of the M5-HVR, we found that the Y402 and H402 variants of FH could be efficiently purified by single-step affinity chromatography from human serum containing the corresponding protein. Different M proteins vary in their binding properties, and the M6 and M5 proteins, but not the M18 protein, showed selective binding of the FH Y402 variant. Accordingly, chromatography on a fusion protein derived from the M6-HVR allowed enrichment of the Y402 protein from serum containing both variants. Thus, the exquisite binding specificity of a bacterial protein can be exploited to develop a simple and robust procedure to purify FH and to enrich for the FH variant that protects against AMD.
Investigation of Non-Covalent Interactions of Aflatoxins (B1, B2, G1, G2, and M1) with Serum Albumin
Poór, Miklós; Bálint, Mónika; Hetényi, Csaba; Gődér, Beatrix; Kunsági-Máté, Sándor; Lemli, Beáta
2017-01-01
Aflatoxins are widely spread mycotoxins produced mainly by Aspergillus species. Consumption of aflatoxin-contaminated foods and drinks causes serious health risks for people worldwide. It is well-known that the reactive epoxide metabolite of aflatoxin B1 (AFB1) forms covalent adducts with serum albumin. However, non-covalent interactions of aflatoxins with human serum albumin (HSA) are poorly characterized. Thus, in this study the complex formation of aflatoxins was examined with HSA applying spectroscopic and molecular modelling studies. Our results demonstrate that aflatoxins form stable complexes with HSA as reflected by binding constants between 2.1 × 104 and 4.5 × 104 dm3/mol. A binding free energy value of −26.90 kJ mol−1 suggests a spontaneous binding process between AFB1 and HSA at room-temperature, while the positive entropy change of 55.1 JK−1 mol−1 indicates a partial decomposition of the solvation shells of the interacting molecules. Modeling studies and investigations with site markers suggest that Sudlow’s Site I of subdomain IIA is the high affinity binding site of aflatoxins on HSA. Interaction of AFB1 with bovine, porcine, and rat serum albumins was also investigated. Similar stabilities of the examined AFB1-albumin complexes were observed suggesting the low species differences of the albumin-binding of aflatoxins. PMID:29068381
Wooster, David G; Maruvada, Ravi; Blom, Anna M; Prasadarao, Nemani V
2006-01-01
Meningitis caused by Escherichia coli K1 is a serious illness in neonates with neurological sequelae in up to 50% of survivors. A high degree of bacteremia is required for E. coli K1 to cross the blood–brain barrier, which suggests that the bacterium must evade the host defence mechanisms and survive in the bloodstream. We previously showed that outer membrane protein A (OmpA) of E. coli binds C4b-binding protein (C4bp), an inhibitor of complement activation via the classical pathway. Nevertheless, the exact mechanism by which E. coli K1 survives in serum remains elusive. Here, we demonstrate that log phase (LP) OmpA+E. coli K1 avoids serum bactericidal activity more effectively than postexponential phase bacteria. OmpA–E. coli cannot survive in serum grown to either phase. The increased serum resistance of LP OmpA+E. coli is the result of increased binding of C4bp, with a concomitant decrease in the deposition of C3b and the downstream complement proteins responsible for the formation of the membrane attack complex. C4bp bound to E. coli K1 acts as a cofactor to factor I in the cleavage of both C3b and C4b, which shuts down the ensuing complement cascade. Accordingly, a peptide corresponding to the complement control protein domain 3 of C4bp sequence, was able to compete with C4bp binding to OmpA and cause increased deposition of C3b. Thus, binding of C4bp appears to be responsible for survival of E. coli K1 in human serum. PMID:16556262
James, Joel; Shihabudeen, Mohamed Sham; Kulshrestha, Shweta; Goel, Varun; Thirumurugan, Kavitha
2015-01-01
Endoplasmic reticulum stress elicits unfolded protein response to counteract the accumulating unfolded protein load inside a cell. The chemical chaperone, 4-Phenylbutyric acid (4-PBA) is a FDA approved drug that alleviates endoplasmic reticulum stress by assisting protein folding. It is found efficacious to augment pathological conditions like type 2 diabetes, obesity and neurodegeneration. This study explores the binding nature of 4-PBA with human serum albumin (HSA) through spectroscopic and molecular dynamics approaches, and the results show that 4-PBA has high binding specificity to Sudlow Site II (Fatty acid binding site 3, subdomain IIIA). Ligand displacement studies, RMSD stabilization profiles and MM-PBSA binding free energy calculation confirm the same. The binding constant as calculated from fluorescence spectroscopic studies was found to be kPBA = 2.69 x 105 M-1. Like long chain fatty acids, 4-PBA induces conformational changes on HSA as shown by circular dichroism, and it elicits stable binding at Sudlow Site II (fatty acid binding site 3) by forming strong hydrogen bonding and a salt bridge between domain II and III of HSA. This minimizes the fluctuation of HSA backbone as shown by limited conformational space occupancy in the principal component analysis. The overall hydrophobicity of W214 pocket (located at subdomain IIA), increases upon occupancy of 4-PBA at any FA site. Descriptors of this pocket formed by residues from other subdomains largely play a role in compensating the dynamic movement of W214. PMID:26181488
NASA Astrophysics Data System (ADS)
Maiti, Jyotirmay; Biswas, Suman; Chaudhuri, Ankur; Chakraborty, Sandipan; Chakraborty, Sibani; Das, Ranjan
2017-03-01
An environment sensitive fluorophore, 4-(5-(4-(dimethylamino)phenyl)oxazol-2-yl)benzoic acid (DMOBA), that closely mimics biologically active 2,5-disubstituited oxazoles has been designed to probe two homologous serum proteins, human serum albumin (HSA) and bovine serum albumin (BSA) by means of photophysical and molecular modeling studies. This fluorescent analogue exhibits solvent polarity sensitive fluorescence due to an intramolecular charge transfer in the excited state. In comparison to water, the steady state emission spectra of DMOBA in BSA is characterized by a greater blue shift ( 10 nm) and smaller Stokes' shift ( 5980 cm- 1) in BSA than HSA (Stokes'shift 6600 cm- 1), indicating less polar and more hydrophobic environment of the dye in the former than the latter. The dye-protein binding interactions are remarkably stronger for BSA than HSA which is evident from higher value of the association constant for the DMOBA-BSA complex (Ka 5.2 × 106 M- 1) than the DMOBA-HSA complex (Ka 1.0 × 106 M- 1). Fӧrster resonance energy transfer studies revealed remarkably less efficient energy transfer (8%) between the donor tryptophans in BSA and the acceptor DMOBA dye than that (30%) between the single tryptophan moiety in HSA and the dye, which is consistent with a much larger distance between the donor (tryptophan)-acceptor (dye) pair in BSA (34.5 Å) than HSA (25.4 Å). Site specific competitive binding assays have confirmed on the location of the dye in Sudlow's site II of BSA and in Sudlow's site I of HSA, respectively. Molecular modeling studies have shown that the fluorescent analogue is tightly packed in the binding site of BSA due to strong steric complementarity, where, binding of DMOBA to BSA is primarily dictated by the van der Waals and hydrogen bonding interactions. In contrast, in HSA the steric complementarity is less significant and binding is primarily guided by polar interactions and van der Waals interactions appear to be less significant in the formation of the HSA-DMOBA complex. Electrostatic interactions contribute significantly in the binding of DMOBA to HSA (- 2.09 kcal/mol) compared to BSA (- 0.47 kcal/mol). Electrostatic surface potential calculation reveals that the DMOBA binding site within HSA is highly charged compared to BSA.
Spectroscopic studies on the interaction of a water-soluble cationic porphyrin with proteins
NASA Astrophysics Data System (ADS)
Ma, Hong-Min; Chen, Xin; Zhang, Nuo; Han, Yan-Yan; Wu, Dan; Du, Bin; Wei, Qin
2009-04-01
The interaction of a water-soluble cationic porphyrin, meso-tetrakis (4- N, N, N-trimethylanilinium) porphyrin (TMAP), with two proteins, bovine serum albumin (BSA) and human serum albumin (HSA), was studied by UV-vis absorption spectroscopy, fluorescence spectroscopy, fluorescence anisotropy and synchronous fluorescence spectroscopy at neutral aqueous solutions. Free base TMAP bound to proteins as monomers and no aggregation was observed. The binding of TMAP quenched the fluorescence of the protein. On the contrary, the fluorescence of TMAP was enhanced and the fluorescence anisotropy increased due to the binding. The direct static binding mechanism could account for the quenching by TMAP and the binding constants were calculated. TMAP showed a higher quenching efficiency and binding constant of HSA than BSA. The binding of TMAP had no obvious effect on the molecular conformation of the protein. There was only one binding site for TMAP and it was located on the surface of the protein molecule. Electrostatic force played an important role in the binding due to the opposite charges on porphyrin and the proteins.
Spectroscopic studies on the interaction of a water-soluble cationic porphyrin with proteins.
Ma, Hong-Min; Chen, Xin; Zhang, Nuo; Han, Yan-Yan; Wu, Dan; Du, Bin; Wei, Qin
2009-04-01
The interaction of a water-soluble cationic porphyrin, meso-tetrakis (4-N,N,N-trimethylanilinium) porphyrin (TMAP), with two proteins, bovine serum albumin (BSA) and human serum albumin (HSA), was studied by UV-vis absorption spectroscopy, fluorescence spectroscopy, fluorescence anisotropy and synchronous fluorescence spectroscopy at neutral aqueous solutions. Free base TMAP bound to proteins as monomers and no aggregation was observed. The binding of TMAP quenched the fluorescence of the protein. On the contrary, the fluorescence of TMAP was enhanced and the fluorescence anisotropy increased due to the binding. The direct static binding mechanism could account for the quenching by TMAP and the binding constants were calculated. TMAP showed a higher quenching efficiency and binding constant of HSA than BSA. The binding of TMAP had no obvious effect on the molecular conformation of the protein. There was only one binding site for TMAP and it was located on the surface of the protein molecule. Electrostatic force played an important role in the binding due to the opposite charges on porphyrin and the proteins.
The Action of Red Cell Calcium Ions on Human Erythrophagocytosis in Vitro
Romero, Pedro J.; Hernández-Chinea, Concepción
2017-01-01
In the present work we have studied in vitro the effect of increasing red cell Ca2+ ions on human erythrophagocytosis by peripheral monocyte-derived autologous macrophages. In addition, the relative contribution to phagocytosis of phosphatidylserine exposure, autologous IgG binding, complement deposition and Gárdos channel activity was also investigated. Monocytes were obtained after ficoll-hypaque fractionation and induced to transform by adherence to glass coverslips, for 24 h at 37°C in a RPMI medium, containing 10% fetal calf serum. Red blood cells (RBC) were loaded with Ca2+ using 10 μM A23187 and 1 mM Ca-EGTA buffers, in the absence of Mg2+. Ca2+-loaded cells were transferred to above coverslips and incubated for 2 h at 37°C under various experimental conditions, after which phagocytosis was assessed by light microscopy. Confirming earlier findings, phagocytosis depended on internal Ca2+. Accordingly; it was linearly raised from about 2–15% by increasing the free Ca2+ content of the loading solution from 0.5 to 20 μM, respectively. Such a linear increase was virtually doubled by the presence of 40% autologous serum. At 7 μM Ca2+, the phagocytosis degree attained with serum was practically equal to that obtained with either 2 mg/ml affinity-purified IgG or 40% IgG-depleted serum. However, phagocytosis was reduced to levels found with Ca2+ alone when IgG-depleted serum was inactivated by heat, implying an involvement of complement. On the other hand, phagocytosis in the absence of serum was markedly reduced by preincubating macrophages with phosphatidylserine-containing liposomes. In contrast, a similar incubation in the presence of serum affected it partially whereas employing liposomes made only of phosphatidylcholine essentially had no effect. Significantly, the Gárdos channel inhibitors clotrimazole (2 μM) and TRAM-34 (100 nM) fully blocked serum-dependent phagocytosis. These findings show that a raised internal Ca2+ promotes erythrophagocytosis by independently triggering phosphatidylserine externalization, complement deposition and IgG binding. Serum appeared to stimulate phagocytosis in a way dependent on Gárdos activity. It seems likely that Ca2+ promoted IgG-binding to erythrocytes via Gárdos channel activation. This can be an important signal for clearance of senescent human erythrocytes under physiological conditions. PMID:29255426
The Action of Red Cell Calcium Ions on Human Erythrophagocytosis in Vitro.
Romero, Pedro J; Hernández-Chinea, Concepción
2017-01-01
In the present work we have studied in vitro the effect of increasing red cell Ca 2+ ions on human erythrophagocytosis by peripheral monocyte-derived autologous macrophages. In addition, the relative contribution to phagocytosis of phosphatidylserine exposure, autologous IgG binding, complement deposition and Gárdos channel activity was also investigated. Monocytes were obtained after ficoll-hypaque fractionation and induced to transform by adherence to glass coverslips, for 24 h at 37°C in a RPMI medium, containing 10% fetal calf serum. Red blood cells (RBC) were loaded with Ca 2+ using 10 μM A23187 and 1 mM Ca-EGTA buffers, in the absence of Mg 2+ . Ca 2+ -loaded cells were transferred to above coverslips and incubated for 2 h at 37°C under various experimental conditions, after which phagocytosis was assessed by light microscopy. Confirming earlier findings, phagocytosis depended on internal Ca 2+ . Accordingly; it was linearly raised from about 2-15% by increasing the free Ca 2+ content of the loading solution from 0.5 to 20 μM, respectively. Such a linear increase was virtually doubled by the presence of 40% autologous serum. At 7 μM Ca 2+ , the phagocytosis degree attained with serum was practically equal to that obtained with either 2 mg/ml affinity-purified IgG or 40% IgG-depleted serum. However, phagocytosis was reduced to levels found with Ca 2+ alone when IgG-depleted serum was inactivated by heat, implying an involvement of complement. On the other hand, phagocytosis in the absence of serum was markedly reduced by preincubating macrophages with phosphatidylserine-containing liposomes. In contrast, a similar incubation in the presence of serum affected it partially whereas employing liposomes made only of phosphatidylcholine essentially had no effect. Significantly, the Gárdos channel inhibitors clotrimazole (2 μM) and TRAM-34 (100 nM) fully blocked serum-dependent phagocytosis. These findings show that a raised internal Ca 2+ promotes erythrophagocytosis by independently triggering phosphatidylserine externalization, complement deposition and IgG binding. Serum appeared to stimulate phagocytosis in a way dependent on Gárdos activity. It seems likely that Ca 2+ promoted IgG-binding to erythrocytes via Gárdos channel activation. This can be an important signal for clearance of senescent human erythrocytes under physiological conditions.
Lignell, Anders; Löwdin, Elisabeth; Cars, Otto; Chryssanthou, Erja; Sjölin, Jan
2011-01-01
It is generally accepted that only the unbound fraction of a drug is pharmacologically active. Posaconazole is an antifungal agent with a protein binding of 98 to 99%. Taking into account the degree of protein binding, plasma levels in patients, and MIC levels of susceptible strains, it can be assumed that the free concentration of posaconazole sometimes will be too low to exert the expected antifungal effect. The aim was therefore to test the activity of posaconazole in serum in comparison with that of the calculated unbound concentrations in protein-free media. Significant differences (P < 0.05) from the serum control were found at serum concentrations of posaconazole of 1.0 and 0.10 mg/liter, with calculated free concentrations corresponding to 1× MIC and 0.1× MIC, respectively, against one Candida lusitaniae strain selected for proof of principle. In RPMI 1640, the corresponding calculated unbound concentration of 0.015 mg/liter resulted in a significant effect, whereas that of 0.0015 mg/liter did not. Also, against seven additional Candida strains tested, there was an effect of the low posaconazole concentration in serum, in contrast to the results in RPMI 1640. Fluconazole, a low-grade-protein-bound antifungal, was used for comparison at corresponding concentrations in serum and RPMI 1640. No effect was observed at the serum concentration, resulting in a calculated unbound concentration of 0.1× MIC. In summary, there was a substantially greater pharmacodynamic effect of posaconazole in human serum than could be predicted by the non-protein-bound serum concentration. A flux from serum protein-bound to fungal lanosterol 14α-demethylase-bound posaconazole is suggested. PMID:21502622
Kundu, Pronab; Chattopadhyay, Nitin
2018-06-15
Molecular interactions and binding of probes/drugs with biomacromolecular systems are of fundamental importance in understanding the mechanism of action and hence designing of proactive drugs. In the present study, binding interactions of a biologically potent fluorophore, (E)-1,5-diphenyl-3-styryl-4,5-dihydro-1H-pyrazole (DSDP) with two serum transport proteins, human serum albumin and bovine serum albumin, have been investigated exploiting multi-spectroscopic techniques. The spectrophotometric and fluorometric studies together with fluorescence quenching, fluorescence anisotropy, urea induced denaturation studies and fluorescence lifetime measurements reveal strong binding of DSDP with both the plasma proteins. Going beyond the vast literature data mostly providing 1:1 probe-protein complexation, the present investigation portrays 2:1 probe-protein complex formation at higher relative probe concentration. A newer approach has been developed to have an estimate of the binding constants varying the concentration of the protein, instead of the usual practice of varying the probe. The binding constants for the 2:1 DSDP-protein complexes are determined to be 1.37 × 10 10 M -2 and 1.47 × 10 10 M -2 for HSA and BSA respectively, while those for the 1:1 complexation process come out to be 1.85 × 10 5 M -1 and 1.73 × 10 5 M -1 for DSDP-HSA and DSDP-BSA systems respectively. Thermodynamic analysis at different temperatures implies that the forces primarily involved in the binding process are hydrogen bonding and hydrophobic interactions. Competitive replacement studies with known site markers and molecular docking simulations direct to the possible locations and binding energies of DSDP with the two serum proteins, corroborating well with the experimental results. Copyright © 2018 Elsevier B.V. All rights reserved.
Hahn-Zoric, M; Carlsson, B; Jeansson, S; Ekre, H P; Osterhaus, A D; Roberton, D; Hanson, L A
1993-05-01
Our previous studies have suggested that fetal antibody production can be induced by maternal antiidiotypic antibodies transferred to the fetus via the placenta. We tested commercial Ig, sera, and milk for the presence of anti-idiotypic antibodies to poliovirus type 1, using affinity chromatography combined with ELISA systems and virus neutralization techniques. Our results indicate that commercial Ig, serum, and milk samples contain antibodies recognizing idiotypic determinants on antibodies to poliovirus. Several lines of evidence support this conclusion. Thus, in an ELISA with poliovirus as a solid phase, binding of specific antibodies could be inhibited by addition of an eluate from the Ig preparation containing anti-idiotypic antibodies against poliovirus type 1. Also, antiidiotypic antibodies from pooled human Ig, serum, and colostrum samples against poliovirus bound directly to solid-phase-attached MAb against poliovirus type 1. In addition, in a competitive inhibition ELISA, where antiidiotypic antibodies isolated from the Ig preparation competed with the poliovirus antigen for binding to monoclonal or polyclonal idiotypic antibodies on the solid phase, inhibition of antigen binding was seen at low antigen concentrations. When single-donor serum or milk was used, this inhibition was even more pronounced and could be demonstrated at almost all antigen concentrations. The finding that anti-idiotypes are present in maternal serum and milk imply, in agreement with our previous studies, that anti-idiotypes may actively induce a specific immune response in the fetus without previous exposure to the antigen by being transferred across the placenta or by being passively transferred to the newborn via mother's milk.
NASA Astrophysics Data System (ADS)
Liu, Bing-Mi; Zhang, Jun; Hao, Ai-Jun; Xu, Liang; Wang, Dan; Ji, Hui; Sun, Shi-Jie; Chen, Bo-Qi; Liu, Bin
2016-02-01
The impacts of rutin and baicalin on the interaction of curcumin (CU) with human serum albumin (HSA) were investigated by fluorescence and circular dichroism (CD) spectroscopies under imitated physiological conditions. The results showed that the fluorescence quenching of HSA by CU was a simultaneous static and dynamic quenching process, irrespective of the presence or absence of flavonoids. The binding constants between CU and HSA in the absence and presence of rutin and baicalin were 2.268 × 105 M- 1, 3.062 × 105 M- 1, and 3.271 × 105 M- 1, indicating that the binding affinity was increased in the case of two flavonoids. Furthermore, the binding distance determined according to Förster's theory was decreased in the presence of flavonoids. Combined with the fact that flavonoids and CU have the same binding site (site I), it can be concluded that they may simultaneously bind in different regions in site I, and formed a ternary complex of flavonoid-HSA-CU. Meanwhile, the results of fluorescence quenching, CD and three-dimensional fluorescence spectra revealed that flavonoids further strengthened the microenvironmental and conformational changes of HSA induced by CU binding. Therefore, it is possible to develop a novel complex involving CU, flavonoid and HSA for CU delivery. The work may provide some valuable information in terms of improving the poor bioavailabiliy of CU.
Photo-isomerization and oxidation of bilirubin in mammals is dependent on albumin binding.
Goncharova, Iryna; Jašprová, Jana; Vítek, Libor; Urbanová, Marie
2015-12-01
The bilirubin (BR) photo-conversion in the human body is a protein-dependent process; an effective photo-isomerization of the potentially neurotoxic Z,Z-BR as well as its oxidation to biliverdin in the antioxidant redox cycle is possible only when BR is bound on serum albumin. We present a novel analytical concept in the study of linear tetrapyrroles metabolic processes based on an in-depth mapping of binding sites in the structure of human serum albumin (HSA). A combination of fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular modeling methods was used for recognition of the binding site for BR, its derivatives (mesobilirubin and bilirubin ditaurate), and the products of the photo-isomerization and oxidation (lumirubin, biliverdin, and xanthobilirubic acid) on HSA. The CD spectra and fluorescent quenching of the Trp-HSA were used to calculate the binding constants. The results of the CD displacement experiments performed with hemin were interpreted together with the findings of molecular docking performed on the pigment-HSA complexes. We estimated that Z,Z-BR and its metabolic products bind on two independent binding sites. Our findings support the existence of a reversible antioxidant redox cycle for BR and explain an additional pathway of the photo-isomerization process (increase of HSA binding capacity; the excess free [unbound] BR can be converted and also bound to HSA). Copyright © 2015 Elsevier Inc. All rights reserved.
The effect of Berberine on the secondary structure of human serum albumin
NASA Astrophysics Data System (ADS)
Li, Ying; He, WenYing; Tian, Jianniao; Tang, Jianghong; Hu, Zhide; Chen, Xingguo
2005-05-01
The presence of several high affinity binding sites on human serum albumin (HSA) makes it a possible target for many drugs. This study is designed to examine the effect of Berberine (an ancient Chinese drug used for antimicrobial, antiplasmodial, antidiarrheal and cardiovascular) on the solution structure of HSA using fluorescence, Fourier transform infrared (FT-IR), circular dichroism (CD) spectroscopic methods. The fluorescence spectroscopic results show that the fluorescence intensity of HSA was significantly decreased in the presence of Berberine. The Scatchard's plots indicated that the binding of Berberine to HSA at 296, 303, 318 K is characterized by one binding site with the binding constant is 4.071(±0.128)×10 4, 3.741(±0.089)×10 4, 3.454(±0.110)×10 4 M -1, respectively. The protein conformation is altered (FT-IR and CD data) with reductions of α-helices from 54 to 47% for free HSA to 45-32% and with increases of turn structure5% for free HSA to 18% in the presence of Berberine. The binding process was exothermic, enthalpy driven and spontaneous, as indicated by the thermodynamic analyses, Berberine bound to HSA was mainly based on hydrophobic interaction and electrostatic interaction cannot be excluded from the binding. Furthermore, the displace experiments indicate that Berberine can bind to the subdomain IIA, that is, high affinity site (site II).
Crystals of Serum Albumin for Use in Genetic Engineering and Rational Drug Design
NASA Technical Reports Server (NTRS)
Carter, Daniel C. (Inventor)
1996-01-01
Serum albumin crystal forms have been produced which exhibit superior x-ray diffraction quality. The crystals are produced from both recombinant and wild-type human serum albumin, canine, and baboon serum albumin and allow the performance of drug-binding studies as well as genetic engineering studies. The crystals are grown from solutions of polyethylene glycol or ammonium sulphate within prescribed limits during growth times from one to several weeks and include the following space groups: P2(sub 1), C2, P1.
Ma, Xiangling; Wang, Qing; Wang, Lili; Huang, Yanmei; Liao, Xiaoxiang; Li, Hui
2016-06-01
The interaction of norgestrel with human serum albumin (HSA) was investigated by spectroscopy and molecular-docking methods. Results of spectroscopy methods suggested that the quenching mechanism of norgestrel on HSA was static quenching and that the quenching process was spontaneous. Negative values of thermodynamic parameters (ΔG, ΔH, and ΔS) indicated that hydrogen bonding and van der Waals forces dominated the binding between norgestrel and HSA. Three-dimensional fluorescence spectrum and circular dichroism spectrum showed that the HSA structure was slightly changed by norgestrel. Norgestrel mainly bound with Sudlow site I based on a probe study, as confirmed by molecular-docking results. Competition among similar structures indicated that ethisterone and norethisterone affected the binding of norgestrel with HSA. CH3 in R1 had little effect on norgestrel binding with HSA. The surface hydrophobicity properties of HSA, investigated using 8-anilino-1-naphthalenesulfonic acid, was changed with norgestrel addition. © 2016 Wiley Periodicals, Inc.
Insights into in vitro binding of parecoxib to human serum albumin by spectroscopic methods.
Shang, Shujun; Liu, Qingling; Gao, Jiandong; Zhu, Yulin; Liu, Jingying; Wang, Kaiyan; Shao, Wei; Zhang, Shudong
2014-10-01
Herein, we report the effect of parecoxib on the structure and function of human serum albumin (HSA) by using fluorescence, circular dichroism (CD), Fourier transforms infrared (FTIR), three-dimensional (3D) fluorescence spectroscopy, and molecular docking techniques. The Stern-Volmer quenching constants K(SV) and the corresponding thermodynamic parameters ΔH, ΔG, and ΔS have been estimated by the fluorescence quenching method. The results indicated that parecoxib binds spontaneously with HSA through van der Waals forces and hydrogen bonds with binding constant of 3.45 × 10(4) M(-1) at 298 K. It can be seen from far-UV CD spectra that the α-helical network of HSA is disrupted and its content decreases from 60.5% to 49.6% at drug:protein = 10:1. Protein tertiary structural alterations induced by parecoxib were also confirmed by FTIR and 3D fluorescence spectroscopy. The molecular docking study indicated that parecoxib is embedded into the hydrophobic pocket of HSA. © 2014 Wiley Periodicals, Inc.
Cooperative binding of drugs on human serum albumin
NASA Astrophysics Data System (ADS)
Varela, L. M.; Pérez-Rodríguez, M.; García, M.
In order to explain the adsorption isotherms of the amphiphilic penicillins nafcillin and cloxacillin onto human serum albumin (HSA), a cooperative multilayer adsorption model is introduced, combining the Brunauer-Emmet-Teller (BET) adsorption isotherm with an amphiphilic ionic adsorbate, whose chemical potential is derived from Guggenheim's theory. The non-cooperative model has been previously proved to qualitatively predict the measured adsorption maxima of these drugs [Varela, L. M., García, M., Pérez-Rodríguez, M., Taboada, P., Ruso, J. M., and Mosquera, V., 2001, J. chem. Phys., 114, 7682]. The surface interactions among adsorbed drug molecules are modelled in a mean-field fashion, so the chemical potential of the adsorbate is assumed to include a term proportional to the surface coverage, the constant of proportionality being the lateral interaction energy between bound molecules. The interaction energies obtained from the empirical binding isotherms are of the order of tenths of the thermal energy, therefore suggesting the principal role of van der Waals forces in the binding process.
Wang, Ruhung; Lee, Michael; Kinghorn, Karina; Hughes, Tyler; Chuckaree, Ishwar; Lohray, Rishabh; Chow, Erik; Pantano, Paul; Draper, Rockford
2018-05-26
To understand the influence of carboxylation on the interaction of carbon nanotubes with cells, the amount of pristine multi-walled carbon nanotubes (P-MWNTs) or carboxylated multi-walled carbon nanotubes (C-MWNTs) coated with Pluronic ® F-108 that were accumulated by macrophages was measured by quantifying CNTs extracted from cells. Mouse RAW 264.7 macrophages and differentiated human THP-1 (dTHP-1) macrophages accumulated 80-100 times more C-MWNTs than P-MWNTs during a 24-h exposure at 37 °C. The accumulation of C-MWNTs by RAW 264.7 cells was not lethal; however, phagocytosis was impaired as subsequent uptake of polystyrene beads was reduced after a 20-h exposure to C-MWNTs. The selective accumulation of C-MWNTs suggested that there might be receptors on macrophages that bind C-MWNTs. The binding of C-MWNTs to macrophages was measured as a function of concentration at 4 °C in the absence of serum to minimize the potential interference by serum proteins or temperature-dependent uptake processes. The result was that the cells bound 8.7 times more C-MWNTs than P-MWNTs, consistent with the selective accumulation of C-MWNTs at 37 °C. In addition, serum strongly antagonized the binding of C-MWTS to macrophages, suggesting that serum contained inhibitors of binding. Moreover, inhibitors of class A scavenger receptor (SR-As) reduced the binding of C-MWNTs by about 50%, suggesting that SR-As contribute to the binding and endocytosis of C-MWNTs in macrophages but that other receptors may also be involved. Altogether, the evidence supports the hypothesis that macrophages contain binding sites selective for C-MWNTs that facilitate the high accumulation of C-MWNTs compared to P-MWNTs.
Honda, Tomohiro; Kaneno-Urasaki, Yoko; Ito, Takashi; Kimura, Takako; Matsushima, Nobuko; Okabe, Hiromi; Yamasaki, Atsushi; Izumi, Takashi
2014-03-01
(2R,3R,4R)-4-hydroxy-2-(hydroxymethyl)pyrrolidin-3-yl 4-O-(6-deoxy-β-D-glucopyranosyl)-α-D-glucopyranoside (CS-1036), which is an α-amylase inhibitor, exhibited biphasic and sustained elimination with a long t1/2 (18.4-30.0 hours) in rats and monkeys, but exhibited a short t1/2 (3.7-7.9 hours) in humans. To clarify the species differences in the t1/2, the plasma protein binding of CS-1036 was evaluated by ultrafiltration. A concentration-dependent and saturable plasma protein binding of CS-1036 was observed in rats and monkeys with the dissociation rate constant (KD) of 8.95 and 27.2 nM, and maximal binding capacity (Bmax) of 52.8 and 22.1 nM, respectively. By the assessments of the recombinant amylase and immunoprecipitation, the major binding protein of CS-1036 in rats was identified as salivary amylase (KD 5.64 nM). CS-1036 also showed concentration-dependent and saturable binding to human salivary and pancreatic amylase, with similar binding affinity in rats. However, the protein binding of CS-1036 was constant in human plasma (≤10.2%) due to the lower serum amylase level compared with rats and monkeys. From the calculation of the unbound fraction (fu) in plasma based on in vitro KD and Bmax, the dose-dependent increase in fu after oral administration is speculated to lead to a dose-dependent increase in total body clearance and a high area under the curve/dose at lower doses, such as 0.3 mg/kg in rats.
Kangaroo IGF-II is structurally and functionally similar to the human [Ser29]-IGF-II variant.
Yandell, C A; Francis, G L; Wheldrake, J F; Upton, Z
1999-06-01
Kangaroo IGF-II has been purified from western grey kangaroo (Macropus fuliginosus) serum and characterised in a number of in vitro assays. In addition, the complete cDNA sequence of mature IGF-II has been obtained by reverse-transcription polymerase chain reaction. Comparison of the kangaroo IGF-II cDNA sequence with known IGF-II sequences from other species revealed that it is very similar to the human variant, [Ser29]-hIGF-II. Both the variant and kangaroo IGF-II contain an insert of nine nucleotides that encode the amino acids Leu-Pro-Gly at the junction of the B and C domains of the mature protein. The deduced kangaroo IGF-II protein sequence also contains three other amino acid changes that are not observed in human IGF-II. These amino acid differences share similarities with the changes described in many of the IGF-IIs reported for non-mammalian species. Characterisation of human IGF-II, kangaroo IGF-II, chicken IGF-II and [Ser29]-hIGF-II in a number of in vitro assays revealed that all four proteins are functionally very similar. No significant differences were observed in the ability of the IGF-IIs to bind to the bovine IGF-II/cation-independent mannose 6-phosphate receptor or to stimulate protein synthesis in rat L6 myoblasts. However, differences were observed in their abilities to bind to IGF-binding proteins (IGFBPs) present in human serum. Kangaroo, chicken and [Ser29]-hIGF-II had lower apparent affinities for human IGFBPs than did human IGF-II. Thus, it appears that the major circulating form of IGF-II in the kangaroo and a minor form of IGF-II found in human serum are structurally and functionally very similar. This suggests that the splice site that generates both the variant and major form of human IGF-II must have evolved after the divergence of marsupials from placental mammals.
Basu, Anirban; Kumar, Gopinatha Suresh
2014-05-30
The interaction of the synthetic azo dye and food colorant carmoisine with human and bovine serum albumins was studied by microcalorimetric techniques. A complete thermodynamic profile of the interaction was obtained from isothermal titration calorimetry studies. The equilibrium constant of the complexation process was of the order of 10(6)M(-1) and the binding stoichiometry was found to be 1:1 with both the serum albumins. The binding was driven by negative standard molar enthalpy and positive standard molar entropy contributions. The binding affinity was lower at higher salt concentrations in both cases but the same was dominated by mostly non-electrostatic forces at all salt concentrations. The polyelectrolytic forces contributed only 5-8% of the total standard molar Gibbs energy change. The standard molar enthalpy change enhanced whereas the standard molar entropic contribution decreased with rise in temperature but they compensated each other to keep the standard molar Gibbs energy change almost invariant. The negative standard molar heat capacity values suggested the involvement of a significant hydrophobic contribution in the complexation process. Besides, enthalpy-entropy compensation phenomenon was also observed in both the systems. The thermal stability of the serum proteins was found to be remarkably enhanced on binding to carmoisine. Copyright © 2014 Elsevier B.V. All rights reserved.
Lopez-Gordo, Estrella; Doszpoly, Andor; Duffy, Margaret R.; Coughlan, Lynda; Bradshaw, Angela C.; White, Katie M.; Denby, Laura; Nicklin, Stuart A.
2017-01-01
ABSTRACT Human adenoviral serotype 5 (HAdV-5) vectors have predominantly hepatic tropism when delivered intravascularly, resulting in immune activation and toxicity. Coagulation factor X (FX) binding to HAdV-5 mediates liver transduction and provides protection from virion neutralization in mice. FX is dispensable for liver transduction in mice lacking IgM antibodies or complement, suggesting that alternative transduction pathways exist. To identify novel factor(s) mediating HAdV-5 FX-independent entry, we investigated HAdV-5 transduction in vitro in the presence of serum from immunocompetent C57BL/6 or immunocompromised mice lacking IgM antibodies (Rag 2−/− and NOD-scid-gamma [NSG]). Sera from all three mouse strains enhanced HAdV-5 transduction of A549 cells. While inhibition of HAdV-5–FX interaction with FX-binding protein (X-bp) inhibited transduction in the presence of C57BL/6 serum, it had negligible effect on the enhanced transduction observed in the presence of Rag 2−/− or NSG serum. Rag 2−/− serum also enhanced transduction of the FX binding-deficient HAdV-5HVR5*HVR7*E451Q (AdT*). Interestingly, Rag 2−/− serum enhanced HAdV-5 transduction in a FX-independent manner in CHO-CAR and SKOV3-CAR cells (CHO or SKOV3 cells transfected to stably express human coxsackievirus and adenovirus receptor [CAR]). Additionally, blockade of CAR with soluble HAdV-5 fiber knob inhibited mouse serum-enhanced transduction in A549 cells, suggesting a potential role for CAR. Transduction of HAdV-5 KO1 and HAdV-5/F35 (CAR binding deficient) in the presence of Rag 2−/− serum was equivalent to that of HAdV-5, indicating that direct interaction between HAdV-5 and CAR is not required. These data suggest that FX may protect HAdV-5 from neutralization but has minimal contribution to HAdV-5 transduction in the presence of immunocompromised mouse serum. Alternatively, transduction occurs via an unidentified mouse serum protein capable of bridging HAdV-5 to CAR. IMPORTANCE The intravascular administration of HAdV-5 vectors can result in acute liver toxicity, transaminitis, thrombocytopenia, and injury to the vascular endothelium, illustrating challenges yet to overcome for HAdV-5-mediated systemic gene therapy. The finding that CAR and potentially an unidentified factor present in mouse serum might be important mediators of HAdV-5 transduction highlights that a better understanding of the complex biology defining the interplay between adenovirus immune recognition and cellular uptake mechanisms is still required. These findings are important to inform future optimization and development of HAdV-5-based adenoviral vectors for gene therapy. PMID:28381574
Nilvebrant, Johan; Åstrand, Mikael; Georgieva-Kotseva, Maria; Björnmalm, Mattias; Löfblom, John; Hober, Sophia
2014-01-01
The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein. PMID:25089830
Sekula, Bartosz; Ciesielska, Anna; Rytczak, Przemyslaw; Koziołkiewicz, Maria; Bujacz, Anna
2016-01-01
Cyclic phosphatidic acids (cPAs) are naturally occurring, very active signalling molecules, which are involved in several pathological states, such as cancer, diabetes or obesity. As molecules of highly lipidic character found in the circulatory system, cPAs are bound and transported by the main extracellular lipid binding protein–serum albumin. Here, we present the detailed interactions between human serum albumin (HSA) and equine serum albumin (ESA) with a derivative of cPA, 1-O-myristoyl-sn-glycerol-2,3-cyclic phosphorodithioate (Myr-2S-cPA). Initial selection of the ligand used for the structural study was made by the analysis of the therapeutically promising properties of the sulfur containing analogues of cPA in respect to the unmodified lysophospholipids (LPLs). Substitution of one or two non-bridging oxygen atoms in the phosphate group with one or two sulfur atoms increases the cytotoxic effect of cPAs up to 60% on the human prostate cancer (PC) cells. Myr-2S-cPA reduces cancer cell viability in a dose-dependent manner, with IC50 value of 29.0 μM after 24 h incubation, which is almost 30% lower than IC50 of single substituted phosphorothioate cPA. Although, the structural homology between HSA and ESA is big, their crystal complexes with Myr-2S-cPA demonstrate significantly different mode of binding of this LPL analogue. HSA binds three molecules of Myr-2S-cPA, whereas ESA only one. Moreover, none of the identified Myr-2S-cPA binding sites overlap in both albumins. PMID:27129297
Cursino, Sylvia Regina Temer; da Costa, Thaís Boccia; Yamamoto, Joyce Hisae; Meireles, Luciana Regina; Silva, Maria Antonieta Longo Galvão; de Andrade Junior, Heitor Franco
2010-01-01
PURPOSE: To search for anti-retina antibodies that serve as markers for eye disease in uveitis. MATERIALS AND METHODS: Stored sera from patients with uveitis, ocular toxoplasmosis (n = 30) and non-infectious, immune-mediated uveitis (n = 50) and from asymptomatic individuals who were positive (n = 250) and negative (n = 250) for anti-Toxoplasma antibodies were tested. Serum anti-retina IgG was detected by an optimized ELISA using a solid-phase whole human retina extract, bovine S-antigen or interphotoreceptor retinoid-binding protein. RESULTS: Uveitis patients showed a higher mean reactivity to whole human retina extract, interphotoreceptor retinoid-binding protein and S-antigen in comparison to the asymptomatic population. These findings were independent of the uveitis origin and allowed the determination of the lower anti-retina antibody cut-off for the three antigens. Asymptomatic anti-Toxoplasma serum-positive individuals showed a higher frequency of anti-human whole retina extract antibodies in comparison to asymptomatic anti-Toxoplasma serum-negative patients. The bovine S-antigen and interphotoreceptor retinoid-binding protein ELISAs also showed a higher mean reactivity in the uveitis groups compared to the asymptomatic group, but the observed reactivities were lower and overlapped without discrimination. CONCLUSION: We detected higher levels of anti-retina antibodies in uveitis patients and in a small fraction of asymptomatic patients with chronic toxoplasmosis. The presence of anti-retina antibodies in sera might be a marker of eye disease in asymptomatic patients, especially when whole human retina extract is used in a solid-phase ELISA. PMID:21120306
Visentin, Jonathan; Couzi, Lionel; Dromer, Claire; Neau-Cransac, Martine; Guidicelli, Gwendaline; Veniard, Vincent; Coniat, Karine Nubret-le; Merville, Pierre; Di Primo, Carmelo; Taupin, Jean-Luc
2018-06-07
Human leukocyte antigen (HLA) donor-specific antibodies are key serum biomarkers for assessing the outcome of transplanted patients. Measuring their active concentration, i.e. the fraction that really interacts with donor HLA, and their affinity could help deciphering their pathogenicity. Surface plasmon resonance (SPR) is recognized as the gold-standard for measuring binding kinetics but also active concentrations, without calibration curves. SPR-based biosensors often suffer from non-specific binding (NSB) occurring with the sensor chip surface and the immobilized targets, especially for complex media such as human serum. In this work we show that several serum treatments such as dialysis or IgG purification reduce NSB but insufficiently for SPR applications. We then demonstrate that the NSB contribution to the SPR signal can be eliminated to determine precisely and reliably the active concentration and the affinity of anti-HLA antibodies from patients' sera. This was achieved even at concentrations close to the limit of quantification of the method, in the 0.5-1 nM range. The robustness of the assay was demonstrated by using a wide range of artificially generated NSB and by varying the density of the targets captured onto the surface. The assay is of general interest and can be used with molecules generating strong NSB, as far as a non-cognate target structurally close to the target can be captured on the same flow cell, in a different binding cycle. Compared with current fluorescence-based methods that are semi-quantitative, we expect this SPR-based assay to help better understanding anti-HLA antibodies pathogenicity and improving organ recipients' management. Copyright © 2018 Elsevier B.V. All rights reserved.
Thompson, Kyle J; Austin, Rebecca Garland; Nazari, Shayan S; Gersin, Keith S; Iannitti, David A; McKillop, Iain H
2017-11-24
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality. Risk factors for developing HCC include viral hepatitis, alcohol and obesity. Fatty acid-binding proteins (FABPs) bind long-chain free fatty acids (FFAs) and are expressed in a tissue-specific pattern; FABP1 being the predominant hepatic form, and FABP4 the predominant adipocyte form. The aims of this study were to investigate the expression and function of FABPs1-9 in human and animal models of obesity-related HCC. FABP1-9 expression was determined in a mouse model of obesity-promoted HCC. Based on these data, expression and function of FABP4 was determined in human HCC cells (HepG2 and HuH7) in vitro. Serum from patients with different underlying hepatic pathologies was analysed for circulating FABP4 levels. Livers from obese mice, independent of tumour status, exhibited increased FABP4 mRNA and protein expression concomitant with elevated serum FABP4. In vitro, FABP4 expression was induced in human HCC cells by FFA treatment, and led to FABP4 release into culture medium. Treatment of HCC cells with exogenous FABP4 significantly increased proliferation and migration of human HCC cells. Patient serum analysis demonstrated significantly increased FABP4 in those with underlying liver disease, particularly non-alcoholic fatty liver disease (NAFLD) and HCC. These data suggest FABP4, an FABP not normally expressed in the liver, can be synthesized and secreted by hepatocytes and HCC cells, and that FABP4 may play a role in regulating tumour progression in the underlying setting of obesity. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mosińska, P; Jacenik, D; Sałaga, M; Wasilewski, A; Cygankiewicz, A; Sibaev, A; Mokrowiecka, A; Małecka-Panas, E; Pintelon, I; Storr, M; Timmermans, J P; Krajewska, W M; Fichna, J
2018-05-01
The role of fatty acid binding protein 4 (FABP4) in lower gastrointestinal (GI) motility is unknown. We aimed to verify the effect of inhibition of FABP4 on GI transit in vivo, and to determine the expression of FABP4 in mouse and human tissues. Fatty acid binding protein 4 inhibitor, BMS309403, was administered acutely or chronically for 6 and 13 consecutive days and its effect on GI transit was assessed in physiological conditions and in loperamide-induced constipation. Intracellular recordings were made to examine the effects of BMS309403 on colonic excitatory and inhibitory junction potentials. Abdominal pain was evaluated using behavioral pain response. Localization and expression of selected adipokines were determined in the mouse colon and serum using immunohistochemistry and Enzyme-Linked ImmunoSorbent Assay respectively. mRNA expression of FABP4 and selected adipokines in colonic and serum samples from irritable bowel syndrome (IBS) patients and control group were assessed. Acute injection of BMS309403 significantly increased GI motility and reversed inhibitory effect of loperamide. BMS309403 did not change colonic membrane potentials. Chronic treatment with BMS309403 increased the number of pain-induced behaviors. In the mouse serum, level of resistin was significantly decreased after acute administration; no changes in adiponectin level were detected. In the human serum, level of adiponectin and resistin, but not of FABP4, were significantly elevated in patients with constipation-IBS (IBS-C). FABP4 mRNA expression was significantly downregulated in the human colon in IBS-C. Fatty acid binding protein 4 may be involved in IBS pathogenesis and become a novel target in the treatment of constipation-related diseases. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Shahabadi, Nahid; Hadidi, Saba; Feizi, Foroozan
2015-03-01
This study was designed to examine the interaction of Tenofovir (Ten) with human serum albumin (HSA) under physiological conditions. The binding of drugs with human serum albumin is a crucial factor influencing the distribution and bioactivity of drugs in the body. To understand the action mechanisms between Ten and HSA, the binding of Ten with HSA was investigated by a combined experimental and computational approach. UV-vis results confirmed that Ten interacted with HSA to form a ground-state complex and values of the Stern-Volmer quenching constant indicate the presence of a static component in the quenching mechanism. As indicated by the thermodynamic parameters (positive ΔH and ΔS values), hydrophobic interaction plays a major role in the Ten-HSA complex. Through the site marker competitive experiment, Ten was confirmed to be located in site I of HSA. Furthermore, UV-vis absorption spectra, synchronous fluorescence spectrum and CD data were used to investigate the structural change of HSA molecules with addition of Ten, the results indicate that the secondary structure of HSA molecules was changed in the presence of Ten. The experimental results were in agreement with the results obtained via molecular docking study.
FEROZ, Shevin R.; SUMI, Rumana A.; MALEK, Sri N.A.; TAYYAB, Saad
2014-01-01
The interaction of pinostrobin (PS), a multitherapeutic agent with serum albumins of various mammalian species namely, goat, bovine, human, porcine, rabbit, sheep and dog was investigated using fluorescence quench titration and competitive drug displacement experiments. Analysis of the intrinsic fluorescence quenching data revealed values of the association constant, Ka in the range of 1.49 – 6.12 × 104 M−1, with 1:1 binding stoichiometry. Based on the PS–albumin binding characteristics, these albumins were grouped into two classes. Ligand displacement studies using warfarin as the site I marker ligand correlated well with the binding data. Albumins from goat and bovine were found to be closely similar to human albumin on the basis of PS binding characteristics. PMID:25519455
An overview on the delivery of antitumor drug doxorubicin by carrier proteins.
Agudelo, D; Bérubé, G; Tajmir-Riahi, H A
2016-07-01
Serum proteins play an increasing role as drug carriers in the clinical settings. In this review, we have compared the binding modalities of anticancer drug doxorubicin (DOX) to three model carrier proteins, human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (β-LG) in order to determine the potential application of these model proteins in DOX delivery. Molecular modeling studies showed stronger binding of DOX with HSA than BSA and β-LG with the free binding energies of -10.75 (DOX-HSA), -9.31 (DOX-BSA) and -8.12kcal/mol (DOX-β-LG). Extensive H-boding network stabilizes DOX-protein conjugation and played a major role in drug-protein complex formation. DOX complexation induced major alterations of HSA and BSA conformations, while did not alter β-LG secondary structure. The literature review shows that these proteins can potentially be used for delivery of DOX in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Islam, Mullah Muhaiminul; Sonu, Vikash K.; Gashnga, Pynsakhiat Miki; Moyon, N. Shaemningwar; Mitra, Sivaprasad
2016-01-01
The interaction and binding behavior of the well-known drug sulfadiazine (SDZ) and psychoactive stimulant caffeine (CAF) with human serum albumin (HSA) was monitored by in vitro fluorescence titration and molecular docking calculations under physiological condition. The quenching of protein fluorescence on addition of CAF is due to the formation of protein-drug complex in the ground state; whereas in case of SDZ, the experimental results were explained on the basis of sphere of action model. Although both these compounds bind preferentially in Sudlow's site 1 of the protein, the association constant is approximately two fold higher in case of SDZ (∼4.0 × 104 M-1) in comparison with CAF (∼9.3 × 102 M-1) and correlates well with physico-chemical properties like pKa and lipophilicity of the drugs. Temperature dependent fluorescence study reveals that both SDZ and CAF bind spontaneously with HSA. However, the binding of SDZ with the protein is mainly governed by the hydrophobic forces in contrast with that of CAF; where, the interaction is best explained in terms of electrostatic mechanism. Molecular docking calculation predicts the binding of these drugs in different location of sub-domain IIA in the protein structure.
Cox, Nehemiah; Pilling, Darrell; Gomer, Richard H.
2014-01-01
The plasma protein Serum Amyloid P (SAP) reduces neutrophil adhesion, inhibits the differentiation of monocytes into fibroblast-like cells called fibrocytes, and promotes phagocytosis of cell debris by macrophages. Together, these effects of SAP reduce key aspects of inflammation and fibrosis, and SAP injections improve lung function in pulmonary fibrosis patients. SAP functions are mediated in part by Fcγ receptors, but the contribution of each Fcγ receptor is not fully understood. We found that amino acids Q55 and E126 in human SAP affect human fibrocyte differentiation and SAP binding to FcγRI. E126, K130 and Q128 affect neutrophil adhesion and SAP affinity for FcγRIIa. Q128 also affects phagocytosis by macrophages and SAP affinity for FcγRI. All the identified functionally significant amino acids in SAP form a binding site that is distinct from the previously described SAP-FcγRIIa binding site. Blocking FcγRI with an IgG blocking antibody reduces the SAP effect on fibrocyte differentiation, and ligating FcγRIIa with antibodies reduces neutrophil adhesion. Together, these results suggest that SAP binds to FcγRI on monocytes to inhibit fibrocyte differentiation, and binds to FcγRIIa on neutrophils to reduce neutrophil adhesion. PMID:25024390
NASA Astrophysics Data System (ADS)
Mocanu, Mihaela N.; Yan, Fei
2018-02-01
The interaction between chlorin e6 (Ce6) and human serum albumin (HSA) in the presence and absence of ultrasound have been investigated by ultraviolet-visible absorption spectroscopy and fluorescence spectroscopy. Ce6 is found to bind strongly to HSA at or near physiological pH conditions, but the strength of the binding is significantly weakened at lower pHs. The intrinsic fluorescence of HSA is incrementally quenched with increasing concentration of Ce6, and the quenching is enhanced after exposure to high-frequency ultrasound. Our experimental results suggest that Ce6-induced sonodynamic oxidation of HSA is mainly mediated by singlet oxygen. The formulation of Ce6 by high molecular weight polyvinylpyrrolidone (PVP) increased its stability in aqueous solutions and its quantum yield of singlet oxygen under ultrasound irradiation.
Depigmented Allergoids Reveal New Epitopes with Capacity to Induce IgG Blocking Antibodies
López-Matas, M. Angeles; Gallego, Mayte; Iraola, Víctor; Robinson, Douglas; Carnés, Jerónimo
2013-01-01
Background. The synthesis of allergen-specific blocking IgGs that interact with IgE after allergen immunotherapy (SIT) has been related to clinical efficacy. The objectives were to investigate the epitope specificity of IgG-antibodies induced by depigmented-polymerized (Dpg-Pol) allergoids and unmodified allergen extracts, and examine IgE-blocking activity of induced IgG-antibodies. Methods. Rabbits were immunized with native and Dpg-Pol extracts of birch pollen, and serum samples were obtained. Recognition of linear IgG-epitopes of Bet v 1 and Bet v 2 and the capacity of these IgG-antibodies to block binding of human-IgE was determined. Results. Serum from rabbits immunized with native extracts recognised 11 linear epitopes from Bet v 1, while that from Dpg-Pol-immunized animals recognised 8. For Bet v 2, 8 epitopes were recognized by IgG from native immunized animals, and 9 from Dpg-Pol immunized one. Dpg-Pol and native immunized serum did not always recognise the same epitopes, but specific-IgG from both could block human-IgE binding sites for native extract. Conclusions. Depigmented-polymerized birch extract stimulates the synthesis of specific IgG-antibodies which recognize common but also novel epitopes compared with native extracts. IgG-antibodies induced by Dpg-Pol effectively inhibit human-IgE binding to allergens which may be part of the mechanism of action of SIT. PMID:24222901
Koeberling, Oliver; Seubert, Anja; Santos, George; Colaprico, Annalisa; Ugozzoli, Mildred; Donnelly, John; Granoff, Dan M.
2011-01-01
We previously investigated immunogenicity of meningococcal native outer membrane vesicle (NOMV) vaccines prepared from recombinant strains with attenuated endotoxin (ΔLpxL1) and over-expressed factor H binding protein (fHbp) in a mouse model. The vaccines elicited broad serum bactericidal antibody responses. While human toll-like receptor 4 (TLR-4) is mainly stimulated by wildtype meningococcal endotoxin, mouse TLR-4 is stimulated by both the wildtype and mutant endotoxin. An adjuvant effect in mice of the mutant endotoxin would be expected to be much less in humans, and may have contributed to the broad mouse bactericidal responses. Here we show that as previously reported for humans, rhesus primate peripheral blood mononuclear cells incubated with a NOMV vaccine from ΔLpxL1 recombinant strains had lower proinflammatory cytokine responses than with a control wildtype NOMV vaccine. The cytokine responses to the mutant vaccine were similar to those elicited by a detergent-treated, wildtype outer membrane vesicle vaccine that had been safely administered to humans. Monkeys (N=4) were immunized beginning at ages 2 to 3 months with three doses of a NOMV vaccine prepared from ΔLpxL1 recombinant strains with over-expressed fHbp in the variant 1 and 2 groups. The mutant NOMV vaccine elicited serum bactericidal titers ≥1:4 against all 10 genetically diverse strains tested, including 9 with heterologous PorA to those in the vaccine. Negative-control animals had serum bactericidal titers <1:4. Thus, the mutant NOMV vaccine elicited broadly protective serum antibodies in a non-human infant primate model that is more relevant for predicting human antibody responses than mice. PMID:21571025
Progesterone-associated proteins PP12 and PP14 in the human endometrium.
Rutanen, E M; Koistinen, R; Seppälä, M; Julkunen, M; Suikkari, A M; Huhtala, M L
1987-01-01
Two proteins, designated as PP12 and PP14 were originally isolated from soluble extracts of the human placenta and its adjacent membranes. We have shown that they are synthesized by decidualized/secretory endometrium and not by placenta. Both proteins occur at high concentrations in human amniotic fluid, which is therefore an excellent source for purification. PP12 is a 34-kDa glycoprotein, which has an N-terminal amino acid sequence of Ala-Pro-Trp-Gln-Cys-Ala-Pro-Cys-Ser-Ala. This is identical with that of somatomedin-binding protein purified from the amniotic fluid. PP12 too binds somatomedin-C, or IGF-I (insulin-like growth factor-I). Human secretory endometrium synthesizes and secretes PP12, and progesterone stimulates its secretion. PP14 is a 28-kDa glycoprotein. Its N-terminal sequence shows homology to that of beta-lactoglobulins from various species. We have found PP14 in the human endometrium, serum and milk. Immunologically, PP14 is related to progestagen-associated endometrial protein (PEP), alpha-2 pregnancy-associated endometrial protein (alpha-2, PEG), endometrial protein 15 (EP15), alpha-uterine protein (AUP) and chorionic alpha-2 microglobulin (CAG-2). In ovulatory menstrual cycles, the concentration of PP14 increases in endometrial tissue as the secretory changes advance. In serum, the PP14 concentration begins to rise later than the progesterone levels, and high serum PP14 levels are maintained for the first days of the next cycle. By contrast, no elevation of serum PP14 level is seen in anovulatory cycles. Our results show that progesterone-associated proteins are synthesized by the human endometrium and appear in the peripheral circulation, where they can be quantitatively measured using immunochemical techniques.
Pontisso, P; Petit, M A; Bankowski, M J; Peeples, M E
1989-01-01
Hepatitis B virus particles contain three related viral envelope proteins, the small, middle, and large S (surface) proteins. All three proteins contain the small S amino acid sequence at their carboxyl terminus. It is not clear which of these S proteins functions as the viral attachment protein, binding to a target cell receptor and initiating infection. In this report, recombinant hepatitis B surface antigen (rHBsAg) particles, which contain only virus envelope proteins, were radioactively labeled, and their attachment to human liver membranes was examined. Only the rHBsAg particles containing the large S protein were capable of directly attaching to liver plasma membranes. The attachment was saturable and could be prevented by competition with unlabeled particles or by a monoclonal antibody specific for the large S protein. In the presence of polymerized human serum albumin, both large and middle S protein-containing rHBsAg particles were capable of attaching to the liver plasma membranes. Small S protein-containing rHBsAg particles were not able to attach even in the presence of polymerized human serum albumin. These results indicate that the large S protein may be the viral attachment protein for hepatocytes, binding directly to liver plasma membranes by its unique amino-terminal (pre-S1) sequence. These results also indicate that polymerized human serum albumin or a similar molecule could act as an intermediate receptor, attaching to liver plasma membranes and to the amino acid sequence (pre-S2) shared by the middle and large S proteins but not contained in the small S protein. Images PMID:2649690
Characterization of the binding of 2-mercaptobenzimidazole to bovine serum albumin.
Teng, Yue; Zou, Luyi; Huang, Ming; Zong, Wansong
2015-04-01
2-Mercaptobenzimidazole (MBI) is widely utilized as a corrosion inhibitor, copper-plating brightener and rubber accelerator. The residue of MBI in the environment is potentially harmful to human health. In this article, the interaction of MBI with bovine serum albumin (BSA) was explored using spectroscopic and molecular docking methods under physiological conditions. The positively charged MBI can spontaneously bind with the negatively charged BSA through electrostatic forces with one binding site. The site marker competition experiments and the molecular docking study revealed that MBI bound into site II (subdomain IIIA) of BSA, which further led to some secondary structure and microenvironmental changes of BSA. This work provides useful information on understanding the toxicological actions of MBI at the molecular level. Copyright © 2015 John Wiley & Sons, Ltd.
Ashrafi-Kooshk, Mohammad Reza; Ebrahimi, Farangis; Ranjbar, Samira; Ghobadi, Sirous; Moradi, Nastaran; Khodarahmi, Reza
2015-09-01
Human serum albumin (HSA), the most abundant protein in blood plasma, is a monomeric multidomain protein that possesses an extraordinary capacity for binding, so that serves as a circulating depot for endogenous and exogenous compounds. During the heat sterilization process, the structure of pharmaceutical-grade HSA may change and some of its activities may be lost. In this study, to provide deeper insight on this issue, we investigated drug-binding and some physicochemical properties of purified albumin (PA) and pharmaceutical-grade albumin (PGA) using two known drugs (indomethacin and ibuprofen). PGA displayed significantly lower drug binding capacity compared to PA. Analysis of the quenching and thermodynamic parameters indicated that intermolecular interactions between the drugs and the proteins are different from each other. Surface hydrophobicity as well as the stability of PGA decreased compared to PA, also surface hydrophobicity of PA and PGA increased upon drugs binding. Also, kinetic analysis of pseudo-esterase activities indicated that Km and Vmax parameters for PGA enzymatic activity are more and less than those of PA, respectively. This in vitro study demonstrates that the specific drug binding of PGA is significantly reduced. Such studies can act as connecting bridge between basic research discoveries and clinical applications. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Yang, Hongqin; Liu, Jiuyang; Huang, Yanmei; Gao, Rui; Tang, Bin; Li, Shanshan; He, Jiawei; Li, Hui
2017-03-30
Alisertib (MLN8237) is an orally administered inhibitor of Aurora A kinase. This small-molecule inhibitor is under clinical or pre-clinical phase for the treatment of advanced malignancies. The present study provides a detailed characterization of the interaction of MLN8237 with a drug transport protein called human serum albumin (HSA). STD and WaterLOGSY nuclear magnetic resonance (NMR)-binding studies were conducted first to confirm the binding of MLN8237 to HSA. In the ligand orientation assay, the binding sites of MLN8237 were validated through two site-specific spy molecules (warfarin sodium and ibuprofen, which are two known site-selective probes) by using STD and WaterLOGSY NMR competition techniques. These competition experiments demonstrate that both spy molecules do not compete with MLN8237 for the specific binding site. The AutoDock-based blind docking study recognizes the hydrophobic subdomain IB of the protein as the probable binding site for MLN8237. Thermodynamic investigations by isothermal titration calorimetry (ITC) reveal that the non-covalent interaction between MLN8237 and HSA (binding constant was approximately 10 5 M -1 ) is driven mainly by favorable entropy and unfavorable enthalpy. In addition, synchronous fluorescence, circular dichroism (CD), and 3D fluorescence spectroscopy suggest that MLN8237 may induce conformational changes in HSA.
Yang, Hongqin; Liu, Jiuyang; Huang, Yanmei; Gao, Rui; Tang, Bin; Li, Shanshan; He, Jiawei; Li, Hui
2017-01-01
Alisertib (MLN8237) is an orally administered inhibitor of Aurora A kinase. This small-molecule inhibitor is under clinical or pre-clinical phase for the treatment of advanced malignancies. The present study provides a detailed characterization of the interaction of MLN8237 with a drug transport protein called human serum albumin (HSA). STD and WaterLOGSY nuclear magnetic resonance (NMR)-binding studies were conducted first to confirm the binding of MLN8237 to HSA. In the ligand orientation assay, the binding sites of MLN8237 were validated through two site-specific spy molecules (warfarin sodium and ibuprofen, which are two known site-selective probes) by using STD and WaterLOGSY NMR competition techniques. These competition experiments demonstrate that both spy molecules do not compete with MLN8237 for the specific binding site. The AutoDock-based blind docking study recognizes the hydrophobic subdomain IB of the protein as the probable binding site for MLN8237. Thermodynamic investigations by isothermal titration calorimetry (ITC) reveal that the non-covalent interaction between MLN8237 and HSA (binding constant was approximately 105 M−1) is driven mainly by favorable entropy and unfavorable enthalpy. In addition, synchronous fluorescence, circular dichroism (CD), and 3D fluorescence spectroscopy suggest that MLN8237 may induce conformational changes in HSA. PMID:28358124
NASA Astrophysics Data System (ADS)
Li, Xiangrong; Chen, Dejun; Wang, Gongke; Lu, Yan
2015-02-01
Albumin represents a very abundant and important circulating antioxidant in plasma. DPPH radical is also called 2,2-diphenyl-1-picrylhydrazyl. It has been widely used for measuring the efficiency of antioxidants. In this paper, the ability of human serum albumin (HSA) to scavenge DPPH radical was investigated using UV-vis absorption spectra. The interaction between HSA and DPPH was investigated in the absence and presence of eight popular antioxidants using fluorescence spectroscopy. These results indicate the antioxidant activity of HSA against DPPH radical is similar to glutathione and the value of IC50 is 5.200 × 10-5 mol L-1. In addition, the fluorescence experiments indicate the quenching mechanism of HSA, by DPPH, is a static process. The quenching process of DPPH with HSA is easily affected by the eight antioxidants, however, they cannot change the quenching mechanism of DPPH with HSA. The binding of DPPH to HSA primarily takes place in subdomain IIA and exists two classes of binding sites with two different interaction behaviors. The decreased binding constants and the number of binding sites of DPPH with HSA by the introduction of the eight antioxidants may result from the competition of the eight antioxidants and DPPH binding to HSA. The binding of DPPH to HSA may induce the micro-environment of the lone Trp-214 from polar to slightly nonpolar.
NASA Astrophysics Data System (ADS)
Yang, Hongqin; Liu, Jiuyang; Huang, Yanmei; Gao, Rui; Tang, Bin; Li, Shanshan; He, Jiawei; Li, Hui
2017-03-01
Alisertib (MLN8237) is an orally administered inhibitor of Aurora A kinase. This small-molecule inhibitor is under clinical or pre-clinical phase for the treatment of advanced malignancies. The present study provides a detailed characterization of the interaction of MLN8237 with a drug transport protein called human serum albumin (HSA). STD and WaterLOGSY nuclear magnetic resonance (NMR)-binding studies were conducted first to confirm the binding of MLN8237 to HSA. In the ligand orientation assay, the binding sites of MLN8237 were validated through two site-specific spy molecules (warfarin sodium and ibuprofen, which are two known site-selective probes) by using STD and WaterLOGSY NMR competition techniques. These competition experiments demonstrate that both spy molecules do not compete with MLN8237 for the specific binding site. The AutoDock-based blind docking study recognizes the hydrophobic subdomain IB of the protein as the probable binding site for MLN8237. Thermodynamic investigations by isothermal titration calorimetry (ITC) reveal that the non-covalent interaction between MLN8237 and HSA (binding constant was approximately 105 M-1) is driven mainly by favorable entropy and unfavorable enthalpy. In addition, synchronous fluorescence, circular dichroism (CD), and 3D fluorescence spectroscopy suggest that MLN8237 may induce conformational changes in HSA.
1989-02-03
(PCG) Protein Crystal Growth Human Serum Albumin. Contributes to many transport and regulatory processes and has multifunctional binding properties which range from various metals, to fatty acids, hormones, and a wide spectrum of therapeutic drugs. The most abundant protein of the circulatory system. It binds and transports an incredible variety of biological and pharmaceutical ligands throughout the blood stream. Principal Investigator on STS-26 was Larry DeLucas.
Sheng, Feng; Wang, Yuning; Zhao, Xingchen; Tian, Na; Hu, Huali; Li, Pengxia
2014-07-16
Purple pigments were isolated from mulberry extracts using preparative high-speed countercurrent chromatography (HSCCC) and identified by ESI-MS/MS and high performance liquid chromatography (HPLC) techniques. The solvent system containing methyl tert-butyl ether, 1-butanol, acetonitrile, water, and trifluoroacetic acid (10:30:10:50:0.05; %, v/v) was developed in order to separate anthocyanins with different polarities. Cyanidin 3-O-(6″-O-α-rhamnopyranosyl-β-galactopyranoside) (also known as keracyanin) is the major component present in mulberry (41.3%). Other isolated pigments are cyanidin 3-O-(6″-O-α-rhamnopyranosyl-β-glucopyranoside) and petunidin 3-O-β-glucopyranoside. The binding characteristics of keracyanin with human serum albumin (HSA) were investigated by fluorescence and circular dichroism (CD) spectroscopy. Spectroscopic analysis reveals that HSA fluorescence quenched by keracyanin follows a static mode. Binding of keracyanin to HSA mainly depends on van der Waals force or H-bonds with average binding distance of 2.82 nm. The results from synchronous fluorescence, three-dimensional fluorescence, and CD spectra show that adaptive structure rearrangement and decrease of α-helical structure occur in the presence of keracyanin.
Ajmal, Mohammad Rehan; Zaidi, Nida; Alam, Parvez; Nusrat, Saima; Siddiqi, Mohd Khursheed; Badr, Gamal; Mahmoud, Mohamed H; Khan, Rizwan Hasan
2017-01-01
The binding of clofazimine to human serum albumin (HSA) was investigated by applying optical spectroscopy and molecular docking methods. Fluorescence quenching data revealed that clofazimine binds to protein with binding constant in the order of 10 4 M -1 , and with the increase in temperature, Stern-Volmer quenching constants gradually decreased indicating quenching mode to be static. The UV-visible spectra showed increase in absorbance upon interaction of HSA with clofazimine which further reveals formation of the drug-albumin complex. Thermodynamic parameters obtained from fluorescence data indicate that the process is exothermic and spontaneous. Forster distance (R o ) obtained from fluorescence resonance energy transfer is found to be 2.05 nm. Clofazimine impelled rise in α-helical structure in HSA as observed from far-UV CD spectra while there are minor alterations in tertiary structure of the protein. Clofazimine interacts strongly with HSA inducing secondary structure in the protein and slight alterations in protein topology as suggested by dynamic light scattering results. Moreover, docking results indicate that clofazimine binds to hydrophobic pocket near to the drug site II in HSA.
Crystal structure analysis of human serum albumin complexed with sodium 4-phenylbutyrate.
Kawai, Akito; Yamasaki, Keishi; Enokida, Taisuke; Miyamoto, Shuichi; Otagiri, Masaki
2018-03-01
Sodium 4-phenylbutyrate (PB) is an orphan drug for the treatment of urea cycle disorders. It also inhibits the development of endoplasmic reticulum stress, the action of histone deacetylases and as a regulator of the hepatocanalicular transporter. PB is generally considered to have the potential for use in the treatment of the diseases such as cancer, neurodegenerative diseases and metabolic diseases. In a previous study, we reported that PB is primarily bound to human serum albumin (HSA) in plasma and its binding site is drug site 2. However, details of the binding mode of PB to HSA remain unknown. To address this issue, we examined the crystal structure of HSA with PB bound to it. The structure of the HSA-PB complex indicates that the binding mode of PB to HSA is quite similar to that for octanoate or drugs that bind to drug site 2, as opposed to that for other medium-chain length of fatty acids. These findings provide useful basic information related to drug-HSA interactions. Moreover, the information presented herein is valuable in terms of providing safe and efficient treatment and diagnosis in clinical settings.
Investigation of the interaction between naringin and human serum albumin
NASA Astrophysics Data System (ADS)
Zhang, Yaheng; Li, Ying; Dong, Lijun; Li, Jiazhong; He, Wenying; Chen, Xingguo; Hu, Zhide
2008-03-01
The interaction between naringin and human serum albumin (HSA) has been thoroughly studied by fluorescence quenching technique in combination with UV absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy and molecular modeling method. Under the simulative physiological conditions, fluorescence data revealed the presence of the binding site on HSA and its binding constants ( K) are 1.62 × 10 4, 1.68 × 10 4, 1.72 × 10 4, and 1.79 × 10 4 M -1 at 289, 296, 303, and 310 K, respectively. The alterations of protein secondary structure in the presence of naringin aqueous solution were qualitative and quantitative calculated by the evidence from CD and FT-IR spectroscopes. In addition, according to the Van't Hoff equation, the thermodynamic functions standard enthalpy (Δ H0) and standard entropy (Δ S0) for the reaction were calculated to be 3.45 kJ mol -1 and 92.52 J mol -1 K -1. These results indicated that naringin binds to HSA mainly by a hydrophobic interaction. Furthermore, the displacement experiments confirmed that naringin could bind to the site I of HSA, which was also in agreement with the result of the molecular modeling study.
Binding of the bioactive component Aloe dihydroisocoumarin with human serum albumin
NASA Astrophysics Data System (ADS)
Zhang, Xiu-Feng; Xie, Ling; Liu, Yang; Xiang, Jun-Feng; Tang, Ya-Lin
2008-11-01
Aloe dihydroisocoumarin, one of new components isolated from Aloe vera, can scavenge reactive oxygen species. In order to explore the mechanism of drug action at a molecular level, the binding of Aloe dihydroisocoumarin with human serum albumin (HSA) has been investigated by using fluorescence, ultraviolet (UV), circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy, fluorescence dynamics, and molecular dynamic docking for the first time. We observed a quenching of fluorescence of HSA in the presence of Aloe dihydroisocoumarin and also analyzed the quenching results using the Stern-Volmer equation and obtained high affinity binding to HSA. An isoemissive point at 414 nm is seen, indicating that the quenching of HSA fluorescence depends on the formation of Aloe dihydroisocoumarin-HSA complex, which is further confirmed by fluorescence dynamic result. From the CD and FT-IR results, it is apparent that the interaction of Aloe dihydroisocoumarin with HSA causes a conformational change of the protein, with the gain of α-helix, β-sheet and random coil stability and the loss of β-turn content. Data obtained by fluorescence spectroscopy, fluorescence dynamics, CD, and FTIR experiments along with the docking studies suggest that Aloe dihydroisocoumarin binds to residues located in subdomain IIA of HSA.
NASA Astrophysics Data System (ADS)
Martel, Jan; Wu, Cheng-Yeu; Hung, Cheng-Yu; Wong, Tsui-Yin; Cheng, Ann-Joy; Cheng, Mei-Ling; Shiao, Ming-Shi; Young, John D.
2016-03-01
Nanoparticles entering the human body instantly become coated with a ``protein corona'' that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an ``organic corona'' containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body.Nanoparticles entering the human body instantly become coated with a ``protein corona'' that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an ``organic corona'' containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08116e
NASA Astrophysics Data System (ADS)
Muniz da Silva Fragoso, Viviane; Patrícia de Morais e Coura, Carla; Paulino, Erica Tex; Valdez, Ethel Celene Narvaez; Silva, Dilson; Cortez, Celia Martins
2017-11-01
The aim of this work was to apply mathematical-computational modeling to study the interactions of haloperidol (HLP) and biperiden (BPD) with human (HSA) and bovine (BSA) serum albumin in order to verify the competition of these drugs for binding sites in HSA, using intrinsic tryptophan fluorescence quenching data. The association constants estimated for HPD-HSA was 2.17(±0.05) × 107 M-1, BPD-HSA was 2.01(±0.03) × 108 M-1 at 37 °C. Results have shown that drugs do not compete for the same binding sites in albumin.
Characterization and screening of IgG binding to the neonatal Fc receptor
Neuber, Tobias; Frese, Katrin; Jaehrling, Jan; Jäger, Sebastian; Daubert, Daniela; Felderer, Karin; Linnemann, Mechthild; Höhne, Anne; Kaden, Stefan; Kölln, Johanna; Tiller, Thomas; Brocks, Bodo; Ostendorp, Ralf; Pabst, Stefan
2014-01-01
The neonatal Fc receptor (FcRn) protects immunoglobulin G (IgG) from degradation and increases the serum half-life of IgG, thereby contributing to a higher concentration of IgG in the serum. Because altered FcRn binding may result in a reduced or prolonged half-life of IgG molecules, it is advisable to characterize Fc receptor binding of therapeutic antibody lead candidates prior to the start of pre-clinical and clinical studies. In this study, we characterized the interactions between FcRn of different species (human, cynomolgus monkey, mouse and rat) and nine IgG molecules from different species and isotypes with common variable heavy (VH) and variable light chain (VL) domains. Binding was analyzed at acidic and neutral pH using surface plasmon resonance (SPR) and biolayer interferometry (BLI). Furthermore, we transferred the well-accepted, but low throughput SPR-based method for FcRn binding characterization to the BLI-based Octet platform to enable a higher sample throughput allowing the characterization of FcRn binding already during early drug discovery phase. We showed that the BLI-based approach is fit-for-purpose and capable of discriminating between IgG molecules with significant differences in FcRn binding affinities. Using this high-throughput approach we investigated FcRn binding of 36 IgG molecules that represented all VH/VL region combinations available in the fully human, recombinant antibody library Ylanthia®. Our results clearly showed normal FcRn binding profiles for all samples. Hence, the variations among the framework parts, complementarity-determining region (CDR) 1 and CDR2 of the fragment antigen binding (Fab) domain did not significantly change FcRn binding. PMID:24802048
Preferential solvatation of human serum albumin in dimethylsulfoxide-H2O binary solution
NASA Astrophysics Data System (ADS)
Grigoryan, K. R.
2009-12-01
The preferential solvatation of human serum albumin (HSA) in dimethylsulfoxide (DMSO) aqueous solutions were studied using the densitometry method. It has been shown that at DMSO low concentrations HSA undergoes to preferential hydration, but at DMSO higher concentrations preferential binding of DMSO molecules to protein occurs. It has been estimated that DMSO exhibits stabilizing/destabilizing effect on HSA structure which is explained in terms of hydration/solvatation of protein, on the one hand, and the medium structure enhancement/disruption around the protein molecule, on the other hand.
Xu, Liang; Hu, Yan-Xi; Li, Jin; Liu, Yu-Feng; Zhang, Li; Ai, Hai-Xin; Liu, Hong-Sheng
2017-08-01
Cytarabine is a kind of chemotherapy medication. In the present study, the molecular interaction between cytarabine and human serum albumin (HSA) was investigated via fluorescence, UV-vis absorption, circular dichroism (CD) spectroscopy and molecular docking method under simulative physiological conditions. It was found that cytarabine could effectively quench the intrinsic fluorescence of HSA through a static quenching process. The apparent binding constants between drug and HSA at 288, 293 and 298K were estimated to be in the order of 10 3 L·mol -1 . The thermodynamic parameters ΔH°, ΔG°and ΔS° were calculated, in which the negative ΔG°suggested that the binding of cytarabine to HSA was spontaneous, moreover the negative ΔS°and negative ΔH°revealed that van der Waals force and hydrogen bonds were the major forces to stabilize the protein-cytarabine (1:1) complex. The competitive binding experiments showed that the primary binding site of cytarabine was located in the site I (subdomain IIA) of HSA. In addition, the binding distance was calculated to be 3.4nm according to the Förster no-radiation energy transfer theory. The analysis of CD and three-dimensional (3D) fluorescence spectra demonstrated that the binding of drug to HSA induced some conformational changes in HSA. The molecular docking study also led to the same conclusion obtained from the spectral results. Copyright © 2017 Elsevier B.V. All rights reserved.
... Salicylates Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin (SHBG) Shiga toxin-producing Escherichia ... and forming complexes that respond to infections, non-self tissues (transplants), dead cells ... KJ. Complement determinations in human disease. Ann Allergy Asthma Immunol . 2004; ...
Huang, Shan; Qiu, Hangna; Liu, Yi; Huang, Chusheng; Sheng, Jiarong; Cui, Jianguo; Su, Wei; Xiao, Qi
2016-12-01
Cadmium-free quantum dots (QDs) have attracted great attention in biological and biomedical applications due to their less content of toxic metals, but their potential toxicity investigations on molecular biology level are rarely involved. Since few studies have addressed whether InP/ZnS QDs could bind and alter the structure and function of human serum albumin (HSA), in vitro interaction between InP/ZnS QDs and HSA was systematically characterized by multispectroscopic approaches. InP/ZnS QDs could quench the intrinsic fluorescence of HSA via static mode. The binding site of InP/ZnS QDs was mainly located at subdomain IIA of HSA. Some thermodynamic parameters suggested that InP/ZnS QDs interacted with HSA mainly through electrostatic interactions. As further revealed by three-dimensional spectrometry, FT-IR spectrometry and circular dichroism technique, InP/ZnS QDs caused more global and local conformational change of HSA than CdSe/ZnS QDs, which illustrated the stronger binding interaction and higher potential toxicity of InP/ZnS QDs on biological function of HSA. Our results offer insights into the in vitro binding mechanism of InP/ZnS QDs with HSA and provide important information for possible toxicity risk of these cadmium-free QDs to human health. Copyright © 2016 Elsevier B.V. All rights reserved.
Sun, Qiaomei; Yang, Hongqin; Tang, Peixiao; Liu, Jiuyang; Wang, Wan; Li, Hui
2018-03-15
Considering the adverse effect of food additives on humans, thorough research of their physiological effects at the molecular level is important. The interactions of cinnamaldehyde (CNMA), a food perfume, and its major metabolite cinnamic acid (CA) with human serum albumin (HSA) were examined by multiple-spectroscopies. NMR analysis revealed CNMA and CA both bound to HSA, and STD-NMR experiments established CNMA and CA primarily interacted with site I and site II of HSA, respectively. The ligands caused strong quenching of HSA fluorescence through a static quenching mechanism, with hydrophobic and electrostatic interaction between CNMA/CA and HSA, respectively. UV-vis absorption and CD results showed ligands induced secondary structure changes of HSA. Binding configurations were proved by docking method. Furthermore, binding constants of CNMA/CA-HSA systems were influenced by the addition of four other food additives. These studies have increased our knowledge regarding the safety and biological action of CNMA and CA. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shaw, C F; Schaeffer-Memmel, N; Krawczak, D
1986-03-01
The metabolites of gold in the urine of rats given the antiarthritic drug aurothiomalate were investigated by gel permeation chromatography, electrophoresis, and chemical studies. Following a single dose of aurtothiomalate, the excreted gold was protein-bound in the high-molecular-weight (greater than or equal to 150,000 dalton) and serum albumin fractions. Electrophoresis confirmed the presence of albumin, but showed that the other proteins present differ from those in normal or in vitro aurothiomalate-incubated rat sera. The pattern of the proteins establishes that the proteinuria was of the glomerular type. The alterations in the gold distribution produced by incubation of the urine with the low-molecular-weight thiol penicillamine and with exogenously added aurothiomalate indicated the existence of a labile equilibrium of gold among protein binding sites in the urine. Incubation of rat and human sera and commercially prepared serum albumins with aurothiomalate increased the electrophoretic mobility of the albumin. The significance of this change in electrophoretic mobility with respect to two models of gold binding by serum albumin is discussed.
Chen, Rui; Tan, Yexiong; Wang, Min; Wang, Fangjun; Yao, Zhenzhen; Dong, Liwei; Ye, Mingliang; Wang, Hongyang; Zou, Hanfa
2011-01-01
A robust, reproducible, and high throughput method was developed for the relative quantitative analysis of glycoprotein abundances in human serum. Instead of quantifying glycoproteins by glycopeptides in conventional quantitative glycoproteomics, glycoproteins were quantified by nonglycosylated peptides derived from the glycoprotein digest, which consists of the capture of glycoproteins in serum samples and the release of nonglycopeptides by trypsin digestion of captured glycoproteins followed by two-dimensional liquid chromatography-tandem MS analysis of released peptides. Protein quantification was achieved by comparing the spectrum counts of identified nonglycosylated peptides of glycoproteins between different samples. This method was demonstrated to have almost the same specificity and sensitivity in glycoproteins quantification as capture at glycopeptides level. The differential abundance of proteins present at as low as nanogram per milliliter levels was quantified with high confidence. The established method was applied to the analysis of human serum samples from healthy people and patients with hepatocellular carcinoma (HCC) to screen differential glycoproteins in HCC. Thirty eight glycoproteins were found with substantial concentration changes between normal and HCC serum samples, including α-fetoprotein, the only clinically used marker for HCC diagnosis. The abundance changes of three glycoproteins, i.e. galectin-3 binding protein, insulin-like growth factor binding protein 3, and thrombospondin 1, which were associated with the development of HCC, were further confirmed by enzyme-linked immunosorbent assay. In conclusion, the developed method was an effective approach to quantitatively analyze glycoproteins in human serum and could be further applied in the biomarker discovery for HCC and other cancers. PMID:21474793
NASA Astrophysics Data System (ADS)
Maciążek-Jurczyk, M.; Sułkowska, A.; Równicka-Zubik, J.; Bojko, B.; Szkudlarek-Haśnik, A.; Knopik, M.; Sułkowski, W. W.
2011-05-01
The influence of phenylbutazone (Phe) and methotrexate (MTX) on binding of MTX and Phe to human (HSA) and bovine (BSA) serum albumin in the low-affinity binding sites is investigated. The strength and kind of interactions between serum albumin (SA) and drugs used in combination therapy were found using 1H NMR spectroscopy. A stoichiometric molar ratios for Phe-SA and MTX-SA complexes are 36:1 and 31:1, respectively. It appeared these molar ratios are higher for the ternary systems than it were in the binary ones. The presence of the additional drug (MTX or Phe) causes the increase of an affinity of albumin towards Phe and MTX. It was found that the aliphatic groups of MTX are more resistant to the influence of Phe on the MTX-SA complex than the aromatic rings. The results showed the important impact of another drug (MTX or Phe) on the affinity of SA towards Phe and MTX in the low-affinity binding sites. This work is a subsequent part of the spectroscopic study on Phe-MTX-SA interactions (Maciążek-Jurczyk, 2009 [1]).
Sawas, Abdul H; Pentyala, Srinivas N; Rebecchi, Mario J
2004-10-05
This study directly examines the enthalpic contributions to binding in aqueous solution of closely related anesthetic haloethers (desflurane, isoflurane, enflurane, and sevoflurane), a haloalkane (halothane), and an intravenous anesthetic (propofol) to bovine and human serum albumin (BSA and HSA) using isothermal titration calorimetry. Binding to serum albumin is exothermic, yielding enthalpies (DeltaH(obs)) of -3 to -6 kcal/mol for BSA with a rank order of apparent equilibrium association constants (K(a) values): desflurane > isoflurane approximately enflurane > halothane >or= sevoflurane, with the differences being largely ascribed to entropic contributions. Competition experiments indicate that volatile anesthetics, at low concentrations, share the same sites in albumin previously identified in crystallographic and photo-cross-linking studies. The magnitude of the observed DeltaH increased linearly with increased reaction temperature, reflecting negative changes in heat capacities (DeltaC(p)). These -DeltaC(p) values significantly exceed those calculated for burial of each anesthetic in a hydrophobic pocket. The enhanced stabilities of the albumin/anesthetic complexes and -DeltaC(p) are consistent with favorable solvent rearrangements that promote binding. This idea is supported by substitution of D(2)O for H(2)O that significantly reduces the favorable binding enthalpy observed for desflurane and isoflurane, with an opposing increase of DeltaS(obs). From these results, we infer that solvent restructuring, resulting from release of water weakly bound to anesthetic and anesthetic-binding sites, is a dominant and favorable contributor to the enthalpy and entropy of binding to proteins.
Sekula, Bartosz; Ciesielska, Anna; Rytczak, Przemyslaw; Koziołkiewicz, Maria; Bujacz, Anna
2016-07-01
Cyclic phosphatidic acids (cPAs) are naturally occurring, very active signalling molecules, which are involved in several pathological states, such as cancer, diabetes or obesity. As molecules of highly lipidic character found in the circulatory system, cPAs are bound and transported by the main extracellular lipid binding protein-serum albumin. Here, we present the detailed interactions between human serum albumin (HSA) and equine serum albumin (ESA) with a derivative of cPA, 1-O-myristoyl-sn-glycerol-2,3-cyclic phosphorodithioate (Myr-2S-cPA). Initial selection of the ligand used for the structural study was made by the analysis of the therapeutically promising properties of the sulfur containing analogues of cPA in respect to the unmodified lysophospholipids (LPLs). Substitution of one or two non-bridging oxygen atoms in the phosphate group with one or two sulfur atoms increases the cytotoxic effect of cPAs up to 60% on the human prostate cancer (PC) cells. Myr-2S-cPA reduces cancer cell viability in a dose-dependent manner, with IC50 value of 29.0 μM after 24 h incubation, which is almost 30% lower than IC50 of single substituted phosphorothioate cPA. Although, the structural homology between HSA and ESA is big, their crystal complexes with Myr-2S-cPA demonstrate significantly different mode of binding of this LPL analogue. HSA binds three molecules of Myr-2S-cPA, whereas ESA only one. Moreover, none of the identified Myr-2S-cPA binding sites overlap in both albumins. © 2016 The Author(s).
Maiti, Jyotirmay; Biswas, Suman; Chaudhuri, Ankur; Chakraborty, Sandipan; Chakraborty, Sibani; Das, Ranjan
2017-03-15
An environment sensitive fluorophore, 4-(5-(4-(dimethylamino)phenyl)oxazol-2-yl)benzoic acid (DMOBA), that closely mimics biologically active 2,5-disubstituited oxazoles has been designed to probe two homologous serum proteins, human serum albumin (HSA) and bovine serum albumin (BSA) by means of photophysical and molecular modeling studies. This fluorescent analogue exhibits solvent polarity sensitive fluorescence due to an intramolecular charge transfer in the excited state. In comparison to water, the steady state emission spectra of DMOBA in BSA is characterized by a greater blue shift (~10nm) and smaller Stokes' shift (~5980cm -1 ) in BSA than HSA (Stokes'shift~6600cm -1 ), indicating less polar and more hydrophobic environment of the dye in the former than the latter. The dye-protein binding interactions are remarkably stronger for BSA than HSA which is evident from higher value of the association constant for the DMOBA-BSA complex (K a ~5.2×10 6 M -1 ) than the DMOBA-HSA complex (K a ~1.0×10 6 M -1 ). Fӧrster resonance energy transfer studies revealed remarkably less efficient energy transfer (8%) between the donor tryptophans in BSA and the acceptor DMOBA dye than that (30%) between the single tryptophan moiety in HSA and the dye, which is consistent with a much larger distance between the donor (tryptophan)-acceptor (dye) pair in BSA (34.5Å) than HSA (25.4Å). Site specific competitive binding assays have confirmed on the location of the dye in Sudlow's site II of BSA and in Sudlow's site I of HSA, respectively. Molecular modeling studies have shown that the fluorescent analogue is tightly packed in the binding site of BSA due to strong steric complementarity, where, binding of DMOBA to BSA is primarily dictated by the van der Waals and hydrogen bonding interactions. In contrast, in HSA the steric complementarity is less significant and binding is primarily guided by polar interactions and van der Waals interactions appear to be less significant in the formation of the HSA-DMOBA complex. Electrostatic interactions contribute significantly in the binding of DMOBA to HSA (-2.09kcal/mol) compared to BSA (-0.47kcal/mol). Electrostatic surface potential calculation reveals that the DMOBA binding site within HSA is highly charged compared to BSA. Copyright © 2016 Elsevier B.V. All rights reserved.
Antibody neutralization of retargeted measles viruses
Lech, Patrycja J.; Pappoe, Roland; Nakamura, Takafumi; Tobin, Gregory J.; Nara, Peter L.; Russell, Stephen J.
2014-01-01
The measles virus (MV) vaccine lineage is a promising oncolytic but prior exposure to the measles vaccine or wild-type MV strains limits treatment utility due to the presence of anti-measles antibodies. MV entry can be redirected by displaying a polypeptide ligand on the Hemagglutinin (H) C-terminus. We hypothesized that retargeted MV would escape neutralization by monoclonal antibodies (mAbs) recognizing the H receptor-binding surface and be less susceptible to neutralization by human antisera. Using chimeric H proteins, with and without mutations that ablate MV receptor binding, we show that retargeted MVs escape mAbs that target the H receptor-binding surface by virtue of mutations that ablate infection via SLAM and CD46. However, C-terminally displayed domains do not mediate virus entry in the presence of human antibodies that bind to the underlying H domain. In conclusion, utility of retargeted oncolytic measles viruses does not extend to evasion of human serum neutralization. PMID:24725950
Identification of StARD3 as a Lutein-binding Protein in the Macula of the Primate Retina†
Li, Binxing; Vachali, Preejith; Frederick, Jeanne M.; Bernstein, Paul S.
2011-01-01
Lutein, zeaxanthin and their metabolites are the xanthophyll carotenoids that form the macular pigment of the human retina. Epidemiological evidence suggests that high levels of these carotenoids in the diet, serum and macula are associated with decreased risk of age-related macular degeneration (AMD), and the AREDS2 study is prospectively testing this hypothesis. Understanding the biochemical mechanisms underlying the selective uptakes of lutein and zeaxanthin into the human macula may provide important insights into the physiology of the human macula in health and disease. GSTP1 is the macular zeaxanthin-binding protein, but the identity of the human macular lutein-binding protein has remained elusive. Prior identification of the silkworm lutein-binding protein (CBP) as a member of the steroidogenic acute regulatory domain (StARD) protein family, and selective labeling of monkey photoreceptor inner segments by anti-CBP antibody provided an important clue toward identifying the primate retina lutein-binding protein. Homology of CBP to all 15 human StARD proteins was analyzed using database searches, western blotting and immunohistochemistry, and we here provide evidence to identify StARD3 (also known as MLN64) as a human retinal lutein-binding protein. Further, recombinant StARD3 selectively binds lutein with high affinity (KD = 0.45 micromolar) when assessed by surface plasmon resonance (SPR) binding assays. Our results demonstrate previously unrecognized, specific interactions of StARD3 with lutein and provide novel avenues to explore its roles in human macular physiology and disease. PMID:21322544
Zhang, Y; Suankratay, C; Zhang, X-H; Jones, D R; Lint, T F; Gewurz, H
1999-01-01
We previously reported that complement-dependent haemolysis of sheep erythrocytes (E) coated with mannan (M) and sensitized with human mannan-binding lectin (MBL) via the lectin pathway in man occurs in Mg-EGTA and requires alternative pathway amplification. Calcium was required for MBL binding to E-M, but once the E-M-MBL intermediate was formed, MBL was retained and haemolysis occurred in the absence of calcium. Comparable or greater lectin pathway haemolysis in the absence of calcium was observed upon incubation of E-M-MBL in guinea-pig, rat, dog and pig sera, and was further investigated in the guinea-pig, in which titres were much higher (∼14-fold) than in man, and in contrast to humans, greater than classical pathway haemolytic activity. As in human serum, no lysis was observed in C4- or C2-deficient guinea-pig serum until purified C4 or C2, respectively, were restored. However, lectin pathway haemolytic activity in the guinea-pig did not require the alternative pathway. Removal (>98%) of factor D activity by three sequential passages through Sephadex G-75, resulting in serum which retained a normal classical pathway but no alternative pathway haemolytic activity, did not reduce the ability of guinea-pig serum to mediate haemolysis via the lectin pathway. Further, the C3-convertase formed via the lectin pathway (E-M-MBL-C4,2) lysed in C2-deficient guinea-pig but not human serum chelated with EDTA, a condition which precludes alternative pathway amplification. Thus, lectin pathway haemolysis occurs efficiently in guinea-pig serum, in the absence of calcium and without requirement for alternative pathway amplification. The guinea-pig provides a model for studying the assembly and haemolytic function of a lectin pathway which contrasts with the lectin pathway of man, and allows for comparisons that may help clarify the role of this pathway in complement biology. PMID:10457224
NASA Astrophysics Data System (ADS)
Zhang, Yaheng; Li, Jiazhong; Dong, Lijun; Li, Ying; Chen, Xingguo
2008-10-01
In this study the interaction between esculin and human serum albumin (HSA) in AOT/isooctane/water microemulsions was studied for the first time using fluorescence quenching technique in combination with UV absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy and dynamic light scattering (DLS) technique. Fluorescence data in ω o 20 microemulsions revealed the presence of the binding site of esculin on HSA and its binding constants at four different temperatures were obtained. The affinities in microemulsions are similar to that in buffer solution. The alterations of protein secondary structure in the microemulsions in the absence and presence of esculin compared with the free form of HSA in buffer were qualitatively and quantitatively analyzed by the evidence from CD and FT-IR spectroscopes. The displacement experiments confirmed that esculin could bind to the site I of HSA, which was in agreement with the result of the molecular modeling study. Furthermore, the DLS data suggested that HSA may locate at the interface of the microemulsion and esculin could interact with them.
Effect of glycation on human serum albumin-zinc interaction: a biophysical study.
Iqbal, Sarah; Qais, Faizan Abul; Alam, Md Maroof; Naseem, Imrana
2018-05-01
Zinc deficiency is common in diabetes. However, the cause of this phenomenon is largely unknown. 80% of the absorbed zinc is transported through the blood in association with human serum albumin (HSA). Under persistent hyperglycemia, HSA frequently undergoes non-enzymatic glycation which can affect its structure and metal-binding function. Hence, in this study, we have examined the interaction of zinc with native and glycated HSA. The protein samples were incubated either in the presence or in the absence of physiologically elevated glucose concentration for 21 days. The samples were then analyzed for structural changes and zinc-binding ability using various spectrometric and calorimetric approaches. The study reveals changes in the three-dimensional structure of the protein upon glycation that cause local unfolding of the molecule. Most such regions are localized in subdomain IIA of HSA which plays a key role in zinc binding. This affects zinc interaction with HSA and could in part explain the perturbed zinc distribution in patients with hyperglycemia. The varying degree of HSA glycation in blood could explain the observed heterogeneity pertaining to zinc deficiency among people suffering from diabetes.
Yamamoto, Nobuto; Suyama, Hirofumi; Nakazato, Hiroaki; Yamamoto, Nobuyuki; Koga, Yoshihiko
2008-07-01
Serum vitamin D binding protein (Gc protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of colorectal cancer patients was lost or reduced because Gc protein is deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Deglycosylated Gc protein cannot be converted to MAF, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage-activating factor (GcMAF) ever discovered, but it produces no side effect in humans. Macrophages treated with GcMAF (100 microg/ml) develop an enormous variation of receptors and are highly tumoricidal to a variety of cancers indiscriminately. Administration of 100 nanogram (ng)/ human maximally activates systemic macrophages that can kill cancerous cells. Since the half-life of the activated macrophages is approximately 6 days, 100 ng GcMAF was administered weekly to eight nonanemic colorectal cancer patients who had previously received tumor-resection but still carried significant amounts of metastatic tumor cells. As GcMAF therapy progressed, the MAF precursor activities of all patients increased and conversely their serum Nagalase activities decreased. Since serum Nagalase is proportional to tumor burden, serum Nagalase activity was used as a prognostic index for time course analysis of GcMAF therapy. After 32-50 weekly administrations of 100 ng GcMAF, all colorectal cancer patients exhibited healthy control levels of the serum Nagalase activity, indicating eradication of metastatic tumor cells. During 7 years after the completion of GcMAF therapy, their serum Nagalase activity did not increase, indicating no recurrence of cancer, which was also supported by the annual CT scans of these patients.
Al Bittar, Sheiraz; Mora, Nathalie; Loonis, Michèle; Dangles, Olivier
2014-12-11
Polyhydroxylated flavylium ions, such as 3',4',7-trihydroxyflavylium chloride (P1) and its more water-soluble 7-O-β-d-glucopyranoside (P2), are readily accessible by chemical synthesis and suitable models of natural anthocyanins in terms of color and species distribution in aqueous solution. Owing to their catechol B-ring, they rapidly bind FeIII, weakly interact with FeII and promote its autoxidation to FeIII. Both pigments inhibit heme-induced lipid peroxidation in mildly acidic conditions (a model of postprandial oxidative stress in the stomach), the colorless (chalcone) forms being more potent than the colored forms. Finally, P1 and P2 are moderate ligands of human serum albumin (HSA), their likely carrier in the blood circulation, with chalcones having a higher affinity for HSA than the corresponding colored forms.
Wang, Gongke; Li, Xiang; Ding, Xuelian; Wang, Dongchao; Yan, Changling; Lu, Yan
2011-07-15
In this paper, binding interaction of 5-(ethoxycarbonyl)-6-methyl-4-(4-methoxyphenyl)-3,4-dihydropyrimidin-2(1H)-one (EMMD) with human serum albumin (HSA) under physiological conditions was investigated by using spectroscopy, isothermal titration calorimetry (ITC) and molecular modeling techniques. The results of spectroscopic studies suggested that EMMD have a strong ability to quench the intrinsic fluorescence of HSA through static quenching procedure. ITC investigations indicated that drug-protein complex was stabilized by hydrophobic forces and hydrogen bonds, which was consistent with the results of molecular modeling studies. Competitive experiments indicated the displacement of warfarin by EMMD, which revealed that the binding site of EMMD to HSA was located at subdomain IIA. Copyright © 2011 Elsevier B.V. All rights reserved.
Identification of C1q as a Binding Protein for Advanced Glycation End Products.
Chikazawa, Miho; Shibata, Takahiro; Hatasa, Yukinori; Hirose, Sayumi; Otaki, Natsuki; Nakashima, Fumie; Ito, Mika; Machida, Sachiko; Maruyama, Shoichi; Uchida, Koji
2016-01-26
Advanced glycation end products (AGEs) make up a heterogeneous group of molecules formed from the nonenzymatic reaction of reducing sugars with the free amino groups of proteins. The abundance of AGEs in a variety of age-related diseases, including diabetic complications and atherosclerosis, and their pathophysiological effects suggest the existence of innate defense mechanisms. Here we examined the presence of serum proteins that are capable of binding glycated bovine serum albumin (AGEs-BSA), prepared upon incubation of BSA with dehydroascorbate, and identified complement component C1q subcomponent subunit A as a novel AGE-binding protein in human serum. A molecular interaction analysis showed the specific binding of C1q to the AGEs-BSA. In addition, we identified DNA-binding regions of C1q, including a collagen-like domain, as the AGE-binding site and established that the amount of positive charge on the binding site was the determining factor. C1q indeed recognized several other modified proteins, including acylated proteins, suggesting that the binding specificity of C1q might be ascribed, at least in part, to the electronegative potential of the ligand proteins. We also observed that C1q was involved in the AGEs-BSA-activated deposition of complement proteins, C3b and C4b. In addition, the AGEs-BSA mediated the proteolytic cleavage of complement protein 5 to release C5a. These findings provide the first evidence of AGEs as a new ligand recognized by C1q, stimulating the C1q-dependent classical complement pathway.
Ripley-like serum and other anti-Rh sera in detection of Fc receptor-bearing human lymphocytes.
Maślanka, K; Zupańska, B
1981-04-01
Three anti-Rh sera useful for the EAhum test were found (one comparable to Ri serum). It was shown that the usefulness of anti-Rh sera for the EAhum test depends on the amount of anti-Rh antibodies absorbed onto red cells demonstrated in the manual antiglobulin test. It does not depend on the quality of antibodies and the ability of complement binding.
Interaction of Merocyanine 540 with serum albumins: photophysical and binding studies.
Banerjee, Mousumi; Pal, Uttam; Subudhhi, Arijita; Chakrabarti, Abhijit; Basu, Samita
2012-03-01
Photophysical studies on binding interactions of a negatively charged anti-tumor photosensitizer, Merocyanine 540 (MC 540), with serum proteins, bovine serum albumin (BSA) and human serum albumin (HSA), have been performed using absorption and steady-state as well as time-resolved fluorescence techniques. Formation of ground state complex has been confirmed from the detailed studies of absorption spectra of MC 540 in presence of SAs producing isosbestic points. Binding between the proteins and MC 540, which perturbs the existing equilibrium between the fluorescent monomer and its non-fluorescent dimer, induces a remarkable enhancement in fluorescence anisotropy and intensity of MC 540 along with a red shift of its maximum. The binding stoichiometry of MC 540 and SAs are more than 1.0 which depicts that two types of complexes, i.e., 1:1 and 2:1 are formed with addition of varied concentration of protein. Both the steady-state and time-resolved fluorescence results show that in 2:1 complex one of the MC 540 molecules is exposed towards aqueous environment with a greater extent when bound with HSA compared to BSA due to the structural flexibility of that protein. Thermodynamic analyses using van't Hoff plot indicate that the binding between MC 540 and individual SA is an entropy-driven phenomenon. The probable hydrophobic binding site has been located by denaturation of proteins, micropolarity measurement and Förster resonance energy transfer and that is further supported by molecular docking studies. Changes in circular dichroism spectra of BSA in presence of MC 540 depict secondary structural changes of the protein. The induced-CD shows that BSA due to its rigid structure generates chirality in MC 540 much more efficiently compared to HSA. Copyright © 2011 Elsevier B.V. All rights reserved.
Comparison and analysis on the serum-binding characteristics of aspirin-zinc complex and aspirin.
Zhang, Hua-Xin; Zhang, Qun; Wang, Hong-Lin; Li, Li-Wei
2017-09-01
This study was designed to compare the protein-binding characteristics of aspirin-zinc complex (AZN) with those of aspirin itself. AZN was synthesized and interacted with a model transport protein, human serum albumin (HSA). Three-dimensional fluorescence, ultraviolet-visible and circular dichroism (CD) spectra were used to characterize the interaction of AZN with HSA under physiological conditions. The interaction mechanism was explored using a fluorescence quenching method and thermodynamic calculation. The binding site and binding locality of AZN on HSA were demonstrated using a fluorescence probe technique and Förster non-radiation energy transfer theory. Synchronous fluorescence and CD spectra were employed to reveal the effect of AZN on the native conformation of the protein. The HSA-binding results for AZN were compared with those for aspirin under consistent experimental conditions, and indicated that aspirin acts as a guide in AZN when binding to Sudlow's site I, in subdomain IIA of the HSA molecule. Moreover, compared with aspirin, AZN showed greater observed binding constants with, but smaller changes in the α-helicity of, HSA, which proved that AZN might be easier to transport and have less toxicity in vivo. Copyright © 2017 John Wiley & Sons, Ltd.
Crystals of Human Serum Albumin for Use in Genetic Engineering and Rational Drug Design
NASA Technical Reports Server (NTRS)
Carter, Daniel C. (Inventor)
1994-01-01
This invention pertains to crystals of serum albumin and processes for growing them. The purpose of the invention is to provide crystals of serum albumin which can be studied to determine binding sites for drugs. Form 2 crystals grow in the monoclinic space P2(sub 1), and possesses the following unit cell constraints: a = 58.9 +/- 7, b = 88.3 +/- 7, c = 60.7 +/- 7, Beta = 101.0 +/- 2 degrees. One advantage of the invention is that it will allow rational drug design
NASA Astrophysics Data System (ADS)
Sulaiman, Saba A. J.; Kulathunga, H. Udani; Abou-Zied, Osama K.
2015-03-01
Fluorescein (FL) and some of its precursors have proven to be effective fluorescent tracers in pharmaceutical and medical applications owing to their high quantum yield of fluorescence in physiological conditions and their high membrane permeability. In order to protect FL from metabolic effects during the process of its delivery, human serum albumin (HSA) has been used as a carrier because of its compatibility with the human body. In the present work, we used spectroscopic methods to characterize the binding mechanisms of FL and one of its derivatives, 5(6)- carboxyfluorescein (CFL), in the HSA protein. The absorbance change of the two ligands (FL and CFL) was quantified as a function of the HSA concentration and the results indicate a moderate binding strength for the two ligands inside HSA (1.00 +/- 0.12 x 104 M-1). The quenching effect of FL(CFL) on the fluorescence intensity of W214 (the sole tryptophan in HSA) indicates that FL and CFL occupy Site I in the protein which is known to bind several hydrophobic drugs. By performing site-competitive experiments, the location of the ligands is determined to be similar to that of the anticoagulant drug warfarin. At higher ratios of [ligand]/[HSA], we observed an upward curvature in the Stern-Volmer plots which indicates that the ligands occupy more pockets in Site I, close to W214. Our results indicate that both ligands bind in HSA with a moderate strength that should not affect their release when used as fluorescent reporters. The chemical and physical identities of the two ligands are also preserved inside the HSA binding sites.
Valko, Klara; Nunhuck, Shenaz; Bevan, Chris; Abraham, Michael H; Reynolds, Derek P
2003-11-01
A fast gradient HPLC method (cycle time 15 min) has been developed to determine Human Serum Albumin (HSA) binding of discovery compounds using chemically bonded protein stationary phases. The HSA binding values were derived from the gradient retention times that were converted to the logarithm of the equilibrium constants (logK HSA) using data from a calibration set of molecules. The method has been validated using literature plasma protein binding data of 68 known drug molecules. The method is fully automated, and has been used for lead optimization in more than 20 company projects. The HSA binding data obtained for more than 4000 compounds were suitable to set up global and project specific quantitative structure binding relationships that helped compound design in early drug discovery. The obtained HSA binding of known drug molecules were compared to the Immobilized Artificial Membrane binding data (CHI IAM) obtained by our previously described HPLC-based method. The solvation equation approach has been used to characterize the normal binding ability of HSA, and this relationship shows that compound lipophilicity is a significant factor. It was found that the selectivity of the "baseline" lipophilicity governing HSA binding, membrane interaction, and octanol/water partition are very similar. However, the effect of the presence of positive or negative charges have very different effects. It was found that negatively charged compounds bind more strongly to HSA than it would be expected from the lipophilicity of the ionized species at pH 7.4. Several compounds showed stronger HSA binding than can be expected from their lipophilicity alone, and comparison between predicted and experimental binding affinity allows the identification of compounds that have good complementarities with any of the known binding sites. Copyright 2003 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 92:2236-2248, 2003
Jalalvand, Ali R; Ghobadi, Sirous; Goicoechea, Hector C; Gu, Hui-Wen; Sanchooli, Esmael
2018-05-16
In this work, voltammetric data recorded at a glassy carbon electrode (GCE) were separately used to investigate the interactions of entacapone (Comtan, CAT) with human serum albumin (HSA). Then, an augmented data matrix was constructed by the combination of voltammetric and spectroscopic data and simultaneously analysed by multivariate curve resolution-alternating least squares (MCR-ALS) to obtain more information about CAT-HSA interactions. The absence of rotational ambiguities in results obtained by MCR-ALS was verified with the help of MCR-BANDS and we confirmed that the results were unambiguous and reliable. Binding of CAT to HSA was also modeled by molecular docking and the results were compatible with those of obtained by recording experimental data. Hard-modeling of combined voltammetric and spectroscopic data by EQUISPEC as an efficient chemometric algorithm helped us to compute binding constant of CAT-HSA complex specie which was in a good agreement with the binding constant value obtained by direct analysis of experimental data. For electrochemical sensing of serum albumin two amperometric measurements were performed to determine HSA in 2-27 nM and 27-70 nM with a limit of detection of 0.51 nM and a sensitivity of 1.84 μA nM -1 . Copyright © 2017 Elsevier B.V. All rights reserved.
Strzelak, Kamil; Rybkowska, Natalia; Wiśniewska, Agnieszka; Koncki, Robert
2017-12-01
The Multicommutated Flow Analysis (MCFA) system for the estimation of clinical iron parameters: Serum Iron (SI), Unsaturated Iron Binding Capacity (UIBC) and Total Iron Binding Capacity (TIBC) has been proposed. The developed MCFA system based on simple photometric detection of iron with chromogenic agent (ferrozine) enables a speciation of transferrin (determination of free and Fe-bound protein) in human serum. The construction of manifold was adapted to the requirements of measurements under changing conditions. In the course of studies, a different effect of proteins on SI and UIBC determination has been proven. That was in turn the reason to perform two kinds of calibration methods. For measurements in acidic medium for SI/holotransferrin determination, the calibration curve method was applied, characterized by limit of determination and limit of quantitation on the level of 3.4 μmol L -1 and 9.1 μmol L -1 , respectively. The determination method for UIBC parameter (related to apotransferrin level) in physiological medium of pH 7.4 forced the use of standard addition method due to the strong influence of proteins on obtaining analytical signals. These two different methodologies, performed in the presented system, enabled the estimation of all three clinical iron/transferrin parameters in human serum samples. TIBC corresponding to total transferrin level was calculated as a sum of SI and UIBC. Copyright © 2017 Elsevier B.V. All rights reserved.
Garro, AG; Beltramo, DM; Alasino, RV; Leonhard, V; Heredia, V; Bianco, ID
2011-01-01
Background: We report herein a novel strategy for the preparation of protein-based nanode-livery vehicles for hydrophobic active pharmaceutical ingredients. Methods: The procedure consisted of three steps, ie, exposure of hydrophobic residues of a protein to a pH-induced partial unfolding: interaction between hydrophobic residues on the protein and the hydrophobic active pharmaceutical ingredient, and a final step where the structure of the protein was reversed to a native-like state by returning to neutral pH. As proof of concept, the interaction of paclitaxel with partially unfolded states of human serum albumin was evaluated as a potential method for the preparation of water-soluble complexes of the taxane with albumin. Results: We found that paclitaxel readily binds to pH-induced partially unfolded albumin, leading to the formation of optically clear water-soluble complexes. The complexes thus formed were more stable in solution when the albumin native state was at least partially restored by neutralization of the solution to a pH around 7. It was also observed that the hydrodynamic radius of human serum albumin was only slightly increased after the cycle of pH changes, remaining in a monomeric state with a size according to paclitaxel binding. Furthermore, paclitaxel binding did not affect the overall exposure of charged groups of human serum albumin, as evaluated by its interaction with an ionic exchange resin. Conclusion: The in vitro biological activity of the complexes formed was qualitatively equivalent to that of a Cremophor®-based formulation. PMID:21822381
Yang, Hongqin; Huang, Yanmei; He, Jiawei; Li, Shanshan; Tang, Bin; Li, Hui
2016-09-15
In this study, lafutidine (LAF) was used as a model compound to investigate the binding mechanism between antiulcer drugs and human serum albumin (HSA) through various techniques, including STD-NMR, WaterLOGSY-NMR, (1)H NMR relaxation times, tr-NOESY, molecule docking calculation, FT-IR spectroscopy, and CD spectroscopy. The analyses of STD-NMR, which derived relative STD (%) intensities, and WaterLOGSY-NMR, determined that LAF bound to HSA. In particular, the pyridyl group of LAF was in close contact with HSA binding pocket, whereas furyl group had a secondary binding. Competitive STD-NMR and WaterLOGSY-NMR experiments, with warifarin and ibuprofen as site-selective probes, indicated that LAF preferentially bound to site II in the hydrophobic subdomains IIIA of HSA. The bound conformation of LAF at the HSA binding site was further elucidated by transferred NOE effect (tr-NOESY) experiment. Relaxation experiments provided quantitative information about the relationship between the affinity and structure of LAF. The molecule docking simulations conducted with AutoDock and the restraints derived from STD results led to three-dimensional models that were consistent with the NMR spectroscopic data. The presence of hydrophobic forces and hydrogen interactions was also determined. Additionally, FT-IR and CD spectroscopies showed that LAF induced secondary structure changes of HSA. Copyright © 2016 Elsevier Inc. All rights reserved.
Vignesh, G; Sugumar, K; Arunachalam, S; Vignesh, S; Arthur James, R; Arun, R; Premkumar, K
2016-03-01
The interaction of surfactant-cobalt(III) complexes [Co(bpy)(dien)TA](ClO4)3 · 3H2O (1) and [Co(dien)(phen)TA](ClO4)3 · 4H2O (2), where bpy = 2,2'-bipyridine, dien = diethylenetriamine, phen = 1,10-phenanthroline and TA = tetradecylamine with human serum albumin (HSA) under physiological conditions was analyzed using steady state, synchronous, 3D fluorescence, UV/visabsorption and circular dichroism spectroscopic techniques. The results show that these complexes cause the fluorescence quenching of HSA through a static mechanism. The binding constant (Kb ) and number of binding-sites (n) were obtained at different temperatures. The corresponding thermodynamic parameters (∆G°, ∆H° and ∆S°) and Ea were also obtained. According to Förster's non-radiation energy transfer theory, the binding distance (r) between the complexes and HSA were calculated. The results of synchronous and 3D fluorescence spectroscopy indicate that the binding process has changed considerably the polarity around the fluorophores, along with changes in the conformation of the protein. The antimicrobial and anticancer activities of the complexes were tested and the results show that the complexes have good activities against pathogenic microorganisms and cancer cells. Copyright © 2015 John Wiley & Sons, Ltd.
Raza, Muslim; Jiang, Yang; Wei, Yun; Ahmad, Aftab; Khan, Ajmal; Qipeng, Yuan
2017-09-01
The study of molecular interactions of drug-protein are extremely important from the biological aspect in all living organisms, and therefore such type of investigation hold a tremendous significance in rational drug design and discovery. In the present study, the molecular interactions between paromomycin (PAR) and human serum albumin (HSA) have been studied by different biophysical techniques and validated by in-silico approaches. The results obtained from Ultraviolet-visible spectroscopy (UV) and Fourier transform infrared spectroscopy (FT-IR) demonstrated a remarkable change upon the complexation of PAR with HSA. Circular Dichroism (CD), Dynamic Light Scattering (DLS) and Resonance Rayleigh scattering (RRS) results revealed a significant secondary structure alteration and reduction of hydrodynamic radii upon the conjugation of PAR with HSA. The fluorescence spectroscopy results also apparently revealed the static quenching mechanism. The number of binding sites, binding constants, and Gibbs free energy values were calculated to illustrate the nature of intermolecular interactions. Similarly, the in-silico docking and molecular dynamics simulation clearly explain the theoretical basis of the binding mechanism of PAR with HSA. The experimental and docking approaches suggested that PAR binds to the hydrophobic cavity site I of HSA. The finding of present investigation will provide binding insight of PAR and associated alterations in the stability and conformation of HSA. Copyright © 2017 Elsevier B.V. All rights reserved.
Binding of mitomycin C to blood proteins: A spectroscopic analysis and molecular docking
NASA Astrophysics Data System (ADS)
Jang, Jongchol; Liu, Hui; Chen, Wei; Zou, Guolin
2009-06-01
Mitomycin C (MMC) was the first recognized bioreductive alkylating agent, and has been widely used clinically for antitumor therapy. The binding of MMC to two human blood proteins, human serum albumin (HSA) and human hemoglobin (HHb), have been investigated by fluorescence quenching, synchronous fluorescence, circular dichroism (CD) spectroscopy and molecular docking methods. The fluorescence data showed that binding of MMC to proteins caused strong fluorescence quenching of proteins through a static quenching way, and each protein had only one binding site for the drug. The binding constants of MMC to HSA and HHb at 298 K were 2.71 × 10 4 and 2.56 × 10 4 L mol -1, respectively. Thermodynamic analysis suggested that both hydrophobic interaction and hydrogen bonding played major roles in the binding of MMC to HSA or HHb. The CD spectroscopy indicated that the secondary structures of the two proteins were not changed in the presence of MMC. The study of molecular docking showed that MMC was located in the entrance of site I of HSA, and in the central cavity of HHb.
Giri, Jyotsnendu; Diallo, Mamadou S; Simpson, André J; Liu, Yi; Goddard, William A; Kumar, Rajeev; Woods, Gwen C
2011-05-24
The interactions of nanomaterials with plasma proteins have a significant impact on their in vivo transport and fate in biological fluids. This article discusses the binding of human serum albumin (HSA) to poly(amidoamine) [PAMAM] dendrimers. We use protein-coated silica particles to measure the HSA binding constants (K(b)) of a homologous series of 19 PAMAM dendrimers in aqueous solutions at physiological pH (7.4) as a function of dendrimer generation, terminal group, and core chemistry. To gain insight into the mechanisms of HSA binding to PAMAM dendrimers, we combined (1)H NMR, saturation transfer difference (STD) NMR, and NMR diffusion ordered spectroscopy (DOSY) of dendrimer-HSA complexes with atomistic molecular dynamics (MD) simulations of dendrimer conformation in aqueous solutions. The binding measurements show that the HSA binding constants (K(b)) of PAMAM dendrimers depend on dendrimer size and terminal group chemistry. The NMR (1)H and DOSY experiments indicate that the interactions between HSA and PAMAM dendrimers are relatively weak. The (1)H NMR STD experiments and MD simulations suggest that the inner shell protons of the dendrimers groups interact more strongly with HSA proteins. These interactions, which are consistently observed for different dendrimer generations (G0-NH(2)vs G4-NH(2)) and terminal groups (G4-NH(2)vs G4-OH with amidoethanol groups), suggest that PAMAM dendrimers adopt backfolded configurations as they form weak complexes with HSA proteins in aqueous solutions at physiological pH (7.4).
Li, Xiangrong; Chen, Dejun; Wang, Gongke; Lu, Yan
2015-02-25
Albumin represents a very abundant and important circulating antioxidant in plasma. DPPH radical is also called 2,2-diphenyl-1-picrylhydrazyl. It has been widely used for measuring the efficiency of antioxidants. In this paper, the ability of human serum albumin (HSA) to scavenge DPPH radical was investigated using UV-vis absorption spectra. The interaction between HSA and DPPH was investigated in the absence and presence of eight popular antioxidants using fluorescence spectroscopy. These results indicate the antioxidant activity of HSA against DPPH radical is similar to glutathione and the value of IC50 is 5.200×10(-5) mol L(-1). In addition, the fluorescence experiments indicate the quenching mechanism of HSA, by DPPH, is a static process. The quenching process of DPPH with HSA is easily affected by the eight antioxidants, however, they cannot change the quenching mechanism of DPPH with HSA. The binding of DPPH to HSA primarily takes place in subdomain IIA and exists two classes of binding sites with two different interaction behaviors. The decreased binding constants and the number of binding sites of DPPH with HSA by the introduction of the eight antioxidants may result from the competition of the eight antioxidants and DPPH binding to HSA. The binding of DPPH to HSA may induce the micro-environment of the lone Trp-214 from polar to slightly nonpolar. Copyright © 2014 Elsevier B.V. All rights reserved.
Poureshghi, Fatemeh; Ghandforoushan, Parisa; Safarnejad, Azam; Soltani, Somaieh
2017-01-01
Lamotrigine (an epileptic drug) interaction with human serum albumin (HSA) was investigated by fluorescence, UV-Vis, FTIR, CD spectroscopic techniques, and molecular modeling methods. Binding constant (K b ) of 5.74×10 3 and number of binding site of 0.97 showed that there is a slight interaction between lamotrigine and HSA. Thermodynamic studies was constructed using the flourimetric titrations in three different temperatures and the resulted data used to calculate the parameters using Vant Hoff equation. Decreased Stern Volmer quenching constant by enhanced temperature revealed the static quenching mechanism. Negative standard enthalpy (ΔH) and standard entropy (ΔS) changes indicated that van der Waals interactions and hydrogen bonds were dominant forces which facilitate the binding of Lamotrigine to HSA, the results were confirmed by molecular docking studies which showed no hydrogen binding. The FRET studies showed that there is a possibility of energy transfer between Trp214 and lamotrigine. Also the binding of lamotrigine to HSA in the studied concentrations was not as much as many other drugs, but the secondary structure of the HSA was significantly changed following the interaction in a way that α-helix percentage was reduced from 67% to 57% after the addition of lamotrigine in the molar ratio of 4:1 to HSA. According to the docking studies, lamotrigine binds to IB site preferably. Copyright © 2016. Published by Elsevier B.V.
The hydroxyl-functionalized magnetic particles for purification of glycan-binding proteins.
Sun, Xiuxuan; Yang, Ganglong; Sun, Shisheng; Quan, Rui; Dai, Weiwei; Li, Bin; Chen, Chao; Li, Zheng
2009-12-01
Glycan-protein interactions play important biological roles in biological processes. Although there are some methods such as glycan arrays that may elucidate recognition events between carbohydrates and protein as well as screen the important glycan-binding proteins, there is a lack of simple effectively separate method to purify them from complex samples. In proteomics studies, fractionation of samples can help to reduce their complexity and to enrich specific classes of proteins for subsequent downstream analyses. Herein, a rapid simple method for purification of glycan-binding proteins from proteomic samples was developed using hydroxyl-coated magnetic particles coupled with underivatized carbohydrate. Firstly, the epoxy-coated magnetic particles were further hydroxyl functionalized with 4-hydroxybenzhydrazide, then the carbohydrates were efficiently immobilized on hydroxyl functionalized surface of magnetic particles by formation of glycosidic bond with the hemiacetal group at the reducing end of the suitable carbohydrates via condensation. All conditions of this method were optimized. The magnetic particle-carbohydrate conjugates were used to purify the glycan-binding proteins from human serum. The fractionated glycan-binding protein population was displayed by SDS-PAGE. The result showed that the amount of 1 mg magnetic particles coupled with mannose in acetate buffer (pH 5.4) was 10 micromol. The fractionated glycan-binding protein population in human serum could be eluted from the magnetic particle-mannose conjugates by 0.1% SDS. The methodology could work together with the glycan microarrays for screening and purification of the important GBPs from complex protein samples.
Martel, Jan; Wu, Cheng-Yeu; Hung, Cheng-Yu; Wong, Tsui-Yin; Cheng, Ann-Joy; Cheng, Mei-Ling; Shiao, Ming-Shi; Young, John D
2016-03-14
Nanoparticles entering the human body instantly become coated with a "protein corona" that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an "organic corona" containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body.
Elucidation of the binding mechanism of coumarin derivatives with human serum albumin.
Garg, Archit; Manidhar, Darla Mark; Gokara, Mahesh; Malleda, Chandramouli; Suresh Reddy, Cirandur; Subramanyam, Rajagopal
2013-01-01
Coumarin is a benzopyrone which is widely used as an anti-coagulant, anti-oxidant, anti-cancer and also to cure arthritis, herpes, asthma and inflammation. Here, we studied the binding of synthesized coumarin derivatives with human serum albumin (HSA) at physiological pH 7.2 by using fluorescence spectroscopy, circular dichroism spectroscopy, molecular docking and molecular dynamics simulation studies. By addition of coumarin derivatives to HSA the maximum fluorescence intensity was reduced due to quenching of intrinsic fluorescence upon binding of coumarin derivatives to HSA. The binding constant and free energy were found to be 1.957±0.01×10(5) M(-1), -7.175 Kcal M(-1) for coumarin derivative (CD) enamide; 0.837±0.01×10(5) M(-1), -6.685 Kcal M(-1) for coumarin derivative (CD) enoate, and 0.606±0.01×10(5) M(-1), -6.49 Kcal M(-1) for coumarin derivative methylprop (CDM) enamide. The CD spectroscopy showed that the protein secondary structure was partially unfolded upon binding of coumarin derivatives. Further, the molecular docking studies showed that coumarin derivatives were binding to HSA at sub-domain IB with the hydrophobic interactions and also with hydrogen bond interactions. Additionally, the molecular dynamics simulations studies contributed in understanding the stability of protein-drug complex system in the aqueous solution and the conformational changes in HSA upon binding of coumarin derivatives. This study will provide insights into designing of the new inspired coumarin derivatives as therapeutic agents against many life threatening diseases.
In Silico Analyses of Substrate Interactions with Human Serum Paraoxonase 1
2008-01-01
substrate interactions of HuPON1 remains elusive. In this study, we apply homology modeling, docking, and molecular dynamic (MD) simulations to probe the...mod- eling; docking; molecular dynamics simulations ; binding free energy decomposition. 486 PROTEINS Published 2008 WILEY-LISS, INC. yThis article is a...apply homology modeling, docking, and molecular dynamic (MD) simulations to probe the binding interactions of HuPON1 with representative substrates. The
Tronina, Tomasz; Strugała, Paulina; Popłoński, Jarosław; Włoch, Aleksandra; Sordon, Sandra; Bartmańska, Agnieszka; Huszcza, Ewa
2017-07-21
The synthesis of different classes of prenylated aglycones (α,β-dihydroxanthohumol ( 2 ) and ( Z )-6,4'-dihydroxy-4-methoxy-7-prenylaurone ( 3 )) was performed in one step reactions from xanthohumol ( 1 )-major prenylated chalcone naturally occurring in hops. Obtained flavonoids ( 2 - 3 ) and xanthohumol ( 1 ) were used as substrates for regioselective fungal glycosylation catalyzed by two Absidia species and Beauveria bassiana . As a result six glycosides ( 4 - 9 ) were formed, of which four glycosides ( 6 - 9 ) have not been published so far. The influence of flavonoid skeleton and the presence of glucopyranose and 4- O -methylglucopyranose moiety in flavonoid molecule on binding to main protein in plasma, human serum albumin (HSA), and inhibition of cyclooxygenases COX-1 and COX-2 were investigated. Results showed that chalcone ( 1 ) had the highest binding affinity to HSA (8.624 × 10⁴ M -1 ) of all tested compounds. It has also exhibited the highest inhibition of cyclooxygenases activity, and it was a two-fold stronger inhibitor than α,β-dihydrochalcone ( 2 ) and aurone ( 3 ). The presence of sugar moiety in flavonoid molecule caused the loss of HSA binding activity as well as the decrease in inhibition of cyclooxygenases activity.
Femtosecond studies of protein-ligand hydrophobic binding and dynamics: human serum albumin.
Zhong, D; Douhal, A; Zewail, A H
2000-12-19
In this contribution, we report studies of the nature of the dynamics and hydrophobic binding in protein-ligand complexes of human serum albumin with 2-(2'-hydroxyphenyl)-4-methyloxazole. With femtosecond time resolution, we examined the orientational motion of the ligand, its intrinsic nuclear motions, and the lifetime changes in the hydrophobic phase. For comparisons, with similar but chemical nanocavities, we also studied the same ligand in micelles and cyclodextrins. The hydrophobic interactions in the binding crevice are much stronger than those observed in cyclodextrins and micelles. The confined geometry restrains the nonradiative decay and significantly lengthens the excited-state lifetime. The observed dynamics over the femtosecond-to-nanosecond time scale indicate that the binding structure is rigid and the local motions of the ligand are nearly "frozen" in the protein. Another major finding is the elucidation of the directed dynamics by the protein. Proton transfer and intramolecular twisting of 2-(2'-hydroxyphenyl)-4-methyloxazole were observed to evolve along two routes: one involves the direct stretching motion in the molecular plane (approximately 200 fs) and is not sensitive to the environment; the second, less dominant, is related to the twisting motion (approximately 3 ps) of the two heterocyclic rings and drastically slows down in the protein hydrophobic pocket.
Thrombopoietin has a differentiative effect on late-stage human erythropoiesis.
Liu, W; Wang, M; Tang, D C; Ding, I; Rodgers, G P
1999-05-01
To further explore the mechanism of the effect of thrombopoietin (TPO) on erythropoiesis, we used a two-phase culture system to investigate the effect of TPO on late-stage human erythroid lineage differentiation. In serum-free suspension and semisolid cultures of human peripheral blood derived erythroid progenitors, TPO alone did not produce benzidine-positive cells. However, in serum-containing culture, TPO alone stimulated erythroid cell proliferation and differentiation, demonstrated by erythroid colony formation, production of benzidine-positive cells and haemoglobin (Hb) synthesis. Monoclonal anti-human erythropoietin antibody and anti-human erythropoietin receptor antibody completely abrogated the erythroid differentiative ability of TPO in the serum-containing systems. This implied that binding of EPO and EPO-R was essential for erythropoiesis and the resultant signal transduction may be augmented by the signals emanating from TPO-c-Mpl interaction. Experiment of withdrawal of TPO further demonstrated the involvement of TPO in late-stage erythropoiesis. RT-PCR results showed that there was EPO-R but not c-Mpl expression on developing erythroblasts induced by TPO in serum-containing system. Our results establish that TPO affects not only the proliferation of erythroid progenitors but also the differentiation of erythroid progenitors to mature erythroid cells.
NASA Astrophysics Data System (ADS)
Chen, Tingting; Cao, Hui; Zhu, Shajun; Lu, Yapeng; Shang, Yanfang; Wang, Miao; Tang, Yanfeng; Zhu, Li
2011-10-01
The studies on the interaction between HSA and drugs have been an interesting research field in life science, chemistry and clinical medicine. There are also many metal ions present in blood plasma, thus the research about the effect of metal ions on the interaction between drugs and plasma proteins is crucial. In this study, the interaction of Salvianolic acid B (Sal B) with human serum albumin (HSA) was investigated by the steady-state, synchronous fluorescence and circular dichroism (CD) spectroscopies. The results showed that Sal B had a strong ability to quench the intrinsic fluorescence of HSA through a static quenching mechanism. Binding parameters calculated showed that Sal B was bound to HSA with the binding affinities of 10 5 L mol -1. The thermodynamic parameters studies revealed that the binding was characterized by positive enthalpy and positive entropy changes, and hydrophobic interactions were the predominant intermolecular forces to stabilize the complex. The specific binding distance r (2.93 nm) between donor (HSA) and acceptor (Sal B) was obtained according to Förster non-radiative resonance energy transfer theory. The synchronous fluorescence experiment revealed that Sal B cannot lead to the microenvironmental changes around the Tyr and Trp residues of HSA, and the binding site of Sal B on HSA is located in hydrophobic cavity of subdomain IIA. The CD spectroscopy indicated the secondary structure of HSA is not changed in the presence of Sal B. Furthermore, The effect of metal ions (e.g. Zn 2+, Cu 2+, Co 2+, Ni 2+, Fe 3+) on the binding constant of Sal B-HSA complex was also discussed.
Kiefer, Jonathan D.; Srinivas, Raja R.; Lobner, Elisabeth; Tisdale, Alison W.; Mehta, Naveen K.; Yang, Nicole J.; Tidor, Bruce; Wittrup, K. Dane
2016-01-01
The Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus is an attractive binding scaffold because of its small size (7 kDa), high thermal stability (Tm of 98 °C), and absence of cysteines and glycosylation sites. However, as a DNA-binding protein, Sso7d is highly positively charged, introducing a strong specificity constraint for binding epitopes and leading to nonspecific interaction with mammalian cell membranes. In the present study, we report charge-neutralized variants of Sso7d that maintain high thermal stability. Yeast-displayed libraries that were based on this reduced charge Sso7d (rcSso7d) scaffold yielded binders with low nanomolar affinities against mouse serum albumin and several epitopes on human epidermal growth factor receptor. Importantly, starting from a charge-neutralized scaffold facilitated evolutionary adaptation of binders to differentially charged epitopes on mouse serum albumin and human epidermal growth factor receptor, respectively. Interestingly, the distribution of amino acids in the small and rigid binding surface of enriched rcSso7d-based binders is very different from that generally found in more flexible antibody complementarity-determining region loops but resembles the composition of antibody-binding energetic hot spots. Particularly striking was a strong enrichment of the aromatic residues Trp, Tyr, and Phe in rcSso7d-based binders. This suggests that the rigidity and small size of this scaffold determines the unusual amino acid composition of its binding sites, mimicking the energetic core of antibody paratopes. Despite the high frequency of aromatic residues, these rcSso7d-based binders are highly expressed, thermostable, and monomeric, suggesting that the hyperstability of the starting scaffold and the rigidness of the binding surface confer a high tolerance to mutation. PMID:27582495
Dömötör, Orsolya; Pelivan, Karla; Borics, Attila; Keppler, Bernhard K; Kowol, Christian R; Enyedy, Éva A
2018-05-30
Binding interactions between human serum albumin (HSA) and four approved epidermal growth factor receptor (EGFR) inhibitors gefitinib (GEF), erlotinib (ERL), afatinib (AFA), osimertinib (OSI), as well as the experimental drug KP2187, were investigated by means of spectrofluorometric and molecular modelling methods. Steady-state and time resolved spectrofluorometric techniques were carried out, including direct quenching of protein fluorescence and site marker displacement measurements. Proton dissociation processes and solvent dependent fluorescence properties were investigated as well. The EGFR inhibitors were predominantly presented in their single protonated form (HL + ) at physiological pH except ERL, which is charge-neutral. Significant solvent dependent fluorescence properties were found for GEF, ERL and KP2187, namely their emission spectra show strong dependence on the polarity and the hydrogen bonding ability of the solvents. The inhibitors proved to be bound at site I of HSA (in subdomain IIA) in a weak-to-moderate fashion (logK' 3.9-4.9) using spectrofluorometry. OSI (logK' 4.3) and KP2187 can additionally bind in site II (in subdomain IIIA), while GEF, ERL and AFA clearly show no interaction here. Docking methods qualitatively confirmed binding site preferences of compounds GEF and KP2187, and indicated that they probably bind to HSA in their neutral forms. Binding constants calculated on the basis of the various experimental data indicate a weak-to-moderate binding on HSA, only OSI exhibits somewhat higher affinity towards this protein. However, model calculations performed at physiological blood concentrations of HSA resulted in high (ca. 90%) bound fractions for the inhibitors, highlighting the importance of plasma protein binding. Copyright © 2018 Elsevier B.V. All rights reserved.
Jackson, Abby J.; Anguizola, Jeanethe; Pfaunmiller, Erika L.; Hage, David S.
2013-01-01
Protein entrapment and high-performance affinity chromatography were used with zonal elution to examine the changes in binding that occurred for site-specific probes and various sulfonylurea drugs with normal and glycated forms of human serum albumin (HSA). Samples of this protein in a soluble form were physically entrapped within porous silica particles by using glycogen-capped hydrazide-activated silica; these supports were then placed into 1.0 cm × 2.1 mm inner diameter columns. Initial zonal elution studies were performed using (R)-warfarin and L-tryptophan as probes for Sudlow sites I and II (i.e., the major drug binding sites of HSA), giving quantitative measures of binding affinities in good agreement with literature values. It was also found for solutes with multisite binding to the same proteins, such as many sulfonylurea drugs, that this method could be used to estimate the global affinity of the solute for the entrapped protein. This entrapment and zonal approach provided retention information with precisions of ±0.1–3.3% (± one standard deviation) and elution within 0.50–3.00 min for solutes with binding affinities of 1 × 104–3 × 105 M−1. Each entrapped-protein column was used for many binding studies, which decreased the cost and amount of protein needed per injection (e.g., the equivalent of only 125–145 pmol of immobilized HSA or glycated HSA per injection over 60 sample application cycles). This method can be adapted for use with other proteins and solutes and should be valuable in high-throughput screening or quantitative studies of drug–protein binding or related biointeractions. PMID:23657448
Loeffler, David A; Klaver, Andrea C
2017-11-01
Specific antibody concentrations are frequently measured in serum (and plasma and intravenous immunoglobulin) samples by enzyme-linked immunosorbent assay (ELISA). The standard negative control involves incubation of buffer alone on antigen-coated wells. The immunoreactivity that develops in antigen-coated wells in which diluted serum has been incubated is assumed to represent specific antibody binding. This approach can result in marked overestimation of specific antibody levels, because serum contains specific polyvalent antibodies which bind, primarily with low affinity, to multiple antigens (including those on ELISA plates) despite the use of blocking agents. Non-denaturing purification of serum IgG, followed by assessment of the antigen binding or antigen-binding affinity of this purified IgG, can reduce but not eliminate the problem of polyvalent antibody binding in indirect ELISAs. Alternatively, polyvalent antibody binding can be estimated by incubating a diluted serum sample on wells coated with an irrelevant protein (such as bovine serum albumin or a scrambled peptide sequence) or buffer alone, then subtracting this reactivity from the sample's binding to wells coated with the antigen of interest. Polyvalent binding of immunoglobulins must be accounted for in order to obtain accurate ELISA measurements of serum, plasma, or intravenous immunoglobulin antibodies. Copyright © 2017 Elsevier B.V. All rights reserved.
Ntumngia, Francis B; Thomson-Luque, Richard; Galusic, Sandra; Frato, Gabriel; Frischmann, Sarah; Peabody, David S; Chackerian, Bryce; Ferreira, Marcelo U; King, Christopher L; Adams, John H
2018-05-07
Erythrocyte invasion by malaria parasites is essential for blood-stage development. Consequently, parasite proteins critically involved in erythrocyte invasion such as the Plasmodium vivax reticulocyte-binding proteins (RBPs) that mediate preferential invasion of reticulocytes are considered potential vaccine targets. Thus, targeting the RBPs could prevent blood-stage infection and disease. The RBPs are large and little is known about their functional domains and whether individuals naturally exposed to P. vivax acquire binding-inhibitory antibodies to these critical binding regions. This study aims at functionally and immunologically characterize Plasmodium vivax RBP1a. Recombinant proteins of overlapping fragments of RBP1a were used to determine binding specificity to erythrocytes and immunogenicity in laboratory animals. Naturally-acquired antibody response to these proteins was evaluated using serum samples from individuals in endemic regions. The N-terminal extracellular region, RBP1157-650 (RBP1:F8) was determined to bind both reticulocytes and normocytes, with a preference for immature reticulocytes. Antibodies elicited against rRBP1:F8 blocked RBP1:F8-erythrocyte binding. Naturally-acquired anti-RBP1 binding-inhibitory antibodies were detected in serum of P. vivax exposed-individuals from Papua New Guinea and Brazil. Recombinant RBP1:F8 binds human erythrocytes, elicits artificially-induced functional blocking antibodies and is a target of naturally acquired binding-inhibitory antibodies.
Granoff, Dan M.; Giuntini, Serena; Gowans, Flor A.; Lujan, Eduardo; Sharkey, Kelsey; Beernink, Peter T.
2016-01-01
Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens. PMID:27668287
NASA Astrophysics Data System (ADS)
Seedher, N.; Kanojia, M.
2013-11-01
Glycosylation decreases the association constant values and hence the binding affinity of human serum albumin (HSA) for the antidiabetic drugs under study. The percentage of HAS-bound drug at physiological temperature was only about 21-38 % as compared to 46-74 % for non-glycosylated HSA. Thus the percentage of free drug available for an antihyperglycemic effect was about double (62-79 %) compared to the values for non-glycosylated HSA. Much higher free drug concentrations available for pharmacological effect can lead to the risk of hypoglycemia. Hydrophobic interactions were predominantly involved in the binding. In the binding of gliclazide, hydrogen bonding and electrostatic interactions were involved. Site specificity for glycosylated HSA was the same as that for non-glycosylated HSA; gliclazide and repaglinide bind only at site II whereas glimepiride and glipizide bind at both sites I and II. Glycosylation, however, caused conformational changes in albumin, and the binding region within site II was different for glycosylated and non-glycosylated albumin. Stern-Volmer analysis also indicated the conformational changes in albumin as a result of glycosylation and showed that the dynamic quenching mechanism was valid for fluorescence of both glycosylated and non-glycosylated HSA.
NASA Astrophysics Data System (ADS)
Matveeva, Evgenia G.; Gryczynski, Ignacy; Berndt, Klaus W.; Lakowicz, Joseph R.; Goldys, Ewa; Gryczynski, Zygmunt
2006-02-01
We present a novel approach for performing fluorescence immunoassay in serum and whole blood using fluorescently labeled anti-rabbit IgG. This approach, which is based on Surface Plasmon-Coupled Emission (SPCE), provides increased sensitivity and substantial background reduction due to exclusive selection of the signal from the fluorophores located near a bio-affinity surface. Effective coupling range for SPCE is only couple of hundred nanometers from the metallic surface. Excited fluorophores outside the coupling layer do not contribute to SPCE, and their free-space emission is not transmitted through the opaque metallic film into the glass substrate. An antigen (rabbit IgG) was adsorbed to a slide covered with a thin silver metal layer, and the SPCE signal from the fluorophore-labeled anti-rabbit antibody, binding to the immobilized antigen, was detected. The effect of the sample matrix (buffer, human serum, or human whole blood) on the end-point immunoassay SPCE signal is discussed. The kinetics of binding could be monitored directly in whole blood or serum. The results showed that human serum and human whole blood attenuate the SPCE end-point signal and the immunoassay kinetic signal only approximately 2- and 3-fold, respectively (compared to buffer), resulting in signals that are easily detectable even in whole blood. The high optical absorption of the hemoglobin can be tolerated because only fluorophores within a couple of hundred nanometers from the metallic film contribute to SPCE. Both glass and plastic slides can be used for SPCE-based assays. We believe that SPCE has the potential of becoming a powerful approach for performing immunoassays based on surface-bound analytes or antibodies for many biomarkers directly in dense samples such as whole blood, without any need for washing steps.
Serum zinc, senile plaques, and neurofibrillary tangles: findings from the Nun Study.
Tully, C L; Snowdon, D A; Markesbery, W R
1995-11-13
Zinc appears to have a role in binding amyloid precursor protein in vitro, but it is not known whether zinc plays a role in senile plaque formation in vivo in humans. Serum zinc concentrations were available from 12 sisters who died in the Nun Study, a longitudinal study of aging and Alzheimer's disease. Fasting serum zinc concentrations, determined approximately 1 year before death, showed moderate to strong negative correlations with senile plaque counts in seven brain regions. In all brain regions combined, the age-adjusted negative correlations with serum zinc were statistically significant for total senile plaques and diffuse plaques, and suggestive for neuritic plaques. Thus serum zinc in the normal range may be associated with low senile plaque counts in the elderly.
Nagasawa, Hideko; Sasaki, Hideyuki; Uto, Yoshihiro; Kubo, Shinichi; Hori, Hitoshi
2004-01-01
Serum vitamin D-binding protein (Gc protein or DBP) is a highly expressed polymorphic protein, which is a precursor of the inflammation-primed macrophage activating factor, GcMAF, by a cascade of carbohydrate processing reactions. In order to elucidate the relationship between Gc polymorphism and GcMAF precursor activity, we estimated the phagocytic ability of three homotypes of Gc protein, Gc1F-1F, Gc1S-1S and Gc2-2, through processing of their carbohydrate moiety. We performed Gc typing of human serum samples by isoelectric focusing (IEF). Gc protein from human serum was purified by affinity chromatography with 25-hydroxyvitamin D3-sepharose. A phagocytosis assay of Gc proteins, modified using beta-glycosidase and sialidase, was carried out. The Gc1F-1F phenotype was revealed to possess Galbeta1-4GalNAc linkage by the analysis of GcMAF precursor activity using beta1-4 linkage-specific galactosidase from jack bean. The GcMAF precursor activity of the Gc1F-1F phenotype was highest among three Gc homotypes. The Gc polymorphism and carbohydrate diversity of Gc protein are significant for its pleiotropic effects.
Miura, Chitose; Funaya, Noriko; Matsunaga, Hisami; Haginaka, Jun
2013-11-01
Molecularly imprinted polymers (MIPs) for creatinine were prepared by modified precipitation polymerization using methacrylic acid as a functional monomer and divinylbenzene as a crosslinker. The prepared MIPs were monodispersed with a narrow particle size distribution. Binding experiments and Scatchard analyses revealed that two classes of binding sites, high- and low-affinity sites, were formed on the MIPs. The retention and molecular-recognition properties of the MIPs were evaluated by hydrophilic interaction chromatography using a mixture of ammonium acetate buffer and acetonitrile as a mobile phase. With an increase of acetonitrile content, the retention factor of creatinine was increased on the MIP. In addition to shape recognition, hydrophilic interactions seemed to enhance the recognition of creatinine on the MIP. The MIPs' molecular-recognition ability was specific for creatinine; the structurally related compounds such as hydantoin, 1-methylhydantoin, 2-pyrrolidone, N-hydroxysuccinimide and creatine were not recognized. Furthermore, the creatinine concentrations in human serum and urine were successfully determined by direct injection of the deproteinized serum and diluted urine samples onto the MIP. Copyright © 2013 Elsevier B.V. All rights reserved.
Mirshafiee, Vahid; Kim, Raehyun; Mahmoudi, Morteza; Kraft, Mary L
2016-06-01
Nanoparticle (NP) exposure to biological fluids in the body results in protein binding to the NP surface, which forms a protein coating that is called the "protein corona". To simplify studies of protein-NP interactions and protein corona formation, NPs are incubated with biological solutions, such as human serum or human plasma, and the effects of this exposure are characterized in vitro. Yet, how NP exposure to these two different biological milieus affects protein corona composition and cell response has not been investigated. Here, we explore the differences between the protein coronas that form when NPs are incubated in human serum versus human plasma. NP characterization indicated that NPs that were exposed to human plasma had higher amounts of proteins bound to their surfaces, and were slightly larger in size than those exposed to human serum. In addition, significant differences in corona composition were also detected with gel electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry, where a higher fraction of coagulation proteins and complement factors were found on the plasma-exposed NPs. Flow cytometry and confocal microscopy showed that the uptake of plasma-exposed NPs was higher than that of serum-exposed NPs by RAW 264.7 macrophage immune cells, but not by NIH 3T3 fibroblast cells. This difference is likely due to the elevated amounts of opsonins, such as fibrinogen, on the surfaces of the NPs exposed to plasma, but not serum, because these components trigger NP internalization by immune cells. As the human plasma better mimics the composition of the in vivo environment, namely blood, in vitro protein corona studies should employ human plasma, and not human serum, so the biological phenomena that is observed is more similar to that occurring in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evading pre-existing anti-hinge antibody binding by hinge engineering
Kim, Hok Seon; Kim, Ingrid; Zheng, Linda; Vernes, Jean-Michel; Meng, Y. Gloria; Spiess, Christoph
2016-01-01
ABSTRACT Antigen-binding fragments (Fab) and F(ab′)2 antibodies serve as alternative formats to full-length anti-bodies in therapeutic and immune assays. They provide the advantage of small size, short serum half-life, and lack of effector function. Several proteases associated with invasive diseases are known to cleave antibodies in the hinge-region, and this results in anti-hinge antibodies (AHA) toward the neoepitopes. The AHA can act as surrogate Fc and reintroduce the properties of the Fc that are otherwise lacking in antibody fragments. While this response is desired during the natural process of fighting disease, it is commonly unwanted for therapeutic antibody fragments. In our study, we identify a truncation in the lower hinge region of the antibody that maintains efficient proteolytic cleavage by IdeS protease. The resulting neoepitope at the F(ab′)2 C-terminus does not have detectable binding of pre-existing AHA, providing a practical route to produce F(ab′)2 in vitro by proteolytic digestion when the binding of pre-existing AHA is undesired. We extend our studies to the upper hinge region of the antibody and provide a detailed analysis of the contribution of C-terminal residues of the upper hinge of human IgG1, IgG2 and IgG4 to pre-existing AHA reactivity in human serum. While no pre-existing antibodies are observed toward the Fab of IgG2 and IgG4 isotype, a significant response is observed toward most residues of the upper hinge of human IgG1. We identify a T225L variant and the natural C-terminal D221 as solutions with minimal serum reactivity. Our work now enables the production of Fab and F(ab′)2 for therapeutic and diagnostic immune assays that have minimal reactivity toward pre-existing AHA. PMID:27606571
Tanaka, M; Nakaya, S; Kumai, T; Watanabe, M; Matsumoto, N; Kobayashi, S
2001-01-01
Hypercholesterolemia and diabetes mellitus are known to be accompanied by reproductive dysfunction. In this study, we investigated the effects of hypercholesterolemia, hyperglycemia, and these conditions combined, on testosterone (T) and testicular luteinizing hormone/human chorionic gonadotropin (LH/hCG) binding. Sprague-Dawley rats (8 weeks old) were divided into four groups: Group 1 was the control, group 2 was fed standard chow containing 2% cholesterol (C-diet), group 3 was administered streptozotocin (STZ, 65 mg/kg, i.p.), group 4 was treated with both the C-diet and STZ. After 4 weeks, rats were sacrificed. Serum glucose was significantly higher in the STZ group (304% that of controls) and the C-diet plus STZ group (345%), but there was no difference between the C-diet group (89%) and the control group. Serum cholesterol was significantly higher in the C-diet group (206% that of controls), the STZ group (452%) and the C-diet plus STZ group (2042%). Serum T, testicular T, and LH/hCG binding were significantly lower in the C-diet group (49%, 52%, and 81% that of controls, respectively), the STZ group (15%, 32%, and 72%) and the C-diet plus STZ group (8%, 21%, and 57%). These results suggest that hypercholesterolemia is an independent risk factor for testicular dysfunction and that the reduction of serum and testicular T levels is due at least in part to a reduction in testicular LH/hCG binding in rats with hypercholesterolemia, hyperglycemia, and these conditions combined. It is further suggested that the reduction in LH/hCG binding is mainly related to a rise in serum cholesterol levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Jimenez, F.; Fielder, P.J.; Martinez, R.R.
1990-02-01
({sup 125}I)Iodomouse GH (({sup 125}I)iodo-mGH) binding to samples of serum and hepatic microsomal membranes was measured in hypophysectomized pregnant, sham-operated pregnant, intact pregnant, and intact adult virgin mice. Surgeries were carried out on day 11 of pregnancy, and the animals were killed on day 14. The binding of mGH to both serum and hepatic microsomal membranes of intact virgin mice was much lower than to those of intact pregnant mice. In hypophysectomized mice, the mGH-binding capacity of both serum and hepatic microsomes decreased to values similar to those of nonpregnant mice. No significant differences were observed between intact and sham-operatedmore » pregnant animals in the maternal serum mGH concentration, the serum GH-binding protein concentration, or the hepatic GH receptor concentration. GH receptor and binding protein-encoding mRNAs were also higher in intact and sham-operated pregnant mice than in virgin and hypophysectomized mice. Hypophysectomized mice were treated with 200 micrograms/day bovine GH, administered by osmotic minipump; after 3 days of treatment, a significant elevation of hepatic GH receptor and serum GH-binding protein levels was observed. These results demonstrate an up-regulation of hepatic GH receptors and serum GH-binding protein by GH during pregnancy in the mouse.« less
NASA Astrophysics Data System (ADS)
Kalaiarasi, G.; Rex Jeya Rajkumar, S.; Aswini, G.; Dharani, S.; Fronczek, Frank R.; Prabhakaran, R.
2018-07-01
A series of 3-acetyl-8-methoxycoumarin appended thiosemicarbazones (1-4) was prepared from the reaction of 3-acetyl-8-methoxycoumarin with 4(N)-substituted thiosemicarbazides in a view of ascertaining their biological properties with the change of N-terminal substitution in the thiosemicarbazide moiety. Comprehensive characterization was brought about by various spectral and analytical methods. The molecular structures of all the compounds were determined by single crystal X-ray diffraction analysis. Binding studies with Calf thymus DNA (CT-DNA) and proteins such as Bovine Serum Albumin (BSA) and Human Serum Albumin (HSA) indicated an intercalative mode of binding with DNA and static quenching mechanism with proteins. The compounds cleaved plasmid DNA (pBR322) and acted well as free radical scavengers. A good spectrum of antimicrobial activity was observed against four bacterial and five fungal pathogens. The compounds exhibited profound antiproliferative activity on MCF-7 (human breast cancer) and A549 (human lung carcinoma) cell lines. Assay on human normal keratinocyte cell line HaCaT showed that the compounds were non-toxic to normal cells.
Antibody neutralization of retargeted measles viruses.
Lech, Patrycja J; Pappoe, Roland; Nakamura, Takafumi; Tobin, Gregory J; Nara, Peter L; Russell, Stephen J
2014-04-01
The measles virus (MV) vaccine lineage is a promising oncolytic but prior exposure to the measles vaccine or wild-type MV strains limits treatment utility due to the presence of anti-measles antibodies. MV entry can be redirected by displaying a polypeptide ligand on the Hemagglutinin (H) C-terminus. We hypothesized that retargeted MV would escape neutralization by monoclonal antibodies (mAbs) recognizing the H receptor-binding surface and be less susceptible to neutralization by human antisera. Using chimeric H proteins, with and without mutations that ablate MV receptor binding, we show that retargeted MVs escape mAbs that target the H receptor-binding surface by virtue of mutations that ablate infection via SLAM and CD46. However, C-terminally displayed domains do not mediate virus entry in the presence of human antibodies that bind to the underlying H domain. In conclusion, utility of retargeted oncolytic measles viruses does not extend to evasion of human serum neutralization. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Wang, Hong; Li, Wei-Rong; Guo, Xiao-Feng; Zhang, Hua-Shan
2007-04-01
The application of near-infrared (NIR) dyes (lambda (em) > 750 nm) to the analysis of biological samples shows much promise, because the long emission wavelengths of such dyes allow interferences from biomolecule matrices to be minimized. In this paper, a novel NIR dye, 5,5'-dicarboxy-1,1'-disulfobutyl-3,3,3',3'-tetramethylindotricarbocyanine (DCDSTCY) has been developed for the spectrophotometric determination of total protein in serum. Under acidic conditions, the binding of DCDSTCY to proteins caused a new peak at 878 nm, the height of which was proportional to the concentration of protein. The linear range of the method was found to be 0.04-0.5 microg mL(-1) for bovine serum albumin (BSA) and human serum albumin (HSA), and detection limits of 5 ng mL(-1) were obtained for these substances. The maximum binding number of BSA with DCDSTCY was measured to be 133. The method proposed here has been applied to the quantitation of total protein in serum, and recoveries of 96.6-104% were achieved. Figure Near-infrared probe for protein determination.
Binding properties of food colorant allura red with human serum albumin in vitro.
Wang, Langhong; Zhang, Guowen; Wang, Yaping
2014-05-01
Allura red (AR) is a widely used colorant in food industry, but may have a potential security risk. In this study, the properties of interaction between AR and human serum albumin (HSA) in vitro were determined by fluorescence, UV-Vis absorption and circular dichroism (CD) spectroscopy combining with multivariate curve resolution-alternating least squares (MCR-ALS) chemometrics and molecular modeling approaches. An expanded UV-Vis data matrix was resolved by MCR-ALS method, and the concentration profiles and pure spectra for the three reaction components (AR, HSA, and AR-HSA complex) of the system were then successfully obtained to evaluate the progress interaction of AR with HSA. The calculated thermodynamic parameters indicated that hydrogen binding and hydrophobic interactions played major roles in the binding process, and the interaction induced a decrease in the protein surface hydrophobicity. The competitive experiments revealed that AR mainly located in Sudlow's site I of HSA, and this result was further supported by molecular modeling studies. Analysis of CD spectra found that the addition of AR induced the conformational changes of HSA. This study have provided new insight into the mechanism of interaction between AR and HSA.
Ao, Junjie; Gao, Li; Yuan, Tao; Jiang, Gaofeng
2015-01-01
Organic UV filters are a group of emerging PPCP (pharmaceuticals and personal care products) contaminants. Current information is insufficient to understand the in vivo processes and health risks of organic UV filters in humans. The interaction mechanism of UV filters with serum albumin provides critical information for the health risk assessment of these active ingredients in sunscreen products. This study investigates the interaction mechanisms of five commonly used UV filters (2-hydroxy-4-methoxybenzophenone, BP-3; 2-ethylhexyl 4-methoxycinnamate, EHMC; 4-methylbenzylidene camphor, 4-MBC; methoxydibenzoylmethane, BDM; homosalate, HMS) with bovine serum albumin (BSA) by spectroscopic measurements of fluorescence, circular dichroism (CD), competitive binding experiments and molecular docking. Our results indicated that the fluorescence of BSA was quenched by these UV filters through a static quenching mechanism. The values of the binding constant (Ka) ranged from (0.78±0.02)×10(3) to (1.29±0.01)×10(5) L mol(-1). Further exploration by synchronous fluorescence and CD showed that the conformation of BSA was demonstrably changed in the presence of these organic UV filters. It was confirmed that the UV filters can disrupt the α-helical stability of BSA. Moreover, the results of molecular docking revealed that the UV filter molecule is located in site II (sub-domain IIIA) of BSA, which was further confirmed by the results of competitive binding experiments. In addition, binding occurred mainly through hydrogen bonding and hydrophobic interaction. This study raises critical concerns regarding the transportation, distribution and toxicity effects of organic UV filters in human body. Copyright © 2014 Elsevier Ltd. All rights reserved.
Species Differences in the Binding of Sodium 4-Phenylbutyrate to Serum Albumin.
Yamasaki, Keishi; Enokida, Taisuke; Taguchi, Kazuaki; Miyamura, Shigeyuki; Kawai, Akito; Miyamoto, Shuichi; Maruyama, Toru; Seo, Hakaru; Otagiri, Masaki
2017-09-01
Sodium 4-phenylbutyrate (PB) is clinically used as a drug for treating urea cycle disorders. Recent research has shown that PB also has other pharmacologic activities, suggesting that it has the potential for use as a drug for treating other disorders. In the process of drug development, preclinical testing using experimental animals is necessary to verify the efficacy and safety of PB. Although the binding of PB to human albumin has been studied, our knowledge of its binding to albumin from the other animal species is extremely limited. To address this issue, we characterized the binding of PB to albumin from several species (human, bovine, rabbit, and rat). The results indicated that PB interacts with 1 high-affinity site of albumin from these species, which corresponds to site II of human albumin. The affinities of PB to human and bovine albumins were higher than those to rabbit and rat albumin, and that to rabbit albumin was the lowest. Binding and molecular docking studies using structurally related compounds of PB suggested that species differences in the affinity are attributed to differences in the structural feature of the PB-binding sites on albumins (e.g., charge distribution, hydrophobicity, shape, or size). Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
QSAR modeling of β-lactam binding to human serum proteins
NASA Astrophysics Data System (ADS)
Hall, L. Mark; Hall, Lowell H.; Kier, Lemont B.
2003-02-01
The binding of beta-lactams to human serum proteins was modeled with topological descriptors of molecular structure. Experimental data was the concentration of protein-bound drug expressed as a percent of the total plasma concentration (percent fraction bound, PFB) for 87 penicillins and for 115 β-lactams. The electrotopological state indices (E-State) and the molecular connectivity chi indices were found to be the basis of two satisfactory models. A data set of 74 penicillins from a drug design series was successfully modeled with statistics: r2=0.80, s = 12.1, q2=0.76, spress=13.4. This model was then used to predict protein binding (PFB) for 13 commercial penicillins, resulting in a very good mean absolute error, MAE = 12.7 and correlation coefficient, q2=0.84. A group of 28 cephalosporins were combined with the penicillin data to create a dataset of 115 beta-lactams that was successfully modeled: r2=0.82, s = 12.7, q2=0.78, spress=13.7. A ten-fold 10% leave-group-out (LGO) cross-validation procedure was implemented, leading to very good statistics: MAE = 10.9, spress=14.0, q2 (or r2 press)=0.78. The models indicate a combination of general and specific structure features that are important for estimating protein binding in this class of antibiotics. For the β-lactams, significant factors that increase binding are presence and electron accessibility of aromatic rings, halogens, methylene groups, and =N- atoms. Significant negative influence on binding comes from amine groups and carbonyl oxygen atoms.
Specificity and Effector Functions of Human RSV-Specific IgG from Bovine Milk.
den Hartog, Gerco; Jacobino, Shamir; Bont, Louis; Cox, Linda; Ulfman, Laurien H; Leusen, Jeanette H W; van Neerven, R J Joost
2014-01-01
Respiratory syncytial virus (RSV) infection is the second most important cause of death in the first year of life, and early RSV infections are associated with the development of asthma. Breastfeeding and serum IgG have been shown to protect against RSV infection. Yet, many infants depend on bovine milk-based nutrition, which at present lacks intact immunoglobulins. To investigate whether IgG purified from bovine milk (bIgG) can modulate immune responses against human RSV. ELISAs were performed to analyse binding of bIgG to human respiratory pathogens. bIgG or hRSV was coated to plates to assess dose-dependent binding of bIgG to human Fcγ receptors (FcγR) or bIgG-mediated binding of myeloid cells to hRSV respectively. S. Epidermidis and RSV were used to test bIgG-mediated binding and internalisation of pathogens by myeloid cells. Finally, the ability of bIgG to neutralise infection of HEp2 cells by hRSV was evaluated. bIgG recognised human RSV, influenza haemagglutinin and Haemophilus influenza. bIgG bound to FcγRII on neutrophils, monocytes and macrophages, but not to FcγRI and FcγRIII, and could bind simultaneously to hRSV and human FcγRII on neutrophils. In addition, human neutrophils and dendritic cells internalised pathogens that were opsonised with bIgG. Finally, bIgG could prevent infection of HEp2 cells by hRSV. The data presented here show that bIgG binds to hRSV and other human respiratory pathogens and induces effector functions through binding to human FcγRII on phagocytes. Thus bovine IgG may contribute to immune protection against RSV.
Gilboa-Garber, Nechama; Lerrer, Batya; Lesman-Movshovich, Efrat; Dgani, Orly
2005-12-01
Human milk, serum, saliva, and seminal fluid glycoproteins (gps) nourish and protect newborn and adult tissues. Their saccharides, which resemble cell membrane components, may block pathogen adhesion and infection. In the present study, they were examined by a battery of lectins from plants, animals, and bacteria, using hemagglutination inhibition and Western blot analyses. The lectins included galactophilic ones from Aplysia gonad, Erythrina corallodendron, Maclura pomifera (MPL), peanut, and Pseudomonas aeruginosa (PA-IL); fucose-binding lectins from Pseudomonas aeruginosa (PA-IIL), Ralstonia solanacearum (RSL), and Ulex europaeus (UEA-I), and mannose/glucose-binding Con A. The results demonstrated the chosen lectin efficiency for differential analysis of human secreted gps as compared to CBB staining. They unveiled the diversity of these body fluid gp glycans (those of the milk and seminal fluid being highest): the milk gps interacted most strongly with PA-IIL, followed by RSL; the saliva gps with RSL, followed by PA-IIL and MPL; the serum gps with Con A and MPL, followed by PA-IIL and RSL, and the seminal plasma gps with RSL and MPL, followed by UEA-I and PA-IIL. The potential usage of these lectins as probes for scientific, industrial, and medical purposes, and for quality control of the desired gps is clearly indicated.
Junk, Matthias J.N.; Spiess, Hans W.; Hinderberger, Dariush
2011-01-01
The structure of human serum albumin loaded with a metal porphyrin and fatty acids in solution is characterized by orientation-selective double electron-electron resonance (DEER) spectroscopy. Human serum albumin, spin-labeled fatty acids, and Cu(II) protoporphyrin IX—a hemin analog—form a fully self-assembled system that allows obtaining distances and mutual orientations between the paramagnetic guest molecules. We report a simplified analysis for the orientation-selective DEER data which can be applied when the orientation selection of one spin in the spin pair dominates the orientation selection of the other spin. The dipolar spectra reveal a dominant distance of 3.85 nm and a dominant orientation of the spin-spin vectors between Cu(II) protoporphyrin IX and 16-doxyl stearic acid, the electron paramagnetic resonance reporter group of the latter being located near the entry points to the fatty acid binding sites. This observation is in contrast to crystallographic data that suggest an asymmetric distribution of the entry points in the protein and hence the occurrence of various distances. In conjunction with the findings of a recent DEER study, the obtained data are indicative of a symmetric distribution of the binding site entries on the protein's surface. The overall anisotropic shape of the protein is reflected by one spin-spin vector orientation dominating the DEER data. PMID:21539799
Shahabadi, Nahid; Khodaei, Mohammad Mehdi; Kashanian, Soheila; Kheirdoosh, Fahimeh; Filli, Soraya Moradi
2014-05-01
A copper(II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2·2H2O, was synthesized and characterized. In vitro binding interaction of this complex with human serum albumin (HSA) was studied at physiological pH. Binding studies of this complex with HSA are useful for understanding the Cu(APM)2Cl2·2H2O-HSA interaction mechanism and providing guidance for the application and design of new and more efficient artificial sweeteners drive. The interaction was investigated by spectrophotometric, spectrofluorometric, competition experiment and circular dichroism. Hyperchromicity observed in UV absorption band of Cu(APM)2Cl2·2H2O. A strong fluorescence quenching reaction of HSA to Cu(APM)2Cl2·2H2O was observed and the binding constant (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (∆H) and entropy change (∆S) were calculated to be -458.67 kJ mol(-1) and -1,339 J mol(-1 )K(-1) respectively. According to the van't Hoff equation, the reaction is predominantly enthalpically driven. In conformity with experimental results, we suggest that Cu(APM)2Cl2·2H2O interacts with HSA. In comparison with previous study, it is found that the Cu(II) complex binds stronger than aspartame.
Mallik, Rangan; Yoo, Michelle J.; Briscoe, Chad J.; Hage, David S.
2010-01-01
Human serum albumin (HSA) was explored for use as a stationary phase and ligand in affinity microcolumns for the ultrafast extraction of free drug fractions and the use of this information for the analysis of drug-protein binding. Warfarin, imipramine, and ibuprofen were used as model analytes in this study. It was found that greater than 95% extraction of all these drugs could be achieved in as little as 250 ms on HSA microcolumns. The retained drug fraction was then eluted from the same column under isocratic conditions, giving elution in less than 40 s when working at 4.5 mL/min. The chromatographic behavior of this system gave a good fit with that predicted by computer simulations based on a reversible, saturable model for the binding of an injected drug with immobilized HSA. The free fractions measured by this method were found to be comparable to those determined by ultrafiltration, and equilibrium constants estimated by this approach gave good agreement with literature values. Advantages of this method include its speed and the relatively low cost of microcolumns that contain HSA. The ability of HSA to bind many types of drugs also creates the possibility of using the same affinity microcolumn to study and measure the free fractions for a variety of pharmaceutical agents. These properties make this technique appealing for use in drug binding studies and in the high-throughput screening of new drug candidates. PMID:20227701
Rastaldi, M P; Candiano, G; Musante, L; Bruschi, M; Armelloni, S; Rimoldi, L; Tardanico, R; Sanna-Cherchi, S; Cherchi, S Sanna; Ferrario, F; Montinaro, V; Haupt, R; Parodi, S; Carnevali, M L; Allegri, L; Camussi, G; Gesualdo, L; Scolari, F; Ghiggeri, G M
2006-08-01
Mechanisms for human membranous glomerulonephritis (MGN) remain elusive. Most up-to-date concepts still rely on the rat model of Passive Heymann Nephritis that derives from an autoimmune response to glomerular megalin, with complement activation and membrane attack complex assembly. Clusterin has been reported as a megalin ligand in immunodeposits, although its role has not been clarified. We studied renal biopsies of 60 MGN patients by immunohistochemistry utilizing antibodies against clusterin, C5b-9, and phosphorylated-protien kinase C (PKC) isoforms (pPKC). In vitro experiments were performed to investigate the role of clusterin during podocyte damage by MGN serum and define clusterin binding to human podocytes, where megalin is known to be absent. Clusterin, C5b-9, and pPKC-alpha/beta showed highly variable glomerular staining, where high clusterin profiles were inversely correlated to C5b-9 and PKC-alpha/beta expression (P=0.029), and co-localized with the low-density lipoprotein receptor (LDL-R). Glomerular clusterin emerged as the single factor influencing proteinuria at multivariate analysis and was associated with a reduction of proteinuria after a follow-up of 1.5 years (-88.1%, P=0.027). Incubation of podocytes with MGN sera determined strong upregulation of pPKC-alpha/beta that was reverted by pre-incubation with clusterin, serum de-complementation, or protein-A treatment. Preliminary in vitro experiments showed podocyte binding of biotinilated clusterin, co-localization with LDL-R and specific binding inhibition with anti-LDL-R antibodies and with specific ligands. These data suggest a central role for glomerular clusterin in MGN as a modulator of inflammation that potentially influences the clinical outcome. Binding of clusterin to the LDL-R might offer an interpretative key for the pathogenesis of MGN in humans.
Ahmad, Ejaz; Rabbani, Gulam; Zaidi, Nida; Singh, Saurabh; Rehan, Mohd; Khan, Mohd Moin; Rahman, Shah Kamranur; Quadri, Zainuddin; Shadab, Mohd; Ashraf, Mohd Tashfeen; Subbarao, Naidu; Bhat, Rajiv; Khan, Rizwan Hasan
2011-01-01
1-naphthol (1N), 2-naphthol (2N) and 8-quinolinol (8H) are general water pollutants. 1N and 2N are the configurational enantiomers and 8H is isoelectronic to 1N and 2N. These pollutants when ingested are transported in the blood by proteins like human serum albumin (HSA). Binding of these pollutants to HSA has been explored to elucidate the specific selectivity of molecular recognition by this multiligand binding protein. The association constants (K(b)) of these pollutants to HSA were moderate (10(4)-10(5) M(-1)). The proximity of the ligands to HSA is also revealed by their average binding distance, r, which is estimated to be in the range of 4.39-5.37 nm. The binding free energy (ΔG) in each case remains effectively the same for each site because of enthalpy-entropy compensation (EEC). The difference observed between ΔC(p) (exp) and ΔC(p) (calc) are suggested to be caused by binding-induced flexibility changes in the HSA. Efforts are also made to elaborate the differences observed in binding isotherms obtained through multiple approaches of calorimetry, spectroscopy and bioinformatics. We suggest that difference in dissociation constants of pollutants by calorimetry, spectroscopic and computational approaches could correspond to occurrence of different set of populations of pollutants having different molecular characteristics in ground state and excited state. Furthermore, our observation of enhanced binding of pollutants (2N and 8H) in the presence of hemin signifies that ligands like hemin may enhance the storage period of these pollutants in blood that may even facilitate the ill effects of these pollutants.
Kitamura, Keisuke; Takegami, Shigehiko; Tanaka, Rumi; Omran, Ahmed Ahmed; Kitade, Tatsuya
2014-01-01
Human serum albumin (HSA) in the blood binds long-chain fatty acids (LCFAs), and the number of bound LCFAs varies from 1 to 7 depending on the physical condition of the body. In this study, the influence of LCFA-HSA binding on drug-HSA binding was studied using triflupromazine (TFZ), a psychotropic phenothiazine drug, in a buffer (0.1 M NaCl, pH 7.40, 37°C) by a second-derivative spectrophotometric method which can suppress the residual background signal effects of HSA observed in the absorption spectra. The examined LCFAs were caprylic acid (CPA), lauric acid (LRA), oleic acid (OLA), and linoleic acid (LNA), respectively. Using the derivative intensity change of TFZ induced by the addition of HSA containing LCFA, the binding mode of TFZ was predicted to be a partition-like nonspecific binding. The binding constant (K M(-1)) showed an increase according to the LCFA content in HSA for LRA, OLA, and LNA up to an LCFA/HSA molar ratio of 3-4. However, at higher ratios the K value decreased, i.e. for OLA and LNA, at an LCFA/HSA ratio of 6-7, the K value decreased to 40% of the value for HSA alone. In contrast, CPA, having the shortest chain length (8 carbons) among the studied LCFAs, induced a 20% decrease in the K value regardless of its content in HSA. Since the pharmacological activity of a drug is closely related to the unbound drug concentration in the blood, the results of the present study are pharmaco-kinetically, pharmacologically, and clinically very important.
Identification of StARD3 as a lutein-binding protein in the macula of the primate retina.
Li, Binxing; Vachali, Preejith; Frederick, Jeanne M; Bernstein, Paul S
2011-04-05
Lutein, zeaxanthin, and their metabolites are the xanthophyll carotenoids that form the macular pigment of the human retina. Epidemiological evidence suggests that high levels of these carotenoids in the diet, serum, and macula are associated with a decreased risk of age-related macular degeneration (AMD), and the AREDS2 study is prospectively testing this hypothesis. Understanding the biochemical mechanisms underlying the selective uptakes of lutein and zeaxanthin into the human macula may provide important insights into the physiology of the human macula in health and disease. GSTP1 is the macular zeaxanthin-binding protein, but the identity of the human macular lutein-binding protein has remained elusive. Prior identification of the silkworm lutein-binding protein (CBP) as a member of the steroidogenic acute regulatory domain (StARD) protein family and selective labeling of monkey photoreceptor inner segments with an anti-CBP antibody provided an important clue for identifying the primate retina lutein-binding protein. The homology of CBP with all 15 human StARD proteins was analyzed using database searches, Western blotting, and immunohistochemistry, and we here provide evidence to identify StARD3 (also known as MLN64) as a human retinal lutein-binding protein. Antibody to StARD3, N-62 StAR, localizes to all neurons of monkey macular retina and especially cone inner segments and axons, but does not colocalize with the Müller cell marker, glutamine synthetase. Further, recombinant StARD3 selectively binds lutein with high affinity (K(D) = 0.45 μM) when assessed by surface plasmon resonance (SPR) binding assays. Our results demonstrate previously unrecognized, specific interactions of StARD3 with lutein and provide novel avenues for exploring its roles in human macular physiology and disease.
Clinical and laboratory features of neuropathies with serum IgM binding to TS-HDS.
Pestronk, Alan; Schmidt, Robert E; Choksi, Rati M; Sommerville, R Brian; Al-Lozi, Muhammad T
2012-06-01
In this investigation we studied clinical and laboratory features of polyneuropathies in patients with serum IgM binding to the trisulfated disaccharide IdoA2S-GlcNS-6S (TS-HDS). We retrospectively compared 58 patients with selective IgM binding to TS-HDS to 41 consecutive patients with polyneuropathies without TS-HDS binding. Patients with IgM vs. TS-HDS commonly had distal, sensory, axonal neuropathies. Weakness was associated with IgM M-proteins. Hand pain and serum IgM M-proteins were more common than in control neuropathy patients. TS-HDS antibody binding was often selectively κ class. Biopsies showed capillary pathology with thickened basal lamina and C5b9 complement deposition. IgM in sera with TS-HDS antibodies often bound to capillaries. Serum IgM binding to TS-HDS is associated with painful, sensory > motor, polyneuropathies with an increased frequency of persistent hand discomfort, serum IgM M-proteins, and capillary pathology. Serum IgM binding to TS-HDS suggests a possible immune etiology underlying some otherwise idiopathic sensory polyneuropathies. Copyright © 2011 Wiley Periodicals, Inc.
STUDIES OF VERAPAMIL BINDING TO HUMAN SERUM ALBUMIN BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY
Mallik, Rangan; Yoo, Michelle J.; Chen, Sike; Hage, David S.
2008-01-01
The binding of verapamil to the protein human serum albumin (HSA) was examined by using high-performance affinity chromatography. Many previous reports have investigated the binding of verapamil with HSA, but the exact strength and nature of this interaction (e.g., the number and location of binding sites) is still unclear. In this study, frontal analysis indicated that at least one major binding site was present for R- and S-verapamil on HSA, with estimated association equilibrium constants on the order of 104 M−1 and a 1.4-fold difference in these values for the verapamil enantiomers at pH 7.4 and 37°C. The presence of a second, weaker group of binding sites on HSA was also suggested by these results. Competitive binding studies using zonal elution were carried out between verapamil and various probe compounds that have known interactions with several major and minor sites on HSA. R/S-Verapamil was found to have direct competition with S-warfarin, indicating that verapamil was binding to Sudlow site I (i.e., the warfarin-azapropazone site of HSA). The average association equilibrium constant for R- and S-verapamil at this site was 1.4 (±0.1) × 104 M−1. Verapamil did not have any notable binding to Sudlow site II of HSA but did appear to have some weak allosteric interactions with L-tryptophan, a probe for this site. An allosteric interaction between verapamil and tamoxifen (a probe for the tamoxifen site) was also noted, which was consistent with the binding of verapamil at Sudlow site I. No interaction was seen between verapamil and digitoxin, a probe for the digitoxin site of HSA. These results gave good agreement with previous observations made in the literature and help provide a more detailed description of how verapamil is transported in blood and of how it may interact with other drugs in the body. PMID:18980867
Concentrations of perfluoroalkyl compounds in the serum and milk of lactating North Carolina women
Perfluoroalkyl acids (PFAAs) and their derivatives are ubiquitous environmental contaminants that have been detected in a multitude of terrestrial and aquatic organisms. Some PFAAs bind the human estrogen receptors in vitro. Further, some PFAAs induce estrogen responsive genes a...
Woods, K A; Camacho-Hübner, C; Barter, D; Clark, A J; Savage, M O
1997-11-01
The first human case of a homozygous molecular defect in the gene encoding insulin-like growth factor I (IGF-I) is described. The patient was a 15-year-old boy from a consanguineous pedigree who presented with severe intrauterine growth failure, sensorineural deafness and mild mental retardation. Endocrine evaluation of the growth hormone (GH)--IGF-I axis revealed elevated GH secretion, undetectable serum IGF-I and normal serum IGF-binding protein-3, acid-labile subunit, and GH-binding activity. Analysis of the IGF-I gene revealed a homozygous partial IGF-I gene deletion involving exons 4 and 5, which encodes a severely truncated mature IGF-I peptide. This patient demonstrates that complete disruption of the IGF-I gene in man is compatible with life, and indicates a major role for IGF-I in human fetal growth. In addition, his neurological abnormalities suggest that IGF-I may be involved in central nervous system development.
Xiong, Xunyu; Zhang, Qunzheng; Nan, Yefei; Gu, Xuefan
2013-01-01
In acidic media, ibuprofen substantially enhanced the weak chemiluminescence (CL) produced by sodium sulfite and potassium permanganate. The increased signals were linearly correlated with ibuprofen concentrations ranging from 1.2 × 10(-3) to 4.8 μM, with a detection limit of 4.8 × 10(-4) μM. Two ultrafiltration (UF) membranes were used to construct a unit for trapping 0.15 and 0.75 μM human serum albumin (HSA) and coupled online with the CL system. At low HSA concentrations, the numbers of bound molecules per binding site were calculated to be 0.9 for Sudlow site I and 6.2 for Sudlow site II. The association constants on these binding sites were 5.9 × 10(5) and 3.4 × 10(4) M(-1), respectively. Our CL-UF protocol presents a rapid and sensitive method for studies on drug-protein interaction. Copyright © 2012 John Wiley & Sons, Ltd.
Serum Amyloid P Component (SAP) Interactome in Human Plasma Containing Physiological Calcium Levels.
Poulsen, Ebbe Toftgaard; Pedersen, Kata Wolff; Marzeda, Anna Maria; Enghild, Jan J
2017-02-14
The pentraxin serum amyloid P component (SAP) is secreted by the liver and found in plasma at a concentration of approximately 30 mg/L. SAP is a 25 kDa homopentamer known to bind both protein and nonprotein ligands, all in a calcium-dependent manner. The function of SAP is unclear but likely involves the humoral innate immune system spanning the complement system, inflammation, and coagulation. Also, SAP is known to bind to the generic structure of amyloid deposits and possibly to protect them against proteolysis. In this study, we have characterized the SAP interactome in human plasma containing the physiological Ca 2+ concentration using SAP affinity pull-down and co-immunoprecipitation experiments followed by mass spectrometry analyses. The analyses resulted in the identification of 33 proteins, of which 24 were direct or indirect interaction partners not previously reported. The SAP interactome can be divided into categories that include apolipoproteins, the complement system, coagulation, and proteolytic regulation.
The glycan structure of albumin Redhill, a glycosylated variant of human serum albumin.
Kragh-Hansen, U; Donaldson, D; Jensen, P H
2001-11-26
Although human serum albumin is synthesized without carbohydrate, glycosylated variants of the protein can be found. We have determined the structure of the glycan bound to the double-mutant albumin Redhill (-1 Arg, 320 Ala-->Thr). The oligosaccharide was released from the protein using anhydrous hydrazine, and its structure was investigated using neuraminidase and a reagent array analysis method, which is based on the use of specific exoglycosidases. The glycan was shown to be a disialylated biantennary complex type oligosaccharide N-linked to 318 Asn. However, a minor part (11 mol%) of the glycan was without sialic acid. The structure is principally the same as that of glycans bound to two other types of glycosylated albumin variants. Glycosylation can affect, for example, the fatty acid binding properties of albumin. Taking the present information into account, it is apparent that different effects on binding are caused not by different glycan structures but by different locations of attachment, with the possible addition of local conformational changes in the protein molecule.
Zyuzin, Mikhail V; Yan, Yan; Hartmann, Raimo; Gause, Katelyn T; Nazarenus, Moritz; Cui, Jiwei; Caruso, Frank; Parak, Wolfgang J
2017-08-16
The presence of a protein corona on various synthetic nanomaterials has been shown to strongly influence how they interact with cells. However, it is unclear if the protein corona also exists on protein particles, and if so, its role in particle-cell interactions. In this study, pure human serum albumin (HSA) particles were fabricated via mesoporous silica particle templating. Our data reveal that various serum proteins adsorbed on the particles, when exposed to human blood plasma, forming a corona. In human umbilical vein endothelial cells (HUVECs), the corona was shown to decrease particle binding to the cell membrane, increase the residence time of particles in early endosomes, and reduce the amount of internalized particles within the first hours of exposure to particles. These findings reveal important information regarding the mechanisms used by vascular endothelial cells to internalize protein-based particulate materials exposed to blood plasma. The ability to control the cellular recognition of these organic particles is expected to aid the advancement of HSA-based materials for intravenous drug delivery.
Bello-Gil, Daniel; Khasbiullina, Nailya; Shilova, Nadezhda; Bovin, Nicolai; Mañez, Rafael
2017-01-01
One of the most common genetic backgrounds for mice used as a model to investigate human diseases is the inbred BALB/c strain. This work is aimed to characterize the pattern of natural anti-carbohydrate antibodies present in the serum of 20 BALB/c mice by printed glycan array technology and to compare their binding specificities with that of human natural anti-carbohydrate antibodies. Natural antibodies (NAbs) from the serum of BALB/c mice interacted with 71 glycans from a library of 419 different carbohydrate structures. However, only seven of these glycans were recognized by the serum of all the animals studied, and other five glycans by at least 80% of mice. The pattern of the 12 glycans mostly recognized by the circulating antibodies of BALB/c mice differed significantly from that observed with natural anti-carbohydrate antibodies in humans. This lack of identical repertoires of natural anti-carbohydrate antibodies between individual inbred mice, and between mice and humans, should be taken into consideration when mouse models are intended to be used for investigation of NAbs in biomedical research. PMID:29163519
Improving the pharmacokinetic properties of biologics by fusion to an anti-HSA shark VNAR domain
Müller, Mischa R.; Saunders, Kenneth; Grace, Christopher; Jin, Macy; Piche-Nicholas, Nicole; Steven, John; O’Dwyer, Ronan; Wu, Leeying; Khetemenee, Lam; Vugmeyster, Yulia; Hickling, Timothy P.; Tchistiakova, Lioudmila; Olland, Stephane; Gill, Davinder; Jensen, Allan; Barelle, Caroline J.
2012-01-01
Advances in recombinant antibody technology and protein engineering have provided the opportunity to reduce antibodies to their smallest binding domain components and have concomitantly driven the requirement for devising strategies to increase serum half-life to optimise drug exposure, thereby increasing therapeutic efficacy. In this study, we adopted an immunization route to raise picomolar affinity shark immunoglobulin new antigen receptors (IgNARs) to target human serum albumin (HSA). From our model shark species, Squalus acanthias, a phage display library encompassing the variable binding domain of IgNAR (VNAR) was constructed, screened against target, and positive clones were characterized for affinity and specificity. N-terminal and C-terminal molecular fusions of our lead hit in complex with a naïve VNAR domain were expressed, purified and exhibited the retention of high affinity binding to HSA, but also cross-selectivity to mouse, rat and monkey serum albumin both in vitro and in vivo. Furthermore, the naïve VNAR had enhanced pharmacokinetic (PK) characteristics in both N- and C-terminal orientations and when tested as a three domain construct with naïve VNAR flanking the HSA binding domain at both the N and C termini. Molecules derived from this platform technology also demonstrated the potential for clinical utility by being available via the subcutaneous route of delivery. This study thus demonstrates the first in vivo functional efficacy of a VNAR binding domain with the ability to enhance PK properties and support delivery of multifunctional therapies. PMID:23676205
Improving the pharmacokinetic properties of biologics by fusion to an anti-HSA shark VNAR domain.
Müller, Mischa R; Saunders, Kenneth; Grace, Christopher; Jin, Macy; Piche-Nicholas, Nicole; Steven, John; O'Dwyer, Ronan; Wu, Leeying; Khetemenee, Lam; Vugmeyster, Yulia; Hickling, Timothy P; Tchistiakova, Lioudmila; Olland, Stephane; Gill, Davinder; Jensen, Allan; Barelle, Caroline J
2012-01-01
Advances in recombinant antibody technology and protein engineering have provided the opportunity to reduce antibodies to their smallest binding domain components and have concomitantly driven the requirement for devising strategies to increase serum half-life to optimise drug exposure, thereby increasing therapeutic efficacy. In this study, we adopted an immunization route to raise picomolar affinity shark immunoglobulin new antigen receptors (IgNARs) to target human serum albumin (HSA). From our model shark species, Squalus acanthias, a phage display library encompassing the variable binding domain of IgNAR (VNAR) was constructed, screened against target, and positive clones were characterized for affinity and specificity. N-terminal and C-terminal molecular fusions of our lead hit in complex with a naïve VNAR domain were expressed, purified and exhibited the retention of high affinity binding to HSA, but also cross-selectivity to mouse, rat and monkey serum albumin both in vitro and in vivo. Furthermore, the naïve VNAR had enhanced pharmacokinetic (PK) characteristics in both N- and C-terminal orientations and when tested as a three domain construct with naïve VNAR flanking the HSA binding domain at both the N and C termini. Molecules derived from this platform technology also demonstrated the potential for clinical utility by being available via the subcutaneous route of delivery. This study thus demonstrates the first in vivo functional efficacy of a VNAR binding domain with the ability to enhance PK properties and support delivery of multifunctional therapies.
Serum albumin promotes ATP-binding cassette transporter-dependent sterol uptake in yeast.
Marek, Magdalena; Silvestro, Daniele; Fredslund, Maria D; Andersen, Tonni G; Pomorski, Thomas G
2014-12-01
Sterol uptake in fungi is a multistep process that involves interaction between external sterols and the cell wall, incorporation of sterol molecules into the plasma membrane, and subsequent integration into intracellular membranes for turnover. ATP-binding cassette (ABC) transporters have been implicated in sterol uptake, but key features of their activity remain to be elucidated. Here, we apply fluorescent cholesterol (NBD-cholesterol) to monitor sterol uptake under anaerobic and aerobic conditions in two fungal species, Candida glabrata (Cg) and Saccharomyces cerevisiae (Sc). We found that in both fungal species, ABC transporter-dependent uptake of cholesterol under anaerobic conditions and in mutants lacking HEM1 gene is promoted in the presence of the serum protein albumin that is able to bind the sterol molecule. Furthermore, the C. glabrata ABC transporter CgAus1p expressed in S. cerevisiae requires the presence of serum or albumin for efficient cholesterol uptake. These results suggest that albumin can serve as sterol donor in ABC transporter-dependent sterol uptake, a process potentially important for growth of C. glabrata inside infected humans. © 2014 The Authors. FEMS Yeast Research published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.
Tatikolov, A S; Panova, I G; Ishchenko, A A; Kudinova, M A
2010-01-01
Noncovalent interactions of intraionic squarylium dyes, derivatives of 3H-indolium, as well as the structurally analogous ionic indodicarbocyanine dye with serum albumins (human, bovine, rat) and, for comparison, with ovalbumin has been studied by spectral and fluorescent methods. The hydrophilic squarylium dye with sulfonate groups was found to interact with albumins more efficiently, which is probably due to the double negative charge on the dye molecule at the expense of the sulfonate groups and the ability to form hydrogen bonds with albumin. The hydrophilic indodicarbocyanine dye without the squarylium group in its structure binds to albumins much more weaker than the structurally analogous squarylium dye. The dyes bind to ovalbumin less efficiently than to serum albumins. Along with the binding of monomeric dye molecules, the aggregation of the dyes on albumins is also observed. The hydrophobic squarylium dye without sulfonate groups tends to form aggregates in aqueous solutions, which partially decompose upon the introduction of albumin into the solution. The hydrophilic squarylium dye with sulfonate groups can be recommended for tests as a spectral-fluorescent probe for serum albumins in extracellular media of living organisms.
NASA Astrophysics Data System (ADS)
Barbosa, Silvia; Taboada, Pablo; Mosquera, Victor
2005-04-01
The complexation process of the amphiphilic penicillins sodium cloxacillin and sodium dicloxacillin with the protein human serum albumin (HSA) in aqueous buffered solutions of pH 4.5 and 7.4 at 25 °C was investigated through isothermal titration calorimetry (ITC) and dynamic light scattering. ITC experiments were carried out in the very dilute regime and showed that although hydrophobic interactions are the leading forces for complexation, electrostatic interactions also play an important role. The possibility of the formation of hydrogen bonds is also deduced from experimental data. The thermodynamic quantities of the binding mechanism, i.e, the enthalpy, ΔHITCi, entropy, ΔSITCi, Gibbs energy, ΔGITCi, binding constant, KITCi and the number of binding sites, ni, were obtained. The binding was saturable and is characterised by Langmuir adsorption isotherms. From ITC data and following a theoretical model, the number of bound and free penicillin molecules was calculated. From Scatchard plots, KITCi and ni were obtained and compared with those from ITC data. The interaction potential between the HSA-penicillin complexes and their stability were determined at pH 7.4 from the dependence of the diffusion coefficients on protein concentration by application of the DLVO colloidal stability theory. The results indicate decreasing stability of the colloidal dispersion of the drug-protein complexes with increase in the concentration of added drug.
Mohammadgholi, Mohsen; Sadeghzadeh, Nourollah; Erfani, Mostafa; Abediankenari, Saeid; Abedi, Seyed Mohammad; Emrarian, Iman; Jafari, Narjes; Behzadi, Ramezan
2018-01-01
Human fibronectin extra-domain B (EDB) is particularly expressed during angiogenesis progression. It is, thus, a promising marker of tumour growth. Aptides are a novel class of peptides with high-affinity binding to specific protein targets. APTEDB is an antagonist-like ligand that especially interacts with human fibronectin EDB. This study was the first attempt in which the hydrazinonicotinamide (HYNIC)-conjugated APTEDB was labelled with technetium-99m (99mTc) as an appropriate radiotracer and tricine/EDDA exchange labeling. Radiochemical purity, normal saline, and serum stability were evaluated by HPLC and radio-isotope TLC scanner. Other examinations, such as protein-binding calculation, dissociation radioligand binding assay, and partition coefficient constant determination, were also carried out. The cellular-specific binding of 99mTc- HYNIC-conjugated APTEDB was assessed in two EDB-positive (U87MG) and EDB-negative (U373MG) cell lines. Bio-distribution was investigated in normal mice as well as in U87MG and U373MG tumour-bearing mice. Eventually, the radiolabelled APTEDB was used for tumour imaging using planar SPECT. Radiolabelling was achieved with high purity (up to 97%) and accompanied by high solution (over 90% after overnight) and serum (80% after 2 hours) stability. The obtained cellular-specific binding ratio was greater than nine-fold. In-vivo experiments showed rapid blood clearance with mainly renal excretion and tumour uptake specificity (0.48±0.03% ID/g after 1h). The results of the imaging also confirmed considerable tumour uptake for EDB-positive cell line compared with the EDB-negative one. Aptides are considered to be a potent candidate for biopharmaceutical applications. They can be modified with imaging or therapeutic agents. This report shows the capability of 99mTc-HYNIC-APTEDB for human EDB-expressing tumours detection. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The Murine Factor H-Related Protein FHR-B Promotes Complement Activation.
Cserhalmi, Marcell; Csincsi, Ádám I; Mezei, Zoltán; Kopp, Anne; Hebecker, Mario; Uzonyi, Barbara; Józsi, Mihály
2017-01-01
Factor H-related (FHR) proteins consist of varying number of complement control protein domains that display various degrees of sequence identity to respective domains of the alternative pathway complement inhibitor factor H (FH). While such FHR proteins are described in several species, only human FHRs were functionally investigated. Their biological role is still poorly understood and in part controversial. Recent studies on some of the human FHRs strongly suggest a role for FHRs in enhancing complement activation via competing with FH for binding to certain ligands and surfaces. The aim of the current study was the functional characterization of a murine FHR, FHR-B. To this end, FHR-B was expressed in recombinant form. Recombinant FHR-B bound to human C3b and was able to compete with human FH for C3b binding. FHR-B supported the assembly of functionally active C3bBb alternative pathway C3 convertase via its interaction with C3b. This activity was confirmed by demonstrating C3 activation in murine serum. In addition, FHR-B bound to murine pentraxin 3 (PTX3), and this interaction resulted in murine C3 fragment deposition due to enhanced complement activation in mouse serum. FHR-B also induced C3 deposition on C-reactive protein, the extracellular matrix (ECM) extract Matrigel, and endothelial cell-derived ECM when exposed to mouse serum. Moreover, mouse C3 deposition was strongly enhanced on necrotic Jurkat T cells and the mouse B cell line A20 by FHR-B. FHR-B also induced lysis of sheep erythrocytes when incubated in mouse serum with FHR-B added in excess. Altogether, these data demonstrate that, similar to human FHR-1 and FHR-5, mouse FHR-B modulates complement activity by promoting complement activation via interaction with C3b and via competition with murine FH.
Hofmann, Thomas; Glabasnia, Arne; Schwarz, Bernd; Wisman, Kimberly N.; Gangwer, Kelly A.; Hagerman, Ann E.
2008-01-01
The objective of the present investigation was to examine oral astringency and protein binding activity of four structurally well-defined tannins, namely procyanidin (epicatechin16(4→8)catechin), pentagalloyl glucose (1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose), castalagin, and grandinin, representing the three main structural categories of tannins, the proanthocyanidins, the gallotannins, and the ellagitannins. Astringency threshold and dose response were determined by the half-tongue test using a trained human panel. Protein binding stoichiometry and relative affinity were determined using radioiodinated bovine serum albumin in precipitation or competitive binding assays. Procyanidin and pentagalloyl glucose were perceived as highly astringent compounds and had relatively steep dose response curves but castalagin and grandinin had a lower mass threshold for detection. In vitro, procyanidin was the most effective protein precipitating agent, and grandinin the least. Increasing the temperature increased protein precipitation by the hydrolysable tannins, especially grandinin. All four polyphenols had higher relative affinity for proline-rich proteins than for bovine serum albumin. PMID:17147439
Amah-Tariah, F S; Ojeka, S O; Dapper, D V
2011-12-20
Previous studies on the normal values of serum iron, unsaturated iron binding capacity, total iron binding capacity, serum transferrin, percent transferrin saturation, red cell distribution width, and various platelet indices: Platelet count, mean platelet volume, platelet distribution width, plateletcrit and platelet larger cell ratio in pregnant subjects in Nigeria are relatively scanty. Present study aims to determine the values of these parameters in apparently healthy pregnant subjects residing in Port Harcourt south eastern Nigeria; and help establish normal reference ranges of these parameters for the population under reference. Cross sectional prospective study involving 220 female subjects attending for the first time, the ante-natal clinics of a tertiary health care facility in Port Harcourt. Subjects were divided into 73, 75 and 72 subjects in the first, second and third trimester of pregnancy respectively. Serum iron and unsaturated iron binding capacity, red cell distribution width, platelet count and platelet distribution width were determined by automated methods; total iron binding capacity, serum transferrin concentrations, percent transferrin saturation, mean platelet volume and plateletcrit were calculated using appropriate formulas. The values of serum iron, unsaturated iron binding capacity, total iron binding capacity and serum transferrin concentrations were found to show significant variations between the various trimesters of pregnancy. However, while serum iron showed significant decreases during pregnancy; unsaturated iron binding capacity, total iron binding capacity and serum transferrin concentrations were found to show significant increases during pregnancy amongst our subjects (p<0.05). By contrast the values of red cell distribution width, platelet count, mean platelet volume, platelet distribution width, plateletcrit and platelet larger cell ratio did not show any significant differences at the different trimesters of pregnancy in our subjects (p>0.05). The present study reports, for the first time, normative values for these parameters in apparently healthy pregnant subjects in Port Harcourt south eastern Nigeria. Apparently, increases in unsaturated and total iron binding capacity and serum transferrin values seen amongst our subjects with increasing gestation may perhaps be a mechanism to ensure a fetal adequate iron delivery on account of the decreasing serum iron concentration with gestation in our subjects. The study suggests that values of serum transferrin are perhaps a more useful screening tool for iron deficiency anemia during pregnancy amongst our subjects.
Martha, P M; Rogol, A D; Blizzard, R M; Shaw, M A; Baumann, G
1991-07-01
To investigate the physiological relationship between serum GH-binding proteins and 24-h GH release, we compared the 24-h GH pulse attributes in serum samples obtained at 20-min intervals to the serum GH-binding protein activity (GH-BP) from 38 normal boys between 7 5/12 and 18 4/12 yr of age. GH-BP was determined in a serum sample from each study (containing less than 1.0 micrograms/L GH) using a standardized GH-BP assay. GH-BP results are expressed as the percentage of [125I]human GH bound to the high affinity GH-BP complex (peak II) per 160 microL serum. There were significant inverse relationships between the high affinity (receptor-related) GH-BP and several characteristics of 24-h GH release. Specifically, GH-BP was significantly (P less than 0.005 for all), but negatively, correlated with mean 24-h GH concentration (r = -0.62), sum of the GH pulse amplitudes (r = -0.57), sum of the GH pulse areas (r = -0.55), interpulse mean GH concentration (r = -0.53), and number of GH pulses per 24 h (r = -0.53). In addition, GH-BP correlated positively with the mean time interval between pulses (r = 0.59). There was also a significant positive correlation (r = 0.75; P less than 0.001) between GH-BP and the subject's age-adjusted body mass index SD score (BMI-SDS). Each characteristic of 24-h GH release correlating inversely with GH-BP also correlated inversely with BMI-SDS (P less than 0.01 for all comparisons). GH-BP did not, however, correlate with plasma insulin-like growth factor-I levels, serum testosterone concentrations, or height SDS. Binding to the low affinity GH-BP (peak I) did not correlate significantly with any of the examined GH pulse attributes, BMI-SDS, or the degree of binding to the high affinity GH-BP (peak II). We conclude that an inverse relationship exists between the high affinity serum GH-BP and 24-h GH release in boys under normal physiological conditions. We speculate that abnormalities in this relationship probably also exist and may underlie some disorders of growth.
Gokara, Mahesh; Narayana, Vidadala V; Sadarangani, Vineet; Chowdhury, Shatabdi Roy; Varkala, Sreelaxmi; Ramachary, Dhevalapally B; Subramanyam, Rajagopal
2017-08-01
In this study, molecular binding affinity was investigated for Nefopam analogues (NFs), a functionalized benzoxazocine, with human serum albumin (HSA), a major transport protein in the blood. Its binding affinity and concomitant changes in its conformation, binding site and simulations were also studied. Fluorescence data revealed that the fluorescence quenching of HSA upon binding of NFs analogues is based on a static mechanism. The three analogues of NFs binding constants (K A ) are in the order of NF3 > NF2 > NF1 with values of 1.53 ± .057 × 10 4 , 2.16 ± .071 × 10 4 and 3.6 ± .102 × 10 5 M -1 , respectively. Concurrently, thermodynamic parameters indicate that the binding process was spontaneous, and the complexes were stabilized mostly by hydrophobic interactions, except for NF2 has one hydrogen bond stabilizes it along with hydrophobic interactions. Circular dichroism (CD) studies revealed that there is a decrease in α-helix with an increase in β-sheets and random coils signifying partial unfolding of the protein upon binding of NFs, which might be due to the formation of NFs-HSA complexes. Further, molecular docking studies showed that NF1, NF2 and NF3 bound to subdomains IIIA, IB and IIA through hydrophobic interactions. However, NF1 have additionally formed a single hydrogen bond with LYS 413. Furthermore, molecular simulations unveiled that NFs binding was in support with the structural perturbation observed in CD, which is evident from the root mean square deviation and R g fluctuations. We hope our insights will provide ample scope for engineering new drugs based on the resemblances with NFs for enhanced efficacy with HSA.
[Differentiation of nonspecific serological reactions in brucellosis].
Khristoforov, L
1979-01-01
Differentiation of non-specific agglutination was performed by the complement binding reaction, Coombs' reaction, Hajdu reaction, the surface fixation and agglutination reaction and the reaction of complement binding with heterologic antigens. For that purpose the following were used: 1) Serums--antiglobulin against cattle globulin, 5720 serum of various animals which had manifested non-specific agglutination with brucella antigen and brucella serums of experimentally infected sheep, of naturally infected swine and of cattle--received from abroad. 2) Antigens--of Br. abortus 99, of bacteria heterologic to brucellae: Proteus vulgaris, Listeria monocytogenes, Staphylococcus albus, Escherichia coli, Streptococcus pyogenes, S. abortus ovis, for O and OH agglutination, water extraction antigens--for complement binding and concentrated suspensions of all bacteria used in brucellose and non-brucellose serum absorption. Highest number of non-specific reactions were observed in cattle serums and lowest--in goat serums. Titers with heterologic antigens were higher than these with brucella antigens. Often the serum having non-specific agglutiantion reacted not only with one, but with more heterologic antigens. Non-specific complement binding reactions were not produced in complete antibodies with the brucella antigen. Heterologic brucella antigens were exhausted more fully than heterologic complement binding antibodies. In their effectiveness (differentiation of non-specific agglutination with brucella antigen in cattle serum) the serological reactions studied rank as follows: complement binding reaction, slow agglutination with serums absorbed by heterologic antigens, surface fixation reaction, Coombs' reaction, and Hadju agglutination.
Ali, Manjoor; Kumar, Amit; Kumar, Mukesh; Pandey, Badri N
2016-04-01
Human serum albumin (HSA), the most abundant soluble protein in blood plays critical roles in transportation of biomolecules and maintenance of osmotic pressure. In view of increasing applications of lanthanides- and actinides-based materials in nuclear energy, space, industries and medical applications, the risk of exposure with these metal ions is a growing concern for human health. In present study, binding interaction of actinides/lanthanides [thorium: Th(IV), uranium: U(VI), lanthanum: La(III), cerium: Ce(III) and (IV)] with HSA and its structural consequences have been investigated. Ultraviolet-visible, Fourier transform-infrared, Raman, Fluorescence and Circular dichroism spectroscopic techniques were applied to study the site of metal ions interaction, binding affinity determination and the effect of metal ions on protein unfolding and HSA conformation. Results showed that these metal ions interacted with carbonyl (CO..:)/amide(N..-H) groups and induced exposure of aromatic residues of HSA. The fluorescence analysis indicated that the actinide binding altered the microenvironment around Trp214 in the subdomain IIA. Binding affinity of U(VI) to HSA was slightly higher than that of Th(IV). Actinides and Ce(IV) altered the secondary conformation of HSA with a significant decrease of α-helix and an increase of β-sheet, turn and random coil structures, indicating a partial unfolding of HSA. A correlation was observed between metal ion's ability to alter HSA conformation and protein unfolding. Both cationic effects and coordination ability of metal ions seemed to determine the consequences of their interaction with HSA. Present study improves our understanding about the protein interaction of these heavy ions and their impact on its secondary structure. In addition, binding characteristics may have important implications for the development of rational antidote for the medical management of health effects of actinides and lanthanides. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
NASA Astrophysics Data System (ADS)
Ogawa, Emiyu; Takenoya, Hiromi; Arai, Tsunenori
2016-03-01
We have proposed to apply the photosensitization reaction in myocardium interstitial fluid using talaporfin sodium to realize less-heated electrical conduction block for a tachyarrhythmia treatment: PD Ablation®. The cytotoxicity of the extracellular photosensitization reaction efficiency may change by the talaporfin sodium binding with serum proteins. These binding would change with solution temperature. We investigated the binding behavior of talaporfin sodium with human serum albumin (HSA), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) changing solution temperature from 17 to 37°C. We also studied the photocytotoxicity change by solution temperature of 17 and 37°C measuring cell lethality by WST assay using fetal bovine serum. The binding ratio of talaporfin sodium with HDL and LDL decreased 6.3% and 12.8% with temperature increasing from 17 to 37°C. There was no significant difference in the case of HSA. The cell lethality was increased about 30% with temperature increasing from 17 to 37°C. The myocardium tissue temperature increase was reported that less than 5°C in the case of our PD Ablation®. We think that the photocytotoxicity change by these temperature increasing would be negligible in our PD Ablation®. We suggest that the temperature maintaining would be necessary to keep the photocytotoxicity efficiency in the case of the open surgery that would cause the tissue surface temperature decreasing.
Baums, Christoph G.; Kaim, Ute; Fulde, Marcus; Ramachandran, Girish; Goethe, Ralph; Valentin-Weigand, Peter
2006-01-01
Streptococcus suis serotype 2 is a porcine and human pathogen with adhesive and invasive properties. In other streptococci, large surface-associated proteins (>100 kDa) of the MSCRAMM family (microbial surface components recognizing adhesive matrix molecules) are key players in interactions with host tissue. In this study, we identified a novel opacity factor of S. suis (OFS) with structural homology to members of the MSCRAMM family. The N-terminal region of OFS is homologous to the respective regions of fibronectin-binding protein A (FnBA) of Streptococcus dysgalactiae and the serum opacity factor (SOF) of Streptococcus pyogenes. Similar to these two proteins, the N-terminal domain of OFS opacified horse serum. Serum opacification activity was detectable in sodium dodecyl sulfate extracts of wild-type S. suis but not in extracts of isogenic ofs knockout mutants. Heterologous expression of OFS in Lactococcus lactis demonstrated that a high level of expression of OFS is sufficient to provide surface-associated serum opacification activity. Furthermore, serum opacification could be inhibited by an antiserum against recombinant OFS. The C-terminal repetitive sequence elements of OFS differed significantly from the respective repeat regions of FnBA and SOF as well as from the consensus sequence of the fibronectin-binding repeats of MSCRAMMs. Accordingly, fibronectin binding was not detectable in recombinant OFS. To investigate the putative function of OFS in the pathogenesis of invasive S. suis diseases, piglets were experimentally infected with an isogenic mutant strain in which the ofs gene had been knocked out by an in-frame deletion. The mutant was severely attenuated in virulence but not in colonization, demonstrating that OFS represents a novel virulence determinant of S. suis. PMID:17057090
Bi, Cong; Zheng, Xiwei; Hage, David S
2016-02-05
In the circulatory system, many drugs are reversibly bound to serum proteins such as human serum albumin (HSA) and alpha1-acid glycoprotein (AGP), resulting in both free and protein-bound fractions for these drugs. This report examined the use of microcolumns containing immobilized AGP for the measurement of free drug fractions by ultrafast affinity extraction and a two-dimensional affinity system. Several drugs known to bind AGP were used as models to develop and evaluate this approach. Factors considered during the creation of this method included the retention of the drugs on the microcolumns, the injection flow rate, the microcolumn size, and the times at which a second AGP column was placed on-line with the microcolumn. The final system had residence times of only 110-830ms during sample passage through the AGP microcolumns and allowed free drug fractions to be determined within 10-20min when using only 3-10μL of sample per injection. This method was used to measure the free fractions of the model drugs at typical therapeutic levels in serum, giving good agreement with the results obtained by ultrafiltration. This approach was also used to estimate the binding constants for each drug with AGP in serum, even for drugs that had significant interactions with both AGP and HSA in such samples. These results indicated that AGP microcolumns could be used with ultrafast affinity extraction to measure free drug fractions in a label-free manner and to study the binding of drugs with AGP in complex samples such as serum. Copyright © 2015 Elsevier B.V. All rights reserved.
Antibody binding of circulating ergot alkaloids in cattle grazing tall fescue.
Hill, N S; Thompson, F N; Dawe, D L; Stuedemann, J A
1994-03-01
Direct evidence linking alkaloids found in endophyte-infected tall fescue forage with the livestock disorder known as fescue toxicosis is lacking. Physiologic effects of fescue toxicosis include reduced serum prolactin concentration in cattle. A monoclonal antibody specific to the lysergic moiety of ergot alkaloids was developed in mice after creating an immunogen by linking lysergol to human serum albumin. The antibody was specific to the lysergic moiety and, therefore, it cross-reacted with ergot alkaloids, lysergic acid, and lysergol. The antibody did not cross-react with alkaloid derivatives that had bromated or hydrogenated lysergic ring moieties. Fescue toxicosis conditions were elicited in yearling Angus steers by permitting them to graze endophyte-infected tall fescue containing > 650 micrograms/kg of ergovaline for 60 days. Passive immunization of steers by infusion of the monoclonal antibody increased serum prolactin concentration by 7 ng/ml, beginning immediately after infusion. Control steers did not respond to treatment with bovine serum albumin. Active immunization of yearling Angus heifers with immunogens containing lysergol or ergonovine linked to human serum albumin resulted in an antibody response.
Mai, Elaine; Zheng, Zhong; Chen, Youjun; Peng, Jing; Severin, Christophe; Filvaroff, Ellen; Romero, Mally; Mallet, William; Kaur, Surinder; Gelzleichter, Thomas; Nijem, Ihsan; Merchant, Mark; Young, Judy C
2014-02-01
Onartuzumab, a humanized, monovalent monoclonal anti-MET antibody, antagonizes MET signaling by inhibiting binding of its ligand, hepatocyte growth factor (HGF). We investigated the effects of onartuzumab on cell-associated and circulating (shed) MET (sMET) and circulating HGF in vitro and nonclinically to determine their utility as pharmacodynamic biomarkers for onartuzumab. Effects of onartuzumab on cell-associated MET were assessed by flow cytometry and immunofluorescence. sMET and HGF were measured in cell supernatants and in serum or plasma from multiple species (mouse, cynomolgus monkey, and human) using plate-based immunoassays. Unlike bivalent anti-MET antibodies, onartuzumab stably associates with MET on the surface of cells without inducing MET internalization or shedding. Onartuzumab delayed the clearance of human xenograft tumor-produced sMET from the circulation of mice, and endogenous sMET in cynomolgus monkeys. In mice harboring MET-expressing xenograft tumors, in the absence of onartuzumab, levels of human sMET correlated with tumor size, and may be predictive of MET-expressing tumor burden. Because binding of sMET to onartuzumab in circulation resulted in increasing sMET serum concentrations due to reduced clearance, this likely renders sMET unsuitable as a pharmacodynamic biomarker for onartuzumab. There was no observed effect of onartuzumab on circulating HGF levels in xenograft tumor-bearing mice or endogenous HGF in cynomolgus monkeys. Although sMET and HGF may serve as predictive biomarkers for MET therapeutics, these data do not support their use as pharmacodynamic biomarkers for onartuzumab.
Sparbier, Katrin; Asperger, Arndt; Resemann, Anja; Kessler, Irina; Koch, Sonja; Wenzel, Thomas; Stein, Günter; Vorwerg, Lars; Suckau, Detlev; Kostrzewa, Markus
2007-01-01
Comprehensive proteomic analyses require efficient and selective pre-fractionation to facilitate analysis of post-translationally modified peptides and proteins, and automated analysis workflows enabling the detection, identification, and structural characterization of the corresponding peptide modifications. Human serum contains a high number of glycoproteins, comprising several orders of magnitude in concentration. Thereby, isolation and subsequent identification of low-abundant glycoproteins from serum is a challenging task. selective capturing of glycopeptides and -proteins was attained by means of magnetic particles specifically functionalized with lectins or boronic acids that bind to various structural motifs. Human serum was incubated with differentially functionalized magnetic micro-particles (lectins or boronic acids), and isolated proteins were digested with trypsin. Subsequently, the resulting complex mixture of peptides and glycopeptides was subjected to LC-MALDI analysis and database searching. In parallel, a second magnetic bead capturing was performed on the peptide level to separate and analyze by LC-MALDI intact glycopeptides, both peptide sequence and glycan structure. Detection of glycopeptides was achieved by means of a software algorithm that allows extraction and characterization of potential glycopeptide candidates from large LC-MALDI-MS/MS data sets, based on N-glycopeptide-specific fragmentation patterns and characteristic fragment mass peaks, respectively. By means of fast and simple glycospecific capturing applied in conjunction with extensive LC-MALDI-MS/MS analysis and novel data analysis tools, a high number of low-abundant proteins were identified, comprising known or predicted glycosylation sites. According to the specific binding preferences of the different types of beads, complementary results were obtained from the experiments using either magnetic ConA-, LCA-, WGA-, and boronic acid beads, respectively. PMID:17916798
Dye-binding protein assay using a long-wave-absorbing cyanine probe.
Zheng, Hong; Mao, Yu Xia; Li, Dong Hui; Zhu, Chang Qing
2003-07-01
A simple and fast protein assay that involves the binding of water-soluble sulfonate heptamethylene cyanine to protein is described. The binding of the dye to protein causes a shift in the absorption maximum of the dye from 778 to 904 nm, and the increase in absorption at 904 nm is monitored. This assay is very reproducible, of good color stability for at least 80 min, and sensitive at the 100 ng/mL level of human serum albumin (HSA) when a spectrophotometer with near-infrared wavelength is used to measure absorbance. Few chemicals except ionic surfactants such as cetyltrimethylammonium bromide and sodium dodecyl sulfonate interfere with the assay. Purified proteins have different capacities to interact with the dye; under the experimental conditions, the linear ranges of bovine serum albumin (BSA), HSA and gamma-IgG were 200-2000, 100-2400, and 200-3000 ng/mL, respectively. The relative standard deviation for the five replicate determinations of 1200 ng/mL BSA is 2.1%.
Feroz, S R; Mohamad, S B; Lee, G S; Malek, S N A; Tayyab, S
2015-06-01
6-Shogaol, one of the main bioactive constituents of Zingiber officinale has been shown to possess various therapeutic properties. Interaction of a therapeutic compound with plasma proteins greatly affects its pharmacokinetic and pharmacodynamic properties. The present investigation was undertaken to characterize the interaction between 6-shogaol and the main in vivo transporter, human serum albumin (HSA). Various binding characteristics of 6-shogaol-HSA interaction were studied using fluorescence spectroscopy. Thermal stability of 6-shogaol-HSA system was determined by circular dichroism (CD) and differential scanning calorimetric (DSC) techniques. Identification of the 6-shogaol binding site on HSA was made by competitive drug displacement and molecular docking experiments. Fluorescence quench titration results revealed the association constant, Ka of 6-shogaol-HSA interaction as 6.29 ± 0.33 × 10(4) M(-1) at 25 ºC. Values of the enthalpy change (-11.76 kJ mol(-1)) and the entropy change (52.52 J mol(-1) K(-1)), obtained for the binding reaction suggested involvement of hydrophobic and van der Waals forces along with hydrogen bonds in the complex formation. Higher thermal stability of HSA was noticed in the presence of 6-shogaol, as revealed by DSC and thermal denaturation profiles. Competitive ligand displacement experiments along with molecular docking results suggested the binding preference of 6-shogaol for Sudlow's site I of HSA. All these results suggest that 6-shogaol binds to Sudlow's site I of HSA through moderate binding affinity and involves hydrophobic and van der Waals forces along with hydrogen bonds. Copyright © 2015 Elsevier GmbH. All rights reserved.
Diketo modification of curcumin affects its interaction with human serum albumin.
Shaikh, Shaukat Ali M; Singh, Beena G; Barik, Atanu; Ramani, Modukuri V; Balaji, Neduri V; Subbaraju, Gottumukkala V; Naik, Devidas B; Indira Priyadarsini, K
2018-06-15
Curcumin isoxazole (CI) and Curcumin pyrazole (CP), the diketo modified derivatives of Curcumin (CU) are metabolically more stable and are being explored for pharmacological properties. One of the requirements in such activities is their interaction with circulatory proteins like human serum albumin (HSA). To understand this, the interactions of CI and CP with HSA have been investigated employing absorption and fluorescence spectroscopy and the results are compared with that of CU. The respective binding constants of CP, CI and CU with HSA were estimated to be 9.3×10 5 , 8.4×10 5 and 2.5×10 5 M -1 , which decreased with increasing salt concentration in the medium. The extent of decrease in the binding constant was the highest in CP followed by CI and CU. This revealed that along with hydrophobic interaction other binding modes like electrostatic interactions operate between CP/CI/CU with HSA. Fluorescence quenching studies of HSA with these compounds suggested that both static and dynamic quenching mechanisms operate, where the contribution of static quenching is higher for CP and CI than that for CU. From fluorescence resonance energy transfer studies, the binding site of CU, CI and CP was found to be in domain IIA of HSA. CU was found to bind in closer proximity with Trp214 as compared to CI and CP and the same was responsible for efficient energy transfer and the same was also established by fluorescence anisotropy measurements. Furthermore docking simulation complemented the experimental observation, where both electrostatic as well as hydrophobic interactions were indicated between HSA and CP, CI and CU. This study is useful in designing more stable CU derivatives having suitable binding properties with proteins like HSA. Copyright © 2018 Elsevier B.V. All rights reserved.
Diketo modification of curcumin affects its interaction with human serum albumin
NASA Astrophysics Data System (ADS)
Shaikh, Shaukat Ali M.; Singh, Beena G.; Barik, Atanu; Ramani, Modukuri V.; Balaji, Neduri V.; Subbaraju, Gottumukkala V.; Naik, Devidas B.; Indira Priyadarsini, K.
2018-06-01
Curcumin isoxazole (CI) and Curcumin pyrazole (CP), the diketo modified derivatives of Curcumin (CU) are metabolically more stable and are being explored for pharmacological properties. One of the requirements in such activities is their interaction with circulatory proteins like human serum albumin (HSA). To understand this, the interactions of CI and CP with HSA have been investigated employing absorption and fluorescence spectroscopy and the results are compared with that of CU. The respective binding constants of CP, CI and CU with HSA were estimated to be 9.3 × 105, 8.4 × 105 and 2.5 × 105 M-1, which decreased with increasing salt concentration in the medium. The extent of decrease in the binding constant was the highest in CP followed by CI and CU. This revealed that along with hydrophobic interaction other binding modes like electrostatic interactions operate between CP/CI/CU with HSA. Fluorescence quenching studies of HSA with these compounds suggested that both static and dynamic quenching mechanisms operate, where the contribution of static quenching is higher for CP and CI than that for CU. From fluorescence resonance energy transfer studies, the binding site of CU, CI and CP was found to be in domain IIA of HSA. CU was found to bind in closer proximity with Trp214 as compared to CI and CP and the same was responsible for efficient energy transfer and the same was also established by fluorescence anisotropy measurements. Furthermore docking simulation complemented the experimental observation, where both electrostatic as well as hydrophobic interactions were indicated between HSA and CP, CI and CU. This study is useful in designing more stable CU derivatives having suitable binding properties with proteins like HSA.
Jaconi, S; Saurat, J H; Siegenthaler, G
1996-05-01
Retinol, the precursor of the retinoic acid hormone, is transported in the serum by a specific carrier, the retinol-binding protein (RBP). Compared to serum of healthy controls, the serum of patients with chronic renal failure (CRF) contains markedly increased levels of the RBP form truncated at the C terminal, des(182Leu-183Leu), (RBP2), which suggests that RBP2 is cleared by the kidney in healthy people but accumulates in serum of CRF patients (Jaconi S, et al. J Lipid Res 1995:36:1247-53). To understand better the mechanism of retinol transport, we have developed a new analytical strategy to analyze the various forms of RBP that circulate in the blood: RBP with and without retinol (holo- and apo-RBP, respectively), RBP bound or not to transthyretin (TTR) and to determine in which of these forms RBP2 circulates. We confirm, but now by direct measurement, that holo-RBP and, to a larger extent, apo-RBP are increased in CRF serum compared to normal serum. We also show that almost all apo-RBP and about 50% of total holo-RBP, corresponding to RBP excess in CRF serum, circulate free and are not complexed to TTR, the remaining 50% being complexed to TTR. This observation suggests that the high levels of free holo-RBP, not bound to TTR, which correspond to the increase in total RBPs measured in CRF serum, may alter the tissue uptake of retinol and be responsible for the signs of hypervitaminosis A observed in these patients. Secondly, we found that the truncation resulting in RBP2 does not alter its binding properties for retinol nor those of holo-RBP2 for TTR. We observed that the high amounts of free holo-RBP2 and holo-RBP in sera of CRF patients were low in normal serum, suggesting that these forms are cleared by the kidney in normal conditions. The possible role of free holo-RBPs is discussed in the context of retinol recycling.
Isolation of human anti-serum albumin Fab antibodies with an extended serum-half life.
Kang, Hyeon-Ju; Kim, Hye-Jin; Cha, Sang-Hoon
2016-01-01
The serum albumin (SA) has been exploited to generate long-acting biotherapeutics by taking advantage of the FcRn-mediated recycling mechanism in a direct or an indirect way. Since Fab fragments have been proven to be clinically safe for human usage, we assumed that human anti-SA Fab antibodies could have a great potential as a carrier molecule to extend the serum half-life of therapeutic proteins. We, herein, had attempted to isolate anti-SA Fab antibodies from HuDVFab-8L antibody library via a phage display technology, and identified eight discrete human Fab antibodies. One of the Fab antibodies, SL335, showed the strongest binding reactivity to human SA with nM range of affinity at both pH 6 and pH 7.4, and cross-reacted to SAs from various species including rat, mouse, canine and monkey. The in vivo pharmacokinetic assay using a rat model indicated that SL335 has approximately 10 fold longer serum half-life and 26 to 44-fold increase in AUC0 → ∞ compared to the negative control Fab molecule in both intravenous and subcutaneous administrations. Knowing that Fabs have proven to be safe in clinics for a long time, SL335 seems to have a great potential in generating long-acting protein drugs by tagging effector molecules with either chemical conjugation or genetic fusion. Copyright © 2015 Elsevier B.V. All rights reserved.
Masone, Diego; Chanforan, Céline
2015-06-01
Due to the high amount of artificial food colorants present in infants' diets, their adverse effects have been of major concern among the literature. Artificial food colorants have been suggested to affect children's behavior, being hyperactivity the most common disorder. In this study we compare binding affinities of a group of artificial colorants (sunset yellow, quinoline yellow, carmoisine, allura red and tartrazine) and their natural industrial equivalents (carminic acid, curcumin, peonidin-3-glucoside, cyanidin-3-glucoside) to human serum albumin (HSA) by a docking approach and further refinement through atomistic molecular dynamics simulations. Due to the protein-ligand conformational interface complexity, we used collective variable driven molecular dynamics to refine docking predictions and to score them according to a hydrogen-bond criterion. With this protocol, we were able to rank ligand affinities to HSA and to compare between the studied natural and artificial food additives. Our results show that the five artificial colorants studied bind better to HSA than their equivalent natural options, in terms of their H-bonding network, supporting the hypothesis of their potential risk to human health. Copyright © 2015 Elsevier Ltd. All rights reserved.
Song, Guowei; Hu, Yaning; Liu, Yusheng; Jiang, Rui
2018-05-20
Layer-by-layer heparinization of therapeutic cells prior to transplantation is an effective way to inhibit the instant blood-mediated inflammatory reactions (IBMIRs), which are the major cause of early cell graft loss during post-transplantation. Here, a conjugate of heparin-binding peptide (HBP) and human serum albumin (HSA), HBP-HSA, was synthesized by using heterobifunctional crosslinker. After the first heparin layer was coated on human umbilical vein endothelial cells (HUVECs) by means of the HBP-polyethylene glycol-phospholipid conjugate, HBP-HSA and heparin were then applied to the cell surface sequentially to form multiple layers. The immobilization and retention of heparin were analyzed by confocal microscopy and flow cytometry, respectively, and the cytotoxity of HBP-HSA was further evaluated by cell viability assay. Results indicated that heparin was successfully introduced to the cell surface in a layer-by-layer way and retained for at least 24 h, while the cytotoxity of HBP-HSA was negligible at the working concentration. Accordingly, this conjugate provides a promising method for co-immobilization of heparin and HSA to the cell surface under physiological conditions with improved biocompatibility.
The role of the carbohydrate chains in complement (C3) fixation by solid-phase-bound human IgA.
Nikolova, E B; Tomana, M; Russell, M W
1994-01-01
In contrast to antigen-antibody complexes containing native human IgA, solid-phase-deposited IgA activates the alternative complement pathway and binds C3b. To investigate the role of carbohydrate chains in this, various human IgA preparations were treated with neuraminidase alone or together with N-glycanase or O-glycanase, or with mixed glycosidases from the oral bacterium, Streptococcus mitis. Depletion of oligosaccharides was determined by carbohydrate analysis. Removal of sialic acid and N-linked glycan chains greatly increased the C3b-fixing properties of normal serum IgA1 and IgA2. Myeloma IgA1 and IgA2 proteins and secretory IgA had higher C3b-binding activity than normal serum IgA, and this was further increased by removal of sialic acid and N-linked glycans. Fc alpha and Fc alpha-SC fragments of myeloma and secretory IgA1, respectively, but not Fab alpha fragments, obtained by cleavage with bacterial IgA1 proteases and also free secretory component, fixed C3b by the alternative pathway. Images Figure 4 PMID:7927504
Mohammadi, Ghobad; Faramarzi, Elahe; Mahmoudi, Majid; Ghobadi, Sirous; Ghiasvand, Ali Reza; Goicoechea, Hector C; Jalalvand, Ali R
2018-07-15
In this work, voltammetric data recorded by a glassy carbon electrode (GCE) was used to investigate the interactions of tolcapone (Tasmar, TAS) with human serum albumin (HSA) at the electrode surface. The recorded voltammetric data was also combined with spectroscopic data to construct an augmented data matrix which was analysed by multivariate curve resolution-alternating least squares (MCR-ALS) as an efficient chemometric tool to obtain more information about TAS-HSA interactions. The results of MCR-ALS confirmed formation of one complex species (HSA-TAS 2 ) and application of MCR-BANDS to the results of MCR-ALS confirmed the absence of rotational ambiguities and existing unambiguous and reliable results. Binding of TAS to HSA was also modeled by molecular docking and the results showed that the TAS was bound to sub-domain IIA of HSA which were compatible with the ones obtained by recording experimental data. Hard-modeling of combined voltammetric and spectroscopic data by EQUISPEC helped us to compute binding constant of HSA-TAS 2 complex species which was compatible with the binding constant value obtained by direct analysis of experimental data. Finally, a new electroanalytical method was developed based on TAS-HSA interactions for determination of HSA in two ranges of 0-541 nM and 541-1200 nM with a limit of detection of 0.04 nM and a sensitivity of 0.02 μA nM -1 . Copyright © 2018 Elsevier B.V. All rights reserved.
Paris, Guillaume; Ramseyer, Christophe; Enescu, Mironel
2014-05-01
The conformational dynamics of human serum albumin (HSA) was investigated by principal component analysis (PCA) applied to three molecular dynamics trajectories of 200 ns each. The overlap of the essential subspaces spanned by the first 10 principal components (PC) of different trajectories was about 0.3 showing that the PCA based on a trajectory length of 200 ns is not completely convergent for this protein. The contributions of the relative motion of subdomains and of the subdomains (internal) distortion to the first 10 PCs were found to be comparable. Based on the distribution of the first 3 PC, 10 protein conformers are identified showing relative root mean square deviations (RMSD) between 2.3 and 4.6 Å. The main PCs are found to be delocalized over the whole protein structure indicating that the motions of different protein subdomains are coupled. This coupling is considered as being related to the allosteric effects observed upon ligand binding to HSA. On the other hand, the first PC of one of the three trajectories describes a conformational transition of the protein domain I that is close to that experimentally observed upon myristate binding. This is a theoretical support for the older hypothesis stating that changes of the protein onformation favorable to binding can precede the ligand complexation. A detailed all atoms PCA performed on the primary Sites 1 and 2 confirms the multiconformational character of the HSA binding sites as well as the significant coupling of their motions. Copyright © 2013 Wiley Periodicals, Inc.
Zhuang, Shulin; Wang, Haifei; Ding, Keke; Wang, Jiaying; Pan, Liumeng; Lu, Yanli; Liu, Qingjun; Zhang, Chunlong
2016-02-01
Benzotriazole UV stabilizers (BZTs) belong to one prominent group of ultraviolet (UV) stabilizers and are widely used in various plastics materials. Their large production volumes, frequent detections in the environment and potential toxicities have raised increasing public concern. BZTs can be transported in vivo by transport proteins in plasma and the binding association to transport proteins may serve as a significant parameter to evaluate the bioaccumulative potential. We utilized a novel HSA biosensor, circular dichroism spectroscopy, fluorescence spectroscopy to detect the dynamic interactions of six BZTs (UV-326, UV-327, UV-328, UV-329, UV-P, and BZT) with human serum albumin (HSA), and characterized the corresponding structure-activity relationships (SAR) by molecular dynamics simulations. All test BZTs potently bind at Sudlow site I of HSA with a binding constant of 10(4) L/mol at 298 K. Minor changes in the moieties of BZTs affect their interactions with HSA and differently induce conformations of HSA. Their binding reduced electrochemical impedance spectra and α-helix content of HSA, caused slight red-shifted emission, and changed fluorescence lifetime components of HSA in a concentration-dependent mode. UV-327 and UV-329 form hydrogen bonds with HSA, while UV-329, UV-P and BZT bind HSA with more favorable electrostatic interactions. Our in vitro and in silico study offered a significant framework toward the understanding of risk assessment of BZTs and provides guide for future design of environmental benign BZTs-related materials. Copyright © 2015 Elsevier Ltd. All rights reserved.
THE INFLUENCE OF SERUM BINDING PROTEINS ON THE COMPARATIVE RECEPTOR BINDING POTENCY OF ENDOCRINE ACTIVE COMPOUNDS. JG Teeguarden1 and HA Barton2. 1ICF Consulting, Research Triangle Park NC; 2US EPA, ORD, NHEERL, ETD, Pharmacokinetics Branch, RTP, NC.
Accurate comparison of...
Poór, Miklós; Boda, Gabriella; Needs, Paul W; Kroon, Paul A; Lemli, Beáta; Bencsik, Tímea
2017-04-01
Flavonoids are ubiquitous molecules in nature with manifold pharmacological effects. Flavonoids interact with several proteins, and thus potentially interfere with the pharmacokinetics of various drugs. Though much is known about the protein binding characteristics of flavonoid aglycones, the behaviour of their metabolites, which are extensively formed in the human body has received little attention. In this study, the interactions of the flavonoid aglycone quercetin and its main metabolites with the albumin binding of the oral anticoagulant warfarin were investigated by fluorescence spectroscopy and ultrafiltration. Furthermore, the inhibitory effects of these flavonoids on CYP2C9 enzyme were tested because the metabolic elimination of warfarin is catalysed principally by this enzyme. Herein, we demonstrate that each tested flavonoid metabolite can bind to human serum albumin (HSA) with high affinity, some with similar or even higher affinity than quercetin itself. Quercetin metabolites are able to strongly displace warfarin from HSA suggesting that high quercetin doses can strongly interfere with warfarin therapy. On the other hand, tested flavonoids showed no or weaker inhibition of CYP2C9 compared to warfarin, making it very unlikely that quercetin or its metabolites can significantly inhibit the CYP2C9-mediated inactivation of warfarin. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Namiesnik, Jacek; Vearasilp, Kann; Nemirovski, Alina; Leontowicz, Hanna; Leontowicz, Maria; Pasko, Pawel; Martinez-Ayala, Alma Leticia; González-Aguilar, Gustavo A; Suhaj, Milan; Gorinstein, Shela
2014-03-01
The aim of this study was to investigate the possibility to use the bioactive components from cape gooseberry (Physalis peruviana), blueberry (Vaccinium corymbosum), and cranberry (Vaccinium macrocarpon) extracts as a novel source against oxidation in food supplementation. The quantitative analysis of bioactive compounds (polyphenols, flavonoids, flavanols, carotenoids, and chlorophyll) was based on radical scavenging spectrophometric assays and mass spectrometry. The total phenolic content was the highest (P < 0.05) in water extract of blueberries (46.6 ± 4.2 mg GAE/g DW). The highest antioxidant activities by 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay and Cupric reducing antioxidant capacity were in water extracts of blueberries, showing 108.1 ± 7.2 and 131.1 ± 9.6 μMTE/g DW with correlation coefficients of 0.9918 and 0.9925, and by β-carotene linoleate assay at 80.1 ± 6.6 % with correlation coefficient of 0.9909, respectively. The water extracts of berries exhibited high binding properties with human serum albumin in comparison with quercetin. In conclusion, the bioactive compounds from a relatively new source of gooseberries in comparison with blueberries and cranberries have the potential as food supplementation for human health. The antioxidant and binding activities of berries depend on their bioactive compounds.
NASA Astrophysics Data System (ADS)
Dangkoob, Faeze; Housaindokht, Mohmmad Reza; Asoodeh, Ahmad; Rajabi, Omid; Rouhbakhsh Zaeri, Zeinab; Verdian Doghaei, Asma
2015-02-01
The objective of the present research is to study the interaction of separate and simultaneous of alprazolam (ALP) and fluoxetine hydrochloride (FLX) with human serum albumin (HSA) in phosphate buffer (pH 7.4) using different kinds of spectroscopic, cyclic voltammetry and molecular modeling techniques. The absorbance spectra of protein, drugs and protein-drug showed complex formation between the drugs and HSA. Fluorescence analysis demonstrated that ALP and FLX could quench the fluorescence spectrum of HSA and demonstrated the conformational change of HSA in the presence of both drugs. Also, fluorescence quenching mechanism of HSA-drug complexes both separately and simultaneously was suggested as static quenching. The analysis of UV absorption data and the fluorescence quenching of HSA in the binary and ternary systems showed that FLX decreased the binding affinity between ALP and HSA. On the contrary, ALP increased the binding affinity of FLX and HSA. The results of synchronous fluorescence and three-dimensional fluorescence spectra indicated that the binding of drugs to HSA would modify the microenvironment around the Trp and Tyr residues and the conformation of HSA. The distances between Trp residue and the binding sites of the drugs were estimated according to the Förster theory, and it was demonstrated that non-radiative energy transfer from HSA to the drugs occurred with a high probability. Moreover, according to CV measurements, the decrease of peak current in the cyclic voltammogram of the both drugs in the presence of HSA revealed that they interacted with albumin and binding constants were calculated for binary systems which were in agreement with the binding constants obtained from UV absorption and fluorescence spectroscopy. The prediction of the best binding sites of ALP and FLX in binary and ternary systems in molecular modeling approach was done using of Gibbs free energy.
Dangkoob, Faeze; Housaindokht, Mohmmad Reza; Asoodeh, Ahmad; Rajabi, Omid; Rouhbakhsh Zaeri, Zeinab; Verdian Doghaei, Asma
2015-02-25
The objective of the present research is to study the interaction of separate and simultaneous of alprazolam (ALP) and fluoxetine hydrochloride (FLX) with human serum albumin (HSA) in phosphate buffer (pH 7.4) using different kinds of spectroscopic, cyclic voltammetry and molecular modeling techniques. The absorbance spectra of protein, drugs and protein-drug showed complex formation between the drugs and HSA. Fluorescence analysis demonstrated that ALP and FLX could quench the fluorescence spectrum of HSA and demonstrated the conformational change of HSA in the presence of both drugs. Also, fluorescence quenching mechanism of HSA-drug complexes both separately and simultaneously was suggested as static quenching. The analysis of UV absorption data and the fluorescence quenching of HSA in the binary and ternary systems showed that FLX decreased the binding affinity between ALP and HSA. On the contrary, ALP increased the binding affinity of FLX and HSA. The results of synchronous fluorescence and three-dimensional fluorescence spectra indicated that the binding of drugs to HSA would modify the microenvironment around the Trp and Tyr residues and the conformation of HSA. The distances between Trp residue and the binding sites of the drugs were estimated according to the Förster theory, and it was demonstrated that non-radiative energy transfer from HSA to the drugs occurred with a high probability. Moreover, according to CV measurements, the decrease of peak current in the cyclic voltammogram of the both drugs in the presence of HSA revealed that they interacted with albumin and binding constants were calculated for binary systems which were in agreement with the binding constants obtained from UV absorption and fluorescence spectroscopy. The prediction of the best binding sites of ALP and FLX in binary and ternary systems in molecular modeling approach was done using of Gibbs free energy. Copyright © 2014 Elsevier B.V. All rights reserved.
Traxlmayr, Michael W; Kiefer, Jonathan D; Srinivas, Raja R; Lobner, Elisabeth; Tisdale, Alison W; Mehta, Naveen K; Yang, Nicole J; Tidor, Bruce; Wittrup, K Dane
2016-10-21
The Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus is an attractive binding scaffold because of its small size (7 kDa), high thermal stability (T m of 98 °C), and absence of cysteines and glycosylation sites. However, as a DNA-binding protein, Sso7d is highly positively charged, introducing a strong specificity constraint for binding epitopes and leading to nonspecific interaction with mammalian cell membranes. In the present study, we report charge-neutralized variants of Sso7d that maintain high thermal stability. Yeast-displayed libraries that were based on this reduced charge Sso7d (rcSso7d) scaffold yielded binders with low nanomolar affinities against mouse serum albumin and several epitopes on human epidermal growth factor receptor. Importantly, starting from a charge-neutralized scaffold facilitated evolutionary adaptation of binders to differentially charged epitopes on mouse serum albumin and human epidermal growth factor receptor, respectively. Interestingly, the distribution of amino acids in the small and rigid binding surface of enriched rcSso7d-based binders is very different from that generally found in more flexible antibody complementarity-determining region loops but resembles the composition of antibody-binding energetic hot spots. Particularly striking was a strong enrichment of the aromatic residues Trp, Tyr, and Phe in rcSso7d-based binders. This suggests that the rigidity and small size of this scaffold determines the unusual amino acid composition of its binding sites, mimicking the energetic core of antibody paratopes. Despite the high frequency of aromatic residues, these rcSso7d-based binders are highly expressed, thermostable, and monomeric, suggesting that the hyperstability of the starting scaffold and the rigidness of the binding surface confer a high tolerance to mutation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Optimization of the radioimmunoassays for measuring fentanyl and alfentanil in human serum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuettler, J.; White, P.F.
Measurement of serum fentanyl and alfentanil concentrations by radioimmunoassay (RIA) may result in significant errors and high variability when the technique described in the available fentanyl and alfentanil RIA kits is used. The authors found a 29-94% overestimation of measured fentanyl and alfentanil serum levels when 3H-fentanyl or 3H-alfentanil was added lastly to the mixture of antiserum and sample. This finding is related to a reduction in binding sites for the labeled compounds after preincubation of sample and antiserum. If this sequence is used, it becomes necessary to extend the incubation period up to 6 h for fentanyl and upmore » to 10 h for alfentanil in order to achieve equilibration between unlabeled and labeled drug with respect to antiserum binding. However, when antiserum is added lastly to the mixture of sample and labeled drug, measurement accuracy and precision for fentanyl and alfentanil serum concentrations are enhanced markedly. In addition, it is important to perform the calibration curves and sample measurements using the same medium (i.e., serum alone or a serum/buffer dilution). In summary, to optimize the RIA for fentanyl and alfentanil, the authors recommend the following: 1) adding the antiserum lastly to the mixture of sample and labeled drug; 2) performing calibration curves using patient's blank serum when possible; 3) carefully examining and standardizing each step of the RIA procedure to reduce variability, and, finally; 4) comparing results with those of other established RIA laboratories.« less
Grizzly bear corticosteroid binding globulin: Cloning and serum protein expression.
Chow, Brian A; Hamilton, Jason; Alsop, Derek; Cattet, Marc R L; Stenhouse, Gordon; Vijayan, Mathilakath M
2010-06-01
Serum corticosteroid levels are routinely measured as markers of stress in wild animals. However, corticosteroid levels rise rapidly in response to the acute stress of capture and restraint for sampling, limiting its use as an indicator of chronic stress. We hypothesized that serum corticosteroid binding globulin (CBG), the primary transport protein for corticosteroids in circulation, may be a better marker of the stress status prior to capture in grizzly bears (Ursus arctos). To test this, a full-length CBG cDNA was cloned and sequenced from grizzly bear testis and polyclonal antibodies were generated for detection of this protein in bear sera. The deduced nucleotide and protein sequences were 1218 bp and 405 amino acids, respectively. Multiple sequence alignments showed that grizzly bear CBG (gbCBG) was 90% and 83% identical to the dog CBG nucleotide and amino acid sequences, respectively. The affinity purified rabbit gbCBG antiserum detected grizzly bear but not human CBG. There were no sex differences in serum total cortisol concentration, while CBG expression was significantly higher in adult females compared to males. Serum cortisol levels were significantly higher in bears captured by leg-hold snare compared to those captured by remote drug delivery from helicopter. However, serum CBG expression between these two groups did not differ significantly. Overall, serum CBG levels may be a better marker of chronic stress, especially because this protein is not modulated by the stress of capture and restraint in grizzly bears. Copyright 2010 Elsevier Inc. All rights reserved.
Vu, David M; Kelly, Dominic; Heath, Paul T; McCarthy, Noel D; Pollard, Andrew J; Granoff, Dan M
2006-07-15
Group C meningococcal conjugate-vaccine effectiveness in the United Kingdom declines from ~90% in the first year to 0% between 1 and 4 years after immunization in infants immunized at 2, 3, and 4 months of age and to 61% in toddlers given a single dose. Confidence intervals are wide, and the extent of protection is uncertain. Serum samples were obtained from children 3-5 years of age who were participants in a preschool booster-vaccine trial. Serum bactericidal activity was measured with human complement. Group C anticapsular antibody concentrations were measured by a radioantigen binding assay. Passive protection was analyzed in an infant rat bacteremia model. Serum samples from UK children who had been immunized 2-3 years earlier as infants or toddlers had higher levels of radioantigen binding, bactericidal activity, and passive protection than did historical control serum samples from unimmunized children (P<.05). A higher proportion of children immunized as infants had serum bactericidal activity titers > or =1 : 4 (considered to be protective) than those immunized as toddlers (61% vs. 24%; P<.01), but there were no significant differences in the proportion of serum samples conferring passive protection (50% and 41%, respectively; P=.4). We found no evidence of lower immunity in children immunized as infants than as toddlers. On the basis of serum bactericidal activity and/or passive protection, 40%-50% of both age groups are protected at 2-3 years after immunization, which was significantly greater than in unimmunized historical controls (<5%).
Luo, Shanshan; Hipler, Uta-Christina; Münzberg, Christin; Skerka, Christine; Zipfel, Peter F
2015-01-01
Candida albicans, the important human fungal pathogen uses multiple evasion strategies to control, modulate and inhibit host complement and innate immune attack. Clinical C. albicans strains vary in pathogenicity and in serum resistance, in this work we analyzed sequence polymorphisms and variations in the expression levels of two central fungal complement evasion proteins, Gpm1 (phosphoglycerate mutase 1) and Pra1 (pH-regulated antigen 1) in thirteen clinical C. albicans isolates. Four nucleotide (nt) exchanges, all representing synonymous exchanges, were identified within the 747-nt long GPM1 gene. For the 900-nt long PRA1 gene, sixteen nucleotide exchanges were identified, which represented synonymous, as well as non-synonymous exchanges. All thirteen clinical isolates had a homozygous exchange (A to G) at position 73 of the PRA1 gene. Surface levels of Gpm1 varied by 8.2, and Pra1 levels by 3.3 fold in thirteen tested isolates and these differences influenced fungal immune fitness. The high Gpm1/Pra1 expressing candida strains bound the three human immune regulators more efficiently, than the low expression strains. The difference was 44% for Factor H binding, 51% for C4BP binding and 23% for plasminogen binding. This higher Gpm1/Pra1 expressing strains result in enhanced survival upon challenge with complement active, Factor H depleted human serum (difference 40%). In addition adhesion to and infection of human endothelial cells was increased (difference 60%), and C3b surface deposition was less effective (difference 27%). Thus, variable expression levels of central immune evasion protein influences immune fitness of the human fungal pathogen C. albicans and thus contribute to fungal virulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, R.A.; Rajatanavin, R.; Moring, A.F.
Five-month-old lean and obese Zucker rats were fasted for up to 7 days (lean rats) or 28 days (obese rats), and serum total and free T4 and T3 concentrations, percent free T4 and T3 by equilibrium dialysis, and the binding of (/sup 125/I) T4 to serum proteins by gel electrophoresis were measured. In the lean rats, a 4- or 7-day fast resulted in significant decreases in serum total and free T4 and T3 concentrations. There was a decrease in the percent free T3 after 7 days of starvation. In contrast, a 4- or 7-day fast did not alter any ofmore » these variables in the obese rats. However, after 14 or more days of starvation, serum total T4 and T3 concentrations increased, and the percent free T4 and T3 decreased, resulting in no change in the serum free T4 or T3 concentrations in the obese rats. The percent of (/sup 125/I)T4 bound to serum thyronine-binding globulin increased and the percent bound to thyronine-binding prealbumin decreased with the duration of the fast in both the lean and obese rats. The increase in serum thyronine-binding globulin binding of T4 can explain the increase in serum total T4 and T3 concentrations, the decrease in percent free T4 and T3, and the normal free hormone concentration in the long term fasted obese rats. The findings in the lean rats appear to be due to a combination of the known central hypothyroidism that occurs during 4-7 days of fasting and the fasting-induced changes in T4 binding in serum. Changes in T4 and T3 binding in serum during fasting in the rat must be considered when the effects of fasting on serum concentrations of the thyroid hormones, thyroid hormone kinetics, and the peripheral action of the thyroid hormones are evaluated.« less
Li, Lan; Lee, Se Jin; Kook, Song Yi; Ahn, Tae Gyu; Lee, Ji Yeon
2017-01-01
Objective Gestational diabetes mellitus (GDM) is defined as glucose intolerance first detected during pregnancy. It can result in pregnancy complications such as birth injury, stillbirth. Fatty acid-binding protein 4 (FABP4), found in adipose tissue, is associated with insulin resistance, and type 2 diabetes. The aim of this study was to investigate whether FABP4 in the placenta and decidua of pregnant women with GDM is higher than that in normal pregnant women, and whether serum from pregnant women with GDM may cause adipocytes to secrete more FABP4 than does serum from a normal pregnant group. Methods We obtained placentas, deciduas, and serum from 12 pregnant women with GDM and 12 normal pregnant women and performed enzyme-linked immunosorbent assay, real time quantitative-polymerase chain reaction. We cultured human pre-adipocytes for 17 days with GDM and non-GDM serum and performed western blot, real time quantitative-polymerase chain reaction, and oil red O staining. Results Expression of FABP4 in serum, placenta and decidua of pregnant women with GDM was significantly higher than that in normal pregnant women. Serum from pregnant women with GDM increased the expression of FABP4 mRNA and decreased the expression of adiponectin mRNA in human pre-adipocytes significantly. Adipocyte cultured in GDM serum showed significantly greater lipid accumulation than those cultured in normal serum. Conclusion Our results suggest that FABP4 is higher in placenta and decidua from pregnant women with GDM. Increased circulating FABP4 in maternal serum from pregnant women with GDM may originate from adipocytes and the placenta. Circulating FABP4 can induce increased insulin resistance and decreased insulin sensitivity. PMID:28534013
Li, Lan; Lee, Se Jin; Kook, Song Yi; Ahn, Tae Gyu; Lee, Ji Yeon; Hwang, Jong Yun
2017-05-01
Gestational diabetes mellitus (GDM) is defined as glucose intolerance first detected during pregnancy. It can result in pregnancy complications such as birth injury, stillbirth. Fatty acid-binding protein 4 (FABP4), found in adipose tissue, is associated with insulin resistance, and type 2 diabetes. The aim of this study was to investigate whether FABP4 in the placenta and decidua of pregnant women with GDM is higher than that in normal pregnant women, and whether serum from pregnant women with GDM may cause adipocytes to secrete more FABP4 than does serum from a normal pregnant group. We obtained placentas, deciduas, and serum from 12 pregnant women with GDM and 12 normal pregnant women and performed enzyme-linked immunosorbent assay, real time quantitative-polymerase chain reaction. We cultured human pre-adipocytes for 17 days with GDM and non-GDM serum and performed western blot, real time quantitative-polymerase chain reaction, and oil red O staining. Expression of FABP4 in serum, placenta and decidua of pregnant women with GDM was significantly higher than that in normal pregnant women. Serum from pregnant women with GDM increased the expression of FABP4 mRNA and decreased the expression of adiponectin mRNA in human pre-adipocytes significantly. Adipocyte cultured in GDM serum showed significantly greater lipid accumulation than those cultured in normal serum. Our results suggest that FABP4 is higher in placenta and decidua from pregnant women with GDM. Increased circulating FABP4 in maternal serum from pregnant women with GDM may originate from adipocytes and the placenta. Circulating FABP4 can induce increased insulin resistance and decreased insulin sensitivity.
Martinović, Tamara; Andjelković, Uroš; Klobučar, Marko; Černigoj, Urh; Vidič, Jana; Lučić, Marina; Pavelić, Krešimir; Josić, Djuro
2017-11-01
Posttranslational modifications of immunoglobulins have been a topic of great interest and have been repeatedly reported as a major factor in disease pathology. Cost-effective, reproducible, and high-throughput (HTP) isolation of immunoglobulins from human serum is vital for studying the changes in protein structure and the following understanding of disease development. Although there are many methods for the isolation of specific immunoglobulin classes, only a few of them are applicable for isolation of all subtypes and variants. Here, we present the development of a scheme for fast and simultaneous affinity purification of α (A), γ (G), and μ (M) immunoglobulins from human serum through affinity monolith chromatography. Affinity-based monolithic columns with immobilized protein A, G, or L were used for antibody isolation. Monolithic stationary phases have a high surface accessibility of binding sites, large flow-through channels, and can be operated at high flow rates, making them the ideal supports for HTP isolation of biopolymers. The presented method can be used for HTP screening of human serum in order to simultaneously isolate all three above-mentioned immunoglobulins and determine their concentration and changes in their glycosylation pattern as potential prognostic and diagnostic disease biomarkers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Agafonova, L. E.; Shumyantseva, V. V.; Archakov, A. I.
2014-06-01
The quartz crystal microbalance (QCM) was exploited for cardiac markers detection and kinetic studies of immunochemical reaction of cardiac troponin I (cTnI) and human heart fatty acid binding protein (H-FABP) with the corresponding monoclonal antibodies in undiluted plasma (serum) and standard solutions. The QCM technique allowed to dynamically monitor the kinetic differences in specific interactions and nonspecific sorption, without multiple labeling procedures and separation steps. The affinity binding process was characterized by the association (ka) and the dissociation (kd) kinetic constants and the equilibrium association (K) constant, all of which were obtained from experimental data.
A facile route to glycated albumin detection.
Bohli, Nadra; Meilhac, Olivier; Rondeau, Philippe; Gueffrache, Syrine; Mora, Laurence; Abdelghani, Adnane
2018-07-01
In this paper we propose an easy way to detect the glycated form of human serum albumin which is biomarker for several diseases such as diabetes and Alzheimer. The detection platform is a label free impedimetric immunosensor, in which we used a monoclonal human serum albumin antibody as a bioreceptor and electrochemical impedance as a transducing method. The antibody was deposited onto a gold surface by simple physisorption technique. Bovine serum albumin was used as a blocking agent for non-specific binding interactions. Cyclic voltammetry and electrochemical impedance spectroscopy were used for the characterization of each layer. Human serum albumin was glycated at different levels with several concentrations of glucose ranging from 0 mM to 500 mM representing physiological, pathological (diabetic albumin) and suprapathological concentration of glucose. Through the calibration curves, we could clearly distinguish between two different areas related to physiological and pathological albumin glycation levels. The immunosensor displayed a linear range from 7.49% to 15.79% of glycated albumin to total albumin with a good sensitivity. Surface plasmon resonance imaging was also used to characterize the developed immunosensor. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shao, Xin; Ai, Ni; Xu, Donghang; Fan, Xiaohui
2016-05-01
Human serum albumin (HSA) binding is one of important pharmacokinetic properties of drug, which is closely related to in vivo distribution and may ultimately influence its clinical efficacy. Compared to conventional drug, limited information on this transportation process is available for medicinal herbs, which significantly hampers our understanding on their pharmacological effects, particularly when herbs and drug are co-administrated as polytherapy to the ailment. Several lines of evidence suggest the existence of Salvia miltiorrhiza-Warfarin interaction. Since Warfarin is highly HSA bound in the plasma with selectivity to site I, it is critical to evaluate the possibility of HSA-related herb-drug interaction. Herein an integrated approach was employed to analyze the binding of chemicals identified in S. miltiorrhiza to HSA. Molecular docking simulations revealed filtering criteria for HSA site I compounds that include docking score and key molecular determinants for binding. For eight representative ingredients from the herb, their affinity and specificity to HSA site I was measured and confirmed fluorometrically, which helps to improve the knowledge of interaction mechanisms between this herb and HSA. Our results indicated that several compounds in S. miltiorrhiza were capable of decreasing the binding constant of Warfarin to HSA site I significantly, which may increase free drug concentration in vivo, contributing to the herb-drug interaction observed clinically. Furthermore, the significance of HSA mediated herb-drug interactions was further implied by manual mining on the published literatures on S. miltiorrhiza.
Interaction of glucocorticoids and progesterone derivatives with human serum albumin.
Abboud, Rola; Akil, Mohammad; Charcosset, Catherine; Greige-Gerges, Hélène
2017-10-01
Glucocorticoids (GCs) and progesterone derivatives (PGDs) are steroid hormones with well-known biological activities. Their interaction with human serum albumin (HSA) may control their distribution. Their binding to albumin is poorly studied in literature. This paper deals with the interaction of a series of GCs (cortisol, cortisone, prednisolone, prednisone, 6-methylprednisolone and 9-fluorocortisol acetate) and PGDs (progesterone, hydroxylated PGDs, methylated PGDs and dydrogesterone) with HSA solution (pH 7.4) at molar ratios steroid to HSA varying from 0 to 10. Similar titrations were conducted using Trp aqueous solution. Fluorescence titration method and Fourier transform infrared spectroscopy (FTIR) are used. PGDs (except dydrogesterone), cortisone and 9-fluorocortisol acetate affected weakly the fluorescence of Trp in buffer solution while they decreased in a dose-dependent manner that of HSA. Their binding constants to HSA were then calculated. Moreover, displacement experiment was performed using bilirubin as a site marker. The binding constant of bilirubin to albumin was determined in the absence and presence of a steroid at a molar ratio steroid to HSA of 1. The results indicate that the steroids bind to HSA at site I in a pocket different from that of bilirubin. Furthermore, the peak positions of amide I and amide II bands of HSA were shifted in the presence of progesterone, dydrogesterone and GCs. Also a variation was observed in amide I region indicating the formation of hydrogen bonding between albumin and steroids. Copyright © 2017 Elsevier B.V. All rights reserved.
Binding of human plasminogen by the lipoprotein LipL46 of Leptospira interrogans.
Santos, Jadson V; Pereira, Priscila R M; Fernandes, Luis G V; Siqueira, Gabriela Hase; de Souza, Gisele O; Souza Filho, Antônio; Vasconcellos, Silvio A; Heinemann, Marcos B; Chapola, Erica G B; Nascimento, Ana L T O
2018-02-01
Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira. Bacteria disseminate via the bloodstream and colonize the renal tubules of reservoir hosts. Leptospiral surface-exposed proteins are important targets, because due to their location they can elicit immune response and mediate adhesion and invasion processes. LipL46 has been previously reported to be located at the leptospiral outer membrane and recognized by antibodies present in serum of infected hamsters. In this study, we have confirmed the cellular location of this protein by immunofluorescence and FACS. We have cloned and expressed the recombinant protein LipL46 in its soluble form. LipL46 was recognized by confirmed leptospirosis human serum, suggesting its expression during infection. Binding screening of LipL46 with extracellular matrix (ECM) and plasma components showed that this protein interacts with plasminogen. The binding is dose-dependent on protein concentration, but saturation was not reached with the range of protein concentration used. Kringle domains of plasminogen and lysine residues of the recombinant protein are involved in the binding because the lysine analog, amino caproic acid (ACA) almost totally inhibited the reaction. The interaction of LipL46 with plasminogen generates plasmin in the presence of plasminogen activator uPA. Because plasmin generated at the leptospiral surface can degrade ECM molecules and decrease opsonophagocytosis, we tentatively infer that Lip46 has a role in helping the invasion process of pathogenic Leptospira. Copyright © 2017. Published by Elsevier Ltd.
Interaction of Human Serum Albumin with Metal Protoporphyrins
NASA Astrophysics Data System (ADS)
Hu, Jie; Brancaleon, Lorenzo
2015-03-01
Fluorescence spectroscopy is widely used in biotechnology, nanotechnology, and molecular biophysics, since it can provide information on a wide range of molecular processes, e.g. the interactions of solvent molecules with fluorophores, conformational changes, and binding interactions etc. In this study, we present the photophysical properties of the interaction of human serum albumin (HSA) with a series of metal compound of Protoporphyrin IX (PPIX), including ZnPPIX, FePPIX, MgPPIX, MnPPIX and SnPPIX respectively, as well as the free base PPIX. Binding constants were retrieved independently using the Benesi-Hildebrand analysis of the porphyrin emission or absorption spectra and the fluorescence quenching (i.e. Stern-Volmer analysis) and reveal that the two methods yield a difference of approximately one order or magnitude between the two. Fluorescence lifetimes was used to probe whether binding of the porphyrin changes the conformation of the protein or if the interaction places the porphyrin at a location that can prompt resonance energy transfer with the lone Tryptophan residue. In recent years it has been discovered that HSA provides a specific binding site for metal-chelated protoporphyrins in subdomain IA. This has opened a novel field of study over the importance of this site for biomedical applications but it has also created the potential for a series of biotechnological applications of the HSA/protoporphyrin complexes. Our study provides a preliminary investigation of the interaction with metal-chelated protoporphyrins that had not been previously investigated.
Salam, Kazi Abdus; Wang, Richard Y; Grandinetti, Teresa; De Giorgi, Valeria; Alter, Harvey J; Allison, Robert D
2018-05-09
Erythrocytes bind circulating immune complexes (IC) and facilitate IC clearance from the circulation. Chronic hepatitis C virus (HCV) infection is associated with IC-related disorders. In this study we investigated the kinetics and mechanism of HCV and HCV-IC binding to and dissociation from erythrocytes. Cell culture-produced HCV was mixed with erythrocytes from healthy blood donors and erythrocyte-associated virus particles were quantified. Purified complement proteins, complement-depleted serum, and complement receptor antibodies were used to investigate complement-mediated HCV-erythrocyte binding. Purified HCV-specific immunoglobulin G from a chronic HCV-infected patient was used to study complement-mediated HCV-IC-erythrocyte binding. Binding of HCV to erythrocytes increased 200 to 1,000 fold after adding complement active human serum in the absence of antibody. Opsonization of free HCV occurred within 10 minutes and peak binding to erythrocytes was observed at 20-30 minutes. Complement protein C1 was required for binding, while C2, C3 and C4 significantly enhanced binding. Complement receptor 1 (CR1, CD35) antibodies blocked the binding of HCV to erythrocytes isolated from chronically infected HCV patients and healthy blood donors. HCV-ICs significantly enhanced complement-mediated binding to erythrocytes compared to unbound HCV. Dissociation of complement-opsonized HCV from erythrocytes depended on the presence of Factor I. HCV released by Factor I bound preferentially to CD19+ B cells compared to other leukocytes. These results demonstrate that complement mediates the binding of free and IC-associated HCV to CR1 on erythrocytes, and provide a mechanistic rationale for investigating the differential phenotypic expression of HCV-IC-related disease. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.
Oleinikov, Andrew V; Rossnagle, Eddie; Francis, Susan; Mutabingwa, Theonest K; Fried, Michal; Duffy, Patrick E
2007-07-01
Plasmodium falciparum-infected erythrocytes adhere to chondroitin sulfate A (CSA) to sequester in the human placenta, and pregnancy malaria (PM) is associated with the development of disease in and the death of both mother and child. A PM vaccine appears to be feasible, because women become protected as they develop antibodies against placental infected erythrocytes (IEs). Two IE surface molecules, VAR1CSA and VAR2CSA, bind CSA in vitro and are potential vaccine candidates. We expressed all domains of VAR1CSA and VAR2CSA as mammalian cell surface proteins, using a novel approach that allows rapid purification, immobilization, and quantification of target antigen. For serum samples from East Africa, we measured reactivity to all domains, and we examined the effects of host sex and parity, as well as the effects of parasite antigenic variation. Serum samples obtained from multigravid women had a higher reactivity to all VAR2CSA domains than did those obtained from primigravid women or from men. Conversely, serum samples obtained from men had consistently higher reactivity to VAR1CSA domains than did those obtained from gravid women. Seroreactivity was strongly influenced by antigenic variation of VAR2CSA Duffy binding-like domains. Women acquire antibodies to VAR2CSA over successive pregnancies, but they lose reactivity to VAR1CSA. Serum reactivity to VAR2CSA is variant specific, and future studies should examine the degree to which functional antibodies, such as binding-inhibition antibodies, are variant specific.
Discovery of native autoantigens via antigen surrogate technology: application to type 1 diabetes.
Doran, Todd M; Simanski, Scott; Kodadek, Thomas
2015-02-20
A fundamental goal in understanding the mechanisms of autoimmune disease is the characterization of autoantigens that are targeted by autoreactive antibodies and T cells. Unfortunately, the identification of autoantigens is a difficult problem. We have begun to explore a novel route to the discovery of autoantibody/autoantigen pairs that involves comparative screening of combinatorial libraries of unnatural, synthetic molecules for compounds that bind antibodies present at much higher levels in the serum of individuals with a given autoimmune disease than in the serum of control individuals. We have shown that this approach can yield "antigen surrogates" capable of capturing disease-specific autoantibodies from serum. In this report, we demonstrate that the synthetic antigen surrogates can be used to affinity purify the autoantibodies from serum and that these antibodies can then be used to identify their cognate autoantigen in an appropriate tissue lysate. Specifically, we report the discovery of a peptoid able to bind autoantibodies present in about one-third of nonobese diabetic (NOD) mice. The peptoid-binding autoantibodies were highly enriched through peptoid affinity chromatography and employed to probe mouse pancreatic and brain lysates. This resulted in identification of murine GAD65 as the native autoantigen. GAD65 is a known humoral autoantigen in human type 1 diabetes mellitus (T1DM), but its existence in mice had been controversial. This study demonstrates the potential of this chemical approach for the unbiased identification of autoantigen/autoantibody complexes.
Lymphocyte-dependent antibodies in uveitis.
Pápai, I; Lehrner, J
1976-01-01
Lymphocyte-dependent antibodies were revealed in the serum of patients suffering from uveitis of various aetiologies. The serum was incubated with normal uveal tissue and the binding of non-immune human lymphocytes was investigated. In three cases of sympathetic ophthalmitis the lymphocytes accumulated around the melanine granules, while in another 17 patients with uveitis cases the lymphocytes accumulated around the capillaries. Uveal tissue incubated with control sera failed to bound lymphocytes. The lymphocytic infiltration in certain cases of chronic uveitis suggested the role of lymphocyte-mediating antibodies in the aetiology of these cases.
Glycosylation status of vitamin D binding protein in cancer patients
Rehder, Douglas S; Nelson, Randall W; Borges, Chad R
2009-01-01
On the basis of the results of activity studies, previous reports have suggested that vitamin D binding protein (DBP) is significantly or even completely deglycosylated in cancer patients, eliminating the molecular precursor of the immunologically important Gc macrophage activating factor (GcMAF), a glycosidase-derived product of DBP. The purpose of this investigation was to directly determine the relative degree of O-linked trisaccharide glycosylation of serum-derived DBP in human breast, colorectal, pancreatic, and prostate cancer patients. Results obtained by electrospray ionization-based mass spectrometric immunoassay showed that there was no significant depletion of DBP trisaccharide glycosylation in the 56 cancer patients examined relative to healthy controls. These results suggest that alternative hypotheses regarding the molecular and/or structural origins of GcMAF must be considered to explain the relative inability of cancer patient serum to activate macrophages. PMID:19642159
Glycosylation status of vitamin D binding protein in cancer patients.
Rehder, Douglas S; Nelson, Randall W; Borges, Chad R
2009-10-01
On the basis of the results of activity studies, previous reports have suggested that vitamin D binding protein (DBP) is significantly or even completely deglycosylated in cancer patients, eliminating the molecular precursor of the immunologically important Gc macrophage activating factor (GcMAF), a glycosidase-derived product of DBP. The purpose of this investigation was to directly determine the relative degree of O-linked trisaccharide glycosylation of serum-derived DBP in human breast, colorectal, pancreatic, and prostate cancer patients. Results obtained by electrospray ionization-based mass spectrometric immunoassay showed that there was no significant depletion of DBP trisaccharide glycosylation in the 56 cancer patients examined relative to healthy controls. These results suggest that alternative hypotheses regarding the molecular and/or structural origins of GcMAF must be considered to explain the relative inability of cancer patient serum to activate macrophages.
NASA Astrophysics Data System (ADS)
Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka-Zubik, J.; Sułkowski, W. W.
2009-09-01
The monitoring of drug concentration in blood serum is necessary in multi-drug therapy. Mechanism of drug binding with serum albumin (SA) is one of the most important factors which determine drug concentration and its transport to the destination tissues. In rheumatoid diseases drugs which can induce various adverse effects are commonly used in combination therapy. Such proceeding may result in the enhancement of those side effects due to drug interaction. Interaction of phenylbutazone and colchicine in binding to serum albumin and competition between them in gout has been studied by proton nuclear magnetic resonance ( 1H NMR) technique. The aim of the study was to determine the low affinity binding sites, the strength and kind of interaction between serum albumin and drugs used in combination therapy. The study of competition between phenylbutazone and colchicine in binding to serum albumin points to the change of their affinity to serum albumin in the ternary systems. This should be taken into account in multi-drug therapy. This work is a subsequent part of the spectroscopic study on Phe-COL-SA interactions [A. Sułkowska, et al., J. Mol. Struct. 881 (2008) 97-106].
Alarcón, Emilio; Edwards, Ana Maria; Aspee, Alexis; Moran, Faustino E; Borsarelli, Claudio D; Lissi, Eduardo A; Gonzalez-Nilo, Danilo; Poblete, Horacio; Scaiano, J C
2010-01-01
The photophysics and photochemistry of rose bengal (RB) and methylene blue (MB) bound to human serum albumin (HSA) have been investigated under a variety of experimental conditions. Distribution of the dyes between the external solvent and the protein has been estimated by physical separation and fluorescence measurements. The main localization of protein-bound dye molecules was estimated by the intrinsic fluorescence quenching, displacement of fluorescent probes bound to specific protein sites, and by docking modelling. All the data indicate that, at low occupation numbers, RB binds strongly to the HSA site I, while MB localizes predominantly in the protein binding site II. This different localization explains the observed differences in the dyes' photochemical behaviour. In particular, the environment provided by site I is less polar and considerably less accessible to oxygen. The localization of RB in site I also leads to an efficient quenching of the intrinsic protein fluorescence (ascribed to the nearby Trp residue) and the generation of intra-protein singlet oxygen, whose behaviour is different to that observed in the external solvent or when it is generated by bound MB.
Kongtawelert, P
1998-12-01
A lectin from Thai marine carb (Scylla serrata) hemolymph has been isolated and purified by affinity column chromatography and preparative electrophoresis. The amino acid composition and 10 amino-terminal residues have been deduced, and its reactivities have been studied using a biotin labeling technique. A method for the determination of sialoglycoconjugates in human serum is described using this lectin. The principle is based on the reaction between the sialoglycoconjugates and biotinylated lectin. The bovine submaxillary mucin (BSM) is immobilized on polystyrene microplate. The unknown sample or sialoglycoconjugate (BSM equivalent) standards, together with excess biotinylated purified lectin (B-lectin), are then added. The B-lectin that binds to the immobilized BSM is then incubated with the peroxidase-conjugated monoclonal antibiotin antibody, and the color that develops after the addition of enzyme substrate is determined by light absorption using a microplate reader. The assay is not only convenient and reliable, but also capable of measuring sialoglycoconjugates in solution at the submicrogram level. It was used in determining the sialoglycoconjugates in human serum from normal subjects and samples positive for carcinoembryonic antigen.
Sun, Shuangjiao; Long, Chanjuan; Tao, Chunyao; Meng, Sa; Deng, Biyang
2014-12-03
The paper describes a homemade ultrasonic microdialysis device coupled with capillary electrophoresis electrochemiluminescence (CE-ECL) for studying the interaction between human serum albumin (HSA) and trimetazidine dihydrochloride (TMZ). The time required for equilibrium by ultrasonic microdialysis was 45min, which was far less than that by traditional dialysis (240min). It took 80min to achieve the required combination equilibrium by normal incubation and only 20min by ultrasonic. Compared with traditional dialysis, the use of ultrasonic microdialysis simplified experimental procedures, shortened experimental time and saved consumption of sample. A simple, sensitive and selective determination of TMZ was developed using CE-ECL and the parameters that affected ECL intensity were optimized. Under the optimized conditions, the linear range of TMZ was from 0.075 to 80μmol/L (r(2)=0.9974). The detection limit was 26nmol/L with RSD of 2.8%. The number of binding sites and binding constant were 1.54 and 15.17L/mol, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
Interactions of hemin with bovine serum albumin and human hemoglobin: A fluorescence quenching study
NASA Astrophysics Data System (ADS)
Makarska-Bialokoz, Magdalena
2018-03-01
The binding interactions between hemin (Hmi) and bovine serum albumin (BSA) or human hemoglobin (HHb), respectively, have been examined in aqueous solution at pH = 7.4, applying UV-vis absorption, as well as steady-state, synchronous and three-dimensional fluorescence spectra techniques. Representative results received for both BSA and HHb intrinsic fluorescence proceeding from the interactions with hemin suggest the formation of stacking non-covalent and non-fluorescent complexes in both the Hmi-BSA and Hmi-HHb systems, with highly possible concurrent formation of a coordinate bond between a group on the protein surface and the metal in Hmi molecule. All the values of calculated parameters, the binding, fluorescence quenching and bimolecular quenching rate constants point to the involvement of static quenching in both the systems studied. The blue shift in the synchronous fluorescence spectra imply the participation of both tryptophan and tyrosine residues in quenching of BSA and HHb intrinsic fluorescence. Depicted outcomes suggest that hemin is supposedly able to influence the physiological functions of BSA and HHb, the most important blood proteins, particularly in case of its overuse.
Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo
NASA Astrophysics Data System (ADS)
Chen, Fangfang; Wang, Guankui; Griffin, James I.; Brenneman, Barbara; Banda, Nirmal K.; Holers, V. Michael; Backos, Donald S.; Wu, Linping; Moghimi, Seyed Moein; Simberg, Dmitri
2017-05-01
When nanoparticles are intravenously injected into the body, complement proteins deposit on the surface of nanoparticles in a process called opsonization. These proteins prime the particle for removal by immune cells and may contribute toward infusion-related adverse effects such as allergic responses. The ways complement proteins assemble on nanoparticles have remained unclear. Here, we show that dextran-coated superparamagnetic iron oxide core-shell nanoworms incubated in human serum and plasma are rapidly opsonized with the third complement component (C3) via the alternative pathway. Serum and plasma proteins bound to the nanoworms are mostly intercalated into the nanoworm shell. We show that C3 covalently binds to these absorbed proteins rather than the dextran shell and the protein-bound C3 undergoes dynamic exchange in vitro. Surface-bound proteins accelerate the assembly of the complement components of the alternative pathway on the nanoworm surface. When nanoworms pre-coated with human plasma were injected into mice, C3 and other adsorbed proteins undergo rapid loss. Our results provide important insight into dynamics of protein adsorption and complement opsonization of nanomedicines.
Accardo, Antonella; Galli, Filippo; Mansi, Rosalba; Del Pozzo, Luigi; Aurilio, Michela; Morisco, Anna; Ringhieri, Paola; Signore, Alberto; Morelli, Giancarlo; Aloj, Luigi
2016-12-01
Overexpression of the gastrin-releasing peptide receptor (GRP-R) has been documented in several human neoplasms such as breast, prostate, and ovarian cancer. There is growing interest in developing radiolabeled peptide-based ligands toward these receptors for the purpose of in vivo imaging and radionuclide therapy of GRP-R-overexpressing tumors. A number of different peptide sequences, isotopes, and labeling methods have been proposed for this purpose. The aim of this work is to perform a direct side-by-side comparison of different GRP-R binding peptides utilizing a single labeling strategy to identify the most suitable peptide sequence. Solid-phase synthesis of eight derivatives (BN1-8) designed based on literature analysis was carried out. Peptides were coupled to the DOTA chelator through a PEG4 spacer at the N-terminus. Derivatives were characterized for serum stability, binding affinity on PC-3 human prostate cancer cells, biodistribution in tumor-bearing mice, and gamma camera imaging at 1, 6, and 24 h after injection. Serum stability was quite variable among the different compounds with half-lives ranging from 16 to 400 min at 37 °C. All compounds tested showed K d values in the nanomolar range with the exception of BN3 that showed no binding. Biodistribution and imaging studies carried out for compounds BN1, BN4, BN7, and BN8 showed targeting of the GRP-R-positive tumors and the pancreas. The BN8 compound (DOTA-PEG-DPhe-Gln-Trp-Ala-Val-NMeGly-His-Sta-Leu-NH2) showed high affinity, the longest serum stability, and the highest target-to-background ratios in biodistribution and imaging experiments among the compounds tested. Our results indicate that the NMeGly for Gly substitution and the Sta-Leu substitution at the C-terminus confer high serum stability while maintaining high receptor affinity, resulting in biodistribution properties that outperform those of the other peptides.
Single amino acid fingerprinting of the human antibody repertoire with high density peptide arrays.
Weber, Laura K; Palermo, Andrea; Kügler, Jonas; Armant, Olivier; Isse, Awale; Rentschler, Simone; Jaenisch, Thomas; Hubbuch, Jürgen; Dübel, Stefan; Nesterov-Mueller, Alexander; Breitling, Frank; Loeffler, Felix F
2017-04-01
The antibody species that patrol in a patient's blood are an invaluable part of the immune system. While most of them shield us from life-threatening infections, some of them do harm in autoimmune diseases. If we knew exactly all the antigens that elicited all the antibody species within a group of patients, we could learn which ones correlate with immune protection, are irrelevant, or do harm. Here, we demonstrate an approach to this question: First, we use a plethora of phage-displayed peptides to identify many different serum antibody binding peptides. Next, we synthesize identified peptides in the array format and rescreen the serum used for phage panning to validate antibody binding peptides. Finally, we systematically vary the sequence of validated antibody binding peptides to identify those amino acids within the peptides that are crucial for binding "their" antibody species. The resulting immune fingerprints can then be used to trace them back to potential antigens. We investigated the serum of an individual in this pipeline, which led to the identification of 73 antibody fingerprints. Some fingerprints could be traced back to their most likely antigen, for example the immunodominant capsid protein VP1 of enteroviruses, most likely elicited by the ubiquitous poliovirus vaccination. Thus, with our approach, it is possible, to pinpoint those antibody species that correlate with a certain antigen, without any pre-information. This can help to unravel hitherto enigmatic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Sengupta, Priti; Sardar, Pinki Saha; Roy, Pritam; Dasgupta, Swagata; Bose, Adity
2018-06-01
The binding interaction of Rutin, a flavonoid, with model transport proteins, bovine serum albumin (BSA) and human serum albumin (HSA), were investigated using different spectroscopic techniques, such as fluorescence, time-resolved single photon counting (TCSPC) and circular dichroism (CD) spectroscopy as well as molecular docking method. The emission studies revealed that the fluorescence quenching of BSA/HSA by Rutin occurred through a simultaneous static and dynamic quenching process, and we have evaluated both the quenching constants individually. The binding constants of Rutin-BSA and Rutin-HSA system were found to be 2.14 × 10 6 M -1 and 2.36 × 10 6 M -1 at 298 K respectively, which were quite high. Further, influence of some biologically significant metal ions (Ca 2+ , Zn 2+ and Mg 2+ ) on binding of Rutin to BSA and HSA were also investigated. Thermodynamic parameters justified the involvement of hydrogen bonding and weak van der Waals forces in the interaction of Rutin with both BSA and HSA. Further a site-marker competitive experiment was performed to evaluate Rutin binding site in the albumins. Additionally, the CD spectra of BSA and HSA revealed that the secondary structure of the proteins was perturbed in the presence of Rutin. Finally protein-ligand docking studies have also been performed to determine the probable location of the ligand molecule. Copyright © 2018 Elsevier B.V. All rights reserved.
Gustafsson, Mattias C U; Lannergård, Jonas; Nilsson, O Rickard; Kristensen, Bodil M; Olsen, John E; Harris, Claire L; Ufret-Vincenty, Rafael L; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar
2013-01-01
Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems.
Kristensen, Bodil M.; Olsen, John E.; Harris, Claire L.; Ufret-Vincenty, Rafael L.; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar
2013-01-01
Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems. PMID:23637608
NASA Astrophysics Data System (ADS)
Samanta, Anuva; Jana, Sankar; Ray, Debarati; Guchhait, Nikhil
2014-03-01
The binding affinity of cationic DNA-staining dye, propidium iodide, with transport protein, bovine serum albumin, has been explored using UV-vis absorption, fluorescence, and circular dichroism spectroscopy. Steady state and time resolved fluorescence studies authenticate that fluorescence quenching of bovine serum albumin by propidium iodide is due to bovine serum albumin-propidium iodide complex formation. Thermodynamic parameters obtained from temperature dependent spectral studies cast light on binding interaction between the probe and protein. Site marker competitive binding has been encountered using phenylbutazone and flufenamic acid for site I and site II, respectively. Energy transfer efficiency and distance between bovine serum albumin and propidium iodide have been determined using Förster mechanism. Structural stabilization or destabilization of protein by propidium iodide has been investigated by urea denaturation study. The circular dichroism study as well as FT-IR measurement demonstrates some configurational changes of the protein in presence of the dye. Docking studies support the experimental data thereby reinforcing the binding site of the probe to the subdomain IIA of bovine serum albumin.
NASA Astrophysics Data System (ADS)
Kuperman, Marina V.; Losytskyy, Mykhaylo Yu.; Bykov, Alexander Yu.; Yarmoluk, Sergiy M.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolay T.; Varzatskii, Oleg A.; Gumienna-Kontecka, Elzbieta; Kovalska, Vladyslava B.
2017-08-01
The interactions of boron cluster compounds closo-borates with biomolecules are widely studied due to their efficiency as agents for boron neutron capture therapy of cancer. In present work the binding abilities of anionic halogen closo-borates [B10Hal10]2- (Hal = Cl, Br, I) and [B12Hal12]2- (Hal = Cl, I) towards bovine and human serum albumins were investigated by spectroscopic and isothermal titration calorimetry (ITC) methods. The protein fluorescence quenching method and ITC studies confirmed the complex formation. The degree of protein fluorescence quenching increased from chlorine to iodine boron derivatives that is attributed to external heavy atom effect. The ITC data point on the existence in the protein structure of two types of binding sites: with higher and lower affinity to closo-borates. Albumin-closo-borate complex binding ratio, n (4-5 anions per protein molecule) is higher than for the parent hydrogen closo-borates (2 anions per protein molecule). Binding constants estimated by fluorescent and ITC methods indicate higher affinity of halogen closo-borates to albumins (K in the range of 104-106 M-1) comparing to that of the hydrogen closo-borate (K about 103 M-1). Due to their high affinity and high binding ratio to albumins halogen closo-borates are proposed for further studies as agents for boron neutron capture therapy.
Su, Junwei; Esmaeilzadeh, Hamed; Zhang, Fang; Yu, Qing; Cernigliaro, George; Xu, Jin; Sun, Hongwei
2018-01-15
A new sensing device was developed to achieve ultrahigh sensitivity, by coupling polymer micropillars with a quartz crystal microbalance (QCM) substrate to form a two-degree- of-freedom resonance system (QCM-P). The sensitivity of these QCM-P devices was evaluated by measuring mass changes for both deposited gold film and adsorption of bovine serum albumin (BSA), respectively, on poly(methyl methacrylate) (PMMA) micropillar surfaces, as well as assessing ligand-analyte binding interactions between anti-human immunoglobulin G (anti-hIgG) and human immunoglobulin G (hIgG). The anti-hIgG and hIgG binding results show QCM-P achieved an eightfold improvement in sensitivity relative to conventional QCM sensors. In addition, the binding affinity obtained from the QCM-P device for anti-hIgG and hIgG proteins was found in good agreement with that measured by surface plasmon resonance (SPR) for the same binding reaction. Copyright © 2017 Elsevier B.V. All rights reserved.
Maternal antibody reactivity to lymphocytes of offspring with autism.
Bressler, Joseph P; Gillin, Pam K; O'Driscoll, Cliona; Kiihl, Samara; Solomon, Megan; Zimmerman, Andrew W
2012-11-01
The study examined whether maternal serum antibodies from mothers of autistic children preferentially bind to lymphocytes of their autistic children compared with unaffected siblings. In a previous study, maternal serum antibodies from mothers mediated cytotoxicity with complement to lymphocytes of their autistic children. Here, maternal serum antibody binding was examined by flow cytometry. We compared levels of mothers' serum binding against peripheral blood monocytes of their autistic children vs unaffected siblings. Because the level of binding to peripheral blood monocytes could be low, binding was examined in specific lymphocyte subpopulations. In 19 samples, the mean level of maternal serum immunoglobulin G binding to CD4 and CD8 T cells, B cells, natural killer cells, and macrophages was not significantly different from the mean level of binding to unaffected siblings. The percentages of different subpopulations were not significantly different between autistic children and unaffected siblings, although a trend (P < 0.1) emerged, i.e., autistic children displayed a higher percentage of natural killer cells and a lower percentage of B cells. These findings cast doubt on a direct effect of maternal antibodies, but do not preclude potential intrauterine pathogenic immune mechanisms in autism. Copyright © 2012 Elsevier Inc. All rights reserved.
Dettmar, Anne K.; Binder, Elisabeth; Greiner, Friederike R.; Liebau, Max C.; Kurschat, Christine E.; Jungraithmayr, Therese C.; Saleem, Moin A.; Schmitt, Claus-Peter; Feifel, Elisabeth; Orth-Höller, Dorothea; Kemper, Markus J.; Pepys, Mark; Würzner, Reinhard
2014-01-01
Hemolytic uremic syndrome (HUS) is mainly induced by Shiga toxin 2 (Stx2)-producing Escherichia coli. Proteinuria can occur in the early phase of the disease, and its persistence determines the renal prognosis. Stx2 may injure podocytes and induce proteinuria. Human serum amyloid P component (SAP), a member of the pentraxin family, has been shown to protect against Stx2-induced lethality in mice in vivo, presumably by specific binding to the toxin. We therefore tested the hypothesis that SAP can protect against Stx2-induced injury of human podocytes. To elucidate the mechanisms underlying podocyte injury in HUS-associated proteinuria, we assessed Stx2-induced activation of mitogen-activated protein kinases (MAPKs) and apoptosis in immortalized human podocytes and evaluated the impact of SAP on Stx2-induced damage. Human podocytes express Stx2-binding globotriaosylceramide 3. Stx2 applied to cultured podocytes was internalized and then activated p38α MAPK and c-Jun N-terminal kinase (JNK), important signaling steps in cell differentiation and apoptosis. Stx2 also activated caspase 3, resulting in an increased level of apoptosis. Coincubation of podocytes with SAP and Stx2 mitigated the effects of Stx2 and induced upregulation of antiapoptotic Bcl2. These data suggest that podocytes are a target of Stx2 and that SAP protects podocytes against Stx2-induced injury. SAP may therefore be a useful therapeutic option. PMID:24566618
Kim, Hyunwoo; Gil, Gaae; Lee, Siyoung; Kwak, Areum; Jo, Seunghyun; Kim, Ensom; Nguyen, Tam T.; Kim, Sinae; Jhun, Hyunjhung; Kim, Somi; Kim, Miyeon; Lee, Youngmin
2016-01-01
It has been reported that fatty acid binding proteins (FABPs) do not act only as intracellular mediators of lipid responses but also have extracellular functions. This study aimed to investigate whether extracellular liver type (L)-FABP has a biological activity and to determined serum L-FABP levels in patients with end-stage renal disease (ESRD). We isolated L-FABP complementary deoxyribonucleic acid (cDNA) from the Huh7 human hepatocarcinoma cell line and expressed the recombinant L-FABP protein in Escherichia coli. A549 lung carcinoma and THP-1 monocytic cells were stimulated with the human recombinant L-FABP. Human whole blood cells were also treated with the human recombinant L-FABP or interleukin (IL)-1α. IL-6 levels were measured in cell culture supernatants using IL-6 enzyme-linked immunosorbent assay (ELISA). Human recombinant L-FABP induced IL-6 in a dose-dependent manner in A549, THP-1 cells, and whole blood cells. The blood samples of healthy volunteers and patients with ESRD were taken after an overnight fast. The serum levels of L-FABP in healthy volunteers and ESRD patients were quantified with L-FABP ELISA. The values of L-FABP in patients with ESRD were significantly lower than those in the control group. Our results demonstrated the biological activity of L-FABP in human cells suggesting L-FABP can be a mediator of inflammation. PMID:27799875
Goltz, Diane; Hittetiya, Kanishka; Yadegari, Hamideh; Driesen, Julia; Kirfel, Jutta; Neuhaus, Thomas; Steiner, Susanne; Esch, Christiane; Bedorf, Jörg; Hertfelder, Hans-Jörg; Fischer, Hans-Peter
2014-01-01
The ATZ11 antibody has been well established for the identification of α1-anti-trypsin (AAT) molecule type PiZ (Z-AAT) in blood samples and liver tissue. In this study, we systematically analyzed the antibody for additional binding sites in human tissue. Ultrastructural ATZ11 binding was investigated immunoelectron microscopically in human umbilical vein endothelial cells (HUVECs) and in platelets of a healthy individual. Human embryonic kidney (HEK293) cells were transiently transfected with Von Willebrand factor (VWF) and analyzed immunocytochemically using confocal microscopy and SDS-PAGE electrophoresis followed by western blotting (WB). Platelets and serum samples of VWF-competent and VWF-deficient patients were investigated using native PAGE and SDS-PAGE electrophoresis followed by WB. The specificity of the ATZ11 reaction was tested immunohistochemically by extensive antibody-mediated blocking of AAT- and VWF-antigens. ATZ11-positive epitopes could be detected in Weibel-Palade bodies (WPBs) of HUVECs and α-granules of platelets. ATZ11 stains pseudo-WBP containing recombinant wild-type VWF (rVWF-WT) in HEK293 cells. In SDS-PAGE electrophoresis followed by WB, anti-VWF and ATZ11 both identified rVWF-WT. However, neither rVWF-WT-multimers, human VWF-multimers, nor serum proteins of VWF-deficient patients were detected using ATZ11 by WB, whereas anti-VWF antibody (anti-VWF) detected rVWF-WT-multimers as well as human VWF-multimers. In human tissue specimens, AAT-antigen blockade using anti-AAT antibody abolished ATZ11 staining of Z-AAT in a heterozygous AAT-deficient patient, whereas VWF-antigen blockade using anti-VWF abolished ATZ11 staining of endothelial cells and megakaryocytes. ATZ11 reacts with cellular bound and denatured rVWF-WT and human VWF as shown using immunocytochemistry and subsequent confocal imaging, immunoelectron microscopy, SDS-PAGE and WB, and immunohistology. These immunoreactions are independent of the binding of Z-AAT-molecules and non-Z-AAT complexes.
Pichichero, M E; Insel, R A
1982-08-01
The prevalence of natural mucosal antibody to the capsular polysaccharide (polyribosylribitolphosphate [PRP]) of Haemophilus influenzae type b in adults at multiple secretory sites and the relationship between natural serum and mucosal antibodies with respect to their amount and fine binding specificity were examined. All of 16 lactating women had antibody to PRP in serum and mammary samples; 11 of 14 studied had nasal antibody and 12 of 14 had salivary antibody. The amount of serum antibody to PRP in an individual positively correlated with the amount of mucosal antibody at each of the three secretory sites examined, and the antibody amount between certain secretions were also positively correlated. Antibody to PRP that is cross-reactive with Escherichia coli K100 or Streptococcus pneumoniae type 6 capsular polysaccharides was detected in the secretions of seven and one subjects, respectively, but the amount was not correlated with serum cross-reactive antibody.
Human granulocyte/pollen-binding protein. Recognition and identification as transferrin.
Sass-Kuhn, S P; Moqbel, R; Mackay, J A; Cromwell, O; Kay, A B
1984-01-01
Normal human serum was found to contain a heat-stable protein which promoted the binding of granulocytes to timothy grass pollen (granulocyte/pollen-binding protein [GPBP]). GPBP was purified by gel filtration, anion exchange, and affinity chromatography. Virtually all of the granulocyte/pollen-binding activity was associated with a beta-1-protein having a molecular mass of approximately 77,000 D and an isoelectric point of between 5.5 and 6.1. By immunoelectrophoresis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the protein was identified as transferrin. Monospecific antisera raised against either GPBP or transferrin removed biological activity from GPBP preparations, and GPBP and transferrin gave lines of identity with these two antisera. The apparent heterogeneity in the molecular size and charge of GPBP observed during progressive purification was minimal when GPBP was saturated with ferric ions before the separation procedures. These experiments indicate that granulocyte/pollen binding is a hitherto unrecognized property of transferrin which appears to be unrelated to iron transport and raises the possibility that transferrin might have a physiological role in the removal of certain organic matter. Images PMID:6690479
Regulation of lipoprotein lipase in primary cultures of isolated human adipocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kern, P.A.; Marshall, S.; Eckel, R.H.
1985-01-01
To study the regulation of adipose tissue lipoprotein lipase (LPL) in human adipocytes, omental adipose tissue was obtained from healthy subjects and digested in collagenase. The isolated adipocytes thus obtained were suspended in Medium 199 and cultured at 37 degrees C. Cell viability was demonstrated in adipocytes cultured for up to 72 h by constancy of cell number, cell size, trypan-blue exclusion, and specific /sup 125/I-insulin binding. In addition, chloroquine induced an increase in cell-associated /sup 125/I-insulin at 24, 48, and 72 h after preparation. Thus, isolated adipocytes retained their ability to bind, internalize, and degrade insulin. LPL was measuredmore » as activity secreted into the culture medium (CM), released from cells by heparin (HR), and extracted from cell digests. A broad range of heparin concentrations produced a prompt release of LPL from a rapidly replenishable pool of cellular activity. When cells were cultured in medium containing 10% fetal bovine serum, there was a marked stimulation of CM and HR. The secretory response to serum (CM) correlated strongly with HR 24 h after preparation. In addition, HR was found to correlate logarithmically and inversely with body mass index. Insulin, at 400 ng/ml only, increased HR by 36 +/- 10%, an effect simulated by lower concentrations of insulin-like growth factor-1 (IGF1). Thus, LPL is produced and regulated in isolated human adipocytes. The degree of adiposity and serum are important regulators of HR activity, whereas insulin is stimulatory only at a pharmacologic concentration. This effect of insulin may be mediated through the IGF1 receptor. Isolated human adipocytes represent a novel and useful system for the study of LPL and lipid metabolism as well as for other aspects of adipocyte biology.« less
Scabies Mite Peritrophins Are Potential Targets of Human Host Innate Immunity
Holt, Deborah C.; Kemp, Dave J.; Fischer, Katja
2011-01-01
Background Pruritic scabies lesions caused by Sarcoptes scabiei burrowing in the stratum corneum of human skin facilitate opportunistic bacterial infections. Emerging resistance to current therapeutics emphasizes the need to identify novel targets for protective intervention. We have characterized several protein families located in the mite gut as crucial factors for host-parasite interactions. Among these multiple proteins inhibit human complement, presumably to avoid complement-mediated damage of gut epithelial cells. Peritrophins are major components of the peritrophic matrix often found in the gut of arthropods. We hypothesized that a peritrophin, if abundant in the scabies mite gut, could be an activator of complement. Methodology/Principal Findings A novel full length scabies mite peritrophin (SsPTP1) was identified in a cDNA library from scabies mites. The amino acid sequence revealed four putative chitin binding domains (CBD). Recombinant expression of one CBD of the highly repetitive SsPTP1 sequence as TSP-hexaHis-fusion protein resulted in soluble protein, which demonstrated chitin binding activity in affinity chromatography assays. Antibodies against a recombinant SsPTP1 fragment were used to immunohistochemically localize native SsPTP1 in the mite gut and in fecal pellets within the upper epidermis, co-localizing with serum components such as host IgG and complement. Enzymatic deglycosylation confirmed strong N- and O-glycosylation of the native peritrophin. Serum incubation followed by immunoblotting with a monoclonal antibody against mannan binding lectin (MBL), the recognition molecule of the lectin pathway of human complement activation, indicated that MBL may specifically bind to glycosylated SsPTP1. Conclusions/Significance This study adds a new aspect to the accumulating evidence that complement plays a major role in scabies mite biology. It identifies a novel peritrophin localized in the mite gut as a potential target of the lectin pathway of the complement cascade. These initial findings indicate a novel role of scabies mite peritrophins in triggering a host innate immune response within the mite gut. PMID:21980545
Sun, Hanwen; He, Pan
2009-06-01
The binding of doxycycline to HSA under simulated physiological conditions (pH 7.4, 67 mM phosphate, I=0.17, drug concentration 100 microM, HSA concentration up to 475 microM, 36.5 degrees C) was studied by CE-frontal analysis. The number of primary binding sites, binding constant and physiological protein-binding percentage were 1.9, 1.51 x 10(3) M(-1) and 59.80%, respectively. In addition, the thermodynamic parameters including enthalpy change (DeltaH), entropy change (DeltaS) and free energy change (DeltaG) of the reaction were obtained in order to characterize the acting forces between doxycycline and HSA. Furthermore, to better understand the nature of doxycycline-HSA binding and to get information about potential interaction with other drugs, displacement experiments were performed. The results showed that doxycycline binds at site II of HSA.
Cao, Tuan-Wu; Huang, Wen-Bing; Shi, Jian-Wei; He, Wei
2018-03-01
Scrophularia ningpoensis has exhibited a variety of biological activities and been used as a pharmaceutical product for the treatment of inflammatory ailment, rheumatoid arthritis, osteoarthritis and so on. Harpagoside (HAR) is considerer as a main bioactive compound in this plant. Serum albumin has important physiological roles in transportation, distribution and metabolism of many endogenous and exogenous substances in body. It is of great significance to study the interaction mechanism between HAR and bovine serum albumin (BSA). The mechanism of interaction between HAR and BSA was investigated using 2D and 3D fluorescence, synchronous florescence, ultraviolet spectroscopy and molecular docking. According to the analysis of fluorescence spectra, HAR could strongly quench the fluorescence of BSA, and the static quenching process indicated that the decrease in the quenching constant was observed with the increase in temperature. The magnitude of binding constants (KA) was more than 1×10⁵ L·mol⁻¹, and the number of binding sites(n) was approximate to 1. The thermodynamic parameters were calculated through analysis of fluorescence data with Stern-Volmer and Van't Hoff equation. The calculated enthalpy change (ΔH) and entropy change (ΔS) implied that the main interaction forces of HAR with BSA were the bonding interaction between van der Waals forces and hydrogen. The negative values of energy (ΔG) demonstrated that the binding of HAR with BSA was a spontaneous and exothermic process. The binding distance(r) between HAR and BSA was calculated to be about 2.80 nm based on the theory of Frster's non-radiation energy transfer, which indicated that energy is likely to be transfer from BSA to HAR. Both synchronous and 3D florescence spectroscopy clearly revealed that the microenvironment and conformation of BSA changed during the binding interaction between HAR and BSA. The molecular docking analysis revealed HAR is more inclined to BSA and human serum albumin (HSA) in subdomain ⅡA (Sudlow's site I). This study will provide valuable information for understanding the action mechanism of HAR. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Alsalme, Ali; Laeeq, Sameen; Dwivedi, Sourabh; Khan, Mohd. Shahnawaz; Al Farhan, Khalid; Musarrat, Javed; Khan, Rais Ahmad
2016-06-01
We have synthesized two new complexes of platinum (1) and ruthenium (2) with α-amino acid, L-alanine, and 2,3-dihydroxybenzaldehyde derived Schiff base (L). The ligand and both complexes were characterized by using elemental analysis and several other spectroscopic techniques viz; IR, 1H, 13C NMR, EPR, and ESI-MS. Furthermore, the protein-binding ability of synthesized complexes was monitored by UV-visible, fluorescence and circular dichroism techniques with a model protein, human serum albumin (HSA). Both the PtL2 and RuL2 complexes displayed significant binding towards HSA. Also, in vitro cytotoxicity assay for both complexes was carried out on human hepatocellular carcinoma cancer (HepG2) cell line. The results showed concentration-dependent inhibition of cell viability. Moreover, the generation of reactive oxygen species was also evaluated, and results exhibited substantial role in cytotoxicity.
ERIC Educational Resources Information Center
Peihong Liang; Adhyaru, Bhavin; Pearson, Wright L.; Williams, Kathryn R.
2006-01-01
The experiment used [to the third power]H-labeled estradiol to determine the binding constant of estradiol to bovine serum albumin. Estradiol must complex with serum proteins for the transport in the blood stream because of its low solubility in aqueous systems and estradiol-protein binding constant, where K[subscript B] is important to understand…
Steere, Ashley N; Miller, Brendan F; Roberts, Samantha E; Byrne, Shaina L; Chasteen, N Dennis; Smith, Valerie C; MacGillivray, Ross T A; Mason, Anne B
2012-01-17
Efficient delivery of iron is critically dependent on the binding of diferric human serum transferrin (hTF) to its specific receptor (TFR) on the surface of actively dividing cells. Internalization of the complex into an endosome precedes iron removal. The return of hTF to the blood to continue the iron delivery cycle relies on the maintenance of the interaction between apohTF and the TFR after exposure to endosomal pH (≤6.0). Identification of the specific residues accounting for the pH-sensitive nanomolar affinity with which hTF binds to TFR throughout the cycle is important to fully understand the iron delivery process. Alanine substitution of 11 charged hTF residues identified by available structures and modeling studies allowed evaluation of the role of each in (1) binding of hTF to the TFR and (2) TFR-mediated iron release. Six hTF mutants (R50A, R352A, D356A, E357A, E367A, and K511A) competed poorly with biotinylated diferric hTF for binding to TFR. In particular, we show that Asp356 in the C-lobe of hTF is essential to the formation of a stable hTF-TFR complex: mutation of Asp356 in the monoferric C-lobe hTF background prevented the formation of the stoichiometric 2:2 (hTF:TFR monomer) complex. Moreover, mutation of three residues (Asp356, Glu367, and Lys511), whether in the diferric or monoferric C-lobe hTF, significantly affected iron release when in complex with the TFR. Thus, mutagenesis of charged hTF residues has allowed identification of a number of residues that are critical to formation of and release of iron from the hTF-TFR complex.
Computational characterization of how the VX nerve agent binds human serum paraoxonase 1.
Fairchild, Steven Z; Peterson, Matthew W; Hamza, Adel; Zhan, Chang-Guo; Cerasoli, Douglas M; Chang, Wenling E
2011-01-01
Human serum paraoxonase 1 (HuPON1) is an enzyme that can hydrolyze various chemical warfare nerve agents including VX. A previous study has suggested that increasing HuPON1's VX hydrolysis activity one to two orders of magnitude would make the enzyme an effective countermeasure for in vivo use against VX. This study helps facilitate further engineering of HuPON1 for enhanced VX-hydrolase activity by computationally characterizing HuPON1's tertiary structure and how HuPON1 binds VX. HuPON1's structure is first predicted through two homology modeling procedures. Docking is then performed using four separate methods, and the stability of each bound conformation is analyzed through molecular dynamics and solvated interaction energy calculations. The results show that VX's lone oxygen atom has a strong preference for forming a direct electrostatic interaction with HuPON1's active site calcium ion. Various HuPON1 residues are also detected that are in close proximity to VX and are therefore potential targets for future mutagenesis studies. These include E53, H115, N168, F222, N224, L240, D269, I291, F292, and V346. Additionally, D183 was found to have a predicted pKa near physiological pH. Given D183's location in HuPON1's active site, this residue could potentially act as a proton donor or accepter during hydrolysis. The results from the binding simulations also indicate that steered molecular dynamics can potentially be used to obtain accurate binding predictions even when starting with a closed conformation of a protein's binding or active site.
NASA Astrophysics Data System (ADS)
Pragna Lakshmi, T.; Mondal, Moumita; Ramadas, Krishna; Natarajan, Sakthivel
2017-08-01
Drug molecule interaction with human serum albumin (HSA) affects the distribution and elimination of the drug. The compound, 2,4-diacetylphloroglucinol (DAPG) has been known for its antimicrobial, antiviral, antihelminthic and anticancer properties. However, its interaction with HSA is not yet reported. In this study, the interaction between HSA and DAPG was investigated through steady-state fluorescence, time-resolved fluorescence (TRF), circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy, isothermal titration calorimetry (ITC), molecular docking and molecular dynamics simulation (MDS). Fluorescence spectroscopy results showed the strong quenching of intrinsic fluorescence of HSA due to interaction with DAPG, through dynamic quenching mechanism. The compound bound to HSA with reversible and moderate affinity which explained its easy diffusion from circulatory system to target tissue. The thermodynamic parameters from fluorescence spectroscopic data clearly revealed the contribution of hydrophobic forces but, the role of hydrogen bonds was not negligible according to the ITC studies. The interaction was exothermic and spontaneous in nature. Binding with DAPG reduced the helical content of protein suggesting the unfolding of HSA. Site marker fluorescence experiments revealed the change in binding constant of DAPG in the presence of site I (warfarin) but not site II marker (ibuprofen) which confirmed that the DAPG bound to site I. ITC experiments also supported this as site I marker could not bind to HSA-DAPG complex while site II marker was accommodated in the complex. In silico studies further showed the lowest binding affinity and more stability of DAPG in site I than in site II. Thus the data presented in this study confirms the binding of DAPG to the site I of HSA which may help in further understanding of pharmacokinetic properties of DAPG.
Chromatographic Studies of Protein-Based Chiral Separations
Bi, Cong; Zheng, Xiwei; Azaria, Shiden; Beeram, Sandya; Li, Zhao; Hage, David S.
2016-01-01
The development of separation methods for the analysis and resolution of chiral drugs and solutes has been an area of ongoing interest in pharmaceutical research. The use of proteins as chiral binding agents in high-performance liquid chromatography (HPLC) has been an approach that has received particular attention in such work. This report provides an overview of proteins that have been used as binding agents to create chiral stationary phases (CSPs) and in the use of chromatographic methods to study these materials and protein-based chiral separations. The supports and methods that have been employed to prepare protein-based CSPs will also be discussed and compared. Specific types of CSPs that are considered include those that employ serum transport proteins (e.g., human serum albumin, bovine serum albumin, and alpha1-acid glycoprotein), enzymes (e.g., penicillin G acylase, cellobiohydrolases, and α-chymotrypsin) or other types of proteins (e.g., ovomucoid, antibodies, and avidin or streptavidin). The properties and applications for each type of protein and CSP will also be discussed in terms of their use in chromatography and chiral separations. PMID:28344977
1HNMR study of methotrexate serum albumin (MTX SA) binding in rheumatoid arthritis
NASA Astrophysics Data System (ADS)
Sułkowska, A.; Maciążek-Jurczyk, M.; Bojko, B.; Równicka, J.; Sułkowski, W. W.
2008-11-01
Rheumatoid arthritis (RA) is an immunologically depended disease. It is characterized by a chronic, progressive inflammatory process. Methotrexate (4-amino-10-methylfolic acid, MTX) is the modifying drug used to treat RA. The aim of the presented studies is to determine the low affinity binding site of MTX in bovine (BSA) and human (HSA) serum albumin with the use of proton nuclear magnetic resonance ( 1HNMR) spectroscopy. The analysis of 1HNMR spectra of MTX in the presence of serum albumin (SA) allows us to observe the interactions between aromatic rings of the drug and the rings of amino acids located in the hydrophobic subdomains of the protein. On the basis of the chemical shifts σ [ppm] and the relaxation times T1 [s] of drug protons the hydrophobic interaction between MTX-SA and the stoichiometric molar ratio of the complex was evaluated. This work is a part of a spectroscopic study on MTX-SA interactions [A. Sułkowska, M. Maciążek, J. Równicka, B. Bojko, D. Pentak, W.W. Sułkowski, J. Mol. Struct. 834-836 (2007) 162-169].
Development of LSPR and SPR sensor for the detection of an anti-cancer drug for chemotherapy
NASA Astrophysics Data System (ADS)
Zhao, Sandy Shuo; Bolduc, Olivier R.; Colin, Damien Y.; Pelletier, Joelle N.; Masson, Jean-François
2012-03-01
The anti-cancer drug, methotrexate (MTX) as a strong inhibitor of human dihydrofolate reductase (hDHFR) has been studied in localized surface plasmon resonance (LSPR) and surface plasmon resonance (SPR) competitive binding assays with folic acid stabilized gold nanoparticles (FA AuNP). The latter with a diameter of 15 nm were prepared in a simple step with sequential characterization using UV-Vis, FTIR, and Raman. A LSPR competitive binding assay between different concentrations of MTX and FA AuNP for hDHFR in solution was designed to quantify MTX by using UV-Vis spectroscopy. Sensitivity of the assay was optimized with respect to both concentrations of the enzyme and FA. The detection and quantification of spiked MTX was demonstrated in phosphate buffer saline and in fetal bovine serum accompanied by solid-phase extraction treatment of the serum. In addition, this assay could also provide as a screening tool for potential inhibitors of hDHFR. In another perspective, MTX was measured in a competitive binding assay with FA AuNP for histidine-tagged hDHFR immobilized on a SPR sensitive surface. In this case, FA AuNP offer a secondary amplification of the analytical response which is indirectly proportional to the concentration of MTX. This alternative approach could contribute to the realization of direct detection of MTX in complex biological fluids. A comparison of characteristics and analytical parameters such as sensitivity, dynamic range and limit of detection between the LSPR and SPR sensing platforms will also be presented. Both assays offer potential in tackling real biological samples for the purpose of monitoring and validating anti-cancer drug levels in human serum during chemotherapy.
Lu, Zhaohua; Perkins, Hillary M.
2014-01-01
Francisella tularensis, the Gram-negative bacterium that causes tularemia, is considered a potential bioterrorism threat due to its low infectivity dose and the high morbidity and mortality from respiratory disease. We previously characterized two mouse monoclonal antibodies (MAbs) specific for the O-polysaccharide (O antigen [OAg]) of F. tularensis lipopolysaccharide (LPS): Ab63, which targets a terminal epitope at the nonreducing end of OAg, and Ab52, which targets a repeating internal OAg epitope. These two MAbs were protective in a mouse model of respiratory tularemia. To determine whether these epitope types are also targeted by humans, we tested the ability of each of 18 blood serum samples from 11 tularemia patients to inhibit the binding of Ab63 or Ab52 to F. tularensis LPS in a competition enzyme-linked immunosorbent assay (ELISA). Although all serum samples had Ab63- and Ab52-inhibitory activities, the ratios of Ab63 to Ab52 inhibitory potencies varied 75-fold. However, the variation was only 2.3-fold for sequential serum samples from the same patient, indicating different distributions of terminal- versus internal-binding antibodies in different individuals. Western blot analysis using class-specific anti-human Ig secondary antibodies showed that both terminal- and internal-binding OAg antibodies were of the IgG, IgM, and IgA isotypes. These results support the use of a mouse model to discover protective B-cell epitopes for tularemia vaccines or prophylactic/therapeutic antibodies, and they present a general strategy for interrogating the antibody responses of patients and vaccinees to microbial carbohydrate epitopes that have been characterized in experimental animals. PMID:24351753
Identification of a unique IgG Fc binding site in human intestinal epithelium.
Kobayashi, K; Blaser, M J; Brown, W R
1989-10-15
In experiments to determine whether serum antibodies in patients with Crohn's disease could be used as probes for detecting potentially etiologic Ag in the patients' tissues, we found that peroxidase (HRP)-labeled IgG from healthy persons, as well as from the patients, bound to normal colonic and small intestinal epithelium, mostly or entirely to goblet cells. The binding was due to a reaction involving the Fc region of IgG because HRP-labeled Fc fragments of IgG bound, but HRP-Fab, HRP-IgA, and HRP-bovine albumin did not, and because binding of HRP-IgG was inhibited competitively by unlabeled IgG or Fc fragments but not by IgG Fab fragments or IgA. These immunohistochemical results were confirmed by ELISA with microtiter wells coated with a sonicated homogenate from human colonocytes. The epithelial IgG Fc binding site was characterized by SDS-PAGE as consisting of a high Mr (greater than 200,000 Da) and a 78,000-Da component. It bound all four subclasses of human IgG and bound aggregated as well as monomeric IgG. It is distinct from known human Fc-gamma R by lack of recognition by mAb to those receptors and differences in affinity for various subclasses of human and murine IgG. This unique IgG Fc binding site might be involved in immunologic defense of the gut, perhaps by mediating reactions between foreign Ag and the contents of goblet cells.
Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-120 interface
Huang, Jinghe; Kang, Byong H.; Pancera, Marie; Lee, Jeong Hyun; Tong, Tommy; Feng, Yu; Georgiev, Ivelin S.; Chuang, Gwo-Yu; Druz, Aliaksandr; Doria-Rose, Nicole A.; Laub, Leo; Sliepen, Kwinten; van Gils, Marit J.; de la Peña, Alba Torrents; Derking, Ronald; Klasse, Per-Johan; Migueles, Stephen A.; Bailer, Robert T.; Alam, Munir; Pugach, Pavel; Haynes, Barton F.; Wyatt, Richard T.; Sanders, Rogier W.; Binley, James M.; Ward, Andrew B.; Mascola, John R.; Kwong, Peter D.; Connors, Mark
2014-01-01
The isolation of human monoclonal antibodies (mAbs) is providing important insights regarding the specificities that underlie broad neutralization of HIV-1 (reviewed in1). Here we report a broad and extremely potent HIV-specific mAb, termed 35O22, which binds novel HIV-1 envelope glycoprotein (Env) epitope. 35O22 neutralized 62% of 181 pseudoviruses with an IC50<50 μg/ml. The median IC50 of neutralized viruses was 0.033 μg/ml, among the most potent thus far described. 35O22 did not bind monomeric forms of Env tested, but did bind the trimeric BG505 SOSIP.664. Mutagenesis and a reconstruction by negative-stain electron microscopy of the Fab in complex with trimer revealed it to bind a conserved epitope, which stretched across gp120 and gp41. The specificity of 35O22 represents a novel site of vulnerability on HIV Env, which serum analysis indicates to be commonly elicited by natural infection. Binding to this new site of vulnerability may thus be an important complement to current mAb-based approaches to immunotherapies, prophylaxis, and vaccine design. PMID:25186731
NASA Astrophysics Data System (ADS)
Sharma, Deepti; Ojha, Himanshu; Pathak, Mallika; Singh, Bhawna; Sharma, Navneet; Singh, Anju; Kakkar, Rita; Sharma, Rakesh K.
2016-08-01
Metformin is a biguanide class of drug used for the treatment of diabetes mellitus. It is well known that serum protein-ligand binding interaction significantly influence the biodistribution of a drug. Current study was performed to characterize the binding mechanism of metformin with serum albumin. The binding interaction of the metformin with bovine serum albumin (BSA) was examined using UV-Vis absorption spectroscopy, fluorescence, circular dichroism, density functional theory and molecular docking studies. Absorption spectra and fluorescence emission spectra pointed out the weak binding of metformin with BSA as was apparent from the slight change in absorbance and fluorescence intensity of BSA in presence of metformin. Circular dichroism study implied the significant change in the conformation of BSA upon binding with metformin. Density functional theory calculations showed that metformin has non-planar geometry and has two energy states. The docking studies evidently signified that metformin could bind significantly to the three binding sites in BSA via hydrophobic, hydrogen bonding and electrostatic interactions. The data suggested the existence of non-covalent specific binding interaction in the complexation of metformin with BSA. The present study will certainly contribute to the development of metformin as a therapeutic molecule.
Johnson, T N; Whitaker, M J; Keevil, B; Ross, R J
2018-01-01
The assessment absolute bioavailability of oral hydrocortisone is complicated by its saturable binding to cortisol binding globulin (CBG). Previous assessment of bioavailability used a cortisol radioimmunoassay which has cross reactivity with other steroids. Salivary cortisone is a measure of free cortisol and LC-MS/MS is the gold standard method for measuring steroids. We here report the absolute bioavailability of hydrocortisone calculated using serum cortisol and salivary cortisone measured by LC-MS/MS. 14 healthy male dexamethasone suppressed volunteers were administered 20 mg hydrocortisone either intravenously or orally by tablet. Samples of serum and saliva were taken and measured for cortisol and cortisone by LC-MS/MS. Serum cortisol was corrected for saturable binding using published data and pharmacokinetic parameters derived using the program WinNonlin. The mean (95% CI) bioavailability of oral hydrocortisone calculated from serum cortisol, unbound serum cortisol and salivary cortisone was 1.00 (0.89-1.14); 0.88 (0.75-1.05); and 0.93 (0.83-1.05), respectively. The data confirm that, after oral administration, hydrocortisone is completely absorbed. The data derived from serum cortisol corrected for protein binding, and that from salivary cortisone, are similar supporting the concept that salivary cortisone reflects serum free cortisol levels and that salivary cortisone can be used as a non-invasive method for measuring the pharmacokinetics of hydrocortisone.
Orbán, Erika; Mezo, Gábor; Schlage, Pascal; Csík, Gabriella; Kulić, Zarko; Ansorge, Philipp; Fellinger, Erzsébet; Möller, Heiko Michael; Manea, Marilena
2011-07-01
Bioconjugates with receptor-mediated tumor-targeting functions and carrying cytotoxic agents should enable the specific delivery of chemotherapeutics to malignant tissues, thus increasing their local efficacy while limiting the peripheral toxicity. In the present study, gonadotropin-releasing hormone III (GnRH-III; Glp-His-Trp-Ser-His-Asp-Trp-Lys-Pro-Gly-NH(2)) was employed as a targeting moiety to which daunorubicin was attached via oxime bond, either directly or by insertion of a GFLG or YRRL tetrapeptide spacer. The in vitro antitumor activity of the bioconjugates was determined on MCF-7 human breast and HT-29 human colon cancer cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Their degradation/stability (1) in human serum, (2) in the presence of cathepsin B and (3) in rat liver lysosomal homogenate was analyzed by liquid chromatography in combination with mass spectrometry. The results show that (1) all synthesized bioconjugates have in vitro antitumor effect, (2) they are stable in human serum at least for 24 h, except for the compound containing an YRRL spacer and (3) they are hydrolyzed by cathepsin B and in the lysosomal homogenate. To investigate the relationship between the in vitro antitumor activity and the structure of the bioconjugates, the smallest metabolites produced in the lysosomal homogenate were synthesized and their binding to DNA was assessed by fluorescence spectroscopy. Our data indicate that the incorporation of a peptide spacer in the structure of oxime bond-linked daunorubicin-GnRH-III bioconjugates is not required for their antitumor activity. Moreover, the antitumor activity is influenced by the structure of the metabolites (daunorubicin-amino acid derivatives) and their DNA-binding properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratcliffe, W.A.; Corrie, J.E.; Dalziel, A.H.
1982-06-01
Researchers compared two direct radioimmunoassays for progesterone in 50 microL of unextracted serum or plasma with assays involving extraction of serum. The direct assays include the use of either danazol at pH 7.4 or 8-anilino-1-naphthalenesulfonic acid at pH 4.0 to displace progesterone from serum binding-proteins. Progesterone is then assayed by using an antiserum to a progesterone 11 alpha hemisuccinyl conjugate and the radioligand /sup 125/I-labeled progesterone 11 alpha-glucuronyl tyramine, with separation by double-antibody techniques. Direct assays with either displacing agent gave good analytical recovery of progesterone added to human serum, and progesterone values for patients' specimens correlated well (r greatermore » than 0.96) with results of assays involving extraction of serum. Precision was similar with each displacing agent over the working range 2.5-100 nmol/L and superior to that of extraction assays. Researchers conclude that these direct assays of progesterone are analytically valid and more robust, precise, and technically convenient than many conventional methods involving extraction of serum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratcliffe, W.A.; Corrie, J.E.T.; Dalziel, A.H.
1982-06-01
Two direct radioimmunoassays for progesterone in 50 ..mu..L of unextracted serum or plasma with assays involving extraction of serum were compared. The direct assays include the use of either danazol at pH 7.4 or 8-anilino-1-naphthalenesulfonic acid at pH 4.0 to displace progesterone from serum binding-proteins. Progesterone is then assayed by using an antiserum to a progesterone 11..cap alpha..-hemisuccinyl conjugate and the radioligand /sup 125/I-labeled progesterone 11..cap alpha..-glucuronyl tyramine, with separation by double-antibody techniques. Direct assays with either displacing agent gave good analytical recovery of progesterone added to human serum, and progesterone values for patients' specimens correlated well (r > 0.96)more » with results of assays involving extraction of serum. Precision was similar with each displacing agent over the working range 2.5-100 nmol/L and superior to that of extraction assays. We conclude that these direct assays of progesterone are analytically valid and more robust, precise, and technically convenient than many conventional methods involving extraction of serum.« less
Aqababa, Heydar; Tabandeh, Mehrdad; Tabatabaei, Meisam; Hasheminejad, Meisam; Emadi, Masoomeh
2013-01-01
A computational approach was applied to screen functional monomers and polymerization solvents for rational design of molecular imprinted polymers (MIPs) as smart adsorbents for solid-phase extraction of clonazepam (CLO) form human serum. The comparison of the computed binding energies of the complexes formed between the template and functional monomers was conducted. The primary computational results were corrected by taking into calculation both the basis set superposition error (BSSE) and the effect of the polymerization solvent using the counterpoise (CP) correction and the polarizable continuum model, respectively. Based on the theoretical calculations, trifluoromethyl acrylic acid (TFMAA) and acrylonitrile (ACN) were found as the best and the worst functional monomers, correspondingly. To test the accuracy of the computational results, three MIPs were synthesized by different functional monomers and their Langmuir-Freundlich (LF) isotherms were studied. The experimental results obtained confirmed the computational results and indicated that the MIP synthesized using TFMAA had the highest affinity for CLO in human serum despite the presence of a vast spectrum of ions. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ling, Irene; Taha, Mohamed; Al-Sharji, Nada A.; Abou-Zied, Osama K.
2018-04-01
The ability of human serum albumin (HSA) to bind medium-sized hydrophobic molecules is important for the distribution, metabolism, and efficacy of many drugs. Herein, the interaction between pyrene, a hydrophobic fluorescent probe, and HSA was thoroughly investigated using steady-state and time-resolved fluorescence techniques, ligand docking, and molecular dynamics (MD) simulations. A slight quenching of the fluorescence signal from Trp214 (the sole tryptophan residue in the protein) in the presence of pyrene was used to determine the ligand binding site in the protein, using Förster's resonance energy transfer (FRET) theory. The estimated FRET apparent distance between pyrene and Trp214 was 27 Å, which was closely reproduced by the docking analysis (29 Å) and MD simulation (32 Å). The highest affinity site for pyrene was found to be in subdomain IB from the docking results. The calculated equilibrium structure of the complex using MD simulation shows that the ligand is largely stabilized by hydrophobic interaction with Phe165, Phe127, and the nonpolar moieties of Tyr138 and Tyr161. The fluorescence vibronic peak ratio I1/I3 of bound pyrene inside HSA indicates the presence of polar effect in the local environment of pyrene which is less than that of free pyrene in buffer. This was clarified by the MD simulation results in which an average of 5.7 water molecules were found within 0.5 nm of pyrene in the binding site. Comparing the fluorescence signals and lifetimes of pyrene inside HSA to that free in buffer, the high tendency of pyrene to form dimer was almost completely suppressed inside HSA, indicating a high selectivity of the binding pocket toward pyrene monomer. The current results emphasize the ability of HSA, as a major carrier of several drugs and ligands in blood, to bind hydrophobic molecules in cavities other than subdomain IIA which is known to bind most hydrophobic drugs. This ability stems from the nature of the amino acids forming the binding sites of the protein that can easily adapt their shape to accommodate a variety of molecular structures.
Hepatic drug clearance following traumatic injury.
Slaughter, R L; Hassett, J M
1985-11-01
Trauma is a complex disease state associated with physiologic changes that have the potential to alter hepatic drug clearance mechanisms. These responses include alterations in hepatic blood flow, reduction in hepatic microsomal activity, reduction in hepatic excretion processes, and changes in protein binding. Hepatic blood flow is influenced by sympathomimetic activity. Both animal and human studies demonstrate an initial reduction and subsequent increase in hepatic blood flow, which coincides with an observed increase and subsequent return to normal in serum catecholamine concentrations. Unfortunately, there are no human studies that address the importance these findings may have to the clearance processes of high intrinsic clearance compounds. Animal studies of trauma indicate that hepatic microsomal activity is depressed during the post-traumatic period. Reduction in the hepatic clearance of antipyrine, a model low intrinsic compound, has also been demonstrated in animal models of trauma. In addition to these effects, hepatic excretion of substances such as indocyanine green and bilirubin have been demonstrated to be impaired in both traumatized animals and humans. Finally, substantial increases in the serum concentration of the binding protein alpha 1-acid glycoprotein occur in trauma patients. This has been reported to be associated with subsequent decreases in the free fraction of lidocaine and quinidine. In addition to changing serum drug concentration/response relationships, the pharmacokinetic behavior of drugs bound to alpha 1-acid glycoprotein should also change. Preliminary observations in our laboratory in a dog model of surgically-induced trauma have shown a reduction in the total clearance of lidocaine and reduction in free lidocaine concentration.(ABSTRACT TRUNCATED AT 250 WORDS)
Liao, Shutan; Vickers, Mark H; Taylor, Rennae S; Jones, Beatrix; Fraser, Mhoyra; McCowan, Lesley M E; Baker, Philip N; Perry, Jo K
2016-12-01
To investigate the relationship between maternal serum concentrations of placental growth hormone (GH-V), insulin-like growth factor (IGF)-1 and 2, IGF binding proteins (IGFBP)-1 and 3 and birth weight in appropriate-for-gestational-age (AGA), large-for-gestational-age (LGA) and small-for-gestational-age (SGA) cases in a nested case-control study. Maternal serum samples were selected from the Screening for Pregnancy Endpoints (SCOPE) biobank in Auckland, New Zealand. Serum hormone concentrations were determined by ELISA. We found that maternal serum GH-V concentrations at 20 weeks of gestation in LGA pregnancies were significantly higher than in AGA and SGA pregnancies. Maternal GH-V concentrations were positively correlated to birth weights and customized birth weight centiles, while IGFBP-1 concentrations were inversely related to birth weights and customized birth weight centiles. Our findings suggest that maternal serum GH-V and IGFBP-1 concentrations at 20 weeks' gestation are associated with fetal growth.
Ghosh, Arijit; Raju, Natarajan; Tweedle, Michael; Kumar, Krishan
2017-02-01
Receptor-targeting radiolabeled molecular probes with high affinity and specificity are useful in studying and monitoring biological processes and responses. Dual- or multiple-targeting probes, using radiolabeled metal chelates conjugated to peptides, have potential advantages over single-targeting probes as they can recognize multiple targets leading to better sensitivity for imaging and radiotherapy when target heterogeneity is present. Two natural hormone peptide receptors, gastrin-releasing peptide (GRP) and Y1, are specifically interesting as their expression is upregulated in most breast and prostate cancers. One of our goals has been to develop a dual-target probe that can bind both GRP and Y1 receptors. Consequently, a heterobivalent dual-target probe, t-BBN/BVD15-DO3A (where a GRP targeting ligand J-G-Abz4-QWAVGHLM-NH 2 and Y1 targeting ligand INP-K [ɛ-J-(α-DO3A-ɛ-DGa)-K] YRLRY-NH 2 were coupled), that recognizes both GRP and Y1 receptors was synthesized, purified, and characterized in the past. Competitive displacement cell binding assay studies with the probe demonstrated strong affinity (IC 50 values given in parentheses) for GRP receptors in T-47D cells (18 ± 0.7 nM) and for Y1 receptors in MCF7 cells (80 ± 11 nM). As a further evaluation of the heterobivalent dual-target probe t-BBN/BVD15-DO3A, the objective of this study was to determine its mouse and human serum stability at 37°C. The in vitro metabolic degradation of the dual-target probe in mouse and human serum was studied by using a 153 Gd-labeled t-BBN/BVD15-DO3A and a high-performance liquid chromatography/radioisotope detector analytical method. The half-life (t 1/2 ) of degradation of the dual-target probe in mouse serum was calculated as 7 hours and only ∼20% degradation was seen after 6 hours incubation in human serum. The slow in vitro metabolic degradation of the dual-target probe can be compared with the degradation t 1/2 of the corresponding monomeric probes, BVD15-DO3A and AMBA: 15, and ∼40 minutes for BVD15-DO3A and 3.1 and 38.8 hours for AMBA in mouse and human serum, respectively. A possible pathway for in vitro metabolic degradation of the t-BBN/BVD15-DO3A in mouse serum is proposed based on the chromatographic retention times of the intact probe and its degradants.
THE INFLUENCE OF SERUM BINDING PROTEINS AND CLEARANCE ON THE COMPARATIVE RECEPTOR BINDING POTENCY OF ENDOCRINE ACTIVE COMPOUNDS. JG Teeguarden1 and HA Barton2. 1ENVIRON International, Ruston LA; 2US EPA, ORD, NHEERL, ETD, Pharmacokinetics Branch, RTP, NC.
One measure of th...
Liberato, D J; Byers, V S; Dennick, R G; Castagnoli, N
1981-01-01
Attempts to characterize potential biologically important covalent interactions between electrophilic quinones derived from catechols present in poison oak/ivy (urushiol) and biomacromolecules have led to the analysis of model reactions involving sulfur and amino nucleophiles with 3-heptadecylbenzoquinone. Characterization of the reaction products indicates that this quinone undergoes regiospecific attack by (S)-N-acetylcysteine at C-6 and by 1-aminopentane at C-5. The red solid obtained with 1-aminopentane proved to be 3-heptadecyl-5-(pentylamino)-1,2-benzoquinone. Analogous aminobenzoquinones were obtained with the quinones derived from the 4- and 6-methyl analogues of 3-pentadecylcatechol. All three adducts absorbed visible light at different wavelengths. When the starting catechols were incubated with human serum albumin almost identical chromophores were formed. These results establish that cathechols responsible for the production of the poison oak/ivy contact dermatitis in humans undergo a sequence of reactions in the presence of human serum albumin that lead to covalent attachment of the catechols to the protein via carbon-nitrogen bonds. Estimations of the extent of this binding indicate that, at least with human serum albumin, the reaction is quantitative.
Blindauer, Claudia A; Khazaipoul, Siavash; Yu, Ruitao; Stewart, Alan J
2016-01-01
Human serum albumin (HSA) is the major protein in blood plasma and is responsible for circulatory transport of a range of small molecules including fatty acids, metal ions and drugs. We previously identified the major plasma Zn2+ transport site on HSA and revealed that fatty-acid binding (at a distinct site called the FA2 site) and Zn2+ binding are interdependent via an allosteric mechanism. Since binding affinities of long-chain fatty acids exceed those of plasma Zn2+, this means that under certain circumstances the binding of fatty acid molecules to HSA is likely to diminish HSA Zn2+-binding, and hence affects the control of circulatory and cellular Zn2+ dynamics. This relationship between circulatory fatty acid and Zn2+ dynamics is likely to have important physiological and pathological implications, especially since it has been recognised that Zn2+ acts as a signalling agent in many cell types. Fatty acid levels in the blood are dynamic, but most importantly, chronic elevation of plasma fatty acid levels is associated with some metabolic disorders and disease states - including myocardial infarction and other cardiovascular diseases. In this article, we briefly review the metal-binding properties of albumin and highlight the importance of their interplay with fatty acid binding. We also consider the impact of this dynamic link upon levels and speciation of plasma Zn2+, its effect upon cellular Zn2+ homeostasis and its relevance to cardiovascular and circulatory processes in health and disease.
Fanali, Gabriella; Ascenzi, Paolo; Bernardi, Giorgio; Fasano, Mauro
2012-01-01
Serum albumin (SA) is a circulating protein providing a depot and carrier for many endogenous and exogenous compounds. At least seven major binding sites have been identified by structural and functional investigations mainly in human SA. SA is conserved in vertebrates, with at least 49 entries in protein sequence databases. The multiple sequence analysis of this set of entries leads to the definition of a cladistic tree for the molecular evolution of SA orthologs in vertebrates, thus showing the clustering of the considered species, with lamprey SAs (Lethenteron japonicum and Petromyzon marinus) in a separate outgroup. Sequence analysis aimed at searching conserved domains revealed that most SA sequences are made up by three repeated domains (about 600 residues), as extensively characterized for human SA. On the contrary, lamprey SAs are giant proteins (about 1400 residues) comprising seven repeated domains. The phylogenetic analysis of the SA family reveals a stringent correlation with the taxonomic classification of the species available in sequence databases. A focused inspection of the sequences of ligand binding sites in SA revealed that in all sites most residues involved in ligand binding are conserved, although the versatility towards different ligands could be peculiar of higher organisms. Moreover, the analysis of molecular links between the different sites suggests that allosteric modulation mechanisms could be restricted to higher vertebrates.
Su, Hui-Wen; Lee, Mon-Juan; Lee, Wei
2015-05-01
Liquid crystal (LC)-based biosensing has attracted much attention in recent years. We focus on improving the detection limit of LC-based immunoassay techniques by surface modification of the surfactant alignment layer consisting of dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP). The cancer biomarker CA125 was detected with an array of anti-CA125 antibodies immobilized on the ultraviolet (UV)-modified DMOAP monolayer. Compared with a pristine counterpart, UV irradiation enhanced the binding affinity of the CA125 antibody and reproducibility of immunodetection in which a detection limit of 0.01 ng∕ml for the cancer biomarker CA125 was achieved. Additionally, the optical texture observed under a crossed polarized microscope was correlated with the analyte concentration. In a proof-of-concept experiment using CA125-spiked human serum as the analyte, specific binding between the CA125 antigen and the anti-CA125 antibody resulted in a distinct and concentration-dependent optical response despite the high background caused by nonspecific binding of other biomolecules in the human serum. Results from this study indicate that UVmodification of the alignment layer, as well as detection with LCs of large birefringence, contributes to the enhanced performance of the label-free LC-based immunodetection, which may be considered a promising alternative to conventional label-based methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ascenzi, Paolo; National Institute for Infectious Diseases I.R.C.C.S. 'Lazzaro Spallanzani', Via Portuense 292, I-00149 Roma; Imperi, Francesco
Human serum albumin (HSA) participates to heme scavenging, in turn HSA-heme binds gaseous diatomic ligands at the heme-Fe-atom. Here, the effect of abacavir and warfarin on denitrosylation kinetics of HSA-heme-Fe(II)-NO (i.e., k{sub off}) is reported. In the absence of drugs, the value of k{sub off} is (1.3 {+-} 0.2) x 10{sup -4} s{sup -1}. Abacavir and warfarin facilitate NO dissociation from HSA-heme-Fe(II)-NO, the k{sub off} value increases to (8.6 {+-} 0.9) x 10{sup -4} s{sup -1}. From the dependence of k{sub off} on the drug concentration, values of the dissociation equilibrium constant for the abacavir and warfarin binding to HSA-heme-Fe(II)-NOmore » (i.e., K = (1.2 {+-} 0.2) x 10{sup -3} M and (6.2 {+-} 0.7) x 10{sup -5} M, respectively) were determined. The increase of k{sub off} values reflects the stabilization of the basic form of HSA-heme-Fe by ligands (e.g., abacavir and warfarin) that bind to Sudlow's site I. This event parallels the stabilization of the six-coordinate derivative of the HSA-heme-Fe(II)-NO atom. Present data highlight the allosteric modulation of HSA-heme-Fe(II) reactivity by heterotropic effectors.« less
Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki; Ushijima, Naofumi
2008-01-15
Serum vitamin D3-binding protein (Gc protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of breast cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Patient serum Nagalase activity is proportional to tumor burden. The deglycosylated Gc protein cannot be converted to MAF, resulting in no macrophage activation and immunosuppression. Stepwise incubation of purified Gc protein with immobilized beta-galactosidase and sialidase generated probably the most potent macrophage activating factor (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages treated in vitro with GcMAF (100 pg/ml) are highly tumoricidal to mammary adenocarcinomas. Efficacy of GcMAF for treatment of metastatic breast cancer was investigated with 16 nonanemic patients who received weekly administration of GcMAF (100 ng). As GcMAF therapy progresses, the MAF precursor activity of patient Gc protein increased with a concomitant decrease in serum Nagalase. Because of proportionality of serum Nagalase activity to tumor burden, the time course progress of GcMAF therapy was assessed by serum Nagalase activity as a prognostic index. These patients had the initial Nagalase activities ranging from 2.32 to 6.28 nmole/min/mg protein. After about 16-22 administrations (approximately 3.5-5 months) of GcMAF, these patients had insignificantly low serum enzyme levels equivalent to healthy control enzyme levels, ranging from 0.38 to 0.63 nmole/min/mg protein, indicating eradication of the tumors. This therapeutic procedure resulted in no recurrence for more than 4 years. Copyright 2007 Wiley-Liss, Inc.
Lim, Jung Hwa; Jung, Cho-Rok; Lee, Chan-Hee; Im, Dong-Soo
2008-11-01
E2-EPF ubiquitin carrier protein (UCP) has been shown to be highly expressed in common human cancers and target von Hippel-Lindau (VHL) for proteosomal degradation in cells, thereby stabilizing hypoxia-inducible factor (HIF)-1alpha. Here, we investigated cellular factors that regulate the expression of UCP gene. Promoter deletion assay identified binding sites for early growth response-1 (Egr-1) and serum response factor (SRF) in the UCP promoter. Hepatocyte or epidermal growth factor (EGF), or phorbol 12-myristate 13-acetate induced UCP expression following early induction of Egr-1 expression in HeLa cells. Serum increased mRNA and protein levels of SRF and UCP in the cell. By electrophoretic mobility shift and chromatin immunoprecipitation assays, sequence-specific DNA-binding of Egr-1 and SRF to the UCP promoter was detected in nuclear extracts from HeLa cells treated with EGF and serum, respectively. Overexpression of Egr-1 or SRF increased UCP expression. RNA interference-mediated depletion of endogenous Egr-1 or SRF impaired EGF- or serum-mediated induction of UCP expression, which was required for cancer cell proliferation. Systemic delivery of EGF into mice also increased UCP expression following early induction of Egr-1 expression in mouse liver. The induced UCP expression by the growth factors or serum increased HIF-1alpha protein level under non-hypoxic conditions, suggesting that the Egr-1/SRF-UCP-VHL pathway is in part responsible for the increased HIF-1alpha protein level in vitro and in vivo. Thus, growth factors and serum induce expression of Egr-1 and SRF, respectively, which in turn induces UCP expression that positively regulates cancer cell growth.
Samanta, Anuva; Jana, Sankar; Ray, Debarati; Guchhait, Nikhil
2014-01-01
The binding affinity of cationic DNA-staining dye, propidium iodide, with transport protein, bovine serum albumin, has been explored using UV-vis absorption, fluorescence, and circular dichroism spectroscopy. Steady state and time resolved fluorescence studies authenticate that fluorescence quenching of bovine serum albumin by propidium iodide is due to bovine serum albumin-propidium iodide complex formation. Thermodynamic parameters obtained from temperature dependent spectral studies cast light on binding interaction between the probe and protein. Site marker competitive binding has been encountered using phenylbutazone and flufenamic acid for site I and site II, respectively. Energy transfer efficiency and distance between bovine serum albumin and propidium iodide have been determined using Förster mechanism. Structural stabilization or destabilization of protein by propidium iodide has been investigated by urea denaturation study. The circular dichroism study as well as FT-IR measurement demonstrates some configurational changes of the protein in presence of the dye. Docking studies support the experimental data thereby reinforcing the binding site of the probe to the subdomain IIA of bovine serum albumin. Copyright © 2013 Elsevier B.V. All rights reserved.
Serum Amyloid P Is a Sialylated Glycoprotein Inhibitor of Influenza A Viruses
Job, Emma R.; Bottazzi, Barbara; Gilbertson, Brad; Edenborough, Kathryn M.; Brown, Lorena E.; Mantovani, Alberto; Brooks, Andrew G.; Reading, Patrick C.
2013-01-01
Members of the pentraxin family, including PTX3 and serum amyloid P component (SAP), have been reported to play a role in innate host defence against a range of microbial pathogens, yet little is known regarding their antiviral activities. In this study, we demonstrate that human SAP binds to human influenza A virus (IAV) strains and mediates a range of antiviral activities, including inhibition of IAV-induced hemagglutination (HA), neutralization of virus infectivity and inhibition of the enzymatic activity of the viral neuraminidase (NA). Characterization of the anti-IAV activity of SAP after periodate or bacterial sialidase treatment demonstrated that α(2,6)-linked sialic acid residues on the glycosidic moiety of SAP are critical for recognition by the HA of susceptible IAV strains. Other proteins of the innate immune system, namely human surfactant protein A and porcine surfactant protein D, have been reported to express sialylated glycans which facilitate inhibition of particular IAV strains, yet the specific viral determinants for recognition of these inhibitors have not been defined. Herein, we have selected virus mutants in the presence of human SAP and identified specific residues in the receptor-binding pocket of the viral HA which are critical for recognition and therefore susceptibility to the antiviral activities of SAP. Given the widespread expression of α(2,6)-linked sialic acid in the human respiratory tract, we propose that SAP may act as an effective receptor mimic to limit IAV infection of airway epithelial cells. PMID:23544079
NASA Astrophysics Data System (ADS)
Zhang, Fan; Lin, Qiu-Yue; Li, Shi-Kun; Zhao, Yu-Ling; Wang, Peng-Peng; Chen, Miao-Miao
2012-12-01
Four new transition metal complexes (Habtz)2[M(DCA)2]·6H2O (M = Co(II) (1), Ni(II) (2), Cu(II) (3), Zn(II) (4); DCA = demethylcantharate, 7-oxabicyclo [2.2.1]heptane-2,3-dicarboxylate, C8H8O5; Habtz = 2-aminobenzothiazole acid, C7H7N2S) were synthesized and characterized by elemental analysis, molar conductance, infrared spectra and thermogravimetric analysis. The coordination number of complex was six. The X-ray diffraction analysis indicated that complex 3 crystallized in the triclinic crystal system with P1¯ space group. The DNA-binding properties of the complexes were investigated by electronic absorption spectra, fluorescence spectra, viscosity measurements. Title complexes could bind to DNA via partial intercalative mode. The Kb of the complexes were 5.33 × 104 (1), 7.04 × 104 (2), 9.91 × 104 (3) and 5.03 × 104 L mol-1 (4). The results of agarose gel electrophoresis showed that Cu(II) complex could cleave pBR322 plasmid DNA via radical-based mechanism. The complexes could quench the intrinsic fluorescence of bovine serum albumin (BSA) through a static quenching with the binding constants Ka of 1.11 × 104 (1), 1.24 × 106 (2), 8.42 × 105 (3) and 1.75 × 104 L mol-1 (4). The complexes had intense antiproliferative activities against human hepatoma cell lines (SMMC7721) and human gastric cancer cells (MGC80-3) lines in vitro. Cu(II) complex had the strongest activity against human gastric cancer cells.
Costafreda, M. Isabel; Ribes, Enric; Franch, Àngels; Bosch, Albert
2012-01-01
Hepatitis A virus (HAV) has previously been reported to bind to human red blood cells through interaction with glycophorin A. Residue K221 of VP1 and the surrounding VP3 residues are involved in such an interaction. This capsid region is specifically recognized by the monoclonal antibody H7C27. A monoclonal antibody-resistant mutant with the mutation G1217D has been isolated. In the present study, the G1217D mutant was characterized physically and biologically in comparison with the parental HM175 43c strain. The G1217D mutant is more sensitive to acid pH and binds more efficiently to human and rat erythrocytes than the parental 43c strain. In a rat model, it is eliminated from serum more rapidly and consequently reaches the liver with a certain delay compared to the parental 43c strain. In competition experiments performed in vivo in the rat model, the G1217D mutant was efficiently outcompeted by the parental 43c strain. Only in the presence of antibodies reacting specifically with the parental 43c strain could the G1217D mutant outcompete the parental 43c strain in serum, although the latter still showed a remarkable ability to reach the liver. Altogether, these results indicate that the G1217D mutation induces a low fitness phenotype which could explain the lack of natural antigenic variants of the glycophorin A binding site. PMID:22593170
Fabini, Edoardo; Tramarin, Anna; Bartolini, Manuela
2018-06-05
In the continuous research for potential drug lead candidates, the availability of highly informative screening methodologies may constitute a decisive element in the selection of best-in-class compounds. In the present study, a surface plasmon resonance (SPR)-based assay was developed and employed to investigate interactions between human recombinant AChE (hAChE) and four known ligands: galantamine, tacrine, donepezil and edrophonium. To this aim, a sensor chip was functionalized with hAChE using mild immobilization conditions to best preserve enzyme integrity. Binding affinities and, for the first time, kinetic rate constants for all drug-hAChE complexes formation/disruption were determined. Inhibitors were classified in two groups: slow-reversible and fast-reversible binders according to respective target residence time. Combining data obtained on drug-target residence time with data obtained on serum albumin binding levels, a good correlation with potency, plasma protein binding in vivo, and administration regimen was found. The outcomes of this work demonstrated that the developed SPR-based assay is suitable for the screening, the binding affinity ranking and the kinetic evaluation of hAChE inhibitors. The method proposed ensures a simpler and cost-effective assay to quantify kinetic rate constants for inhibitor-hAChE interaction as compared with other proposed and published methods. Eventually, the determination of residence time in combination with preliminary ADME studies might constitute a better tool to predict in vivo behaviour, a key information for the research of new potential drug candidates. Copyright © 2018 Elsevier B.V. All rights reserved.
Dong, Chengyu; Lu, Ningning; Liu, Ying
2013-01-01
This study was designed to examine the interaction of methacyline (METC) with human serum albumin (HSA) by multispectroscopy and a molecular modeling method under simulative physiological conditions. The quenching mechanism was suggested to be static quenching based on fluorescence and ultraviolet-visible (UV-Vis) spectroscopy. According to the Vant' Hoff equation, the values of enthalpy (∆H) and entropy change (∆S) were calculated to be -95.29 kJ/mol and -218.13 J/mol/K, indicating that the main driving force of the interaction between HSA and METC were hydrogen bonds and van der Waals's forces. By performing displacement measurements, the specific binding of METC in the vicinity of Sudlow's site I of HSA was clarified. An apparent distance of 3.05 nm between Trp214 and METC was obtained via the fluorescence resonance energy transfer (FRET) method. Furthermore, the binding details between METC and HSA were further confirmed by molecular docking studies, which revealed that METC was bound at subdomain IIA through multiple interactions, such as hydrophobic effect, polar forces, hydrogen bonding, etc. The results of three-dimensional fluorescence and Fourier transform infrared (FTIR) spectroscopy showed that METC caused conformational and some microenvironmental changes in HSA and reduced the α-helix significantly in the range of 52.3-40.4% in HSA secondary structure. Moreover, the coexistence of metal ions such as Ca(2+), Al(3+), Fe(3+), Zn(2+), Cu(2+), Cr(3+) and Cd(2+) can decrease the binding constants of METC-HSA. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Carter, Daniel C. (Inventor)
1998-01-01
In accordance with the present invention, biologically active protein fragments can be constructed which contain only those specific portions of the serum albumin family of proteins such as regions known as subdomains IIA and IIIA which are primarily responsible for the binding properties of the serum albumins. The artificial serums that can be prepared from these biologically active protein fragments are advantageous in that they can be produced much more easily than serums containing the whole albumin, yet still retain all or most of the original binding potential of the full albumin proteins. In addition, since the protein fragment serums of the present invention can be made from non-natural sources using conventional recombinant DNA techniques, they are far safer than serums containing natural albumin because they do not carry the potentially harmful viruses and other contaminants that will be found in the natural substances.
Sarais, Veronica; Cermisoni, Greta Chiara; Schimberni, Matteo; Alteri, Alessandra; Papaleo, Enrico; Somigliana, Edgardo; Vigano', Paola
2017-09-20
Uterine fibroids are the most common gynecologic benign tumors. Studies supporting a strong pregnancy-related growth of leiomyomas generally claimed a crucial role of sex steroid hormones. However, sex steroids are unlikely the unique actors involved as estrogen and progesterone achieve a pick serum concentration in the last trimester while leiomyomas show a typical increase during the first trimester. Given the rapid exponential raise in serum human Chorionic Gonadotrophin (hCG) at the beginning of gestation, we conducted a review to assess the potential role of hCG in the striking growth of leiomyomas during initial pregnancy. Fibroid growth during initial pregnancy seems to correlate to the similar increase of serum hCG levels until 12 weeks of gestation. The presence of functional Luteinizing Hormone/human Chorionic Gonadotropin (LH/hCG) receptors was demonstrated on leiomyomas. In vitro treatment of leiomyoma cells with hCG determines an up to 500% increase in cell number after three days. Expression of cyclin E and cyclin-dependent kinase 1 was significantly increased in leiomyoma cells by hCG treatment. Moreover, upon binding to the receptor, hCG stimulates prolactin secretion in leiomyoma cells, promoting cell proliferation via the mitogen-activated protein kinase cascade. Fibroid enlargement during initial pregnancy may be regulated by serum hCG.
Sarais, Veronica; Cermisoni, Greta Chiara; Schimberni, Matteo; Alteri, Alessandra; Papaleo, Enrico; Somigliana, Edgardo; Vigano’, Paola
2017-01-01
Uterine fibroids are the most common gynecologic benign tumors. Studies supporting a strong pregnancy-related growth of leiomyomas generally claimed a crucial role of sex steroid hormones. However, sex steroids are unlikely the unique actors involved as estrogen and progesterone achieve a pick serum concentration in the last trimester while leiomyomas show a typical increase during the first trimester. Given the rapid exponential raise in serum human Chorionic Gonadotrophin (hCG) at the beginning of gestation, we conducted a review to assess the potential role of hCG in the striking growth of leiomyomas during initial pregnancy. Fibroid growth during initial pregnancy seems to correlate to the similar increase of serum hCG levels until 12 weeks of gestation. The presence of functional Luteinizing Hormone/human Chorionic Gonadotropin (LH/hCG) receptors was demonstrated on leiomyomas. In vitro treatment of leiomyoma cells with hCG determines an up to 500% increase in cell number after three days. Expression of cyclin E and cyclin-dependent kinase 1 was significantly increased in leiomyoma cells by hCG treatment. Moreover, upon binding to the receptor, hCG stimulates prolactin secretion in leiomyoma cells, promoting cell proliferation via the mitogen-activated protein kinase cascade. Fibroid enlargement during initial pregnancy may be regulated by serum hCG. PMID:28930160
NASA Astrophysics Data System (ADS)
Jattinagoudar, Laxmi; Meti, Manjunath; Nandibewoor, Sharanappa; Chimatadar, Shivamurti
2016-03-01
The information of the quenching reaction of bovine serum albumin with dimethyl fumarate is obtained by multi-spectroscopic methods. The number of binding sites, n and binding constants, KA were determined at different temperatures. The effect of increasing temperature on Stern-Volmer quenching constants (KD) indicates that a dynamic quenching mechanism is involved in the interaction. The analysis of thermodynamic quantities namely, ∆H° and ∆S° suggested hydrophobic forces playing a major role in the interaction between dimethyl fumarate and bovine serum albumin. The binding site of dimethyl fumarate on bovine serum albumin was determined by displacement studies, using the site probes viz., warfarin, ibuprofen and digitoxin. The determination of magnitude of the distance of approach for molecular interactions between dimethyl fumarate and bovine serum albumin is calculated according to the theory of Förster energy transfer. The CD, 3D fluorescence spectra, synchronous fluorescence measurements and FT-IR spectral results were indicative of the change in secondary structure of the protein. The influence of some of the metal ions on the binding interaction was also studied.
Shi, Jie-Hua; Lou, Yan-Yue; Zhou, Kai-Li; Pan, Dong-Qi
2018-03-01
Fenhexamid, as a hydroxyanilide, is widely applied to control Botrytis cinerea for protecting crops and fruits. But it could adversely affect human and animals health due to accumulation of residues in food production. Here, the affinity characteristics of fenhexamid on bovine serum albumin (BSA) was studied via a series of spectroscopic methods such as steady-state fluorescence spectroscopy, ultraviolet spectroscopy (UV), synchronous fluorescence spectroscopy (SFS), 3D fluorescence spectroscopy, and fourier transform infrared spectroscopy (FT-IR). The experimental results illustrated that the fluorescence quenching mechanism of BSA induced by fenhexamid was a static quenching. The binding constant (K b ) of fenhexamid with BSA was 2.399 × 10 4 M -1 at 298 K and the combination ratio was about 1:1. The competitive experiment demonstrated that fenhexamid was binding on the BSA at site II (subdomain IIIA), which was confirmed by the molecular docking studies. The negative values of thermodynamic parameter (ΔH 0 , ΔS 0 and ΔG 0 ) revealed that the reaction of fenhexamid with BSA could proceed spontaneously, the van der Waals force and hydrogen bonding interaction conducted the main effect, and the binding process was enthalpy-driven. What's more, the 8-Anilino-1-naphthalenesulfonate (ANS) and sucrose binding studies were also performed and further verified the binding force between BSA and fenhexamid. Copyright © 2018 Elsevier B.V. All rights reserved.
Suturina, Elizaveta A.; Mason, Kevin
2018-01-01
Luminescence spectroscopy has been used to monitor the selective and reversible binding of pH sensitive, macrocyclic lanthanide complexes, [LnL1], to the serum protein α1-AGP, whose concentration can vary significantly in response to inflammatory processes. On binding α1-AGP, a very strong induced circularly-polarised europium luminescence signal was observed that was of opposite sign for human and bovine variants of α1-AGP – reflecting the differences in the chiral environment of their drug-binding pockets. A mixture of [EuL1] and [TbL1] complexes allowed the ratiometric monitoring of α1-AGP levels in serum. Moreover, competitive displacement of [EuL1] from the protein by certain prescription drugs could be monitored, allowing the determination of drug binding constants. Reversible binding of the sulphonamide arm as a function of pH, led to a change of the coordination environment around the lanthanide ion, from twisted square antiprism (TSAP) to a square antiprismatic geometry (SAP), signalled by emission spectral changes and verified by detailed computations and the fitting of NMR pseudocontact shift data in the sulphonamide bound TSAP structure for the Dy and Eu examples. Such analyses allowed a full definition of the magnetic susceptibility tensor for [DyL1]. PMID:29732083
Tellier, Franklin; Steibel, Jérôme; Chabrier, Renée; Blé, François Xavier; Tubaldo, Hervé; Rasata, Ravelo; Chambron, Jacques; Duportail, Guy; Simon, Hervé; Rodier, Jean-François; Poulet, Patrick
2012-01-01
Patent Blue V (PBV), a dye used clinically for sentinel lymph node detection, was mixed with human serum albumin (HSA). After binding to HSA, the fluorescence quantum yield increased from 5 × 10−4 to 1.7 × 10−2, which was enough to allow fluorescence detection and imaging of its distribution. A detection threshold, evaluated in scattering test objects, lower than 2.5 nmol × L−1 was obtained, using a single-probe setup with a 5-mW incident light power. The detection sensitivity using a fluorescence imaging device was in the µmol × L−1 range, with a noncooled CCD camera. Preclinical evaluation was performed on a rat model and permitted to observe inflamed nodes on all animals. PMID:23024922
Raman background photobleaching as a possible method of cancer diagnostics
NASA Astrophysics Data System (ADS)
Brandt, Nikolai N.; Brandt, Nikolai B.; Chikishev, Andrey Y.; Gangardt, Mihail G.; Karyakina, Nina F.
2001-06-01
Kinetics of photobleaching of background in Raman spectra of aqueous solutions of plant toxins ricin and ricin agglutinin, ricin binding subunit, and normal and malignant human blood serum were measured. For the excitation of the spectra cw and pulsed laser radiation were used. The spectra of Raman background change upon laser irradiation. Background intensity is lower for the samples with small molecular weight. The cyclization of amino acid residues in the toxin molecules as well as in human blood serum can be a reason of the Raman background. The model of the background photobleaching is proposed. The differences in photobleaching kinetics in the cases of cw and pulsed laser radiation are discussed. It is shown that Raman background photobleaching can be very informative for cancer diagnostics.
Singh, Naveen K; Arya, Sunil K; Estrela, Pedro; Goswami, Pranab
2018-06-08
A capacitive aptasensor for detecting the malaria biomarker, Plasmodium falciparum glutamate dehydrogenase (PfGDH), directly in human serum samples developed. A thiolated ssDNA aptamer (NG3) that binds specifically to PfGDH antigen with high affinity (K d = 79 nM) was used to develop the aptasensor. The aptasensor produced capacitance response at an optimized frequency of 2 Hz in a non-Faradaic electrochemical impedance based signal transduction platform. The aptasensor exhibited a wide dynamic range of 100 fM-100 nM with a limits of detection of 0.77 pM in serum samples. The interference from other predominant malarial biomarkers, namely, Plasmodium falciparum -lactate dehydrogenase and -histidine rich protein-II on the aptasensor was negligible. This PfGDH aptasensor with highly sensitive and label free detection capability has great application potential for diagnosis of asymptotic malaria and monitoring the regression of malaria during treatment regime with antimalarial drugs. Copyright © 2018 Elsevier B.V. All rights reserved.
2006-10-01
Gibbs, E. M., Fletterick, R. J., Day, Y. S. N., Myszka, D. G., and Rath, V. L. (2002) “Structure-activity analysis of the purine-binding site of human ...Rich, R. L., Day, Y. S. N., Morton, T. A., and Myszka, D. G., (2001) “High- resolution and high-throughput protocols for measuring drug/ human serum...entire text) 1. Attard, P., Images of nanobubbles on hydrophobic surfaces and their interactions. Phys. Rev. Lett., 2001. 87. 2. Ottino, J.M
Zhou, Jing; Ma, Hong-yue; Fan, Xin-sheng; Xiao, Wei; Wang, Tuan-jie
2012-10-01
To investigate the mechanism of binding of human serum albumin (HSA) with potential sensitinogen, including chlorogenic acid and two isochlorogenic acids (3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid). By using the docking algorithm of computer-aided molecular design and the Molegro Virtual Docker, the crystal structures of HSA with warfarin and diazepam (Protein Data Bank ID: 2BXD and 2BXF) were selected as molecular docking receptors of HSA sites I and II. According to docking scores, key residues and H-bond, the molecular docking mode was selected and confirmed. The molecular docking of chlorogenic acid and two isochlorogenic acids on sites I and II was compared based on the above design. The results from molecular docking indicated that chlorogenic acid, 3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid could bind to HSA site I by high affinity scores of -112.3, -155.3 and -153.1, respectively. They could bind to site II on HSA by high affinity scores of -101.7, -138.5 and -133.4, respectively. In site I, two isochlorogenic acids interacted with the key apolar side-chains of Leu238 and Ala291 by higher affinity scores than chlorogenic acid. Furthermore, the H-bonds of isochlorogenic acids with polar residues inside the pocket and at the entrance of the pocket were different from chlorogenic acid. Moreover, the second coffee acyl of isochlorogenic acid occupied the right-hand apolar compartment in the pocket of HSA site I. In site I, the second coffee acyl of isochlorogenic acid formed the H-bonds with polar side-chains, which contributed isochlorogenic acid to binding with site II of HSA. The isochlorogenic acids with two coffee acyls have higher binding abilities with HSA than chlorogenic acid with one coffee acyl, suggesting that isochlorogenic acids binding with HSA may be sensitinogen.
Ahmad, Basir; Ahmed, Md Zulfazal; Haq, Soghra Khatun; Khan, Rizwan Hasan
2005-06-15
The effect of guanidine hydrochloride (GnHCl) on the global stability of human serum albumin (HSA) has been studied by fluorescence and circular dichroism spectroscopic measurements. The differential stability of native conformation of three HSA domains were explored by using domain-specific ligands, hemin (domain I), chloroform (domain II), bilirubin (at domain I/domain II interface) and diazepam (domain III). GnHCl induced unfolding transition curves as monitored by probes for secondary and tertiary structures were cooperative but noncoincidental. A strong ANS binding to the protein was observed around 1.8 M GnHCl, suggesting existence of intermediate states in the unfolding pathway of HSA. A gradual decrease (in the GnHCl concentration range 0.0-1.8 M) in the binding of diazepam indicates that domain III is the most labile to GnHCl denaturation. A significant increase in the binding of bilirubin up to 1.4 M GnHCl and decrease thereafter leading to complete abolishment of bilirubin binding at around 2.0 M GnHCl suggest favorable rearrangement and separation of domains I and II at 1.4 and 2.0 M GnHCl concentration, respectively. Above 1.6 M GnHCl, decrease of the binding of hemin, a ligand for domain I, chloroform, which binds in domain II and lone tryptophanyl fluorescence (Trp-214 located in domain II) indicate that at higher concentration of GnHCl domains I and II start unfolding simultaneously but the stability of domain I (7.4 Kcal/mol) is much more than domain II (4.3 Kcal/mol). A pictorial model for the unfolding of HSA domains, consistent with all these results, has been formulated, suggesting that domain III is the most labile followed by domain II while domain I is the most stable. A molten globule like state of domain III around 1.8 M GnHCl has also been identified and characterized.
Identification of "tumor-associated" nucleolar antigens in human urothelial cancer.
Yu, D; Pietro, T; Jurco, S; Scardino, P T
1987-09-01
Nucleoli isolated from HeLa S3 cells were used to produce rabbit antisera capable of binding nucleoli of transitional cell carcinomas (TCCa) of the bladder. Cross-reactivity of the rabbit antiserum with normal nucleoli was reduced by absorption with fetal calf serum, normal human serum, and human placental nucleoli. This antinucleolar antiserum exhibited strong reactivity in immunoperoxidase assays performed on specimens of human bladder cancer. In frozen tissue sections of 24 patients with TCCa and eight individuals without tumor, nucleolar staining was observed in all malignant specimens, but was not observed in seven of the normal specimens. Cytologic examination of bladder washing specimens from 47 normal individuals showed absence of nucleolar staining in 43 (91%) of 47 normal specimens while 12 (86%) of 14 specimens from patients with TCCa were positive. These results suggest that there are antigens associated with the nucleoli of HeLa cells and transitional cell carcinomas which are generally absent (or in low concentration) in normal human urothelial cells, and that antisera to these antigens may be useful in the cytologic diagnosis of human transitional cell carcinoma.
Rudra, Suparna; Dasmandal, Somnath; Patra, Chiranjit; Patel, Biman Kumar; Paul, Suvendu; Mahapatra, Ambikesh
2017-11-20
The interaction between a synthesized dye with proteins, bovine, and human serum albumin (BSA, HSA, respectively) under physiological conditions has been characterized in detail, by means of steady-state and time-resolved fluorescence, UV-vis absorption, and circular dichroism (CD) techniques. An extensive time-resolved fluorescence spectroscopic characterization of the quenching process has been undertaken in conjugation with temperature-dependent fluorescence quenching studies to divulge the actual quenching mechanism. From the thermodynamic observations, it is clear that the binding process is a spontaneous molecular interaction, in which van der Waals and hydrogen bonding interactions play the major roles. The UV-vis absorption and CD results confirm that the dye can induce conformational and micro-environmental changes of both the proteins. In addition, the dye binding provokes the functionality of the native proteins in terms of esterase-like activity. The average binding distance (r) between proteins and dye has been calculated using FRET. Cytotoxicity and antiviral effects of the dye have been found using Vero cell and HSV-1F virus by performing MTT assay. The AutoDock-based docking simulation reveals the probable binding location of dye within the sub-domain IIA of HSA and IB of BSA.
Characterization of solution-phase drug-protein interactions by ultrafast affinity extraction.
Beeram, Sandya R; Zheng, Xiwei; Suh, Kyungah; Hage, David S
2018-03-03
A number of tools based on high-performance affinity separations have been developed for studying drug-protein interactions. An example of one recent approach is ultrafast affinity extraction. This method has been employed to examine the free (or non-bound) fractions of drugs and other solutes in simple or complex samples that contain soluble binding agents. These free fractions have also been used to determine the binding constants and rate constants for the interactions of drugs with these soluble agents. This report describes the general principles of ultrafast affinity extraction and the experimental conditions under which it can be used to characterize such interactions. This method will be illustrated by utilizing data that have been obtained when using this approach to measure the binding and dissociation of various drugs with the serum transport proteins human serum albumin and alpha 1 -acid glycoprotein. A number of practical factors will be discussed that should be considered in the design and optimization of this approach for use with single-column or multi-column systems. Techniques will also be described for analyzing the resulting data for the determination of free fractions, rate constants and binding constants. In addition, the extension of this method to complex samples, such as clinical specimens, will be considered. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Min, Jiang; Meng-Xia, Xie; Dong, Zheng; Yuan, Liu; Xiao-Yu, Li; Xing, Chen
2004-04-01
Cinnamic acid and its derivatives possess various biological effects in remedy of many diseases. Interaction of cinnamic acid and its hydroxyl derivatives, p-coumaric acid and caffeic acid, with human serum albumin (HSA), and concomitant changes in its conformation were studied using fluorescence and Fourier transform infrared spectroscopic methods. Fluorescence data revealed the presence of one binding site on HSA for cinnamic acid and its hydroxyl derivatives, and their binding constants ( KA) are caffeic acid> p-coumaric acid> cinnamic acid when Cdrug/ CHSA ranging from 1 to 10. The changes of the secondary structure of HSA after interacting with the three drugs are estimated, respectively by combining the curve-fitting results of amid I and amid III bands. The α-helix structure has a decrease of ≈9, 5 and 3% after HSA interacted with caffeic acid, p-coumaric acid and cinnamic acid, respectively. It was found that the hydroxyls substituted on aromatic ring of the drugs play an important role in the changes of protein's secondary structure. Combining the result of fluorescence quenching and the changes of secondary structure of HSA after interaction with the three drugs, the drug-HSA interaction mode was discussed.
Makarska-Bialokoz, Magdalena
2018-03-15
The binding interactions between hemin (Hmi) and bovine serum albumin (BSA) or human hemoglobin (HHb), respectively, have been examined in aqueous solution at pH=7.4, applying UV-vis absorption, as well as steady-state, synchronous and three-dimensional fluorescence spectra techniques. Representative results received for both BSA and HHb intrinsic fluorescence proceeding from the interactions with hemin suggest the formation of stacking non-covalent and non-fluorescent complexes in both the Hmi-BSA and Hmi-HHb systems, with highly possible concurrent formation of a coordinate bond between a group on the protein surface and the metal in Hmi molecule. All the values of calculated parameters, the binding, fluorescence quenching and bimolecular quenching rate constants point to the involvement of static quenching in both the systems studied. The blue shift in the synchronous fluorescence spectra imply the participation of both tryptophan and tyrosine residues in quenching of BSA and HHb intrinsic fluorescence. Depicted outcomes suggest that hemin is supposedly able to influence the physiological functions of BSA and HHb, the most important blood proteins, particularly in case of its overuse. Copyright © 2017 Elsevier B.V. All rights reserved.
Shityakov, Sergey; Salmas, Ramin Ekhteiari; Salvador, Ellaine; Roewer, Norbert; Broscheit, Jens; Förster, Carola
2016-04-01
In this study, we investigated the cytotoxic effects of unmodified α-cyclodextrin (α-CD) and modified cyclodextrins, including trimethyl-β-cyclodextrin (TRIMEB) and hydroxypropyl-β-cyclodextrin (HPβCD), on immortalized murine microvascular endothelial (cEND) cells of the blood-brain barrier (BBB). A CellTiter-Glo viability test, performed on the cEND cells showed significant differences among the different cyclodextrins. After 24 hr of incubation, TRIMEB was the most cytotoxic, and HPβCD was non-toxic. α-CD and TRIMEB exhibited greater cytotoxicity in the Dulbecco's modified Eagle's medium than in heat-inactivated human serum indicating protective properties of the human serum. The predicted dynamic toxicity profiles (Td) for α-CD and TRIMEB indicated higher cytotoxicity for these cyclodextrins compared to the reference compound (dimethylsulfoxide). Molecular dynamics simulation of cholesterol binding to the CDs suggested that not just cholesterol but phospholipids extraction might be involved in the cytotoxicity. Overall, the results demonstrate that HPβCD has the potential to be used as a candidate for drug delivery vector development and signify a correlation between the in vitro cytotoxic effect and cholesterol binding of cyclodextrins.
Yamamura, Y; Nakamura, S; Itoh, S; Hirano, T; Onogawa, T; Yamashita, T; Yamada, Y; Tsujimae, K; Aoyama, M; Kotosai, K; Ogawa, H; Yamashita, H; Kondo, K; Tominaga, M; Tsujimoto, G; Mori, T
1998-12-01
The pharmacological profile and the acute and chronic aquaretic effects of OPC-41061, a novel nonpeptide human arginine vasopressin (AVP) V2-receptor antagonist, were respectively characterized in HeLa cells expressing cloned human AVP receptors and in conscious male rats. OPC-41061 antagonized [3H]-AVP binding to human V2-receptors (Ki = 0.43 +/- 0.06 nM) more potently than AVP (Ki = 0. 78 +/- 0.08 nM) or OPC-31260 (Ki = 9.42 +/- 0.90 nM). OPC-41061 also inhibited [3H]-AVP binding to human V1a-receptors (Ki = 12.3 +/- 0.8 nM) but not to human V1b-receptors, indicating that OPC-41061 was 29 times more selective for V2-receptors than for V1a-receptors. OPC-41061 inhibited cAMP production induced by AVP with no intrinsic agonist activity. In rats, OPC-41061 inhibited [3H]-AVP binding to V1a-receptors (Ki = 325 +/- 41 nM) and V2-receptors (Ki = 1.33 +/- 0. 30 nM), showing higher receptor selectivity (V1a/V2 = 244) than with human receptors. A single oral administration of OPC-41061 in rats clearly produced dose-dependent aquaresis. In treatment by multiple OPC-41061 dosing for 28 days at 1 and 10 mg/kg p.o. in rats, significant aquaretic effects were seen throughout the study period. As the result of aquaresis, hemoconcentration was seen at 4 hr postdosing although, no differences were seen in serum osmolality, sodium, creatinine and urea nitrogen concentrations at 24 hr postdosing. Furthermore, there was no difference in serum AVP concentration, pituitary AVP content or the number and affinity of AVP receptors in the kidney and liver at trough throughout the study period. These results demonstrate that OPC-41061 is a highly potent human AVP V2-receptor antagonist and produces clear aquaresis after single and multiple dosing, suggesting the usefulness in the treatment of various water retaining states.
Otsugu, Masatoshi; Matayoshi, Saaya; Teramoto, Noboru; Nakano, Kazuhiko
2017-01-01
ABSTRACT Streptococcus mutans, a major pathogen of dental caries, is considered one of the causative agents of infective endocarditis (IE). Recently, bacterial DNA encoding 120-kDa cell surface collagen-binding proteins (CBPs) has frequently been detected from S. mutans-positive IE patients. In addition, some of the CBP-positive S. mutans strains lacked a 190-kDa protein antigen (PA), whose absence strengthened the adhesion to and invasion of endothelial cells. The interaction between pathogenic bacteria and serum or plasma is considered an important virulence factor in developing systemic diseases; thus, we decided to analyze the pathogenesis of IE induced by S. mutans strains with different patterns of CBP and PA expression by focusing on the interaction with serum or plasma. CBP-positive (CBP+)/PA-negative (PA−) strains showed prominent aggregation in the presence of human serum or plasma, which was significantly greater than that with CBP+/PA-positive (PA+) and CBP-negative (CBP−)/PA+ strains. Aggregation of CBP+/PA− strains was also observed in the presence of a high concentration of type IV collagen, a major extracellular matrix protein in serum. In addition, aggregation of CBP+/PA− strains was drastically reduced when serum complement was inactivated. Furthermore, an ex vivo adherence model and an in vivo rat model of IE showed that extirpated heart valves infected with CBP+/PA− strains displayed prominent bacterial mass formation, which was not observed following infection with CBP+/PA+ and CBP−/PA+ strains. These results suggest that CBP+/PA− S. mutans strains utilize serum to contribute to their pathogenicity in IE. PMID:28947650
Otsugu, Masatoshi; Nomura, Ryota; Matayoshi, Saaya; Teramoto, Noboru; Nakano, Kazuhiko
2017-12-01
Streptococcus mutans , a major pathogen of dental caries, is considered one of the causative agents of infective endocarditis (IE). Recently, bacterial DNA encoding 120-kDa cell surface collagen-binding proteins (CBPs) has frequently been detected from S. mutans -positive IE patients. In addition, some of the CBP-positive S. mutans strains lacked a 190-kDa protein antigen (PA), whose absence strengthened the adhesion to and invasion of endothelial cells. The interaction between pathogenic bacteria and serum or plasma is considered an important virulence factor in developing systemic diseases; thus, we decided to analyze the pathogenesis of IE induced by S. mutans strains with different patterns of CBP and PA expression by focusing on the interaction with serum or plasma. CBP-positive (CBP + )/PA-negative (PA - ) strains showed prominent aggregation in the presence of human serum or plasma, which was significantly greater than that with CBP + /PA-positive (PA + ) and CBP-negative (CBP - )/PA+ strains. Aggregation of CBP + /PA - strains was also observed in the presence of a high concentration of type IV collagen, a major extracellular matrix protein in serum. In addition, aggregation of CBP + /PA - strains was drastically reduced when serum complement was inactivated. Furthermore, an ex vivo adherence model and an in vivo rat model of IE showed that extirpated heart valves infected with CBP + /PA - strains displayed prominent bacterial mass formation, which was not observed following infection with CBP + /PA + and CBP - /PA + strains. These results suggest that CBP + /PA - S. mutans strains utilize serum to contribute to their pathogenicity in IE. Copyright © 2017 American Society for Microbiology.
Ladwig, Paula M; Barnidge, David R; Willrich, Maria A V
2017-05-01
As therapeutic monoclonal antibodies (mAbs) become more humanized, traditional tryptic peptide approaches used to measure biologics in serum become more challenging since unique clonotypic peptides used for quantifying the mAb may also be found in the normal serum polyclonal background. An alternative approach is to monitor the unique molecular mass of the intact light chain portion of the mAbs using liquid chromatography-mass spectrometry (LC-MS). Distinguishing a therapeutic mAb from a patient's normal polyclonal immunoglobulin (Ig) repertoire is the primary limiting factor when determining the limit of quantitation (LOQ) in serum. The ability to selectively extract subclass specific Igs from serum reduces the polyclonal background in a sample. We present here the development of an LC-MS method to quantify eculizumab in serum. Eculizumab is a complement component 5 (C5) binding mAb that is fully humanized and contains portions of both IgG2 and IgG4 subclasses. Our group developed a method that uses Life Technologies CaptureSelect IgG4 (Hu) affinity matrix. We show here the ability to quantitate eculizumab with a LOQ of 5 mcg/mL by removing the higher abundance IgG1, IgG2, and IgG3 from the polyclonal background, making this approach a simple and efficient procedure. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Ladwig, Paula M.; Barnidge, David R.; Willrich, Maria A. V.
2017-05-01
As therapeutic monoclonal antibodies (mAbs) become more humanized, traditional tryptic peptide approaches used to measure biologics in serum become more challenging since unique clonotypic peptides used for quantifying the mAb may also be found in the normal serum polyclonal background. An alternative approach is to monitor the unique molecular mass of the intact light chain portion of the mAbs using liquid chromatography-mass spectrometry (LC-MS). Distinguishing a therapeutic mAb from a patient's normal polyclonal immunoglobulin (Ig) repertoire is the primary limiting factor when determining the limit of quantitation (LOQ) in serum. The ability to selectively extract subclass specific Igs from serum reduces the polyclonal background in a sample. We present here the development of an LC-MS method to quantify eculizumab in serum. Eculizumab is a complement component 5 (C5) binding mAb that is fully humanized and contains portions of both IgG2 and IgG4 subclasses. Our group developed a method that uses Life Technologies CaptureSelect IgG4 (Hu) affinity matrix. We show here the ability to quantitate eculizumab with a LOQ of 5 mcg/mL by removing the higher abundance IgG1, IgG2, and IgG3 from the polyclonal background, making this approach a simple and efficient procedure.
Ochoa-Martínez, Ángeles C; Ruíz-Vera, Tania; Pruneda-Álvarez, Lucia G; González-Palomo, Ana K; Almendarez-Reyna, Claudia I; Pérez-Vázquez, Francisco J; Pérez-Maldonado, Iván N
2017-01-01
Recent studies indicate that exposure to polycyclic aromatic hydrocarbons (PAHs) is a very important risk factor for the development of cardiovascular diseases (CVDs). Correspondingly, adipocyte-fatty acid binding protein (FABP4, also known as aP2 and AFABP) has been proposed as a new, meaningful and useful biomarker to predict metabolic and cardiovascular diseases. Therefore, the aim of this study was to evaluate serum FABP4 levels in Mexican women exposed to PAHs. Urinary 1-hydroxypyrene ((1-OHP), exposure biomarker for PAHs) levels were quantified using a high-performance liquid chromatography (HPLC) technique, and serum FABP4 concentrations were analyzed using a commercially available ELISA kit. The mean urinary 1-OHP level found in women participating in this study was 1.30 ± 1.10 μmol/mol creatinine (2.45 ± 2.10 μg/g creatinine). Regarding serum FABP4 concentrations, the levels ranged from 3.80 to 62.5 ng/mL in the assessed population. Moreover, a significant association (p < 0.001) was found between urinary 1-OHP levels and serum FABP4 concentrations in women after adjusting for potential confounding variables. The presented data in this study can be considered only as a starting point for further studies. Then, in order to elucidate whether FABP4 represents a risk factor for CVD disease in humans exposed to air contaminants (such as PAHs), large epidemiological studies are necessary.
Binding of immunoglobulins and immune complexes to cartilage derived extracts.
Alomari, W R; Archer, J R; Brocklehurst, R; Currey, H L
1983-01-01
Cartilage extracts with affinity for heat aggregated immunoglobulins were prepared from human articular and bovine nasal cartilage. These extracts, containing predominantly collagen, also bound both to immune complexes (IC) prepared in vitro and to immunoglobulins from sera of many patients with rheumatoid arthritis (RA). Cryoprecipitation of rheumatoid sera removed material reacting with the extract and density gradient fractionation of a positive serum showed correlation between binding to the extract and to C1q. These results indicate that the binding materials in rheumatoid sera were likely to be IC. We suggest that some assays which apparently demonstrate anti-collagen autoantibodies in fact measure IC. These findings also have implications for models of the pathogenesis of RA. PMID:6606513
Lockitch, G; Godolphin, W; Pendray, M R; Riddell, D; Quigley, G
1983-02-01
One hundred twenty-seven newborn infants requiring parenteral nutrition were randomly assigned to receive differing amounts of zinc (40 to 400 micrograms/kg/day) and copper (20 or 40 micrograms/kg/day) supplementation within five birth weight groups (600 to 2,500 gm). The serum zinc concentration remained relatively constant in the group receiving the most zinc supplementation after two weeks of therapy, but declined sharply in the groups receiving less supplementation. No effect of increased copper intake was noted on ceruloplasmin values, but a difference in serum copper concentrations was noted at two weeks. No correlation was noted between serum zinc and copper values or among those for serum zinc, retinol-binding protein, and prealbumin. Reference ranges were defined for serum zinc, copper, retinol-binding protein, prealbumin, and ceruloplasmin in the preterm infant.
Araki, Shouta; Mezawa, Masaru; Sasaki, Yoko; Yang, Li; Li, Zhengyang; Takai, Hideki; Nakayama, Youhei; Ogata, Yorimasa
2009-03-01
Parathyroid hormone (PTH) regulates serum calcium and inorganic phosphate levels through its actions on kidney and bone. Bone sialoprotein (BSP) is an early marker of osteoblast differentiation and bone metabolism. We here report that two cAMP response elements (CRE) in the human BSP gene promoter are target of PTH. In human osteoblast-like Saos2 cells, PTH (human 1-34 PTH, 10 nM) increased BSP mRNA and protein levels at 3 h. From transient transfection assays, 2- to 2.5-fold increase in transcription by PTH was observed at 3 and 6 h in -184, -211, -428, -868, and -927 luciferase constructs that included the human BSP gene promoter. Effect of PTH was abrogated by 2 bp mutations in either the CRE1 (-79 to -72) or CRE2 (-674 to -667). Luciferase activities induced by PTH were blocked by protein kinase A inhibitor H89 and tyrosine kinase inhibitor herbimycin A. Gel shift analyses showed that PTH increased binding of nuclear proteins to the CRE1 and CRE2 elements. The CRE1-protein and CRE2-protein complexes were disrupted by CRE binding protein 1 (CREB1) antibodies and supershifted by phospho-CREB1 antibody. ChIP assays detected binding of CREB1 and phospho-CREB1 to a chromatin fragment containing CRE1 and CRE2, and increased binding of phospho-CREB1 to the both sites. These studies demonstrate that PTH stimulates human BSP gene transcription by targeting the two CREs in the promoter of the human BSP gene.
CXCL4 is a novel nickel-binding protein and augments nickel allergy.
Kuroishi, T; Bando, K; Tanaka, Y; Shishido, K; Kinbara, M; Ogawa, T; Muramoto, K; Endo, Y; Sugawara, S
2017-08-01
Nickel (Ni) is the most frequent metal allergen and induces a TH 1 -dependent type-IV allergy. Although Ni 2+ is considered to bind to endogenous proteins, it currently remains unclear whether these Ni-binding proteins are involved in Ni allergy in vivo. We previously reported the adjuvant effects of lipopolysaccharide (LPS) in a Ni allergy mouse model. As LPS induces a number of inflammatory mediators, we hypothesized that Ni-binding protein(s) are also induced by LPS. The objective of this study was to purify and identify Ni-binding protein(s) from serum taken from LPS-injected mice (referred as LPS serum) and examined the augmenting effects of these Ni-binding protein(s) on Ni allergy in an in vivo model. BALB/cA mice were sensitized with an i.p. injection of NiCl 2 and LPS. Ten days after sensitization, mice were challenged with NiCl 2 by an i.d. injection into ear pinnae. Ni-binding protein(s) were purified by Ni-affinity column chromatography and gel filtration. Lipopolysaccharide serum, but not serum taken from saline-injected mice, augmented ear swelling induced by Ni-allergic inflammation. Ni-binding, but not non-binding fraction, purified from LPS serum augmented Ni-allergic inflammation. Mass spectrometry and Western blotting detected CXCL4 in the active fraction. A batch analysis with Ni-sepharose and a surface plasmon resonance analysis revealed direct binding between CXCL4 and Ni 2+ . Recombinant CXCL4 augmented Ni-allergic inflammation and exerted adjuvant effects at the sensitization phase. These results indicate that CXCL4 is a novel Ni-binding protein that augments Ni allergy at the elicitation and sensitization phases. This is the first study to demonstrate that the Ni-binding protein augments Ni allergy in vivo. © 2017 John Wiley & Sons Ltd.
2004-07-09
reaches up to 200-400 µg/ml at term, far exceeding the concentration of human chorionic gonadotropin (hCG) and alpha fetoprotein [42, 43]. Low...reach up to 200-400 µg/ml at term, far exceeding the concentration of human chorionic gonadotropin and alpha fetoprotein [2]. Abnormally low levels...Human placental lactogen, pregnancy-specific beta-1-glycoprotein and alpha - fetoprotein in serum in threatened abortion. Int J Gynaecol Obstet, 1983. 21
Martínez, Valeria R; Aguirre, María V; Todaro, Juan S; Piro, Oscar E; Echeverría, Gustavo A; Ferrer, Evelina G; Williams, Patricia A M
2018-04-01
Azilsartan is the eighth approved member of angiotensin II receptor blockers for hypertension treatment. Considering that some drugs have additional effects when administered, we studied its effects and mechanisms of action on a human lung cancer cell line A549. We have also modified the structure of the drug by complexation with Zn(II) cation and assayed the anticancer effect. The crystal structure of the new binuclear Zn(II) complex, for short [Zn 2 (azil) 2 (H 2 O) 4 ]·2H 2 O (ZnAzil), was determined by X-ray diffraction methods. The zinc ions are bridged by azilsartan ligands through their carboxylate oxygen and oxadiazol nitrogen atoms. The compounds were examined for their cytotoxic effects against human lung fibroblast (MRC5) and human lung cancer (A549) cell lines. Azilsartan displayed low cytotoxic effects at 150 μM concentrations in A549 human lung cancer cells but the higher effect measured for the Zn complex suggested that this compound may act as an anticancer agent. An apoptotic oxidative stress mechanism of action via the mitochondrial-dependent intrinsic pathway has been determined. Besides, the compounds exerted weak cytotoxic effects in the normal lung related cell line MRC5. Binding constants of the complex formed between each compound and bovine serum albumin (BSA) are in the intermediate range, hence suggesting that azilsartan and ZnAzil could be bonded and transported by BSA. Copyright © 2018 Elsevier Ltd. All rights reserved.
Al cation induces aggregation of serum proteins.
Chanphai, P; Kreplak, L; Tajmir-Riahi, H A
2017-07-15
Al cation is known to induce protein fibrillation and causes several neurodegenerative disorders. We report the spectroscopic, thermodynamic analysis and AFM imaging for the Al cation binding process with human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. Hydrophobicity played a major role in Al-protein interactions with more hydrophobic b-LG forming stronger Al-protein complexes. Thermodynamic parameters ΔS, ΔH and ΔG showed Al-protein bindings occur via hydrophobic and H-bonding contacts for b-LG, while van der Waals and H-bonding interactions prevail in HSA and BSA adducts. AFM clearly indicated that aluminum cations are able to force BSA and b-LG into larger or more robust aggregates than HSA, with HSA 4±0.2 (SE, n=801) proteins per aggregate, for BSA 17±2 (SE, n=148), and for b-LG 12±3 (SE, n=151). Thioflavin T test showed no major protein fibrillation in the presence of Al cation. Al complexation induced major alterations of protein conformations with the order of perturbations b-LG>BSA>HSA. Copyright © 2017 Elsevier B.V. All rights reserved.
Wojtczak, A; Luft, J R; Cody, V
1993-03-25
The crystal structure of human transthyretin (TTR) complexed with milrinone (2-methyl-5-cyano-3,4'-bipyridin-6(1H)-one), a positive inotropic cardiac agent, has been refined to R = 17.4% for 8-1.9-A resolution data. This report provides the first detailed description of protein interactions for an inotropic bipyridine agent which is an effective thyroid hormone binding competitor to transthyretin. Milrinone is bound along the 2-fold axis in the binding site with its substituted pyridone ring located deep within the channel of the two identical binding domains of the TTR tetramer. In this orientation the 5-cyano group occupies the same site as the 3'-iodine in the TTR complex with 3,3'-diiodothyronine (Wojtczak, A., Luft, J., and Cody, V. (1992) J. Biol. Chem. 267, 353-357), which is 3.5 A deeper in the channel than thyroxine (Blake, C. C. F., and Oately, S. J., (1977) Nature 268, 115-120). These structural results confirm computer modeling studies of milrinone structural homology with thyroxine and its TTR binding interactions and explain the effectiveness of milrinone competition for thyroxine binding to TTR. To understand the weaker binding affinity of the parent inotropic drug, amrinone (5-amino-3,4'-bipyridin-6(1H)-one), modeling studies of its TTR binding were carried out which indicate that the 5-amino group cannot participate in strong interactions with TTR and the lack of the 2-methyl further weakens amrinone binding.
Albillos, Agustín; de-la-Hera, Antonio; Alvarez-Mon, Melchor
2004-05-15
Serum lipopolysaccharide-binding protein is increased in a subset of non-infected ascitic cirrhotic patients, a finding previously related to bacterial passage from the gut to the circulation without overt infection. We prospectively analysed the risk factors associated with a first episode of severe bacterial infection in 84 ascitic cirrhotics, followed up for a median of 46 weeks. The cumulative probability of such infection in patients with raised and normal lipopolysaccharide-binding protein was 32.4% and 8.0% (p=0.004), respectively. Increased lipopolysaccharide-binding protein was the only factor independently associated with severe bacterial infection in a multivariate analysis (relative risk 4.49, 95% CI 1.42-14.1). Monitoring of serum lipopolysaccharide-binding protein could, therefore, help to target cirrhotic patients with ascites for antibiotic prophylaxis.
Pharmacokinetics of warfarin in rats: role of serum protein binding and tissue distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, W.K.
The purpose of this study was to explore the role of serum protein binding and tissue distribution in the non-linear pharmacokinetics of warfarin in rats. The first phase of the research was an attempt to elucidate the causes of intersubject differences in serum protein binding of warfarin in rats. It was found that the distribution of S-warfarin between blood and liver, kidneys, muscle, or fatty tissue was non-linear. Based on the tissue distribution data obtained, a physiologically-based pharmacokinetic model was developed to describe the time course of S-warfarin concentrations in the serum and tissues of rats. The proposed model wasmore » able to display the dose-dependent pharmacokinetics of warfarin in rats. Namely a lower clearance and a smaller apparent volume of distribution with increasing dose, which appear to be due to the presence of capacity-limited, high-affinity binding sites for warfarin in various tissues. To determine if the binding of warfarin to the high-affinity binding sites in the liver of rats is reversible, concentrations of S-warfarin in the liver and serum of rats were monitored for a very long time after an intravenous injection of a 1 mg/kg dose. In another study in rats, non-radioactive warfarin was found to be able to displace tissue-bound C/sup 14/-warfarin which was administered about 200 hours before the i.v. injection of the non-radioactive warfarin, showing that the binding of warfarin to the high-affinity binding sites in the body is persistent and reversible.« less
Interaction of chlorogenic acids and quinides from coffee with human serum albumin.
Sinisi, Valentina; Forzato, Cristina; Cefarin, Nicola; Navarini, Luciano; Berti, Federico
2015-02-01
Chlorogenic acids and their derivatives are abundant in coffee and their composition changes between coffee species. Human serum albumin (HSA) interacts with this family of compounds with high affinity. We have studied by fluorescence spectroscopy the specific binding of HSA with eight compounds that belong to the coffee polyphenols family, four acids (caffeic acid, ferulic acid, 5-O-caffeoyl quinic acid, and 3,4-dimethoxycinnamic acid) and four lactones (3,4-O-dicaffeoyl-1,5-γ-quinide, 3-O-[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide, 3,4-O-bis[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide, and 1,3,4-O-tris[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide), finding dissociation constants of the albumin-chlorogenic acids and albumin-quinides complexes in the micromolar range, between 2 and 30μM. Such values are comparable with those of the most powerful binders of albumin, and more favourable than the values obtained for the majority of drugs. Interestingly in the case of 3,4-O-dicaffeoyl-1,5-γ-quinide, we have observed the entrance of two ligand molecules in the same binding site, leading up to a first dissociation constant even in the hundred nanomolar range, which is to our knowledge the highest affinity ever observed for HSA and its ligands. The displacement of warfarin, a reference drug binding to HSA, by the quinide has also been demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zorzi, Alessandro; Middendorp, Simon J.; Wilbs, Jonas; Deyle, Kaycie; Heinis, Christian
2017-07-01
The rapid renal clearance of peptides in vivo limits this attractive platform for the treatment of a broad range of diseases that require prolonged drug half-lives. An intriguing approach for extending peptide circulation times works through a `piggy-back' strategy in which peptides bind via a ligand to the long-lived serum protein albumin. In accordance with this strategy, we developed an easily synthesized albumin-binding ligand based on a peptide-fatty acid chimera that has a high affinity for human albumin (Kd=39 nM). This ligand prolongs the elimination half-life of cyclic peptides in rats 25-fold to over seven hours. Conjugation to a peptide factor XII inhibitor developed for anti-thrombotic therapy extends the half-life from 13 minutes to over five hours, inhibiting coagulation for eight hours in rabbits. This high-affinity albumin ligand could potentially extend the half-life of peptides in human to several days, substantially broadening the application range of peptides as therapeutics.
Yadegari, Hamideh; Driesen, Julia; Kirfel, Jutta; Neuhaus, Thomas; Steiner, Susanne; Esch, Christiane; Bedorf, Jörg; Hertfelder, Hans-Jörg; Fischer, Hans-Peter
2014-01-01
Aims The ATZ11 antibody has been well established for the identification of α1-anti-trypsin (AAT) molecule type PiZ (Z-AAT) in blood samples and liver tissue. In this study, we systematically analyzed the antibody for additional binding sites in human tissue. Methods and Results Ultrastructural ATZ11 binding was investigated immunoelectron microscopically in human umbilical vein endothelial cells (HUVECs) and in platelets of a healthy individual. Human embryonic kidney (HEK293) cells were transiently transfected with Von Willebrand factor (VWF) and analyzed immunocytochemically using confocal microscopy and SDS-PAGE electrophoresis followed by western blotting (WB). Platelets and serum samples of VWF-competent and VWF-deficient patients were investigated using native PAGE and SDS-PAGE electrophoresis followed by WB. The specificity of the ATZ11 reaction was tested immunohistochemically by extensive antibody-mediated blocking of AAT- and VWF-antigens. ATZ11-positive epitopes could be detected in Weibel-Palade bodies (WPBs) of HUVECs and α-granules of platelets. ATZ11 stains pseudo-WBP containing recombinant wild-type VWF (rVWF-WT) in HEK293 cells. In SDS-PAGE electrophoresis followed by WB, anti-VWF and ATZ11 both identified rVWF-WT. However, neither rVWF-WT-multimers, human VWF-multimers, nor serum proteins of VWF-deficient patients were detected using ATZ11 by WB, whereas anti-VWF antibody (anti-VWF) detected rVWF-WT-multimers as well as human VWF-multimers. In human tissue specimens, AAT-antigen blockade using anti-AAT antibody abolished ATZ11 staining of Z-AAT in a heterozygous AAT-deficient patient, whereas VWF-antigen blockade using anti-VWF abolished ATZ11 staining of endothelial cells and megakaryocytes. Conclusions ATZ11 reacts with cellular bound and denatured rVWF-WT and human VWF as shown using immunocytochemistry and subsequent confocal imaging, immunoelectron microscopy, SDS-PAGE and WB, and immunohistology. These immunoreactions are independent of the binding of Z-AAT-molecules and non-Z-AAT complexes. PMID:24646657
Pawar, Suma K; Jaldappagari, Seetharamappa
2017-09-01
In the present work, the mechanism of the interaction between a β1 receptor blocker, metoprolol succinate (MS) and human serum albumin (HSA) under physiological conditions was investigated by spectroscopic techniques, namely fluorescence, Fourier transform infra-red spectroscopy (FT-IR), fluorescence lifetime decay and circular dichroism (CD) as well as molecular docking and cyclic voltammetric methods. The fluorescence and lifetime decay results indicated that MS quenched the intrinsic intensity of HSA through a static quenching mechanism. The Stern-Volmer quenching constants and binding constants for the MS-HSA system at 293, 298 and 303 K were obtained from the Stern-Volmer plot. Thermodynamic parameters for the interaction of MS with HSA were evaluated; negative values of entropy change (ΔG°) indicated the spontaneity of the MS and HSA interaction. Thermodynamic parameters such as negative ΔH° and positive ΔS° values revealed that hydrogen bonding and hydrophobic forces played a major role in MS-HSA interaction and stabilized the complex. The binding site for MS in HSA was identified by competitive site probe experiments and molecular docking studies. These results indicated that MS was bound to HSA at Sudlow's site I. The efficiency of energy transfer and the distance between the donor (HSA) and acceptor (MS) was calculated based on the theory of Fosters' resonance energy transfer (FRET). Three-dimensional fluorescence spectra and CD results revealed that the binding of MS to HSA resulted in an obvious change in the conformation of HSA. Cyclic voltammograms of the MS-HSA system also confirmed the interaction between MS and HSA. Furthermore, the effects of metal ions on the binding of MS to HSA were also studied. Copyright © 2017 John Wiley & Sons, Ltd.
Hassan, Faizule; Lossie, Sarah L; Kasik, Ellen P; Channon, Audrey M; Ni, Shuisong; Kennedy, Michael A
2018-01-01
The HGMA1 architectural transcription factor is highly overexpressed in many human cancers. Because HMGA1 is a hub for regulation of many oncogenes, its overexpression in cancer plays a central role in cancer progression and therefore HMGA1 is gaining increasing attention as a target for development of therapeutic approaches to suppress either its expression or action in cancer cells. We have developed the strategy of introducing decoy hyper binding sites for HMGA1 into the nucleus of cancer cells with the goal of competetively sequestering overexpressed HMGA1 and thus suppressing its oncogenic action. Towards achieving this goal, we have introduced an HMGA1 decoy hyper binding site composed of six copies of a high affinity HMGA1 binding site into the genome of the replication defective adenovirus serotype 5 genome and shown that the engineered virus effectively reduces the viability of human pancreatic and cancer cells. Here we report the first pre-clinical measures of toxicity and biodistribution of the engineered virus in C57BL/6J Black 6 mice. The immune response to exposure of the engineered virus was determined by assaying the serum levels of key cytokines, IL-6 and TNF-α. Toxicity due to exposure to the virus was determined by measuring the serum levels of the liver enzymes aspartate aminotransferase and alanine aminotransferase. Biodistribution was measured following direct injection into the pancreas or liver by quantifying viral loads in the pancreas, liver, spleen and brain.
NASA Astrophysics Data System (ADS)
Lammers, Ivonne; Lhiaubet-Vallet, Virginie; Ariese, Freek; Miranda, Miguel A.; Gooijer, Cees
2013-03-01
The interaction of the enantiomers of the non-steroidal anti-inflammatory drug naproxen (NPX) with human serum albumin (HSA) has been investigated using fluorescence and phosphorescence spectroscopy in the steady-state and time-resolved mode. The absorption, fluorescence excitation, and fluorescence emission spectra of (S)-NPX and (R)-NPX differ in shape in the presence of HSA, indicating that these enantiomers experience a different environment when bound. In solutions containing 0.2 M KI, complexation with HSA results in a strongly increased NPX fluorescence intensity and a decreased NPX phosphorescence intensity due to the inhibition of the collisional interaction with the heavy atom iodide. Fluorescence intensity curves obtained upon selective excitation of NPX show 8-fold different slopes for bound and free NPX. No significant difference in the binding constants of (3.8 ± 0.6) × 105 M-1 for (S)-NPX and (3.9 ± 0.6) × 105 M-1 for (R)-NPX was found. Furthermore, the addition of NPX quenches the phosphorescence of the single tryptophan in HSA (Trp-214) based on Dexter energy transfer. The short-range nature of this mechanism explains the upward curvature of the Stern-Volmer plot observed for HSA: At low concentrations NPX binds to HSA at a distance from Trp-214 and no quenching occurs, whereas at high NPX concentrations the phosphorescence intensity decreases due to dynamic quenching by NPX diffusing into site I from the bulk solution. The dynamic quenching observed in the Stern-Volmer plots based on the longest phosphorescence lifetime indicates an overall binding constant to HSA of about 3 × 105 M-1 for both enantiomers.
Furlanetto, Richard W.; Underwood, Louis E.; Van Wyk, Judson J.; D'Ercole, A. Joseph
1977-01-01
The development of a radioimmunoassay for somatomedin-C has for the first time made it possible to discriminate between serum concentrations of a single peptide or closely related group of peptides and the net somatomedin activity measured by less specific bioassay and radioreceptor techniques. Antibodies to human somatomedin-C were raised in rabbits using a somatomedin-C ovalbumin complex as the antigen. A variety of peptide hormones at concentrations up to 1 μM are not recognized by the antibody. Insulin at concentrations >0.1 μM cross reacts in a non-parallel fashion; purified somatomedin-A is only 3% as active as somatomedin-C; and radiolabeled cloned rat liver multiplication stimulating activity does not bind to the antibody. Immunoreactive somatomedin-C can also be quantitated in the sera of a variety of subhuman species. Unusual assay kinetics, which are manifest when reactants are incubated under classic “equilibrium” assay conditions, appear to result from the failure of 125I-somatomedin-C to readily equilibrate with the somatomedin-C serum binding protein complex. It is, therefore, necessary to use nonequilibrium assay conditions to quantitate somatomedin-C in serum. With this assay it is possible to detect somatomedin-C in normal subjects using as little as 0.25 μl of unextracted serum. Serum somatomedin-C concentrations in normal subjects were lowest in cord blood and rose rapidly during the first 4 yr of life to near adult levels. In 23 normal adult volunteers, the mean serum somatomedin-C concentration was 1.50±0.10 U/ml (SEM) when compared to a pooled adult serum standard. 19 children with hypopituitary dwarfism had concentrations below 0.20 U/ml. 17 of these were below 0.1 U/ml, the lower limit of sensitivity of the assay. The mean concentration in 14 adults with active acromegaly was 6.28±0.37 U/ml (SEM), five times greater than the normal volunteers. Significant increases in serum somatomedin-C concentrations were observed in 8 of 10 hypopituitary children within 72 h after the parenteral administration of human growth hormone. Three patients with Cushing's disease had elevated serum somatomedin-C concentrations (2.61±0.14 U/ml [SEM]). Three patients with hyperprolactinemia had normal concentrations (1.74±0.11 U/ml [SEM]). The important new discovery brought to light by quantitation of immunoassayable somatomedin in patient sera is that all previously used assays detect, in addition to somatomedin-C, serum substances that are not under as stringent growth hormone control. PMID:893668
Wang, Rui; Hu, Xing; Pan, Junhui; Gong, Deming; Zhang, Guowen
2018-05-23
Quinoline yellow (QY), a widely used synthetic colorant in food industry, has caused extensive concern due to its potential harm to human health. In the present work, the interaction between food colourant quinoline yellow (QY) and human serum albumin (HSA) was characterized by multispectroscopic methods, chemometrics algorithm and molecular modeling studies. The concentration profiles and the pure spectra for the components (QY, HSA and QY-HSA complex) obtained through analyzing the expanded UV-vis absorption data matrix by multivariate curve resolution-alternating least squares confirmed the QY-HSA interaction process. QY quenched the fluorescence of HSA due to the formation of QY-HSA complex and moderate affinity stabilized the complex. Hydrophobic forces and hydrogen bonding played major roles in the binding of QY to HSA. Site-specific marker-induced displacement results suggested that QY bound to the subdomain IIA of HSA which was corroborated by the molecular docking results. Decreases of HSA surface hydrophobicity and free sulfhydryl groups content indicated that QY caused a contraction of the peptide strand in HSA and hided the hydrophobic patches of the protein. The analysis of UV-vis absorption, circular dichroism and three-dimensional fluorescence spectroscopy found that QY led to the microenvironmental perturbations around the fluorophores and secondary structure changes of HSA. This work showed that QY could bind to HSA and affect the structural and functional properties of this protein, which provided new insights into the binding mechanism of QY with HSA and comprehensive understanding for the toxicity of QY in biological process. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Chen, Tingting; Hedman, Lea; Mattila, Petri S.; Jartti, Laura; Jartti, Tuomas; Ruuskanen, Olli; Söderlund-Venermo, Maria; Hedman, Klaus
2012-01-01
Biotin is an essential vitamin that binds streptavidin or avidin with high affinity and specificity. As biotin is a small molecule that can be linked to proteins without affecting their biological activity, biotinylation is applied widely in biochemical assays. In our laboratory, IgM enzyme immuno assays (EIAs) of µ-capture format have been set up against many viruses, using as antigen biotinylated virus like particles (VLPs) detected by horseradish peroxidase-conjugated streptavidin. We recently encountered one serum sample reacting with the biotinylated VLP but not with the unbiotinylated one, suggesting in human sera the occurrence of biotin-reactive antibodies. In the present study, we search the general population (612 serum samples from adults and 678 from children) for IgM antibodies reactive with biotin and develop an indirect EIA for quantification of their levels and assessment of their seroprevalence. These IgM antibodies were present in 3% adults regardless of age, but were rarely found in children. The adverse effects of the biotin IgM on biotinylation-based immunoassays were assessed, including four inhouse and one commercial virus IgM EIAs, showing that biotin IgM do cause false positivities. The biotin can not bind IgM and streptavidin or avidin simultaneously, suggesting that these biotin-interactive compounds compete for the common binding site. In competitive inhibition assays, the affinities of biotin IgM antibodies ranged from 2.1×10−3 to 1.7×10−4 mol/L. This is the first report on biotin antibodies found in humans, providing new information on biotinylation-based immunoassays as well as new insights into the biomedical effects of vitamins. PMID:22879954
NASA Astrophysics Data System (ADS)
Guo, Xingjia; Yao, Jie; Liu, Xuehui; Wang, Hongyan; Zhang, Lizhi; Xu, Liping; Hao, Aijun
2018-06-01
Eu3+ doped LaPO4 fluorescent nanorods (LaPO4:Eu) was successfully fabricated by a hydrothermal process. The obtained LaPO4:Eu nanorods under the optimal conditions were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD) technique, Fourier transform infrared (FTIR), UV-vis absorption and fluorescence spectroscopy. The nanorods with a length of 50-100 nm and a diameter of about 10 nm, can emit strong red fluorescence upon excitation at 241 nm. The FTIR result confirmed that there are lots of phosphate groups on the surfaces of nanorods. In order to better understand the physiological behavior of nanorods in human body, multiple spectroscopic methods were used to study the interaction between the LaPO4:Eu nanorods and human serum albumin (HSA) in the simulated physiological conditions. The results indicated that the nanorods can effectively quench the intrinsic fluorescence of HSA through a dynamic quenching mode with the association constants of the order of 103 L mol-1. The values of the thermodynamic parameters suggested that the binding of the nanorods to HSA was a spontaneous process and van der Waals forces and hydrogen bonds played a predominant role. The displacement experiments verified that the binding site of nanorods on HSA was mainly located in the hydrophobic pocket of subdomain IIA (site I) of HSA. The binding distance between nanorods and HSA was calculated to be 4.2 nm according to the theory of Förster non-radiation energy transfer. The analysis of synchronous fluorescence, three-dimensional fluorescence (3D) and circular dichroism (CD) spectra indicated that there the addition of LaPO4:Eu nanorods did not caused significant alterations in conformation of HSA secondary structure and the polarity around the amino acid residues.
Nara, P L; Smit, L; Dunlop, N; Hatch, W; Merges, M; Waters, D; Kelliher, J; Gallo, R C; Fischinger, P J; Goudsmit, J
1990-01-01
Emergence in two chimpanzees of human immunodeficiency virus type 1 (HIV-1) IIIB variants resistant to neutralization by the preexisting antibody is described. Viruses isolated from the HIV-1 IIIB gp120-vaccinated and -challenged animal were more resistant to neutralization by the chimpanzee's own serum than viruses isolated from the naive infected animal, indicating immune pressure as the selective mechanism. However, all reisolated viruses were 16- to 256-fold more neutralization resistant than the inoculum virus to antibodies binding to the third variable domain (V3) of the HIV-1 external envelope. Early chimpanzee serum samples that neutralized the inoculum strain but not the reisolated viruses were found to bind an HIV-1 IIIB common nonapeptide (IQRGPGRAF) derived from the gp120 isolate-specific V3 domain shown to induce isolate-specific neutralization in other animals. Amplification of the V3 coding sequence by polymerase chain reaction and subsequent sequence analysis of the neutralization-resistant variants obtained from in vivo-infected animals indicated that early resistance to neutralization by an HIV-1 IIIB monoclonal antibody (0.5 beta) was conferred by changes outside the direct binding site for the selective neutralizing antibody. The reisolated neutralization-resistant isolates consisted of the lower-replication-competent virus subpopulations of the HIV-1 IIIB stock, as confirmed by biological and sequence analyses. In vitro passage of the HIV-1 IIIB stock through chimpanzee and human peripheral blood mononuclear cell cultures void of HIV-specific antibody resulted in homogenic amplification of the more-replication-competent subpopulation preexisting in the original viral stock, suggesting a role for the immune system in suppressing the more-replication-competent viruses. Images PMID:2370681
NASA Astrophysics Data System (ADS)
Vijayabharathi, R.; Sathyadevi, P.; Krishnamoorthy, P.; Senthilraja, D.; Brunthadevi, P.; Sathyabama, S.; Priyadarisini, V. Brindha
2012-04-01
Resistomycin, a secondary metabolite produced by Streptomyces aurantiacus AAA5. The binding interaction of resistomycin with calf thymus DNA (CT DNA) and bovine serum albumin (BSA) was investigated by spectrophotometry, spectrofluorimetry, circular dichroism (CD) and synchronous fluorescence techniques under physiological conditions in vitro. Absorption spectral studies along with the fluorescence competition with ethidium bromide measurements and circular dichroism clearly suggest that the resistomycin bind with CT DNA relatively strong via groove binding. BSA interaction results revealed that the drug was found to quench the fluorescence intensity of the protein through a static quenching mechanism. The number of binding sites 'n' and apparent binding constant 'K' calculated according to the Scatchard equation exhibit a good binding property to bovine serum albumin protein. In addition, the results observed from synchronous fluorescence measurements clearly demonstrate the occurrence of conformational changes of BSA upon addition of the test compound.
In vivo and in vitro binding of fatty acids to genetic variants of human serum albumin.
Kragh-Hansen, U; Nielsen, H; Pedersen, A O
1995-01-01
The effect of genetic variation on the fatty-acid binding properties of human serum albumin was studied by two methods involving the use of sequenced albumin variants isolated from bisalbuminaemic persons. First, the amount of total fatty acid and of several individuals fatty acids bound to eighteen different variants and to their normal counterpart (Alb A) were determined by a gas-chromatographic micromethod. Pronounced effects on total fatty acid binding were found for the glycosylated variants Alb Redhill (modified in domain II) and Alb Casebrook (domain III) in which cases a 1.7- and 8.6-fold increment, respectively, was found. By contrast, Alb Malm0 (glycosylated in domain I) carried the same amount of fatty acid as Alb A. The fatty acid loads on three chain-termination variants were normal. Finally, eight albumins with single amino-acid substitutions bound normal amounts of fatty acid, whereas one bound increased (1.7-fold) and three albumins bound diminished amounts (0.5-0.6-fold). Information on nineteen individual fatty acids was also obtained. It was possible, based on the type of changes in their relative amounts, to group the fatty acids as follows: (a) = C6:0 - C14:0, (b) = C15:0 - C18:0, (c) = C16:1 - C18:1, and (d) a group composed of essential and conditionally essential fatty acids. For nine variants, in most cases modified in domain III, large changes in one or more of these groups were observed. The changes were not related to any changes in total fatty acid load. Second, the binding of laurate, as a representative of the group (a) fatty acids, to delipidated albumin preparations was studied at pH 7.4 by a kinetic dialysis technique. The first stoichiometric association constant for binding to Alb Redhill (0.7-fold) and Alb Casebrook (0.6-fold) was diminished as compared with binding to their corresponding Alb A, whereas binding to one chain-termination variant and three single amino-acid substitutions were all unaffected by the mutation.
Su, Zi-Fen; He, Jiang; Rusckowski, Mary; Hnatowich, Donald J
2003-02-01
The level of alpha(V)beta(3) integrins on endothelial cells is elevated in angiogenesis. The high binding specificity to alpha(V)beta(3) integrins of peptides containing Arg-Gly-Asp (RGD) residues suggests that the radiolabeled RGD peptides may be useful as tumor specific imaging agents. In this research, cyclised peptides containing Arg-Gly-Asp (RGD) and Arg-Gly-Glu (RGE, as control) residues were conjugated with HYNIC and labeled with (99m)Tc. The goal was to evaluate the influence of co-ligand, either tricine or ethylenediamine-N,N'-diacetic acid (EDDA) on protein and integrin binding and on cellular uptake in culture. The n-octanol/water partition coefficient, binding to bovine serum albumin (BSA) and human umbilical vein endothelial (HUVE) cells, and cell lysate distributions of the radiolabeled peptides were evaluated. The co-ligands had a significant effect on the labeling efficiency of the HYNIC conjugates and on certain properties of the (99m)Tc complexes. The labeling efficiency with tricine was 10 fold higher and BSA binding was over 8 fold greater compared to EDDA. Both RGD labels showed higher (6 to 28 fold) binding to HUVE cells than that of the RGE labels, indicating binding specificity. After cell-lysis, only a small percentage of the total RGD label that accumulated in the cells was found bound to cellular proteins (9% of RGD/tricine and 5% of RGD/EDDA), implying that over 90% of the radiolabeled peptides were internalized for both radiolabeled RGDs. The number of the RGD molecules bound to proteins was estimated to be approximately three per cell, suggesting that only a small number of alpha(V)beta(3) integrin proteins are expressed on the cells. Apart from the differences in radiolabeling, the only important effect of substituting EDDA for tricine as co-ligand on the HYNIC-peptides was the lower degree of serum protein binding. In spite of the lower serum protein binding potential, in vivo tumor accumulation of the RGD/EDDA may not be improved compared to RGD/tricine since quantitation of the cell binding results suggests that the number of alpha(V)beta(3) integrin proteins per cell might be limited.
NASA Astrophysics Data System (ADS)
Sattar, Zohreh; Iranfar, Hediye; Asoodeh, Ahmad; Saberi, Mohammad Reza; Mazhari, Mahboobeh; Chamani, Jamshidkhan
2012-11-01
Human serum albumin (HSA) and holo transferrin (TF) are two serum carrier proteins that are able to interact with each other, thereby altering their binding behavior toward their ligands. During the course of this study, the interaction between HSA-PPIX and TF, in the presence and absence of lomefloxacin (LMF), was for the first time investigated using different spectroscopic and molecular modeling techniques. Fluorescence spectroscopy experiments were performed in order to study conformational changes of proteins. The RLS technique was utilized to investigate the effect of LMF on J-aggregation of PPIX, which is the first report of its kind. Our findings present clear-cut evidence for the alteration of interactions between HSA and TF in the presence of PPIX and changes in drug-binding to HSA and HSA-PPIX complex upon interaction with TF. Moreover, molecular modeling studies suggested that the binding site for LMF became switched in the presence of PPIX, and that LMF bound to the site IIA of HSA. The obtained results should give new insight into research in this field and may cast some light on the dynamics of drugs in biological systems.
Association studies to transporting proteins of fac-ReI(CO)3(pterin)(H2O) complex.
Ragone, Fabricio; Saavedra, Héctor H Martínez; García, Pablo F; Wolcan, Ezequiel; Argüello, Gerardo A; Ruiz, Gustavo T
2017-01-01
A new synthetic route to acquire the water soluble complex fac-Re I (CO) 3 (pterin)(H 2 O) was carried out in aqueous solution. The complex has been obtained with success via the fac-[Re I (CO) 3 (H 2 O) 3 ]Cl precursor complex. Re I (CO) 3 (pterin)(H 2 O) has been found to bind strongly with bovine and human serum albumins (BSA and HSA) with intrinsic-binding constants, K b , of 6.5 × 10 5 M -1 and 5.6 × 10 5 M -1 at 310 K, respectively. The interactions of serum albumins with Re I (CO) 3 (pterin)(H 2 O) were evaluated employing UV-vis fluorescence and absorption spectroscopy and circular dichroism. The results suggest that the serum albumins-Re I (CO) 3 (pterin)(H 2 O) interactions occurred in the domain IIA-binding pocket without loss of helical stability of the proteins. The comparison of the fluorescence quenching of BSA and HSA due to the binding to the Re(I) complex suggested that local interaction around the Trp 214 residue had taken place. The analysis of the thermodynamic parameters ΔG 0 , ΔH 0 , and ΔS 0 indicated that the hydrophobic interactions played a major role in both HSA-Re(I) and BSA-Re(I) association processes. All these experimental results suggest that these proteins can be considered as good carriers for transportation of Re I (CO) 3 (pterin)(H 2 O) complex. This is of significant importance in relation to the use of this Re(I) complex in several biomedical fields, such as photodynamic therapy and radiopharmacy.
Binding site and affinity prediction of general anesthetics to protein targets using docking.
Liu, Renyu; Perez-Aguilar, Jose Manuel; Liang, David; Saven, Jeffery G
2012-05-01
The protein targets for general anesthetics remain unclear. A tool to predict anesthetic binding for potential binding targets is needed. In this study, we explored whether a computational method, AutoDock, could serve as such a tool. High-resolution crystal data of water-soluble proteins (cytochrome C, apoferritin, and human serum albumin), and a membrane protein (a pentameric ligand-gated ion channel from Gloeobacter violaceus [GLIC]) were used. Isothermal titration calorimetry (ITC) experiments were performed to determine anesthetic affinity in solution conditions for apoferritin. Docking calculations were performed using DockingServer with the Lamarckian genetic algorithm and the Solis and Wets local search method (http://www.dockingserver.com/web). Twenty general anesthetics were docked into apoferritin. The predicted binding constants were compared with those obtained from ITC experiments for potential correlations. In the case of apoferritin, details of the binding site and their interactions were compared with recent cocrystallization data. Docking calculations for 6 general anesthetics currently used in clinical settings (isoflurane, sevoflurane, desflurane, halothane, propofol, and etomidate) with known 50% effective concentration (EC(50)) values were also performed in all tested proteins. The binding constants derived from docking experiments were compared with known EC(50) values and octanol/water partition coefficients for the 6 general anesthetics. All 20 general anesthetics docked unambiguously into the anesthetic binding site identified in the crystal structure of apoferritin. The binding constants for 20 anesthetics obtained from the docking calculations correlate significantly with those obtained from ITC experiments (P = 0.04). In the case of GLIC, the identified anesthetic binding sites in the crystal structure are among the docking predicted binding sites, but not the top ranked site. Docking calculations suggest a most probable binding site located in the extracellular domain of GLIC. The predicted affinities correlated significantly with the known EC(50) values for the 6 frequently used anesthetics in GLIC for the site identified in the experimental crystal data (P = 0.006). However, predicted affinities in apoferritin, human serum albumin, and cytochrome C did not correlate with these 6 anesthetics' known experimental EC(50) values. A weak correlation between the predicted affinities and the octanol/water partition coefficients was observed for the sites in GLIC. We demonstrated that anesthetic binding sites and relative affinities can be predicted using docking calculations in an automatic docking server (AutoDock) for both water-soluble and membrane proteins. Correlation of predicted affinity and EC(50) for 6 frequently used general anesthetics was only observed in GLIC, a member of a protein family relevant to anesthetic mechanism.
Binding Site and Affinity Prediction of General Anesthetics to Protein Targets Using Docking
Liu, Renyu; Perez-Aguilar, Jose Manuel; Liang, David; Saven, Jeffery G.
2012-01-01
Background The protein targets for general anesthetics remain unclear. A tool to predict anesthetic binding for potential binding targets is needed. In this study, we explore whether a computational method, AutoDock, could serve as such a tool. Methods High-resolution crystal data of water soluble proteins (cytochrome C, apoferritin and human serum albumin), and a membrane protein (a pentameric ligand-gated ion channel from Gloeobacter violaceus, GLIC) were used. Isothermal titration calorimetry (ITC) experiments were performed to determine anesthetic affinity in solution conditions for apoferritin. Docking calculations were performed using DockingServer with the Lamarckian genetic algorithm and the Solis and Wets local search method (https://www.dockingserver.com/web). Twenty general anesthetics were docked into apoferritin. The predicted binding constants are compared with those obtained from ITC experiments for potential correlations. In the case of apoferritin, details of the binding site and their interactions were compared with recent co-crystallization data. Docking calculations for six general anesthetics currently used in clinical settings (isoflurane, sevoflurane, desflurane, halothane, propofol, and etomidate) with known EC50 were also performed in all tested proteins. The binding constants derived from docking experiments were compared with known EC50s and octanol/water partition coefficients for the six general anesthetics. Results All 20 general anesthetics docked unambiguously into the anesthetic binding site identified in the crystal structure of apoferritin. The binding constants for 20 anesthetics obtained from the docking calculations correlate significantly with those obtained from ITC experiments (p=0.04). In the case of GLIC, the identified anesthetic binding sites in the crystal structure are among the docking predicted binding sites, but not the top ranked site. Docking calculations suggest a most probable binding site located in the extracellular domain of GLIC. The predicted affinities correlated significantly with the known EC50s for the six commonly used anesthetics in GLIC for the site identified in the experimental crystal data (p=0.006). However, predicted affinities in apoferritin, human serum albumin, and cytochrome C did not correlate with these six anesthetics’ known experimental EC50s. A weak correlation between the predicted affinities and the octanol/water partition coefficients was observed for the sites in GLIC. Conclusion We demonstrated that anesthetic binding sites and relative affinities can be predicted using docking calculations in an automatic docking server (Autodock) for both water soluble and membrane proteins. Correlation of predicted affinity and EC50 for six commonly used general anesthetics was only observed in GLIC, a member of a protein family relevant to anesthetic mechanism. PMID:22392968
Sharma, Neekun; Hotta, Akitoyo; Yamamoto, Yoshie; Fujita, Osamu; Uda, Akihiko; Morikawa, Shigeru; Yamada, Akio
2013-01-01
A novel competitive enzyme-linked immunosorbent assay (cELISA) was developed and evaluated for detection of antibodies against Francisella tularensis in humans. The assay is based on the ability of serum antibodies to inhibit the binding of monoclonal antibodies (MAbs) directed against F. tularensis lipopolysaccharide antigens. The assay was evaluated using serum samples of tularemia patients, inactivated F. tularensis-immunized rabbits, and F. tularensis-infected mice. Antibodies against F. tularensis were successfully detected in serum samples of tularemia patients as well as the immunized and infected animals. The cELISA method was compared to indirect ELISA (iELISA) and the commonly used microagglutination test (MA) using serum samples of 19 tularemia patients and 50 healthy individuals. The sensitivity and specificity of cELISA were 93.9 and 96.1%, respectively, in comparison to the iELISA. MA was less sensitive than cELISA with a sensitivity and specificity of only 81.8 and 98.0%, respectively. A high degree of correlation (R2 = 0.8226) was observed between cELISA and iELISA results. The novel cELISA developed in this study appears to be highly sensitive and specific for serodiagnosis of human tularemia. The potential of the MAb-based cELISA to be used in both human and animal samples emphasizes its usefulness for serological survey of tularemia among multiple animal species. PMID:23114700
Coppieters, Ken; Dreier, Torsten; Silence, Karen; de Haard, Hans; Lauwereys, Marc; Casteels, Peter; Beirnaert, Els; Jonckheere, Heidi; Van de Wiele, Christophe; Staelens, Ludovicus; Hostens, Jeroen; Revets, Hilde; Remaut, Erik; Elewaut, Dirk; Rottiers, Pieter
2006-06-01
The advent of tumor necrosis factor (TNF)-blocking drugs has provided rheumatologists with an effective, but highly expensive, treatment for the management of established rheumatoid arthritis (RA). Our aim was to explore preclinically the application of camelid anti-TNF VHH proteins, which are single-domain antigen binding (VHH) proteins homologous to human immunoglobulin V(H) domains, as TNF antagonists in a mouse model of RA. Llamas were immunized with human and mouse TNF, and antagonistic anti-TNF VHH proteins were isolated and cloned for bacterial production. The resulting anti-TNF VHH proteins were recombinantly linked to yield bivalent mouse and human TNF-specific molecules. To increase the serum half-life and targeting properties, an anti-serum albumin anti-TNF VHH domain was incorporated into the bivalent molecules. The TNF-neutralizing potential was analyzed in vitro. Mouse TNF-specific molecules were tested in a therapeutic protocol in murine collagen-induced arthritis (CIA). Disease progression was evaluated by clinical scoring and histologic evaluation. Targeting properties were evaluated by 99mTc labeling and gamma camera imaging. The bivalent molecules were up to 500 times more potent than the monovalent molecules. The antagonistic potency of the anti-human TNF VHH proteins exceeded even that of the anti-TNF antibodies infliximab and adalimumab that are used clinically in RA. Incorporation of binding affinity for albumin into the anti-TNF VHH protein significantly prolonged its serum half-life and promoted its targeting to inflamed joints in the murine CIA model of RA. This might explain the excellent therapeutic efficacy observed in vivo. These data suggest that because of the flexibility of their format, camelid anti-TNF VHH proteins can be converted into potent therapeutic agents that can be produced and purified cost-effectively.
Terentiev, Alexander A; Moldogazieva, Nurbubu T; Levtsova, Olga V; Maximenko, Dmitry M; Borozdenko, Denis A; Shaitan, Konstantin V
2012-04-01
It has been long experimentally demonstrated that human alpha-fetoprotein (HAFP) has an ability to bind immobilized estrogens with the most efficiency for synthetic estrogen analog - diethylstilbestrol (DES). However, the question remains why the human AFP (HAFP), unlike rodent AFP, cannot bind free estrogens. Moreover, despite the fact that AFP was first discovered more than 50 years ago and is presently recognized as a "golden standard" among onco-biomarkers, its three-dimensional (3D) structure has not been experimentally solved yet. In this work using MODELLER program, we generated 3D model of HAFP on the basis of homology with human serum albumin (HSA) and Vitamin D-binding protein (VTDB) with subsequent molecular docking of DES to the model structure and molecular dynamics (MD) simulation study of the complex obtained. The model constructed has U-shaped structure in which a cavity may be distinguished. In this cavity the putative estrogen-binding site is localized. Validation by RMSD calculation and with the use of PROCHECK program showed good quality of the model and stability of extended region of four alpha-helical structures that contains putative hormone-binding residues. Data extracted from MD simulation trajectory allow proposing two types of interactions between amino acid residues of HAFP and DES molecule: (1) hydrogen bonding with involvement of residues S445, R452, and E551; (2) hydrophobic interactions with participation of L138, M448, and M548 residues. A suggestion is made that immobilization of the hormone using a long spacer provides delivery of the estrogen molecule to the binding site and, thereby, facilitates interaction between HAFP and the hormone.
Poudel-Tandukar, Kalpana; Poudel, Krishna C; Jimba, Masamine; Kobayashi, Jun; Johnson, C Anderson; Palmer, Paula H
2013-03-01
Human immunodeficiency virus (HIV) infection has frequently been associated with vitamin D deficiency as well as chronic inflammatory response. We tested the hypothesis of an independent relationship between serum concentrations of 25-hydroxyvitamin D [25(OH)D] and high-sensitivity C-reactive protein (CRP) in a cohort of HIV-positive people. A cross-sectional survey was conducted among 316 HIV-positive people (181 men and 135 women) aged 16 to 60 years residing in the Kathmandu Valley, Nepal. Serum high-sensitivity CRP concentrations and serum 25(OH)D levels were measured by the latex agglutination nephelometry method and the competitive protein-binding assay, respectively. The relationship between serum CRP concentrations and 25(OH)D serum level was assessed using multiple logistic regression analysis with adjustment of potential cardiovascular and HIV-related factors. The proportions of participants with 25(OH)D serum levels <20 ng/ml, 20-30 ng/ml, and ≥30 ng/ml were 83.2%, 15.5%, and 1.3%, respectively. The mean 25(OH)D serum levels in men and women were 15.3 ng/ml and 14.4 ng/ml, respectively. Participants with a 25(OH)D serum level of <20 ng/ml had a 3.2-fold higher odds of high CRP (>3 mg/liter) compared to those with a 25(OH)D serum level of ≥20 ng/ml (p=0.005). Men and women with a 25(OH)D serum level of <20 ng/ml had 3.2- and 2.7-fold higher odds of high CRP (>3 mg/liter), respectively, compared to those with a 25(OH)D serum level of ≥20 ng/ml. The relationships remained significant only in men (p =0.02) but not in women (p=0.28). The risk of having a high level of inflammation (CRP>3 mg/liter) may be high among HIV-positive men and women with a 25(OH)D serum level of <20 ng/ml.
Fontana, Luigi; Villareal, Dennis T; Das, Sai K; Smith, Steven R; Meydani, Simin N; Pittas, Anastassios G; Klein, Samuel; Bhapkar, Manjushri; Rochon, James; Ravussin, Eric; Holloszy, John O
2016-02-01
Young-onset calorie restriction (CR) in rodents decreases serum IGF-1 concentration and increases serum corticosterone levels, which have been hypothesized to play major roles in mediating its anticancer and anti-aging effects. However, little is known on the effects of CR on the IGF-1 system and cortisol in humans. To test the sustained effects of CR on these key hormonal adaptations, we performed a multicenter randomized trial of a 2-year 25% CR intervention in 218 nonobese (body mass index between 22 and 27.8 kg m(-2) ) young and middle-aged (20-50 years age range) men and women. Average CR during the first 6 months was 19.5 ± 0.8% and 9.1 ± 0.7% over the next 18 months of the study. Weight loss averaged 7.6 ± 0.3 kg over the 2-years period of which 71% was fat mass loss (P < 0.0001). Average CR during the CR caused a significant 21% increase in serum IGFBP-1 and a 42% reduction in IGF-1:IGFBP-1 ratio at 2 years (P < 0.008), but did not change IGF-1 and IGF-1:IGFBP-3 ratio levels. Serum cortisol concentrations were slightly but significantly increased by CR at 1 year only (P = 0.003). Calorie restriction had no effect on serum concentrations of PDGF-AB and TGFβ-1. We conclude, on the basis of the present and previous findings, that, in contrast to rodents, humans do not respond to CR with a decrease in serum IGF-1 concentration or with a sustained and biological relevant increase in serum cortisol. However, long-term CR in humans significantly and persistently increases serum IGFBP-1 concentration. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Bead-based microfluidic immunoassay for diagnosis of Johne's disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wadhwa, Ashutosh; Foote, Robert; Shaw, Robert W
2012-01-01
Microfluidics technology offers a platform for development of point-of-care diagnostic devices for various infectious diseases. In this study, we examined whether serodiagnosis of Johne s disease (JD) can be conducted in a bead-based microfluidic assay system. Magnetic micro-beads were coated with antigens of the causative agent of JD, Mycobacterium avium subsp. paratuberculosis. The antigen-coated beads were incubated with serum samples of JD-positive or negative serum samples and then with a fluorescently-labeled secondary antibody (SAB). To confirm binding of serum antibodies to the antigen, the beads were subjected to flow cytometric analysis. Different conditions (dilutions of serum and SAB, types ofmore » SAB, and types of magnetic beads) were optimized for a great degree of differentiation between the JD-negative and JD-positive samples. Using the optimized conditions, we tested a well-classified set of 155 serum samples from JD negative and JD-positive cattle by using the bead-based flow cytometric assay. Of 105 JD-positive samples, 63 samples (60%) showed higher antibody binding levels than a cut-off value determined by using antibody binding levels of JD-negative samples. In contrast, only 43-49 JD-positive samples showed higher antibody binding levels than the cut-off value when the samples were tested by commercially-available immunoassays. Microfluidic assays were performed by magnetically immobilizing a number of beads within a microchannel of a glass microchip and detecting antibody on the collected beads by laser-induced fluorescence. Antigen-coated magnetic beads treated with bovine serum sample and fluorescently-labeled SAB were loaded into a microchannel to measure the fluorescence (reflecting level of antibody binding) on the beads in the microfluidic system. When the results of five bovine serum samples obtained with the system were compared to those obtained with the flow cytometer, a high level of correlation (linear regression, r2 = 0.994) was observed. In a further experiment, we magnetically immobilized antigen-coated beads in a microchannel, reacted the beads with serum and SAB in the channel, and detected antibody binding to the beads in the microfluidic system. A strong antibody binding in JD-positive serum was detected, whereas there was only negligible binding in negative control experiments. Our data suggest that the bead-based microfluidic system may form a basis for development of an on-site serodiagnosis of JD. Key Words: Mycobacterium avium ssp. paratuberculosis, Johne s disease, microfluidics, lab-on-a-chip.« less
Chua, Chong-Long; Sam, I-Ching; Merits, Andres; Chan, Yoke-Fun
2016-08-01
Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus which causes epidemics of fever, severe joint pain and rash. Between 2005 and 2010, the East/Central/South African (ECSA) genotype was responsible for global explosive outbreaks across India, the Indian Ocean and Southeast Asia. From late 2013, Asian genotype CHIKV has caused outbreaks in the Americas. The characteristics of cross-antibody efficacy and epitopes are poorly understood. We characterized human immune sera collected during two independent outbreaks in Malaysia of the Asian genotype in 2006 and the ECSA genotype in 2008-2010. Neutralizing capacity was analyzed against representative clinical isolates as well as viruses rescued from infectious clones of ECSA and Asian CHIKV. Using whole virus antigen and recombinant E1 and E2 envelope glycoproteins, we further investigated antibody binding sites, epitopes, and antibody titers. Both ECSA and Asian sera demonstrated stronger neutralizing capacity against the ECSA genotype, which corresponded to strong epitope-antibody interaction. ECSA serum targeted conformational epitope sites in the E1-E2 glycoprotein, and E1-E211K, E2-I2T, E2-H5N, E2-G118S and E2-S194G are key amino acids that enhance cross-neutralizing efficacy. As for Asian serum, the antibodies targeting E2 glycoprotein correlated with neutralizing efficacy, and I2T, H5N, G118S and S194G altered and improved the neutralization profile. Rabbit polyclonal antibody against the N-terminal linear neutralizing epitope from the ECSA sequence has reduced binding capacity and neutralization efficacy against Asian CHIKV. These findings imply that the choice of vaccine strain may impact cross-protection against different genotypes. Immune serum from humans infected with CHIKV of either ECSA or Asian genotypes showed differences in binding and neutralization characteristics. These findings have implications for the continued outbreaks of co-circulating CHIKV genotypes and effective design of vaccines and diagnostic serological assays.
Chen, Yihui; Miclea, Razvan; Srikrishnan, Thamarapu; Balasubramanian, Sathyamangalam; Dougherty, Thomas J; Pandey, Ravindra K
2005-07-01
A series of pyropheophorbide-a and bacteriopurpurinimides were investigated to understand the correlation between HSA (site II) binding affinity and in vivo photosensitizing activity. In our study, photosensitizers that bound to site II of HSA produced a significant difference in the circular dichroism spectra of the corresponding complexes, especially at Soret band region of the photosensitizers. Our results suggest that CD spectroscopy of the photosensitizer-HSA complexes could be a valuable tool in screening new photosensitizers before evaluating them for in vivo efficacy.
ENTRAPMENT OF PROTEINS IN GLYCOGEN-CAPPED AND HYDRAZIDE-ACTIVATED SUPPORTS
Jackson, Abby J.; Xuan, Hai; Hage, David S.
2010-01-01
A method is described for the entrapment of proteins in hydrazide-activated supports using oxidized glycogen as a capping agent. This approach is demonstrated using human serum albumin (HSA) as a model binding agent. After optimization of this method, a protein content of 43 (± 1) mg HSA/g support was obtained for porous silica. The entrapped HSA supports could retain a low mass drug (S-warfarin) and had activities and equilibrium constants comparable to those for soluble HSA. It was also found that this approach could be used with other proteins and binding agents that had masses between 5.8 and 150 kDa. PMID:20470745
Hubert, Kerstin; Pawlik, Marie-Christin; Claus, Heike; Jarva, Hanna; Meri, Seppo; Vogel, Ulrich
2012-01-01
Neisseria meningitidis employs polysaccharides and outer membrane proteins to cope with human serum complement attack. To screen for factors influencing serum resistance, an assay was developed based on a colorimetric serum bactericidal assay. The screening used a genetically modified sequence type (ST)-41/44 clonal complex (cc) strain lacking LPS sialylation, polysaccharide capsule, the factor H binding protein (fHbp) and MutS, a protein of the DNA repair mechanism. After killing of >99.9% of the bacterial cells by serum treatment, the colorimetric assay was used to screen 1000 colonies, of which 35 showed enhanced serum resistance. Three mutant classes were identified. In the first class of mutants, enhanced expression of Opc was identified. Opc expression was associated with vitronectin binding and reduced membrane attack complex deposition confirming recent observations. Lipopolysaccharide (LPS) immunotype switch from immunotype L3 to L8/L1 by lgtA and lgtC phase variation represented the second class. Isogenic mutant analysis demonstrated that in ST-41/44 cc strains the L8/L1 immunotype was more serum resistant than the L3 immunotype. Consecutive analysis revealed that the immunotypes L8 and L1 were frequently observed in ST-41/44 cc isolates from both carriage and disease. Immunotype switch to L8/L1 is therefore suggested to contribute to the adaptive capacity of this meningococcal lineage. The third mutant class displayed a pilE allelic exchange associated with enhanced autoaggregation. The mutation of the C terminal hypervariable region D of PilE included a residue previously associated with increased pilus bundle formation. We suggest that autoaggregation reduced the surface area accessible to serum complement and protected from killing. The study highlights the ability of meningococci to adapt to environmental stress by phase variation and intrachromosomal recombination affecting subcapsular antigens.
Hubert, Kerstin; Pawlik, Marie-Christin; Claus, Heike; Jarva, Hanna; Meri, Seppo; Vogel, Ulrich
2012-01-01
Neisseria meningitidis employs polysaccharides and outer membrane proteins to cope with human serum complement attack. To screen for factors influencing serum resistance, an assay was developed based on a colorimetric serum bactericidal assay. The screening used a genetically modified sequence type (ST)-41/44 clonal complex (cc) strain lacking LPS sialylation, polysaccharide capsule, the factor H binding protein (fHbp) and MutS, a protein of the DNA repair mechanism. After killing of >99.9% of the bacterial cells by serum treatment, the colorimetric assay was used to screen 1000 colonies, of which 35 showed enhanced serum resistance. Three mutant classes were identified. In the first class of mutants, enhanced expression of Opc was identified. Opc expression was associated with vitronectin binding and reduced membrane attack complex deposition confirming recent observations. Lipopolysaccharide (LPS) immunotype switch from immunotype L3 to L8/L1 by lgtA and lgtC phase variation represented the second class. Isogenic mutant analysis demonstrated that in ST-41/44 cc strains the L8/L1 immunotype was more serum resistant than the L3 immunotype. Consecutive analysis revealed that the immunotypes L8 and L1 were frequently observed in ST-41/44 cc isolates from both carriage and disease. Immunotype switch to L8/L1 is therefore suggested to contribute to the adaptive capacity of this meningococcal lineage. The third mutant class displayed a pilE allelic exchange associated with enhanced autoaggregation. The mutation of the C terminal hypervariable region D of PilE included a residue previously associated with increased pilus bundle formation. We suggest that autoaggregation reduced the surface area accessible to serum complement and protected from killing. The study highlights the ability of meningococci to adapt to environmental stress by phase variation and intrachromosomal recombination affecting subcapsular antigens. PMID:23028802
Zahorsky-Reeves, Joanne L; Kearns-Jonker, Mary K; Lam, Tuan T; Jackson, Jeremy R; Morris, Randall E; Starnes, Vaughn A; Cramer, Donald V
2007-03-01
Recent work has indicated a role for anti-Gal alpha 1-3Gal (Gal) and anti-non-Gal xenoantibodies in the primate humoral rejection response against human-decay accelerating factor (hDAF) transgenic pig organs. Our laboratory has shown that anti-porcine xenograft antibodies in humans and non-human primates are encoded by a small number of germline IgV(H) progenitors. In this study, we extended our analysis to identify the IgV(H) genes encoding xenoantibodies in immunosuppressed cynomolgus monkeys (Macaca fascicularis) transplanted with hDAF-transgenic pig organs. Three immunosuppressed monkeys underwent heterotopic heart transplantation with hDAF porcine heart xenografts. Two of three animals were given GAS914, a poly-L-lysine derivative shown to bind to anti-Gal xenoantibodies and neutralize them. One animal rejected its heart at post-operative day (POD) 39; a second animal rejected the transplanted heart at POD 78. The third monkey was euthanized on POD 36 but the heart was not rejected. Peripheral blood leukocytes (PBL) and serum were obtained from each animal before and at multiple time points after transplantation. We analyzed the immune response by enzyme-linked immunosorbent assay (ELISA) to confirm whether anti-Gal or anti-non-Gal xenoantibodies were induced after graft placement. Immunoglobulin heavy-chain gene (V(H)) cDNA libraries were then produced and screened. We generated soluble single-chain antibodies (scFv) to establish the binding specificity of the cloned immunoglobulin genes. Despite immunosuppression, which included the use of the polymer GAS914, the two animals that rejected their hearts showed elevated levels of cytotoxic anti-pig red blood cell (RBC) antibodies and anti-pig aortic endothelial cell (PAEC) antibodies. The monkey that did not reject its graft showed a decline in serum anti-RBC, anti-PAEC, and anti-Gal xenoantibodies when compared with pre-transplant levels. A V(H)3 family gene with a high level of sequence similarity to an allele of V(H)3-11, designated V(H)3-11(cyno), was expressed at elevated levels in the monkey that was not given GAS914 and whose graft was not rejected until POD 78. IgM but not IgG xenoantibodies directed at N-acetyl lactosamine (a precursor of the Gal epitope) were also induced in this animal. We produced soluble scFv from this new gene to determine whether this antibody could bind to the Gal carbohydrate, and demonstrated that this protein was capable of blocking the binding of human serum xenoantibody to Gal oligosaccharide, as had previously been shown with human V(H)3-11 scFv. DAF-transgenic organs transplanted into cynomolgus monkeys induce anti-Gal and anti-non-Gal xenoantibody responses mediated by both IgM and IgG xenoantibodies. Anti-non-Gal xenoantibodies are induced at high levels in animals treated with GAS914. Antibodies that bind to the Gal carbohydrate and to N-acetyl lactosamine are induced in the absence of GAS914 treatment. The animal whose heart remained beating for 78 days demonstrated increased usage of an antibody encoded by a germline progenitor that is structurally related, but distinct from IGHV311. This antibody binds to the Gal carbohydrate but does not induce the rapid rejection of the xenograft when expressed at high levels as early as day 8 post-transplantation.
Characterization of the Binding of a Potent Synthetic Androgen, Methyltrienolone, to Human Tissues
Menon, Mani; Tananis, Catherine E.; Hicks, L. Louise; Hawkins, Edward F.; McLoughlin, Martin G.; Walsh, Patrick C.
1978-01-01
The potent synthetic androgen methytrienolone (R 1881), which does not bind to serum proteins, was utilized to characterize binding to receptors in human androgen responsive tissues. Cytosol extracts prepared from hypertrophic prostates (BPH) were utilized as the source of receptor for the initial studies. High affinity binding was detected in the cytosol of 29 of 30 samples of BPH (average number of binding sites, 45.8±4.7 fmol/mg of protein; dissociation constant, 0.9±0.2 nM). This binding had the characteristics of a receptor: heat lability, precipitability by 0-33% ammonium sulfate and by protamine sulfate, and 8S sedimentation coefficient. High affinity binding was also detected in cytosol prepared from seminal vesicle, epididymis, and genital skin but not in non-genital skin or muscle. However, similar binding was demonstrated in the cytosol of human uterus. The steroid specificities of binding to the cytosol of male tissues of accessory reproduction and of uterus were similar in that progestational agents were more effective competitors than natural androgens. Binding specificities in cytosol prepared from genital skin were distinctly different and were similar to those of ventral prostate from the castrated rat in that dihydrotestosterone was much more potent than progestins in competition. Thus binding of R 1881 to the cytosol of prostate, epididymis, and seminal vesicle has some characteristics of binding to a progesterone receptor. When the nuclear extract from BPH was analyzed, high affinity binding was demonstrated that conformed to the specificities of binding to an androgen receptor. Here dihydrotestosterone was a more potent competitor than progestational agents. Similar patterns of binding were detected in the crude nuclear extracts from seminal vesicle, epididymis, and genital skin but not in uterus, muscle, or non-genital skin. We conclude that the androgen receptor is not demonstrable in the cytosol of prostate, epididymis, or seminal vesicle of non-castrated men but can be measured in the cytosol of genital skin and the nuclear extracts of androgen responsive tissues. Because steroid hormones exert their major influence within the nucleus of target tissues, the measurement of nuclear receptor may provide valuable insight into the regulation of growth of target tissues. PMID:73547